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FOREWORDTOSECONDEDITION

Materials science is one of the broadest of the applied science and engineering fields since
it uses concepts from so many different subject areas. Chemistry is one of the key fields of
study, and in many materials science programs students must take general chemistry as a
prerequisite for all but the most basic of survey courses. However, that is typically the last
true chemistry course that they take. The remainder of their chemistry training is accom-
plished in their materials classes. This has served the field well for many years, but over
the past couple of decades new materials development has become more heavily depen-
dent upon synthetic chemistry. This second edition of Principles of Inorganic Materials
Design serves as a fine text to introduce the materials student to the fundamentals of
designing materials through synthetic chemistry and the chemist to some of the issues
involved in materials design.

When I obtained my BS in Ceramic Engineering in 1981, the primary fields of
materials science – ceramics, metals, polymers, and semiconductors – were generally
taught in separate departments, although therewas frequently some overlap. This was par-
ticularly true at the undergraduate level, although graduate programs frequently had more
subject overlap. During the 1980s, many of these departments merged to form materials
science and engineering departments that began to take a more integrated approach to the
field, although chemical and electrical engineering programs tended to cover polymers
and semiconductors in more depth. This trend continued in the 1990s and included
the writing of texts such as The Production of Inorganic Materials by Evans and De
Jonghe (Prentice Hall College Division, 1991), which focused on traditional production
methods. Synthetic chemical approaches became more important as the decade pro-
gressed and academia began to address this in the classroom, particularly at the graduate
level. The first edition of Principles of Inorganic Materials Design strove to make this
material available to the upper division undergraduate student.

The second edition of Principles of Inorganic Materials Design corrects several gaps
in the first edition to convert it from a very good compilation of the field into a text that is
very usable in the undergraduate classroom. Perhaps the biggest of these is the addition of
practice problems at the end of every chapter since the second best way to learn a subject
is to apply it to problems (the best is to teach it) and this removes the burden of creating
the problems from the instructor. Chapter 1, Crystallographic Considerations, is new and
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both reviews the basic information in most introductory materials courses and clearly
presents the more advanced concepts such as the mathematical description of crystal
symmetry that are typically covered in courses on crystallography of physical chemistry.
Chapter 10, Mechanical Properties, has also been expanded significantly to provide both
the basic concepts needed by those approaching the topic for the first time and the solid
mathematical treatment needed to relate the mechanical properties to atomic bonding,
crystallography, and other material properties treated in previous chapters. This is particu-
larly important as devices use smaller active volumes of material, since this seldom
results in the materials being in a stress free state.

In summary, the second edition of Principles of Inorganic Materials Design is a very
good text for several applications: a first materials course for chemistry and physics stu-
dents; a consolidated materials chemistry course for materials science students; and a
second materials course for other engineering and applied science students. It is also
serves as the background material to pursue the chemical routes to make these new
materials described in texts such as Inorganic Materials Synthesis and Fabrication by
Lalena and Cleary (John Wiley & Sons, 2008). Such courses are critical to insure that
students from different disciplines can communicate as they move into industry and
face the need to design new materials or reduce costs through synthetic chemical routes.

MARTIN W. WEISER

Martin earned his BS in Ceramic Engineering from Ohio State University and MS and
PhD in Materials Science and Mineral Engineering from the University of California,
Berkeley. At Berkeley he conducted fundamental research on sintering of powder com-
pacts and ceramic matrix composites. After graduation he joined the University of New
Mexico (UNM)where hewas a Visiting Assistant Professor in Chemical Engineering and
then Assistant Professor in Mechanical Engineering. At UNM he taught introductory and
advancedMaterials Science classes to students from all branches of Engineering. He con-
tinued his research in ceramic fabrication as part of the Center for Micro-Engineered
Ceramics and also branched out into solder metallurgy and biomechanics in collaboration
with colleagues from Sandia National Laboratory and the UNM School of Medicine,
respectively.

Martin joined Johnson Matthey Electronics in a technical service role supporting the
Discrete Power Products Group (DPPG). In this role he also initiated JME’s efforts to
develop Pb-free solders for power die attach that came to fruition in collaboration with
J. N. Lalena several years later after JME was acquired by Honeywell. Martin spent
several years as the Product Manager for the DPPG and then joined the Six Sigma
Plus Organization after earning his Six Sigma Black Belt working on polymer/metal
composite thermal interface materials (TIMs). He spent the last several years in the
R&D group as both a Group Manager and Principle Scientist where he lead development
of improved Pb-free solders and new TIMs.
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FOREWORD TO FIRST EDITION

Whereas solid-state physics is concerned with the mathematical description of the varied
physical phenomena that solids exhibit and the solid-state chemist is interested in probing
the relationships between structural chemistry and physical phenomena, the materials
scientist has the task of using these descriptions and relationships to design materials
that will perform specified engineering functions. However, the physicist and the chemist
are often called upon to act as material designers, and the practice of materials design
commonly requires the exploration of novel chemistry that may lead to the discovery
of physical phenomena of fundamental importance for the body of solid state physics.
I cite three illustrations where an engineering need has led to new physics and chemistry
in the course of materials design.

In 1952, I joined a group at the M. I. T. Lincoln Laboratory that had been charged
with the task of developing a square B–H hysteresis loop in a ceramic ferrospinel that
could have its magnetization reversed in less than 1 ms by an applied magnetic field
strength less than twice the coercive field strength. At that time, the phenomenon of a
square B–H loop had been obtained in a few iron alloys by rolling them into tapes so
as to align the grains, and hence the easy magnetization directions, along the axis of
the tape. The observation of a square B–H loop led Jay Forrester, an electrical engineer,
to invent the coincident-current, random-access magnetic memory for the digital compu-
ter since, at that time, the only memory available was a 16 � 16 byte electrostatic storage
tube. Unfortunately, the alloy tapes gave too slow a switching speed. As an electrical
engineer, Jay Forrester assumed the problem was eddy-current losses in the tapes, so
he had turned to the ferrimagnetic ferrospinels that were known to be magnetic insulators.
However, the polycrystalline ferrospinels are ceramics that cannot be rolled!
Nevertheless, the Air Force had financed the M. I. T. Lincoln Laboratory to develop
an Air Defense System of which the digital computer was to be a key component.
Therefore, Jay Forrester was able to put together an interdisciplinary team of electrical
engineers, ceramists, and physicists to realize his random-access magnetic memory
with ceramic ferrospinels.

The magnetic memory was achieved by a combination of systematic empiricism,
careful materials characterization, theoretical analysis, and the emergence of an unantici-
pated phenomenon that proved to be a stroke of good fortune. A systematic mapping of
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the structural, magnetic, and switching properties of the Mg–Mn–Fe ferrospinels as a
function of their heat treatments revealed that the spinels, in one part of the phase dia-
gram, were tetragonal rather than cubic and that compositions, just on the cubic side of
the cubic-tetragonal phase boundary, yield sufficiently square B–H loops if given a
carefully controlled heat treatment. This observation led me to propose that the tetragonal
distortion was due to a cooperative orbital ordering on the Mn3þ ions that would lift the
cubic-field orbital degeneracy; cooperativity of the site distortions minimizes the cost in
elastic energy and leads to a distortion of the entire structure. This phenomenon is now
known as a cooperative Jahn–Teller distortion since Jahn and Teller had earlier pointed
out that a molecule or molecular complex, having an orbital degeneracy, would lower its
energy by deforming its configuration to a lower symmetry that removed the degeneracy.
Armed with this concept, I was able almost immediately to apply it to interpret the struc-
ture and the anisotropic magnetic interactions that had been found in the manganese–
oxide perovskites since the orbital order revealed the basis for specifying the rules for
the sign of a magnetic interaction in terms of the occupancies of the overlapping orbitals
responsible for the interatomic interactions. These rules are now known as the
Goodenough–Kanamori rules for the sign of a superexchange interaction. Thus an engin-
eering problem prompted the discovery and description of two fundamental phenomena
in solids that ever since have been used by chemists and physicists to interpret structural
and magnetic phenomena in transition-metal compounds and to design new magnetic
materials. Moreover, the discovery of cooperative orbital ordering fed back to an
understanding of our empirical solution to the engineering problem. By annealing at
the optimum temperature for a specified time, the Mn3þ ions of a cubic spinel would
migrate to form Mn-rich regions where their energy is lowered through cooperative,
dynamic orbital ordering. The resulting chemical inhomogeneities acted as nucleating
centers for domains of reverse magnetization that, once nucleated, grew away from the
nucleating center. We also showed that eddy currents were not responsible for the slow
switching of the tapes, but a small coercive field strength and an intrinsic damping
factor for spin rotation.

In the early 1970s, an oil shortage focused worldwide attention on the need to
develop alternative energy sources; and it soon became apparent that these sources
would benefit from energy storage. Moreover, replacing the internal combustion
engine with electric-powered vehicles, or at least the introduction of hybrid vehicles,
would improve the air quality, particularly in big cities. Therefore, a proposal by the
Ford Motor Company to develop a sodium–sulfur battery operating at 3008C with
molten electrodes and a ceramic Naþ-ion electrolyte stimulated interest in the design
of fast alkali-ion conductors. More significant was interest in a battery in which Liþ

rather than Hþ is the working ion, since the energy density that can be achieved
with an aqueous electrolyte is lower than what, in principle, can be obtained with a non-
aqueous Liþ-ion electrolyte. However, realization of a Liþ-ion rechargeable battery
would require identification of a cathode material into/from which Liþ ions can be
inserted/extracted reversibly. Brian Steele of Imperial College, London, first suggested
use of TiS2, which contains TiS2 layers held together only by Vander Waals S22–S22

bonding; lithium can be inserted reversibly between the TiS2 layers. M. Stanley
Whittingham’s demonstration was the first to reduce this suggestion to practice while
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he was at the EXXON Corporation. Whittingham’s demonstration of a rechargeable
Li–TiS2 battery was commercially nonviable because the lithium anode proved
unsafe. Nevertheless, his demonstration focused attention on the work of the chemists
Jean Rouxel of Nantes and R. Schöllhorn of Berlin on insertion compounds that provide
a convenient means of continuously changing the mixed valency of a fixed transition-
metal array across a redox couple. Although work at EXXON was halted, their demon-
stration had shown that if an insertion compound, such as graphite, was used as the anode,
a viable lithium battery could be achieved; but use of a less electropositive anode would
require an alternative insertion-compound cathode material that provided a higher voltage
versus a lithium anode than TiS2. I was able to deduce that no sulfide would give a sig-
nificantly higher voltage than that obtained with TiS2 and therefore that it would be
necessary to go to a transition-metal oxide. Although oxides other than V2O5 and
MoO3, which contain vandyl or molybdyl ions, do not form layered structures analogous
to TiS2, I knew that LiMO2 compounds exist that have a layered structure similar to that of
LiTiS2. It was only necessary to choose the correctM

3þ cation and to determine howmuch
Li could be extracted before the structure collapsed. That was how the Li12xCoO2 cathode
material was developed, which now powers the cell telephones and laptop computers.
The choice of M ¼ Co, Ni, or Ni0.5þdMn0.52d was dictated by the position of the redox
energies and an octahedral site-preference energy strong enough to inhibit migration of
the M atom to the Li layers on removal of Li. Electrochemical studies of these cathode
materials, and particularly of Li12xNi0.5þdMn0.52dO2, have provided a demonstration
of the pinning of a redox couple at the top of the valence band. This being a concept of
singular importance for interpretation of metallic oxides having only M–O–M inter-
actions, of the reason for oxygen evolution at critical Co(IV)/Co(III) or Ni(IV)/Ni(III)
ratios in Li12xMO2 studies, and of why Cu(III) in an oxide has a low-spin configuration.
Moreover, exploration of other oxide structures that can act as hosts for insertion of Li as a
guest species have provided a means of quantitatively determining the influence of a
counter cation on the energy of a transition-metal redox couple. This determination
allows tuning of the energy of a redox couple, which may prove important for the
design of heterogenous catalysts.

As a third example, I turn to the discovery of high-temperature superconductivity in
the copper oxides, first announced by Bednorz and Müller of IBM Zürich in the summer
of 1986. Karl A. Müller, the physicist of the pair, had been thinking that a dynamic Jahn–
Teller ordering might provide an enhanced electron–phonon coupling that would raise
the superconductive critical temperature TC. He turned to his chemist colleague
Bednorz to make a mixed-valent Cu3þ/Cu2þ compound since Cu2þ has an orbital degen-
eracy in an octahedral site. This speculation led to the discovery of the family of high-TC
copper oxides; however, the enhanced electron–phonon coupling is not due to a conven-
tional dynamic Jahn–Teller orbital ordering, but rather to the first-order character of the
transition from localized to itinerant electronic behavior of s-bonding Cu :3d electrons of
(x2 2 y2) symmetry in CuO2 planes. In this case, the search for an improved engineering
material has led to a demonstration that the celebrated Mott–Hubbard transition is
generally not as smooth as originally assumed, and it has introduced an unanticipated
new physics associated with bond-length fluctuations and vibronic electronic properties.
It has challenged the theorist to develop new theories of the crossover regime that can
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describe the mechanism of superconductive pair formation in the copper oxides, quantum
critical-point behavior at low temperatures, and an anomalous temperature dependence of
the resistivity at higher temperatures as a result of strong electron–phonon interactions.

These examples show how the challenge of materials design from the engineer may
lead to new physics as well as to new chemistry. Sorting out of the physical and chemical
origins of the new phenomena feed back to the range of concepts available to the designer
of new engineering materials. In recognition of the critical role in materials design of
interdisciplinary cooperation between physicists, chemists, ceramists, metallergists,
and engineers that is practiced in industry and government research laboratories, John
N. Lalena and David A. Cleary have initiated, with their book, what should prove to
be a growing trend toward greater interdisciplinarity in the education of those who will
be engaged in the design and characterization of tomorrow’s engineering materials.

JOHN B. GOODENOUGH
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PREFACE TO SECOND EDITION

In our first attempt at writing a textbook on the highly interdisciplinary subject of
inorganic materials design, we recognized the requirement that the book needed to
appeal to a very broad-based audience. Indeed, practicioneers of materials science and
engineering come from many different educational backgrounds, each emphasizing
different aspects. These include: solid-state chemistry, condensed-matter physics, metal-
lurgy, ceramics, mechanical engineering, andmaterials science and engineering (MS&E).
Unfortunately, we did not adequately anticipate the level of difficulty that would be
associated with successfully implementing the task of attracting readers from so many
disciplines that, though distinct, possess the common threads of elucidating and utilizing
structure/property correlation in the design of new materials.

As a result, the first edition had a number of shortfalls. First and foremost, owing
to a variety of circumstances, there were many errors that, regrettably, made it into the
printed book. Great care has been taken to correct each of these. In addition to simply
revising the first edition, however, the content has been updated and expanded as well.
As was true with the first edition, this book is concerned, by and large, with theoretical
structure/property correlation as it applies to materials design. Nevertheless, a small
amount of space is dedicated to the empirical practice of synthesis and fabrication.
Much more discussion is devoted to these specialized topics concerned with the
preparation of materials, as opposed to their design, in numerous other books, one of
which is our companion textbook, Inorganic Materials Synthesis and Fabrication.

Some features added to this second edition include an expanded number of worked
examples and an appendix containing solutions to selected end-of-chapter problems. The
overall goal of our second edition is, quite simply, to rectify the problems we encountered
earlier, thereby producing a work that is much better suited as a tool to the working
professionals, educators, and students of this fascinating field.

J. N. LALENA, D. A. CLEARY
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PREFACE TO FIRST EDITION

Inorganic solid-state chemistry has matured into its own distinct subdiscipline. The reader
may wonder why we have decided to add another textbook to the plethora of books
already published. Our response is that we see a need for a single source presentation
that recognizes the interdisciplinary nature of the field. Solid-state chemists typically
receive a small amount of training in condensed matter physics, and none in materials
science or engineering, and yet all of these traditional fields are inextricably part of
inorganic solid-state chemistry.

Materials scientists and engineers have traditionally been primarily concerned
with the fabrication and utilization of materials already synthesized by the chemist and
identified by the physicist as having the appropriate intrinsic properties for a particular
engineering function. Although the demarcation between the three disciplines remains
in an academic sense, the separate job distinctions for those working in the field is
fading. This is especially obvious in the private sector, where one must ensure that
materials used in real commercial devices not only perform their primary function, but
also meet a variety of secondary requirements.

Individuals involved with these multidisciplinary and multitask projects must be pre-
pared to work independently or to collaborate with other specialists in facing design chal-
lenges. In the latter case, communication is enhanced if each individual is able to speak
the “language” of the other. Therefore, in this book we introduce a number of concepts
that are not usually covered in standard solid-state chemistry textbooks.When this occurs,
we try to follow the introduction of the concept with an appropriate worked example to
demonstrate its use. Two areas that have lacked thorough coverage in most solid-state
chemistry texts in the past, namely microstructure and mechanical properties, are treated
extensively in this book.

We have kept the mathematics to a minimum – but adequate – level, suitable for a
descriptive treatment. Appropriate citations are included for those needing the quantitat-
ive details. It is assumed that the reader has sufficient knowledge of calculus and elemen-
tary linear algebra, particularly matrix manipulations, and some prior exposure to
thermodynamics, quantum theory, and group theory. The book should be satisfactory
for senior level undergraduate or beginning graduate students in chemistry. One will
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recognize from the Table of Contents that entire textbooks have been devoted to each of
the chapters in this book, and this limits the depth of coverage out of necessity. Along
with their chemistry colleagues, physics and engineering students should also find the
book to be informative and useful.

Every attempt has been made to extensively cite all the original and pertinent
research in a fashion similar to that found in a review article. Students are encouraged
to seek out this work. We have also included biographies of several individuals who
have made significant fundamental contributions to inorganic materials science in the
twentieth century. Limiting these to the small number we have room for was, of
course, difficult. The reader should be warned that some topics have been left out. In
this book, we only cover nonmolecular inorganic materials. Polymers and macromol-
ecules are not discussed. Nor are the other extreme, for example, molecular electronics.
Also omitted are coverages of surface science, self assembly, and composite materials.

We are grateful to Professor John B. Wiley, Dr. Nancy F. Dean, Dr. Martin
W.Weiser, Professor Everett E. Carpenter, and Dr. Thomas K. Kodenkandath for review-
ing various chapters in this book. We are grateful to Professor John F. Nye, Professor
John B. Goodenough, Dr. Frans Spaepen, Dr. Larry Kaufman, and Dr. Bert
Chamberland for providing biographical information. We would also like to thank
Professor Philip Anderson, Professor Mats H. Hillert, Professor Nye, Dr. Kaufman,
Dr. Terrell Vanderah, Dr. Barbara Sewall, and Mrs Jennifer Moss for allowing us to
use photographs from their personal collections. Finally, we acknowledge the inevitable
neglect our families must have felt during the period taken to write this book. We are
grateful for their understanding and tolerance.

J. N. LALENA, D. A. CLEARY
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through text
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CCP cubic-closed package
CCSL constrained coincidence site lattice
CDW charge density wave
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CI configuration interaction
CMR colossal magnetoresistance
CO crystal orbital
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CTAB cetyltrimethylammonium bromide
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CVD chemical vapor deposition
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DFT density-functional theory
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EMF electromagnetic field
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EPMA electron probe microanalysis
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GTOs Gaussian-type orbitals
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1

CRYSTALLOGRAPHIC
CONSIDERATIONS

There are many possible classification schemes for solids that can be envisioned. We can
categorize a material based solely on its chemical composition (inorganic, organic, or
hybrid), the primary bonding type (ionic, covalent, metallic), its structure type (catenation
polymer, extended three-dimensional network), or its crystallinity (crystalline or noncrys-
talline). It is the latter scheme that is the focus of this chapter. A crystalline material
exhibits a large degree of structural order in the arrangement of its constituent particles,
be they atoms, ions, or molecules, over a large length scale whereas a noncrystalline
material exhibits structural order only over a very short-range length scale corresponding
to the first coordination sphere. It is structural order – the existence of a methodical
arrangement among the component particles – that makes the systematic study and
design of materials with prescribed properties possible.

A crystal may be explicitly defined as a homogeneous solid consisting of a peri-
odically repeating three-dimensional pattern of particles. Mathematically, there are
three key structural features to crystals.

1. Regularity, which may be described as equality of parts

2. Symmetry, the repetition of these regularities
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3. Long-range [translational] order (LRO), referring to the periodicity, or regularity
in the arrangement of the material’s atomic or molecular constituents on a length-
scale at least a few times larger than the size of these groups.

It is the presence of this long-range order that allows crystals to scatter incoming waves,
of appropriate wavelengths, so as to produce discrete diffraction patterns, which, in turn,
ultimately enables ascertainment of the actual atomic positions and, hence, crystalline
structure.

1.1 DEGREES OF CRYSTALLINITY

Crystallinity, like most things, can vary in degree. Even single crystals typically
have intrinsic point defects (e.g. lattice site vacancies) and extrinsic point defects (e.g.
impurities), as well as extended defects such as dislocations. Defects are critical to the
physical properties of crystals and will be extensively covered in later chapters. What
we are referring to here with the degree of crystallinity is not the simple presence of
defects, but rather the spectrum of crystallinity that encompasses the entire range from
crystalline to fully disordered amorphous solids. Table 1.1 lists the various classes.
Let’s take each of them in the order shown.

1.1.1 Monocrystalline Solids

At the top of the list is the single crystal, or monocrystal, which has the highest degree of
order. Several crystalline materials of enormous technological or commercial importance
are used in monocrystalline form. Figure 1.1a shows a drawing of a highly symmetrical
quartz crystal, such as might be grown freely suspended in a fluid. For a crystal, the entire
macroscopic body can be regarded as a monolithic three-dimensional space-filling rep-
etition of the fundamental crystallographic unit cell. Typically, the external morphology
of a single crystal is faceted (consisting of faces), as in Figure 1.1a, although this need not
be the case. The word habit is used to describe the overall external shape of a crystal
specimen. Habits, which can be polyhedral or nonpolyhedral, may be described as
cubic, octahedral, fibrous, acicular, prismatic, dendritic (tree-like), platy, blocky, or
blade-like, among many others. The point symmetry of the crystal’s morphological
form cannot exceed the point symmetry of the lattice.

TABLE 1.1. Degrees of Crystallinity

Type Defining Features

Monocrystalline LRO
Quasicrystalline Noncrystallographic rotational symmetry, no LRO
Polycrystalline Crystallites separated by grain boundaries
Semicrystalline Crystalline regions separated by amorphous regions
Amorphous and
glassy state

No LRO, no rotational symmetry, does possess short-range
order (SRO)
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In industry, exceedingly pure single crystals are typically grownwith specific crystal-
lographic orientations and subsequently sliced or cut in a way that enables the maximum
number of units to be obtained of that particular orientation. This process is applied in
the manufacturing of semiconductors (e.g. silicon), optical materials (e.g. potassium
titanyl phosphate), and piezoelectric materials (e.g. quartz). No other crystalline material
manufactured today matches the very low impurity and defect levels of silicon crystals
produced for the microelectronics industry. Dislocation-free silicon crystals were pro-
duced as far back as the early 1960s. However, the elimination of these dislocations
allowed intrinsic point defects to agglomerate into microdefect voids. Although the
voids were of a very low density (106 cm23) and size (150 nm), the drive towards increas-
ingly higher density integrated circuits has made their further reduction the biggest
challenge facing single crystal silicon producers (Falster and Voronkov, 2000).

1.1.2 Quasicrystalline Solids

It will be seen later in this chapter that a crystal may or may not possess rotational
symmetry, but if it does, the rotational symmetry can only be of specific orders. By
contrast, quasicrystals possess a noncrystallographic rotational symmetry and, as a
result, they do not possess translational order, or periodicity. Hence, they are termed
aperiodic. Nevertheless, the long-range orientational order is coherent enough to scatter
incoming waves, thereby producing sharp spots in a diffraction pattern. The most
common quasicrystals are ternary intermetallic phases. Like most other inter-
metallic phases, they are brittle, yet hard, solids. Some quasicrystalline intermetallics are
currently being investigated as candidates for surface coatings and as nanoparticle
reinforcements in alloys.

Figure 1.1. (a) A drawing of a quartz monocrystal. The morphology exhibits the true point

symmetry of the lattice. (b) A portion of a Penrose tiling with five-fold rotational symmetry

based on two rhombuses. A Penrose tiling is a nonperiodic tiling of the plane and is a two-

dimensional analog of a quasicrystal. (c) A micrograph of a polycrystalline sample of

aluminum plastically deformed under uniaxial tension.
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Quasicrystals were discovered in 1984. The first such solid exhibited five-fold
rotational symmetry. A Penrose tiling (a two-dimensional tiling of the plane analogous
to three-dimensional quasicrystals) with this order of rotational symmetry is illustrated
in Figure 1.1b. The initial discovery was followed by the discovery of quasicrystals
with eight-, ten-, and twelve-fold rotational symmetry. All of these early samples
were obtained by rapidly solidifying liquid phases whose equilibrium crystal structures
contained icosahedrally packed groups of atoms. Sir Frederick Charles Frank (1911–
1998) of the University of Bristol and John S. Kasper (1915–2005) of the General
Electric Research Laboratories showed in 1958 that icosahedral coordination (Z ¼ 12),
as well as other coordination polytetrahedra with coordination numbers Z ¼ 14, 15,
and 16, is a major structural component of some melts. Such tetrahedrally close-
packed structures, in which atoms are located at the vertices and centers of various
space-filling arrangements of polytetrahedra, are now called Frank–Kasper phases
(Frank and Kasper, 1958a, b).

Quasicrystalline phases form at compositions close to the related crystalline phases.
When solidified, the resultant structure has icosahedra threaded by a network of wedge
disclinations, having resisted reconstruction into crystalline units with three-dimensional
translational periodicity. The most well-known examples of quasicrystals are inorganic
phases from the ternary intermetallic systems: Al–Li–Cu, Al–Pd–Mn, Zn–Mg–Ln,
Al–Ni–Co, Al–Cu–Co, and Al–Mn–Pd. In 2007, certain blends of polyisoprene,
polystyrene, and poly(2-vinylpyridine) were found to form star-shaped copolymers
that assemble into the first known organic quasicrystals (Hayashida et al., 2007).

As the first reported quasicrystals were metastable phases at room temperature pro-
duced by rapid solidification, they were consequently of poor quality. Stable quasicrystals
have since been discovered that have revealed very high structural perfection, even com-
parable to single crystals. This discovery made it possible to apply conventional solidi-
fication techniques. The preferred method appears to be system-specific, as it depends
on the temperature stability of the quasicrystalline phase. If the quasicrystal is only
stable at elevated temperatures, for example, it can decompose into a crystalline phase
if the melt is solidified slowly. If the phase is thermodynamically stable down to room
temperature, as is the case for Al–Pd–Mn, quasicrystals can be grown with conventional
cooling rates (e.g. 108C/h).

A relationship actually exists between periodic and quasiperiodic patterns such that
any quasilattice may be formed from a periodic lattice in some higher dimension (Cahn,
2001). The points that are projected to the physical three-dimensional space are usually
selected by cutting out a slice from the higher-dimensional lattice. Therefore, this
method of constructing a quasiperiodic lattice is known as the cut-and-project method.
In fact, the pattern for any three-dimensional quasilattice (e.g. icosahedral symmetry)
can be obtained by a suitable projection of points from some six-dimensional periodic
space lattice into a three-dimensional subspace. The idea is to project part of the lattice
points of the higher-dimensional lattice to three-dimensional space, choosing the projec-
tion such that one preserves the rotational symmetry. The set of points so obtained are
called a Meyer set after French mathematician Yves Meyer (b. 1939), who first studied
cut-and-project sets systematically in harmonic analysis (Lalena, 2006).
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1.1.3 Polycrystalline Solids

The vast majority of inorganic materials used in commerce fit into the third class of
Table 1.1, the polycrystalline form. A polycrystal may be a compacted and sintered
powder, a solidification product, or some other dense aggregate of small crystallites,
or grains. Figure 1.1c shows the cross-section of a polycrystalline aluminum sample,
with a grain size of 90 mm, deformed under uniaxial tension. The crystallites of a poly-
crystal are made from the same unit cell as a monocrystal is, but the grains of a polycrys-
talline body are separated from one another by grain boundaries. A polycrystal can be
considered to consist of small crystalline regions separated by regions of disorder,
although it must be stressed that the grain boundaries are not totally incoherent or
amorphous. Three very important points should be remembered.

1. Depending on their size, the individual grains may or may not be visible to the
unaided eye. Grains can range in size from nanometers to centimeters.

2. The grain boundaries are solid–solid interfacial regions a few nanometers thick.

3. Rarely do all the grains comprising a polycrystal have the same size, orientation,
or even shape. In fact, polycrystalline grains are morphologically dissimilar to
their monocrystalline counterparts.

1.1.4 Semicrystalline Solids

Another category of inorganic solid is the inorganic polymer. All polymers – organic,
inorganic, and organometallic – are special types of covalently bonded substances in
which the entire solid may be considered a macromolecule comprised of identical mol-
ecular units, called the monomer, which are linked together. One-dimensional chains
and two-dimensional layers of atoms are often found in the structures of inorganic crys-
tals. Therefore, any solid in which there exists extended covalent bonding in one or more
directions could be classified as polymeric. For example, a- and b-Si3N4, as well as B2O3

contain layers of Si/N and B/O atoms, respectively, and could thus be considered two-
dimensional polymers, while ReO3, with its vertex-sharing network of octahedra, might
be thought of as a three-dimensional polymer. But this is really a case of misguided
semantics. The majority of chemists reserve the term polymer for solids that retain
their macromolecular structure and properties after a physical change (i.e. melting or sol-
ution behavior). Such inorganic materials, which include the polysilanes, polygermanes,
and polystannanes, consist of a catenation (long chain) backbone made of one type of
main group element other than carbon (but usually with organic substituents) or, as in
the case of silicones and polyphosphazenes, a pseudocatenation backbone made of
two different noncarbon elements. These are invariably one-dimensional polymers. Of
course, these chains pack and fold together to form three-dimensional solids.

As with organic polymers, inorganic polymers can be crystalline, amorphous, or
glassy. The ease with which macromolecules can pack together into a regular array
will depend on the stereochemical sequence of the backbone’s monomeric units. This
is worth looking at a little more closely with the more familiar organic polymers. In an
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organic molecule, a carbon–carbon single covalent bond is cylindrically symmetrical
and thus exhibits free rotation about the bond. The different spatial arrangements of atoms
attached to each of the carbons of the single bond are called conformations, while two
different configurations of the same molecule are called conformational isomers. The
most common method of illustrating the different possible arrangements is through
Newman projections, named after Melvin S. Newman (1908–1993), an Ohio State
University chemistry professor. An example using butane (CH3CH2CH2CH3) is pictured
in Figure 1.2. In the figure, the circle represents the third carbon atom in the chain, C3,
which is behind the plane of the page, while the second carbon atom in the chain, C2,
is above the plane of the page, lying at the intersection of the three lines representing
the two C22H bonds and the C22C bond to the first carbon atom in the chain, C1. The
C222C3 bond itself is in the plane of the page.

There are three types of conformations brought about by the rotation of the C222C3
bond-anti (where the methyl groups are furthest apart), which is the lowest-energy
conformation; eclipsed (where the methyl groups are closest), the highest-energy confor-
mation; and gauche, which is of intermediate energy. Each C22C bond of a macro-
molecule can have its own conformation. The relative configurations at two contiguous

A

A

A
A A

A

Anti Gauche Eclipsed

Figure 1.2. The possible conformations around adjacent carbon atoms in chain.

C-C-C-C-C-C

A A

B B

C-C-C-C-C-C

A B

B A

C-C

A

B

C-C

A B

RacemoThreo

MesoErythro

(a) (b)

Figure 1.3. (a) Relative configurations at two contiguous carbon atoms in a chain. (b) Relative

configurations of consecutive, but not necessarily contiguous, constitutionally equivalent

carbon atoms in a chain.
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carbon atoms in the main chain are designated by the prefix erythro or threo, as
illustrated in Figure 1.3a. Stereosequences within a polymeric chain terminating in
stereoisomeric centers at both ends of the segment, and which comprise two, three,
four, or five consecutive (but not necessarily contiguous) centers of that type, are
called diads, triads, tetrads, and pentads, respectively. Relative configurations of consecu-
tive, but again not necessarily contiguous, constitutionally equivalent carbon atoms that
have a symmetrically constituted connecting group (if any) are designated meso.
Opposite configurations are called racemo. These are illustrated in Figure 1.3b.
Polymers with long meso sequences are termed isotactic, while polymers with long
racemo sequences are syndiotactic.

Figure 1.4. A sketch depicting the semicrystalline nature of a polymer. The lamellae are

crystalline regions while the entangled regions between them are amorphous.
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The majority of C22C bonds in amorphous organic polymers, which are typically
branched or contain large pendant groups (not part of the main chain), are generally
found with random conformations. As a result, the chains are arranged randomly through-
out the material. Some polymers may also form a brittle glass if rapidly cooled, particu-
larly those containing chains that can easily become tangled or viscous during cooling.
Glassy polymers include polystyrene, or Styrofoamw (Tg ¼ 1008C) and polyethylene
terephthalate, or Dacronw (Tg ¼ 708C). Unlike amorphous polymers, the C22C bonds
in crystalline polymers are predominantly in the all-anti conformation and the chains
are arranged into lamellae (plate-like configurations), but these well-packed regions
can be separated by amorphous regions where the chains are entangled. Hence, even a
crystalline polymer contains an amorphous fraction, as illustrated in the sketch of
Figure 1.4. A percent crystallinity can therefore be specified. This situation has given
rise to the term semicrystalline. In fact, most crystalline polymers are semicrystalline,
the amorphous fraction typically accounting for �60 weight percent of the total polymer
(Cheremisinoff, 2001). Semicrystalline polymers are also sometimes referred to as poly-
crystalline polymers, even though they are really single-crystalline (they have no grain
boundaries). The crystalline regions, or domains, may have differing texture or crystallo-
graphic orientation. Monocrystalline polymers are transparent, whereas polycrystalline
polymers are translucent and totally amorphous polymers are opaque. Likewise, crystal-
line polymers are harder, stiffer, and denser than amorphous polymers.

With inorganic polymers, a similar situation is found. Both meso polymers and
racemo polymers are capable of crystallizing, but polymers in which meso and racemo
placement occur randomly along the backbone, are amorphous. Other structural features
that preclude crystallizability include any defects that introduce chain irregularity. Even
when the conditions conducive to crystallinity are met, the resultant polymers still contain
a significant fraction of amorphous material. This is owing to the length of the polymer
chain; different segments become incorporated into different crystalline orientations
(Mark et al., 2005).

A relatively new field called supramolecular chemistry has been developed over the
last three decades. Supramolecular assemblies and supramolecular polymers differ from
macromolecules, where the monomeric units are covalently linked. In a supramolecular
polymer, the monomeric units self-assemble via reversible, highly directional, noncova-
lent interactions. These types of bonding forces are sometimes called secondary inter-
actions. Hydrogen bonding is the secondary force most utilized in supramolecular
chemistry, but metal coordination and aromatic p–p electronic interactions have also
been used. From amaterials standpoint, supramolecular assemblies are promising because
of the reversibility stemming from the secondary interactions. The goal is to build
materials whose architectural and dynamical properties can respond reversibly to external
stimuli. Solid phases are prepared by self-assembly from solution. In the solid-state,
supramolecular polymers can be either crystalline or amorphous.

1.1.5 Amorphous Solids

The final category in Table 1.1 is the amorphous solid, which includes, as a subset, the
glassy or vitreous state that is further discussed in Section 1.6. These phases are totally
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noncrystalline (Fig. 1.1c). All glasses are monolithic and amorphous, but only
amorphous materials prepared by rapidly cooling, or quenching, a molten state through
its glass transition temperature (Tg) are glasses. Both silica-based glasses and metallic
glasses have a variety of uses in commerce. Nonglassy amorphous solids are normally
prepared by severely mechanochemically damaging a crystalline starting material,
for example, via ion implantation, or ball milling. Although amorphous and glassy sub-
stances do not possess the long-range translational order characteristic of crystals, they do
usually exhibit short-range structural order, for example, the first coordination sphere
about a cation.

1.2 BASIC CRYSTALLOGRAPHY

Geometric crystallography is the scientific field concerned with the different possible
ways particles, or groups of particles, which we term the structural motif, can fit together
to form the periodic patterns observed in crystalline substances. Through crystallography,
we may establish the internal arrangement of atoms within a crystal, as well as the poss-
ible types of morphological, or external, symmetry that can be observed. Specific crystal
structures are presented in Chapter 3. Additionally, methods have been developed for
ascertaining surface and interfacial configurations, for example, at grain boundaries.
Finally, a fundamental postulate of condensed matter physics, known as Neumann’s prin-
ciple, after Franz Ernst Neumann (1798–1895), asserts that the symmetry of the physical
properties exhibited by a crystal is at least as high as the crystallographic symmetry. It
is apparent that crystallographic structure and symmetry are of great importance in study-
ing and designing solids at every length scale, which makes geometric crystallography
a fitting start for this book.

1.2.1 Space Lattice Geometry

A crystal is a physical object – it can be touched. However, an abstract construction in
Euclidean space may be envisioned, known as a direct space lattice (also referred to as the
real space lattice, space lattice, or just lattice for short), which is comprised of equidistant
lattice points representing the geometric centers of the structural motifs. Any two of these
lattice points are connected by a primitive translation vector, r, given by:

r ¼ n1aþ n2b (1:1)

in two dimensions or, in three dimensions, by:

r ¼ n1aþ n2bþ n3c (1:2)

where n1, n2, n3 are integers that may be positive, negative, or equal to zero, and a, b, c are
the basis vectors. It is also possible to write the lattice vector r in terms of the components
of the direction index, in which case n1, n2, and n3 are replaced by u, v, and w, respect-
ively. The components of vectors are conventionally enclosed in carets, separated by
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commas, that is kn1, n2, n3l, whereas direction indices are written in square brackets
without commas, that is [u v w].

In three-dimensional space, the parallelepiped defined by the lengths of the bases
vectors and the angles between them (a ¼ angle between vectors b and c; b ¼ angle
between vectors a and c; g ¼ angle between vectors a and b) contains the smallest
volume that can be stacked repeatedly to produce the entire crystal. It is called a primitive
unit cell of the lattice. Hence, the lengths of the basis vectors are called unit cell para-
meters. Because the primitive unit cell joins eight lattice points, each one shared between
eight neighboring cells, a primitive unit cell contains exactly one lattice point (8 � 1

8 ¼ 1).
In the crystal, centered at each lattice point, is a copy of the motif, which may be a single
atom, a collection of atoms, an entire molecule, some fraction of a molecule, or an assem-
bly of molecules. The motif is also referred to as the [crystal] basis or, the asymmetric
unit, since it has no symmetry of its own. The chemical surroundings of each lattice
point are identical with those of each and every other lattice point. The crystal then
looks the same when viewed from any of the lattice points. For example, in the rocksalt
(halite) unit cell shown in Figure 1.5, a sodium and chloride ion pair constitutes the asym-
metric unit. Hence, in NaCl, the ion pair is systematically repeated, using point symmetry
and translational symmetry operations, to form the space lattice of the crystal. The asym-
metric unit is therefore, the minimum unit from which the structure can be generated by a
combinationof point symmetryand translational operations. It shouldbeobvious that other
bases could generate the same lattice. The motif may be chiral (nonsuperimposable on its
mirror images) or achiral. If chiral, the space group symmetry of the crystal must conform
to the chirality of the molecule. The lattice may be thought of as a three-dimensional
pattern of particles in Euclidean space formed by the repetition of the primitive unit
cell. The lattice points are equidistant since a lattice possesses translational invariance.

It is often convenient to choose a unit cell larger than the primitive unit cell.
Nonprimitive unit cells contain extra lattice points, not at the vertices. For example, in
three dimensions, nonprimitive unit cells may be of three kinds:

1. Face-centered, where a lattice point resides at the center of each face of the unit cell

2. Body-centered, where a lattice point resides at the center of the unit cell

3. Side-centered, where an extra lattice point resides at each of two opposing
faces of the unit cell.

= Chloride

= Sodium

a

a

a

Figure 1.5. The rocksalt (halite) face-centered-cubic unit cell, with lattice parameter a.
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These are denoted as F, I, and C, respectively, while primitive cells are denoted as P, and
rhombohedral as R. Several symmetry-related copies of the asymmetric unit may be
contained in the nonprimitive unit cell, which can generate the entire crystal structure by
means of translation in three dimensions. Although primitive unit cells are smaller than
nonprimitive unit cells, the nonprimitive unit cell may be preferred if it possesses higher
symmetry. In general, the unit cell used is the smallest one with the highest symmetry.

In two dimensions, there are only five unique ways of choosing translation vectors
for a plane lattice, or net. These are called the five two-dimensional Bravais lattices
(Fig. 1.6a), after the French physicist and mineralogist Auguste Bravais who derived
them in 1850 (Bravais, 1850). The unit cells for each plane lattice may be described
by three parameters: two translation vectors (a, b) and one interaxial angle, usually sym-
bolized as g. The five lattices are: oblique, rectangular, centered-rectangular, square, and
hexagonal. In three dimensions, there are 14 unique ways of connecting lattice points to
define a unit cell. They are called the 14 three-dimensional Bravais lattices (Fig. 1.6b),
which represent the possible types of crystal symmetry called crystal classes (also called
symmetry classes) based on their symmetry groups and the ways in which these groups
act on the lattice points. The unit cells may be described by the six parameters mentioned
earlier: the lengths of the three translation vectors (a, b, c) and the three inter-axial angles
(a, b, g), from which seven crystal systems may be differentiated: cubic, tetragonal,

b

a

a = b; g = 90°

a = b; g = 120° a π b; g π 90°, 120°

a π b; g = 90°

a π b; g = 90°
   a¢= b¢; g ¢ π 90°

g g

g

g g

g ¢

a

b

P

P

P

P

I

I

I F
Cubic

P R
Tetragonal Hexagonal Rhombohedral

F COrthorhombic

P ATriclinic Monoclinic

b

a a

b

a

b

a¢ b¢

(a) (b)

Figure 1.6. (a) The five two-dimensional Bravais lattices. Clockwise from upper left: square,

rectangular, oblique, hexagonal, and centered-rectangular (center). (b) The 14 three-

dimensional Bravais lattices.
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hexagonal, trigonal, orthorhombic, monoclinic, and triclinic. The volumes of each unit
cell may be calculated from their unit cell parameters, as shown in Table 1.2.

As shown in Figure 1.5, in rocksalt a sodium cation is located at the center of the unit
cell and 12 others are located at the mid-points of each edge of the unit cell. Similarly, 14
chloride anions are located at the centers and corners of each face. Now, an atom located
at the center of the unit cell is wholly owned by the one unit cell while atoms located at the
corners are shared between eight unit cells, atoms along the edges are shared between four
unit cells, and atoms in the face-centered positions are shared between two unit cells. The
arrangement in rocksalt thus corresponds to a total of eight atoms in this nonprimitive unit
cell, grouped into four sodium/chloride ion pairs, or four asymmetric units. The halite
crystal can be considered as being comprised of two interpenetrating face-centered
cubic sublattices, one of sodium ions and one of chloride ions. The two sublattices are
displaced relative to one another by a/2 along a cube edge direction (i.e. by a vector
a/2, a/2, a/2), where a is the unit cell dimension.

1.2.1.1 Types of Lattice Symmetry. The most succinct and mathematically
precise way to discuss lattice geometry or symmetry is via matrix algebra. Each point
in a lattice is uniquely described by a column of coordinates. However, the coordinates
of a direct lattice point are meaningful only when referred to some other lattice point,
for example, an arbitrarily chosen origin with coordinates (0, 0, 0). The distance between
the origin and any other lattice point,Q, is given by a primitive translation vector, such as
Eq. 1.2. Hence, the real numbers in the column of coordinates may be either the coeffi-
cients of the vector r, kn1, n2, n3l, or the coordinates of the point Q, (x, y, z). A significant
difference between the behavior of vectors and points is that the coordinates of a point
change if a different origin in point space is chosen. However, the coefficients of the
vector r do not change.

The point space definition is pursued here. Here reference is given to the coordinate
system defined by our origin and the basis vectors a, b, c in Eq. 1.2,

Q ¼
x
y
z

2
4

3
5 (1:3)

The right-hand side of Eq. 1.3 is a (3 � 1) column matrix. It is equivalent to a column
vector. The elements of a column matrix are often found enclosed in braces, f g, as

TABLE 1.2. The Volumes of the Unit Cells for Each Crystal System

Cubic V ¼ a3

Tetragonal V ¼ a2c
Hexagonal V ¼ a2c sin(608)
Trigonal V ¼ a2c sin(608)
Orthorhombic V ¼ abc
Monoclinic V ¼ abc sin(b)
Triclinic V ¼ abcf(12 cos2 a 2 cos2 b2 cos2 g)

þ 2(cos a cos b cos g)g0.5
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opposed to brackets, [ ], to distinguish it from a row matrix. Note that when talking about
the point Q boldface type is not used, but when referring to the vector, Q, it will be in
boldface type. Similarly, the components of a point Q are enclosed in parentheses
(x, y, z) while vector components are enclosed in carets kx, y, zl.

Now, any type of motion or symmetry operation which leaves a lattice invariant may
be written in matrix notation. For example, if a lattice point is moved from point Q in
Euclidean space with coordinates (x1, y1, z1) to point P with coordinates (x2, y2, z2),
this can be written as:

x2
y2
z2

2
4

3
5 ¼ W11 W12 W13

W21 W22 W23

W31 W32 W33

2
4

3
5 x1

y1
z1

2
4

3
5þ Tx

Ty
Tz

2
4

3
5 (1:4)

In this expression, the (3 � 3) square matrix W is the transformation matrix describing
any rotation or linear motion while the lone (3 � 1) column matrix on the right-hand
side is a vector, T, describing any translation part. The standard convention for all
matrices is followed in this textbook in that the elements Wi1, Wi2, . . . , Win are the
elements of the ith row, and the elements W1j, W2j, . . . , Wmj are the elements of the jth
column. That is, the element Wij is the element contained simultaneously in the ith row
and jth column.

The order of a matrix is given by (m � n), wherem is the number of rows and n is the
number of columns. Because the number of columns ofW equals the number of rows in
the column vector describing the position Q, the two matrices are conformable and they
can be multiplied (noting that matrix multiplication is not commutative, WQ=QW).
In general, the product of an (m � n) matrix with a (n � 1) matrix is a matrix of order
(m � 1). Thus, since W is of order (3 � 3) and Q is of order (3 � 1), the product WQ
will be a column vector, which can be added to the column vector T (the addition of
two matrices is defined only if the two matrices are of the same order).

Equation 1.4 is valid for any lattice type or crystal system. Its form indicates that the
elements of the column vector P, representing the coordinates of point P, are given by:

Pi ¼
Xn
k¼1

WikQkj þ Ti (1:5)

It is also possible to construct a (4 � 4) square augmented matrix for the system, which
has the advantage that the motion is described by a single matrix, rather than the pair W
and T. Successive applications of motions are then described by the product of the aug-
mented matrices. However, we need not be concerned with that here. It should be stressed
that each type of motion, or symmetry operation, has corresponding values for the matrix
elements inW and T, which are summarized in Table 1.3. The elements ofW depend on
our choice for the coordinate system. Conventionally, the symmetry directions are chosen
as coordinate axes, along with the shortest compatible basis vectors, which will be
explained shortly for each type of symmetry operation. In this way, W will be in the
simplest possible form, six or five of the nine matrix elements being zeros and the
remaining elements consisting of the integers þ1 and/or 21.
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When the translation vector, T, is equal to zero (i.e. if the column consists entirely
of zeros), the symmetry operation has at least one fixed point. For example, if T ¼ 0
and the transpose of W is its inverse (WT ¼ W21), while its determinant, det(W),
which is given by (W11W22W33 þ W12W23W31 þ W13W21W32) – (W31W22W13 þ
W32W23W11 þ W33W21W12), is equal to þ1, the motion is a point symmetry operation
called a proper rotation. If T ¼ 0 and det(W) is equal to –1, the motion is an improper
rotation, or rotoinversion, which is equivalent to the combination of a rotation about
an axis and an inversion through a point on that axis (these operations commute). If
the matrix W itself is equal to 2I, where I is the unit or identity matrix (each of the
main diagonal elements are equal to 1, while all other elements are equal to 0), the
improper motion is termed an inversion. If W2 ¼ I, the improper motion is termed a
reflection, and if W=2I, the improper motion is a rotoinversion. If W ¼ I, the
motion is a translation and the translation vector is given by the (3 � 1) column T. If
T = 0 and det(W) ¼ þ1, the motion is termed a screw rotation. If T = 0 and
det(W) ¼ 21, the motion is termed a glide reflection. Only glide reflections can
occur in two-dimensional space and neither glide nor screw motions are possible in
one-dimensional space.

Example 1.1

Assuming that W is a unit matrix (i.e. Wij ¼ 0 if i= j; Wij ¼ 1 if i ¼ j) and
T ¼ f0.5 0 0.5g, use Eq. 1.5 to obtain the column vector P designating the new
positional coordinates in relation to the initial coordinates.

Solution

If W ¼ I and T ¼ f0.5 0 0.5g, then:

x2
y2
z2

2
4

3
5 ¼ 1 0 0

0 1 0
0 0 1

2
4

3
5 x1

y1
z1

2
4

3
5þ 0:5

0
0:5

2
4

3
5

TABLE 1.3. Types of Lattice Symmetry Based on the Values of the
Translation Vector TT, the Transformation Matrix WW, and its Determinant

T W det(W) Symmetry

0 2 þ1 Rotation
0 2I 21 Inversion
0 W2 ¼ I 21 Reflection
0 2I 21 Rotoinversion
Nonzero I þ1 Translation
Nonzero 2 þ1 Screw rotation
Nonzero 2 21 Glide reflection
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Now merely proceed with the matrix operations. First, take the product WQ:

1 0 0
0 1 0
0 0 1

2
4

3
5 x1

y1
z1

2
4

3
5 ¼ (1)(x1)þ (0)(y1)þ (0)(z1)

(0)(x1)þ (1)(y1)þ (0)(z1)
(0)(x1)þ (0)(y1)þ (1)(z1)

2
4

3
5 ¼ x1

y1
z1

2
4

3
5

Now, take the sum (WQ þ T ):

x1
y1
z1

2
4

3
5þ 0:5

0
0:5

2
4

3
5 ¼ x1 þ 0:5

y1
z1 þ 0:5

2
4

3
5

which corresponds to a pure translation.

1.2.1.1.1 INVERSION. An inversion center, also called a center of symmetry, is a
point such that inversion through the point produces an identical arrangement. In a lattice,
all lattice points are centers of symmetry of the lattice. Inversion moves a point from a
position with coordinates (x, y, z) to the position (2x, 2y, 2z). It is clear from
Eq. 1.4 that in order to satisfy this condition, W must be a negative unit matrix:

�1 0 0
0 �1 0
0 0 �1

2
4

3
5 (1:6)

With a chiral molecule (i.e. a molecule that is nonsuperimposable on its mirror image),
the operation of inversion produces an enantiomer, or molecule with a reversal of
sense. Pairs of chiral molecules (e.g. sodium ammonium tartrate), or of nonmolecular
structural motifs (e.g. the helical arrangement of SiO4 tetrahedra in quartz), may crystal-
lize as separate enantiomorphs, which are pairs of chiral crystals. These are left-handed
and right-handed crystals, consisting exclusively of left- and right-handed units, respect-
ively. This situation is actually quite rare. Morphologically, an enantiomorph exhibits
hemihedry, or mirror-image hemihedral faces. The adjective hemihedral refers to the
fact that only half of the symmetry-related facets are modified (e.g. inclined) simul-
taneously, and in the same manner. Hemihedral faces should not be confused with the
term hemihedral crystal, which refers to a form exhibiting only half the number of
faces of the holohedral form (those point groups with the highest possible symmetry of
the crystal class). By far, the commonest situation is that pairs of chiral partners crystallize
in an orthomorphic form, or a racemic monocrystal with equally many left- and right-
handed molecules in the fundamental body and hence in the macroscopic volume
unit. In other words, pairs of enantiomers usually produce a crystal with holohedral
morphology even though the molecules themselves possess chiral centers. It should
be noted that some achiral molecules in solution (e.g. NaClO3) can crystallize into
enantiomorphic crystals.
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1.2.1.1.2 ROTATIONAL SYMMETRY. A crystal possesses an n-fold rotation axis if it
coincides with itself upon rotation about the axes by 3608/n. Unlike inversion, rotation
leaves handedness unchanged, that is det(W) ¼ þ1. For any geometric rotation of a
Cartesian coordinate or vector about a fixed origin in three-dimensional Euclidean
space, a matrix describing the rotation can be written. The rotation matrix is an n � n
square matrix for which the transpose is its inverse and for which the determinant
is þ1. In general, a rotation need not be along a coordinate axis. If the rotation axis is
given by the unit vector u ¼ kux, uy, uzl, then a rotation by an angle f about that fixed
axis is given by the following expression:

Ru(f) ¼
u2x (1� cosf)þ cosf uxuy(1� cosf)� uz sinf

uxuy(1� cosf)þ uz sinf u2y (1� cosf)þ cosf

uxuz(1� cosf)� uy sinf uyuz(1� cosf)þ ux sinf

2
64

uxuz(1� cosf)þ uy sinf

uyuz(1� cosf)� ux sinf

u2z (1� cosf)þ cosf

3
75 (1:7)

The columns of Eq. 1.7 (let them be called vectors r1, r2, r3) form a right-handed
orthonormal set. That is, jr1j ¼ jr2j ¼ jr3j ¼ 1; the dot product of r1 and r2 equals the
dot product of r1 and r3, which equals the dot product of r2 and r3. The columns of
the matrix correspond to the final rotated values of our standard basis vectors k1, 0, 0l,
k0, 1, 0l, and k0, 0, 1l, in that order.

The components of the vector u kux, uy, uzlmust not be confused with direction indi-
ces, which are normally enclosed in brackets instead of carets. If the rotation axis is speci-
fied in terms of direction indices, one first has to convert these indices into direction
cosines in order to use Eq. 1.7. The direction cosines are the scalar components of a
unit vector expressed as a linear combination of the Cartesian basis vectors i, j, and k.
The value of each component is equal to the cosine of the angle formed by the unit
vector with the respective Cartesian basis vector. For example, the body diagonal of a
cube of unit length has direction indices [1 1 1]. The body diagonal runs from the
origin with Cartesian coordinates (x1, y1, z1) ¼ (0, 0, 0) to the opposite corner of the
cube with Cartesian coordinates (x2, y2, z2) ¼ (1, 1, 1). The direction cosines, referred
to our Cartesian basis vectors, are given by the equations:

cosa ¼ ux ¼ (x2 � x1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x1)2 þ ( y2 � y1)2 þ (z2 � z1)2

p
cosb ¼ uy ¼ ( y2 � y1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x2 � x1)2 þ ( y2 � y1)2 þ (z2 � z1)2
p

cos g ¼ uz ¼ (z2 � z1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x1)2 þ ( y2 � y1)2 þ (z2 � z1)2

p
(1:8)
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where the denominator is the length of the vector. The angles between the body diagonal
and each of the three Cartesian axes for a cube are the same, 54.748. There is also the
requirement that cos2 a þ cos2 b þ cos2 g ¼ 1. Hence, for the body diagonal of a
cube, each of the direction cosines is equal to 1=

ffiffiffi
3
p

. So, the vector components to be
used in Eq. 1.7 are given by u ¼ k1=

ffiffiffi
3
p

, 1=
ffiffiffi
3
p

, 1=
ffiffiffi
3
p

l.
Fortunately, if the rotation axis corresponds to a Cartesian coordinate axis, consider-

able simplifications ensue. First of all, the direction indices of the Cartesian coordinate
axes are: the x-axis ¼ [1 0 0], the y-axis ¼ [0 1 0], and the z-axis ¼ [0 0 1]. These indices
are identical with the i, j, and k unit vectors that are co-directional with the x, y, and z
axes, respectively. For example, if the rotation axis is the z-axis, described by the direction
indices [u v w] ¼ [0 0 1], these indices are numerically equivalent to the direction
cosines: cos a ¼ ux ¼ 0, cos b ¼ uy ¼ 0, and cos g ¼ uz ¼ 1, since cos2 a þ cos2 b þ
cos2 g ¼ 1. Now, in this book the standard convention is followed that a clockwise
rotation by a vector in a fixed coordinate system makes a negative angle and a counter-
clockwise rotation, a positive angle. Therefore, with a counterclockwise rotation about
the vector u ¼ k0, 0, 1l, the z-axis, Eq. 1.7 reduces to (see Example 1.2 below):

Rz(f) ¼
cosf �sinf 0
sinf cosf 0
0 0 1

2
4

3
5 (1:9)

Similar expressions are found to represent counterclockwise rotations about the x-axis
and y-axis. These are left as an exercise for the reader. In a crystal lattice, with bases vec-
tors a, b, and c, the rotation described above by Eq. 1.9 corresponds to a counterclock-
wise rotation around the c coordinate axis. As indicated in Eq. 1.9, the c coordinate
will be unchanged by any rotation about c. Consider a four-fold counterclockwise rotation
around the c axis. Here, f ¼ 2908 and Rc(f) takes the form:

Rc(f) ¼
0 1 0
�1 0 0
0 0 1

2
4

3
5 (1:10)

It can be seen from Eq. 1.7 that for all f = 1808, the result will be an antisymmetric
matrix (also called skew-symmetric matrices), for which JT ¼ 2J (or, in component
form, Jij ¼ 2Jij for all i and j). If f ¼ 1808, the matrix will be symmetric, in which
JT ¼ J. The lattice structure of a crystal, however, restricts the possible values for f.
In a symmetry operation, the lattice is mapped onto itself. Hence, each matrix element –
and thus the trace of R (R11 þ R22 þ R33) – must be an integer. From Eq. 1.9, it is
obvious that the trace is an integer equal to +(1 þ 2 cos f). Thus, only one-fold
(3608), two-fold (1808), three-fold (1208), four-fold (908), and six-fold (608) rotational
symmetry are allowed. The corresponding axes are termed, respectively, monad, diad,
triad, tetrad, and hexad.

The limitation on the types of n-fold rotational axes can be easily visualized by
considering the analogous task of completely tiling a two-dimensional plane with poly-
gon tiles, a process called tessellation. Congruent regular polygons (equilateral and
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equiangular polygons) such as squares, equilateral triangles, and hexagons can be used,
as can irregular polygons like simple quadrilaterals (e.g. isosceles trapezoids, rhombuses,
rectangles, parallelograms), and even herringbones. In fact, a trip to the garden/tile shop
will reveal that it is possible to produce a tessellation using plane figures with curved
boundaries, as well. However, a tessellation of the plane cannot be produced with penta-
gons, heptagons, or higher regular polygons. In three dimensions, space-filling polyhedra
include the cube, the rhombic dodecahedron, and the truncated octahedron. However,
combinations of tetrahedra and octahedra, as well as of octahedra, truncated octahedra,
and cubes, also fill space.

Example 1.2

Derive the rotation matrix for a clockwise rotation about the z-axis, given by the
vector u ¼ k0, 0, 1l.

Solution

Our convention is that a clockwise rotation is given by a negative angle. From
trigonometry, we know that cos(2f) ¼ cos(f) and that sin(2f) ¼2sin(f).
Hence, our matrix must be:

Rz(f) ¼
cosf sinf 0
� sinf cosf 0

0 0 1

2
4

3
5

1.2.1.1.3 REFLECTION. Reflection is also called mirror symmetry since the operation
is that of a mirror plane in three dimensions, or an axis in two-dimensions, which reflects
an object into another indistinguishable one. Consider a reflection in a plane parallel to b
and c. The reflection essentially changes the algebraic sign of the coordinate measured
perpendicular to the plane while leaving the two coordinates whose axes define the
plane unchanged. Hence, W for a mirror reflection in the bc ( yz) plane takes the form:

�1 0 0
0 1 0
0 0 1

2
4

3
5 (1:11)

Like inversion through a center of symmetry, the operation of reflection produces a right-
handed object from a left-handed one.

1.2.1.1.4 FIXED-POINT-FREE MOTIONS. These include translations, screw rotations,
and glide reflections. Because the primitive translation vector, Eq. 1.2, joins any two lat-
tice points, an equivalent statement is that Eq. 1.2 represents the operation of translational
symmetry bringing one lattice point into coincidence with another. However, we must
choose the basis vectors (a, b, c) so as to include all lattice points, thus defining a
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primitive unit cell of the lattice containing only one lattice point. The basis vectors are
then lattice translation vectors. The operation of translation requires that W in Eq. 1.4
be equal to the identity matrix and that the translation vector, T, be nonzero. If T = 0
and det(W) ¼ þ1, the motion is termed a screw rotation. If T = 0 and det(W) ¼ 21,
the motion is termed a glide reflection, which moves every lattice point and changes
the handedness.

1.2.1.2 Space Group Symmetry. If one replaces each face of a crystal by its
face normal (a vector), the point symmetry group of a macroscopic crystal is seen to
be determined by the group of linear mappings of this vector space. Although morpho-
logical symmetry is determined by this group of linear mappings in vector space, the
possible types of morphological symmetry are one and the same with a specific group
of motions in direct space, which is the physical three-dimensional space in which we
live. These types of point symmetries are known as the crystallographic point groups.
They are the point groups that map a space lattice onto itself, or the sets of point symmetry
operations (i.e. rotations and reflections, but not translations) that may be performed on a
crystal, which leave at least one point fixed in spacewhile moving each atom in the crystal
to a position of an atom of the same kind. It has been seen previously that the lattice
structure of a crystal restricts the types of rotational symmetry. Only one-fold (3608),
two-fold (1808), three-fold (1208), four-fold (908), and six-fold (608) rotational symmetry
are allowed. If reflections are included as well as the different possible types of rotations,
it is found that there are, in totality, two crystallographic point groups for one dimension,
10 for two dimensions, and 32 for three dimensions. These latter are listed in Table 1.4.
By contrast, there are an infinite number of noncrystallographic point groups for dimen-
sions greater than or equal to two.

When the 32 crystallographic point groups are arranged in the patterns allowed
by the 14 three-dimensional Bravais lattices, it is found that there exist only 230 three-
dimensional space groups. These are listed in Appendix 1, subdivided into the 32 crystal-
lographic point groups. The notation system developed by Schönflies for designating
point group symmetry is still widely used for space group symmetry by spectroscopists.
However, crystallographers use the Hermann–Mauguin, or “International,” notation.
This system was developed by Carl Hermann (1898–1961) and Charles Mauguin
(1878–1958) (Hermann, 1931; Mauguin, 1931). Each space group is isogonal with
one of the 32 crystallographic point groups. However, space group symbols reveal the
presence of two additional symmetry elements, formed by the combination of point
group symmetry (proper rotations, improper rotations, and reflection), with the transla-
tional symmetries of the Bravais lattices. The two types of combinational symmetry
are the glide plane and screw axis.

The first character of an international space group symbol is a capital letter
designating the Bravais lattice centering type (primitive ¼ P; all-face-centered ¼ F;
body-centered ¼ I; side-centered ¼ C, A; rhombohedral ¼ R). This is followed by a
modified point group symbol giving the symmetry elements (axes and planes) that
occur for each of the lattice symmetry directions for the space group. The following sym-
bols are used: m (reflection plane); a, b, c (axial glide planes); d (diamond glide plane);
e (double glide plane for centered cells); g (glide line in two dimensions), n (diagonal
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TABLE 1.4. The 32 Crystallographic Point Groups and their Symmetry Elements

Point Group Symmetry Operations and/or Elementsa

TRICLINIC

1 E
1̄ E, i

MONONCLINIC

2 E, C2

m E, sh

2/m E, C2, i, sh

ORTHORHOMBIC

222 E, C2, C2
0, C2

0

mmm E, C2, C2
0, C2

0, i, sh, sv, sv

mm2 E, C2, sv, sv

TETRAGONAL

4 E, 2C4, C2

4̄ E, 2S4, C2

4/m E, 2C4, C2, i, 2S4, sh

4mm E, 2C4, C2, 2sv, 2sd

422 E, 2C4, C2, 2C2
0, 2C2

00

4/mmm E, 2C4, C2, 2C2
0, 2C2

00, i, 2S4, sh, 2sv, 2sd

4̄2m E, C2, 2C2
0, 2sd, 2S4

TRIGONAL

3 E, 2C3

3̄ E, 2C3, i, 2S6
32 E, 2C3, 3C2

0

3m E, 2C3, 3sv

3̄m E, 2C3, 3C2
0, i, 2S6, 3sv

HEXAGONAL

6 E, 2C6, 2C3, C2

6̄ E, 2C3, sh, 2S3
6/m E, 2C6, 2C3, C2, i, 2S3, 2S6, sh

622 E, 2C6, 2C3, C2, 3C2
0, 3C2

00

6mm E, 2C6, 2C3, C2, 3sv, 3sd

6̄m2 E, 2C6, 3C2
0, sh, 2S3, 3sv

6/mmm E, 2C6, 2C3, C2, 3C2
0, 3C2

00, i, 2S3, 2S6, sh, 3sv, 3sd

CUBIC

23 E, 8C3, 3C2

m3 E, 8C3, 3C2, i, 8S6, 3sh

432 E, 8C3, 3C2, 6C2, 6C4

4̄3m E, 8C3, 3C2, 6sd, 6S4
m3m E, 8C3, 3C2, 6C2, 6C4, i, 8S6, 3sh, 6sd, 6S4
aE ¼ identity operation, Cn ¼ n-fold proper rotation axis, Sn ¼ n-fold improper rotation axis, sh ¼
horizontal mirror plane, sv ¼ vertical mirror plane,sd ¼ dihedral mirror plane, i ¼ inversion center.
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glide line); 1̄ (inversion center); 2̄, 3̄, 4̄, 6̄ (rotoinversion axes); 2, 3, 4, 6 (n-fold rotation
axes); and 2p, 3p, 4p, 6p (n-fold screw axes, np).

Both short and full symbols are used for the space groups. In the latter, both sym-
metry axes and symmetry planes for each symmetry direction are explicitly designated
whereas in the former symmetry axes are suppressed. For example, the short symbol
I4/mmm designates a body-centered tetragonal space lattice with three perpendicular
mirror planes. One of these mirror planes is also perpendicular to the rotation axis,
which is denoted by the slash between the 4 and the first m, while the other two mirror
planes are parallel with, or contain, the rotation axis. The full symbol for this space
group is I4/m 2/m 2/m 42/n 21/n 21/c, which reveals the additional presence of
screw axes and a diagonal glide line.

By convention, the coordinates of points giving the locations of atoms or molecules
inside the unit cell are given by (x, y, z) relative to the origin (0, 0, 0), where x is a fraction
of the a unit cell parameter, y is a fraction of b unit cell parameter, and z is a fraction of
the c unit cell parameter. The selection of the origin depends on the symmetry of the
space lattice. For centrosymmetric space groups, the inversion center is chosen as the
origin. For noncentrosymmetric space groups, the point with the highest site symmetry
and lowest multiplicity is chosen as the origin. If no site symmetry higher than 1 (no
point symmetry) is present, a screw axis or glide plane is chosen as the origin. The site
symmetry of the origin is often, but not always, identical with the short space group
symbol (see Example 1.4).

Example 1.3

List the point coordinates, relative to the origin (0, 0, 0), for all the atoms in the
unit cell of a pure metal with the body-centered cubic (BCC) structure (space
group Im 3̄m). The unit cell contains two atoms. There is one-eighth of an atom
at each corner of a cube (each corner atom is shared by eight unit cells) and
another atom of the same kind at the center of the cube (wholly owned by one
unit cell).

Solution

In this example, the atomic sites and lattice points happen to coincide. By conven-
tion, we take the origin to be at the center of the [centrosymmetric] cube. The
point coordinates for each of the nine atoms is then: (0, 0, 0), (1, 0, 0), (1, 1, 0),
(0, 1, 0), (0.5, 0.5, 0.5), (0, 0, 1), (1, 0, 1), (1, 1, 1), and (0, 1, 1). However, all the lattice
points in any type of lattice are equivalent since they are related by simple trans-
lation. Therefore, any one of these nine equivalent atomic sites could be chosen as
the origin. They are all said to be the same “position” and that is (0, 0, 0).

A “position” is defined as a set of symmetrically equivalent coordinate points.
Within the unit cell, atoms or molecules may be located at general positions that do
not lie on any symmetry element or at special positions. If they do lie either on a symmetry
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element (inversion center, rotation axis, or mirror plane) or at the intersection of several
symmetry elements, each point is mapped onto itself by a symmetry operation of the
space group. Thus, because the origin in the BCC metal of Example 1.3 is at a lattice
point, this is obviously a special position and, in this case, one which has a multiplicity
of two. The multiplicity of a special position is always a divisor of the multiplicity of the
general position of the space group. If the center of a molecule happens to reside at a
special position, the molecule must have at least as high a point symmetry as the site sym-
metry of the special position.

Example 1.4

Explain how the site symmetry of the origin differs in the I4/mmm (tetragonal)
and Im 3̄m (cubic) space groups.

Solution

Both are body-centered Bravais lattices and for both the site symmetry of the
origin is identical with the short space group symbol. The body-center position
is of the lowest multiplicity (two-fold) and highest symmetry, and thus is
considered as the origin in the I4/mmm space group. However, in the tetragonal
lattice, a ¼ b= c. Hence, the body center position is not an inversion center. It
possesses four-fold rotational symmetry (the axis is parallel to c) with a perpen-
dicular mirror plane and two additional perpendicular mirror planes that
contain the rotation axis.

The body-centered position in the cubic Bravais lattice (a ¼ b ¼ c) is an
inversion center and for this reason is taken as the origin in space group Im 3̄ m.
The position possesses three-fold rotoinversion symmetry with three perpen-
dicular mirror planes.

In contrast to a special position, a general position is left invariant only by the iden-
tity operation. Each space group has only one general position but the position may have
multiple equivalent coordinates. If an atom resides at a general position, it resides at
all the equivalent coordinates. For example, for a phase crystallizing in the space group
Im 3̄m, an atom located in the general position (x, y, z) will, by symmetry, also be found
at 96 other coordinates. In Im 3̄m, the general position has a multiplicity of 96. In any
space group, the general position always has the highest multiplicity of all the positions
in the group. For primitive cells, the multiplicity of the general position is equal to
the order of the point group of the space group; for centered cells, the multiplicity is
equal to the product of the order of the point group and the number of lattice points
per cell.

Example 1.5

The perovskite CaTiO3 crystallizes in the space group Pm 3̄m. The unit cell contains
oxygen atoms at the midpoints of every edge of a cube. There is a calcium atom
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in the center of the cube and titanium atoms are located at each corner.
The reader may want to refer to Figure 3.18. Where is the origin? What are the
point-coordinates for each type of atom? What are the site multiplicities?

Solution

There are three oxygen atoms in the unit cell. The O atom must reside on a site
with three-fold multiplicity. Likewise, there are Ti atoms on each corner, account-
ing for one Ti atom per unit cell; it is on a site which has a multiplicity of one, as is
the Ca atom in the center of the cube.

For noncentrosymmetric space groups, the point with the highest site sym-
metry and lowest multiplicity is chosen as the origin. This means that either
the Ti atom or the Ca atom could be chosen as the origin since they both
have the same multiplicity (one-fold) and site symmetry (m 3̄m). However, it is
important to note that the Ca and Ti atom are not at the same position. The
Bravais lattice is primitive, as indicated by the space group symbol. Therefore, if
we allow the Ti atom positions to coincide with lattice points, the Ca atoms and
O atoms cannot.

Choosing to place the Ti atom on a lattice point as our origin, we can assign it
coordinates (0, 0, 0). Relative to this origin, the Ca atom is located at (0.5, 0.5, 0.5).
The O atoms are at (0, 0.5, 0.5), (0.5, 0, 0.5), and (0.5, 0.5, 0), which are all
equivalent.

With alloys and substitutional solid solutions, it is possible that a mixture of atoms
(of similar size, valence, etc.) may reside at a general or special position and all its
equivalent coordinates. The fraction of atoms of one type residing at that position is
given by the site occupancy, or site occupation factor. The sum of the site occupation
factors for that site must equal unity. The distribution of two or more types of atoms
over a single site is completely random. Where two atoms are distributed over all the
equivalent coordinates of different sites with similar local coordination environments
(but not identical site symmetry), electronic, or other, effects can result in partial site
preferences. That is, there can be a nonstatistical distribution over the two sites.

Both general and special positions are also called Wyckoff positions, in honor of the
American crystallographer Ralph Walter Graystone Wyckoff (1897–1994). Wyckoff’s
1922 book, The Analytical Expression of the Results of the Theory of Space Groups,
contained tables with the general and special positional coordinates permitted by the
symmetry elements. This book was the forerunner of International Tables for X-ray
Crystallography, which first appeared in 1935.

The arrangement of a set of symmetrically equivalent points of the general position
in a space group are illustrated with space group diagrams, which also serve to show the
relative locations and orientations of the space group’s symmetry elements. Space group
diagrams are orthogonal projections, that is, the projection direction is perpendicular to
the plane of the figure and is almost always a cell axis (exceptions include rhombohedral
space groups with rhombohedral axes). The graphical symbols used for symmetry
elements are shown in Figures 1.7 and 1.8. Representative examples of space group
diagrams, as they are to be found in the International Tables for X-ray Crystallography,
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are illustrated in Figure 1.9 for both a space group of low symmetry and for a space group
of high symmetry. The triclinic space group P1̄ is shown in the upper left corner of
the figure. In this diagram, there are eight distinct inversion centers represented by
open circles. The þ/2 sign next to some of these circles indicate those particular inver-
sion centers are above/below the ab plane, which is the plane of the page. The comma
inside the circle with the 2z coordinate, that is located within the lower right quadrant
of the cell, signifies that the point with þz coordinate, represented by the circle inside
the upper left quadrant of the cell, is also turned upside down upon inversion through

Symmetry planes perpendicular
to the plane of projection

Symmetry planes parallel
to the plane of projection

Symmetry planes inclined
to the plane of projection

Axial glide plane

Reflection plane

Reflection plane

Reflection plane

Axial glide plane Axial glide plane

Axial glide plane

Axial glide plane

Double glide plane

Double glide plane
Double glide plane

Diagonal glide plane

Diagonal glide plane

Diagonal glide plane

Diamond glide plane

Diamond glide plane
Diamond glide plane

Diamond glide plane

Diamond glide plane

Figure 1.7. Some graphical symbols used for symmetry planes in space group diagrams.
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Rotation axes:
two-fold three-fold four-fold six-fold

Inversion axes:
three-fold four-fold six-fold

Not pictured: symmetry axes parallel to the plane of projection;
symmetry axes inclined to the plane of projection; and screw axes
with center of symmetry

two-fold

Rotation axes with center of symmetry:
four-fold six-fold

Center of symmetry (inversion center):

Screw axes:

Figure 1.8. Some graphical symbols used for symmetry axes in space group diagrams.

–
+ +

++

, –,

–, –,

Figure 1.9. Space group diagrams for the low-symmetry triclinic space group P1̄ (top) and the

high-symmetry cubic space group Pm 3̄m (bottom).
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0.5, 0.5, 0. As examination of the space group diagram for Pm 3̄m in the lower right
corner of Figure 1.9 will reveal however, picking out the symmetry elements of a
high-symmetry space group can be a considerably more bewildering task. Indeed, it is
quite remarkable that a systematic mathematical derivation of the 230 space groups
was performed about a dozen years before the discovery of X-ray diffraction made it
possible to experimentally determine crystallographic symmetry.

The reader may be wondering how one might go about actually determining the
space group. This process relies on a specific diffraction effect to wavelengths of the
order of the internuclear distances (e.g. X-rays), brought about by the periodic electron
density in a crystal. Although X-ray diffraction is similar to ordinary reflection, in reality,
X-rays are not reflected but scattered in all directions by the electrons of the atoms in
the crystal. The complete crystal structure, that is, ascertainment of the identities and
locations of all the constituent atoms, is determined from knowledge of the amplitudes
and phases of the scattered waves.

In the Bragg model, it is assumed the electron density is in the lattice planes, that is,
the atoms coincide with the lattice points. This may or may not be the case. Nonetheless,
a simple formula may be deduced relating the angle that the incident and reflected rays
make with a given family of parallel lattice planes of interplanar spacing, dhkl:

nl ¼ 2dhkl sin u (1:12)

This is known as Bragg’s law. With small imperfect crystals, consisting of mosaics
with some degree of angular misorientation, the amplitude of the scattered wave is much
less than that of the incident wave. Hence, interactions between the two waves can be
neglected. Complete destructive interference, or cancellation, will occur for all extra dis-
tances that one of the beams travels that is not equal to an integer number of wavelengths.
Alternatively, if the extra distance is equal to an integer number of wavelengths, the
incident and reflected rays are in phase and constructive interference ensures that
the reflection will be of maximum intensity. This is known as the kinematical theory
of X-ray diffraction. Like the analogous kinematics subfield of mechanics, the kinema-
tical theory of diffraction only considers the superposition of wavelets derived by the
successive scattering of the rays by the crystal.

If the electron density were uniformly concentrated exclusively in the lattice planes
(i.e. if therewas an equivalent scattering atomcoincidentwith each lattice point), the inten-
sities of reflection from different families of planes would be the same. However, we know
that lattice points need not correspond to the actual atom positions and, hence, the electron
density. Bragg’s law is still valid, nonetheless, sincewaves scattered from the electron den-
sity in different atoms outside a plane can be added to give a resultant, equivalent to reflec-
tion from the plane. The variation in these resultants accounts for the differing intensities
of reflection from different planes. Some reflections might actually be nonobservable in a
diffraction pattern. This is a result of the phase relationships between scatterings from
symmetry-related atoms having a complete cancelling effect and causing a value of
zero for the structure factor. The absent reflections are termed systematic absences, or
characteristic extinctions. It may be owing to the presence of space symmetry elements
(glide planes, screw axes), a nonprimitive Bravais lattice type, or to atoms located at
special positions. Equivalently, itmay be stated that in order for a reflection to be observed,
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it must obey reflection conditions. Of the 230 space groups, only 27 have no reflection con-
ditions at all. The systematic absences uniquely determine many of the remaining space
groups. However, for a large number of space groups, the absences are common to
other groups. In these cases, the possible space groups are usually tried, beginning with
the highest symmetry space group, until the structure is determined.

1.2.1.3 Lattice Planes and Directions. Often, it is necessary to refer to a
specific family of lattice planes or a direction in a crystal. A family of lattice planes is
a set of imaginary parallel planes that intersect the unit cell edges. Each family of
planes is identified by its Miller indices. The Miller indices are the reciprocals of the frac-
tional coordinates of the three points where the first plane away from the origin intercepts
each of the three axes. The letter h refers to the intersection of the plane on a; k the inter-
section on b; and l the intersection on c. Some examples are illustrated in Figure 1.7.
These indices were first introduced by the British polymath William Whewell (1794–
1866), during a crystallography fellowship period in 1825. Whewell’s notation system
was subsequently incorporated into an 1839 book by his student William Hallowes
Miller (1801–1880) and now bears the latter’s name. When referring to a specific
plane in a family, the numbers are grouped together in parentheses, (h k l). Any family
of planes always has one member that passes through the origin of the unit cell. The
plane used in determining the Miller indices is always the first one away from the
origin, which may be obtained by moving in either direction.

Note that a Miller index of zero implies that the plane is parallel to that axis, since it is
assumed that the plane will intersect the axis at 1/1. A complete set of equivalent planes
is denoted by enclosing the Miller indices in curly brackets as fh k lg. For example, in
cubic systems (1 0 0), (1̄ 0 0), (0 1 0), (0 1̄ 0), (0 0 1), and (0 0 1̄) are equivalent and the
set is denoted in braces as f1 0 0g. The maximum possible number of (h k l) combinations
that are equivalent occurs for cubic symmetry and is equal to 48. In hexagonal cells, four
indices are sometimes used, (h k i l), where the relation i ¼ 2(h þ k) always holds. The
value of the i index is the reciprocal of the fractional intercept of the plane on the a3 axis,
as illustrated in Figure 1.10. It is derived in exactly the same way as the others.
Sometimes, hexagonal indices are written with the i index as a dot and, in other cases,
it is omitted entirely.

In calculating the interplanar spacing, or perpendicular distance between adjacent
planes of given indices, dhkl, in the direct lattice (whether or not these planes coincide
with lattice points), it is helpful to consider the reciprocal lattice, which defines a crystal
in terms of the vectors that are the normals to sets of planes in the direct lattice and whose
lengths are the inverse of dhkl. The relationship between the interplanar spacing and the
magnitude of the reciprocal lattice vectors, a�, b�, c�, is given by:

d2hkl ¼
1

h2a�2 þ k2b�2 þ l2c�2 þ 2klb�c� cosa� þ 2lhc�a� cosb� þ 2hka�b� cos g �

(1:13)

The magnitudes of the reciprocal lattice vectors may be obtained from:

a� ¼ b� c

a � [b� c]
b� ¼ c� a

b � [c� a]
c� ¼ a� b

c � [a� b]
(1:14)
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where the numerators are cross products that define new vectors, which are perpendicular
to the planes. For example, [b � c] is a vector that is perpendicular to the plane of b and c.
Its magnitude is equal to the area of the parallelogram forming the base of the parallele-
piped. The denominators in Eq. 1.14 are scalar triple products, whose magnitudes are
equal to the volume of the parallelepiped formed by the bases vectors (the unit cell
volume). Hence, each of the denominators in Eq. 1.14 is equal in magnitude. This is illus-
trated in Figure 1.11. The scalar triple product is equal to the area of the base (shaded
gray) multiplied by the projection of the slant height of a on the vector [b � c], (i.e.
the perpendicular distance between the base and its opposite face), which is the

(1 1 1) (0 1 1) (1 0 0)

a

b

c

a3

c

(1 0 1 0)

Figure 1.10. Examples of lattice planes and their Miller indices.

a

c
b

b × c

|a*|–1

Figure 1.11. The vector product [b � c] defines a new vector whose magnitude is given by

the area of the parallelogram forming the base of the parallelepiped and whose direction

is perpendicular to the plane of b and c. The scalar triple product is thus the area of the

parallelogram multiplied by the projection of the slant height of a on the vector [b � c].
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volume of the parallelepiped. The cosine terms in Eq. 1.13 are given by:

cosa� ¼ cosb cosg� cosa

sinb sin g
cosb� ¼ cosa cos g� cosb

sina sin g

cos g� ¼ cosa cosb� cos g

sina sinb
(1:15)

Example 1.6

Derive the expression for d2
hkl, in terms of the direct lattice, for each of the crystal

systems with orthogonal axes.

Solution

For the cubic system, we have: a� ¼ b� ¼ g� ¼ 908; a� ¼ b� ¼ c�.
Directly from Eqs. 1.13 and 1.15, we obtain: d2

hkl ¼ 1=[(h2 þ k2 þ l2)a�2].
Because a ¼ 908, the cross product [b � c], which is given by bc sin a, is equal to
1. The scalar triple product is given by a � [b� c] ¼ a[bc sina] cos u ¼ a[bc sina]
cos(08), where 08 is the angle between the cross product vector and a. Hence,

from Eq. 1.14, it is seen that a� ¼ 1/a. Finally, d2
hkl ¼ a2=(h2 þ k2 þ l2).

For the tetragonal system, we have: a� ¼ b� ¼ g� ¼ 908; a� ¼ b� = c�.
Directly from Eqs. 1.13 and 1.15, we obtain: d2

hkl ¼ 1=[(h2 þ k2)a�2 þ l2c�2]. For
the tetragonal system, a� ¼ b�¼1/a and c�¼1/c. Hence: d2

hkl ¼ 1={[(h2 þ k2)=a2]þ
(l2=c2)}:

For the orthorhombic system, we have: a� ¼ b� ¼ g� ¼ 908; a�=b�=c�.
Directly from Eqs. 1.13 and 1.15, we obtain: d2

hkl ¼ 1=(h2a�2 þ k2b�2 þ l2c�2). In
the orthorhombic system, a� ¼ 1/a, b� ¼ 1/b, and c� ¼ 1/c. Hence: d2

hkl ¼ 1=[(h2=

a2)þ (k2=b2)þ (l2=c2)]:

In order to specify a crystal direction, a vector is drawn from the origin to some point P.
This vector will have projections u0 on the a axis, v0 on the b axis, and w0 on the c axis.
The three numbers are divided by the highest common denominator to give the set of
smallest integers, u, v, and w. The direction is then denoted in brackets as [u v w]. Sets
of equivalent directions are labeled ku vwl. For cubic systems, the [h k l] direction is
always orthogonal to the (h k l ) plane of the same indices. With the other crystal systems,
this simple relationship does not hold. For example, in the hexagonal lattice, the normal to
the (1 0 0) plane is in the [2 1 0] direction, the [1 0 0] direction being 1208 to the (1 0 0)
plane (see Practice Problem 4).

Example 1.7

A direction vector, passing through the origin of an orthorhombic unit cell,
crosses the a edge (parallel with x-axis) of the cell at a/2, the b edge (parallel
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with the y-axis) at 2b, and is orthogonal to the c edge (parallel with the z-axis).
What are the direction indices?

Solution

Sketch the three-dimensional unit cell with the vector drawn in Figure 1.12.

Starting from the origin, we move along the x-axis (parallel to a) 0.5 units of a.
Next, we move from this point along a line parallel to the y-axis (and parallel to
b) until we reach the point where the vector crosses the a edge of the cell. This
is seen to be at y ¼ 1b. There is no z component to the vector, since the zprojection
is zero. Reduction of 0.5, 1, and 0 to the lowest set of integers is accompanied by
multiplication by a factor of 2. The direction is [1 2 0].

From Figure 1.11 and Eq. 1.14, we can see that a reciprocal lattice vector r�hkl is
normal to the planes of Miller indices (h k l) in the direct lattice. For example, a� is
normal to the direct lattice plane containing b and c and its length is equal to 1/d100.
This orthogonality between a direct lattice plane and its reciprocal lattice vector is very
useful computationally. For instance, the dot product affords us a means of determining
the angle between two sets of planes with Miller indices (h1 k1 l1) and (h2 k2 l2) in the
direct lattice since that angle is equal to the angle between the two corresponding recipro-
cal lattice vectors. Kelly and Groves have given the general expression for the angle
between crystal planes (h1 k1 l1) and (h2 k2 l2) in any direct-space lattice as (Kelly and
Groves, 1970):

cos u ¼ dh1k1l1dh2k2l2
h1h2a�2 þ k1k2b�2 þ l1l2c�2 þ [k1l2 þ l1k2]b�c�cosa�

þ [h1l2 þ l1h2]a�c�cosb� þ [h1k2 þ k1h2]a�b�cos g�

� �
(1:16)

The dot product is also useful for calculating the angle between a plane normal and
any direction in a direct lattice. In general, the angle between any two directions, specified

O

P

x

y

b

c

a

z

2b

The vector OP points along the [120] direction
in the orthorhombic unit cell defined by abc.

Figure 1.12.
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by their direction indices [u1 v1 w1] and [u2 v2 w2], in a direct-space lattice is given by the
dot product:

u ¼ cos�1
u1u2 þ v1v2 þ w1w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(u21 þ v21 þ w2
1)(u

2
2 þ v22 þ w2

2)
p

 !
(1:17)

Example 1.8

Derive the expression for the angle between a plane normal and any direction in
an orthorhombic lattice.

Solution

Denote the plane normal as the vector r and the arbitrary direction as vector p.
The angle between r and p is given by the dot product:

cos u ¼ r � p
jrjjpj

The plane normal vector r is d�, which is 1/d. For an orthorhombic lattice:

r ¼ 1

d
¼ h

a
þ k

b
þ l

c

The arbitrary direction vector p is:

p ¼ uaþ vbþwc

Making these substitutions into the expression for the dot product, we get:

cos u ¼ (huþ kv þ lw)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[(h2=a2)þ (k2=b2)þ (l2=c2)](u2a2 þ v2b2 þw2c2)

p
After learning about tensors, another way of computing the dot product will be
shown in Chapter 10.

1.3 SINGLE CRYSTAL MORPHOLOGY AND ITS RELATIONSHIP
TO LATTICE SYMMETRY

A crystal is similar to three-dimensional wallpaper, in that it is an endless repetition
of some motif (a group of atoms or molecules). The motif is created by point group
operations, while thewallpaper, which we call the space lattice, is generated by translation
of the motif, either with or without rotation or reflection. The symmetry of the motif is the
true point group symmetry of the crystal and the symmetry of the crystal’s external
(morphological) form can be no higher than the point symmetry of the lattice. The
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morphological symmetry of a crystal, as a whole, must belong to one of the 32 crystal-
lographic point groups. In a perfectly formed crystal, the symmetry of the forms conforms
to the angular components of the space group symmetry operations minus the transla-
tional components. Alternatively, the morphology symmetry may be said to be that of
the point group isogonal with (possessing the same angular relations as) its space
group. Interestingly, however, a crystal’s morphological appearance may not be consist-
ent with the true point group symmetry of the space lattice.

There are four commonly used terms for describing morphology that should be
understood. These are: zone, form, habit, and twin. A zone is a volume enclosed by
a set of faces that intersect one another along parallel edges. The zone axis is the
common edge direction. For example, the crystallographic axes and the edges of a crystal
are all zone axes. A crystal form is a collection of equivalent faces related by symmetry
(e.g. a polyhedron). One can choose the directions of three edges of a crystal as coordinate
axes (x, y, z) and define unit lengths (a, b, c) along these axes by choosing a plane parallel
to a crystal face that cuts all three axes. For any other crystal face, integers (h, k, l ) can be
found such that the intercepts the face makes on the three axes are in the ratios a :h, b :k,
c : l. Together, these three integers describe the orientation of a crystal face. The integers
are prime and simple (small) and they may be positive or negative in sign.

In a cube (a hexahedron), all the faces are equivalent. The six faces have indices
(1 0 0), (1̄ 0 0), (0 1 0), (0 1̄ 0), (0 0 1), (0 0 1̄), but the set is denoted as f1 0 0g, signifying
the entire cube, whereas (1 0 0) signifies just one face. In a similar fashion, an octahedron
has the form symbol f1 1 1g, and consists of the following eight faces: (1 1 1), (1̄ 1̄ 1̄),
(1 1̄ 1), (1̄ 1̄ 1), (1 1̄ 1̄), (1̄ 1 1̄), (1̄ 1 1), and (1 1 1̄). One or more crystal forms are usually
apparent in the crystal morphology and these may be consistent with the point group
symmetry of the lattice. A crystal of a-quartz (low quartz), for instance, may display five
external forms showing trigonal point group symmetry. Symmetry considerations limit the
numberof possible types of crystal forms to 47.However,whenwe look at crystals from the
lattice-based viewpoint, there are only seven crystal systems. This is because there are 15
different forms, for example, in the cubic (isometric) crystal system alone. The 47 forms
are listed in Appendix 2, grouped by the crystal systems to which they belong. Included
in the table are representative examples of minerals exhibiting these form developments.

The cube and octahedron are both referred to as closed forms because they are
comprised of a set of equivalent faces that completely enclose space. All 15 forms in
the isometric system, which include the cube and octahedron, are closed. One of the iso-
metric forms, the hexoctahedron, has 48 faces. Six have 24 faces (tetrahexahedron, tris-
octahedron, trapezohedron, hextetrahedron, gyroid, and diploid). Five isometric forms
have 12 faces (dodecahedron, tristetrahedron, pyritohedron, deltahedron, and tetartoid).
The final three isometric and closed forms are, perhaps, more familiar to the chemist.
These are the tetrahedron (4 faces), cube (6 faces), and octahedron (8 faces).
Nonisometric closed forms include the dipyramids (6, 8, 12, 16, or 24 faces), scaleno-
hedrons (8 or 12 faces), the rhombic and tetragonal disphenoids (4 faces), the rhombo-
hedron (6 faces), the ditrigonal prism (6 faces), the tetragonal trapezohedron (8 faces),
and hexagonal trapezohedron (12 faces). Open forms do not enclose space. These include
the prisms with 3, 4, 6, 8, or 12 faces, parallel to the rotation axis. These parallel faces are
equivalent but do not enclose space. Other open (and nonisometric) forms include the
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pyramid (3, 4, 6, 8, or 12 faces), domes (2 faces), sphenoids (2 faces), pinacoids (2 faces),
and pedions (1 face). Open forms may only exist in combination with a closed form, or
another open form.

As mentioned earlier, a crystal’s external morphology may not be consistent with
the true point group symmetry of the space lattice. This may be owing to: 1) one or
more forms being absent or showing anisotropic development of equivalent faces; or
2) the symmetry of the unit cell simply not being manifested macroscopically upon infi-
nite translation in three dimensions. First consider anisotropic development of faces. The
growth rates of faces – even crystallographically equivalent faces and faces of crystals
belong to the isotropic (cubic) crystal class – need not be identical. This may be
owing to kinetic or thermodynamic factors.

One possible reason is a nonsymmetrical growth environment. For example, the
nutrient supply may be blocked from reaching certain crystal faces by foreign objects
or by the presence of habit-modifying impurities. Since visible crystal faces correspond
to the slow-growing faces, the unblocked faces may grow so much faster that only the
blocked faces are left visible, while the fast-growing faces transform into vertices.
Consider pyrite, which belongs to the cubic system. Crystal growth relies on a layer-
by-layer deposition on a nucleus via an external flux of adatom species, which may
very well be anisotropic. Hence, unequal development of crystallographically equivalent
f1 0 0g faces can lead to pyrite crystals exhibiting acicular and plate-like morphologies,
instead of the anticipated cube shape. In fact, not all crystals exhibit distinct polyhedral
shapes. Those that do not are termed nonfaceted crystals. The word habit is used to
describe the overall external shape of a crystal specimen. Habits, which can be polyhedral
or nonpolyhedral, may be described as cubic, octahedral, fibrous, acicular, prismatic,
dendritic (tree-like), platy, blocky, or blade-like, among many others.

As a second example of a mineral with several possible form developments, let us
consider, in a little more detail, quartz (Fig. 1.13). Quartz belongs to the symmetry
class 32, which has two three-fold rotation axes and three two-fold axes. Five forms
must necessarily be present to reveal this symmetry: f1 0 1̄ 0g, f1 0 1̄ 1g, f0 1 1̄ 1g,
f1 1 2̄ 1g, and f5 1 6̄ 1g. These correspond, respectively, to: a hexagonal prism; a domi-
nant, or positive, rhombohedron; a subordinate, or negative, rhombohedron; a trigonal
(triangular) dipyramid; and a trigonal trapezohedron. In mineralogy, these are labeled,
in the order given, with the lower case letters m, r, z, s, and x. The three orthogonal
crystallographic axes are defined as: X, bisecting the angle between adjacent hexa-
gonal prism faces; Y, which runs through the prism face at right-angles to X; and Z,
an axis of three-fold symmetry.

As illustrated in Figure 1.13, both rhombohedra (r and z) cap, or terminate, the quartz
crystal on each end. Each rhombohedron has a set of three faces. By convention, the larger
set of three faces is considered the positive rhombohedron. When present, the trigonal
trapezohedron (x) is seen at the junction of two prism faces (m) and the positive rhombo-
hedron, and it displays a trapezohedral planar shape. The trigonal pyramid (s) is at the
junction of the positive rhombohedron and the prism, which is in line vertically with
the negative rhombohedron. It typically forms an elongated rhombus-shaped face.
However, in some specimens, one or more of the aforementioned forms are missing or
show a development inconsistent with the true point group symmetry of quartz. In
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fact, most quartz crystals do not display the trigonal dipyramid or trapezohedron faces, the
former being especially rare. With these two forms absent, the rhombohedra may exhibit
either equal or unequal development. The latter case implies the highest apparent (but still
false) crystal symmetry, as the hexagonal prism appears to be terminated at both ends with
hexagonal pyramids. It is also possible for the hexagonal prism to be absent, in
which case the combination of the two rhombohedra results in a hexagonal dipyramid
(or bipyramid), termed a quartzoid.

As mentioned earlier, the true symmetry of the unit cell simply may not be mani-
fested macroscopically upon infinite translation in three dimensions. Buerger has illus-
trated this with the mineral nepheline, (Na, K)AlSiO4 (Buerger, 1978). The true
symmetry of the nepheline crystal lattice, the symmetry of the unit cell, consists
merely of a six-fold rotation axis (class 6) as would be exhibited by a hexagonal prism
with nonequivalent halves. That is, there is no mirror plane perpendicular to the rotation
axis. However, the absence of this mirror plane is obviously not macroscopically visible
in the hexagonal prism form development of nepheline, implying a higher apparent
symmetry (6/mmm).

The situation with crystallized iodoform, CHI3, is similar. The molecules are strictly
pyramidal, but the crystal contains complementary positive and negative pyramids cap-
ping a hexagonal prism, as do the minerals zinkenite (Pb9Sb22S42) and finnemanite
(Pb5(AsO3)3Cl). In fact, no crystals showing form development consistent with class 6
symmetry have been observed. It is observed, rather, that form developments tend to
follow the holohedral, or holosymmetric symmetry, of the crystal class, that is, the

m

r z
s

x

m r, z xs

Z

Y

X

Figure 1.13. Top: A quartz crystal exhibiting the true symmetry of the crystal class to which

quartz belongs. Bottom: The forms comprising such a quartz crystal. From left to right, the

hexagonal prism, trigonal dipyramid, rhombohedron (there are two of these present, a

positive form and a negative form), and trigonal trapezohedron.
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point group with the highest symmetry of its crystal system. This is most commonly man-
ifested by equal development of complementary forms in the merosymmetric classes (i.e.
those with less symmetry than the lattice).

A Concise Timeline of the History of Geometric Crystallography

1669 Niels Stensen (1638–1686) – more widely known by his Latinized
name, Nicholas Steno – reports on the morphology of quartz
crystals; proposed the Law of Constancy of Interfacial Angles.

1772 Jean Baptiste Louis Romé de L’Isle (1736–1790) publishes his Essai
de cristallographie, with over a hundred descriptions of crystal
forms.

1784 De L’Isle expands Cristallographe to 450 substances; demonstrates
use of Steno’s law of constant angles to distinguish between
different minerals.

1784 French abbé and mineralogist René-Just Haüy (1743–1822)
publishes his Théorie sur la Structure des Cristaux, in which he
proposed the Law of Rational Intercepts, showed that all varieties
of crystal forms could be reduced to a few types of morphological
symmetry, and conceived his idea of a fundamental building block,
which he called molécules integrantes (integral molecules);
observed hemihedry (enantiomorphism) in quartz crystals.

1816–1824 Christian Samuel Weiss (1780–1856) and Friedrich Karl Mohs
(1773–1839) derive the six different crystal form classes: cubic,
orthorhombic, rhomboidal, hexagonal, monoclinic, and triclinic.

1825 William Whewell (1794–1866) introduces a notation system
relating crystal faces to coordinate axes (Miller indices). These
were published in a book by Whewell’s student William Hallowes
Miller (1801–1880) in 1839.

1826 Mauritius Ludovicus (Moritz Ludwig) Frankenheim (1801–1869)
employs two-, three-, four-, and six-fold rotation operations on
axes of symmetry.

1830 The German physician and mineralogist Johann Friedrich Christian
Hessel (1796–1872) determines the finite number of morpho-
logical symmetry types a three-dimensional crystal can have, as a
whole, to be 32.

1835 Frankenheim determines that there are 15 crystal systems.
1850–1851 Auguste Bravais (1811–1863) corrects Frankenheim’s number of

crystal systems, noting that two were equivalent, and that the
remaining 14 coalesced by pairs, thus proving that there are really
seven distinct crystal systems; derives the five two-dimensional and
14 three-dimensional space lattices.

1879 German physicist Leonhard Sohncke (1842–1897) derives the 65
rotational (chiral) space groups by considering screw axes and
glide planes.

1884 Pierre Curie (1859–1906) points out Sohncke’s omission of indirect
symmetries (rotoreflection, rotoinversion).
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1891 Evgraf Stepanovich Fedorov (1853–1919) and Arthur Moritz
Schönflies (1853–1928) independently derive the 230 space groups
by including indirect symmetries.

1919 Paul Niggli (1888–1953) publishes Geometrishe Kristillographie
des Diskontinuums, greatly refining space group theory into its
present day form.

1921 Peter Paul Ewald (1888–1985) uses reciprocal lattice vectors to
interpret the diffraction patterns by orthorhombic crystals and
later generalized the approach to any crystal class.

1922 Ralph Walter Graystone Wyckoff (1897–1994) publishes The
Analytical Expression of the Results of the Theory of Space
Groups, containing positional coordinates for general and special
positions permitted by the symmetry elements.

1931 Carl Hermann (1898–1961) and Charles Mauguin (1878–1958)
develop the space group symmetry notation system now in use.

1962 Ewald and Arthur Bienenstock (b. 1934) derived the 230 space
groups in reciprocal space.

1984 Quasicrystals discovered by D. Shechtman, I. Blech, D. Gratias, and
J. W. Cahn.

1991 Rabson, Mermin, Rokhsar, and Wright compute all the three-
dimensional quasicrystallographic space groups.

1.4 TWINNED CRYSTALS

A twin is a symmetrical intergrowth of two or more crystals, or individuals, of the same
substance. A simple twin contains two individuals; a multiple twin contains more than
two components. The twin element is the geometric element about which a twin opera-
tion is performed, relating the different individuals in the twin. The twin element may be a
reflection plane (contact twins) or a rotation axis (penetration twins). The twin operation
is a symmetry operation for the twinned edifice only, not for the individuals. In twinning
by merohedy, the twin and the individual lattice point group, as well as their translational
symmetry, coincide. If both the point group and translational symmetries of the twin and
individual differ, it is referred to as twinning by reticular merohedry. Most commonly,
twinning is by syngonic merohedry, in which the twin operation is a symmetry element
of the holohedral point group (one of the seven point groups exhibiting the complete sym-
metry of the seven crystal systems) while the point group of the individual crystals is a
subgroup, exhibiting less than complete [holohedral] symmetry. With metric merohedry,
the individual lattice has an accidently specialized metric corresponding to a higher
holohedry and a twin operation exists only belonging to the higher holohedry. For
example, a twin operation belonging to an orthorhombic lattice may exist for a twinned
edifice comprised of two monoclinic crystals. The empirical rule of merohedral twinning
was originally developed by Auguste Bravais, François-Ernest Mallard (1833–1894),
and, later, Georges Friedel.

Like a grain boundary, the twin boundary is a higher energy state, relative to the
crystal. However, because a twin boundary is highly ordered, it is of lower energy than
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a typical non-twin grain boundary. Recognizing this, Buerger later proposed that if the
crystal structure is of such a nature that, in detail, it permits a continuation of itself in
alternative twin junction configuration, without involving violation of the immediate
coordination requirements (the first coordination sphere) of its atoms, the junction has
low energy and the twin is energetically possible (Buerger, 1945).

Twins may also be divided into the following categories based on their origin:
growth twins, gliding twins, and transformation twins. Growth twins originate at the
nucleation stage under conditions of supersaturation, where there is greater likelihood
for the arrival of clusters of atoms, already coordinated, at the twin position. Such
twins persist and grow if subsequent clusters of adatoms continue to arrive in that fashion.
Growth twins may also be subdivided into penetration twins and contact twins. The sim-
plest type is the contact twin, in which the two portions appear to have been united along
a common plane and appear as mirror images across the twin boundary. A particular type
of contact twin known as the Japan law twin is illustrated in Figure 1.14. Penetration twins
are complete crystals that pass through (interpenetrate) one another and share a common
volume of space. Glide twinning is caused by a specific type of structural shear in plastic
deformation. The lower-energy non-twined crystals absorb part of the energy supplied in
the plastic deformation process and, if the crystal structure permits it, a layer of atoms
glide into a twin position. With continued stress, gliding takes place in the next layer.
Because gliding in all the parallel layers does not take place simultaneously, twin lamella
form. Calcite is an example of a crystal that readily forms glide twins at low differential
stresses (�10MPa). Twinning is possible along three glide planes. Transformation
twinning occurs during the transformation from a high-temperature phase to a lower-
symmetry low-temperature phase, for example, when sanidine (monoclinic KAlSi3O8)
is cooled to form microcline (triclinic KAlSi3O8). In such a process, there is spontaneous
formation of nuclei in different orientations, which subsequently grow into one another.
Each member of the aggregate is either in parallel or in twinned orientation, with respect
to one another. This follows from the fact that they could be brought into coincidence by
one of the possible symmetry operations of the high-temperature phase that vanished in
the formation of the low-temperature phase, which has a symmetry that is a subgroup of
the high-temperature phase (Buerger, 1945).

Figure 1.14. A drawing of a Japan-Law contact twin quartz crystal. This type of twinning was

first discovered in 1829 by C. S. Weiss in quartz crystal from the La Gardette mine in France.

However, because of the abundance of these specimens in Japan, they are now known as

Japanese twins.
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1.5 CRYSTALLOGRAPHIC ORIENTATION RELATIONSHIPS
IN BICRYSTALS

The orientation relationship between a pair of grains of the same substance (the only kind
wewill consider in this book), a bicrystal, is often expressed by an axis-angle description,
since one of the crystals can always be generated from the other by a rigid body rotation
about a suitable axis. More precisely, their lattices can be made to coincide by turning
one of the two crystals about a suitable rotation axis. Actually, the modern method for
quantifying the goodness of fit between two adjacent grains in a pure polycrystalline
substance (i.e. homophase interfaces), and even in a multiphase solid (i.e. heterophase
interfaces), is based upon the number of lattice points (not atomic positions) in each
grain that coincide. However, this information is directly obtainable from the rotation
matrix representing the rigid body rotation describing the misorientation.

1.5.1 The Coincidence Site Lattice

Specialists from many different fields contributed to the evolution of our modern picture
of the crystalline interface, which may be summarized as follows. The earliest geometric
model was the amorphous, or at best “irregular intercrystal layer” championed by the
metallurgist Walter Rosenhain (1875–1934) of the United Kingdom’s National
Physics Laboratory (Rosenhain, 1925). A transition lattice connecting the grains on
either side was subsequently proposed by F. Hargreaves and R. J. Hill (Hargreaves and
Hill, 1929). There was also the twin interface by the French mining engineer and crystal-
lographer Georges Friedel (1865–1933), son of organic chemist Charles Friedel (Friedel,
1926). The physicist Nevil Francis Mott first suggested that grain boundaries should con-
tain regions of fit and misfit (Mott, 1948). The chemists Marritt Lionel Kronberg and
Francis Howard Wilson then pointed out the importance of the coincidence of atom
positions across grain boundaries in influencing metal properties such as diffusion
coefficients and mobilities (Kronberg and Wilson, 1949). Srinivasa Ranganthan
(b. 1941) presented a general procedure for obtaining coincidence relationships between
lattices about rotation axes (Ranganathan, 1966).

The modern method for quantifying the goodness of fit between two adjacent
grains examines the number of lattice points (not atomic positions) from each grain
that coincide. In special cases, for example when the grain boundary plane is a twin
plane, the lattice sites for each of the adjacent crystals coincide in the boundary. These
are called coherent boundaries. It has long since been experimentally verified that coher-
ent grain boundaries possess special properties. For example, coherent boundaries
migrate faster than random boundaries during recrystallization (Aust and Rutter, 1959).

Consider a pair of adjacent crystals. We mentally expand the two neighboring crystal
lattices until they interpenetrate and fill all the space. Without loss of generality, it is
assumed that the two lattices possess a common origin. If we now hold one crystal
fixed and rotate the other, it is found that a number of lattice sites for each crystal, in
addition to the origin, coincide with certain relative orientations. The set of coinciding
points form a coincidence site lattice, or CSL, which is a sublattice for both the
individual crystals.
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In order to quantify the lattice coincidence between the two grains, A and B, the
symbol S customarily designates the reciprocal of the fraction of A (or B) lattice sites
that are common to both A and B.

S ¼ number of crystal lattice sites
number of coincidence lattice sites

(1:18)

For example, if one-third of the A (or B) crystal lattice sites are coincidence points belong-
ing to both the A and B lattices, then, S ¼ 1/(1/3) ¼ 3. The value of S also gives the
ratio between the areas enclosed by the CSL unit cell and crystal unit cell. The value
of S is a function of the lattice types and grain misorientation. The two grains need
not have the same crystal structure or unit cell parameters. Hence, they need not be related
by a rigid body rotation. The boundary plane intersects the CSL and will have the same
periodicity as that portion of the CSL along which the intersection occurs. The simple
CSL model is directly applicable to the cubic crystal class. The lower symmetry of the
other crystal classes necessitates the more sophisticated formalism known as the con-
strained coincidence site lattice, or CCSL (Chen and King, 1988). In this book, only
cubic systems will be treated. Interestingly, whenever an even value is obtained for S
in a cubic system, it will always be found that an additional lattice point lies in the
center of the CSL unit cell. The true area ratio is then half the apparent value. This oper-
ation can always be applied in succession, until an odd value is obtained – thus S is
always odd in the cubic system. A rigorous mathematical proof of this would require
that we invoke what is known as O-lattice theory, formulated by Walter Bollman at the
Batelle Memorial Institute in Geneva (Bollman, 1967). The O-lattice takes into account
all equivalence points between two neighboring crystal lattices. It includes as a subset,
not only coinciding lattice points (theCSL), but also all nonlattice sites of identical internal
coordinates. However, expanding on that topic would be well beyond the scope of this
book. The interested reader is referred to Bhadeshia (1987) or Bollman (1970).

Single crystals and bicrystals with no misorientation (i.e. u ¼ 0), by convention,
are denoted S1. In practice, small or low-angle grain boundaries with a misorientation
angle of less than 10–158 are also included under the S1 term. Since S is always odd,
the coincidence orientation for high-angle boundaries with the largest fraction of
coinciding lattice points is S3 (signifying that 1/3 of the lattice sites coincide). Next
in line would be S5, then S7, and so on.

Figure 1.15 shows a tilt boundary between two cubic crystals. The grain boundary
plane is perpendicular to the plane of the page. In the figure, we are looking down one
of the k1 0 0l directions, and the [1 0 0] axis about which grain B is rotated is also perpen-
dicular to the page and passes through the origin. At the precise misorientation angle of
36.98, one-fifth of the B crystal lattice sites are coincidence points, which also belong to
the expanded lattice of crystal A; this is a S5 CSL misorientation. The set of coincidence
points forms the coincidence site lattice, the unit cell of which is outlined. Note that the
area enclosed by the CSL unit cell is five times that enclosed by the crystal unit cell.

Fortunately, there is an easy, although tedious, way to determine the value for S from
the rotation matrix representing the rigid body rotation describing the misorientation
between two crystals, A and B. Note that such a rotation is not a symmetry operation
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mapping a lattice onto itself. Rather, it takes the crystal A orientation into the crystal B
orientation, which are distinguishable. Now, if an integer, N, can be found such that all
the elements of the rotation matrix become integers when multiplied by N, then that inte-
ger will be the S value. The value of N is found simply by multiplying all the matrix
elements by integers, in increments of one beginning with the number 1, until the matrix
elements are all integers. If the value of S turns out be even using this procedure, then the
true value is obtained by successively dividing N by two until the result is an odd integer.
This method can be used to compute the value of S for any general rotation matrix.

Example 1.9

Use Eq. 1.7 to compute the matrix corresponding to a rotation of 1808 about the
[1 1 2] direction in a cubic bicrystal. Then, calculate the value of S.

Solution

In order to use Eq. 1.7, we need to first convert the [1 1 2] direction indices into
direction cosines. This is accomplished via Eq. 1.8, with (x1, y1, z1) ¼ (0, 0, 0) and
(x2, y2, z2) ¼ (1, 1, 2).

36.9°

A B

[0 1 0]B

Figure 1.15. A view down the [0 0 1] direction of a tilt boundary between two crystals (A, B)

with a misorientation angle of 36.98 about [0 0 1]. The grain boundary is perpendicular to

the plane of the page. Every fifth atom in the [0 1 0] direction in B is a coincidence point

(shaded). The area enclosed by the CSL unit cell (bold lines) is five times that of the crystal

unit cell, so S ¼ 5.
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cosa ¼ ux ¼ (1� 0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1)2 þ (1)2 þ (2)2

p cosb ¼ uy ¼ (1� 0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1)2 þ (1)2 þ (2)2

p
cos g ¼ uz ¼ (2� 0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1)2 þ (1)2 þ (2)2
p

Hence, the rotation axis is given by: k(1=
ffiffiffi
6
p

), (1=
ffiffiffi
6
p

), (2=
ffiffiffi
6
p

)l. Substituting these
values for ux, uy, and uz in Eq. 1.7, where f ¼ 1808, gives:

R ¼
�0:666667 0:333333 �0:666667
0:333333 �0:666667 0:666667
0:666667 0:666667 0:333333

2
4

3
5

Next, in order to calculate the value of S, we merely multiply each matrix
element by an integer, starting with the number 1, progressing in increments of
1, until the products are integers. Doing so shows that when N ¼ 3, the rotation
matrix for a 1808 rotation about the [1 1 2] direction can be written as:

R[1 1 2](1808) ¼
1

3

�2 1 �2
1 �2 2
2 2 1

2
4

3
5

Hence, S ¼ 3, meaning that one-third of the crystal lattice sites are coincidence
points belonging to both crystals. Alternatively, the area enclosed by the CSL
unit cell is three times larger than the area enclosed by the crystal unit cell.
This is illustrated in Figure 1.16.

111  Boundary plane

111

Figure 1.16. The twin boundary (perpendicular to the plane of the page) is a S3 CSL

misorientation. Note that there is complete coincidence in the boundary plane itself.
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For tilt boundaries, the value of S can also be calculated if the plane of the boundary
is specified in the coordinate systems for both adjoining grains. This method is called
the interface-plane scheme (Wolfe and Lutsko, 1989). In a crystal, lattice planes are ima-
ginary sets of planes that intersect the unit cell edges. These planes are denoted by Miller
indices, a group of integers that are the reciprocals of the fractional coordinates of the
points where the planes intercept each of the unit cell edges. In cubic crystals, the
(h k l) planes are orthogonal to the [u v w] direction. The tilt and twist boundaries can
be defined in terms of the Miller indices for each of the adjoining lattices and the twist
angle, F, of both plane stacks normal to the boundary plane, as follows:

(h1 k1 l1) ¼ (h2 k2 l2); F ¼ 0 symmetric tilt boundary

(h1 k1 l1)= (h2 k2 l2); F ¼ 0 asymmetric tilt boundary

(h1 k1 l1) ¼ (h2 k2 l2); F . 0 low-angle twist boundary

(h1 k1 l1)= (h2 k2 l2); F . 0 high-angle twist boundary

Thus, the CSL-S value is obtained for symmetric tilt boundaries between cubic crystals
as follows:

S ¼ h2 þ k2 þ l2 for h2 þ k2 þ l2 ¼ odd

¼ h2 þ k2 þ l2

2
for h2 þ k2 þ l2 ¼ even (1:19)

For asymmetric tilt boundaries between cubic crystals, S is calculated from
(Randle, 1993):

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(h21 þ k21 þ l21)

(h22 þ k22 þ l22)

s
(1:20)

For example, if we mentally expand the lattices of both A and B in Figure 1.15, it will be
seen that the grain boundary plane cuts the B unit cell at (3 4 0) in the B coordinate
system and the A unit cell at (0 1 0) in the A coordinate system. Thus, Eq. 1.20 yields
S ¼ (25/1)1/2 ¼ 5.

In polycrystals, misorientation angles rarely correspond to exact CSL configurations.
There are ways of dealing with this deviation, which set criteria for the proximity to
an exact CSL orientation that an interface must have in order to be classified as
belonging to the class S ¼ n. The Brandon criterion (Brandon et al., 1964), named
after the metallurgical and materials engineer David G. Brandon (b. 1935), asserts that
the maximum permitted deviation is v0S

21/2. For example, the maximum deviation
that a S3 CSL configuration with a misorientation angle of 158 is allowed to have and
still be classified as S3 is 158(3)21/2 ¼ 8.78. The coarsest lattice characterizing the
deviation from an exact CSL orientation, which contains the lattice points for each of
the adjacent crystals, is referred to as the displacement shift complete lattice (DSCL).

Despite the difficulties associated with characterizing inexact CSL orientations,
the CSL concept is useful because grain boundary structure, which depends on the
orientation relationship between the grains and, hence, the CSL, directly influences intra-
granular properties like chemical reactivity (e.g. corrosion resistance), segregation, and
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fracture resistance. Grain boundary engineering is a relatively new field that concentrates
on controlling the intragranular structure, or CSL geometry, to improve these properties,
in turn, improving bulk materials performance (Watanabe, 1984; Watanabe et al., 1993).
For the most part, this means introducing a large fraction of low-S boundaries, particu-
larly twin boundaries. It is believed, however, that optimal grain boundary properties may
be restricted to narrow regions (small deviations) about exact CSL orientations.

1.5.2 Equivalent Axis-Angle Pairs

It turns out that a bicrystal can be represented by a number of equivalent axis-angle
pairs determined by the crystal class to which it belongs. The rotational degeneracy
of the seven crystal classes can be obtained from the character tables for their respective
point groups: cubic, Oh (24); hexagonal, D6h (12); hexagonal close packed, D3d (6); tetra-
gonal, D4h (8); trigonal, D3d (6); orthorhombic, D2h (4); monoclinic, C2h (2); and triclinic,
Ci (1). In order to calculate the equivalent axis-angles, the first rotation matrix is
“operated” on by matrices representing the various proper rotations, which are symmetry
operations. Now, when we state that a rotation matrix, R, is operated on by a proper
rotation, C, this means it is multiplied by that symmetry operation, from left to right,
which is written as CR. This generates a product matrix, J that is a symmetry operation
of the crystal class since the different rotations are indistinguishable. However, we have
to be careful to apply the operations in the correct order (J ¼ CR), since matrix
multiplication is not commutative. The axis-angle pairs are then obtained directly
from the product matrices, J. The new rotation angle, f, is given by the relationship
discussed earlier:

J11 þ J22 þ J33 ¼ 1þ 2 cosf (1:21)

where the terms on the left-hand side are the diagonal elements of J. The new rotation
axis ku0x u

0
y u
0
zl for all f = p, or antisymmetric matrices (also called skew-symmetric

matrices), for which JT ¼ 2J (or, in component form, Jij ¼ 2Jij for all i and j), is
obtained from the equations:

u0x ¼
J23 � J32
2 sinf

u0y ¼
J31 � J13
2 sinf

u0z ¼
J12 � J21
2 sinf

(1:22)

where u02x þ u02y þ u02z ¼ 1. When the product matrix is symmetric (JT ¼ J), i.e. if
f ¼ 1808, Eq. 1.22 is not defined and it cannot be used to obtain the rotation axis. In
this case, the following matrix is needed to determine the rotation axis:

J11 ¼ 1� 2(u02y þ u02z ) J12 ¼ 2u0xu
0
y J13 ¼ u0xu

0
z

J21 ¼ 2u0xu
0
z J22 ¼ 1� 2(u02x þ u02z ) J23 ¼ 2u0yu

0
z

J31 ¼ 2u0xu
0
z J32 ¼ 2u0yu

0
z J33 ¼ 1� 2(u02x þ u02y )

(1:23)

where u02x þ u02y þ u02z ¼ 1. When using Eq. 1.23, the idea is to extract the maximum
component from the diagonal elements of the matrix. If J11 is of maximum magnitude,
compute:

u0x ¼ [J11 � J22 � J33 þ 1]1=2=2 u0y ¼ J13=2u
0
x u0z ¼ J13=2u

0
x
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If J22 is the maximum, compute:

u0y ¼ [J22 � J11 � J33 þ 1]1=2=2 ux0 ¼ J12=2u
0
y u0z ¼ J23=2u

0
y

If J33 is the maximum, compute:

u0z ¼ [J33 � J11 � J22 þ 1]1=2=2 u0x ¼ J13=2u
0
z uy0 ¼ J23=2u

0
z

Example 1.10

Compute the product matrix obtained by operating on the rotation matrix from
Example 1.7 (a 1808 rotation about the [1 1 2] direction in a cubic bicrystal) with
the matrix representing a 908 clockwise rotation about the [1 0 0] plane normal.
Then determine the equivalent axis-angle pair.

Solution

First, obtain the matrix describing the 2908 (clockwise) rotation about [1 0 0].
This is accomplished via Eq. 1.7 with ux ¼ 1, uy ¼ uz ¼ 0 and u ¼ 2908 (for the
cubic class, the [1 0 0] plane normal is the vector k1, 0, 0l):

R[1 0 0](908) ¼
1 0 0
0 0 1
0 �1 0

2
4

3
5

Next we take the product, J, between this matrix and the matrix for R[1 1 2](1808)
from Example 1.7, that is, J ¼ R [10 0](908) R [1 1 2](1808)

J ¼
1 0 0

0 0 1

0 �1 0

2
64

3
75
�0:666667 0:333333 �0:666667
0:333333 �0:666667 0:666667

0:666667 0:666667 0:333333

2
64

3
75

¼
(1)(�0:666667)þ (0)(0:333333)þ (0)(0:666667)

(0)(�0:666667)þ (0)(0:333333)þ (1)(0:666667)

(0)(�0:666667)þ (�1)(�0:666667)þ (0)(0:666667)

2
64
(1)(0:333333)þ (0)(�0:666667)þ (0)(0:666667)

(0)(0:333333)þ (0)(�0:666667)þ (1)(0:666667)

(0)(0:333333)þ (�1)(�0:666667)þ (0)(0:666667)

(1)(�0:666667)þ (0)(0:666667)þ (0)(0:333333)

(0)(�0:666667)þ (0)(0:666667)þ (1)(0:666667)

(0)(�0:666667)þ (�1)(0:666667)þ (0)(0:333333)

3
75

¼
�0:666667 0:333333 �0:666667
0:666667 0:666667 0:666667

0:666667 0:666667 �0:666667

2
64

3
75
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We can nowuse J to extract an equivalent axis-angle pair. The new rotation angle,
f, is obtained from the relation given earlier: J11 þ J22 þ J33 ¼ 1 þ 2 cos f. Hence,
f ¼ cos21(20.666667/2) ¼ 109.478.

We can see by inspection of J that it is antisymmetric (Jij = Jji). Therefore, we
can use Eq. 1.20 to compute the components of the rotation axis.

u0x ¼
0:666667� 0:666667

2 sin(109:47)
¼ 0

u0y ¼
0:666667� (�0:666667)

2 sin(109:47)
¼ 0:707107

u0z ¼
0:333333� 0:666667

2 sin(109:47)
¼ �0:176776

From vector algebra, we know that any ordered set of three numbers that can be
obtained from kux, uy, uzl bymultiplying all of them by the same positive constant
k is also a set of direction numbers for the vector, in that they define the direction
of the vector. Hence choosing k to be (1/20.176776) gives:

[0/20.176776, 0.707107/20.176776, 20.176776/20.176776] or k0 4̄ 1l.

Therefore, an equivalent axis-angle pair is rotation by 109.478 about k0 4̄ 1l.

1.6 AMORPHOUS SOLIDS AND GLASSES

Amorphous solids do not possess the long-range translational order characteristic of
crystals, although they do usually exhibit short-range structural order. The glassy or vitr-
eous state is a subset of the amorphous state. All glasses are monolithic and amorphous,
but only amorphous materials prepared by rapidly cooling, or quenching, a molten state
through its glass transition temperature (Tg) are glasses. Nonglassy amorphous solids are
normally prepared by severely mechanochemically damaging a crystalline starting
material, for example, via ion implantation, or ball milling.

Glasses are amorphous materials that are brittle (i.e. subject to fracture). They are
absent of long-range structural order as well as grain boundaries and other crystalline
defects. A glass does, however, possess SRO and medium-range order (MRO). Hence,
a glass can be defined as a rigid brittle noncrystalline solid with less structural order
than a crystal but more than a liquid. Natural glasses form when certain types of rock
melt as a result of volcanic activity, lightning strikes, or meteorite impacts, followed
by very rapid cooling and solidification. Stone-age men are believed to have used
some of these naturally formed amorphous materials as tools for cutting. An example
is fused quartz, or quartz glass, formed by the melting and rapid cooling of pure silica.
Upon rapid solidification, the SRO (geometry) of the SiO4 tetrahedra is preserved, but
not the long-range crystalline order of quartz. The structure of crystalline quartz involves
corkscrewing (helical) chains of SiO4. The corkscrew takes four tetrahedra, or three turns,
to repeat, each tetrahedron essentially being rotated 1208. The chains are aligned along
one axis of the crystal and interconnected to two other chains at each tetrahedron. The
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Si22O22Si bond angle between interconnected tetrahedra is nominally about 1458. As in
quartz, every oxygen atom in fused quartz is also bonded to two silicon atoms (each SiO4

tetrahedron is connected to four other tetrahedra), but the tetrahedra are polymerized into
a network of rings of different sizes, occurring in a wide range of geometries. Hence, in
quartz glass there is a distribution of Si22O22Si bond and Si22O22Si22O torsion angles.

The very high temperatures required to melt quartz were not attainable by early
craftsmen. Hence, they prepared sodium silicate glass by mixing together and melting
sodium carbonate with sand. The structure of this so-called “water glass” is similar to
that of quartz glass, except that, with the random insertion of sodium ions within the
network, nonbridging oxygen atoms (i.e. oxygen atoms bonded to a single silicon
atom) are produced.

Although cooling rates as high as 1011 K/s have been obtained on solid surfaces with
pulsed laser melting, for bulk phases rapid solidification typically refers to cooling rates
in the range of 102 to 107 K/s. On the low end of this range, very fine-grained crystalline
substances are produced. On the high end, the formation of either a glassy phase or
quasicrystal is favored over a crystalline phase. Glass formation, or vitrification, can be
compared to crystallization by referring to Figure 1.17, which is applicable to both met-
allic and nonmetallic systems. Crystallization follows path abcd. As the temperature of a
nonglass-forming melt is lowered, the molar volume of the alloy decreases continuously
until it reaches the melting point where it changes discontinuously, that is where it experi-
ences a first-order phase transition. The enthalpy and entropy behave similarly. In glass
formation, rapid cooling forces the melt to follow path abef with decreasing temperature.
The liquid remains undercooled (it does not solidify) in the region be, below the melting
point. The molar volume continuously decreases in the undercooled region and the vis-
cosity increases rapidly. At the point Tg, called the glass transition temperature, the atomic
arrangement becomes frozen into a rigid mass that is so viscous it behaves like a solid.
Rapid cooling reduces the mobility of the material’s atoms before they can pack into a
more thermodynamically favorable crystalline state.

The state of our current scientific understanding of glass formation is founded,
to a large extent, on the theoretical work of Harvard researcher David Turnbull
(1915–2007). Turnbull’s criterion for the ease of glass formation in supercooled melts
predicts that a liquid will form a glass, if rapidly solidified, as the ratio of the glass tran-
sition temperature, Tg, to the liquidus temperature, Tl, becomes equal to or greater than
2/3 (Turnbull, 1950). The Tg/Tl ratio is referred to as the reduced glass transition temp-
erature, Trg. The rate of homogeneous nucleation is dependent on the ease with which
atomic rearrangement can occur (commonly taken as the atomic diffusion coefficient),
which scales inversely with fluidity or viscosity. Easy glass-forming substances form
highly viscous melts (e.g. .102 P), compared to nonglass forming ones (e.g. water,
with h � 1022 P). In highly viscous melts, the atomic mobility is substantially reduced,
which suppresses the homogeneous nucleation rate and, hence, crystallization. In fact,
Igor Evgenevich Tammann (1861–1938) pointed out, as early as 1904, that the higher
the viscosity of a melt, the lower its crystallizability (Tammann, 1904). The homo-
geneous nucleation rate is, therefore, highly dependent on Trg. The Trg . 2/3 criterion
successfully predicts glass formation in metallic and nonmetallic liquids. It must be
noted, however, that heterogeneous nucleation (e.g. on seed particles present
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inadvertently) may prevent glass formation. Indeed, crystallization is usually initiated in
this manner.

The above arguments are based on kinetics. It may also be shown on thermodynamic
grounds that a high value for Trg (and therefore the tendency to form a glass at lower
cooling rates) is obtained for deep eutectic systems, that is where the melting point of
some alloy composition is substantially lowered compared to the melting points of the
pure components. These systems tend to be those with very little solid solubility between
the components. When atoms do not “fit” together in the lattice (owing to mismatches in
size, valence, etc.), the tendency for crystallization diminishes. This is owing to both a
large negative heat of mixing and entropy of mixing for the liquid compared with the
competing crystalline phase.

Although in common parlance, the term glass has come to refer to silicate glass of
one kind or another; in the early 1950s, German scientists succeeded in preparing
amorphous tin and lead by cooling vapor at �1012 8C/s. However, theses metallic
glasses were much thinner than aluminum foil and they crystallized well below room
temperature. In 1959, Pol E. Duwez (1907–1984), a Belgian-born materials scientist at
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Figure 1.17. A comparison of glass formation (curve abef ) and crystallization (curve abcd).

The point Tg is the glass transition temperature and Tm is the melting temperature. (After

West (1985), Solid State Chemistry and its Applications. # 1984, John Wiley & Sons, Inc.

Reproduced with permission.)
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CalTech, was able to prepare a thin gold-silicon metallic glass that remained amorphous
at room temperature. Working simultaneously and independently, Turnbull and Morrel
H. Cohen (b. 1927) indicated that alloy systems with deep eutectic compositions
should exhibit a strong tendency for glass formation with sufficiently fast cooling rates
(e.g. in the range of 105 to 106 K/s). Such cooling rates are obtainable in industrial
melt spinning and splat quenching techniques. Under these processing conditions, the
highly disordered state of the supercooled liquid phase becomes configurationally
frozen into a rigid amorphous (glassy) state.

Historically, most glass-forming alloys were metal–metalloid and metal–metal
binary systems (where the metal is usually a transition element and the metalloid is
B, Si, C, or P) with a Tg well above room temperature, in the range of 300 to 700 K.
With the exception of the group 12 elements (Zn, Cd, Hg) the transition metals have
melting points exceeding 1200 K. Hence, those alloy systems containing very low melt-
ing eutectics (e.g. 636 K in the Au–Si system) tend to satisfy the Turnbull criterion.
Examples of binary metallic glasses include Fe80B20, Ni60Nb40, Ni63Zr27, and
Ca65Al35. The compositions of these glasses are near eutectic points. Turnbull’s criterion
has thus been validated in systems at cooling rates attainable by “conventional” casting
procedures (�106 K/s). Some alloy systems, such as Cu60Zr40, exhibit glass formation
over composition ranges extending well beyond a eutectic point. By contrast, the Trg of
pure metals seem to be much smaller than 2/3. Furthermore, pure metallic liquids
(�1022 P) have much lower viscosities than the glass forming alloys. Therefore, glass
formation from pure metal melts by rapid solidification requires extremely high cooling
rates, on the order of �1012 K/s. In 2004, however, scientists at the Los Alamos National
Laboratory succeeded in producing millimeter-sized metallic glass samples of zirconium
by placing zirconium crystals under a pressure of 80,000 atm and a temperature of 7008C
(Zhao and Zhang, 2004).

In 1990, Japanese researcher, Akahisa Inoue, and his team at Tohoku University
began casting bulk metallic glasses (BMGs) up to 6 mm thick. They found they could
make these by using three or more elements that differ from one another in atomic size
by at least 12 percent. Today, some alloys can be prepared as bulk metallic glasses in rib-
bons or rods with thickness of several centimeters, and at substantially lower cooling
rates. Further, advances have since been made with the discovery of new families of
multi-component alloys with significantly improved glass forming ability. Ternary
glass formers include those systems in which the binary subsets exhibit limited mutual
solid solubility, such as Pd77.5Cu6Si6.5 and Pd40Ni40P20. These systems have been
found to form glasses at cooling rates as low as 103 K/s and 10 K/s, respectively. This
is owing to both an increased frustration of the homogeneous nucleation process and to
the greater suppression of the liquidus temperature as the number of components is
increased. Hence, the glass forming ability appears to be even further enhanced
in yet higher-order systems such as Pd40Cu30Ni10P20 and Zr41.2Ti13.8Cu12.5Ni10Be22.5
(Vitreloy 1) (Perker and Johnson, 1993). These alloys have a Tg of about 582 K and
639 K, respectively, and critical cooling rates of just 1 K/s.

In the supercooled liquid state, BMGs have very high yield strength and a high
elastic-strain limit (often exceeding 2 percent, compared with crystalline materials that
are almost always less than 1 percent), which makes them very “springy.” However,
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under tensile loads bulk metallic glasses normally lack any significant global plasticity,
which limits applications as structural materials (Johnson, 1999). A recently discovered
exception appears to be ZrCuNiAl (Liu et al., 2007). Current efforts have focused on the
development of engineering applications for metallic-glass containing composite
materials. Such composites have been found to exhibit greatly enhanced ductility and
impact resistance as compared to monolithic glasses.

Metallic glasses, like nonmetallic ones, are thermodynamically metastable states.
However, metallic glasses appear to be more susceptible than nonmetallic glasses to
devitrification, or crystallization at temperatures above Tg, transforming to more stable
crystalline phases, typically around 300 to 4508C. Nanocrystalline grains (grain
size ,100 nm) can sometimes be obtained from a metallic glass when it is annealed at
temperatures at which primary crystallization can occur. Nanocrystalline phases have
been under increased study in recent years because they often have improved properties
over their coarse-grained counterparts. Nanocrystalline alloys themselves, however, are
also metastable phases, with a tendency towards grain growth.

David Turnbull (1915–2007) earned his Ph.D. in
physical chemistry from the University of
Illinois at Urbana-Champaign in 1939 under T. E.
Phipps. From 1939 to 1946, he was on the faculty
of the Case Institute of Technology. Turnbull
was a research scientist at General Electric from
1946 to 1962, as well as an adjunct professor
at Rensselaer Polytechnic Institute from 1954 to
1962. He joined the faculty at Harvard University
in 1962 where he was the Gordon McKay
professor of Applied Physics, becoming emeritus
in 1985. Turnbull was a pioneer in the study of
kinetic phenomena in condensed matter. He has
performed critical experiments in several areas:
nucleation and growth of crystals; diffusion in
crystalline and amorphous materials; and viscous
flow of amorphous materials. He formulated
the classical theory for nucleation in condensed

matter and, together with Morrel Cohen, the free volume theory for the flow
of liquids and glasses. He predicted that glass formation is universal, anticipated
the discovery of metallic glasses, and demonstrated the first formation of metallic
glasses in bulk form. The Turnbull criterion predicts the ease with which glass
formation occurs. Turnbull was awarded the von Hippel Prize of the Materials
Research Society, the Acta Metallurgica Gold Medal in 1979, and the Japan Prize
in 1986. The Materials Research Society named an annual Lecture after him. He
was elected to the United States National Academy of Sciences in 1968. (Source:
B. Sewall and F. Spaepen, personal communication, February 25, 2004).

(Photo courtesy of Materials Science Group, Division of Engineering and Applied
Sciences, Harvard University. Reproduced with permission.)
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PRACTICE PROBLEMS

1) Describe what is meant by the terms monocrystalline, polycrystalline, quasicrystal-
line, semi-crystalline, amorphous, and glassy.

2) Write the transformation matrix for each type of point symmetry operation.

3) What is the difference between a crystallographic general position and special
position?

4) Consider a pure metal with the cubic-closed packed (CCP) structure (space group
Fm 3̄ m). In this structure, there is an atom at each corner of a cube and an atom at
the center of each of the cube’s six faces. How many atoms are there in the unit
cell? Which point could be chosen as the origin? What are the point-coordinates
of all the atoms, relative to the origin? Is the origin on a special position? What is
the multiplicity of the origin?

Hint: The CCP structure just described is face-centered cubic (FCC) and the atomic
sites coincide with the lattice points, as in Example 1.3.

�5) Write the rotation matrices for a 608 counterclockwise rotation (þ608) about the
a-axis (x-axis) and the b-axis ( y-axis) of a lattice.

6) Use Eqs. 1.13, 1.14, and 1.15 to show that for a monoclinic lattice (a� ¼ a ¼ 908;
b� ¼ b= 908; g� ¼ g ¼ 908):

a� ¼ 1
a sinb

; b� ¼ 1
b
; c� ¼ 1

c sinb
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and show that d2hkl is given by:

d2hkl ¼
1

h2

a2 sin2 b
þ k2

b2
þ l2

c2 sin2 b
þ 2lh cosb

ac sin2 b

Hint: From Figure 1.8, we can see that sin b is equal to the cosine of the angle, u,
between the cross product vector and a. Thus the scalar triple product

a � [b� c] ¼ a[bc sina] cos u ¼ a[bc sina] sinb

7) Show that the angle between the sets of planes given by (h1 k1 l1) and (h2 k2 l2) in
the orthorhombic direct lattice is given by:

cos u ¼
h1 h2
a2
þ k1 k2

b2
þ l1l2

c2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21
a2
þ k21
b2
þ l21
c2

� �
h22
a2
þ k22
b2
þ l22
c2

� �s

8) Use Eqs. 1.13 and 1.16 to show that in the hexagonal lattice the normal to the (1 0 0)
plane is in the [2 1 0] direction.

Hint: For the hexagonal lattice, a�¼ b� ¼ 908 and g�¼ 608. Hence, Eq. 1.13
simplifies to:

d2hkl ¼
1

(h2 þ k2 þ hk)a�2 þ l2c�2

where a� ¼ b� ¼ 2

a
ffiffiffi
3
p and c� ¼ 1

c
:

Likewise, Eq. 1.16 simplifies to:

cos u ¼ dh1k1l1dh2k2l2 h1h2 þ k1k2 þ 1
2
(h1k2 þ k1h2)

� �
a�2 þ l1l2c

�2
� �
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�9) Compute the rotation matrix for a 2608 rotation about the [1 1 1] direction in a
cubic bicrystal. Then, multiply this matrix by the matrix for the symmetry operation
corresponding to a 2908 rotation about the [1 0 0] direction. From the product
matrix obtained, determine the axis-angle pair that is equivalent to the 2608
rotation about the [1 1 1] direction.

�10) Extract the axis-angle pair and the general form of the direction indices from the
following rotation matrix:

R(f) ¼
0:36 0:48 �0:80
�0:80 0:60 0
0:48 0:64 0:60

2
4

3
5

11) What are some of the reasons why it is not always possible to deduce the true
crystallographic point group symmetry from the external morphological form of
a crystal?

12) Draw the following: 1) a [1 1̄ 0] direction within a cubic unit cell, 2) a [1 1 2̄ 3] direc-
tion in the hexagonal unit cell, and 3) a [1 2 1̄] direction within an orthorhombic
cell.

�For solutions, see Appendix 3.
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2

MICROSTRUCTURAL
CONSIDERATIONS

In the previous chapter, single crystals, also known as monocrystals were discussed. The
majority of solids used in commerce are polycrystalline. These types of solids contain a
very large number of crystallites, or grains, which are interfaced with one another at the
grain boundaries. Grains can range in size from the ultra fine (nanometers width) to very
coarse ones (centimeters width) that are visible to the unaided eye. Conventional proces-
sing generally results in grains that are at least discernible with a high quality optical
microscope. The crystalline lattice of a grain in a polycrystal exhibits the same transla-
tional invariance as its monocrystalline counterpart, but a grain is not usually morphologi-
cally as well formed. Furthermore, a polycrystalline specimen, as a whole, possesses
a microstructure that is determined by the average grain morphology (size, shape) and
orientation distribution. Microstructure is determined by the conditions used during
material processing.

It is difficult to overstate the role of microstructure in markedly influencing many
global material properties (e.g. plasticity, conductivity). Hence, our objective is to clarify
that a major goal of inorganic materials engineering is the systematic generation of
specific microstructures in order to vary and adapt the global properties of polycrystalline
materials to given applications. The focus here will be on describing the microstructures
of solidification products, powder aggregates, and thin films. Microstructure/property
correlation will also be discussed.
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2.1 MATERIALS LENGTH SCALES

In materials science and engineering (MS&E), a materials length scale is defined as a
scale of unit length for which it is unnecessary to refer to the next smallest length
scale in reasonably discussing structure or properties. Herein lays a source of confusion.
The number of length scales depends on whether we are talking about materials structure
or about properties. For the former, we can define five different length scales, in the order
of largest to smallest:

1. system;

2. macroscopic/continuum;

3. microscopic;

4. nanoscopic;

5. atomic/molecular.

With regards to materials properties, by contrast, we can define four length scales:

1. system;

2. macroscopic/continuum;

3. mesoscopic;

4. atomic/molecular.

Why is there a difference? In answering that question, materials structure is
considered first.

The first materials structure scale, the systems level, could refer to the particular geo-
metrical shape of an object or part. For example, the shape of a turbine blade, coat hanger,
mattress spring, beverage container, or the condenser coil on a refrigeration device. The
system-scale geometry is obviously crucial to the proper functioning of the device in a
given application. Systems-level design may also refer to the combination of two or
more components in the construction of a device; for example, that of a semiconductor
integrated circuit built up from a substrate. This book will not be concerned with
systems-level design as this belongs in the realm of mechanical and electrical engineer-
ing. Rather, the focus will be on the continuum level and below.

Structurally speaking, a macroscopic body or structural feature may be defined
as follows:

A macroscopic body or macroscopic structural feature is one large enough to be seen by the
unaided eye (particles larger than about 0.1 mm, or 100mm).

—(Def. 2.1)

For the largest coarse-grained polycrystalline materials, the grains are of macroscopic
dimensions. Other macroscopic attributes include color, transparency, and opacity.
Within the context of structure, the macroscopic level is associated with the
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computational materials science term continuum level, which is used where any and all
submacroscopic structural details can be ignored in the development of phenomenologi-
cal models. In fact, the two terms are sometimes used synonymously within the broad
MS&E community.

In a similar fashion, we can define the term microscopic as:

A microscopic body or microscopic structural feature is one too small to be viewed by the
unaided eye but large enough to be observed with a microscope (either optical or electron).

—(Def. 2.2)

The majority of polycrystalline materials are comprised of microscopic grains. The
spatial resolution achievable in microscopy, which presumably defines the microscopic
length scale, depends on several variables and has evolved continuously with advances
in technology. Nonetheless, as the Greek prefix micro implies, we presume that structural
features in the micrometer (1026 m) size range fall within this structural length scale, and
likewise for the nanoscopic category (nanometer sized, or 1029 m features) since the lat-
eral resolution obtainable in high-resolution microscopy is now in the nanometer range.

The source of confusion alluded to earlier arises from the mesoscopic materials
property length scale, which is a relative newcomer to the field. The prefix meso comes
from the Greek mesos, meaning “intermediate” or “in the middle”. In condensed matter
physics, the term mesoscopic is often applied to objects in the size range 0.5 to 2.0 nm,
between the size regimes of individual atoms and the microscopic structural-length
scale. This is essentially the same as the lowest portion of the nanoscale, which is con-
sidered in the 1–100 nm size range. In this size regime, materials properties are found to
be particle-size dependent owing to the high surface area-to-volume ratio. This is the
region where materials properties begin transitioning from those of the bulk sample to
those of its molecular or atomic constituents. For example, the electronic band structure
begins to disappear and discrete energy levels begin to dominate. Therefore, a more
accurate definition of mesoscopic physics is:

Mesoscopic physics is the field concerned with solids so small that their intrinsic properties
are no longer scale-invariant. In other words, below some critical size (in at least one dimen-
sion), intrinsic materials properties are no longer constant.

—(Def. 2.3)

This concept, of course, suggests that a newmacroscopic scale for properties definition is:

A macroscopic property is an intrinsic materials property, which remains scale invariant
(size independent) or intensive (independent of the mass of the sample).

—(Def. 2.4)

Examples include: the work function, specific resistance (resistivity), elasticity, and ther-
modynamic properties (e.g. specific heat capacity, melting point). Intrinsic properties are
determined by crystallographic structure and are not susceptible to significant change
by modification of the microstructure. Some commonly used synonyms for intrinsic
macroscopic properties include: “global,” “bulk,” and “continuum-level.” As we might
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anticipate, to a good approximation, a macroscopic body, taken as awhole, obeys the laws
of classical mechanics, whereas particles at the mesoscopic and atomic/molecular length
scales require that we invoke quantum mechanics. The link between the behaviors at the
two scales may be made with statistical mechanics.

Note that definitions 2.3 and 2.4 make no reference to specific size ranges for the
physical dimensions of a sample! This, unfortunately, is the source of confusion. For
manymacroscopic materials properties, there exist valid microscopic theories that explain
them from an atomistic standpoint. Furthermore, although mesoscopic bodies are often
nanoscopic in size, some microscopic-sized objects can display mesoscopic phenomena,
like the quantum Hall effect discovered in the 1980s (where the Hall conductance of a
two-dimensional electron system is quantized at low temperatures in units of e2/h) that
can be observed in quite large samples. The classical Hall effect refers to the phenomenon
in which a magnetic field, applied perpendicular to the direction of a current flow, induces
a voltage in the third perpendicular direction. The effect is a result of the deflection of
the sample’s charge carriers in the direction towards the edge by the magnetic field.
Equilibrium is achieved when the magnetic force is balanced by the electrostatic force
from the build up of charge at the edge. The effect can be used to find the density of
charge carriers in the material and the magnetic field. In the classical effect, the Hall con-
ductance decreases linearly with magnetic field. In the quantum Hall effect, by contrast,
a series of steps appear in the Hall conductance as a function of the magnetic field
instead of the monotonic decrease (i.e. an external magnetic field perpendicular to a
two-dimensional electron gas causes the electrons to circulate in quantized orbits).

Microstructure, and the manner in which it affects macroscopic properties, is the sub-
ject of the present chapter. Subsequent chapters will be dedicated solely to the nanoscale
size regime. Traditionally, materials scientists have not been as concerned with meso-
scopic physics, and even less so with the behavior of single atoms and molecules,
since bulk properties of inorganic materials are determined by the collective behavior
of large numbers of particles. However, paradigm shifts have begun to occur thanks to
emerging technologies, like molecular organic electronics/photonics, in which molecu-
lar-level tuning and self-assembly processes are used to design and synthesize materials.
Unfortunately, these topics are outside the scope of this book and only treated super-
ficially here. They are better covered in more specialized texts.

Example 2.1

Consider a heat spreader in an electronics package. In the package, heat is ulti-
mately transported away from the internal microelectronics device and dissipated
to the external surroundings. The heat spreader is a high thermally conducting
polycrystalline alloy typically placed between the dissipating microelectronic
device and the heat sink. The heat spreader’s function is to increase the heat
flow in the transverse directions, thus increasing the effective thermal cross-
sectional area of the poor thermally conducting material (silicon). Describe the
dependence of thermal transport on features at the systems level, the continuum
level, the microstructural level, and the nanoscopic/atomic level.
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Solution

Heat flow is three-dimensional as described by Fourier’s law. The overall thermal
resistance, which is dependent on the mass, volume, and geometry of the heat
spreader, will govern the systems level performance since thermal resistance is
inversely proportional to the cross-sectional area. The thermal resistivity of the
heat spreader material (the reciprocal of its thermal conductivity) is the corre-
sponding intrinsic continuum level property. This may be reported as single-
crystalline data or as polycrystalline data, in which case it will be affected
sensitively by the sample homogeneity and texture. For example, the intergranu-
lar or transgranular (interfacial) thermal conductance across grain boundaries
(the microstructural property) will be a function of the grain boundary orien-
tations. The magnitude of the force constants between atoms, which govern
the phonon component (quantized crystal lattice vibrational excitations) of the
thermal conductivity, is the relevant nanoatomic property.

2.1.1 Experimental Resolution of Material Features

In microscopy and diffraction methods, lateral resolution (the minimum discernible
spatial length) is limited by the wavelength (l) of the illuminating beam, which may
be light, electrons, neutrons, or ions. The shorter the illuminating wavelength, the smaller
the size of object that can be resolved. The lateral resolution of an optical system not only
varies directly with the wavelength of the illumination system, but it varies inversely with
the numerical aperture (NA) of the objective. In 1872, Lord Rayleigh (John William
Strutt (1842–1919)) proposed what became an often cited resolution criterion
(Rayleigh, 1872) for the case of objects illuminated in air by unpolarized, incoherent
light. The resolution of such an optical system is determined by diffraction effects (i.e.
the bending of the light rays) at the aperture of the system. For an aberration-free objective
with uniform circular aperture, two particles, separated by a distance Dx, can be resolved
in a diffraction limited microscope when:

Dx ¼ 1:22
l

2NA

� �
(2:1)

The factor 1.22 in Eq. 2.1 was empirically derived by Rayleigh. It may be derived
from the radius of the circle, known as the Airy disk, from the optical transfer function.
In 1873, the German physicist Ernst Karl Abbe (1840–1905) showed that the numerical
aperture is given by:

NA ¼ n sin u (2:2)

In this equation, n is the refractive index of the imaging medium and u is the angular aper-
ture, the apparent angle of the lens aperture as seen from the focal point. The human eye
has an entrance pupil of 7 mm and an NA value of 0.002. Thus, by Eq. 2.1, the human
eye can resolve two objects, at a normal viewing distance and when the objects are
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illuminated with 400 nmwavelength visible light, if they are not closer than 0.1 mm. For a
coherent illumination system, where the light waves are all of the same wavelength and in
phase (e.g. lasers), one must consider diffraction effects at the object as well as at the
subsequent aperture.

Substitution of Abbe’s relation into Eq. 2.1 gives:

Dx ¼ 1:22
l

2n sin u

� �
(2:3)

In a scanning electron microscope (SEM) electrons are used in place of light. The
electrons collide with the sample releasing secondary electrons that eventually reach a
detector, which generates signals that are synthesized into an image. Modern SEMs
can resolve down to 5 nm, whereas a transmission electron microscope (TEM) can
resolve down to 3 nm. High-resolution instruments can get down to 0.2 nm. It is also
possible to use ions, the lightest being helium ions, which have a higher mass and
much shorter wavelength than electrons. These beams, therefore, produce many more
secondary electrons than electron beams. Because more information is detected, higher
detailed images are obtained. The helium ion microscope (HeIM) is capable of sub-
nanometer resolution, which is up to four times the resolution obtainable with an
SEM, and with a higher surface contrast and depth of field (Petkewich, 2008).

In addition to lateral resolution, different depth resolutions are obtained in the
various techniques, which depend on the penetration depth of the probing beam. The
penetration depth is a function of the beam energy, but is also material dependent.
Some sources, together with their wavelengths and their typical depth and lateral resol-
utions, are listed in Table 2.1.

To be examined by optical microscopy, a material must, of course, be opaque to
visible light, for its surface to be observed. Contrasts in the produced image are as a result
of differences in the reflectivity of the various regions of the microstructure. Given the
penetration depths listed in Table 2.1, it is obvious that not only light, but also electrons,
probe just the surfaces (the top-most atomic layers), whereas neutrons and X-rays provide
information about the bulk. Hence, light and electron beams are used in microscopes
for examining solid surfaces. Because it is well known that the surface crystalline struc-
ture of a solid may differ from that of the bulk, the surfaces of most samples are usually

TABLE 2.1. Some Types of Probes Used in Materials Characterization

Source
Wavelength(1)

(Å)
Approximate Penetration

Depth
Theoretical Lateral

Resolution

Light 4 � 103–7 � 103 0 �200 nm(2)

Neutrons 1–2.5 cm–dm
X-rays 0.1–10 mm–mm
Electrons 0.04 nm 0.2 nm (TEM(3))

(1)For elementary particles: l ¼ hc/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2mc2E)

p
; for light and X-rays: l ¼ hc/E.

(2)High-resolution optical microscopy, assuming NA ¼ 0.95, air as a medium, l ¼ 550 nm.
(3)Transmission electron microscopy, assuming 80 kV (0.004 nm wavelength).
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subjected to some sort of chemical–mechanical polishing or etching prior to microstruc-
tural analysis to ensure that the true underlying bulk morphology will be apparent.

2.2 GRAIN BOUNDARIES IN POLYCRYSTALLINE MATERIALS

The regions separating different grains, or crystallites, within a polycrystalline solid are
called grain boundaries. Although grain boundaries are often regarded as regions of struc-
tural disorder, it is now well established that many have a periodic structure. True
incoherency, in which there is little correlation between atomic positions across the
boundary, only sets in when the mismatch between adjacent crystals is very high
(Bhadeshia, 1987). This is primarily determined by the relative orientations of the adjoin-
ing grains. In a polycrystalline sample, both the grain orientation distribution, or texture,
and the crystalline structure of the grain boundary itself are important to examine.

2.2.1 Grain-Boundary Orientations

Grain-boundary properties vary significantly with grain boundary plane orientation. In
section 1.5, we discussed orientation relationships between pairs of grains, or bicrystals.
This is not the same as the orientation of the grain boundary itself. For example,
Figure 2.1 shows a twinned bicrystal. As illustrated in the figure, the grain boundary
plane between two crystals, with this orientation relationship, need not coincide with
the twin plane. The orientation relationship between the grains (i.e. the lattice misorienta-
tion across the grain boundary) does provide us with three of the five-degrees-of-freedom
needed to specify the grain-boundary orientation, however. From Chapter 1, it can be
seen that one of these degrees of freedom is a rotation angle. The rotation is carried
out about a rotation axis. As an axis is a polar vector in spherical coordinates, it can be
specified by a polar angle and an azimuthal angle relative to the grain-boundary plane.
Thus, three of our five-degrees-of-freedom are Euler angles that, taken together, describe
the orientation relationship between the grains.

The Euler angles, which are illustrated in Figure 2.2, were developed by the mathe-
matician Leonhard Euler (1707–1783) to describe the orientation of a rigid body in three-
dimensional Euclidean space. A fixed orthogonal reference coordinate system (xyz)
is defined first. These are termed the space coordinates. Next, the rigid body itself is
assigned a coordinate system (x0y0z0), termed the body coordinates. The intersection of
the xy and x0y0 planes is called the line of nodes. The Euler angles (a, b, g) then give

(a) (b)

Figure 2.1. (a) The twin plane coincides with the boundary plane. (b) The twin plane and

boundary plane do not coincide.
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the spatial orientation of the rigid body as a composition of rotations from the reference
frame. The angle between the x-axis and the line of nodes is a (0 � a � 2p). The angle
between the x0-axis and the line of nodes is g (0 � g � 2p). The angle between the z-axis
and the z0-axis is b (0 � b � p). Our remaining two parameters define the boundary
plane in the coordinate system of the reference grain. They are spherical angles that
specify the boundary plane inclination: 0 � u � 2p; 0 � f � p. Because the zone axis
of the reference plane can be obtained from two-dimensional orientation maps, a
fourth degree of freedom may be directly specified. The fifth parameter is normally
determined by serial sectioning or stereology (Rohrer, 2007), which are discussed in
Section 2.2.6.

One might naturally ask: How many different grain-boundary orientations are
observable? The number of distinguishable orientations, N, depends on the precision
with which the various angular measurements are made, and the number of symmetry
operators for the crystal class. For example, for a cubic bicrystal the boundary normal
can be selected in two directions, the crystals can be exchanged, and one can apply 24
rotation operations to either crystal. There are thus 2 . 2 . 242 combinations of the five
angular parameters that lead to identical bicrystals. To generalize, if the number of
symmetry operations for the crystal class is h, the precision of the angular measurements
is D, and the number of degrees of freedom is n, the following formula for the number of
distinguishable orientations results (Saylor et al., 2000).

N ¼ 1
4h2

Y
n,D

n

D
¼ [(2p)(p)(2p)(2p)(p)]

4h2D5 ¼ 8p 5

4h2D5 (2:4)

where D is in radians. The 8p5 factor is the product of the full ranges for each angular
parameter. For a cubic system, if D ¼ 0.087 (58), Eq. 2.4 predicts N ¼ 2.1 � 105 distinct
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Figure 2.2. The Euler angles.
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boundaries. The number of distinguishable boundaries obviously increases with
increases in the angular precision.

Despite such a large number of theoretically possible orientations, it has been exper-
imentally observed that grain-boundary orientations do not occur in a random manner.
The most common grain-boundary planes are those with low surface energies. For
example, low energy grain boundaries, like the twin boundary, are very commonly
observed in cubic systems. Alternatively, it can be said that grain-boundary populations
are inversely correlated with grain boundary energy. It is hard to say whether this is a
result of thermodynamic or kinetic control. Interfacial energy minimization could be
responsible; or the activation energies for nucleation and grain growth in certain orien-
tations could be lower; or possibly both factors could be at work.

2.2.2 Dislocation Model of Low Angle Grain Boundaries

A general grain boundary has a mixture of tilt and twist character. A pure tilt boundary can
be thought of as consisting of an axis of rotation that is in the grain-boundary plane
(Fig. 2.3a). In contrast, twist boundaries contain an axis of rotation that is perpendicular
to the grain-boundary plane (Fig. 2.3b). A useful way to picture the symmetrical tilt
boundary (a boundary in which the boundary plane contains the rotation axis and bisects
the rotation angle) is to consider it as a straight array of edge dislocations, as in Figure 2.4.
In a single crystal metal, edge dislocations consist of extra half-planes of atoms. In ionic
or covalent crystals, edge dislocations involve extra half-planes of unit cells. As long as
the misorientation angle is low (i.e. small angle grain boundaries), tilt boundaries may be
regarded as the coalescence of these line defects into a dislocation network. The spacing
between the dislocations, D, is

D ¼ b

sin u
(2:5)

where b is the Burgers vector, perpendicular to the line of the dislocation and u is the
misorientation angle.

If the dislocation density is low (the value of D is large), a semi-coherent interface
results, in which regions of good fit are separated by the individually recognizable inter-
face dislocations. Note how the extra half-planes in Figure 2.4 all have a single Burgers
vector. In an unsymmetrical low-angle tilt boundary, different Burgers vectors are
required to accommodate the mismatch. The dislocation model is really only valid for

(a)

q

q

(b)

Figure 2.3. (a) A tilt boundary. (b) A twist boundary.
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low angle grain boundaries. In the cubic crystal class, for values u. �158, D can get so
small, corresponding to a high dislocation density, that dislocations become indistin-
guishable (Read and Shockley, 1950). The symmetrical low-angle twist boundary can
similarly be represented by a screw dislocation (Fig. 2.5). Screw dislocations have
been likened to multi-storied parking garages, the atomic planes spiraling around the
dislocation line in the same manner as a parking garage floor spirals around a central
pole of the garage (Weertman and Weertman, 1992).

Figure 2.4. (a) A low-angle tilt boundary. (b) Representation as an array of parallel edge

dislocations.

(a) (b)

qq

Figure 2.5. (a) A low-angle twist boundary. (b) Representation as a screw dislocation.
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2.2.3 Grain-Boundary Energy

A finite number of point defects (e.g. vacancies, impurities) can be found in any
crystalline material as the configurational entropy term, 2TDS, for a low point defect
concentration, outweighs the positive formation enthalpy in the free-energy expression,
DG ¼ DH 2 TDS. Thus, introduction of a small number of point defects into a perfect
crystal gives rise to a free energy minimum, as illustrated in Figure 2.6a. Further increases
in the point defect concentration, however, will raise the free energy of the system. Point
defects in crystals are discussed in Sections 3.5.1 and 6.4.1.

On the other hand, the positive enthalpy of formation is so high for extended defects
that the entropy gain is not sufficient to give rise to minima in the free energy (Fig. 2.6b).
Recall how a tilt boundary can be regarded as an array of edge dislocations. Edge dislo-
cations are extended defects in which the formation energy must be proportional to the
linear dimensions of the sample (Elliot, 1998). Hence, dislocations and grain boundaries
are higher energy metastable configurations, introduced primarily from processing.
Polycrystals tend to evolve toward single crystals through grain growth and grains with
low dislocation densities tend to grow by consuming grains with high dislocation
densities.

Unfortunately, reliable grain-boundary energies are hard to obtain. As one might
imagine, measuring grain-boundary energies is difficult and tedious. So is calculation
from first principles, since this requires accurate atom positions; the determination
of grain-boundary structure and orientation requires careful sample preparation and
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Figure 2.6. Energy changes associated with the incorporation of defects into a perfect crystal.

(a) For point defects, the minimum in the free energy occurs at some finite concentration of

defects. (b) For extended defects, the minimum in the free energy corresponds to the defect-

free structure.
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high-resolution instruments. Nonetheless, some experimental work has been performed,
and it is possible to make some generalized statements.

First, low S boundaries tend to have relatively lower grain-boundary energy, on
average. The entropy term is undoubtedly the dominant contribution to the free energy
in these cases. With small misorientation angles (u , 158), D in Eq. 2.5 is large. Since
grain-boundary energy is proportional to 1/D, g tends to be small for low angle bound-
aries and it has been found experimentally as the angle exceeds 158, the grain-boundary
energy typically begins to level off as it becomes independent of u. However, one must be
very cautious when attempting to correlate the three parametersS, u, and g. Increases inS
do often correspond to increases in u, but not all high-angle boundaries are high S also.
For example, the high angle coherent twin boundary (u ¼ 608) is a low sigma S3 struc-
ture. Furthermore, the atoms at the interface of a high-angle coherent twin boundary are
coherent, which results in a very low energy boundary. Likewise, although many low S
boundaries tend to have relatively low energies, the energy does not always show a simple
relationship to S. Thus, the coincidence site lattice number is a poor predictor for grain-
boundary energy or population.

2.2.4 Special Types of Low-Energy Grain Boundaries

In addition to low-energy coherent twin boundaries, other low-energy grain boundaries
exist that do not involve a grain misorientation (u ¼ 0). In a CCP crystal, for example,
the stacking repeat sequence of the close packed layers can be represented as
. . .ABCABCABC. . . , where each letter represents a layer of hexagonally coordinated
atoms with a particular displacement relative to its adjacent layers. Stacking faults
occur when the layer sequence is interrupted, for example, . . .ABCABABC. . . This

Stacking
fault

These two layers
are absent below

A

B

C

b

c

a

A
c

C
a

A
b

(1 1 0)

Figure 2.7. A (1 1 0) section through a diamond lattice showing a stacking fault by the

absence of two adjacent atomic layers. The layer-sequence along the k1 1 1l body-diagonal

direction should be . . .AbBcCaAb. . .
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type of defect commonly occurs in polytopic metals, in which the polytypes are different
types of close packing. However, stacking faults can occur in nonclose packed structures
as well. Figure 2.7 shows a (1 1 0) section through a diamond lattice (e.g. silicon) contain-
ing a stacking fault by removal of two adjacent layers. The diamond structure may be
thought of as two interpenetrating FCC lattices.

A second type of boundary, in which there is no misorientation between grains, is the
antiphase boundary. This occurs when wrong atoms are next to each other on the bound-
ary plane. For example, with hexagonal close-packed (HCP) crystals, the sequence
. . .ABABAB. . . can be reversed at the boundary to ABABAjABABA, where j represents
the boundary plane. Antiphase boundaries and stacking faults are typically of very low
energy, comparable to that of a coherent twin boundary.

2.2.5 Grain-Boundary Dynamics

Thus far, the discussion has been confined to the static properties of grain boundaries.
However, grain boundaries are metastable configurations and, as such, in response
to external forces (e.g. thermal, mechanical), they exhibit dynamical behavior. Two
of the more important ones are briefly mentioned here – grain-boundary migration
and sliding.

Grain-boundary migration is an example of when a heat-treated system attempts to
minimize its free energy. For example, at curved boundaries atoms are more likely to
diffuse from the convex side to the concave side in order to flatten the interface. In this
way, the interfacial area and energy are reduced. More importantly, polycrystals tend
to evolve toward single crystals through grain growth. In this phenomenon, atoms
move from the side of the grain boundary with a high free energy to the low energy
side. The free energy of the system is reduced as the low-energy crystals consume the
high-energy crystals. For example, on annealing, polycrystalline grains with low
dislocation densities will grow by consuming grains with high dislocation densities.
Annealing is the term applied to the process by which a solidification product is held
at an elevated temperature for an extended time period and then slowly cooled for the
purposes of relieving internal stress, increasing plasticity, and producing a specific micro-
structure through grain growth.

Grain-boundary sliding is a process in which adjacent grains slide past each other
along their common boundary. It is a deformation mechanism that contributes to plastic
(nonrecoverable) flow and superplasticity in polycrystalline samples with very small
grain sizes. Superplasticity has been observed in both metals and nonmetals. Super-
plasticityis an important property because it allows engineers to fabricate complex
shapes out of a material, which might otherwise be unobtainable. Grain-boundary sliding
and migration modify the texture, or preferred orientation, of polycrystalline materials
during recrystallization.

2.2.6 Representing Orientation Distributions in
Polycrystalline Aggregates

Methods, such as high-resolution transmission electron microscopy (HRTEM), enable
direct examination of orientation relationships between pairs of crystals. However,
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their use for the determination of the orientation distribution function (ODF), or texture,
in bulk polycrystalline samples is not convenient owing to the very large number of grains
present. Rather, texture is normally determined from X-ray diffraction (XRD) data or by
electron-backscatter diffraction (EBSD) mapping in the scanning electron microscope.
The SEM is used to produce backscatter diffraction patterns that, like diffracted
X-rays, can be indexed to determine the crystallographic orientation of the diffracting
volume. When the process is repeated at predetermined locations across the sample
surface, orientation maps are produced.

In a polycrystal, the grains may all be oriented at random, exhibit some preferred
orientation, or there may be multiple regions called domains possessing different pre-
ferred orientations. The most common way of illustrating texture is the use of pole figures.
The inclination to the normal particular type of crystal plane (e.g. (1 0 0)), relative to some
reference plane, is specified for a large number of grains. It is thus necessary to consider
two coordinate systems, the crystal coordinate system and the sample coordinate system.
If a sphere is imagined to enclose the polycrystalline sample, then each plane normal
will intersect the sphere’s surface at a point called the pole, which, by its position on
the surface, represents the orientation to that crystal plane. As it is difficult to draw a
three-dimensional sphere on a two-dimensional piece of paper, the orientation distri-
bution is displayed with a stereographic projection of the sphere called a pole figure.
Several pole figures, one for each type of crystal plane examined, collectively describe
the texture.

As an example, consider a single crystallite contained within a thin film or rolled
specimen of cubic symmetry with its (0 0 1) plane parallel to the substrate, as in
Figure 2.8a. The normal to the (0 0 1) plane is pointing straight up, its (0 0 �1) plane
normal straight down, its (1 0 0) and (�1 0 0) plane normals pointing left and right and
its (0 1 0) and (0 �1 0) plane normals pointing front and back. Note from Figure 2.8a
that the k1 0 0l plane normals are parallel to the sample’s radial directions (RDs), trans-
verse directions (TDs), and normal directions (NDs). This particular arrangement
is called cube texture and is denoted as f1 0 0gk1 0 0l. It is simply a preferred orienta-
tion where all three axes of a cubic crystal are coincident with the sample reference
axes. If only one direction were to be oriented, a polycrystalline material would be
said to exhibit a fiber texture. Texture is nearly impossible to avoid in most material
processing techniques. For example, many fabrication processes will tend to form a
fiber texture.

The normal to each crystallite produces a pole by its intersection with the surface of
the sphere. Hence, a large number of poles will produce a spot with a diameter that is
dependent on the distance between the sample and the sphere surface. By convention,
the surface of the sphere is taken to be at sufficient distance such that strong texture
(a large number of parallel plane normals) is manifested as small diameter spots. Thus,
for a polycrystalline aggregate with all its crystals aligned as in Figure 2.8a, the pole
figure of the f1 0 0g poles would show sharp maxima in the ND (top), RD (sides), and
TD (center) locations, as illustrated in Figure 2.8b. If there was only weak cube texture,
the maxima would smear out into lighter spots rather than form five distinct dark spots.
This is because the plane normals are now no longer all parallel and their intersections
with the sphere surface produces wide diameter, less-densely populated spots, as
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illustrated in Figure 2.8c. If there were no preferred orientation, there would be a uniform
distribution of poles in the pole figure. In this case, there is essentially one discernible
pole corresponding to each crystallite whose orientation was measured, as illustrated
in Figure 2.8d.

While very useful in conveying information, a single pole figure does not give com-
plete information about a sample’s texture, or orientation distribution function. Further
information can be determined by examining multiple pole figures. Alternatively, math-
ematical techniques have been developed to reduce data from a set of two-dimensional
pole figures to a three-dimensional representation of material texture. Serial sectioning,
in which multiple parallel planar sections are used to reconstruct the three-dimensional
grain-boundary network, is one way to produce an ODF analysis. This is a well-
established technique involving the careful removal of a layer, or slice, of material,
followed by imaging of the freshly created surface. The process is repeated many
times to create a series of two-dimensional images that can be stacked to produce a
three-dimensional map. The primary drawbacks are: 1) that features smaller than the
minimum slice thickness (5–10mm) are missed and, 2) the practical difficulty associated
with repeatedly removing a fixed depth of material.

Recall from Section 2.2.1 that the coordinate axes of any individual grain, or crystal,
can be transformed to the sample reference coordinate system through a series of three
Euler angle rotations. With the ODF, true three dimensional representations of intensity
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Figure 2.8. (a) Cube texture. (b) The (1 0 0) pole figure indicating sharp texture. (c) Weak

texture in the (1 0 0) pole figure. (d) No preferred orientation in the (1 0 0) pole figure.
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data for different crystal pole orientations throughout Euler space is possible. The ODF
texture data for a sample is usually presented in print as a series of sections of the com-
puted Euler space to aid visualization. For further information, the reader is directed to a
comprehensive presentation by Randle and Engler (Randle and Engler, 2000).

The implications of texture on the properties exhibited by a material are discussed
later in this chapter. It can be seen that the properties of polycrystalline aggregates
with a sufficiently large number of grains, possessing a completely random orientation
distribution, are macroscopically isotropic (independent of direction), even though the
crystallites themselves may be anisotropic. Fabrication processes such as extrusion, roll-
ing, and pressing, act to remove this isotropy.

2.3 MATERIALS PROCESSING AND MICROSTRUCTURE

The microstructure exhibited by a polycrystalline sample is dependent on the conditions
used during materials processing. In this section, we will discuss three types of materials
processing and the manner in which they influence microstructure.

2.3.1 Conventional Solidification

It is possible to obtain polycrystalline materials, with grains on the order of millimeters to
centimeters in width, at the cooler end in directional solidification techniques. The grains
are approximately columnar along the direction of the temperature gradient. The longi-
tudinal axis of the columnar grains corresponds to the direction of highest growth rate
in the material. Columnar grains emerge from the sites of preferred nucleation at the
cold mold walls and grow into the direction of the highest temperature gradient. Even
in conventional casting, where a melt is poured into a mold of some desired shape and
size to solidify, there is normally a columnar zone in the center of the cast where elongated
crystals with a preferred growth direction have eliminated the randomly oriented grains
near the cooler mold walls. The texture can thus be interpreted in terms of a growth selec-
tion process: Random nucleation takes place at the mold walls. During the subsequent
solidification, selective growth of grains with a specific crystal direction parallel to the
highest temperature gradient or heat flow occurs. Consequently, when one examines
the microstructures of polycrystalline materials obtained by most industrial solidification
processes, it is often found that the individual grains (crystallites) are not morphologically
similar to naturally occurring single crystals of the same substance.

In principle, solidification processes are equally applicable to congruently melting
metals and nonmetals. In other words, any substance that melts uniformly and forms a
liquid with the same composition as the solid. Most ceramics melt incongruently, mean-
ing that they decompose into another substance. However, even most congruently melt-
ing ceramics are very seldom prepared by solidification because of their high melting
points. In solidification processes, the molten material is typically poured into a thermally
conducting mold to solidify. This is termed casting and it is the most economical
and, hence, most common method for fabricating metal pieces with a predefined size
and shape. The quantitative mathematical relations governing this phenomenon are
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complicated moving interface diffusion equations. Fortunately, such mathematical
expressions need not be presented in any detail here.

Conventional industrial casting processes usually involve directional heterogeneous
solidification occurring in three stages: nucleus formation, crystal growth, and grain
boundary formation. When enough heat is extracted, stable nuclei form in the liquid
either on solid-phase impurities near the walls of the mold or on the mold itself, since
this is the first region to cool sufficiently for crystals to form. Heterogeneous nucleation
can also occur at the surface of the melt on solid-phase metal oxide particles. Oxides, typi-
cally, have much higher melting points than those of their parent metals. Other possible
nucleation sites are inclusions and intentionally added grain refiners. At any rate, the soli-
dification begins near the exterior edges and the solid–liquid interface subsequently
moves inward towards the casting’s center as heat is conducted through the freshly
grown solid, out through the mold. The nuclei consist of tiny aggregates of atoms
arranged in the most favorable lattice under the process conditions. Crystals grow in all
directions near the liquid–container interface. Hence, this region is called the equiaxed
zone, as shown in Figure 2.9.

As solidification continues, an increasing number of atoms lose their kinetic energy,
making the process exothermic. For a pure metal, the temperature of the melt will remain
constant while the latent heat is given off (until freezing is complete). As the atoms
coalesce, they may attach themselves to existing nuclei or form new nuclei. The process
continues with each crystal acquiring a random orientation and, as the gaps between

Figure 2.9. A drawing of a section through a solidification ingot showing the different

solidification zones. The equiaxed zone forms near the mold walls. In the interior is the

columnar zone, where crystal growth is in the direction of heat flow.
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crystals fill in, each grain acquires an irregular shape. The growth morphology is most
likely under kinetic control, that is, the grain morphology that appears is the one with
the maximum growth rate. Eventually, those grains that have a preferred growth direction
will eliminate the others, resulting in the formation of a columnar zone where the crystals
are elongated, or column like. The growth direction is typically in the direction of heat
flow. For alloys, an inner equiaxed zone can sometimes form in the casting’s center,
resulting from the growth of detached pieces of the columnar grains. This will be depen-
dent on the degree of heat convection (extraction) in that region.

The rate of heat extraction is, in turn, dependent on the properties of the cooling
medium (e.g. water or air), specimen size, and geometry. Heat energy must be transported
to the surface to be dissipated to the surroundings. The surface itself, which is in direct
contact with the quenching medium, experiences the fastest cooling rate. The cooling
rate throughout the interior of a sample varies with position, depending on the size and
geometry (Callister, 2005). Inmakingmicrostructure predictions, therefore, it is important
to realize that different spatial locations in the melt experience different cooling rates and
these cooling rates will, likewise, change with time and surface temperature. As a conse-
quence,microstructural variations will exist in different regions of a solidification product.

Conventional casting procedures for kilogram-scale quantities typically produce
average cooling rates up to about 1023–100 K/s, resulting in relatively coarse grains,
with an average size in the range of several millimeters to several hundred micrometers.
As the cooling rate increases, the length scale of the microstructure (e.g. dendrite arm spa-
cing) decreases. The interfaces between grains, formed by the last liquid to solidify, are
the grain boundaries. A grain boundary is comprised of atoms that are not exactly aligned
with the crystalline grains on either side of it. Hence, the grain boundaries have some
degree of disorder and tend to contain a higher concentration of impurity atoms, which
do not fit into the crystal lattices on either side of them (a melt is never entirely pure).
The grain boundary has a slightly higher free energy owing to the presence of defects.
Grain morphology and composition, collectively referred to as the material’s constitution,
is affected by the solidification rate, which is, in turn, determined by the cooling rate.
Of the many parameters affecting the development of the microstructure, the cooling
rate is among the most important. Table 2.2 lists some of the typical products obtained
by different cooling rate regimes.

2.3.1.1 Grain Homogeneity. There are two limiting cases to consider. The first
is equilibrium solidification, when the cooling rate is slow enough that solid-state
diffusion can act to redistribute atoms and result in homogeneous crystals. In this case,
complete diffusion in both the liquid and solid occur. Under these conditions, the solid
absorbs solute atoms from the liquid and solute atoms within the solid diffuse from the
previously frozen material into subsequently deposited layers. The chemical compo-
sitions of the solid and liquid at any given temperature then follow the solidus and
liquidus lines, respectively, of the equilibrium phase diagram. Hence, it is termed
equilibrium solidification.

Use of tie lines and the lever rule enable one to determine those compositions, as
illustrated in Figure 2.10a for a binary system. The composition of the solid (Cs) as a
function of the fraction solid transformed ( fs), assuming linear solidus and liquidus
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lines, is given by:

Cs ¼ kC0

[ fs(k � 1)þ 1]
(2:6)

where k is the partition coefficient (the ratio of the solute concentration in the solid, to that
in the liquid) and C0 is the composition of the original liquid alloy. The first crystals to
freeze out have composition a1. As the temperature is reduced to T2, the liquid compo-
sition shifts to L2. The compositions of the freezing solid and remaining liquid
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Figure 2.10. (a) A portion of a binary phase diagram illustrating equilibrium solidification.

(b) Nonequilibrium (Gulliver–Scheil) solidification, which results in a chemical composition

gradient in the crystals, a condition known as coring.

TABLE 2.2. Different Cooling Rate Regimes with Some of the Typical Products Obtained

Cooling
Rate (K/s)

Techniques
Used

Typical Products
Obtained

RAPID SOLIDIFICATION

109–1011 Pulsed laser melting of a solid
surface

Amorphous and nanocrystalline
thin films

105–107 Melt spinning; Splat quenching Glassy metallic alloy ribbon
102–103 Water quenching Fine-grained polycrystalline bulk

solids

CONVENTIONAL (NONEQUILIBRIUM, OR “SCHEIL”) SOLIDIFICATION

1023–100 Conventional casting (air-cooled) Coarse-grained polycrystalline
bulk solids

EQUILIBRIUM SOLIDIFICATION

1026 Flux growth (e.g. Top-seeded
solution growth, TSSG)

Large single crystals
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continuously shift to higher B contents and leaner A contents. The average solid compo-
sition follows the solidus line to T4, where it equals the bulk composition of the alloy.

In order to qualify for equilibrium solidification, the solidification rate must be
slower than the solute diffusivity in the solid:

Ds � Lxv (2:7)

where Ds is the solute diffusivity in the solid, Lx is the system length scale in one dimen-
sion, and v is the solidification speed (Phanikumar and Chattopadhyay, 2001). The
self-diffusivities of most pure metals at their freezing points (Tf) are in the range 1029

to 1026 cm2/s. For a system length scale of 1 cm, the solidification rate (cm/s) must
be lower than these numerical values for the diffusivities, which are very slow rates
indeed. In other words, equilibrium solidification occurs only when the melt is cooled
extremely slowly!

The second limiting case approximates conventional metallurgical casting processes,
in which the cooling rate is on the order of 1023–100 K/s. As a result, the solidification
rate is several orders of magnitude too fast to maintain equilibrium. The most widely used
classical treatment of nonequilibrium solidification is by Erich Scheil (Scheil, 1942) who
was at the Max Planck Institute for Metals Research in Stuttgart. The model assumes
negligible solute diffusion in the solid phase, complete diffusion in the liquid phase,
and equilibrium at the solid–liquid interface. In this nonequilibrium solidification,
Eq. 2.6 is invalid and the following relation for the composition of the solid during
derived by Scheil, and as early as 1913 by G. H. Gulliver (Gulliver, 1913) holds:

Cs ¼ kC0(1� fs)
k�1 (2:8)

When the solid–liquid interface moves too fast to maintain equilibrium, it results in a
chemical composition gradient within each grain, a condition known as coring. This is
illustrated in Figure 2.10b. Without solid-state diffusion of the solute atoms in the
material solidified at T1 into the layers subsequently freezing out at T2, the average com-
position of the crystals does not follow the solidus line, from a1 to a4, but rather follows
the line a01 to a05, which is shifted to the left of the equilibrium solidus line. The faster the
cooling rate, the greater will be the magnitude of the shift.

Note also that final freezing does not occur until a lower temperature, T5 in
Figure 2.10b, so that nonequilibrium solidification happens over a greater temperature
range than equilibrium solidification. As the time scale is too short for solid-state diffu-
sion to homogenize the grains, their centers are enriched in the higher freezing component
while the lowest freezing material gets segregated to the edges (recall how grain bound-
aries are formed from the last liquid to solidify). Grain-boundary melting, liquation, can
occur when subsequently heating such an alloy to temperatures below the equilibrium
solidus line, which can have devastating consequences for metals used in structural
applications.

2.3.1.2 GrainMorphology. In addition to controlling the compositional profile
of the grains, the solidification velocity also determines the shape of the solidification
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front (the solid–melt interface), which, in turn, determines grain shape. The resulting
structure arises from the competition between two effects. Undercooling of the liquid
adjacent to the interface favors protrusions of the growing solid along energetically favor-
able crystallographic directions, giving rise to dendrites with a characteristic tree-like
shape. Simultaneously, surface tension tends to restore the minimum surface configur-
ation – a planar interface. Consider the case of a molten pure metal cooling to its freezing
point. When the temperature gradient across the interface is positive (the solid is below
the freezing temperature, the interface is at the freezing temperature, and the liquid is
above the freezing temperature), a planar solidification front is most stable. However,
with only a very small number of impurities present in a pure melt on which nuclei
can form, the bulk liquid becomes kinetically undercooled.

Diffusion of the latent heat away from the solid–liquid interface, via the liquid
phase, favors the formation of protrusions of the growing solid into the undercooled
liquid (the undercooled liquid is a very effective medium for heat conduction).
Ivantsov first mathematically modeled this for paraboloidal dendrites over half a century
ago (Ivantsov, 1947). It is now known that this is true so long as the solidification velocity
is not too fast. At the high velocities observed in some rapid quenching processes
(e.g. .10 m/s) dendritic growth becomes unstable, as the perturbation wavelengths
become small enough that surface tension can act to restore planarity (Hoglund et al.,
1998; Mullins and Sekerka, 1963).

Owing to the small number of impurities in a pure metal, the undercooling can be
quite large. There aren’t many nuclei for dendrites to form on. For those dendrites that
do form, growth is a function of the rate of latent heat removal from the interface.
Hence, for a pure metal, one would expect a small number of large dendrites. The
shape of the dendrite is such that it maximizes its surface area for dissipating the latent
heat to the undercooled liquid. The shape of the dendrite is also governed by the solidi-
fication rate; a rapid solidification time will yield dendrites with tightly packed secondary
branches. However, when attention is turned to alloys, a slightly different situation can be
seen. In alloys, it is generally expected that a larger number of smaller dendrites will be
found than would be in a pure metal. Here, in addition to heat flow, mass transport must be
considered as well. In fact, the planar interface-destabilizing event primarily responsible
for dendritic morphology in conventional alloy casting is termed constitutional under-
cooling, to distinguish it from kinetic undercooling. The kinetic undercooling contri-
bution can still be significant in some cases.

In most models for two-component melts, it is assumed that the solid–liquid inter-
face is in local equilibrium, even under nonequilibrium solidification conditions based on
the concept that interfaces will equilibrate much more rapidly than bulk phases. Solute
atoms thus partition into a liquid boundary layer a few micrometers thick adjacent to
the interface, slightly depressing the freezing point in that region. As in the case for
pure meals, the positive temperature gradient criterion for planar interface stability still
holds. However, although the bulk liquid is above the freezing point, once the boundary
layer becomes undercooled there is a large driving force for solidification ahead of the
interface into the thin boundary layer.

The critical growth velocity, v, above which the planar interface in a two-
component melt becomes unstable, is related to the undercooling, DTc, by an equation
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given by Tiller as:

GL

v
� DTc

DL
(2:9)

where DTc ¼ mLC0(12 k)/k and GL is the thermal gradient in the liquid ahead of the
interface, v is the solidification speed, mL is the liquidus slope, C0 is the initial liquid
composition, k is the partition coefficient (previously defined), and DL is the solute
diffusivity in the liquid (Tiller et al., 1953).

Constitutional undercooling is difficult to avoid except with very slow growth rates.
With moderate undercooling, a cellular structure, resembling arrays of parallel prisms,
results. As the undercooling grows stronger, the interface breaks down completely as ani-
sotropies in the surface tension and crystal structure leads to side branches at the growing
tip of the cells along the easy-growth directions (k1 0 0l for FCC and BCC, k1 0 1 0l for
HCP), marking a transition from cellular to dendritic. In a polycrystalline substance, the
dendrites grow until they impinge on one another. The resulting microstructure of the
solidification product may not reveal the original dendritic growth upon a simple
visual examination. Nevertheless, the dendritic pattern strongly influences the material’s
mechanical, physical, and chemical properties.

Over the last fifty years, a large amount of work has gone into obtaining accurate
mathematical descriptions of dendrite morphologies as functions of the solidification
and materials parameters. Dendritic growth is well understood at a basic level; however,
most solidification models fail to accurately predict exact dendrite morphology without
taking into account effects like melt flow. In the presence of gravity, density gradients
owing to solute partitioning produce a convective stirring in the lower undercooling
range corresponding to typical conditions encountered in the solidification of industrial
alloys (Huang and Glicksman, 1981). Melt flow is a very effective heat transport mech-
anism during dendritic growth that may result in variations in the dendrite morphology,
as well as spatially varying composition (termed macrosegregation).

The above discussion of solidification applies to pure substances and single-phase
solid solutions (alloys). Although this book is concerned primarily with single-phase
materials, it would now be beneficial to briefly describe the microstructures of a special
type of multiphase alloy known as a eutectic. Eutectics are generally fine grained and uni-
formly dispersed. Like a pure single phase, a eutectic melts sharply at a constant temp-
erature to form a liquid of the same composition. The simplest type of eutectic is the
binary eutectic system containing no solid-phase miscibility and complete liquid-phase
(melt) miscibility between the two components (e.g. the Ag–Si system). On cooling,
both components form nuclei and solidify simultaneously at the eutectic composition
as two separate pure phases. This is termed coupled growth and it leads to a periodic
concentration profile in the liquid close to the interface that decays, in the direction
perpendicular to the interface, much faster than in single-phase solidification.

There are several methods for solidifying eutectics at conventional cooling rates,
including the laser floating-zone method, the edge-defined film-fed growth technique,
the Bridgman method, and the micro-pulling-down method. Generally, high volume
fractions of both phases will tend to promote lamellar structures. If one phase is present
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in a small volume fraction, that phase tends to solidify as fibers. However, some eutectic
growths show no regularity in the distribution of the phases. Eutectic microstructures
normally exhibit small interphase spacing and the phases tend to grow with distinctly
shaped particles of one phase in a matrix of the other phase. The microstructure will
be affected by the cooling rate; it is possible for a eutectic alloy to contain some dendritic
morphology, especially if it is cooled relatively rapidly. The microstructures of hypo- or
hyper-eutectic compositions normally consist of large particles of the primary phase (the
component that begins to freeze first) surrounded by a fine eutectic structure. Often times
the primary particles will show a dendritic origin, but they can transform into idiomorphic
grains (having their own characteristic shape) reflecting the phases’ crystal structure
(Baker, 1992).

Metal–metal eutectics have been studied for many years as a result of their excellent
mechanical properties. Recently, oxide–oxide eutectics were identified as materials
with potential use in photonic crystals. For example, rod-like micrometer-scaled micro-
structures of terbium–scandium–aluminum garnet : terbium–scandium perovskite
eutectics have been solidified by the micro-pulling-down method (Pawlak et al., 2006).
If the phases are etched away, a pseudohexagonally packed dielectric periodic array of
pillars or periodic array of pseudohexagonally packed holes in the dielectric materials
is left.

2.3.1.3 Zone Melting Techniques. Once an ingot is produced, it can be
purified by any of a group of techniques known as zone melting. The basis of these
methods is founded on the tendency of impurities to concentrate in the liquid phase.
Hence, if a zone of the ingot is melted and this liquified zone is then made to slowly
traverse the length of the ingot by moving either the heating system or the ingot itself;
the impurities are carried in the liquid phase to one end of the ingot. In the semiconductor
industry, this technique is known as the float-zone process. A rod of polycrystalline
material (e.g. silicon) is held vertically inside a furnace by clamps at each end. On one
end of the rod, a short single-crystal seed is placed. As the rod is rotated, a narrow
region, partially in the seed and partially in the rod, is melted initially. The molten
zone is freely suspended and touched only by the ambient gas in order to avoid contact
with any container material. It is then moved slowly over the length of the rod by moving
the induction coils, thus the name floating zone. As the floating zone is moved to the
opposite end of the rod, a high purity single crystal is obtained in which the impurities
are concentrated in one end. The impurities travel with, or against, the direction of the
floating zone, depending on whether they lower or raise the melting point of the rod,
respectively. Typically, growth rates are of the order of millimeters per hour. The float-
zone technique has been used to grow crystals of several oxides, as well. To control
the escape of volatile constituents, encapsulants, with a slightly lower melting point
than the crystal, are inserted between the feed rod and container wall so that the float
zone is concentrically surrounded by an immiscible liquid.

In the related zone refining technique, a solid is refined by multiple floating zones, or
multiple passes, as opposed to a single pass, in a single direction. Each zone carries a frac-
tion of the impurities to the end of the solid charge, thereby purifying the remainder. Zone
refining was first described and used by the American metallurgist William Gardner
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Pfann (1917–1982) at Bell Labs in 1952 to purify germanium to the parts-per-billion
impurity level for producing transistors (Pfann, 1952).

2.3.2 Deformation Processing

The most common shapes into which ductile metals and alloys are cast are cylindrical
billets and rectangular slabs. Such castings are termed ingots and they serve as the starting
materials for subsequent deformation processing. For example, an ingot can be rolled to
make ribbon or drawn/extruded to make wire. These subsequent processes rely on plas-
tically deforming the ingot through the application of compressive and shear forces and
are thus termed deformation processes. In addition to rolling, drawing, and extrusion,
deformation processes include: forging (hammering), swaging, stamping, blanking,
and coining. Development of texture during the deformation process is difficult to
avoid. Often, one wishes to develop a strong texture but, in other cases, a weak or
random texture is desired. Texture tends to become more pronounced as the degree of
deformation increases, and sometimes more than one texture can coexist in a component.
The texture produced by different deformation processes will depend somewhat on the
material structure, particularly, the number and symmetry of the primary slip systems.
In plastic deformation, twinning may compete with slip when the latter is limited to
deformation in a specific direction (e.g. with HCP metals) and can thus play an essential
role in determining the texture. By virtue of twinning, even small deformation rates
lead to large lattice rotations, which change the orientation of the crystallites. With
rolling, FCC metals exhibit a predominant texture of f1 1 0g k1 1 2l, termed brass
texture. In this texture, the f1 1 0g planes are in the rolling plane, and the k1 1 2l
direction is parallel to the rolling direction. In BCC metals, the predominat texture
is f1 0 0g k1 1 0l with the cube plane in the rolling plane. Other textures, such as f1 1 2g
k1 1 0l and f1 1 1g k1 1 2l, can also form. With HCP metals, the rolling texture tends to
take the form f0 0 0 1g k1 1 2 0 l . In wire drawing, FCC metals tend to exhibit a k1 1 1l
or k1 0 0l fiber texture, while BCC metals exhibit a k1 1 0l drawing texture and HCP
metals a k1 0 �1 0l texture.

The plastic deformation exhibited by nonductile crystalline ceramics is not signifi-
cant enough for deformation processes to be of much use in the fabrication of bulk
articles. Noncrystalline materials (e.g. glasses) deform by the samemechanism as liquids,
viscous flow. However, in a glass the effect is only pronounced at temperatures elevated
enough to decrease the viscosity.

2.3.3 Consolidation Processing

Solidification and deformation processes are very seldom used to fabricate bulk articles
from ceramics and other materials with low ductility and malleability. These substances
are brittle and suffer fracture before the onset of plastic deformation. Additionally, cer-
amics normally have exceedingly highmelting points, decompose, or react with most cru-
cible materials at their melting temperatures. Many ceramics are worked with in powder
form since the products of most solid-state chemical syntheses are powders. Fabricating a
bulk part from a powder requires a consolidation process, usually compaction followed
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by sintering. Compaction can be of various forms, including: die pressing, compression
molding, injection molding, and slip casting. Within the compacted product, which is
termed a green body, the individual particles adhere together only loosely with the
result that total porosity is often a large volume percent. To develop the desired properties
in the fabricated article, densification must be achieved. This is accomplished through
what is called sintering.

Sintering refers to the heating of a polycrystalline aggregate at a temperature below
its solidus (melting point), but high enough that grain coalescence occurs via solid-state
diffusion. In the early stages of sintering volatile species can be removed (e.g. moisture
content) and, at later stages, homogenization improved (e.g. the removal of macrosegre-
gation), densification increased as the particles bond together (decreasing surface area)
and eliminated pores (solid–vapor interfaces). Sintering is thus a thermodynamically
irreversible process whose driving force is the reduction of the total free energy of the
system, which arises during the densification stage. In solid-state sintering, diffusion is
the dominant materials transport mechanism. Diffusion is a thermally activated process
whose rate is usually significant only when the homologous temperature (the fraction
of a material’s melting point) is in excess of 0.5Tm. The products resulting from conso-
lidation have higher strength and reliability. Consolidation processing is also used for
refractory metals and intermetallic phases that do not exhibit much ductility. In fact, con-
solidation is even used to fabricate ductile materials (cf. powder metallurgy) more easily
into complex shapes than would be required via deformation techniques.

Mechanical forces act to orient particles during consolidation. However, electrical,
magnetic, and thermal gradients can be applied to induce rotation of anisotropic particles,
inducing texture to a fabricated article. This tends to work better for larger particles, but
such materials are more difficult to densify. It has been found that texture can be enhanced
through templated grain growth (TGG), in which seed particles, initially randomly
oriented, develop a preferred orientation during processing and grow in this direction
during sintering.

2.3.4 Thin-Film Formation

The cornerstone of the entire semiconductor microelectronics industry is thin-film tech-
nology. There are many methods available for growing thin films, including physical
vapor deposition (PVD) (e.g. sputtering, evaporation, laser ablation), chemical vapor
deposition (CVD), plating, and so-called soft chemical techniques (e.g. sol-gel coating).
Most of these processes are well established in the microelectronics industry, but many
also have important applications in the areas of advanced coatings and structural
materials. An enormous variety of films can be prepared. The interested reader is
encouraged to refer to any of numerous texts on thin films for details regarding the
deposition processes.

An exciting new area of materials research that has begun to evolve in recent years is
the application of combinatorial chemistry to the creation of thin-film libraries. By using
masks (grids with separate squares), thousands of distinct combinations of materials can,
in principle, be deposited onto a single substrate in order to greatly accelerate the screen-
ing of the resultant compounds for certain properties. This is part of a broad approach
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being sought for the rapid discovery of new materials known as combinatorial materials
science, inspired by the success of combinatorial chemistry in revolutionizing the
pharmaceutical industry.

2.3.4.1 Epitaxy. Thin films can be polycrystalline or single crystalline. The
majority of thin films are polycrystalline. Single-crystal films can be grown with a parti-
cular crystallographic orientation, relative to a single-crystal substrate that has a similar
crystal structure, if the deposition conditions and substrate are very stringently selected.
Homoepitaxy refers to the growth of a thin film of the same material as the substrate (e.g.
silicon on silicon). In this case, the crystallographic orientation of the film will be
identical to that of the substrate. In heteroepitaxy, such as silicon on sapphire, the
layer’s orientation may be different from that of the substrate. Both types of epitaxy
often proceed by an island nucleation and growth mechanism referred to as Volmer–
Weber growth.

Island growth also occurs with polycrystalline films, but in epitaxy, the islands com-
bine to form a continuous single-crystal film, that is, one with no grain boundaries. In rea-
lity, nucleation is much more complex in the case of heteroepitaxy. Nucleation errors may
result in relatively large areas, or domains, with different crystallographic orientations.
The interfaces between domains are regions of structural mismatch called subgrain
boundaries and will be visible in the microstructure.

Epitaxy has been used to stabilize films with crystal structures that are metastable in
the bulk phases. Kinetic stabilization is obtained when the growth is performed under
conditions of high surface diffusion, but low bulk diffusion. In this way, crystallographi-
cally oriented film growth occurs while phase transformations are prohibited. The circum-
stances under which thermodynamic stabilization can be achieved have also been
enumerated. Namely, these are by minimizing:

1. the lattice mismatch, or structural incoherency, and the free energy difference
between the growing film and the substrate;

2. the film thickness;

3. the shear and elastic moduli of the film.

Additionally, the growing film should be able to form a periodic multiple-domain struc-
ture (Gorbenko et al., 2002).

The high-temperature bulk FCC phase d–Bi2O3 is observed on heating a–Bi2O3

(monoclinic structure) above 7178C, but heteroepitaxial thin films of d–Bi2O3 have
been deposited on an FCC gold substrate at temperatures as low as 658C. Similarly,
YMnO3 crystallizes in the hexagonal structure under atmospheric pressure at high temp-
eratures, yet was grown by pulsed laser deposition (PLD) as a stable perovskite film
on an NdGaO3 substrate (Salvador et al., 1998). It has also recently been shown how
metal organic chemical vapor deposition (MOCVD) results in the formation of meta-
stable phases of GaS and GaTe, irrespective of the structure of the substrate (Keys
et al., 1999; Gillan and Barron, 1997). Crystalline GaS was even grown on an amorphous
substrate. It appears in cases where the precursor’s structure, or its decomposition mech-
anism, completely controls the structure of the thin film. Likewise, polycrystalline CVD
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diamond is commercially grown on a variety of substrates, including titanium, tungsten,
molybdenum, SiO2, and Si3N4. Each of these materials is capable of forming a carbide
layer upon which an adherent diamond film can nucleate, although it is not clear whether
carbide formation is essential.

2.3.4.2 Polycrystalline PVD Thin Films. The commonest morphology exhib-
ited by PVD thin films is the highly oriented columnar (fiber) grain growth. This is a con-
sequence of the fact that PVD processes generally deposit thin films, atom by atom, in a
line-of-site fashion, wherein the sputtered or evaporant adatoms travel from the source to
substrate on a straight path. The resulting grains are thus aligned with their long axes per-
pendicular to the surface when the incident beam arrives at a normal angle of incidence. If
the depositing atoms arrive at an angle away from normal incidence, the columns tilt into
the oncoming beam, as illustrated in Figure 2.11. This gives rise to shadowing effects,
which result in the columns being separated from one another by voids. This is actually
an alternative approach, termed glancing angle deposition (GLAD), which is designed
specifically to avoid the perpendicular geometry. It can lead to interesting surface mor-
phologies. In either case, the grains can completely traverse the thickness of the film.
Sputtered films generally tend to be denser, more amorphous in nature, andmore adherent
than evaporated films because of the higher energy of the arriving adatoms.

Slight variations can occur with columnar morphology, however. For example,
Movchan and Thornton used structure zone models to illustrate how temperature influ-
ences the morphology of metal films (Movchan and Demchishin, 1969; Thornton,
1977). Grain growth often begins with island formation (nucleation sites). When the
homologous temperature, Th (for thin films this is the ratio of the substrate temperature
to the melting point of the thin film), is ,0.3, the surface mobility of the deposited
atoms, or adatoms, is low. As the homologous temperature increases (0.3 , Th , 0.5),
the surface mobility increases. Thus, the islands may initially evolve three-dimensionally

Figure 2.11. A slanted morphology on a surface resulting from glancing angle deposition

(left). A helical morphology resulting from glancing angle deposition. (Courtesy of M. J. Brent

(right).# 2006, M. J. Brent, University of Alberta. Reproduced with permission.)
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into V-shaped columns. Once the V-shaped columns impinge on one another, the grain
boundaries become parallel and a dense structure is obtained. Finally, when Th . 0.5,
bulk diffusion increases substantially and allows for equiaxed grains. A major disadvan-
tage of PVD thin films is its inability for conformal coating, that is it produces poor step
coverage. Residual stresses in PVD thin films are generally compressive.

As with solidification microstructures, kinetic factors are as important as thermodyn-
amics. For example, the (2 0 0) surface has the lowest energy in TiN. But the preferred
orientation of TiN thin films can vary between (1 1 1) and (2 0 0), depending on depo-
sition conditions. This means that the texture depends on kinetic factors as well as the
energy minimization.

2.3.4.3 Polycrystalline CVD Thin Films. Chemical vapor deposition is a pro-
cess in which a volatile species is transported in the vapor phase to the substrate to be
coated. Typically, a chemical reduction then occurs at the substrate to deposit the desired
film. For example, volatile ReCl5 will deposit rhenium on a substrate heated to 12008C.
Where adatom energy exerts the strongest influence on film morphology in PVD pro-
cesses, CVD is dominated by chemical reaction kinetics. The islands grown in CVD pro-
cesses tend to be larger in size and fewer in number. There also appears to be a marked
temperature dependence to the growth rate. Kinetic Monte-Carlo simulations have shown
that grain morphology in CVD thin films is primarily owing to an autocatalytic process, in
which precursor molecules dissociate preferentially at existing nuclei sites (Mayer et al.,
1994). Another difference between PVD and CVD films is that, in PVD, the residual
stress in the deposited film is normally compressive, whereas in CVD, it is generally
tensile. Nevertheless, as with PVD, the most common microstructure produced from
CVD is the highly oriented columnar structure.

2.4 MICROSTRUCTURE AND MATERIALS PROPERTIES

In response to various different kinds of driving forces (e.g. electric fields, thermal gra-
dients, and chemical potential gradients), a flux may be generated in a material. A flux can
involve the transport of electrons, phonons, ions, atoms, or dislocations. For anisotropic
crystalline lattices, there may be an easy axis or direction along which migration can
occur. Flux particles are scattered at defects such as impurities and, in the case of poly-
crystals, at grain boundaries. The scattering may be specular, in which case the particle
momentum parallel to the surface is maintained, or it may be diffuse, meaning that the
particles travel in a random direction after collision. Hence, momentum transfer across
a grain boundary will be affected by the orientation relationship between a pair of adjoin-
ing grains. Obviously, the long-ranged orientation distribution (texture) across the sample
will affect the ability of species to move through the material. As a crude analogy, we may
think of a network (the microstructure) of elbow-shaped pipes, of various lengths (grain
sizes). The volume of fluid transported through the network can only reach a maximum
with an interconnectivity (texture) in which each pipe is rotated such that its two ends are
connected to the ends of two other pipes.
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2.4.1 Mechanical Properties

Materials processing is generally aimed at achieving a microstructure that will maximize a
specific property of interest. Approaches with polycrystalline metals and alloys usually
involve controlled solidification, deformation processing, and annealing. The microstruc-
tures of all metals and alloys greatly influence strength, hardness, malleability, and duct-
ility of the finished products. These global properties describe a body’s plasticity, or
ability to withstand permanent deformation without rupture. Plastic deformation is
owing to the gliding motion, or slip, of planes of atoms. Slip most readily occurs on
close-packed planes of high atomic density in the close-packed directions. However,
the stress required to move a dislocation (dislocations were introduced in Section
2.2.2) through a crystal is much smaller than that required to move a full plane of
atoms. Therefore, dislocations actually govern the ability of a coarse-grained material
to plastically deform. This will be discussed in much more detail in Chapter 10.

Polycrystalline metals are stronger than single crystals. It is not easy for dislocations
to move across grain boundaries because of changes in the direction of the slip planes.
Generally, a smaller average grain size leads to a larger volume fraction of grain bound-
ary, which, in turn, leads to greater resistance to dislocation motion. Indeed, one possible
mechanism for strengthening a polycrystalline metal is via grain size reduction. Another
method is known as solid solution strengthening where a small number of atoms in the
lattice are replaced with substitutional impurities of a slightly different size. This creates
strain in the crystal, inhibiting the movement of dislocations, and strengthening the
material (Section 10.3.2). Dislocation density also affects the strength of polycrystalline
metals. Deformation processes, such as rolling and extrusion, increase the dislocation
density in a metal, which hinders dislocation motion and strengthens the material.
This is known as strain hardening or work hardening. As the temperature at which
deformation takes place is well below the recrystallization temperature, it is also called
cold working. While there is no set rule as to what constitutes “cold” when deforming
a sample, most materials will be considered to be cold worked if deformed at temperatures
significantly below half their melting point on an absolute scale, often referred to as a
homologus temperature of 0.5, or 0.5Tm in shorthand. Some metals (e.g. Pb and Sn)
have recrystallization temperatures significantly lower than their melting point
(Pb: Tm ¼ 3278C, Tr ¼ 258C; Sn: Tm ¼ 2328C, Tr ¼ 258C) and cannot be cold worked
at room temperature.

An example of increased strength and decreased ductility in cold worked materials is
familiar to anyone who has ever tried to reconfigure a wire coat hanger to perform some
task. While it is relative easy to bend the straight sections of the coat hanger into a new
shape, it is extremely difficult to straighten out the tight radius (i.e. highly deformed)
bends that form the coat hanger’s original shape. This is work hardening in action.
The steel alloy used to produce the coat hanger was chosen for its ability to work
harden so that the coat hanger would maintain its shape under load, for example, the
weight of a coat or pair of pants (Lalena et al., 2008).

During cold working, polycrystalline metals deform by mechanisms involving slip
and, where slip is restricted, rotation of the individual grains. Both processes, of course,
must satisfy the condition that the interfaces, along which the grains are connected,
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remain intact during deformation. As the extent of deformation increases, some of the
larger grains may break up into smaller grains of different orientations, giving rise to a
wider orientation spread. It has been seen that dislocation density also increases with
cold working. Conversely, plastically deforming materials above their recrystallization
temperature, referred to as hot working, results in a lower free energy owing to the
rearrangement of dislocations into lower energy configurations of decreased dislocation
density. This is termed recovery. However, in competition with this is recrystallization, in
which the resulting grain structure and texture depends on the spatial distribution and
orientation of recrystallization nuclei. Grains grow at different rates that are determined
by their own morphological properties (orientation, shape) and their environment,
which leads to a distribution of recrystallization grain growth rates. The recrystallization
temperature is defined as that temperature at which recrystallization just reaches com-
pletion in one hour. For most pure metals, the recrystallization temperature is typically
about one-third the melting temperature. It is generally accepted that recrystallization pro-
ceeds more rapidly in pure metals than it does in alloys, since alloying raises the recrys-
tallization temperature. Both recovery and recrystallization are driven by the difference
between the higher-energy strained state and the lower-energy unstrained state. That is,
the process of forming a new grain structure is driven by the stored energy of deformation.
However, the competition between the two processes, as well as their effects on texture
and grain boundary structure, is hotly debated in the fields of materials science and
metallurgy.

The mechanical properties of ceramics differ greatly from those of metals. Ceramics
are typically brittle, very strong, hard, and resistant to deformation. It is found that dislo-
cation motion is virtually impossible except at high temperatures. In ionic solids, slip is
constrained because it requires bringing ions with like charges in contact. Furthermore,
although many ionic solids are almost close packed, slip is very difficult on anything
but truly close-packed planes. The strong and directional bonding present in covalent
solids similarly impedes dislocation motion since it requires bond breaking and distor-
tion. As ceramics are too brittle for plastic deformation, they do not experience recrystal-
lization, since a prerequisite for recrystallization is that the material be plastically
deformed first (Callister, 2005).

The absence of a lattice-based mechanism, such as slip planes, does not
necessarily preclude all deformation in brittle materials. Plastic flow can proceed in
other modes. For example, at temperatures of about 40 percent to 50 percent of their melt-
ing points, grain-boundary sliding can become important. Grain-boundary sliding is
believed to be the major contributor to the superplasticity observed in some polycrystal-
line ceramics.

2.4.2 Transport Properties

In addition to mechanical properties, other physical properties of polycrystalline
materials, such as electrical and thermal conduction, are also affected by microstructure.
Although polycrystals are mechanically superior to single crystals, they have inferior
transport properties. Point defects (vacancies, impurities) and extended defects (grain
boundaries) scatter electrons and phonons, shortening their mean free paths. Owing to

MICROSTRUCTURAL CONSIDERATIONS84



the phonon and electron scattering at grain boundaries, a polycrystal has a lower thermal
and electrical conductivity than a single crystal.

An approximation known as Matthiessen’s rule, from the nineteenth century
University of Rostock physicist professor Heinrich Friedrich Ludwig Matthiessen
(1830–1906), asserts that all the various scattering processes are independent.
Matthiessen was the first to point out that, as the temperature decreases, a metal’s resis-
tivity decreases and reaches a constant value with further decreases in temperature.
Although Matthiessen’s rule is strictly true only so long as the scattering processes are
isotropic, it is nevertheless a useful approximation to assume the contributions to the res-
istivity owing to conduction electron scattering from thermal vibrations, impurities, and
dislocations (which increase in number with plastic deformation), can simply be added
up. The electrical resistivity of a polycrystalline metal can similarly be considered the
sum of the contributions owing to electron scattering in the bulk crystal and at the inter-
faces, the latter of which is a function of the grain boundary network. Thus, the resistivity
of a fine-grained metal is higher than that of a coarse-grained sample because the former
has a larger number of grain boundaries.

Transport properties (electrical and thermal conductivity, mass transport) are second-
rank tensors, and they are isotropic only for cubic crystals and polycrystalline aggregates
with a completely random crystallite orientation. For noncubic monocrystals and textured
polycrystals, the conductivity will be dependent on direction. Therefore, it is also impor-
tant to understand the effect of grain orientation/interconnectivity on transport properties.
Some ceramics are low-dimensional transport systems, in which intragranular conduction
is much weaker or completely absent along one or more of the principal crystallographic
axes. If the transport properties of the individual crystallites in a polycrystalline aggregate
are anisotropic in this manner, sample texture will influence the anisotropy to the conduc-
tivity of the polycrystal. When a polycrystal is free of preferred orientation, that is, when it
has a completely random or perfectly disordered crystallite orientation distribution, its
bulk transport properties will be like that of a cubic single crystal, isotropic as a whole
regardless of the anisotropy to the single crystallites comprising it. If anisotropic grains
are randomly oriented, the macroscopic sample loses any anisotropy in any property.

Consider the low-dimensional metal Sr2RuO4, with the tetragonal crystal structure
shown in Figure 2.12a. At high temperatures, metallic conduction occurs in the ab planes
within the perovskite layers, parallel to the two principal axes k0 1 0l and k1 0 0l.
Transport along the c axis, perpendicular to the ab plane, is semiconducting at high
temperatures. For polycrystals, two extreme orientation distribution functions, which
give the volume fraction f (x) of crystals in orientation x, can be envisioned. These are:

1. Zero preferred orientation;

2. Perfect alignment.

The absence of preferred orientation statistically averages out the parallel and perpen-
dicular conduction effects in Sr2RuO4. The bidimensional metallic conductivity, which
is clearly observed in a single crystal, is completely inhibited in free powders composed
of millions or billions of randomly oriented crystallites. This is shown in Figure 2.12c. By
contrast, it can be expected that the application of several thousand pounds of uniaxial
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pressure in forming a pellet (i.e. a cylindrical shaped specimen) will induce a high degree
of texture. This is especially true for elongated platelet crystals, where the c axes of the
crystallites align parallel to the pressure axis. It cannot be assumed that all the crystallites
are identical in size and shape. Thus, with the application of uniaxial pressure alone many
crystallites will remain misaligned. Higher degrees of texture may sometimes be induced
by magnetic fields because of the anisotropy to the magnetic susceptibility.

If the Sr2RuO4 crystallites were all to be identical and perfectly aligned with their c
axes parallel (somewhat like stacking children’s building blocks), the pellet’s resistivity
would exhibit the same anisotropy as a tetragonal single crystal of Sr2RuO4. The resis-
tivity along the ab axis of the pellet would follow the rab curve in Figure 2.12b, while
along the c axis the resistivity would follow the rc curve. This is illustrated in
Figure 2.12d. Nonetheless, the current density of the pellet would be lower than that of
a single crystal of the same dimensions owing to the grain-boundary resistance.

Further enlightenment can be gained on electrical conduction in polycrystals
by likening the phenomenon to a random resistor network with the bond percolation
model. In this model, there is a lattice in which each mesh point corresponds to an indi-
vidual crystallite of the polycrystalline aggregate. The simplifying assumption for now is
that all sites, or crystallites, are equivalent electrical conductors. The grain boundaries are
the bonds connecting the individual mesh points. Each grain boundary has an electrical
resistance, RGB, which is dependent on the orientation relationships of the grains.
For now, also assume a bimodal RGB, that is 0 (superconducting) or1 (nonconducting),

Figure 2.12. (a) The crystal structure of Sr2RuO4. (b) Below Tm, transport along the c-axis is

semiconducting, while transport along the ab-axis is metallic across the entire temperature

range. (c) Random orientation in a powder aggregate with different crystallite sizes.

Percolation paths exist for both sab and sc in all directions, resulting in an isotropic

conductivity at any given temperature. (d ) If identical crystallites are all aligned with their

c-axes parallel, the polycrystal will have the same anisotropic conductivity as a single crystal.
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are the only two possible values for RGB. Each bond is either open with probability p, or
closed with probability (1 2 p). The open bonds allow passage of current and the closed
bonds do not.

The main concept of the bond percolation model is the existence of a percolation
threshold, pc, corresponding to the point at which a cluster of open bonds (a conducting
path) first extends across the entire sample. Such a cluster is called a spanning cluster. For
all p, pc, no current can flow owing to the lack of a complete current path, but there may
be nonspanning clusters, connecting a finite number of points, which exist for any non-
zero p. At pc, the system abruptly transitions to the electrically conductive state and for all
p. pc, the sample is electrically conducting because of the presence of spanning
clusters.

For p. pc, the conductivity, s, is proportional to a power of ( p2 pc):

s/ ( p� pc)
m (2:10)

The exponent m is called a scaling exponent. It depends on the dimensionality of the
system. For two-dimensional transport, m ¼ 1.30 and for three-dimensional transport,
m ¼ 2.0 (Stauffer and Aharony, 1994).

The numerical value of the bond percolation threshold is dependent on the geometry
of the grain boundary network. For example, pc is equal to 0.500 for a simple two-
dimensional square lattice and 0.388 for a three-dimensional diamond lattice. For the
simple cubic, FCC, and BCC lattices, pc is equal to 0.2488, 0.1803, and 0.119, respect-
ively. With nontextured polycrystals, the geometries (grain orientations and/or angles)
are random and, hence, the exact value for pc may not be known. Furthermore, the ori-
ginal assumption that the grain boundaries are either superconducting or insulating is
obviously a drastic one. In reality, the grain-boundary resistance is not bimodal. It can
have values other than zero or infinity, which are dependent on the grain orientations
and/or angles, as can be inferred from Figure 2.12c. In fact, a broad distribution of
grain-boundary resistances may be observed. For sufficiently broad distributions, how-
ever, the resistance of the bulk sample is often close to the resistance of the grain-
boundary cluster with exactly the percolation threshold concentration (Stauffer and
Aharony, 1994). For a derivation of Eq. 2.10, as well as a detailed treatment of percolation
theory, the interested reader is referred to the book by Stauffer and Aharony (1994).

Example 2.2

The oxide Bi4V2O11 is similar in structure to the layered aurivillius phase Bi2MoO6

(tetragonal crystal class). The aliovalent exchange ofMo6þby V5þ results in oxygen
vacancies in the BiO6 octahedral layers, which are separated along the c axis by
edge-sharing BiO4 pyramids. The oxygen ion conduction in Bi4V2O11 is highly bidi-
mensional, being much stronger in the ab planes of the octahedral layers than in
the perpendicular out-of-plane direction along the c axis. Speculate on what the
(0 0 1) pole figures for each sample given below would look like. The data is from
Muller et al. (1996)
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Conductivities (�103 S/cm):

sk s?

Single crystal 73.2 2.6
Pressed polycrystal 40.2 20.2
Magnetically aligned polycrystal 59.1 13.8

Solution

The (0 0 1) pole figure for the single crystal must have a single spot in themiddle of
the circle since all (0 0 1) planes in a single crystal are parallel. The anisotropy in the
conductivity would be expected to be the greatest. The (0 0 1) pole figure for the
pressed polycrystal should show the greatest spread, or orientation distribution,
to the grains. This is because the anisotropy to the conductivity of the polycrystal
was observed to be the smallest. Its properties are closest to that of a randomly
textured sample. The (0 0 1) pole figure for the magnetically aligned polycrystal
should have an intermediate spread since its anisotropy to the conductivity was
intermediate.

2.4.3 Magnetic and Dielectric Properties

Just as crystals can have an easy direction for the transport of charge carriers, they will
likewise magnetize along easy axes of magnetization. The interactions between sub-
grain domains of ferromagnetic and ferroelectric polycrystals further complicate behav-
ior. Subgrain domains form because the energy density associated with the magnetic
flux density exerted outside a sample is decreased if domains with opposing magneti-
zations are created (Elliot, 1998). In the absence of an external field, each domain exhi-
bits spontaneous magnetization, or polarization in the case of ferroelectrics, which can
be represented by the resultant net vector for that domain. However, a macroscopic
crystal generally will exhibit very little magnetization in zero fields. This is because
the individual domains have their vectors pointing in different directions, giving rise
to a zero net magnetization or polarization. In the presence of a sufficiently strong
applied field, saturation is reached, where the dipoles in all the domains within the
crystal align.

Polycrystalline materials possess a texture, or grain orientation distribution, and
each grain may contain several domains (see Fig. 2.13). It might, therefore, be
expected that neighboring grains, and the domains within them, would interact mag-
netically in very different ways, giving rise to a response that will be very dependent
on the grain size and texture. Such behavior is expected in the plots of magnetization
versus applied field, so-called hysteresis loops, which follow one complete cycle of
magnetization and demagnetization in an alternating field. Simulated hysteresis
loops for polycrystalline films with different textures are shown in Figure 2.14. The
greater the misalignment among grains, the less the magnetization that remains
after the field is removed (remanence), and the lower the magnitude of the reverse
field required for demagnetization (coercivity) (Jin et al., 2002). If these parameters
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can be controlled by manipulating the microstructure, different magnetic properties
can be designed. For example, if ultrasmall (i.e. nanosized) grains of a highly
magnetocrystalline-anisotropic thin-film material can be deposited with all their easy
magnetization axes normal to the film, magnetic storage media with much greater
recording densities can be obtained.

Figure 2.13. Schematic drawing of subgrain magnetic domains. Each of the three domains

shown has a different net magnetic moment.

H/Ms

M/Ms

Figure 2.14. Hypothetical hysteresis loops for polycrystalline films with the same chemical

composition but with different textures.
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2.4.4 Chemical Properties

Microstructure also affects the chemical properties exhibited by a metal. Intergranular
atomic diffusion processes occur more rapidly than intragranular ones, since these
regions are usually not as dense as the grains. Remember also, that grain boundaries
have a higher free energy than the grains themselves. Because of these aspects, a metal
will usually oxidize or corrode more quickly along a narrow path that tends to follow
grain boundaries, a condition known as intergranular corrosion. A similar kind of cor-
rosion is transgranular corrosion, in which attack is highly localized and follows a
narrow path through the material. However, the paths cut across grains with no apparent
dependence on grain-boundary direction.

The oxidation rate may be very dependent on the grain-boundary structure, which
gives rise to the possibility for grain-boundary engineering. This essentially refers to
the incorporation of a high percentage of a specific grain-boundary type in a polycrystal
for the purposes of optimizing the properties of interest. For example, it has been shown
that Ni–Fe (Yamaura et al., 2000) alloys and Pb electrodes (Palumbo et al., 1998) that
have been deformation processed, or thermally processed to have a high fraction of
low-S boundaries, are much more resistant to intergranular corrosion. Furthermore,
those with random high-angle boundaries, which are probably higher in energy, more
easily oxidize. For conventionally grained solids, however, the grain-boundary volume
is a small fraction of the total volume of the sample. Hence, intragranular diffusion
is usually the dominant mass transport process, except for very small grain sizes or at
low temperatures. Nonetheless, because impurity atoms tend to segregate at grain bound-
aries, intergranular chemical reactions that may not occur intragranularly are possible.

2.5 MICROSTRUCTURE CONTROL AND DESIGN

It was seen earlier how deformation processing tends to introduce texture in ductile
polycrystalline materials. It has also been mentioned that one method of producing a
textured powder aggregate involves the application of uniaxial pressure. However, in
this method, a large number of grains that are misoriented with respect to the majority
usually remain. Furthermore, this simple approach is not applicable for every desired
shape. There are other methods, which have been used to produce textured materials.
One is the TGG method, in which anisotropic seed particles regulate crystal growth
in specific growth directions. This process involves the addition of a small amount of
the template particles to a powder matrix (usually less than 10 volume percent), that is
seed particles of the same substance. The template particles are next oriented and the
matrix is then sintered, causing the template particles to grow by consuming the randomly
oriented matrix. This produces a highly oriented microstructure.

Template particles must possess a variety of properties for successful TGG (Kwon
and Sabolsky, 2003). If mechanical forces are acting to align the seed particles, templates
must have a high aspect ratio so they can be aligned during consolidation processes.
Morphologically, most of these templates are platelets or whiskers, and the desired
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crystallographic orientation must be aligned along the template axis. The template grains
must be large enough so that there is a thermodynamic driving force for their growth at the
expense of the matrix grains. The template seeds must also be distributed uniformly
throughout the matrix to be most effective (Lalena et al., 2008).

Templated grain growth has been demonstrated to be effective for a number of appli-
cations. The amount of growth, hence the degree of texture, depends on the number, size,
and distribution of the template particles. The quality of the texture produced depends
upon howwell the seed texture particles are oriented during processing. Grains impinging
upon each limits the attainment of a 100 percent textured material; however, X-ray dif-
fraction studies have shown that obtaining the desired texture in more than 90 percent
of the material is possible (Messing, 2001).

When the unit cell of a crystalline ceramic substance is anisotropic, this gives rise to
the possibility that the accompanying anisotropy in its physical properties may aid the
texture control of powder samples. For example, a crystal with an anisotropic magnetic
susceptibility will rotate to an angle minimizing the system energy when placed in a mag-
netic field. The reduction in magnetic energy is the driving force for magnetic alignment.
However, alignment may be difficult in nondispersed powders because of strong
particle–particle interactions, which prevent the particles from moving. Therefore, dis-
persion of the powder in a suspension is usually necessary for effective utilization of a
magnetic field. This can be readily accomplished in slip casting, where a suspension,
or slurry, called the slip, is poured into a porous mold of the desired shape that absorbs
the fluid. Magnetic alignment, in conjunction with slip casting, has been used to produce
textured microstructures in a variety of substances, including some with only small
anisotropic diamagnetic susceptibility, such as ZnO and TiO2, if the magnetic field is
high enough, for example, several tesla.

In addition to specifying the texture or orientation distribution to the grains, the frac-
tion of a particular CSL boundary type (Section 1.3) can be specified. This approach is
also useful because the grain-boundary structure often correlates with certain materials
properties, particularly conductivity, creep (time-dependent deformation at constant
load), and corrosion. For example, coherent twin boundaries are able to block dislocation
motion and strengthen a metal. They also allow for a much more efficient transfer of cur-
rent than conventional grain boundaries (Suton and Balluffi, 2007). Hence, it has been
observed that pure copper samples with a high percentage density of nanoscale coherent
growth twins are strengthened considerably (10� tensile strength of conventional coarse-
grained samples) without a loss to the electrical conductivity (Lu et al., 2004). Likewise,
it has been shown that Ni–Cr–Fe alloys, with a high fraction of special CSL boundaries,
possess higher creep resistances (lower strain rates) than those with general boundaries
(Thaveepringsriporn and Was, 1997; Was and Thaveepringsriporn, 1998).

Thus far, the discussion has assumed that the materials engineer has a desired micro-
structure in mind. But how is it known which microstructure is optimal for a given appli-
cation? Microstructure design is an emerging field that focuses on producing
microstructures that meet, or exceed, specified macroscale properties or performance
criteria. This requires a combination of empirical techniques, mathematical modeling,
and numerical simulation. A complicating factor has always been the enormous number
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of possible microstructures that can evolve from a myriad of processing variables. In
additional, owing to the complexities of treating anisotropy and nonhomogeneity into
design problems, drastic simplifying assumptions are often made during analysis.
Fortunately, advancements have been made in these areas.

Amajor key to the success of a promising, recently developed approach, championed
by Drexel University professor Surya R. Kalidindi and Brigham Young University pro-
fessor Brent L. Adams, termed microstructure sensitive design (MSD), is the represen-
tation of the various functions in Fourier (or spectral) space, in order to compress the
large amount of data (Adams et al., 2002; Kalidindi et al., 2005). First, the essential
characteristics that are the most influential in controlling the macroscale properties
are carefully identified. These salient features are parameterized into spectral functions,
each defining a microstructure represented as an infinite series of harmonic functions,
the coefficients of which indicate the weight of the particular harmonic with which
they are associated. The important terms are generally found at the front of a series
that is truncated at some point that balances efficiency with accuracy. Thus, each micro-
structure is represented by a set of Fourier coefficients. For example, a microstructure
is defined through the microstructure function

M(x, h) dh ¼ dVh

V
(2:11)

This equation represents the volume fraction of material possessing an orientation lying
within invariant measure dh of the local state of interest h within an infinitesimal neigh-
borhood of the material point at x. Equation 2.11 can be described with a spectral basis
using the simplest formulation as:

M(x, h) ¼
XS
s¼1

XN
n¼1

Dsnxn(h)xs(x) (2:12)

with Fourier coefficients Dsn, where the representative volume element is divided into S
cells, and the local state space is divided into N cells; xs(x) ¼ 1 if x is in cell s, and zero
otherwise. If the local state of interest h is the lattice orientation, g, the spectral represen-
tation for the orientation distribution function (texture) may be expressed as follows:

f (g) ¼
X1
a¼1

FaTa(g) (2:13)

where T(g) is the generalized spherical harmonic function (Kalidindi and Fulwood,
2007).

In quantifying the different possible microstructures, it is important not only to con-
sider the orientations of the constituent crystallites, but also their compositions, as well as
other parameters. The complete set of feasible statistical distributions that describe the
relevant details of the microstructure are termed the microstructure hull (each point in
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the microstructure hull represents a unique microstructure), while the set of feasible
combinations of macroscale properties is termed the property closure. Homogenization
relations are used to link the microstructure hull to the property closure. Bounds on
material properties are represented by one or more families of bounding hypersurfaces
(often hyperplanes) of finite dimension that intersect the microstructure hull.
Consideration of the full range of these hypersurfaces gives rise to properties closures,
representing the full range of combined properties that are predicted to be possible by
considering the entire microstructure hull. For a given point in the property closure, a
hypersurface may be identified that traverses the microstructure hull; each microstruc-
ture on such a surface is predicted to relate to the given combination of properties
(Lemmon et al., 2007). The MSD framework has been successfully applied to linking
the crystallographic texture with the elastic and plastic properties of some cubic and
hexagonal polycrystalline metals, and to optimizing the design of a radio-frequency
micro-electromechanical systems (MEMS) switch.

PRACTICE PROBLEMS

�1) For a single phase polycrystal with cubic symmetry, assuming the angular par-
ameters are distinguished with 108 of resolution, howmany distinct grain boundaries
are there?

2) Give one reason why a reduction in the grain size of a polycrystalline pure metal or
alloy may be required and describe one method by which grain-size reduction could
be accomplished.

3) Describe the difference between hot working and cold working. Explain the effect of
each method on the dislocation density in a sample and how this, in turn, affects the
extent of plastic deformation possible with each technique.

�4) Explain the difference between the terms annealing and sintering.
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5) What is the difference between the glass-transition temperature and melting
temperature?

6) Define the term monolithic. Which of the following materials can be monolithic: a
glass, a single crystal, a casting, a powder?

�7) What are the three primary methods for strengthening a material?

8) How are ceramics and other nonductile polycrystals fabricated into bulk articles?

9) Describe what is meant by the term texture, as it is applied to polycrystals, and why it
is important to materials properties.

10) What are dislocations? What are the different types of dislocations?

�For solutions, see Appendix 3.

REFERENCES

Adams, B. L.; Lyon, M.; Henrie, B.; Garmestani, H.; Kalidinidi, S. R. Mater. Sci. Forum 2002,
408–412, 493–498.

Aust, K. T.; Rutter, J. W. Trans. AIME 1959, 215, 119.

Baker, H., Ed., ASM Handbook, Vol. 3: Alloy Phase Diagrams, ASM International, 1992.

Bhadeshia, H. K. D. H. Worked Examples in the Geometry of Crystals, The Institute of Metals,
London, 1987, p. 70.

Bollman, W. Phil. Mag. 1967, 16, 363.

MICROSTRUCTURAL CONSIDERATIONS94



Bollman, W. Crystal Defects and Crystalline Interfaces, Springer-Verlag, Berlin, 1970.

Brandon, D. G.; Ralph, B.; Ranganathan, S.; Wald, M. S. Acta Metall. 1964, 12, 813.

Callister, W. D. Fundamentals of Materials Science and Engineering: An Integrated Approach,
John Wiley & Sons Inc., 2005.

Chen, F.-R.; King, A. H. Acta Crystallogr. B 1988, 43, 416.

Elliot, S. R. The Physics and Chemistry of Solids, John Wiley & Sons, Chichester, 1998.

Friedel, G. Lecons de Cristallographie, Berger-Levrault, Paris, 1926.

Gillan, E. G.; Barron, A. R. Chem. Mater. 1997, 9, 3037.

Gonzales, F.; Rappaz, M. Met. Mat. Trans. 2006, 37A, 1073.

Gorbenko, O. Y.; Samoilenkov, S. V.; Graboy, I. E.; Kaul, A. R. Chem. Mater. 2002, 14, 4026.

Gulliver, G. H. J. Inst. Met. 1913, 9, 120.

Hargreaves, F.; Hill, R. T. J. Inst. Metals 1929, 41, 237.

Hoglund, D. E.; Thompson, M. O.; Aziz, M. J. Phys. Rev. B 1998, 58, 189.

Huang, S. C.; Glicksman, M. E. Acta Metall. 1981, 29, 71.

Ivantsov, G. P. Dokl. Akad. Nauk 1947, 58, 56.

Jin, Y. M.; Wang, Y. U.; Kazaryan, A.; Wang, Y.; Laughlin, D. E.; Khachaturyan, A. G. J. Appl.
Phys. 2002, 92, 6172.

Johnson, W. L. In Turchi, P. E. A., Shull, R. D., Eds.; The Science of Alloys for the 21stCentury: A
Hume-Rothery SymposiumCelebration, TheMinerals, Metals &Materials Society,Warrendale,
PA, 2000.

Johnson, W. L. MRS Bull. 1999, 24, 42.

Kalidindi, S. R.; Houskamp, J.; Proust, G.; Duvvuru, H. Mater. Sci. Forum 2005, 495–497,
pp. 23–30.

Kalidindi, S. R.; Fulwood, D. T. JOM 2007, 59, 26–31.

Keys, A.; Bott, S. G.; Barron, A. R. Chem. Mater. 1999, 11, 3578.

Kronberg, M. L.; Wilson, F. H. Trans. Met. Soc. AIME 1949, 185, 501.

Kwon, S.; Sabolsky, E. M. Control of ceramic microstructure by templated grain growth.
In Somiya, S. Ed.; Handbook of Advanced Ceramics, Elsevier, Oxford, 2003, pp. 459–469.

Lalena, J. N.; Cleary, D. A.; Carpenter, E. E.; Dean, N. F. Inorganic Materials Synthesis and
Fabrication, John Wiley & Sons, Inc., New York, 2008.

Langer, J. S.; Muller-Krumbhaar, H. Acta Met. 1978, 26, 1681, 1689, 1697.

Langer, J. S. Science 1989, 243, 1150.

Lemmon, T. S.; Homer, E. R.; Fromm, B. S.; Fullwood, D. T.; Jensen, B. D.; Adams, B. L. JOM
2007, 59(9), 43.

Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Science 2004, 304, 422.

Mayer, T. M.; Adams, D. P.; Swartzentruber, B. S. “Nucleation and Evolution of Film Structure in
Chemical Vapor Deposition Processes” Physical and Chemical Sciences Center Research
Briefs, Sandia National Laboratories, Vol. 1–96, 1994.

Messing, G. L. Texture ceramics. In Buschow, K. H. J.; Chan, R.; Flemings, M., Eds.;
Encyclopedia of Materials: Science and Technology, Elsevier, New York, 2001, p. 9129.

Mott, N. F. Proc. Phys. Soc. Lond. 1948, 60, 391.

Movchan, B. A.; Demchishin, A. V. Phys. Met. Metallogr. 1969, 28, 83.

REFERENCES 95



Muller, C.; Chateigner, D.; Anne, M.; Bacmann, M.; Fouletier, J.; de Rango, P. J. Phys. D 1996, 29,
3106.

Mullins, W. W.; Sekerka, R. F. J. Appl. Phys. 1963, 34, 323.

Palumbo, G.; Lehockey, E. M.; Lin, P. JOM 1998, 50(2), 40.

Pawlak, D. A.; Kolodziejak, K.; Turczynski, S.; Kisielewski, J.; Rożniatowski, K.; Diduszko, R.;
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3

CRYSTAL STRUCTURES AND
BINDING FORCES

In the previous chapters, the structures of polycrystalline materials on a microscope scale,
in which the smallest discernible particles are the crystallites, or grains, were discussed.
The average grain size, shape, and orientation markedly affect materials behavior, but,
ultimately, materials properties are determined by the atomic arrangement within the
crystals. In the present chapter, the crystal structure will be explored by “zooming in.”
First, a brief review of some different methods of describing crystalline arrangements.
Then, after discussing the different types of cohesive forces, some commonly adopted
crystal structures will be presented.

3.1 STRUCTURE DESCRIPTION METHODS

There are at least three methodologies for portraying crystal structures. Each of them has
its advantages and disadvantages, but they all are based on the idea of a repeating pattern.
The simplest method, the close-packed spheres description, is also the oldest. With
advances in crystallography came more sophisticated descriptions, which lead to poly-
hedra and, ultimately, to the crystallographic unit cell. Our discussion will follow their
order of development but all of these methods still remain in use today. This is because
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it is often helpful to visualize a specific structure from different perspectives. For
example, although the unit cell is the most precise description, both the short-range
and long-range symmetry is often more readily apparent with [interconnected] polyhedra,
as is the nearest-neighbor coordination around a particular atom. In a similar fashion,
closed-packed spheres perhaps leaves a more realistic impression of the density of a
material, since in a unit cell illustration the contents (i.e. atoms) are often drawn as
atomic centers, which can give the impression that distances between atoms is greater
than they actually are. It is important to keep in mind that all types of structure descrip-
tions simply tell us about the locations of the atoms. They reveal little or nothing about the
nature of the bonding forces between the atoms.

3.1.1 Close Packing

The structures of many metals can be described rather simply if one assumes that the
constituent atoms are close-packed spheres. In this arrangement, the maximum possible
density is achieved. Close packing of spheres dates back to the seventeenth century when
Sir Walter Raleigh asked the mathematician Thomas Harriot to study the stacking of
cannon balls. Harriot debated this topic with Johannes Kepler (1571–1630), who was
a staunch believer in the hypothesis for the corpuscular nature of matter (the precursor
of atomism), and had already given thought to how water particles stack themselves to
form symmetrical snowflakes. In 1611, Kepler hypothesized from geometrical consider-
ations that the densest possible arrangement of spheres, be they water particles or cannon-
balls, is obtained with CCP, in which 74.05 percent of the cube’s volume is occupied.
This came to be known as the Kepler conjecture, and the problem of proving it was
the Kepler problem. A rigorous mathematical proof eluded mathematicians until only
recently. It was not until 1998, that the proof was accomplished by Professor Thomas
Hales of M. I. T. (Lalena, 2006).

It is well known that in two dimensions close-packed spheres have a hexagonal
arrangement in which each sphere is tangent to six others in the plane. In three dimen-
sions, there are two possible ways to achieve close packing. They have to do with the
way closed-packed planes are stacked together. In both cases, however, each sphere is
tangent to, or coordinated by, twelve others.

Figure 3.1 shows each type of arrangement. In the first case, each sphere in the upper
layer, of the set of three layers, is directly above one sphere in the lower layer. The spheres
of the middle layer rest in the hollows between three spheres in each of the adjacent
layers. There are two types of hollows in any close paced structure (vide infra): tetrahedral
(a hole coordinated by four atoms) and octahedral (a hole coordinated by six atoms).
The staggered close packed layers just described are sometimes represented as
(. . .ABABAB. . .), where each letter corresponds to a two-dimensional closed-packed
layer, and in which the sequence required to achieve three-dimensional close packing
is clear. This is called hexagonal close packed and is abbreviated HCP.

The second case corresponds to three close-packed layers staggered relative to each
other. It is not until the fourth layer that the sequence is repeated. This is known as cubic
close packed, or CCP, and is represented as (. . .ABCABCABC. . .). Geometric consider-
ations show that, for equal-sized spheres in both the CCP and HCP arrangements,
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74.05 percent of the total volume is occupied by the spheres. The packing densities of
other nonclosed packed structures are given in Table 3.1.

As the atoms of an element are all equal sized, the structures of many elements
correspond to the CCP or HCP array. By contrast, many ionic compounds can be
described as a close-packed array of anions (large spheres), with cations (smaller spheres)
located in the hollows between the anions. The hollows, which are called interstitial sites,
come in two different sizes as described above. Tetrahedral sites are coordinated by four
anions, and octahedral sites are coordinated by six anions, as shown in Figure 3.2. For

Figure 3.1. Close packed arrangements in three dimensions.
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every anion in two adjacent close-packed layers, there are two tetrahedral sites (an upper
and a lower) and one octahedral site. The octahedral sites are larger and can thus accom-
modate larger cations. When the cations are large, they effectively push the anions further
apart. The term eutactic is useful for describing such systems, where the arrangement of
atoms is the same as in a close-packed structure, but in which the atoms are not touching.
Some covalent compounds (e.g. diamond) can also be described in terms of close packed
arrays. Diamond can be considered as two interlocking CCP lattices displaced by a
quarter of the body diagonal.

A primary drawback of visualizing metals simply as closed-packed spheres is that
this description might seem to imply that all such metals would have the same
oft-stated nondirectional bonding. However, it has been observed that the bonding in
certain HCP metals actually has some directional character. For example, in the 1970s
valence electron-charge density maps (which may be obtained from observed or calcu-
lated structure factors) of beryllium revealed that in this HCPmetal the predominate inter-
action is bonding though the tetrahedral holes, while the electron densities around the
octahedral sites are much less than the average density of interatomic sites (Yang and
Coppens, 1978). A similar situation has been found in the HCP metal magnesium

TABLE 3.1. Packing Densities for Various Structures

Structure Density %

CCP 74.05
HCP 74.05
BCC 69.81
Tetragonal 71.87
Cubic 52.36
Hexagonal 60.46
Random �64

Tetrahedral site

Octahedral site

Tetrahedral site

Figure 3.2. The octahedral and tetrahedral sites within two adjacent close-packed layers. The

darkly shaded spheres are behind the plane of the page. The lightly shaded spheres are above

the plane of the page.
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(Kubota et al., 1993). Consider next, two metals from the 4d series of the periodic table,
ruthenium and zirconium, both of which have the HCP structure. In ruthenium, bond
critical points (the saddle points) in the electronic charge density are located between
each Ru atom and its six nearest neighbors in the plane. There exists, as well, bond
paths to the six atoms in and out of the plane, which gives rise to a cage point in the tetra-
hedral hole. In essence, each Ru atom is bound to all of its 12 nearest neighbors, consti-
tuting true nondirectional bonding. In zirconium, by contrast, there are bond paths
(critical points in the charge density) between each tetrahedral hole to its three closest
Zr atoms in the plane and to the two atoms above and below. Five Zr atoms are thus
bound to one another through the tetrahedral hole (Eberhart et al., 2008).

Example 3.1

Cobalt crystallizes in the HCP structure, which contains two atoms per unit cell.
The atomic radius of the Co atom is 0.1253 nm.

1. Use this information and Table 3.1 to determine the unit cell volume.

2. With the help of Table 1.2, compare the result to that calculated from the
lattice parameters, a ¼ 0.2507, c ¼ 0.4069.

3. Compute the density from your answer for 1.

The tabulated value is 8.92 g/cm3.

Solution

1. The HCP structure has a packing density of 74.05 percent. The volume
of a single Co atom is (4/3)pr3 ¼ (4/3)p(0.1253 nm)3 ¼ 0.008240 nm3.
There are two atoms in the unit cell occupying a volume of
0.008240 � 2 ¼ 0.04944 nm3, which is 74.05 percent of 0.02225 nm3.

2. FromTable1.2, thevolumemayalsobecalculatedfromthelatticeparameters

as follows: V¼ a2c sin(608)¼ (0.2507nm2)(0.4069nm) (
ffiffiffi
3
p

=2) ¼ 0:02214nm3,

which is in close agreement, indicating that the closed-pack sphere model

is very reasonable for cobalt.

3. The unit cell volume is 0.02225 nm3 � [(1027)3 cm3/13 nm3] ¼ 2.225 �
10223 cm3. There are two atoms in the unit cell, each with a mass
of (58.93 g/1mol) � [1mol/(6.0223 � 1023 atoms)] ¼ 9.785 � 10223 g. The
density is then (2 � 9.785 � 10223 g)/(2.225 � 10223 cm3) ¼ 8.796 g/cm3.

3.1.2 Polyhedra

A second approach to describing structures emphasizes the coordination around specific
types of atoms in the structure. In this method, the atoms are omitted from the represen-
tation and replaced by coordination polyhedra. The vertices of a polyhedron represent
the centers of the coordinating atoms, typically anions, and at the center of the polyhedron
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resides the metal atom that is coordinated. This method was originated in 1840 by Gabriel
Delafosse (1796–1878) who was chair of mineralogy at the Museum of Natural History
in Paris and who reconciled Haüy’s earlier integral molecules with Dalton’s atomic
theory. In Haüy’s view, the building blocks of crystals were solid polyhedral molecules
that could not be further subdivided, were arranged contiguously along parallel lines, and
which appeared externally in a crystal’s macroscopic cleavage. Haüy had adopted the par-
allelepiped, octahedron, tetrahedron, hexagonal prism, rhombic dodecahedron, and hex-
agonal bipyramid as the shapes of these integral molecules. Haüy also envisioned these
building blocks as the smallest particle that could retain the chemical properties of a sub-
stance, hence the name integral molecule (the word molecule was derived from the Latin
molecula, a diminutive of the Latinmoles for mass). Haüy was able to convince the scien-
tific community of his time that spherical atoms did not exist.

However, with the coming of Dalton’s atomic theory, Delafosse proposed that
Haüy’s building blocks (the solid polyhedral molecules) be replaced by abstract poly-
hedra with spherical atoms at the vertices (Lalena, 2006). For example, sodium chloride
may be regarded as an array of edge-sharing NaCl6 octahedra, as illustrated in
Figure 3.3. Polyhedra can share corners, edges, or faces. The advantage of this view
is that the extended structure is readily apparent. The disadvantage is that, in reality,
the planar faces of the polyhedra do not exist physically, only the atoms do. The
faces merely show the relative placement of the atomic centers around the centrally
coordinated atoms, which are not shown as part of the polyhedra. Also, in representing
the atoms centered at the vertices as points, these atoms may be perceived as being far
from the central atom and from one another when, in fact, they often form a close-
packed or nearly close-packed array.

Figure 3.3. The rocksalt structure depicted as an array of edge-sharing octahedra. (After West

(1984), Solid State Chemistry and its Applications. # 1984. John Wiley & Sons, Inc. Reproduced

with permission.)
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3.1.3 The Unit Cell

The crystallographic description is what is referred to as a unit cell. The unit cell is essen-
tially a parallelepiped, the contents of which constitute the smallest volume of particles
and their arrangement that can be repeated solely by infinite translation in three dimen-
sions to generate the entire crystal. The parallelepipeds [which include the cuboid (six rec-
tangular faces), the cube (six square faces), and the rhombohedron (six rhombus faces)]
are among the few polyhedra that tessellate three-dimensional space; the others being the
regular-right triangular prism, the regular-right hexagonal prism, and truncated octa-
hedron. The reader is referred back to Section 1.2.1 for the details.

3.1.4 Pearson Symbols

William B. Pearson (1921–2005) developed a shorthand system for denoting alloy and
intermetallic structure types (Pearson, 1967). It is now widely used for ionic and covalent
solids, as well. The Pearson symbol consists of a small letter that denotes the crystal
system, followed by a capital letter to identify the space lattice. To these a number is
added that is equal to the number of atoms in the unit cell. Thus, the Pearson symbol
for wurtzite (hexagonal, space group P63mc), which has four atoms in the unit cell, is
hP4. Similarly, the symbol for sodium chloride (cubic, space group Fm 3m), with
eight atoms in the unit cell, is cF8.

3.2 COHESIVE FORCES IN SOLIDS

The cohesive forces bonding the atoms together in a crystal can be ionic, covalent, or met-
allic, or even a mixture of these types. Although distinguishing compounds based on this
classification scheme may seem like a straightforward matter, it is complicated by the fact
that, typically, the bonding within an inorganic material is a mixture of bonding types.
Not only does the attraction between any two atoms in a solid, with the exception of
pure elements, contain both an ionic and covalent character, but many solids possess
some fraction of predominantly ionic bonds as well as some fraction of predominantly
covalent ones.

Coordination numbers of the constituent atoms are not always helpful for differen-
tiating bonding types either. The two most common coordination geometries observed
in the covalent compounds of p-block and d-block elements are tetrahedral and octa-
hedral coordination, respectively. These happen to be the same coordination numbers
around the interstitial sites in the close-packed structures of many metallic elements
and ionic compounds.

3.2.1 Ionic Bonding

The first ionic bonding model was suggested by the German chemist Richard Abegg
(1869–1910) shortly after the British physicist Joseph John Thomson (1856–1940)
discovered the electron. Abegg was studying the inert gases and noticed that their electron
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configurations were particularly stable. His research led him to hypothesize that atoms
combined with one another because they exchange electrons, such that both end up
with a noble gas electron configuration. Abegg’s rule, formulated in 1904, states that
the difference between the maximum positive and negative valence of an element is
often eight, where the term valence refers to the excess or deficit of electrons relative
to these stable configurations. Gilbert Lewis and Irving Langmuir later adopted this
idea for the octet rule (Section 3.3.5).

Today, an ionic bond is recognized as the nondirectional electrostatic attraction
between oppositely charged ions. For an isolated ion pair, the Coulomb potential
energy, U, is simply

Uion pair ¼ � 1
4p10

� �
qþq�e2

r
(3:1)

In this expression, the qþ/2 terms are the ion charges, r is the distance separating them,
e is the electron charge (1.602 � 10219 C), and (1/4p10) is the free space permittivity
(1.11265 � 10210 C2 J21 m21). The units ofU are Joules. There is also a strong repulsive
force, owing to the close proximity of the nuclei, which Max Born (1882–1970)
suggested was

V ¼ B

rn
(3:2)

where B is a constant determined from the interatomic distance, r. The Born exponent,
n, is normally between 5 and 12.

Arrays of ions tend to maximize the net electrostatic attraction between ions, while
minimizing the repulsive interactions. The former ensures that cations are surrounded
by anions, and anions by cations, with the highest possible coordination numbers. In
order to reduce repulsive forces, ionic solids maximize the distance between like charges.
At the same time, unlike charges cannot be allowed to get too close, or short-range
repulsive forces will destabilize the structure. The balance between these competing
requirements means that ionic solids are highly symmetric structures with maximized
coordination numbers and volumes.

A purely ionic bond is an extreme case that is never actually attained in reality.
Between any two-bonded species, there is always some shared electron density, or partial
covalence, however small. An anion has a larger radius than the neutral atom because of
increased electron–electron repulsion. Its valence electron density extends out well
beyond the nucleus and it is thus more easily polarized by the positive charge on an adja-
cent cation. One can usually presume predominately ionic bonding when the (Pauling)
electronegativity difference, Dx, between the atoms in their ground-state configurations
is greater than about two. However, on polarizability grounds alone, we should anticipate
circumstances that challenge the validity of such a simplistic viewpoint based on a single
parameter. Despite the fact that atoms are frequently assigned oxidation numbers, as well
as the quite common usage of terms like cation and anion in reference to solids, one
should not take these to necessarily imply an ionic model.
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There are some complimentary concepts that allow us to predict when an ionic model
is unlikely, even if the Dx condition is met. First, rules by the Polish-born American
chemist Kasimir Fajans (1887–1975) state that the polarizing power of a cation increases
with increasing charge and decreasing size of the cation. Likewise, the electronic polar-
izability of an anion increases with increasing charge and increasing size of the anion
(Fajans, 1915a, b, 1924). The electronic polarizabilities of some ions in solids (Pauling,
1927) are listed in Table 3.2. It is expected that valence electron density on an anion
will be polarized towards a highly charged cation, leading to some degree of covalence.
Exactly howmuch charge is highly charged? It has been suggested that no bond in which
the formal charge of the cation exceeds about 3þ can possibly be considered ionic
(Porterfield, 1993).

If this is accepted, then it must be conceded that many so-called ionic solids, in fact,
may not be so ionic after all. For example, in rutile (TiO2) the nominal formal 4þ charge
on titanium would ensure a substantial amount of covalency in the Ti–O bonds, despite a
Dx of almost two. Indeed, band structure calculations using density functional theory
indicate that titanium bears a þ1.2 charge and oxygen 20.6 (Thiên-Nga and Paxton,
1998), while Hartree–Fock calculations on the series TiO/Ti2O3/TiO2 have shown
that Ti–O bond ionicity decreases and bond covalence increases with increasing titanium
valency (Evarestov et al., 1997).

In 1951, Robert Thomas Sanderson (1912–1989) introduced the principle of
electronegativity equalization that proposes, when two or more atoms combine, the
atoms adjust to the same intermediate Mulliken electronegativity (Sanderson, 1951).
Density functional theory tells us that the Mulliken electronegativity is the negative of
the chemical potential (Parr et al., 1978). Sanderson’s principle then becomes very
appealing in that it can be considered analogous to a macroscopic thermodynamic
phenomenon – the equalization of chemical potential. When atoms interact, the electro-
negativity, or chemical potential, must equalize.

Sanderson used his theory to calculate partial charges and ionic radii of atoms in
solids and molecules. For example, the partial charges in TiO2 are evaluated as þ0.78
and 20.39 for titanium and oxygen, respectively. Although these values are not in

TABLE 3.2. Electronic Polarizability of Some Ions in Solids (10224 cm3)

Liþ Be2þ B3þ C4þ O22 F2

0.029 0.008 .003 0.0013 3.88 1.04
Naþ Mg2þ Al3þ Si4þ S22 Cl2

0.179 0.094 0.052 0.0165 10.2 3.66
Kþ Ca2þ Sc3þ Ti4þ Se22 Br2

0.83 0.47 0.286 0.185 10.5 4.77
Rbþ Sr2þ Y3þ Zr4þ Te22 I2

1.40 0.86 0.55 0.37 14.0 7.1
Csþ Ba2þ La3þ Ce4þ

2.42 1.55 1.04 0.73

(After H. P. R. Frederikse (2001), CRC Handbook of Chemistry and Physics, 82nd edition, D. R. Lide (ed.).
Data from L. Pauling (1927). # CRC Press. Reproduced with permission.)
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exceptional agreement with those obtained from band structure calculations, both sets of
results reinforce the idea that high formal oxidation states derived from simple valence
rules (e.g. Ti4þ, O22 in the case of TiO2) do not reflect true charge – or bond ionicity!

3.2.2 Covalent Bonding

Covalent bonds form between atoms with similar electronegativities. There is electron
density concentrated in the region between covalently bonded atoms, both of which
have ownership in the electron pair. The American chemist Gilbert Newton Lewis
(1875–1946) is generally credited with first describing the covalent bond as a shared
electron pair in 1916, before the advent of quantum theory. Whereas there is no such
thing as a completely ionic bond, the same cannot be said for covalent bonds. In elemen-
tal (homonuclear) silicon, for example, the bonding must be purely covalent. Such bonds
are comparable in strength to predominately ionic bonds. Heteronuclear bonds, on the
other hand, have a degree of ionicity, or charge transfer that is dependent on the electro-
negativity difference. The additional ionic interaction further strengthens the bond.

Of course, an adequate treatment of the covalent bond, in contrast to the purely
electrostatic attraction of an ionic bond, requires that quantum mechanics be invoked,
as electrons are described by wave functions. Originally, there were two competing
covalent bonding theories developed concurrently. In one, known as the valence bond
theory, the wave functions for the bonding electrons are considered overlapping atomic
orbitals. Owing to energetic and symmetry constraints, only certain atomic orbitals on
each atom can effectively overlap. In the second formalism, molecular orbital theory,
the wave functions are considered as belonging to the molecule as a whole. When
molecules pack together to form crystalline molecular solids, the molecules are held
together by noncovalent, secondary forces such as Van der Waals interactions and
hydrogen bonding. In a nonmolecular solid, however, the wave functions are described
by crystal orbitals (COs) that are analogous to molecular orbitals in molecules, and
which must be consistent with the translational symmetry, or periodicity, of the crystal.

Valence-bond theory was the first satisfactory explanation of the stability of the
chemical bond and was due to Walter Heitler (1904–1981) and Fritz London (1900–
1954) in 1927 (Heitler and London, 1927). In valence-bond theory, a chemical bond is
essentially regarded as being due to the overlap of neighboring valence-level
hydrogen-like atomic orbitals, each of which is singularly occupied by an electron
with spin opposite to the other. Each electron belongs to its own individual atom, as
shown in Figure 3.4a. However, because they are identical except for spin, each electron
could belong to either atom. Hence, the total wave function for the molecule is the linear
combination of the wave function for both cases.

Linus Carl Pauling (1901–1994) and John Clarke Slater (1900–1976) later showed
independently that n p atomic orbitals and one s atomic orbital could be combined math-
ematically to give a set of equivalent, or degenerate, singularly occupied spn-hybrid orbi-
tals (Pauling, 1931; Slater, 1931). The directional effects of the hybridization on the set
of orbitals were consistent with the known geometries of several polyatomic molecules of
fluorine, oxygen, nitrogen, and carbon. For example, sp3 hybridization of the carbon
atom in methane, CH4, explained that molecule’s tetrahedral geometry. Pauling then
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extended this scheme to transition metal compounds with the inclusion of d atomic
orbitals (Pauling, 1932).

In 1957, Ronald James Gillespie (b. 1924) and Ronald Nyholm (1917–1971)
showed that approximate molecular geometry can be predicted simply by consideration
of the Lewis structure, which shows the locations of the electron pairs (both bonding and
lone pairs). The premise is that the Pauli principle of repulsion of electron domains
dictates that orbitals containing valence electron pairs will be oriented to be as far a
part as possible. Hence, ligands will arrange themselves about a centrally coordinated
atom so as to maximize spherical symmetry. This simplistic, yet extraordinarily accurate,
model became known as the valence shell electron pair repulsion (VSEPR) theory
(Gillespie and Nyholm, 1957). The n electron pairs, which may be bonding pairs or
lone nonbonding pairs, form the n vertices of a polyhedron. If n ¼ 2, the geometry is
linear; for n ¼ 3, triangular planar; n ¼ 4 tetrahedron; n ¼ 5, triangular bipyramid;
n ¼ 6, octahedron; and so on. It is important to include lone pairs in determining approxi-
mate geometry. For example, the central oxygen atom of a water molecule is surrounded
by two bonding pairs and two lone pairs of electrons. These four electron pairs form the
vertices of a tetrahedron even though the three atomic nuclei obviously lie in a plane. The
1058 H–O–H bond angle is a little smaller than the ideal 109.58 tetrahedral angle since
the unshared pairs spread out over a larger volume of space than that occupied by the
bonding pairs. Gillespie and Nyholm’s work actually refined and expanded earlier
work by Oxford crystallographer Herbert Marcus Powell (1906–1991) and theoretical
chemist Nevil Vincent Sidgwick (1873–1952), which showed the importance of lone
pairs (Sidgwick and Powell, 1940).

Although hybridization (valence bond) and VSEPR theories both proved useful for
rationalizing molecular geometry and formalizing Lewis’ idea of shared electron pairs,
they are not entirely complete. One of the major shortcomings of the use of equivalent
orbitals is the inconsistency with spectroscopic findings. For example, photoelectron
spectroscopy provides direct evidence showing that the equivalent electron charge

(a)

(b)

Figure 3.4. (a) The overlap of two one-electron atomic wave functions, each centered on a

different atom, constitutes the Heitler–London (valence-bond) theory. (b) A one-electron

molecular wave function, or molecular orbital, in the molecular orbital theory of Hund and

Mulliken.
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densities in the four bonds of CH4 actually arise from the presence of electrons in non-
equivalent orbitals. The approach regarded as being the most accurate explanation of
covalent bonding is molecular orbital (MO) theory. In the MO approach, one-electron
wave function, or MOs, extends over all the nuclei in the entire molecule, having equal
amplitude at equivalent atoms (Fig. 3.4b). In classical (semiempirical) MO theory,
molecule formation is explained in terms of a lowering of the electronic energy, with
the MOs reflecting the known geometry of the molecule. Through advances in compu-
tational methods, ab initio MO theory became possible, in which molecular geometry
can be predicted via the principle of total energy minimization (Section 3.3.4). One essen-
tially traverses the entire energy landscape of a system and finds the structure with the
lowest energy, which is taken as the thermodynamically stable phase.

Molecular orbital theory originated from the theoretical work of German physicist
Friederich Hund (1896–1997) and its application to the interpretation of the spectra of
diatomic molecules by American physical chemist Robert S. Mulliken (1896–1986)
(Hund, 1926, 1927a, b; Mulliken, 1926, 1928a, b, 1932). Inspired by the success of
Heitler and London’s approach, Finklestein and Horowitz introduced the linear combi-
nation of atomic orbitals (LCAO) method for approximating the MOs (Finkelstein and
Horowitz, 1928). The British physicist John Edward Lennard-Jones (1894–1954) later
suggested that only valence electrons need be treated as delocalized; inner electrons
could be considered as remaining in atomic orbitals (Lennard-Jones, 1929).

Simultaneous with, and independent of, the work to explain molecular electronic
structure, Felix Bloch (1905–1983), who was a graduate student under Werner
Heisenberg trying to explain the conductivity of metals, used Fourier analysis to obtain
wave solutions to Schrödinger’s equation for a one-dimensional periodic potential. He
showed that the wave functions have equal amplitude at equivalent positions. His
thesis, The Quantum Mechanics of Electrons in Crystal Lattices, was published in
Zeitschrift für Physik (Bloch, 1928). In a crystalline solid, therefore, crystal orbitals
can be thought of as extending over the entire crystal, in an analogous fashion to MOs.
This is termed the Bloch method, or band theory, and it is the bonding theory most
appropriate for nonmolecular crystalline solids.

The valence-bond and MO (band) models both have been used to explain the
cohesive forces in solids. The two theories can be made equivalent in the limit of includ-
ing additional ionic plus covalent terms in the former and excited-state configurations
(configuration interaction) in the latter. Each has its advantages and disadvantages and
the choice of one over the other may be dictated by the type of experimental data (e.g.
magnetic measurements) at hand. It seems reasonable to expect the valence-bond
approach to most accurately reflect the bonding in more ionic solids (Seitz, 1940).
Many have advocated the argument that, in solids with internuclear distances greater
than a critical value, the valence d electrons are also best described with localized
atomic orbitals instead of [delocalized] COs (Goodenough, 1966, 1967; Mott, 1958).
This is equivalent to saying that valence-bond, or Heitler–London, theory is more appro-
priate than MO theory in these cases. For many transition metal compounds, this picture
is supported by magnetic data consistent with localized magnetic moments. Localization
is a particularly crucial concept for 3d electrons, since they do not range as far from the
nucleus as the 4s or 4p electrons. Valence s and p orbitals, by contrast, are always best
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described by Bloch functions, while 4f electrons are localized and 5f are intermediate. At
any rate, whether the valence-bond method or delocalized orbitals is used, it is found that
covalent bonding is directional since, owing to symmetry constraints, only certain atomic
orbitals on neighboring atoms are appropriate for combination. This will be explored
further in Section 3.3.5.

3.2.3 Metallic Bonding

The simplest model for a metal is the Drude–Sommerfeld picture of ions occupying fixed
positions in a sea of mobile electrons. This model originated in 1900 from Paul Karl
Ludwig Drude (1863–1906) and it was initially quite successful at explaining the ther-
mal, electrical, and optical properties of matter (Drude, 1900). It was further advanced in
1933 by Arnold Sommerfeld (1868–1951) and Hans Bethe (1906–2005) (Sommerfeld
and Bethe, 1933). The cohesive forces in this model are readily understood in terms of
the Coulomb interactions between the ion cores and the sea of electrons. The ion cores
are screened from mutually repulsive interactions by the mobile electrons. On the other
hand, there are repulsive forces between electrons – electron motion is correlated. Two
electrons with parallel spin tend to avoid one another (the Pauli exclusion principle).
The e–e repulsive interaction, however, is outweighed by the strong Coulomb attraction
between the oppositely charged electrons and ions, which is what bonds the atoms
together in the solid.

Although the cohesive forces in such an idealized metal as described would be
nondirectional (as in ionic solids), the orientation effects of d orbitals contribute a
directional-covalent component to the bonding in transition metals that requires a more
sophisticated definition for metallic bonding. The internuclear distances in the close
packed, or nearly close packed, structures of most metallic elements are small enough
that the valence orbitals on the metal atoms can overlap (in the valence-bond model)
or combine to form COs (in the MO or Bloch model).

The bonding COs are lower in energy and, hence, more stable than the atomic orbi-
tals from which they originate. However, since metal atoms have fewer valence electrons
than valence orbitals, there are not enough electrons for the number of two-electron
bonds required.

For a metallic solid containing an enormous number of orbitals, all the bonding
crystal orbitals (which comprise the valence band) are filled and the antibonding orbitals
(which comprise the conduction band) are only partially filled. The Fermi level (analo-
gous to the highest occupied molecular orbital, or HOMO) thus lies in this partially
filled conduction band. There are available states very close in energy (the separation
between them is infinitesimal) into which the electrons can be excited and accelerated
by an electric field. The electrons are said to be itinerant, which gives rise to a high
electrical conductivity. Thus, it can be considered that the bonding in metallic solids
is the special case of covalent bonding in which the highest energy electrons (the
Fermi level) are in a partially filled conduction band, or delocalized Bloch orbitals.
This was the original application of the Bloch scheme. Treating substances other than
close packed elements in the same manner is not restricted. The band theory of
solids predicts that any substance, be it an element or compound, close-packed or
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nonclose packed, in which the Fermi level lies in a partially filled band of delocalized
states, will be metallic.

3.2.4 Atoms and Bonds as Electron Charge Density

If the valence electrons exist in covalent solids as delocalized MOs or COs belonging to
the molecule or solid as a whole, as MO theory suggests, how can individual localized
atoms and electrons in a molecule or solid be delineated, and what are their properties?
It turns out, atoms and chemical bonds, as well as their characteristic properties, can be
determined from their electron charge density. This approach, championed by Richard
F. W. Bader (b. 1931), focuses entirely on the topology of the charge density. Recall
that the square of the wavefunction is a probability density (also referred to as the electron
density or charge density), which gives the shape of the orbital. The value of the wave-
function can be either positive or negative, but the probability of finding the electron near
a particular point in space is always positive. The probability is never zero; rather the elec-
tron density distribution falls off exponentially towards infinity. Therefore, an orbital has
no distinct size. However, an electron orbital is most commonly defined as the region of
space that encloses 90 percent of the total electron probability density. The electron dis-
tribution is a physical observable. It is a scalar field in Euclidean three-dimensional space;
at every point r in this space, the electron density r(r) assumes a specific scalar value
which can be measured.

Of prime importance in Bader’s method are examination of the gradient of the
electron-charge density distribution, rr(r), and its Laplacian, r2r(r), which is the diver-
gence of the gradient; directly related to the curvatures of r(r) along three mutually per-
pendicular directions. The Laplacian of the electron density shows where r is locally
concentrated (r2r(r) , 0) or depleted (r2r(r) . 0). The topology of the charge density
and, hence, the locations of atoms and bonds in molecules, is described by critical points.
In general, a critical point for a function of three variables is defined as a point where all
three partial derivatives are equal to zero: @/@x ¼ @/@y ¼ @/@z ¼ 0. In the case of r(r), a
critical point is one for which rr(r) ¼ 0 or in which the electron density has a zero gra-
dient in all three directions. A critical point can be a local minimum, a local maximum, or
a saddle point. A local maximum in r(r) corresponds to the position of the center of an
atom. This is the position of maximum electron density, from which the density falls off
in all three mutually perpendicular directions of space (Bader, 1990); they are designated
as (3, 23). Minima correspond to the cavities between the atoms, from which electron
density rises in all three directions of space; they are symbolized as (3, þ3). In addition,
there are two types of saddle points, designated as (3,21) and (3, þ1), in which, respect-
ively, the electron density falls down in two directions and rises in the third, or falls in one
direction and rises in the two other perpendicular directions. An example of a saddle point
in two dimensions is shown in Figure 3.5.

A bond, which is an accumulation of charge density between nuclei, manifests
itself in three dimensions as a ridge of maximum electron density connecting two
nuclei. The density along this path is a maximum with respect to any neighboring
path. The ridge’s existence is guaranteed by the presence between bound nuclei of a
(3, 21) saddle point, appropriately called the bond critical point, rc, for which rr(r)
vanishes (Bader, 1990). The line running along the top of the ridge delineates the
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bond path. The absence of such a line indicates the absence of a chemical bond. As
described in the preceding paragraph, the point rc is characterized by three curvatures
of r(r) along the three mutually perpendicular directions. The Laplacian model is
directly related to these curvatures and it also defines the regions where r(r) is locally
greater or less than its average value in the vicinity of r (Gibbs et al., 1999). A fruitful
application of this view of chemical bonding can be seen in Chapter 10 where the
mechanical properties of materials are studied.

3.3 STRUCTURAL ENERGETICS

Inorganic solid-state chemistry is rich in structure diversity. In this section, some guide-
lines for predicting local coordination geometries are presented. This is a well-established
field in inorganic chemistry. The challenging part is predicting theway these coordination
polyhedra interconnect to form a crystalline solid with long-range translational order. The
process is straightforward for simple solids if one knows the local coordination. A case in
point is an array of sp3-hybridized carbon atoms, whichmust adopt the diamond structure
where each vertex of every CC4 tetrahedron is shared with three other tetrahedra. The
predictive power for polyhedral connectivity decreases, however, with an increase in
the number of constituents, each with its own coordination preference. Advances have
been made and one approach will be discussed in Section 3.6. In some cases, a particular
constituent may actually be found in more than one coordination environment. For
example, it has been reported that the Ti4þ ion takes on both octahedral and tetrahedral
coordination by O22 in Ba6Nd2Ti4O17 (Kuang et al., 2002); that is, this oxide exhibits
layers of face-sharing TiO6 octahedra as well as TiO4 tetrahedral layers.

The rational design of novel structures possessing predetermined physical properties
thus remains an extremely daunting task. From the perspective of the synthetic chemist, it
is often fruitful to take a compound with a known stable- (thermodynamically or kineti-
cally) crystal structure and alloy one of more of the sublattices to form a stable solid
solution in which the product phase retains the same basic crystal structure of the
parent phase. In this way, the properties of the parent phase can be tuned to meet the

Figure 3.5. A saddle point for a function of two variables.
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requirements for a particular engineering function. It is reasonable to assume that atoms
of similar size, valence, and coordination preference can be exchanged on a sublattice.
For now, this book will go ahead and examine some simple factors that are useful to
the synthetic chemist and which do not require sophisticated or time-consuming compu-
tational methods, beginning with ionic solids.

3.3.1 Lattice Energy

The lattice energy, U, of an ionic crystal is defined as the potential energy per mole of
compound associated with the particular geometric arrangement of ions forming the
structure. It is equivalent to the heat of formation from one mole of its ionic constituents
in the gas phase. Equation 3.1 does not give the total energy of attraction for a three-
dimensional array of ions. Calculation of the total electrostatic energy must include
summation of long-range attractions between oppositely charged ions and repulsions
between like-charged ions, extending over the whole crystal, until a convergent mathe-
matical series is obtained. The pair potential approximation is presumed valid, whereby
pair interactions are assumed to dominate and all higher interactions are considered to be
negligible. As a result, only two-body terms are included.

The sums may be carried out with respect to the atomic positions in direct (real)
space or to lattice planes in reciprocal space, an approach introduced in 1913 by Paul
Peter Ewald (1888–1985), a doctoral student under Arnold Sommerfeld (Ewald,
1913). In reciprocal space, the structures of crystals are described using vectors that are
defined as the reciprocals of the interplanar perpendicular distances between sets of
lattice planes with Miller indices (h k l). In 1918, Erwin Rudolf Madelung (1881–
1972) invoked both types of summations for calculating the electrostatic energy of
NaCl (Madelung, 1918).

Although direct-space summations may be conceptually simpler, convergence can
be time consuming, if not problematic, even when one sums concentric electrically neu-
tral groups. Bertaut developed a method that achieves good convergence, utilizing reci-
procal space summations exclusively (Bertaut, 1952). The most generally accepted way,
however, was presented by Ewald in 1921 (Ewald, 1921). In this method, an array of
point charges neutralized by Gaussian charge distributions are summed in direct space
and an array of oppositely charged Gaussian distributions neutralized by a uniform
charge density are summed in reciprocal space. A derivation may be found in the book
by Ohno et al. (1999). Little would be gained in reproducing this arduous procedure
here. Suffice it to say, when these mathematical summations are carried out, over
larger and larger crystal volumes until convergence is achieved, a number known as
the Madelung constant is generated (see Example 3.3), such that the final expression
for the long-range force on an ion is:

Uion ¼ � 1
4p10

� �
aqiqje2

rij
(3:3)

in which 10 is the permittivity of free space (8.854�10212 C2 J21/m1), e is the electron
charge (1.6022�10219 C), q is the ion charge, and a is the Madelung constant.
The Madelung constant is dependent only on the geometric arrangement of ions and

CRYSTAL STRUCTURES AND BINDING FORCES112



the distance that r is defined in terms of nearest neighbor, unit cell parameter (beware of
different conventions when using Madelung constants from the literature!). The constant
has the same value for all compounds within any given structure type. If r is in meters, the
units of Eq. 3.3 will be in Joules per cation.

Johnson and Templeton calculated values of a for several structure types using the
Bertaut method (Johnson and Templeton, 1962). Their results are partially reproduced in
Table 3.3, where the second column lists the Madelung constant based on the shortest
interatomic distance in the structure. The third column gives reducedMadelung constants
based on the average shortest distance. For less symmetric structures, that is when there
are several nearest neighbors at slightly different distances, as in the ZnS polymorphs, the
reduced Madelung constant is the more significant value.

In order to obtain the complete expression for the lattice energy of an ionic crystal, it
is necessary to:

1. add the term representing the short-range repulsive forces;

2. include Avogadro’s number, N (6.022�1023 mol21);

3. make provisions for ensuring that pairs of interactions are not over-counted
(multiplying the entire expression by one-half).

TABLE 3.3. Madelung Constants for Several Structure Types

Compound M(R0) MkRl†

Al2O3 (corundum) 24.242 1.68
BeO 6.368 1.64
CaCl2 4.730 1.601
CaF2 (fluorite) 5.03879 1.68
CaTiO3 (perovskite) 24.7550 –
CdCl2 4.489 1.50
CsCl 1.76268 1.76
Cu2O 4.44249 1.48
La2O3 24.179 1.63
LaOCl 10.923 –
MgAl2O4 31.475 –
MgF2 4.762 1.60
NaCl (rock salt) 1.74756 1.75
SiO2 (quartz) 17.609 1.47
TiO2 (anatase) 19.0691 1.60
TiO2 (brookite) 18.066 1.60
TiO2 (rutile) 19.0803 1.60
V2O5 44.32 1.49
ZnO 5.99413 1.65
ZnS (zinc blende) 6.55222 1.638
ZnS (wurtzite) 6.56292 1.641

†MkRl ¼ M(R0) � kRl/R0, where R0 is the shortest interatomic distance and
kRl is the average shortest distance. (From Johnson, Q. C.; Templeton, D. H.
J. Chem. Phys. 1962, 34, 2004.)
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In so doing, the final expression for the lattice energy of an ionic crystal containing 2N
ions was given by M. Born and A. Landé (Born and Landé, 1918) as:

Ulattice ¼ � N

4p10

� �
aqiqje2

rij
þ B

rnij
(3:4)

Equation 3.4 gives the lattice energy in Joules per mole. We can avoid having to deter-
mine a value for the parameter B by using the equilibrium interatomic distance as
the value of r for which U is a minimum. This gives dU/dr ¼ 0 and the following
expression for U:

Ulattice ¼ � N

4p10

� �
aqiqje2

rij
1� 1

n

� �
(3:5)

where n is the Born exponent introduced in Section 3.2.1. If the value of n is not known,
an approximate value may be obtained from Table 3.4. The interatomic potential between
a pair of ions in the lattice is given by Eq. 3.4 minus Avogadro’s number. It will be seen in
Section 10.2 how the elastic modulus for an ionic solid can be estimated from such an
expression by taking the second derivative with respect to r.

Example 3.2

Some transition metal oxides contain ion exchangeable layers. In many cases, the
Mnþ cations in these layers are amenable to aliovalent ion exchangewithM(nþ1)þ

ions of similar size. No structural change, other than possibly a slight expansion
or contraction of the unit cell, occurs. In order to maintain charge neutrality,
aliovalent exchange requires the introduction of a vacancy for every Mnþ ion
exchanged. Based on lattice energy considerations, would you expect the ion-
exchanged product to be favored?

Solution

To simplify the solution, imagine an analogous one-dimensional array as shown in
Fig. 3.6. Carry out a direct-space summation of the long-range attractive and
repulsive forces felt by any arbitrary ion, extending across this one-dimensional

TABLE 3.4. Values of the Born Exponent

Cation–Anion Electron Configurations Example n

1s2–1s2 LiH 5
1s22s2p6–1s22s2p6 NaF, MgO 7
[Ne]3s2p6–[Ne]3s2p6 KCl, CaS 9
[Ar]3d104s2p6–[Ar]3d104s2p6 RbBr, AgBr 10
[Kr]4d105s2p6–[Kr]4d105s2p6 CsI 12

For mixed-ion types, use the average (e.g. for NaCl, n ¼ 8).
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array, before and after ion exchange. Before aliovalent ion exchange:

U ¼ �2q
2

r
þ 2q2

2r
� 2q2

3r
þ 2q2

4r
þ � � �

which can be written as

U ¼ �2q
2

r
1� 1

2
þ 1

3
� 1

4
þ � � �

� �

The second term in parenthesis may be recognized as an alternating series:

1� 1

2
þ 1

3
� 1

4
þ � � �

� �
¼
X1
n¼1

(�1)nþ1[1=n]

This series converges to ln 2, or �0.69.
Thus, the Madelung constant for the array corresponds to:

a ¼ (2� 0:69) ¼ 1:38:

For the ion-exchanged array, each Mþ ion is exchanged with one M2þ cation
and one vacancy. If the M2þ and Mþ ions are approximately the same size
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Figure 3.6. Calculation of the Madelung constant for a one-dimensional array of cations

and anions, before and after aliovalent ion exchange.
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(e.g. Naþ and Ca2þ), r has essentially the same value. However, the absence of
some of the cation–cation repulsion terms (every fourth term beginning with 1

2)
now forces the new alternating series to converge to �2.2, resulting in a
Madelung constant of (2 � 2.2) ¼ 4.4.

The aliovalent ion exchanged product is thus favored because of both a
larger Madelung constant and a larger product of ion charges in the lattice
energy expression. A one-dimensional analogy was chosen simply to illustrate
the general summation procedure. To extend the summation to a real three-
dimensional crystal requires the inclusion of a considerable number of addi-
tional terms, in which case, a hand calculation can become significantly less
tractable.

It should be noted that for complex (ternary and higher order) compounds, the structure
can be considered the superposition of simpler structures. For example, with the cubic
perovskite structure of formula AIIBIVO3, the Madelung constant can be expressed as a
combination of those of CsCl and Cu2O (Fumi and Tosi, 1960). This is possible because
linear relationships exist between the Madelung constants of different structures based on
the same Bravais lattice.

In cases where there are significant contributions from covalent bonding, Eqs. 3.4
and 3.5 will not reflect the true binding energy of the crystal. Nevertheless, they are
still useful in comparing relative energies for different compounds with the same struc-
ture. For example, even though the perovskites, ABO3, possess significant covalent
character, the ionic model is very useful because the stability of this structure is largely
owing to the Madelung energy.

Example 3.3

For the ternaryoxideCaTiO3 (perovskite structure),write: 1) thegeneral expression
for the lattice energy and 2) the expression for the electrostatic attraction.

Solution

In this lattice, there is one type of anion (i), O22, and two types of cations ( j, k),
Ca2þ and Ti4þ.

1. The general expression for the lattice energy, including all the summations
between the anions and each type of cation over a given volume, is
given by:

Ulattice ¼
1

2
e2 1� 1

n

� � Xp
j

Xm
i

qiqj

4p10rij
þ
Xs
k

Xm
i

qiqk

4p10rik

" #

wherem is the number of O22 anions, p is the number of Ca2þ cations, and
s is the number of Ti4þ cations. This expression includes the long-range
attractive (Coulombic) terms and the short-range repulsive terms.
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2. The expression for the electrostatic attraction is given by:

Ulattice ¼ 1

2
e2

qiqja

4p10rij
þ qiqka

4p10rik

� �

where the overall Madelung constant is a linear combination of those

of the Cu2O and CsCl lattices, namely, a(CaTiO3) ¼ 2a(Cu2O) þ 4a(CsCl), for
cubic perovskites of formula AIIBIVO3.

The determination of the Madelung constant for a crystal structure requires
the evaluation of electrostatic self-potentials of the structure. Any lattice
energy can also be expressed using lattice site self-potentials (which is what
Ewald actually calculated):

Ulattice ¼ Ne2
X
j

qjpjfj

2k

where qj is the total charge number for point j, pj is the frequency of occurrence

of point j in the unit cell, fj is the electrostatic potential for that lattice site, N is

Avogadro’s number, and k is the total number of molecules in the unit cell. In this

expression, the Madelung constant is defined as:

a ¼ �a
X
j

qjpjfj

2k

where a is described relative to the length a of the unit cell. Using self-potentials,

we have, for perovskite (ABO3):

Ulattice ¼ Ne2(qAfA þ qBfB þ 3qOfO)

where pA ¼ pB ¼ 1 and pO ¼ 3; k ¼ 1 and qA þ qB þ 3qO ¼ 0.

3.3.2 The Born–Haber Cycle

Lattice energies cannot be measured experimentally since they represent hypothetical
processes:

Mnþ(g)þ Xn�(g) �! MX(s)

However, the following reaction sequence, relating the heat of formation, DHf of a crystal
[M(s) þ 1

2X2(g)! MX(s)] to U[Mþ(g)!MX(s)] is thermochemically equivalent (and
DHf can be measured).

M0(g) þ X0(g) �! Mþ(g) þ X�(g)x?DH0
s

x?D ?y
M(s) þ 1

2X2(g) �! MX(s)
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In this diagram, DH0
s gives the enthalpy of sublimation of the metal [M(s)! M0(g)], D

gives the dissociation energy, or bond energy of the diatomic gas [12X2(g)! X0(g)],
IE gives the ionization energy of the gaseous metal [M0(g)! Mþ(g)], and EA gives
the electron affinity for the formation of the gaseous anion [X0(g)!X2(g)]. The lattice
energy is obtained through the relation:

U ¼ DHf � (DHs þ 1
2Dþ IE þ EA) (3:6)

One difficulty with using a Born–Haber cycle to find values for U is that heats of for-
mation data are often unavailable. Perhaps the greatest limitation, however, is that electron
affinities for multiply-charged anions (e.g. O22) or polyanions (e.g. SiO4�

4 ) cannot be
experimentally obtained. Such anions simply do not exist as gaseous species. No atom
has a positive second electron affinity; energy must be added to a negatively charged gas-
eous species in order for it to accommodate additional electrons. In some cases, thermo-
chemical estimates for second and third electron affinities are available from ab initio
calculations. Even so, if there are large covalent forces in the crystal, poor agreement
between the values of U obtained from a Born–Haber cycle and Madelung calculations
can be expected.

3.3.3 Goldschmidt’s Rules and Pauling’s Rules

Some guiding principles, enunciated by the Swiss-born Norwegian geochemist Victor
Moritz Goldschmidt (1888–1947) and Linus Pauling, make possible the rationalization
and prediction of the polyhedral connectivity for simple ionic solids. Three rules were
devised by Goldschmidt to explain element distributions in minerals (Goldschmidt
et al., 1925, 1926a, b, c). The basis of these rules is that ionic substitution of one cation
by another is governed by the size and charge of the cations. The first rule is that extensive
substitution of one cation for another can only occur with cations of the same size and
charge. The second and third rules are that cations of smaller size and same charge, or
same size and higher charge will preferentially incorporate into a growing crystal.

Pauling subsequently introduced three rules governing ionic structures (Pauling,
1928, 1929). The first is known as the radius ratio rule. The idea is that the relative
sizes of the ions determine the structure adopted by an ionic compound. Pauling proposed
specific values for the ratios of the cation radius to the anion radius as lower limits for
different coordination types. These values are given in Table 3.5.

TABLE 3.5. Radius Ratio Rules

rc/ra , 0.16 Three-fold
0.16 , rc/ra , 0.41 Four-fold
0.41 , rc/ra , 0.73 Six-fold
0.73 , rc/ra , 1.00 Eight-fold
1.00 . rc/ra Twelve-fold
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Unfortunately, the radius ratio rules are incorrect in their prediction of coordination
numbers about as often as they are correct. Usually, it overestimates the coordination
number of the cation. This model essentially regards ions as hard, incompressible
spheres, in which covalent bonding is not considered. The directionality, or overlap
requirements, of the covalent bonding contribution probably plays as significant a role
as ion size fitting.

Pauling’s second rule is the electrostatic valence rule. It states that the charge on
an ion must be balanced by an equal and opposite charge on the surrounding ions. A
cation, Mmþ, coordinated by n anions, Xx-, has an electrostatic bond strength (EBS) for
each bond defined as:

EBS ¼ m

n
(3:7)

Charge balance, then, is fulfilled if: Xm

n
¼ x (3:8)

The third rule by Pauling states that the presence of shared polyhedron edges and
faces destabilize a structure. Polyhedra tend to join at the vertices (corners). Cations
strongly repel each other as edges and faces are shared because the cation–cation distance
decreases. The smallest decrease occurs for octahedral edge sharing, followed by tetra-
hedral edge sharing and octahedral face sharing, and the largest decrease is for tetrahedral
face sharing, which makes this particular configuration quite unfavorable. Vertex, edge,
and face-sharing octahedra are all commonly observed stable arrangements, as are vertex-
sharing tetrahedra. Edge-sharing tetrahedra are not very common and the tetrahedra are
usually distorted, particularly if the cations are highly charged. Face-sharing tetrahedra
are not generally observed.

Linus Carl Pauling (1901–1994) earned a Ph.D. in
chemistry from the California Institute of
Technology in 1925 under Roscoe G. Dickinson.
In 1926, Pauling accepted a position under physi-
cist Arnold Sommerfeld at the University of
Munich where he first applied quantum mech-
anics to chemical bonding. This was the begin-
ning of Pauling’s extraordinary career, which
spanned nearly seventy years. He was a scientist
of great versatility, having carried out research
in numerous areas including: crystallography,
inorganic and physical chemistry, the theory of
ferromagnetism, and molecular biology. He was
awarded the Nobel Prize in chemistry in 1954

for his work on chemical bonding and molecular structure. Solid-state chemists
are also indebted to Pauling for rules predicting the structures of ionic solids,
and for his work on the structures of metals and intermetallic compounds.
Pauling’s work was not without disputes. W. L. Bragg accused him of stealing
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ideas on chemical bonding. Pauling debated his contemporaries on the merits of
both MO theory and band theory as opposed to the more simplistic valence-bond
theory and he expressed his disbelief in the existence of the quasicrystalline state.
Pauling also endured great controversy in his personal life. His opposition to
nuclear weapons and outspokenness on other war-related issues were regarded
with suspicion by the government. Twice he was forced to appear before a senate
subcommittee to defend his views. He was even temporarily denied the right to
travel abroad. However, in 1963, Pauling was awarded the Nobel Peace Prize
for his efforts to ban nuclear testing. Pauling was elected to the United States
National Academy of Sciences in 1933. (Source: My Memories and Impressions
of Linus Pauling by David Shoemaker, 1996. Courtesy Ava Helen and Linus
Pauling Papers, Oregon State University Libraries.)

(Photo courtesy of the California Institute of Technology. Reproduced with
permission.)

3.3.4 Total Energy

It has been seen that it is possible to estimate the total binding energy, or lattice energy,
of an ionic crystal by summing the long-range electrostatic interactions. From this
expression, the interatomic potential energy between a pair of ions in the lattice may be
obtained. In covalent solids, the binding energy of the crystal corresponds to the difference
between the total energy of the electrons in the crystal and the electrons in the same – but
isolated – atoms. Onemight reason then that the binding energyof a covalent crystal could
somehow be estimated from tabulated bond energies. However, such an approach is inher-
ently flawed because bond strength values obtained from bond energy tables generally
represent an average evaluation for the bonds in gaseous diatomic molecules, in which
case the bonding is substantially different from that in a solid. The calculation of intera-
tomic potentials in covalent solids must account for many-body effects, since the inter-
action between a pair of atoms is modified by the surrounding atoms.

The LCAO tight-binding (Hartree–Fock) method and its successors, the post-
Hartree–Fock methods, and the density-functional theory (DFT), were originally used
to solve electronic structure problems. All have also been applied to the calculation
of total energy, which includes contributions due to core–core, core–electron, and
electron–electron interactions. By varying the coordinates of the core, the dependence
of the total energy on the core coordinates can be examined. This is referred to as the
potential surface (also called energy landscape) of the system. These types of calculations
are called first-principles, ab initio, or quantum-mechanical methods. They are more
amenable to larger system sizes than classical (nonquantum mechanical) molecular
dynamics and Monte-Carlo (MO) simulations, which simply treat atoms in a many-
particle system as hard spheres and provide no information about the electronic structure.
In quantum MD simulations, the atomic cores are still treated as classical particles. The
electrostatic interactions between cores are often approximated as a sum over pair poten-
tials, including those Coulomb interactions between pairs of ions separated by long
distances, which is very similar to the expression for the Madelung energy. However,

CRYSTAL STRUCTURES AND BINDING FORCES120



the (classical) force on the core owing to the electron system is also included, while the
electronic structure problem itself is solved quantum mechanically. Alternatively, by
keeping the core positions fixed, the quantum-molecular-dynamics method can be
restricted to just the electronic structure component of the total energy.

The concept of total energy is very similar, but not identical, to internal energy. Both
are the sum of the potential energy and kinetic energy contributions in a system. However,
internal energy is an extensive thermodynamic state function for a macroscopic system
(�1023 atoms), irrespective of atomic numbers and atomic geometry. Furthermore,
absolute values of internal energy are not defined by laws of thermodynamics, only
changes in U that accompany chemical reactions or physical (phase) transformations
of macroscopic substances. In density functional theory, the total energy is decomposed
into three contributions: the electron kinetic energy, the interactions between the cores,
and a term called the exchange–correlation energy that captures all the many-body
interactions.

Note the similarity with the statistical mechanical interpretation for absolute internal
energy given earlier. In fact, the total energy can be argued to accurately represent a sort
of specific absolute internal energy, making it an intensive property. Total energy is an
intrinsic physical property that may be calculated for a single molecule, or, using a
finite-sized representative collection of atoms (usually on the order of 103), for a macro-
scopic solid. This is somewhat akin to the way the Madelung energy for an ionic crystal
is calculated; only total energy also includes electronic contributions as well.

Other thermodynamic functions, in addition to internal energy, can also be calcu-
lated from first-principles. For example, at a finite temperature, the Helmholtz free
energy, A, of a phase containing Ni atoms of the ith component, Nj atoms of the jth,
and so on, is equal to the DFT total energy at zero Kelvin (neglecting zero-point
vibrations) plus the vibrational contribution (Reuter and Scheffler, 2001):

AðT , V , Ni, . . . , Nj) ¼ Etot(V , Ni, . . . , Nj)þ Avib(T , V , Ni, . . . , Nj) (3:9)

The Helmholtz free energy, in turn, is related to the Gibbs free energy, G, via:

G(T , P, Ni, . . . , Nj) ¼ A(T , P, Ni, . . . , Nj) ¼ pV (T , P, Ni, . . . , Nj) (3:10)

The DFT total energy at zero Kelvin is thus a reference system for determining the free
energy, corresponding to a simple Einstein solid with all the atoms vibrating around
lattice points independently with the same frequency. The vibrational contribution,
Avib(T, V, Ni, . . . , Nj), contains the vibrational energy (including the zero-point
energy), Evib, and entropy, Svib. Each of these components can be calculated from the par-
tition function for an N-component system, Z, and using the relation Avib ¼ Evib 2 TSvib.
The reader is referred to Ashcroft and Mermin (1981) for the partition function
expression, as well as the vibrational and entropy defined in terms of Z.

As with thermochemical techniques, the most stable structure can be predicted from
DFT total energy calculations by the principle of energy minimization – global energy
minimization. Metastable structures that are kinetically stable can also be predicted by
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locating local minima in the potential surface surrounded by sufficiently high-energy
barriers. It becomes increasingly difficult to predict definitely the structure, stability,
and properties of solids, as the system size increases. This is because approximations
have to be employed for the energy calculations on large systems with multiple
minima. Ab initio methods are generally very computationally expensive. That is, they
require an enormous amount of computer resources (time, memory, and disk space).
Hartree–Fock methods typically scale as N4 (where N is the number of basis functions),
which means a calculation twice as large takes 16 times as long to converge. Post
Hartree–Fock methods generally scale less favorably (MP2 ¼ N5), while DFT scales
similarly to Hartree–Fock methods. In general, the systems readily treated by these
methods are limited to relatively small numbers of atoms, say, a few hundred.

In order to make accurate total energy calculations, one must investigate the entire
energy landscape having an approximate crystal structure in mind, which is used as a
starting point for optimizing the geometry to obtain the lowest energy structure.
Investigating anything less than the entire energy landscape runs the risk of not revealing
the true minimum. The structure predictions can sometimes be surprisingly different from
what would be expected based on chemical intuition. One such case involves the group
IV(B) nitrides, which adopt the spinel structure at high pressures and temperatures.

There are two possible cation distributions in spinel: the normal spinel, AB2X4, in
which there is no alloying distribution of A or B cations on either the four-coordinate
site (A), or eight-coordinate site (B); and the inverse spinel, B(AB)X4, with equal amounts
of A and B cations randomly distributed over the octahedral sites. Since it is well known
that silicon tetrahedral bonds are stronger than germanium tetrahedral bonds, and that the
Si4þ ion is smaller than the Ge4þ ion, initial DFT investigations were restricted to the
possible normal configurations. It was predicted that this nitride should prefer to adopt
the structure SiGe2N4, in which the four-coordinate sites are exclusively occupied by
silicon and the eight-coordinate sites by germanium, and that GeSi2N4 was unstable/
metastable to decomposition into the binary nitrides Si3N4 and Ge3N4. However, the
reverse cation site preference, (SixGe12x)3N4 was subsequently observed by X-ray
powder diffractometry experiments in polycrystalline samples with x 	 0.6 (Soignard
et al., 2001). These silicon and germanium site preferences were later confirmed by
density-functional total energy calculations (Dong et al., 2003).

The observed geometry apparently provides for a much more symmetrical distri-
bution of bond lengths around the four-coordinate nitrogen atom (sp3 hybridized). In
fact, the normal spinel, GeSi2N4, where the tetrahedral sites are exclusively occupied
by silicon and the octahedral sites are exclusively occupied by germanium, is predicted
to be the only stable crystalline phase in the Si3N4–Ge3N4 system, although kinetically
stable metastable solid solutions may exist for Ge-rich and Si-rich compositions
(Dong et al., 2003).

3.3.5 Electronic Origin of Coordination Polyhedra
in Covalent Crystals

In valence bond theory, the coordination number of an atom in a molecule or covalent
solid is generally limited to the number of valence orbitals on the atom. Likewise, only
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certain combinations of atomic orbitals on the atoms involved are suitable for forming
MOs possessing the point group symmetry of the molecule, or COs with the proper
space group symmetry of the crystal. Furthermore, molecules are most stable when the
bonding MOs or, at most, bonding plus nonbonding MOs, are filled with electrons and
the antibonding MOs are empty. These principles form the quantum mechanical basis of
G. N. Lewis’ and Irving Langmuir’s octet rule for compounds of the p-block elements
and for the 18-electron rule (also known as the effective atomic number rule) for
d-block elements by N. V. Sidgwick. In covalent solids, a pair of electrons with opposing
spins occupies each two-center bonding site in the CO. The geometries of molecules and
coordination polyhedra in covalent solids are thus determined by the types of valence
orbitals contributed by the atoms involved.

Knowing the molecular or crystal geometry allows us to draw overlap sketches invol-
ving the atomic orbitals that will show the net overlap. This, in turn, enables construction
of a qualitative energy-level diagram, from which the principles just discussed can be
verified. There is, of course, a prescribed group theoretical treatment to be followed.
This procedure is amply covered in many specialized textbooks on MO theory (e.g.
Cotton, 1990). It will be beneficial for us to very briefly review the basic methodology
applied to molecules for later comparison to solids. With molecules, one first finds the
irreducible representations to which the central atom atomic orbitals belong and then con-
struct ligand group orbitals, which are symmetry-adapted linear combinations (SALCs)
of the ligand atomic orbitals. For example, if the coordinate system for the ligand
atomic orbitals in a molecule of Td symmetry is as shown in Figure 3.7, group orbitals
can be found that transform according to the same rows of the same irreducible represen-
tations as the central atom orbitals. Only orbitals that have the same symmetry around the
bond axes can form MOs.

Figure 3.8 shows a generalized energy-level diagram for a tetrahedral molecule with
s- and p-bonds involving only s and p atomic orbitals (e.g. CCl4, ClO�4 ). The Mulliken
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Figure 3.7. The coordinate system for the atomic orbitals in a tetrahedral molecule.
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symmetry labels are shown for the MOs, which are the same as the labels for the irredu-
cible representations to which they belong. Hans Albrecht Bethe showed that the electron
wave functions (the MOs) can be chosen to transform like, or belong to, irreducible rep-
resentations of the point group of the molecule (Bethe, 1929). Electrons in the MOs
beginning with the lowest energy orbital (the aufbau, “building-up”, principle) can
then be placed, as when placing electrons in atomic orbitals. Each MO can hold two elec-
trons, of opposite spin. Hund showed that the state with maximum spin multiplicity is the
lowest in energy (Hund, 1926). Thus, in degenerate sets, electrons are added singularly,
one to each orbital, before double occupancy occurs. In CCl4, for example, there are 32
electrons available for filling theMOs. It can be seen that all of the bonding and nonbond-
ing MOs in Figure 3.8 will be filled with electrons, the antibonding MOs will be empty,
and the octet rule is obeyed around the central carbon atom. Note also, an energy gap
separates the HOMO and the lowest unoccupied molecular orbital (LUMO). It is impor-
tant to realize, however, that the symmetry considerations alone provide no quantitative
information on the actual energy levels.

Now consider the nonmolecular solid diamond, which may be considered built of
two interlocking carbon FCC sublattices, displaced by a quarter of the body diagonal.
The structure is shown in Figure 3.9a. There are two atoms associated with each diamond
lattice point, or basis, corresponding to a carbon atom on one FCC sublattice and one of
its nearest neighbor carbon atoms on the other FCC sublattice. These are the atoms at the
vertices of each square in Figure 3.9a, which shows the top face of each interpenetrating
cube, looking down the [0 0 1] direction. Every carbon has four such nearest neighbors
that form a tetrahedron (Td point group symmetry). Thus, diamond may also be described
as a three-dimensional network of vertex-sharing CC4 tetrahedra. The tetrahedral
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Figure 3.8. A generalized MO energy-level diagram for a tetrahedral molecule with s- and

p-bonding involving only s- and p-atomic orbitals.
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coordination can be more easily seen in the three-dimensional representation of the unit
cell shown in Figure 3.9b. The electronic structure of diamond is well described by con-
sidering both nearest neighbor and second-nearest neighbor interactions of the following
type: sss, pps, ppp, and sps.

Compliancewith the octet rule in diamond could be shown simply by using a valence
bond approach in which each carbon atom is assumed sp3 hybridized. However, using the
MO method will more clearly establish the connection with band theory. In solids, the
extended electron wave functions analogous to MOs are called COs. Crystal orbitals
must belong to an irreducible representation, not of a point group, but of the space
group reflecting the translational periodicity of the lattice.

Crystal orbitals are built by combining different Bloch orbitals (which we will
henceforth refer to as Bloch sums), which themselves are linear combinations of the
atomic orbitals. There is one Bloch sum for every type of valence atomic orbital contrib-
uted by each atom in the basis. Thus, the two-carbon atom basis in diamond will produce
eight Bloch sums – one for each of the s- and p-atomic orbitals. From these eight Bloch
sums, eight COs are obtained, four bonding and four antibonding. For example, a Bloch
sum of s atomic orbitals at every site on one of the interlocking FCC sublattices in the
diamond structure can combine in a symmetric or antisymmetric fashion with the
Bloch sum of s atomic orbitals at every site of the other FCC sublattice.

Alternatively, a Bloch sum of s atomic orbitals could combine with a Bloch sum of
p atomic orbitals. The symmetric (bonding) combinations of the basis atomic orbitals
for the latter case are illustrated for one CC4 subunit in Figure 3.9c. The actual COs
are delocalized over all the atoms with the space group symmetry of the diamond
lattice. A LCAO-CO construction from Bloch sums is thus completely analogous to a
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Figure 3.9. (a) The diamond structure viewed as two interlocking FCC sublattices displaced by
1
4 a along k1 1 1l. In this projection along the [0 0 1] direction, only the top face of each cube is

shown. (b) The unit cell. (c) Some possible sign combinations of the basis atomic orbitals used

to construct LCAO COs from two Bloch sums. (d) A qualitative CO energy-level diagram for

the center of the Brillouin zone, G ¼ k(0, 0, 0).
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LCAO-MO construction from atomic orbitals. It should be pointed out that some authors
refer to COs as BOs too, since a linear combination of BOs is also a BO.

It will be worthwhile to look at this in yet a little more detail. First, note that the
coordinate system of the atomic orbitals does not rotate at the vertices of the tetrahedra
(representing one of the FCC sublattices) in constructing Bloch sums for diamond, as
it did for the CCl4 molecule. In fact, as mentioned, the basis for the diamond structure
consists of only the two atoms in the chemical point group corresponding to the diamond
lattice point, not the five atoms in the CC4 tetrahedron. The Bloch sums in diamond are
SALCs adapted, not to a molecule with Td point group symmetry, but to the cubic dia-
mond lattice. Conversely, MO theory is equivalent to the band scheme minus consider-
ation of the lattice periodicity. A qualitative MO-like treatment of the diamond lattice
point, however, will suffice for obtaining the relative placement of the energy bands in
diamond at one special k-point. A k-point corresponds to a specific value of the quantum
number k(x, y, z), which gives the wavelength, or number of nodes, in the Bloch sums
that combine to give a CO. In a band structure diagram, the CO energies are plotted as
a function of the k-point.

At the special point k(0, 0, 0) ¼ G, known as the center of the Brillouin zone, there
are no nodes in the Bloch sums. At this k-point, the lowest energy CO in diamond arises
from totally symmetric sss and sps interactions (symmetric with respect to the product
JC2

4, where J is the inversion and C4 is a proper rotation about a four-fold rotation axis
of the cubic lattice). This CO, of course, transforms as the totally symmetric irreducible
representation of the cubic lattice. That irreducible representation is designated G1

(analogous to the Mulliken symbol A1 for the cubic point groups). Next lowest in
energy is a triply degenerate set of COs with both pps and ppp interactions. The set is
of symmetry designation G15 (also symmetric to JC2

4). The reader should easily be
able to sketch these. Immediately above this is the triply degenerate antibonding set of
symmetry G025 (antisymmetric with respect to JC2

4). The highest CO is the antibonding
CO, which is labeled G02 (again, antisymmetric with respect to JC2

4). The relative
energy levels of the various COs at G are shown in Figure 3.9d.

Now, every CO can hold two electrons (of opposite spin) per two-center bonding site
and every carbon contributes four electrons. If electrons are added to the aforementioned
COs of diamond, in accordance with the procedure used for MOs, the four bonding COs
(collectively termed the valence band) are found to be completely filled and the four
antibonding COs (collectively termed the conduction band) are empty. The octet rule
is, therefore, obeyed around each carbon atom. As a sizeable band gap separates the
full-valence band and empty-conduction band, the diamond is an insulator.

This same ordering of the energy bands is also found in other elements that adopt the
diamond lattice (e.g. Si). However, in some of these substances (e.g. Ge), as well as in
some compounds with the isostructural zinc blende lattice (e.g. InSb), the reverse order-
ing is observed (i.e. the G02 band may be lower in energy than the G025 band). Nonetheless,
the general picture of a full-valence band and an empty-conduction band still holds.
Furthermore, our MO treatment correctly predicts the formation of a pair of singularly
degenerate MOs and a pair of triply degenerate sets. However, the relative energy
levels and degeneracies of COs will change in moving between k-points (giving rise to
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the band dispersion in a band-structure diagram), which are not accounted for by the
simple MO treatment.

3.4 COMMON STRUCTURE TYPES

Hundreds of inorganic structure types are known. Unfortunately, it is only possible to
present a limited number of them here. The structures of several nonmolecular solids
that are of historical or pedagogical significance, or which are presently of significant
technological interest have been chosen for description; however, a large number of
omissions is inevitable. There are examples of ionic, covalent, and metallic compounds
that exist for almost every structure type. Thus, the common practice of classifying the
structure types themselves as ionic, covalent, or metallic is not followed in this text. It
should also be noted that many structure types are common to both iono-covalent and
intermetallic compounds.

The convention followed here is that iono-covalent compounds are those formed
between a metal (or metalloid) and a nonmetal, that is halide, chalcogenide, light pnictide
(N, P, As), silicon, carbon, or boron. Any compound formed between an element from
this group and a metallic element falls in this category. Compounds formed between
two or more nonmetals shall be classified as iono-covalent. Similarly, included in the
category of intermetallic compounds are those compounds formed between different
metals. Any compound containing a nonmetallic element is excluded from this category.
When referring to a generic structure type, the convention used is that of noting the
metallic elements as A, B, and C, and the nonmetals or metalloids as X and Y. For
example, NaCl has AX stoichiometry, TiO2 has AX2 stoichiometry, SrTiO3 is of ABX3

stoichiometry, and so on.

3.4.1 Iono-Covalent Solids

3.4.1.1 AX Compounds. Many solids of AX stoichiometry possess the rock-salt
structure including alkali halides (with the exception of cesium) and alkaline-earth chal-
cogenides (e.g. BaO, CaO, MgO). The arrangement of atoms in the rock-salt structure is
very favorable for ionic compounds. However, there are examples of more covalent and
even metallic compounds that also adopt this structure. These include SnAs, TiC, and
TiN. Titanium oxide, TiO, is metallic and nickel oxide, NiO, is a p-type (hole) semi-
conductor, although the carrier mobility is extremely low. The rock-salt unit cell is
again shown in Figure 3.10. It consists of two interlocking FCC sublattices (one of A
cations, the other of X anions) displaced relative to one another by a/2 along k1 0 0l,
where a is the cubic cell dimension. Both the cations and anions are situated at sites
with full Oh point symmetry. That is, every ion is octahedrally coordinated. The rock-
salt lattice is a Bravais lattice, since every lattice point, which consists of a cation–
anion pair, is identical.

Other AX structure types include cesium chloride, CsCl (Fig. 3.11); two polymorphs
of zinc sulfide–wurtzite and zinc blende; and NiAs. Although these structure types are
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often classified as ionic, many substantially covalent compounds adopt them as well.
For example, in g-CuI, which has the zinc blende structure, the radius rules for ionic
solids do correctly predict that copper should be tetrahedrally coordinated (rþ/r2 ¼
0.60/2.20 ¼ 0.273). However, the electronegativity difference between copper and
iodine is less than one unit and CuI is insoluble in water and dilute acids, which would
be quite unexpected for an ionic 1þ/12 salt.

Zinc blende can be considered isostructural with diamond, but with zinc cations
residing at the centers of the same tetrahedra and the sulfide anions at the vertices.
For zinc blende, an alternative description is in terms of a CCP-like array of S22

anions with one-half of the tetrahedral sites occupied by Zn2þ cations. The polyhedral
representation is depicted in Figure 3.12. Both diamond and zinc blende are best con-
sidered as two interlocking FCC sublattices displaced by a quarter of the body diagonal.
Many compounds comprised of main group p-block elements, with Dx, 1, adopt the
zinc blende structure. Some of these include b-SiC (a-SiC has the wurtzite structure),
BeSe, and the majority of binary compounds between group 13 and group 15 elements
(e.g. GaAs), and binary compounds of group 12 with group 16 (e.g. CdTe, ZnSe, HgSe).

The other polymorph of ZnS is wurtzite (Fig. 3.13). The zinc atoms are tetrahedrally
coordinated as in zinc blende, but the anions in wurtzite form anHCP-like array instead of
a CCP-like array. Indeed, the wurtzite structure is often thought of as an HCP-like array
of S22 anions with one-half the tetrahedral sites occupied by Zn2þ cations. Hence, the

= Anion

= Cation

a

a

a

Figure 3.10. The cubic rock-salt, or sodium chloride, unit cell consists of two interlocking FCC

sublattices, one of sodium cations and one of chloride anions, displaced by (1/2 a) along k1 0 0l.

a

a

a

= Anion

= Cation

Figure 3.11. The cubic cesium-chloride unit cell is not a body-centered cubic Bravais lattice

since there are two nonequivalent lattice points.
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next nearest and third nearest coordination in the two polymorphs are quite different.
Nevertheless, wurtzite and zinc blende are almost energetically degenerate. Given their
nearly identical Madelung constants (see Table 3.3), the overall Coulombic forces
must be roughly comparable – wurtzite being only very slightly favored. Band structure
calculations have also shown that the two ZnS polymorphs are essentially energetically
equivalent (Saitta, 1997).

The wurtzite structure is adopted by most of the remaining compounds comprised of
elements from the same groups as zinc blende, but which do not take the zinc blende
structure, for example, AlN, InN, CdSe. The structure seems to be able to accommodate
larger electronegativity differences between the constituent atoms, as in BeO, GaN, and
ZnO. For these more ionic compounds, the wurtzite unit cell must be more stable than
that of zinc blende, to an extent governed by the specific bonding forces in each case.

In contrast to wurtzite, the structure of nickel arsenide, NiAs (Fig. 3.14a), contains
vacant tetrahedral sites but a completely occupied set of octahedral sites. In NiAs, the

Figure 3.12. The diamond and zinc-blende structure depicted as a cubic array of vertex-

sharing tetrahedra. In ZnS, the zinc cations reside at the center of the tetrahedra and

the sulfide anions at the vertices. (After Elliot (1998), The Physics and Chemistry of Solids.

# 1998. John Wiley & Sons, Inc. Reproduced with permission.)

Figure 3.13. The hexagonal ZnS or wurtzite unit cell. Cations are the dark shaded circles.

3.4 COMMON STRUCTURE TYPES 129



NiAs6 octahedra share edges in one direction (the ab plane) and faces in another (along
the c direction). Many transition metal chalcogenides with a 1 :1 cation to anion ratio have
this structure, for example, NiS, FeS, FeTe, CoTe, and CrSe. Some of these cannot poss-
ibly be considered ionic. For example, below 260 K, NiS is a semimetal (the resistivity is
1023V cm and temperature independent) and metallic above 260 K (with a resistivity as
low as 1025V cm that increases with temperature), the transition not being accompanied
by a change in the symmetry of the crystal structure (Imada et al., 1998).

3.4.1.2 AX2 Compounds. One structure with AX2 stoichiometry is that of CdI2
(Fig. 3.14b), which can be considered an HCP-like array of anions with cations
occupying one-half of the octahedral sites. It is very similar to the NiAs structure with
alternating layers of nickel atoms missing. The CdI2 structure is very commonly observed
with transition metal halides. Another structure type is that of rutile, TiO2 (Fig. 3.14c), in
which chains of edge-sharing octahedra run parallel to the c axis. The chains are linked at
their vertices to form a three-dimensional network.

Many ionic compounds of AX2 stoichiometry possess the CaF2 (fluorite), or Na2O
(antifluorite) structures shown in Figure 3.15. Fluorite is similar to CsCl, but with
every other eight coordinate cation removed. Each fluoride anion is tetrahedrally coordi-
nated by calcium ions. This structure is adopted by several fluorides and oxides. In the
antifluorite structure, the coordination numbers are the inverse. Most oxides and other
chalcogenides of the alkali metals (e.g. Na2Se, K2Se) possess the antifluorite structure,
but so do some more covalent compounds, such as the silicides of Mg, Ge, Sn, and Pb.

An important oxide with the fluorite structure is ZrO2. At room temperature, zirconia
has a monoclinic structure in which zirconium is seven-coordinate. This transforms to a

Figure 3.14. Some simple structure types containing octahedrally coordinated metal atoms:

(a) NiAs; (b) CdI2; (c) rutile (TiO2). The anions are the light circles; the cations at the center of

the octahedra are the darkest shaded circles.
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tetragonal structure at 11008C and, at 23008C, to the cubic fluorite structure. Aliovalent
substitution of Zr4þ by the trivalent ion Y3þ stabilizes the fluorite structure at low temp-
eratures by the creation of oxygen vacancies. One vacancy is required for every two
yttrium atoms introduced. Yttria (Y2O3)-stabilized zirconia has the general formula
Zr12xYxO22(x/2). The Y

3þ cations are randomly distributed and there is some experimen-
tal evidence that suggests they are next-nearest neighbors to the vacancies (Fabris et al.,
2002). The Y3þ cations thus have eight-fold coordination, as in the ideal fluorite structure.
The presence of oxygen vacancies around the Zr4þ ions reduces the average coordination
number of zirconium to values closer to seven, as in the stable monoclinic structure. The
oxygen vacancies not only stabilize the fluorite structure in Zr12xYxO22(x/2), they give
rise to a mechanism for oxide ion conduction. Thus, there is interest in this material
for use as an oxide ion-conducting electrolyte in solid-oxide fuel cells.

Another important group of compounds with AX2 stoichiometry are the metal–
metalloid diborides, AB2, where A ¼ Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W,
Mn, Tc, Re, Ru, Os, U, P, or Pu. These compounds form graphite-like hexagonal
layers of boron atoms that alternate with layers of A atoms. Sometimes the boron
layers are puckered. Many of these materials have the distinction of being among the
hardest, most chemically inert, highest melting, and heat-resistant substances. Many are
also better electrical conductors than the constituent elements. For example, TiB2 has
five times the electrical conductivity of titanium metal (Holleman and Wiberg, 2001).

3.4.1.3 AX6 Compounds. There also exist several binary borides with the AB6

formula. The structure can be visualized as a body-centered CsCl lattice with the Cl2 ions
being replaced by B6 octahedra, while the body-center cation may be Na, K, Rb, Cs, Ca,
Sr, Ba, Sc, Y, Zr, La, lanthanide, or actinide. The AIIIB6 and AIVB6 borides have a high
metallic conductivity (104–105V21 cm21) at room temperature, but the other borides are
semiconductors. Other boron-rich binary borides include: AB3, AB4, AB10, AB12, and
AB66. The AB12 structure, like AB6, is comparatively simple, possessing the NaCl struc-
ture, in which the A atoms alternate in the lattice with B12 cubo-octahedra. The other
boron rich compounds are often very complex, containing interconnected B12 icosahedra.
The icosahedron is a special kind of polyhedron, sometimes called a deltahedron,

Figure 3.15. The fluorite (CaF2) structure. The cations are the dark shaded circles in the octant

centers.
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whose faces are equilateral triangles. Other deltahedra include the octahedron, trigonal
bipyramid, and tetrahedron. The particular deltahedron observed for a given compound
can be predicted with Wade’s rules (Wade, 1976). It can be stated as follows: The
number of vertices the deltahedron must have is equal to the number of cluster bonding
(skeletal) electron pairs minus one. Examples of the use of Wade’s rules will be given in
Section 3.4.2.1.

3.4.1.4 ABX2 Compounds. Many oxides with theABX2 delafossite structure, in
whichA ¼ Cu, Pd, Ag, or Pt;B ¼ Al, Sc, Cr, Fe, Co, Ni, Rh, or Ln; andX ¼ O (CuFeO2 is
themineral delafossite), have been studied by Shannon, Prewitt, and co-workers (Shannon
et al., 1971) and others (Seshadri et al., 1998). These oxides contain BO�2 layers of edge-
connected BO6 octahedra tethered to one another through two-coordinate A

þ cations, that
is interlayer cohesion owing to electrostatic forces. Every Aþ cation has six neighboring
Aþ cations in the same plane, which can be considered a close-packed layer. The BO�2 and
Aþ layers can show stacking variants, one of which is illustrated in Figure 3.16 where the
similarity with the octahedra of CdI2 (Fig. 3.14b) can be seen. Many delafossites possess
interesting properties. For example, some of the oxides with palladium or platinum as A
have very high in-plane electronic conductivities (only slightly smaller than copper
metal). However, the same oxides with copper or silver as A, are insulating.
Delafossites are also of interest magnetically, since the two-dimensional triangular lattice
enhances geometrical spin (magnetic) frustration.

Hagenmuller and co-workers have investigated the synthesis, structure, and proper-
ties of many other layered oxides with ABO2 stoichiometry (Delmas et al., 1975;
Fouassier et al., 1975; Olazcuaga et al., 1975). Like in the delafossites, the octahedral
slabs in these oxides are separated by ionic Aþ layers. However, they differ in that the
Aþ cation is octahedrally (or prismatically) coordinated by oxygen, whereas in delafossite
the Aþ cations are linearly coordinated by only two oxide anions. For example, in
a-NaMnO2, each Naþ cation has six equidistant oxygen anions, because every edge-
sharing MnO6 octahedron in each single-layer MnO2 slab coordinates one face to a
Naþ cation above it and one face to a Naþ cation below it. The conventional notation
used for this structure of a-NaMnO2 is O03, where the O signifies octahedral coordination
around the alkali metal, the prime designates a monoclinic distortion, and the number
three refers to the number of sheets in the unit cell.

The similar O2-type layered ABO2 oxides, including a-NaFeO2, NaNiO2, LiFeO2,
LiCoO2, and LiNiO2, can be considered ordered derivatives of rock salt, the ordering
occurring along alternate 1 1 1 layers. LiNiO2 and LiCoO2 are mixed conductors, exhi-
biting fast ionic (Liþ) conductivity as well as electronic conduction. Thus, they find use as
cathode materials in rechargeable lithium batteries. During cell charging, lithium ions are
extracted from the cathode and inserted into the anode. In the discharge cycle, the reverse
reactions occur. LiNiO2, however, suffers from severe capacity loss during recharging.
Another oxide, LiMnO2, has also been under consideration as a cathode material. This
phase is metastable on cycling, transforming to the spinel LiMn2O4.

3.4.1.5 AB2X4 Compounds (Spinel and Olivine Structures). The AB2X4

spinels, based on the mineral MgAl2O4, and the inverse spinels, B[AB]O4, are predomi-
nately ionic mixed oxides, containing a CCP-like array of X22 anions (Fig. 3.17). Most
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of the chalcogenides (O, S, Se, Te) can serve as the anion. More than 30 different cations
can be incorporated into the spinel structure, with various combinations of charges:
AIIBIII

2 X4, AIVBII
2X4, and AVIBI

2X4. In spinel, the A cations reside in one-eighth of the 64
tetrahedral sites and the B cations in one-half of the 32 octahedral sites. In the other
extreme, the inverse spinels, the A cations and half the B cations swap positions. Many
intermediate cation distributions have been observed between these two extreme cases.

Figure 3.16. The hexagonal delafossite structure. Lightly shaded circles are oxygen atoms. The

dark circles in the centers of the octahedra are the B atoms. The A atoms are the gray circles

located between the slabs of edge-sharing BO6 octahedra.
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Spinels have been studied intensively because of the sensitive dependence of their
electronic and magnetic properties on the cation arrangement. For example, Fe3O4 is a
mixed valent (FeII/FeIII) oxide with the inverse spinel structure. It is highly ferrimagnetic
and has a high electronic conductivity, which can be attributed to electron transfer
between FeII and FeIII. It was recognized two decades ago that the spinel structure
might also exhibit ion conduction (Thackery et al., 1982). In fact, owing to the high
lithium-ion conductivity in the oxide spinel LiMn2O4, this material has been used as a
cathode replacement for LiCoO2 in rechargeable lithium batteries. Unfortunately, directly
prepared LiMn2O4 exhibits less capacity and poorer cycling stability than LiCoO2,
especially at elevated temperatures. This is believed to be owing, in part, to a cooperative
Jahn–Teller distortion of Mn3þ, which causes the material to undergo a cubic-to-
tetragonal-phase transition. Capacity fading appears to be circumvented when the
LiMn2O4 electrode is prepared in situ by cycling LiMnO2, which phase transforms the
layered structure to spinel (Armstrong et al., 2004). This is most likely because of an inter-
mediate submicron intragranular domain structure that can accommodate the strain
caused by the cooperative Jahn–Teller distortion (Armstrong et al., 2004).

The olivine structure is named after a series of A2BX4 minerals with two end mem-
bers: Fe2SiO4 (fayalite) and Mg2SiO4 (forsterite). The two minerals form a series with a
structure consisting of a distorted HCP arrangement of oxygen anions. The A cations
(Mg and Fe) reside in octahedral sites and the B cations (Si) in tetrahedral sites. The

Figure 3.17. The spinel structure. The A cations are the light gray circles located at the corner

and face-center positions of the unit cell. The B cations (dark-gray circles) and the anions (lightly

shaded circles) are located at the corners of the four cubes contained in the octants.
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olivine and spinel structures are related and, in fact, (Mg,Fe)2SiO4 assumes the spinel
structure under high pressure, at a depth of 300–400 km depth in the Earth’s mantle.
The spinel version of (Mg,Fe)2SiO4 is about 12 percent more dense. Unlike spinel, in
olivine there are two distinct octahedral sites. One of the octahedral sites is slightly
smaller than the other and is the usual site for the smaller cations (e.g. Mg2þ). Larger
substituted cations (e.g. Ni2þ) reside in the larger octahedral site, while cations of
intermediate size (e.g. Fe2þ) may be found in either octahedral site.

Goodenough’s group has demonstrated that one compound with the olivine
structure, orthorhombic LixFePO4, has the potential to reversibly cycle lithium at
3.4–3.5 volts (Padhi et al., 1997). During cycling, Liþ ions are removed topotactically
to yield heterosite, maintaining the FePO4 framework. In LixFePO4, Li

þ ions occupy
the smaller octahedral sites while Fe2þ occupies the larger octahedral sites. The Liþ

sites form linear chains of edge-sharing octahedra along the b axis, while the Fe2þ

sites form staggered lines of vertex-sharing octahedra along the b axis. The metal
atoms can be viewed as occupying b–c metal planes, where the planes are alternatively
occupied by each type of metal, that is, there is a Li-Fe-Li-Fe ordering along the a axis.
Although the structure contains planes of Liþ chains, the interchain distance is large
and it is believed that the basic geometry of the olivine structure favors transport of
Liþ along one-dimensional tunnels (Morgan et al., 2004). Owing to its poor intrinsic
electronic conductivity (�1029 S/cm) and its low ionic conductivity, however, con-
ductive diluents (�2 percent), such as carbon black, must be added to LixFePO4 in
order for it to be used as a cathode material. In fact, even commercialized lithium
ion batteries containing so-called mixed conductors are actually complex composites,
containing carbon for this very reason, as well as polymeric binders to hold the
powder structure together.

3.4.1.6 ABX3 Compounds (Perovskite and Related Phases). The perov-
skites, ABX3, are three-dimensional cubic networks of vertex-sharing BX6 octahedra.
Perovskite itself is CaTiO3. The more ionic 12-coordinate A cation sits in the center of
the cube defined by eight vertex-sharing octahedra (Fig. 3.18). The structure therefore
contains BX6 octahedra and AX12 cuboctahedra. The A and X ions thus can be considered
CCP, in which one-quarter of the octahedral holes are filled with B cations. It has been
pointed out that the cubic perovskite structure can also be viewed as a four-sided octa-
hedral channel structure in which the A cation resides in the channels (Rao and
Raveau, 1998). Various combinations of A and B cation valences can be accommodated
in the perovskites, including AIBVX3, A

IIBIVX3, and AIIIBIIIX3. By far, most perovskites
contain the oxide or fluoride anions, but the structure is also found for some compounds
containing other anions as well, for example, S22, Cl2, H2, and Br2.

Many closely related phases exist that can be considered distorted variants of perov-
skite. For example, when the A-site cation is too small for its cavity, octahedral tilting
lowers the symmetry from cubic to orthorhombic (e.g. GdFeO3). In Ba2MgWO6, a
rock salt-like ordering of the octahedral cations is found to accompany octahedral tilting.
Perovskites can also tolerate vacancies, mixed valency, and/or oxygen deficiency. There
are several important perovskite-related phases in which perovskite slabs are interleaved
with other crystal structures. One is that of the Aurivillius phases, (Bi2O2)(An21BnO3nþ1),
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which result from the intergrowth of perovskite with Bi2O2 layers. Another intergrowth
structure is the Ruddlesden–Popper (RP) series of oxides, Srnþ1TinO3nþ1. These can
be considered SrTiO3 perovskite layers interleaved with SrO rock-salt-like layers. The
RP phases have been of renewed interest since the discovery that ion-exchangeable
cations can replace strontium in the rock-salt-like layers. The ion-exchangeable oxides
can be represented as A02[An21BnO3nþ1], where A0 ¼ alkali metal, A ¼ alkali-, alkaline-
earth, rare-earth, or main-group element. One such n ¼ 3 phase is Na2La2Ti3O10,
shown in Figure 3.19. A related series of oxides are the Dion–Jacobson phases,
A0[An21BnO3nþ1].

Owing to their great structural and compositional flexibility, perovskites and
perovskite-related compounds, as a structure class, exhibit perhaps the richest variety
of magnetic and electrical transport properties in solid-state chemistry. Fortunately,
because of their relatively simple structures, perovskites are rather easily amenable to
theoretical treatment.

The pyroxenes are a large family of compounds with the formula AMB2O6, some-
times written as (A,M )BO3 (A ¼ Ca2þ, Naþ, Fe2þ, Mg2þ; M ¼ Cr3þ, Mg2þ, Fe2þ,
Fe3þ; and B ¼ Al, Si, or Ge). With magnesium silicate, MgSiO3, the high pressure
phase (.25 GPa) is perovskite while the low-pressure phase is pyroxene. Here, the
structure consists of isolated quasi one-dimensional chains of MgO6 octahedra linked
together by single chains of vertex-sharing SiO4 tetrahedra extending along the c axis
of the unit cell. The Mg sites lie between the apices of opposing tetrahedra. When a por-
tion of Mg is substituted for larger A cations, these larger cations lie between the bases of
the tetrahedra and are in more distorted six- or eight-fold coordination. A pictorial device
used for representing pyroxenes is called the I-beam, with each I-beam comprised of two
tetrahedral chains pointing in opposite directions and linked by the M octahedral sites.
Some oxide phases with the pyroxene structure, such as NaCrSi2O6 and NaCrGe2O6,
are quasi one-dimensional metals at low temperatures.

Figure 3.18. The cubic ABX3 perovskite structure. The B cations (dark gray circles) are at the

vertices of the octahedra (the midpositions of the cell edges) and the A cation (light gray

circle) is located in the center of the cube. Anions are at the corners of the cube.
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Figure 3.19. Na2La2Ti3O10, an n ¼ 3member of the ion-exchangeable RP-like phases. The TiO6

octahedra are shown. The O22 anions are at the vertices of the octahedra and the Ti4þ cations

in the centers of the octahedra. The La3þ cations are the large circles. The Naþ cations are the

small circles in between the triple-layer slabs.
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3.4.1.7 A2B2O5 (ABO2.5) Compounds (Oxygen Deficient Perovskites).
Brownmillerite is the name given to the mineral Ca2FeAlO5 (Hansen et al., 1928).
Several A2B2O5 compounds (A ¼ Ca, Ba, Sr; B ¼ Fe, Al, Ga, Mn, In) isostructural
with brownmillerite are known to exist. The brownmillerite structure (Fig. 3.20) can be
thought of as an oxygen-deficient perovskite with the oxygen vacancies ordered into
defect chains along the k1 1 0l direction. The structure can be described as an array of
alternating layers of BO3 octahedra and BO2 tetrahedra, with the A2þ cations occupying
the spaces between. In order to optimize the coordination around Aþ, the tetrahedra are
distorted and the octahedra are tilted.

In principle, any trivalent cation that can accept either tetrahedral or octahedral
coordination can be incorporated into the brownmillerite structure. It is also possible to
lightly dope brownmillerite with aliovalent cation pairs, for example Mg2þ/Si4þ in
Ca2Fe0.95Al0.95Mg0.05Si0.05O5. The usual strategy, however, is to incorporate pairs of
cations in which one of the members has a distinct preference for a particular type of
site. For example, in Ca2FeAlO5 the Al3þ cations are found in the tetrahedral sites
and the Fe3þ in the octahedral sites. Similarly, in Ca2MnGaO5, Ga

3þ cations exclusively
occupy the tetrahedral sites, while Mn3þ occupies the octahedral sites. The ability
to achieve this type of ordered cation arrangement offers the potential to realize

Figure 3.20. The brownmillerite phase can be thought of as an oxygen deficient perovskite, in

which the oxygen vacancies are ordered along the k1 1 0l direction of the perovskite cell. The

tetrahedra are distorted and the octahedra are tilted in order to optimize coordination

around the A cations. The A cations are not shown in this figure for clarity.
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two-dimensional layers (e.g. MnO2 and GaO in Ca2MnGaO5) that may have concomitant
magnetic or electronic transport properties of interest.

Interest in the brownmillerites as fast oxide ion conductors was first stimulated by
Goodenough, who showed that Ba2In2O5 displayed an abrupt increase in electrical con-
ductivity above a certain temperature (Goodenough et al., 1990). Oxide ion conductors
must have a high concentration of oxygen vacancies (either intrinsically or from aliova-
lent doping as in Y stabilized ZrO2) for O

22 hopping to occur. However, high-oxide ion
diffusivity is generally associated with a disordered oxygen sublattice (Norby, 2001).
Accordingly, fast-oxide ion conduction has been observed only at high temperatures
(800–10008C) in Sr2Fe2O5 (Holt et al., 1999) and Ba2In2O5 (Goodenough et al.,
1990). Atomistic modeling has supported the theory that the abrupt conductivity
change in Ba2In2O5 is owing to an order-disorder phase transition. The computer
simulations suggest that O22 anions become displaced from their lattice sites into the
open interstitial sites in the tetrahedral layer, forming Frenkel defect pairs (Section
3.5.1). As the number of Frenkel defects rises with increasing temperature, the
anions at the equatorial positions in the octahedral and tetrahedral layers become indis-
tinguishable and the displaced O22 anions diffuse rapidly through the material (Fisher
and Islam, 1999).

Some phases with the ABO2.5 composition do not have the brownmillerite structure.
This is possible when the B cation is a transition metal with a tendency to adopt geome-
tries other than tetrahedral and/or octahedral. For example, the oxygen vacancies in
LaNiO2.5 order in such a way as to form alternating NiO6 octahedra and NiO4 square
planes within the ab plane, which results in chains of octahedra along c (Vidyasagar
et al., 1985). In still other (primarily mixed valent) ABO32x phases with x, 0.5, other
polyhedra are observed. The oxide CaMnO2.8, for instance, is built up of an ordered
framework of Mn(III)O5 pyramids and Mn(IV)O6 octahedra.

3.4.1.8 AxByOz Compounds (Bronzes). The bronzes are channel structures
with an openness that allows for the transport of atoms or ions into the crystal.
Bronzes have the general formula AxByOz, in which A is an alkali-, alkaline-earth, or
rare-earth metal and B can be Ti, V, Mn, Nb, Mo, Ta, W, or Re. The German chemist
Friedrich Wohler (1800–1882), who discovered NaxWO3 in 1824, called these materials
bronzes owing to their intense color and metallic luster. The introduction of sodium into
theWO3 perovskite structure chemically reduces a portion of theW6þ ions toW5þ. When
x � 0.28, this results in metallic conductivity (Goodenough, 1965; Greenblatt, 1996).
Nonstoichiometric sodium tungsten oxide (x, 1) has a distorted perovskite structure
with unequal W–O bond lengths and tilted WO6 octahedra.

Some bronzes have lamellar structures. For example, NaxMnO2, which was already
discussed, is a bronze. This phase consists of slabs of edge-sharing MnO6 octahedra sep-
arated by layers of Naþ cations. There are many structural variations among the bronzes.
In fact, some bronzes with rather complex structures bare little or no resemblance to
perovskite, although they are all generally built from vertex-sharing and/or edge-sharing
octahedra. The open channels may have triangular, square, rectangular, diamond-shaped,
pentagonal, hexagonal, or other polygonal cross-sections.
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3.4.1.9 A2B2X7 Compounds (Pyrochlores). Another channel structure is that
of the pyrochlores (Fig. 3.21), with general formula A2B2X7. The mineral pyrochlore is
(Ca, Na)2Nb2O6(O, OH, F). The A and B cations form a FCC array with the anions occu-
pying tetrahedral interstitial sites. The A ion has eight-fold anion coordination and B has
six-fold anion coordination. Thus, the pyrochlore lattice consists of two sublattices:
(A2X )B2X6. It may also be thought of as an anion deficient derivative of the fluorite
structure, but with an ordered arrangement of anion vacancies and an ordered cation
arrangement. The size of the A cation has a large effect on the stability of the pyrochlore
structure. As the size difference between the A and B cations decreases, the fluorite
structure becomes favored over pyrochlore.

The B2X6 sublattice is a tetrahedral network of vertex-sharing BX6 octahedra contain-
ing channels with hexagonal cross sections. However, the channels are obstructed by the
anions of the hexagonal A2X sublattice of vertex-sharing AX4 tetrahedra, which prohibit
cationic mobility. In nonstoichiometric (anion deficient) pyrochlores, Gd1.8Ca0.2Ti2O6.95

for example, cationic mobility and ion exchange of the A-site cations is possible at high
temperatures.

The stoichiometric pyrochlore transition metal oxides exhibit a wide range of
magnetic and electronic transport properties. These properties are, of course, dependent
on the d electron count of the B cation. Electrical conductivity may be insulating

Figure 3.21. The A2B2X7 pyrochlore structure. The B2X6 sublattice is a tetrahedral channel-

forming network of vertex-sharing BX6 octahedra. The channels are occupied by the anions

of the A2X sublattice of vertex-sharing AX4 tetrahedra (not shown).
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(e.g. Gd2Ti2O7, Tb2Ti2O7), semiconducting (e.g. Tl2Ru2O7), or metallic (e.g.
Nd2Mo2O7, Cd2Re2O7). The oxide Cd2Os2O7 undergoes a transition from semiconduct-
ing to metallic conductivity at 226 K accompanied by a magnetic transition (paramag-
netic to antiferromagnetic) and Tl2Mn2O7 exhibits colossal magnetoresistance, a
dramatic drop in its electrical resistivity in the presence of a magnetic field. The anti-
ferromagnetic ground state of the pyrochlore oxides can have very large spin degeneracy.
This is because the A2O sublattice that the magnetic rare-earth cations reside on is a geo-
metrically frustrated system with competing magnetic interactions. Hence, spin glass
behavior, as characterized by hysteresis and nonlinearity in the magnetic susceptibility,
is observed in many pyrochlore oxides at low temperatures, even in the absence of chemi-
cal or bond disorder, including Y2Mo2O7 and Tb2Mo2O7 (Gardner et al., 2001).

3.4.1.10 Silicon Compounds. Silicon, like carbon, has a propensity for tetra-
hedral coordination. The SiX4 tetrahedron can be considered the building block of most
silicon compounds. The two polymorphs of silicon carbide, for example, adopt the zinc
blende and wurtzite structures. In a similar fashion, silicon dioxide is found in nature in
both crystalline and amorphous forms, inwhich the SiO4 tetrahedra share all their vertices.
There are eight different modifications of the crystalline form of SiO2. The most stable
is a-quartz, consisting of interlinked helical chains, with three tetrahedra per turn.
Quartz crystals can be either right-handed or left-handed, so that they are nonsuper-
imposable on their mirror image, that is, they exhibit enantiomorphism (Greenwood and
Earnshaw, 1997). The other crystalline forms contain interlinked sheets of six-membered
rings of tetrahedra. It has been said thatmore is known about the chemical, structural, phys-
ical, and electrical properties of SiO2 than anyother oxide. This is, no doubt, in part, owing
to the importance of this material as a dielectric for silicon-based microelectronic devices.

There is an immense variety of silicate mineral structure types. However, the con-
nectivity of the tetrahedra in most silicates can be determined from their formulae
(West, 1985). The smaller the Si :O ratio, the fewer the number of SiO4 vertices shared
with neighboring units. For example, Mg2SiO4 (Si :O ¼ 1 :4) contains no bridging
oxygens and thus has discrete SiO4 tetrahedra. By contrast, SiO2 (Si :O ¼ 1 :2) is a
three-dimensional network containing no nonbridging oxygens. In fact, one classification
system for silicate structures is based on the number of oxygen atoms per tetrahedron that
are shared. The notation scheme is as follows: neso- (Si :O ¼ 1 :4); soro- (Si :O ¼
1 :3.5); cyclo- (ino-) (Si :O ¼ 1 :3); phyllo- (Si :O ¼ 1 :2.5); and tecto- (Si :O ¼ 1 :2),
corresponding to, respectively, 0, 1, 2 (closed ring or continuous chain), 3, and 4
shared oxygen atoms. Unfortunately, owing to space constraints, it is not possible to
provide a more detailed study of the structures of silicates. However, a discussion on
another binary silicon compound that is also important to the semiconductor industry,
Si3N4, as well as a few aspects of zeolites and other porous solids, is included in the
next section.

There are many other binary and ternary silicon compounds of commercial impor-
tance. For example, silicon nitride (Si3N4) occurs in two hexagonal forms: the a-form
and a denser b-form. The crystal structures are very complex, but may be thought of
as close-packed nitrogen atoms, with three-eighths of the tetrahedral vacancies occupied
by silicon atoms. In this respect it is like SiO2, being a three-dimensional network of
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tetrahedral units. However, although the nitrogen atoms do arrange roughly into a
tetrahedron around the silicon atoms, the silicon atoms are arranged into planar triangles
(not pyramids) around the nitrogen atoms. The b-form contains small diameter (�0.15
nm), one-dimensional channels. Silicon nitride is very hard, strong, and chemically
inert towards most agents up to 1300ºC (Holleman and Wiberg, 2001). It is relatively
impermeable to sodium, oxygen, and other species (even hydrogen diffuses slowly
through silicon nitride). Hence, (amorphous) Si3N4 films find wide use in silicon-
based integrated circuits as diffusion barriers and passivation layers.

3.4.1.11 Porous Structures. Many nonmetal oxides (e.g. silicates and
phosphates) possess open, three-dimensional framework structures, built from vertex-
sharing polyhedra, containing large tunnels or cavities. The microporosity (pore
diameters �20 Å) or mesoporosity (pore diameters ¼ 20–500 Å), plus the large internal
surface area in these materials, enable their use as small molecule sieves, adsorbents, ion-
exchange media, and catalysts. As with the silicates, the structures and chemical formulas
depend on the numbers of free and shared polyhedral vertices. Frameworks containing
aliovalent substitutional ions, such as Al3þ substituting for Si4þ ion in SiO4 tetrahedra,
bear net negative charges. Cations must be accommodated within the framework to
balance this charge. Examples include the felspars NaAlSi3O8 and CaAl2Si2O8. The
structures of inorganic frameworks can be classified into two basic categories: zeolite-
types containing exclusively tetrahedra, and those types with mixed tetrahedral–
octahedral (or bipyramidal) frameworks.

Figure 3.22 shows how six groups of four corner-sharing SiO4 tetrahedra – six
squares of tetrahedra giving 24 tetrahedra total – connect together in the zeolites to

Figure 3.22. A zeolite is constructed from linked cuboctahedra, which in turn, are constructed

from four-membered squares of tetrahedra.
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form a cuboctahedron (intermediate between a cube and octahedron), which unites
with other cuboctahedra to form the large open-network structure characteristic of
these compounds. Zeolites are commercially prepared by a hydrothermal technique
(high temperature and pressure) involving crystallization from strongly alkaline solutions
of sodium silicate and aluminum oxide. The aluminophosphates possess an (Al,P)O4

tetrahedra framework similar to that of the zeolites.
Many transition metal silicates, germanates, and phosphates possess a mixed frame-

work of different types of polyhedra, for example, tetrahedra and octahedra. These phases
can be prepared by hydrothermal techniques, but it is still not entirely clear how the struc-
tures assemble at the molecular level. Nonetheless, inorganic and organic moieties have
found use as templates to control the pore size and shape in many cases, but the large
phosphate structures often collapses if the template is removed on heating. Again, the
channels or cavities possessed by these frameworks make them interesting for certain
applications. For example, the silicates Na5BSi4O12 (B ¼ Fe, In, Sc, Y, La, Sm) and
the nasicons, which are silicophosphates with formula Na1þxZr2P32xSixO12, are
famous for superionic conduction. In each of these types of oxides the transition
metal–oxygen octahedra shares their six vertices with SiO4 (or PO4) tetrahedra, but in
Na5BSi4O12 channels are formed, whereas in the nasicons, cavities are formed (Rao
and Raveau, 1998). The first mixed-valence manganese gallium phosphate, MnGaPO4,
in which theMn atoms are in the divalent and trivalent states, has been prepared by hydro-
thermal crystallization (Hsu and Wang, 2000). The crystal structure contains discrete
bioctahedra of Ga2O10(H2O) and GaO5 trigonal bipyramids, connected via MnIIIO4,
MnIIO4, and PO4 tetrahedra to generate intersecting tunnels in which piperazinium
cations (C4H12N

2þ
2 ) can reside. These materials may aid in our understanding and design-

ing of redox-catalytic or magnetic molecular sieves.
Periodic mesoporous silicas were reported for the first time in the literature by

researchers at the Mobil Oil Corporation in the early 1990s, although a synthetic process
that yields very similar reaction products was patented twenty years prior (Moller and
Bein, 1998). The reactive internal surfaces of these solids have been used to attach func-
tional groups that can act as complexing agents for metal cations. However, as well as
complexation and similar uses like ion exchange and sorption, the channels have been
used to grow metal clusters and wires.

Another class of porous materials is the pillared-layered structures. In these phases,
the pillars separate inorganic layers of interconnected polyhedra, to which they are
covalently bonded on both ends. The pillars themselves may be organic or inorganic;
as the former, the material is referred to as a hybrid. A schematic illustration of a
hybrid structure is shown in Figure 3.23a. Porosity is introduced by spacing the pillars
apart, which is most easily accomplished by interposing smaller R groups between the
pillaring groups (Fig. 3.23b). The smaller R groups are bonded on only one end. The
study of organically pillared compounds began about 25 years ago with the synthesis
of one of the first zirconium phenylphosphonates, Zr(O3PC6H5)2 (Alberti et al., 1978).
When the inserted organic moieties are not covalently bonded to the inorganic layers,
the material is considered a nanocomposite (Fig. 3.23c). The hybrid organic–inorganic
materials field, and the field of porous solids, in general, is vast and rapidly growing but is,
unfortunately, outside the main scope of this book.
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Alexander Frank Wells (1912–1994) earned his
B.S. and M.A. degrees in chemistry from Oxford
University and his Ph.D. from Cambridge
University under H. M. Powell in 1937. He
received his D.Sc. in 1956, also from Cambridge
University. From 1944 to 1968, he was director
of the Crystallographic Laboratory at Imperial
Chemical Industries. The first edition of Wells’,
now classic, book Structural Inorganic Chemistry
was published in 1945. Four subsequent editions
were eventually published, the last in 1985. This

work constitutes a substantial portion of the body of knowledge on structural
principles and space-filling patterns of inorganic solids. For many practitioners
of solid-state chemistry, this book remains the standard reference for inorganic
crystal structures. Wells also authored four other well-known books: The Third
Dimension in Chemistry, Models in Structural Inorganic Chemistry, Three-
Dimensional Nets and Polyhedra, and Further Studies of Three-Dimensional
Nets. He was also among the first editorial advisors for the Journal of Solid
State Chemistry. In 1968, Wells accepted a position as professor of chemistry at
the University of Connecticut, becoming emeritus in 1982. Wells was commonly
called “Jumbo” by his close friends and colleagues. (Source: B. Chamberland, per-
sonal communication, March 5, 2004.)

(Photo courtesy of Dr. Terrell A. Vanderah. Reproduced with permission.)

3.4.2 Intermetallic Compounds

In many cases, there is a substantial degree of solid solubility of one metal or metalloid
in another. For example, the binary systems Ag–Au, Ag–Pd, Bi–Sb, Ge–Si, Se–Te,

(a) (c)(b)

R

R

R
RR

R R
R

Figure 3.23. Cross-sections of hybrid organic–inorganic materials. (a) A pillared layered

structure, in which organic moieties (ovals) are covalently bonded to the inorganic layers

(rectangles). The separation between the layers can be controlled by changing the size of the

organic molecules. (b) Porosity is introduced by interposing smaller R groups (e.g. OH, CH3)

between the pillars. (c) A nanocomposite formed by incorporating an organic molecule or

polymer between two already separated inorganic layers. The organic moieties are not

covalently bonded to the inorganic layers.
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and V–W, exhibit complete liquid and solid miscibility, with no atomic ordering at any
temperature. This type of mixture is a particular class of alloy called a solid solution. In
the other extreme, some systems exhibit negligible solid solubility, forming instead multi-
phase alloys that consist of grains of each pure component. Examples are As–Bi, Bi–Cu,
Bi–Ge, Na–Rb, Sb–Si, and Ge–Zn.

Metallurgists consider intermetallics another type of alloy. The crystal structures of
these phases consist of ordered arrangements of atoms, as opposed to the disordered
arrangement in solid solutions. Intermetallics are actually compounds formed between
two or more metallic (or metalloid) elements. They can have a fixed stoichiometry
(line compounds) or exist over a narrow compositional range (called an intermediate
phase). Despite the fact that intermetallics are comprised of metallic elements, they
usually have a mix of metallic and nonmetallic properties. Like ceramics, they are
brittle at low temperatures. However, intermetallics generally exhibit higher thermal
and electrical conductivities than ceramics, although less than those of their constituent
elements. Intermetallics have been prepared by the mechanical alloying process known
as ball milling, combustion synthesis (self-propagating combustion of a mixture of
metal powders), rapid solidification techniques, and grown as single crystals. In some
cases, it is also possible to deposit intermetallic thin films by sputtering techniques.

The circumstances under which intermetallics form were elucidated by the British
metallurgist William Hume-Rothery (1899–1968) for compounds between the noble
metals and the elements to their right in the periodic table (Hume-Rothery, 1934;
Reynolds and Hume-Rothery, 1937). These are now applied to all intermetallic com-
pounds, in general. The converse to an intermetallic, a solid solution, is only stable for
certain valence-electron count per atom ratios, and with minimal differences in the
atomic radii, electronegativities, and crystal structures (bonding preferences) of the
pure components. For example, it is a rule-of-thumb that elements with atomic radii
differing by more than 15 percent generally have very little solid phase miscibility.

The correlation between the valence electron counts and the stabilities of intermetal-
lic phases and structures were also espoused by others, like the physical chemists Neils
N. Engel (b. 1904) and Leo Brewer (1919–2005), although Hume-Rothery found their
result somewhat controversial. The Engel–Brewer theory asserts that the crystal struc-
tures of transition metals and their intermetallic compounds are determined solely by
the number of valence s and p electrons. For example, Engel suggested in 1949 that
the BCC structure correlated with dn21sl (where n is the total number of valence
electrons) and that the HCP and FCC structures corresponded to dn22slp1 and
dn23slp2 electron configurations, respectively. Importantly, although all unpaired elec-
trons, including d-electrons, were thought to contribute greatly to the bonding and cohe-
sion, the d-electrons were suggested to have only an indirect role in determining the
crystal structure. Brewer subsequently revised and extended this concept, allowing him
to successfully predict multicomponent phase diagrams and thermodynamic activities
for a very large number of transition metal alloys (Wang and Carter, 1993). David
Pettifor, while working as a Ph.D. student at Cambridge, later showed that the structural
trends across the transition metal series were driven by variation in the number of valence
d electrons, not the s and p electrons as predicted by the Engel–Brewer theory.

Considering the fact that the majority of elements are metals, it would seem that
there could be a vast number of intermetallic compounds and structures. Indeed there
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are, and the rules of bonding and valence in these materials are still largely unknown.
Many intermetallic compounds are characterized by unusual and complex stereochemis-
tries. In fact, it is often impossible to rationalize the stoichiometry using simple chemical
valence rules, a situation reminiscent for the inorganic chemist of the hydrides, borides,
and silicides.

William Hume-Rothery (1899–1968) was left
deaf from a bout of cerebrospinal meningitis in
1917, which ended his pursuit of a military career
at the Royal Military Academy. He went on to
obtain a B.S. degree in chemistry from Oxford
in 1922 and subsequently earned a Ph.D. in
metallurgy under Sir Harold Carpenter from the
Royal School of Mines in London in 1925.
Hume-Rothery returned to the inorganic chem-
istry department at Oxford to carry out research
on intermetallic compounds, bordering between
metallurgy and chemistry. In 1956, he became the
first chair of the newly founded Oxford metal-
lurgy department, which evolved into the
materials science department. Hume-Rothery
was keen to use his chemistry training to bring

a theoretical basis to the field of metallurgy. He wrote the now famous textbooks
The Structure of Metals and Alloys (1936) and Atomic Theory for Students
of Metallurgy (1946). The well-known Hume-Rothery rules established that
intermetallic compounds result from differences in the atomic radii and electro-
negativities of alloy constituents, as well as certain valence electron count
per atom ratios. Hume-Rothery was elected a Fellow of the Royal Society in
1937. (Source: “William Hume-Rothery: His Life and Science” by D. G. Pettifor in
The Science of Alloys for the 21st Century: A Hume-Rothery Symposium
Celebration; P. E. A. Turchi, R. D. Shull (Eds.); The Minerals, Metals & Materials
Society, Warrendale, PA, 2000.)

(Photo courtesy of The Royal Society. Copyright owned by the estate of B. Godfrey
Argent. Reproduced with permission.)

3.4.2.1 Zintl Phases. Invoking Lewis’ octet rule, Hume-Rothery published his
8 – N rule in 1930 to explain the crystal structures of the p-block elements (Hume-
Rothery, 1930, 1931). In this expression, N stands for the number of valence electrons
on the p-block atom. An atom with four or more valence electrons forms 8 – N bonds
with its nearest neighbors, thus completing its octet. The Bavarian chemist Eduard Zintl
(1898–1941) later extended Hume-Rothery’s (8 – N ) rule to ionic compounds (Zintl,
1939). In studying the structure of NaTl, Zintl noted that the Tl12 anion has four valence
electrons and he, therefore, reasoned that this ion should bond to four neighboring ions.
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The term Zintl phase is applied to solids formed between either an alkali- or alkaline-
earth metal and a main group p-block element from group 14, 15, or 16 in the periodic
table. These phases are characterized by a network of homonuclear or heteronuclear
polyatomic clusters (the Zintl ions), which carry a net negative charge, and that are neu-
tralized by cations. Broader definitions of the Zintl phase are sometimes used. Group 13
elements have been included with the Zintl anions and an electropositive rare-earth
element or transition element with a filled d shell (e.g. Cu) or empty d shell (e.g. Ti)
has replaced the alkali- or alkaline-earth element in some reports. Although the bonding
between the Zintl ions and the cations in the Zintl phases is markedly polar, by our earlier
definition those compounds formed between the alkali- or alkaline-earth metals with
the heavier anions (i.e. Sn, Pb, Bi) can be considered intermetallic phases.

A diverse number of Zintl ion structures are formed, even among any same two
elements. For example, the metal phosphides MxPy may contain discrete P32 anions
(K3P), or negatively charged chains (K4P6), rings (KP), or cages (K4P26) of phosphorus
atoms. Very commonly, the Zintl ions adopt structures consisting of polyhedra all of
whose faces are equilateral triangles. These are sometimes called deltahedra. Examples
include: the tetrahedron, trigonal bipyramid, octahedron, pentagonal bipyramid, dodeca-
hedron, tricapped trigonal prism, bicapped square antiprism, octadecahedron, and icosa-
hedron. Triangular networks make the most efficient use of a limited number of cluster
bonding (skeletal) electrons, and so are electronically advantageous (Porterfield,
1993). The Zintl phases are often prepared by dissolving the constituent elements or
alloys in liquid ammonia or AlCl3.

The anion connectivity of many Zintl phases can be rationalized in terms of
Hume-Rothery’s (82 N ) rule. For example, in BaSi2 (with Si4�4 clusters), the Si12

anion is isoelectronic with the nitrogen group elements, that is, it has five valence
electrons. The (82 N ) rule correctly predicts that each silicon atom will be bonded to
three other silicon atoms. Similarly, in Ca2Si, Si

42 is isoelectronic with the noble gas
elements. Again, the 8 2 N rule correctly predicts that silicon will occur as an isolated
ion. Indeed, this compound has the anti-PbCl2 structure, in which the silicon is sur-
rounded by nine calcium ions at the corners of a tricapped trigonal prism.

A generalized 82 N rule was derived by Pearson in order to address those cases in
which fractional charges appear on the anion (Pearson, 1964). Fractional charges are
usually indicative of multiple structures or anion connectivities existing in the compound.
The generalized 82 N rule is formulated as:

8� VECA ¼ AA� CC (3:11)

where VECA is the total number of valence electrons per anion, AA is the average number
of anion–anion bonds per anion, and CC is the average number of cation–cation bonds
per cation.

Unfortunately, neither Hume-Rothery’s original rule, nor the generalized 82 N
rule, is valid for nonpolar intermetallics, or when an octet configuration is unnecessary
for stability of the compound. In order to increase the domain of structures for which
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one can make predictions, extensions have been made to the generalized 82 N rule
(Parthé, 2000), but are not discussed here.

Traditionally, the Zintl phases are semiconductors that either obey the 8 2 N or
generalized 8 2 N rule. Unfortunately, there appears to be controversy over the range
of applicability for the empirical rules guiding what constitutes a Zintl compound. The
distinguished professor John D. Corbett, a leading researcher in the field of intermetallics,
has argued that some weakly metallic compounds containing anion arrays with slightly
delocalized electrons can also be classified structurally as Zintl phases. The R3In5
(R ¼ Y, La) phases are one such example.

In R3In5 (R ¼ Y, La), the electropositive R is assumed to have a formal charge of þ3.
Each indium anion thus has a charge of 2(3 � 3)/5 ¼ 29/5 ¼ 21.8. Since a
neutral indium atom has a valence electron count of 3, the VECA for In21.8 is equal to
3 þ 1.8, or 4.8. The R3In5 phases contain distantly interconnected square pyramidal
In5 clusters (Corbett and Zhao, 1995). Hence, four indium anions have three-fold coordi-
nation and one indium has four-fold coordination, giving AA ¼ 16/5 ¼ 3.2. The gener-
alized 82 N rule correctly predicts that CC should be equal to zero, which is the case, as
In anions are the nearest neighbors to each R cation.

The approach developed by Durham University chemistry professor Kenneth
Wade (b. 1933) for predicting the geometric structures of boranes and boron halides
(Wade, 1976) is also useful for many Zintl anions. For convenience, it is restated here:
The number of vertices the deltahedron must have is equal to the number of cluster bond-
ing (skeletal) electron pairs minus one. In counting the cluster bonding electrons in Zintl
ions, one uses the formula v2 2 where v is the number of valence electrons on the
element. A total of n cluster bonding electrons (n/2 pairs) requires a deltahedron with
n/22 1 vertices, even with a different number of atoms in the anion cluster. For example,
in R3In5 (R ¼ Y, La) each indium atom contributes 32 2 ¼ 1 electron to the cluster,
which has a charge of nine, In5

92. There is 9 þ 5 ¼ 14 cluster bonding electrons, or
seven pairs. Wade’s rules correctly predict that the In5

92cluster will adopt an octahedral
geometry (7 – 1 ¼ 6) with one vertex missing 2 the square pyramid.

Included among the interesting properties currently being pursued in some Zintl
phases are the metal–nonmetal transition and colossal magnetoresistance. Zintl phases
have also been used as precursors in the synthesis of novel solid-state materials. For
example, a fullerene-type silicon clathrate compound, Na2Ba6Si46 (clathrates are covalent
crystals, whereas fullerides are molecular crystals), with a superconducting transition at
4 K was prepared from the Zintl phases NaSi and BaSi2 (Yamanak et al., 1995). In the
final product, Ba atoms are located in the center of tetrakaidecahedral (Si24) cages,
while the Na atoms are in the centers of pentagonal dodecahedral (Si20) cages. The
Na2Ba6Si46 clathrate compound was the first superconductor found for a covalent sp3-
hybridized silicon network.

3.4.2.2 Nonpolar Binary Intermetallic Phases. Zintl phases are character-
ized by the presence of markedly heteropolar bonding between the Zintl ions (electro-
negative polyatomic clusters) and the more electropositive metal atoms. By contrast,
the bonding between heteronuclear atoms within other intermetallic compounds is pri-
marily covalent or metallic. A number of different structure types exist for any given
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type of stoichiometry, as indicated in Table 3.6. An important AB structure type is the
austenite phase, steel’s thermodynamically stable high-temperature FCC interstitial
solid solution of carbon in iron. This phase has the CsCl (Pearson symbol cP2) structure.
When austenite is quenched (rapidly cooled), a metastable body-centered tetragonal
phase (Pearson symbol tI2) originally called martensite is obtained. This material is a
hard solid-solution strengthened phase. Today, the term martensitic transformation is
applied to similar phase transformations in other systems that occur by a shearing or dis-
placive motion of the lattice as opposed to diffusive motion. The transformation is res-
ponsible for the shape memory effect and superelasticity, which is utilized in so-called
“smart materials,” the most famous of which is NiTi (�51% Ni). Unlike the hard and
brittle Fe–C martensite, the martensitic phase in NiTi is monoclinic (Pearson symbol
mP4) and easily deformable. Smart materials are discussed further in Section 10.2.4.

The largest single intermetallic structural class is commonly referred to as the Laves
phases. They are named after the German mineralogist and crystallographer Fritz
Henning Laves (1906–1978). These AB2 intermetallic compounds form dense tetra-
hedrally close-packed structures. In MgCu2 (Pearson symbol cF24), the Mg atoms are
ordered as in cubic diamond. However, in MgZn2 (Pearson symbol hP12) the Mg
atoms are located on sites corresponding to those in the hexagonal diamond (londsdaleite)
structure. Both are illustrated in Figure 3.24.

TABLE 3.6. Several Binary Intermetallic Structure Types

Stoichiometry Prototype Pearson Symbol

AB NiTi mP4
hAgZn hP9
CoSn hP6
AuCd oP4
CoU cI16
sCrFe tP30
vCrTi hP3

AB2 Cu2Sb tP6
PdSn2 oC24
Cu2Mg (laves) cF24
MgNi2 (laves) hP24
MgZn2 (laves) hP12
Al2Cu tI12
NiTi2 cF96
MoPt2 oI6

AxBy bCu3Ti oP8
Ni3Sn hP8
Al3Ni2 hP5
Al3Zr tI16
AlFe3 cF16
Al4Ba tI10
PtSn4 oC20
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The crystal structure of MgZn2 was first determined by the American electrical
engineer James B. Friauf (1896–1972), while he was at the Carnegie Institute of
Technology (Friauf, 1927). The phase is comprised of intrapenetrating icosahedra
(each one with six Mg atoms and six Zn atoms at the vertices) that coordinate Zn
atoms and 16-vertex polyhedra that coordinate Mg atoms. The latter are actually inter-
penetrating tetrahedra (with Mg atoms at the four vertices) and 12-vertex truncated tetra-
hedra (with Zn atoms at the vertices). The 16-vertex polyhedron, so formed from the two
smaller polyhedra, is called, appropriately, a Friauf polyhedron. In fact, the Laves phases
are sometimes referred to as the Friauf phases or Laves–Friauf phases. A third Laves
phase, with prototype MgNi2 (hP24), has a dihexagonal structure. The Laves phases
are the most common structure type of binary intermetallic compound between a 3d
transition element and a 4d, 5d, or 6f element. Compounds crystallizing in the
hexagonal structure include: TaFe2, ZrRe2, NbMn2, and UNi2. Those with the cubic

Figure 3.24. The AB2 Laves phases: (a) the hexagonal structure (the unit cell is shown by the

dashed line); and (b) the cubic structure. The A atoms are the dark circles.
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structure include: CsBi2 and RbBi2, while compounds with the dihexagonal structure
include: NbZn2, ScFe2, HfCr2, UPt2, and ThMg2.

Owing to their high-temperature deformability and good oxidation resistance, some
Laves phases (e.g. NbCr2) are being considered as structural materials in gas turbine
engines. Others have been considered for functional applications. For example, the
cubic ZrV2 exhibits a superconducting transition below 8 K. It also has been considered
as a hydrogen storage material, in which hydrogen can be absorbed into interstitial sites
and reversibly desorbed at high temperatures. The Laves phases are a subset of the family
of tetrahedrally close-packed structures known as the Frank–Kasper phases, in which
atoms are located at the vertices and centers of various space filling arrangements of
polytetrahedra (Frank and Casper, 1958a, b). In the following section, it can be seen
that the Frank–Kasper phases have aided the understanding of quasicrystal and liquid
structures.

3.4.2.3 Ternary Intermetallic Phases. Many ternary intermetallics have
interesting structures and properties. For example, of great theoretical interest to crystal-
lographers in recent years are the ternary intermetallic systems that are among the few
known stable solids with perfect long-range order but with no three-dimensional transla-
tional periodicity. The former is manifested by the occurrence of sharp electron diffrac-
tion spots and the latter by the presence of a noncrystallographic rotational symmetry. It
will be recalled that three-dimensional crystals may only have one-, two-, three-, four-, or
six-fold rotation axes; all other rotational symmetries are forbidden. However, the
discovery of metastable icosahedral quasicrystals of an Al–Mn alloy exhibiting five-
fold-rotational symmetry was reported twenty years ago (Shechtman et al., 1984).
Since that time, many thermodynamically stable quasicrystals of ternary intermetallic
compounds have been found. These have mostly been obtained by rapidly solidifying
phases with equilibrium crystal structures containing icosahedrally packed groups of
atoms (i.e. phases containing icosahedral point group symmetry). The quasicrystalline
phases form at compositions close to the related crystalline phases.

The icosahedron is one of the five platonic solids, or regular polyhedra, and is shown
in Figure 3.25. A regular polygon is one with equivalent vertices, equivalent edges, and
equivalent faces. The icosahedron has twenty faces, twelve vertices, thirty edges, and six
five-fold proper rotation axes (colinear with six ten-fold improper rotation axes). It is
possible for crystal twinning to produce disallowed diffraction patterns, but, in order to
produce the five-fold symmetry, twinning would have to occur five times in succession.
The possibility of twinning was, in fact, the main point of contention after the first report
on the discovery of icosahedral quasicrystals. However, numerous attempts to disprove
the true five-fold symmetry failed and the icosahedral symmetry was confirmed as real.

It turns out that icosahedral coordination (Z ¼ 12), and other coordination poly-
tetrahedra with coordination numbers Z ¼ 14, 15, and 16, are a major component of
some liquid structures, more stable than a close-packed one, as was demonstrated by
F. C. Frank and J. Kasper. When these liquid structures are rapidly solidified, the resultant
structure has icoshedra threaded by a network of wedge disclinations, having resisted
reconstruction into crystalline units with three-dimensional translational periodicity
(Mackay, 1985; Turnbull, 2000). Stable ternary intermetallic icosahedral quasicrystals
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are known from the systems Al–Li–Cu, Al–Pd–Mn, and Zn–Mg–Ln. Several other
ternary systems yield metastable icosahedral quasicrystals.

Some stable ternary intermetallic phases have been found that are quasiperiodic in
two dimensions and periodic in the third. These are from the systems Al–Ni–Co, Al–
Cu–Co, Al–Mn–Pd. They contain decagonally packed groups of atoms (local
ten-fold rotational symmetry). It should be noted that there are also known metastable
quasicrystals with local eight-fold rotational symmetry (octagonal) and twelve-fold
rotational symmetry (dodecagonal) as well. The dodecahedron is also one of the five
platonic solids.

Several crystalline ternary intermetallic compounds are presently used in engineer-
ing applications. The ternary phase Ni2MnIn (Pearson symbol cF16) is illustrated in
Figure 3.26a. Each atom is located on the site of a cesium-chloride cubic lattice. The
unit cell consists of a FCC arrangement of nickel atoms with one additional nickel

Figure 3.25. The dodecahedron (top) and icosahedron (bottom) are two of the five platonic

solids. The others (not shown) are the tetrahedron, the cube, and the octahedron.

Figure 3.26. The crystal structure of the Heusler alloys, (a), and half-Heulser alloys, (b). The A

atoms are the light-shaded circles.

CRYSTAL STRUCTURES AND BINDING FORCES152



atom located in the center of the unit cell, while a manganese or indium atom is in the
center of each octant of the cell with eight-fold nickel coordination. Other compounds
crystallizing with this structure include Ni2MnGa, Ni2MnAl, Cu2MnAl, Co2MnSi,
Co2MnGe, Co2MnSn, and Fe2VAl. These compounds are known as Heusler alloys,
and are named after the German mining engineer and chemist Friedrich Fritz Heusler
(1866–1947) who was at the University of Bonn where he studied the magnetic
properties of Mn2CuAl and Mn2CuSn in the early 1900s (Heusler, 1903).

Heusler alloys have a rich variety of applications, owing to some of their unique
properties. Some of these phases are half-metallic ferromagnets, exhibiting semiconduc-
tor properties for the majority-spin electrons and normal metallic behavior for the
minority-spin electrons. Therefore, the conduction electrons are completely polarized.
The Ni2MnGa phase is used as a magnetic shape memory alloy and single crystals of
Cu2MnAl are used to produce monochromatic beams of polarized neutrons.

If half of the nickel atoms in Figure 3.26a are removed, the half-Heusler ABC
structure of Figure 3.26b is obtained. In the half-Heusler structure, each atom still
resides on a cesium-chloride lattice site. The rock-salt component (B and C ) remains
intact, but the A atoms form a zinc blende lattice with B and C. Examples of compounds
with this structure include MnNiSb, AuMgSn, BiMgNi, and RhSnTi.

Some intermetallics containing rare-earth elements are under consideration as mag-
netic refrigerants. The advantages of magnetic cooling over gas compression technology
include the removal of environmentally hazardous coolants (i.e. chlorofluorocarbons)
and energy-consuming compressors. In the magnetic cooling process, a strong magnetic
field is applied to the refrigerant, aligning the spins of its unpaired electrons. That pro-
vides for a paramagnetic–ferromagnetic phase transition (a magnetic entropy reduction)
upon cooling, which causes the refrigerant to warm up. Upon removal of the field, the
spins randomize and the refrigerant cools back down. This is termed the magnetocaloric
effect (MCE), and is normally from 0.5 to 28C per Tesla change in the magnetic field.
Other types of magnetic ordering (ferromagnetic, antiferromagnetic, and spin glass)
absorb energy internally when the spins are aligned parallel by the applied field, thus
reducing the MCE (Gschneider et al., 2000).

As at present, gadolinium and its alloys have been the most studied materials for this
application, since the 4f orbitals provide for a comparatively large magnetic entropy
change. Recently, a giant magnetocaloric effect (a 3–48C per Tesla change) was reported
in the intermetallic compounds Gd5(SixGe12x)4, where x � 0.5 (Pecharsky and
Gschneider, 1997a, b). In Gd5(Si1.8Ge2.2), the magnetocaloric effect has been associated
with a field-induced first-order structural transition (Morellon et al., 1998). The
structure of Gd5(SixGe12x)4 can be described as a monoclinic distortion of the
orthorhombic Gd5Si4 phase (Sm5Ge4 structure type), in which the Gd atoms occupy
five independent four-fold sites, and Si and Ge occupy four independent four-fold
sites, in a random manner.

3.5 STRUCTURAL DISTURBANCES

Inhomogeneous structural disturbances, of course, can only be understood by compari-
son to a reference standard, or ideal structure. The types of disturbances discussed will
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include defects and bond length/angle distortions. Defects may be intrinsic or extrinsic.
Intrinsic defects are the result of thermal activation in an otherwise perfect crystal, where
there is no reaction between the substance and the environment or other substance. By
contrast, extrinsic structural defects may be defined as those introduced in a substance
through reaction with an external agent, which may be another substance, or the environ-
ment (e.g. irradiation or a mechanical force). If another substance, the agent may or may
not be native to the lattice.

Defects can be further classified into point defects and extended defects.
Unassociated point defects are associated with a single atomic site and are thus zero-
dimensional. These include vacancies, interstitials, and impurities, which can be intrinsic
or extrinsic in nature. Extended defects are multi-dimensional in space and include
dislocations and stacking faults. These tend to be metastable, resulting from materials
processing. The mechanical properties of solids are intimately related to the presence
and dynamics of extended defects. A discussion of extended defects is deferred until
Chapter 10. For now, only point defects are covered. Their importance in influencing
the physical and chemical properties of materials cannot be overemphasized.

3.5.1 Intrinsic Point Defects

The concept of a zero-dimensional intrinsic point defect was first introduced in 1926 by
the Russian physicist Jacov Il’ich Frenkel (1894–1952), who postulated the existence of
vacancies, or unoccupied lattice sites, in alkali-halide crystals (Frenkel, 1926). Vacancies
are predominant in ionic solids when the anions and cations are similar in size, and in
metals when there is very little room to accommodate interstitial atoms, as in closed
packed structures. The interstitial is the second type of point defect. Interstitial sites are
the small voids between lattice sites. These are more likely to be occupied by small
atoms, or, if there is a pronounced polarization, to the lattice. In this way, there is little
disruption to the structure. Another type of intrinsic point defect is the anti-site atom
(an atom residing on the wrong sublattice).

In ionic crystals, there is the requirement that charge neutrality be maintained within
the crystal. Hence, if a cation vacates its lattice site and ends up on the crystal surface, an
anion must also vacate its sublattice and end up on the surface. The individual vacancies
need not be located near one another in the crystal. Interestingly, as pointed out by Seitz
(Seitz, 1940), the occurrence of cation–anion vacancy pairs was first postulated by
Frenkel on the grounds of excessively high activation energy for diffusion by interchange
on the ideal alkali-halide lattice. Nevertheless, the cation–anion vacancy pair is called
the Schottky defect, after Walter Haus Schottky (1886–1976), who studied the statistical
thermodynamics of point defect formation (Schottky and Wagner, 1930). The Frenkel
defect, on the other hand, is the term applied when a displaced cation in an ionic solid
ends up in an interstitial site, rather than at the surface. Note that, in this case, charge
neutrality in the crystal is still maintained since the extra positive charge (the cation
interstitial) is balanced by the negatively charged vacancy. The interstitial and vacancy
defect pair constitute the Frenkel defect.

A finite equilibrium concentration of intrinsic point defects can be found in any
crystalline material because a small number of defects is thermodynamically favored.
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This can be seen by considering the configurational entropy, or the number of possible
ways in which n defects can be distributed among N lattice sites. The number of ways,
V, is given by combinatorics as:

V ¼ N!

n!(N � n)!
(3:12)

The configurational entropy is thus:

DS ¼ k lnN!

n!(N � n)!
(3:13)

As discussed above, in ionic solids intrinsic-point defects are really defect pairs
owing to the charge neutrality requirement. There is a need to account for this in the
configurational entropy term. For example, for the interstitial-vacancy (Frenkel) defect
pair, Eq. 3.13 would be:

DS ¼ k ln
N!

ni!(N � n)!
N!

nv(N � nv)!

� �� �
(3:14)

The equlity nv ¼ ni can be used to obtain:

DS ¼ k{2 lnN!� 2 ln[n!(N � n)!]} (3:15)

Using Stirling’s approximation:

DS ¼ 2k[N lnN � (N � n) ln(N � n)� n ln n] (3:16)

Finally, this term can be inserted into an expression for the Gibbs energy to obtain:

G ¼ G0 þ nDg� 2k[N lnN � (N � n) ln(N � n)� n ln n] (3:17)

In Eq. 3.17, nDg is the free energy change necessary to create n defects and G0 is the
Gibbs energy of a perfect crystal. Equation 3.17 is a minimum with respect to n when
(@G/@n)T,P ¼ 0. By approximating N2 n 	 N, the equilibrium concentration is found
to be:

n

N
¼ exp

�Dg
2kT

� �
(3:18)

It is important to study point defects because they mediate mass transport properties,
as will be discussed in Chapter 6. Although the influence of point defects on physical
and chemical properties is well founded, relatively little has been reported concerning
their affect on the mechanical behavior of solids. A mechanical force applied over a
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macroscopic area induces the displacement of a large numbers of atoms in a cooperative
motion, mediated by dislocations and other extended defects. Recently, however, vari-
ations in the vacancy concentrations of a series of binary intermetallics have been associ-
ated with the differing hardening behavior of those phases. For example, the hardening
of FeAl (CsCl structure) is extremely sensitive to thermal history, while that of the
isostructural NiAl, is not. Interestingly, this has been attributed to a high vacancy con-
centration in FeAl, which is indicative of structural instability (Chang, 2000).

3.5.2 Extrinsic Point Defects

Nonequilibrium concentrations of point defects can be introduced by materials proces-
sing (e.g. rapid quenching or irradiation treatment), in which case they are classified as
extrinsic. Extrinsic defects can also be introduced chemically. Often times, nonstoichio-
metry results from extrinsic point defects, and its extent may be measured by the defect
concentration. Many transition metal compounds are nonstoichiometric because the
transition metal is present in more than one oxidation state. For example, some of the
metal ions may be oxidized to a higher valence state. This requires either the introduction
of cation vacancies or the creation of anion interstitials in order to maintain charge
neutrality. The possibility for mixed-valency is not a prerequisite for nonstoichiometry,
however. In the alkali halides, extra alkali metal atoms can diffuse into the lattice,
giving M1þdX (d
 1). The extra alkali metal atoms ionize and force an equal number
of anions to vacate their lattice sites. As a result, there an equal number of cations and
anions residing on the surface of the crystal, with the freed electrons being bound to
the anion vacancies. Interestingly, the localized electrons (known as F-centers) have
discrete quantized energy levels available to them, which fall within the visible region
of the electromagnetic spectrum. The nonstoichiometric crystals thus become colored.

Another type of extrinsic point defect is the impurity, which may substitute for an
atom in the lattice or reside in an interstitial site. The impurity need not be of the same
valency as the host, but overall charge neutrality must be maintained in the crystal.
This type of extrinsic point defect can greatly influence electrical transport properties
(electrical conductivity). If the impurities or dopants are electrically active, they can
vary the charge carrier concentration and, hence, the electrical conductivity of the host.
This topic will be discussed in ample detail later but, for now, a brief explanation is
appropriate. In a semiconductor, the magnitude of the energy gap separating the filled
states (valence band) from the empty states (conduction band) is small enough that
electrons may be thermally excited from the top of the valence band to the bottom of
the conduction band. In an intrinsic semiconductor, the number of electrons that have
been thermally excited to the conduction band equals the number of holes left behind
in the valence band. Both the electrons and holes are charge carriers that contribute to
electrical conduction. The concentration of either one of these carrier types can be
increased by the addition of electrically active dopants (intentionally added impurities),
to give an extrinsic semiconductor.

Dopants that donate electrons are termed donors or n-type dopants (e.g. phosphorus
atoms in silicon), since the negatively charged electrons become the majority carrier. By
comparison, impurities that accept electrons (boron atoms in silicon), creating holes, are
termed acceptors or p-type dopants, since the positively charged holes become the
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majority carrier. In silicon, and other semiconductors, the energy levels associated with
the dopants are located within the band gap. However, n-type dopant levels are very close
to the conduction band edge while p-type dopant levels are very close to the valence band
edge. Such dopants are called shallow impurities. Thermally excitation of charge carriers
from these shallow impurities to one or other of the bands of the host is possible. Behavior
of this type was discussed early on in semiconductor physics (see, e.g. Wilson, 1931).

Vacancies can also make possible the low-temperature manipulation of a solid’s
structure. For example, aliovalent ion exchange (e.g. Ca2þ for Naþ) has been used to
create extrinsic vacancies in some transition metal oxides at relatively low temperatures
(Lalena et al., 1998; McIntyre et al., 1998). These vacancies were then used to intercalate
new species into the lattice, again at relatively low temperatures. Intercalation refers to
the insertion of an extrinsic species into a host without a major rearrangement of the
crystal structure. If the new species is a strong reducing agent, mixed-valency of the
transition metal may be introduced into the host.

Walter Haus Schottky (1886–1976) received his
doctorate in physics under Max Planck from the
Humboldt University in Berlin in 1912. Although
his thesis was on the special theory of relativity,
Schottky spent his life’s work in the area of semi-
conductor physics. He alternated between indus-
trial and academic positions in Germany for
several years. He was with Siemens AG until
1919 and the University of Wurzburg from 1920
to 1923. From 1923 to 1927, Schottky was pro-
fessor of theoretical physics at the University of
Rostock. He rejoined Siemens in 1927, where he
finished out his career. Schottky’s inventions
include: the ribbon microphone, the superheter-
odyne radio receiver, and the tetrode vacuum
tube. In 1929, he published Thermodynamik, a
book on the thermodynamics of solids. Schottky

and Wagner studied the statistical thermodynamics of point defect formation.
The cation/anion vacancy pair in ionic solids is named the Schottky defect. In
1938, he produced a barrier layer theory to explain the rectifying behavior of
metal-semiconductor contacts. Metal-semiconductor diodes are now called
Schottky barrier diodes.

(Photo courtesy of Siemens Archives, Munich. Reproduced with permission.)

3.5.3 Structural Distortions

The types of structural distortions observed in solids include bond length alterations and
bond angle bending. Localized structural distortions occur around point defects such as
vacancies and substitutional impurities owing to their differing mass and force constants.
Such bond distortions occur when they can lower the overall energy of the system. For
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example, it can be seen how Pauling’s third rule predicts that edge or face-sharing tetra-
hedra will be distorted owing to increased repulsion between the neighboring cations.
Octahedral rotation and tilting, commonly observed in the perovskites and related
phases (e.g. brownmillerites), are similar low-energy distortion modes driven primarily
by ion–ion repulsion (electrostatic) forces. Tilting occurs when the A-site cation is too
small for its 12-coordinate site in the perovskite structure. The distortion effectively
lowers the coordination number from 12 to 8. Goldschmidt recognized many years ago
that octahedral tilting in perovskites results from a need to optimize the coordination
around the A-site cation (Goldschmidt, 1926). He quantified the goodness-of-fit of the
A cation with a tolerance factor, t:

t ¼ RA þ ROffiffiffi
2
p

(RB þ RO)
(3:19)

where RA, RB, and RO are the ionic radii of the A and B cations and oxygen, respectively.
Using the radii by Shannon and Prewitt, perovskites are found for values ranging from
0.8 to 1.1 (Shannon and Prewitt, 1969).

More recently, Glazer developed a very influential notation for describing the 23
different tilt systems that have been observed (Glazer, 1972). The description is based
on the rotations of the octahedra about each of the three Cartesian axes. The direction
of the rotation about any one axis, relative to the rotations about the other two axes, is
specified by a letter with a superscript that indicates whether the rotations in adjacent
layers, which are coupled to the other layers via the vertex-sharing octahedra, are in
the same (þ) or opposite (2) directions. For example, aþaþaþ signifies an equivalent
rotation about the three axes in each of the adjacent layers. Similarly, in the a0a0cþ tilt
system, the octahedra are rotated only about the axes parallel to the z axis, with the
same direction in both layers.

Woodward has shown that tilt systems in which all of the A-site cations remain crys-
tallographically equivalent are strongly favored when there is a single ion on the A site
(Woodward, 1997). Of these systems, the lowest energy configuration depends on the
competition between ionic bonding (A–O) and covalent (A–O s, B–O s, B–O p) bond-
ing. The orthorhombic GdFeO3 structure (aþb2b2) is the one most frequently found
when the Goldschmidt tolerance factor is smaller than 0.975, while the rhombohedral
structure (a2a2a2) is most commonly observed with 0.975 � t � 1.02, and highly
charged A cations. Undistorted cubic structures (a0a0a0) are only found with oversized
A cations and/or B–O p bonding. Tilt systems with nonequivalent A-site environments
are favored when more than one type of A cation (with different sizes and/or bonding
preferences) are present, with the ratio of large to small cations dictating the most
stable tilt system.

Vertex-sharing polyhedra can also exhibit asymmetric M–X–M linkages (cation
displacements), which arise from electronic driving forces, rather than electrostatic
forces. For example, the first-order Jahn–Teller (JT) theorem states that nonlinear
symmetrical geometries, which have degenerate electronic states, are unstable with
respect to distortion. That is, such systems can lower their electronic energy by becoming
less symmetrical and removing the degeneracy.
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The first-order JT effect is important in complexes of transition metal cations that
contain nonuniformly filled degenerate orbitals, if the mechanism is not quenched by
spin-orbit (Russell–Saunders) coupling. Thus, the JT effect can be expected with
octahedrally coordinated d9 and high spin d4 cations, and tetrahedrally coordinated d1

and d6 cations. The low-spin state is not observed in tetrahedral geometry because of
the small crystal field splitting. Also, spin–orbit coupling is usually the dominant
effect in T states so that the JT effect is not observed with tetrahedrally coordinated d3,
d4, d8, and d9 ions.

In solids, the observance of JT distortions normally requires that the d electrons
be localized. For example, the FeO6 octahedra in the cubic perovskite SrFeO3 might
be expected to exhibit JT distortions. The oxide ion can serve as a good p donor, so
an Fe4þ cation octahedrally coordinated by six oxygens should have a high spin d4

(t2g
3 eg

1) electron configuration. However, SrFeO3 is metallic. The eg d electrons are
delocalized in a Bloch functions and no localized JT distortion is observed. However,
a so-called band JT effect has been confirmed as the cause of the structural distortions
observed in some cases, such as the intermetallic phase Ni2MnGa, a Heusler alloy
(Brown et al., 1999).

An increase in the extent of valence d electron localization is expected for smaller
principal quantum numbers and as one moves to the right in a period because of a
contraction in the size of the d orbitals. For example, with compounds of the late 3d
metals, a mixture of 4s bands, and more-or-less localized 3d atomic orbitals may coexist,
in which case, it becomes possible for cubic crystal fields to split the degenerate d orbitals
and give rise to a localized JT distortion (e.g. a single octahedra), or small polaron in
physics terminology. High concentrations of JT ions, where the polyhedra share structural
elements, are subject to a cooperative JT effect, which can cause distortion to a lower
crystalline symmetry.

The case of nearly degenerate states is treated by a second-order correction in pertur-
bation theory and gives rise to the second-order, or pseudo-JT effect (Öpik and Pryce,
1957). This theorem predicts that, in systems with a small HOMO–LUMO gap
(say, ,4 eV), the near-degeneracy can be removed, and the HOMO stabilized, by distor-
tion to a lower symmetry structure that brings about electron occupancy of the LUMO
(Pearson, 1969). One important example is the out-of-center displacement frequently
found with transition metals with low d electron counts, particularly d0 transition
metal ions such as Ti4þ, V5þ, and Mo6þ. The distortion has been found to increase
with the increasing formal charge and decrease with the increasing size of the cation
(Kunz and Brown, 1995). The second-order JT effect becomes insignificant for high d
electron counts and, for perovskites, dn metals with n � 1 are calculated to be symmetric
(Wheeler et al., 1986). Out-of-center distortion plays an important role in ferroelectric
behavior (e.g. BaTiIVO3), in which the absence of a center of symmetry is required.

Another force that can result in distorted coordination polyhedra is the inert (lone)
pair effect. The inert pair effect refers to the reluctance of the heavy post transition
elements from groups 13–15 to exhibit the highest possible oxidation state, by retaining
their pair of valence s electrons. The lone pair of electrons on these elements can be
stereochemically active and take the place of an anion in the coordination sphere of a
cation, or squeeze between the anions and the metal causing distortion of the polyhedra.
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This is because a nonbonding pair of electrons occupies a larger volume of space than a
bonding pair, the volume being about the size of an oxide or fluoride anion (Hyde and
Andersson, 1989).

3.5.4 Bond Valence Sum Calculations

As just enumerated, distorted polyhedra can be expected in solids under many circum-
stances. The expected metal–ligand bond distances and the oxidation state of atoms
can be determined by what are known as bond valence sum (BVS) calculations. These
arose out of Pauling’s electrostatic valence rule, which stated that the atomic valence
of an atom (the absolute value of its oxidation state) is equal to the sum of the valences
of all its bonds (Pauling, 1929). Bragg subsequently showed that electrostatic lines of
force could be imagined as emanating from the cation and ending on the anions. These
lines of force were in proportion to the cation charge and divided equally between the
bonds to the coordination polyhedron corners (Bragg, 1930). The bond valence is simi-
larly equivalent to the number of bonding electrons distributed within the bond. Bond
valences are defined empirically, using formal charges and experimental bond lengths.
Although it is known that formal charges are not an indication of the true charge on an
ion, it can be assumed that bond lengths in two substances will be very similar if each
contains the metal in similar environments and with the same formal charge. In a perfect
nonstrained crystal, the formal charge on a cation or anion must equal the sum of the
bond valences for all the bonds that it forms.

X
j

vi, j ¼ Vi (3:20)

The most commonly adopted empirical expression for the variation of bond length with
bond valence is:

vi, j ¼ exp
Rij � dij

b

� �
(3:21)

where b is taken to be a universal constant equal to 0.37 Å. According to the distortion
theorem, when the bond length decreases, the bond valence increases, and vice versa
(Brown, 1981). The BVS method requires the precise measurement of interatomic
distances and, hence, atomic positions. Brese and O’Keefe determined bond valence par-
ameters, Rij, for a very large number of bonds (Brese and O’Keefe, 1991), many of which
are listed in Table 3.7.

If the BVS rule is not satisfied (i.e. when the BVS are not very near to the formal
charges for the ions) this may indicate metastability. In LaNiO2.5, for example, BVS
calculations give a lanthanum valence of þ2.63 and valences of þ2.20 and þ2.13
for the octahedral and square planar nickel cations, respectively. Although the Ni2þ

cation prefers square planar coordination, this oxide readily takes up oxygen upon
heating in undergoing a structural transition to the perovskite LaNiO3, where the BVS
are þ3.05 and þ3.01 for lanthanum and nickel, respectively (Alonso et al., 1997).
The following worked example illustrates how to use Eqs. 3.20 and 3.21 with Table 3.7.
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TABLE 3.7. Bond-Valence Parameters for Some Halides, Nitrides, Oxides, Phosphides,
and Sulfides

Cation F Cl Br I N O P S

AgI 1.80 2.09 2.22 2.38 1.85 1.805 2.22 2.15
AlIII 1.545 2.03 2.20 2.41 1.79 1.651 2.24 2.13
AsIII 1.70 2.16 2.32 2.54 1.93 1.789 2.34 2.54
AsV 1.62 2.14 1.767
AuIII 1.81 2.17 1.833
BaII 2.19 2.69 2.88 3.13 2.47 2.29 2.88 2.77
BeII 1.28 1.76 1.90 2.10 1.50 1.381 1.95 1.83
BiIII 1.99 2.48 2.62 2.84 2.24 2.09 2.63 2.55
BiV 1.97 2.44 2.06
CIV 1.32 1.76 1.90 2.12 1.47 1.39 1.89 1.82
CaII 1.842 2.37 2.49 2.72 2.14 1.967 2.55 2.45
CdII 1.811 2.23 2.35 2.57 1.96 1.904 2.34 2.29
CeIII 2.036 2.52 2.69 2.92 2.34 2.151 2.70 2.62
CeIV 1.995 2.41 2.028
CoII 1.64 2.01 2.18 2.37 1.84 1.692 2.21 2.06
CoIII 1.62 2.05 1.70
CoIV 1.640
CrII 1.67 2.09 2.26 2.45 1.73
CrIII 1.64 2.08 1.85 1.724 2.27 2.18
CrVI 1.74 2.12 1.794
CsI 2.33 2.79 2.95 3.18 2.53 2.42 2.93 2.89
CuI 1.6 1.85 1.99 2.16 1.61 1.593 1.97 1.86
CuII 1.6 2.00 1.679
EuIII 2.074
FeII 1.65 2.06 2.26 2.47 1.86 1.734 2.27 2.16
FeIII 1.67 2.09 1.759
GaIII 1.62 2.07 2.24 2.45 1.84 1.730 2.26 2.17
GdIII 1.62 2.07 2.60 2.82 2.22 2.065 2.61 2.53
GeIV 1.66 2.14 2.30 2.50 1.88 1.748 2.32 2.22
HfIV 1.85 2.30 2.47 2.68 2.09 1.923 2.48 2.39
HgI 1.81 2.28 2.40 2.59 2.02 1.90 2.42 2.32
HgII 1.90 2.25 1.93
HoIII 1.908 2.401 2.55 2.77 2.18 2.023 2.56 2.48
InIII 1.79 2.28 2.41 2.63 2.03 1.902 2.43 2.36
LaIII 2.057 2.545 2.72 2.93 2.34 2.172 2.73 2.64
MnIII 1.66 2.14 2.26 2.49 1.87 1.760 2.24 2.20
MnIV 1.71 2.13 1.753
MnVII 1.72 2.17 1.79
MoVI 1.81 2.28 2.43 2.64 2.04 1.907 2.44 2.35
NaI 1.803
NbV 1.87 2.27 2.45 2.68 2.06 1.911 2.66 2.37
NdIII 2.105
NiII 1.599 2.02 2.16 2.34 1.75 1.654 2.17 2.04
OsIV 1.72 2.19 1.811

(Continued)
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Example 3.4

Two sets of crystallographic data are given below for the bond lengths between
Ti4þ andO22 in an oxidewhere the formal charge on titanium is þ4. Each titanium
ion is octahedrally coordinated by oxygen and the bond lengths given are
those for the two axial, T–O(2), and four equatorial, Ti–O(1), distances. Use BVS
calculations to predict which data are the most plausible.

X-ray diffraction data

Ti–O(1) ¼ 1.918

Ti–O(2) ¼ 1.848

Neutron diffraction data

Ti–O(1) ¼ 1.969

Ti–O(2) ¼ 1.924

Solution

From Table 3.7, the bond valence parameter, Rij, for the TiIV–O bond is 1.815.
Substituting the values for the various parameters in Eqs. 3.20 and 3.21 yields

TABLE 3.7 . Continued

Cation F Cl Br I N O P S

PbII 2.03 2.53 2.64 2.78 2.22 2.112 2.64 2.55
PbIV 1.94 2.43 2.042
PdII 1.74 2.05 2.19 2.38 1.81 1.792 2.22 2.10
PtII 1.68 2.05 2.18 2.37 1.77 1.768 2.19 2.08
PtIV 1.759 2.17 1.879
ReVII 1.86 2.23 1.97
SbIII 1.90 2.35 2.50 2.72 2.12 1.973 2.52 2.45
SbV 1.80 2.30 1.942
ScIII 1.76 2.23 2.38 2.59 1.98 1.849 2.40 2.32
SeIV 1.73 2.22 2.33 2.54 1.93 1.811 2.34 2.25
SiIV 1.58 2.03 2.20 2.41 1.77 1.624 2.23 2.13
SnII 1.926 2.36 2.55 2.76 2.14 1.984 2.45 2.45
SnIV 1.84 2.28 1.905
SrII 2.118
TaV 1.88 2.30 2.45 2.66 2.01 1.920 2.47 2.39
TiIII 1.723 2.17 2.32 2.54 1.93 1.791 2.36 2.24
TiIV 1.76 2.19 1.815
VIII 1.702 2.19 2.30 2.51 1.86 1.743 2.31 2.23
VIV 1.70 2.16 1.784
VV 1.71 2.16 1.803
WVI 1.83 2.27 1.921
YIII 1.904 2.40 2.55 2.77 2.17 2.014 2.57 2.48
YbIII 1.875 2.371 2.51 2.72 2.12 1.985 2.53 2.43
ZnII 1.62 2.01 2.15 2.36 1.77 1.704 2.15 2.09
ZrIV 1.854 2.33 2.48 2.69 2.11 1.937 2.52 2.41

(From Brese, N. E.; O’Keeffe, M. Acta. Cryst. 1991, B47, 192.)
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the valence on titanium calculated from each dataset:

Vi(1) ¼
X

{exp[(Rij � dij)=b]}axial þ
X

{exp[(Rij � dij)=b]}equatorial

¼ 2� exp[(1:815� 1:848)=0:37]þ 4� exp[(1:815� 1:918)=0:37]

¼ 4:86

Vi(2) ¼
X

{exp[(Rij � dij)=b]}axial þ
X

{exp[(Rij � dij)=b]}equatorial

¼ 2� exp[(1:815� 1:924)=0:37]þ 4� exp[(1:815� 1:969)=0:37]

¼ 4:13

The X-ray diffraction data indicates over bonding on the titanium cations, or that
the shortened Ti–O bonds are under compressive stress. The neutron diffraction
data, on the other hand, gives a titanium valence closer to the formal charge of
4þ . The structure from which these bond distances were taken, presumably,
should be the least strained.

3.6 STRUCTURE CONTROL AND SYNTHETIC STRATEGIES

In certain respects, synthetic reactions involving nonmolecular inorganic solids are not so
different from synthetic reactions in other fields of chemistry. Specific phases, often with
crystal structures close to that of the desired products, are chosen as the starting materials.
Structural transformations are then carried out that modify the parent phases in some
preconceived way.

Two types of transformations can be very broadly distinguished. The first is the for-
mation of a solid solution, in which solute atoms are inserted into vacancies (lattice sites
or interstitial sites) or substitute for a solvent atom on a particular sublattice. Many types
of synthetic processes can result in this type of transformation, including ion-exchange
reactions, intercalation reactions, alloy solidification processes, and the high-temperature
ceramic method. Of these, ion exchange, intercalation, and other so-called soft chemical
(chimie douce) reactions produce no structural changes except, perhaps, an expansion
or contraction of the lattice to accommodate the new species. They are said to be under
topotactic, or topochemical, control.

The second type of transformation includes all those reactions resulting in significant
structural changes from those of the starting materials. Crystallization from aqueous sol-
utions, gels, glasses, and melts may produce this type of transformation, but so do many
solid-state reactions, such as combustion synthesis (also called SHS, or self-propagating
high-temperature synthesis) and the ceramic method. Given only the chemical compo-
sition of a product phase, and no information about the starting materials or synthetic
route, might one be able to predict its crystal structure (or properties) unambiguously?
The answer, unfortunately, is that this is generally not possible. Again, this is not so differ-
ent from other fields of chemistry; for example, the reader would be hard pressed to
describe the molecular structure, given only the chemical formula, of, say, C15H12N6O4.
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Whereas reaction schemes for carrying out specific structural transformations are
commonplace in organic chemistry, solid-state chemists have only a limited number of
predictive synthetic strategies at their disposal. The most commonly employed prepara-
tive technique for nonmetallic materials is the high temperature ceramic route (T �
5008C). These reactions are kinetically slow, even at very high temperatures, since
they are controlled by the solid-state diffusion of ions and atoms through both the reac-
tants and products. Hence, they are under thermodynamic control; the products formed
are simply the ones that are the most thermodynamically stable. Even so, it is often poss-
ible to utilize simple concepts from basic inorganic chemistry (e.g. radius ratio rules, crys-
tal field stabilization energy (CFSE)) to establish coordination preferences. This helps to
minimize our extent of reliance on trial-and-error synthesis.

Consider the brownmillerite (A2B2O5) structure examined earlier. This structure
consists of alternating layers of vertex-sharing BO3 octahedra and BO2 tetrahedra. It is
immediately obvious to the synthetic strategist that one has the opportunity to place
cations with specific coordination preferences exclusively in one type of layer to
give A2(BO3)(B0O2), as was previously discussed. For example, in Ca2MnGaO5, Mn3þ

exclusively occupies the BO3 layers. In this case, that would have been predicted by a
consideration of the CFSE.

It is well known from inorganic chemistry that a cubic crystal field splits the d orbitals
on a transition metal cation into a doubly degenerate set (eg) and a triply degenerate set
(t2g). The splitting is about 10Dq for the octahedral case and 4.45Dq for the tetrahedral
case. The quantity Dq is the crystal-field splitting energy per electron, which is pro-
portional to the anion charge divided by the metal–anion bond length. With the O22

anion, the crystal field splitting is small for both the octahedral and tetrahedral cases
and is, in fact, less than the repulsion felt between electrons in doubly occupied orbitals.
Hence, the Mn3þ cation has a high-spin d4 electron configuration in either an octahedral
(t2g
3 eg

1) or tetrahedral (eg
2t2g
2 ) field of O22 anions. The total CFSE for the ground state

Mn3þ ion is established by summing the energies for each of the four d electrons. In
an octahedral field, the t2g orbitals are approximately 24Dq each and the eg orbitals
are þ6Dq each. The CFSE is thus 26Dq. In the tetrahedral case, the t2g orbitals are
approximately þ1.78Dq each and the eg orbitals are 22.67Dq each (note the reversal
in sign). The CFSE is thus 21.78Dq. As the CFSE is greater in the octahedral rather
than tetrahedral case, the Mn3þ cation in Ca2MnGaO5 would have been predicted to
prefer the BO3 layer.

In some cases, secondary forces may exert a sizable influence on the coordination
environment as well. For example, it was seen earlier how the second-order JT effect
frequently manifests itself as a displacement of transition metals from the center of an
octahedron. The phenomenon is only observed for metals with low d electron counts.
This could be used advantageously in synthetic strategies where the goal is to selectively
place cations in specific sites within a structure.

In Na2La2Ti32xRuxO10, which is prepared by the ceramic route, for example, the
transition metal cations in the two outer octahedral layers of the triple-layer slab are
electrostatically displaced towards the (NaO)2 layers. However, the distribution of the
nearly equal-sized Ti4þ and Ru4þ cations within the octahedra is nonrandom. It is
found that the d4 Ru4þ cations seem to have a definite, though not exclusive, preference
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for the middle, undistorted octahedral layer (Fig. 3.27), while mostly d0 Ti4þ cations
are found in the out-of-center distorted outer octahedral layers (Lalena et al., 2000).
For x ¼ 1.0, 0.75, 0.50, and 0.25, the percentage of inner-layer octahedral sites occu-
pied by Ru4þ are, respectively, 63.7, 45.4, 34.2, and 16. The remaining Ru4þ cations
are distributed among the octahedral sites of the two outer layers. Thus, the percentage
of inner-layer octahedral sites occupied by Ru4þ is about linearly proportional to x.
Furthermore, compositions with x . 1.0 cannot be prepared, even though the isostruc-
tural triple-layer oxide Sr4Ru3O10 is known. In Sr4Ru3O10, there are no electrostatic or
electronic driving forces for out-of-center distortion in the outer octahedral layers
(Cao et al., 1997). Hence, although the origin for the cation displacement in the outer
octahedral layers of Na2La2Ti32xRuxO10 is electrostatic in nature, the electronic
second-order JT effect places an upper limit on the ruthenium doping level that can be
tolerated in these sites.

In custom-designing materials with tailored properties, it is often necessary to syn-
thesize metastable phases that will be kinetically stable under the temperature and con-
ditions of use. These phases are obtainable only through kinetic (chemical) control. In
many cases, kinetic control has been achieved via the soft chemical low-temperature
(e.g. electrochemical synthesis, sol–gel method) and/or topochemical routes (e.g. inter-
calation, ion exchange, dehydration reactions), since these routes use mild synthetic con-
ditions. It should be noted that not all soft chemical routes are topochemical. A reaction
is said to be under topochemical control only if it follows the pathway of minimum atomic
or molecular movement (Elizabé et al., 1997). Accordingly, topochemical reactions are
those in which the lattice of the solid product shows one or a small number of

Figure 3.27. The transition metal cations in the outer octahedral layers of Na2La2Ti32xRuxO10

are displaced from the centers of their octahedra. Only transition metal cations with a low d

electron count (i.e. Ti4þ, d0) can readily accommodate this distortion. Hence, the Ru4þ cations

(d4) are found mostly in the central undistorted layer.
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crystallographically equivalent definite orientations relative to the lattice of the initial
crystal, and if the reaction has proceeded throughout the entire volume of the initial crystal
(Günter, 1972).

Under the proper circumstances, most soft chemical processes can allow ready
manipulation of the ionic component of many nonmolecular materials. Indeed, the
solid-state literature has seen an enormous growth in the number of reports, wherein
the utility of these synthetic strategies are exploited. However, these methods typically
leave the covalent framework of iono-covalent structures intact. It would be extremely
desirable to exercise kinetic control over the entire structure of a solid, thereby maximiz-
ing the ability to tune its properties.

As alluded to at the beginning of Section 3.3, probably the most challenging task
is predicting, a priori, the extended structure – not only the coordination preferences
of all the atoms or ions, but the polyhedra connectivity as well. In this area, Tulsky
and Long have taken a major step forward by formalizing the application of dimensional
reduction to treat the formation of ternary phases from binary solids (Tulsky and
Long, 2001):

MXx þ nAaX �! AnaMXxþn (3:22)

In this reaction, the first reactant on the left is the binary parent phase and the product,
to the right of the arrow, is a ternary child. The second reactant on the left is an ionic
reagent termed the dimensional reduction agent, in which X is a halide, oxide, or chalco-
genide. The added X anions terminate M–X–M bridges in the parent yielding a frame-
work in the child that retains the metal coordination geometry and polyhedra
connectivity mode (i.e. corner-, edge-, or face-sharing), but which has a lower connec-
tivity (e.g. fewer polyhedra corners shared). The A cations serve to balance charge,
ideally, without influencing the M–X covalent framework.

The utility of this approach lies in its ability to predict the framework connectivity of
the child compound. Connectivity is defined as the average number of distinct M–X–M
linkages around the metal centers or, alternatively, the average number of bonds that must
be broken to liberate a discrete polyhedron. For frameworks with only one kind of metal
and one kind of anion the connectivity of the parent is given by:

CNM(CNX � 1) (3:23)

whereCNM is the coordination number of the metal andCNX denotes the number of metal
atoms coordinated to X. The framework connectivity of an AnaMXxþn child compound is
predicted to be:

2[CNM � (xþ n)] (3:24)

The reaction schemes of Eqs. 3.24 and 3.25 below illustrate how, as Eq. 3.24 predicts,
connectivity is progressively lowered by reaction of a binary parent with increasing
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amounts of a dimensional reduction agent.

VF3 !AaF
Aa VF4 !AaF

A2aVF5 !AaF
A3a VF6

6-connected 4-connected 2-connected 0-connected
(3:25)

where A ¼ alkali metal or Tl; a ¼ 1

MnCl2 �!
2=3NaCl

Na2MN3Cl8 �!
1=3NaCl

NaMnCl3 �!NaCl Na2MnCl4
12-connected 8-connected 6-connected 4-connected

(3:26)

Thus, solid-state reaction between VF3, with corner-sharing VF6 octahedra in three
dimensions, and AaF in a 1 :3 molar ratio yields A3VF6, containing discrete octahedral
anions. Similarly, reaction of MnCl2, which consists of MnCl6 octahedra sharing six
edges, with NaCl in a 1 :1 molar ratio yields a two-dimensional framework with octa-
hedra sharing only three edges.

Solids with octahedral, tetrahedral, square planar, and linear metal coordination geo-
metries, including many different types of polyhedra connectivity modes, are amenable
to dimensional reduction. Tulsky and Long compiled an enormous database of over 300
different allowed combinations ofM and X and over 10,000 combinations of A,M, and X.
The formalism may be extendable to quaternary phases as well. However, frameworks
containing anion–anion linkages, anions other than halides, oxide, or chalcogenides,
nonstoichiometric phases, and mixed-valence compounds were excluded from their
initial study.

Other limitations of the approach include its inability to predict which of many poss-
ible isomers, each satisfying the criteria set by Eq. 3.24, will result. Furthermore, Eq. 3.24
is only valid for compounds derived from parents with one- and two-coordinate anions,
albeit this is the majority of cases. Finally, the effect (most probably size and polarizing
power) of the A counter ion may be significant enough in some cases to destabilize the
covalent MXx framework, diminishing the success of dimensional reduction. Despite
these limitations, Tulsky and Long’s formalism is an exciting development in the
evolution of what has become to be known as rational materials design. It is hoped
that dimensional reduction can be coupled with other synthetic strategies to provide
access to a wider range of tailored materials.

PRACTICE PROBLEMS

1) Predict which of the following binary solids has a substantial covalent contribution
to the interatomic bonding: NaCl, MnO2, Fe2O3, SiC, MgO, ZnS, NiAs.

2) Explain the primary difference between the Heitler–London and Hund–Mulliken
theories of covalent bonding.
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�3) What does the VSEPR theory tell us about the nature of the interatomic bonding?

4) True or False: Hybridization of atomic orbitals is best used for rationalizing known
molecular geometries rather than for predicting molecular geometries.

5) What is the analogous entity to a MO in a nonmolecular crystal?

�6) Generally speaking, would you expect the lattice energies of ionic solids to increase
or decrease with increasing charges on the anion and cation?

7) As the lattice energies of a series of ionic solids increase, what might you expect to
happen to the water solubilities?

8) The reported bond lengths between the Mn and O atoms of the perovskite oxide
series Ln12xAxMnO3 (Ln ¼ La3þ, A ¼ Pb2þ; x ¼ 0.1–0.5) are listed in the
table below. Each Mn atom is octahedrally coordinated. The axial oxygen is denoted
as O1 and the equatorial oxygen atoms as O2 and O3. The observed bond lengths are
listed below.

x ¼ 0.1:

Mn–O1 1.962
Mn–O2 1.972
Mn–O3 1.961

x ¼ 0.2:

Mn–O1 1.979
Mn–O2 1.967
Mn–O3 1.956
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x ¼ 0.3:
Mn–O1 1.964
Mn–O2 1.960
Mn–O3 1.937

x ¼ 0.4:

Mn–O 1.943

x ¼ 0.5:

Mn–O 1.939

Use data from Table 3.7 to determine the average oxidation state of the manganese
atom.

�9) What is the difference between a solid solution alloy and an intermetallic compound?

10) In what ways do intermetallic phases differ from ceramics? In what ways are they
alike?

11) What are the different kinds of point defects?

12) From a thermodynamic stability viewpoint, how are extrinsic point defects and
extended defects similar?

�For solutions, see Appendix 3.
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4

THE ELECTRONIC LEVEL I:
AN OVERVIEW OF

BAND THEORY

This chapter begins a series of chapters devoted to electronic structure and transport
properties. In the present chapter, the foundation for understanding band structures of
crystalline solids is laid. The presumption is, of course, that said electronic structures
are more appropriately described from the standpoint of anMO (or Bloch)-type approach,
rather than the Heitler–London valence-bond approach. This chapter will start with the
many-body Schrödinger equation and the independent-electron (Hartree–Fock) approxi-
mation. This is followed with Bloch’s theorem for wave functions in a periodic potential
and an introduction to reciprocal space. Two general approaches are then described for
solving the extended electronic structure problem, the free-electron model and the
LCAO method, both of which rely on the independent-electron approximation. Finally,
the consequences of the independent-electron approximation are examined. Chapter 5
studies the tight-binding method in detail. Chapter 6 focuses on electron and atomic
dynamics (i.e. transport properties), and the metal–nonmetal transition is discussed in
Chapter 7.
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4.1 THE MANY-BODY SCHRÖDINGER EQUATION

The Schrödinger equation for a many-electron system is written as:

HC ¼ EC (4:1)

where H is known as the Hamiltonian operator, E is the eigenvalue representing the total
energy of the system, and C is the eigenfunction (or eigenstate). This equation has the
appearance of being rather simple, which is quite deceptive. For a system containing N
electrons and K nuclei, the Hamiltonian operator H is expressed, in atomic units, as:

� 1
2

XN
m¼1
r2

m �
1
2

XK
n¼1
r2
n þ

XN
m.v

1
jrm � rvj �

XK
n¼1

XN
m¼1

Zn
jrm � Rnj þ

XK
n.m

ZnZm
jRn � Rmj (4:2)

These five summation terms represent, from left to right: electron kinetic energy,
nuclear kinetic energy, electron–electron Coulomb repulsion, electron–nuclear
Coulomb attraction, and nuclear–nuclear Coulomb repulsion. The eigenfunction of
Eq. 4.1 thus depends on the positions of all the electrons, rm, and nuclei, Rn. The problem
of solving for the eigenfunction can be simplified by separating the degrees of freedom
connected with the motion of the nuclei from those of the electrons. The Born–
Oppenheimer approximation asserts that because the nuclei are so much heavier than
the electrons, their kinetic energy (motion) can be neglected (Born and Oppenheimer,
1927). The second term in Eq. 4.2 can then be set to zero, and the last term treated as
a parameter.

The Schrödinger equation can now be written for the electrons in the system as:

� 1
2

XN
m¼1
r2
m þ

XN
m.v

1
jrm � rvj �

XK
n¼1

XN
m¼1

Zn
jrm � Rnj

" #
C ¼ EC (4:3)

where C is the many-body (N-electron) eigenfunction, which, in general, is a wave-like
solution; E is the electronic energy, and Z is the nuclei charge. The total energy may be
obtained by adding in the electrostatic energy of the nuclei.

The simplest approach to approximating a solution to Eq. 4.3 is to assume that all
the electrons move independently of one another. That is, imagine they mutually interact
only via an averaged potential energy. This is known as the Hartree approximation. It
enables us to write the Hamiltonian for the N-electron system as a sum of N one-electron
Hamiltonians, hm, and the many-body wave function as a product of N one-electron wave
functions, cm, normally written as a single-Slater determinant. In quantum mechanics, a
Slater determinant is an expression that describes the wave function of a multielectron
system that satisfies antisymmetry requirements and, subsequently, the Pauli exclusion
principle by changing sign upon exchange of the electrons. It is named for John
C. Slater who published Slater determinants as a means of ensuring the antisymmetry
of a wave function through the use of matrices. Each one-electron wave function is
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given by a spin-orbital, which is a function depending on both the spatial coordinates
(position), rm, and spin coordinates, sm, of the electron. A spin orbital can be denoted
asc (Xm),whereXm ¼ (rm, sm). Theone-electron functionmaybeof the atomic,molecular,
or Bloch type, depending on the problem at hand. Finally, the total energy of the
N-electron system is the sum of the eigenvalues for all the one-electron eigenvalue
equations, 1m. The relationships between the N-electron quantities and one-electron
quantities can be represented mathematically as:

H ¼
X
m

hm (4:4)

C ¼ 1ffiffiffiffiffi
N!
p

X
P

(�1)P
Y
m

Pcm(X v) ¼ 1ffiffiffiffiffi
N!
p det[cm(X v)] (4:5)

E ¼
X
m

1m (4:6)

where P is the permutation operator.

Example 4.1

Write the general expression for thewave function for an N-electron system using
the Slater determinant.

Solution

C(X1, X2, . . . ,XN) ¼ 1ffiffiffiffiffi
N!
p

c1(X1) c2(X1) � � � cN(X1)
c1(X2) c2(X2) � � � cN(X2)

..

. ..
. ..

.

c1(XN) c2(XN) � � � cN(XN)

										

										

Using a single Slater determinant as a trial ground state wave function for the
N-electron system, it is found upon application of the variational principle that the
one-electron wave functions themselves must satisfy the following equation, which is
provided here without derivation:

� 1
2
r2
m þ

XN
i¼1

X
sv

ð
c�i (v)ci(v)
jrm � rvj drv

" #
�
X
n

Zn
jrm � Rnj

( )
cj(m) ¼ 1jcj(m) (4:7)

In Eq. 4.7, cj is the j th one-electron orbital accommodating the mth electron with
spatial coordinate rm and spin coordinate sm. Likewise, the vth electron resides in the
ith orbital denoted by ci. The Lagrange multiplier, 1j, guarantees that the solutions to
this equation forms an orthonormal set and is the expectation value for the equation.
Hence, it is the quantized one-electron orbital energy. The second term within the
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brackets on the left-hand side of Eq. 4.7 is called the direct term (also known as the
Coulomb term, or Hartree term). It represents the potential felt by the mth electron result-
ing from a charge distribution caused by all the electrons, including the mth electron itself
(the so-called self-interaction). Equation 4.7 was derived by the British mathematician
Douglas Rayner Hartree (1897–1958) in 1928 (Hartree, 1928).

Equation 4.7 has the form of a self-consistency problem. The solution to the equation
is cj(m), but the exact form of the equation is determined by cj(m) itself. It must be solved
by an iterative procedure (called the self-consistent field, or SCF approach), in which con-
vergence is taken to occur at the step where both 1j and cj(m) do not differ appreciably
from the prior step.

A little further discussion on electron spin is in order now. Spin orbitals are necessary
because an electron possesses a spin quantum number (þ1

2 or 2
1
2). In the absence of a

magnetic field, the up and down spins are energetically degenerate, or indistinguishable.
The Pauli exclusion principle says that electronic wave functions must be antisymmetric
(they change sign) under the interchange of any two electrons. Because of this anti-
symmetry, two electrons are not allowed to occupy the same quantum state.

The Russian mathematician Vladimir Aleksandrovich Fock (1898–1974) extended
the Hartree equation by considering this antisymmetry (Fock, 1930), resulting in what is
called the Fock, or Hartree–Fock, equation (for a derivation, see Thijssen, 1999). With
the Hartree–Fock approximation, the following term is added to Eq. 4.7:

�
XN
i¼1

X
sv

ð
c�i (v)cj(v)

jrm � rvj drvci(m) (4:8)

This new term is called the exchange term, or Fock term. It is similar to the Hartree
term but with the spin orbitals interchanged. The minus sign results from the antisymme-
try of the wave function with respect to two-particle exchange. The exchange term lowers
the Coulomb interaction between electrons since every electron is surrounded by an
exchange hole in which other electrons with parallel spin are hardly found. Exchange
introduces correlation by keeping electrons with parallel spin apart. However, the term
correlation is normally reserved for electron correlation apart from that owing to
exchange, that is, Coulomb repulsion between antiparallel spin electrons, usually
called dynamic correlation. These dynamic correlation effects are neglected in the
Hartree–Fock theory.

The Hartree–Fock equation can be written as a generalized eigenvalue problem:

Fcj(m) ¼ 1jcj(m) (4:9)

where the Fock operator, F, is expressed as:

F ¼ � 1
2
r2

m �
X
n

Zn
rm � Rn

þ J þ K (4:10)

in which J andK are the Hartree (Coulomb) and Fock (exchange) terms, respectively. The
Fock operator is sometimes referred to as the effective one-electron Hamiltonian. Like
Eq. 4.7, Eq. 4.9 must also be solved by the SCF approach.
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The Hartree–Fock approximation is much more tractable with systems containing a
small number of atoms than with crystals. With crystals, it is necessary to include correc-
tions such as the random-phase approximation (RPA). However, a discussion of these is
beyond the scope of this book. But wait! Alas, not all of our problems are solved yet. The
issue of how to computationally handle the near infinite number of one-electron wave
functions in a solid has not yet been addressed. This is now taken up.

4.2 BLOCH’S THEOREM

The potential felt by an electron is given by the sum of the last three terms on the
right-hand side of Eq. 4.10. This potential has a perfect periodicity in a crystalline
solid and may be represented as:

V(r þ R) ¼ V(r) (4:11)

where r is an atomic position and R is a lattice vector. If Eq. 4.11 is true, a symmetry
operation, such as translation, IR, that transforms a crystal into itself, does not change
the Hamiltonian, H, nor does it change the Fock operator, F, that is, the Hamiltonian
and Fock operators are translational invariant. Hence, IR commutes with H and F,
for example, IRH 2 HIR ¼ 0. Therefore, a one-electron wave function satisfying the
Schrödinger equation (or Hartree–Fock equation) is also an eigenstate of IR, or:

IRcj(r) ¼ cj(r þ R) ¼ fcj(r) (4:12)

where, for clarity, just the spatial coordinate of the electron, r, has been emphasized and
the subscript m dropped for generality.

If, what is known as periodic boundary condition is now imposed on the entire crys-
tal by joining its faces, it restricts the number of wavelengths that fit into the crystal to an
integer, which corresponds to running wave solutions of the Schrödinger equation. This
method was first introduced in Born and von Kármán’s treatment of the surface atomic
dynamics in the theory of specific heat (Born and von Kármán, 1912). Essentially, the
crystal is taken to be surfaceless. While it is easy to envision a one-dimensional chain
with its two ends joined together to form a ring, it is not so easy to picture the analogous
situation for three-dimensional crystals. The eigenvalue satisfying this requirement and
Eq. 4.12 is:

f ¼ exp(ik � R) (4:13)

where R is a real-space lattice vector equal to n1a1 þ n2a2 þ n3a3 (n1, n2, and n3 are
integers, and a1, a2, and a3 are primitive translation vectors). The quantity k is the
reciprocal-space wave vector that can only take on the values of 0 or +2pn/L, where
n is an integer and L is the sample dimension. Also, note that i in Eq. 4.13 is the
square root of 21. An important theorem was derived from Eqs. 4.12 and 4.13 in
1928 by Felix Bloch (1905–1983) while he was a graduate student at the University
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of Leipzig. Bloch’s theorem states that, owing to the translational invariance of the
Hamiltonian, any one-electron wave function can be represented by a modulated plane
wave (Bloch, 1928):

ck(r) ¼ exp(ik � r)uk(r) (4:14)

where exp(ik . r) is the plane wave and uk(r) is a function with the periodicity of the
real-space Bravais lattice, satisfying the following equation:

uk(r) ¼ uk(r þ R) ¼ exp(r þ R) ¼ exp(�ik � r)ck(r) (4:15)

Note that exp(ik . r) exp(2ik . r)ck(r) ¼ ck(r). Equation 4.15 implies that the following
relation also holds:

ck(r þ R) ¼ exp(ik � R)ck(r) (4:16)

The wave function has the same amplitude at equivalent positions in each unit cell. Thus,
the full electronic structure problem is reduced to a consideration of just the number
of electrons in the unit cell (or half that number if the electronic orbitals are assumed
to be doubly occupied) and applying boundary conditions to the cell as dictated
by Bloch’s theorem (Eq. 4.14). Each unit cell face has a partner face that is found by
translating the face over a lattice vector R. The solutions to the Schrödinger equation
on both faces are equal up to the phase factor exp(ik .R), determining the solutions
inside the cell completely.

Since the wave functions are subject to boundary conditions, the energy eigenvalues
are quantized. There are N one-electron eigenstates, cj, with corresponding eigen-
values, 1j (but there may be sets of energetically degenerate eigenstates for some
values of k). Each of the unique eigenvalues is termed an energy level. Because N is
so large in a solid, quasi-continuous energy bands form in the density of states, N(EF),
with an infinitesimal separation between the different energy levels. The highest
energy level occupied by electrons in the density of states is termed the Fermi level
and the eigenvalue energy at this level is termed the Fermi energy (symbolized EF).
All levels below the Fermi level are occupied with electrons and all levels above it are
empty. The energy eigenvalues are functions of k, that is, 1j(k). The eigenvalues
change smoothly as k changes, forming curves as one moves from one k-point to another
in 1-k space. The dispersions of the various curves are displayed in electronic band
structure, or band dispersion, diagrams.

The density of states at the Fermi level, N(EF), can be obtained experimentally from
calorimetric measurements of the electronic specific heat, via:

CV ¼ p 2

3
k2BN(EF)T ¼ gT (4:17)

where CV is the heat capacity at constant volume, and kB is Boltzmann’s constant. This
relation holds well at low temperatures even for d-electron systems, so long as the valence
electrons are itinerant. Commonly, a plot is made ofCV=T versus T2. This yields a straight
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line at low temperatures, (,�20 K) whose slope is given by:

12p4

5Q3 NkB ¼ 234NkB
Q3

(N is Avogadro’s number and Q is the Debye temperature) and whose intercept at T ¼ 0
is g. In the Debye model, the slope has a T3 dependency (actually, Tn for an n-dimen-
sional solid) owing to the lattice or phonon contribution to the heat capacity. Of
course, the heat capacity normally measured is CP, the heat capacity at constant pressure.
However, for solids the difference between CP and CV is typically less than 1 percent at
low temperatures and thus can be neglected.

Example 4.2

The low temperature heat capacity is often used for the study of the band
structure of metals and alloys since it yields direct information about the density
of states. Neglecting magnetic contributions at low temperatures, the heat
capacity of a solid consists of contributions owing to the lattice and, for metals,
to the free electrons. For metals, the lattice contribution is masked by the elec-
tronic contribution, but the two can be separated. Derive the expression for the
total heat capacity given the information in the preceding paragraph.

Solution

The low temperature heat capacity at constant volume, when plotted as CV=T

versus T2, yields a straight line with a slope of (12p4=5Q3)NkB and a y-intercept at
T ¼ 0 of g. This is of the simple algebraic form y ¼mx þ b, where y (the ordinate)
is CV=T and x (the abscissa) is T2. Making the substitutions given form (slope) and
b (y-intercept), then multiplying through by T gives:

CV ¼ 12p4

5
NkB

T

Q

� �3
þ gT

which shows the Debye term owing to the lattice contribution and the free-
electron contribution, g. The density of states at the Fermi energy N(EF) can
be determined from g via Eq. 4.17.

It should be mentioned that a free-electron value for the Fermi energy may be
obtained via:

EF ¼ h� 2

2me

3p 2N

V

� �2=3
(4:18)

where me is the electron rest mass ¼ 9.1095 � 10231 kg, h� ¼ 1.0546 � 10234 J s, and
N/V is the free electron density (the number of free electrons per unit volume), also
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known as the valence electron concentration or VEC. Note that the Fermi energy is
proportional to the free electron density, which should not be confused with the valence
electron per atom ratio, e/a. The two are not linearly proportional since the atomic volume
(also known as the molar volume) of the elements is a peridoc function of the atomic
number. The molar VEC can be calculated from the e/a ratio as follows:

VECmolar ¼ (valence electrons per atom)(6:0223� 1023 mol�1)
[atomic mass (g=mol)=density (g=cm3)]

3

(4:19)

Example 4.3

Show that the VEC for osmium and diamond are, respectively, 0.572 and 0.705
electrons/Å3.

Solution

The VEC is defined as the number of valence electrons per unit volume. The Os
atom has an outer electron configuration of 5d66s2, so it has eight valence elec-
trons. Carbon has an outer electron configuration of 2s22p2, so it has four valence
electrons. Starting with the molar volume, the VECmolar would be given by:

VECmolar ¼ (valence electrons per atom)(6:0223�1023 mol�1)
[atomic mass (g=mol)=density (g=cm3)]

¼ 5:72� 1023 electrons=cm3

Using the values for density and atomic mass for each of the substances, gives, for
osmium: 5.72 � 1023 electrons per cm3 and, for diamond, 7.05 � 1023 electrons per
cm3. As 1 cm ¼ 108 Angstroms, therefore:

5:72� 1023 electrons

cm3
� 13 cm3

1024 �A
3
¼ 0:572 electrons= �A

3
for osmium

and 0.705 electrons/Å3 for diamond.

However, because pure metals and alloys with the same number of valence electrons
per atom tend to have the same structure, for a given structure, the density of states at
the Fermi energy is a periodic function of the valence electron per atom ratio, which
is discussed more in Section 4.4.2. For the Fermi energy, the corresponding N(EF) is
given by:

N(EF) ¼ V

2p 2

2me

h� 2

� �3=2 ffiffiffiffiffiffi
EF
p

(4:20)
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Unfortunately, if one uses the result of Eq. 4.20 in Eq. 4.17 to calculate CV, there is
normally a discrepancy between the result and the experimental value that is as high
as a factor of two or three owing to electron correlation, among other reasons. Finally,
for a dilute substitutional alloy the density of states is different from that of the pure
solvent with the same crystal structure. The change is not easily calculated by the
rigid band model (i.e. with the assumption of a fixed band structure) since this
model is not strictly applicable to alloys. For example, with noble metal (Au, Pt,
Ir, Os, Pd, Rh, Ru), the rigid band model predicts a decrease in N(EF) with an
increase in the average number of conduction electrons per atom on alloying with
a solute atom that is iso-electronic with the solvent atom (Section 4.4.2). However,
the experimental electronic specific heat is found to increase, which indicates the
opposite effect. The change in N(EF) is directly related to the shielding of the
added impurity. If there is no volume change on alloying, the change in N(EF) is
directly proportional to the excess charge attracted to the imprity from the electron
states of energy EF (Stern, 1970).

Felix Bloch (1905–1983) received his Ph.D. in
physics in 1928 from the University of Leipzig,
where he studied under Schrödinger and, later,
Heisenberg. In his Ph.D. thesis, Bloch introduced
the theorem that allows us to write the electron
wave function in a periodic lattice as a modulated
plane wave. This concept is fundamental to elec-
tronic structure calculations on crystalline solids.
From 1928 to 1929, Bloch was an assistant to
Wolfgang Pauli at the Swiss Federal Institute of
Technology in Zurich. Bloch is no less famous for
his contributions as an experimentalist. Upon
Hitler’s ascent to power, he left Europe and
accepted a position at Stanford University,
where he carried out research on nuclear mag-
netic measurements. In 1939, he determined the

magnetic moment of the neutron with an accuracy of about one percent. Bloch
and E. M. Purcell were awarded the 1952 Nobel Prize in physics for the first suc-
cessful nuclear magnetic resonance experiments, performed independently in
1946. Purcell measured the nuclear magnetic absorption while Bloch’s method
utilized nuclear induction, thewell-known Bloch equations describing the behav-
ior of a nuclear spin in a magnetic field under the influence of radio frequency
pulses. Nuclear magnetic resonance has since been applied to the investigation
of molecular structure and medical diagnostics, via magnetic resonance imaging.
Bloch was elected to the United States National Academy of Sciences in 1948.
(Primary source: R. Hofstadter Biographical Memoirs of the U.S. National
Academy of Sciences, 1994, Vol. 64, pp. 34–71.)

(Photo courtesy of Stanford University Archives, Green Library. Reproduced with
permission.)
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4.3 RECIPROCAL SPACE

It has just been stated that a band structure diagram is a plot of the energies of the various
bands in a periodic solid versus the value of the reciprocal-space wave vector k. It is
now necessary to discuss the concept of the reciprocal-space lattice and its relation to
the real-space lattice. The crystal structure of a solid is ordinarily presented in terms of
the real-space lattice comprised of lattice points, which have an associated atom or
group of atoms whose positions can be referred to them. Two real-space lattice points
are connected by a primitive translation vector, R:

R ¼ ua1 þ va2 þ wa3 (4:21)

where u, v, w are integers and a1, a2, a3 are called basis vectors. The primitive vectors for
the cubic lattices, for example, are given in Table 4.1 in which a is the unit cell parameter.

It may be recalled that an alternative description for a crystal structure can be made
in terms of sets of lattice planes, which intersect the unit cell axes at ua1, va2, and wa3.
The reciprocals of the coefficients are transformed to the smallest three integers having
the same ratios, h, k, and l, which are used to denote the plane (h k l ). Of course, the lattice
planes may or may not coincide with the layers of atoms. Any such set of planes is
completely specified by the interplanar spacing, dhkl, and the unit vector normal to the
set, nhkl, since the former is given by the projection of, for example, u0a1 onto nhkl,
that is dhkl ¼ u0a1 . nhkl. The reciprocal lattice vector is defined as:

Ghkl ¼ 2pnhkl
dhkl

(4:22)

The factor 2p is usually omitted from the definition of a reciprocal-lattice vector in
crystallography. This is because Bragg’s law defines the deviation of a diffracted
ray from the direct ray in terms of the half-wavelength of the radiation and the quantity
1/d, which, in crystallography, is taken as the reciprocal-lattice vector:

sin u ¼ n
l

2

� �
1
d

� �
(4:23)

The factor 2p arises, however, when the relation l ¼ 2p/k is used to express the
periodicity of the incident radiation. Each vectorGhkl of the reciprocal lattice corresponds

TABLE 4.1. Primitive Translation Vectors of the Real-Space Cubic Lattices: R ¼ ua1þ
va2 þwa3

Lattice Primitive Vectors

Simple cubic (SC) a1 ¼ ax a2 ¼ ay a3 ¼ az
FCC a1 ¼ a

2 ( yþ z) a2 ¼ a
2 (xþ z) a3 ¼ a

2 (xþ y)
BCC a1 ¼ a

2 (�xþ yþ z) a2 ¼ a
2 (x� yþ z) a3 ¼ a

2 (xþ y� z)
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to a set of planes in the real-space lattice with Miller indices (h k l ). The coordinates of the
endpoint of each vector are h, k, and l. The vectors are perpendicular to the (h k l ) planes
and the lengths of the vectors are equal to the reciprocal of the plane spacing. Hence, each
crystal structure has associated with it a real-space lattice and a reciprocal-space lattice.

A reciprocal-lattice vector can also be defined in terms of basis vectors:

G ¼ hb1 þ kb2 þ lb3 (4:24)

(compare Eq. 4.24 to Eq. 4.21). The basis vectors of the reciprocal lattice (b1, b2, b3) can
be obtained from those of the real-space lattice (a1, a2, a3) by a relation given by
J. W. Gibbs (Wilson, 1907; Margenau and Murphy, 1956):

b1 ¼ 2p (a2 � a3)
a1 � (a2 � a3)

(4:25)

b2 ¼ 2p (a1 � a3)
a1 � (a2 � a3)

(4:26)

b3 ¼ 2p (a1 � a2)
a1 � (a2 � a3)

(4:27)

In Eqs. 4.25–4.27, the numerators contain cross (vector) products and the denominators
are scalar triple products equal to the volume of the real-space unit cell. It may be com-
puted from its determinant (see practice problem 7).

Taking the primitive translation vectors for one of the real-space cubic lattices
from Table 4.1, Eqs. 4.25–4.27 can be used to obtain the primitive translation vectors
for the corresponding reciprocal lattice, which are given in Table 4.2. By comparing
Tables 4.1 and 4.2, it is seen that the primitive vectors of the reciprocal lattice for the
real-space FCC lattice, for example, are the primitive vectors for a BCC lattice. In
other words, the FCC real-space lattice has a BCC reciprocal lattice.

Now re-label the basis vectors: a1 ¼ a, a2 ¼ b, a3 ¼ c; b1 ¼ a�, b2 ¼ b�, b3 ¼ c�

and introduce a general vector, k, in reciprocal space:

k ¼ kxa
� þ kyb

� þ kzc
� (4:28)

Note that this vector appears in the expression for the electronic wave function (e.g.
Eq. 4.14). It is used to define a unit cell in reciprocal space, which may be derived in

TABLE 4.2. Primitive Translation Vectors of the Reciprocal Lattices

Real-Space
Lattice Corresponding Reciprocal Lattice Primitive Vectors

SC b1 ¼ (2p=a)x b2 ¼ (2p=a)y b3 ¼ (2p=a)z
BCC b1 ¼ (2p=a)( yþ z) b2 ¼ (2p=a)(xþ z) b3 ¼ (2p=a)(xþ y)
FCC b1 ¼ (2p=a)(�xþ yþ z) b2 ¼ (2p=a)(x� yþ z) b3 ¼ (2p=a)(xþ y� z)
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the following manner. First, reciprocal-lattice vectors G are drawn between a given
reciprocal lattice point (the origin) and all other points. Perpendicular planes are added
at the midpoints to these G vectors (giving new vector, k, originating from the origin
and terminating on the bisecting planes). The smallest volume enclosed by the polyhedra
defined by the intersection of these planes about the central lattice point is termed the
Wigner–Seitz cell. This is named after Hungarian-born American physicist Eugene
Paul Wigner (1902–1995) and his first graduate student at Princeton, Frederick Seitz
(1911–2008), who studied the symmetry properties of wave functions in crystals by
group theoretical methods (Seitz, 1936; Bouckaert et al., 1936).

The Wigner–Seitz cell actually is a space-filling primitive cell that may be con-
structed to represent a real space lattice or reciprocal space lattice. The Wigner–Seitz
cell of the reciprocal lattice, however, is conventionally referred to as the first Brillouin
zone (BZ), after French physicist Léon Brillouin (1877–1972) who had earlier shown
that the surfaces of discontinuity in reciprocal space form polyhedra (Brillouin, 1930).
The first Brillouin zone contains all the symmetry of the reciprocal lattice, that is, all of
the reciprocal space is covered by periodic translation of this unit cell. There are higher
order zones that may be constructed similarly to the first BZ, by drawing vectors to the
next nearest neighbors. The result is that the higher-order zones are fragmented pieces sep-
arated from each other by the lower zones. Each zone occupies an equal volume of k-space.

The first Brillouin zones for the SC, BCC, and FCC lattices are shown in Figure 4.1.
The inner symmetry elements for each BZ are: the center, G; the three-fold axis, L; the
four-fold axis, D; and the two-fold axis, S. The symmetry points on the BZ boundary
(faces) (X, M, R, etc.) depend on the type of polyhedron. The reciprocal lattice of a
real-space SC lattice is itself a SC lattice. The Wigner–Seitz cell is the cube shown in
Figure 4.1a. Thus, the first BZ for the SC real-space lattice is a cube with the high
symmetry points shown in Table 4.3.

The reciprocal lattice of a BCC real-space lattice is an FCC lattice. The Wigner–
Seitz cell of the FCC lattice is the rhombic dodecahedron in Figure 4.1b. The volume
enclosed by this polyhedron is the first BZ for the BCC real-space lattice. The high
symmetry points are shown in Table 4.4.

The reciprocal lattice for the FCC real-space lattice is a BCC lattice. The Wigner–
Seitz cell is a truncated octahedron (Fig. 4.1c). The shapes of the BZs for the SC and
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Figure 4.1. The Wigner–Seitz cell of reciprocal space (the first BZ) for the SC real-space lattice

is itself a SC lattice (a). For the BCC real-space lattice, the first BZ is a rhombododecahedron (b).

For the FCC real-space lattice, the first BZ is a truncated octahedron (c).
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BCC real-space lattices are completely determined by the condition that each inner
vector, k, go over into another by all the symmetry operations. This is not the case for
the truncated octahedron. The surface of the Wigner–Seitz cell is only fixed at the trun-
cating planes, not the octahedral planes. Nonetheless, the volume enclosed by the trun-
cated octahedron is taken to be the first BZ for the FCC real-space lattice (Bouckaert
et al., 1936). The special high-symmetry points are shown in Table 4.5.

4.4 A CHOICE OF BASIS SETS

The one-electron wave function in an extended solid can be represented with different
basis sets. Discussed here are only two types, representing opposite extremes: the
plane-wave basis set (free-electron and nearly-free-electron models) and the Bloch
sum of atomic orbitals basis set (LCAO method). A periodic solid may be considered
constructed by the coalescence of these isolated atoms into extended Bloch-wave
functions. On the other hand, within the free-electron framework, in the limit of an
infinitesimal periodic potential (V ¼ 0), a Bloch-wave function becomes a simple

TABLE 4.4. High Symmetry Points for the BCC
Real-Space Lattice

k-Point Label Cartesian Coordinates

G (0, 0, 0)
H (2p/a, 0, 0)
N (p/a, p/a, 0)
P (p/a, p/a, p/a)

TABLE 4.5. High Symmetry Points for the FCC
Real-Space Lattice

k-Point Label Cartesian Coordinates

G (0, 0, 0)
X (2p/a, 0, 0)
W (2p/a, p/a, 0)
K (3p/2a, 3p/2a, 0)
L (p/a, p/a, p/a)

TABLE 4.3. High Symmetry Points for the SC
Real-Space Lattice Cube

k-Point Label Cartesian Coordinates

G (0, 0, 0)
X (p/a, 0, 0)
M (p/a, p/a, 0)
R (p/a, p/a, p/a)
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unmodulated plane wave. This textbook will focus on the LCAO approach, in fact, devot-
ing all of Chapter 5 to it. However, a brief presentation of the free-electron model is war-
ranted owing to its historical significance and for certain insights it provides, particularly
with metals. In the early years, the plane-wave expansion method came into favor with
physicists and metallurgists, mainly because of the substantial efforts at the time to
understand the conductivity of metals.

4.4.1 Plane-Wave Expansion – The Free-Electron Models

The free-electron model originated from the work of Paul Karl Ludwig Drude (1863–
1906), who utilized the kinetic theory of gases to treat electrical conduction in metals
(Drude, 1900a, 1900b, 1902). In Drude’s model, a metal is regarded as a gas of free-
valence electrons immersed in a sea of metal ions. Because the ions are homogeneously
distributed in the solid, their net positive charge is considered uniformly smeared out,
forming what is referred to as a jellium. In this model, the free electrons experience a
constant electrostatic potential everywhere in themetal and all of them have the same aver-
age kinetic energy, 3/2 kBT, which corresponds to the 1/2mv2 in Newton’s second law.
Soon afterwards, Hendrik Lorentz treated the free electrons as classical distinguishable
particles that obey the Maxwell–Boltzmann distribution laws (Lorentz, 1904–1905).

After the discovery of the Pauli principle, Arnold Sommerfeld (1868–1951)
regarded the free electrons of a metal as a degenerate Fermi gas, with the free electrons
subject to Fermi–Direc statistics, thereby transforming the classical Drude–Lorentz
model into the realm of quantum theory (Sommerfeld, 1928). Whereas every electron
is considered to have the same average kinetic energy in a classical electron gas, the
condition that electron states need to be solutions of a wave equation subject to boundary
conditions naturally gives rise to a spread of quantized energy levels in Sommerfeld’s
theory of metals. The allowed electronic states are running-wave solutions to the time-
independent Schrödinger equation. The appropriate boundary conditions correspond to
an integral number of wavelengths of the running wave along each crystal dimension.

Further development of Sommerfeld’s theory of metals would extend well outside
the intended scope of this textbook. The interested reader may refer to any of several
books for this (e.g. Seitz, 1940). Rather, this book will discuss the band approximation
based upon the Bloch scheme. In the Bloch scheme, Sommerfeld’s model corresponds
to an empty lattice, in which the electronic Hamiltonian contains only the electron
kinetic-energy term. The lattice potential is assumed constant, and taken to be zero, with-
out any loss of generality. The solutions of the time-independent Schrödinger equation in
this case can be written as simple plane waves, ck(r) ¼ exp[ik . r]. As the wave function
does not change if one adds an arbitrary reciprocal-lattice vector,G, to the wave vector, k,
BZ symmetry may be superimposed on the plane waves to reduce the number of wave
vectors that must be considered:

ck(r) ¼ ckþG(r) ¼ exp[i(k þ G) � r] (4:29)

Note that the periodic uk(r) function that appears in Eq. 4.14, is absent since the periodic
potential V(r) is assumed to be infinitesimally small (i.e. in the limit V(r)! 0). In the
free-electron model, the conduction electrons are regarded as free to move throughout
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the crystal, unimpeded by the ions they left behind. The energy eigenvalues, in atomic
units, are given by:

1 ¼ (k þ G)2

2
(4:30)

From the form of Eq. 4.30, it is seen that 1 is a simple parabolic function of k [1(k) ;
1(k þ G)]. The band structure describes this dependence of 1(k) on k, and it is an
n þ 1 dimensional quantity, where n is the number dimensionality of the crystal. To visu-
alize it, 1(k) is plotted along particular projectories between high-symmetry points.
Hence, for a one-dimensional crystal, the band structure will consist of a single parabola
in the free-electron approximation. The parabola shows all the degenerate (positive and
negative) values for k. For three-dimensional crystals, a single paraboloid is obtained.

The electronic properties of most main group s- and p-block elements are better
described by introducing a periodic potential as a small perturbation. In the context of
the present model, this approach is known as the nearly-free-electron (NFE) model. In
1930, Peierls showed that, in the NFE limit, band gaps arise from electron diffraction,
a natural consequence of wave propagation in a periodic structure (Peierls, 1930).
Brillouin generalized the result and showed that, in three dimensions, the surfaces of
discontinuity form polyhedra in reciprocal space–the BZ (Brillouin, 1930).

The diffraction condition for electrons in a solid, with periodicity a, is satisfied when
the wave vectors lie on the bisector plane of a reciprocal lattice vector, that is, at the BZ
boundaries. This is given by:

k ¼+
G

2
¼+

nip

ai
(4:31)

where ai are the three primitive translation vectors of the lattice and ni are arbitary inte-
gers. The wave functions with these wave vectors correspond to standing wave solutions,
rather than running wave solutions, to the Schrödinger equation. There must now be an
integral number of half-wavelengths along each dimension of the crystal. The two
wave functions c2G/2(r) and cþG/2(r) at the opposite zone boundaries are degenerate
in the free-electron limit. However, it can be shown by perturbation theory that these
levels split into nondegenerate levels by the introduction of a small periodic potential
(see Elliot, 1998). Perturbation theory gives the energies, in first-order, as:

1+ ¼ ðk þ GÞ2
2

+ VG ð4:32Þ

Hence, cþ is lower than the free-electron value by VG and c2 is higher than the free-
electron value by VG, thereby opening up a band gap of magnitude 2VG, as shown
pictorially for a one-dimensional crystal in Figure 4.2.

4.4.2 The Fermi Surface and Phase Stability

In Figure 4.2, the eigenvalues are concentrated in intervals separated by forbidden
regions. In three-dimensions, this corresponds to discontinuities in the energy contours
at the zone boundaries. Electrons, deep in the valence band, possess low energies and
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thus have k vectors that terminatewell short of the first BZ boundary. The energy contours
for these electrons are thus spheres contained within the first BZ. As their energy
increases, electrons have k vectors that gradually lengthen to fill the first BZ. The most
important contour to consider is, of course, the Fermi surface, which corresponds
to the electrons with the Fermi energy. An electron with the Fermi energy has a
wave vector (called the Fermi-wave vector) that is proportional to the square root of
the Fermi energy, which, in turn, is proportional to the electron density (N/V ). When
the Fermi wave vector does not touch the BZ boundary, but rather is of a length appreci-
ably less than the distance to the first BZ boundary (i.e. when the Fermi-wave vector lies
wellwithin the first BZ), the Fermi surface is spherical. This is the case for the monovalent
(one conduction electron) FCC alkali metals (Fig. 4.3a).

Assuming a fixed band structure (the rigid band model), a decrease in the density
of states is predicted for an increase in the electron/atom ratio for a Fermi surface that
contacts the zone boundary. It will be recalled that electrons are diffracted at a zone
boundary into the next zone. This means that k vectors cannot terminate on a zone bound-
ary because the associated energy value is forbidden, that is, the first BZ is a polyhedron
whose faces satisfy the Laue condition for diffraction in reciprocal space. Actually, when
a k vector terminates very near a BZ boundary the Fermi surface topology is perturbed by
NFE effects. For k values just below a face on a zone boundary, the electron energy is
lowered so that the Fermi sphere necks outwards towards the face. This happens in mono-
valent FCC copper, where the Fermi surface necks towards the L-point on the first BZ
boundary (Fig. 4.3b). For k values just above the zone boundary, the electron energy
is increased and the Fermi surface necks down towards the face.

An interesting area still under debate in the field of metallurgy is the consequences
of Fermi surface topology on the phase equilibria in alloy systems. Elucidation of the
connection between these two, seemingly unrelated, features started with the work of
William Hume-Rothery, who reported that the critical-valence electron to atom ratios,

2|V3|

–3p /a–2p /a 2p /a 3p /ap /a

e

0–p /a

2|V2|

2|V1|

k

Figure 4.2. The electronic structure of a one-dimensional crystal in the NFE approximation is a

single parabola with energy gaps of magnitude 2Voccurring at the BZ boundaries. (After Elliot

(1998), The Physics and Chemistry of Solids. # John Wiley & Sons, Inc. Reproduced with

permission.)
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e/a, corresponding to maximum solubility in the a phase and for the occurrence of the b-
and g-intermediate phases in some copper and silver alloys were 1.36, 1.48, and 1.54,
respectively (Hume-Rothery et al., 1934). Mott and Jones later showed that the Fermi
surface touches the BZ edge in those phases at precisely these same values, which
strongly pointed to a connection between BZ touching and phase stability (Mott and
Jones, 1936).

The connection follows the line of reasoning just presented. As a polyvalent metal is
dissolved in a monovalent metal, the electron density increases, as does the Fermi energy
and Fermi-wave vector. Eventually, the Fermi sphere touches the BZ boundary and the
crystal structure becomes unstable with respect to alternative structures (Raynor, 1947;
Pettifor, 2000). Subsequent work has been carried out confirming that the structures of
Hume-Rothery’s alloys (alloys comprised of the noble metals with elements to the
right on the periodic table) do indeed depend only on their electron per atom ratio
(Stroud and Ashcroft, 1971; Pettifor and Ward, 1984; Pettifor, 2000). Unfortunately,
the importance of the e/a ratio on phase equilibria is much less clear when it does not
correspond precisely to BZ touching.

For low-dimensional (one-dimensional, two-dimensional) metals, the topology of
the Fermi surface is especially significant, as this can lead to a charge density wave
state. When a portion of the Fermi surface can be translated by a vector q and superi-
mposed on another portion of the Fermi surface, the Fermi surface is nested.
Geometrical instabilities can result when large sections of the Fermi surface are nested.
For one-dimensional metals, if q ¼ b/n, then a distortion, known as the Peierls distortion,
leading to a unit cell n times as large as the original one is predicted (Burdett, 1996). If
the nesting is complete, the system will exhibit a metal–nonmetal transition after the
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Figure 4.3. For the monovalent FCC alkali metals (a) with a low electron density, the Fermi-

wave vector (the radius of the Fermi sphere) lies well below the first BZ boundary. The Fermi

surface is unperturbed. For monovalent FCC copper (b), the increased electron density forces

the Fermi wave vector to terminate very near the L-point. The electron energy is lowered and

the Fermi sphere necks outwards towards that face of the BZ boundary.
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modulation destroys the entire Fermi surface by opening a band gap (Canadell, 1998).
When the nesting is less than complete, the driving force for distortion is reduced,
the gap opening being only partial. Charge density waves and the Peierls distortion are
discussed in more detail in Section 7.5.

4.4.3 Bloch Sum Basis Set – The LCAO Method

Plane-wave expansion in a periodic potential requires a very large number of plane waves
to achieve convergence. In general, finite plane-wave expansions are inadequate for
describing the strong oscillations in the wave functions near the nuclei. To alleviate the
problem, other approaches, such as the augmented plane-wave (APW) method, which
treats the atomic core and interstitial regions differently, and the pseudopotential
method, which neglects the core electrons completely in the calculation scheme, have
been introduced. Finally, because the conduction electron kinetic energy is the dominant
attribute of metallic systems, metals have been the chief application of the NFE approach
to band theory. It is not as appropriate for systems where covalent energy is the dominant
attribute, transition metal and rare-earth systems with tightly bound valence electrons
(valence d and 4f orbitals do not extend as far from the nucleus as valence s and p
orbitals), or for describing inner-shell core electrons in systems.

For solids with more localized electrons, the LCAO approach is perhaps more suit-
able. Here, the starting point is the isolated atoms (for which it is assumed that the
electron-wave functions are already known). In this respect, the approach is the extreme
opposite of the free-electron picture. A periodic solid is constructed by bringing together
a large number of isolated atoms in a manner entirely analogous to the way one builds
molecules with the LCAO approximation to MO (LCAO–MO) theory. The basic
assumption is that overlap between atomic orbitals is small enough that the extra potential
experienced by an electron in a solid can be treated as a perturbation to the potential in an
atom. The extended- (Bloch) wave function is treated as a superposition of localized
orbitals, x, centered at each atom:

ckm(r) ¼ N�1=2
X
R

eik�Rxm(r � R) (4:33)

One defines a Bloch sum (or BO) for each atomic orbital in the chemical point
group (or lattice point), and COs are then formed by taking linear combinations of the
Bloch sums.

First, take the simplest possible case, a monatomic solid with a primitive Bravais
lattice containing one atomic orbital per lattice point. The COs are then equivalent to
simple Bloch sums. The wavelength, l, of a Bloch sum is given by the following relation:

jkj ¼ 2p
l

(4:34)

It can be seen how the phase of a Bloch sum changes in a periodic lattice by consid-
ering a simple one-dimensional lattice of (s-bonded) p atomic orbitals, with a repeat
distance d. Figure 4.4 shows such a chain and the sign combinations of the atomic
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orbitals for three special values of k (¼ kx in the one-dimensional case). Euler’s relation,
e+iu ¼ cos u+ i sin u, can be used to evaluate the term exp(ikxnd ). At G, where kx ¼ 0
and exp(ikxnd) ¼ (1)n ¼ 1, so there is no phase change from one unit cell (atomic orbital)
to the next and, from Eq. 4.34, l ¼ 1. At X, kx ¼ p/d and exp(ikxnd) ¼ (21)n, so the
phase alternates as n, the signs of the atomic orbitals, and l ¼ 2p/(p/d ) ¼ 2d.

For lattices with more than one atom per lattice point, combinations of Bloch sums
have to be considered. In general, the LCAO approach requires that the result be the same
number of MOs (COs in solids) as the number of atomic orbitals (Bloch sums in solids)
with which was started. Thus, expressing the electron-wave functions in a crystalline solid
as linear combinations of atomic orbitals (Bloch sums) is really the same approach used
in the 1930s by Hund, Mulliken, Hückel, and others to construct MOs for discrete
molecules (the LCAO–MO theory).

The orbitals used to construct Bloch sums are usually Slater-type orbitals (STOs) or
Gaussian-type orbitals (GTOs), since these types of orbitals well describe the electron
density in molecules and solids, having the correct cusp behavior near the nucleus and
the correct fall-off behavior far from the nucleus; This is called a minimal basis. The
use of a minimal basis together with a semi-empirical two-center fixing of the
Hamiltonian matrix elements is known as the tight-binding method. Because of its
wide applicability, all of Chapter 5 is dedicated to the application of the tight-binding
method to crystalline solids. It should be noted that it is also possible to write a tight-
binding Hamiltonian for an amorphous substance with random atomic positions (off-
diagonal configurational disorder), but the wave functions in such a system cannot be
written as Bloch sums. To simplify the calculations, geometrical mean models have
been introduced that reduce the off-diagonal disorder in the Hamiltonian into diagonal
disorder (diagonal Hamiltonian matrix elements) (Kakehashi et al., 1993). Electronic
structure calculations on amorphous solids are not discussed in this book.

4.5 UNDERSTANDING BAND-STRUCTURE DIAGRAMS

It has been shown in the previous chapter how a MO-like treatment of the smallest
repeating chemical point group, or lattice point, can be used to approximate the relative
locations of the bands at the center of the BZ. To reinforce this idea, repeat the analogy
with yet another example. Consider the energy level diagram for a hypothetical

At kx = p /d, λ = 2d

At kx = 0, λ = ∞

Figure 4.4. A one-dimensional periodic chain of p atomic orbitals. At the top is shown the

sign combinations corresponding to the k-point G (k ¼ 0), where l ¼1. At the bottom are

the sign combinations for the k-point X (k ¼p/d ), where l ¼ 2d.
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octahedral ReO6 molecule, shown in Figure 4.5, where the Re d–O p p-interactions and
the Re d–O p s-interactions are shown. By placing the electrons in the diagram in accord-
ance with Hund’s rule and the aufbau principle, there will be 36 electrons contributed by
the six oxygens and one from the Re6þ (d1) cation. Note that since the Re–O p pmixing
is weaker than the Re–O p s mixing, the bonding combinations resulting from the p
interactions will be higher in energy than the s interactions. Thus, the HOMOs have p
symmetry. Furthermore, the p�-antibonding combinations are lower in energy than the
s�-antibonding combinations on the same grounds, so that the LUMO also has p sym-
metry. Shortening the Re–O bond distance will lower the bonding orbital energy and
raise the antibonding orbital energy. The bonding and nonbonding MOs for our hypo-
thetical ReO6 are all filled with electrons and one of the antibonding orbitals is half
filled (singularly occupied). This is the condition, in a solid, that would be expected to
lead to metallic behavior.

The particular splitting pattern of the d orbitals in Figure 4.5 is characteristic of cubic
(octahedral type) crystal fields. In the tetrahedral type, the eg and t2g ordering would be
reversed. In other symmetries, the d splitting is as shown in Figure 4.6.

There is much more information contained in a band-structure diagram than in a MO
energy-level diagram, however. In the former, the band dispersion, or variation in electron
energy, is plotted as one moves between high-symmetry k-points. The real solid most
closely related to our hypothetical ReO6 molecule is the perovskite ReO3, which contains
vertex-sharing ReO6 octahedra, linked throughRe d–O pp bonds. The band structure and
DOS for ReO3, as calculated by Mattheiss (Mattheiss, 1969), is shown in Figure 4.7.

M 6OMO6
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Figure 4.5. A MO energy-level diagram for octahedral transition metal complexes with

metal-ligand s and p bonding.

THE ELECTRONIC LEVEL I: AN OVERVIEW OF BAND THEORY194



Free atom Tetragonal OrthorhombicCubic
(octahedral type)

dxy

dxz

dyz

d3z2– r2

dx2–y2

10

6

4

4

2

2

2 2

2

2

2

2

Figure 4.6. The crystal-field splitting of the d orbitals under cubic, tetragonal, and

orthorhombic symmetries.

Figure 4.7. The LCAO (tight-binding) band structure for ReO3. The dashed line represents

the Fermi energy. To the far right is the density-of-states (DOS) curve for states of one

spin. The occupied states (up to the Fermi level) are shaded gray. Note that the valence

band is completely filled while the conduction band is partially filled. Hence, ReO3 should

be metallic.
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Some important points to remember,when looking at anyband-structure diagram, are:

1. A band-structure diagram is a map of the variation in the energy, or dispersion, of
the extended-wave functions (called bands) for specific k-points within the first
BZ (also called the Wigner–Seitz cell), which is the unit cell of k-space.

2. The total number of bands shown in a band-structure diagram is equal to the
number of atomic orbitals contributed by the chemical point group, which consti-
tutes a lattice point. As the full crystal structure is generated by the repetition of
the lattice point in space, it is also referred to as the basis of the structure.

3. There are 2N electrons in the BZ (where N is the number of unit cells in the crys-
tal). Each CO can hold two electrons of opposite spin per two-center bonding site.

4. Band structure diagrams show k values of only one sign, positive or negative.

Now look at the band structure of ReO3. On the left-hand side of Figure 4.7 is the
band-dispersion diagram and on the right-hand side is shown the DOS curves, which
give the density of states per DE interval. Accounting for the way the atoms are shared
between neighboring unit cells, it can be seen that, in ReO3, there is one rhenium atom
and three oxygen atoms contained within a single-unit cell. In fact, the Bravais lattice
for perovskite is simple cubic and this same combination of atoms is associated with
each lattice point. In his calculations, Mattheiss considered combinations made up of
Bloch sums formed from the five rhenium 5d orbitals and the 2p orbitals of the three
oxygen atoms. Because there are 14 atomic orbitals in his basis set of atomic orbitals,
there are 14 different Bloch sums, which will combine to give 14 COs. It should thus
be expected to find 14 bands in the band structure diagram, which is the case.

Starting from the bottom up, the lowest group of nine bands in the diagram, with a
bandwidth spanning from about –0.65 up to –0.2 Ry, correspond to the oxygen 2p states.
It is customary to refer to the entire set as the p band, even though they are really COs
comprised of linear combinations of metal d and oxygen p Bloch sums. The reason
for this is that these COs have mostly p characters since they are closer in energy to
the oxygen p Bloch sums. This set constitutes the top of the valence band in ReO3

(the oxygen 2s states, which were neglected in the calculations, lie lower in energy).
The next highest in energy, spanning from about 20.15 to 0.15 Ry, correspond to the
antibonding rhenium t2g� orbitals (xy, yz, zx) or, more precisely, the t2g� manifold of
bands under the periodic potential. Finally, the two highest energy bands are the anti-
bonding rhenium eg� manifold (the 3z2 2 r2, x2 2 y2 bands). It is customary to refer to
the two manifolds together as the d band and it makes up the bottom of the conduction
band (the rhenium 4s states lie higher in energy). The band filling is carried out in the same
manner as in our earlier MO treatment using rule 3 above. Thus, the valence band is com-
pletely full and the lowest lying t2g band is half filled. Because the Fermi level (HOMO)
lies in a partially filled conduction band ReO3 is predicted to be metallic. Often times, the
basic band structure of a compound does not change on alloying. Because of this, the
electronic properties (e.g. the Fermi level) can be varied in a controlled manner. This
sort of fixed band structure is refered to as the rigid band model. The rigid band model
is applicable to many types of phases, including the perovskites and the tungsten bronzes.
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4.6 BREAKDOWN OF THE INDEPENDENT ELECTRON
APPROXIMATION

Both the LCAO and NFE methods are complementary approaches to one-electron band
theory, in which electrons are allowed to move independently of one another, through an
averaged potential generated by all the other electrons. The true Hamiltonian is a function
of the position of all the electrons in the solid and contains terms for all the interactions
between these electrons, that is, all of the electron–electron Coulombic repulsions.
Electronic motion is correlated; the electrons tend to stay away from one another because
of Coulombic repulsion.

In the Hartree–Fock theory, correlation owing to the exchange hole (involving
parallel spin electrons at different sites) is included in the form of the aforementioned
average potential, but the Coulomb repulsion between antiparallel spin electrons at the
same site (intrasite, or dynamic correlation) is neglected. It is possible to account for
dynamic correlation in order to improve on the results from Hartree–Fock calculations.
One technique involves the introduction of the configuration interaction (CI), which
represents many-electron wave functions with linear combinations of several Slater
determinants. The first determinant is the Hartree–Fock ground state; the second one
is the first excited state, and so on. Another method, popular among chemists, is the
Møller–Plesset (MP) perturbation theory (Møller and Plesset, 1934). In this method,
the difference between the Fock operator and the true Hamiltonian is treated as a pertur-
bation. Unfortunately, it is difficult to implement all of these techniques on systems
containing a large number of atoms.

What exactly is the cost of neglecting dynamic correlation effects in solids? The most
detrimental consequence is the possibility that the wrong type of electric transport
behavior (i.e. metallic, semiconducting, or insulating) may be predicted. For example,
one-electron band theory predicts metallic behavior whenever the bands are only half
filled, regardless of the interatomic separations. However, this is incorrect and even
counterintuitive; isolated atoms are electrically insulating. The excitation energy, or elec-
tron transfer energy, for electronic conduction in a solid is essentially equal to the
Coulomb repulsion between electrons at the same bonding site. In fact, the ratio of this
on-site Coulomb repulsion to the one-electron bandwidth determines whether an electron
is localized or itinerant. Unfortunately, as has been seen the intrastate Coulomb repulsion
is not accounted for in the Hartree–Fock approach.

Consider a d-electron system, such as a transition metal compound. The valence d
atomic orbitals do not range far from the nucleus, so COs comprised of Bloch sums of
d orbitals and, say, O 2p orbitals, tend to be narrow. As the interatomic distance increases,
the bandwidth of the CO decreases because of poorer overlap between the d and p Bloch
SUMS. In general, when the interatomic distance is greater than a critical value, the band-
width is so small that the electron transfer energy becomes prohibitively large. Thus, the
condition for metallic behavior is not met; insulating behavior is observed.

The archetypal examples are the 3d transition metal monoxides NiO, CoO, FeO,
MnO, VO, and TiO. All of these oxides possess the rock-salt structure (which makes
both cation–cation and cation–anion–cation overlap important). One-electron band
theory correctly predicts the metallic behavior observed in TiO, which is expected of a
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partially filled 3d band. However, except for VO, all the other monoxides are noncon-
ducting. This can be explained by the presence of localized electrons. As the radial
extent of the d atomic orbitals increases as one moves to the left in a period, the extent
of electron localization decreases for the lighter transition elements in a row (Harrison,
1989). By contrast, the heavier oxides in this group represent cases where the bandwidth
is so narrow, that dynamic correlation effects dominate. A material that is insulating
because of this type of electron localization is referred to as a Mott insulator or, some-
times, a Heitler–London type insulator, since it will be recalled that in the Heitler–
London theory of chemical bonding, valence electrons are in orbitals localized on
atoms, as opposed to delocalized MOs.

4.7 DENSITY FUNCTIONAL THEORY – THE SUCCESSOR TO THE
HARTREE–FOCK APPROACH

Today, electronic structure calculations on solids are performed with the DFT, based on
the work of Hohenberg, Kohn, and Sham (Hohenberg and Kohn, 1964; Kohn and Sham,
1965). The main objective of the DFT is to replace theN-electron-wave function, which is
dependent on 3N variables (three spatial variables for each of the N electrons), with the
electronic density, which is only a function of three variables and thus is simpler to work
with conceptually and practically. Pierre Hohenberg (b. 1934) andWalter Kohn (b. 1923)
first demonstrated the existence of a one-to-one mapping between the ground state elec-
tron density and ground-state electron-wave function in the absence of a magnetic field,
which was later generalized. They further proved that the ground-state density minimizes
the total electronic energy. Themost common implementation of DFT is the Kohn–Sham
method, after Kohn and Lu Jeu Sham (b. 1938) in which the properties of an N-electron
system is mapped onto the properties of a system containing N noninteracting electrons
under a different, effective, potential.

In the DFT, as in the Hartree–Fock approach, an effective independent-particle
Hamiltonian is arrived at, and the electronic states are solved for self consistency.
The many-electron wave function is still written as a Slater determinant. However, the
wave functions used to construct the Slater determinant are not the one-electron wave
functions of the Hartree–Fock approximation. In the DFT, these wave functions have
no individual meaning. They are merely used to construct the total electron-charge
density. The difference between the Hartree–Fock and DFT approaches lies in the depen-
dence of the Hamiltonian in DFT on the exchange correlation potential, VXC[n](r), a
functional derivative of the exchange correlation energy, EXC, that, in turn, is a functional
(a function of a function) of the electron density. In DFT, the Schrödinger equation is
expressed as:

� 1
2
r2
m þ

XN
i¼1

X
sv

ð
c�i (v)ci(v)
jrm � rvj drv

" #
�
X
n

Zn
jrm � Rnj þ VXC[n](r)

( )
cj(r) ¼ 1jcj(r)

(4:35)
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The first three terms within brackets on the left side of Eq. 4.35 are the same as in the
Hartree–Fock equation (Eq. 4.10). The kinetic energy functional of a system of noninter-
acting electrons is known exactly. The fourth term in brackets is the exchange–correlation
potential lumping together the many-body effects. This includes exchange (the exchange
hole – electrons with parallel spin avoid each other) and dynamic correlation (Coulomb
repulsion between electrons with antiparallel spin), the latter of which is neglected in the
Hartree–Fock theory. In essence, the exchange term in the Hartree–Fock expression has
been replaced with the exchange–correlation potential in the DFT formalism. However,
the exact form of this potential is unknown and herein lies the difficulty with the Kohn–
Sham DFT.

Equation 4.35 is known as the Kohn–Sham equation, and the effective one-electron
Hamiltonian associated with it is the Kohn–ShamHamiltonian. Kohn and Shamwere the
first to evaluate Eq. 4.35 approximately. For the exchange–correlation potential, they
started with the exchange–correlation energy of a homogeneous electron gas, evaluated
from the electron density at the point r under consideration. In essence, the Hamiltonian
then depends on the local value of the density only, even in the presence of strong inhom-
ogeneity. This is called the local-density approximation (LDA) and it is the simplest
approximation since the functional only depends on the exchange–correlation energy
density eXC at the coordinate where the functional is evaluated:

EXC[n] ¼
ð
eXC(n)n(r) d

3r (4:36)

The LDA has been adopted in most DFT electronic structure calculations on solids
since the 1970s but was not considered accurate enough for quantum chemistry until
the 1990s when refinements were made. Thus, even though the DFT formalism is, in
principle, exact, the many-body problem is still only solved approximately in the LDA
scheme; The LDA works best for metals. Band gaps tend to be underestimated. The
local spin-density approximation (LSDA) is a generalization of the LDA to account
for electron spin:

EXC[n", n#] ¼
ð
eXC(n", n#, �n", �n#)n(r) d3r (4:37)

The utility of this approximation will become evident in Chapter 8 where magneto
transport properties are discussed.

PRACTICE PROBLEMS

1) Explain the differences, with respect to the basis sets used, between the LCAO and
free-electron models.
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2) What is the Hartree–Fock approximation?

3) What is Bloch’s theorem?

4) What is the Wigner–Seitz cell?

�5) The primitive translation vectors for the HCP lattice can be chosen as:

a ¼
ffiffiffi
3
p

a

2
xþ a

2
y b ¼ �

ffiffiffi
3
p

a

2
xþ a

2
y c ¼ cz

What are the primitive translation vectors of the reciprocal lattice?

6) Show that the volume of the first BZ, VBZ, for a lattice in any dimension, d, is (2p)d

times the reciprocal of the real-space primitice cell volume, Vcell.

Hint: Use the vector identity

(A� B)� (C � D) ¼ B[A � (C � D)]� A[B � (C � D)]

�7) Show how to compute the scalar triple products in Eqs. 4.21–4.23 through the deter-
minant.

�For solutions, see Appendix 3.
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5

THE ELECTRONIC LEVEL II: THE
TIGHT-BINDING ELECTRONIC
STRUCTURE APPROXIMATION

Before the advent of density functional theory and advances in computer hardware, the
Hartree–Fock theory was used to obtain approximate solutions to the many-body
Schrödinger equation. Most band-structure calculations on solids today are made with
the density functional theory using the local-density approximation. However, because
of the need to treat large systems and, more importantly for our purposes, because
of its similarity to the very familiar LCAO-MO theory, the tight-binding formalism of
Bloch’s original LCAO method will serve well in this chapter. The treatment will be
purely qualitative; the reason for this is twofold. First, a quantitative treatment would
be too lengthy, well outside the scope of this book. Second, what is of real value to
the nonspecialist (i.e. for those who are not computational chemists or materials
scientists) is the ability to make reasonable predictions without having to carry out
time-consuming calculations that, in the end, are just approximations themselves!

In earlier chapters, it was seen how a qualitative energy-level diagram for the smallest
repeating chemical point group, or lattice point (known to crystallographers as the basis,
or asymmetric unit), can be used to approximate the relative placement of the energy
bands in a solid at the center of the BZ. This is so because the LCAO-MO theory is
equivalent to the LCAO band scheme, minus consideration of the lattice periodicity.
The present chapter will investigate how the orbital interactions vary for different
values of the wave vector over the BZ.

Principles of Inorganic Materials Design, Second Edition. By John N. Lalena and David A. Cleary
Copyright # 2010 John Wiley & Sons, Inc.
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5.1 THE GENERAL LCAO METHOD

Most chemists are well acquainted with LCAO-MO theory. The numbers of atomic orbi-
tals, even in large molecules, however, are miniscule compared to a nonmolecular solid,
where the entire crystal can be considered one giant molecule. In a crystal there are in the
order of 1023 atomic orbitals, which is, for all practical purposes, an infinite number. The
principle difference between applying the LCAO approach to solids, versus molecules,
is the number of orbitals involved. Fortunately, periodic boundary conditions allow us
to study solids by evaluating the bonding between atoms associated with a single
lattice point. Thus, the lattice point is to the solid-state scientist, what the molecule is
to the chemist.

As a prelude to our development of the LCAO treatment of solids, it will be ben-
eficial to briefly review the LCAO-MOmethod. The cyclicp systems from organic chem-
istry are familiar, relatively simple, and, more importantly, resemble Bloch functions of
periodic solids. Thus, they will be used as the introductory examples.

The independent-electron approximation was discussed in the previous chapter. The
molecular wave functions, c, are solutions of the Hartree–Fock equation, where the
Fock operator operates on c, but the exact form of the operator is determined by the wave-
function itself. This kind of problem is solved by an iterative procedure, where con-
vergence is taken to occur at the step in which the wave function and energy do not
differ appreciably from the prior step. The effective independent-electron Hamiltonian
(the Fock operator) is denoted here simply as H. The wave functions are expressed as
linear combinations of atomic functions, x:

c ¼
XN
m¼1

cmxm (5:1)

Also defined are:

Hmm ¼
ð
x�mHxm dt (5:2)

Hmv ¼ Hvm ¼
ð
x�mHxv dt (5:3)

Smv ¼ Svm ¼
ð
x�mxv dt (5:4)

The latter two integrals can be represented as a square matrix, for which each matrix
element corresponds to a particular combination for the values of m and v. It is noted
that because of the Hermitian properties of H, Hmv ¼ Hvm and Smv ¼ Svm. Equation 5.2
represents the energy of an isolated atomic orbital. It is called the on-site integral. In
Hückel theory, it is called the Coulomb integral and given the symbol a. Equation 5.3
gives the energy of interaction between neighbors and it is known as the hopping integral
or transfer integral (termed the exchange or resonance integral in Hückel theory). First-
nearest neighbor (adjacent) interactions are conventionally denoted as b in Hückel
theory and b in solids. Equation 5.4 is the overlap integral, which is a measure of the
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extent of overlap of the orbitals centered on two adjacent atoms. The transfer integral and
overlap integral are proportionally related.

The variational method by Walter Ritz (1878–1909) indicates that:

E ¼
Ð
c�Hc dtÐ
c�c dt

(5:5)

Insertion of Eq. 5.1 into Eq. 5.5 gives:

E ¼

P
m

P
v

c�mcvHmvP
m

P
v

c�mcvSmv
(5:6)

This expression shall be a minimum if @E=@cm and @E=@cv are zero, which leads to a
system of equations of the form:

XN
m¼1

cm(Hmv � ESmv ¼ 0) (5:7)

To illustrate a simple case, let Eq. 5.7 express explicitly in terms of a two-term
LCAO-MO (i.e. for the molecule ethylene):

(Hmm � ESmm)c1 þ (Hmv � ESmv)c2 ¼ 0 (5:8)

(Hvm � ESvm)c1 þ (Hvv � ESvv)c2 ¼ 0 (5:9)

These two linear algebraic equations in c1 and c2 have a nontrivial solution if, and only
if, the determinant of the coefficients vanishes that is:

Hmm � ESmm Hmv � ESmv
Hvm � ESvm Hvv � ESvv

				
				 ¼ 0 (5:10)

Equation 5.10 results in a quadratic equation in the energy, which has two roots
corresponding to the energies of the two p-MOs of ethylene. It is known that
Hmm ¼ Hvv and Hmv ¼ Hvm, and that Smm ¼ Svv ¼ 1, if xm and xv are normalized. Thus,
the two roots of Eq. 5.10 are found to be:

E1 ¼ Hmm þ Hmv

1þ S
(5:11)

E1 ¼ Hmm � Hmv

1þ S
(5:12)

By substitution of these energies into Eqs. 5.8 and 5.9, one may obtain the orbital
coefficients, giving explicit expressions for the MOs.
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In general, a linear combination of N functions (in which N is the number of atomic
orbitals in the basis set), obtains an N � N secular determinant:

H11 � ES11 H12 � ES12 H13 � ES13 H14 � ES14 � � � H1N � ES1N
H21 � ES21 H22 � ES22 H23 � ES23 H24 � ES24 � � � H2N � ES2N
H31 � ES31 H32 � ES32 H33 � ES33 H34 � ES34 � � � H3N � ES3N
H41 � ES41 H42 � ES42 H43 � ES43 H44 � ES44 � � � H4N � ES4N

..

. ..
. ..

. ..
. � � � ..

.

HN1 � ESN1 HN2 � ESN2 HN3 � ESN3 HN4 � ESN4 � � � HNN � ESNN

															

															
¼ 0

(5:13)

Equation 5.13 may be written as:

jHmv � ESmvj ¼ 0 (5:14)

At this point, the Hückel approximations are often imposed to simplify Eq. 5.14.
These were introduced by the German physicist Erich Armand Arthur Joseph Hückel
(1896–1980). Even though atomic orbitals on neighboring atoms are nonorthogonal
(they have nonzero overlap), it is possible to make the approximation that:

Smv ¼ 0 if m= v

¼ 1 if m ¼ v (5:15)

In other words, the overlap integrals, Smv, including those between atomic orbitals on
adjacent atoms, are neglected. With this, Eq. 5.13 becomes:

H11 � E H12 H13 H14 � � � H1N

H21 H22 � E H23 H24 � � � H2N

H31 H32 H33 � E H34 � � � H3N

H41 H42 H43 H44 � E � � � H4N

..

. ..
. ..

. ..
. � � � ..

.

HN1 HN2 HN3 HN4 � � � HNN � E

														

														
¼ 0 (5:16)

Neglecting the overlap integral is a severe approximation. However, this approach is
still useful because a general picture of the relative MO energy levels, utilizing primarily
symmetry arguments can be obtained.

The secular determinant can be further simplified by considering only interactions
between first-nearest neighbors. In this case, all the other Hmv matrix elements become
equal to zero. Using the familiar Hückel notation, Eq. 5.16 then looks like:

a� E b 0 0 � � � 0
b a� E b 0 � � � 0
0 b a� E b � � � 0
0 0 b a� E � � � 0

..

. ..
. ..

. ..
. � � � ..

.

0 0 0 0 � � � a� E

														

														
¼ 0 (5:17)
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Even with these simplifications, an N � N secular equation must still be solved with
nonzero off-diagonal matrix elements, which becomes a formidable task for large mol-
ecules. An N � N determinant will give an equation of the Nth degree in the energy,
which has N roots.

At this point, how the calculations can be simplified considerably by adapting the
atomic orbitals to the symmetry of the molecule will be shown. This is most easily illus-
trated with the molecule benzene, a conjugated cyclic p system. Suppose that, instead of
using an AO basis set, the secular equation for benzene is written as an N � N array of
SALCs of the atomic orbitals. Each SALC corresponds to an irreducible representation
of the point group for the molecule. Only orbitals of the same irreducible representation
can interact; SALCs that have different irreducible representations are orthogonal. Thus,
if the SALCs of a given representation are grouped together in the secular determinant,
the only nonzero matrix elements will lie in blocks along the principal diagonal, thereby
factoring the equation into smaller determinants, each of which is solved separately. The
secular equation is said to be block-diagonalized. Since the entire equation is to have the
value of zero, each of the smaller block factor determinants must also equal zero. It should
be noted that the orbital coefficients are obtained by this process, rather than from solution
of the secular equation as before.

In general, the SALCs themselves are generated by the use of what are known as pro-
jection operators. A thorough description of this procedure can be found elsewhere
(Cotton, 1990). Fortunately, it will not be necessary to cover the details of this process,
as the authors make use of the extremely useful simplification that, for cyclic p systems,
CnHn, there will always be n pMOs, one belonging to each irreducible representation of
the Cn pure rotation group. In other words, benzene belongs to the D6h point group,
but the essential symmetry elements needed for constructing our SALCs are contained
in the C6 pure rotation subgroup. Furthermore, the coefficients of the MOs are the
characters of the irreducible representations of C6. Thus, from inspection of the character
table for the C6 point group, the SALCs for benzene can immediately be written as
(Cotton, 1990):

c(A) ¼ 1ffiffiffi
6
p (x1 þ x2 þ x3 þ x4 þ x5 þ x6)

c(B) ¼ 1ffiffiffi
6
p (x1 � x2 þ x3 � x4 þ x5 � x6)

c(E1) ¼ 1ffiffiffi
6
p (x1 þ 1x2 � 1�x3 � x4 � 1x5 þ 1�x6)

c(E01) ¼
1ffiffiffi
6
p (x1 þ 1�x2 � 1x3 � x4 � 1�x5 þ 1x6)

c(E2) ¼ 1ffiffiffi
6
p (x1 � 1�x2 � 1x3 þ x4 � 1�x5 � 1x6)

c(E02) ¼
1ffiffiffi
6
p (x1 � 1x2 � 1�x3 þ x4 � 1x5 � 1�x6)

(5:18)
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where 1 is equal to exp(2pi/6); A, B, E1, and E2 are the Mulliken symmetry labels for the
irreducible representations; and the 1/60.5 factor is a normalization constant such that the
square of the coefficients on each atomic orbital in a given MO add up to one. Each wave
function in Eq. 5.18 can be written (see Example 5.1) as (Albright et al., 1985):

cj ¼
XN
m¼1

cjmxm ¼ N�1=2
XN
m¼1

exp
2pij(m� 1)

N

� �� �
xm (5:19)

where j runs from 0, +1, +2, . . . ,+N/2 and i is the square root of 21. The term in
brackets is the orbital coefficient for the mth atomic orbital. It is possible to write the
wave functions in Eq. 5.19 as linear combinations that have real coefficients instead of
imaginary ones. However, the authors will not do this as leaving them in this form
will reveal their similarity to Bloch functions later. Equation 5.20 gives the resultant
block-diagonalized secular equation where the subscripts of the matrix elements now
refer to the SALCs.

c(A) c(B) c(E1) c(E01) c(E2) c(E02)
c(A) H11 � E

c(B) H22 � E

c(E1) H33 � E

c(E01) H44 � E

c(E2) H55 � E

c(E02) H66 � E

¼ 0

(5:20)

The energy of eachMO is obtained by solving its respective block factor in Eq. 5.20.
Thus, each of the six MOs of benzene gives:

Ej ¼
ð
c�j Hcj dt (5:21)

In order to calculate the energy, the simple Hückel theory for p systems is used. That is,
only the p interactions between adjacent p orbitals are considered; the overlap integrals
are neglected. Equation 5.21 then becomes equal to:

Ej ¼
ð
x�mHxm dtþ

X 1
N

exp
�2pij
N
þ exp

2pij
N

� � ð
x�mHxv dt (5:22)

The first integral is simply a and the second integral is b. The sum of the two terms in
brackets is equal to 2cos(2pj/N ) and since there are N atoms in the molecule, the

THE TIGHT-BINDING ELECTRONIC STRUCTURE APPROXIMATION208



energy is finally found to be:

Ej ¼ aþ 2b cos
2pj
N

� �
(5:23)

where j runs from 0, +1, +2, . . . ,+N/2.

Example 5.1

Show that Eq. 5.19 does indeed give the wave functions of Eq. 5.18.

Solution

Since j runs from 0, +1,+2, . . . ,+N/2, and the wave functions of E1 and E2
symmetry are doubly degenerate, the expression in Eq. 5.19 for j¼ 0, +1, +2,
and þ3, and m ¼ 1 – 6 must be evaluated. Replacing j with 0, for example, results
in cj ¼ 1 for every value of j, leading to c0 ¼ 1/60.5(x1 þ x2 þ x3 þ x4 þ x5 þ x6),
which is the expression for c(A). When j ¼ þ1, then, for m ¼ 12 6:

c1 ¼ 1=60:5[exp(0)x1 þ exp(2pi=6)x2 þ exp(4pi=6)x3 þ exp(6pi=6)x4
þ exp(8pi=6)x5 þ exp(10pi=6)x6]

Recognizing the following relations:

eiu ¼ cos uþ i sin u e�iu ¼ cos u� i sin u,

the expression for c1 is found to be equivalent to:

c1 ¼ 1=60:5[x1 þ exp(2pi6)x2 þ exp(4pi=6)x3 � x4 þ exp(8pi=6)x5 þ exp(10pi=6)x6]

It can also be seen that:

exp(4pi=6)x3 ¼ �exp(�2pi=6)x3 ¼ �1�x3
exp(8pi=6)x5 ¼ �exp(2pi=6)x5 ¼ �1x5

exp(10pi=6)x6 ¼ exp(�2pi=6)x6 ¼ 1�x6

Making the substitutions, gives:

c1 ¼ 1=60:5(x1 þ 1x2 � 1�x3 � x4 � 1x5 þ 1�x6)

which is c(E1).
The reader should show that proceeding in an analogous fashion will give

the remaining expressions in Eq. 5.18.
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5.2 EXTENSION OF THE LCAO TREATMENT TO
CRYSTALLINE SOLIDS

Bloch sums are comprised of an enormous number (�1023) of atomic orbitals. Such a
gigantic basis set is handled by making use of the crystalline periodicity. As the crystal
structure is periodic, its electron density is periodic also, since the presence of structural
periodicity imposes translational periodicity on the wave functions. Consider the one-
dimensional chain of N atoms, with spacing a, as later shown in Figure 5.4, to be of
finite length L, where L ¼ Na. For running wave solutions to Schrödinger’s equation,
describing the motion of an electron in the array, periodic boundary conditions are
appropriate. An integral number of wavelengths must fit into L.

c(r) ¼ c(r þ L) (5:24)

Equation 5.24 can be achieved for a chain of finite length by joining the two ends of
the chain (albeit the analogous situation in three dimensions is difficult to visualize). In
other words, periodic boundary conditions require the chain of atoms to be treated as an
imperceptibly bent ring. In reality, the atoms at the ends (surfaces in three-dimension)
experience different forces from those of the bulk. However, being unconcerned with
surface effects, the advantages of using periodic boundary conditions far outweigh any
inaccuracies in this picture of the surface states. Certainly, as N!1, the atoms deep
in the bulk will be unaffected by the surface conditions, anyway.

The most general expression for a periodic function is the plane wave, eiu, in which u
is a parameter equal to the vector dot product k .R. Hence, the wave function, c(r), of
Eq. 5.24 is of the form:

c(r) ¼ eik�ru(r) (5:25)

where u(r) has the periodicity of the lattice, u(r þ R) ¼ u(r), and eik�r is simply a
phase factor that depends on the separation, R, between points. Equation 5.25 states
that c(r), which is an eigenstate of the one-electron Hamiltonian, can be written in
the form of a plane wave times a function periodic in the Bravais lattice of the solid. If
Eq. 5.25 holds, then so does the following relation:

c(r þ R) ¼ eik�Rc(r) (5:26)

Equations 5.25 and 5.26 are equivalent expressions. If the physical location in real space
is shifted by R, only the phase of the wave function will change. Because c(r) over any
unit cell is known, it can be calculated for any other unit cell using c(r þ R) ¼ eik�Rc(r).
Thus, eik�R is an eigenfunction of the translation operator. Bloch’s theorem states that the
eigenfunctions of the Hamiltonian have the same form 2 the Hamiltonian commutes
with the translation operator. Therefore, the Hamiltonian only has to be solved for one
unit cell.

For each type of atomic orbital in the basis set, which is the chemical point group, or
lattice point, one defines a Bloch sum (also known as Bloch orbital or Bloch function).
A Bloch sum is simply a linear combination of all the atomic orbitals of that type,
under the action of the infinite translation group. These Bloch sums are of the exact
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same form in Eq. 5.19, but with xm replaced with the atomic orbital located on the atom
in the nth unit cell x(r � Rn):

f(k) ¼ N�1=2
XN
n¼1

exp(ik � Rn)x (r � Rn) (5:27)

In this equation, N is equal to the number of unit cells in the crystal. Note how the
function in Eq. 5.27 is the same as that of Eq. 5.19 for cyclic p molecules, if a new
index is defined as k ¼ 2pj/Na. Bloch sums are simply symmetry-adapted linear combi-
nations of atomic orbitals. However, whereas the exponential term in Eq. 5.19 is the char-
acter of the jth irreducible representation of the cyclic group to which the molecule
belongs, in Eq. 5.27 the exponential term is related to the character of the kth irreducible
representation of the cyclic group of infinite order (Albright, 1985). This, in turn, may be
replaced with the infinite linear translation group because of the periodic boundary con-
ditions. It turns out that SALCs for any system with translational symmetry are con-
structed in this same manner. Thus, as with cyclic p systems, there should never be a
need to use the projection operators referred to earlier to generate a Bloch sum.

Now, how Bloch sums combine to form COs must be considered, for example, like
the s- or p-combinations between the Bloch sums of metal d orbitals and oxygen p orbi-
tals in a transition metal oxide. Bloch sums are used as the basis for such COs:

cm(k) ¼
X
m

cmm(k)fm(k) (5:28)

where it is noted that a linear combination of Bloch functions is also a Bloch function.
The eigenvalue problem that is being solved here can be represented as:

Hcm(k) ¼ Ecm(k) (5:29)

It was seen earlier how using SALCs to construct MOs resulted in a block-
diagonalized secular equation. Exactly the same thing happens with solids, resulting
with an N � N determinant (where N is the number of unit cells, �1023) diagonalized
with n � n block factors (where n is the number of atomic orbitals in the basis set),
each having a particular value of k. For example, a substance containing valence s, p,
and d atomic orbitals and having a Bravais lattice with a one-atom basis (one atom per
lattice point), gives a 9 � 9 block factor, or an 18 � 18 with a two-atom basis. Within
each block factor, the matrix elements can be written as (Canadell and Whangbo, 1991):

Hmv(k) ¼
ð
f�m(k)Hfv(k) dt

¼
ð
x�m(r)Hxv(r) dtþ

1
N

X
m

X
n

exp[ik � rm] exp[ik � rn]

�
ð
x�m(r � rm)Hxv(r � rn) dt (5:30)
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Smv(k) ¼
ð
f�m(k)fv(k) dt

¼
ð
x�m(r)xv(r) dtþ

1
N

X
m

X
n

exp[ik � rm] exp[ik � rn]
ð
x�m(r � rm)xv(r � rn) dt

(5:31)

where the indices m and n denote themth and nth unit cells, and fm and fv represent two
different Bloch sums (e.g. one formed from, say, all the oxygen p orbitals and one formed
from all the transition metal d orbitals in a metal oxide). If there is only one atom at each
lattice point, the primitive lattice translation vectors,Rn ¼ (rn � rm), are the basis vectors,
which give the displacement from the atom on which the orbital xm is centered to the atom
on which xv is centered. It is also recognized that, since there is translational invariance
in a Bravais lattice, the sum over m atoms is done N times. Hence, the factor N21 is
cancelled by the sum over m. Equations 5.30 and 5.31 can now be written as:

Hmv(k) ¼
ð
x�m(r)Hxv(r) dtþ

X
n

exp½ik � Rn�
ð
x�m(r)Hxv(r � Rn) dt (5:32)

Smv(k) ¼
ð
x�m(r)xv(r) dtþ

X
n

exp½ik � Rn�
ð
x�m(r)xv(r � Rn) dt (5:33)

The variational principle can be used to estimate the energy. If only the first-nearest
neighbor interactions and an orthonormal (Eq. 5.15) set of atomic orbitals are
considered, substitution of Eqs. 5.32 and 5.33 into Eq. 5.5 yields:

E(k) ¼ E0(k)þ
X
n

exp½ik � Rn�
ð
x�m(r)Hxv(r � Rn) dt (5:34)

where E0(k) is
Ð
x �m(r)Hxv(r) dt, which is the onsite, or Coulomb, integral, a.

The vector notation used to this point is concise, but it will be instructive to resolve
the vectors into their components. Each atom is located at a position pai þ qbj þ rck,
where a, b, c are lattice parameters and i, j, k are unit vectors along the x, y, z axes.
A Bloch sum may thus be written as:

f(kx, ky, kz) ¼ 1ffiffiffiffi
N
p

X
p

X
q

X
r

[exp(ikxpaþ ikyqbþ ikzrc)]xm(r � pa� qb� rc)

¼ 1ffiffiffiffi
N
p

X
p

X
q

X
r

[exp(ikxpa)][exp(ikyqb)]

� [exp(ikzrc)]xm(r � pa� qb� rc) (5:35)

At the risk of being superfluous, the corresponding expression for the energy
is written here. Upon resolving the vectors in the matrix elements (Eqs. 5.32 and
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5.33), Eq. 5.34 becomes:

E(kx, ky, kz) ¼
ð
x�m(r)Hxv(r) dtþ

X
p

X
q

X
r

[exp(ikxpa)]

� [exp(iky pq)][exp(ikzrc)]
ð
x�m(r)H(r � pa� qb� rc) dt

¼
ð
x�m(r)Hxv(r) dtþ

X
p

exp(ikx pa)
X
q

exp(ikyqb)

(

�
X
r

exp(ikzrc)

)ð
x�m(r)Hxv(r � pa� qb� rc) dt (5:36)

The phase factor sum indicates that the amplitude of the plane wave at the lattice point in
question is the sum of contributions from all the atoms. Indeed, in the LCAOmethod it is
really just expressing the electronic wave function in a solid as a superposition of all the
atomic wave functions.

5.3 ORBITAL INTERACTIONS IN MONATOMIC SOLIDS

5.3.1 s-Bonding Interactions

Let us consider a primitive Bravais lattice with one atomic orbital of spherical symmetry
(one s atomic orbital) per lattice point. For example, in a SC lattice each atom has six
first-nearest neighbors. Relative to the atom in question, the six neighbors are at coordi-
nates (a, 0, 0), (2a, 0, 0), (0, a, 0), (0,2a, 0), (0, 0, a), and (0, 0,2a). The phase factor
sums for each of the planes defined by these six points are:

(+a, 0, 0): [eikxa þ e�ikxa]e0e0 ¼ 2 cos(kxa)

(0,+a, 0): e0[eikya þ e�ikya]e0 ¼ 2 cos(kya)

(0, 0,+a): e0e0[eikza þ e�ikza] ¼ 2 cos(kza)

Thus, the energy of a Bloch sum of s atomic orbitals in the SC lattice (with one atom per
lattice point) is:

E ¼ Es,s(0 0 0)þ [2 cos(kxa)þ 2 cos(kya)þ 2 cos(kza)]Es,s(1 0 0)

¼ Es,s(0 0 0)þ 2Es,s(1 0 0)[cos(kxa)þ cos(kya)þ cos(kza)] (5:37)

The first term on the right, Es,s(0 0 0), represents the first integral on the right-hand
side of Eq. 5.36, the energy of an isolated atomic orbital. In Hückel theory, Es,s(0 0 0)
is given the symbol a. The term Es,s(1 0 0) represents the second integral on the
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right-hand side of Eq. 5.36, the interaction between an atomic orbital with its first-
nearest neighbors. In the SC lattice, these are located at the (1, 0, 0), (21, 0, 0),
(0, 1, 0), (0, 21, 0), (0, 0, 1), and (0, 0, 21). In Hückel theory, the integral representing
first-nearest neighbor interactions is given the symbol b, but it is often represented simply
as b in solids.

With lower dimensional systems the results are, of course, analogous. For example,
with a two-dimensional square lattice of s atomic orbitals, by considering only inter-
actions between first nearest neighbors, E(kx, ky) is given as Es,s(0 0)þ 2Es,s(0 0)
[cos(kxa)þ cos(kya)] or, in Hückel theory, as aþ 2b[cos(kxa)þ cos(kya)]. For the
one-dimensional chain as previously illustrated in Figure 4.4, E(kx) ¼ Ex,x(0)þ
2Ex,x(1) cos(kxa) ; aþ 2b cos(kxa). Using this simple expression, a qualitative band
structure diagram can be constructed corresponding to the one-dimensional array of
Figure 4.4. As k changes from 0 to p/a, the energy of the CO changes from
[Ex,x(0)þ 2Ex,x(1)] to [Ex,x(0)� 2Ex,x(1)]. Since Ex,x(0) is the energy of an electron in
a nonbonding atomic orbital, it can be used to set our zero of energy. Therefore, the
two energies Ex,x(0)+ 2Ex,x(1) must correspond to the maximum bonding and maximum
antibonding orbitals. Between these two energies, there is a quasi-continuum of levels,
which gives rise to the curve shown in Figure 5.1.

The tight-binding bandwidth, W, or band dispersion, is given by:

W ¼ 2zb (5:38)

where z is the coordination number (the number of first-nearest neighbors) and
b ¼2Es,s(1). In the case of the one-dimensional chain, z ¼ 2, so W equals 4b.
For the two-dimensional square lattice, each atom has four nearest neighbors and W
equals 8b. In the SC lattice, each atom has six nearest neighbors so the bandwidth is
equal to 12b.

The band dispersion depends on the atomic arrangement in the unit cell. Having
discussed the SC system the focus will now evaluate some other structure types. For
the time being, consideration will be restricted to a one-atom basis of s atomic orbitals.
The BCC lattice contains eight first-nearest neighbors located, relative to the atom in

Ex,x(0) – 2Ex,x(1) cos (kxa)

Ex,x(0) – 2Ex,x(1) cos(kxa)

Figure 5.1. The band dispersion diagram for a one-dimensional Bloch sum of s-bonded p

atomic orbitals.
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question, at the coordinates (+1
2a, +

1
2a, +

1
2a). Equation 5.36 gives:

E(kx, ky, kz) ¼
ð
x�m(r)Hxm(r) dtþ eikxa=2 þ e�ikxa=2


 �
eikya=2 þ e�ikya=2

 �

� eikza=2 þ e�ikza=2

 � ð

x�m(r)Hxv(r � pa� qb� rc) dt

¼
ð
x�m(r)Hxm(r) dtþ 2 cos

kxa

2

� �� �
2 cos

kya

2

� �� �
2 cos

kza

2

� �� �

�
ð
x�m(r)Hxv(r � pa� qb� rc) dt ¼ Es,s(0 0 0)þ 8Es,s(1 1 1)

� cos
kxa

2

� �
cos

kya

2

� �
cos

kza

2

� �� �
(5:39)

For the FCC lattice, with twelve first-nearest neighbors located at coordinates (+1
2a,

+1
2a, 0), (0, +

1
2a, +

1
2a), and (+1

2a, 0, +
1
2a), the energy is given by (see Example 5.2):

E(kx, ky, kz) ¼ Es,s(0 0 0)þ 4Es,s(1 1 0) cos
kxa

2

� �
cos

kya

2

� ��

þ cos
kya

2

� �
cos

kza

2

� �
þ cos

kxa

2

� �
cos

kza

2

� ��
(5:40)

Example 5.2

Verify that the sum of the phase factors given in Eq. 5.40 is correct.

Solution

(+a/2,+a/2, 0) fexp[ikxa/2] þ exp[ikx(2a/2)]g 2 cos(kxa/2)2 cos(kya/2)
fexp[ikya/2] þ exp[iky(2a)/2]g
exp(0)

(+a/2, 0,+a/2) fexp[ikxa/2] þ exp[ikx(2a)/2]g 2 cos(kxa/2)2 cos(kza/2)
exp(0)
fexp[ikza/2] þ exp[ikz(2a)/2]g
exp(0)

(0, +a/2, +a/2) fexp[ikya/2] þ exp[iky(2a)/2]g 2 cos(kya/2)2 cos(kza/2)
fexp[ikza/2] þ exp[ikz(2a)/2]g

X
n

exp[ik � Rn] ¼ 4 cos(kxa=2)(kya=2)þ 4 cos(kxa=2)(kza=2)þ 4 cos(kya=2)(kza=2)

¼ 4[cos(kxa=2) cos(kya=2)þ cos(kya=2) cos(kza=2)

þ cos(kxa=2) cos(kza=2)]
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It is possible to consider interactions between atoms separated by any distance,
of course. For example, returning to the SC lattice, had it been chosen to consider
second-nearest neighbor interactions as well, the result would have been:

E(k) ¼ Es,s(0 0 0)þ 2Es,s(1 0 0)[cos(kxa)þ cos(kya)þ cos(kza)]

þ 4Es,s(1 1 0)[cos(kxa) cos(kya)þ cos(kxa) cos(kza)þ cos(kya) cos(kza)] (5:41)

where Es,s(1 1 0) is the contribution to the energy that arises from interaction of an atom
with its twelve second-nearest neighbors, at positions (+a,+a, 0), (0,+a,+a), and
(+a, 0,+a).

The inclusion of second (and often third terms) is particularly important for certain
structure types. For example, in the BCC and CsCl lattices the second-nearest neighbors
are only 14 percent more distant than the first-nearest (Harrison, 1989). Accounting for
the six second-nearest neighbor interactions in the FCC and BCC lattices, the energies
of a Bloch sum of s atomic states are given by Eqs. 5.42 and 5.43, respectively:

E(kx, ky, kz) ¼ Es,s(0 0 0)þ 4Es,s(1 1 0) cos
kxa

2

� �
cos

kya

2

� �
þ cos

kxa

2

� �
cos

kza

2

� ��

þ cos
kya

2

� �
cos

kza

2

� ��
þ 2Es,s(2 0 0)[cos(kxa)þ cos(kyb)þ cos(kzc)]

(5:42)

E(kx, ky, kz) ¼ Es,s(0 0 0)þ 8Es,s(1 1 1) cos
kxa

2

� �
cos

kyb

2

� �
cos

kzc

2

� �� �

þ 2Es,s(2 0 0)[cos (kxa)þ cos (kya)þ cos (kza)] (5:43)

Second nearest-neighbor interactions are also important for solids with nonprimi-
tive lattices. Up to now, this evaluation has focused only on structures where there is a
single atom associated with each lattice point. Next consider diamond, which is equival-
ent to zincblende, but with all the atoms of the same type. The diamond lattice is not
a Bravais lattice, since the environment of each carbon differs from that of its nearest
neighbors. Rather, diamond is an FCC lattice with a two-atom basis – four lattice
points and eight atoms per unit cell. The structure consists of two interlocking FCC
Bravais sublattices, displaced by a quarter of the body diagonal. The displacement vectors
from a given site to its four nearest neighbors, belonging to the other sublattice, are:
(14 a,

1
4 a,

1
4 a), (

1
4 a, 2

1
4 a, 2

1
4 a), (2

1
4 a,

1
4 a, 2

1
4 a), and (21

4 a, 2
1
4 a,

1
4 a), where a is

the lattice parameter. These four points are the corners of a tetrahedron whose center
is taken as the origin, (0, 0, 0).

Since there are two atoms per primitive cell, or lattice point, and consideration is
still on just s atomic orbitals, two separate Bloch sums are required. These combine to
form two COs with energies given by the sum and difference in energy between
the nearest neighbor and second-nearest neighbor interactions. The nearest neighbor
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interactions are between atoms on the two different sublattices, that is, between an atom
on one sublattice and its four neighbors on the other sublattice, which form a tetrahedron
around it.

4Es,s(1 1 1) cos
kxa

4

� �
cos

kya

4

� �
cos

kza

4

� �
� i sin

kxa

4

� �
sin

kya

4

� �
sin

kza

4

� �� �
(5:44)

The twelve second-nearest neighbor interactions are between atoms all on the same
sublattice.

Es,s(0 0 0)þ 4Es,s(1 1 0) cos
kxa

2

� �
cos

kya

2

� �
þ cos

kya

2

� �
cos

kza

2

� ��

þ cos
kxa

2

� �
cos

kza

2

� ��
(5:45)

5.3.2 p-Bonding Interactions

In the foregoing examples, it was not necessary to include p or d interactions. This is not
generally the case for atomic orbitals with a nonzero angular momentum quantum
number. Consider the two-dimensional square lattice of p atomic orbitals shown in
Figure 5.2. The p orbitals bond in a s fashion in one direction and in a p fashion in
the perpendicular direction. As might be expected, these two interactions are not degen-
erate for every value of k.

At G, k ¼ (0, 0), the s interactions are antibonding (overlapping lobes on neighbor-
ing sites have the opposite sign) and the p interactions are bonding (overlapping lobes
have the same sign) for both the px and py orbitals. At M, k ¼ (p/a, p/a), the reverse
is true. At X, k ¼ (p/a, 0), however, both s and p interactions are bonding for the px,
but both are antibonding in the py orbitals.

For the SC lattice, the energy of a Bloch sum of px atomic states, including first- and
second-nearest neighbor interactions, is:

E(k) ¼ Ex,x(0 0 0)þ 2Ex,x(1 0 0)[cos(kxa)]þ 2Ey,y(1 0 0)[cos(kya)þ cos(kza)]

þ 4Ex,x(1 1 0)[cos(kxa) cos(kya)þ cos(kxa) cos(kza)]

þ 4Ex,x(0 1 1)[cos(kya) cos(kza)] (5:46)

The energy of the py (or pz) band is obtained by cyclic permutation. The behavior of
Eq. 5.46, for two-dimensional square lattices of px and py atomic orbitals, using the
first-nearest neighbor approximation, is shown later in Figure 5.5.

A very noteworthy example involving p interactions is the single graphite sheet
(graphene), with the honeycomb structure. This has been of renewed interest since the
discovery of nanographites (graphene ribbons of finite width) and carbon nanotubes
(slices of graphene rolled into cylinders). Each carbon atom is sp2 hybridized and
bonded to its three first-nearest neighbors in a sheet via sp2 s bonds. The fourth electron
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of each carbon atom is in a p( pz) orbital perpendicular to the sheet. The electronic
properties are well described just from consideration of the p interactions.

Like the diamond structure discussed earlier, the honeycomb structure is not itself a
Bravais lattice. If the lattice is translated by one nearest-neighbor distance, the lattice does
not go into itself. There are two nonequivalent, or distinct types of sites per unit cell,
atoms a and b, separated by a distance a0, as shown later in Figure 4.6. However, a
Bravais lattice can be created by taking this pair of distinct atoms to serve as the basis.
Doing so, shows that the vectors of the two-dimensional hexagonal lattice, a1 and
a2, are primitive translation vectors. A given site on one sublattice with coordinates
(0, 0), has three nearest neighbors on the other sublattice. They are located at (0, a2),
(a1, 0), and (2a1, 0).

As in the case of diamond, two different Bloch sums of pz atomic orbitals are needed,
one for each distinct atomic site:

fm(k) ¼
1ffiffiffiffi
N
p

XN
n¼1

exp(ik � rm)x(r � rm) (5:47)

fv(k) ¼
1ffiffiffiffi
N
p

XN
n¼1

exp(ik � rv)x(r � rv) (5:48)

The secular equation, with the usual approximations, is:

Hmm � E Hmv

Hvm Hvv � E

				
				 ¼ 0 (5:49)

Γ : kx,y = (0, 0)

Figure 5.2. A two-dimensional square array of px atomic orbitals. The bonding is by s

interactions in the horizontal direction and by p interactions in the vertical direction.
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Noting the Hermitian properties of the Hamiltonian (Hvm ¼ H�mv), and setting our zero
of energy at zero (Haa ¼ Hbb ¼ 0), Eq. 5.49 becomes:

E Hmv

H�mv E

				
				 ¼ 0 (5:50)

Thus, for the energies, there is the very simple expression:

E+ ¼+[H�mvHmv]
1=2 (5:51)

As expected, it has a phase factor sum and an integral representing the interactions
between an atom with its three nearest neighbors, which are of the other type. Thus,
Eq. 5.51 can be written as:

E(k) ¼+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ e�ik � a1 þ e�ik � a2 )(1þ eik � a1 þ eik � a2 )

p
E(10) (5:52)

It can readily be shown that Eq. 5.52 for the band dispersion simplifies to:

E(k) ¼+E(10)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{3þ 2 cos(k � a1)þ 2 cos(k � a2)þ 2 cos[k � (a2 � a1)]}

p
(5:53)

The primitive lattice vectors in the (x, y) coordinate system are: a1 ¼
� ffiffiffi

3
p

=2

a0, 1

2


 �
and a2 ¼

� ffiffiffi
3
p

=2

a0, � 1

2


 �
, where a0 is the basis vector. Thus, Eq. 5.53 can also be

written as:

E(kx, ky) ¼+E

ffiffiffi
3
p

2
,
1
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos2

kxa

2

� �
þ 4 cos

kxa

2

� �
cos

ffiffiffi
3
p

kya

2

� �� �s
(5:54)

In two dimensions, these functions are surfaces. Figure 5.3 shows the band structure
diagram of graphene.

In graphene, the top of the valence band just touches the bottom of the conduction
band at the corner point of the hexagonal Wigner–Seitz cell (the k-point in the two-
dimensional BZ) where the energy goes to zero; the p and p� bands are degenerate at
this point. The Fermi level, EF, which is analogous to the highest occupied MO,
passes right through this intersection. There is thus a zero density of states at EF,
but no band gap, which is the defining characteristic of a semimetal. Semimetals
differ from semiconductors in that their resistivities have a metallic-like temperature
dependency. Interestingly, it has been shown recently that graphene can chemically
react in a reversible manner with hydrogen to form crystalline graphane, which is an insu-
lator whose lattice periodicity is markedly shorter than that of graphene. The original
semimetallic graphene can be restored by simple annealing the hydrogenated product
(Elias et al., 2009).

Single-walled carbon nanotubes (SWNTs) are single slices of graphene containing
several hundred or more atoms rolled into seamless cylinders, usually with a removable
polyhedral cap on each end. Multi-walled carbon nanotubes (MWNTs) are several slices

5.3 ORBITAL INTERACTIONS IN MONATOMIC SOLIDS 219



rolled into concentric cylinders. The direction along which a graphene sheet is rolled
up is related to the two-dimensional hexagonal lattice translation vectors a1 and a2 via
C ¼ na1 þ ma2 where C is called the chiral or wrapping vector. Thus, C defines the rela-
tive location of the two lattice points in the planar graphene sheet that are connected
to form the tube in terms of the number of hexagons along the directions of the two
translation vectors, as illustrated in Figure 5.4.

Each pair of (n, m) indices corresponds to a specific chiral angle (helicity) and
diameter, which give the bonding pattern along the circumference. The chiral angle is
determined by the relation u ¼ tan21[

ffiffiffi
3
p

n/(2m þ n)] and the diameter by the relation

M KΓ 

EF
p

p ∗

Figure 5.3. The tight-binding band structure for graphene. The electronic properties are well

described by thep andp� bands, which intersect at the pointK, making graphene a semi-metal.

a2

a1

C = na1+ ma2

Figure 5.4. The chiral vector, C, defines the location of the two lattice points that are

connected to form a nanotube.
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d ¼ (
ffiffiffi
3
p

p)ac– c(m
2 þ mn þ n2)1/2, where ac– c is the distance between carbon atoms.

The indices (n, 0) or (0, m), u ¼ 08, correspond to the “zigzag” tube (so-called because
of the shape around the circumference, perpendicular to the tube axis). The indices
(n, m) with n ¼ m (u ¼ 308) corresponds to the “armchair” tube (with a shape
around the circumference, perpendicular to the tube axis). If one of the two indices n
or m is zero, the tube is nonchiral; it is superimposable on its mirror image. A general
chiral nanotube (nonsuperimposable on its mirror image) occurs for all other arbitrary
angles. Common nanotubes are the armchair (5, 5) and the zigzag (9, 0).

Unlike graphene, which is a two-dimensional semimetal, carbon nanotubes are either
metallic or semiconducting along the tubular axis. In graphene, which is regarded as an
infinite sheet, artificial periodic boundary conditions are imposed on a macroscopic scale.
This is also true for the nanotube axis; However, the periodic boundary condition is
imposed for a finite period along the circumference. One revolution around the very
small circumference introduces a phase shift of 2p. Electrons are thus confined to a dis-
crete set of energy levels along the tubular axis. Only wave vectors satisfying the relation
C . k ¼ 2pq (q is an integer) are allowed in the corresponding reciprocal space direction
(see Eq. 5.27 and accompanying discussion; let C ¼ N and q ¼ n). This produces a set of
one-dimensional subbands and what are known as van Hove singularities in the density
of states (if the tube is very long) for a nanotube. Transport can only propagate along
parallel channels down the tubular axis, making a nanotube a one-dimensional quantum
wire. It is not semimetallic like graphene because the degenerate point is slightly shifted
away from the K point in the BZ owing to the curvature of the tube surface and the
ensuing hybridization between the s� and p� bands, which modify the dispersion of
the conduction band (Blasé et al., 1994; Hamada et al., 1992; Saito et al., 1992).

These factors, in turn, are dependent on the diameter and helicity. It has been found
that metallicity occurs whenever (2n þ m) or (2 þ 2m) is an integer multiple of three.
Hence, the armchair nanotube is metallic. Metallicity can only be exactly reached in
the armchair nanotube. The zigzag nanotubes can be semimetallic or semiconducting
with a narrow band gap that is approximately inversely proportional to the tube radius,
typically between 0.5–1.0 eV. As the diameter of the nanotube increases, the band gap
tends to zero, as in graphene. It should be pointed out that, theoretically, if sufficiently
short nanotubes electrons are predicted to be confined to a discrete set of energy
levels along all three orthogonal directions. Such nanotubes could be classified as
zero-dimensional quantum dots.

Nanometer-width ribbons of graphene, the so-called nanographites, similarly may
have armchair or zigzag edges. The edge shape and system size are critical to the
electronic properties. Zigzag edges exhibit a localized nonbonding p electronic state
with flat bands that result in a very sharp peak near EF in the density of states. This is
not found in armchair nanographites.

5.4 TIGHT-BINDING ASSUMPTIONS

The original LCAOmethod by Bloch (Bloch, 1928) is difficult to carry out with full rigor
because of the large number of complicated integrals that must be computed. In their
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landmark paper of 1954, John Clarke Slater and George Fred Koster (b. 1926) of the
Massachusetts Institute of Technology (M. I. T.) proposed a scheme for interpolating
the band structure over the entire BZ by fitting to first-principles calculations carried
out at high symmetry points (Slater and Koster, 1954). This became known as the
tight-binding method (sometimes called the SK scheme or method) and it has been
applied to nonatomic metals, semiconductors, and compounds.

Actually, what has been described all along is the tight-binding method. Some
important simplifications are made in the tight-binding scheme, which are now stated
explicitly. First, in the original SK method, it is assumed that the atomic orbitals and
the Bloch sums formed from them are orthogonal. This is not generally true, but the
atomic orbitals can be transformed into orthogonal orbitals. One such way this can be
accomplished was owing to Swedish physicist Per-Olov Löwdin (1916–2000)
(Löwdin, 1950). Because of this simplification, the original SK method is sometimes
referred to as the linear combination of orthogonalized atomic orbitals (LCOAO)
method. Leonard Francis Mattheiss, of the AT&T Bell Laboratories, later made a modi-
fication that did away with the Löwdin orthogonalization, transforming the method into a
generalized eigenvalue problem, involving overlap integrals in addition to the onsite and
exchange integrals (Mattheiss, 1972).

Second, Slater and Koster treated the potential energy term in the Hamiltonian
like that of a diatomic molecule, that is, as being the sum of spherical potentials located
on the two atoms at which the atomic orbitals are located. In reality, the potential energy
is a sum of potentials (they are not necessarily spherically symmetric) located at all
the atoms in the crystal. Hence, there are three-center integrals present. The two-
center approximation, however, allows one to formulate the problem using a smaller
number of parameters. Matrix elements that are two-center integrals use orbitals that
are space quantized with respect to the axis between them, so they have a form that is
dependent only on the internuclear separation and the symmetry properties of the
atomic orbitals (see below). The SK parameters are somewhat independent of the crystal
structure and, thus, transferable from one structure type to another, which is a major
advantage of the SK method. Two-center SK parameterizations have also been
formulated within the density functional theory (Cohen et al., 1994; Mehl and
Papaconstantopoulos, 1996), which has become the predominant method of calculating
band structures.

Slater and Koster introduced notation that clearly distinguishes s, p, and d inter-
actions. For example, referring back to Figure 5.2, it can be seen that in the y direction,
the px orbitals bond in a p fashion. The third term on the right-hand side of Eq. 5.46
must correspond to the energy ofp interactions to first-nearest neighbors. Hence, the inte-
gral Ey,y(1 0 0) is replaced with the two-center integral symbolized as (ppp)1. Making
similar substitutions throughout Eq. 5.46 allows that equation to be rewritten as:

E(k) ¼ Ep,p(0)þ 2( pps)1 cos(kxa)þ 2( ppp)1[cos(kya)þ cos(kza)]

þ 2( pps)2[cos(kxa) cos(kya)þ cos(kxa) cos(kza)]

þ 2( ppp)2[cos(kxa) cos(kya)þ cos(kxa) cos(kza)þ 2 cos(kya) cos(kza)]

(5:55)
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Of course, in an actual tight-binding calculation, all such integrals are evaluated only at
the high symmetry points in the BZ. Fitted parameters are then used to interpolate the
band structure between these points.

John Clarke Slater (1900–1976) received his Ph.D.
in physics from Harvard University in 1923 under
P. W. Bridgeman. He then studied at Cambridge
and Copenhagen, returning to Harvard in 1925.
In 1929, he introduced the Slater determinant in
a paper on the theory of complex spectra. Slater
was appointed head of the physics department
at M. I. T. by Karl Taylor Compton. He remained
at M. I. T. from 1930 to 1966, during which time
he started the school of solid-state physics.
Among Slater’s Ph.D. students were Nobel laure-
ates Richard Feynman and William Shockley. In
World War II, Slater was drawn into the war
effort, having been involved in the development
of the electromagnetic theory of microwaves,
which eventually led to the development of
radar. In 1953, Slater and Koster published their

now famous simplified LCAO interpolation scheme for determining band struc-
tures. After retirement from M. I. T., Slater was research professor in physics and
chemistry at the University of Florida. Slater authored fourteen books on a variety
of topics from chemical physics to microwaves to quantum theory. Slater is also
widely recognized for calculating algorithms, known as STOs, which describe
atomic orbitals. He was elected to the United States National Academy of
Sciences in 1932. (Primary source: P. M. Morse Biographical Memoirs of the U.S.
National Academy of Sciences, 1982, Vol. 53, pp. 297–322.)

(Photo courtesy of AIP Emilio Segrè Visual Archives. Copyright owned by the
Massachusetts Institute of Technology Museum. Reproduced with permission.)

5.5 QUALITATIVE LCAO BAND STRUCTURES

Unlike the prior two examples – diamond and graphite – compounds have more than one
atom type per lattice point. Accordingly, it is usually necessary to consider interactions
between atomic orbitals with different angular momentum quantum number (e.g.
p–dp, s–ps bonding). Slater and Koster gave two-center integrals for s–p, s–d, and
p2d interactions expressed in terms of the direction cosines (l, m, n) of the interatomic
vector. Examined here is a relatively simple structure that has been of enormous interest
for decades – the transition metal oxide perovskite, ABO3. Figure 5.5a shows the real-
space unit cell, which contains five atoms. Figure 4.5b shows the BZ for the simple
cubic lattice. It is important to note that the unit cell is not BCC, since the body-centered
atom is different from the atoms at the corner positions. Perovskite can also be considered
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a three-dimensional network of vertex-sharing octahedra. Many possible types of inter-
actions between the various atomic orbitals can be deduced. Table 5.1 lists some of
the first- and second-nearest neighbor two-center matrix elements that would have to
be considered in a rigorous analysis.

Nowhere in this chapter has a band structure calculation actually been made.
Although a sophisticated mathematical formulation has been presented for some
simple cases, it have yet to provide any numerical values for the energies. Since nothing
to this point has been quantitative, rather than continue to develop the mathematical
treatment, a switch will now be made to a conceptual treatment of the tight-binding
method for compounds, in which symmetry and overlap are considered qualitatively.
This is a great simplification, which allows one to obtain approximate band structure
diagrams, without becoming bogged down in tedious mathematics.

In principle, the scheme is applicable to any periodic solid. However, in practice,
the types of structures that are most conducive to the methodology tend to have high
symmetry, a small number of atoms per unit cell, and/or a covalent framework with
linear cation–anion–cation linkages (1808 M–X–M bond angles). These are the only
types considered here. The utility of the conceptual approach to low-dimensional systems
(including layered perovskite-like oxides) has been exhaustively treated in several papers
by Whangbo, Canadell, and co-workers (Canadell and Whangbo, 1991; Rousseau et al.,
1996; Whangbo and Canadell, 1989).

For transport properties, one is primarily interested in the nature of the bands near the
Fermi energy, in which case only the dispersion at the bottom of the conduction band
needs evaluation, at least for systems with a low electron count. How does one know
where the Fermi level is? Well, the relative band energies at the center and corner of
the BZ in a band structure diagram usually correspond reasonably well to the order
of the localized states in the energy-level diagram for the geometric arrangement at a dis-
crete lattice point (i.e. MO diagram). The Fermi level in the solid can be approximated by

a

a

a

R

T
L

G D

S

S

M

X
Z

(a) (b)

Figure 5.5. The perovskite structure (a) corresponds to a SC real-space Bravais lattice and SC

reciprocal lattice. The first BZ for the SC reciprocal lattice is shown in (b).

THE TIGHT-BINDING ELECTRONIC STRUCTURE APPROXIMATION224



filling the orbitals in such a diagram with all the available electrons, two (each of opposite
spin) per orbital, and noting where the HOMO falls. This is precisely what was done in
Chapter 3, where it was shown how the energy-level diagram for a discrete MX6 octa-
hedral unit approximated the relative band energies of a three-dimensional array of
vertex-sharing octahedra, that is, perovskite. It must be stressed that lattice periodicity
is not part of a MO picture – the band energies in a solid will vary over the BZ. A generic
MO energy level diagram is in noway equivalent to a band structure diagram! One simply
tries to use the knowledge acquired from the MO diagram to determine which of the
bands to assess.

Returning to the perovskite example, it was revealed in the discussion accompanying
Figures 4.4 and 4.5 that, for the transition metal oxides with this structure, the Fermi
level lies within the t2g or eg block bands. The focus here will be on just these
bands. The five d orbitals from the transition metal atom and the three p orbitals on
each of the three oxygen atoms give the 14 tight-binding basis functions listed in
Table 5.2. Hence, there is still a 14 � 14 secular equation to solve at various k points.
This equation contains diagonal transition metal d–d and oxygen p–p Hamiltonian
matrix elements. The interest here is in the dispersion of the d bands resulting from s
and p interactions between the d and oxygen p atomic orbitals. These p–d interactions
are off-diagonal matrix elements. The mathematical procedure is beyond the scope of
the present discussion, but it is possible by means of a unitary transformation to

TABLE 5.1. Interatomic Matrix Elements for the Transition Metal Perovskite Oxides

Atomic Orbitals Involved Integral Two-Center Approx.

A s, O s Es,s(12,
1
2, 0) (sss)1

A x, A x Ex,x(1, 0, 0) ( pps)2

A x, A x Ex,x(0, 1, 0) ( ppp)2

A y, A y Ey,y(1, 0, 0) ( ppp)2

A y, A y Ey,y(0, 1, 0) ( pps)2

A y, A y Ey,y(0, 0, 1) ( ppp)2

A x, O x Ex,x(12,
1
2, 0)

1
2[( pps)1 – ( ppp)1]

A y, O x Ey,x(12,
1
2, 0)

1
2[( pps)1 – ( ppp)1]

A z, O z Ez,z(12,
1
2, 0) ( ppp)1

B xy, B xy Exy,xy(1, 0, 0) (ddp)2

B xy, B xy Exy,xy (0, 0, 1) (ddd)2

B z2, B z2 Ez2,z2(0, 0, 1) (dds)2

B x2 – y2, B x2 – y2 Ez22y2,z22y2(0, 0, 1) (ddd)2

B z2, O s Ez2,s(0, 0, 12) (sds)1

B z2, O z Ez2,z(0, 0, 12) ( pds)1

B xy, O x Exy,x(0, 12, 0) ( pdp)1
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reduce this matrix at certain high symmetry points in the BZ to a group of 1�1 and 2�2
submatrices.

Taking the B atom as the origin of a Cartesian coordinate system, along any axis there
is a dimer unit consisting of a B atom and an O atom at each lattice point. Consequently,
each dimer unit has a bonding and antibonding p level, given from Table 4.2, as:

E(k) ¼ E(0 0 0)+ 2i(pdp)1 sin
ka

2

� �
(5:56)

The bonding combinations, E(0 0 0) þ 2i( pdp)1 sin(ka/2) correspond to lower energy
states located at the top of the valence band (the fully occupied group of states below
the Fermi level). The dispersion of the oxygen p bands can be considered as being
driven by the bonding p–d interactions (see Fig. 4.5). The CO comprised of these bond-
ing combinations have a lower energy and longer wavelength than those of the antibond-
ing combinations. The antibonding combinations, E(0 0 0) 2 2i( pdp)1 sin(ka/2), are

TABLE 5.2. Transition Metal d and Oxygen p Basis Functions for Perovskite

No. Position Function

Metal d 1 (0, 0, 0) xy
2 (0, 0, 0) yz
3 (0, 0, 0) xz
4 (0, 0, 0) z2

5 (0, 0, 0) x2 – y2

Oxygen p 6 1
2a(1, 0, 0) x

7 1
2a(1, 0, 0) y

8 1
2a(1, 0, 0) z

9 1
2a(0, 1, 0) x

10 1
2a(0, 1, 0) y

11 1
2a(0, 1, 0) z

12 1
2a(0, 0, 1) x

13 1
2a(0, 0, 1) y

14 1
2a(0, 0, 1) z

Metal d and Oxygen p Hamiltonian Matrix Elements

H7,1 ¼ 2i( pdp)1 sin(kxa/2) H9,1 ¼ 2i( pdp)1 sin(kya/2)

H11,2 ¼ 2i( pdp)1 sin(kya/2) H13,2 ¼ 2i( pdp)1 sin(kza/2)

H8,3 ¼ 2i( pdp)1 sin(kxa/2) H12,3 ¼ 2i( pdp)1 sin(kza/2)

H6,4 ¼ 2i( pds)1 sin(kxa/2) H10,4 ¼ 2i( pds)1 sin(kya/2)

H14,4 ¼ 2i( pds)1 sin(kza/2) H6,5 ¼ 2
ffiffiffi
3
p

i( pds)1 sin(kxa/2)

H10,5 ¼ 2
ffiffiffi
3
p

i( pds)1 sin(kya/2)
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higher energy (shorter wavelength) states, at the bottom of the conduction band (the
vacant or partially occupied bands above the Fermi level). In perovskite transition
metal oxides, the antibonding p–d interactions cause the dispersion of the metal d
bands, which is of interest here.

Qualitative information on the d bandwidth in perovskite can be acquired without
carrying out these mathematical operations. This is accomplished simply by evaluating
the p–d orbital interactions for some of the special points in the BZ. For now, the
main focus is on the p interactions between the metal t2g and oxygen p orbitals. From
Figure 3.5, it is expected that the Fermi level will lie in one of the t2g-block bands for
AIIBIVO3 oxides if B is an early transition metal with six or fewer d electrons.

First, Bloch sums of atomic orbitals are constructed for each of the atoms in the
basis. For example, at G (kx ¼ ky ¼ kz ¼ 0), l ¼ 2p/0 ¼ 1. Hence, in perovskite, the
metal dxy atomic orbitals forming the Bloch sum at G, viewed down the [0 0 1] direction,
must have the sign combination shown in Figure 5.6a, where the positive or negative sign
of the electron wave function is indicated by the presence or absence of shading. By com-
parison, at X for the SC lattice, kx ¼ p/a, ky ¼ kz ¼ 0, and l ¼ 2a. Thus, the Bloch
sum is formed from dxy atomic orbitals with the sign combination like Figure 5.6b.
Similarly, the Bloch sums of the py and px orbitals at G, viewed down the [0 0 1] direction,
are constructed from atomic orbitals with the signs given in Figure 5.7a. Those at X are
like Figure 5.7b. By simply knowing something about the nature of the interactions
between given pairs of Bloch sums for a few k-points, a qualitative band structure
diagram can be drawn! Now consider how Bloch sums interact in a symmetry-
allowed manner.

There are some guiding principles that aid the construction of LCAOs in solids,
which are analogous to LCAO MOs. The first is that the combining atomic orbitals
must have the same symmetry about the internuclear axis. Second, the strength of the
interactions generally decreases in going from s to p to d symmetry. Third, orbitals of
very different energies give small interactions. The major principle, however, is from

(a) (b)

Figure 5.6. The sign combination required of the dxy atomic orbitals for a Bloch sum at G (a)

and X (b) viewed down the [0 0 1]. Positive or negative sign is indicated by the presence or

absence of shading.
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group theory and states that the many-electron wave function in a crystal forms a basis for
some irreducible representation of the space group. Essentially, this principle means that
the wave function, with a wave vector k, is left invariant under the symmetry elements of
the crystal class (e.g. translations, rotations, reflections) or transformed into a new wave
function with the same wave vector k.

5.5.1 Illustration 1: Transition Metal Oxides with
Vertex-Sharing Octahedra

The aforementioned principles can be used to construct qualitative dispersion curves
for the conduction band in transition metal oxides with vertex-sharing octahedra (e.g.
perovskite, tungsten bronzes), rather easily. Figure 5.8 shows the metal t2g block and
O 2p orbital interactions in transition metal oxides with the perovskite structure. At
G (kx ¼ ky ¼ kz ¼ 0), no p–d interactions are symmetry allowed, including those with
the two axial oxygen atoms above and below the plane of figure, for any of the t2g-
block orbitals. The reader may want to expand the diagrams in Figure 5.8 to show
the signs of the axial p orbitals at the various k points. By contrast, at X (kx ¼ p/a,

(a) (b)

Figure 5.7. The sign combinations required of the px (top) and py (bottom) atomic orbitals for

a Bloch sum at G (a) and at X (b).
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ky ¼ kz ¼ 0), an atomic dxy orbital can interact with two equatorial oxygen py orbitals on
either side, as can the dxz and oxygen pz orbitals. Another high symmetry point of the first
BZ for the SC lattice isM (kx ¼ ky ¼ p/a, kz ¼ 0). At this point, the dxy orbitals can inter-
act with all four equatorial px and py orbitals. The dxz and dyz orbitals each interact with
only two of the equatorial p orbitals and no axial orbitals.

The number of interactions per metal atom can be used to plot the band dispersion
that result from moving between the high symmetry points in the BZ, as shown in
Figure 5.9. At G, the dxy, dxz, and dyz bands are all nonbonding (all three are degenerate)
with an energy equal to a. In moving from G to X, the dxy has two antibonding interactions
per metal atom, as does the dyz and the dxz orbitals. This amounts to a destabilization of
each of these bands by an amount that can be estimated from Eq. 5.38 as 4b. These two
bands are thus degenerate at X. The dyz band is nondispersive as it still has no symmetry-
allowed interactions, just like at G.

In moving from X toM, the dxz and dyz bands now become degenerate, with two anti-
bonding interactions (destabilization ¼ 4b) per metal atom with the oxygen p orbitals.
These two bands are lower in energy than the dxy band, which has four antibonding
interactions per metal atom and a destabilization of 8b (Eq. 5.38). Figure 5.9 also

y

x

y

x

y

x

XΓ M

Figure 5.8. The oxygen p–metal d p� interactions in a transition metal oxide with vertex-

sharing octahedra (e.g. perovskite) at the k points G, X, and M, viewed down [0 0 1]. Top row:

dxy. Middle row: dxz. Bottom row: dyz.
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shows two insets in the upper right corner: the top is the calculated band dispersion in
SrTiO3 and the bottom is the calculated band dispersion in ReO3.

Bearing in mind that the qualitative t2g dispersion behavior was obtained by
only considering the symmetry and overlap between first-nearest neighbor metal
and oxygen atoms, the agreement with the calculated dispersion curves is reasonable.
Indeed, the d-block band dispersion in transition metal perovskite oxides is due almost
entirely to p–d hybridization effects. In a real calculation, however, second-nearest
neighbor interactions as well as metal–metal and oxygen–oxygen contributions would
be included.

Second, although the t2g block bands are vacant in the insulating phase SrTiO3, they
are partially occupied in the metallic phase ReO3(note the location of EF in the latter).
Nonetheless, the general shape is unchanged, although a wider bandwidth is observed
in ReO3. The latter feature is expected for second and third row transition metals, how-
ever, because the larger radial extent of the 4d and 5d orbitals should result in a stronger
overlap. It can be concluded that the dispersion is independent of the electron count,
which is consistent with the earlier claims.

Last, ReO3 has the octahedral framework of the SrTiO3 structure minus the
12-coordinate atom in the center of the unit cell. However, the orbitals on this atom are
of such high energy (Sr electron configuration ¼ 4s24p65s2) that they do not hybridize
with the Ti 3d–O2p bands. In the perovskite structure, this atom simply provides electrons
to the system that can occupy the valence or conduction bands.Hence, there is little change
to the band dispersion directly resulting from the presence of the A cation.
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Figure 5.9. Dispersion curves for the dxy, dxz, and dyz bands in a transition metal oxide with

octahedra sharing vertices in three dimensions (e.g. perovskite). Top upper insert: calculated

band dispersion for SrTiO3. Bottom upper insert: calculated band dispersion for ReO3. The

dashed line is the Fermi level.
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5.5.2 Illustration 2: Reduced Dimensional Systems

Consider now a layered structure that consists of covalent vertex-sharing single-layer
octahedral slabs alternating with ionic rock-salt-like slabs, such as the n ¼ 1
Ruddlesden–Popper or Dion–Jacobsen phases described in Chapter 3. The unit cells
are typically tetragonal with an elongated c axis. This constitutes a two-dimensional
system in that electronic transport can only occur within the ab plane of the vertex-
sharing octahedral layers occurring along the c axis of the unit cell. Electronic conduction
does not occur in the ionic rock-salt slabs.

How does the reduced dimensionality affect the dispersion relations? Whangbo,
Canadell and co-workers have qualitatively evaluated the band dispersion in such systems
in the same way as was done for the three-dimensional perovskite structure in the last
section – by counting the number of oxygen p orbital contributions present in the COs
at certain points in the BZ.

The Fermi surface of a low-dimensional transport system has a special topology. For
example, becausewave vectors in the direction perpendicular to the perovskite layer – the
c direction in real space – do not cross the Fermi surface, there are no electrons at the
Fermi level having momentum in that direction, and the system is nonmetallic along
c. Nevertheless, the axial oxygen contributions still must be considered when construct-
ing the band structure diagram. For a discrete two-dimensional sheet of vertex-sharing
octahedra, or for two such sheets separated by, say, nonconducting rock-salt-like slabs,
the equatorial and axial oxygen atoms are in two nonequivalent positions, as they
have different chemical environments. The equatorial oxygen atoms are in bridging
positions – shared by two octahedra – while the axial atoms belong to a single octa-
hedron, as shown in Figure 5.10. It has been shown that the amount of destabilization
that results from an axial contribution is one-fourth that due to an equatorial contribution
(Rousseau et al., 1996).

For the dxy orbitals, there are no axial contributions. However, for the dxz and dyz
orbitals, there are two axial contributions per metal atom at all three of the k points of
Figure 5.8, which are not shown in that figure. Thus, the band dispersion diagram for

Figure 5.10. A layer of octahedra sharing vertices in only two dimensions, as might be found,

for example, in perovskite intergrowths like the Ruddlesden–Popper oxides. The axial and

equatorial oxygen atoms are not equivalent in that the former belong to single octahedra,

whereas the latter are in bridging positions, shared by two octahedra.
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this case is obtained simply by shifting the dxz and dyz bands upward by E/2, or b, on the
energy axis, as shown in Figure 5.11. The difference between the dispersion of these three
d bands in a three-dimensional system, like perovskite, and a two-dimensional system,
like the Ruddlesden–Popper series, is that the dxy band in the latter is of the lowest
energy (at G). Since the easy axis for electronic conduction is the ab plane of the unit
cell, the Fermi level is expected to lie in the dxy band for low d electron counts.

Example 5.3

If the lowest energy point lies at G, predict the lowest-lying t2g-block band for the
n ¼ 3 member of the Ruddlesden–Popper phase, which exhibits out-of-center
octahedral distortion in the outer layers. Discuss the implications on the electronic
properties of oxides with low d electron counts.

Solution

The n ¼ 3 member of the Ruddlesden–Popper phases have triple-layer vertex-
sharing octahedral slabs separated by rock-salt-like layers. It is a low-dimensional
transport system with nine t2g bands. These can be denoted xz0, xz00, xz0 00, and so
on, where 00 denotes the d band of the central layer of anM–O–M–O–M linkage.

Drawing the orbitals in the M–O–M–O–M linkage allows one to count
the antibonding contributions in each of these bands. Compared to that of
the single-layer octahedral slab, each xy band in the triple-layer slab will have
three times as many O p orbital contributions. The xz0 and yz0 bands will have

a = 0

Γ ΓX M

4b

8b

Figure 5.11. Dispersion curves for the dxy, dxz, and dyz bands from a single layer of octahedra

sharing vertices in only two dimensions, as in Figure 4.10.
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three times as many minus two axial contributions. The xz00 and yz00 will have two
times as many plus one bridging and minus two axial contributions. The xz0 00 and
yz000 bands are equal to those of the xz0 and yz0 plus two bridging contributions.

Since the assumption is that the lowest energy states occur at G, only the
energy at this one k point needs to be estimated. Using Canadell’s relation,
which states that the energy destabilization of an oxygen p contribution in a
bridging position is four times that of an oxygen p orbital contribution in an
axial position, it is found that the lowest lying bands in the undistorted triple-
layer are three degenerate xy bands. However, shortened apical M–O bonds in
the outer layers exhibiting out-of-center distortion raise the energies of those
antibonding states so that the xy00 band of the inner octahedral layer is the
lowest band state in the oxide of Figure 1.36.

The implications are that conduction electrons confined to the inner-layer
slab, in oxides with low d electron counts, may be more spatially screened
from electron localizing effects such as chemical or structural disorder in the
rock-salt-like slabs, as compared with conduction electrons in single-layer slabs.

5.5.3 Illustration 3: Transition Metal Monoxides with
Edge-Sharing Octahedra

Now look at the transition metal monoxides with the rock-salt structure. Since the rock-
salt structure is a three-dimensional network of edge-sharingMX6 octahedra, in which the
metal may possess an incomplete d shell, it can be concluded that the Fermi level should
reside in the metal t2g- or eg-block bands.

Considering the similarity of this structure to the transition metal perovskite oxides,
one might expect to see the same dispersion curves for the d bands. However, because of
the proximity of the metal atoms to each other, neglecting the metal d–d interactions in
the monoxides produces dispersion curves that are grossly in error. The d–d interactions
in the Bloch sums are important in affecting the dispersion of the d–p COs. To begin, the
dispersion of one of the t2g-block bands, the dxz band, is examined. The dxz and pz Bloch
sums can be drawn at G to include the atomic orbitals in the face-center positions,
as shown in Figure 5.12, where the Cartesian coordinate system shown has been
chosen. The rock-salt structure can be considered as two interpenetrating FCC lattices,
one of cations and one of anions, displaced by one-half of a unit cell dimension along
the k1 0 0l direction. This can be done with the two Bloch sums of Figure 5.12 as
shown in Figure 5.13.

At G, the dxz and pz Bloch sum interactions are not symmetry allowed. Nor is the
hybridization between the dxz and py Bloch sums. The dxz orbital at the origin does, how-
ever, have a p� antibonding interaction with the axial px orbitals (not shown) directly
above and below it. In other words, the dxz orbital at the origin only interacts with two
of the six first-nearest neighbor oxygen atoms.

In the rock-salt structure, there are d–d orbital interactions between the 12 second-
nearest neighbor metal atoms that must also be included. Figure 5.13 shows four of
these dxz–dxz interactions, two of which are p� antibonding and two that are d bonding.
The eight remaining d–d interactions are much weaker because of the poorer overlap
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between the orbitals on these atoms with the orbital at the origin. Hence, at G there is a
roughly nonbonding dxz–dxz net interaction plus an antibonding p–d contribution.

The interactions at X are shown in Figure 5.14. The equatorial px and py orbitals do
not have the correct symmetry for interaction with the dxz orbitals. However, there are p�

antibonding interactions between the dxz and equatorial pz orbitals (shown) and axial px
orbitals (not shown). The bonding interactions cause the dispersion of the p bands and
are not considered here. The overlap between the dxz and equatorial pz orbitals in
Figure 5.14 is poor, so these orbitals interact weakly. The dxz–dxz interaction at X is
both p and d bonding. As at G, these are much stronger than the p–d interactions

y

x

Figure 5.12. The sign combinations required of the atomic orbitals at G (kx ¼ ky ¼ kz ¼ 0,

l ¼1) for the dxz Bloch sum (left) and pz Bloch sum in a single plane viewed down [0 0 1].

y

x

Figure 5.13. A schematic illustrating the superposition of the dxz and pz Bloch sums at G

viewed down [0 0 1]. The only symmetry-allowed dxz–pz interactions at G are those between

the dxz orbitals and the axial oxygen pz orbitals directly above and below them (not shown).

Thus, the dispersion at G is driven primarily by d–d interactions.
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as well as the eight remaining d–d interactions. The dxz band is thus lower in energy
relative to G.

Another symmetry point in the first BZ for the FCC lattice is W (kx ¼ 2p/a, ky ¼
p/a, kz ¼ 0). At this point, l ¼ a along x and 2a along y. The Bloch sums for this
k point are shown in Figure 5.15. The p–d interactions are the same as those at X.

y

x

Figure 5.14. A schematic illustration of the superposition of the dxz and pz Bloch sums at X

viewed down [0 0 1]. The dispersion at X is driven primarily by p-type and d-type d–d

interactions.

y

x

Figure 5.15. A schematic illustration of the superposition of the dxz and pz Bloch sums at W

viewed down [0 0 1]. The net d–d interaction is p bonding while the p–d interactions are

antibonding.

5.5 QUALITATIVE LCAO BAND STRUCTURES 235



However, the net d–d interaction is less bonding than it is at X. The dxz band is higher in
energy atW, relative to X. It is also slightly higher than at G, owing to a greater number of
antibonding p–d interactions.

This same procedure can be followed to investigate the dispersion of one of the
eg-block bands, for example, the dx22y2 band. The interactions at G, X, and W are
shown in Figure 5.16. At point G (kx ¼ ky ¼ kz ¼ 0), l ¼ 2p/0 ¼ 1, all d–d interactions

y

x

XΓ W

Figure 5.16. The dx22y2–dx22y2 and p–d interactions at G, X, and W, in the transition metal

monoxides with the rock-salt structure, viewed down [0 0 1].
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Figure 5.17. Dispersion curves for the dx22y2 and dxz bands in the transitionmetal monoxides.

Upper right: calculated band dispersions for TiO. The Fermi level is indicated by the dashed line.

Bottom right: calculated band dispersions for VO.
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are bonding. The net interaction between the dx22y2 and py orbitals is nonbonding as is
the dx2�y2�px interaction (not shown). The pz orbitals are not of the correct symmetry
for interaction.

At X (kx ¼ 2p/a, ky ¼ kz ¼ 0), l ¼ a along the x axis and1 along the y axis. The net
d–d interaction is roughly nonbonding while the d–py and d–pz interactions are not
symmetry allowed. The four d–px interactions, however, are antibonding. Thus, the
dx22y2 band is raised in energy at X, relative to G.

AtW (kx ¼ 2p/a, ky ¼ p/a, kz ¼ 0), l ¼ a along the x axis and 2a along the y axis.
The net d–d interaction is antibonding. None of the d–p interactions are symmetry
allowed. In moving fromW to X, the dx22y2 band may be either nondispersive or slightly
raised in energy. The actual bandwidth will depend on the strength of the M 3d–M 3d
interactions in comparison to the M 3d–O 2p interactions.

The top curve on the left-hand side of Figure 5.17 shows our qualitative dispersion
curves for the dx22y2 band and dxz band from G to X toW. Note that, although there are no
numerical values for the energies, the dxz band has been placed lower than the dx22y2

band. That is, the zero of energy for each band is not equal. A cubic crystal field
would be expected to have this effect in a solid, just as in a molecule. The top curves
in each diagram on the right-hand side show the corresponding calculated dispersion
curves in TiO and VO.

5.5.4 Corollary

With the conceptual approach just outlined, it is possible to acquire a reasonably accurate
picture of the shape of the dispersion curves, which helps in the understanding of exactly
what it is that is viewed when an actual band structure diagram is inspected. In the
previous sections, the dispersion of the curves in the conduction band was examined.
The width of the conduction band directly influences the magnitude of the electrical con-
ductivity. Electrons in wide bands have higher velocities and mobilities than those in
narrow bands. Hence, wide-band metals have higher electrical conductivities. Had
it been chosen, the dispersion curves, comprising the valence band, could have been
evaluated as well. The most striking feature of the band structures of ionic compounds
(e.g. KCl) is the narrow bandwidth of the valence band. With the electron transfer
from cation to anion comes contraction of the lower-lying filled cation orbitals (owing
to a higher effective nuclear charge). For example, Kþ (3s23p63d10) has spatially smaller
orbitals than K (3s23p63d104s1). Thus, the overlap integral between orbitals on
nearest neighbors (e.g. Kþ 3d and Cl2 3s and 3p), b, is small, which leads to very
narrow valence bands.

Care should be taken not to overplay the significance of the results from the last three
sections, however. This treatment has not provided any numerical estimates for the band-
width, the extent of band filling (occupancy), or the magnitude of the band gap, all of
which are extremely important properties with regards to electronic transport behavior.
This will be discussed in Section 6.3.1. Knowledge of the bandwidth is especially critical
with transition metal compounds. It will be demonstrated in Chapter 7 that nonmetallic
behavior can be observed in a metal if the one-electron bandwidth, W, is less than the
Coulomb interaction energy, U, between two electrons at the same bonding site of a

5.5 QUALITATIVE LCAO BAND STRUCTURES 237



CO. For that matter, in regards to predicting the type of electrical behavior, one has to be
careful not to place excessive credence on actual electronic structure calculations that
invoke the independent electron approximation. One-electron band theory predicts met-
allic behavior in all of the transition metal monoxides, although it is only observed in the
case of TiO! The other oxides, NiO, CoO, MnO, FeO, and VO, are all insulating, despite
the fact that the Fermi level falls in a partially filled band. In the insulating phases, the
Coulomb interaction energy is over 4 eV whereas the bandwidths have been found to
be approximately 3 eV, that is, U . W.

5.6 TOTAL ENERGY TIGHT-BINDING CALCULATIONS

Although the tight-binding (TB) method was originally intended for explaining elec-
tronic spectra and structure, Chadi showed it may also be applied to total energy calcu-
lations (Chadi, 1978). These calculations can be used for determining bulk properties
such as lattice constants, cohesive energies, and elastic constants in solids, as well as
surface structure. Because of its ease of implementation, low computational workload
for large systems, and relatively good reliability, the TB scheme is a good compromise
between ab initio simulations and model-potential calculations (Masuda-Jindo, 2001).
A detailed discussion of this topic is beyond the scope of this book. For this, the
reader is referred to specialized texts such as Ohno et al. (1999). A few words, however,
are in order here.

The total energy of a solid can be written as:

Etot ¼ Eee þ Eie þ Eii (5:57)

where Eee is the electron–electron interaction energy, Eie is the ion–electron energy, and
Eii is the ion–ion interaction energy. These contributions can be regrouped into two terms.
First, the band energy, Eband, is given by the sum over occupied orbital energies (up to
the Fermi level),

P
1i, derived from the diagonalization of the electronic Hamiltonian.

In the TB scheme, this term is equal to Eie þ 2Eee, where the factor 2 comes from
double counting the Coulomb repulsion energy between electrons. The band energy
term is attractive, in that valence band energy levels are lower in energy than the atomic
orbitals from which they are derived, and it is thus responsible for the cohesion of a solid.

The second term in our new total energy expression is a short-range repulsive two-
particle interaction and contains a correction for double counting the electrons in the band
energy. It is equal to Erep ¼ Eii – Eee. Symbolically, the new total energy expression can,
therefore, be written as:

Etot ¼ Eband þ Erep (5:58)

From the repulsive term some important vibrational data, which allow the estimation
of some mechanical properties of solids, can be determined. For example, in Chapter 10,
it will be shown that the Young’s modulus (an elastic constant) of a solid can be approxi-
mated by treating the interatomic bonds as springs. The restoring force for small
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displacements of the atoms from their equilibrium positions (the stiffness of the spring) is
given by the first derivative of the potential energy between a pair of ions, U, with
respect to the interatomic distance, dU/dr. Of course, one should take the derivative of
Eq. 5.58, the total energy, in order to include the contribution of the band term to the
force, as well. Even IR and Raman spectra can be deduced for small clusters of atoms
from TB total energy minimizations, as well as ground state geometries and binding
energies per atom.

PRACTICE PROBLEMS

�1) Show that Eqs. 5.52 and 5.53 are equivalent expressions. Hint: eika ¼ cos(ka)þ
i sin(ka).

2) In the LCAO scheme, which integral represents the energy of an isolated atomic orbi-
tal? Which integral gives the energy of interaction between neighboring atoms?

3) Why are projection operators not required to generate Bloch sums for crystalline
solids?

�4) List the principles that aid in the construction of qualitative band-structure diagrams,
which are analogous to the construction of qualitative MO diagrams.

5) True or False? The tight-binding scheme is an interpolation method that requires
one to perform actual ab initio calculations only at a few high-symmetry points.
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6) What were the key assumptions made in the original SK method?

�For solutions, see Appendix 3.
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Blasé, X.; Benedict, L. X.; Shirley, E. L.; Louie, S. G. Phys. Rev. Lett. 1994, 72, 1878.

Bloch, F. Z. Physik 1928, 52, 555.

Canadell, E.; Whangbo, M.-H. Chem. Rev. 1991, 91, 965.

Chadi, D. J. Phys. Rev. Lett. 1978, 41, 1062.

Cohen, R. E.; Mehl, M. J.; Papaconstantopoulos, D. A. Phys. Rev. 1994, B50, 14694.

Cotton, F. A. Chemical Applications of Group Theory, Third Edition, John Wiley & Sons,
New York, 1990.

Elias, D. C.; Nair, R. R.; Mohiuddin,M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.;
Boukhvalov, D. W.; Katsnelso, M. I.; Geim, A. K.; Novoselov, K. S. Science 2009, 323, 610.

Hamada, N.; Sawada, S.; Oshiyama, A. Phys. Rev. Lett. 1992, 68, 1579.

Harrison, W. A. Electronic Structure and the Properties of Solids, Dover Publications, Inc.,
New York, 1989.
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6

TRANSPORT PROPERTIES

The phenomena investigated in this chapter include thermal conduction, electrical
conduction, and atomic/ionic transport in solids. These processes can be described by
the set of linear phenomenological equations listed in Table 6.1. The equations relate a
response or flux (diffusion of atoms, electrons, etc.) to a driving force (electric field, ther-
mal gradients, etc.). Note that there is no need to rely on the details of any microscopic
mechanism in order to describe macroscopic transport behavior although there will be
a need to learn about mathematical quantities called tensors. The phenomenological
equations can be regarded as macroscopic, or continuum-level, descriptions. An equation
is said to be phenomenological if it describes a complex system in a simplified manner.
Of primary interest in this chapter, however, will be the underlying microscopic,
or atomistic-level, descriptions that explain the behavior by using principles of atomic
and electron dynamics.

6.1 AN INTRODUCTION TO TENSORS

Single crystals are generally not isotropic. It can be expected then, that the physical
properties of single crystals will be anisotropic or dependent on the direction in which
they are measured. Table 6.1 reveals that the magnitudes of the fluxes and driving
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forces describing the transport properties are linearly proportional. However, only for a
cubic monocrystal or polycrystalline aggregate with a random crystallite orientation are
the directions of the flux and driving force parallel through the macroscopic sample. It
is necessary to use tensors to explain anisotropic transport properties in the most precise
manner.

The terms “scalar,” “vector,” and “tensor” were used in the 1840s by the Irish
mathematician SirWilliam RowanHamilton (1805–1865) in his lectures on quaternions,
or complex numbers. A quaternion consists of both a real part (a scalar) and a vector (pos-
sessing magnitude and direction). Hamilton referred to the magnitude or “modulus” of a
quaternion as its tensor. Hence, the tensor of a quaternion is a scalar quantity. Although
the modulus of a quaternion is still a tensor, the meaning of the word tensor has evolved
since its introduction and the word was apparently first used, in the present sense, in 1887
byWoldemar Voigt (1850–1919) in describing a set of relations between space and time
intervals to derive the Doppler shift (Voigt, 1887).

The number of components necessary to describe a tensor is given by dn where d is
the number of dimensions in space and n is called the rank. For example, a zero-rank
tensor is a scalar, which has a 30 ¼ 1 component. A first-rank tensor is a vector; it has
three components in three-dimensional space (31) and the projections of the vector
along the axes of some reference frame, e.g. the mutually perpendicular axes of a
Cartesian coordinate system. Although the magnitude and direction of a physical
quantity, intuitively, do not depend on the arbitrary choice of a reference frame, a
vector is defined by specifying its components from projections onto the individual
axes of the reference system. A vector can be defined by the way these components
change, or transform, as the reference system is changed by a rotation or reflection. As
a simplification, suppose one has two sets of x axes (with a common origin), xi and xj.
The two axes are related by a rotation u. The defining relation between the two axes is
xi ¼ (cos u)(xj). This is called a transformation law. For example, xi becomes the negative
of itself if the reference frame is rotated 1808, while a scalar is invariant to coordinate
system changes. The cos u term is the direction cosine, lij, which gives the angular rela-
tion between the new axis and the old axis. Hence, the transformation law can be written
as xi ¼ lij xj. In three dimensions, a transformation matrix for two vectors p and q is simi-
larly written as pi ¼ lijqj where the components lij are direction cosines. Importantly, the
nine components aij are not independent of one another and lij = lji.

A tensor is an object with many components that look and act like components of
ordinary vectors. It cannot be drawn geometrically like a vector can, but it can be treated
algebraically as easily as a vector. A second-rank tensor, like the transport properties
studied in this chapter, is a physical quantity that, with respect to a set of axes, has

TABLE 6.1. Physical Properties Relating Vector Fluxes and Their Driving Forces

Flux Driving Force Physical Property Tensor Equation

Heat flow, q Temperature gradient, rT Thermal conductivity, k q ¼ 2krT
Current density, j Electric field, E Electrical conductivity, s j ¼ sE
Diffusional flux, J Concentration gradient, rc Diffusion constant, D J ¼ 2Drc

TRANSPORT PROPERTIES242



nine components that transform in a particular way. Although a second-rank tensor
usually relates two vectors, it is possible for a second-rank tensor to relate another
second-rank tensor with a scalar. For example, the coefficient of thermal expansion (a
second-rank tensor) is the ratio of strain (a second-rank tensor) to the temperature
change (a zero-rank tensor, or scalar). A second-rank tensor is a physical property that
has nine components (32) written in [3 � 3] matrix-like notation which very much
resembles that of a transformation matrix for two vectors between two sets of reference
axes described in the preceding paragraph. However, a second-rank tensor is a physical
quantity that, for one given set of axes, is represented by nine numbers. It does not relate
two sets of axes the way a transformation matrix does. Each component is associated with
two axes: one from the set of some reference frame and one from the material frame.
Three equations, each containing three terms on the right-hand side, are needed to
describe a second-rank tensor exactly. For a general second-rank tensor t that relates
two vectors, p and q, in a coordinate system with three orthogonal axes:

p1 ¼ t11q1 þ t12q2 þ t13q3
p2 ¼ t21q1 þ t22q2 þ t23q3
p3 ¼ t31q1 þ t32q2 þ t33q3

(6:1)

The tensor, with components tij, is written in matrix-like notation as:

t11 t12 t13
t21 t22 t23
t31 t32 t33

2
4

3
5 (6:2)

Note that each component of p, the physical response vector, in Eq. 6.1 is related to
all three components of q, the driving force, which is an applied or stimulus vector. Thus,
each component of the tensor (the physical property) is associated with a pair of axes. For
example, t32 gives the component of p parallel to the third axis when q is parallel to the
second axis. In general, the number of indices assigned to a tensor component is equal to
the rank of the tensor. Tensors of all ranks, like vectors, are defined by their transform-
ation laws. For this discussion, they need not be considered here.

Fortunately, several simplifications can be made (Nye, 1957). Transport phenomena,
for example, are processes whereby systems transition from a state of nonequilibrium to a
state of equilibrium; Thus, they fall within the realm of irreversible or nonequilibrium
thermodynamics. Onsager’s theorem, which is central to nonequilibrium thermodyn-
amics, dictates that as a consequence of time-reversible symmetry, the off-diagonal
elements of a transport property tensor are symmetrical, that is, tij ¼ tji (for antisym-
metric tensors, tij ¼2tji). This is known as a reciprocal relation; thus transport
properties are symmetrical second-rank tensors. The Norwegian physical chemist Lars
Onsager (1903–1976) was awarded the 1968 Nobel Prize in chemistry for reciprocal
relations. Using the reciprocal relations, Eq. 6.2 can be rewritten as:

t11 t12 t13
t12 t22 t23
t13 t23 t33

2
4

3
5 (6:3)
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Note the, perhaps subtle, but very important change in subscripts from Eq. 6.2 leaving
merely six independent components.

Finally, symmetrical tensors can also be diagonalized. For second-rank tensors, three
mutually perpendicular unit vectors can be found that define three principal axes such
that if these axes are used as coordinate axes, the matrices are diagonal. This leaves:

t11 0 0
0 t22 0
0 0 t33

2
4

3
5 (6:4)

Because of this further simplification, only three independent quantities in a symmetrical
second-rank tensor are needed to define the magnitudes of the principal components. The
other three components (from the initial six), however, are still needed to specify the
directions of the axes with respect to the original coordinate system.

In the case of physical properties, crystal symmetry imposes even more restrictions
on the number of independent components (Nye, 1957). A tensor representing a physical
property must be invariant with regard to every symmetry operation of the given crystal
class. Tensors that must conform to the crystal symmetry in this way are called matter
tensors. The orientation of the principal axes of a matter tensor must also be consistent
with the crystal symmetry. The principal axes of crystals with orthogonal crystallographic
axes will be parallel to the crystallographic axes. In the monoclinic system, the x and z
crystallographic axes are orthogonal to each other but nonorthogonal to y. For triclinic
crystals, there are no fixed relations between either the principal axes or crystallographic
axes, and no restrictions on the directions of the principal axes. The effects of crystal
symmetry on symmetrical second-rank matter tensors are given below.

For cubic crystals and nontextured polycrystals:

t11 0 0
0 t11 0
0 0 t11

2
4

3
5 (6:5)

For tetragonal, trigonal, and hexagonal crystals:

t11 0 0
0 t11 0
0 0 t33

2
4

3
5 (6:6)

For orthorhombic crystals:

t11 0 0
0 t22 0
0 0 t33

2
4

3
5 (6:7)
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For monoclinic crystals:

t11 0 t13
0 t22 0
t13 0 t33

2
4

3
5 (6:8)

For triclinic crystals:

t11 t12 t13
t12 t22 t23
t13 t23 t33

2
4

3
5 (6:9)

The diagonal elements in the above tensors follow from the indistinguishability of
the axes in their respective crystal classes. For example, if the normalized unit length
of the three crystallographic axes in each crystal class is denoted with the letters a, b, c
and denote the angles between these three axes with the Greek letters a, b, g, it can be
seen that there are three indistinguishable orthonormal axes (orthogonal axes normalized
to the same unit length) in the cubic class (a ¼ b ¼ c; a ¼ b ¼ g ¼ 908); two orthonor-
mal axes in the tetragonal class (a ¼ b = c; a ¼ b ¼ g ¼ 908); two orthonormal axes in
the trigonal class (a ¼ b ¼ c; a ¼ b ¼ g = 908); two orthonormal axes in the hexagonal
class (a ¼ b= c; a ¼ b ¼ 908, g ¼ 1208); no orthonormal axes in the orthorhombic
class (a= b= c; a ¼ b ¼ g ¼ 908); no orthonormal axes in the monoclinic class
(a = b = c; a ¼ g ¼ 908, b= 908); and no orthonormal axes in the triclinic class
(a = b = c; a = b=g=908). The off-diagonal elements in the monoclinic and tri-
clinic crystals give the additional components necessary to specify the tensor. Notice
that a cubic single crystal is isometric and so has isotropic properties. The same is also
true for polycrystals with a random crystallite orientation (e.g. powders), regardless
of the crystal class to which the substance belongs. If anisotropic grains are randomly
oriented, the macroscopic sample loses any anisotropy in any property. Thus, a single
scalar quantity is sufficient for describing the conductivity in monocrystals of the
cubic class and nontextured polycrystalline materials.

It is sometimes possible to use the anisotropy in certain physical properties advanta-
geously during fabrication processes. For example, the magnetic susceptibility, which
describes the magnetic response of a substance to an applied magnetic field, is a
second-rank matter tensor. It is the proportionality constant between the magnetization
of the substance and the applied field strength. When placed in a magnetic field, a crystal
with an anisotropic magnetic susceptibility will rotate to an angle in order to minimize the
magnetic free-energy density. This magnetic alignment behavior can aid in texture con-
trol of ceramics and clays, if the particles are sufficiently dispersed in order to minimize
the particle–particle interactions, which can be accomplished with slip casting or other
powder suspension process. The route has been used to prepare many bulk substances
and thin films, including somewith only a small anisotropic paramagnetic or diamagnetic
susceptibility, such as gadolinium barium copper oxide, zinc oxide, and titanium dioxide
(anatase), with textured (grain-aligned) microstructures and correspondingly improved
physical properties (Lalena and Cleary, 2005).

6.1 AN INTRODUCTION TO TENSORS 245



The components of a symmetrical second-rank tensor transform like the coeffi-
cients of the general equation of a second-degree surface (a quadric). The quadric is
thus a useful way of visualizing the symmetry of the tensor. In general, the length of
any radius vector of the representation quadric is equal to the reciprocal of the square
root of the magnitude of the tensor in that direction. Hence, if all three of the principal
coefficients of a quadric are positive, an ellipsoid becomes the geometrical represen-
tation of a symmetrical second-rank tensor property. The ellipsoid is the quadric for
the tensors representing electric polarization, thermal and electrical conductivity, and
optical properties. The exact shape of the property and its quadric, and the orientation
of the quadric with respect to the crystal, are restricted by the point group symmetry.
For a cubic crystal, the ellipsoid is a sphere. For the tetragonal, hexagonal, and trigonal
classes, the ellipsoid is uniaxial. For orthorhombic, monoclinic, and triclinic, the ellipsoid
is triaxial.

Example 6.1

Write the expression for the general equation of the quadric representing a
symmetrical second-rank tensor in a triclinic crystal.

Solution

A representation quadric may be represented as:

1 ¼
X
i,j

Sijxixj

where Sij are the coefficients of the representation quadric that transform like the
symmetrical second-rank tensor coefficients. Since a symmetrical second-rank
tensor has tij ¼ tji, correspondingly, it can be written Sij ¼ Sji. Using this
knowledge and Eq. 6.9, the equation can be simply expanded by performing
the summations to obtain:

1 ¼ S11x
2
1 þ S22x

2
2 þ S33x

2
3 þ 2S23x2x3 þ 2S31x3x1 þ 2S12x1x2

This is the equation for an ellipsoid which, referred to an orthogonal system of
coordinates (principal axes x1 ¼ x, x2 ¼ y, and x3 ¼ z), may be written as:

1 ¼ S11x
2 þ S22y

2 þ S33z
2 þ 2S23yzþ 2S31zx þ 2S12xy

where Sij are six linearly independent coefficients.

If one of the principal coefficients is negative then the quadric is a hyperboloid of one
sheet. If two of the principal coefficients are negative the quadric is a hyperboloid of
two sheets (Nye, 1957). The quadric for the coefficient of the thermal expansion
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tensor, for example, can be a hyperboloid, if there is an expansion in one direction and a
contraction in another. If all three of the principal coefficients are negative the quadric is
an imaginary ellipsoid, which is the case with many paramagnetic and diamagnetic
susceptibilities.

An ellipsoid has inherent symmetry m m m. The relevant features are:

1. it is centrosymmetric;

2. it has three mirror planes perpendicular to the principal directions;

3. its two-fold rotation axes are parallel to the principal directions.

Typically, one sees normalized principal axes, a mean shape factor, and a mean aniso-
tropy degree specified for an ellipsoid. Often, the ellipsoid is characterized by its
overall shape with respect to its three radii. Oblate ellipsoids (disk-shaped) have a ¼
b. c; prolate ellipsoids (cigar-shaped) have a ¼ b, c; and scalene ellipsoids have
three unequal sides (a. b. c). In a sphere, of course, a ¼ b ¼ c.

John Frederick Nye (b. 1923) is a Fellow of the
Royal Society and Emeritus Professor of Physics
at the University of Bristol, England. He earned
his Ph.D. from Cambridge in 1948 where, with
Sir Lawrence Bragg and Egon Orowan, he helped
to develop the bubble-raft model of a metal
and showed how the photoelastic effect could
be used to study arrays of dislocations in crystals.
While in the mineralogy department at
Cambridge University (1949–1951) and later at
Bell Telephone Laboratories (1952–1953), Nye
wrote Physical Properties of Crystals: Their
Representation by Tensors and Matrices, which
became the definitive textbook. He joined the
physics department at the University of Bristol in

1953, becoming emeritus in 1988. Nye has applied physics to glaciology, serving
as president of both the International Glaciological Society and of the
International Commission of Snow and Ice. In 1974, Nye discovered the existence
of dislocations in propagating wavefronts, and in 1983 their analogues, polariz-
ation singularities, in electromagnetic waves. These discoveries, along with
others, have developed into a new branch of optics, called singular optics,
described in his book Natural Focusing and Fine Structure of Light (1999).
Nye was elected a Fellow of the Royal Society in 1976. (Source: J. F. Nye, personal
communication, July 17, 2003.)

(Photo courtesy of H. H. Wills Physics Laboratory, University of Bristol. Reproduced
with permission.)
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6.2 THERMAL CONDUCTIVITY

The macroscopic phenomenological equation for heat flow is Fourier’s law, by the
mathematician Jean Baptiste Joseph Fourier (1768–1830). It appeared in his 1811
work, Théorie analytique de la chaleur (The analytic theory of heart). Fourier’s theory
of heat conduction entirely abandoned the caloric hypothesis, which had dominated
eighteenth century ideas about heat. In Fourier’s heat flow equation, the flow of heat
(heat flux), q, is written as:

qi ¼ �kijrT j (6:10)

where k is a positive quantity called the thermal conductivity and rT is the temperature
gradient. The thermal conductivity is a second-rank tensor, since the heat flux and temp-
erature gradient are vectors. Heat flow within the system is in the direction of greatest
temperature fall but is not required to be exclusively parallel to the temperature gradient.
For example, if a temperature gradient is set up along one axis of a Cartesian coordinate
system, transverse heat flow may be measured parallel to the other two axes. Therefore,
the equations representing the heat flow along the three axes are:

qx ¼ k11
@T

@x

� �
þ k12

@T

@y

� �
þ k13

@T

@z

� �

qy ¼ k12
@T

@x

� �
þ k22

@T

@y

� �
þ k23

@T

@z

� �

qz ¼ k13
@T

@x

� �
þ k23

@T

@y

� �
þ k33

@T

@z

� �
(6:11)

where each scalar flux is parallel to an axis of a Cartesian coordinate system. In general,
because it is the component of the flux parallel to the direction along which the driving
force is applied that is measured, the magnitude of any transport property in the direction
of the driving force is defined to be the component of the flux parallel to the direction of
the driving force divided by the magnitude of the driving force. Thus the magnitude of a
second-rank tensor property in any direction is obtained by applying the driving force in
that direction and measuring the component of the response parallel to that direction.

As discussed in Section 6.1, the number of independent components needing to
be specified is reduced by the crystal symmetry. If, for example, the x axis is taken as
the [1 0 0] direction, the y axis as the [0 1 0], and the z axis as the [1 0 0], a cubic crystal
or a polycrystalline sample with a random crystallite orientation gives:

k ¼
k11 0 0
0 k11 0
0 0 k11

2
4

3
5 (6:12)

in which case, the thermal conductivity tensor has been reduced to a single independent
component, the equivalent of a scalar quantity.
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Example 6.2

If a temperature gradientrT is directed along one of the principal axes of a crystal,
say the x axis, what will be the angle between the vector q and the vector @T/@x?

Solution

IfrT is parallel to the x axis, @T/@y ¼ @T/@z ¼ 0, and, hence, qy ¼ qz ¼ 0. In this case,
q and @T/@x are parallel.

Henceforth, for simplicity during our discussions of the underlying physical basis for
thermal conductivity, only cubic crystals or nontextured polycrystalline solids will be
considered, for which case a single scalar quantity is sufficient.

6.2.1 The Free Electron Contribution

The thermal conductivity of a metal or alloy consists of two components, a phonon
contribution (a phonon is a quantum of acoustic energy, which possesses wave-particle
duality), kph, and an electronic contribution (free electrons moving through the crystal
also carry thermal energy), kel. In pure metals, kel is the dominant contribution to the
total thermal conduction. This free electron contribution to the thermal conductivity is
given by the gas-kinetic formula as:

kel ¼ p 2nk2bTt

3me
(6:13)

where n is the electron density (number of free electrons per cm3), t is the average
time an electron travels between collisions, me is the electron rest mass, T is the
absolute temperature, and kb is the Boltzmann constant. The parameter t can be
calculated from:

t ¼ lel
VF

(6:14)

in which lel is the mean free path and VF is the electron velocity at the Fermi surface. The
denominator of Eq. 6.14 is related to the Fermi energy, 1F, by:

VF ¼ 21F
me

� �1=2
(6:15)

The fact that the thermal conductivity in a pure metal is dominated by the free
electron contribution was illustrated in 1853 by Gustav Wiedemann (1826–1899) and
Rudolf Franz (1827–1902), who showed that kel and the electrical conductivity, sel,
are proportionally related (Wiedemann and Franz, 1853). A few years later Danish
physicist Ludvig Lorenz (1829–1891) realized that this ratio scaled linearly with the

6.2 THERMAL CONDUCTIVITY 249



absolute temperature (Lorenz, 1872). Thus:

kel ¼ selLT (6:16)

which is known as the Wiedemann–Franz–Lorenz law. Solving for L, and substituting
both the expression for kel (Eq. 6.13) and the Drude expression for sel (Eq. 6.22), gives

L ¼ xk2b
e2

(6:17)

in which x is p2/3, e is the elementary charge (1.602 � 10219 coulombs), and kb is
the Boltzmann constant (1.380 � 10223 J K21). The Lorenz number L has the theor-
etical value 2.45 � 1028 WVK22. If the experimental value determined for a metal is
close to or equal to this, it can be assumed the electronic contribution dominates the
thermal conductivity. At room temperature, experimental values for L range from
2.28 � 1028 WVK22 for silver (the best conductor) to 3.41 � 1028 WVK22 for
bismuth (a poor conductor).

The electronic contribution to the thermal conductivity is reduced by electron-
scattering events, including electron–electron, electron–phonon, and electron-defect
scattering. Since they also limit the electrical conductivity, electron-scattering mechan-
isms will be discussed in Section 6.3. In a semiconductor, which has a relatively low
electrical conductivity, an appreciable part of the thermal conductivity originates from
the phonon contribution. Hence, for semiconductors Eq. 6.16must bemodified to include
a nonelectronic (phonon) component, k0, viz ktotal ¼ kph þ selLT. However, in this
expression L is no longer 2.45 � 1028 WVK22, as x in Eq. 6.17 is closer to 2.23 than
p 2/3 (Price, 1957), making L � 1.65 � 1028 WVK22 for extrinsic semiconductors.

Example 6.3

At 300 K, the p-type semiconductor, (Bi2Te3)12x2y(Sb2Te3)x(Sb2Se3)y , has the fol-
lowing transport properties: s ¼ 1290 S/cm; ktot ¼ 15.2 � 1023W/cm K, and
kph ¼ 8.8 � 1023W/cmK.

1. Calculate the electronic component of the thermal conductivity.

2. Calculate the experimental value of L for this semiconductor.

Solution

1. It is known that ktot ¼ kel þ kph. Hence, if ktot ¼ 15.2 � 1023W/cmK and
kph ¼ 8.8 � 1023W/cmK, then kel ¼ 6.4 � 1023W/cmK.

2. Next, using the values given for ktot, kph, and s in the relation
ktotal ¼ kph þ selLT, L can be readily calculated as:

L ¼ ktot � kph
sT

¼ 0:0064

387,000
¼ 1:65� 10�8 WVK�2
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6.2.2 The Phonon Contribution

The thermal conductivity of a pure metal is lowered by alloying, whether the alloy formed
is a single phase (solid solution) or multiphase mixture. There are several reasons for this.
First, electrons are scattered by crystal imperfections and solute atoms (electron-defect
scattering). Second, a substantial portion of the thermal conductivity in alloys, in contrast
to that of pure metals, is by phonons, kph (phonons are the sole contribution in electrically
insulating solids) and phonons are also scattered by defects. Finally, electron–phonon
interactions limit both kel and kph.

So, what exactly are phonons? Phonons are quantized vibrational excitations (waves)
moving through a solid, owing to coupled atomic displacements. The idea of a lattice
vibration evolved from work on the theory of the specific heat of solids by Einstein
(1906, 1911), Debye (1912), and Born and von Kármán (1912, 1913). Examine a one-
dimensional chain of atoms, of finite length L, such as the one illustrated in Figure 6.1.
In this figure, the chemical bonds (of equilibrium length a) are represented by springs.
It can be assumed that the interatomic potential is harmonic (i.e. the springs obey
Hooke’s law). As the atoms are all connected, the displacement of just one atom gives
rise to a vibrational wave, involving all the other atoms, which propagates down the
chain. The speed of propagation of the vibrational excitation is the speed of sound
down the chain.

For atoms constrained to move along one dimension, only longitudinal waves com-
posed of compressional and rarefactional atomic displacements are possible. In general, a
chain of N atoms interacting in accordance with Hooke’s law has N degrees of freedom
and acts like N independent harmonic oscillators with N independent normal modes of
vibration. By analogy, a three-dimensional harmonic solid has 3N normal modes of
vibration (with both longitudinal waves and transverse waves possible). For simplicity
in the present discussion, fixed boundary conditions have been chosen in which the
amplitudes of the atomic displacements are zero at the surface of the crystal, that is the
atoms at the surface are at fixed positions. Note that this does not properly account for
the number of degrees of freedom. Nonetheless, with these boundary conditions, an inte-
ger number of phonon half wavelengths must fit along the length of the chain in

L

a

Figure 6.1. A one-dimensional chain of atoms, of length L and lattice spacing a, connected by

springs that obey Hooke’s law. With the end-atoms fixed, only standing waves of atomic

displacement are possible.
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Figure 6.1 (or along each dimension of a three-dimensional crystal). For the monatomic
chain, the allowed frequencies are given by the relation:

vk ¼ 2
K

M

� �1=2
sin

ka

2

� �				
				 (6:18)

where K is the force constant,M is the atomic mass, and k is the wave vector related to the
wavelength, l, of the wave by jkj ¼ 2p/l ¼ np/a (n ¼+1, +2, . . .).

There are N allowed k state in the first BZ (2p/a to p/a) corresponding to the
independent normal modes of the system. The mode frequency and energy vary in a per-
iodic way with the wave vector, which gives rise to a dispersion curve and a density of
states, or number of possible modes (vibrational states) per frequency range. The wave
function corresponding to one of these normal modes for the monatomic chain of
Figure 6.1 is shown with the necessary atomic displacements indicated by arrows. A
phonon is now defined as a particle-like entity (representing the wave) that can exist in
one of these allowed states. The phonon occupation number at thermal equilibrium, or
number of phonons in a given state (i.e. with a particular frequency, vk, or wave
vector, k), follows Bose–Einstein statistics.

If a temperature gradient is now set up across the sample, a nonequilibrium distri-
bution of phonons, called a wave packet (or pulse), is produced. The system reacts by
attempting to restore the equilibrium distribution. That is, a thermal current occurs
only if the phonon occupation number has a nonequilibrium value. The heat flux is, in
fact, equal to the sum of the energies of the phonons in the distribution, multiplied by
the phonon group velocity, divided by the crystal volume. Heat conduction is reduced
by any event that reduces the phonon mean-free path or that causes a net change in
momentum of the phonons. Phonons can propagate through a defect-free array of harmo-
nic oscillators very easily, for, when phonons collide with one another in such an array,
the total energy and momentum of the wave packet is conserved. An infinite defect-free
harmonic crystal would possess an infinite thermal conductivity because there would be
no limit to the mean-free path of the phonons.

Real crystals are not defect free and real interatomic forces are anharmonic,
that is, the interatomic potential is nonparabolic for all but small displacements.
Anharmonicity gives rise to phonon–phonon scattering. First, however, phonon-defect
scattering will be considered. Point defects (including impurities and even different iso-
topes), dislocations, and grain boundaries in polycrystalline samples all cause elastic
phonon scattering at low temperatures where only long-wavelength phonons are excited.
The scattering shortens the phonon mean free path and limits thermal conductivity. The
easiest way to think of phonon-defect scattering is to compare it to the way a long-
wavelength light is Rayleigh scattered by small particles (where the particle radius is
much less than the phonon wavelength). The scattering cross section is proportional to
the radius of the crystal imperfection.

For impurity atoms with masses lighter than those of the other atoms in the lattice, a
spatially localized vibrational mode called an impurity exciton is generated, which is of a
frequency above that of the maximum allowed for propagating waves. The amplitude of
the vibration decays to zero, not far from the impurity. For heavier atoms, the amplitude of
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the mode is enhanced at a particular frequency. In noncrystalline solids, which lack
translational periodicity (e.g. glasses), only those thermal excitations in a certain fre-
quency range become localized, namely, in the band tails of the density-of-states (the
number of vibrational states over a given frequency range). These impurity modes and
excitations are actually what cause the phonons to scatter. That is, a phonon is scattered
by the alteration in the lattice caused by the exciton. Thus, phonon-defect scattering is
really due to exciton–phonon interactions.

With regards to the second feature of real crystals mentioned earlier, there are
different types of anharmonicity-induced phonon–phonon scattering events that may
occur. However, only those events that result in a total momentum change can produce
resistance to the flow of heat. A special type, in which there is a net phonon momentum
change (reversal), is the three-phonon scattering event called the Umklapp process. In this
process, two phonons combine to give a third phonon propagating in the reverse
direction.

Equation 6.10 gave the macroscopic expression for the heat flux through a solid
under a finite temperature gradient. The microscopic expression for the thermal conduc-
tivity owing to a single phonon mode in a dielectric monocrystal, in which the electron
contribution is negligible, is given from the kinetic theory of gases as:

kph ¼ 1
3
(CLv) (6:19)

where C is the specific heat, L is the phonon mean-free path, and v is the phonon group
velocity (the velocity at which heat is transported) (Elliot, 1998). In reality, one must take
account of the contribution from all the phonon modes. Since the level of analysis
required is somewhat above that assumed appropriate for this book, it will suffice to
just quote the microscopic expression for the lattice thermal conductivity using the
single-mode relaxation time method, where the relaxation rate of phonons in a mode is
qs, on the assumption that all other phonon modes have their equilibrium distribution
(Srivastava, 1990):

kph ¼ h� 2

3VkbT2

� �X
qs

c2s (q)v
2(qs)tqsnqs(nqs þ 1) (6:20)

In this equation, h� is Planck’s constant divided by 2p, V is the crystal volume, T is
temperature, kb is Boltzmann’s constant, v is the phonon frequency, cs is the wave
packet, or phonon group velocity, t is the effective relaxation time, n is the Bose–
Einstein distribution function, and q and s are the phonon wave vector and polarization
index, respectively.

Equation 6.20 is a rather formidable expression. From the experimentalist’s stand-
point, it will be beneficial to point out some simple, yet useful, criteria when toiling
with thermal conductivity. First, it is noted that thermal conductivity is not an additive
property. It is generally not possible to predict the thermal conductivity of an alloy or
compound from the known thermal conductivities of the substituent pure elements.
For example, the thermal conductivity of polycrystalline silver and bismuth are,

6.2 THERMAL CONDUCTIVITY 253



respectively, 429 and 8W/mK. Yet, the two-phase alloy 50 Bi–50 Ag has a thermal con-
ductivity of only 13.5W/mK. Often, alloys have thermal conductivities about equal to
those of the metal oxides, indicating that a large portion of the total conductivity in alloys
is due to phonons. Hence, our limited ability to predict total thermal conductivities
(ktot ¼ kph þ kel) for alloys and compounds is mostly owing to the difficulty in determin-
ing the kph contribution. One of the best-suited methods of obtaining estimates for the
phonon contribution is molecular dynamics. However, it is computationally intensive
and most effective for modeling systems of limited size.

Based on approximate solutions to Eq. 6.20, four simple criteria for choosing high
conductivity single-crystal materials have been established (Srivastava, 2001):

1. low atomic mass;

2. strong, highly covalent, interatomic bonding;

3. simple crystal structure;

4. low anharmonicity.

A systematic evaluation (Slack et al., 1987) has revealed that most of the high thermal
conductivity ceramics (.100Wm/K) are compounds of the light elements that possess
a diamond-like crystal structure (e.g. BN, SiC, BeO, BP, AlN, BeS, GaN, Si, AlP, GaP).
Conversely, it should be expected that low thermal conductivity materials generally
possess complex crystal structures, especially those exhibiting low dimensionality, or
have constituents with high atomic masses.

Increasing the thermal conductivity is just the sort of application where composites
have contributed to the development of new materials. For example, high thermal con-
ductivity can be achieved in some cases by forming a metal matrix composite (MMC)
with the alloy as matrix and particles of a highly thermally conducting phase (e.g.
carbon nanotubes) as the reinforcement material. Reinforcements in MMCs can be con-
tinuous or discontinuous. The latter can be isotropic, while the former are typically wires
or fibers embedded within the matrix in a certain direction. This results in an anisotropic
structure in which the alignment affects the thermal conductivity along those directions.
Reinforcements are also used to change the friction coefficient, wear resistance, and
strength of materials. Of course, it should be realized that bulking up a material with
another phase in this way is not an atomistic-level solution to the phonon scattering
problem. Nevertheless, it is an effective solution that illustrates the ingenuity of materials
scientists and engineers at addressing a multitude of issues.

6.3 ELECTRICAL CONDUCTIVITY

The phenomenological equation for electrical conduction is Ohm’s law, which first
appeared in Die galvanische kette mathematisch bearbeitet (the galvanic circuit investi-
gated mathematically), the 1827 treatise on the theory of electricity by the Bavarian math-
ematician Georg Simon Ohm (1789–1854). Ohm discovered that the current through
most materials is directly proportional to the potential difference applied across the
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material. The continuum form of Ohm’s law is:

ji ¼ sijEj (6:21)

where j is the electrical current density vector (the current per unit cross-section perpen-
dicular to the current), s is the electrical conductivity tensor, and E is the electric field
vector.

Example 6.4

Assume the electrical conductivity tensor s for a particular orthorhombic mono-
crystal (a ¼ 5.10, b ¼ 6.25, c ¼ 2.40) is

sij ¼
3 0 0
0 2 0
0 0 5

2
4

3
5106 V�1 m�1 (1V�1 m�1 ¼ 1 Sm�1)

What current density vector j (units Am22) is produced by the application of
an electric field of 102 V/m along the [1 1 1] direction of the crystal? What is the
angle between j and E? What is the magnitude of s along the [1 1 1]?

Solution

From the form of Eq. 6.21, it is seen that the components of j are given by:

j1 ¼ s11E1 þ s12E2 þ s13E3

j2 ¼ s21E1 þ s22E2 þ s23E3

j3 ¼ s31E1 þ s32E2 þ s33E3

The components of the electric field vector E now need to be found along the
three mutually perpendicular axes (x, y, z), which are simply the projections of
the vector on the axes; for this, direction cosines are used. The vector E is
directed along [1 1 1], which is the body diagonal. The body diagonal runs from
the origin with Cartesian coordinates (x1, y1, z1) ¼ (0, 0, 0) to the opposite
corner of the unit cell, in this case with Cartesian coordinates (x2, y2, z2) ¼
(a, b, c) ¼ (5.10, 6.25, 2.40). So, the direction cosines are given by:

cosa ¼ x2 � x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x1)

2 þ (y2 � y1)
2 þ (z2 � z1)

2
q

cosb ¼ y2 � y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x1)

2 þ (y2 � y1)
2 þ (z2 � z1)

2
q

cos g ¼ z2 � z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x1)

2 þ (y2 � y1)
2 þ (z2 � z1)

2
q
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The orthogonal lattice translations are: a ¼ 5.10, b ¼ 6.25, and c ¼ 2.40. Hence,

cosa ¼ 5:10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(5:10)2 þ (6:25)2 þ (2:40)2

p ¼ 0:6059

cosb ¼ 6:25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(5:10)2 þ (6:25)2 þ (2:40)2

p ¼ 0:7426

cos g ¼ 2:40ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(5:10)2 þ (6:25)2 þ (2:40)2

p ¼ 0:2851

With the construction of a unit vector along E using the direction cosines as its
components along the x, y, and z directions, the vector E can be expressed as:

E ¼ E cosai þ E cosbj þ E cos gk

Hence, the application of 100 V/m in the direction of E, gives:

E ¼ E cosa E cosb E cos g

 � ¼ 60:59 74:26 28:51


 �
And, from Eq. 6.21, the current density vector is:

j ¼ s11E cosa s22E cosb s33E cos g

 �

106 Am�2

¼ 18:177 14:852 14:255

 �

107 Am�2

The magnitude of the conductivity in the direction [1 1 1] is:

s ¼ [(0:6059)2(3)þ (0:7426)2(2)þ (0:2851)2(5)]10�6

¼ 1:101þ 1:103þ 0:406 ¼ 2:61� 106 S=m

The angle between j and E is given by the dot product:

cosu ¼
[(60:59)(18:177)þ(74:26)(14:852)þ(28:51)(14:255)]107ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(60:59)2þ [(74:26)2þ (28:51)2]
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(18:177�107)2þ(14:852�107)2þ(14:255�107)2
p

Hence, u ¼ 188.

For simplicity, in this discussion of the physical basis for electrical conductivity, it
shall henceforth be presumed that s is a scalar; that is, consideration will only be
given to isotropic media such as cubic crystals or polycrystalline samples. Likewise,
the theory of current flow in bipolar devices, such as through silicon p–n junctions,
belongs in the realm of electrical engineering or semiconductor physics and is only
briefly discussed in this text.
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In the Drude model for an electron gas, it is predicted that the electronic conductivity,
s (in units of V21 m21), is proportional to a quantity known as the electron relaxation
time, which characterizes the decay of the drift velocity upon removal of the electric
field. The conductivity is expressed as:

s ¼ ne2t

me
(6:22)

where n is the electron density (m23), e is the electron charge (Coulombs), me is the elec-
tron mass (kg), and t is the relaxation time (seconds). Grouping some of the terms into
a single parameter for the mobility, gives a well-known alternative expression for
the conductivity:

s ¼ nem (6:23)

in which m ¼ et/me. The mobility is defined as me ¼ v/E where v is the steady-state
velocity of the particle in the direction of an electric field E. In semiconductors, there
may be a contribution from both electrons and holes. Thus, the expression for the
electrical conductivity becomes:

s ¼ neme þ pemh (6:24)

where p is the hole density (m23) and mh is the hole mobility. In order for the Drude
model to yield Ohm’s law (Eq. 6.21), one must neglect the influence of the applied elec-
tric field on the drift velocity of the charge carriers. That is, the relaxation time has to be
considered independent of the applied field strength.

Example 6.5

The mean atomic mass of potassium is 39.10 amu, its density is 0.86 � 103 kgm23,
and its electron configuration is [Ar]4s1. What is n, the number of valence elec-
trons per unit volume? If the electrical conductivity is 0.143 � 108V21 m21,
what is t, the relaxation time between collisions?

Solution

The density of K ¼ 0.86 � 103 kgm23 ¼ 0.86 g cm23. Dividing this by the mass of
one mole, 39.10 g, gives the number of moles of K atoms per cubic centimeter:

0:86=39:10 ¼ 0:022mole cm�3

Multiplying this by Avogadro’s number yields the number of K atoms per
cubic centimeter:

6:0223� 1023 � 0:022 ¼ 1:3� 1022 atoms per cm3
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Since there is one 4s valence electron per K atom, the electron density, n, is also
equal to 1.3 � 1022 valence electrons per cm3, or 1.3 � 1028 perm3. Drude’s
formula can now be used to calculate the relaxation time between collisions:

t ¼ mese=nq
2

t ¼ (9:11� 10�31 kg)(0:143� 108 V�1 m�1)=(1:3� 1028 m�3)(�1:6� 10�19 C)2

t ¼ 3:9� 10�14 s

It is not immediately obvious that the units of t should be seconds. However, this
can be confirmed by making the following substitutions:

V ¼ V=A ¼ V=(C=s), V ¼ J=C, J ¼ kgm2 s�2

Equation 6.22 predicts that electronic conductivity is dependent on the electron relaxation
time. However, it suggests no physical mechanisms responsible for controlling this
parameter. Since electrons exhibit wave-particle duality, scattering events could be sus-
pected to play a part. In a perfect crystal, the atoms of the lattice scatter electrons coher-
ently so that the mean-free path of an electron is infinite. However, in real crystals there
exist different types of electron scattering processes that can limit the electron mean-free
path and, hence, conductivity. These include the collision of an electron with other elec-
trons (electron–electron scattering), lattice vibrations, or phonons (electron–phonon
scattering), and impurities (electron–impurity scattering).

Electron–electron scattering is generally negligible owing to the Pauli exclusion
principle. Nonetheless, it is important in the transition metals, where s-conduction
electrons are scattered by d-conduction electrons. Electron–phonon scattering is the
dominant contribution to the electrical resistivity in most materials at temperatures well
above absolute zero. Note that both these scattering processes must be inelastic in
order to cause a reversal in the electron momentum and increase the electrical resistance.
At low temperatures, by contrast, elastic electron-impurity scattering is the dominant
mechanism responsible for reducing electrical conductivity. Anderson showed that
multiple elastic scattering in highly disordered media stops electron propagation by
destructive interference effects (Anderson, 1958). It has also been shown that, even in
a weakly disordered medium, multiple elastic scattering can be sufficient to reduce the
conductivity (Bergmann, 1983, 1984). Elastic electron-impurity scattering is further
discussed in Section 7.2.

6.3.1 Band Structure Considerations

How both the density and mobility of charge carriers in metals and band semiconductors
(i.e. those in which electrons are not localized by disorder or correlation) are influenced
by particular features of the electronic structure, namely band dispersion and band filling,
will now be examined. Taking mobility first, this book will briefly revisit the topic of
band dispersion. Charge carriers in narrow bands have a lower mobility because they
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are almost localized in atomic orbitals that overlap very poorly. Although this may seem
intuitive enough, a more convincing case can now be built simply by looking at some
fundamental physical relationships.

Consider the meaning of the wave vector k, which is equal to p/a. Since l ¼ 2a, k
must also be equal to 2p/l. The DeBroglie relationship states that l ¼ h/p where p is
the electron momentum. Therefore, p ¼ hk/2p ¼ h� k. The velocity, v, is related to the
momentum through: v ¼ h� k/m. However, it is also known that the electron energy
E(k) is equal to h� 2k2/2m. Hence, dE(k)/dk ¼ h� 2k/m ¼ vh� . Since dE(k)/dk is the slope
of the tangent line to E(k), a conduction electron in a wide band (greater slope) has a
higher velocity and higher mobility than one in a narrow band. Consequently, it follows
from Eq. 6.23 that a wide band metal, that is, a metal with wide bands in its band structure
diagram, will have a higher electrical conductivity than a narrow band metal.

Turning now to the other factor, charge carrier density, requires an examination of
band filling. In the absence of strong correlation or disorder, band filling determines
the type of electrical behavior observed in a solid (insulative, semiconducting, semime-
tallic, or metallic). When spin degeneracy is included, each CO can hold two electrons per
bonding site, for a total of 2N electrons, where N is equal to the number of atoms in the
crystal. The lowest COs are filled first, followed by the next lowest, and so on, in a com-
pletely analogous manner as done in a MO energy level diagram. Completely filled low-
lying COs make up the valence band. The conduction band consists of the higher energy
COs that are either vacant or partially filled.

Considering only the ground-state band in the tight-binding approximation, Bloch’s
picture of the electron wave function in a periodic lattice was successful at explaining how
electrons are free to move in a metal and conduct an electrical current. Unfortunately,
immediately after Bloch’s work, the existence of insulators became puzzling! The
currently accepted explanation for the difference between insulators and metals was
first proposed by the British physicist Sir Alan Herries Wilson (1906–1995) while work-
ing with Bloch and Heisenberg at Leipzig. Recall how the sign of k corresponds to the
direction of motion of the electron. Application of an electric field causes a shift, Dk,
of the entire electron distribution in an energy band, which accelerates the electrons,
increasing their momentum in the direction of the field. In a half-filled band (all electrons
have the same spin), there are available k states immediately above the highest filled
ground state that can become occupied. For a system of N atoms, the energy separation
between states becomes infinitesimal as N approaches infinity. Hence, the field can
cause a change in the distribution of the electrons and produce a net current flow in
one direction. However, when all the k states in an energy band are filled (two electrons,
paired with opposite spin, per bonding site), and a sizeable energy gap separates this band
from the next highest band, the application of an electric field cannot bring about a shift
in the k distribution of the electrons (Wilson, 1931).

The highest filled ground state is termed the Fermi level, EF. The energy of this level
is the Fermi energy. All states above the Fermi level are empty. Thus, the criterion for
metallic conduction in the Bloch–Wilson band picture can be stated as follows. If the
Fermi level lies in a partially filled band of delocalized states, band theory predicts met-
allic behavior. It should be noted that in both the high-lying conduction band states and
the low-lying valence band states, the Bloch wave functions comprising the band are
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delocalized throughout the crystal. This may seem counterintuitive at first, since it might
appear as though the presence of delocalized electrons is a necessary, but not a sufficient,
condition for electronic conduction. Perhaps, the confusion can be cleared up with a
more chemical picture. If the MO description of benzene is recalled, a similar situation
is found. Even though the p-bonding and antibonding MOs in benzene are delocalized
throughout the entire molecule, the benzene molecule is not metallic-like. Benzene,
rather, can be considered a molecular resonant tunneling transistor. Single molecules
of benzene sandwiched between two gold electrodes can only transport a current upon
application of a potential difference, via an excited state in which an electron is excited
from a filled p-bonding MO to a vacant p�-antibonding MO, where it can be accelerated
by the electric field. At low voltages, the p� state is the sole contributor, while at higher
voltages, the p states also participate (Pantelides et al., 2002). Molecular electronics,
which is based on the goal of using single molecules as active devices, is a concept
that has been around for three decades (Aviram and Ratner, 1974). Unfortunately, it is
not within the scope of this book.

Band theory predicts insulating behavior if there is a wide energy gap (say, Eg .
3 eV) separating the top of a completely filled valence band and the bottom of an
empty conduction band. For example, the band gaps of diamond and aluminum nitride
are, respectively, 5.5 and 6.3 eV. No net current flow can occur in one direction or the
other within the filled valence band of an insulator and the wide band gap prevents
electrons from being thermally excited into singularly occupied states in the conduction
band. Since energy varies with k, the bottom of the conduction band can occur at the same
point (termed a direct-gap) or at a different point than the top of the valence band (termed
an indirect-gap). Band structure diagrams show only k values of one sign, positive or
negative. In insulators, the chemical potential of the highest energy electron (Fermi
energy) falls within the band gap where there is a zero density of states.

In a special class of recently discovered band insulators known as topological
insulators (e.g. Bi12xSbx), spin-orbit effects (Section 8.3.4) are large and this results in
spin ordering in which spins of the opposite sign counter-propagating along the edge.
As a result, these surfaces have been found to be two-dimensional conductors. In other
words, in a topological insulator the surface is metallic. To understand how this can
be, recall that both the surface and bulk states of electrons inside crystalline solids are
described by wave functions obtained from solving Schrödinger’s equation. There will
be gaps in the electronic energy spectrum where no wave solutions are possible inside
the bulk crystal. If the Fermi level lies inside the band gap, the solid is insulating.
However, dangling bonds, or a reorganization of atoms on the surface, can introduce
states that have energies which lie within the gap, but which are restricted to move
around the two-dimensional surface. In most situations these conducting surface states
are very fragile and their existence depends on the details of the surface geometry and
chemistry. In contrast, in a topological insulator, these surface states are protected, that
is, their existence does not depend on how the surface is cut or distorted. The
Hamiltonian permits conducting states that circulate along the edge (in a two-dimensional
insulator) or the surface (in the three-dimensional case) and no simple deformation to the
edge (or surface) can destroy these conducting states. What appears to be a pre-requisite
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for this topological metallicity is that the surface states are linear in momentum and that
they meet at an odd number of points in k-space. Kramer’s theorem states that the degen-
eracy of states with an even number of electrons that obeys time-reversal symmetry will
always be lifted (as are the surface states in graphene). By contrast, the surface states of
topological insulators are said to be topologically protected. Topological insulators are
very rare. Nevertheless, these naturally spin-polarized systems may have applications
in the emerging fields of spintronics and quantum computing (Zhang, 2008).

In addition to metals and insulators, another category is the intrinsic semiconductor,
which has a small band gap (Eg , 3 eV) that allows electrons to be thermally excited
from the valence band to the conduction band. For example, the band gaps for the
common semiconductors indium arsenide, germanium, silicon, gallium arsenide, and
gallium phosphide are, respectively, 0.36, 0.67, 1.12, 1.43, and 2.26 eV. The excitation
of an electron from the valence band produces a hole, or positive charge carrier (it
behaves like an electron with a positive charge), in the valence band so that current
flow in a semiconductor is comprised of both electron flow and hole flow. Hence, in
an intrinsic semiconductor, under thermal equilibrium, the concentration of electrons
and holes is equivalent. In pure silicon, the concentration of electrons (or holes) at
300 K is approximately 1.6 � 1010 cm23. The concept of a hole was first developed in
1931 by Heisenberg (concurrent with Wilson’s work), based on the work of Peierls
(Heisenberg, 1931). However, the experimental proof of hole flow is made by measur-
ing the so-called Hall effect (Section 6.3.2.3), which was discovered in 1879 by the
American physicist Edwin Herbert Hall (1855–1938) while he was working on his
doctoral thesis at John Hopkins University.

Extrinsic semiconductors are those in which the carrier concentration, either holes or
electrons, are controlled by intentionally added impurities called dopants. The dopants
are termed shallow impurities because their energy levels lie within the band gap close
to one or other of the bands. Because of thermal excitation, n-type dopants (donors)
are able to donate electrons to the conduction band and p-type dopants (acceptors) can
accept electrons from the valence band, the result of which is equivalent to the introduc-
tion of holes in the valence band. Band gap widening/narrowing may occur if the doping
changes the band dispersion. At low temperatures, a special type of electrical transport
known as impurity conduction proceeds. This topic is discussed in Section 7.3.

Although scattering processes in both semiconductors and metals increase
with rising temperature, thereby decreasing the mobility of the carriers, the scattering
is more than offset in a semiconductor by an increase in the charge carrier concentration.
Thus, the electrical resistivity of a semiconductor decreases with increasing
temperature, dr/dT, 0. In a metal, the resistivity has the opposite temperature depen-
dency: dr/dT. 0.

A final possibility is that of a semimetal. In this case, there is a zero density of states
at the Fermi level, but no band gap. Semimetals differ from semiconductors in that their
resistivities have a metallic-like temperature dependency. Semimetals include selenium,
bismuth, arsenic, graphite, and antimony. All of these types of behaviors are illustrated
schematically in Figure 6.2, which shows the simplified band picture and the correspond-
ing DOS for each case.
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Sir Alan Herries Wilson (1906–1995) earned a
B.S. degree in mathematics from Cambridge
University in 1926. He stayed for a research
studentship in quantum mechanics under R. H.
Fowler (who had already supervised, among
others, Paul Dirac, Douglas Hartree, and John E.
Lennard-Jones), earning an M.A. in applied
mathematics in 1929. Wilson was later awarded
a Rockefeller Traveling Fellowship, which
afforded him the opportunity to work in
Leipzig with Werner Heisenberg. It was at
Leipzig where Wilson explained the differences
between metals, semiconductors, and insulators.
Wilson became a lecturer in mathematics at
Cambridge in 1933. In 1936, he published the
well-known book The Theory of Metals and, in
1939, Semi-conductors and Metals. In the late

1930s, Wilson became interested in nuclear physics. His work in that field contrib-
uted to the understanding of the importance of unitarity in the modern theory of
hadron interactions. During World War II, he worked on the British atomic bomb
project. After the war, there was pressure for academics to join industry and
Wilson was passed over as Fowler’s successor at Cambridge. When asked to
become head of research and development at Courtaulds Ltd., a large British tex-
tile company, Wilson reluctantly accepted the position. He was to spend the rest
of his career as a business executive. In his spare time, he continued work in solid-
state physics and he published an advanced book on thermodynamics and statisti-
cal mechanics in 1957. He left Courtaulds in 1962 and joined Glaxo where he
became Chairman in 1963, retiring in 1973. Wilson was elected a Fellow of the
Royal Society in 1942. He was knighted in 1961. (Source: E. H. Sondheimer
Biographical Memoirs of the Fellows of the Royal Society of London, 1999, Vol.
45, pp. 547–562.)

(Photo courtesy of The Royal Society. Copyright owned by the estate of B. Godfrey
Argent. Reproduced with permission.)
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Figure 6.2. Schematic DOS diagrams illustrating the different classes of electrical behavior.
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6.3.2 Thermoelectric, Photovoltaic, and Magnetotransport
Properties

6.3.2.1 Thermoelectrics. Thermoelectric (TE) energy conversion is used in
small-scale heat pumps and electrical power generators. TE coolers and power generators
are heat engines thermodynamically similar to conventional systems, but use electrons
in place of gases or liquids as the working fluid. They have the distinct advantages
of having no moving parts, high reliability, and high power density. A TE device con-
sists of two dissimilar materials joined together that, when placed in a closed circuit,
allows for the direct conversion of heat (infrared waves, �80023000 nm) into
electrical energy.

Thermoelectric devices were originally used in applications calling for the direct
conversion of solar thermal energy, such as the generation of electrical power in deep
space probes, but they now have a variety of other uses such as climate-control systems
(e.g. seat coolers and seat warmers in luxury vehicles), and in biothermoelectric
applications, for example, the powering of wristwatches and pacemakers. Solid state
TE cooling/heating units are currently under consideration by the United States
Department of Energy as replacements for R-134 refrigerant-based automotive air con-
ditioning systems because R-134 (which replaced the earlier ozone-depleting CFCs)
has 1300 times the global warming potential of CO2. In fact, the European Union has
banned R-134 in all new vehicles from the year 2017 (Fairbanks, 2007).

Thomas Seebeck (1770–1831) serendipitously discovered the TE effect in 1821
when he observed that a magnetic field was produced around a closed loop comprised
of copper and bismuth wires if one of the junctions was heated to a higher temperature
than the other. Accordingly, the TE effect is also known as the Seebeck effect.
Alternatively, electrical energy in the form of an electric current passing through a junc-
tion of dissimilar materials can be converted into a temperature difference. This is referred
to as the Peltier effect after Jean Charles Athanase Peltier (1785–1845) who discovered in
1834 that a temperature rise (heat absorption) occurs in one junction while a temperature
fall (heat release) occurs at the other junction of two dissimilar materials, depending on
the direction of the current flow. The Peltier effect is the basis for many modern day TE
refrigeration devices.

Seebeck experimented with a number of metals including antimony, iron, zinc,
silver, gold, lead, mercury, copper, platinum, and bismuth. Later, the observation was
made that the electromotive force (EMF) generated is proportional to the temperature
difference between the junctions. Today, TE couples are often made from semiconductor
alloys of bismuth antimony telluride, BixSb22xTe3 (x � 0.5), that have been suitably
doped to possess distinct n- or p-type characteristics. A practical TE cooler consists of
one or more couples that are connected electrically in series and thermally in parallel.

When discussing TEs, one must differentiate between intrinsic materials properties
and the TE properties exhibited by one or more pairs of materials, called thermocouple
modules. The absolute TE power of a single material is called the Seebeck coefficient,
a, and it is the constant of proportionality between the magnitude of the induced TE
voltage under open circuit conditions (i.e. in the absence of an electric current) arising
from a temperature gradient along the length of a material. The Seebeck coefficient is
thus an example of a nonsymmetrical second-rank tensor that relates two vectors. The
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Peltier coefficient, P, is the ratio of the rate at which heat flows across a material to the
electrical current flow and is, therefore, a nonsymmetrical second-rank tensor that relates
a scalar with another second-rank tensor:

a ¼ E

rT ¼ �
DV

DT
P ¼ Q

I
(6:25)

where a is the absolute Seebeck coefficient, E is electric field, rT is the temperature
gradient, DT is the temperature difference, and DV is the TE voltage across the ends.
The Seebeck and Peltier coefficients are related via the Kelvin relation:

P ¼ aT (6:26)

where T is the absolute temperature. Materials exhibiting a high Seebeck coefficient
are potentially useful as power generation devices, whereas materials with a high
Peltier coefficient can be utilized as heat pumps in small-scale solid-state refrigeration
applications.

In practice, one rarely measures the absolute thermopower of a single material. This
is because electrodes attached to a voltmeter must be placed onto the material in order
to measure the TE voltage. The temperature gradient then also typically induces a TE
voltage across one leg of the measurement electrodes; therefore, the measured thermo-
power is a contribution from the thermopower of the material of interest and the material
of the measurement electrodes. This arrangement of two materials is usually called a
thermocouple. By using superconducting leads, which have zero thermopower, it is
possible to get a direct measurement of the absolute thermopower of the material of
interest, since it is the thermopower of the entire thermocouple as well.

Of more use to engineers is the thermopower of the arrangement discussed above
in which two lengths of dissimilar materials, a and b (each called a thermoelement, TE
arm, or leg), are joined together at two junctions and one of these legs is cut between
the two junctions (Fig. 6.3). A TE open circuit voltage will be developed across
the break if the two junctions are held at different temperatures. The EMF is generated
by the Seebeck effect, which originates from the temperature gradient. The EMF is
not generated at the junction between two dissimilar wires. The potential difference
will, however, be proportional to the difference in the absolute thermopowers of
the two materials and the temperature difference between the two junctions: V ¼
(aa2ab)DT.

Couples comprised of two different pure metals have low Seebeck coefficients since
the absolute thermopowers of pure metals are in the microvolt per degree Celsius range
(superconductors have zero absolute thermopowers). The difference between the absolute
thermopowers of each metal in a couple yields the observed TE power of the couple.
However, in metals (with half-filled bands) the electrons and holes have a cancelling
effect; the TE voltage produced is small. This makes them unsuitable for use in
most TE applications with the exception of thermocouples that are used for temperature
measurements. Semiconductors, by contrast, can be doped with an excess of electrons
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or holes to give absolute thermopowers in the millivolt per degree Celsius range. The
most commercially utilized semiconductor, silicon, has a relatively high absolute
Seebeck coefficient of 450 mV/K. Nevertheless, owing to its relatively high electrical
resistivity (3.5 � 1025Vm), it is not a very useful material for direct thermal energy
conversion.

A TE material should ideally behave as a phonon-glass-electron crystal, meaning
that it must: 1) have a relatively high electrical conductivity (i.e. minimally scattering
electrons), in order to suppress the deleterious effects of resistive heating; and 2) have
a low thermal conductivity (i.e. highly scattering phonons), to reduce the tendency of
the material to dissipate the established temperature gradients (Winder et al., 1996).
Thus, narrow-bandgap semiconductors with high-mobility carriers work best.

Materials under consideration for use in TE devices may be rated based on their
TE power figure of merit, which is given by the expression:

Z ¼ a2s

k
¼ a2

rk
(6:27)

wherea is the absolute Seebeck coefficient (V/K),s is the electrical conductivity (S/cm),
r is the electrical resistivity (V cm), and k is the thermal conductivity (W/cm K),

V

T1 (Unknown temp) T2 (Reference temp)

Thermoelement a

Thermoelement b

Alloy 3 (Cu)

Figure 6.3. A schematic diagram illustrating the generation of a TE voltage.
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which has electronic and phonon contributions: k ¼ kel þ kph (Barnard, 1972; Meng
et al., 2000). The numerator on the right-hand side of Eq. 6.27 is often referred to as
the TE power factor. The figure of merit is heavily dependent on the carrier concentration,
which typically is 1014–1021 carriers/cm3 in semiconductors and 1022 carriers/cm3 in
metals. The greatest Z values are obtained for the range 1018–1021 carriers/cm3, which
substantiates the earlier claim that the best TE devices are comprised of semiconductor
thermoelements. Silicon has a figure of merit of about 4.0 � 1025 K21 at 300 K,
which is one or two orders of magnitude below those of the materials used in
TE applications today.

The dimensionless figure of merit, ZT, is a more convenient measure for
comparing the potential efficiency of devices using different materials. Values of ZT ¼
1 are considered good, and values of at least the 3–4 range are considered essential
for TE devices that compete with mechanical power generation and refrigeration.
Today, many researchers are taking novel approaches at designing improved TE
materials, such as pressure tuning (application of high pressure), band structure
engineering, and investigating low-dimensional systems in order to more-independently
vary the parameters S, a, and k, which are normally inter-related (Wiedemann–Franz–
Lorenz law).

The TE properties of many different semiconductors have been investigated. Various
oxides have been found to have reasonably high figures of merit. For example, the layered
NaCo2O4 (Terasaki et al., 1997) with Cu substitution has a Z value of 8.8 � 1024 K21

(Yakabe et al., 1997). However, the sodium content is very difficult to control, owing
to the element’s high volatility (Nishiyama et al., 1999). The values of the figure of merit
for most other oxides, to date, are in the range 0.59 � 1024 K21 to 2.4 � 1024 K21. All
the oxides thus far investigated have ZT values considerably smaller than that of the
chalcogenide TE materials, which are typically as high as 1.0 K21, in the case of suitably
doped antimony bismuth telluride, BiSbTe. Bismuth telluride (Bi2Te3), antimony tellur-
ide (Sb2Te3), and bismuth selenide (Bi2Se3) have a nine-layer structure, composed
of close-packed Te(Se) anions with Bi(Sb) cations occupying two-thirds of the
octahedral holes.

Based on the phonon-glass-electron crystal criteria discussed above, it might be
expected for there to be microstructural effects. Indeed, a 40 percent increase in ZT
(from 1 to 1.4) has recently been observed at 1008C in BiSbTe by ball-milling crystalline
ingots into nanopowders followed by hot pressing. The improvement was attributed to a
lower thermal conductivity caused by increased phonon scattering by grain boundaries
(Poudel et al., 2008). In a similar manner, epitaxial embedding of ErAs nanoparticles
in an In–Ga–As alloy has been found to significantly reduce the thermal conductivity
and increase the figure of merit (by more than a factor of 2) of the alloy by mid-to-
long wavelength phonon scattering (Kim et al., 2006). However, there appears to be
a fundamental limit to the reduction in the thermal conductivity and, hence, the enhance-
ment of the Seebeck coefficient, that is achievable by nanometer-scaled morphology
since the phonon mean free path cannot become shorter than the inter-atomic distance.
Accordingly, this is termed the amorphous limit. Recent success at even further enhance-
ment of a in PbTe has been achieved by increasing the electronic density of states over
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narrow ranges near the Fermi energy via introduction of thallium impurity levels
(Heremans et al., 2008).

Many classes of materials in addition to the complex chalcogenides are currently
under investigation for direct thermal energy conversion, including skutterudites
(e.g. IrSb3, CoSb3), half-Heusler alloys, intermetallic clathrates, and pentatellurides.
Cubic AgPb10SbTe12 and AgPb18SbTe20 have been reported as having a ZT of
about 2.2 at 800 K (Hsu et al., 2004). Other intermetallic compounds that have been
investigated include: Ba4In8Sb16 (Kim et al., 1999) with (In8Sb16)

82 layers separated
by Ba2þ ions; Ba3Bi6.67Sb13 and its variants, consisting of a three-dimensional
(Bi6.67Se13)

62 anionic network with open channels containing Ba2þ cations; and the
clathrate compound Cs8Zn4Sn12 (Nolas et al., 1999).

Example 6.6

The n- and p-type semiconductor thermoelements comprising a TE couple typi-
cally have similar physical constants and their geometries arematched tominimize
heat absorption. The dimensionless figure of merit of the couple is given by:

ZT ¼ apn

(rnkn)
1=2 þ (rpkp)

1=2

" #2

T

where apn is the differential Seebeck coefficient between the individual p- and
n-doped thermoelements (i.e. apn ¼ ap – an).

Calculate ZT at 300 K for a couple comprised of an n-type: (Bi2Te3)12x2y

(Sb2Te3)x(Sb2Se3)y solid solution alloy (r ¼ 6.1 � 1024V cm; k ¼ 16.0 �1023

W/cmK) and a p-type (Bi2Te3)12x2y(Sb2Te3)x(Sb2Se3)y solid solution alloy (r ¼
7.7 � 1024V cm; k ¼ 15.2 � 1023W/cmK) if the Seebeck coefficient for the
former is 2176 � 1026 V/K and 182 � 1026 V/K for the latter.

Solution

By simply plugging the supplied values into the given expression for ZT to obtain:

ZT ¼ [182� (�176)=106]
[0:00061(0:0160)1=2 þ 0:00077(0:0152)1=2]

� �2

300 ¼ 0:89

While the Seebeck effect enables TE devices to be used for power generation, the
Peltier effect allows them to be used for cooling. In Peltier effect devices, heat flows in
the same direction as majority carriers. The appropriate metric for this application is
called the TE efficiency, h, which is simply the ratio between the load’s power input
and the net heat flowrate. Essentially, h gives the fraction of Carnot efficiency attainable
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in a cooling device. The corresponding figure of merit for a TE material must be at least
3 � 1024 K21 in order for it to be useful as a heat pump in refrigeration.

Example 6.7

The TE efficiency, h, is given by the expression:

h ¼ TH � TC
TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZTM
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ZTM
p þ (TC=TH)

� �

where TH is the hot-side temperature, TC is the cold-side temperature, and TM is
the mean temperature. What happens to h as ZT approaches infinity?

Solution

As ZT approaches infinity, the term in brackets approaches 1, so that the entire
expression approaches (TH 2 TC)/TH, which is the Carnot efficiency.

6.3.2.2 Photovoltaics. Photovoltaics are devices that convert ultraviolet
radiation (200–400 nm wavelength) and visible light (400–800 nm wavelength) into
electrical energy. The photovoltaic effect was discovered in 1839 by nineteen year-old
Alexandre-Edmond Becquerel (1820–1891) during his experimentation with electrolytic
cells. He observed that illumination of one of two electrodes comprised of a thin film
of silver halide on platinum, immersed in a dilute acid electrolyte, altered the EMF gen-
erated by the cell (Becquerel, 1839). The photovoltaic effect was first observed in a
bulk crystalline solid (selenium) by the British electrical engineer Willoughby Smith
(1828–1891) in 1873. A few years afterwards, the King’s College professor of natural
philosophy William Grylls Adams (1836–1915) discovered the effect in junctions
between selenium and platinum.

The energy (in Joules) of a photon with wavelength l (in meters) is given by:

E ¼ hc

l
(6:28)

where h ¼ 6.626 � 10234 m2 kg s21 and c ¼ 3 � 108 m/s. Multiplying the photon
energy by 6.24 � 1018 converts this energy from Joules to electron volts (eV). The
equipartition of energy theorem states that the total energy of a molecule can be written
as a sum of electronic, translational, rotational, and vibrational components. If the mol-
ecule is supplied with external energy the excess energy will be distributed between
these various components. Wavelengths in the ultraviolet region of the electromagnetic
spectrum are sufficiently energetic to break some chemical bonds while, at the
same time, exciting the molecule’s translational, rotational, and vibrational motions.
Visible light may cause electronic excitations as well as excited states of motion.
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Lower energy infrared radiation causes translational, rotational, and vibrational exci-
tations, while microwave radiation results in only translational and rotational excitations.

The band gaps of semiconductors correspond to energies of visible light. If a photon
with energy greater than that of the band gap is absorbed by a semiconductor, an electron
is excited from the valence band into the conduction band. The electron is now free to
move through the lattice. Likewise, the hole left behind in the valence band can be
filled by other bonding electrons, leaving behind a new hole, allowing the hole to
move through the lattice as well. The electron and hole thus constitute a mobile
electron–hole pair. Light with energy below the band gap of a semiconductor will not
be absorbed and thus not be captured for energy conversion.

Example 6.8

What is the minimum value for the band gap of a GaAsP semiconductor if a
680 nm photon is required to generate a mobile electron–hole pair? For what
portion of the electromagnetic spectrum would this material possibly be suitable
as a photodiode?

Solution

Using Eq. 6.28 gives:

E ¼ hc

l
¼ (6:626� 10�34 m2=kg s)(3� 108 m s�1)

6:8� 107 m
¼ 2:92� 10�19 J

2:92� 10�19 J� 6:24� 1018 ¼ 1:8 eV

The wavelength 680 nm falls in the visible (specifically, the color red) region of
the electromagnetic spectrum.

Light with energy above the band gap will be absorbed, with the excess energy above
the band gap being lost in the form of heat. The power conversion efficiency limit for a
solar cell employing a single semiconducting material is about 30 percent. The primary
basis of this limit is that no single material can absorb light across the full range of solar
radiation, which has usable energy in the photon range 0.4–4 eV (infrared to ultraviolet).
A variety of semiconductors are used to make detectors ranging from the infrared through
the visible to the ultraviolet, although the ensuing discussion is concerned chiefly with
electrical power generation from visible light.

In a semiconductor doped with n-type impurities, the majority charge carriers are
electrons and holes are the minority carrier, while in a p-doped semiconductor, holes
are the majority carrier and electrons are the minority carrier. If a region of p-type material
and a region of n-type material are in contact with one another, forming a diode, electrons
spontaneously diffuse from the n-type side across the p–n junction combining with holes
in the p-type side, while holes in the p-doped material diffuse to the n-doped material and
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combine with abundant electrons. Eventually, the imbalance of charge on either side
of the junction creates a depletion layer (a narrow region on both side of the junction
almost totally depleted of mobile carriers) that prevents further spontaneous diffusion.
Because a diode is based on the flow of both majority and minority carriers, it is
termed a bipolar device.

When a sufficiently strong forward bias is applied from an external source (e.g. by
connecting the p-type side to the positive terminal of a battery and the n-type side to
the negative terminal), electrons may drift from the n-type side into the p-type side
and holes may drift from the p-type side into the n-type side. It should be noted that
materials with small band gaps can be problematic with regards to doping to create the
p–n junction necessary for a photodiode to function. The small gap also presents signifi-
cant problems for actually separating the electron–hole pairs which are generated by the
absorption of the photons because of random thermal events that destroy them. A device
with a 0.1 eV gap might function as a photo-resistive material for use in a detector at room
temperature, but will be inadequate as a photovoltaic material for power generation.

In a photodiode, the most common type of photovoltaic device, two modes of oper-
ation are possible. In both, absorbed phonons generate electron–hole pairs leading to an
electric current accelerated by the electric field at the depletion layer. In the photoconduc-
tive mode, the diode is usually reverse biased (the p-type side to the negative terminal of a
battery and the n-type side to the positive terminal), whichwidens the depletion region and
decreases the junction’s capacitance, increasing the efficiency and making the response
time faster. However, the reverse bias produces a dark current (leakage current flowing
in the absence of light) proportional to the bias voltage. In the photovoltaic mode, the
diode is unbiased (i.e. there is no external voltage applied). This mode exhibits low noise
(reduced dark current) and is excellent for low frequency and low light level applications.

First-generation photovoltaic devices used as solar cells are made of crystalline
silicon. Typically, a commercial crystalline silicon-based solar cell has a conversion
efficiency of about 15 percent, with a theoretical limit of about 30 percent. Most
second-generation photovoltaics are based on amorphous or polycrystalline silicon.
Photons are more efficiently absorbed by less highly ordered Si atoms since the band
gap is quasi-direct, leading to a larger absorption coefficient. That permits reducing the
thickness of the absorbing layer to 1/60th of more of its former value, significantly
reducing the cost of the material and making practical the construction of multilayer
(multijunction) designs. The highest efficiency second-generation photovoltaics are
multijunction cells made of GaAs and other group III–V semiconductors (e.g. in As,
CdSe, and CdTe). However, they are costly to make and are currently too expensive
for large-area applications.

Other second-generation photovoltaics include organic-based devices that possess
practical conversion efficiencies but have yet to significantly penetrate the market.
Low cost organic photovoltaics are emerging that have conversion efficiencies around
5 percent. Their theoretical conversion efficiency is, however, the same as that of Si
photovoltaics. Although organic photovoltaics contain p- and n-type phases, their
photoconversion mechanism differs from that of conventional Si-based devices in two
fundamental ways. First, because of their low dielectric constant and narrow bandwidth,
in organic-based photovoltaics the absorption of light in either phase results in the

TRANSPORT PROPERTIES270



generation of a mobile excited state, which is essentially a tightly bound electron–hole
pair (termed an exciton). Second, these excitons are dissociated at the heterointerface,
rather than in the bulk, generating a free electron on one side of the interface and a free
hole on the other side. Hence, the density of minority carriers is insignificant. The advan-
tages of organic photovoltaics over Si-based devices are their lower manufacturing cost
(comparable to plastics processing) and the possibility for molecular-level design.

Third-generation photovoltaics refer to any advanced photovoltaic technology that
permits higher efficiency through the utilization of multijunction designs. Some third-
generation devices are proposed to be very different from earlier generation devices,
not relying on p–n junctions. These include quantum-well devices and those incorporat-
ing carbon nanotubes.

6.3.2.3 Galvanomagnetic Effects and Magnetotransport Properties.
Consider a parallelepiped sample carrying an electric current (owing to an external elec-
tric field, e.g. from the oppositely charged terminals of a battery). If this current-carrying
sample is placed in the presence of an orthogonal, or perpendicular, magnetic field, the
current is deflected by the Lorentz force owing to the magnetic field acting on the elec-
trons in the direction of the magnetic field. A secondary electric field is generated across
the faces of the sample in the mutually perpendicular third direction (Hall, 1879), owing
to their associated charge build-up, as illustrated in Figure 6.4. If the direction, or polarity,
of the magnetic field is reversed, so too is the polarity of the induced voltage reversed. The
secondary electric field is termed the Hall field. In steady state, it is balanced by the
opposing Lorentz force so that no current flows along the mutually perpendicular third
direction. That is, the secondary electric field is of a magnitude such that the force on
the charges owing to the electric field balances the magnetic force on the charges.

In metals, where there is only one type of charge carrier, the Hall coefficient,
RH ¼ (Ey= jxB), is very useful for measuring both the carrier density jx and the magnetic
field B. Since the secondary field Ey and B are orthogonal, the Hall effect is a transverse
effect and the Hall tensor is of rank three. It relates the axial vector Bz to the antisymme-
trical second-rank tensor Ey, which is equivalent to rxy jx, where rxy ¼ rxyzBz.

In semiconductors, the expression for the Hall coefficient is more complex but may
still be used to determine the sign of the majority charge carriers and their concentration

B

j
UHall

Figure 6.4. Geometry of the Hall effect, in which orthogonal electric and magnetic fields

generate a secondary electric field in the mutually perpendicular third direction.
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since it differentiates between positive charges moving in one direction and negative
charges moving in the opposite. In ferromagnets, an anomalous spontaneous Hall current
is observed in the presence of an electric field alone. The current is transverse to the field.

The deflection of the mobile electrons by the Lorentz force also increases the elec-
trical resistivity. This phenomenon, termed positive magnetoresistivity, is often observed
in metals with anisotropic Fermi surfaces. On the other hand, negative magnetoresistivity,
that is, a decrease in resistivity with the application of a magnetic field, can occur when
a field-induced ferromagnetic alignment of spins (electrons) reduces the scattering of the
charge carriers. A detailed discussion of magnetotransport is postponed until Chapter 8
on magnetic properties.

There are also three main other transverse electrical and thermal effects, including
the Nernst, Ettingshausen, and Righi–Leduc effects, which are all typically very
small. When a semiconductor is placed in a magnetic field and a transverse temperature
gradient (i.e. rT perpendicular to the magnetic field), an electric field is induced normal
to both in the third orthogonal direction (Ettingshausen and Nernst, 1886). This is known
as the Nernst effect, after Walther Hermann Nernst (1864–1941), and it arises because
charge carriers move in the direction of the temperature gradient produced by the
Peltier effect. Thus, a voltage appears perpendicular to both the temperature gradient
and to the magnetic field similar to the way a voltage appears perpendicular to the electric
current and to the magnetic field in the Hall effect. The Nernst effect is vanishingly small
in metals (e.g. 0.1 nV/kT in gold) and, unlike with the Hall effect, the polarity of the
Nernst voltage is independent of the sign of the charge carrier.

The Ettingshausen effect named after Albert von Ettingshausen (1850–1932) is the
appearance of a temperature gradient perpendicular to a magnetic field and to an electric
current (Ettingshausen, 1887). The transverse temperature gradient generates a transverse
TE voltage that adds to the Hall voltage and is thus essentially the influence of the
magnetic field on the Peltier effect. Typical measured values of the Ettingshausen coeffi-
cients are of the order of 1022–1024 m3 K/J for semiconductors and semimetals, and
1027–1028 m3 K/J for metals, except for the rare-earth metals for which the values
are comparable to those of semiconductors.

The Righi–Leduc effect is a temperature gradient in the x direction that gives rise
to a heat flow in the y direction and vice versa and, for this reason, may be described
as the thermal analog of the Hall effect. The Righi–Leduc effect is similar to the
Ettingshausen effect except the source of the carrier motion is, as in the Nernst effect,
a temperature gradient instead of an externally applied voltage. In fact, the Righi–
Leduc effect always occurs in conjunction with the Nernst effect. The phenomenon is
named after the Italian physicist Augusto Righi (1850–1920) and the French physicist
Sylvestre Anatole Leduc (1856–1937), both of whom reported the effect independently
in 1887 (Righi, 1887; Leduc, 1887).

6.4 MASS TRANSPORT

Diffusion is a process in which the transport of matter through a substance occurs. Self-
diffusion refers to atoms diffusing among others of the same kind (e.g. in pure metals).
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Interdiffusion is the diffusion of two dissimilar substances (a diffusion couple) into one
another. Impurity diffusion refers to the transport of dilute solute atoms in a host solvent.
In solids, diffusion is several orders of magnitude slower than in liquids or gases.
Nonetheless, diffusional processes are important to study because they are basic to our
understanding of how solid–solid, solid–vapor, and solid–liquid reactions proceed.
Directional atomic transport processes may be categorized into those that are concen-
tration gradient induced, which is possible in all types of solids, and those that are electric
field induced, which occurs only in ionic crystals and results in an electrical current.
Temperature gradients may also give rise to directional transport in the absence of a con-
centration gradient (the Soret effect), but this is not discussed here. Another phenomenon,
called electromigration, is the mass transport resulting from momentum transfer from
conduction electrons to atoms. It is only significant at high-current densities in metals
and is likewise not discussed in this textbook.

The governing phenomenological equation for ionic conduction, as in electronic
conduction, is Ohm’s law (Eq. 6.21). Concentration gradient induced processes, on the
other hand, follow Fick’s laws of diffusion, derived by Adolf Eugen Fick (1829–
1901) in 1855 (Fick, 1855).

6.4.1 Atomic Diffusion

Fick’s first law is written as:

Ji ¼ �Dirni (6:29)

where D is known as the diffusivity or diffusion coefficient (units of cm2/sec), Ji is the
net diffusional flux (the number of particles crossing a unit area), and rni is the con-
centration gradient of species of type i. Three equations representing the diffusional
fluxes along the principal axes exist that are entirely analogous to Eq. 6.11 for heat
flow. It should be noted that rni might refer to a concentration gradient involving
solute atoms, vacancies, or interstitials. Equation 6.29 states that the flux is proportional
to the concentration gradient (the higher the value forDi, the larger Ji for the samerni) and
that flow will cease only when the concentration is uniform. It was later proposed by
Einstein (Einstein, 1905) that the force acting on a diffusing atom or ion is, in fact, the
negative gradient of the chemical potential, which is dependent not only on concentration,
but temperature and pressure as well. However, for our purposes, T and P will be
considered to be uniform, inwhich case the concentration gradientwill determine the flow.

Example 6.9

Write the expression for the diffusivity in terms of the principal diffusion
coefficients for:

1. an isotropic crystal;

2. an orthorhombic crystal with diffusion along an arbitrary direction with
direction cosines klx, ly, lzl;
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3. for a uniaxial crystal (hexagonal, tetragonal, trigonal) with unique axis c
parallel to z.

Solution

From Eq. 6.29:

jx ¼ �D11
@C

@x
, jy ¼ �D22

@C

@y
, jz ¼ �D33

@C

@z

The diffusion coefficient for any arbitrary direction klx, ly, lzl is obtained from:

Dklx ,ly ,lzl ¼ l2xD11 þ l2yD22 þ l2zD33

where li is the direction cosine of the diffusion flux vector with axis i (see Section
1.2.1.1 and Example 6.3 for help in working with direction cosines).

1. For an isotropic medium (e.g. cubic crystal or icosahedral quasicrystal), D is
a scalar, that is:

D11 ¼ D22 ¼ D33 ; D

and so:

Dklx ,ly ,lzl ¼ l2xD11 þ l2yD11 þ l2zD11

2. For an on orthorhombic crystal:

Dklx ,ly ,lzl ¼ l2xD11 þ l2yD22 þ l2zD33

where D11 = D22 = D33 and lx ¼ cos a; ly ¼ cos b; lz ¼ cos g.

3. For a uniaxial crystal with the unique axis parallel to z, D11 ¼ D22 =
D33. The above expression for the diffusion coefficient along a direction
Dklx ,ly ,lzl simplifies as follows:

Dklx ,ly ,lzl ¼ l2xD11 þ l2yD22 þ l2zD33

¼ (l2x þ l2y )D11 þ l2zD33

¼ (cos2 aþ cos2 b)D11 þ D33 cos
2 g

Next, it is known that cos2a þ cos2b þ cos2g ¼ 1 (see Section 1.2.1.1).
Hence:

Dklx ,ly ,lzl ¼ (1� cos2 g)D11 þ D33 cos
2 g
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It is also known from a fundamental trigonometric identity that
cos2 g þ sin2 g ¼ 1. Hence:

D(g) ¼ D11 sin
2 gþ D33 cos

2 g

where g is the angle between the diffusion direction (the concentration
gradient) and the unique crystal axis (c).

Fick’s first law represents steady-state diffusion. The concentration profile (the concen-
tration as a function of location) is assumed constant with respect to time. In general,
however, concentration profiles do change with time. In order to describe these
nonsteady-state diffusion processes use is made of Fick’s second law, which is
derived from the first law by combining it with the continuity equation (@ni/@t¼
2[Jin 2 Jout] ¼ 2rJi):

@ni
@t
¼ r(Dirni) (6:30)

If the material is sufficiently homogeneous, Di can be considered constant (independent
of concentration), so that Eq. 6.30 reduces to:

@ni
@t
¼ Dir2ni (6:31)

Fick’s second law, which is also known simply as the diffusion equation, indicates that
nonuniform gradients tend to become uniform.

The above equations imply that, in the case of multiple diffusing species, each
species will have its own intrinsic diffusion coefficient. Interestingly, when two dissimilar
substances are joined together (forming a diffusion couple) and allowed to homogenize
by interdiffusion, an apparent bulk flow occurs as a result of the differing intrinsic diffu-
sion coefficients. Specifically, the side of the couple with the fastest diffuser shortens
while the side with the slowest diffuser lengthens. Smigelskas and Kirkendall demon-
strated that fine molybdenum wire could be used as a marker in the Cu–Zn system to pro-
vide an alternative description of interdiffusional processes between substances with
dissimilar diffusion coefficients (Smigelskas and Kirkendall, 1947).

A brass (Cu–Zn) bar, wound with molybdenum wire, was plated with copper metal.
The specimen was annealed in a series of steps, in which the movements of the molyb-
denum wires were recorded. The inert markers had moved from the interface towards the
brass end of the specimen, which contained the fastest diffuser – zinc. This is now called
the Kirkendall effect. A similar marker experiment had actually been performed by
Hartley a year earlier while studying the diffusion of acetone in cellulose acetate
(Hartley, 1946), but most metallurgists were not familiar with this work (Darken and
Gurry, 1953).

Lawrence Stamper Darken (1909–1978) subsequently showed how, in such a
marker experiment, values for the intrinsic diffusion coefficients (e.g. DCu and DZn)
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could be obtained from a measurement of the marker velocity and a single diffusion
coefficient, called the interdiffusion coefficient (Darken, 1948). This quantity is some-
times also called the mutual, or chemical, diffusion coefficient and it is a more useful
quantity than the more fundamental intrinsic diffusion coefficients from the standpoint
of obtaining analytical solutions to real engineering diffusion problems. Interdiffusion,
for example, is of obvious importance to the study of the chemical reaction kinetics.
Indeed, studies have shown that interdiffusion is the rate-controlling step in the reaction
between two solids.

Up to now, our equations have been continuum-level descriptions of mass flow. As
with the other transport properties discussed in this chapter, however, the primary objec-
tive here is to examine the microscopic, or atomistic, descriptions, a topic that is now
taken up. The transport of matter through a solid is a good example of a phenomenon
mediated by point defects. Diffusion is the result of a concentration gradient of solute
atoms, vacancies (unoccupied lattice, or solvent atom, sites), or interstitials (atoms resid-
ing between lattice sites). An equilibrium concentration of vacancies and interstitials are
introduced into a lattice by thermal vibrations, for it is known from the theory of specific
heat, atoms in a crystal oscillate around their equilibrium positions. Nonequilibrium
concentrations can be introduced by materials processing (e.g. rapid quenching or
irradiation treatment).

Diffusion of atoms or ions can occur by at least three possible mechanisms, as shown
schematically in Figure 6.5. In some solids, transport proceeds primarily by the vacancy
mechanism, in which an atom jumps into an adjacent, energetically equivalent vacant

Lattice site

Vacant lattice site

Interstitial atom

Vacant interstitial site

Figure 6.5. Schematic illustrating the different mechanisms for atomic diffusion in a BCC

lattice. In the vacancy mechanism, an atom in a lattice site jumps to an adjacent vacant

lattice site. In the interstitial mechanism, an interstitial atom jumps into an adjacent vacant

interstitial site. In the interstitialcy mechanism, an interstitial atom pushes an atom residing

in a lattice site into an adjacent vacant interstitial site and occupies the displaced atom’s site.
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lattice site. The vacancy mechanism is generally much slower than the interstitial mech-
anism (discussed below). Nonetheless, it is thought to be responsible for self-diffusion in
all pure metals and for most substitutional alloys (Shewmon, 1989).

When thermal oscillations become large enough, an atom already in an interstitial
site or one that migrates there can move among energetically equivalent vacant interstitial
sites without permanently displacing the solvent (lattice) atoms. This is termed the direct
interstitial mechanism and is known to occur in interstitial alloys and in some substitu-
tional alloys when the substitutional atoms spend a large fraction of their time on inter-
stitial sites. Although it is found empirically that only solute atoms with a radius less than
0.59 that of the solvent atom dissolve interstitially, diffusion studies have shown that
solute atoms with radii up to 0.85 that of the solvent can spend enough time in interstitial
sites for the interstitial mechanism to dominate solute transport (Shewmon, 1989).

Atoms larger than this would produce excessively large structural distortions if they
were to diffuse by the direct interstitial mechanism. Hence, in these cases diffusion tends
to occur by what is known as the interstitialcy mechanism. In this process, the large atom
that initially moves into an interstitial position displaces one of its nearest neighbors into
an interstitial position and takes the displaced atom’s place in the lattice. This is the domi-
nant diffusion process for the silver ion in AgBr, where an octahedral site Agþ ion moves
into a tetrahedral site, then displaces a neighboring Agþ ion into a tetrahedral site, and
takes the displaced Agþ ion’s formal position in the lattice.

It is possible to obtain expressions for the diffusivity for a particular case, if one
knows the microscopic mechanism of diffusion. However, it will be instructive first to
derive an expression for D using a probabilistic approach for which no detailed mechan-
ism is assumed – the theory of random walk. A species (atom or ion) starting at its orig-
inal position, makes n jumps and ends up at a final position that is related to the original
position by a vector, designated as Rn:

Rn ¼
Xn
i¼1

li (6:32)

in which li are the vectors representing the various jumps. To obtain the average value of
Rn (more exactlyRn

2), it is necessary to consider many atoms, each of which takes n jumps.
If it is assumed that each jump is independent of the jump preceding it, and that posi-
tive and negative directions are equally probable (completely uncorrelated and random
jumps, as in the case of self-diffusion in pure metals, for example) the following is true:

kR2
nl

1=2 ¼ l
ffiffiffi
n
p

(6:33)

Equation 6.33 states that the root-mean-square displacement is proportional to the
square root of the number of jumps. For very large values of n, the net displacement of
any one atom is extremely small compared to the total distance it travels. It turns out,
that the diffusion coefficient is related to this root-mean-square displacement. It was
shown independently by Albert Einstein (1879–1955) and Marian von Smoluchowski
(1872–1917) that, for Brownian motion of small particles suspended in a liquid, the
root-mean-square displacement, kRn

2l1/2, is equal to
ffiffiffiffiffiffiffiffiffiffiffi
(2Dt)
p

, where t is the time
(Einstein, 1905; von Smoluchowski, 1906).
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In the case of three-dimensional diffusion, the following expression is valid for
isotropic media (equivalent principal axes along which diffusion takes place), such as
cubic crystals:

kR2
nl ¼ 6Dt (6:34)

Note that in Eq. 6.34 the mean-square displacement is used, rather than the root-mean-
square displacement. For a one-dimensional randomwalk, the mean-square displacement
is given by 2Dt, and for a two-dimensional random walk, 4Dt. Since the jump distance (a
vector) is l, if the jump frequency is now defined as G ¼ n/t (the average number of
jumps per unit time), then on combining Eq. 6.33 and 6.34 gives:

D ¼ 1
6

� �
Gl2 (6:35)

It must be stressed that this result holds only for uncorrelated jumps on a cubic Bravais
lattice. It is possible to include a correlation factor and the interested reader is referred
to the book by Heitjans and Kärger (Heitjans and Kärger, 2005).

The jump vector, l, will obviously depend on the mechanism and the structure. For
example, an atom diffusing through the octahedral interstitial sublattice in an FCC metal,
with lattice spacing a (Fig. 6.6), must jump the distance between interstitial sites, l ¼
a=

ffiffiffi
2
p

. This is, of course, the same distance an atom diffusing by the vacancy mechanism
must jump. It will be recalled that for every atom in a close-packed structure, there are two
tetrahedral interstitial sites and one octahedral interstitial site. The reader might ask if the
distances between the tetrahedral sites are the same.

Diffusion is a thermally activated process. It is expected that mass transport will
proceed more rapidly at elevated temperatures. Empirically, the Arrhenius equation is
found to hold:

D ¼ Aexp
�Q
RT

� �
(6:36)

Figure 6.6. Simple geometry shows that the jump distance between octahedral interstitial

sites and between lattice sites in an FCC metal, with unit cell edge a, is a=
ffiffiffi
2
p

.
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where T is the absolute temperature (K), R is the gas constant (8.31 J/mol K), A is a
pre-exponential constant (sometimes called the frequency factor and denoted as D0) in
units of m2/s, and Q is the activation energy (J/mol). Both A and Q vary with compo-
sition but are independent of temperature. Usually, values for these parameters are
obtained by plotting lnD versus 1/T. The slope of the plot yields Q/R and the intercept
at 1/T ¼ 0 is ln A.

Much effort has gone into developing theoretical expressions for A, which must
reflect the temperature independence. The origin of this behavior can be seen by referring
back to Figure 6.5. An appreciable local distortion of the lattice must take place, for
example, before an interstitial jump can occur. Energy must be supplied to the lattice
to cause closed-packed atoms to move apart and let the interstitial through. The difficulty
with which this is accomplished constitutes the activation barrier to interstitial diffusion
and it can be used to estimate A in Eq. 6.36. Thus, G in Eq. 6.35 has been described by:

G ¼ v0z exp
�DGt

m

RT

� �� �
(6:37)

where v0 is the vibrational frequency of an atom in the lattice (the frequency of attempts an
atom makes), z is the coordination number (the number of distinct sites that interstitial
atoms can reach in a single jump), and DGm

t is the free energy of activation for migration
(Zener, 1951). Combining Eqs. 6.35, 6.36, and 6.37, and realizing that DGm

t ¼ DHm
t 2

TDSm
t , one obtains:

D ¼ l2v0z

6

� �
exp

DStm
R

� �
exp
�DHt

m

RT

� �
(6:38)

In Eq. 6.38, [l2v0z/6] exp(DStm/R) is equal to A in Eq. 6.36.
In the vacancy mechanism, the activation barrier to diffusion is generally much smal-

ler. This is because a lot of energy is not required to displace the surrounding atoms, as in
the interstitial mechanism. However, diffusion may be impeded somewhat owing to there
being a finite number of vacancies. Each atom must wait its turn for a vacancy to become
available. Accounting for this, together with the energy required to form the vacancies,
Eq. 6.38 for the interstitial mechanism is modified to become:

D ¼ (l2v0) exp
(DSv þ DSm)t

R

� �
exp

(�DHv � DHm)t

RT

� �
(6:39)

In this expression, (l2v0) exp[(DSv þ DSm)
t/R] is equal to A in Eq. 6.36. Note the con-

spicuous absence of the geometric constant z/6 in Eq. 6.39. For the vacancy mechanism,
the diffusivity is given by an expression (equivalent to Eq. 6.35) of the form:D ¼ l2Nvw,
where Nv is the vacancy concentration and w is the jump frequency of an atom into an
adjacent vacancy. Equation 6.39 is a consequence of the thermodynamic description
for the equilibrium concentration of vacancies (for a derivation, see Shewmon, 1989).

Equations 6.38 and 6.39 represent volume diffusion effects. Surface diffusion and
grain-boundary diffusion may also be important, under certain circumstances. Grain
boundaries are less dense than the grains themselves and so are easy diffusion paths.
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Hence, grain boundary-diffusion coefficients are generally much greater than volume-
diffusion coefficients. However, for a unit sample area, the overall flux is the sum of
that through the grain, plus that through the boundary. Consequently, grain-boundary
diffusion is expected to be of importance only for very small grain sizes (higher fraction
of boundary area) or at low temperatures.

6.4.2 Ionic Conduction

The phenomenological equation for electrical conduction in an ionic solid is the same as
that for electronic conduction, as shown in Eq. 6.21. However, the universal expression
for electrical conductivity (Eq. 6.23) must be modified to include the transport contri-
bution by all the species, including cations, anions, and electrons:

stotal ¼ sel þ
X
i

niqimi (6:40)

In this expression, qi is the charge of the migrating species i. Materials in which
both ionic and electronic conduction occur are termed mixed conductors. Examples
include LiNiO2 and LiCoO2. In most ceramics, however, sel is negligible at normal
temperatures.

A more general expression for the ionic conductivity term in Eq. 6.40 is:

s ¼ Bini(ziq)
2 (6:41)

where Bi is now the mobility of species i, and zi is the charge on the species. If the
substitutions B ¼ m/q and zi ¼+1 are made, Eq. 6.41 is found to be equivalent to
Eq. 6.23 for electronic (hole) conduction.

In physical chemistry, it is customary to speak in terms of the fraction of the conduc-
tivity carried by a particular species. The fraction of the total current carried by the ith
species is called the transference number, or transfer number ti. The total of all the trans-
ference numbers, including that of the electrons in the case of mixed conductors, must
equal one. In many ceramics, the conduction occurs predominantly via the movement
of one type of ion. For example, in the alkali halides, tcation � 1, whereas in CeO2,
BaF2, and PbCl2, tanion � 1.

For any particular solid, the relative activation barriers for the available mechanisms
determine whether the anions or cations are responsible for the ionic conduction. For
example, in a yttria-stabilized ZrO2, with the formula Zr12xYxO22(x/2), aliovalent substi-
tution of Zr4þ by Y3þ generates a large number of oxygen vacancies, giving rise to a
mechanism for oxide ion conduction. Indeed, it is found that the O2 anions diffuse
about six orders of magnitude faster than the cations.

The microscopic mechanisms for ionic conduction are the same as those for
atomic diffusion, namely, the vacancy and interstitial models discussed in the previous
section. In fact, the diffusivity can be related to the conductivity via the Nernst–
Einstein equation:

Di ¼ BikT (6:42)
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where k is the Boltzmann constant, Bi is the mobility of i ions, and Di is their diffusivity.
Dividing Eq. 6.41 by Eq. 6.42 shows that:

si

Di
¼ ni(ziq)2

kT
(6:43)

where Di is given by Eq. 6.38 (interstitial mechanism) or 6.37 (vacancy mechanism).
Like diffusion, ionic conduction is a thermally activated process. Low activation

barriers are, therefore, achieved in the same manner. Geometric features, such as open
channels, result in larger diffusivities (easier ion movement) because this lowers the mag-
nitude of the DHm terms in Eqs. 6.38 and 6.39. For example, in b alumina, the sodium
ions are located in sparsely populated layers positioned between spinel blocks.
Accordingly, they diffuse through these channels easily owing to the large number of
vacancies present.

PRACTICE PROBLEMS

1) Give the definition of a second-rank tensor.

2) Write the expression for the ellipsoid of a symmetrical second-rank tensor referred to
its principal axes in a monoclinic crystal.

3) What is a phonon? In what types of materials do they contribute substantially to
thermal transport?

�4) Many high-temperature superconductors contain copper oxide layers in the ab plane
of a tetragonal unit cell. What would be the differences in the magnitude of the elec-
trical conductivity along the a axis, b axis, and ab diagonal in the ab plane?

5) As the grain size of a polycrystalline material decreases, what happens to the thermal
and electrical conductivity? Why?
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6) What is a wide-band metal and why does it have a higher electrical conductivity than
a narrow-band metal?

�7) Use the modified Wiedemann–Franz–Lorenz law to estimate the phonon contri-
bution to the thermal conductivity of a semiconductor at 298 K whose total thermal
conductivity is 2.2Wm21 K21 if the electrical conductivity is 0.4 � 105 S m21.

8) HgCdTe is the traditional semiconductor used for long wavelength infrared radiation
photodiodes operating in the wavelength range from 8 to 12 mm. What must be the
band-gap range in these materials?

9) Why are low band-gap materials not well suited for photovoltaic solar power
conversion?

10) Compare/contrast the vacancy, direct interstitial, and interstitialcy mechanisms of
mass transport.

�For solutions, see Appendix 3.
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7

METAL–NONMETAL
TRANSITIONS

It has been seen that, in the Bloch/Wilson band picture, insulators are materials with a
completely filled valence band and an empty conduction band, with the two separated
by a sizable energy gap. Semiconductors are similar but have a smaller energy gap
between the valence and conduction bands. Thermal excitation of charge carriers
across the band gap ensures that the electrical conductivity of a band insulator or semi-
conductor will increase with increasing temperature. In metals, electron-scattering mech-
anisms decrease the electrical conductivity as the temperature is raised. Commonly, the
reciprocal quantity, or resistivity, r, is used to describe this behavior. An experimental
criterion for metallic behavior (and semimetals) is thus that dr/dT. 0, while for insula-
tors and semiconductors dr/dT, 0. A material need not possess a low electrical resis-
tivity (e.g. copper has an electrical resistivity of about 1026V cm) to be regarded as
metallic; rather its resistivity must merely have a positive temperature coefficient. A
material that meets this criterion for metallicity, but which, nevertheless, exhibits high
resistivity, is termed a marginal metal.

It is possible to induce metallic transport behavior at some finite temperature in solids
with band gaps by doping the conduction band with charge carriers. This is appropriately
termed a filling-control metal–nonmetal transition, since one is filling a formerly vacant
conduction band with charge carriers. This is a topic that will be expanded upon later in
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this chapter. First, however, there is a need to discuss other kinds of insulators, in order to
more fully develop the concept of the metal–nonmetal transition.

About one decade after the development of band theory, two Dutch industrial
scientists at the NV Philips Corporation, Jan Hendrik de Boer (1899–1971) (de Boer
was later associated with the Technological University, Delft) and Evert Johannes
Willem Verwey (1905–1981), reported that many transition metal oxides, with partially
filled bands that band theory predicted to be metallic, were poor conductors and some
were even insulating (de Boer and Verwey, 1937). Rudolph Peierls (1907–1995) first
pointed out the possible importance of electron correlation in controlling the electrical
behavior of these oxides (Peierls, 1937). Electron correlation is the term applied to the
interaction between electrons via Coulombs law.

Somewhat later, Nevill Francis Mott (1905–1996), who was at the University of
Bristol at the time (Mott became Cavendish Professor of Physics at Cambridge in
1954), intuitively predicted a metal–nonmetal transition resulting from a strong
Coulomb attraction between the conduction electrons and the positively charged ion
cores, which are screened from any one conduction electron by all the other conduction
electrons (Mott, 1949). A conduction electron, diffusing under an electric field,
encounters other electrons as it moves among singularly occupied sites. John Hubbard
(1931–1980), who was at the Atomic Energy Research Establishment in Harwell,
England, later introduced a model in which a band gap opens in the conduction band
because of the Coulomb repulsion between two electrons at the same site (Hubbard,
1963, 1964a, b). Thus, by this definition the Mott–Hubbard insulator is only realizable
when the conduction band is at integer filling, but only partially filled (i.e. an integer
number of conduction electrons per atomic site). That is only possible with multicompo-
nent systems, namely, compounds.

The opening of a band gap within the conduction band obviously leads to insulating
behavior. However, the difference between the origin of gaps in correlated systems and
systems with noninteracting electrons must be emphasized. In a Bloch/Wilson insulator,
electrons in the valence band are delocalized in the sense that the COs are extended
throughout the volume of the crystal. As a particle, the electron has an equal probability
of existing in any cell of the crystal. However, the Pauli principle prohibits an electron
from moving into an already completely filled CO. There is also a sizeable energy gap
(.3 eV) separating the top of the filled valence band and the bottom of the empty con-
duction band. Hence, no energetically near-degenerate states (immediately above the
Fermi level) exist in which an electron can be accelerated by an electric field. By contrast,
in a Mott–Hubbard insulator, the Coulomb repulsion between two conduction electrons
(with antiparallel spin) at the same bonding site is strong enough to keep these electrons
away from one another and spatially localized in individual atomic orbitals, rather than
delocalized Bloch functions. A narrow bandwidth and concomitant band gap results.
The localized conduction electrons in such a solid are rather like the electrons in the
very narrow valence band of an ionic crystal (e.g. KCl). Because of this picture of
localized wavefunctions, such insulators are also sometimes called Heitler–London
type insulators.

The intrasite Coulomb gap is completely unaccounted for in the Hartree–Fock
theory (e.g. tight-binding calculations), since electron correlation is neglected in the
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independent-electron approximation. It is underestimated in the local density
approximation to the density functional theory (LDA–DSF). Simple LDA–DSF
calculations are also generally poor at reproducing the metallic state near the Mott
transition. There are several reasons for this. First, it is difficult to treat the nonuniform
electron densities of correlated systems with localized wave functions. Second, there is
the necessity in density functional formalisms of introducing a self-interaction correction
term for the Coulomb interaction energy of an electron in a given eigenstate with itself
(not needed in the Hartree–Fock approximation!), and which is fitted to the results for
a uniform electron density.

Electrons in periodic solids can also be localized by disorder. This is a quite different
mechanism involving multiple elastic scattering of the conduction electrons by the impu-
rities. When the disorder and, hence, scattering is strong enough, the electrons can no
longer propagate through the solid. This is known as Anderson localization, after
Philip Warren Anderson (b. 1923) the physicist who discovered it while he was at Bell
Laboratory (Anderson was later at Princeton University). However, unlike Bloch/
Wilson band insulators and Mott insulators, no band gap is opened in Anderson
insulators. There remains a finite DOS at the Fermi level, but the electrons are localized
on individual sites, as in Mott insulators, rather than existing as itinerant, or delocalized,
particles. Anderson argued that in such systems, transport is by nondiffusive, phonon-
assisted hopping between localized centers (Anderson, 1958).

7.1 CORRELATED SYSTEMS

Mott originally considered an array of monovalent metal ions on a lattice, in which the
interatomic distance, d, may be varied. Very small interatomic separations correspond
to the condensed crystalline phase. Because the free-electron-like bands are half-filled
in the case of ions with a single valence electron, one-electron band theory predicts
metallic behavior. However, it predicts that the array will be metallic, regardless of the
interatomic separation. Clearly, this can’t be true given that, in the opposite extreme,
isolated atoms are electrically insulating.

For an isolated atom, the single valence electron feels a strong Coulomb attraction
to the ion core, V ¼ 2e2/r, where e is the proton charge and r is the distance separating
the electron and ion core. In the solid state, the Coulomb attraction of any one valence
electron to its ion core is reduced because the electron is screened from the core by
all the other electrons of the free electron gas. The potential now becomes V ¼
(2e2/r) exp(2jr), where j is the screening parameter. Mott argued that when the
potential is just strong enough to trap an electron, a transition from the metallic to the non-
metallic state occurs. The Mott criterion for the occurrence of a metallic–nonmetallic
(M–NM) transition was found to be:

n1=3c a�0 ¼ 0:25 (7:1)

where nc is the critical electron density and a�0 is the effective Bohr radius.
The screening parameter, j, increases with increasing magnitude of the tight-binding

hopping integral, which, in turn, increases with decreasing internuclear separation
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between neighboring atoms. In the context of the tight-binding or LCAO method, rather
than considering the screened potential, one usually speaks in terms of the bandwidth,
which also increases with decreasing internuclear separation (owing to a stronger overlap
between adjacent orbitals). Hence, metallic behavior would be expected for internuclear
distances smaller than some critical value. A large internuclear distance results in more
localized atomic-like wave functions for the electrons (i.e. the Heitler–London
model), as opposed to extended Bloch functions, since the hopping integral and the over-
lap integral are very small in this case. Thus, Mott recognized that there should be a sharp
transition to the metallic state at some critical bandwidth: W ¼ 2zb (Eq. 5.38), where z
is the coordination number and b is the hopping integral (Mott, 1956, 1958).

These arguments are particularly important for the d electrons, since they do not
range as far from the nucleus as s or p electrons. The d electrons in solids are best
described with localized atomic orbitals if the magnitudes of the hopping and overlap
integrals between neighboring atoms are very small (i.e. narrow band systems).
Moving to the right in a period, and for smaller principal quantum numbers, an increase
in the extent of d-electron localization is expected because of a contraction in the spatial
extension of the d-atomic orbitals. Valence s and p orbitals are always best described by
Bloch functions, while 4f electrons are localized and 5f are intermediate. For heavy
elements, however, one may also need to consider s- and p-orbital contraction owing
to both increased electrostatic attraction towards the nucleus (the lanthanide and actinide
contraction) and direct relativistic effects. The latter, in fact, causes a d- and f-orbital
expansion, termed the indirect relativistic effect, owing to the increased shielding of
those orbitals from the nucleus.

A semi-empirical approach for characterizing the transition region separating the
localized (Heitler–London) and itinerant (Bloch) regimes, in terms of the critical inter-
nuclear distance was developed by Goodenough (Goodenough, 1963, 1965, 1966,
1967, 1971). This method employs the tight-binding hopping integral (transfer integral),
b, which is proportional to the overlap integral between neighboring orbitals. The
approach is useful for isostructural series of transition metal compounds, since b can be
related to the interatomic separation. In the ANiO3 perovskites (where A ¼ Pr, Nd, Sm,
Eu), for example, the M–NM transition is accompanied by a very slight structural
change involving coupled tilts of the NiO6 octahedra. In the ABO3 perovskites, BO6 octa-
hedral tilting is in response to nonoptimal values of the geometrical tolerance factor, t,
which places the B–O bonds under compression and the A–O bonds under tension or
vice versa (Goodenough and Zhou, 1998). Tilting relieves the stresses by changing the
B–O–B angles, which govern the transfer interaction. The smaller the tolerance factor
(for t , 1), the greater the deviation of the B–O–B angle from 1808. This reduces the
one-electron d bandwidth and localizes the conduction electrons. For ANiO3, only
when A is lanthanum, is the oxide metallic. The ts are smaller (t , 1) for the other
oxides in the series, which are insulators. The maximum Ni–O–Ni angle deviation is
�20.58. The structural transition is thus a subtle one. Nonetheless, it may be considered
the driving force for the M–NM transition, because the changes to the Ni–O bond length
affect the d-bandwidth.

The crucial step in present day understanding of the M–NM transition in systems
with interacting electrons was Hubbard’s introduction of a model that included dynamic
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correlation effects – the short-range Coulomb repulsion between electrons with anti-
parallel spin at the same bonding site (Hubbard, 1963, 1964a, b). Long-range (intersite)
electron–electron interactions were neglected. The inclusion of dynamic correlation
effects in narrow-band systems, such as transition-metal compounds, form the basis for
what is now known as the Mott–Hubbard M–NM transition.

Sir Nevill FrancisMott (1905–1996)
received his bachelor’s degree
(1927) and master’s degree (1930)
from the University of Cambridge.
He became a professor of theo-
retical physics at the University of
Bristol in 1933 and returned to
Cambridge in 1954 as Cavendish
professor of physics, a post from
which he retired in 1971. In his
early career, Mott worked on
nuclear physics, atomic collision
theory, the hardness of metals,

the electronic structures of metals and alloys, and latent image formation in
photographic emulsions. In the 1940s, he postulated how a crystalline array of
hydrogen-like electron donors could be made insulating by increasing the intera-
tomic separation. Mott was to devote the rest of his career to the study of the
metal–nonmetal transition. He was a co-recipient of the 1977 Nobel Prize in
physics for his work on the magnetic and electronic properties of noncrystalline
substances. Mott was elected a Fellow of the Royal Society in 1936. He was
knighted in 1962. (Source: Nobel Lectures, Physics 1971–1980, World Scientific
Publishing Company, Singapore.)

(Photo courtesy of AIP Emilie Segrè Visual Archives. Reproduced with permission.)

7.1.1 The Mott–Hubbard Insulating State

The Hubbard picture is the most celebrated and simplest model of the Mott insulator. It
is comprised of a tight-binding Hamiltonian, written in the second quantization formal-
ism. Second quantization is the name given to the quantum field theory procedure by
which one moves from dealing with a set of particles to a field. Quantum field theory
is the study of the quantum mechanical interaction of elementary particles with fields.
Quantum field theory is such a notoriously difficult subject that this textbook will not
attempt to go beyond the level of merely quoting equations. The Hubbard Hamiltonian is:

H ¼ ti, j
X
i, j,s

CisA js þ U
X
i

ni"ni# (7:2)

Equation 7.2 contains just two parameters: t, the transfer integral andU, which represents
the Coulomb repulsion of two antiparallel spin electrons at the same site. It is possible to

7.1 CORRELATED SYSTEMS 289



include interactions between electrons on adjacent sites and, in fact, thirty years earlier
Semyon P. Shubin (1908–1938) and Sergeı̌ Vasil’evich Vonsovskiı̌ (191021999)
(variously spelled as “Wonsowsky” or “Vonsovsky” in the Western literature) of the
Russian school put forth such a model (Shubin and Wonsowsky, 1934; Izyumov,
1995), in which a third term, containing the matrix element of Coulomb interaction
between different sites, is added to Eq. 7.2. Nowadays, the inclusion of next-nearest
neighbor interactions is called the extended Hubbard model. The Hubbard
Hamiltonian can be solved exactly only in the one-dimensional case and requires numeri-
cal techniques for higher dimensions. Nonetheless, it often adequately describes ten-
dencies and qualitative behavior.

The first term in Eq. 7.2 represents the electron kinetic energy. It contains the Fermi
creation operator (Cis) and annihilation operator (Ajs) for an electron or hole, at sites i and
j with spin s ¼" or #. In quantum field theory, Hamiltonians are written in terms of
Fermi creation and annihilation operators, which add and subtract particles frommultipar-
ticle states just as the ladder operators (raising and lowering operators) for the quantum
harmonic oscillator add and subtract energy quanta. Multiparticle wave functions are
specified in terms of single-particle occupation numbers. The second term in Eq. 7.2 is
the potential energy term. The number of electrons at the site is given by ni and the
Coulomb repulsion between two electrons at the same site, U, is given by:

U ¼
ð ð

e2

r12

� �			w(r1)			2			w(r2)			2 dr1 dr2 (7:3)

The distance between two electrons at a given site is given as r12. The electron wave
function for one of the electrons is given as w(r1) and the wave function for the second
electron, with antiparallel spin, is w(r2). Equation 7.3 is called the Hubbard intra-
atomic energy and it is not accounted for in conventional band theory, in which the inde-
pendent electron approximation is invoked. Finally, it should also be noted that the
Coulomb repulsion interaction had been introduced earlier in the Anderson model
describing a magnetic impurity coupled to a conduction band (Anderson, 1961). In
fact, it has been shown that the Hubbard Hamiltonian reduces to the Anderson model
in the limit of infinite-dimensional (Hilbert) space (Izyumov, 1995). Hence, Eq. 7.3 is
sometimes referred to as the Anderson–Hubbard repulsion term.

The Hubbard intra-atomic energy is one of three critical quantities, which determine
whether a solid will be an insulator or a conductor, the other two being band filling and
bandwidth. The Hubbard energy is the energy cost of placing two electrons on the same
site. In order to see this, consider two atoms separated by a distance a. In the limit a!1
(i.e. two isolated atoms), the excitation energy required for electron transfer from an
atomic orbital on one of the atoms, to an atomic orbital on the other atom, already contain-
ing an electron, is defined as:

U ¼ (Iel � x) (7:4)

where Iel is the ionization energy and x is the electron affinity (the minus sign signifies that
a small portion of Iel is recovered when the electron is added to a neutral atom). In a solid,
the situation is analogous, but U is given by Eq. 7.3, instead of Eq. 7.4. The Coulomb
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repulsion owing to Eq. 7.3 is typically on the order of 1 eV or less. This is much smaller in
magnitude than the energy gaps between the valence and conduction bands in covalent or
ionic insulators (.3 eV). For wide-band metals, such a small Coulomb repulsion
term is insufficient to drive the system to the insulating state. However, in narrow-band
systems, it may.

As alluded to in Section 5.5.5, the transition metal monoxides with the rock-salt
structure are the archtypical examples of correlated systems. Of these oxides, only TiO
is metallic. The others, NiO, CoO, MnO, FeO, and VO, are all insulating, despite the
fact that the Fermi level falls within a partially filled band (in the independent electron
picture). Direct electron transfer between two of the transition metal cations (in the
rock-salt structure, d–d interactions are important owing to the proximity of the cations),
say, manganese, is equivalent to the disproportionation reaction:

Mn2þ þMn2þ ! Mnþ þMn3þ

d5 þ d5! d6 þ d4 (7:5)

It costs energy, U, to transfer an electron from one Mn2þ into the already occupied d
orbital of another Mn2þ ion (d5! d6), thereby, opening a Coulomb gap. The d band
is split into two equivalent sub-bands, shifted symmetrically relative to the Fermi
level – a filled, singularly occupied lower Hubbard band (LHB) and an empty upper
Hubbard band (UHB), separated by a band-gap of the order of U. A schematic represen-
tation of this type of electronic structure is shown in Figure 7.1a. The LHB represents
low-energy configurations with no doubly occupied sites, that is Mn2þ!Mn3þ. The
UHB is the high-energy configuration corresponding to doubly occupied sites, that is,
Mn2þ!Mnþ. In general, for a Mott–Hubbard insulator, charge excitations across the
gap, correspond to: dn þ dn! dnþ1 þ dn21. In Hubbard’s original approximation,
the system is an insulator for any value of U, however small. In what is known as the

U

p band

EF EF

U

D

D

p band

(a) (b)

Figure 7.1. The band gap is determined by the d–d electron correlation in theMott–Hubbard

insulator (a), where D. U. By contrast, the band gap is determined by the charge transfer

excitation energy in the charge transfer insulator (b), where U. D.
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Hubbard-3 approximation (the models are named in accord with the order of Hubbard’s
three papers), band splitting occurs only when U is sufficiently large.

In fact, the Hubbard-3 approximation describes the occurrence of a transition from
insulating to metallic behavior, as first predicted by Mott (Mott, 1961), when U � W,
whereW represents the one-electron bandwidth. Hence, the bandwidth is another quantity
that influences the type of electronic behavior exhibited by a solid. The critical value of
the ratio (W/U )c, corresponding to the Mott M–NM transition is:

W

U

� �
c

	 1 (7:6)

with numerical calculations showing the actual value to be 1.15 (Mott, 1990). Although
there is some disagreement in the literature over the exact value of the ratio at which a
M–NM transition occurs, the gist of the matter is that a correlated system is expected
to become metallic (the Hubbard band gap closes) when U becomes smaller than the
bandwidth. In terms of the simple picture described earlier, this may be attributed to a
large portion of the energy penalty for transferring an electron to an occupied atomic orbi-
tal being recovered. The amount of energy regained corresponds to the amount that the
COs are stabilized, relative to the free atomic orbitals, as reflected in the bandwidth.

John Hubbard (1931–1980) recei-
ved his B.S. and Ph.D. degrees
from Imperial College, University
of London, in 1955 and 1958,
respectively. Hubbard spent most
of his 25-year career at the Atomic
Energy Research Establishment in
Harwell, England as head of the
solid-state theory group. He is best
known for a series of papers,
published in 1963–1964, on dyna-
mic correlation effects in narrow
band solids. The terms “Hubbard

Hamiltonian” and “Mott–Hubbard metal–insulator transition” became part of
the jargon of condensed matter physics. Walter Kohn once described Hubbard’s
contributions as the basis of much of our present thinking about the electronic
structure of large classes of magnetic metals and insulators. Hubbard also con-
ducted research on the nature of gaseous plasmas in nuclear fusion reactors, the
efficiency of centrifuges in isotope separation, and developed the functional
integral method many-body technique, as well as a first-principles theory of
the magnetism of iron. In 1976, Hubbard joined the IBM Research Laboratory in
San Jose, where he remained until his premature death at the age of 49. (Source:
Physics Today Vol. 34, No. 4, 1981. Reprinted with permission from Physics Today.
Copyright 1981, American Institute of Physics.)

(Photo courtesy of AIP Emilie Segrè Visual Archives. Copyright owned by IBM.
Reproduced with permission.)
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7.1.2 Charge-Transfer Insulators

Unlike the Mott–Hubbard insulator MnO described above the band-gap in the isostruc-
tural oxide NiO is much smaller than expected from intrasite Coulomb repulsion.
Fujimori and Minami showed that this is owing to the location of the NiO oxygen 2p
band – between the lower and upper Hubbard sub-bands (Fujimori and Minami,
1984). This occurrence can be rationalized by considering the energy level of the d
band while moving from Sc to Zn in the first transition series.

Moving to the right in a period, the d orbital energy drops owing to an increasing
effective nuclear charge. Hence, the energy of the nickel 3d (conduction) band in NiO
decreases to a level close to the oxygen 2p (valence) band, which allows Ni 3d–O 2p
hybridization. Although the d band still splits from onsite Coulomb repulsion, the O
2p band now lies closer to the UHB than the LHB does. The magnitude of the band-
gap is thus determined by the charge transfer energy, D, associated with the process:
dn! dnþ1L1, where L1 represents a hole in the ligand O 2p band. In other words, the
band-gap is now D, not Udd, as illustrated in Figure 7.1b. Jan Zaanen (b. 1957),
George Albert Sawatzky, and James W. Allen (b. 1945) named these type systems
charge-transfer insulators.

Whether the band-gap is of the charge-transfer type or Mott–Hubbard type is deter-
mined by the relative magnitudes of D and U. If U , D, the band gap is determined by
the d–d Coulomb repulsion energy. When D, U, the charge transfer excitation energy
determines the band gap. Crude estimates for U can be obtained using Eq. 7.4. However,
neglecting hybridization effects in this manner gives an atomic value, resulting in the
values for the solid state being overestimated. The Coulomb repulsion energy is primarily
a function of the spatial extension of the orbital. The charge-transfer energy, by contrast,
depends on the effective nuclear charge. Both of these parameters, in turn, are dependent
upon the transition metal’s atomic number and oxidation state, as well as hybridization
effects and the ligand electronegativity.

A systematic semiempirical study of the core-level photoemission spectra of a
wide range of 3d transition-metal compounds has been carried out (Bocquet et al.,
1992, 1996). The values forU andD obtained from a simplified CI cluster model analysis
are demonstrated in Figure 7.2. As can be inferred from the graphs, the heavier 3d
transition metal compounds shown in the figure are expected to be charge-transfer insu-
lators, whereas the compounds of the lighter metals are generally expected to be of the
Mott–Hubbard type.

7.1.3 Marginal Metals

It was pointed out in the introduction to this chapter that an experimental criterion for
metallicity is the observation of a positive temperature coefficient to the electrical resis-
tivity. The so-called bad or marginal metals are those that meet this criterion, but in which
the value for the resistivity is relatively high (r. 1022V cm). Many transition metal
oxides behave in this manner, while others (e.g. ReO3 and RuO2) have very low elec-
trical resistivities, similar in scale to those of conventional metals (r , 1024V cm).
Consider the Ruddlesden–Popper ruthenates. Both strong Ru 4d–O 2p hybridization
and weaker intrasite correlation effects compared to the 3d transition metals are
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expected because of the greater spatial extension of the 4d atomic orbitals. Nonetheless,
U is sufficiently strong to open a band-gap in the ruthenates. Optical conductivity
measurements indicate the one-electron bandwidth in the n ¼ 1 Ruddlesden–Popper
insulator Ca2RuO4 is �1 eV, while the onsite Coulomb interaction is estimated
to be in the range 1.1–1.5 eV (Puchkov and Shen, 2000). Since U . W, correlation
prevents metallicity. However, in the isostructural Sr2RuO4, the conductivity in the ab
plane of the perovskite layers is metallic with a low resistivity (r �1024 V cm) and
the out-of-plane transport along the c axis is marginally metallic at low temperatures
(r �1022V cm) and semiconducting at high temperatures. Below 1 K, Sr2RuO4 exhibits
superconductivity.

For the n ¼ 3 Ruddlesden–Popper phase Ca3Ru2O7, the bandwidth is expected to be
slightly larger, while the onsite Coulomb interaction is presumed to be essentially
unchanged from that of Ca2RuO4. Likewise, Ca3Ru2O7 and Sr3Ru2O7 are marginally
metallic in the ab planes of the perovskite blocks (r � 1022V cm), but also exhibit
a very-slight metallic conductivity in the perpendicular out-of-plane direction along
the c axis (Puchkov and Shen, 2000). The anisotropy is smaller than in the n ¼ 1
Ruddlesden–Popper phases. It is a general observation that the anisotropy in transport
properties of such layered structures decreases with increases in the number of layers, n.

It is believed that electron correlation plays an important role with the anomalously
high resistivity exhibited in marginal metals. Unfortunately, although the Mott–Hubbard
model adequately explains behavior on the insulating side of the M–NM transition, on
the metallic side, it does so only if the system is far from the transition. Electron dynamics
of systems in which U is only slightly less than W (i.e. metallic systems close to the
M–NM transition), are not well described by a simple itinerant or localized picture.
The study of systems with almost localized electrons is still an area under intense
investigation within the condensed matter physics community. A dynamical mean field
theory (DMFT) has been developed for the Hubbard model, which enables one to
describe both the insulating state and the metallic state, at least for weak correlation.
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Figure 7.2. The onsite d–d Coulomb repulsion energy (left) and the charge transfer excitation

energy (right) for the 3d transition metal oxides. Plots are from data by Bocquet et al. (1992,

1996).
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However, solution of the mean field equations is not trivial and this topic need not be
discussed here.

7.2 ANDERSON LOCALIZATION

It has been seen in the previous section that the ratio of the onsite electron–electron
Coulomb repulsion and the one-electron bandwidth is a critical parameter. The Mott–
Hubbard insulating state is observed when U . W, that is, with narrow-band systems
like transition metal compounds. Disorder is another condition that localizes charge car-
riers. In crystalline solids, there are several possible types of disorder. One kind arises
from the random placement of impurity atoms in lattice sites or interstitial sites. The
termAnderson localization is applied to systems in which the charge carriers are localized
by this type of disorder. Anderson localization is important in a wide range of materials,
from phosphorus-doped silicon to the perovskite oxide strontium-doped lanthanum
vanadate, La12xSrxVO3.

In a crystalline solid, the presence of a strong disorder results in destructive quantum
interference effects from multiple elastic scattering, which is sufficient to stop propa-
gation of the conduction electrons. Inelastic scattering also increases electrical resistivity
but does not cause a phase transition. Anderson’s original model is the tight-binding
Hamiltonian on a d-dimensional hypercubic lattice with random site energies, character-
ized by a probability distribution. On a hypercubic lattice, each site has 2d nearest neigh-
bors and 2d(d21) next nearest neighbors.

In the second quantization language, the tight-binding Hamiltonian is written as:

H ¼
X
i,s

1isnis þ ti, j
X
i, j,s

CisAjs (7:7)

where tij is the nearest-neighbor hopping matrix (assumed constant). The Cis and Ajs

terms are creation and annihilation operators at the lattice sites i and j, and nis ¼
CisAis. The site energies, 1is , are taken to be randomly distributed in the interval
[2B/2, B/2], where B is the width characterizing the probability distribution function.
Random site energies correspond to varying potential well depths, or diagonal disorder
(referring to the diagonal elements of the Hamiltonian matrix), and they arise from
the presence of random substitutional impurities in an otherwise periodic solid.
Accordingly, diagonal disorder is also sometimes referred to as compositional disorder.
When there is variation in the nearest-neighbor distances, this gives rise to fluctuations in
the hopping elements tij. That is referred to as off-diagonal disorder and it is the type of
disorder present in amorphous solids like glasses and polymers, in which there is no
long-range crystalline structure periodicity. Off-diagonal disorder is sometimes called
positional disorder, lateral disorder, and Lifshitz disorder (Lifshitz, 1964, 1965) after
the Russian physicist Evgeny Mikhailovich Lifshitz (1915–1985).

Consider the simplest possible case, a monatomic crystalline solid. The potential at
each lattice site is represented by a single square well in the Kronig–Penney model
(Kronig and Penney, 1931) by Ralph Kronig (1904–1995) and William G. Penney
(1909–1991). For a perfect monatomic crystalline array (Fig. 7.3a), all the potential
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wells are of the same depth and the same distance apart. However, the random introduc-
tion of impurity centers in the crystalline lattice produces variation in the well depths
(diagonal, or Anderson, disorder), as illustrated in Figure 7.3b. Amorphous substances
like glasses exhibit variations in nearest-neighbor distances. This off-diagonal disorder
essentially produces unevenly spaced potential wells (Fig. 7.3c), that is, the disorder is
in the positions of the wells.

The multiple elastic scattering from fluctuations in site energies and positions, owing
to disorder, is sufficient to reduce the mean free path traveled by the electrons between
scattering events to a value comparable to the electron wavelength. Destructive quantum
interference between different scattering paths ensues, localizing the electron wave func-
tions. It must be noted that this localized electron wave function does not exist solely on a
single isolated atomic center, but rather exponentially decays over several atomic centers,
referred to as the localization length. It is found that both diagonal and off-diagonal
disorder can produce electron localization and both types of systems can, as well, exhibit
M–NM transitions. Most metallic glasses, however, do not show aM–NM transition, but
only moderate changes in resistivity with temperature (Mott, 1990). Off-diagonal
disorder is obviously assumed to dominate the charge transport at temperatures above
the glass transition temperature, that is, in the liquid regime.

In all substances, at high temperatures, the electrical resistivity is dominated by
inelastic scattering of the electrons by phonons, and other electrons. As classical particles,
the electrons travel on trajectories that resemble random walks, but their apparent motion
is diffusive over large-length scales because there is enough constructive interference to
allow propagation to continue. Ohm’s law holds and with increasing numbers of inelastic

(a)

(b)

(c)

Figure 7.3. (a) In the Kronnig–Penneymodel, the potential at each lattice site in a monatomic

crystalline solid is of the same depth. (b) The random introduction of impurity atoms in the

crystalline lattice produces variation in the well depths, known as diagonal, or Anderson,

disorder. (c) Amorphous (noncrystalline) substances have unevenly spaced potential wells, or

off-diagonal disorder.
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scattering events, a decrease in the conductance can be directly observed. By contrast,
Anderson localization can be thought of as occurring at some critical number of elastic
scattering events, in which the free electrons of a crystalline solid experience a phase tran-
sition from the diffusive (metallic) regime to the nondiffusive (insulating) state. In this
insulating state, nondiffusive transport occurs via a thermally activated, quantum mech-
anical hopping of localized states from site to site. It is believed that quantum interference
does not occur in liquids (with their off-diagonal disorder), where all collisions are
thought to be inelastic, which gives rise to a minimum metallic conductivity. There is
one very important aspect of pure Anderson localization that distinguishes it from
band gap insulators. In the latter case, nonmetallic transport is owing to the lack of elec-
tronic states at the Fermi level, whereas with Anderson localization, there remains a finite
DOS at EF.

The critical disorder strength needed to localize all the states via the Anderson
model is:

W

B

� �
complete

	 2 (7:8)

although a value as low as 1.4 has also been calculated (Mott, 1990). To treat cases of
weak disorder, Mott introduced the concept of a mobility edge, Ec, which resides in
the band tail and separates localized from nonlocalized states (Mott, 1966). In weakly dis-
ordered systems, the states in the tail of the conduction band tend to be localized. The
electrons are nonmetallic for all values of the electron energy that fall below Ec into
the localized regime, as illustrated in Figure 7.4a. In fact, since the valence band and

Ec

EF

PseudogapE

N(E )

Ec

Ec'

(a)

(b)

Figure 7.4. (a) A schematic DOS curve showing localized states below a critical energy, Ec, in

the conduction band. Conduction electrons are localized unless the Fermi energy is above Ec.

(b) In weakly disordered metals, a pseudogap, forms over which states are localized around

the Fermi energy, owing to an overlap between the valence band and conduction band tails.
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conduction bands overlap in a metal, the localized states in the tails of weakly disordered
systems form a pseudogap, in which electrons are localized around the Fermi energy
(Fig. 7.4b).

Percolation theory is helpful for analyzing disorder-induced M–NM transitions
(recall the classical percolation model that was used to describe grain-boundary transport
phenomena in Chapter 2). In this model, the M–NM transition corresponds to the perco-
lation threshold. Perhaps the most important result comes from the very influential work
by Abrahams (Abrahams et al., 1979), based on scaling arguments from quantum perco-
lation theory. This is the prediction that no percolation occurs in a one-dimensional or
two-dimensional system with nonzero disorder concentration at 0 K in the absence of a
magnetic field. It has been confirmed in a mathematically rigorous way that all states
will be localized in the case of disordered one-dimensional transport systems (i.e.
chain structures).

In two-dimensional systems (e.g. layered structures with alternating conducting and
insulating sheets), the effect of disorder is controversial. Theoretically, two-dimensional
systems with any amount of disorder are believed by many theoreticians to behave
as insulators at any temperature. Such behavior has been confirmed for several com-
pounds. For example, in the phase Na22xþyCax/2La2Ti3O10 two-dimensional metallic
transport should be possible within the perovskite slabs. This is because electrons
have been donated to the formally empty conduction band by a two-step sequence.
The first step consists of alloying the alkali metal sites in the NaO rock-salt layers
of the parent phase Na2La2Ti3O10 with Ca2þ, thereby introducing vacancies (yielding
Na22xCax/2La2Ti3O10 where 0.48 , x, 1.66). This is followed by intercalation of
additional sodium atoms into the vacancies (yielding Na22xþyCax/2La2Ti3O10), which
chemically reduces a portion of Ti4þ (d0) cations in the octahedral layers to the Ti3þ

(d1) state and donates electrons to the conduction band. However, the random electric
fields generated by the distribution of impurities (Ca2þ) in the rock-salt layer are primarily
responsible for the nonmetallic behavior in this system, possibly with weak correlation
effects (Lalena et al., 2000). By contrast, in the analogous three-dimensional transport
system, the mixed-valence perovskite La12xTiO3 (Ti3þ/Ti4þ), metallic conduction is
observed at x ¼ 0.25.

Recently, the prediction that metallicity is impossible in disordered two-dimensional
systems appears to have been contradicted. A metallic regime has been observed at zero
applied field strength down to the lowest accessible temperatures in GaAs/Ga12xAlxAs
heterostructures with a high density of InAs quantum dots incorporated just 3 nm
below the heterointerface (Ribeiro et al., 1999). Some have argued that this is an artifact,
and that other effects mask the M–NM transition. As another example of a discrepancy,
however, the surface metallacity of the topological insulator Bi12xSbx (Section 6.3.1)
appears to be robust, even in the presence of slight disorder or impurities (Teo et al.,
2008). This is beleived to be owing to the existence of a nonzero (p valued) Berry’s
phase, which is known theoretically to protect an electron system from weak localization
in its low temperature transport (Hsieh et al., 2009). A Berry’s phase is a phase acquired
over the course of a cycle when the system is subjected to cyclic adiabatic processes
resulting from the geometrical properties of the parameter space of the Hamiltonian.
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Philip Warren Anderson (b. 1923) received his
Ph.D. in theoretical physics under John H. Van
Vleck in 1949 from Harvard University. From
1949 to 1984, he was associated with Bell
Laboratories and was chairman of the theoretical
physics department there from 1959 to 1961.
From 1967 to 1975, he was a visiting professor
of theoretical physics at the University of
Cambridge. In 1975, he joined the physics depart-
ment at Princeton University, becoming emeritus
in 1997. Anderson was the first to estimate the
magnitude of the antiferromagnetic super-
exchange interaction proposed by Kramers, and
to point out the importance of the cation–

anion–cation bond angle. In addition to basic magnetics, Anderson has made
seminal contributions to the understanding of the physics of disordered media,
such as the spin-glass state and the localization of noninteracting electrons. For
this work, he was a co-recipient of the 1977 Nobel Prize in physics. He has worked
almost exclusively in recent years on high temperature superconductivity.
Anderson was on the United States National Academies of Sciences Council
from 1976 to 1979 and he was awarded the United States National Medal of
Science in 1983. (Source: Nobel Lectures, Physics 1971–1980, World Scientific
Publishing Company, Singapore.)

(Photo courtesy of the Department of Physics, Princeton University. Reproduced
with permission.)

7.3 EXPERIMENTALLY DISTINGUISHING DISORDER FROM
ELECTRON CORRELATION

The main effect of both types of electron localization, of course, is a crossover from
metallic to nonmetallic behavior (a M–NM transition). Nevertheless, it would be very
beneficial to have a method of experimentally distinguishing between the effects of
electron–electron Coulomb repulsion and disorder. In cases where only one or the
other type of localization is present this task is relatively simpler. The Anderson tran-
sition, for example, is predicted to be continuous. That is, the zero-temperature electrical
conductivity should drop to zero continuously as the impurity concentration is increased.
By contrast, Mott predicted that electron-correlation effects lead to a first order, or discon-
tinuous transition. The conductivity should show a discontinuous drop to zero with
increasing impurity concentration. Unfortunately, experimental verification of a true
first order Mott transition remains elusive.

Disorder and correlation are often both present in a system. One then has the more
difficult task of ascertaining which is the dominant electron localizing mechanism. As
might be expected, the most useful experimental approaches to this problem involve
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magnetic and conductivity measurements. In the paramagnetic regime at high
temperatures, the magnetic susceptibility, x, of a sample with a nonzero density of
states at the Fermi level (e.g. metals and Anderson-localized states) is temperature
independent. This is known as Pauli paramagnetism (see Example 7.1 and Fig. 7.6a
later), since it results from the Pauli exclusion principle. The Pauli susceptibility is
given by:

3Nzem2
B

2EF(0)
(7:9)

where Nze is the number of atoms times the number of electrons per atom in the band at
the Fermi energy, EF, and mB is the Bohr magneton, 9.27�10224 J/T (Pauli, 1927).
For narrow bands and high temperatures, however, there may be a slight temperature
dependency to the Pauli susceptibility (Goodenough, 1963).

Disorder cannot be the sole mechanism of electron localization when there also
exists experimental evidence suggesting the presence of a band gap. Direct methods
for detecting the presence of a band gap include optical conductivity and photoemission
spectroscopy. However, magnetic characterization is also very useful here as well. This is
because electron correlation induces the exchange interactions responsible for spon-
taneous magnetization in insulators. Goodenough has emphasized the use of magnetic
criteria as a means of characterizing the transition region between the itinerant and loca-
lized regimes. The validity of this approach may be seen by considering the Heisenberg
Hamiltonian:

Hex ¼ �
X

JijSi � Sj (7:10)

This is the expression for the exchange interaction between localized magnetic moments.
In Eq. 7.10, J is the exchange integral, given by:

J ¼ � 2b2

4S2U
(7:11)

where S is the spin quantum number of the system (Anderson, 1959). In a mean-field
approximation, the exchange integral can be incorporated into a dimensionless constant
(the Weiss constant) and the Heisenberg Hamiltonian can be rewritten in terms of this
constant and the magnetization of the sample. Thus, Eq. 7.9 for the Pauli susceptibility
of itinerant electrons, and Eq. 7.11 relating J to the onsite Coulomb energy and the
tight-binding transfer integral, establishes how magnetic data can be used to characterize
the itinerant-to-localized transition region.

Systems exhibiting both strong disorder and electron correlation, so-called dis-
ordered Mott–Hubbard insulators, are difficult to evaluate. The description of electronic
states in the presence of both disorder and correlation is still an unresolved issue in
condensed matter physics. Whether disorder or the correlation is the predominant
factor in controlling transport properties in a material depends on a complex
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temperature/composition-dependent three-way interplay between U, B, and W. Many
materials exhibit the behavior illustrated in the electronic phase diagram shown in
Figure 7.5. For cases of strong disorder with weak correlation, a temperature-independent
(Pauli) paramagnetic susceptibility, x(T ), is usually observed at high temperatures
because of the finite density of states at EF. However, this may cross over to a Curie or
Curie–Weiss type behavior (linear dependence of x on T ) at low temperatures, as illus-
trated in Figure 7.6a of Example 7.1 (shown later). The crossover from Pauli-type to
Curie-type behavior has been shown to be owing to correlation, which gives rise to
the occurrence of singularly occupied states below the Fermi energy, EF (Yamaguchi
et al., 1979). A Curie law results whenever the probability of finding two electrons in
a localized state is less than the probability of finding one electron (because of the
Coulomb repulsion) (Kaplan et al., 1971). If electron correlation is much stronger
than disorder (U� B), the magnetic susceptibility curve typically has the general
appearance of an antiferromagnetic insulator.

Another characteristic feature of disordered systems is the variable range hopping
(VRH) mechanism to the electrical conduction, which is observed on the nonmetallic
side of the M–NM transition at low temperatures. This arises from the hopping of
charge carriers between localized states, or impurity centers. Hence, the phenomenon
is also known as impurity conduction. Experimentally, it is indicated by characteristic
temperature dependency to the d.c. conductivity. For three-dimensional systems with
noninteracting electrons, the logarithm of the conductivity and T21/4 are linearly related,
in accordance with the equation given by Mott (Mott, 1968)

s ¼ A exp � T0
T

� �n� �
n ¼ 1=4 (7:12)

dr/dT > 0

dr/dT < 0
c = cCW

dr/dT < 0
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Figure 7.5. An electronic phase diagram illustrating the location of a metallic regime, at low

U (Coulomb repulsion energy) and B (disorder), where dr/dT. 0. With increasing U and/or B,

the system becomes nonmetallic (dr/dT, 0) but may still exhibit Pauli paramagnetism if there

is no band gap (U
 B).
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The exponent n, which is known as the hopping index, is actually equal to 1/(d þ 1)
where d is the dimensionality. Hence, for two-dimensional systems n ¼ 1/3. Strictly
speaking, Eq. 7.12 holds only when the material is near the M–NM transition and at
sufficiently low temperatures. At high temperatures, conduction proceeds by thermal
excitation of electrons or donors into the conduction band, or injection of holes or accep-
tors into the valence band.

The Anderson transition is described in terms of noninteracting electrons. For real
materials, electron–electron interactions cannot be ignored, even when disorder is the pri-
mary localization mechanism. In other words, with Anderson localized states correlation
effects are normally present to some extent. Of course, the reverse is not true – correlated
systems may be completely free of disorder. Electrical conduction in insulators with band
gaps is also thermally activated. Hence, it can be difficult to determine the value of n in
strongly correlated disordered systems unambiguously. The hopping index, however, is
often found to be equal to one-half at low temperatures, with one-quarter still being
observed at higher temperatures.

For highly correlated systems, a T2 dependence to the resistivity is frequently
observed in the metallic regime. Notable exceptions to this rule are the high-temperature
superconducting cuprates, in which conduction occurs within CuO2 layers. Electron
correlation is believed to be important to the normal state (nonsuperconducting) proper-
ties. In fact, all the known high-temperature superconducting cuprates are compo-
sitionally located near the Mott insulating phase. Both hole-doped superconductors
(e.g. La22xSrxCuO4, YBa2Cu3O72y) and electron-doped superconductors (e.g.
Nd22xCexCuO4) are known, in which the doping induces a change from insulating to
metallic behavior with a superconducting phase being observed at low temperatures.
However, a T-linear dependence to the resistivity, rather than a T2 dependence, is
widely observed in the nonsuperconducting metallic state above the critical temperature,
Tc, in these materials.

Lengthy review articles on disorder-induced M–NM transitions, with minor contri-
butions by electron correlation, are available (Belitz and Kirkpatrick, 1994; Lee and
Ramakrishnin, 1985). An extensive review article on correlated systems has also been
published (Imada et al., 1998).

7.4 TUNING THE M–NM TRANSITION

There are two basic approaches for tuning the composition of a phase to induce metal-
licity. One is the band filling control approach, in which the chemical composition of
an insulator or semiconductor (either a band type or correlated type) is varied in such a
way as to increase the charge carrier (hole or electron) concentration. The sodium tung-
sten bronzes, introduced in Chapter 2, and La-doped perovskite SrTiO3 are examples of
filling control. Both WO3 and SrTiO3 are band insulators. However, as sodium is inter-
calated into the interstitials of WO3, giving NaxWO3, or when La3þ is substituted for
Sr2þ to give La12xSrxTiO3, a portion of the transition metal cations are chemically
reduced and mixed valency is introduced. The extra electrons are donated in each
case to a conduction band that was formally empty. Hole doping may be used to
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bring about metallicity too, as in La12xSrxMO3 (M ¼ Ti, Mn, Fe, Co), where hole
doping of x � 0.05 drives the ground state from an antiferromagnetic Mott insulator
to a paramagnetic metal.

Introducing substitutional donors directly on the cation sublattice can sometimes
also induce metallic behavior. For example, the perovskite oxide LaCoO3 is a band insu-
lator at 0 K (i.e. it contains a filled valence band and an empty conduction band separated
by a band gap) since Co3þ is in the low-spin d6 (t62g) ground state. Upon increasing the
temperature to approximately 90 K, the Co3þ ion is excited into a high-spin state.
Nonetheless, the oxide remains in the insulating state, owing to correlation effects.
Upon further increasing the temperature to about 550 K, the oxide becomes conducting.
Metallic behavior can be induced at much lower temperatures, however, by electron
doping LaCoO3 with Ni3þ (t62ge

1
g) to give LaNi12xCoxO3 (Raychaundhuri et al., 1994).

Despite its success in LaNi12xCoxO3, the strategy of alloying the transition metal
site is not often attempted because of the danger of reducing the already narrow d
bandwidth, which promotes electron localization. Transition metal compounds generally
tend to have a narrow d band (small W ) that becomes pronounced if dopant atoms are
not near in energy to those of the host, owing to a different effective nuclear charge or
orbital radius. For example, low concentrations of impurities may have energy levels
within the band gap and effectively behave as isolated impurity centers. With heavier
doping, appreciable overlap between the orbitals on adjacent impurities may occur with
the formation of an impurity band. However, nonthermally activated metallic conduction
would be predicted in the Bloch/Wilson band picture only if the impurity band and
conduction band overlap. This is believed to be the mechanism for the M–NM transition
in phosphorus-doped silicon.

The filling control approach has even been applied to some nanophase materials. For
example, the onset of metallicity has been observed in individual alkali metal-doped
single-walled zigzag carbon nanotubes. Zigzag nanotubes are semiconductors with a
band gap around 0.6 eV. Using tubes that are (presumably) open on each end, it has
been observed that upon vapor phase intercalation of potassium into the interior of the
nanotube, electrons are donated to the empty conduction band, thereby raising the
Fermi level and inducing metallic behavior (Bockrath, 1999).

A second way of inducing metallicity is known as bandwidth control. Usually, the
lattice parameters of a phase are varied while maintaining the original structure. Thus,
U remains essentially the same, while W is made larger. This may be accomplished by
the application of pressure or the introduction of substitutional dopants. The former is
commonly exhibited in V2O3, while the latter is successful in Ni2S22xSex, where the
Se doping widens the S 2p bandwidth, closing the charge transfer gap. There has been
disagreement in the literature as to whether NiS2 is a charge-transfer or Mott–Hubbard
insulator. It has been speculated that at low temperatures, the compound is of the
Mott–Hubbard type and, at higher temperatures, of the charge-transfer type (Honig
and Spałek, 1998). As with filling control, alloying of the transition metal cation sub-
lattice is not usually successful at driving a system metallic.

In the ABO3 perovskites, bandwidth control may be accomplished by changing the
ionic radius of the A-site (twelve-coordinate) cation. Essentially, this mimics the effect of
pressure, which also effectively changes the B–O–B angle (see discussion in the
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introductory Section 7.1). The intra-site correlation energy usually changes somewhat
also during bandwidth control, in accordance with the expectations outlined earlier.
However, the method primarily relies on increasing the hybridization, in order to
obtain a wider bandwidth favorable for metallic behavior. In some cases, structure type
changes may occur, for example, as with the transformation of a cubic perovskite to a
rhombohedral or orthorhombic structure.

Example 7.1

The M–NM transition has been studied in powder samples (prepared by the
ceramic method) of the series of perovskite oxides La12xTiO3 with 0 � x � 0.33
(MacEachern et al., 1994). Below are the curves of the temperature dependencies
to the magnetic susceptibility (Fig. 7.6a) and electrical resistivity (Fig. 7.6b) for
different compositions, as well as the cell parameters for the phases:

1. For what value of x does metallic behavior first appear?

2. Is electron localization primarily due to disorder or correlation?

3. Speculate as to the nature of the M–NM transition. Does varying the
chemical composition (the value of x) primarily result in filling control
or bandwidth control?

Cell parameters

Comp. a (Å) b (Å) c (Å) vol (Å3)

La0.70TiO3 5.464 7.777 5.512 234.22
La0.75TiO3 5.541 7.793 5.528 238.70
La0.80TiO3 5.557 7.817 5.532 240.30
La0.88TiO3 5.582 7.882 5.559 244.58
La0.92TiO3 5.606 7.914 5.584 247.74
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Figure 7.6. From MacEachern et al., Chem. Mater. 1994, 6, 2092. (Reproduced by

permission of the American Chemical Society.)
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Solution

For x ¼ 0.30, dr/dT is negative over the entire temperature range, indicating
insulating behavior. For x ¼ 0.25, dr/dT is negative at high temperatures, but
changes sign, becoming positive (i.e. the resistivity begins to increasewith increas-
ing temperature) around 150 K and remains positive for all temperatures below
this point. Hence, the M–NM transition appears at the composition x ¼ 0.25.

1. For these materials, there is evidence for both disorder and electron
correlation. The temperature independent component to the magnetic
susceptibility at high temperatures is too great in magnitude for
Van Vleck paramagnetism but, rather, is Pauli-like paramagnetism
indicating the presence of a finite density of states at the Fermi level
(Anderson localization). Furthermore, plots of ln s versus T21/4 were
reported as being linear, indicating variable range hopping.

However, there is also a Curie–Weiss-like behavior at temperatures
below 50 K in the two lower curves of Figure 6.6a and below about
150 K in the two upper curves, which is indicative of electron
correlation. Since Ti is to the left of the first transition period, relatively
strong electron correlation in the Ti 3d orbitals would be expected. In
fact, a linear dependency of the resistivity to T2 (plots of r versus T2

were linear) was also reported in the metallic phases, supporting the
presence of correlation effects.

Hence, for La12xTiO3, both disorder and correlation are probably
important. These phases are best considered disordered Mott–Hubbard
insulators.

2. The unit-cell volume expands with increasing lanthanum content.
However, the metallic behavior appears with the larger unit cells. This is
contradictory to bandwidth control, in which greater atomic orbital
overlap would be expected to overcome correlation effects with
contractions in the unit cell.

For La0.66TiO3, titanium is fully oxidized to Ti4þ (d0). Hence, the
conduction band is empty. As the Ti3þ (d1) content increases with
increased lanthanum deficiency, however, the conduction band becomes
occupied with electrons. Thus, the M–NM transition appears to be
under filling control.

7.5 OTHER TYPES OF ELECTRONIC TRANSITIONS

In this chapter, the focus has been on the Mott (Mott–Hubbard) and Anderson tran-
sitions. When charge ordering is present, other types of transitions are also possible. A
classic example is the mixed-valence spinel Fe2O3. There are two types of cation sites
in Fe2O3, denoted as A and B. The A sites are tetrahedrally coordinated Fe3þ ions and
the B sites are a 1 :1 mixture of octahedrally coordinated Fe2þ (t42ge

2
g) and Fe3þ (t32ge

2
g)

ions. Electrical transport is on the B sublattice, and is nonmetallic (dr/dT, 0) thermally
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activated hopping below about 300 K. Interestingly, it is found that at 120 K, the resis-
tivity increases by two orders of magnitude, the oxide remaining nonmetallic. This is
the Verwey transition in Fe2O3. Since the system remains nonmetallic, it is sometimes
called an insulator–insulator transition.

At the Verwey transition, the mixed-valence ions on the B sublattice become
ordered. There is some controversy about the exact structure of the ordered state.
Verwey first proposed that the mixed-valence cations are ordered onto alternate B-site
layers (Verwey and Haayman, 1941; Verwey et al., 1947). Charge ordering transitions
are also observed in Ti4O7, as well as many transition metal perovskite oxides, such as
La12xSrxFeO3, La12xSr1þxMnO4, and La22xSrxNiO4 (the latter in which the charge
ordering drives a true M–NM transition).

Another type of charge ordering, called the charge density wave (CDW) state can
open a band gap at the Fermi level in the partially filled band of a metallic conductor.
This causes a M–NM transition in quasi one-dimensional systems or a metal–metal tran-
sition in quasi-two-dimensional systems, as the temperature is lowered. At high tempera-
tures, the metallic state becomes stable because the electron energy gain is reduced by
thermal excitation of electrons across the gap. Most CDW materials contain weakly
coupled chains, along which electron conduction takes place, such as the nonmolecular
K0.3MoO3 and the molecular compound K2Pt(CN)4Br0.33H2O (KCP). Perpendicular to
the chains, electrical transport is much less easy, giving the quasi-one-dimensional char-
acter necessary for CDW behavior.

A CDW is a periodic modulation of the conduction electron density within a
material. It is brought about when an applied electric field induces a symmetry-lowering
lattice modulation in which the ions cluster periodically. The modulation mechanism
involves the coupling of degenerate electron states to a vibrational normal mode of the
atom chain, which causes a concomitant modulation in the electron density that lowers
the total electronic energy. In one-dimensional systems, this is the classic Peierls distor-
tion (Peierls, 1930, 1955). It is analogous to the JT distortion observed in molecules.

Figure 7.7a shows the extended-zone electronic band structure for a one-dimensional
crystal – an atom chain with a real-space unit cell parameter a and reciprocal lattice vector
p/a – containing a half-filled (metallic) band. In this diagram, both values of the wave
vector, +k, are shown. The wave vector is the reciprocal unit cell dimension. The Fermi
surface is a pair of points in the first BZ (Fig. 7.7c). When areas on the Fermi surface can
be made to coincide by mere translation of a wave vector, q, the Fermi surface is said to be
nested. The instability of the material towards the Peierls distortion is due to this nesting.
In one dimension, nesting is complete and a one-dimensional metal is converted to
an insulator because of a Peierls distortion. This is shown in Figure 7.7b, where the
real-space unit cell parameter of the distorted lattice is 2a and a band gap opens at
values of the wave vector equal to half the original values, p/2a.

The total electronic energy is reduced because filled states are lowered in energy and
empty states are raised, relative to the same states in the undistorted lattice. The distortion
is favored so long as the decrease in electronic energy outweighs the increase in elastic
strain energy (Elliot, 1998). Note that the Peierls transition does not involve electron cor-
relation effects. In higher dimensions, only sections of the Fermi surface may be trans-
lated and superimposed on other portions. The band gap opening is thus only partial,
and a metal–metal transition, rather than a M–NM transition, is observed.
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A related phenomenon is the spin-density wave (SDW), in which the Coulomb repul-
sion between electrons in doubly occupied sites results in a spin modulation, rather than a
charge density modulation. The SDW state leads to a band gap-opening M–NM tran-
sition like the CDW state. However, the lattice is not distorted by a SDW state, so they
cannot be detected by X-ray diffraction techniques. Spin-density wave instabilities
may be induced in low-dimensional metals by magnetic fields as well as by lowering
the temperature (Greenblatt, 1996). Hence, neutron diffraction can be used for observing
the existence of a SDW state, since it results in a spatially varying magnetization of
the sample.

PRACTICE PROBLEMS

1) Name and describe the four basic types of electron localization mechanisms in solids.

q = 2kF

Metal

–p /a p /a–kF
k k

kF0 –p /a p /a–kF kF0

Insulator

Gap

a
Atoms

(a)

(c)

(b)

Atoms

E(k) E(k)

2a

EF

r(r ) r(r )

Figure 7.7. The Peierls distortion of a one-dimensional metallic chain. (a) An undistorted

chain with a half-filled band at the Fermi level (filled levels shown in bold) has an

unmodulated electron density. (b) The Peierls distortion lowers the symmetry of the chain

and modulates the electron density, creating a CDW and opening a band gap at the Fermi

level. (c) The Fermi surface nesting responsible for the electronic instability.
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2) What does the term marginal metal signify?

3) Which type of atomic orbital is especially prone to localization effects and why?

4) Describe the two basic approaches for inducing metallicity, or otherwise tuning the
electrical behavior of solids.

5) What is diagonal disorder? What is off-diagonal disorder? Which type is responsible
for Anderson localization?

6) Name one possible method of experimentally distinguishing between the different
localization mechanisms?

7) Is it possible for a system to exhibit both disorder and electron correlation? Which of
the following is possible: A system with disorder and no electron correlation or a
system with electron correlation and no disorder?
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8

MAGNETIC AND DIELECTRIC
PROPERTIES

The phenomenon of magnetism was observed in antiquity. The earliest discovery of the
magnetic properties of lodestone (Fe3O4) was either by the Greeks or the Chinese. The
relationship between magnetism and electricity was discovered in the nineteenth century.
In 1820, the Danish physicist Hans Christian Oersted (1777–1851) demonstrated that
bringing a current-carrying wire close to a magnetic compass caused a deflection of
the compass needle. This deflection is caused by the magnetic field generated by the elec-
tric current. In 1855, still more than forty years before the discovery of the electron,
Scottish physicist James Clerk Maxwell (1831–1879) showed that a few, relatively
simple, mathematical equations could express the interrelation between electricity and
magnetism, in terms of the macroscopic fields. For example, it is possible to calculate
the magnetic flux density at any distance from a current-carrying wire if the current den-
sity is known. The Dutch physicist Hendrik Antoon Lorentz (1853–1928) later formu-
lated Maxwell’s equations in terms of the analogous microscopic fields. Our coverage
of magnetic properties in this book will not require a detailed analysis of either
Maxwell’s or Lorentz’s equations; however, there is a need to examine field equations
more closely in the next chapter, which treats the optical properties of solids.

There are various categories of magnetic behavior. In common parlance, the term
magnetism refers to ferromagnetism (from the Latin Ferrum for iron), since iron was
the first substance in which it was observed. Nonferromagnetic materials can also possess
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magnetic attributes, for example, diamagnetic, paramagnetic, and antiferromagnetic
properties, among others. All of these are discussed in this chapter. Hard magnets, also
referred to as permanent magnets, are materials which, at or below some transition temp-
erature (the Curie temperature, TC), become magnetized upon exposure to an external
magnetic field and retain this magnetization after removal from the external field. The
term magnetization means a large-scale ordering among the atomic moments comprising
the sample, such that these atomic moments are aligned parallel to one another, the
phenomenon known as ferromagnetism. A ferromagnetic material has many such
atomic moments originating from unpaired electrons, and when they become aligned
in this manner a measurable macroscopic field results that remains for an indefinite
period of time after the material is removed from the external magnetizing field. The
amount of magnetization it retains is called its remanence. Demagnetization requires
the application of a field in the opposite direction; the amount of energy required to
demagnetize a magnet is called its coercivity.

Recent advances in the field of hard magnets include the 1984 discovery of the mag-
netic properties of a neodymium–iron–boron alloy, Nd2Fe14B, which has since been
used in computer disk-drive applications, primarily voice-coil motors. It is currently
under consideration for future applications, including motors and generators in wind-
mills, electric vehicles, and household appliances. The potential benefits of using
NdFeB magnets would be a significant reduction in volume and weight and, thus, an
improved efficiency.

Permanent magnets have a high remanence and high coercivity. By contrast, soft
magnetic materials are those that are easily magnetized and demagnetized.
Demagnetization can be accomplished by heating the material above its Curie tempera-
ture or by subjecting the material to a reversing and decreasing magnetic field. Soft mag-
netic materials such as iron oxide (Fe2O3), barium ferrite (BaFe2O4), and chromium
dioxide (CrO2), have been used for many years as the recording media in magnetic
tapes. Other soft magnets include: iron–silicon alloys, nickel–iron alloys (e.g.
Ni81De19 or PermalloyTM), and the nickel, manganese, and zinc ferrites. Soft magnetic
materials (synthetic garnet) were once used in nonvolatile magnetic bubble memory mod-
ules and are under consideration again in the form of magnetic domain-wall nanowire
racetrack memory. Multiple magnetic cobalt–platinum–chromium–boron alloy
layers, separated by ruthenium, are now used as recording media in small magnetic
disk drives, while giant magnetoresistive (GMR) multilayers, consisting of nickel–iron
alloys and cobalt layers separated by copper spacers, are used as read heads. Other
GMR multilayers are used as solid-state magnetic field sensors, or magnetometers, for
detecting magnetic fields as low as 1 Oersted (1 Oersted ¼ 1 Gauss in air).

This chapter will show that only atoms with partially filled shells (i.e. atoms with
unpaired electrons) can possess a net magnetic moment in the absence of an external
field. Since main group ( p block) elements have atoms with filled d subshells and
tend to form compounds with other p-block elements that result in filled p subshells in
accordance with the octet rule, the vast majority of magnetic materials have historically
contained transition metal atoms with partially filled d subshells. Nevertheless, some
pure organic compounds with free radicals have been found to exhibit ferromagnetic
intermolecular interactions, albeit at very low temperatures (several Kelvins).
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Examples of these soft ferromagnets include: (p-nitrophenyl) nitronyl nitroxide
(p-NPNN), for which TC ¼ 0.6 K; and the charge transfer salt [TDAE]C60 (TDAE ¼
tetrakis(dimethylamino)ethylene), for which TC ¼ 16.1 K. Additionally, organic free
radicals can be combined with organometallic radicals to form magnetic hybrid molecu-
lar substances. Examples include linear chains of alternating tetracyanoethylene
(TCNE)†2 and [Fe(C5Me5)2] cations (TC ¼ 4.8 K), and extended networks of vanadium
and (TCNE)†2 (TC ¼ 400 K). The development of molecular-based magnetic materials
is in an embryonic stage compared to that of nonmolecular magnetic materials but is,
nonetheless, an emerging and exciting new area of research. However, this chapter will
cover primarily the magnetic properties of nonmolecular inorganic solids.

In addition to fueling advances in established technologies, novel magnetic materials
are under intense investigation for their potential to revolutionize many new fields, like
noninvasive magnetodynamic therapy. For example, some magnetic nanoparticles are
being studied for use in the simultaneous detection and treatment of cancer. The hope
is that the nanoparticle could be used as a magnetic resonance imaging (MRI) contrast
agent that could be heated by increased power to the MRI coils, thereby killing any
detected tumor. Finally, just as magnetic moments are responsible for the magnetic be-
havior of materials, electric dipole moments are responsible for dielectric properties. In
the presence of an electric field, a dielectric (insulative) material’s electric polarization
changes in a similar fashion to the way a magnetic material’s magnetic polarization
responds to a magnetic field. Because of the analogies with magnetism, it is logical to
discuss dielectric properties at the end of this chapter.

8.1 PHENOMENOLOGICAL DESCRIPTION OF
MAGNETIC BEHAVIOR

The study of magnetism can seem bewildering, if not outright esoteric. There are a
plethora of terms used in the field, constituting an entire jargon of its own. Pertinent
length scales, all of which influence magnetic behavior, encompass the entire spectrum
from the atomic to the system level. Finally, magnetism, perhaps more than any other
field, tests a student’s grasp of quantum mechanics. In tackling such a complex subject,
it helps to start with the macroscopic picture. As with most materials properties, a
phenomenological description of magnetism was developed well in advance of a micro-
scopic theory.

Consider a current-carrying wire segment placed between the poles of a horseshoe
magnet. The magnetic field of the horseshoe magnet is dipolar. The magnetic field
lines travel from the magnet’s north pole to its south pole. The electric current within
the wire generates a separate magnetic field around the wire, even in the absence of the
horseshoe magnet. The magnetic field lines emanating from the current-carrying straight
wire form concentric circles around the wire and the wire’s magnetic field direction is
given by the right-hand rule, that is, if the finger of the right-hand thumb points in the
direction of current flow, the fingers curl around the wire in the direction of its magnetic
field. Now, this magnetic field interacts with the magnetic field emanating from the
magnet. Specifically, the magnetic field lines emanating from the straight wire add to
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the magnetic flux density on the side of the wire in which they are in the same direction as
those of the horseshoe magnet and subtract from the magnetic flux density on that side in
which they are opposite in direction. This results in a deflecting force on the wire from the
direction of greater flux density towards the direction of lesser flux density. Again, the
right-hand rule can be used to ascertain the direction. For example, if the wire segment
is carrying a current in the direction of the thumb on your opened-palm right hand,
while the magnetic field is in the direction of your fingers, your open palm is in the direc-
tion of the magnetic force, or deflection, experienced by the wire. The magnitude of the
force is given by:

F ¼ IL� B (8:1)

where I is the current (a scalar), L is a vector pointing in the direction of the current whose
magnitude is given by the length of the segment, and B is the magnetic (vector) field.

If, instead of a straight wire segment, a current-carrying loop is placed in the mag-
netic field, a torque (turning force) is exerted on the loop. The torque, t, is given by:

t ¼ IA� B (8:2)

where A is a vector, perpendicular to the plane of the loop and whose magnitude is equal
to the area of the loop. The torque is zerowhenA andB are parallel, and it has a maximum
value when A and B are perpendicular. For a closed loop, the right-hand rule can again be
used to give the direction ofA. If you curl the fingers on your right hand in the direction of
the current in the loop, your thumb will point in the direction of A.

In Eq. 8.2, the product IA is known as the magnetic moment (also called the magnetic
dipole moment, or the electromagnetic moment) of the loop. It is given the symbol mm.
The magnetic moment serves as the starting point for discussing the behavior of any mag-
netic material placed within an external magnetic field. If a bar magnet, for example, is
placed inside a dipolar magnetic field it experiences a torque (or moment), t, that tends to
align its axis with the direction of the field. The torque increases with the strength of the
field and with the separation between the poles of the bar magnet.

Similarly, an electric current flowing in the single loop of a coil produces a magnetic
field and has a magnetic moment perpendicular to the plane of the orbit. If such a coil is
suspended in an external magnetic field so that it can turn freely, it too will rotate so that
its axis tends to become aligned with the external field. An angle is made between the axis
of the loop normal and the field direction (Fig. 8.1). The magnitude of the magnetic
moment is given by the product of the current, I (SI unit, Ampere), and the area enclosed
by the loop, pr2 (units, m2):

mm ¼ Ipr2 (8:3)

Any dipolar magnetic field pattern is symmetric with respect to rotations around a
particular axis. Hence, it is customary to describe the magnetic dipole moment that cre-
ates such a field as a vector with a direction along that axis. The SI units of magnetic
moments are thus A . m2. From Eq. 8.2, the torque experienced by the magnetic
moment in the external field is given by the cross product of the magnetic moment and
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the internal magnetic flux density, B (SI units, tesla; or Gauss in cgs units), which is the
sum of the flux owing to the external source and that owing to the sample itself.

A macroscopic sample (which need not be a bar magnet or current-carrying coil),
comprised of a very large number of microscopic (atomic) magnetic moments, can be
defined as the magnetization, M, as the net magnetic moment per unit volume (SI
units A/m, gauss/cm3, or emu/cm3 in the cgs system):

M ¼
X
i

nium,i (8:4)

In Eq. 8.4, ni is the concentration of atomic moments, mm. The magnetization and the
magnetic flux density (also called the induction) are related to the magnetic field intensity
H within the sample, via the equation:

B ¼ m0(H þM) (8:5)

where m0 is the vacuum permeability (m0 ¼ 4p � 1027 H/m). In general, B and H are
also related via a constant of proportionality known as the magnetic permeability, m,
which is given by m ¼ m0(1 þ x), where x is the magnetic susceptibility that is, in
turn, given byx ¼ (mr – 1) inwhich the relative permeability,mr, ismr ¼ m/m0. Themag-
netic permeability is a second-rank tensor. Essentially, it represents the degree of magne-
tization of the material that responds linearly to an applied magnetic field; B ¼ mH. In
general, magnetic permeability is not a constant, as it can vary with the position in the
medium, the frequency of the applied field, the temperature, as well as other parameters.

The magnetization is often linearly proportional to the internal field strength, the
constant of proportionality being the magnetic susceptibility, x:

M ¼ xH (8:6)

q

t

B

I

Figure 8.1. The concept of a magnetic moment. When placed in a magnetic field, a current-

carrying loop (or a bar magnet) experiences a torque, t, which tends to align the moment’s axis

with that of the field.
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Materials with a magnetization of the same polarity as the applied field, and in which M
and H are linearly related, are termed paramagnetic substances. This behavior results
from the susceptibility being independent of the field strength and positive in sign,
since paramagnets are attracted to a field. Materials in which the susceptibility is relatively
small, field-independent, and negative in sign are termed diamagnetic substances. These
materials are repelled by a magnetic field. The magnetization and applied field are still
linearly related, but they have opposite polarities. Ferromagnetic substances are strongly
attracted to a magnetic field and have large positive field-dependent values of the suscep-
tibility. Ferromagnetism is the form of magnetic behavior most people are familiar with
and was the form first apparent to early mankind. Indeed, to the general public, a magnetic
material is synonymous with a ferromagnetic substance. Antiferromagnetic substances
have susceptibilities with magnitudes comparable to those of paramagnetic substances
but are field dependent. These behaviors are summarized in Table 8.1.

8.1.1 Magnetization Curves

As discussed above, the different types of magnetic behavior are evident in magnetization
curves, which show the net magnetization, M, of a sample versus applied field strength,
H. Paramagnetic and diamagnetic materials exhibit a linear relationship between M and
H (Figs. 8.2a and 8.2b), whereas the magnetization curve for a ferromagnetic substance

TABLE 8.1. Susceptibility for Different Types of Magnetic Behavior

Type Sign Magnitude (emu)1 Field Dependence

Diamagnetic 2 1026 Independent
Paramagnetic þ 0–1024 Independent
Ferromagnetic þ 1024–1022 Dependent
Antiferromagnetic þ 0–1024 Dependent

1SI units for volume susceptibility are 4p times larger than cgs value given in the table. (From Drago, R.
Physical Methods for Chemists. Saunders College Publishing, Fort Worth, TX, 1992.)

M

H

0.001

(a) (b) (c)

0.05

M

H

0.001

0.05

M

H

Initial magnetization

+Hc–Hc

MS

MR

0.05

1.5

Figure 8.2. Different types of magnetic behavior: (a) a typicalM–H curve (both axes in Teslas)

of a paramagnetic substance; (b) a diamagnetic substance; and (c) a ferromagnetic substance

(note the change in the scale of the M axis). An isotropic single crystal, or polycrystal with

random crystallite orientation, is assumed.
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has the appearance shown in Figure 8.2c. The net magnetization rapidly increases
(following the initial curve) until it reaches the saturation magnetization, MS. If the
field is reduced to zero, the magnetization does not fall back along the initial curve,
but rather follows the hysteresis loop in the direction indicated by the arrow. It can be
seen from Figure 8.2c that once the material has had exposure to a magnetic field, it
retains some magnetization (MR); it is converted to a permanent magnet. In order to
demagnetize the material, it is necessary to reverse the external field and reach the
coercive field strength value, 2Hc. This behavior is due to the domain structure
of ferromagnets, which is discussed in Section 8.4. Owing to magnetocrystalline
anisotropy, M–H curves, in general, are not the same for different directions within
single crystals.

8.1.2 Susceptibility Curves

The quantity x is dimensionless (since M and H have the same units) but is usually
reported in relation to the sample volume and, hence, is reported as volume susceptibility
in cgs units of emu/cm3, where emu is an abbreviation for electromagnetic system of
units or, in reality, gauss cm3 per gram. The corresponding value for the volume suscep-
tibility in SI units is 4p times larger than the value in cgs units. The molar susceptibility,
xM, may be obtained by multiplying x by the molar volume.

In a single crystal, M is, in general, not parallel to H. The susceptibility, therefore,
must be defined by the magnitudes and directions of its principal susceptibilities xx,
xy, xz. Hence, x is a second-rank tensor, which linearly relates the two vectors,M andH.

Example 8.1

Write the expression for the ellipsoid representing the magnetic susceptibility for
a triclinic crystal referred to an orthogonal system of coordinates x, y, and z.

Solution

In a completely analogous fashion to Example 6.1, we write

1 ¼ x11x
2 þ x22y

2 þ x33z
2 þ 2x23yzþ 2x31zx þ 2x12xy

wherexijare the six linearly independent componentsof themagnetic susceptibility.

However, only isotropic solids will be considered such as cubic crystals or randomly
textured polycrystals, for which the magnetic susceptibility becomes equivalent to a
scalar. In a powder with random crystallite orientation,M of the aggregate is in the direc-
tion of H, since those components of M transverse to H in the individual crystallites
cancel on average. However, the mean value of M for a powder is the mean value of
the principal susceptibilities, which are equal in magnitude. Hence, in a powder, x ¼
1
3(xx þ xy þ xz) (Nye, 1957).
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An important attribute of the magnetic susceptibility is its temperature dependence.
The susceptibility, as a function of temperature, corresponding to each of the three major
types of magnetic response is illustrated in Figure 8.3a. Pierre Curie (1859–1906)
showed that the paramagnetic susceptibility and temperature are reciprocally related
(Curie, 1895):

x ¼ C

T
(8:7)

Equation 8.7 is the equation of a line passing through the origin (zero intercept) with x
plotted on the ordinate and 1/T plotted on the abscissa. The slope of the line is C, the
Curie constant. Equivalently, a plot of 1/x versus T yields a straight line with slope
1/C (Fig. 8.3b). For the case of classical mechanics, Paul Langevin (1872–1946) later
showed that the exact form of the equation for the magnetic susceptibility, in fields insuf-
ficient to cause saturation, is:

x ¼ Nm2
m

3kT
(8:8)

where N is the number of atoms, mm is the atomic moment, and k is Boltzmann’s constant
(Langevin, 1905). For the molar susceptibility, N is replaced by Avogadro’s number.

Although Curie’s law predicts that the paramagnetic susceptibility will increase
with decreasing temperature, a nonzero intercept is often observed in plots of 1/x
versus T. This behavior is owing to exchange interactions, or coupling, between the
atomic moments comprising the sample. For example, with dilute concentration of
transition metal cations, magnetic interactions, which tend to align the moments of neigh-
boring cations, may be neglected and the paramagnetic susceptibility should follow a
Curie law. However, at high concentrations, magnetic interactions can no longer be
neglected since magnetic cations might be in adjacent sites where their spins can
couple via exchange interactions. The paramagnetic susceptibility will then not follow
the Curie law.
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Antiferromagnetic response
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Figure 8.3. Plots of the susceptibility versus temperature (a) and the inverse susceptibility

versus temperature (b) showing the three major classes of magnetic behavior.
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The deviation from the Curie law can be treated as a perturbation to Eq. 8.7 by repla-
cing T with a (T 2 u) term, yielding the Curie–Weiss law:

x ¼ C

T � u
(8:9)

The slope of the line given by the inverse of Eq. 8.9 (1/x) is 1/C and the intercept of the
line with the temperature axis gives the sign and magnitude of u, the paramagnetic Curie
temperature (sometimes denoted as TC). A positive value for u indicates short-range fer-
romagnetic ordering at low temperatures, while a negative value indicates the presence of
antiferromagnetic ordering. Van Vleck has pointed out that, in addition to short-range
exchange interactions, u is perhaps more importantly due to the influence of crystalline
anisotropy and its resultant distortions of the atomic orbitals angular momenta (Van
Vleck, 1932). Despite its reasonable applicability in the paramagnetic regime down to
low temperatures above the Curie point, Eq. 8.9 usually fails at some critically low temp-
erature owing to spin–orbit coupling effects (Section 8.3.4).

In practice, it can be difficult to distinguish a pure paramagnet from aweak ferromag-
net solely by examination of a x(T ) plot. Antiferromagnetic interactions are much more
obvious, provided the sample temperature is lowered enough to observe the Néel temp-
erature (TN), the point at which the susceptibility begins to drop as the temperature is
further decreased. Furthermore, for many transition metal compounds the inverse sus-
ceptibility plots are nonlinear functions of temperature. Because of the changing
gradient, which indicates that the coupling is stronger at low temperatures, the best
extrapolation is taken from the high-temperature data. This will be discussed in more
detail later.

It is not possible to fully understand exchange interactions without first discussing
the atomic origin of magnetism – angular momentum – a topic that is now taken up.
Owing to the subject’s complexity, it will be necessary to discuss it in stages. This
textbook will begin with the case of the free ion, for example, and isolated ion in the
gas phase, for which multiple contributions will be considered. Then, consideration
will be given to a single ion in a crystal field and, finally, a multiple collection of
atoms in a solid.

8.2 ATOMIC STATES AND TERM SYMBOLS OF FREE IONS

Each electron in an atom can be specified by a unique set of four quantum numbers.
These are:

1. The principal quantum number, n (n ¼ 0, 1, 2, 3, . . . ,1). This quantum number
represents the relative overall energy of the orbital.

2. The azimuthal quantum number, l (l ¼ 0, 1, 2, . . . , n2 1). This quantum
number specifies the magnitude of an electron’s orbital angular momentum via
L ¼ h� [l(l þ 1)]1/2. For s electrons, l ¼ 0; for p electrons, l ¼ 1; for d electrons,
l ¼ 2; and for f electrons, l ¼ 3.
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3. Themagnetic quantum number,ml (ml ¼ 2l, 2l þ 1, . . . , 0, . . . , þ l 2 1, þ l ).
This quantum number gives the projection of l along a specified axis. For a given
l, there are (2l þ 1) possible values for ml. By convention, z is chosen as the
unique axis.

4. The spin quantum number, s (s ¼+1
2). This number parameterizes the intrinsic

angular momentum of an electron.

For the purposes of magnetic properties, the last three quantum numbers are of pivotal
importance. In fact, the spin and orbital angular momenta can interact or couple to
give a new quantum number, j, which represents the total electron angular momentum.
For each individual electron, j is given by the vector sum of the electron’s spin and orbital
angular momenta. For a multielectron atom, the vector sum of all the individual js gives
the total angular momentum vector J for the atom. This summation process is known as
the j– j coupling scheme and it is required for heavy atoms. The vector model of the atom
and the discovery of electron spin is credited to Dutch physicists George Eugene
Uhlenbeck (1900–1988) and Samuel Abraham Goudsmit (1902–1978) (Uhlenbeck
and Goudsmit, 1925), although the idea of electron spin was postulated (but never pub-
lished) a few months earlier by Ralph de Laer Kronig (1904–1995) and even as early as
1921 by Arthur Holly Compton (1892–1962) (Compton, 1921). The enhanced spin–
orbit interaction can be explained on the grounds that with an increase in the number
of core electrons, comes an increase in the valence electron velocity and in the average
magnetic field felt by the valence electron.

Only the J quantum number is necessarily conserved, meaning that only J is a good
quantum number. However, with light elements (Z, 70), L (

P
i li), and S (

P
i si) are

almost separately conserved. So a useful approximation for J involves the determination
of L and S separately, followed by the assumption that these vectors exert magnetic forces
on each other, then coupling them together to form the resultant vector J. This simpler
procedure slightly preceded the j– j coupling scheme, arose from the work of Princeton
physicist Henry Norris Russell (1877–1957) and Harvard physicist Frederick Albert
Saunders (1875–1963), who conceived of the model in which spectral terms are proper-
ties of the atom, or electron configuration, as a whole, rather than of a single radiating
electron. It is known as the spin–orbit coupling model, or Russell–Saunders coupling
scheme (Russell and Saunders, 1925).

A multielectron atom can exist in several electronic states, called microstates, which
are characterized by the way the electrons are distributed among the atomic orbitals.
The number of microstates for a free atom with a valence shell consisting of a set of
degenerate orbitals with orbital angular momentum quantum number l housing n elec-
trons is given by:

number of microstates ¼ [2(2lþ 1)]!
n![2(2lþ 1)� n]!

For example, for a free transition metal atom with the d1 valence electron configuration
there are ten microstates since the electron may reside in any of the five d orbitals with
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either up or down spin. In the free atom, these microstates are all degenerate and corre-
spond to a single energetically distinct atomic state. An atom with the d2 configuration
has 45 microstates, together constituting five atomic states (see Example 8.1). The
lowest energy microstate is termed the ground state. The process of establishing the
actual states, or permutations, themselves is tedious but shortened by the fact that the per-
mutation of two holes in ten boxes is the same as the permutation of two electrons in ten
boxes. Thus the terms arising for a dn configuration are the same as those arising for a
d102n configuration (Porterfield, 1993).

With light elements (e.g. first-row and second-row transition metals), to which prin-
cipal consideration is given in this book, the Russell–Saunders (or LS) coupling scheme
suffices. Every microstate is designated with a term symbol of the general form (2Sþ1)LJ,
where 2S þ 1 is the spin multiplicity (S ¼P

i si), L is the total orbital angular momentum
(L ¼P

i li), and J is the total angular momentum (possible values include J ¼ L þ S,
L þ S2 1, L þ S 22, . . . , 0, . . . , L2 S ). The d1 configuration is therefore a two-
dimensional atomic state.

The lowest energy microstate can be found from Hund’s three rules:

1. The state with the maximum spin multiplicity will be lowest in energy.

2. For states of the same spin multiplicity, that state with the highest orbital
angular momentum will usually be lower in energy. The total orbital angular
momentum is given the following nonitalicized symbols: S (L ¼ 0), P (L ¼
1); D (L ¼ 2); F (L ¼ 3); G (L ¼ 4); and H (L ¼ 5). Do not confuse the
nonitalicized S (L ¼ 0) with the italicized S (total spin angular momentum
quantum number) or the bold-type italicized S (total spin angular momentum
vector).

3. The lowest energy state is that of lowest J if the subshell is less-than-half-filled
subshells and of highest J in greater-than-half-filled subshells.

Hund’s first and second rules are a consequence of the Pauli exclusion principle (electron
correlation; dual occupation of an orbital involves large electron–electron repulsions),
while the third rule results from spin–orbit interactions, which are discussed in
Section 8.3.4. In determining L, only precise values can be observed of a single
component of the orbital angular momentum since the L̂x, L̂y, and L̂z operators do not
commute with one another. Because of its simplicity in spherical polar coordinate, Lz
is chosen as the unique direction, which is given by the simple expression Lz ¼ mlh

� .
The precise values for Lx and Ly cannot simultaneously be known; however, their
average values are zero. Classically, this is interpreted as a precession of L about the z
axis, mapping out the surface of a cone. As a result of the choice of z as the unique
direction, L ¼ l for the total orbital angular momentum for a single electron outside of
a closed subshell (there is no information on exactly which orbital the electron is in)
and Lz ¼ ML ¼

P
i lzi ¼

P
i mli for more than one electron. It is known that the maxi-

mum value of Lz is less than L, which implies that Lz cannot point in the same direction
as L.
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Example 8.2

Using the LS coupling scheme, list the possible microstates and show that the term
symbols for an isolated Ti2þ cation (i.e. one that is effectively free in the gas phase)
are: 1S0,

3P0,1,2,
1D2,

3F2,3,4, and
1G4. Finally, determine which state is the ground

state.

Solution

The Ti2þ cation has the electronic configuration [Ar]3d2. An isolated cation feels
no influence of any ligands. Hence, all five d orbitals are degenerate and they
have the quantum numbers (n, l, ml, s) ¼ (n, 2, 2, +1

2), (n, 2, 1, +
1
2), (n, 2, 0, +

1
2),

(n, 2, 21, +1
2), and (n, 2, 22, +1

2). The l values for a system with two electrons
can add to give integer L values ranging from (l1 2 l2) to (l1 þ l2). Hence, the Ls
in our term symbols can be any integer between (2 2 2) to (2 þ 2), inclusive, or:
0, 1, 2, 3, and 4. So the possible L symbols are easily established as S, P, D, F, and
G. Next, we painstakingly prepare a table (Table 8.1) with the possible values
for ML and MS (being careful to avoid violating the Pauli exclusion principle)
thereby determining the possible microstates, which serves as the second step
towards establishing the complete term symbols:

TABLE I

ml

þ2 þ1 0 21 22 ML MS MJ

1 þ1
22

1
2 þ4 0 þ4

2 þ1
22

1
2 24 0 24

3 þ1
2 21

2 þ3 0 þ3
4 21

2 þ1
2 23 0 23

5 þ1
2 21

2 þ2 0 þ2
6 21

2 þ1
2 22 0 22

7 þ1
2 21

2 þ1 0 þ1
8 21

2 þ1
2 21 0 21

9 þ1
2 21

2 0 0 0
10 21

2 21
2 þ1 21 0

11 21
2 21

2 21 21 22
12 21

2 þ1
2 þ1 0 þ1

13 þ1
2 21

2 21 0 21
14 þ1

2 þ1
2 þ1 þ1 þ2

15 þ1
2 þ1

2 21 þ1 0
16 21

2 21
2 0 21 21

17 21
2 þ1

2 0 0 0
18 þ1

2 þ1
2 0 þ1 þ1

19 þ1
2 þ1

2 þ3 þ1 þ4
20 þ1

2 þ1
2 23 þ1 22

21 21
2 þ1

2 þ3 0 þ3
22 þ1

2 21
2 23 0 23

(Continued )
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These 45 combinations constitute the possible microstates. The third step in
establishing the complete term symbols involves grouping the number of micro-
states for each ML/MS combination. For example, ML ¼ 22 and MS ¼ 0 give the
three entries 6, 28, and 41 from Table I above. Likewise, ML ¼ þ4 and MS ¼ 0
gives the single entry 1, while ML ¼ 0 and MS ¼ 0 gives the five entries: 9, 17, 38,
44, and 45 from Table I. Proceeding in a similar manner for all ML/MS combi-
nations, and grouping the numbers of microstates obtained for each combination
in tabular format, acquires Table II.

TABLE II

ML/MS þ1 0 21
þ4 1
þ3 1 2 1
þ2 1 3 1
þ1 2 4 2
0 2 5 2

21 2 4 2
22 1 3 1
23 1 2 1
24 1

TABLE I . Continued

ml

þ2 þ1 0 21 22 ML MS MJ

23 21
2 21

2 þ3 21 þ2
24 21

2 21
2 23 21 24

25 þ1
2 þ1

2 þ2 þ1 þ3
26 þ1

2 þ1
2 22 þ1 21

27 21
2 þ1

2 þ2 0 þ2
28 þ1

2 21
2 22 0 22

29 21
2 21

2 þ2 21 þ1
30 21

2 21
2 22 21 23

31 þ1
2 þ1

2 þ1 þ1 þ2
32 þ1

2 þ1
2 21 þ1 0

33 21
2 þ1

2 þ1 0 þ1
34 þ1

2 21
2 21 0 0

35 21
2 21

2 þ1 21 0
36 21

2 21
2 21 21 22

37 þ1
2 þ1

2 0 þ1 þ1
38 21

2 þ1
2 0 0 0

39 21
2 21

2 0 21 21
40 þ1

22
1
2 þ2 0 þ2

41 þ1
22

1
2 22 0 22

42 þ1
2 21

2 þ1 0 þ1
43 21

2 þ1
2 21 0 21

44 þ1
2 21

2 0 0 0
45 þ1

22
1
2 0 0 0
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Next, when L ¼ 4,ML can be 4, 3, 2, 1, 0,21,22,23, or24. The largest value ofML

occurs only with MS ¼ 0. Therefore, it must have (2L þ 1)(2S þ 1) ¼
[2(4) þ 1][2(0) þ 1] ¼ 9 microstates corresponding to a 1G term. Extracting nine
(arbitrary) microstates, one per box, from the center column of the table just
obtained results in Table III.

TABLE III

ML/MS þ1 0 21
þ4 0
þ3 1 1 1
þ2 1 2 1
þ1 2 3 2
0 2 4 2

21 2 3 2
22 1 2 1
23 1 1 1
24 0

For L ¼ 1,ML can be 1, 0, or 21, andMS can be 0, +1. These combinations consti-
tute 9 ([2(1) þ 1][2(1) þ 1]) of the remaining 36 microstates, corresponding to a 3P
term, leaving us with the following 27 remaining microstates in Table IV.

TABLE IV

ML/MS þ1 0 21
þ4 0
þ3 1 1 1
þ2 1 2 1
þ1 1 2 1
0 1 3 1

21 1 2 1
22 1 2 1
23 1 1 1
24 0

For L ¼ 3, ML can be 3, 2, 1, 0, 21, 22, or 23, andMS can be 0, +1. These combi-
nations account for 21 microstates as a 3F term since [2(3) þ 1][2(1) þ 1] ¼ 21.
Therefore, there are six remaining microstates in Table V.

TABLE V

ML/MS þ1 0 21
þ4 0
þ3 0 0 0
þ2 0 1 0
þ1 0 1 0
0 0 2 0

21 0 1 0
22 0 1 0
23 0 0 0
24 0
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For L ¼ 2,ML can be 2, 1, 0, 21, or 22 andMS can only be 0. These account for five
([2(2) þ 1][2(0) þ 1]) microstates, constituting a 1D term. After extracting these
from the Table V, there is one microstate left, with ML and MS both equal to 0,
which must correspond to a 1S term.

To completely specify the term symbols, the possible J values must be
determined. The MJ values corresponding to the largest value that J can have,
in which L and S are pointing in the same direction (L þ S), are given in Table I.
With the 1G term, MJ ¼ 4, 3, 2, 1, 0, 21, 22, 23, or 24, implying that J ¼ 4.
These are the top nine microstates in the Table I. So the complete term symbol
is 1G4.

For the 3P term, the nineMJ values are: 2, 1, 1, 0, 0, 0, 21, 21, and 22, which
are entries 10 to 18 in Table I. This clearly consists of a J ¼ 2, J ¼ 1, and J ¼ 0. Hence,
the complete term symbols are: 3P2,

3P1,
3P0.

For the 3F term, the 21MJ values are: 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 21, 21, 21,
22, 22, 22, 23, 23, 23. So, J ¼ 3, 2, or 1. These are entries 19 to 39 in Table I. The
complete term symbols are: 3F3,

3F2,
3F1.

For the 1D term, MJ ¼ 2, 1, 0, 21, or 22, entries 40 to 44 in Table I, which
implies that J ¼ 2. Hence, the complete term symbol is 1D2.

For the 1S term, MJ ¼ 0. The term symbol is 1S0.
The d2 subshell is less than half-filled so, according to Hund’s rules, the 3F1

term will be the lowest in energy, since it has the highest orbital angular momen-
tum with the highest spin multiplicity and lowest J.

It will soon be seen that when an ion is placed in a crystal, which represents a lower sym-
metry environment than a free ion, the ligand field splits the degeneracy of the d orbital
energies. Because the terms are split in the same way as the orbitals are, the splitting can
be predicted by group theory. The reader is referred to any of numerous advanced inor-
ganic chemistry or group theory textbooks for the details. This textbook will only note the
effect from infinitely strong octahedral and tetrahedral fields, for which the well-known
result is a triply-degenerate set (t2g) and a doubly degenerate set (eg) of orbitals. For
the octahedral case, the former is lower in energy, but for the tetrahedral case, the
energy-ordering is reversed.

8.3 ATOMIC ORIGIN OF PARAMAGNETISM

An electron orbiting about an atomic nucleus can be viewed as a circulating electrical
current and will have an orbital magnetic moment, if it has orbital angular momentum
(i.e. if it has p-, d-, and f-electrons). The orbital magnetic moment is perpendicular
to the plane of the orbit and parallel to the angular momentum vector, L. Actually, the
movement of any charged particle will produce a magnetic field. However, the magnetic
properties of solids are generally associated with electrons, as the magnetic moment of
this subatomic particle is 960 times greater than that of the neutron and 658 times that
of the proton. There are, in fact, contributions owing to both the orbital motion and
spin of the electron, the contribution of the latter being greatest.
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8.3.1 Orbital Angular Momentum Contribution – The Free Ion Case

An orbital contribution to the atomic moment may be observed only if there is circulation
of the electron about an axis and, hence, orbital angular momentum. The orbital contri-
bution to the atomic moment is symbolized as mL and is given by:

uL ¼ �mBL (8:10)

where L is the orbital angular momentum vector and mB is a unit of measurement called
the Bohr magneton (BM), which is given by eh� /2me ¼ 9.274096 � 10224 A . m2. The
BM is identical to the magnetic moment of a single electron moving in a circular path
with the Bohr radius. An orbital contribution by the electrons to the atomic moment is
only possible with a net orbital angular momentum h� L, which may only occur when
there are unpaired electrons outside of closed shells.

The orbital angular momentum is a vector whose direction defines the axis about
which the electron is orbiting. This vector is quantized both in length (L ¼ h� [l(l þ
1)]1/2) and in direction with respect to the z axis. The allowed directions are determined
by the magnetic quantum number, ml, which specifies the z component, thus restricting L
to certain directions relative to this axis. The component of the angular momentum along

the z axis is specified by the L̂z operator, which, placed in standard spherical polar coor-

dinates, is: L̂z ¼ �ih� (@=@f). For the eigenfunction eimf, the eigenvalue is simply Lz ¼
mlh
� (note this function specifies nothing about the x and y components of orbital angular

momentum!). Normally, L̂z is chosen as the unique direction for its mathematical simpli-
city in spherical polar coordinates; there is nothing fundamental about this choice. Had
one chosen either the x or y direction as the unique direction, the results would be the
same except for exchanging x or y for z.

For example, with a d-electron l ¼ 2 and the possible values of ml are þ2, þ1,
0 21, and 22. Hence, the possible values for Lz are: þ2h� , þh� , 0, 2h� , and 22h� .
The algebraic sign represents the direction in which the electron is rotating (i.e. þ and
2 signify opposite directions). For each of the five l ¼ 2 cases, Lz ¼

ffiffiffi
6
p

h� . It must further
be noted that the lower case l signifies the orbital while the upper case Lz signifies the
state. The latter thus specifies the total orbital angular momentum quantum number Lz
of all the unpaired electrons in the atom outside of closed shells. The filled, inner sub-
shells contribute nothing to Lz. If the atom’s electronic configuration has only a single
d electron that is not in a filled subshell, then Lz is simply the l quantum number for
the single electron (l ¼ 2). If the atom contains more than one unpaired electron, Lz is
given by the sum of the magnetic quantum numbers ml for the orbitals, as was demon-
strated in Example 8.1.

The magnitude, or eigenstate, of the orbital angular momentum vector L of an elec-
tron in an atom is h� [l(l þ 1)]1/2, but h� is already built into the BM in Eq. 8.10. Hence, the
magnitude of the orbital contribution to the moment can be written as:

uL ¼ �mB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(lþ 1)

p
(8:11)
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Sometimes, the value for mB is not included in the calculation of the moment, in which
case it must be carried in the units, as expressed by:

juLj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(lþ 1)

p
(BM) (8:12)

For a many-electron atom, the total orbital angular momentum, L, is the vector sum of the
orbital angular momenta l of all the unpaired electrons.

8.3.2 Spin Angular Momentum Contribution – The Free Ion Case

For a given integer-valued total orbital angular momentum, it is found that an equal mag-
nitude total electron spin angular momentum is twice as effective in giving rise to a mag-
netic moment. The magnetic moment due to the spin of an electron is given by:

us ¼ �gmh� s (8:13)

where s is the spin angular momentum vector, h� ¼ h/2p (h is Planck’s constant) and gm
is the gyromagnetic ratio, which may be expressed as:

gm ¼
ge

2me
(8:14)

In Eq. 8.14, e is the electron charge and me is the electron mass. The quantity eh� /2me is
the Bohr magneton, mB, which was already introduced. Equation 8.13 for the magnetic
moment owing to the intrinsic spin of an electron can thus be rewritten as:

ms ¼ �gmBs (8:15)

The factor g in Eqs. 8.14 and 8.15 is a dimensionless quantity called the electron, or
Landé g factor (or spectroscopic splitting factor) and, for the case of a free electron, it
equals precisely 2.0023193. However, it will be seen later that it can have other values
when the electron is in condensed matter.

The magnitude of the spin vector s in Eq. 8.15 describes the direction in which the
spin vector is pointing, with components that are the expectation values along each axis
(sx, sy, and sz). In the Heisenberg model (Section 8.5.1), the spin vector can point in any
direction even though it is impossible to measure the spin vector directly since the com-
ponents cannot possess simultaneous definite values. However, the component sz of spin
angular momentum along the z axis is quantized in a similar way to Lz: sz ¼ ms h

� but the
spin quantum number ms can only have the values þ1

2 or21
2. Accordingly, for stat-

istically large collections of electrons that have been placed in the same pure quantum
state, such as in the presence of an externally applied inhomogeneous magnetic field
(the Stern–Gerlach experiment), the spin vector specifies the direction in space in
which a subsequent detector must be oriented to achieve the maximum possible prob-
ability (100 percent) of detecting every electron in the collection.
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The net spin of an atom containing more than one unpaired electron outside of closed
shells is:

uS ¼ �gmBS (8:16)

If the vector S is replaced with its eigenvalue, h� [S(S þ 1)]1/2, where S is the total spin
quantum number, this yields the magnitude of the spin-only moment:

uS ¼ �gmB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(Sþ 1)

p
(8:17)

or, equivalently:

juSj ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(Sþ 1)

p
(BM) (8:18)

As in the case of the orbital angular momentum, the upper case S here signifies the
total spin angular momentum of all the unpaired electrons in the atom outside of closed
shells. The filled, inner subshells contribute nothing to S. It follows that if the configur-
ation has only a single electron that is not in a filled subshell, the S quantum number is
simply the s quantum number for the single electron.

It may also be written:

uS ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2
n

2
þ 1

� �r
(BM) (8:19)

where n is the number of unpaired spins per cation multiplied by the number of cations per
formula unit. For example, a free Cr3þ ion has three unpaired electrons, so S ¼ 3/2 and
Eq. 8.18 (g ¼ 2) gives jmS

mj ¼ 3:87 BM. Alternatively, n ¼ 3 and substitution of this into
Eq. 8.19 also gives 3.87 BM.

8.3.3 Total Magnetic Moment – The Free Ion Case

Assuming there is no spin–orbit (LS) coupling (Section 8.3.4), the total magnetic
moment of a free atom is obtained by combining Eqs. 8.9 and 8.16, the sum of the orbital
plus spin moments:

utot ¼ �mB(Lþ 2S) 8:20)

or:

utot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(Lþ 1)þ 4S(Sþ 1)

p
(BM) (8:21)

When g is taken as 2 and L is zero, Eq. 8.21 is equivalent to the spin-only moment
(Eq. 8.17).
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8.3.4 Spin–Orbit Coupling – The Free Ion Case

In general, when there is a significant orbital angular momentum contribution (i.e. for free
ions), the value of the magnetic moment is not given by Eq. 8.21. This is a relativistic
effect that increases with the atomic number. The result is that the measured magnetic
moments of heavy ions are expected to be lower than the spin-only moment. This is
because the spin and orbital momenta couple via the spin–orbit interaction:

HSO ¼ lL � S ¼ 1
2
l[J(J þ 1)� L(Lþ 1)� S(Sþ 1)] (8:22)

where HSO is the spin–orbit Hamiltonian term and l is the (field-independent) spin–
orbit coupling constant (units cm21), which has a different value for each electronic
state. The spin–orbit contribution (1.25–250 meV) to the energy of an electron in a mag-
netic field is typically an order of magnitude smaller than that due to the crystal field (12.5
meV–1.25 eV), which, in turn, lies about an order of magnitude below the electron kin-
etic and potential energies (1–10 eV). However, for free ions the spin–orbit interaction is
second in strength only to exchange interactions.

In the Russell–Saunders approximation introduced earlier, which is appropriate for
the 4d, 5d, and lighter rare-earth elements, the coupling of L and S give a total angular
momentum quantum number J that takes on integer values from (L þ S ) through jL 2 Sj:

J ¼ Lþ S (8:23)

The total magnetic moment, including spin–orbit coupling, is then given by:

utot ¼ �gLmBJ ¼ �gLmB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J(J þ 1)

p
(8:24)

where gL is now known as the Landé g factor, after Alfred Landé (1888–1976) (Landé,
1923). The subscript L is used simply to differentiate this quantity from the free-electron
value given earlier. The Landé g factor may be calculated from:

gL ¼ 1þ J(J þ 1)þ S(Sþ 1)� L(Lþ 1)
2J(J þ 1)

(8:25)

In using Eqs. 8.23 and 8.25, the rules for determining the ground-state configuration of an
isolated atom, in the order they must be followed are:

1. Hund’s first rule: S has the maximum value consistent with the Pauli exclusion
principle.

2. L takes the maximum value consistent with Hund’s second rule: For states of the
same spin multiplicity, the state with the greater orbital angular momentum will
be lowest in energy.

3. Hund’s third rule: J ¼ jL – Sj for a less-than-half-filled shell; J ¼ (L þ S ) for a
more-than-half-filled shell; and J ¼ S for a half-filled shell (L ¼ 0).
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The ground-state configurations and corresponding values of L, S, and J for the ions with
valence d and f subshells are given in Table 8.2.

Example 8.3

Predict the magnetic moment of an isolated Nd3þ ion.

Solution

The Nd3þ has the electron configuration [Xe]4f3. Because it is a rare-earth
element, spin–orbit coupling would be expected and hence, Eqs. 8.24–8.25 to
apply. Furthermore, crystal-field splitting is usually unimportant for rare-earth
ions because their partially filled 4f shells lie deep inside the ions, beneath filled
5s and 5p shells. Thus, the seven f orbitals would be degenerate and their occu-
pancy would be a high-spin configuration, with the maximum value of S and L,
in accordance with Hund’s first and second rules:

ml

þ3 þ2 þ1 0 �1 �2 �3 ML MS MJ

þ1
2 þ1

2 þ1
2 6 þ3

2
9
2

Note that since the subshell is less than half-filled, J is given by jL – Sj. Using
these values (S ¼ 3

2 L ¼ 6; J ¼ 9
2), Eq. 8.25 predicts that gL is equal to 0.727.

Accordingly, the magnetic moment calculated from Eq. 2.84 is 3.62 BM.

8.3.5 Single Ions in Crystals

When a d cation is placed in a crystal, the influence of the ligands on the degeneracy of the
ion’s d orbital energies and, hence, its magnetic moment must be accounted for. There
will still potentially be an orbital contribution and a spin contribution, but their relative
importance will depend upon various factors, primarily the relative strengths of exchange
interactions (Section 8.5.1), the crystal field, and spin–orbit coupling. The spin contri-
bution is often the most important in compounds of the transition metals (particularly
3d ions). This is because a less-than-spherically symmetric electric field generated by
the surrounding ions in a solid (the crystal field) acts to partially quench both the orbital
and spin angular momenta of the d orbitals. Since the quenching of orbital angular
momentum acts to make J no longer a good quantum number, this textbook will consider
this orbital angular momentum quenching first.

8.3.5.1 Orbital Momentum Quenching. It has now been seen how the d
levels for a free ion are degenerate. This is not true of ions in crystals. In order to under-
stand why this is so, the form of the d wave functions needs to be considered. To begin,
note that some of the d wave functions are complex. For example, the wave functions
for the d orbitals with magnetic quantum numbers ml ¼+2 are given by c+2 	
sin2 u exp(+i2f) and those for ml ¼ +1 by c+1 	 sin u cos u exp(+if). The c0
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wave function is a real function, c0 	 (3 cos2 u2 1). Like all quantum mechanical oper-
ators, the orbital angularmomentumoperator is aHermitian operator [L̂ ¼ �ih� r�(@=@r)],
whose eigenvalues must be real.

The effects of electric fields of various types of crystalline symmetry were made by
Bethe (Bethe, 1929, 1930). He found that only with rhomboidal or lower crystalline sym-
metry is there always complete orbital angular momentum quenching. Cubic, tetragonal,
and hexagonal symmetry, which are the predominate classes relevant to solids, only par-
tially quench the orbital angular momentum, which acts to split the degeneracy of the
ground state. Complete quenching only occurs if certain states are the lowest lying in
energy. How this quenching happens for the cubic field will now be briefly explored.

The ability to use complex wave functions is a necessary, but not sufficient, con-
dition for the existence of a magnetic moment (see Van Vleck, 1932, p. 291). Cubic-
field splitting defines two real-wave functions in place of the two complex-wave functions
given in the preceding paragraph. The real-wave functions are obtained from linear com-
binations of the degenerate wave functions. The combination c2 þ c22 gives the dx2�y2
wave function, while the combination c2 2 c22 gives the dxy wave function. The dxz and
dyz wave functions are obtained by the combinations c1 þ c21 and c1 2 c21, respect-
ively. The dz2 wave function is taken as c0. Since the L̂ operator is imaginary, the angular
momenta of the dx2�y2 and dxywave functions are no longer observable. Hence, in a cubic
field, the magnetic quantum numbers are: m‘ ¼ 0 for the dz2 , dx2�y2 , and dxy orbitals (the
orbital magnetic moment of the doubly degenerate eg state is completely quenched), and
m‘ ¼+1 for the dxz and dyz orbitals instead ofm‘ ¼ 0,+1,+2. Thus, the orbital angular
momentum has been partially quenched and is small for octahedral-site cations with elec-
tron configurations t32g, t

3
2ge

1
g, t

3
2ge

2
g, t

6
2ge

2
g, and t62ge

3
g, as well as for tetrahedral-site cations

with electron configuration e1g, e
2
g, e

2
gt

3
2g, e

4
gt
2
2g, and e4gt

3
2g (Goodenough, 1966).

With certain d electron configurations in cubic crystal fields (tetrahedral and octa-
hedral coordination), the orbital angular momentum is not quenched because of the exist-
ence of a rotation axis that permits a half-filled d orbital of the triply degenerate set (t2g) to
be rotated into a vacant d orbital or another half-filled one (Drago, 1992). There must not
be an electron of the same spin already in the orbital. If there is an unfilled or half-filled
orbital similar in energy (size and shape) to that of the orbital occupied by an unpaired
electron, the electron can make use of the available orbital to circulate around the
center of the complex and thereby generate L and mL. For example, the dxy is related
to dx2�y2 by a rotation of 458 about the z axis. In the octahedral-coordinated Ni2þ (d8)
cation, which has the ground-state configuration t62ge

2
g, there may only be an orbital

moment contribution from the excited state t52ge
3
g. These conditions are fulfilled whenever

one or two of the three t2g orbitals contain an odd number of electrons.

Example 8.4

Neglecting any spin–orbit coupling, what would be the observed orbital angular
momenta of octahedral-site Co4þ, Ni3þ, Ni2þ, Cr2þ, Cr3þ, Mn3þ, and Cu2þ cations,

8.3 ATOMIC ORIGIN OF PARAMAGNETISM 333



assuming that in all cases the 3d electrons are unpaired (i.e. the cations are in the
high-spin configuration)?

Solution

Ion
Number of d
electrons Configuration L of unpaired electrons

[l(l þ1)]1/2
in units of h�

Co4þ d5
t32ge

2
g

(þ1)þ (21) þ
(0) þ (0) þ (0)

0

Ni3þ d7
t52ge

2
g

(8) þ (0) þ (0) 0

Ni2þ d8
t62ge

2
g

(0) þ (0) 0

Cr2þ d4
t32ge

1
g

(þ1) þ (21) þ (0) þ (0) 0

Cr3þ d3
t32g (þ1) þ (21) þ (0) 0

Mn3þ d4
t32ge

1
g

(þ1) þ (21) þ (0) þ (0) 0

Cu2þ d9
t62ge

3
g

(0) 0

Orbital angular momentum quenching also results from spin–orbit coupling as well as
distortion from cubic symmetry, both of which act to split the degeneracy of the
ground state and bring the moment closer to the spin-only value. However, the magnitude
of these two types of splitting is typically much smaller than that owing to the crystalline
electric field. Orbital quenching is, therefore, most important for the first row 3d transition
metal ions since the crystal field is stronger than spin–orbit coupling but lower in strength
than exchange interactions (Section 8.5.1). Thus, Eq. 8.18 can be used to calculate the
magnetic moment for these ions. For the rare-earth ions, the crystal field is weaker
than the spin–orbit coupling and weaker than the exchange interactions. There is only
a small L quenching (owing to spin–orbit coupling) and the situation is of little difference
than the free ion case in which there are multiplets associated with a given value of J
(Hund’s third rule). Hence, Eq. 8.24 must be used to calculate the magnetic moment.
For the second row 4d and third row 5d transition metal ions, the crystal field is not
only stronger than spin–orbit coupling, but also comparable with, or stronger than,
exchange interactions. The mixing between the metal cation d orbitals and ligand p orbi-
tals must be taken into account.

8.3.5.2 SpinMomentumQuenching. The effects of the crystal (ligand) elec-
tric field must also be considered in determining the value of S for transition metal ions
since the crystal field also spin quenches the atomic moment. That is, Swill depend on the
relative magnitudes of the crystal-field splitting energy, 10Dq, and the competing electron
spin pairing energy (onsite Coulomb repulsion energy). As already discussed, in coordi-
nation complexes and solids, the presence of ligands (anions) removes the d-orbital
degeneracy of the free-transition metal atom ground state by an amount 10Dq. The
exact splitting pattern differs for different coordination geometries. Only tetrahedral
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and octahedral coordination are discussed here. With these geometries, the five-fold
degeneracy of the d-orbitals is split into a triply degenerate set (t2g) and a doubly degen-
erate set (eg). In the octahedral case, the former is the ground state and the latter the
excited state. The ordering is reversed for tetrahedral geometry.

For a substance in which 10Dq is greater than the electron pairing energy, spin
quenching results. More precisely, transition metals in strong ligand fields will be
low spin, signifying that the electrons of the transition metal pair up in the lower
energy orbitals before the higher energy orbitals become occupied. If the onsite
Coulomb repulsion is larger, a high-spin configuration results, in which case the tran-
sition metal electrons occupy all the orbitals singly, both the low-energy and high-
energy states, before pairing up. Generally, 4d and 5d transition metal cations are
low spin, as are highly charged 3d transition metal cations, since in these cases the
crystal field (or covalent bonding) is strong. For example, Ru4þ (4d4) is almost
always low spin (S ¼ 1) in its compounds, with an exception being Sr2RuO4. By con-
trast, Mn3þ (3d4) is high spin (S ¼ 2). Crystal-field splitting is usually unimportant for
rare-earth ions because their partially filled 4f shells lie deep inside the ions, beneath
filled 5s and 5p shells.

8.3.5.3 The Effect of JT Distortions. The JT theorem essentially states that a
cation with a degenerate ground state, which is not a Kramers doublet, is unstable and
may undergo a geometrical distortion to some lower symmetry that removes the
ground-state degeneracy. There is no JT distortion if the ground state is a Kramers doub-
let. Kramers had earlier shown that a pure electric field (i.e. one without a magnetic field)
can completely remove the d orbital degeneracy of a system only if S is integral valued
(i.e. an even number of unpaired electrons). For systems with a half-integer value of S
(i.e. an odd number of unpaired electrons), all the levels must at least be doubly degen-
erate (Kramers, 1930).

For example, a high-spin octahedral-site Mn3þ 3d4 cation’s levels are further split
by a JT distortion (axial distortion from Oh symmetry), brought about when an itinerant
eg electron hops into a vacant eg orbital. The distorted octahedral cage lowers the sym-
metry and further splits the t2g and eg levels. This has the effect of lowering the overall
energy of the complex. When possible JT distortions are small in comparison to spin–
orbit coupling, the spin–orbit effect quenches the JT mechanism. Consequently, a JT
distortion is only allowed when the orbital angular momentum is extinguished by the
ligand field. The JT effect is expected to be weak for d1, d2, d6, and d7 high-spin octa-
hedral-site cations and strong for d4 and d9 high-spin octahedral-site cations. It is not
allowed for d3, d5, and d10 high-spin octahedral-site cations. For low-spin octahedral-
site cations, a weak JT effect is expected for d1, d2, d4, and d5 while a strong effect is
expected for d7 and d9 configurations. In a crystal, if the fraction of JT cations is high
enough, cooperative JT distortions not only will influence the exchange interactions
that lead to the observed magnetic behavior, but they may result in a transition to a
lower crystalline symmetry (cubic to tetragonal) as well. Alternatively, the presence
of JT cations may lead to coupling between the electronic states and the lattice,
known as the dynamic JT effect, which gives rise to low-lying vibronic states that
mix into the ground state through the magnetic field.
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8.3.6 Solids

It is now necessary to consider the magnetic behavior of a macroscopic collection of
magnetic ions, as opposed to the single ion magnetic systems discussed in the preceding
section. The dependency of the magnetization of a paramagnet solid on the external
magnetic field and the quantum number J of the microscopic magnetic moments of the
material (in quantum mechanics only certain orientations of the atomic moments are
allowed) can be derived theoretically by statistical mechanics. The result (see Reif,
1965, pp. 257–261) is:

M z ¼ NgLmBJBJ (a) (8:26)

where N is the Avogadro number and BJ(a) is known as the Brillouin function (Brillouin,
1927):

BJ(a) ¼ 1
J

J þ 1
2

� �
coth J þ 1

2

� �
a� 1

2
coth

a

2

� �
(8:27)

In Eq. 8.27, a is a dimensionless parameter that is a measure of the ratio of the magnetic
energy (the Zeeman energy) tending to align the magnetic moment to the thermal energy:

a ¼ gLmBH z

kT
(8:28)

The Brillouin function varies from 0 to þ1. In the limit, a
 1 (a! 0),BJ(a) is approxi-
mately equal to:

BJ(a) ffi (J þ 1)a
3

(8:29)

and the weak field (when mBHz is much smaller than kT ) molar paramagnetic suscepti-
bility becomes:

xmol ¼
Ng2Lm

2
B

3kT

� �
J(J þ 1) (8:30)

Alternatively, when gmBH/kT� 1, M! NgmBJ. The magnetization derived from the
Brillouin function have been tabulated for spin values 1

2 to
7
2 in half-integral steps and

for J ¼ 1 (Darby, 1967). As stated earlier, the classical analog to Eq. 8.30 (in which
g2Lm

2
BJðJ þ 1Þ is replaced with the square of the magnetic moment, m2) was first derived

by Langevin. However, in classical mechanics the moments can be continuously aligned
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whereas in quantum mechanics only certain angles of the moments relative to the field
are allowed.

Example 8.5

Using Eqs. 8.26, 8.28, and 8.29, show that the magnetization of a paramagnet in
an externally applied field is given by Langevin’s expression (Eq. 8.8).

Solution

The magnetization is given by Eq. 8.26. Making the appropriate substitutions of
Eqs. 8.28 and 8.29 in Eq. 8.26 yields:

Mz ¼ NgmBJ
J þ 1

3

� �
gmBHz

kT

� �
¼ Ng2m2

BJ(J þ 1)Hz

3kT
¼ Nm2

mHz

3kT

Since x ¼M=H, then

x ¼ Nm2
m

3kT

which is Eq. 8.8.

In those cases where there is more than one type of magnetic ion, the individual contri-
butions combine via the relation:

xmol ¼ N(vAxA þ vBxB) (8:31)

where vA and vB are the numbers of A and B atoms per unit cell. In the special case that
L ¼ 0, the molar paramagnetic susceptibility is simply:

xmol ¼
Ng2m2

B

3kT

� �
S(Sþ 1) (8:32)

On combining Eqs. 8.30 and 8.7, the Curie constant is found to be:

Cmol ¼ Ng2Lm
2
B

3k

� �
J(J þ 1) (8:33)

In an analogous manner, the complete form of the Curie–Weiss equation is:

x ¼ Ng2Lm
2
B

3k(T � u)

� �
J(J þ 1) (8:34)

8.3 ATOMIC ORIGIN OF PARAMAGNETISM 337



A quantity called the effective magnetic moment is obtained by measuring the Curie
constant. If a substance obeys Curie’s law, Eq. 8.7 holds over the paramagnetic region
and Cmol is given by the slope of the xmol versus 1/T plot. If ðmeff Þ2 is then substituted
for g2m2

B[JðJ þ 1Þ] in Eq. 8.33, it can be solved for meff. The result is:

meff ¼ mB

ffiffiffiffiffiffiffiffiffiffiffiffi
8Cmol

p
(8:35)

The effective magnetic moment can also be calculated for substances obeying the Curie–
Weiss law, which presumably incorporates the interactions between magnetic moments at
low temperatures. From Eq. 8.9 and Eq. 8.35, it follows that:

meff ¼ mB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8xmol(T � u)

p
(8:36)

Nevertheless, it should be borne in mind that at sufficiently low temperatures even the
Curie–Weiss law may be violated, the effective moment being reduced from that
expected from a high-temperature Curie–Weiss fit. The susceptibility is found to increase
less rapidly with decreasing temperature than predicted by the inverse of Eq. 8.9. This
may be owing to crystal-field effects and/or by spin–orbit coupling, in which case
Eq. 8.36 has little meaning and the significance of the Weiss constant is unclear. This
has been invoked to explain low-temperature Curie–Weiss deviation in YbInNi4, appar-
ently involving a change in the population of excited crystal-field states with increasing
magnetic field. Similarly, both splitting owing to distortion from cubic symmetry and
spin–orbit coupling have been invoked to explain low-temperature Curie–Weiss devi-
ation in Na2V3O7. Table 8.3 lists the calculated magnetic moments for some ions
based on Eqs. 8.18 and 8.24, along with the effective magnetic moment from Eq. 8.35.

In addition to the temperature-dependent paramagnetism that has been discussed, a
very small (1025–1024 emu mole21) temperature-independent paramagnetism is associ-
ated with many ions, owing to mixing of the electronic ground state with low-lying
excited states. This may be observed, for example, with ions that have one less electron
than is required to half-fill a shell (Cr2þ, high-spin d4), since the total angular momentum

TABLE 8.3. Values for the Calculated Magnetic Moment, Calculated Spin-only
Moment, and Effective Magnetic Moment for Some Ground-State 3d Transition Metal
Ions and Rare-Earth Ions

Ion Number of Electrons Ground State [J L S] gL[J(J þ 1)]1/2 2[S(Sþ1)]1/2 meff

V4þ 1 [2 3 1] 1.55 1.73 1.80
Cr2þ 4 [0 2 2] 0 4.90 4.80
Fe2þ 6 [4 2 2] 6.70 4.90 5.40
Ni8þ 8 [4 3 1] 5.59 2.83 3.20

Pr3þ 2 [4 5 1] 3.62 2.83 3.50
Eu3þ 6 [0 3 3] 0 6.90 3.40
Tb3þ 8 [6 3 3] 9.72 6.90 9.50
Ho3þ 10 [8 6 2] 106 4.90 10.4
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is zero in the ground state, but becomes nonzero upon mixing. This is known as Van
Vleck paramagnetism (Van Vleck, 1937).

8.4 DIAMAGNETISM

For the highest degree of accuracy, it is necessary to correct the measured susceptibility
for the diamagnetic contribution. The diamagnetic component of the magnetic suscepti-
bility discussed in Section 8.1 is always present but is generally very small. Diamagnetic
substances are those in which all the electron spins are paired, so that the diamagnetic
contribution is the only component to the magnetization. Quartz and rock salt are two
examples. Diamagnetism arises from a moment that is induced by the external field
(even a nonvarying one) and directed opposite to it. That is, the magnetic field produces
an electromagnetic field (EMF), which generates a current that sets up an opposing mag-
netic field. The fact that even a steady magnetic field sets up such a diamagnetic screening
current is a quantum effect that is not predicted for a classical system. In the latter case,
Lenz’s law dictates that only varying magnetic fluxes produce opposing fields. The
diamagnetic susceptibility can be calculated from empirical data tabulations (see, for
example, reference 1), by Pascal’s method:

xdia ¼ lþ nixi (8:37)

where l is a constitutive correction factor that depends on the type of bonds present, ni is
the number of atoms of each type, and xi is the contribution to the susceptibility of each of
the constituent atoms. For inorganic solids, xdia can be approximated to within 10 percent
of their actual values by assuming l ¼ 0 (O’Connor, 1982).

8.5 SPONTANEOUS MAGNETIC ORDERING

As has been explained, the presence of unpaired electrons imparts magnetic moments
to the atoms, ions, or molecules of materials, causing them to behave like individual
tiny magnets. Nevertheless, bulk paramagnetic solids do not exhibit any net magnetiza-
tion in the absence of an applied magnetic field. Thermal energy is greater than the
interaction energies between the individual magnetic moments. Consequently, the orien-
tations of the individual moments stay randomly arranged (Fig. 8.4a), as the disordered
configuration is the thermodynamic equilibrium state. However, at sufficiently low temp-
eratures, the presence of a magnetic field is able to overcome thermal-disordering effects
and force alignment. Paramagnetic solids, then, are those in which unpaired spins are pre-
sent but do not interact with one another, for example, condensed phases containing
dilute concentrations of magnetic ions, which include molecular materials with isolated
paramagnetic centers.

By contrast, spontaneous long-range magnetic ordering in the absence of a magnetic
field is possible in some substances. In these materials, adjacent magnetic moments
become aligned, either in a parallel (Fig. 8.4b) or anti-parallel (Fig. 8.4c) fashion,
below some critical temperature. Exchange interactions are responsible for this effect.
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This, in turn, accounts for the deviation from Curie-law behavior in many paramagnetic
materials, as described in the last section. Before a discussion on the nature of exchange
interactions, a phenomenological model of ferromagnetic behavior byWeiss is presented,
which precedes the understanding of its quantum mechanical origin.

The presence of interactions between magnetic moments means that the effective
field acting on any particular atomic moment in a lattice is not identical with the externally
applied field. The magnetization actually measured is that obtained by replacing the
macroscopic field H in Eq. 8.4 with the effective magnetic field, Heff, which may be
considered made up of contributions from H and a fictitious internal field owing to the
neighboring moments. A widely used relationship between H and Heff was derived by
Lorentz (Lorentz, 1906), and is given by the expression:

Heff ¼ H þ 4pM
3

(8:38)

where M is the sample magnetization and the 4p/3 factor arises from geometrical con-
siderations, namely, an imaginary circumscribed sphere around a given moment. A com-
pletely analogous equation to 8.38 is found for the local electric field and electric
polarizability in a dielectric material. Van Vleck pointed out (Van Vleck, 1932) that
these relations were actually suspected, and somewhat established, by Rudolf Julius
Emmanuel Clausius (1822–1888) and Ottaviano Fabrizio Mossottii (1791–1863) in
the middle of the nineteenth century (Mossottii, 1836; Clausius, 1879)!

If Eq. 8.38 is substituted in Eq. 8.6, the following equation is obtained:

M ¼ m0x

1� 4p=3ð Þm0x

� �
H (8:39)

If this expression were correct, M would be finite even in a zero-applied field. Lorentz’s
theory thus predicts that all substances obeying the Curie law should be ferromagnetic at
sufficiently low temperatures. Although this is not true, Lorentz’s theory did predict that
spontaneous magnetization, in the absence of an externally applied field, was possible.

(a) (b) (c)

Figure 8.4. In a paramagnetic substance (a), there is no alignment between adjacent

magnetic moments in the absence of an applied field. In a ferromagnetic substance (b),

adjacent magnetic moments spontaneously align in a parallel fashion at low temperatures.

In an antiferromagnetic substance (c), adjacent magnetic moments spontaneously align in an

antiparallel fashion at low temperatures.
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Pierre ErnestWeiss (1865–1940) replaced the 4p/3 factor with a large temperature-inde-
pendent proportionality constant, W, now known as the Weiss field constant (Weiss,
1907). This constant is of the order of magnitude 104. The product of W andM is the fic-
titious Weiss field (also known as the mean field, internal field, and molecular field). The
key assumptions are that this field is proportional to the magnetization, and that it is the
field acting on the magnetic moments owing to their interactions with the surrounding
moments. Thus, the effective field acting on the moments is the sum of the Weiss field
and the externally applied field:

H eff ¼ H þWM (8:40)

It can be shown that the paramagnetic Curie temperature, at which M vanishes, may be
obtained from the vector-valued function M(H), when that function is written as two
parametric equations (the parameter being a of Eq. 8.28). The solution is obtained graphi-
cally (see, for example, Goodenough, 1966, p. 81) and is found to be:

u ¼WgLmBMS(J þ 1)
kT

(8:41)

The familiar Curie–Weiss law (Eq. 8.9), for the magnetic susceptibility in the paramag-
netic regime, is obtained from:

M

H þWM
¼ m0

C

T

� �
(8:42)

where it can be seen that the paramagnetic Curie temperature must also equal m0CW.
The Curie–Weiss law adequately explains the high-temperature paramagnetic

regime (T .u) in ferromagnets. Moreover, like Lorentz’s equation, the Weiss theory
also predicts spontaneous ferromagnetism in the absence of an applied field at sufficiently
low temperatures. However, there are some shortfalls. It predicts an exponential
temperature-dependence of the magnetization at very low temperatures. In reality, low-
temperature-spin wave excitations, which are not properly accounted for in the mean-
field theory, preclude this behavior and a T3/2 power law is observed experimentally.
There are also significant deviations of the susceptibility near the Curie point. The
Weiss theory predicts that all spin order vanishes above TC in the absence of an external
field, while in reality, short-range order persists until higher temperatures. Because of
these reasons, the M(T ) curve predicted by the Curie–Weiss law is not necessarily a
great fit to the experimentally observed curves.

8.5.1 Exchange Interactions

Werner Heisenberg (1901–1976) showed that the physical origin of the Weiss molecular
field is in the exchange integral (Heisenberg, 1928). In magnetically ordered systems,
magnetic moments couple with one another quantum mechanically. This coupling is
known as the exchange interaction and there are three kinds: direct exchange, indirect
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exchange, and superexchange. For a lattice, the Heisenberg exchange Hamiltonian for the
collective pair-wise interaction between atoms of type i and j, containing localized elec-
trons having total spin angular moments Si and Sj, is written as:

Hex �
X
ij

JijSi � Sj (8:43)

where the sum over i and j runs over all possible nearest-neighbor pairs of the lattice. The
exchange integral Jij is given by Jij ¼ 1

2(
1E – 3E), where 1E is the singlet state and 3E is the

triplet state. The spins are treated as three-dimensional vectors because they can point in
any direction in three-dimensional space. Thus, in the Heisenberg model the dimension-
ality of the order parameter (the spins themselves) is 3 and the sum can be taken over a
lattice of n dimensions.

The mathematics can be significantly simplified if the dimensionality of the order
parameter is reduced by assuming the presence of an externally applied magnetic field
along, say, the z direction of a cubic lattice. This allows only two possible directions
for the spins, up or down, along the z direction. Consequently, the scalar product can
be replaced between the vector quantities Si and Sj with the product SizS jz in Eq. 8.43.
The product of spins is then either 21

4 if the two spins are aligned parallel or þ3
4 if

they are antiparallel. The exchange integral J is still one-half of the difference in
energy between the two possibilities. This is known as the Ising model after Ernst
Ising (1900–1998) and it is exactly solvable only in one dimension (Ising, 1925) or in
two dimensions at zero magnetic field (Onsager, 1944). The model was invented in
1920 by University of Hamburg physicist Wilhelm Lenz (1888–1957) (Lenz, 1920)
and later taken up as a doctoral dissertation topic by his student, Ising, who discovered
that the one-dimensional case exhibits no phase transition at any temperature above
absolute zero.

Example 8.6

Calculate the singlet-state and triplet-state energies for the Heitler–London
model of the H2 molecule using the Ising model.

Solution

If the spins S ¼+1
2 are restricted to either being parallel or antiparallel with an

applied magnetic field, Eq. 8.43 is equivalent to (see Elliot, 1998. p. 608):

Hex �
X
ij

Jij
(S1 þ S2)

2

2
� 3

4

" #

which follows from the fact that the eigenvalue of the operator S2 is S(Sþ 1). For
the singlet state (S1 ¼ 1

2, S2 ¼ 21
2), this equation gives a value of þ3

4J12. For the
triplet state (S1 ¼ 1

2, S2 ¼ 1
2), the equation yields a value of 21

4J12.
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Thus far, the exchange integral has been treated phenomologically. Its value actually
depends on the interatomic distance, falling off rapidly with increasing separation; it is
only non-negligible when the atoms are nearest neighbors. For example, Anderson
showed that for a 908 cation–cation antiferromagnetic interaction in a system with n
unpaired d electrons, per cation, J for the total cation spin S ¼ n/2 is given by
(Anderson, 1950):

Jc�cij ¼
�2b2ij
4S2U

(8:44)

in which b is a transfer integral and U is the repulsion electrostatic energy between elec-
trons (the increase in Coulomb energy when an electron from one ion is transferred
to another ion). Equation 8.44 gives the (antiferromagnetic) exchange parameter for
the case of two neighboring half-filled orbitals. For 1808 cation–anion–cation super-
exchange, the exchange integral is given by:

Jc�a�cij ¼ C � D� E

4S2
(8:45)

whereC is the sum of ordinary electrostatic exchange integrals,D is the correlation super-
exchange contribution, and E is the delocalization superexchange contribution. A higher
level of analysis is beyond the scope of this textbook. For the expressions representing
these terms, as well as the ferromagnetic exchange parameters, the reader is referred to
Goodenough (Goodenough, 1966, pp. 172–173).

It has been pointed out that any relationship between the exchange integral and the
Weiss field is only valid at 0 K, since the former considers magnetic coupling in a pair-
wise manner and the latter results from amean-field theory (Goodenough, 1966). Finally,
it is also essential to understand that Eq. 8.43 is strictly valid only for localized moments
(in the context of the Heitler–London model). One might wonder then whether theWeiss
model is applicable to the ferromagnetic metals, in which the electrons are in delocalized
Bloch states, for example, Fe, Co, and Ni. This will be taken up later.

The sign of the exchange integral determines the type of ordering. A positive integral
is, like a positive Weiss constant, associated with ferromagnetic coupling. A negative
exchange integral is, like a negative Weiss constant, associated with antiferromagnetic
ordering. In the latter case, an equal number of each type of orientation results in a
zero overall magnetic moment for the bulk sample. In the schematic representation of
Figure 8.4c, a two-sublattice model is shown, in which each sublattice has a net spin,
opposite to the other. In reality, the net spin of each sublattice is, on average, zero.
Lattices which can naturally be divided into two sublattices are termed bipartite. Such lat-
tices easily accommodate antialigned spins and, in the macroscopic limit, form an anti-
ferromagnetic state. Nonbipartite lattices are prone to geometric frustration and exhibit
more complex behavior to be discussed later. Antiferromagnetism is the most commonly
observed type of magnetic behavior and is even observed over long ranges in materials
that order locally ferromagnetically. A third type of ordering is possible in which an
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unequal number of the opposite orientations result in a nonzero net magnetic moment.
Such materials are termed ferrimagnetic.

In all cases, magnetic ordering does not occur until the order–disorder transition
temperature is reached, which is the Curie temperature for ferromagnets and ferrimagnets,
and the Néel temperature for antiferromagnets. Above these critical temperatures, para-
magnetic behavior is observed owing to thermally induced disorder. By contrast, a
phenomenon known as superparamagnetism may be observed in very small magnetic
particles below the ferromagnetic Curie temperature. These materials exhibit a bulk-
like ferromagnetism only when cooled below a critical blocking temperature. This will
be covered later.

8.5.1.1 Direct Exchange and Superexchange Interactions in Magnetic
Insulators. The direct exchange interaction is a strong but short-range coupling
between magnetic moments that are close enough to have overlapping electron wave
functions. In compounds (i.e. sublattice phases), anions separate the cations.
Nonetheless, direct interaction between a pair of magnetic cations (not involving the
anion) may be possible depending on the cation–anion–cation angle. For example,
Anderson first pointed out that when only 908 M–X–M angles are present (e.g. rock
salt), cation–anion–cation (superexchange) interactions are negligibly small in compari-
son to direct cation–cation interactions (Anderson, 1950). This is illustrated in Figure 8.5
where it can be seen that, in structures with edge-sharing octahedra (and face-sharing
octahedra), the d atomic orbitals on neighboring octahedral cations are directed towards
one another.

Magnetic exchange interactions can be positive (ferromagnetic) or negative (anti-
ferromagnetic) in sign. A set of semiempirical rules, now known as the Goodenough–
Kanamori rules (Goodenough, 1955, 1958; Kanamori, 1959) after John B.

y

x

dxz – dxz

y

x

dx2 – y2 – dx2 – y2

y

x

dx2 – y2 – px – dx2 – y2

y

x

dxy – py – dxy

Figure 8.5. Exchange interactions are responsible for magnetic ordering. Direct exchange

(top) between neighboring d atomic orbitals in a transition metal compound with edge-

sharing octahedra. Superexchange (bottom) between d atomic orbitals via ligand p atomic

orbitals in a transition metal compound with vertex-sharing octahedra.
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Goodenough (b. 1922) and Junjiro Kanamori (b. 1930), were established in the 1950s
and became highly successful in rationalizing the magnetic properties of a wide range
of materials on a qualitative level. The rules are based on the symmetry relations and
electron occupancy of the orbitals on neighboring magnetic cations, which can interact
via either direct exchange or superexchange. Basically, these rules state that if there
is a large overlap between partly occupied orbitals at two magnetic ions, the super-
exchange interaction between them is strongly antiferromagnetic because of the Pauli
principle; whereas overlap between partly occupied and unoccupied orbitals gives
weakly ferromagnetic interaction owing to Hund’s exchange. A similar model
had been proposed earlier by Slater (Slater, 1953) for the superexchange mechanism,
but is not discussed here since the signs of the exchange interactions are found to be
the same.

The Dutch physicist Hendrik Anthony Kramers (1894–1952), who is better known
to chemists for theoretically describing the Raman effect with Heisenberg, first hypoth-
esized the superexchange mechanism, in which magnetic coupling occurs through an
intermediary nonmagnetic anion (Kramers, 1934). In addition to the direct exchange
interaction mentioned above, coupling between magnetic cations (M ) can occur via
atomic orbitals on nonmagnetic intermediary anions (X ) having the proper symmetry
for overlap with those on the cation. In the case of 1808 M–X–M angles (Fig. 8.5),
the anion ps orbitals are orthogonal to the cation t2g orbitals but overlap strongly with
the eg orbitals. Therefore, eg�ps�eg exchange interactions are strong. Similarly, the
anion pp orbitals are orthogonal to the cation eg orbitals. However, the t2g�pp�t2g
bridge can accommodate exchange interactions, although they are weaker than the
eg�ps�eg type. Cation–anion–cation superexchange is possible in vertex-sharing
octahedra with M–X–M angles as small as 1208 (Goodenough, 1960). The guiding
principle in determining the sign of the superexchange interaction is that the anion
electrons simultaneously form partial-covalent bonds with the cation-spin orbitals on
opposite sides of the anion. When the interaction involves half-filled cation orbitals
(e.g. Fe3þ: high-spin 3d5) with an overlapping anion orbital (e.g. O22: 2ps), super-
exchange stabilizes antiferromagnetic coupling. If one cation orbital is half-filled and
the other empty, an excited state can be produced where an electron from the anion
ps orbital transfers to a nonorthogonal cation orbital on one side (the pz2 or px22y2

cation orbitals overlap strongly with the anion ps), while the other electron in the
same anion orbital couples ferromagnetically to the cation on the other side if the
cation orbitals are orthogonal to the anion orbital, or antiferromagnetically otherwise.
For example, in CaMnO3 with the perovskite structure superexchange occurs when an
electron hops from an O22 anion px orbital to a vacant nonorthogonal dx22y2 orbital on
a neighboring Mn4þ ion (3d3) having electrons with the same sign spin in each of its
t2g orbitals (in accordance with Hund’s first rule). The remaining electron, with oppo-
site sign spin, in the O22 px orbital couples ferromagnetically to the electrons in the
three t2g states on the Mn4þ ion (which are orthogonal to the anion orbital) on the
other side of the O22 ion. The result is a net antiferromagnetic coupling between
Mn4þ ions. Ferromagnetic coupling also occurs when the electron on one magnetic
cation interacts with a different orbital on the anion than does an electron on the
other cation (Elliot, 1998).
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The Goodenough–Kanamori rules are given in Table 8.4, which lists the four types
of interatomic interactions between a pair of cations, denoted as A and B:

1. interaction between half-filled orbitals;

2. between half-filled and empty orbitals;

3. between filled and half-filled orbitals;

4. between filled and empty orbitals.

The Pauli exclusion principle limits a given orbital to one electron of each spin, that is,
two electrons of the same spin exclude one another from a common region of space.
Thus, type a interactions will be antiferromagnetic, while type c interactions are ferro-
magnetic. For coupling between half-filled or filled orbitals on one atom with empty orbi-
tals on another atom (type b and type d interactions), ferromagnetic exchange is favored
when the cation with the empty orbital also contains a nonoverlapping half-filled orbital
because of intra-atomic exchange, Jintra, within that atom. It has recently been shown that
type d interactions can be either ferromagnetic (if nA , nB) or antiferromagnetic (if nA .
nB) (Weihe and Güdel, 1997). As can be deduced from the third column of Table 8.4,
when multiple types of interactions are simultaneously present, type a (antiferromag-
netic) are generally dominant, since they are independent of the Jintra/U term, which
usually lies in the range 1

10 � Jintra/U � 1
5. Of course, it follows from Eq. 8.43, that

there is no coupling between a magnetic atom and a nonmagnetic atom.
Use of the Goodenough–Kanamori rules allows one to predict, for simple cases, the

net magnetic exchange expected of an M–M or M–X–M linkage, based on the valence
electron configurations of the interacting cations. For example, Table 8.5 gives the sign of
the net exchange between high-spin octahedral-site cations with linearM–X–M linkages
for both direct exchange and superexchange. Note it is predicted that high-spin d3–d5

interactions with M–X–M bond angles within the range 1358–1508 change from ferro-
magnetic to antiferromagnetic. This is because, as the M–X–M bond angle bends away
from 1808, the antiferromagnetic t2g–pp– t2g interactions (of the type ([12]A–[

1
2]B)

begins to dominate over the ferromagnetic eg–ps–eg interactions (of the type
([12]A–[0]B). Similarly, for d3–d3 cation configurations it is speculated that the

TABLE 8.4. The Goodenough–Kanamori Rules for Magnetic Exchange

Electrons per Orbital Sign of Exchange Magnitude (Weihe and Güdel)

[1]A–[1]B Antiferromagnetic 2b2ij=[nAnBU]

[1]A–[0]B Ferromagnetic 2b2ijJnBþ1=[nA(nB þ 1)U2]

[2]A–[1]B Ferromagnetic 2b2ijJnAþ1=[(nA þ 1)nBU2]

[2]A–[0]B Ferro-/
antiferromagnetic

2b2ij(JnAþ1� JnBþ1)=[(nA þ 1)(nB þ 1)U2]

bij ¼ inter-atomic transfer integral; JnAþ1, JnBþ1 ¼ intra-atomic exchange integrals; nA, nB ¼ number of
unpaired electrons on cation A or B; U ¼ charge transfer energy (U� bij). 1

10 � Jintra/U � 1
5.
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unsymmetrical bonding present with M–X–M bond angles in the range 1258–1508
changes the coupling from antiferromagnetic to ferromagnetic (Goodenough, 1963).

The superexchange and direct exchange mechanisms may compete with one another
in structures containing both edge- and vertex-sharing octahedra, such as corundum-,
ilmenite-, and rutile-type compounds. The predominant contribution is then determined
by the relative magnitudes of the different interactions, which, in turn, depends on the
cation–cation separation and electron occupancy of the atomic orbitals. The
Goodenough–Kanamori rules are based on the presumption that the orbital occupation
is static. Indeed, in many compounds a structural phase transition is driven by the JT
coupling of degenerate orbitals to the lattice, lifting the degeneracy, and fixing the orbital
occupation well above the magnetic transition. This happens, for example, with electrons
in the eg orbitals of the Mott insulator KCuF3 (1808 M–X–M linkages) where weak
ferromagnetic (positive) spin correlations in the ab planes and strong antiferromagnetic
(negative) correlations along the c axis are accompanied by alternating orbital order in the
ab planes and ferro-orbital order along the c axis. However, for t2g orbitals the JT coup-
ling is rather weak and recent experiments with correlated insulators containing partially
filled t2g shells, such as the pseudocubic perovskite LaTiO3 and LaVO3, indicate that the
relevant spins and orbitals in these phases simultaneously fluctuate. In such cases, the
conditions for applying the static Goodenough–Kanamori rules are not satisfied since
the superexchange interactions now have a dynamical nature, fluctuating over positive
and negative values (Oleś et al., 2006).

So far, only isotropic or symmetric exchange coupling has been discussed. Moriya
proposed that anisotropic superexchange results when the effects of spin–orbit coupling

TABLE 8.5. Magnetic Exchange Interactions for Octahedral-Site Cations with
nA and nB Electrons

Type nA nB Sign of Exchange

Cat–Cat 0 �10 None
�5 �5 Antiferromagnetic

5 , n , 8 ,8 Ferromagnetic
8 � n � 10 �10 None

1808 Cat–An–Cat 0 �10 None
�3 �3 Antiferromagnetic

4 � n � 8 �3 Ferromagnetic
4 4 Anti-/ferromagnetic

4 � n � 8 5 � n � 8 Antiferromagnetic
10 �10 None

1358–1508 Cat–An–Cat 0 �10 None
�3 �3 Antiferromagnetic

4 � n � 8 �3 Antiferromagnetic
4 4 Anti-/ferromagnetic

4 � n � 8 5 � n � 8 Antiferromagnetic
10 �10 None

nA, nB ¼ valence electron configurations of cations A and B. (From Goodenough, J. B. Phys. Rev. 1960,
117, 1442.)
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is included in the superexchange formalism for solids with low symmetry, particularly,
triangular configurations (Moriya, 1960). In this case, additional terms have to be
included in the exchange Hamiltonian:

Hex ¼ �
X

JijSi � Sj þ
X

Dij � (Si � Sj)þ Si � Gij � Sj (8:46)

where Dij is the Dzialoshinski–Moriya (DM) vector constant (Dzialoshinski, 1958) that
can be approximated by Jij(Dg/2) and Gij is a tensor approximated by Jij(Dg/2). In these
expressions, Dg represents the deviation in the gyromagnetic ratio from the free electron
value of two.

Anisotropic exchange is a relativistic contribution. Essentially, in anisotropic super-
exchange an electron or hole hops through an intermediate diamagnetic ion from a
ground-state orbital on one magnetic ion to an excited-state orbital on a neighboring mag-
netic ion via the spin–orbit coupling interaction. This process is found to favor canted
(tilted) spin configurations. For example, it has been shown that in the parent antiferro-
magnetic (AFM) phases of the cuprate superconductors, which contain vertex-sharing
CuO6 octahedra, hopping occurs from a Cu2þ dx2�y2 orbital, through a bridging
oxygen p orbital, to an excited-state dxy orbital on the neighboring Cu2þ ion
(Bonesteel, 1993). The excited state on the adjacent Cu2þ ion is accessible via spin–
orbit coupling on that ion, which causes the spin to precess as it hops between the adjacent
magnetic ions through the intermediate oxygen p orbital. This then appears as a small spin
tilting, or canting. To be operative, the DM mechanism requires local environments with
sufficiently low symmetry (i.e. the absence of inversion center) (Skomski et al., 2005).

John Bannister Goodenough (b. 1922) obtained
his Ph.D. in solid-state physics from the
University of Chicago in 1952 under Clarence
Zener. Goodenough then joined the Lincoln
Laboratory at M. I. T. where he investigated mag-
netic properties of transition metal oxides for
magnetic memory applications. During this
period, he wrote the now often-cited book
Magnetism and the Chemical Bond and the
comprehensive review article Metallic Oxides.
Goodenough has contributed greatly to the
understanding of the transition from itinerant-
to-localized electronic behavior in transition
metal oxides. The Goodenough–Kanamori rules
are widely used to predict the signs of magnetic
exchange interactions. From 1976 to 1986,

Goodenough was head of the Inorganic Chemistry Laboratory at Oxford
University, where he developed the cathode materials presently used in lithium
rechargeable batteries, a development for which he received the Japan Prize in
2001. He has also contributed to the development of oxide–ion electrolytes for
solid oxide fuel cells. He is now the Virginia H. Cockrell Centennial Chair in
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engineering at the University of Texas. Goodenough was elected to the United
States National Academy of Engineering in 1976 and he is a foreign associate of
the French, Spanish, and Indian National Academies. (Primary source:
“Interview of John B. Goodenough, March 2001” by Bernadette Bensaude-
Vincent and Arne Hessenbruch, 2001 from The History of Materials Research
Project, funded by the Alfred P. Sloan Foundation and The Dibner Fund.)

(Photo courtesy of the College of Engineering, The University of Texas at Austin.
Reproduced with permission.)

8.5.1.2 Indirect Exchange Interactions. Conduction electrons may couple
with localized electrons over large distances, where there is little or no direct overlap
between the localized electron wave functions. Clarence Zener (1905–1993) first pro-
posed this model to explain ferromagnetism in transition metals and their alloys
(Zener, 1951a,b). The spin of a single electron in the valence s shell in an isolated
atom is always aligned parallel to that of electrons in the inner incomplete d shell.
Zener thus assumed that in the condensed state, since the s electrons spend more time
near the d electrons, indirect ferromagnetic coupling between the itinerant s electron
and localized d electron would be even stronger. The properties of the system are obtained
by minimizing the free energy with respect to the spin magnetization, or spin energy.
When the indirect (ferromagnetic) exchange contribution to the spin energy dominates
over the antiferromagnetic direct exchange interaction between the d shells (i.e. for
large interatomic spacing), the system becomes ferromagnetic. This implies that the
Curie temperature, TC, is strongly dependent on the competition between these different
spin interactions. For alloys, the Curie temperature may be expected to be dependent on
the composition.

Zener’s model was later abandoned in favor of the RKKY model (see next
paragraph) because Zener neglected the magnetic contribution owing to the conduction
electrons themselves (itinerant magnetism) and because he did not account for the
oscillation of the spin polarization around the local moments. However, in magnetic
semiconductors the Zener and RKKY models become equivalent since these oscillations
average to zero (Dietl et al., 1997). Thus, the Zener’s model has found application in
estimating how TC might change with composition in dilute semiconductor alloys, for
example Ga12xMnxN, where x ¼ 0.06–0.09 (Dietl et al., 2002).

The currently accepted mechanism for describing magnetic ordering in metallic sys-
tems containing unpaired electrons in localized atomic orbitals (particularly rare-earth
systems) is the RKKY (Ruderman–Kittel–Kasuya–Yosida) model (Ruderman and
Kittel, 1954; Kasuya, 1956; Yosida, 1957). As mentioned above, cations polarize con-
duction electrons in their vicinity. Two localized electrons can interact via this polarized
conduction electron density. Thus, in the RKKYmodel the conduction electrons act as an
intermediary, similar to the role of the anions in the superexchange interaction for mag-
netic insulators. The exchange coefficient has a damped oscillatory nature that switches
from positive to negative as the cation separation changes. The sign of the exchange
interaction (ferromagnetic or antiferromagnetic) will, therefore, depend on whether the
positions of the cations correspond to peaks or troughs.
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Clarence Melvin Zener (1905–1993) received his
Ph.D. in physics under Edwin C. Kemble at
Harvard in 1929. Zener held teaching, research,
and administrative positions in both academia
and industry. He was at several American univer-
sities, including Washington University in
St. Louis (1935–1937), the City College of
New York (1937–1940), Washington State
University (1940–1942), the University of
Chicago (1945–1951), Texas A&M University
(1966–1968), where he was the first Dean of
the College of Science, and Carnegie Mellon
University (1968–1993). Zener was also a physicist
at the Watertown Arsenal from 1942 to 1945.
From 1951 to 1965 he was at Westinghouse, as

director of research and, later, director of science. Zener’s scientific accomplish-
ments were as wide-ranging as his posts. He discovered the effect of heavily dop-
ing silicon diodes, causing them to exhibit a controlled reverse-bias breakdown
and enabling their use as voltage regulators. These devices are now called
Zener diodes. He developed a mean-field model to explain the ferromagnetism
in transition metals and their alloys, and was the first to write an explicit descrip-
tion for the effects of alloying on the magnetic Gibbs energy. Zener proposed the
double-exchange mechanism for the magnetotransport properties of mixed-
valence manganites. He contributed to the theories of elasticity and fracture
mechanics of polycrystals, devised theoretical expressions for diffusion coeffi-
cients, and even conceived a design for an energy plant that utilizes oceanic
temperature gradients. Zener was elected to the United States National
Academy of Sciences in 1959. (Primary Source: “On the Occasion of the 80th

Birthday Celebration for Clarence Zener: Saturday, November 12, 1985” by
Frederick Seitz in J. Appl. Phys. 1986, Vol. 60, pp. 1865–1867. # American
Institute of Physics. Reprinted with permission.)

(Photo courtesy of AIP Emilio Segrè Visual Archives. Reproduced with permission.)

8.5.2 Itinerant Ferromagnetism

The discussion of the preceding two sections relied on the presumption that localized
(atomic-like) moments were present. However, valence s and p electrons are always
best described by Bloch functions, while 4f electrons are localized and 5f are intermedi-
ate. Valence d electrons, depending on the internuclear distance, are also intermediate –
neither free nor atomic-like. In such cases, the dilemma is that the Heisenberg exchange
interaction of Eq. 8.43, which is the physical basis for the Weiss field, is not strictly
applicable in the case of delocalized electrons in metallic systems, in spite of the success
of the Weiss model.

Recall that, for atoms, only electrons outside of closed shells need to be considered.
Analogously, in solids with delocalized states, only those electrons in partially filled
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bands (i.e. metals) contribute to ferromagnetic behavior. But a proper treatment of met-
allic materials must also include contributions to the spin energy owing to the itinerancy
of the conduction electrons, that is, their kinetic energy. The British physicist Edmund
Clifton Stoner (1899–1968) introduced what is now called the Stoner criterion for itin-
erant ferromagnetism, also known as the collective electron theory of ferromagnetism.
The basis of this theory is given in the form of the following inequality:

I � N(EF) . 1 (8:47)

When Eq. 8.47 is satisfied, a system is predicted to be unstable in the nonmagnetic state
(Stoner, 1938). In this equation, I is an intra-atomic exchange integral called the Stoner
parameter, which is element specific and is approximately independent of the local
environment (see Table 8.6), while N(EF) is the paramagnetic (nonmagnetic) density
of states at the Fermi level. In the Stoner model, the shape of the DOS is assumed to
be independent of the exchange splitting (rigid band model). The units of I are Ry or
eV, while those of N(EF) are the reciprocals, Ry

21 or eV21. Their product, therefore, car-
ries no units. For the mid-to-late 3d transition metals, I is nominally 0.032 Ry (0.43 eV).
Since the d bandwidth becomes greater in moving from the 3d to the 4d to the 5d series,

TABLE 8.6. Stoner Parameters for Several Elements in
Rydbergs (1 Ry ¼ 13.6 eV). Obtained by the Korringa–
Kohn–Rostoker (Green Function) Nonspin Polarized
Density-Functional Calculations in the Local-Spin Density
Approximation

Metal I Ixc

Na 0.067
Al 0.045
Cr 0.028 0.055
Mn 0.030 0.059
Fe 0.034 0.067
Co 0.036 0.071
Ni 0.037 0.073
Cu 0.027
Pd 0.025 0.050
Zr 0.045
Nb 0.044
Mo 0.042
Tc 0.043
Ru 0.044
Rh 0.047

Source: Zeller, R. (2006) and the spin-polarized exchange–
correlation integral, Ixc, calculated by the local spin density
approximation. The Stoner parameter is, to a first approximation,
element-specific and independent of the atom’s local environment.
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N(EF) increases in the order N(EF)3d . N(EF)4d . N(EF)5d. The result is that 3d
transition metals are much more likely to exhibit itinerant ferromagnetism than are the
4d and 5d metals. Indeed, three of the five ferromagnetic elements all have a high
DOS originating from narrow d bands near the Fermi level in the nonmagnetic state.
These are iron, cobalt, and nickel. Stabilization can be achieved if the band splits into
spin up and spin down configurations, or sub-bands, with different energies. This is
called intraband spin polarization. Conversely, for systems with small values of the
Stoner parameter or, in particular, a small DOS (wide-band metals), the nonmagnetic
state is energetically preferred. Ferromagnetism also arises in two other metallic
elements, gadolinium and dysprosium, but in these it is owing to localized 4f electrons.

Itinerant ferromagnetism is not restricted to monatomic transition metals. In fact,
compounds of elements that do not exhibit itinerant ferromagnetism in their pure
elemental form can obey the Stoner criterion if the DOS at the Fermi level is high
enough. Many such compounds are itinerant ferromagnets including, for example, the
layered LaCrSb3, for which I[Cr]¼ 0.028 Ry and N(EF) ¼ 142.8 Ry (Raju et al.,
1998), as well as the pyrochlore-structured oxide Tl2Mn2O7 (I[Mn]¼ 0.030 Ry and
N(EF) ¼ 81.6 Ry), which will be discussed later. However, the magnetic behavior of
materials comprised of atoms with different moments, as in many alloys and magnetic
hosts with magnetic impurities, cannot be explained by the Stoner model. In these
cases, spin-dependent changes in the covalent interactions between neighboring atoms
must be considered (Williams et al., 1981).

The Stoner model has undergone refinements over the years. A Stoner model
utilizing a local DOS has been able to explain the behavior of magnetic impurities in
nonmagnetic hosts. Spin-polarized calculations in the local spin-density approximation
formalism have been used to derive a model including correlation effects in which the
exchange–correlation integral takes the place of the Stoner parameter (Section 8.6.2).
On closing, it should be noted that the validity of the Stoner criterion comes into question
with ultra-small nanoscale metal particles where the electron energy levels start to
become less band-like and more discrete.

Example 8.7

1. The d bands in palladium have a DOS N(EF) value of 2.28 states/eV/atom.
Use data from Table 8.6 to predict whether Pd should be magnetic or
nonmagnetic.

2. The 4s band of copper (3d104s1 outer electron configuration) has a Fermi
energy of 7 eV. What does the Stoner criterion predict?

Solution

1. From Table 8.6, it can be seen that the Stoner parameter for Pd is 0.025 Ry,
or 0.34 eV. The DOS at the Fermi energy is given as N(EF) ¼ 2.28 eV. Their
product is 0.7752, which is less than unity and, therefore, does not satisfy
the criterion for magnetic behavior.
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2. The DOS as a function of energy is given by:

r(E) ¼ V

2p2

2me

h� 2

� �3=2 ffiffiffi
E
p

where me is the electron rest mass ¼ 9.1095 � 10231 kg,

h� ¼ 1:0546� 10�34 J s, V is the molar volume (Vm(Cu) ¼ 7.11 � 1026 m3),
and E ¼ EF ¼ 7 eV ¼ 1.13 � 10218 J. Making the substitutions yields
r(E) ¼ N(EF) ¼ 8.026 � 1041 states/J/mol, which is 0.181 � 1023 states/eV/
cm3 or 0.213 states/eV/atom. The Stoner parameter for copper from
Table 8.6 is 0.027, or 0.37 eV. The product I .N(EF) is 0.0099, which is less
than unity. Therefore, no spin polarization is predicted.

8.5.3 Noncolinear Spin Configurations and
Magnetocrystalline Anisotropy

In paramagnetic samples, the individual magnetic moments are randomly oriented owing
to thermal disorder being greater than the magnetic dipole–dipole interactions. Similarly,
the spins may not all be oriented in a single direction in the magnetic state of a bulk
ferromagnet, or in just two directions within an antiferromagnet. Rather, particular non-
colinear spin configurations are observed. There are four distinct phenomena responsible
for this magnetic behavior: anisotropic superexchange; geometric frustration; random
magnetic anisotropy; and magnetic domain formation. Anisotropic superexchange was
discussed in Section 8.5.1. The remaining three are introduced here.

8.5.3.1 Geometric Frustration. In the Ising model, where the presence of an
externally applied magnetic field restricts to only two possible values for the spin, parallel
or antiparallel with the field direction, it is found that some lattices are inherently prone to
competing or contradictory antiferromagnetic exchange coupling. For example, the bipar-
tite (two-sublattice) phases (e.g. two-dimensional square lattices) easily accommodate
colinear spins and therefore, in the macroscopic limit, form an antiferromagnetic state
in which the spins on each sublattice align antiparallel. This is because the lattice sym-
metry allows every pair-wise interaction (bond) in the system to be satisfied at the
same time. A frustrated system, by contrast, is one whose symmetry precludes the possi-
bility that every pair-wise interaction in the system can be satisfied at the same time.
Consequently, in a two-dimensional triangular lattice, the colinear antiferromagnetic
spin arrangement (Fig. 8.6a) is not the lowest energy state, even though the antiferromag-
netic constraint is satisfied globally in this configuration. Calculations reveal that the
noncolinear spin configuration illustrated in Figure 8.6b, in which the vector sum of
the three spins (aligned at 1208 to each other) on each triangle is zero, is lower
in energy. Such magnetic systems are said to be geometrically frustrated. The two-
dimensional triangle is the smallest geometrically frustrated unit. In the noncolinear
arrangement, the system exhibits a high degree of spectral weight, which is the total
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integrated density of states for a particular degree of freedom. For magnetic systems, this
is the total entropy S.

Alternatively, rather than entering a noncolinear antiferromagnetic state at low temp-
eratures, some substances that exhibit competing magnetic interactions transition to a spin
glass state, in which the spins freeze with a random, or paramagnetic, orientation. The
hallmark signature of a spin glass is a cusp (an abrupt change of the slope) in the AC sus-
ceptibility at a point called the freezing temperature Tf (v), which depends weakly on the
frequency v of an applied field. If an external magnetic field is applied at a temperature
well above the spin glass transition temperature and the magnetization is measured while
the temperature is lowered, the magnetization versus temperature plot is found to follow
the Curie or Curie–Weiss law (i.e. the magnetization is inversely proportional to temp-
erature) until the transition temperature TSG is reached. Below this temperature, the spins
freeze into a configuration resulting from a random exchange field, which can be likened
to frustration of the magnetic exchange interactions that would be found in a regular crys-
talline solid. When TSG is reached, the magnetization becomes virtually constant. This
value is called the field cooled magnetization and is the onset of the spin glass state. If
the external field is removed, the spin glass has a rapid decrease of magnetization to a
value called the remnant magnetization, and then a slow decay as the magnetization
approaches zero. The magnetization in a spin glass can be described in odd powers of
the magnetizing field:

MSG ¼ x0H þ x2H
3 þ x4H

5 þ x6H
7 þ � � � (8:48)

where x0 is the zero-field susceptibility and where the cubic term x2 and higher-order
terms diverge at the phase transition. The nonlinear susceptibility, which is essentially
the same as the spin glass susceptibility, is defined as:

xnl ¼ x0 �
M

H
(8:49)

(a) (b)

Figure 8.6. In a two-dimensional triangular lattice, the colinear antiferromagnetic structure

(a) is higher in energy than the noncolinear antiferromagnetic structure (b). The unit cells

are shown by the dashed lines.
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When the external field is removed, the spin glass experiences an initial rapid decrease in
magnetization (to a value called the remnant magnetization), and then slowly decays as
the magnetization approaches zero. The spin glass state (i.e. the low temperature behav-
ior) exhibits slow dynamics. Below the transition temperature, field-cooled samples are
not able to follow fluctuations in an applied oscillating magnetic field. If the sample is
cooled in the presence of an applied field, there will be a partial alignment of the spins
and resultant magnetization, which the sample retains upon sign reversal of the external
field. The magnetization of the sample thus lags behind the oscillating field.

The applied alternating current (AC) field can be represented as:

H ¼ H0 þ h sinvt (8:50)

where H0 is the static component and h is the oscillating component. A spin glass’s
response to such a time-varying field may be expressed using Eq. 8.49. For h/H0
 1,
the amplitude of the AC component of the magnetization Mv can be written as:

Mv ¼ x0 hþ 3x2H
2
0 hþ 5x4H

4
0 hþ � � � (8:51)

Another curiosity of spin-glass phases is the difference between AC and direct
current (DC) susceptibility. The DC susceptibility is very dependent on the manner in
which the experiment is performed. In a zero-field cooled (ZFC) experiment, the speci-
men is slowly cooled in the absence of a field to the lowest possible temperature. The
spins freeze in a randommanner since they had no external field to align with. An external
field is then applied and the susceptibility is measured as the temperature is raised.
However, the spins tend to remain in their frozen configuration. Thus a ZFC spin glass
exhibits a slowly decreasing magnetic susceptibility. This is much different from the be-
havior exhibited by field-cooled (FC) samples, where even the cooling rate affects the
response. If the temperature is then lowered, the susceptibility increases but drops
again when the sample is returned to the original temperature. Spin glasses also coarsen
slowly, with the mean domain size crossing over from a power-law growth at the tran-
sition temperature to a slower logarithmic growth below the transition temperature.
The spin-glass state thus actually has several characteristic signatures, which are depen-
dent on the manner in which the magnetic measurements are made (e.g. FC, ZFC, etc.).

Spin-glass behavior is often observed in amorphous solids at low temperatures,
because the distribution in bond distances and angles give rise to exchange frustration.
However, crystalline substances with diagonal disorder may also exhibit spin-glass
behavior. For example, the antiferromagnetic LiMn2O4 spinel contains a random distri-
bution of Mn3þ (d4) and Mn4þ (d3) cations in the octahedral sites, which give rise to the
simultaneous presence of d3–d3, d4–d4, and d3–d4 interactions. The Mn–O–Mn angle
in spinel is 908 (edge-sharing MnO6 octahedra) and the manganese ions reside on a tetra-
hedral sublattice, which is inherently prone to geometric frustration like the triangular lat-
tice. Furthermore, since Mn3þ is a JT ion, this three-dimensional tetrahedral network is
distorted. All of these various features culminate into the spin-glass state below 25 K
(Jang et al., 1999). It has generally been assumed that both geometric, or topological
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frustration and chemical, or bond disorder is required in order for the spin-glass state to be
observed in crystalline substances, such as in LiMn2O4. However, in the pyrochlore
oxides exhibiting spin-glass behavior, no disorder is present (Gardner et al., 2001).
Likewise, spin-glass behavior has been found in Sr3FeRuO7 and Sr4FeRuO8, with disor-
dered distributions of Fe3þ and Ru5þ ions over the six coordinate sites, neither of which
are topologically frustrated (Battle et al., 1992). In these oxides, spin-glass behavior is
believed to result from the exchange frustration arising in passing from one M–O–M
linkage to the next, which need not be of the same sign owing to the differing electronic
configurations of the Fe3þ and Ru5þ ions.

Spin-ice and spin-liquid states are also known to exist. In the spin-ice state, the dis-
order of the magnetic moments at low temperatures is precisely analogous to the proton
disorder in water ice. In a spin liquid, there are short-range dynamic magnetic correlations
and an absence of static long-range magnetic order down to 0 K. However, these phenom-
ena are not discussed further in this textbook. The spin-glass transition was originally of
great interest in condensed matter physics because of its relation to critical phenomena.
However, spin-glass theory has since found far-reaching applications in computer science
(the study of learning and information storage in neural networks) and theoretical biology
(there is a spin-glass model of the origin of life). Materials applications have yet to be
found. Because spin glasses can have very small area domains, it may seem like they
could potentially be used in high-density erasable magnetic memory devices.
However, their glass transition temperatures are far too low for these applications . . . at
the current time.

Example 8.8

In the Sr3FeRuO7 and Sr4FeRuO8 phases with a perovskite-like structure, Fe3þ and
Ru5þ ions are randomly distributed over the six coordinate (octahedral) sites.
What type of magnetic interactions might be expected in these oxides?

Solution

The Fe3þ ion has the high-spin 3d5 electronic configuration,while the Ru5þ ion has
the 4d3 configuration. No direct exchange interactions are predicted between the
transition metal cations because the M–O–M bond angles are all 1808. From
Table 8.5, it can be seen that the 1808 Fe3þ(t2g)–O–Fe3þ(t2g) superexchange inter-
action is expected to be antiferromagnetic, as is the 1808 Ru5þ(t2g)–O–Ru5þ(t2g)
superexchange interaction. By contrast, the 1808 Ru5þ(t2g)–O–Fe3þ(t2g) super-
exchange interaction should be ferromagnetic. Because the Fe3þ and Ru5þ ions
are randomly distributed, the superexchange interaction between neighboring
M–O–M linkages are not necessarily of the same type, which gives rise to the
possibility for spin-glass behavior.

While some disordered magnetic systems do display spin-glass behavior, those that
are not geometrically frustrated can behave in a fundamentally different way. In
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Simpson’s amorphous antiferromagnet model, dilute and amorphous antiferromagnets
alloyed with nonmagnetic atoms may contain a fraction of the magnetic ions that are iso-
lated from other magnetic ions by surrounding nonmagnetic ions (Simpson, 1970). In this
case, the exchange or superexchange interactions between isolated magnetic ions are
negligible and the system behaves as a simple paramagnet showing infinite or very
large susceptibility near absolute zero, swamping out any antiferromagnetic behavior
at low temperatures. The reciprocal susceptibility versus temperature plot shows a down-
ward curvature with decreasing temperature. This has been found in some amorphous
mixed oxides, such as P-doped silicon, and In-doped CdS (Walstedt et al., 1979).

8.5.3.2 Magnetic Anisotropy. In crystals, magnetic anisotropy can result
when magnetization is easier in some directions than in others. The preferred directions
are called easy directions of magnetization while the others are termed hard magnetiza-
tion directions. The energy along a hard direction is greater than along an easy direction
by the magnetocrystalline anisotropy. It is also possible that opposite types (signs) of
exchange interactions may dominate in different directions. For example, in iron-
containing sheet silicates such as chlorite, muscovite, and biotite, a positive paramagnetic
Curie temperature is found in the basal plane while a negative paramagnetic Curie temp-
erature is found perpendicular to the basal plane. As with other tensor properties, the ani-
sotropy to the magnetic susceptibility can be described by an ellipsoid (Section 6.1).

Magnetocrystalline anisotropy is particularly important with polycrystalline
materials. In comparison with bulk systems, the presence of surfaces and interfaces
(e.g. grain boundaries) leads to an enhancement of the magnetocrystalline anisotropy
owing to spin–orbit coupling. The magnetocrystalline anisotropy often prefers a magne-
tization perpendicular to the surface, while the magnetic dipole–dipole interaction and
the entropy at finite temperatures favor an in-plane magnetization (Udvardi et al., 2001).

There is another phenomenon called anisotropic exchange, or the exchange bias
effect, that arises from the interfacial exchange coupling between a ferromagnetic layer
and an antiferromagnet, whereby a preferred easy direction of magnetization in the
ferromagnetic layer is aligned and pinned by the antiferromagnet, so that it does not
reverse in an external magnetic field. The ferromagnetic hysteresis loop becomes asym-
metric and shifted from zero. The exchange bias effect is important in the read-heads
made from magnetic multilayers exhibiting giant magnetoresistance (GMR) already in
use in computer hard drives. However, since this effect normally is associated with
magnetic heterostructures (e.g. composites containing separate ferromagnetic and antifer-
romagnetic films), as opposed to being an intrinsic single-crystal property, it is not
discussed further.

8.5.3.3 Magnetic Domains. The individual magnetic dipole moments in a
ferromagnetic substance spontaneously align upon reaching a critical temperature (the
ferromagnetic Curie temperature, TC) provided at some point in its history the sample
has had previous exposure to an external magnetic field. The requirement of a previous
exposure to an external magnetic field is owing to the domain structure of ferromagnets.
There exist regions called domains, within which the individual magnetic moments are
aligned parallel below the transition temperature to generate a large magnetic moment
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given by the vector sum of all the unpaired electrons in that domain. The domains are not
identical with the crystalline grains, but may be smaller or larger than the grain size. At
any rate, the different domains within a bulk sample have magnetizations pointing in
different directions, canceling each other over the macroscopic extent of the sample, in
the absence of an external field.

The boundaries separating domains, called Bloch walls, are transition regions
where the magnetization changes continuously from the value for one domain to the
value for the neighboring domain. The Bloch wall is of higher energy since there is
a cost in the exchange energy for inverting the spins. A domain wall can also be thought
of as a defect, in an otherwise perfectly magnetically ordered system, in analogy to a
grain boundary, which is also of higher energy in comparison to the intragranular
region. This domain structure persists until the saturation magnetization point is
reached, where all the magnetic moments of the entire sample become aligned with the
applied field.

As described above, although spontaneous magnetization occurs on a microscopic
scale below the ferromagnetic Curie temperature, only a very small net magnetic
moment is observed in zero-field for a macroscopic ferromagnetic sample. Upon a first
exposure to an applied field, the magnetic moments of each domain align with the
field. When magnetization saturation is reached; the material becomes magnetized. If
the field is removed, the sample remains trapped in a metastable state, retaining a remnant
magnetization fixed along the direction associated with minimum energy; it has been con-
verted to a permanent magnet.

At any given temperature above absolute zero, thermal energy acts to restore thermo-
dynamic equilibrium by destroying this magnetic order. However, when the relaxation
time is very much longer than the observation time, the magnetization returns to zero
only if the field is reversed and reaches the coercitive field strength. Thus, hysteresis is
observed when the sample is trapped in the ferromagnetic state over a period much
longer than the observation time. This behavior explains the magnetization curve
shown in Figure 8.2c. The greater the misalignment among moments, the less the mag-
netization that remains after the field is removed (remanence), and the lower the magni-
tude of the reverse field required for demagnetization (coercivity).

The formation of domains in ferromagnets is attributed to a reduction in the overall
magnetostatic energy. The external magnetic field exerted by a material, and its energy
density, is decreased if internal local regions (domains) with opposing magnetizations
are created, even though there is an energy penalty (increase) associated with the for-
mation of domain walls. Domain structures have also been experimentally confirmed
for many antiferromagnets, including NiO, CoO, CoCl2, CoF2, MnTe, and
YBa2Cu3O6þx. Domain structures in antiferromagnets were first suggested by Néel to
explain their susceptibility behavior (Néel, 1954). However, as pointed out by Li (Li,
1956), there appears to be no obvious compensation for the increase in the free energy
expected from the existence of domain walls (Gomonay and Loktev, 2002); that is, the
formation of antiferromagnetic domains do not appear to be energetically favorable.
The two types of domains found in antiferromagnets are colinear (with antiparallel mag-
netic vectors in neighboring domains) and orientational (with noncolinear magnetic axes
in neighboring domains).
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There is a limit to the energy reduction associated with domain formation, since it
costs energy to form the domain walls. A single particle comparable in size to this mini-
mum domain size would not break up into domains, but rather exhibit an enhanced mag-
netic moment. Typical values for the minimum domain size are in the range 10 to 100 nm
(Sorenson, 2001). Single domains exhibit very large magnetic moments (thousands of
Bohr magnetons) and, hence, the largest coercivities.

Another small-particle phenomenon, superparamagnetism, may be observed in even
smaller ferromagnetic particles (1–10 nm) above a critical blocking temperature, TB,
which is below the ferromagnetic Curie temperature. In fact, any domain may contain
subdomain superparamagnetic clusters of spins that act like single paramagnetic ions
with large magnetic moments. The magnetic states in these samples are very sensitive
to thermal fluctuations, as they have very short thermal relaxation times. The particles
remain in the paramagnetic state (zero coercivity and zero remnant magnetization) at
temperatures below the ferromagnetic Curie temperature, but exhibit very large total mag-
netic moments because each superparamagnetic cluster acts like a single independent
domain. However, when cooled further, to temperatures below the blocking temperature,
superparamagnetic clusters experience a very long thermal relaxation time and the system
exhibits ferromagnetic behavior with hysteresis. The ultimate goal in magnetic data sto-
rage is the use of one single-domain particle (above, but as close as possible to, the super-
paramagnetic state) per data bit.

8.6 MAGNETOTRANSPORT PROPERTIES

The presence of a magnetic field causes the mobile electrons in a conducting sample to be
deflected by the Lorentz force, thus increasing the electrical resistivity. This phenom-
enon, termed positive magnetoresistivity, is often observed in metals with anisotropic
Fermi surfaces. On the other hand, negative magnetoresistivity, that is, a decrease in
resistivity with the application of a magnetic field, can occur when a field-induced ferro-
magnetic alignment of spins (electrons) reduces electron scattering. The spin ordering
gives rise to the possibility for spin-electronics, or spintronics, an emerging field
whose straightforward applications include the control of electrical current by an external
magnetic field and the manipulation of both electron spin and electron charge in infor-
mation technology. For example, information can be stored as a particular spin orientation
(up or down) of itinerant electrons that carry the information along a wire to a terminal
where it can be read. Spin orientation of conduction electrons survives for a relatively
long time (nanoseconds, compared to tens of femtoseconds during which electron
momentum and energy decay), which makes spintronic devices particularly attractive
for memory storage and magnetic sensors applications, and, potentially for quantum
computing where electron spin would represent a bit (called qubit) of information.

A very large negative effect has been observed in many mixed-valence manganite
perovskite oxides in the family Ln1�xAxMnO3 where 0.2 � x � 0.5 in which Ln ¼
lanthanide or Bi, and A ¼ Sr, Ca, Ba, Pb, as well as LnMnO3+d, (Maignan et al.,
1996; Urushibara et al., 1995; Zuotao and Yufang, 1996). These particular materials
have a paramagnetic insulating phase at high temperatures and, upon cooling, the
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electrical resistivity sharply rises at TC. Upon further cooling, a metallic ferromagnetic
low-temperature phase is observed. This behavior is unusual in and of itself. With the
introduction of an external magnetic field of only a few teslas, the resistivity peak is
rapidly suppressed, generating a large negative magnetoresistance effect. Because the
observed drop in resistivity is very large (sometimes as large as 106 percent), the effect
has been termed colossal magnetoresistance, or CMR, which should be differentiated
from the GMR in magnetic multilayers. Usually, the change in resistivity occurs at a
temperature slightly lower than TC, as illustrated in Figure 8.7. Colossal magnetoresis-
tance is also exhibited by some compounds that do not appear to be mixed-valent.
This group includes: the metallic pyrochlore oxide (Tl2Mn2O7) (Shimikawa et al.,
1996), the chromium spinels (ACr2S4: A ¼ Fe, Cu, Cd) (Ramirez et al., 1997a,b),
some Zintl phases (e.g. Eu14MnBi11) (Chan et al., 1997a,b, 1998), and the sulfide
BaFe2S3 (Serpil Gönen et al., 2000). Although CMR is often described as a field-induced
NM–M transition, in Tl2Mn2O7, the high temperature phase is also metallic.
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Figure 8.7. Example of experimental data on a CMR material. The ferromagnetic Curie
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temperature. (After Pickett and Singh (1996). # American Institute of Physics. Reproduced

with permission.)
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8.6.1 The Double Exchange Mechanism

In the case of the mixed-valence manganites with the perovskite structure, Zener’s
double-exchange (DE) mechanism has been used to explain the CMR effect (Zener,
1951c). In this model, a strong Hund’s coupling is presumed to exist between the itinerant
eg electron originating on a high-spin d

4Mn3þ cation (electron configuration ¼ t32ge
1
g) and

the localized t2g spins on a neighboring d3 Mn4þ cation (electron configuration ¼ t32g)
through the intermediary oxygen atom. Because the exchange interaction, Dex, is greater
than the crystal-field splitting, 10Dq (Goodenough, 1971), incoherent carrier hopping
occurs through the intermediary oxygen atom (i.e. through the Mn3þ–O–Mn4þ

bonds) at no energy cost, and without a change in the itinerant carrier’s spin. However,
at the ferromagnetic transition temperature, the parallel alignment of spins allows a tran-
sition from incoherent hopping to coherent electrical conduction. Hence, a NM–M
transition, TNM!M, occurs in the vicinity of the Curie temperature, TC.

In LnMnO3+d, manganese disproportionates via 2Mn3þ !Mn2þ þMn4þ. Doping
of the Ln and Mn sites with Sr2þ and Ru4þ has been found to suppress this reaction and,
accordingly, the double exchangeMn3þ–O–Mn4þmagnetic interactions which give rise
to the CMR effect. For example, (Nd1�xSrx)(Mn1�xRux)O3 is an insulator that exhibits
antiferromagnetic coupling between the manganese and ruthenium cations and ferromag-
netic coupling between the Mn3þ–Mn3þ and Ru4þ–Ru4þ pairs (Balagurov et al., 2004).

8.6.2 The Half-Metallic Ferromagnet Model

More sophisticated theories have attempted to addressed certain aspects of CMR that are
not explained by Zener’s simple DE mechanism, such as the high insulating-like resis-
tivity above the transition temperature in the perovskite phases. The electronic structures
of many solids exhibiting CMR have been calculated using the LSDAmethod, in order to
investigate the exchange interactions. One technique commonly utilized was not dis-
cussed in earlier chapters, spin-polarized (SP) calculations, in which separate band struc-
tures are calculated for spin-up and spin-down electrons. Such calculations are useful for
studying itinerant ferromagnetism (ferromagnetism owing to itinerant electrons) or any
other SP configuration where the numbers of spin-up and spin-down electrons are
not equal.

According to the Stoner criterion for itinerant ferromagnetism, when the inequality
I . N(EF) . 1 (Eq. 8.47) is satisfied a system is predicted to be unstable in the nonmag-
netic state. Stabilization can be achieved if the states split by intraband polarization. In
SP calculations, which do not use the Stoner model, the so-called exchange-correlation
integral takes the role of the Stoner parameter. Spin-polarized calculations on the per-
ovskite La12xCaxMnO3 exhibiting CMR strongly indicate a half-metallic character,
that is, the existence of a metallic majority spin band and a nonmetallic minority spin
band in the ferromagnetic phase (Pickett and Singh, 1996).

Hybridization between the Mn d states and the oxygen p states was found to be
strongly spin dependent – the majority Mn d band overlaps the O p band, while the min-
ority Mn d band and O p band are nonoverlapping and hybridize much more weakly.
Furthermore, it has been suggested that local lattice distortions arising from disorder

8.6 MAGNETOTRANSPORT PROPERTIES 361



on the Ca2þ/La3þ sites tend to localize the minority states near the Fermi level (EF lies
below a mobility edge). In the CMR regime, this results in nonconducting minority states,
but has little effect on the strongly hybridized metallic majority bands. Separate spin-
resolved photoemission measurements (Park et al., 1998) and scanning tunneling spec-
troscopy (Wei et al., 1997) on La0.7Sr0.3MnO3 have provided direct experimental evi-
dence that the mixed-valence manganite perovskite oxides exhibiting CMR have
a spin polarization at EF of 100 percent and are, indeed, half-metallic ferromagnets
below the transition temperature.

With the possibility of spin fluctuation, the half-metallic ferromagnetic model is able
to account for the high resistivity above the transition temperature in the zero-applied
field, which the DE model cannot explain. More importantly, this model does not expli-
citly depend on the presence of mixed-valency to rationalize the CMReffect, even though
mixed-valency is implied in nonstoichiometric compositions. In fact, the half-metallic
model can also explain the CMR observed in the stoichiometric pyrochlore Tl2Mn2O7,
which is metallic at high temperatures in the absence of a magnetic field (Matar et al.,
1997). This compound is expected to largely obey the Stoner criterion, since calcula-
tions have indicated that for Mn 3d, I ¼ 0.030 Ry (0.41 eV) and in Tl2Mn2O7 N(EF) ¼
81.6 Ry (6 eV).

It is possible to gain insight into magnetotransport properties from simpler tight-
binding calculations. For example, in Tl2Mn2O7 the Mn4þ–O–Mn4þ bond angle of
1338 is in the range for which a crossover from antiferromagnetic-to-ferromagnetic inter-
action is expected (Shimakawa et al., 1997). The magnetic moments are disordered above
the ferromagnetic transition temperature and thus they act as scattering centers for the
conduction electrons. When a sufficiently strong magnetic field is applied, the spins
become ordered, which decreases the scattering and resistivity. An early extended
Hückel tight-binding calculation (Seo et al., 1997) revealed a partially filled Tl 6s
band resulting from small overlap with the Mn t2g block band. The carrier density at
the Fermi level was shown to be very low. Hence, transport should be strongly affected
by spin ordering, which supports the simple spin scattering/superexchange mechanism
for CMR in this compound.

Recent investigations have also studied the dependence of CMR on microstructural
features. In manganese perovskite thin films, for example, film strain, oxygen deficiency,
and chemical disorder have all been found to drastically affect the magnetotransport
behavior (Panagiotopoulos et al., 1998). Likewise, in powder samples of
La0.66Ca0.33MnO3 (TC � 3528C), the magnetoresistance appears to be dominated by
the tunneling of SP electrons between grains. Carriers can only cross from one grain to
another if the corresponding majority bands in both sides are energetically coincident,
that is, if there is no change in spin of the itinerant electron (Fontcuberta et al., 1998).
As expected, an intrinsic grain-size dependence to the magnetoresistance is observed.
This is illustrated in the zero-field resistivity plot in Figure 8.8. It can be seen that
coarse-grained samples have a metallic-like resistivity below TC, but the M–NM tran-
sition becomes broader with decreasing grain size. In addition, as the grain size is low-
ered, the zero-field resistivity increases (owing to a larger number of interfaces),
spanning seven orders of magnitude, and eventually washes out the M–NM transition.
However, it can be recovered in a field of a few Oe.
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8.7 MAGNETOSTRICTION

Some magnetic materials can convert magnetic energy into mechanical energy and vice
versa. This is called the magnetostrictive effect. Upon application of a magnetic field,
magnetostrictive materials expand (positive magnetostriction) or contract (negative mag-
netostriction) along the direction of magnetization. This transduction capability allows
magnetostrictive materials to be used as actuators and sensors. The first materials
found to exhibit magnetostriction were nickel, cobalt, and iron, as well as alloys of
these metals. Subsequently it was discovered that terbium and dysprosium displayed
much larger magnetostrictive strains, but only at low temperatures. Alloying with iron
to form the intermetallic compounds TbFe2 and DyFe2 bring the magnetostrictive prop-
erties to room temperature. However, owing to the magnetic anisotropy of these materials,
large strains are only produced in the presence of very large magnetic fields. Alloying
these two compounds together to produce Tb0.27Dy0.73Fe1.95 (Terfenol-D) greatly
reduces the required magnetic field strength.

The atomic mechanism of magnetostriction is complex. However, two processes can
be distinguished at the domain level, which depend on the response of a material to an
external magnetic field. The first process involves the migration of domain walls and
the second involves the reorientation of domains. The rotation and movement of domains

Figure 8.8. The zero-field resistivity of powder samples of La0.66Ca0.33MnO3 are highly

dependent on the grain size. (After Fontcuberta et al. (1999), Nano-Crystalline and Thin Film

Magnetic Oxides. Nedkov and Ausloos (eds.) # Kluwer Academic Publishers. Reproduced

with permission.)
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cause a physical length (dimension) change in the material. Magnetostriction is actually
exhibited by most magnetic materials, but the effect is usually very small. By contrast,
Terfenol-D is capable of strains as high as 1500 ppm (compared to 50 ppm for cobalt
and iron alloys) and is currently the most widely used magnetostrictive material.

8.8 DIELECTRIC PROPERTIES

An applied electric field can be the electric field component of an electromagnetic wave,
in which case electronic excitations or other optical responses may ensue. These are the
topic of the next chapter. Here, the concern is with electrostatics, specifically, the dielec-
tric, or insulative, properties of materials. In an electrical conductor, an applied electric
field, E, produces an electric current – ions, in the case of an ionic conductor, or elec-
trons, in the case of an electronic conductor. Electrical conductivity has already been
examined in earlier chapters. In insulating solids, the topic of the current discussion,
the response to an applied electric field is a static spatial displacement of the bound
ions or electrons, resulting in an electrical polarization, P, or net dipole moment
(charge separation) per unit volume, which is a vector quantity. In a homogeneous
linear and isotropic medium, the polarization and electric field are aligned. In an aniso-
tropic medium, this need not be so. The ith component of the polarization is related to
the jth component of the electric field by:

Pi ¼
X
j

10xijEj (8:52)

where 10 is the vacuum permittivity (8.8542 � 10212 F/m), and x is the dielectric sus-
ceptibility (a second-rank tensor). The electric field is a vector field. The component of
an electric field in any direction is the negative of the rate of change of the electric poten-
tial in that direction. Hence, the electric field can be expressed in terms of voltage (a scalar
quantity) for rectangular coordinates as:

E ¼ � i
@

@x
þ j

@

@y
þ k

@

@z

� �
V ¼ �rV (8:53)

Expressions of the gradient in other coordinate systems are sometimesmore convenient for
taking advantage of the symmetry of a given physical problem. All insulators fail at some
level of applied voltage, above which they will conduct an electric current. The dielectric
strength is the maximum voltage a material can withstand before the occurrence of this
breakdown, which is typically accompanied by localized melting or burning that results
in irreversible damage or failure of the material. Dielectric strength is normally expressed
as a gradient through the thickness of the material in units of volts per unit length.

The dielectric susceptibility, like magnetic susceptibility, is a second-rank tensor.
The dielectric constant (also known as the relative permittivity), k, is defined as:

k ¼ 1

10
(8:54)
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With an alternating current (AC) field, the dielectric constant is virtually independent of
frequency, so long as one of the multiple polarization mechanisms usually present is
active (see Section 8.8.1). When the dominating polarization mechanism ceases as the
frequency of the applied field increases, there is an abrupt drop in the dielectric constant
of the material before another mechanism begins to dominate. This gives rise to a charac-
teristic stepwise appearance in the dielectric constant versus frequency curve. For each of
the different polarization mechanisms, some minimum dipole reorientation time is
required for realignment as the AC field reverses polarity. The reciprocal of this time is
referred to as the relaxation frequency. If this frequency is exceeded, that mechanism
will not contribute to the dielectric constant. This absorption of electrical energy by
materials subjected to an AC electric field is called dielectric loss.

The dielectric constant is related to the dielectric susceptibility via:

xe ¼ k � 1 (8:55)

The dielectric constant is important to the ability of a material to store an electric charge,
or capacitance. The capacitance of a parallel-plate capacitor, for example, is given by:

C ¼ kA

d
(8:56)

where A is the area of the plates, d is the distance separating them, and k is the dielectric
constant of the material between the plates. BecauseC also equals Q/V (charge/voltage),
the stored charge increases with materials of a higher dielectric constant. One intensive
area of research in today’s microelectronics industry concerns the search for dielectric
materials with higher dielectric constants that can be used in integrated circuits (ICs)
as the gate electrode for metal-oxide field effect transistors. For decades, SiO2 (k ¼
3.9) has been used, but as the gate electrode gets thinner with the ever-increasing drive
to greater miniaturization, it tends to leak current. To address this, hafnium dioxide, tita-
nium dioxide, and zirconium dioxide, all with a dielectric constant greater than that of
silicon dioxide, have been studied as replacements. Because a high-gate electrode dielec-
tric constant also increases the transistor’s capacitance, high-k dielectrics improve the
transistor’s switching (on/off) performance. Accordingly, in 2007, the world’s largest
IC manufacturer, Intelw, announced it would shift to hafnium dioxide. There is also a
need for low-k dielectrics, materials that have a dielectric constant lower than that of
SiO2. Although low k dielectrics are not suitable as gate electrodes, they are needed in
other areas of very high-packing density integrated circuits to reduce the amount of
capacitive coupling, or cross-talk, between metal interconnects (analogous to the plates
of a capacitor) of exceedingly narrow spacing. SiO2-based materials with organic con-
stituents, as well as polymer-based materials, are currently used.

8.8.1 The Microscopic Equations

As in the case of magnetism, the effective average electric field to which a particular atom
or molecule inside a dielectric is subjected, when an external field is applied, it is not the
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same as the externally applied field. This is owing to the influence of the internal local
electric fields produced by the surrounding electric dipoles, atoms, or molecules polar-
ized by the external field. The internal local field at an atomic site is given by:

Eloc ¼ Eext þ
X
i

Ei (8:57)

where the second term on the right-hand side is the sum of various internal contributions
that are dependent on the sample geometry (e.g. spherical, disk-shaped, cylindrical, etc.).
There are four of these terms, in totality, including the depolarization field, the Lorentz
cavity field, the field owing to atoms within an imaginary sphere about an origin, and
a field owing to the atom at the origin. The reader is referred to Elliot for more details
(Elliot, 1998).

For an isolated atom, the atomic electric dipole moment induced by the external elec-
tric field is proportional to the field:

p ¼ aEloc (8:58)

where a is the polarizability (a tensor). For solids, the bulk polarization, P, can be
obtained by summation of the individual dipole moments:

P ¼
X
i

nipi ¼
X
i

niap,iEloc,i (8:59)

There are several possible origins for the polarizability in Eq. 8.58. First, the polar-
ization may be induced by the external field. This induced polarization may originate
from the polarizability associated with the local electronic charge cloud around a nucleus.
It is given by 4p10r

3, with r being the atomic radius. Other origins include bond polariz-
ability in covalent solids and the ionic polarizability owing to an electric field displacing
cations and anions in opposite directions. A second type of contribution to the electric
polarization is the field-induced reorientation of permanent electric dipoles in a material.
An electrical moment is permanent if on time average is nonzero, even in the absence of
an external electric field. Accordingly, field-induced reorientation of permanent electric
dipoles is found in isolated polar molecules rather than in most nonmolecular solids, since
atoms and monatomic ions have no permanent moments (electrons are on time average
symmetrically located with respect to any plane containing the nucleus). However, in cer-
tain solids (e.g. silicas and polymers), the presence of polar side-groups may create per-
manent dipoles. These are termed paraelectric solids. Not all the aforementioned
mechanisms are active in all materials. For example, in ionic solids, the ionic polarizabil-
ity is dominant at low frequencies. At high frequencies, however, the atomic polarizabil-
ity becomes the dominant contribution to the dielectric constant even in ionic solids
(Elliot, 1998).

From Eq. 8.52, it is seen that the applied electric field, E, and the polarization, P,
are related through a second-rank tensor called the dielectric susceptibility, xe. Three
equations, each containing three terms on the right-hand side, are needed to describe
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the susceptibility exactly:

P1 ¼ 10x11E1 þ 10x12E2 þ 10x13E3

P2 ¼ 10x21E1 þ 10x22E2 þ 10x23E3

P3 ¼ 10x31E1 þ 10x32E2 þ 10x33E3

(8:60)

Hence, the nine components of the susceptibility can be written in a square array as:

xe ¼
x11 x12 x13
x21 x22 x23
x31 x32 x33

2
4

3
5 (8:61)

The first suffix of each tensor component gives the row and the second the column in
which the component appears. The x23 term, for example, measures the component of
the polarization parallel to x2 (usually the y direction in a Cartesian coordinate system)
when a field is applied parallel to x3 (the z direction). The susceptibility tensor must con-
form to any restrictions imposed by crystal symmetry, see Eqs. 6.5–6.9.

The electric susceptibility is obtained from the local electric fields via:

xe ¼
1
V

X
k

a(k)F(k) (8:62)

where V is the unit cell volume, a(k) is the electronic polarizability of species k and F(k) is
a function of the local electric fields. The temperature dependence to the electric suscep-
tibility will depend on the polarization mechanism. For nonpolar molecules, the suscep-
tibility is independent of temperature. For polar molecules or paraelectric solids, the
electric susceptibility follows an equation equivalent to the Langevin function for para-
magnetic susceptibility. When applied to paraelectrics, however, this equation is called
the Langevin–Debye or Debye formula (Debye, 1912):

xe ¼ N aþ p2

3kT

� �
(8:63)

In this equation, N is the number of molecules per cubic centimeter, T is absolute temp-
erature, p is the permanent electrical moment, and a is a constant.

8.8.2 Piezoelectricity

Piezoelectric crystals are transducers that generate an oscillating electrical polarization
when subjected to an external oscillating mechanical stress, and vice versa. The brothers
Paul-Jacques and Pierre Curie discovered the piezoelectric effect in 1880 when they
compressed certain crystals along certain axes (Curie and Curie, 1880). The reciprocal
behavior was deduced from thermodynamic principles a year later by Gabriel Lippman
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(1845–1921) and quickly verified by the Curies. The natural frequency of vibration (the
resonant frequency) of a piezoelectric crystal, or one of its overtone frequencies, may be
used to stabilize the frequency of a radio transmitter or other electronic oscillator circuit,
or to provide a clock for digital circuits. That is because, if the frequency applied to a crys-
tal is not its natural frequency, only low amplitude vibrations are induced. This type of
opposition to an alternating current or voltage is known as reactance. When the applied
frequency becomes close to the natural frequency of the crystal, the amplitude of its
vibration increases, which decreases the reactance felt by the external circuit. Quartz is
the most commonly used piezoelectric crystal because of its very low coefficient of ther-
mal expansion. This allows a quartz clock, for example, to maintain its accuracy as the
temperature changes.

The origin of the piezoelectric effect in a material is the vector displacement of ionic
charges. The phenomenon can only be observed in noncentrosymmetric crystals, that is,
those not containing an inversion center. Many crystals containing tetrahedral units, in
addition to quartz, such as ZnO and ZnS, are piezoelectric. Application of a shearing
stress along one of the polar axes of a tetrahedron results in a displacement of the
cation charge relative to the center of anion charge. It follows that the formation of
such an electric dipole is not possible in crystals with inversion centers. Some centrosym-
metric crystals exhibit a slight distortion from their ideal structure (over morphotropic
phase boundary regions), which removes the inversion center and allows observation
of the piezoelectric effect. For example, the ideal cubic perovskite structure possess a
center of inversion, which precludes piezoelectric behavior. However, slight distortion
from cubic symmetry is responsible for the piezoelectric effect in BaTiO3, PbTiO3,
and PbZrO3, and for piezoelectric enhancement in Pb(Zr,Ti)O3 (PZT)/Pb(Mg,Nb)O3

(PT-PMN) and PbTiO3/Pb(Zn,Nb)O3 (PT-PZN).
The induced polarization in a piezoelectric, Pi, is a first-rank tensor (vector), and

mechanical stress, sjk, is a second-rank tensor (nine components), which is represented
in a Cartesian coordinate system with axes x, y, and z, as:

s ¼
sxx sxy sxz

syx syy syz

szx szy szz

2
4

3
5 (8:64)

The general form of the relation between Pi and sjk can be written as:

Pi ¼
X
j,k

dijks jk (8:65)

From tensor algebra, the tensor property relating two associated tensor quantities, of rank
f and rank g, is of rank ( f þ g). Hence, the physical property connecting Pi and sjk is the
third-rank tensor known as the piezoelectric effect, and it contains 33 ¼ 27 piezoelectric
strain coefficients, dijk. The piezoelectric coefficients are products of electrostriction
constants, the electric polarization, and components of the dielectric tensor.

The size of this matrix of coefficients, however, is reduced by the fact that nonzero
stresses require sjk ¼ skj. Hence, of the nine components to the stress tensor, only six are

MAGNETIC AND DIELECTRIC PROPERTIES368



independent. Consequently, pairs of the piezoelectric strain coefficients like dijk and dikj,
for example, cannot be separated and it is assumed that dijk ¼ dikj. This reduces the
number of independent piezoelectric strain coefficients from 27 to 18. To simplify the
notation, the subscripts of ij are normally replaced by a single subscript, n, following
the convention:

1! xx, 2! yy, 3! zz, 4! yz, 5! xz, 6! xy

The piezoelectric strain coefficients now take the form din and the relation between the
applied stress, sn, and induced polarization, Pi, can be expressed in final matrix-like
form as:

P1

P2

P3

2
4

3
5 ¼ d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

2
4

3
5

s1

s2

s3

s4

s5

s6

2
6666664

3
7777775

(8:66)

From Eq. 8.66, each component of the electric polarization is given in terms of all six
components of the applied stress. For example, P1 is:

Pxx ¼ P1 ¼
d11s1 d16s6 d15s5

d16s6 d12s2 d14s4

d15s5 d14s4 d13s3

2
4

3
5

Alternatively, in piezoelectric crystals, applied electric fields, Ei, generate mechanical
strains, 1n, that are also related by the piezoelectric coefficients:

11
12
13
14
15
16

2
6666664

3
7777775

d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

2
4

3
5 ¼ E1

E2

E3

2
4

3
5 (8:67)

A centrosymmetric stress cannot produce a noncentrosymmetric polarization in a
centrosymmetric crystal. Electric dipoles cannot form in crystals with an inversion
center. Hence, only the twenty noncentrosymmetric point groups are associated with
piezoelectricity (the noncentrosymmetric cubic class 432 has a combination of other
symmetry elements which preclude piezoelectricity). The piezoelectric strain coeffi-
cients, din for these point groups are given in Table 8.7, where, as expected, crystal sym-
metry dictates the number of independent coefficients. For example, triclinic crystals
require the full set of 18 coefficients to describe their piezoelectric properties, but mono-
clinic crystals require only 8 or 10, depending on the point group.
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8.8.3 Pyroelectricity

In pyroelectric materials (e.g. ZnO, LiNbO3, and K(Nb,Ta)O3), temperature changes
induce changes in the electric polarization. While the temperature changes the ions of
the lattice shift, setting up a polarization current and thereby generating an electric
field. When the temperature stops changing, the polarization current disappears. This
effect has been known since ancient times and was given the name pyroelectricity
in 1824 by Sir David Brewster. The theoretical principles behind the effect were studied
by William Thomson and Woldemar Voight in the late 1800s. Today, pyroelectric crys-
tals are used as infrared detectors and miniature X-ray generators. As with piezoelectri-
city, the pyroelectric effect requires the presence of a permanent electric dipole, arising
from an electrical dipole moment in each primitive unit cell, namely, a noncentro-
symmetric crystal. Actually, all pyroelectric crystals are also piezoelectric; However,
because of Neumann’s principle, the converse is not true. That is, as the electric polariz-
ation must have the point group symmetry, there can be no component of a polarization
vector perpendicular to a mirror plane or two-fold rotation axis, since it would
transform into the negative of itself. Thus, only half of the twenty point groups associated

TABLE 8.7. Piezoelectric Strain Coefficients in the Noncentrosymmetric Point Groups

Class Point Group Piezoelectric Strain Coefficients

Triclinic 1 d11, d12, d13, d14, d15, d16, d21, d22, d23, d24, d25, d26,
d31, d32, d33, d34, d35, d36

Monoclinic 2 d14, d16, d21, d22, d23, d34, d36
m d11, d12, d13, d15, d24, d26, d31, d32, d33, d35

Orthorhombic 222 d14, d25, d36
mm2 d15, d24, d31, d32, d33

Tetragonal 4 d14 ¼ 2d25, d15 ¼ d24, d31 ¼ d32, d33
4 d14 ¼ d25, d15 ¼ 2d24, d31 ¼ 2d32, d36

422 d14 ¼ 2d25
4mm d15 ¼ d24, d31 ¼ d32, d33
42m d14 ¼ d25, d36

Cubic 43m; 23 d14 ¼ d25 ¼ d36
Trigonal 3 d11 ¼ 2d12, d14 ¼ 2d25, d15 ¼ d24, d16 ¼ 22d22,

d21 ¼ 2d22,
2d26, d31 ¼ d32, d33

32 d11 ¼ 2d12, d14 ¼ 2d25, d26 ¼ 22d12
3m d15 ¼ d24, d16 ¼ 2d22, d21 ¼ 2d22, d31 ¼ d32, d33

Hexagonal 6 d14 ¼ 2d25, d15 ¼ d24, d31 ¼ d32, d33
6mm d15 ¼ d24, d31 ¼ d32, d33
622 d14 ¼ 2d25

6 d11 ¼ 2d12, d21 ¼ 2d22, d16 ¼ 22d22, d26 ¼ 2d12
6m2 d21 ¼ 2d22, d16 ¼ 22d22

(Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University
Press, 1957.)
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with piezoelectricity also give rise to pyroelectricity. These 10 groups are one and
the same with the two-dimensional point groups: 1, 2, m, 2mm, 4, 4mm, 3, 3m, 6, and
6mm.

8.8.4 Ferroelectricity

Ferroelectricity is a subclass of pyroelectricty discovered in Rochelle salt (potassium
sodium tartrate) in 1921 by Joseph Valasek (1899–1982) at the University of
Minnesota (Valasek, 1921). The symmetry constraints of ferroelectric crystals are iden-
tical to those of pyroelectric ones, which also make all ferroelectric crystals piezoelectric.
Both ferroelectric crystals and pyroelectric crystals spontaneously generate an electric
polarization, in the absence of an external electric field. However, unlike pyroelectric
materials, ferroelectric materials exhibit a remnant (residual) polarization that is revers-
ible upon application of an external electric field with opposite polarity greater than
the coercive field. Ferroelectric crystals also possess a domain structure, similar to ferro-
magnets and, hence, exhibit hysteresis in their P–E (polarization–field) curves. The
electric dipole moments in ferroelectrics spontaneously align below the ferroelectric
Curie temperature, TCf. Above this temperature, a high dielectric constant is still obtained
but no residual polarization is retained in the absence of an applied field. Ferrielectric
crystals are a subset in which the net polarization vectors are oriented in different direc-
tions in neighboring domains.

Solid solutions of the perovskite phase PbZr12xTixO3 (PZT) have been widely used
for many years as a ferroelectric. At high temperatures, PZT is cubic. At low tempera-
tures, it becomes ferroelectric with a tetragonal structure for Ti-rich phases or rhombohe-
dral structure for Zr-rich compositions. At x � 0.47, a nearly temperature-independent
morphotropic phase boundary (MPB) was thought to exist that exhibits the maximum
value of the dielectric permittivity, electromechanical coupling factors, and piezoelectric
coefficients. A MPB is a compositional dividing line between two adjacent phases in a
temperature-versus-composition phase diagram. In the case of PZT, this is the boundary
separating the tetragonal and rhombohedral phases. However, recently it was discovered
that a monoclinic phase with a narrow composition range actually separates the tetragonal
and rhombohedral phases.

Example 8.9

What are the nonzero piezoelectric coefficients for a single domain of the ferro-
electric tetragonal phase of PZT (class 4mm)?

Solution

Directly from Table 8.7, it can be seen that the nonzero coefficients are d31 ¼ d32;
d33; and d15 ¼ d24.
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PRACTICE PROBLEMS

�1) How many terms and microstates are there for a free d5 transition metal cation?

2) Explain diamagnetism, paramagnetism, ferromagnetism, and antiferromagnetism
using: a) a phenomenological description of macroscopic behavior and b) micro-
scopic (atomistic) theory.

3) What is the difference between a hard magnet and a soft magnet?

4) What causes the paramagnetic susceptibility to increase at low temperatures?

5) Show that the Langevin function, L(a) ¼ coth(a) 2 (1/a), where a as given by
Eq. 8.28, yields the Langevin expression for susceptibility (Eq. 8.8) for a
 1.

Hint: the coth(a) function can be expressed in a series representation as:

coth(a) ¼ 1
a
þ a

3
� a3

45
þ 2a5

945
þ � � �

6) Explain direct exchange and superexchange.
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�7) Based on the Goodenough–Kanamori rules, what would be the expected sign of:

a) a 1808 Mn4þ–O–Mn3þ superexchange interaction?
b) a 1808 Fe3þ–O–Fe3þ superexchange interaction?
c) a 1808 Co3þ–O–Co4þ superexchange interaction?

8) Explain the differences between geometric frustration, the spin-glass state, and
Simpson’s amorphous antiferromagnetism.

9) Why is Heisenberg exchange not applicable to metals?

10) Describe piezoelectricity, pyroelectricity, and ferroelectricity.

�For solutions, see Appendix 3.
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2067.

Yosida, K. Phys. Rev. 1957, 106, 893.
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9

OPTICAL PROPERTIES OF
MATERIALS

The interaction of light with matter has fascinated people since ancient times. The
color of an object is the result of this interaction. In modern terms, this interaction is
described as spectroscopy. In this chapter, how the optical properties of a material are
the result of its chemical composition and structure are examined. Several examples of
technologically relevant applications are then presented of the manipulation of the
optical properties to achieve a desired performance.

9.1 MAXWELL’S EQUATIONS

In one sense, this is an easy topic. All of the interactions of light with matter can be
described withMaxwell’s equations (Griffiths, 1981). However, for the materials chemist
faced with the problem of designing a glass lens that does not reflect visible light,
Maxwell’s equations, in their native state, do not appear to offer a straightforward
solution. Fortunately, Maxwell’s equations have been solved for most of the problems
encountered in materials design. Here, one such case is examined.

Imagine a material that is diamagnetic, transparent, and is an insulator: a piece of
glass! When solving Maxwell’s equations for the interaction of light with this system,
several important and unexpected results are realized. First, a plane polarized light
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beam entering this material is split into two-plane polarized beams. The beams are
orthogonal to each other with neither necessarily parallel to the incoming beam.
Second, the two beams do not necessarily travel at the same speed through the material.
Upon exiting the material, the two beams do not necessarily recombine. It is possible to
observe two exit beams for one entrance beam.

So Maxwell’s equations describe phenomena that are difficult to anticipate intui-
tively. Historically, physicists have manipulated these laws and recast them in forms
specific to particular systems. For example, to calculate the magnetic field a distance r
from a straight wire carrying current i, the relevant equation is:

B ¼ m0i

2p r
(9:1)

where m0 is the permeability of free space. However the Maxwell’s equation responsible
for this equation is:

V� B ¼ m0J (9:2)

known as Ampère’s law, where bold quantities are vectors. The current density is J. In the
same spirit, the results of the applications of Maxwell’s equations to a number of systems
will be presented and the resulting simplified expressions exploited.

As mentioned above, first consider the diamagnetic, transparent, insulator already
mentioned. When such a sample is exposed to an electric field, it responds. The electrons
around each atom move in such a way as to reduce the potential energy (or minimize the
Gibbs free energy if the system is at a constant temperature and pressure) of the system.
Electrons have a low mass compared to the nucleus which they surround and can move in
response to the electric field. If the field is oscillating, the electrons will oscillate as well
with the same frequency. The electric field, E, induces in the material a polarization:

P ¼ 10xeE (9:3)

where initially it will be assumed that the direction of E and P is the same. The
proportionality constant is a product of two terms. The first is 10, the permittivity of
free space, the second is xe, the electric susceptibility. The relation holds as long as the
electric field E is not too large. What happens to P when E becomes large will be con-
sidered later in this chapter. The induced polarization P creates its own electric field
which in turn affects E. The net electric field present inside our diamagnetic, transparent,
insulator is E. By adding the polarization P to E to create the electric displacement, D:

D ¼ 10E þ P (9:4)

D ¼ 10(1þ xe)E (9:5)

D ¼ 1E (9:6)

where 1 ¼ 10(1 þ xe). In Eq. 9.6, 1 is known as the permittivity of the material. It is this
relationship between the electric displacement vector and the electric field that forms
the basis of our entire discussion concerning the optical properties of materials.

Solving Maxwell’s equations for a plane wave traveling through a diamagnetic,
transparent, insulator is somewhat involved (Nye, 1985). The equations are simplified
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somewhat by these conditions: diamagnetic sets B ¼ 2m0H and insulator sets J ¼ 0.
The incoming light E is modeled as a plane wave. The derivation begins with:

V� E ¼ �@m0H=@t (9:7)

where the equation for E is:

E ¼ E0 exp iv t � r � 1
v

� �� �
(9:8)

In the end, a relationship between D and E is realized:

m0v
2D� E þ 1(1 � E) ¼ 0 (9:9)

where 1 is a unit vector perpendicular to the plane wave, v is the velocity of the wave.
Before applying this equation, consider further the relationship between D and E. If
these two vectors were colinear, the relationship between them would be a simple
constant of proportionality:

D ¼ 1E (9:10)

However, in the general case,D andEwill not be colinear. Therefore a tensor is necessary
to describe the relationship between D and E:

Di ¼
X
j

1ijEj (9:11)

For example, for an arbitrary orientation of E:

Dx ¼ 1xxEx þ 1xyEy þ 1xzEz (9:12)

meaning the component of the E vector along the y axis contributes to the component of
D along the x axis. If the E vector is along the x axis, this equation simplifies to

Dx ¼ 1xxE (9:13)

It can be seen that, D and E, in the general case, are connected by a second-rank tensor.
This tensor can be either the permittivity tensor or the dielectric constant tensor, depend-
ing on how the individual components are expressed. In the above equation, the tensor is a
permittivity tensor. To convert it to a dielectric constant tensor, each element, 1ij is
divided by the permittivity of free space, 10,

Dx ¼ 10KxxE (9:14)

There are the two things needed to progress in the understanding of the interaction of
light with matter:

1. The wave relation between E and D: m0v
2D� E þ 1(1 � E) ¼ 0:

2. The tensor relation between E and D: Di ¼
P
j
1ijEj.
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With these two relationships, what happens when light enters a diamagnetic, trans-
parent insulator is examined next. To simplify the relationship between D and E, the
permittivity tensor, 1ij, is examined in detail. This is a square symmetric tensor; hence,
it is possible to transform it into a diagonal tensor:

1xx 0 0
0 1yy 0
0 0 1zz

						
						 ¼ T�1

111 112 113
112 122 123
113 123 133

						
						T (9:15)

where T is a rotation matrix and T21 is its inverse. When D and E are referred to the
principal axes of the permittivity tensor, the second equation simplifies in component
form to:

Dx ¼ 1xxEx Dy ¼ 1yyEy Dz ¼ 1zzEz (9:16)

which allows the components of the first equation to be written as:

Dx ¼ lx(1 � E)
(l=1xx)� m0v

2 (9:17)

The electric displacement vector D is perpendicular to the unit vector 1, so

D � 1 ¼ 0 (9:18)

or in component form as:

Dxlx þ Dyly þ Dzlz ¼ 0 (9:19)

which produces:

12x
(l=1xx)� m0v

2
þ 12y
(l=1yy)� m0v

2
þ 12z
(l=1zz)� m0v

2
¼ 0 (9:20)

The lx, ly, and lz are the direction cosines for the unit vector 1. For a light wave traveling
along the x axis, lx ¼ 1, ly ¼ 0, and lz ¼ 0, and the resulting equation is

1
1yy
� m0v

2

� �
1
1zz
� m0v

2

� �
¼ 0 (9:21)

This equation has two positive roots for v:

v1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1yym0
p v2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1zzm0
p (9:22)

This is a remarkable result. It states that the incoming light will be split into two waves,
which will be polarized along y and z, and which will travel at different speeds. It is
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common to express this speed as a fraction of the speed of light in a vacuum, c, using the
refractive index, n. Hence

v1 ¼ c

n1
v2 ¼ c

n2
(9:23)

This is the first, and most important, optical property of a material: refractive index.
Developing the refractive index using Maxwell’s equations is the most comprehensive
and general approach, although the mathematics can become difficult and at times
obscure the physical manifestations. It is the objective here to show how the optical prop-
erties of materials can be engineered by exploiting a parameter, such as the refractive
index. Hence, attention is now shifted away from the fundamental origin of refractive
index and moved towards a more phenomenological approach.

9.2 REFRACTIVE INDEX

It has been outlined above that a plane polarized light wave, upon entering a material, will
split into two waves traveling at different speeds. This result is based upon the three com-
ponents of the permittivity tensor, 1ij, being unequal. This is the most general result. If the
focus is moved to crystalline materials, specifically, single crystals, this general result can
begin to be simplified. The symmetry of a crystal will determine whether the three com-
ponents of the permittivity tensor are all different, whether two are equal, or whether all
three are the same. Working backwards, all three components of the permittivity tensor
will be equal for cubic space groups (numbers 195–230) (Burns and Glazer, 1978). In
these crystals, when light polarized along the z axis propagates through the crystal
along the x axis, the two resulting waves in the material propagate at the same velocity:

v1 ¼ c

n1
v2 ¼ c

n1
(9:24)

Similarly, light propagating along the y or z axes is also split into two waves
where both travel at c/n1. Regardless of the orientation of the incoming light with respect
to the crystal axes, the two resulting waves inside the crystal travel at c/n1. Such a material
is referred to as optically isotropic. For the tetragonal space groups (numbers 75–142),
hexagonal space groups (numbers 168–194), and trigonal space groups (numbers
143–167), two of the principal values of the permittivity tensor are equal. These space
groups have a unique axis: the high symmetry rotation axis, four-fold for tetragonal,
six-fold for hexagonal, and three-fold for trigonal. Typically, this axis is referred to as
the z axis of the crystal. For light propagating along this axis, the two resulting waves
have equal speeds of c/n1. For light traveling along either x or y, however, the resulting
two waves travel at c/n1 and c/n2. Moreover, since these orthogonal waves began in
phase, and one is traveling faster than the other, when they exit they are no longer necess-
arily in phase. The exact phase difference will depend on the thickness of the crystal.
What happens when these two waves exit the crystal?

Before answering that, it is necessary to return to the isotropic case and look
more closely at what happens when light crosses a refractive index boundary. It has
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already been established that two waves, orthogonal in their polarization, will develop
and travel at equal speeds. What has not been addressed is the direction of propagation.
Because the speed of the light must slow down in the medium with higher refractive
index, the direction of propagation must change. This change in the direction of propaga-
tion is called refraction. There are a number of ways to derive a quantitative description of
refraction, the most complicated being the use of Maxwell’s equations at the air–crystal
boundary. A simpler argument relies on the fact that, while the speed and wavelength
of the light may change as the light moves from one refractive index to another, the
frequency cannot.

The frequency is established by the source of the light. The resulting electromagnetic
wave is produced as a result of the driven oscillations of electrons. As the light propagates
through any medium, the incoming light drives the electrons at the frequency of the
incoming light. These driven electrons, in turn, radiate light at exactly the same frequency
as the incoming light. A little later in this chapter, the fascinating phenomenon where the
driven electrons radiate not only the incoming frequency, but integral multiples of it as
well will be considered.

In order for the electromagnetic waves to remain continuous in a region of longer
wavelength and shorter wavelength with equal frequencies, the direction of propagation
must change. This is shown in Figure 9.1. The equation governing this change in pro-
pagation direction is called Snell’s Law, after the Dutch mathematician Willebrord
van Roijen Snell (1580–1626) (Halliday et al., 2001):

n1 sin u1 ¼ n2 sin u2 (9:25)

Figure 9.1. Refraction of light crossing an air–salt interface.

OPTICAL PROPERTIES OF MATERIALS382



where n1 is the refractive index of air and n2 is the refractive index of the isotropic crystal.
The angle, 2, is measured from the normal to the surface of the crystal. By taking a typical
isotropic material such as sodium chloride (cubic space group # 225) with n ¼ 1.541,
the light hitting the surface at 458 would bend towards the normal such that:

sin�1 u2 ¼ nair sin(458)
1:541

(9:26)

and u2 would equal 27.38 as shown in Figure 9.1. If the light strikes the crystal along
the normal such that u1 ¼ 0, then it will continue through the crystal along the normal
and not undergo refraction, u2 ¼ 0.

A simple consequence of refraction is that it makes in possible to quickly distinguish
two clear, colorless materials. For example, in glassblowing, it is critical that the glass-
blower keep Pyrex glass and quartz glass separate. If a piece of quartz is blown directly
onto a piece of Pyrex, the joint will break when the combined pieces cool. The reason is
that the Pyrex shrinks upon cooling and the quartz does not. If Pyrex and quartz were
different colors, distinguishing them would be trivial. Unfortunately, they are both
clear, colorless glasses. Fortunately, they have different refractive indices. The organic
liquid 2-methyl-1,3-cyclohexadiene has a refractive index of 1.4662 at 188C for the
sodium D wavelength of light (l ¼ 589 nm) which matches the refractive index of
quartz pretty well at 1.46008 at 546.1 nm. Therefore, when you insert a piece of Pyrex
glass into this liquid, it essentially vanishes. A quartz tube, on the other hand, is clearly
visible owing to the refraction of the light at the glass–liquid interface. The same clever
trick can be accomplished by matching the index of refraction of the Pyrex with an
organic liquid such as 2-allylphenol. In addition to refraction, reflection also occurs
when light crosses a refractive index boundary. This will be considered later in this
chapter, but it too contributes to the disappearance of a glass rod in a suitable liquid.

Having established that refraction occurs when light travels from one refractive index
to another, What happens when these two waves exit the crystal? Assume the incoming
light is plane polarized and that is strikes the surface of a crystal at 908 and therefore does
not refract. Assume also that the crystal is of the cubic class so that all three refractive
indices are equal. The plane-polarized light breaks into two plane-polarized beams.
The beams travel at the same speed since all three refractive indices are equal. The
beams exit the crystal at 908, again avoid refracting, and the orthogonal in-phase
beams add to reproduce the original plane polarized beam traveling at the original
speed in air.

Now consider the same nonrefracting 908 geometry, but this time let the crystal be
from the hexagonal, tetragonal, or rhombic class. Assume the unique axis coincides
with the plane of polarization for the incoming light. Again, the incoming light, avoiding
refraction, splits into two orthogonal beams, but this time the one beam travels slower
than the other. When they emerge, they again add vectorially, but this time the phase
relationship will depend on the thickness of the crystal. For an arbitrary thickness, the
two plane-polarized beams, phase shifted, will add to produce elliptically polarized
light as shown in Figure 9.2. Under special thickness conditions, the outcoming light
could be circularly or even linearly polarized (Hecht and Zajac, 1974). Circular
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polarization will result when the phase difference between the two emerging beams is one
quarter wavelength and linear polarization will result when the phase difference is one-
half wavelength. In the case of a calcite crystal with n along the unique axis equal to
1.486 and n perpendicular to it equal to 1.658, a 100 micron thick crystal will produce
a phase shift of 628 for 532 nm light.

The importance of considering the normal incidence first now becomes apparent.
For light moving from one refractive index to another uniaxial material, at an angle
less than 908, refraction occurs. Moreover, because the medium accepting the light has
two refractive indices, the incoming light will undergo two refractions. As has already
been discussed, the incoming plane-polarized light will be split into two orthogonal
beams, each traveling at a speed dictated by the refractive index for that orientation.
Hence the incoming beam is split into two physically separate beams. In a case of
large difference between the two refractive indices, the two beams will exit the crystal
displaced from one another. Returning to the calcite example, when light enters a calcite
crystal as shown in Figure 9.3, the two beams separate to such an extent, that two images
are observed in transmission.

One of the main goals of the optical materials engineer is to control the direction of
light flow. For the electrical engineer, the analogous task of controlling the flow of

Figure 9.2. Conversion of linearly polarized light to elliptically polarized light passed through

a birefringent crystal.

Figure 9.3. Physical separation of a light beam into its two polarizations.

OPTICAL PROPERTIES OF MATERIALS384



electrons is a straightforward task accomplished by using wire, resistors, diodes, and the
like. For the optical engineer, light flow is controlled by taking advantage of the refractive
index. As has already been seen, light bends, or refracts, as it passes from one refractive
index to another. Returning to Eq. 9.25, Snell’s Law, consider the case where the
angle of the incoming beam and the two refractive indices combine to produce a solution
to Snell’s Law that predicts an angle of refraction with a sine value greater than 1. For
example, in Figure 9.4a, consider light traveling from a glass with a refractive index of
1.5 to air with a refractive index of 1.0. If the light strikes the glass at an angle of 208
with respect to the normal, the refracted beam will leave the glass at an angle of 308
with respect to the normal. As expected, the light bends away from the normal as the
light travels from a higher refractive index to a lower refractive index. If the angle of
the incoming beam is increased beyond 418, the solution to Snell’s Law requires an
angle with a sine value greater than 1. Under this circumstance, the light will not pass
from the glass to the air, but instead it will reflect off the glass and remain within the
glass as shown in Figure 9.4b. This phenomenon, termed total internal reflection, is a
possibility anytime light travels from a higher refractive index to a lower one.
Determining the minimum angle required to observe total internal reflection, the critical
angle, involves solving Snell’s Law with u2 ¼ 908.

An important area where this effect has been exploited is fiber optical cables (Palais,
1998). The goal of the optical engineer in this case is to keep the light in the cable and pre-
vent it from escaping. The goal is achieved by encasing a transparent fiber with a material
of higher refractive index as shown in Figure 9.5. This encasement, known as the cladding,
is typically pure SiO2, with a refractive index of 1.46 at the wavelength of the operation.
The core, where the light actually travels, has a higher refractive index, typically 1.48.
Hence, light in the core is confined there by total internal reflection since most reflections
occur at an angle of incidence much greater than the critical angle, in this case, 40.38.

This production of a core with a refractive index higher than the cladding raises the
important question of how a refractive index can be manipulated. To answer this question,

Figure 9.4. Refraction (a) versus total internal reflection (b).
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the factors that contribute to the numerical value of the refractive index are examined in
detail. First, consider what is responsible for the transmission of light through a material.
The material is viewed as a collection of static cations with electrons elastically attached.
The incoming light sets the electrons in motion at the frequency of the light. These
electrons constitute oscillating charge at frequency l. This produces electromagnetic
radiation at frequency l and the light is reconstituted and continues on its way. This
oscillating field combines with the incoming field to produce a net field at a point removed
from the material, which is phase shifted relative to light, which did not experience the
material as shown in Figure 9.6. This phase shift can be viewed phenomonologically

Figure 9.5. Cross section of a fiber optic cable.

Figure 9.6. Phase shift (N) of light passing through refractive index n.
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as resulting from a slowing down of the wave inside the medium where the effective
velocity is c/n, as before.

A detailed treatment of this model results in an expression for the refractive index
shown below (Feynman et al., 1963).

n ¼ 1þ Nq2e
210m(v2

0 � v2)
(9:27)

where N is the number of charges, qe is the charge per electron, m is the mass of the
electron, v0 is the natural frequency of oscillation, and v is the driving frequency of
the incoming light. From this expression, insight can be gained into what factors contrib-
ute to the numerical value of the refractive index.

First, the density of charges affects the refractive index. All other factors being equal,
as the atomic number of the constituent elements increases, the refractive index of a
material will also increase. This can be seen with a simple listing of a few minerals in
Table 9.1.

Electron density can also be changed by compression of the sample. This is illus-
trated by many forms of silicon dioxide listed in Table 9.2. The fundamental frequency,
v0, of the electron-nucleus harmonic oscillator model is determined by the type of bond
in which the electron resides. Single bonds will have a lower fundamental frequency than
double bonds, which in turn will be lower than triple bonds. Hence the refractive index
of benzene and cyclohexane (Figs. 9.7 and 9.8) are different as shown in Table 9.3.
This simple correlation holds when considering the optical fiber again. In this case, the
cladding is pure SiO2 with refractive index of 1.46 at the operating wavelength. The
core is a mixture of SiO2 and GeO2. The specific mechanism by which the dopant

TABLE 9.1. Refractive Index as a Function of
Electron Density

Compound n (at 0.5 mm)

KCl 1.496
KBr 1.568
KI 1.673

TABLE 9.2. Refractive Indices of SiO2 Phases

SiO2 Phase Density Refractive Index

Tridymite 2.3 1.47
Cristrobalite 2.4 1.49
Keatite 2.5 1.5
Quartz 2.65 1.52
Ocesite 2.9 1.57
Stishovite 4 1.8
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germanium raises the refractive index is complex and the subject of investigation, how-
ever, it follows the qualitative trend that a higher atomic number will produce a higher
refractive index.

Beyond using refractive index to keep light in a fiber optical cable with total inter-
nal reflection, refractive index manipulation can be used to prevent reflection (Halliday
et al., 2001). The simplest antireflection strategy involves coating an optical element,
such as a lens or a window, with a thin layer of transparent material with a refractive

TABLE 9.3. Refractive Index Versus Bond Type

Compound Refractive Index

Benzene 1.5010
Cyclohexane 1.4260

Figure 9.7. Molecular structure of benzene.

Figure 9.8. Molecular structure of cyclohexane.
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index between that of the air and the optical material, for example, glass. The exact
relationship, assuming normal incidence, is

nair
nlayer

¼ nlayer
nglass

(9:28)

Hencewith nair ¼ 1.0 and nglass ¼ 1.5, the layer should have a refractive index of
ffiffiffiffiffiffiffi
1:5
p

, or
1.225. Another important parameter for the film is thickness. The film thickness must be
an odd integral multiple of l/4 for the wavelength of light to be affected. To see how a
film of this thickness and refractive index accomplishes attenuation or extinction of
reflected light, examine Figure 9.9.

In Figure 9.9, the light reflected from the front surface of the film is phase shifted by
1808 because the light is traveling from a low refractive index to a high refractive index.
The light reflecting off the film–glass interface is also phase shifted by 1808 for the same
reason. Hence, the two reflected beams suffer no relative phase shift owing to the reflec-
tion. However, the beam that traverses the film does undergo a phase shift relative to the
beam that does not, similarly to what was depicted in Figure 9.6. If the two beams can be
set to a phase shift of 1808 relative to each other, they will destructively interfere and the
reflection will be eliminated. To achieve this retardation, the beam traversing the film
must do so through a minimum thickness, d, such that

d ¼ l

2� n
(9:29)

where n is the refractive index of the film and l is the wavelength of light. The assumption
here is that the light is hitting the film at normal or near-normal incidence. More
sophisticated antireflection coatings use multiple layers of varying refractive indices,

Figure 9.9. Reflections from front and back surface of thin film.
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resulting in antireflection for a wider range of incident angle and a wider range of
wavelengths.

9.3 ABSORPTION

In these examples of using refractive index to control and manipulate light, it has been
assumed that the materials are all transparent to the incoming light. Now consider
the case where the material absorbs the light. Interestingly, however, this concept
can be introduced without leaving the discussion on the refractive index. The result of
deriving the refractive index from a model of elastically bound electrons is shown in
Eq. 9.27. Incoming light sets these electrons in oscillatory motion at the frequency of
the incoming light and the light propagates through the material unattenutated.
However, if this model for the oscillating electrons is modified to include a damping
coefficient, a reasonable modification given that the oscillations will not continue indefi-
nitely in the absence of the driving frequency, it results in an equation for n (Feynman
et al., 1963):

n ¼ 1þ Nq2e
210m(v2

0 � v2 þ igv)
(9:30)

where a new term g has been added to account for the damping. With this view of the
refractive index, it can recast the expression for n as:

n ¼ nr � ini (9:31)

where the refractive index is expressed as a complex number. In conventional notation,
this complex refractive index is written as:

n ¼ n� ik (9:32)

retaining the variable n for the real part of the complex refractive index so as to be con-
sistent with common notation. Returning to the description of a plane wave traveling
inside a material with dielectric constant, n:

E(r, t) ¼ E0 exp iv t � r � 1
v

� �� �
(9:33)

where v ¼ c/n, this equation can be rearranged, after substituting in the complex form of
n, to yield:

E(r, t) ¼ E0 exp
�vkr � 1

c

� �
exp iv t � nr � 1

c

� �� �
(9:34)

The net effect of inserting the complex refractive index, derived from the damped oscil-
lation of the electrons, is that the plane wave traveling through a material with refractive
index n2 ik undergoes attenuation as shown in Figure 9.10. Hence the material is
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absorbing energy from the light. In a material that does not absorb light, the refractive
index is essentially real, and for those strongly absorbing light, the refractive index is
predominantly imaginary.

When considering absorption of light by matter, it is important to distinguish
extended materials from molecular materials. Molecular materials consist of discreet
molecular units bound together through van der Waals interactions, hydrogen-bonding,
or dipolar interactions. Extended materials do not have a discreet molecular unit and
are bound together through ionic bonding, covalent bonding, or metallic bonding. The
picture of absorption is appropriate for either class of materials. However, each class
has it own highly developed model to further describe the absorption of light.

For example, in the case of extended materials, where the electronic structure of the
materials is described using the band structure approach outlined in Chapters 4 and 5, the
absorption of light is viewed as occurring as the result of an electron absorbing the energy
of a photon and being promoted from one band to another. Hence, a connection between
the band gap of a material and its color is observed. Silicon has a band gap at room temp-
erature of 1.12 eV, and therefore absorbs radiation with this energy or greater, as shown in
Figure 9.11 (Ashcroft and Mermin, 1976). Alternatively, it could be said that for wave-
lengths of light less than 1100 nm, the imaginary component of the refractive index of
silicon is large. The imaginary component of the refractive index of silicon versus wave-
length is plotted in Figure 9.12, showing its increasing magnitude as the band-gap energy
is approached. Often, experimentalists are left with measuring the refractive index of
highly absorbing materials because the absorption is too high. With a large imaginary
component in the refractive index, the material is highly absorbing, and, as will be dis-
cussed next, at the same time highly reflective. Hence, the reflectivity becomes the
accessible experimental parameter.

The reflectivity, R, from a surface under normal incident illumination is (Fox, 2001):

R ¼ (n� 1)2 þ k2

(nþ 1)2 þ k2
(9:35)

Figure 9.10. Attenuation of light passing through refractive index n 2 ik.
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where the real and imaginary components are as before.With a highly absorbing material,
k� n and R ¼ 0.1. This same equation also explains why a person can see their reflection
is a glass window pane: with n ¼1.5 and k ¼ 0.0, R ¼ 0.04, which is the 4 percent reflec-
tion expected from a glass–air interface. This phenomenon, that highly absorbing
(large k) materials are also highly reflecting, accounts for the difference in color of a
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Figure 9.12. Real and imaginary refractive index components of silicon versus wavelength.

Figure 9.11. Calculated band structure of silicon.
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highly absorbing material when viewed in transmission versus reflection. A sample of ink
will appear one color in transmission but a different color in reflection.

The process of absorption in chemistry is often treated with Beer’s law (after the
German scientist August Beer (1825–1863)) rather than considering the imaginary
component of the refractive index. The two approaches are equivalent. According to
Beer’s law, the absorption, A, of a sample is related to the concentration of the absorbing
species, the optical path length, and the molar absorbtivity:

A ¼ 1bc (9:36)

The imaginary component of the refractive index, k, and 1 are related by

k ¼ 1l

4p
(9:37)

Just as k varies with wavelength, so too does A. The absorbance, A, is equal to the log of
the ratio of the light intensity (power) versus the attenuated light intensity:

A ¼ � log10
I

I0
(9:38)

Substituted into Eq. 9.36, with both sides raised to the power of 10, this results in

I ¼ I010
�1bc (9:39)

This section began with discussing the absorption of light by a material. An extended
material that could envision the absorbed light transferring its energy to an electron in
the conduction band and promoting it to the valence band was specifically mentioned.
In addition to extended materials where a band structure picture is appropriate for
modeling the electronic structure, molecular materials should also be considered,
where the band structure is not appropriate. Such materials are called molecular materials.
In these materials, the electronic structure is determined by a single molecular unit, and
the effects on intermolecular interactions is often ignored. The optical properties of
molecular materials is developed using quantum mechanics and solving the appropriate
Schrodinger equation (Levine, 2001):

ĤCi ¼ ECi (9:40)

Typically the time-independent Hamiltonian is used and the stationary state-energy levels
are determined.

In order to determine where in the electromagnetic radiation spectrum the sample is
going to absorb, two conditions must be met.

1. The energy of the radiation, expressed as the energy of a photon of that radiation,
E ¼ hn, must equal the energy difference between two quantum mechanical
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states, Pi and Pf, where the subscripts i and f stand for initial and final, indicating
the two quantum states whose energy difference matches the photon’s energy.
This is called the resonance condition.

2. After meeting the first condition, a second condition must be met. Expressed
mathematically as:

mfi ¼
ð
c�f m̂ci dt

� �2
(9:41)

which is called the transition moment. The magnitude ofmfi determines the inten-
sity of the absorption and can range from zero (a forbidden transition) to a large
number (an intense transition). This second condition is called the selection rules.

The purpose here is to comment on a particular feature of the optical properties of
molecular materials as it relates to Beer’s law. The magnitude of the absorptivity, 1, in
Beer’s law (or mfi in quantum mechanics) can been related to particular types of molecu-
lar entities responsible for the transition. For example, molar absorptivity values of 0.10
are typical for optical transitions occurring within transition metal ions (Dunn et al.,
1965). Molar absorptivity values can reach values of 10,000 to 15,000 for B 6 B� occur-
ring within an organic species. The integral in Eq. 9.41 becomes very large, and hence the
molar absorptivity becomes large, when the electron charge distribution in the two states
Pi and Pf are markedly dissimilar. This results in a large oscillating dipole moment as the
species oscillates between these two states. Such a large oscillating dipole moment
couples strongly to electromagnetic radiation if the resonance condition is met. Hence,
for example, in the design of dyes and inks, a large number of delocalized electrons
can result in intensely colored materials. Rhodamine 6G, a common laser dye, shown
in Figure 9.13, has a molar absorptivity of 0.100000 at its peak absorption, 529.75 nm
(in ethanol).

While molecular materials lack the robustness of extended materials, this correlation
between molecular entities and absorptivity values makes molecular materials an impor-
tant area for those attempting to design materials with specific optical properties. Not only
does the synthetic chemist have control over the optical properties, the synthesis of

O NH

CO2CH2CH3

HN

Figure 9.13. Molecular structure of Rhodamine 6G.
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molecular materials is also more amenable to specific designs. Synthetic strategies will be
discussed further in Chapter 12.

The idea of the central role that refractive index plays in describing all optical prop-
erties of materials has been developed. As already stated, it is not so much the central role
of the refractive index, but the central role of Maxwell’s equation that produces the phe-
nomenological quantity refractive index. From the perspective of the optical materials
engineer or producer, the refractive index clearly holds the key to producing desired
materials. Those chemical factors (electron density, bond type) that influence the magni-
tude of the refractive index have already been addressed. How the physical manipulation
of a material influences its refractive index is now examined.

9.4 NONLINEAR EFFECTS

An isotropic material such as sodium chloride, with all three values of the refractive index
equal, nx ¼ ny ¼ nz, can be made optically anisotropic by the application of an electric
field or a magnetic field along one axis. When a magnetic field is used, the resulting
birefringence is called the Faraday effect or the magneto-optic effect. When an electric
field is used, the effect is called the Kerr effect or the Pockels effect. This ability of an
externally applied field to alter the optical properties of a material, specifically inducing
birefringence, would remain at the level of curiosity, except when applied to optically
nonlinear materials. That is the next subject to be discussed, and after doing so, the
topic will return to induced birefringence as an example of a technologically important
process that relies on the design and manipulation of materials with specific refractive
index features.

The driven oscillator model has been used to gain an insight into what factors influ-
ence the refractive index. As the impressive applications of manipulations of the refractive
index are explored, the assumptions in the simple-driven oscillator model are revisited.
One assumption was that the electrons are not displaced too much as a result of their inter-
action with the varying electric field from the light. This is an important assumption. Not
only does it make the mathematics manageable, it results in a solution to the problem
where the frequency of the resulting light is equal to the frequency of the driving field.
Hence, no color change is observed. However, if that assumption is relaxed, and
assume the electron displacement is large, it returns to the simple Hooke’s law spring:

F ¼ kx (9:42)

By adding additional terms to the force to account for the anharmonic character of the
driven oscillation gives:

F ¼ kxþ ax2 þ bx3 þ cx4 þ � � � (9:43)

The solution to the damped forced oscillator differential equation proceeds as follows.
Begin with (Braun, 1978):

m
d2x

dt2
þ G

dx

dt
þ v2

0xþ ax2 ¼ F (9:44)
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where the driving force, F, is expressed as a sum of two frequencies:

F ¼ q

m
[E1 cos(v1t)þ E2 cos(v2t)] (9:45)

The goal is to solve Eq. 9.44 for x, since the polarization P can be expressed as:

P ¼ Nqx (9:46)

Ignoring the anharmonic ax2 term and higher terms, the solution for x(t) is:

x(t) ¼ (q=m)E1

v2
0 � v2

1 � iv1G
exp(�iv1t) (9:47)

with a similar expression for the second frequency, v2. The frequency of the oscillation
remains at the driving frequency. However, if the first anharmonic term is included, and
assumed to be small, the frequency of the oscillation contains the driving frequency as
well as a DC component and a frequency at twice the driving frequency.

The Hooke’s law treatment resulted in a polarization that was linear in the
electric field:

P ¼ aijE (9:48)

Now anticipate the contributions to P from terms higher than one in E (Boyd, 1992):

P ¼ aijE þ bijkE
2 þ aijklE

3 þ � � � (9:49)

where each contribution following the linear term is smaller than the previous. Stop at
the second-order term in E and express E as before:

E(r, t) ¼ E0 exp iv t � r � 1
v

� �� �
(9:50)

then upon squaring E, the doubled frequency can be seen again. The nonlinear
relationship between P and E can be represented in a simplified plot shown in
Figure 9.14. The consequences of this nonlinearity become apparent when consider-
ing the P resulting from an oscillating E. A comparison of the P versus E for the
linear and nonlinear regions is shown in Figure 9.15. When P is linearly proportional
to E, the oscillation in E is reproduced by P multiplied by a scaling factor, the polar-
izability. However, when P is quadratically proportional to E, the response to a sinu-
soidal oscillation in E becomes more interesting. As the plot shows, the peaks are
sharper and the troughs are broader. A Fourier analysis of this output reveals three
features:

1. The main frequency component remains equal to the driving frequency.

2. A frequency of two times the driving frequency is present.

3. A DC offset is present.
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Figure 9.14. Polarization versus applied electric field.

Figure 9.15. Polarization response for (upper) large and (lower) small oscillating electric field.
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Points 1 and 3 can be identified by inspection, point 2 is more subtle, but its comes about
from the trigonometric identity

cos2(u) ¼ 1
2
cos(2u)þ 1

2
(9:51)

Whether through the mathematical analysis or graphical analysis, the conclusion
remains the same: in the presence of high-intensity light, materials can produce light at
harmonics of the driving frequency. As a general phenomenon, this is not a dramatic
revelation. Harmonic distortion is a common feature of electronic amplifiers. When the
input to an audio amplifier is too high, the output to the speaker will contain harmonics
of the input frequency. In audio electronics, this is referred to a harmonic distortion. In
optical properties of materials, it is called harmonic generation. The mathematics describ-
ing both are the same, because in both cases, the system is a driven damped oscillator.

An important remaining question is: will all materials produce these multiple
harmonics? The answer to that is straightforward, the explanation may not be. The
answer is yes, all materials produce the third, fifth, seventh, and so forth, odd harmonics.
In order to observe the even harmonics, a material must lack a center of inversion in a
crystallographic space group. Such space groups are called noncentrosymmetric. This
is an important consideration for the materials chemist designing new materials for use
as even harmonic generators, the only commercially important ones being the second
harmonic generation materials.

Both second-order and third-order materials have technological applications because
of their ability to convert low-frequency light to high-frequency light. However, the
efficiency with which they are able to accomplish this feat decreases dramatically from
second order to third order. Even the second-order process is small compared to the
first-order process. From the design point, one faces a dilemma: avoid the symmetry con-
straint and live with the low efficiency of third-order materials or adhere to the symmetry
constraints and reap the benefit of better conversion. In Chapter 12, more about synthetic
strategies as they relate to producing nonlinear optical materials will be covered.

As said earlier, birefringence can be induced in a material with the application of an
electric field. This effect finds an application in the important field of electro-optic modu-
lators. The effect is outlined in Figure 9.16. When the refractive index of the material is
altered as a result of the application of the electric field, the change in the linear polariz-
ation of the incident beam to the elliptical polarization of the outgoing beam allows some
component of the outgoing beam to pass through the analyzer. Hence, the light level at the
detector can be switched from high to lowwith the application of the electric field. In order
to make this a practical device, the field must be switchable at a high rate of speed (MHz).
This high-switching speed requires that the applied voltage be small. In order to get
enough change in the polarization for the device to work, the material will require large
second-order coefficients, and therefore the material must be noncentrosymmetric.

As a final example of manipulating the optical properties a material to produce a
desired effect, upconversion is considered (Risk et al., 2003). In one sense this is similar
to nonlinear optical processes since the net result is the production of high-energy light
from low-energy light. However, the details are different. One immediate advantage
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of upconversion is that it does not impose the same symmetry requirements as the second-
order nonlinear effects. However, it does have its own limitations. Upconversion requires
that the excited state of a chromophore have a long lifetime. The tripositive lanthanides
meet the condition of long-lived excited states, and therefore represent the bulk of the
work in this area.

An example of upconversion is as follows:

Erþ3(4I15=2)þ hv1 �! Erþ3(4I11=2)

Erþ3(4I11=2)þ hv1 �! Erþ3(4F7=2)

Erþ3(4S3=2) �! Erþ3(4I15=2)þ hv2

where the emitted light, hv2, is of higher energy than the absorbed light. A radiationless
transition connects the 4F7/2 state and the

4S3/2 state. In the above example, the absorbed
light is 970 nm and the emitted light is 540 nm and 525 nm, hence the term upconversion.
In order for this process to work, it is important that the Erþ3 not be too close together. If
the Erþ3–Erþ3 distance is too short, the lifetime of the excited state is decreased. Hence,
this material is prepared with the Erþ3 doped into a lattice.

Upconversion is included because it is a case, unlike all the others presented, where
the refractive index is not a concern in the design of the material. For upconversion, the
important parameters for the designer include absorption bands and excited-state life-
times. Finding the blank host to hold the emitters and keep them separated from each
other is also part of the design task. In addition, this host often serves as the primary
absorber of the light to be upconverted. In the case of Erþ3, the host contains Ybþ3 for
this purpose.

Figure 9.16. Electro-optic modulator.
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9.5 SUMMARY

In this chapter the optical properties of materials have been considered from a design
point of view. The emphasis is on synthetic design. The overriding optical parameter
is the refractive index. This comes as no surprise given that it owes its origin to
Maxwell’s equations. Moreover, the consequences of how light interacts with a material,
given the material’s refractive index or indices, has been examined. Finally, some specific
examples where the optical properties of a material were deliberately imposed by control-
ling the refractive index have been offered. Those examples have been complemented
with a case where the refractive index was not critical.

PRACTICE PROBLEMS

1) Show that Eq. 9.21 follows from Eq. 9.20 when the incoming light is propagating
along the x axis.

2) Give a physical, albeit oversimplied, explanation of why the speed of light is lower in
a medium than in a vacuum.

3) How does controlling the refractive index of an optical fiber keep the light traveling
in the fiber?

4) Often absorption spectra are plotted with the molar aborbtivity, 1, versus wavelength
(or frequency) instead of the absorbance, A, versus wavelength (or frequency). What
is the advantage of plotting 1 on the ordinate instead of A?

5) Two conditions for the absorption of electromagnetic radiation are given in this
chapter. What addition condition(s) must be met before an observed absorption
transition will occur?
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6) Second harmonic generation, described in this chapter, is an example of a second-
order process. What does second-order mean in this context? What are examples
of a first-order (or linear) process?

7) What is the difference between upconversion and second-harmonic generation?

8) Look up the space groups for these materials and then determine which materials
cannot generate second harmonics: quartz, LiNbO3, NaCl, H2O.

9) Recently, a material with a negative refractive index was reported. With respect to
Figure 8.4a, what is the consequence of a negative refractive index?

10) Show that by squaring E(r, t) in Eq. 9.50, a second harmonic frequency and a DC
offset result.
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10

MECHANICAL PROPERTIES

The fact that materials used in many applications are required to meet specific mechanical
requirements, which may be secondary to some other primary function, is sometimes
under-appreciated by those who are not materials scientists or mechanical engineers.
At first glance, it might seem as though a givenmaterial holds great promise in a particular
application owing to some potentially exploitable property (e.g. thermal or electrical
conductivity). In actuality, applicability can be significantly reduced for one reason or
another, frequently because of inadequate mechanical behavior. Many solids, particularly
ceramics, exhibit very limited plasticity, in which case, fabrication into the desired shape
or form is difficult, or not cost effective. Furthermore, successful fabrication does not
ensure the material will have an adequate lifetime once in use. Metals subjected to rela-
tively low stresses at elevated temperatures, for instance, may undergo creep, defined as
any undesirable time-dependent plastic deformation at constant stress and temperature.
Ceramics are normally very resistant to creep, until very high temperatures are reached.
Alternatively, fatigue arises from repeated, or cyclic, stresses such as mechanical loading,
thermal fluctuations, or both (thermomechanical fatigue). Fatigue is of concern in both
metals and ceramics.

Principles of Inorganic Materials Design, Second Edition. By John N. Lalena and David A. Cleary
Copyright # 2010 John Wiley & Sons, Inc.
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10.1 STRESS AND STRAIN

When mechanical forces act on a body, the body is said to be in a state of stress,
defined as the force per unit area over which the force is distributed. Stress is usually
denoted by the symbol s. A body is under homogeneous stress when the forces acting
on each pair of opposite faces are equal in magnitude but opposite in sign. Consider the
cube shown in Figure 10.1, where the oblique force acting on each face has been
resolved into three components, which point in the positive direction in this diagram.
The convention normally used is that the component of the force exerted in the þi
direction, and transmitted across the cube face that is perpendicular to the j direction,
is denoted by sij. If the cube is under homogeneous stress, the forces exerted across the
three opposite faces are equal and opposite in sign; there is no net force acting on the
cube. There are thus three normal components of stress (s11, s22, s33) that are obtained
by numerically dividing the components of the forces by the area of the face on which
they act. Additionally, there are three shear components of stress (s12, s21, s13, s31,
s23, s32), which are the components in the plane on which the oblique force acts.

Force equilibrium considerations show that, in the absence of an applied torque, the
strain and stress tensors are symmetric; sij ¼ sji and 1ij ¼ 1ji. Consequently, there are
really only six independent stresses for three directions that can be applied to strain a
body. The mathematical representation of stress is thus:

sij ¼
s11 s21 s31

s21 s22 s32

s31 s32 s33

0
@

1
A (10:1)
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Figure 10.1. The forces on the faces of a unit cube in a body under homogeneous stress.
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Equation 10.1 is a second-rank tensor with transpose symmetry. The normal com-
ponents of stress are the diagonal elements and the shear components of stress are the
nondiagonal elements. Although Eq. 10.1 has the appearance of a [3 � 3] matrix, it is
a physical quantity that, for one set of axes, is specified by nine components, whereas
a transformation matrix is an array of coefficients relating two sets of axes. The tensor
coefficients determine how the three components of the force vector, f, transmitted
across a small surface element, vary as different values are given to the components of
a unit vector l perpendicular to the face (representing the face orientation):

f1 ¼ s11l1 þ s21l2 þ s31l3
f2 ¼ s21l1 þ s22l2 þ s32l3
f3 ¼ s31l1 þ s32l2 þ s33l3

(10:2)

Stress causes an object to strain, or deform. Strain is denoted as 1 and is equal to the
change in length divided by the initial length, DL/L0. Like stress, strain too is a second-
rank symmetric tensor, relating two vectors.

1ij ¼
111 121 131
121 122 132
131 132 133

0
@

1
A (10:3)

The diagonal elements of Eq. 10.3 are the stretches or tensile strains. The nondiagonal
elements are the shear strains. The variation of the displacement vector, u, with the pos-
ition vector, d, for a point in the solid is used to define the nine tensor components in
Eq. 10.3, as follows:

u1 ¼ 111d1 þ 121d2 þ 131d3
u2 ¼ 121d1 þ 122d2 þ 132d3
u3 ¼ 131d1 þ 132d2 þ 133d3

(10:4)

With homogeneous strain, the deformation is proportionately identical for each
volume element of the body and for the body as a whole. Hence, the principal axes, to
which the strain may be referred, remain mutually perpendicular during the deformation.
Thus, a unit cube (with its edges parallel to the principal strain directions) in the
unstrained body becomes a rectangular parallelepiped, or parallelogram, while a circle
becomes an ellipse and a unit sphere becomes a triaxial ellipsoid. Homogeneous strain
occurs in crystals subjected to small uniform temperature changes and in crystals sub-
jected to hydrostatic pressure.

Stress and strain tensors are not matter tensors like susceptibility or conductivity,
which were covered in earlier chapters. They do not represent a crystal property, but
are, rather, forces imposed on the crystal, and the response to those forces, which can
have any arbitrary direction or orientation. Although the magnitude and direction of
strain are influenced by the crystal symmetry, they are also determined by the magnitude
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and orientation of the imposed stress which, obviously, need not conform to the crystal
symmetry. In this respect, stress and strain are like electric fields. They are called
field tensors.

Deformation can be categorized into two regimes, as depicted in Figure 10.2, which
shows the stress–strain curve for three typical classes of materials. The first regime is
elastic deformation, which occurs when a solid object is subjected to an applied stress
that is small enough that the object returns to its original dimensions once the stress
is released. That is, the deformation exists only while the stress is applied. The response
of the material in the elastic regime is linear (it obeys Hooke’s law). In 1727, the Swiss
mathematician Leonhard Euler (1707–1783) first expressed this linear relationship
in terms of strain and stress: s ¼ E1, but where the proportionality constant is now
known as the Young’s modulus after the British naturalist Thomas Young (1773–
1829), who developed a similar relation in 1807.

It is now known that the underlying mechanism of elastic deformation involves
small atomic motions, such as stretching (without breaking) of the chemical bonds hold-
ing the atoms of the material together. During elastic deformation, there is a greater
change in volume than there is in shape since the interatomic bond lengths change
more than the coordination environment of the atoms. Most solid objects will undergo
elastic deformation, provided the stress is below a characteristic threshold for the material,
called the elastic limit (sometimes called yield point or yield strength). In terms of strain,
elastic deformation persists for most metals to about 0.005. Beyond this, the strain ceases
to be linearly proportional to stress, and the sample undergoes permanent, nonrecoverable

Elastic Plastic

St
re

ss

Strain

Figure 10.2. Stress–strain behavior. With elastic (reversible) deformation, stress and strain are

linearly proportional in most materials (exceptions include polymers and concrete). With plastic

(permanent) deformation, the stress–strain relationship is nonlinear.
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or plastic deformation. A body does not return to its original shape or microstructural
condition upon removal of the forces that cause plastic deformation. Plastic deformation
is not homogeneous, that is, any three points which were on a straight line before the
deformation are not on another straight line after the deformation; parallel lines before
the strain are not parallel after the strain. The mechanism of plastic deformation in crystal-
line materials involves slip, which is the gliding motion of planes of atoms. Because of
this, a specimen under plastic deformation will have a greater shape change than volume
change since the bond length alteration is not as great as the change in the nearest neigh-
bors. Some general terms used to describe mechanical properties are defined in
Table 10.1.

10.2 ELASTICITY

The manner in which a body responds to small external mechanical forces in the elastic
regime is determined by the elastic constants (Table 10.2). The number of elastic con-
stants for a given crystal is dependent of the crystal class to which it belongs.

TABLE 10.1. Some General Mechanical Engineering Terms and Their Definitions

Elasticity The ability of a material to deform under loads and return to its original
dimensions upon removal of the load.

Stiffness A measure of the resistance to elastic deformation.
Compliance The reciprocal of stiffness; a low resistance to elastic deformation.
Plasticity The ability of a material to permanently deform under application of a

load without rupture.
Strength A measure of the resistance to plastic deformation.
Shear strength The ability to withstand transverse loads without rupture.
Compressive
strength

The ability to withstand compressive loads without crushing.

Tensile strength The ability to withstand tensile loads without rupture.
Ultimate tensile
strength

The point at which fracture occurs.

Yield strength The point at which plastic deformation begins to occur.
Ductility The ability to stretch under tensile loads without rupture. Measured as

a percent elongation.
Malleability The ability to deform permanently under compressive loads without

rupture.
Toughness The ability to withstand shatter. A measure of how much energy can

be absorbed before rupture. Easily shattered materials (small strain
to fracture) are brittle.

Hardness The ability of a material to withstand permanent (plastic) deformation
on its surface (e.g. indentation, abrasion).

Creep Time-dependent plastic deformation at constant stress and temperature.
Fatigue Damage or failure owing to cyclic loads.
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Amorphous solids and polycrystalline substances composed of crystals of arbitrary sym-
metry arranged with a perfectly disordered or random orientation are elastically isotropic
macroscopically (taken as a whole). They may be described by nine elastic constants,
which may be reduced to two independent (effective) elastic constants.

10.2.1 The Elasticity Tensor

Consider a vertically hanging metal rod, to which a load can be applied (e.g. a steel
cable supporting an elevator), as in Figure 10.3. The load exerts a tensile force over
the entire cross-sectional area of the rod, which is said to be under uniaxial stress since
only the stress along one of the principal axes is nonzero. The stress is equal to the
force divided by the cross-sectional area over which it is distributed. In linear elastic
theory, according to Hooke’s law, the magnitude of the strain produced in the rod by a
small uniform applied stress is directly proportional to the magnitude of the applied
stress. Hence:

1 ¼ ss (10:5)

Or, alternatively

s ¼ c1 (10:6)

The constants s and c (;1/s) are known as the elastic compliance constant and the elastic
stiffness constant, respectively. The elastic stiffness constant is the elastic modulus, which
is seen to be the ratio of stress to strain. In the case of normal stress–normal strain
(Fig. 10.3a) the ratio is the Young’s modulus, whereas for shear stress–shear strain the
ratio is called the rigidity, or shear, modulus (Fig. 10.3b). The Young’s modulus and
rigidity modulus are the slopes of the stress–strain curves and for nonHookean bodies
they may be defined alternatively as ds/d1. They are required to be positive quantities.
Note that the higher the strain, for a given stress, the lower the modulus.

Think about what happens when, say, an elastomer is under tensile stress. The elastic
constants, s and c, cannot be scalar quantities, otherwise Eqs. 10.5 and 10.6 would not
completely describe the elastic response. When the elastomer is stretched, a contraction

TABLE 10.2. The Elastic Moduli

Quantity Symbol Expression Comments

Bulk modulus B V(DP/DV) The change in pressure divided by
the volumetric strain.

Young’s modulus E sxx/1xx Ratio of normal stress to normal
strain.

Rigidity modulus G sxy/1xy Ratio of shear stress to shear strain.
Poisson ratio v j1yyj/1x Ratio of transverse strain to normal

strain.
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in the other dimensions can be observed. This is the same behavior exhibited by the metal
rod in Figure 10.3, although it may not be obvious from our drawing. When a uniaxial
stress is applied along the tubular axis (z direction), the rod contracts laterally (it narrows
in diameter). That is, it deforms in directions perpendicular to the applied uniaxial stress
in order to decrease the stretch-induced volume change. This behavior is quantified by
Poisson’s ratio, defined as the ratio of lateral strain to axial strain. If a material shrinks
laterally when stretched, or contracts in all directions when hydrostatically compressed,
its Poisson’s ratio is positive. In very rare materials, such as certain fibrillar polymers,
which are termed auxetic materials, the lateral dimension expands during stretching
and the associated Poisson’s ratio is negative. It has recently been discovered that the

LDL
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Figure 10.3. The different forces acting in tensile deformation and shear deformation.
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inplane Poisson’s ratio of carbon nanotube sheets, or buckypaper, can be tuned from
positive to negative by mixing SWNTs and MWNTs (Hall et al., 2008).

Tensile and shear forces are not the only types of loads that can result in deformation.
Compressive forces may as well. For example, if a body is subjected to hydrostatic
pressure, which exists at any place in a body of fluid (e.g. air, water) owing to the
weight of the fluid above, the elastic response of the body would be a change in
volume, but not shape. This behavior is quantified by the bulk modulus, B, which is
the resistance to volume change, or the specific incompressibility, of a material. A related,
but not identical property, is hardness, H, which is defined as the resistance offered by a
material to external mechanical action (plastic deformation). A material may have a high
bulk modulus but low hardness (tungsten carbide, B ¼ 439 GPa, hardness ¼ 30 GPa).

Because stress and strain are vectors (first-rank tensors), the forms of Eqs. 10.5 and
10.6 state that the elastic constants that relate stress to strain must be fourth-rank tensors.
In general, an nth-rank tensor property in p dimensional space requires pn coefficients.
Thus, the elastic stiffness constant is comprised of 81 (34) elastic stiffness coefficients,
cijkl (n indices are needed for a nth-rank tensor). Hence, Eq. 10.6 must be written as
sij ¼ cijkl1kl. A fourth-rank tensor can be written as a [9 � 9] array, representative of
nine equations, each with nine terms on the right-hand side. It follows that each of the
nine components of stress, for example, are related to all nine components of the
strain. For example, the s11 component may be written out as: s11 ¼ c1111111 þ
c1112112 þ c1113113 þ c1121121 þ c1122122 þ c1123123 þ c1131131 þ c1132132 þ c1133133.
An abbreviated way of expressing such relationships will be introduced shortly.

First, however, the problem can be simplified. Because the strain and stress tensors
are symmetric (sij ¼ sji; 1ij ¼ 1ji), there are really only six independent stresses that can
be applied to strain a body and six independent strains in a stressed body. Additionally,
the following relations are found to hold:

cijkl ¼ cijlk ¼ c jikl (10:7)

sijkl ¼ sijlk ¼ s jikl (10:8)

These simplifications reduce the size of the elasticity tensors from [9 � 9] to [6 � 6],
with 36 elastic coefficients. The shorthand notation normally used for the elasticity ten-
sors are now introduced, namely, that the subscripts become: 1! 11; 2! 22; 3! 33;
4! 23, 32; 5! 31, 13; and 6! 12, 21. With this change, the elastic stiffness tensor
may be written in matrix form as:

s1

s2

s3

s4

s5

s6

0
BBBBBB@

1
CCCCCCA
¼

c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

0
BBBBBB@

1
CCCCCCA
¼

11
12
13
14
15
16

0
BBBBBB@

1
CCCCCCA

(10:9)
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Each of the six independent stresses that can be applied to strain a body are expressed in
Eq. 10.9 in terms of six strains. For example, in matrix form, the normal stress s1 (;s11)
and shear stress s4 (;s23) may be expressed as:

s11 ¼ s1 ¼
c1111 c1616 c1515

c1616 c1212 c1414

c1515 c1414 c1313

0
B@

1
CA (10:10)

s23 ¼ s4 ¼
c4111 c4616 c4515

c4616 c4212 c4414

c4515 c4414 c4313

0
B@

1
CA (10:11)

Again, the significance of this type of stress–strain relationship is that all six of the
strain components (11216) may be nonzero with the application of a single component
of stress. For example, a sample might shear as well as elongate under a uniaxial ten-
sion. Similarly, a sample may bend as well as twist if pure twisting forces are applied to
its ends.

The six independent strain components can likewise be given, as a function of stress,
in terms of 36 elastic–compliance coefficients, sijkl:

11
12
13
14
15
16

0
BBBBBB@

1
CCCCCCA
¼

s11 s12 s13 s14 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66

0
BBBBBB@

1
CCCCCCA
¼

s1

s2

s3

s4

s5

s6

0
BBBBBB@

1
CCCCCCA

(10:12)

Unlike stress and strain, which are field tensors, elasticity is a matter tensor. It is sub-
ject to Neumann’s principle. Hence, the number of independent elastic coefficients is
further reduced by the crystal symmetry. The proof is beyond the scope of this book
(the interested reader is referred to Nye, 1957), here the results will merely be presented.
For example, even with triclinic crystals, the lowest symmetry class, there are only 21
independent elastic–stiffness coefficients:

c11 c12 c13 c14 c15 c16
c22 c23 c24 c25 c26

c33 c34 c35 c36
c44 c45 c46

c55 c56
c66

0
BBBBBB@

1
CCCCCCA

(10:13)
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In Eq. 10.13, the missing coefficients are not zero-valued, rather they are related to those
listed by transpose symmetry: cij ¼ cji. In other words, there are 36 nonzero-valued com-
ponents in totality, but only 21 independent components. Listing the remaining 15 com-
ponents would be redundant. With higher symmetry crystals, the number of independent
elastic coefficients is even lower, as shown in Tables 10.3 and 10.4.

TABLE 10.4. The Independent Elastic–Compliance Coefficients for Each Crystal Class. If
an Unlisted Coefficient is not Related to a Listed One by Transpose Symmetry (sij ¼ sji),
it is Zero-Valued

Triclinic s11, s22, s33, s44, s55, s66, s12, s13, s23, s14, s24, s34, s15, s25, s35, s45,
s16, s26, s36, s46, s56

Monoclinic s11, s22, s33, s44, s55, s66, s12, s13, s23, s16, s26, s36, s45
Orthorhombic s11, s22, s33, s44, s55, s66, s12, s13, s23
Tetragonal s11 ¼ s22; s12; s13 ¼ s23; s33; s44 ¼ s55; s66, plus s16 ¼2s26 in the 4,

4-bar, and 4/m point groups
Trigonal s11 ¼ s22; s12; s13 ¼ s23; s14 ¼ 2s24 ¼ 2s56; s33; s44 ¼ s55;

s16 ¼ 2(s11 2 s12) plus s25 ¼ 2s15 ¼ 2s46 in the 3 and 3-bar point
groups

Hexagonal s11 ¼ s22; s12; s13 ¼ s23; s33, s44 ¼ s55; s16 ¼ 2(s11 2 s12)
Cubic s11 ¼ s22 ¼ s33; s12 ¼ s13 ¼ s23; s44 ¼ s55 ¼ s66
Polycrystal s11 ¼ s22 ¼ s33; s12 ¼ s13 ¼ s23; s44 ¼ s55 ¼ s66 ¼ 2(s11 2 s12)

Source: From Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford
University Press, London, 1957.

TABLE 10.3. The Independent Elastic–Stiffness Coefficients for Each Crystal Class. If
an Unlisted Coefficient is not Related to a Listed One by Transpose Symmetry (cij ¼ cji),
it is Zero-Valued

Triclinic c11, c22, c33, c44, c55, c66, c12, c13, c23, c14, c24, c34, c15, c25, c35, c45,
c16, c26, c36, c46, c56

Monoclinic c11, c22, c33, c44, c55, c66, c12, c13, c23, c16, c26, c36, c45
Orthorhombic c11, c22, c33, c44, c55, c66, c12, c13, c23
Tetragonal c11 ¼ c22; c12; c13 ¼ c23; c33; c44 ¼ c55; c66, plus c16 ¼ 2c26 in the

4, 4-bar, and 4/m point groups
Trigonal c11 ¼ c22; c12; c13 ¼ c23; c14 ¼ 2c24 ¼ c56; c33; c44 ¼ c55;

c16 ¼ 1
2(c11 2 c12) plus c25 ¼ 2c15 ¼ c46 in the 3 and 3-bar

point groups
Hexagonal c11 ¼ c22; c12; c13 ¼ c23; c33, c44 ¼ c55; c16 ¼ 1

2(c11 2 c12)
Cubic c11 ¼ c22 ¼ c33; c12 ¼ c13 ¼ c23; c44 ¼ c55 ¼ c66
Polycrystal c11 ¼ c22 ¼ c33; c12 ¼ c13 ¼ c23; c44 ¼ c55 ¼

c66 ¼ 1
2(c11 2 c12)

Source: From Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford
University Press, London, 1957.
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Example 10.1

Draw, in matrix notation, the elastic–stiffness tensor for a tetragonal monocrystal
in the 422 class.

Solution

Upon inspection of Table 10.3, it can be seen that there are twelve nonzero-valued
elastic–stiffness coefficients. Some of these are related by the crystal class and
some by transpose symmetry, with the result that there are only six independent
coefficients: c11 ¼ c22; c12; c13 ¼ c23; c33; c44 ¼ c55; c66. All other components are
zero-valued. Hence, the matrix with all the nonzero independent coefficients
designated as such is straightforwardly written as:

c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

0
BBBBBB@

1
CCCCCCA

;

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

0
BBBBBB@

1
CCCCCCA

10.2.2 Elastically Isotropic Solids

With elastically anisotropic materials the elastic behavior varies with the crystallographic
axes. The elastic properties of these materials are completely characterized only by the
specification of several elastic constants. For example, it can be seen from Table 10.3
that for a cubic monocrystal, the highest symmetry class, there are three independent
elastic–stiffness constants, namely, c11, c12, and c44. By contrast, polycrystalline aggre-
gates, with random or perfectly disordered crystallite orientation and amorphous
solids, are elastically isotropic, as a whole, and only two independent elastic–stiffness
coefficients, c44 and c12, need be specified to fully describe their elastic response. In
other words, the fourth-order elastic modulus tensor for an isotropic body has only two
independent constants. These are often referred to as the Lamé constants, m and l,
named after French mathematician Gabriel Lamé (1795–1870):

c12 ¼ c13 ¼ c23 ¼ l c44 ¼ c55 ¼ c66 ¼ m (10:14)

with c11 ¼ c22 ¼ c33 ¼ c12 þ 2c44 ¼ l þ 2m and m ¼ 1
2(c11 2 c12).

The first Lamé constant (l) has no physical interpretation. However, both Lamé con-
stants are related to other elastic moduli. To see this, recall that the Young’s modulus, E, is
defined as the ratio of normal stress to normal strain. Hence, for an elastically isotropic
body, E is given by: (c112c12)(c11 þ 2c12)/(c11 þ c12), or m(3l þ 2m)/(l þ m). It
should be emphasized that the Young’s modulus is anisotropic for all crystal classes,
including the cubic class, so this relation would never apply to any monocrystal.
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In a similar fashion, the rigidity modulus,G, for an elastically isotropic solid is given
by: s4/14 ¼ c44 ¼ s5/15 ¼ c55 ¼ s6/16 ¼ c66 ¼ 1

2(c11 2 c12) ¼ m, or c44, which rep-
resents a shape change without a volume change. Therefore, the second Lamé constant
(m) is the shear modulus for an elastically isotropic body. The Lamé constants may
also be related directly to the bulk modulus, B, for an elastically isotropic body, which
can be obtained through the relations: m ¼ �

3
2


(B 2 l) and l ¼ B 2

�
2
3


G.

Example 10.2

In terms of the Lamé constants, write the equations relating the six stresses to the
strains for a polycrystalline material.

Solution

Using Eq. 10.14with Table 10.3, it is easily shown that the stresses can bewritten in
terms of the two Lamé constants as:

s1 ¼ (lþ 2m)11 þ l12 þ l13

s2 ¼ l11 þ (lþ 2m)12 þ l13

s3 ¼ l11 þ l12 þ (lþ 2m)13

s4 ¼ m14

s5 ¼ m15

s6 ¼ m16

where the subscripts are: 1 ¼ xx; 2 ¼ yy; 3 ¼ zz; 4 ¼ yz; 5 ¼ zx; 6 ¼ xy.

The most important of the relationships between the various elastic moduli for isotropic
bodies can be summarized as follows:

E (isotropic) ¼ 2G(1þ v) ¼ 3B(1� 2v) ¼ 9BG
3Bþ G

(10:15)

G (isotropic) ¼ E

2(1þ v)
¼ 3B(1� 2v)

2(1þ v)
¼ 3EB

9B� E
(10:16)

B (isotropic) ¼ E

3(1� 2v)
¼ 2G(1þ v)

3(1� 2v)
¼ EG

3(3G� E)
(10:17)

v ¼ E � 2G
2G

¼ 3B� 2G
2(3Bþ G)

¼ 3B� E

6B
(10:18)

In Eq. 10.18, v is the Poisson’s ratio, named after French mathematician Siméon-
Denis Poisson (1781–1840). Poisson’s ratio is the dimensionless ratio of relative dia-
meter change (lateral contraction per unit breadth) to relative length change (longitudinal
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extension per unit length) in elastic stretching of a cylindrical specimen. For example, if
an elastically isotropic material is under uniaxial applied stress (e.g. only in the z direc-
tion), the strain along the x and y directions is equal, 1x ¼ 1y. Poisson’s ratio indicates that
the contraction in these two directions relative to the elongation in the axial direction is
simply: v ¼ 2(1x/1z) ¼2(1y/1z). For many materials, Poisson’s ratio has a value in the
range 0.2–0.5 (e.g. steel � 0.27, rubber � 0.5). Typically, ceramics range from 0.2 to 0.3
(e.g. Al2O3 � 0.26, BeO � 0.34).

Example 10.3

Determine the magnitude of the load required to produce a 21.29 � 1024 mm
change in a 10mm diameter isotropic polycrystalline tin rod, assuming the defor-
mation is entirely elastic. The Young’s modulus for tin is 50 GPa and Poisson’s ratio,
v, is 0.36.

Solution

The diameter change of the rod,Dd, is21.29 � 1024 mm.Dividing this quantity by
the original diameter, 10mm, gives the strain in the x direction, 1x:

1x ¼ 1y ¼ Dd

d0
¼ �0:000129mm

10mm
¼ �0:0000129

The axial expansion is given by

1z ¼ �1x
v
¼ ��(�0:0000129)

0:36
¼ 0:0000358

The applied stress is uniaxial and the elastic constant needed in Eq. 10.6, c, is
simply Young’s modulus:

sz ¼ c1z ¼ (50,000MPa)(0:0000358) ¼ 1:79MPa (1:79� 106 N=m2)

Stress is force per unit area and the cross-sectional area is pr2. Hence,

F ¼ sA0 ¼ s
d0

2

� �2
p ¼ (1:79� 106 N=m2)

0:01m

2

� �2
p ¼ 140N

It should be clarified that polycrystalline aggregates with perfectly random or disordered
distribution of crystallite orientations are elastically isotropic bodies even though each
microscopic crystal of the aggregate is elastically anisotropic. This means the Young’s
modulus and rigidity modulus for the aggregate as a whole are independent of the prin-
cipal direction along which the tensile or shear stress is applied. If a single crystal is not
available, it is not possible to measure the individual elastic constants. However, one may
measure the polycrystalline elastic moduli or calculate them from known single crystal
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data. The elastic moduli are thus sometimes considered as polycrystalline elastic con-
stants. However, a problem arises when one attempts to calculate the average isotropic
elastic moduli from anisotropic single-crystal elastic constants. The determination of
the stress and strain distributions in a polycrystal composed of anisotropic crystallites
can be established for two extreme cases, representing the theoretical maximum and
minimum values of the elastic moduli.

The German physicist Woldemar Voigt (1850–1919) showed, under the assumption
of uniform strain, the various elastic moduli of a dense (pore-free) polycrystalline aggre-
gate composed of crystallites with arbitrary symmetry, and with a perfectly disordered or
random crystallite orientation, can be estimated from the nine elastic stiffness constants:
c11, c12, c33, c44, c55, c66, c12, c23, and c31 (Voigt, 1910). This results from volume aver-
aging with an orientation distribution function over the elastic stiffness tensor. The Voigt
assumption yields the theoretical maximum value for the elastic modulus at hand.
According to Voigt, the effective Young’s modulus of an elastically isotropic solid is
given by:

EV (isotropic) ¼ (A� Bþ 3C)(Aþ 2B)
2Aþ 3Bþ C

(10:19)

The shear modulus is given by:

GV (isotropic) ¼ A� Bþ 3C
5

(10:20)

The effective bulk modulus is given by:

BV (isotropic) ¼ Aþ 2B
3

(10:21)

In these expressions, A, B, and C are given by:

A ¼ c11 þ c22 þ c33
3

(10:22)

B ¼ c12 þ c23 þ c31
3

(10:23)

C ¼ c44 þ c55 þ c66
3

(10:24)

If, however, one assumes uniform stress throughout the same nontextured polycrystal
a similar averaging procedure can be performed over the elastic–compliance tensor
using the corresponding nine elastic compliance constants: s11, s12, s33, s44, s55, s66,
s12, s23, and s31. This is known as the Reuss approximation (Reuss, 1929), after Endre
Reuss (1900–1968), and it yields the theoretical minimum of the elastic modulus.
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According to Reuss, the effective Young’s modulus of an elastically isotropic solid is
given by:

ER (isotropic) ¼ 5
3X þ 2Y þ Z

(10:25)

The shear modulus is given by:

GR (isotropic) ¼ 5
4X � 4Y þ 3Z

(10:26)

The effective bulk modulus is given by:

BR (isotropic) ¼ 1
3(X þ 2Y)

(10:27)

In these expressions, X, Y, and Z are given by:

X ¼ s11 þ s22 þ s33
3

(10:28)

Y ¼ s12 þ s23 þ s31
3

(10:29)

Z ¼ s44 þ s55 þ s66
3

(10:30)

By using the relations between the elastic–stiffness coefficients in the cubic class from
Table 10.3 in Eq. 10.19, the Voigt approximation of the Young’s modulus is obtained
for a material with cubic symmetry:

EV (cubic) ¼ (c11 � c12 þ 3c44)(c11 þ 2c12)
(2c11 þ 3c12 þ c44)

(10:31)

Likewise, using the relations between the elastic–compliance coefficients from
Table 10.4 in Eq. 10.25, gives the Reuss approximation of the Young’s modulus of a
cubic crystal:

ER (cubic) ¼ 5
3s11 þ 2s12 þ s44

(10:32)

The condition for isotropic elasticity, as has been seen, is c44 ¼ c55 ¼ c66 ¼ 1
2(c112 c12).

Cubic crystals, because of their high symmetry, almost satisfy this condition. Zener intro-
duced the ratio 2c44/(c11 – c12) as an elastic anisotropy factor for cubic crystals (Zener,
1948a). In a cubic crystal, if the Zener ratio is positive, the Young’s modulus has a
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minimum along the k1 0 0l direction and a maximum along the k1 1 1l direction:

E001 ¼ (c11 � c12)(c11 þ 2c12)
(c11 þ c12)

(10:33)

E111 ¼ (c11 þ c12)
(c11 þ 2c12)(c11 � c12)

þ 1
3

1
c44
� 2
c11 � c12

� �� ��1
(10:34)

The reverse condition holds when the Zener ratio is negative. Similar equations for the
Young’s moduli for the other crystal classes can be derived from the expressions given
in Nye’s book (Nye, 1957).

Using the relations between the elastic–stiffness coefficients from Table 10.3 in Eqs.
10.20 and 10.26, one may also derive the Voigt and Reuss approximations for the rigidity
modulus of a cubic monocrystal. These are given by Eqs. 10.35 and 10.36, respectively:

GV (cubic) ¼ (c11 � c12 þ 3c44)
5

(10:35)

GR (cubic) ¼ 5c44(c11 � c12)
4c44 þ 3(c11 � c12)

(10:36)

Whereas, for an orthorhombic crystal, one obtains:

GV (ortho:)¼ 1
15

(c11þ c22þ c33)� 1
15

(c12þ c13þ c23)þ 1
5
(c44þ c55þ c66) (10:37)

GR (ortho:)¼ 4
15

(s11þ s22þ s33)� 4
15

(s12þ s13þ s23)þ 1
5
(s44þ s55þ s66)

� ��1
(10:38)

Similarly, the Reuss and Voigt approximations for the bulk moduli of polycrystalline
aggregates composed of cubic and orthorhombic crystallites are given by Eqs. 10.39
through 10.42:

BV (cubic)¼ c11þ 2c12
3

(10:39)

BR (cubic)¼ 1
3(s11þ 2s12)

(10:40)

BV (ortho:)¼ 1
9
(c11þ c22þ c33)þ 2

9
(c12þ c13þ c23) (10:41)

BR (ortho:)¼ 1
(s11þ s22þ s33)þ 2(s12þ s13þ s23)

(10:42)

It should be noted that for a polycrystal composed of cubic crystallites, the Voigt
and Reuss approximations for the bulk modulus are equal to each other, as they should
be since the bulk modulus represents a volume change but not shape change. Therefore,
in a cube the deformation along the principal strain directions are the same. Hence, Eqs.
10.39 and 10.40 are equal and these equations also hold for an isotropic body. The
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equivalency of Eqs. 10.39 and 10.40 can be verified by using the relations between the
elastic–stiffness and elastic–compliance coefficients in the cubic class given in Eqs.
10.43 through 10.45:

c11 ¼ s11 þ s12
(s11 � s12)(s11 þ 2s12)

(10:43)

c12 ¼ �s12
(s11 � s12)(s11 þ 2s12)

(10:44)

c44 ¼ 1
s44

(10:45)

Other explicit equations for the relationship between the elastic–stiffness and
elastic–compliance coefficients in the various crystal classes can be found in Nye’s
book (Nye, 1957).

Example 10.4

Use the relations in Tables 10.3 and 10.4 to derive the Voigt and Reuss approxi-
mations for the bulk modulus of an elastically isotropic polycrystalline aggregate
composed of tetragonal monocrystals.

Solution

From Table 10.3, there are six independent elastic–stiffness constants: c11, c12, c13,
c33, c44, and c66. Substitution of these relations into Eq. 10.21, and using the
relations given in Eqs. 10.22–10.24, gives:

BV (tetra:) ¼
2c11 þ c33

3
þ 2

c12 þ 2c13
3

� �
3

This simplifies to:

BV (tetra:) ¼ 1

9
(2c11 þ 2c12 þ 4c13 þ c33)

Similarly, fromTable 10.4, there are six independent elastic–compliance constants:
s11, s12, s13, s33, s44, and s66. Substitutionof these relations inEq. 10.27, andusing the
relations given in Eqs. 10.28–10.30, gives:

BR (tetra:) ¼ 1

3
2s11 þ s33

3
þ 2

s12 þ 2s13
3

� �� �

This simplifies to:

BR (tetra:) ¼ 1

(2s11 þ 2s12 þ 4s13 þ s33)
:

10.2 ELASTICITY 419



The Voigt and Reuss approximations were originally developed for macroscopically iso-
tropic media, that is, when the material, as a whole, is statistically isotropic. Hill proposed
that the Voigt and Reuss approximations represent the upper and lower bounds, respect-
ively, for the true elastic moduli of a polycrystal. This is because the Voigt and Reuss
assumptions are strictly true only when the polycrystalline aggregate is made up from
isotropic crystals. Thus, if one calculates the average isotropic elastic moduli from the
anisotropic single-crystal elastic constants, the Voigt and Reuss assumptions result in
the theoretical maximum and the minimum values of the isotropic elastic moduli, respect-
ively. Hill proposed that a practical estimate of the polycrystalline elastic moduli was the
arithmetic mean of the Voigt and Reuss approximations, which is of course simply
MVRH ¼ (MV þ MR)/2. It should be noted that this approximation has no firm physical
foundation and is applied as a simple intuitive solution.

Experimental determination of the elastic coefficients is laborious. One traditional
method involves making exacting wave velocity measurements (e.g. pulse-echo) of ultra-
sonic waves propagating in the principle symmetry directions within a relatively large
crystal. These measurements require attaching piezoelectric transducers to polished
single crystals. Usually only a single elastic–stiffness coefficient can be measured for
a given crystal/transducer assembly. The technique becomes progressively difficult to
apply as the crystal symmetry decreases since sound velocities along nonprincipal direc-
tions (where phase and group velocities are no longer colinear) need to be measured
(Kim, 1994). Elastic moduli of polycrystalline materials are estimated with the assump-
tion of homogeneous strain and stress (i.e. that all grains experience the same strain and
stress) and are usually reported as upper and lower bounds, obtained from the Voigt and
Reuss approximations. That is, the moduli are estimated by appropriate averages of the
values for the required elastic constants of the single crystal.

Typically, high modulus inorganic solids contain elements from the top rows of
the periodic table (Be, B, C, Si, Al, N, O), since the presence of these elements
usually lead to small atomic spacing (stronger covalent bonds). For example, the
Young’s modulus of silicon nitride, silicon carbide, boron carbide, and diamond are
300, 440, 450, and 600 GPa, respectively. Ab initio (Overney et al., 1993) and tight-
binding (Hernandez et al., 1998; Xin et al., 2000) simulations have predicted that the
smallest diameter (,1 nm) SWNTs could have a Young’s modulus ranging between
1 and 5 TPa. These values have been substantiated by micro-Raman spectroscopy
(Lourie and Wagner, 1998). The variability in the reported moduli is a direct result of
variation in the nanotube thickness values. Experimental measurements of the in-plane
Young’s modulus of graphite, as well as nanoindentation in an atomic force microscope
of free-standing monolayer grapheme sheets (the two-dimensional sheet of covalently
bonded carbon atoms that form the basis of both three-dimensional graphite and one-
dimensional carbon nanotubes), showed that SWNTs possess a Young’s modulus of
around 1 TPa (Lee et al., 2008).

In some applications, low modulus materials are desirable. In high-power semicon-
ductor components, for example, heat is conducted away from a silicon die (which has a
coefficient of thermal expansion (CTE) of 2.49 � 1026 K21) to a copper heat sink
(CTE ¼ 16.5 � 1026 K21) via a thermal interface material, or TIM, which is often
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required to bond to both surfaces. Since the die and heat sink have very different CTEs,
not only must the TIM have a high thermal conductivity but, in order to minimize
thermomechanical fatigue, it should also possess a low modulus. Most often, a lead–tin
or indium-based solder is used for this purpose.

Empirical relationships between the elastic moduli and fracture/toughness have also
been investigated (Pugh, 1954). For example, there exists a correspondence between the
shear modulus and the initial resistance to plastic deformation since the flow stress of a
pure metal has been found to be dependent on the force required to push an edge dislo-
cation through the lattice. The force varies as the product of the shear modulus and the
Burgers’ vector, the atomic distance in the direction of slip (Frank and Read, 1950).
The ratio of the bulk modulus to shear modulus (i.e. the bulk modulus to c44 ratio in elas-
tically isotropic solids) has, therefore, been suggested as a satisfactory index of ductile
behavior, or the ease of plastic deformation. Materials having a low B/G ratio are brittle
(e.g. ruthenium, B/G ¼ 1.7), while high B/G ratios correlate with ductility (e.g. gold,
B/G ¼ 6.2). This topic will be revisited later.

10.2.3 The Relation Between Elasticity and the Cohesive
Forces in a Solid

A great deal of time has been spent up to now describing elastic behavior. It would
obviously be of great value to be able to predict the elastic properties of a material.
Intuitively, a property like stiffness (springiness) is expected to be related to the cohesive
forces in a solid. Ultimately, then, the mechanical properties of a solid should depend on
the strength and nature of the interatomic bonding. Unfortunately, first principles calcu-
lations are difficult, which is owing to the requirement of accurately calculating the total
energy and equilibrium structural parameters for a phase, and to the sizeable matrix of
elastic coefficients with symmetries other than cubic (Table 10.3). This requires a large
number of distortions for the calculation of the full set of elastic coefficients
(Ravindran et al., 1998). For example, with an orthorhombic crystal, there are nine inde-
pendent elastic–stiffness constants, requiring nine different strains for their determi-
nation. Each of these elastic constants is given by a unique [3 � 3] distortion matrix.
The elastic constants are deduced from the change in the total energy brought about by
applying these strains to the equilibrium lattice, since the total energy is a function of
the distortion parameters, via:

Cij ¼ 1
V0

d2Etot

d1i d1j
(10:46)

where 1 corresponds to applied strains and V0 is the equilibrium volume. In crystals with
Raman-active modes, the Raman modes couple with the elastic constants. Thus elastic
constants in these crystals cannot be obtained by simple homogeneous shears of the crys-
tal lattice. Rather, it becomes necessary to minimize the total energy as a function of
internal atomic coordinates for each value of strain (Cohen, 1991). The details of the
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first principles calculations are well beyond the scope of this book, but generalized results
will be presented.

In addition to ab initio methods, it is also possible to estimate the elastic properties
from molecular dynamics simulations using empirical potentials. In molecular dynamics
modeling, the equations of motion are solved for each atom at a series of time steps. The
form of the interatomic potentials may be obtained by fitting parameters of some
generic formula to experimental data, or by atomistic scale simulations such as the ab
initio molecular dynamics techniques known as the Car–Parrinello method (Car
and Parrinello, 1985). Interatomic potentials can be roughly separated into two classes:
pair potentials, also called the pair-wise interaction (e.g. Lennard-Jones potential
(Lennard-Jones, 1931) or Morse potential (Morse, 1930), in which the interaction
between a pair of atoms only depends on their (scalar) radial separation), and many-
body potentials, in which the interaction between a pair of atoms is modified by the
surrounding atoms. A simple test to determine if the elastic properties of a solid might
be adequately described by a pair-wise potential is whether the Cauchy relations
(c12 ¼ c44; c11 ¼ 3c12) hold.

In general, the total interatomic potential between any pair of atoms is the sum of the
pair-wise interaction and the interactions between three atoms (triplets), four atoms (quar-
tets), etc. The problem is pair potentials are by far the easiest to compute, however,
their exclusive use gives results that are only semiquantitative (even with ionic
solids), accounting for only up to 90 percent of the total cohesive energy in a solid.
The three-body term simply cannot be neglected, although the higher-order terms
often can be.

10.2.3.1 Bulk Modulus. The behavior of the elastic moduli is considered sep-
arately here, taking the bulk modulus first. Like hardness, the bulk modulus is a manifes-
tation of the binding strength of a material. However, the bulk modulus and hardness are
not the same. The former is an elastic property, whereas the latter depends on plastic
deformation, namely, the creation and motion of dislocations. The bulk modulus can
be experimentally determined by measuring the lattice parameters as a function of hydro-
static pressure. Among the materials with the highest bulk moduli are: the super hard-
phase SWNTs, SP-SWNT (465 GPa), osmium (395–462 GPa), diamond (443 GPa),
tungsten carbide (439 GPa), and boron nitride (367 GPa).

In the free-electron gas model of metals, it can be shown that the contribution to the
bulk modulus owing to the kinetic energy of the free electrons can be approximated by

Bfree-electron ¼ 2
3

N

V

� �
EF (10:47)

where N is the total number of free electrons (e.g. equal to Avogadro’s number for one
mole of a metal with an atomic valence of one), V is the molar volume in m3, and EF

is the Fermi energy in joules, which yields the bulk modulus in Pascals. It can be seen
from Eq. 10.47 that the bulk modulus is proportional to the Fermi energy and it is
known that there is a relation between this quantity and the density of states (DOS) at
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the Fermi energy (see Eq. 4.20 and Example 8.7). It turns out that, for a given structure,
the latter is a function of the valence electron concentration (VEC). The VEC, with units
of valence electrons per unit volume (e.g. electrons per cm3 or electrons per Å3) is not the
same as the DOS, whose units are the number of states per energy level per unit volume
(variously reported as states per eV-atom, states J21 mol21, or states eV21 cm23).
However, pure metals and alloys with the same number of valence electrons per atom
tend to have the same structure, so, for a given structure, the DOS at the Fermi energy
is a function of the electron-to-atom ratio.

Accounting only for the free electron contribution to the bulk modulus neglects
electron–electron and electron–ion core interacations, which makes the solid more com-
pressible. The bulk modulus can also be predicted from total energy calculations as the
product of the atomic volume and the second derivative of the total energy with respect
to the atomic volume. This has been done for the 3d and 4d transition metal series
(Moruzzi et al., 1977). The one-electron approximation (which still neglects electron
correlation) is capable of adequate descriptions, with significant discrepancies only for
the bulk modulus of strongly magnetic metals at the center of the iron series (Harrison,
1989). The bulk modulus may also be calculated from the elastic constants obtained
by density functional theory methods.

For a wide variety of substances, the bulk modulus is found to correlate with the
valence electron concentration. The bulk modulus is generally found to increase with
an increase in the VEC, but not necessarily in a linear fashion, and it is also found to
increase with decreasing atomic volume (covalent radii). These observations indicate
that the bulk modulus may reflect the concentration of overlapped electron orbitals in
the structure. By drawing on what is known about binding forces within a molecule,
some valuable insight can be gained. With the MO model, the bond order in a molecular
bond is obtained by subtracting the antibonding electrons from the bonding electrons (and
then dividing by two). The bond order and thus bond strength decreases as the number of
electrons in antibonding orbitals increases. In an analogous fashion, for a solid once the
conduction band (antibonding states above the Fermi level) becomes populated, the
bonding is weakened. For a given structure type, smaller numbers of valence electrons
per atom are more conducive for filled valence bands and empty conduction bands.
Large numbers of valence electrons per atom, involving partially filled d shells, result
in populated conduction bands.

10.2.3.2 Rigidity Modulus. Unlike the bulk modulus, which tends to be a
monotonic function of the number of bonding valence electrons, or valence state popu-
lation, the shear modulus often shows a maximum, decreasing for both lower and higher
values of the VEC. The shear modulus (and hardness) appears to be sensitive to the par-
ticular bonding characteristics, as opposed to simply total-bond energy density (overlap
strength of valence electron orbitals). An example is provided by the isostructural-layered
ternary carbides Cr2AlC and Nb2AsC (Liao et al., 2006; Wang and Zhou, 2004). The
shear modulus c44 reaches its maximum when the VEC is in the range of 8.4 to 8.6
electrons/Å3. The ternary carbides have NaCl-type structures with Cr(Nb)-C slabs inter-
leaved with close-packed Al(As) planes. Although these compounds have the same
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average VEC in the (1 1 2̄ 0) atomic plane of the unit cell under shear, Nb2AsC has a
higher shear modulus: for Nb2AsC, c44 ¼ 182 GPa; for Cr2AlC, c44 ¼ 147 GPa (c44
represents a shape change without volume change). This has been attributed to an
enhanced Nb d–As p covalent bonding strength. Valence electrons contributed by the
As atoms result in Nb d–As ( px þ py) bonding which pushes the Nb d–As p bonding
states downward to the same energy level as those of the Nb–C bonding states (hence,
the Nb–C bond and the Nb–As in Nb2AsC are similar in strength), while in Cr2AlC
the Cr–Al and Cr–C bonds are in two subgroups separated by a pseudogap (i.e.
the Cr–Al bond is weaker than the Cr–C bond). In Cr2AlC the maximum of c44 is attrib-
uted to the complete filling of the M d–Al p bonding states (Wang and Zhou, 2004).
Similar results have been found for the transition metal carbonitrides, such as
TiCxN12x (Jhi et al., 1999).

In spite of the success of density functional theory methods, alloys present a unique
challenge since, in these phases, atoms are randomly substituted into the lattice. As a
result of this compositional disorder, there will inevitably be some variability to the phys-
ical properties data reported for alloys, either calculated or measured, even for samples
from a single casting. Inhomogeneity, compositional variations, and microstructural
differences, as well as possible measurement uncertainties, ensure that materials proper-
ties will seldom be exact. It is thus best to list, or to rely upon, mean values with reported
standard deviations. Fortunately, ball-park estimates of the cohesive forces in a substitu-
tional alloy and its derivatives, such as the elastic moduli, may be obtained from those of
the pure components by applying the rule of mixtures. The additive nature of bond prop-
erties gives this type of semi-empirical approach its power. It is founded in the assumption
that the physical property of interest associated with an A–B bond can be approximated as
the average of the values associated with the A–A and B–B bonds. The rule of mixtures
is a valid approximation for a bulk physical property when a well-defined analogous
property can be associated with the chemical bonds.

It has already been established that modeling individual bonds as interatomic springs
can yield reasonable estimates for the elastic modulus. In a binary substitutional alloy
xA–yB (where x and y are the atomic percentages of A and B, respectively), there are
four different types of bonds present: A–B, B–A, A–A, and B–B. The sum of the frac-
tions of each type of bond must equal one. That is:

X
pij ¼ 1 (10:48)

where pij is the fraction of bonds between atoms i and j. In the case of a binary solid
solution with random mixing between atoms with the same coordination number, the
following relations hold:

pAA ¼ x2A pAB ¼ pBA ¼ xAxB pBB ¼ x2B (10:49)

where xi is the atomic percent of species i.
In order to obtain an approximate value for the elastic modulus for the alloy, it is

assumed that it is a random solution (i.e. assume that Eq. 10.49 holds) and approximate
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the force constant of the A–B and B–A springs (d2fab) as the average of the known elastic
constants of pure A and B. In the language of molecular dynamics, this is equivalent to
letting the A–B interatomic potential in the alloy be some linear combination of the
potentials of the pure elements: fab ¼ caf

aa þ cbf
bb. Actually, this is the assumption

used for the pair potential in the embedded atom method (EAM) discussed below.
Note that owing to the constraint imposed by Eq. 10.48, the very simple expression
xAEA þ xBEB (where Ei is the elastic constant for pure i) will yield exactly the same
result as using the relations in Eq. 10.49 and the average value of the modulus,
namely, x2AEA þ 2xAxBEavg þ x2BEB. This simple approach can lead to reasonably good
estimates, even for insoluble components, eutectics, and ordered intermetallic phases,
as illustrated in Example 10.5.

Example 10.5

Consider the following solder alloys, with the phases present given in brackets:

91:6 at% Pb� 8:40 at% Sn ¼ [Pb–Sn eutecticþ (Pb, Sn)]

80:68 at% Bi� 110:32 at% Ag ¼ [(Bi)þ (Ag)]

70:67 at% Au� 210:33 at% Sn ¼ [(Au5Sn)þ (AuSn)]

63:56 at% Sn� 26:90 at% Ag� 10:54 at% Sb ¼ [(Sn)þ (Ag3Sn)þ (Sn3Sb2)]

The tabulated shear moduli, G, of the pure metals (in GPa), are as follows:

Pb ¼ 5:6; Sn ¼ 18; Bi ¼ 12; Ag ¼ 30; Au ¼ 27; Sb ¼ 20

Calculate the shearmodulus for each alloy, assuming it is an additive property,
and compare to the experimentally measured values given below.

The accepted room-temperature experimental values, obtained from an
impulse excitation technique, are (Lalena et al., 2002):

Pb�Sn ¼ 10:34GPa

Bi�Ag ¼ 13:28GPa

Au�Sn ¼ 21:26GPa

Sn�Ag�Sb ¼ 25GPa

Solution

Using the elastic moduli of the elements, the alloys obtain:

Pb�Sn: (0:916� 5:6)þ (0:084� 18) ¼ 6:64GPa

Bi�Ag: (0:8068� 12)þ (0:1932� 30) ¼ 15:47GPa

Au�Sn: (0:7067� 27)þ (0:2933� 18) ¼ 24:36GPa

Sn�Ag�Sb: (0:6356� 18)þ (0:2690� 30)þ (0:0954� 20) ¼ 21:42GPa
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The percent errors are determined via:

(jaccepted� calculatedj=accepted)� 100

Alloy Accepted value Calculated value % Error

Pb–Sn 10.34 6.64 28.90
Bi–Ag 13.28 15.47 16.49
Au–Sn 21.26 24.36 14.58
Sn–Ag–Sb 25 21.42 14.32

10.2.3.3 Young’s Modulus. The connection between the interatomic potential
and the Young’s modulus is seen by treating the interatomic bond as a spring. A force
constant for the spring can be obtained, which is a measure of the restoring force for
small displacements of the ions from their equilibrium positions. The derivative of poten-
tial energy is force and the slope of the force–distance curve at the equilibrium separation
between the atoms is proportional to the elastic constant. Starting with a pair potential for
the simplest case, an ionic solid, will derive the expression for the elastic modulus. The
calculation of the Young’s modulus from interatomic potentials for metallic and covalent
solids is considerably more complex because of the many-body terms, so is not discussed
in detail.

10.2.3.3.1 IONIC SOLIDS. As shown in Chapter 2, the ionic bond is nondirectional.
Hence, ions prefer maximum coordination numbers and strongly ionic solids normally
adopt highly symmetric crystal structures. The rock salt and other cubic structures are fre-
quently observed. Imagine an experiment in which a rod of a given material is stressed
axially under a force F. The rod length, l, varies by dl. The macroscopic stiffness is
given by F/dl. In a simple harmonic model, this quantity is directly related to the
stiffness of the atomic bonds, for which the Young’s modulus is the appropriate elastic
constant. It is given by E ¼ k/rwhere k is the spring constant and r is the interatomic dis-
tance. The potential energy of a single ion in the lattice from the Born model (Eq. 3.7)
is given as:

Uion ¼ 1
4p10

�aqþq� e
2

r

� �
þ B

rn
(10:50)

where 4p10 ¼ 1.11265 � 10210 C2 J21 m21, a is the dimensionless Madelung constant
characteristic of a given structure type, q is the ion charge, e is the electron charge
(1.6022 � 10219 C), r is the interatomic distance (meters), B is a constant, and n is the
Born exponent, which is a positive integer that is found by measuring the compressibility
of the compound. Approximate values for n may be obtained from Table 2.5 in
Chapter 2. It is typically in the range of 5 to 12. The term in Eq. 10.50 containing the
Born exponent represents the short-range repulsion between nearest neighboring ions,
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of whatever charge, which keeps the lattice from collapsing. The entire first term on the
right-hand side of Eq. 10.50 is the long-range Coulombic attraction. Its units are Joules
per cation.

Now, the force required to pull ions apart, say, by stretching the bond, is related to the
potential energy by dU/dr:

F ¼ dU

dr
¼ 1

4p10
�aqþq� e

2

r2

� �
� nB

rnþ1
(10:51)

The units of Eq. 10.51 are Newtons (1 N ¼ 1 J/m). Note that B can be solved by setting
Eq. 10.51 to zero, that is when U is a minimum. The force constant of the spring (the
interatomic bond) is given by d2U/dr2. The force constant is related to the elastic mod-
ulus since the latter is defined as ds/d1. The Young’s modulus is thus a second derivative
of the strain energy with respect to the applied strain. However, because stress is equal to
force per unit area ðs ¼ F=r20Þ and strain, 1, is equal to Dr/r0:

E ¼ ds

d1
¼ 1

r

d2U

dr2

� �			
r¼r0

¼ 1
r0

1
4p10

� � �2aqþq�e2
r30

� �
þ n(nþ 1)B

rnþ20

(10:52)

The units of E are Pascals (1 Pa ¼ 1 N/m2 ¼ 1 J/m3). But wait! There is still one final
correction needed. Equation 10.52 must be divided by m (the coordination number –
the number of anions bonded to the cation) because the force constant is wanted for
just one of the m bonds to the ion:

E ¼ 1
m

� �
1
r0

� � �2aqþq�e2
r30

� �
þ n(nþ 1)B

rnþ20

(10:53)

The slope of the dU/dr curve for the ion pair around r0 is a measure of the restoring force
for small displacements from the equilibrium position. The greater the slope, the higher
the modulus, and the stiffer the material. As demonstrated in Example 10.6, the Born
model is, at best, only semiquantitative. One reason for this is that ions are treated as
point charges and ion polarizability (Table 2.3) is not accounted for.

Example 10.6

1. Using Eq. 10.53, estimate the Young’s modulus for sodium chloride.
Assume a ¼ 1.75, r ¼ 2.81 Å, and m ¼ 6. Compare to the experimental
value obtained from polycrystalline NaCl (310.96 GPa).

2. Use Eq. 10.31 with the measured elastic–stiffness coefficients of single
crystal NaCl (c11 ¼ 410.47 GPa, c12 ¼ 12.88 GPa, c44 ¼ 12.87 GPa) to
calculate the upper bound to the Young’s modulus and to compare the
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result calculated from 1. Note that in NaCl, the Cauchy relation c12 ¼ c44 is
obeyed.

Solution

1. First, obtain an approximate value for the Born exponent, n, from
Table 2.5. This is found to be n ¼ 8.
Next, convert r to meters (1 Å ¼ 10210) giving r ¼ 2.81 � 10210 m.
Now, solve for B by setting dU/dr in Eq. 10.50 to zero:

B ¼ 1

4p10

a(qþq�)e2r7

8
¼ 6:96� 10�96 Jm8

Finally, substitute the numbers into Eq. 10.53 to obtain 75.2 GPa
(1 GPa ¼ 109 Pa). This result is noticeably larger than the experimental
value (percent error ¼ 88.2 percent). The difference implies that a pair-
wise potential is not entirely adequate for describing NaCl, even though
the Cauchy relation holds.

2. Simply substitute the values for c11, c12, and c44 directly into Eq. 10.31 to
obtain: 37.6 GPa.

10.2.3.3.2 METALS. The cohesive forces in an ideal close-packed metal are, like
those in ionic solids, nondirectional. Nonetheless, pair potentials are generally adequate
only for metals in which the cohesion is owing to s and p electrons. The d orbitals of
transition metals make an angular-dependent covalent contribution to the bond strength,
even in close packed structures, which can only be accounted for by a many-body
potential. One of the most common models for transition metals is the EAM (Daw and
Baskes, 1983, 1984). The total potential energy is expressed in terms of a sum of pair
potential U(rij), functions only of the distance between atoms i and j, and a many-
body embedding energy, F(r), which is a superposition of the electron densities, ri,
of the surrounding atoms:

UT ¼
X
i.j

U(rij)þ
XN
i

F(ri) (10:54)

The terms appearing in Eq. 10.54 are derived by guessing some functional form, and
fitting the parameters to ab initio calculations or empirical data. In general, the values
of the parameters are chosen to reproduce particular properties of interest as closely as
possible, and for transferability among a variety of solids. Analytic potentials have
been developed for some metals from each of the following classes: monatomic FCC
metals (Johnson, 1988), FCC alloys (Johnson, 1989), monatomic BCC metals (Oh and
Johnson, 1989; Yifang et al., 1996), and monatomic HCP metals (Cleri and Rosato,
1993; Oh and Johnson, 1988; Pasianot and Savino, 1992).

The EAM analytical potentials (Eq. 10.46) are multi-variable functions. Their
second derivatives yield accurate estimates for the elastic–stiffness coefficients.
However, calculating the second derivative of a potential with terms beyond the pair
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interaction is not trivial. The second derivative with respect to atomic displacements is a
matrix of partial second derivatives, known as the Hessian matrix, the general name for
any second derivative of a multivariable function. Molecular dynamics and Monte Carlo
computational techniques that do not require evaluation of the second derivative
for obtaining the elastic constants have been developed, but are beyond the scope of
this book.

10.2.3.3.3 COVALENT SOLIDS. Interatomic potentials are the most difficult to derive
for covalent solids. The potential must predict the directional nature to the bonding
(i.e. the bond angles). Most covalent solids have rather open crystal structures, not
close packed ones. Pair potentials used with diatomic molecules, such as the Lennard-
Jones and Morse potentials, are simply not adequate for solids because atoms interacting
via only radial forces prefer to have as many neighbors as possible. Hence, qualitatively
wrong covalent crystal structures are predicted.

A simple model, which has been quite successful in solids with the diamond or zinc-
blende structure, was introduced by Stillinger and Weber (Stillinger and Weber, 1985).
The first term in the potential is the product of a Lennard-Jones-like pair-wise interaction
and a cut-off function smoothly terminating the potential at some distance rc. The second
term is a multi-variable three-body potential written as a separable product of two radial
functions and an angular function:

U ¼
X
i

X
j.i

(Br�pij � Ar�qij ) exp
m

rij � rc

� �

þ
X
i

X
j.i

X
k.j

Zg(rij)g(rik) cos u jik þ 1
3

� �2

(10:55)

The cut-off function also defines the radial functions of the three-body term:

g(rij) ¼ exp
m

rij � rc

� �a

g(rik) ¼ exp
m

rik � rc

� �a

As can be seen, there are eight parameters in the Stillinger–Weber potential: A, B, p, q,m,
rc, Z, and a. These parameters are fitted to experimental data, such as lattice constants and
cohesive energy, for the diamond structure. The angle ujik is the angle centered on atom i.
If ujik is 1010.478, cos ujik ¼ 21

3, and the angular function has a minimum of zero, which
makes the sp3 hybridization of the ith atom (that is, the zinc-blende structure), energeti-
cally preferred. Calculation of the elastic–stiffness constants by the method outlined here
requires that Eq. 10.54 be a differentiable function. As with the EAM potential, the
second derivative is a matrix of partial second derivatives. It is obvious from the form
of Eq. 10.55 that a shorter internuclear distance, r, leads to a larger binding force (dU)
and modulus, or stiffness (d2U ). The Stillinger–Weber model reproduces the elastic
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constants for Si reasonably well but it is not very transferable to other structure types
because of the built-in tetrahedral angle.

10.2.4 Superelasticity, Pseudoelasticity, and the Shape
Memory Effect

Superelasticity refers to the ability of certain materials to undergo unusually large elastic
deformations over a certain temperature range. In the most well-known superelastic
material, nitinol (NiTi; �51% Ni), up to 11 percent recoverable strain is observed (as
much as 25 percent in specific directions in single crystals!). As a comparison, only
0.8 percent elasticity is exhibited by stainless steel. The term pseudoelasticity is some-
times used synonymously with superelasticity. However, some researchers adhere to
the definition that pseudoelasticity only requires nonlinear unloading behavior while
superelasticity requires an inflection point in the unloading curve (Duerig et al., 1997).
This is illustrated in the stress–strain curve of Figure 10.4, which has several notable
features:

1. At low levels of stress, the material’s elastic response is linear. Upon further load-
ing, there is very little change in stress, but a large increase in strain, 1T. At higher
loading, the material’s elasticity is again linear.

2. Although the elastic response is linear at low and high stresses, the modulus of
elasticity (the slope of the linear portions of the stress–strain curve) in the two
regimes is different.

3. There is a cyclic stress–strain hysteresis with loading and unloading, with zero
residual strain at the end of the cycle, which accounts for the superelasticity.

This peculiar superelastic behavior is owing to a stress-induced transformation from
a high-strength crystalline phase to a very structurally similar, yet deformable, crystalline
phase. On removing the stress, the deformed material transforms back to the initial

S
tr

es
s

Strain

Figure 10.4. The stress–strain behavior of a superelastic material. An inflection point occurs

in the unloading curve.
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structure. The phase transition that occurs is a special type known as a thermoelastic mar-
tensitic phase transformation, the term now applied to any reversible crystallographic
phase transformation that occurs by a shearing or displacive motion of the lattice as
opposed to diffusive motion. Nonthermoelastic (irreversible) martensitic transformations
were first observed in the 1890s during the quenching of steels by the German meta-
llurgist Adolf Martens (1850–1914). In steel, the thermodynamically stable high-
temperature phase is a FCC interstitial solid solution of carbon in iron (denoted g-Fe),
austenite, named after the British metallurgist William Chandler Austen (1843–1902).
This phase is unstable below 7238C. When austenite is quenched (rapidly cooled at
rates exceeding 200 s21), a hard thermodynamically metastable but kinetically stable
body-centered tetragonal phase, originally termed martensite, is obtained instead of the
mixture of a-Fe and cementite formed under equilibrium conditions. Because it is meta-
stable, martensite is not found in the equilibrium iron–carbon phase diagram.
Martensite’s hardness and strength is owing to solid-solution effects, with the interstitial
carbon atoms hindering dislocation motion.

Thermoelastic, or reversible, martensitic transformations occur in some crystal sys-
tems. In general, there is little or no activation energy required and because the austenitic
(high-temperature) phase and martensitic (low-temperature) phase differ only by small
atomic displacements, often less than one bond length, the phase transformation rates
are very high. Martensite plates can grow at speeds, which approach that of sound, in
the metal. At the interface between the product and parent phases, the lattices are well
matched and can move without thermal activation. The transformation rate may be
affected by applied stress and strain but is often athermal, taking place over a range of
temperatures and in which the percentage transformation within that range does not
change with time as long as the temperature remains constant (West, 1984).

Thermoelastic martensitic transitions are utilized in special materials known as shape
memory alloys (SMAs) and superelastic alloys designed to respond to temperature
changes and mechanical stresses, respectively. These are also referred to as smart
materials. Although these materials are spoken of, in the general metallurgical sense,
as alloys, they are really intermetallic phases possessing ordered crystal structures.
Commercially used smart materials include NiTi (sometimes containing niobium, iron,
or copper), Cu–Al–Zn, and Cu–Al–Ni alloys. In SMAs, the austenitic phase is of
high symmetry (usually cubic), while the martensitic phase is of a lower symmetry
(usually monoclinic) with a highly twined microstructure.

In the one-way shape memory effect, the shape of a sample in the low-temperature
twinned martensitic phase is easily changed by the application of stress, unlike marten-
sitic steel which is very hard and brittle. This is possible because the microstructure of the
monoclinic martensitic phase of an SMA contains a self-accommodating, or zigzag, pat-
tern of twins which can be deformed by a detwinning process involving twin-boundary
motion, as pictured in a simplistic manner in Figure 10.5. The sample remains in this
deformed shape but the original shape can be restored by heating the detwinned phase
in the transformation temperature range, which converts the material back to its high-
strength, cubic austenitic phase. The sample will then remain in that original shape
until deformed again. The transformation temperature range is determined by the alloy
type and composition. Nitinol, as well as Cu–Zn–Al alloys, show transformation
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temperatures between 21008C and þ1008C, and Cu–Al–Ni up to þ2008 (Stöckel,
2000). In the two-way shape memory effect the material remembers two different
shapes: one at low temperatures, and one at high temperatures. However, the effect is
smaller and not as well understood. The shape memory effect is utilized in coupling
devices for joining or fastening tubes and pipes; electrical actuators, and thermally
responsive control valves.

Smart materials are also used in a variety of products in which their superelastic be-
havior is employed. Here, an austenitic-to-martensitic phase transformation is induced by
isothermal application of a purely mechanical stress at a temperature above the austenitic
temperature. The result of this loading is a detwinned martensitic phase, as opposed to the
twinned phase obtained in the shape memory effect. The detwinned martensitic phase is
only stable under application of stress. The volume leaders in this type of application are
antennas, eyeglasses, and brassieres, but there are also some other very important appli-
cations such as medical guidewires and self-expanding stents. Nitinol has even been
investigated as a particle reinforcement for solder alloys that are exposed to severe
shear conditions during thermal cycling (Dutta et al., 2004, 2006). In all of these appli-
cations, the alloys are designed to be capable of large deformations and then instantly
revert back to their original shape when the stress is removed. The martensitic phase
(which, owing to its microstructure, is capable of large strains) is generated by stressing
the metal in the austenitic state. Since the martensite is stable only owing to the presence
of the applied stress, a reverse transformation takes place upon unloading. Hence, with the
removal of the load, the martensitic phase transforms back into the austenitic phase and
resumes its original shape.

Martensitic phase
(twinned)

Austenitic phase

Martensitic phase
(detwinned)

Superelastic

Stress

Heat

Cooling

Figure 10.5. The one-way shape memory effect illustrated pictorially.
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The most well-known SMA, which exhibits superelasticity above its transformation
temperature, is NiTi (�51% Ni by weight), also known by its trade name, nitinol, for
nickel–titanium–naval ordnance laboratory. This alloy was developed in 1959 by
William J. Buehler (b. 1923) at the United States Naval Ordnance Laboratory, now the
Naval Surface Warfare Center, in White Oak, Maryland. Buehler was looking for a
new impact-resistant alloy to serve as the nose cone for a new missile. The alloy’s super-
elastic properties were discovered in 1962 by Frederick E. Wang (b. 1932), whom
Buehler hired. The very first observation of superelasticity was by the University of
Stockholm chemistry professor Arne Ölander, who discovered a rubber-like effect in
an Au–Cd alloy (47.5% Au) in 1932 (Ölander, 1932).

10.3 PLASTICITY

It might be argued that the atoms in any solid should be held very rigidly in place by strong
interatomic forces. If this presumption were strictly true, all types of solids would be pre-
dicted to fracture under stresses greater than the elastic limit, that is, for atomic displace-
ments greater than elastic, or vibrational motion about their equilibrium positions. This
is generally the case for most ionic and covalent substances. However, it will be recalled
from Chapter 3 that, for metals, it is not a bad approximation to consider all the valence
electrons to be delocalized into extended wave functions, and not localized in bonding
regions between particular ions (consisting of the nuclei plus the filled electron shells).
Cohesion results from the electrostatic attraction between the electrons and ions. The
ion cores are not involved in bonding of any type, however, and they can be regarded
as being displaceable, provided the activation energy is supplied.

Plasticity is the property that allows materials to undergo permanent deformation
without rupture, which is of great utility for fabricating pieces into specific shapes.
The three most common plastic deformation fabrication techniques are extrusion, wire-
drawing, and rolling. In an extrusion press, a cylindrical ingot is pushed through a
cone-shaped or converging die to reduce its diameter, thus forming wire. In wiredrawing,
the ingot is pulled through, rather than being pushed. The material inside the die is sub-
jected to similar (but not identical) stresses as in extrusion. An important attribute of a
material, in order that it form into and be useful as a wire, is its ductility. This is the ability
to withstand tensile loads. Rolling, on the other hand, requires that a material be malle-
able, or resistant to rupture from compressive loads.

The plasticity of materials is owing to the gliding motion, or slip, of planes of atoms.
For example, when a tensile force, F, is applied to a cylindrical-shaped single crystal, this
places a shear stress, ss, on certain crystal planes, whose normal are at an angle, f, to the
cylinder axis. If the shear stress is sufficiently strong, movement occurs along these par-
allel planes in a slip-direction, which makes an angle, l, with the cylindrical axis. This
causes sections of the crystal to slide relative to one another, as shown in Figure 10.6.
Plastic deformation differs from elastic deformation in this respect. Not only is the
stress required for plastic deformation higher than that for elastic deformation, but elastic
deformation involves only stretching of the bonds (which is self-reversing after the stress
is removed); the atoms do not slip past each other as they do in plastic deformation.
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According to Schmid’s law (Schmid and Boas, 1935), plastic flow in a pure and per-
fect single crystal occurs when the shear stress, acting along (parallel to) the slip direction
on the slip plane, reaches some critical value known as the critical resolved shear stress,
tc. From Figure 10.6, it can be seen that the component of the force acting in the slip-
direction is F cos l and it acts over the plane of area A/cosf (where A is the cross-
sectional area). Thus the resolved shear stress is ss ¼ (F/A) cos f cos l. Schmid’s law
states that slip occurs at some critical value of ss, denoted as tc:

tc ¼ sys cosf cos l (10:56)

where sys is the applied tensile stress at which slip begins (the yield stress), and f and l
are the slip plane normal and slip direction, respectively. For a perfect, dislocation-free
single crystal the critical resolved shear stress is a constant at a given temperature. This
is because one slip system, termed the primary slip system, with the greatest tc acting
upon it dominates the plastic deformation. Slip normally occurs first in slip systems
with orientations with the maximum value of the cos f cos l term (the Schmid factor)
in Eq. 10.56. However, when the material is subjected to high temperatures or high
stresses, other slip systems may also become operative once their tc is reached.
Experimentally, it has been observed that, for single crystals of a number of metals, tc
is a function of the dislocation density. Schmid’s law is named after its expositor, the
Austrian physicist Erich Schmid (1896–1983), who began investigating crystal plasticity
in the 1920s with Hermann Mark and Michael Polanyi at the Kaiser-Wilhelm Institute
of Fiber Chemistry in Berlin.

Experimentally, it is observed that slip most readily occurs on close-packed planes
in close-packed directions. The total strain of a dislocation is proportional to b2

F

F

Slip direction

F cos l = component of force
acting in slip-direction

ss = (F/A) cos f cos l

A/cos f  = area of slip plane

l

f

Figure 10.6. Application of a tensile force to a cylindrical single crystal causes a shear stress on

some crystal planes. When the shear stress is equal to the critical-resolved shear stress (the yield

stress), glide proceeds along the slip direction of the planes.
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(�0.5Gb2). Because interatomic distances are the smallest along close-packed directions,
a dislocation with a b equal to the spacing of atoms in such directions will result in the
lowest strain energy and least lattice distortion during the deformation. A slip plane
together with the slip direction constitutes a slip system. Cubic close packed metals con-
tain four close-packed plans. These belong to the set with indices {h k l} ¼ {1 1 1}.
Figure 10.7a shows the three distinct close-packed directions. The remaining three
planes in the {1 1 1} set also have three directions each. Thus, the 12 easy glide slip sys-
tems in the CCP lattice are denoted simply as {1 1 1}k1 1 0l. Slip may occur in either
direction along the slip vector on a given slip system.

The applied tensile stress direction, as well as the slip plane and the slip direction, are
normally specified by direction indices (called direction numbers in linear algebra). That
information, and Eq. 10.57 below can be used to calculate the angles between the differ-
ent directions, f and l, in Eq. 10.56. In general, the angle between any two directions,
specified by their direction indices [u1 v1 w1] and [u2 v2 w2], in a direct-space lattice is
given by the dot product:

u ¼ cos�1
u1u2 þ v1v2 þ w1w2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(u21 þ v21 þ w2
1)(u

2
2 þ v22 þ w2

2)
p

 !
(10:57)

Example 10.7

If a FCC crystal is oriented such that a 50MPa tensile stress is applied along a [0 1 0]
direction, compute the resolved shear stress along a (1 1 1) plane in a [1 1 0]
direction.

(a) (b)

Figure 10.7. The three close packed directions in the close-packed planes of the CCP lattice

(a), and HCP lattice (b). The lightly shaded spheres, completing the hexagonal coordination

around the sphere at the corner of the cubes, are in neighboring unit cells.
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Solution

In the cubic system, the normal to the (1 1 1) plane is in the [1 1 1] direction.
Therefore, the angle between the [0 1 0] tensile stress direction and the (1 1 1)
plane normal (the slip plane) is determined by letting [u1 v1 w1] and [u2 v2 w2]
in Eq. 10.57 be [1 1 1] and [0 1 0]:

f ¼ cos�1
(1)(0)þ (1)(1)þ (1)(0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

[(1)2 þ (1)2 þ (1)2][(0)2 þ (1)2 þ (0)2]
p

¼ cos�1
1ffiffiffi
3
p ¼ 54:78

Next, the angle between the [0 1 0] tensile stress direction and the [1 1 0]
slip direction is determined by letting [u1 v1 w1] and [u2 v2 w2] in Eq. 10.57 be
[1 1 0] and [0 1 0]:

l ¼ cos�1
(1)(0)þ (1)(1)þ (0)(0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

[(1)2 þ (1)2 þ (0)2][(0)2 þ (1)2 þ (0)2]
p

¼ cos�1
1ffiffiffi
2
p ¼ 458

Substituting these in Eq. 10.56, gives:

tc ¼ (50MPa) cos(54:78) cos(458) ¼ 20:4MPa

The angle between two sets of planes in any type of direct-space lattice is equal to the
angle between the corresponding reciprocal-space lattice vectors, which are the plane nor-
mals. In the cubic system, the [h k l] direction is always perpendicular to the (h k l) plane
with numerically identical indices. For a cubic direct-space lattice, therefore, one merely
substitutes the [h k l] values for [u vw] in Eq. 10.57 to determine the angle between crystal
planes with Miller indices (h1 k1 l1) and (h2 k2 l2). With all other lattice types, this simple
relationship does not hold. In order to circumvent this problem, one must utilize the
relationships between the direct-space lattice and reciprocal-space lattice explained in
Chapter 1. Equation 1.15, the expression for the angle between crystal planes (h1 k1 l1)
and (h2 k2 l2) in any direct-space lattice, is repeated here:

cos u ¼ dh1k1l1dh2k2l2
h1h2a�2 þ k1k2b�2 þ l1l2c�2 þ [k1l2 þ l1k2]b�c� cosa�

þ[h1l2 þ l1h2]a�c� cosb� þ [h1k2 þ k1h2]a�b� cos g �

� �
(10:58)

where the � denotes a reciprocal lattice parameter. The expressions for the interplanar
spacings, dhkl, are lattice-type specific and can be obtained from Chapter 1. Fortunately,
simplifications occur for the lattices of higher symmetry, particularly for those with
orthogonal axes in which case most or all of the cosine-containing terms vanish.
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An alternative method for computing the dot product uses the direct metric tensor.
The direct metric tensor is a 3 � 3 symmetric matrix written in terms of the six lattice
parameters (a, b, c, a, b, g):

gij ¼
a2 ab cos g ac cosb

ab cos g b2 bc cosa
ac cosb bc cosa c2

2
4

3
5 (10:59)

The angle between two vectors, p and q, is given by:

u ¼ cos�1
pigijqjffiffiffiffiffiffiffiffiffiffiffiffiffi

pigijpj
p ffiffiffiffiffiffiffiffiffiffiffiffi

qigijqj
p

 !
(10:60)

where, from Eq. 10.59, it can be seen that the dot product (the numerator on the right-hand
side) in Eq. 10.60 is given by:

pigijqj ¼ p1 p2 p3

 � a2 ab cos g ac cosb

ab cos g b2 bc cosa
ac cosb bc cosa c

2
4

3
5 q1

q2
q3

2
4

3
5 (10:61)

and vector length (in the denominator), using p as an example, is given by:

jpj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 p2 p3

 � a2 ab cos g ac cosb

ab cos g b2 bc cosa
ac cosb bc cosa c2

2
4

3
5 p1

p2
p3

2
4

3
5

vuuut (10:62)

Example 10.8

For an orthorhombic crystal with lattice parameters a ¼ 1
2, b ¼ 1

3, c ¼ 1, compute
the angle between the vectors [1 2 0] and [3 1 1].

Solution

Substituting the known lattice parameters into Eq. 10.59 gives the metric tensor:

gij ¼
1
4 0 0

0 1
9 0

0 0 1

2
64

3
75

The dot product is given by Eq. 10.61:

pigijqj ¼ 1 2 0

 � 1

4 0 0

0 1
9 0

0 0 1

2
64

3
75

3

1

1

2
64

3
75 ¼ 1 2 0


 � 3
4
1
9

1

2
64

3
75 ¼ 35

36
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The length of vectors p and q are given by Eq. 10.62:

jpj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 0

 � 1

4 0 0

0 1
9 0

0 0 1

2
664

3
775

1

2

0

2
664

3
775

vuuuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 0

 � 1

4

2
9

0

								

								

vuuuuut ¼
ffiffiffiffiffiffi
17

36

r

jqj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1 1

 � 1

4 0 0

0 1
9 0

0 0 1

2
664

3
775

3

1

1

2
664

3
775

vuuuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1 1

 � 3

4

1
9

1

								

								

vuuuuut ¼
ffiffiffiffiffiffiffiffi
161

36

r

Finally, the angle between the two vectors is given by:

u ¼ cos�1
35

36ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17

36

ffiffiffiffiffiffiffiffi
161

36

rs
0
BBBB@

1
CCCCA ¼ cos�1

35ffiffiffiffiffiffiffiffiffiffiffi
2737
p
� �

¼ 488

TheAustrianmathematician Richard vonMises (1883–1953) recognized that, for general
plastic strain of a polycrystalline (isotropic) sample, five independent slip systems must
be available for the strain to be accommodated purely by glide. Plastic deformation pro-
duces an arbitrary shape change at constant volume. Therefore, of the six components
to the strain tensor (111, 122, 133, 112, 131, 123) only five components are independent,
owing to the condition that DV ¼ 111 þ 122 þ 133 ¼ 0, that is the trace of Eq. 10.3,
tr(1), must equal zero. Since the operation of one independent slip system produces one
strain component, there must be a minimum of five independent slip systems operating
for plastic deformation. This is known as the von Mises criterion (von Mises, 1928).
A slip system is independent if the shape change it produces cannot be duplicated by
combinations of slip on other systems. The material will plastically deform when the
distortional energy reaches some critical value, satisfying the von Mises yield condition:

[(s1 � s2)þ (s2 � s3)þ (s3 � s1)]
2 � k2 ¼ 0 (10:63)

in which k is a constant dependent on the prior strain history of the sample. The term in
brackets represents the distortional energy, where s1, s2, and s3 are the three principal
stresses acting along three mutually perpendicular principal axes that can be derived
from any general stress tensor, Eq. 10.2, via coordinate transformation.

Of the 12 slip systems possessed by the CCP structure, five are independent, which
satisfies the von Mises criterion. For this reason, and because of the multitude of active
slip systems in polycrystalline CCP metals, they are the most ductile. Hexagonal close-
packed metals contain just one close-packed layer, the (0 0 0 1) basal plane, and three
distinct close-packed directions in this plane: [1̄ 1̄ 2 0], [2 1̄ 1̄ 0], [1̄ 2 1̄ 0] as shown in
Figure 10.7b. Thus, there are only three easy glide primary slip systems in HCP
metals, and only two of these are independent. Hence, HCP metals tend to have low
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ductility. In fact, they are usually classified as semibrittle metals. The c/a ratio of the ideal
HCP lattice is 1.633. It is found experimentally that basal slip is favored for metals
with c/a . 1.633 (e.g. Zn, Mg, Cd, Co). For c/a, 1.633 (e.g. Ti, Cr), slip is favored
in the [1̄ 2 1̄ 0] direction on the prismatic (1 0 1̄ 0) plane (giving three slip systems),
or on the pyramidal (1 0 1̄ 1) plane in the [1̄ 1̄ 2 0] direction (six slip systems).

Body-centered cubic metals contain no close-packed planes, but do contain four
close-packed directions, the four [1 1̄ 1] body diagonals of the cube. The most nearly
close-packed planes are those of the {1 1 0} set. In BCC crystals, slip has been observed
in the [1 1̄ 1] directions on the {1 1 0}, {1 1 2}, and {1 2 3} planes, but that, attributed to
the latter two planes, may be considered the resultant of slip on several different (1 1 0)
type planes (Weertman and Weertman, 1992). The von Mises criterion is satisfied, but
higher shearing stresses than those of CCP metals are normally required to cause slip
in BCC metals. As a result, most BCC metals are classified as semibrittle.

Erich Schmid (1896–1983) received his doctorate
in physics in 1920 from the University of Vienna.
In 1922, Schmid, Hermann Mark, and Michael
Polanyi investigated plasticity in zinc crystals at
the Kaiser-Wilhelm Institute of fiber chemistry in
Berlin. This work, together with Schmid’s sub-
sequent research, culminated in Schmid’s Law
for the onset of plasticity. In 1935, Schmid and
Walter Boas published the well-known textbook
Kristallplastizität, which was translated into the
English edition Crystal Plasticity in 1950, and
again in 1968. From 1920 until 1951, Schmid
was at several academic posts in the DACH
(Deutschland, Austria, Confoederatio Helvetica)
region, including the Vienna University of
Technology (Austria), the University of Freiburg
(Switzerland), and the University of Frankfurt

(Germany). He returned to the University of Vienna in 1951 and stayed there
until his retirement in 1967. Schmid served as president of the Austrian Academy
of Sciences for ten years and he was awarded the Austrian Medal of Science and
Arts. (Source: The Erich Schmid Institute.# Austrian Academy of Sciences)

(Photo courtesy of the Erich Schmid Institute, the Austrian Academy of Sciences.
Reproduced with permission.)

10.3.1 The Dislocation-Based Mechanism to Plastic Deformation

Slip relies on chemical bond breaking and bond reformation as two planes of atoms pull
apart. It is observed that the critical resolved shear stress required to cause plastic defor-
mation in real materials is much lower (by several orders of magnitude) than the shear
stress required in deforming perfect defect-free crystals, the so-called ideal shear stress.
The latter is equivalent to the stress required for the simultaneous gliding motion
(bond breaking and reformation) of all the atoms in one plane, over another plane.
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Slip occurs much more readily across close-packed planes containing extended
defects called dislocations. A dislocation can be one of two extreme types, or a mixture
(of intermediate character). One extreme is the edge dislocation (Fig. 10.8a), which is an
extra half-plane of atoms, or unit cells in the case of compounds (dislocations are stoi-
chiometric defects). The existence of this type of extended defect was first hypothesized
independently in 1934 by Geoffrey Ingram Taylor (1886–1975) (Taylor, 1934), Egon
Orowan (1902–1989) (Orowa, 1934), and the Hungarian physical chemist Michael
Polanyi (Polanyi, 1934). (Polanyi (1891–1976) is, perhaps, better known to chemists
for developing transition-state theory with Henry Eyring.) The edge of the extra half-
plane of atoms is the dislocation line passing through the crystal. This line is perpendicu-
lar to the direction of slip, which is in the plane of the page. The second extreme type of
dislocation is the screw dislocation (Fig. 10.8b), which can be thought of as arising
from making a half-cut into the solid and twisting the material on either side of the
face of the cut in opposite directions parallel to the line of the cut. Screw dislocations
were postulated in 1939 by the Dutch mathematician and physicist Johannes Martinus
Burgers (1895–1981), who later immigrated to the United States (Burgers, 1939a, b, c).
A screw dislocation is parallel to the slip direction. The dislocation line (also called
dislocation core) marks the boundary between the slipped and unslipped material. The
motion of jogged-screw dislocations containing steps tens of nanometers in height (in
which the jog height is reciprocally related to the applied stress) is believed to dominate
the high-temperature creep mechanism in pure metals and alloys (Mott, 1950; Barrett
and Nix, 1965; Viswanathan et al., 1999). This is because point defects, specifically
vacancies, are necessarily absorbed or emitted in order for a jog to move. This particular
type of dislocation movement is called climb of dislocations. It should be noted that this

(a) (b)

Dislocation core

Burgers vector

Figure 10.8. The two extreme types of dislocations. In the edge dislocation (a), the Burgers

vector is perpendicular to the dislocation line. In the screw dislocation (b), the Burgers vector

is parallel to the dislocation line.
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movement does not take place in the glide plane of the dislocation; customarily, jogs are
those steps not in the glide plane – steps in the glide plane are referred to as kinks. Jogs
and kinks can occur in edge dislocations or screw dislocations.

With dislocations, slip occurs consecutively, a line of atoms at a time. Dislocations
carry an elementary amount of shear (the Burgers vector) that is usually the smallest trans-
lation of the crystal lattice. Hence, a smaller shear stress is required to move the dislocation
line through the crystal, causing the same collective atomic displacement that would be
obtainedwith simultaneousmotion of all the atoms in the plane. Themagnitude of the exter-
nal force required for moving a dislocation must be greater than the periodic forces exerted
on the dislocation by the lattice, the so-called Peierls stress or Peierls potential (Peierls,
1940). (It is also known as the Peierls–Nabarro stress, since Nabarrowas the first to attempt
an extensive calculation of its magnitude.) The Peierls stress thus defines the low-energy
directions in which the dislocation prefers to lie. In many materials, such as those with
the diamond structure, the Peierls stress is believed to be quite large. However, theoretical
estimates and experimental measurements of the Peirels stress are elusive, and a discussion
of these topics is beyond the scope of this textbook. The reader is referred to the textbook on
elementary dislocation theory by Weertman and Weertman (1992).

A dislocation is characterized by the Burgers vector, b, which quantifies the atomic
disturbance associated with the dislocation, in terms of magnitude and direction. The
Burgers vector gives the direction and amount of slip produced across a slip plane by
the movement of a dislocation completely through the crystal. Only dislocations whose
Burgers vectors lie in a slip plane are mobile. Slip proceeds in the direction of minimum
b (e.g. in close-packed directions). Referring to Figure 10.6, the Burgers vector is found
by performing a circuit around the dislocation core, one unit of translation (i.e. the lattice
point) in each direction. The distance needed to close the path gives the magnitude of b.
Note from Figure 10.8 that, if a circuit encloses a dislocation core, there cannot be
an equal number of steps traversed in each direction. If a circuit does not enclose a dis-
location core, there will be an equal number of steps traversed in each direction
(the reader may wish to verify this). For an edge dislocation, b is perpendicular to the dis-
location line. For a screw dislocation, b is parallel to the line of the dislocation. In the case
of a mixed dislocation, b is at some angle to the dislocation line.

Consider the (1 1 1) slip plane in the FCC lattice (Fig. 10.7a). The smallest Burgers
vector possible is simply equal in magnitude to the distance between nearest neighbors
(the close packed atoms). If the lattice parameter is a, simple trigonometry shows
that the distance between these nearest neighbors, which lie along the [1 1 0], is equal
to a/(2 cos 45) ¼ a/

ffiffiffi
2
p

. Because the atoms are shifted into new sites that are crystallogra-
phically equivalent to their original positions as the dislocation moves, this particular
dislocation is called a perfect dislocation. The smallest Burgers vector available to a per-
fect dislocation in the FCC lattice can thus be written in vector notation as b ¼ 1

2a[1 1 0].
Similar considerations show the smallest possible Burgers vectors in the HCP and BCC
lattices are 1

3a[2 1̄ 1̄ 0] and 1
2a[1 1 1], respectively.

Dislocations are present in the natural states of crystalline materials but they drasti-
cally increase in number (expressed as the dislocation density, or dislocation length per
unit volume) with plastic deformation as existing dislocations spawn new ones. This dis-
location multiplication with plastic flow causes an increase in the number of mutual inter-
actions, which hinders their motion. As a consequence, a shear-stress increase must be
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imposed to produce a shear-strain increase. The ratio of shear-stress increase to shear-
strain increase is known as the strain-hardening rate. Quantitative prediction of the
strain-hardening rate remains on of the most difficult problems in dislocation theory.

A qualitative mechanism of dislocation multiplication, involving the successive cre-
ation of dislocation loops, was proposed by F. C. Frank andW. T. Read (Frank and Read,
1950). It can be understood as follows. As a shear stress is applied to a crystal, portions of
dislocation lines in active slip planes bow or curve outward, if their two ends, or other
segments, are pinned by impurities or by entanglement with other dislocations (perhaps,
pinned by lowmobility in nonclosed packed planes). Once the curvature reaches a critical
value, these line segments begin to move outward on the slip plane, as illustrated in
Figure 10.9. Eventually, the two curved lines at the top of the figure join to form a
closed loop, which is free to move through the crystal. This process can continually
repeat itself from the new dislocation line segments left behind between the original
fixed end-points.

An important variation of the Frank–Read source is the Koehler dislocation multi-
plication process, by James Stark Koehler (1914–2006), in which segments of screw dis-
locations glide off their primary glide plane onto secondary planes, and then back onto a
primary plane parallel to the first one. This can happen because screw dislocations do not
have a unique glide plane. They are able to switch from one plane to another plane con-
taining the direction of the Burgess vector and continue to move parallel to the first glide
plane. This process, termed cross slip, allows a screw dislocation to avoid obstacles. A
screw dislocation can, in fact, be the cause of pinning in a Frank–Read source. The
Koehler mechanism can account for commonly observed slip bands, which are sets of
very closely spaced parallel planes on which slip has occurred (Fig. 10.10).

Owing to the increasing number of dislocation loops via the Frank–Read or Koehler
mechanisms, there is a reduction in the strength of the material. However, during their
movement through the substance the dislocations eventually begin to pile up at obstacles
such as inclusions, precipitates, grain boundaries, and other dislocations. This begins to
have the reverse effect, as the mobile dislocations become immobile, thus strengthening
the material. This phenomenon is termed strain hardening (also called work hardening).

Figure 10.9. The Frank–Read dislocation loop mechanism of dislocation multiplication. A

shear stress causes the portion of a dislocation that is between two pinned segments to bow

outward on the slip plane (indicated by arrows). Eventually, the dislocation loop reaches the

configuration shown in the middle. When the two curved segments meet, the dislocation

loop is freed and a new loop is formed to continue the process.
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Egon Orowan (1902–1989) studied physics,
chemistry, mathematics, and astronomy in the
University of Vienna. In 1932, he earned his
Ph.D. in physics, under Richard Becker, from the
Technical University of Berlin. Orowan is most
famous for his contributions to the field of crystal
plasticity, having postulated, independently of
Taylor and Polanyi, the edge-dislocation-based
mechanism of plastic deformation in 1934.
Orowan was in the departments of physics at
the University of Birmingham from 1937 to
1939, and at Cambridge from 1939 to 1950.
From 1950 until his death, he was the George
Westinghouse Professor in the mechanical engin-
eering department at M. I. T. Although Orowan
spent much of his career studying the mechanical

behavior of engineering materials, in the 1960s and 1970s he applied the physics
of deformation to geological-scale problems, such as continental drift, ocean

Figure 10.10. Slip-band formationon the surfaceof a fatiguedbamboostructured copperwire

of 50 mm diameter. (From G. Khatibi, A. Betzwar-Kotas, V. Gröger, and B. Weiss, A Study of the

Mechanical and Fatigue Properties of Metallic Microwires, Fatigue & Fracture of Engineering

Materials & Structures, Vol. 28, No. 8, pp. 723–733, (2005). Reproducedwith permission.)
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floor spreading, volcanism, and even the origin of lunar surface features! Orowan
also spent time at the Carnegie Institute of Technology and the University
of Pittsburgh, where he occupied himself with the evolution of societies and
economics. Orowan was elected to the United States National Academy
of Sciences in 1969. (Source: F. R. N. Nabarro and A. S. Argon Biographical
Memoirs of the U. S. National Academy of Sciences 1996, Vol. 70, pp. 261–319.)

(Photo courtesy of the M. I. T. Museum. Reproduced with permission.)

Dislocations can combine or dissociate over their entire lengths, or only partially.
Such processes are termed dislocation reactions. One reason it is important to study dis-
location reactions in ductile materials is that they affect mechanical behavior. For
example, the product dislocation(s) of a reaction between two or more parent dislocations
can be immobile, or sessile, forming an obstacle to the motion of other dislocations. This
is the mechanism of strain hardening, first proposed by Taylor (Taylor, 1934).
Figure 10.11 shows two separate dislocations (each of mixed character) joining into a
single dislocation. The point where the two dislocations join is called a node. Frank’s
rule states that the sum of the Burgers vectors for the dislocations whose positive direc-
tions point toward the node is equal to the sum of the Burgers vectors for the dislocations
whose positive directions point away from the node. This is so because the closure failure
for a Burgers circuit enclosing two or more dislocations is equal to the sum of the Burgers
vectors for each separate dislocation, regardless of their positions.

As is usually the case with any type of reaction, the criterion of energy minimization
can be used to determinewhether a dislocation reaction is allowed. The displacement field
of a dislocation line represents stored energy, which is proportional to the square of the
Burgers vector for the dislocation. The total energy of a group of dislocations is pro-
portional to the sum of the squares of the Burgers vectors for each dislocation. Hence,
the sum of the energies of the resultant Burgers vectors must be less than the sum of
the energies of the parent Burgers vectors for a reaction to take place. Each type of crystal
lattice has its own permissible Burgers vectors and dislocation reactions, however, which
cannot be transferred into different crystal systems.

It may be energetically favorable for a dislocation, b1, to split into two dislocations
if the product dislocation Burgers vectors b2 and b3 satisfy the condition: b21 . b22 þ b23.
Dislocation reactions can even produce stable imperfect dislocations, if they result

b1

b2

b3

Figure 10.11. Twomixed dislocations can join at a node. The Burgers vector for the combined

dislocation is equal to the sum of the Burgers vectors for the uncombined dislocations.
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in a greater energy minimization. An imperfect dislocation is one in which the
atoms are shifted into new sites, not equivalent to their original positions, as the dislo-
cation moves.

One such imperfect dislocation is a Frank dislocation, which is the insertion or
removal of a portion of a close-packed plane. This produces two edge dislocations of
opposite sign, as illustrated in Figure 10.12a. The Frank dislocation also introduces stack-
ing faults (close-packed layer stacking sequence error) into the lattice. The Burgers vector
of a Frank dislocation is directed normal to the close-packed planes and is equal in length
to the spacing between adjacent close-packed planes. Because the Burgers vector is not in
the slip plane, these dislocations are stationary and so are sometimes referred to as Frank
sessile dislocations. As mentioned above, sessile dislocations are obstacles to the move-
ment of other dislocations and are responsible for strain hardening.

Example 10.9

Consider the reaction between a [Ī I 0] edge dislocation on the (I I I) plane and a
[Ī 0 I] edge dislocation on the (I I I) plane in nickel (CCP).

1. Write the dislocation reaction.

2. Determine if the reaction is energetically favorable.

3. Is the product dislocation mobile or sessile?

Solution

1. The crystal is CCP. Thus, the two parent dislocations may be written as:

1
2 a[Ī I 0] and

1
2 a[Ī 0 I], where 1

2 a=cos 45 gives the distance between

lattice points in the CCP lattice:

The parent dislocations are in the same (I I I) plane. Thus, the product

dislocation is also in this plane. Thus the dislocation reaction is:

1
2 a[Ī I 0]þ 1

2 a[Ī 0 I] �! 1
2 a[0 Ī I]

(b)(a)

B

C

A

B

C

A

Figure 10.12. The removal (or insertion) of a portion of a close-packed layer introduces two

Frank dislocations of opposite sign and stacking faults, as shown in (a). The Shockley

dislocation (b) is a displacement of a portion of atoms in a close-packed layer into adjacent

sites of a different type in the same plane.
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2. The sumof the energies of theparentdislocations is proportional to a2. The
energy of the product dislocation is proportional to a2/2. Since there is a
net reduction in energy, the reaction is favorable.

3. A dislocation with a Burgers vector of 1
2a[0 Ī I] can slip on any plane

containing a [I I 0] direction. This condition is met by the (I I I) planes. Thus, the
product dislocation is favorably oriented for slip. It is mobile.

Example 10.10

Repeat Example 10.9 with a [0 1 1̄] dislocation on the (1 1 1) plane and the [1 0 1]
dislocation on the (1 1 1̄) plane.

Solution

The two parent dislocations are nowon different planes. The slip plane of the pro-
duct dislocation is obtained by taking the cross product of the slip planes of the
parent dislocations: (I)i þ (I)j þ (I)k and (I)i þ (I)j þ (2I)k. This is given by:

(aybz � azby)i þ (azbx � axbz)j þ (axby � aybx)k

where a ¼ (I)i þ (I)j þ (I)k and b ¼ (I)i þ (I)j þ (2I)k.
Thus, the slip plane of the product dislocation is (1̄ 1 0). The dislocation

reaction is:

1
2 a[0 1 1̄](1 1 1) þ 1

2 a[1 0 1](1 1 Ī) �! 1
2 a[1 1 0](1̄ 1 0)

The sum of the energies of the parent dislocations is proportional to a2. The
energy of the product dislocation is proportional to a2/2. Since there is a net
reduction in energy, the reaction is favorable.

Since the (0 0 1) is not a slip plane, the product dislocation is immobile, or
sessile. It provides an obstacle to the movement of other dislocations passing
down the (1 1 1) and (1 1 1̄) planes. This particular case is known as the Lomer lock.

In contrast to the imperfect dislocation discussed in the preceding paragraph, the
Shockley partial dislocation (Fig. 10.12b) is a mobile imperfect dislocation. A
Shockley partial dislocation can be considered as a displacement of a portion of the
atoms in one close-packed plane into a new set of positions. For example, in the close-
packed layer sequence . . .ABCABC. . . , a portion of the atoms in, say, the B layer, are
shifted to C sites.

A very elegant analogy between close-packed metals and two-dimensional bubble-
rafts, exhibiting dislocations, was made by L. Bragg and J. F. Nye in 1947 (Bragg and
Nye, 1947). Two years later, with the aid of this analogy, Bragg and Lomer (Bragg
and Lomer, 1949; Lomer, 1949) showed that plastic deformation proceeds by the
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motion of dislocations, which gave credence to dislocation theory. The first direct obser-
vation of dislocations in solids came with the use of transmission electron microscopy in
1956 (Hirsch et al., 1956). Astonishingly, despite its immense importance to physical
metallurgy, no Noble Prizes were ever awarded for the conception or verification of
the theories of crystal plasticity. As one observer has commented: “[it seemed] mankind
hardly noticed that something big had happened!” Quantum theory understandably took
center stage in the physics community from the mid-1920s through the mid-1930s.
However, from the mid-1930s through the mid-1950s advances in the theory of plasticity
and other fields, regrettably, were overshadowed by the plethora of important discoveries
in nuclear and elementary particle physics.

10.3.2 Polycrystalline Metals

In studying the mechanical properties of polycrystalline metals, one must also consider
the influence of grain morphology. It is not easy for dislocations to move across grain
boundaries because of changes in the direction of slip planes. As discussed above, dislo-
cations may actually pile up at grain boundaries, after which they become immobile.
Polycrystalline materials are, therefore, stronger (more resistant to deformation) than
single crystals. The ease of dislocation motion depends on the relative grain orientation.
Dislocations move more readily across small-angle grain boundaries. Reducing the grain-
size results in more grain boundaries and, hence, more barriers to slip, which will further
strengthen the metal, while also increasing the ductility.

The empirical Hall–Petch equation (Hall, 1951; Petch, 1953) is well known to
express the grain-size dependence to the yield strength:

s ¼ si þ k

dn
(10:64)

in which si ¼ friction stress to move individual dislocations, d ¼ average grain diameter,
k ¼ strengthening coefficient (a constant), s ¼ yield strength, and n is normally 1/2, but
1/3 and 1/4 have been reported for some materials.

Equation 10.64 was developed based on the dislocation pile-up phenomenon in
coarse-grained materials (Section 10.3.1); it is applicable down to a grain size of about
10–30 nm. Materials with grains smaller than this cannot support dislocation activity
and may thus depart from classical behavior. Nanocrystalline materials can plastically
deform, but the mechanism is controversial. Some data indicate inverse Hall–Petch
behavior, in which the material softens once the decrease in grain size reaches a critical
limit (10–20 nm), while other results imply that the increase in the total grain boundary
volume simply produces a continued increase in yield stress with decreasing grain size. In
the latter circumstance, it should be possible to extrapolate the properties from those of
the coarse-grained samples. Still yet, some experiments indicate that the yield stress is
independent of grain size in this size regime (Lu and Liaw, 2001).

Other strengthening mechanisms include solid solution formation and strain harden-
ing. Solid solution strengthening involves replacing a small number of atoms in the lattice
with substitutional impurities of a slightly different size. This creates strain in the crystal,
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inhibiting the movement of dislocations and strengthening the material. Note that solid
solubility is not reciprocal. Thus, silver will dissolve up to 5 percent bismuth, but the solu-
bility of silver in bismuth is negligible. Cold-working such as rolling, drawing, or extrud-
ing at room temperature strain hardens a material by producing elongation of the grains in
the principle direction of working. The dislocation density will increase with the percent
area reduction. This allows dislocations to become entangled and pinned, thus strength-
ening the material. Unlike decreases in grain size, both strain-hardening and solid-
solution strengthening lower ductility. Annealing a strain-hardened sample can restore
the loss in ductility through a process of recrystallization and grain growth, in which
dislocation pile-ups are removed via, for example, grain-boundary migration.

The detrimental effects of cold working can be avoided altogether by hot working.
Hot working is the shaping or deformation of a metal just above its recrystallization temp-
erature (�0.4 TM, where TM is the melting temperature). The material undergoes a grain
refinement and there is no strain hardening or loss of ductility in the finished product.
However, the surfaces of most metals will oxidize more readily at elevated temperatures,
which may be undesirable in some situations.

Another approach to simultaneously increasing the strength and ductility of a metal is
byalloying itwith amore ductile and strongermetal that does not form a solid solution. It is
also necessary to prevent formation of intermetallic phases, which would result in a stron-
ger butmore brittle alloy. For example, a hypoeutectic alloy of bismuth and silverwill con-
tain large particles of silver, the primary constituent, surrounded by fine bismuth–silver
eutectic structure. There are no intermetallic phases in this system and the presence of
the silver phase both strengthens the alloy (but not by the solid-solution mechanism)
and renders it more ductile than pure bismuth. For example, with a strain rate of 10 percent
per minute, the ultimate tensile strength (UTS) of Bi-11 wt%Ag is 59MPa (Lalena et al.,
2002), while the UTS for pure polycrystalline bismuth is about 25MPa.

An interesting mechanical behavior exhibited by some fine-grained materials being
utilized in many industries today is superplasticity, in which elongations .100 percent
are attained. Superplasticity is important because it allows engineers to fabricate complex
shapes out of a material, which might otherwise be unobtainable. It has been observed in
metals, intermetallics, and ceramics with grain sizes of less than 15mm. In metals, the
mechanism of superplasticity is believed to be grain-boundary sliding accompanied by
dislocation slip. The phenomenon was first observed in Wootz steel by Hadfield in
1912 (Hadfield, 1912).

10.3.3 Brittle and Semibrittle Solids

The mechanical properties of intermetallic compounds, glasses, and ceramics differ
greatly from those of ductile metals. Almost all of these materials are brittle, strong,
and hard. Some are semibrittle, exhibiting a very limited plasticity before the onset of
fracture. For example, alkali halides (rock-salt structure) plastically deform slightly
along the {1 1 0}, k1 1 0l slip system at room temperature. Other semibrittle solids include
glasses, HCP metals, and most BCC metals. The strength and low ductility of brittle and
semibrittle substances are owing to the presence of ionic and covalent bonding and/or
to the lack a sufficient number of independent slip systems (close packed layers).
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Dislocations are present but essentially immobile except at very high temperatures,
typically in excess of 10008C.

In ionic solids, slip is constrained because it requires bringing ions with like charges
in contact. Slip systems do not tend to be the easy-glide close-packed planes and direc-
tions, but rather those in which oppositely charged ions remain close throughout
the slip process. In highly ionic cubic systems, the dominant slip system is {1 1 0},
k1 1 0l, but in less ionic cubic crystals, {1 0 0} or {1 1 1} planes may dominate
(Nabarro, 1967). In covalent solids, there exists strong directional bonding. Although
the bonding electrons may be in extended wave functions (Chapter 3), there are definite
preferences for certain geometrical configurations of the atoms. Even the closest-packed
planes tend to be of low atomic density, which impedes dislocation motion. Although
many ionic and covalent solids are almost close packed (recall the definition of the
term eutectic), slip appears to be difficult on anything but truly close-packed planes.

This is an important point. A sublattice phase with the FCC structure should not,
generally speaking, be considered CCP with regards to slip. The atoms or ions on one
sublattice may very well be in a CCP-like arrangement, but they can be kept apart by
large atoms or ions residing on the other sublattice (the interstitial sites). Slip is easiest
along truly close-packed layers of identically sized spheres that are in contact and,
preferably, without obstacles such as interstitials. Thus, another reason for low ductility
in intermetallics and ceramics is the lack of a sufficient number of active slip systems to
allow plastic deformation.

Lately, however, some surprising exceptions have been found to the general rule
of low plasticity in ceramics. One is the perovskite oxide strontium titanate, SrTiO3.
Recent studies on single crystals have revealed a transition from nonductile to ductile
behavior in this material not only at temperatures above 10008C, but again, below
6008C. Even more unexpectedly, it reached strains of 7 percent at room temperature
with flow stresses comparable to those of copper and aluminum alloys. At both the
high and low temperatures, the plasticity appears to be owing to a dislocation-based
mechanism (Gumbsch et al., 2001).

Normally, dislocation-based plastic deformation is irreversible, that is, it is not poss-
ible to return the material to its original microstructural state. Remarkably, fully reversible
dislocation-based compressive deformation was recently observed at room temperature in
the layered ternary carbide Ti3SiC2 (Barsoum and El-Raghy, 1996). This compound has a
hexagonal structure with a large c/a ratio and it is believed that the dominant deformation
mechanism involves dislocation movement in the basal plane.

It is sometimes possible for plastic flow to proceed in nonmetals by modes other than
pure dislocation-based mechanisms. For example, at temperatures of about 40–50
percent of their melting points, grain boundary sliding can become important. Grain
boundary sliding accompanied by cation lattice diffusion is believed to be the mechanism
of the superplasticity observed in some fine-grained polycrystalline ceramics. Although
superplasticity has been known to exist in metals for over 90 years, it has only recently
been demonstrated in ceramics, such as fine-grained yttria-stabilized zirconia (Wakai
et al., 1986).

In general, however, the low plasticity of intermetallics, glasses, and ceramics
hinders their use in many engineering applications and impedes their fabrication by
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deformation processing. Consequently, materials are typically formed by powder proces-
sing (metals and polymers can also be processed from powders). These are multistep
manufacturing procedures, which first involve consolidation, or packing, of the particu-
late to form a green body. The two basic methods of consolidating powders into a desired
shape are: dry-pressing, in which dry powder is compacted in a die; and slip-casting (or
filter pressing), where the particles are suspended in a liquid and then filtered against the
walls of a porous mold. Either consolidation step is followed by densification (sintering)
to improve homogeneity and to reduce moisture content and the number of pores.

10.3.4 The Correlation Between the Electronic Structure
and the Plasticity of Materials

How the ductility of polycrystalline samples is strongly influenced by grain boundaries
has been discussed. However, it was seen earlier that there is a relationship between
the elastic properties and the intragranular cohesive forces. Intuitively, it might be
expected that the same should be true for plasticity, as was alluded to at the beginning
of Section 10.3. One may think of the bonding electrons as a sort of cement that holds
the nuclei in relatively fixed positions. The correlation between the electronic structure
and plasticity of a material is made indirectly through the ratio of the bulk modulus to
shear modulus (bulk modulus to c44 ratio for nontextured polycrystalline solids),
which is generally accepted as a satisfactory index of ductile behavior, or the ease of plas-
tic deformation. Materials having a low B/G ratio are less ductile (e.g. diamond, B/G ¼
0.8), while high B/G ratios correlate with higher ductility (e.g. aluminum, B/G ¼ 2.6).

For predicting the plasticity, one generally looks at the VEC along certain planes and
correlates this with the bulk to shear moduli ratio. A low VEC is generally indicative of
weaker chemical bonds and this correlates to low moduli, or ease of deformation; while
a high VEC indicates strong chemical bonding and correlates with large moduli and
less ductility. Metallic characteristics thus decrease while nonmetallic characteristics
increase with increases in the valence electron density. Since the electronic structure
of a solid is correlated with the crystalline unit cell, as illustrated above with the ternary
carbides, the ratio of B to G and, hence, the ductility varies with the VEC in a structure-
dependent manner.

Music and Schneider have examined this in lower dimensional solids possessing
structures that result in interleaved two-dimensional chains of high and low electron
density, or laminated electronic structures (Music and Schneider, 2006a, b, 2007). The
chemical bonding between the chains, as well as the chemical bonding within each
chain, determine the extent of metallic behavior. For example, in the intermetallic
phase borides MRh3B (M ¼ Y, Zr, Nb) and nitrides MFe3N (M ¼ Co, Ni, Ru, Rh, Pd,
Os, Ir, Pt), both of which crystallize in the space group Pm3mwith the antiperovskite pro-
totype (where the transition metal atoms are located at the vertices of the octahedra), the
electron density distribution in the (1 1 0) plane has a layered appearance. From ab initio
total energy calculations, the binding character is found to be mainly covalent (high loca-
lized electron density) for the Fe–N or Rh–B bonds, but metallic (delocalized, diffuse
electron density) between the Fe and M atoms, or the Rh and M atoms. The interchain
coupling (N–M or B–M bonding) may be predominantly covalent-ionic (strong inter-
layer coupling) or predominantly metallic (weak inter-layer coupling). For M ¼ Y, Zr,
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Nb, Pd, Ag, Cd, the inter-chain coupling is weak and metallic behavior prevails, while for
M ¼ Mo, Tc, Ru, Rh, the inter-chain coupling is strong. The bulk modulus increases with
increases in the VEC (strong intra-chain Fe–N or Rh–B bonding) owing to band filling,
while the shear modulus decreases owing to the presence of antibonding states (weak
inter-chain bonding).

10.4 FRACTURE

Unlike slip, which relies on chemical bond breaking and reformation, fracture occurs
when bonds rupture without reformation in response to an applied static stress. The
stress may be one of three types: a tensile stress, normal to the resultant crack; a shear
stress acting parallel to the plane of the resultant crack and perpendicular to the crack
front; or a shear stress acting parallel to both the plane of the crack and to the crack
front. Moreover, inorganic single crystals and polycrystals may break either by ductile
fracture, brittle fracture (cleavage), or conchoidal fracture, which are the fundamentally
different basic mechanisms exhibited by metals, ceramics, and glasses, respectively.
Ductile specimens plastically deform before breaking, which often results in a necking
of the sample. In moderately ductile specimens (the most common type of tensile fracture
for metals), there is less necking. However, it is possible for normally ductile metals to
fail by brittle fracture, which is not preceded by any plastic deformation and therefore
appears as a clean break. These are illustrated in Figure 10.13.

Figure 10.13. Ductile fracture (left) and brittle fracture (right).
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Conchoidal fracture describes the breakage of brittle materials, such as fine-grained
minerals and amorphous solids, when it does not follow any natural cleavage planes.
Conchoidal fractures often result in a curved breakage surface that resembles the rippling
curves of a mussel shell and, in fact, the word “conchoid” is derived from the Greek word
for this animal. The shape of the broken surface is controlled only by the stresses applied,
and not by some preferred orientation of the material.

All fracture processes proceed by two basic steps; crack initiation and propagation. In
ductile fracture, extensive plastic deformation takes place before the fracture. Many pure
metals (e.g. iron) can undergo very large deformation of 50–100 percent strain before
fracture. Crack propagation in ductile fracture typically proceeds relatively slowly,
whereas crack propagation in brittle fracture occurs rapidly. In nonductile crystalline
materials, fracture occurs by cleavage as the result of tensile stress acting normal to
crystallographic planes with low bonding (cleavage planes), resulting in a smooth
break that produces what appears to be a flat crystal face.

Single crystal cleavage is characteristic of a given mineral and, hence, is reproduci-
ble. All cleavage must parallel a possible crystal face and cleavage planes must match the
crystallographic symmetry. The cleavage plane is usually the one with the lowest surface
energy, or bond density. A crystal belonging to the isometric (cubic) crystal class can
either have no cleavage or at least three directions of identical cleavage that form a
closed three-dimensional polygon. A crystal of a uniaxial class (trigonal, tetragonal, or
hexagonal) will potentially have a cleavage perpendicular to the dominant axis and/or
prismatic cleavage of either 3, 4, or 6 directions respectively, running parallel to the
axis. Other cleavage directions are possible, but will always be controlled by the sym-
metry of the crystal. A biaxial crystal (orthorhombic, monoclinic, or triclinic classes)
cannot have more than two identical cleavage directions. In brittle polycrystals, the frac-
ture pattern may have a grainy or faceted texture owing to changes in orientation of the
cleavage planes as the crack propagates transgranularly.

Fracture may result from the application of a single static (sustained) load in excess of
the ultimate yield strength or, over time, from cyclic loads of smaller magnitude. The
latter phenomenon is called fatigue damage and it is owing to the build up of substructural
or microstructural changes, induced by the cyclic straining. Even the highest strength
materials, however, fail at a fraction of the stress levels required to break an individual
chemical bond. Such behavior is linked to the presence of microscopic cracks that nucle-
ate at defect sites, called Griffith flaws, which are virtually always present owing to
materials processing. This was postulated by British aeronautical engineer Alan
Arnold Griffith (1893–1963) in 1921 (Griffith, 1921). At the surface, Griffith flaws
may result from impingement of hard dust particles. In the bulk of the material, crack
nucleation sites can be inclusions, grain boundaries, and other defects. Zener proposed
that, in ductile and semibrittle materials, crack nucleation involves dislocation pile-up
at the Griffith flaws, as well as at grain boundaries (Zener, 1948b). This was subsequently
substantiated by a number of experiments. Cottrell later described a mechanism for
crack nucleation involving intersecting slip planes even in the absence of defects
(Cottrell, 1958).

An applied deformation stress concentrates near the tip of a sharp crack, where it can
eventually exceed the cohesive strength (the chemical bonding forces between atoms) of
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the material and cause crack propagation, or fracture. Any material can fracture but, as
mentioned above, the mechanisms for crack propagation are different in ductile and brittle
solids. Ductile rupture involves a high degree of plastic deformation. Hence, some of the
energy from stress concentrations at the crack tip is dissipated by plastic deformation
before the crack actually propagates. The basic steps of ductile fracture are necking
(which results in stress localization at the point on the sample of smallest cross-sectional
area), void formation, void coalescence (also known as crack formation), crack propa-
gation, and failure, often resulting in a cup-and-cone shaped failure surface. Modern phe-
nomenological theories of brittle fracture are founded on the seminal 1921 paper by
Griffith. The total energy, U, of a crack system with crack area, A, is given by the sum
of the potential energy, WP, and surface energy, WS. Griffith postulated that the critical
condition for crack growth is when dU/dA ¼ 0, or when the increase in surface energy
owing to crack extension is just balanced by an equal decrease in the total potential
energy of the system:

dWP

dA
¼ � dWS

dA
(10:65)

The energy balance considerations in Griffith’s original concept were later refined by
Orowan and Irwin to include the effects of plasticity and elasticity for applicability to
metals (Orowan, 1952; Irwin, 1957). Metals fail by ductile fracture, where the crack
growth occurs in the direction of the primary slip system. When the slip plane is inclined
to the crack, atoms across the slip plane slide past one another, relieving the stress, which
results in a zigzag crack path. This is illustrated in Figure 10.14.

Excellent coverage of fracture mechanics in ductile and brittle solids can be found
in many textbooks, such as Subra Suresh’s (Suresh, 1998). A relatively new approach,
aimed at understanding the fundamental atomistic causes of fracture, focuses on the
role of the topology of the chemical bond charge density (Eberhart, 1993, 1999a,
2001a, b). It has been seen that bond breaking is integral to fracture. Yet, the traditional
picture of chemical bonding does not really allow one to define fracture or to predict,
a priori, whether a solid will be ductile or brittle. This is because, as two atoms are
pulled apart, the electron density never really goes to zero, but merely begins to flatten
out; the Gaussian density function has tails that extend to infinity. Thus, it is not possible
to unambiguously determine the point at which the bond should be considered broken.
By contrast, in the topological view the bond can be considered broken at a well-defined

Crack

Slip planes

Figure 10.14. The single-slip mechanism, in which crack growth occurs in the direction of the

primary slip systems, results in a zig-zag crack path.
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point – when the charge density curvature vanishes. This happens at a special type of
relative extremum known as a saddle point.

Eberhart’s approach arises out of an examination of the gradient of the electron-
charge density distribution, rr(r), and its Laplacian, r2r(r), which is directly related
to the curvatures of r(r) along three mutually perpendicular directions, as discussed ear-
lier in Chapter 3. The advantage of taking this view of the chemical bond, it is hoped, is
that it will enable designers to predict how alloying can improve fracture resistance, duct-
ility, and elastic response. Through quantum mechanical calculations one can model how
substituting different elements into a solid transforms the charge density topology of the
chemical bonds and, hence, the failure properties of the material. Eberhart has shown how
accounting for contributions from both first and second-nearest neighbor interactions in
the bond charge density topology of a series of transition metal alumnides with the
CsCl structure allows us to do just that. The percentage of the total bond energy of
MAl (M ¼ Cr, Mn, Fe, Ni, Co) owing to the second-nearest neighbor interactions (of
the ddp and ddd type in the BCC and CsCl lattices) was found to increase in the order
CrAl ,MnAl , FeAl , NiAl , CoAl. This is identical with the trends in the unit
cell volume and failure properties, CoAl possessing the smallest unit cell volume and
being the most brittle (Eberhart, 2001a). Presumably, this is because ddp and ddd overlap
is less than that due to dds bonding, which is a component of the first-nearest neighbor
interactions.

Assuming additivity (the rule of mixtures) applies (Section 10.2.3), replacing a por-
tion of, say, nickel atoms in NiAl with iron atoms would be predicted to improve the fail-
ure properties of NiAl. It has been verified experimentally that 10 percent substitution of
nickel by iron does indeed increase the ductility of NiAl. Thus, knowledge of the impor-
tance of the second-neighbor bond paths allows tuning of the failure properties of these
transition metal alumnides. Eberhart has also correlated bond path properties with stress-
induced failure in brittle and ductile alloys (Eberhart et al., 1993), as well as shear-elastic
constants in several pure metals and alloys (Eberhart, 1996a, b, 2001b). Recently, other
researchers have followed suit and investigated the relation between the mechanical prop-
erties and the charge-density topologies in other systems, for example, the layered ternary
carbide Ti3SiC2. Two known polymorphs of this compound exist; the a-phase and the
metastable b-phase. It was found that Ti–Si bonding is significantly weaker in the
b-phase, while Si–C bonds, which are absent in the a-polymorph, provide a small
amount of additional stabilization. The qualitative results seem to correlate nicely with
the greater softness observed in the b-phase (Zhang and Ye, 2004).

PRACTICE PROBLEMS

1) Show, for an isotropic cubic polycrystal for which the Cauchy relations (c11 ¼ 3c12;
c44 ¼ c12) hold, that the Voigt and Reuss approximations of the shear modulus
reduce to:

GV ¼ GR ¼ c11
3
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�2) Use the following values of the elastic–stiffness constants and the elastic–
compliance constants (Kisi and Howard, 1998) for tetragonal zirconia monocrystals
to determine the Voigt–Reuss–Hill averages for the Young’s modulus, E, the shear
modulus, G, and the bulk modulus, B.

c11 ¼ 327 s11 ¼ 0:00346
c33 ¼ 264 s33 ¼ 0:00406
c44 ¼ 59 s44 ¼ 0:0170
c12 ¼ 100 s12 ¼ �0:00096
c13 ¼ 62 s13 ¼ �0:00059
c14 ¼ – s14 ¼ –
c66 ¼ 64 s66 ¼ 0:0154

3) Write the elastic–compliance tensor in matrix notation for an orthorhombic mono-
crystal, showing only the nine independent constants from Table 10.4.

4) Describe superelasticity and the shape memory affect.

�5) A cylindrical specimen of brass (an alloy of copper and zinc) with a diameter of
20 mm and length of 200 mm is pulled in tension elastically with a force of
50,000 N. If the Young’s modulus is 97 GPa and Poisson’s ratio is 0.34, determine:
a) the amount of longitudinal extension (the elongation in the direction of the
uniaxial stress) and b) the transverse contraction in diameter.

6) Why does slip proceed more easily in close packed directions?

7) In a manner similar to Figure 10.5, show two different close-packed k1 1 1l slip
directions in the {1 1 0} planes of the BCC lattice.
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�8) Compute the resolved shear stress along a (1 1 0) plane and in a [1 1 1] direction when
a tensile stress of 45MPa is applied along a [0 1 0] direction of a BCC crystal.

9) Show how, if one uses the metric tensor approach for a cubic crystal with lattice
parameters a ¼ b ¼ c ¼ 1, a ¼ b ¼ g ¼ 908, the same angle as was calculated
in Example 10.7 between the [0 1 0] tensile stress direction and the normal to the
[1 1 1] slip plane, is obtained.

10) What types of chemical bonding forces are generally associated with brittle
materials? With ductile materials?

11) Explain the correlation between VEC and ductility.

12) Compare and contrast ductile with brittle fracture processes/patterns in single
crystals and polycrystals.

�For solutions, see Appendix 3.
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11

PHASE EQUILIBRIA, PHASE
DIAGRAMS, AND

PHASE MODELING

Phase diagrams, phase-equilibria data in graphical form, are a standard tool of materials
scientists and engineers. Such compilations of data can be indispensable when, for
example, there are questions about the thermodynamic stability of a phase under a
given set of working conditions, or in a particular operating environment (e.g. materials
compatibility issues). The easiest way for a metallurgical engineer to determine whether
an aluminum or tungsten vessel would be the best choice as a container for molten zinc is
to consult the Al–Zn and W–Zn phase diagrams. In this particular case, the phase dia-
grams would show that Al–Zn alloy formation would be expected to occur since zinc
exhibits an increasing solid solubility in aluminum with temperature, whereas tungsten
is much more resistant to corrosion by molten zinc.

The solid-state chemist interested in preparing new materials also finds phase dia-
grams valuable. Strictly speaking, phase diagrams describe the phase relationships
within single-component or multi-component systems in stable thermodynamic equili-
brium. Hence, the phase diagram indicates if a given phase in that system will be acces-
sible under those equilibrium conditions (although metastable phases certainly may be
obtainable under appropriate circumstances). Even when a stable phase is accessible, con-
trol of the stoichiometry may be difficult to achieve owing to complex phase equilibria.
For example, many transition metals have a propensity to adjust their oxidation state
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depending on the temperature and oxygen partial pressure, which can result in a
multi-phase product (impurities) and/or one with mixed valency.

It is imperative that one be able to properly interpret phase diagrams. In the first part
of this chapter, some underlying concepts are reviewed, from thermodynamics necessary
for understanding phase equilibria. The interpretation of phase diagrams will be sub-
sequently taken up. Afterwards, the reader will be introduced to the CALPHAD
(CALculation of PHAse Diagrams) method, in which phase equilibria predictions are
made on high-order systems by extrapolation of thermodynamic data from the lower-
order parent systems. For example, a phase diagram for a ternary system ABC can be
predicted from the AB, BC, and AC binary systems. Such calculations are potentially
very reliable, depending on the complexity of the system. In the absence of existing exper-
imental data on a high-order system, mathematical modeling is the logical approach for
obtaining phase equilibria information when laboratory work is not feasible or cost/time
prohibitive. The CALPHADmethod was pioneered by Hillert, Kaufman, and others, over
forty years ago and is still a rapidly growing field.

11.1 THERMODYNAMIC SYSTEMS AND EQUILIBRIUM

Thermodynamics is the branch of physics that enables the study of energy changes
accompanying phase transformations and, in general, the equilibrium properties of
material systems. The architect of modern equilibrium thermodynamics was the
American mathematical physicist Josiah Willard Gibbs (1839–1903). At this point, a
few basic definitions are in order. In thermodynamics, the system is defined as the macro-
scopic segment of the world, such as a substance or group of substances, under investi-
gation. Outside the system are the surroundings. Taken together, the two constitute the
universe. Open systems are those that can exchange heat, mechanical work, or material
with their surroundings. If only heat or mechanical energy can be exchanged, the
system is closed. Systems that cannot exchange heat, mechanical energy, or material
with their surrounding are isolated.

Systems are classified, and named, by the number of components, as shown in
Table 11.1. The number of components is the number of independent constituents
needed to fix the chemical composition of every phase in the system. In metallic systems,

TABLE 11.1. System Classifications by the Number
of Components

Number of Components Type of System

One Unary
Two Binary
Three Ternary
Four Quaternary
Five Quinary
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the components are usually elements. For systems with covalent and/or ionic bonds, the
components may be compounds or stable molecular species.

The definition of a phase is more complicated. A phase is often described simply as a
homogeneous state of matter. However, this definition is somewhat vague because it
gives no indication of the length scale or the degree of homogeneity required. A less
ambiguous definition is that a phase is a liquid, gaseous, or solid substancewith a physical
structure that is, on average, microscopically homogeneous and, as such, has uniform
thermodynamic properties (to be described below). The structure of a phase may have
long-range three-dimensional translational atomic order (e.g. a crystalline solid) or it
may not (e.g. a liquid or an amorphous solid). Three-dimensional translational order is
an important distinction. Some liquid crystals, for example, exhibit one-dimensional
translational order. Two distinct phases may have the same chemical composition (e.g.
diamond and graphite; rutile and anatase; various forms of SiO2). These compounds
are said to be polymorphic substances, in that they undergo crystal structure changes,
or solid-state phase transformation, with changes in temperature or pressure, while main-
taining the same chemical composition. The term allotropic is used to describe chemical
elements with this property.

The state, or condition, of a system is given by a collection of experimentally mea-
surable thermodynamic properties called state variables (also known as state functions or
state properties), which are independent of the history of the system. A state variable is
somewhat analogous to elevation, or vertical displacement. The amount of work per-
formed and the distance traveled in getting to the top floor of a building depends on
whether one rides an elevator or climb the stairs, but the final elevation, or displacement,
is the same in either case and it is independent of the path taken. State variables may be
classified into two categories. Intensive variables are those that are independent of the
quantity of material present, examples being temperature and pressure. By contrast, the
values of extensive variables, such as volume, heat capacity, and internal energy, are pro-
portional to the amount of material present. The ratio of two extensive properties is an
intensive property. For example, the density of a homogeneous substance, which is the
ratio of its mass to volume, is the same regardless of the size of the sample.

The relationship between the different state variables of a system subjected to no
external forces other than a constant hydrostatic pressure can generally be described by
an equation of state (EOS). In physical chemistry, several semiempirical equations
(gas laws) have been formulated that describe how the density of a gas changes with
pressure and temperature. Such equations contain experimentally derived constants
characteristic of the particular gas. In a similar manner, the density of a solid also changes
with temperature or pressure, although to a considerably lesser extent than a gas does.
Equations of state describing the pressure, volume, and temperature behavior of a homo-
geneous solid utilize thermophysical parameters analogous to the constants used in the
various gas laws, such as the bulk modulus, B (the inverse of compressibility), and the
volume coefficient of thermal expansion, b.

The equilibrium state is reached when there is no change with time in any of the sys-
tem’s macroscopic properties. The phase rule by Gibbs gives the general conditions for
equilibrium between phases in a system. It is assumed that the equilibrium is only influ-
enced by temperature and pressure, that is, surface, magnetic, electrical, and magnetic
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forces are neglected. In this case, the phase rule can be written as:

f ¼ c� pþ 2 (11:1)

In Eq. 11.1, the parameters are as follows: f, which must equal zero or a positive inte-
ger, gives the degrees of freedom (number of independent variables); c is the number of
components; p is the number of phases in equilibrium; and the constant 2 is for the two
variables temperature and pressure. If the effect of pressure is ignored in condensed sys-
tems with negligible vapor pressures, the constant 2 in Eq. 11.1 is replaced by the numeral
1, giving the so-called condensed phase rule.

The phase rule(s) can be used to distinguish different kinds of equilibria based on the
number of degrees of freedom. For example, in a unary system, an invariant equilibrium
( f ¼ 0) exists between the liquid, solid, and vapor phases at the triple point, where there
can be no changes to temperature or pressure, without reducing the number of phases in
equilibrium. Because f must equal zero or a positive integer, the condensed phase rule
( f ¼ c2 p þ 1) limits the possible number of phases that can coexist in equilibrium
within one-component condensed systems to one or two, which means that, other than
melting, only allotropic phase transformations are possible.

Similarly, in two-component condensed systems, the condensed-phase rule restricts
the maximum number of phases that can co-exist to three, which also corresponds to an
invariant equilibrium. However, several invariant reactions are possible (Table 11.2),
each of which maintain the number of equilibrium phases at three, and keep f equal to
zero. The same terms given in Table 11.2 are also applied to the structures of the
phase mixtures.

There are other types of equilibria, in addition to the invariant type. For example,
when three phases of a two-component system are in equilibrium, such as with a
closed vessel containing hydrogen gas in equilibrium with a metal and the metal hydride,
immersed in a water bath, it is possible to change the value of just one variable (tempera-
ture or pressure or composition) without changing the number of phases in equilibrium.
This is called univariant equilibrium ( f ¼ 1). If the composition is held constant, temp-
erature and pressure will have a fixed relationship in a univariant system. Hence, if the
pressure of hydrogen gas in the vessel is increased slightly the temperature of its contents
remains the same as heat escapes through the vessel walls to the water bath.

TABLE 11.2. Invariant Reactions (on Cooling)

Monotectic L1 þ S! L2

Eutectic L !S1 þ S2
Metatectic S1 !L þ S2
Monotectoid S1 þ S2! S2 þ S3
Euctectoid S1! S2 þ S3
Syntectic L1 þ L2! S
Peritectic L þ S1! S2
Peritectoid S1 þ S2! S3

S ¼ solid, L ¼ liquid.

PHASE EQUILIBRIA, PHASE DIAGRAMS, AND PHASE MODELING464



If the composition of hydrogen in this system were to be fixed at a lower concen-
tration, such that there is but a single condensed phase comprised of the two components
in equilibrium with hydrogen gas (i.e. a solid solution of metal and absorbed hydrogen
gas, but no metal hydride), there will be two degrees of freedom ( f ¼ 2). There is
no fixed relationship between pressure and temperature at constant composition in
such a system. Both temperature and hydrogen pressure may be varied, changing the
absorption/desorption of hydrogen gas from the solid solution, but leaving fixed at
two the number of phases. This is termed bivariant equilibrium.

Example 11.1

Consider a vessel containing solid calcium carbonate, CaCO3. When heated, the
carbonate decomposes into lime (solid calcium oxide), CaO, and gaseous carbon
dioxide, CO2. Experimentally, the concentration of CO2 is found to be constant
at a definite temperature and, therefore, independent of the amounts of the
other phases. Describe the type of system and equilibrium.

Solution

Experimentally, the concentration of CO2 is found to be independent of the
amounts of CaO and CaCO3. Recall from the definition of a component that c is
the number of independent constituents needed to fix the chemical composition
of every phase in the system. Since CaCO3 can be formed by combining CaO and
CO2, the latter two can be chosen as the components. Two components results
in a binary system. Next, use Gibbs’ phase rule: f ¼ c2 p þ 2. For the three-
phase equilibrium, f ¼ 22 3 þ 2 ¼ 1 and the system is thus classified as a univar-
iant equilibrium, in which it is possible to change the value of just one variable
without changing the number of phases in the equilibrium. At any given pressure,
P, all three phases may coexist only at a single temperature, T, which is a function
of the pressure. Hence, in a plot of P versus T, a curve is obtained along which the
three phases are in equilibrium. In other words, on heating at a constant pressure,
the CaCO3 will suddenly decompose when a certain T is reached. Above the equi-
librium curve, only two phases are present, CaCO3 and CO2. Below the curve, only
CaO and CO2 are present. Complete decomposition of CaCO3 can only occur if the
CO2 phase is removed or if its concentration is made low by holding P below the
equilibrium value for that temperature. Conversely, above the equilibrium
value for P at the decomposition temperature, CaCO3 cannot decompose (but it
can melt).

11.1.1 Equilibrium Thermodynamics

In thermodynamics, a reversible process is one that can be reversed by infinitesimal
changes in some property of the system without loss of energy. In chemistry, this nor-
mally means a transition (e.g. chemical reaction or phase transformation) from some
initial state to some final state. If, after transitioning to the final state, the process is
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reversed such that the system is returned to its initial state, there would be no net change in
either the system or its surroundings. An irreversible physical or chemical change is one
that will not spontaneously reverse itself without some corresponding change in the sur-
rounding conditions (e.g. temperature, pressure). A good example of an irreversible phys-
ical process is heat conduction. Heat can never flow spontaneously from a cold reservoir
to a warmer one. In theory, all chemical reactions are reversible to an extent. However,
completely reversible processes, which would be in a continuous state of equilibrium,
are impossible since it would take an infinite time for such a process to finish. Hence,
all real natural processes have some irreversible character. Nevertheless, the concept of
reversibility is necessary as a mathematical tool to define the theoretical limit and to
develop fundamental thermodynamic relationships.

The second law of thermodynamics tells us that the criterion for a spontaneous
(irreversible) physical or chemical process in a closed macroscopic system is an increase
in the total entropy of the system plus its surroundings (DStot . 0), where the surround-
ings are considered the rest of the universe. What is meant by closed is that the system and
surroundings can only exchange energy, not matter. Thus, irreversible processes produce
entropy. Likewise, the criterion for a reversible process, which returns to its initial state
through a series of small equilibrium steps, is DStot ¼ 0. It is important to note that DS
is only defined for reversible processes. Specifically, it is the ratio of the heat transferred
between the system and surroundings during a reversible process, qrev, divided by the
absolute temperature at which the heat was transferred: DS ¼ qrev/T. However, this
quantity is a state function, having a unique value dependent only upon the net process
and is independent of the path, or mechanism taken from initial to final state. Therefore,
the same value will apply when the reversible process is replaced with an irreversible
process. An irreversible process increases the entropy of the system and its surroundings.
By implication, the entropy of the universe (i.e. the system and its surroundings), assumed
as an isolated system, tends to increase.

But what exactly is this entity called entropy? There are several definitions. In
classical (macroscopic) thermodynamics, entropy is regarded as that energy unavailable
for external thermodynamic work; that is, the work mediated by thermal energy. In stat-
istical thermodynamics, entropy is defined as a measure of the number of microscopic
configurations that are capable of yielding the macroscopic description of the system.
For a given set of macroscopic quantities (e.g. temperature and volume) the entropy
measures the degree to which the probability of the system is spread out over different
possible quantum states. If there are more states available to the system, it will have
greater entropy. Historically, entropy has also been associated with a measure of the
molecular disorder, or randomness, of an isolated system. Because there are so many,
somewhat nonintuitive, explanations of entropy and, hence, statements of the second
law, entropy has more recently been regarded as the energy dispersal in the system.
Consequently, the second law can be rephrased as stating that pressure differences,
density differences, and temperature differences all tend to equalize over time.

In chemical thermodynamics, it is prefered to focus attention on the system rather
than the surroundings. Thus, it is convenient to consider the free energy function as
the quantity of energy available in a system for producing work. Using this state function,
the criterion for spontaneity is a decrease in the system’s free energy on moving from the
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initial state to the final state. For processes occurring at constant temperature and constant
volume, the Helmholtz free energy change, DA, is defined as the change in the internal
energy of the system, DUsys (DEsys in some texts), minus the random thermal motion,
or heat content, in the system (T DSsys), which cannot be used to extract work. When
the pressure, rather than volume is held constant, any pressure–volume work exchanged
between the system and surroundings must be added to DU. The sum of DU and P DV is
known as the enthalpy change, DH. The Gibbs free energy change for a closed system,
which can exchange energy, but not matter, with its surroundings, is defined in differen-
tial form as:

dG ¼ dHsys � T dSsys (11:2)

where the enthalpy and entropy changes are those of the system. Integrating Eq. 11.2
yields DG ¼ DHsys 2 T DSsys. The enthalpy change of the system is numerically
equal, but opposite in algebraic sign, to that of the surroundings.

This is but one possible expression for the Gibbs free energy. It could bewritten as an
expression in terms of changes in other state variables, such as temperature and pressure.
Furthermore, it must account for the possibility that a component may be distributed
among, or transported between, several phases within the system (e.g. alloys). Alter-
natively, many reactions of interest to the materials chemist take place in open systems,
in which there is transport of energy and matter between the system and surroundings.
For example, a gas or liquid may come into contact with a solid surface, where it creates
a new substance that is transported away. Incorporating these other possible scenarios
allows the following very general, but very useful, expression for the Gibbs free
energy to be written:

dG ¼ V dP� S dT þ
Xk
i¼1

mi dNi þ
Xn
i¼1

Xi dai þ � � � (11:3)

Here, m is known as the chemical potential for the ith component, and X can be any of a
number of external forces that causes an external parameter of the system, a, to change by
an amount da. Under conditions of constant temperature and constant pressure, the first
two terms on the right-hand side of Eq. 11.3 drop out.

The Gibbs energy change is related to some other important physical quantities, like
the equilibrium constant for a chemical reaction and the electromotive force (emf) of an
electrochemical cell, by the Nernst and van’t Hoff equations:

DG ¼ �RT lnK ¼ DH � T DS (11:4)

DG ¼ �nFE (11:5)

where K is the equilibrium constant, R is the gas constant (1.986 cal/8mol), T is absolute
temperature, n is the number of moles of electrons, F is the Faraday constant (the charge
on a mole of any single charged entity, 96,494 coulombs), and E is the emf for an electro-
chemical cell involving a chemical reaction of interest. Equation 11.4 is a combination
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of the Nernst equation (DG ¼ 2RT ln K), named after the 1920 Nobel Laureate in chem-
istry Walther Hermann Nernst (1864–1941), and the integrated form of the van’t Hoff
equation, (2RT ln K ¼ DH–T DS ), named after Jacobus H. van’t Hoff (1852–1911),
who received the first Nobel Prize in chemistry in 1901. Equation 11.5, called the
Nernst equation for a cell, follows directly from elementary electrical theory, where the
work done in transporting an electrical charge between points of different electric poten-
tial is equal to the product of the charge and the potential difference.

In a chemical reaction for which the activation energy is supplied, the total free
energy of the system decreases spontaneously at constant temperature and pressure
until it reaches a minimum (regardless of the rate of the reaction; it may be instantaneous
or exceedingly slow). This is known as the second law of thermodynamics. A stable state
is the state of lowest free energy. A metastable state is a state in which additional energy
must be supplied to the system for it to reach true stability. Metastable states are separated
from lower-energy states by higher-energy barriers. An unstable state is a state in which
no additional energy need be supplied to the system for it to reach either metastability or
stability; it does so spontaneously. These states are illustrated in Figure 11.1 for an
analogous mechanical system in which the quantity of interest is gravitational potential

A

B

C

D

Figure 11.1. An illustration of the second law of thermodynamics in a mechanical system,

which moves toward that state with the lowest total potential energy. The balls seek the

position of lowest gravitational potential energy (height). Points B and D are unstable; the

balls roll downwards to points A or C. Point C is metastable, separated from the lowest

energy state, point A, by a an energy barrier.
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energy. The system is a ball on a hilly landscape. Since the gravitational potential energy
of the ball is proportional to the product of its mass and its height, the potential energy
diagram has the same shape as the landscape shown in the figure. At the unstable
points B and D, the ball free falls spontaneously to points A/C and C, respectively,
with the lost potential energy being dissipated to the surroundings as heat. At the meta-
stable point C, the ball must be supplied energy to overcome the hurdle and reach the
point of lowest gravitational energy, point A. This tendency to minimize total potential
energy is due to the second law of thermodynamics. The system moves away from the
state with low-heat content and high potential energy towards the state with a high-
heat content and low potential energy since the latter state maximizes the entropy of
the universe. For chemical systems, the corresponding similarly behaved quantity is
the free energy, rather than the gravitational potential energy. The energy that must be
supplied to a metastable state or to an unstable state in order for it to move to a stable
state is called the activation energy or kinetic barrier.

The relationships between the various phases that appear within a system under equi-
librium conditions are shown in phase diagrams. The synthetic chemist finds phase
diagrams useful because they state if a given phase in the system under investigation is
accessible under the equilibrium conditions. For this reason alone, it would be advan-
tageous for the reader to acquire proficiency with interpreting phase diagrams.
The brief introduction covered soon in Section 11.3 is merely meant to encourage the
reader to refer to any one of several available texts that offer a range, from introductory
to comprehensive coverage, of all aspects of phase equilibria.

11.2 THERMODYNAMIC POTENTIALS AND THE LAWS

The term thermodynamics was coined in 1849 by James Thomson (1822–1892).
However, basic notions of heat and energy were established in the 1600s. Since that
time, a large body of experimental evidence has accumulated supporting the soundness
of the basic axioms, or postulates, upon which classical thermodynamics is built. The first
law of thermodynamics is a corollary of the law of conservation of energy and states that
energy (the ability to do work) can neither be created nor destroyed in a thermodynamic
system of constant mass, although it may be converted from one form to another. Simply
put, the energy of the universe is constant. If external energy, q, is supplied to a system,
the system must absorb this added energy by increasing its own internal energy, U (the
sum of all the kinetic energies and energies of interactions of the particles in the
system, or by doing work, W (the effect on the surroundings as a result of changes
made to the system). Mathematically, this is written in differential form, as:

dU ¼ dq� dW (11:6)

For the pressure–volume work done by a gas expanding reversibly (through a succession
of equilibrium states):

dW ¼ P dV (11:7)
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All of the quantities introduced thus far, U, W, q, P, and V, are thermodynamic state
variables.

The other state variable, entropy, S, is actually defined by the second law of thermo-
dynamics:

dS ¼ dq

T
(11:8)

Combining Eqs. 11.6 to 11.8 gives:

dU ¼ T dS� P dV (11:9)

The second law of thermodynamics then states that the entropy of an isolated system (a
systemwith constantU and constant V ) increases (dS . 0) for a spontaneous processes or
stays constant (dS ¼ 0) at equilibrium. In Eq. 11.9, no internal processes are considered
(S is normally regarded as an external variable even though it is not possible to control its
value externally without knowledge of the properties of the system). If internal processes
are considered, an internal variable must be included, namely, m, the chemical potential
(to be discussed shortly).

In Eq. 11.9,U is called a characteristic state function and is seen to be the sum of two
products. The variables S and V are two independent extensive variables that are regarded
as the natural variables forU. The other variables in Eq. 11.9, T and2P, are a special kind
of intensive variable that must have the same value at all points in the system at equili-
brium. They are called potentials. If a thermodynamic potential can be determined as a
function of its natural variables, all of the thermodynamic properties of the system can
be found by taking partial derivatives of that potential with respect to its natural variables
and this is true for no other combination of variables. Conversely, if a thermodynamic
potential is not given as a function of its natural variables, it will not, in general, yield
all of the thermodynamic properties of the system. The pair of one potential and one
extensive variable in each product on the right-hand side of Eq. 11.9 (i.e. T, S and 2P,
V ) are called conjugate pairs. The internal energy is, therefore, expressed in terms of
pairs of conjugate variables. By including internal processes, a third product containing
m is added. This internal variable will be associated with a conjugate variable as well,
specifically, n, the number of particles. For a one-component system, then, the internal
energy is a function of three independent extensive state variables, S, V, and n. The equi-
librium state of the system is completely determined by these three variables. In general,
for a c-component system, there will be c þ 2 variables.

First consider the P, V conjugate pair. Pressure differences force a change in volume
to occur, dV, and the product P dV is the energy (an extensive quantity) that is lost by the
system owing to work. Here, pressure is the thermodynamic driving force, which is
always an intensive variable, while volume is the associated displacement, which is
always an extensive variable. In a similar way, temperature differences drive changes
in entropy, and their product T dS is the energy transferred by heat flow, again yielding
an extensive energy. The intensive variable (the thermodynamic driving force) is the
derivative of the internal energy with respect to the extensive variable (the displacement),
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with all other extensive variables held constant. For internal processes in a one-
component system, m, the chemical potential will be the intensive variable and its
conjugate extensive variable will be dn.

For systems under constant pressure, it is convenient to define yet another state vari-
able called the enthalpy, or heat content, H:

H ¼ U þ PV (11:10a)

dH ¼ d(U þ PV) ¼ T dSþ V dP (11:10b)

From Eq. 11.10b, it is seen that H is a characteristic function with natural variables S and
P. Additional relations can be derived from the first and second laws when other exper-
imental conditions are more easily controlled. For example, for a system of constant com-
position, the Helmholtz free energy, A (sometimes denoted as F ), has natural variables
T and V, and the Gibbs free energy, G, has natural variables T and P, as shown by
Eqs. 11.11b and 11.12b below:

A ¼ U � TS (11:11a)

dA ¼ dU � T dS� S dT ¼ �S dT � P dV (11:11b)

G ¼ H � TS ¼ (U þ PV)� TS (11:12a)

dG ¼ dU � T dS� S dT þ P dV þ V dP ¼ �S dT þ V dP (11:12b)

The second law requires that, for a spontaneous change at constant temperature and
volume, dF � 0. Alternatively, under conditions of constant temperature and pressure
gives dG � 0. That is, the total free energy of the system decreases spontaneously at
constant T and P until it reaches a minimum; at equilibrium, dG ¼ 0. The minimization
of the Gtotal is one of two criteria defining an equilibrium state.

The Gibbs energy is also an extensive property, that is, it is dependent on the total
number of moles, n, of each component, i, present in the system, as well as on the natural
variables given in Eq. 10.8. Mathematically, this can be represented by the slope formula
for partial derivatives:

dG ¼ @G

@T

� �
P,ni

dT þ @G

@P

� �
T ,ni

dPþ
X
i

@G

@ni

� �
P,T ,nj

dni (11:13)

In Eq. 11.13, the first slope, (@G=@T)P,ni , is equal to 2S, the second slope, (@G=@P)T ,ni , is
equal to þV, and the third slope, (@G=@ni)P,T ,ni , defines the chemical potential for the ith
component, symbolized as mi. The chemical potential is the partial molar Gibbs energy
and, being the ratio of two extensive properties, is itself an intensive property. This vari-
able can be included in Eq. 11.12, giving:

dG ¼ �S dT þ V dPþ
X
i

mi dni (11:14)

Equation 11.14 is one form of the Gibbs–Duhem relation, named after Josiah Gibbs and
Pierre Duhem (1861–1916). The chemical potential provides another way of looking for
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phase equilibria: at equilibrium, the value of the chemical potential for each component is
the same in every phase at constant T and P. For multi-phase equilibria, an equation of the
form of Eq. 11.14 will hold for each phase. If there are no external forces acting on the
system, the equilibrium condition for the transport of matter requires that the value of
the chemical potential for each component be the same in every phase (at constant T
and P). Finally, it can also be seen from both Eq. 11.13 and 11.14 that the conjugate vari-
able to the chemical potential of component i is simply ni. As a consequence of the
Gibbs–Duhem relation for a multi-component system, only c þ 1 of the variables are
independent and anyone of them may be regarded as the dependent one. For example,
a two-component system has two chemical potentials, mi and mj, as well as two particle
numbers, ni and nj. If one of the chemical potentials, say, mi, is chosen as the dependent
potential, it becomes necessary to divide each of the particle numbers by the particle
number corresponding to the dependent potential, ni, now making the ratio of nj/ni the
conjugate variable for mj (see Example 11.2 later).

The second law ensures that there will be a thermodynamic driving force in the direc-
tion of equilibrium. The equilibrium state is finally attained when there is no change with
time in any of the system’s macroscopic properties. Observing changes, unfortunately, is
not a useful test to determine whether a system has reached equilibrium, because there is
no standard length scale for time. From a practical standpoint, therefore, three possible
types of states can be envisioned: stable, metastable, or unstable, all of which were pre-
viously defined.

11.3 UNDERSTANDING PHASE DIAGRAMS

The equilibrium state of a system can be represented by a point in a (c þ 2)-dimensional
diagram. Phase diagrams are state diagrams for open systems, in which a particular state
of equilibrium is specified by the values of c þ 2 independent state variables (the rest are
fixed dependent variables), with additional information on the phases present under var-
ious conditions. Although one typically sees phase diagrams with potentials (T, P, m)
chosen as the state variables, there are actually many possible ways to select the set of
independent variables.

11.3.1 Unary Systems

Unary phase diagrams are two-dimensional graphs that display the phases of single-
component systems (e.g. elements) as a function of both temperature (abscissa) and
pressure (ordinate). Since there is only one component, it is not necessary to specify com-
position. Figure 11.2 shows the phase diagram for sulfur, which exists in two allotropes at
1 atm of pressure, rhombic (T, 368 K) and monoclinic (T. 368 K).

11.3.2 Binary Metallurgical Systems

Binary systems would require a three-dimensional graph, since composition, temperature,
and pressure are all variable. However, with condensed binary systems, the pressure is
fixed (normally to 1 atm) and the phase diagram can be reduced to a two-dimensional
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graph of composition on the abscissa (usually in weight percent or atomic percent) and
temperature on the ordinate. The pressure of one atm is usually not the equilibrium
value. However, the effect on the behavior of the system is negligible.

The possible types of invariant reactions were illustrated in Table 11.2. These
reactions, or their absence, determine the positions and shapes of the areas, known as
phase fields, in a phase diagram. Three-phase equilibrium is only allowed at a single
point (an invariant point) in a binary system; that is, three-phase fields are not allowed.
Binary systems however, may contain both single-phase and two-phase fields, and
when a two-phase field does exist, it must be located between two single-phase fields.

As an example, consider the phase diagram for the Bi–Sb system, shown in
Figure 11.3. This diagram is absent of invariant equilibria. A low-temperature
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Figure 11.2. Phase diagram for sulfur.
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Figure 11.3. Phase diagram for Bi–Sb at one atm pressure.
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single-phase continuous solid solution (Bi, Sb) is separated from a high-temperature
single-phase liquid solution by a two-phase field (sometimes called the pasty range).
The two-phase region is defined by the solidus and liquidus lines. The solidus shows
the temperature at which melting of the solid begins, on heating, or, alternatively,
where freezing ends on cooling. The liquidus gives the temperature at which melting
finishes (on heating) or freezing begins (on cooling). Thus, for any given alloy compo-
sition, the melting point range is given by the solidus and liquidus lines.

Anything less than complete mutual solid solubility between the constituents of a
binary alloy system, results in a two-phase mixture below the melting point. For example,
the Ag–Si system in Figure 11.4, in which there is no solid solubility, shows an invariant
equilibrium, the eutectic, occurring at 96.9 weight percent silver. An alloy of 96.9wt%
Ag (the eutectic composition) behaves like a pure substance and will melt entirely at a
constant temperature of 8358C. On cooling, a liquid with the eutectic composition will
precipitate as relatively small mixed crystals with the eutectic composition.
Hypoeutectic compositions consist of a mixture of large crystals of pure Si and small
eutectic crystals. Hypereutectic liquid compositions consist of a mixture of large crystals
of pure Ag and small eutectic crystals.

In many cases, there is partial solid solubility between the pure components of a
binary system, as in the Pb–Sn phase diagram of Figure 11.5, for example. The solubility
limits of one component in the other are given by solvus lines. Note that the solid
solubility limits are not reciprocal. Lead will dissolve up to 18.3 percent Sn, but Sn
will dissolve only up to 2.2 percent Pb. In Figure 11.5, there are two two-phase fields.
Each is bounded by a distinct solvus and liquidus line, and the common solidus line.
One two-phase field consists of a mixture of eutectic crystals and crystals containing
Sn solute dissolved in Pb solvent. The other two-phase field consists of a mixture of
eutectic crystals and crystals containing Pb solute dissolved in Sn solvent.
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Figure 11.4. Phase diagram for Ag–Si at one atm pressure.
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In any two-phase field of a binary phase diagram, an imaginary horizontal (isother-
mal) line called a tie line connects the two points, one on each phase boundary, represent-
ing the two phases in equilibrium at the temperature indicated by the line, as shown in
Figure 11.6. It is instructive to look at how this originates. A phase diagram may be con-
structed from a series of Gibbs energy curves for each phase at various temperatures, as a
function of composition, as shown for temperature T1 in Figure 11.6. At equilibrium, the
chemical potential of each component is the same in every phase, a condition that can
only be satisfied with a common tangent line. These two points of tangency are the
two points on the phase diagram connected by the tie line.

By employing the lever rule, a tie line may be used to determine the fractional
amounts of the phases present. For example, a tie line can be drawn in Figure 11.6
below the solidus and between the a and b solvus lines to determine the fractions of
those two components in the (a, b) solid solution: f a and f b. Since f a þ f b ¼ 1, the per-
centages of the two phases present at any point, x, on the tie line is calculated as follows:

% b ¼ length of line ax
length of line ab

� 100 % a ¼ length of line xb
length of line ab

� 100 (11:15)

If conjugate molar variables are substituted for potentials in phase diagrams, the one-
phase fields of the potential diagram separate (move away from one another) and a
two-phase field open ups, so long as the one-phase fields extend in the proper directions
(the potential and its conjugate variable increase in the same direction) and the one-phase
fields are not allowed to fold over themselves (Hillert, 1998). The two-phase field can
be filled with tie lines and, accordingly, the lever rule can be used not only in two-
dimensional graphs of two potentials (e.g. T, P), but also in two-dimensional graphs of
one potential and the conjugate molar variable of the other potential (e.g. T, Vm), or
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Figure 11.5. Phase diagram for Pb–Sn at one atm pressure.
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two-dimensional graphs of the two conjugate molar variables (e.g. Sm, Vm) to find the
average value of these quantities in the system, if f aand f b are known. The lever rule
only applies, of course, if the quantities are plotted with linear scales.

Example 11.2

Suppose onemeasures the total vapor pressure at a constant temperature above a
mixture of two volatile substances, A and B. The total vapor pressure increases if
more of A is added to the mixture. Use the lever rule on a two-dimensional
graph of pressure (at constant T ) versus the conjugate variable of the chemical
potential of A to determine if the vapor or liquid phase is richer in this
component?

Solution

A plot of P versus mA is simply a diagonal line with increasing P as mA is increased.
To the left of the line is liquid phase, to the right, vapor phase. If mA is now
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Figure 11.6. A temperature-composition phase diagram (bottom) is generated by a series of

Gibbs energy curves for each phase at multiple temperatures. The top shows the Gibbs energy

curves for the a solid solution and liquid phases at T1 (as a function of composition).
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replaced with its conjugate variable, nA/nB (mB is the dependent potential vari-
able), the one-phase liquid field and the one-phase vapor field separate. The
resultant two-phase field can be filled with tie lines, where the vapor is found
to be richer than the liquid in A if measured relative to B.

Many alloy systems contain one or more bipartite (two-sublattice) phases with
ordered crystal structures, as opposed to the random structure of a solid solution.
Examples include intermetallic phases, which are line compounds with a very narrow
stoichiometric range, or intermediate phases, which exist over wide stoichiometric
ranges. Figure 11.7 shows the Ga–La phase diagram. The line compound Ga2La
(mp ¼ 14508C) is a congruent phase, meaning that it melts isothermally without under-
going a change in composition. All the other intermetallic phases in this system are incon-
gruent; that is, two phases are formed from one phase on melting. The phase fields in this
system are equilibrium mixtures of terminal (end) phases and line compounds, or mix-
tures of two distinct line compounds. There happens to be no solid solubility between
the components in this particular intermetallic system, that is, there are no intermediate
phases, but this is not always the case.

11.3.3 Binary Nonmetallic Systems

Consider the Al–S system shown in Figure 11.8. This phase diagram displays several
features that are typical of many binary metal chalcogenides. There is only one stoichio-
metric line compound (bipartite phase) at room temperature, Al2S3. However, at one atm,
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Figure 11.7. The Ga–La phase diagram at one atm pressure showing several line compounds.
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it may exist as any one of three polymorphs, depending on the temperature. The high-
temperature phase, g-Al2O3, melts congruently. There is no solid solubility between
any of the phases in this system. Hence, one two-phase field exists to the left of Al2S3
(at T, 6608C) and another to its right (at T, 95.58C). Another interesting feature
are the two dome-shaped regions at temperatures above 10008C. These are regions of
liquid immiscibility and the lines representing the stability limits are known as spinodals,
as they fall on a sharp point in property diagrams with potential axes (Hillert, 1998).
Within these two-phase fields, there exists liquid aluminum and liquid Al2O3 (on the
left) and liquid sulfur and liquid Al2O3 (right). Above the domes, at higher temperatures,
the liquids become miscible.

Another nonmetallic binary system is shown in Figure 11.9. Although it contains
three elements, the system has just two independently variable constituents, CaO and
SiO2. There are two congruently melting crystalline phases and two incongruently melt-
ing crystalline phases. At the silica (SiO2)-rich end of the phase diagram, there is a liquid
immiscibility dome similar to that seen in Figure 11.8 for the Bi–O system. It is worth
noting that this liquid immiscibility is responsible for imparting certain optical properties
to silica-rich calcium silicate glasses, although the phase diagram does not indicate this.
By definition, a glass is a kinetically undercooled amorphous phase that, while lacking
long-range order (like solid solution alloys), has short-range periodicity. Depending on
the scale of the immiscibility (two-phase) texture relative to the wavelength of visible
light, a silicate glass may be opaque, transparent, or opalescent (West, 1985).

11.3.4 Ternary Condensed Systems

The addition of a third component to a condensed systemmakes two-dimensional plots of
phase equilibria difficult. Since a ternary ABC system is comprised of three binary
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Figure 11.8. The Al–S phase diagram at one atm pressure.
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subsystems, AB, AC, and BC, one option is to display the composition for each subsystem
on a different edge of an equilateral triangle. When temperature is added, a solid diagram
is formed with the equilateral triangle as the base and with the binary diagrams as the
vertical sides. This figure can be drawn as an isometric projection, as in Figure 11.10.

Unfortunately, reading values from this type of plot is difficult. Therefore, ternary
systems are usually represented with a series of two-dimensional vertical or horizontal
sections (which remove one degree of freedom) and projections of the solid diagram,
like those of Figure 11.11. This method for plotting ternary phase equilibria was intro-
duced by the Dutch physical chemist Hendrich Willem Bakhuis Roozeboom (1845–
1907), who succeeded J. H. van’t Hoff at the University of Amsterdam. Between 1901
and 1904, Roozeboom published the first volume and first part of the second volume
of the multi-volume treatise on heterogeneous equilibria entitled: Die Heterogenen
Gleichgewichte von Standpunkte des Phosenlehre (Heterogeneous Equilibria from the
Phase Rule Viewpoint) (Roozeboom, 1901, 1904).

Horizontal sections (Fig. 11.11a), called isotherms, are capable of presenting subso-
lidus equilibria for any possible composition in a ternary system, but only at a constant
temperature. Temperature is the degree of freedom lost. Vertical sections (Fig. 11.11b)
called isopleths are useful for showing equilibria and the stability ranges of phases
over a wide temperature range, but at a constant composition of one component or con-
stant ratio of two components. Sections taken through one corner and a congruently melt-
ing compound on one face, or between congruently melting compounds on different
faces, are called quasi-binary sections. They can be read like true binary phase diagrams.
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All other types of vertical sections are termed pseudobinary sections.When many or most
of the ternary compounds are located on the line connecting the primary compositions,
the line is called a binary join. In the Ca–Si–O ternary system, for example, the compo-
sitions CaSiO3, Ca3Si2O7, Ca2SiO4, and Ca3SiO5 are located between CaO and SiO2.
That system can thus be represented by a binary diagram with components CaO and
SiO2. Liquidus, solidus, and solvus surfaces (projections) of ternary phase diagrams

BC
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Figure 11.11. An isothermal horizontal section (a), a vertical section, or isopleth (b), and the

liquidus surface from the isometric projection of Figure 11.10.

Figure 11.10. An isometric projection showing three-phase equilibria.
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are displayed by adding isothermal contour lines or, as illustrated in Figure 11.11c, temp-
erature troughs with arrows indicating the direction of decreasing temperature to a hori-
zontal section. These diagrams are very useful for locating invariant points, such as
ternary eutectics.

The composition of a ternary system can be determined geometrically. From any
point within an equilateral triangle, the sum of the distances perpendicular to each side
is equal to the height of the triangle. The height is set equal to 100 percent and divided
into 10 equal parts. A network of smaller equilateral triangles is then formed by drawing
lines parallel to the three edges through the 10 divisions, although these lines are not
always shown in a ternary diagram. Each vertex of the triangle represents one of
the three pure components, 100 percent A, 100 percent B, and 100 percent C, while
the three edges of the triangle represent the three binary systems with 0 percent of the
third component. Referring to Figure 11.12, the percentage of component A in a
system with composition at point, P, is 40 percent A–40 percent B–20 percent C.

There are some important geometrical constraints for the phase equilibria topology in
isobarothermal sections of ternary systems. For example, the Dutch physical chemist
Franciscus Antonius Hubertus Schreinemakers (1864–1945) developed rules that deter-
mine the arrangement of stable and metastable univariant equilibria where they intersect
at an invariant point (Schreinemakers, 1912, 1915). (Incidentally, Schreinemakers also
authored the third volume of Die Heterogenen Gleichgewichte von Standpunkte des
Phosenlehre.) Schreinemakers found that the extrapolations of one-phase field bound-
aries must either both fall inside a three-phase field or one inside each of the two two-
phase fields. There are actually a number of Schreinemakers’ rules that are helpful for
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checking the validity of phase diagrams generated by either experimental or compu-
tational methods (Hillert, 1998).

Another constraint concerns two-phase equilibria. As in binary systems, tie lines
connect two points in equilibrium within a two-phase field. Recall how the points of tan-
gency on the Gibbs energy curves are the points connected by the tie line in the phase
diagram. In a ternary system, Gibbs energy curves become surfaces, where it will be
found that only specific compositions (termed an assemblage) can be in equilibrium in
a two-phase field of a ternary diagram. Hence, not all the tie lines in a horizontal section
will be parallel to each other and to the edges of the horizontal section. In such a case, the
tie line cannot be used to obtain the phase fractions within the two-phase region.

A third constraint regards three-phase equilibria. Three-phase fields are formed
where three two-phase fields converge. The three-phase region is defined by the intersec-
tion of three tie lines, one from each of the two-phase fields. The result is a tie triangle.
Hence, the boundaries of three-phase regions will be triangular, the corners representing
compositions that are in equilibrium. Figure 11.13 shows an isothermal section at 7508C
from the ternary system Bi2O3–CaO–CuO (Tsang et al., 1997), and Table 11.3 lists the
three-phase assemblages that are present in this horizontal section.

Any point within one of these tie triangles, not representing a distinct single-phase
compound, is an equilibrium mixture of the phases at the corners of the tie triangle.
For example, heating a mixture comprised of 30 percent Bi2O3, 30 percent CaO, and
40 percent CuO to 7508C, results in a three-phase equilibrium mixture of CuO,
Bi6Ca4O13, and Bi14Ca5O26. All of the oxides shown in the Bi2O3–CaO–CuO phase
diagram are binary line compounds. That is, these compounds are the corners of the
tie triangle corresponding to the edges of the phase diagram. A stoichiometric ternary
oxide would appear as a point inside a horizontal section of the phase diagram. If, how-
ever, an oxide can exist over a narrow compositional range, it will appear as a line seg-
ment. This type of behavior is quite common in ternary intermetallic phases, where

Figure 11.13. The 750 8C isotherm (horizontal section) for the Bi2O3–CaO–CuO system. (After

Tsang et al. (1997).)
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two components may have a wide stoichiometric range. In such a case, there will be a line
extending across the isotherm.

11.3.5 Metastable Equilibria

A metastable state is one in which the free energy is higher than the equilibrium value.
Metastable states may result from nonequilibrium process conditions. For example,
rapid solidification of a molten alloy might produce a bulk metallic glass, instead of a
crystalline phase. Of course, there is always a thermodynamic driving force to reach equi-
librium. Hence, metallic glasses may transform tomore stable phases at high temperatures
(albeit perhaps very slowly). Partial crystallization of an amorphous alloy on heating may
result in nanocrystalline grains within an amorphous matrix.

When the stable boundaries of an equilibrium phase diagram are extended as, for
example, in Figure 11.14, regions of metastability are shown. In eutectic systems
(Fig. 11.14a), metastable equilibria of the solvus lines usually form a liquid miscibility
dome. On the other hand, as illustrated in Figure 11.14b, metastable extensions of

TABLE 11.3. The Three-Phase Fields Shown in
Figure 11.13

CaO–Ca2CuO3–Bi2Ca2O5

CuO–Ca2CuO3–Bi2Ca2O5

CuO–Bi2Ca2O5–Bi6Ca4O13

CuO–Bi6Ca4O13–Bi14Ca5O26

CuO–Bi14Ca5O26–RHss

CuO–RHss–Bi2CuO4

Bi2CuO4–RHss–FCCss

CuO–Bi14Ca5O26–RHss

RHss ¼ rhombohedral solid solution, FCCss ¼ face centered cubic
solid solution.

(a) (b)

d g

Figure 11.14. Metastable extensions of equilibrium-phase boundaries. Solvus line extensions

usually form a liquid miscibility dome. Extensions of incongruently melting compounds form a

congruent melting point and extensions of congruently melting compounds often form

eutectics with non-neighboring phases.
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incongruently melting compounds form a congruent melting point and metastable
equilibria of congruently melting compounds often form eutectics with non-neighboring
phases.

11.4 EXPERIMENTAL PHASE-DIAGRAM DETERMINATIONS

As pointed out earlier, a phase diagram may be constructed from a series of Gibbs energy
curves. The Gibbs energy, as a function of composition (G/x curves), must be determined
for each phase at various temperatures. For example, the top portion of Figure 11.6 shows
theG/x curves at temperature T1 for one of the two solid solutions and the liquid phase in
a two-component system. The common points of tangency on the G/x curves are points
of equal chemical potential, corresponding to the compositions of these phases in
equilibrium. Thus, at T1, these points are plotted on an isothermal (horizontal) line.
This process is repeated, at many other temperatures, until the entire phase diagram
in the bottom portion of Figure 11.6 is generated.

Experimental phase-diagram determination involves the preparation of a large
number of samples spanning the entire compositional range, identification of all the
phases present for each temperature/composition point, and the careful measurement of
thermodynamic properties as well as phase transformation temperatures. Accordingly, a
variety of experimental techniques is typically utilized in any one case.

Thermal analysis methods, such as differential scanning calorimetry (DSC) and the
related differential thermal analysis (DTA), are a type of nonisothermal technique in
which phase transformations are signaled by the latent heat, evolved or absorbed as a
sample is heated and cooled. In DSC, integration of the area of the peak gives a direct
measure of the enthalpy of transformation. Another nonisothermal technique involves
electromotive force (EMF) measurements on electrochemical cells made from the
materials under study. Although this method signifies phase transitions by changes in
the slope of the EMF versus temperature curves, the relation between EMF and tempera-
ture is not always linear, which complicates determination of the enthalpy. Other noni-
sothermal techniques include measurement of the resistivity of a sample, which
changes at a phase transition, as well as dilatometric techniques (sample expansion
and contraction measurements). The difficulty with determining phase diagrams by non-
isothermal methods is that they can easily result in nonequilibrium boundaries, unless
sample heating and cooling is carried out slowly enough to allow for equilibration.

Isothermal techniques, by contrast, are inherently better suited for allowing a sample
to reach equilibrium. These methods are typically what are used to identify the phase(s)
present. These methods include optical microscopy (metallography), electron probe
microanalysis (EPMA), and XRD. In each method, sample analysis can be performed
at a series of different temperatures, or isotherms. It should be noted, however, that
these techniques could also result in inaccurate phase boundaries if an inadequate
number of isotherms are made.

As can be imagined, the complete experimental determination of an entire phase dia-
gram can be very time consuming and costly, especially for complex systems. An alterna-
tive approach involves the coupling of thermodynamic modeling with experimentation,
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either to reduce the number of experiments required, or to more efficiently plan them, or
even both. Thermodynamic modeling is the topic of the remainder of the chapter.

11.5 PHASE-DIAGRAM MODELING

Thermochemical data on the separate phases in equilibrium are needed to construct accu-
rate phase diagrams. The Gibbs energy of formation for a pure substance as a function of
temperature must be calculated from experimentally determined temperature-dependent
thermodynamic properties such as enthalpy, entropy, heat capacity, and equilibrium
constants. By a pure substance, one generally means a stoichiometric compound in
which the atomic constituents are present in an exact, simple reproducible ratio.

The Gibbs energy of a solution, on the other hand, can be computed from those of the
pure components plus additional interaction and excess free-energy terms. Liquids and
substitutional solid solutions can be described as single-phases, in which all the lattice
sites are equivalent. Components randomly mix among these sites, the solute species
substituting for the solvent species in the lattice. Substitutional solutions and multiple-
phase mixtures are the topic of Section 11.5.1. In other solid solutions, the solute is
confined to the interstices between solvent atoms. In this case, the solvent atom sites
and interstitial sites constitute two separate sublattices. Sublattice models are discussed
in Section 11.5.2. In phase diagram calculations, the phases in equilibrium may be
characterized thermodynamically using different models, each appropriate for a particular
phase’s type of crystal structure.

11.5.1 Gibbs Energy Expressions for Mixtures and Solid Solutions

At one atm pressure, the Gibbs energy of a two-phase mechanical mixture containing
nA moles of component A and nB moles of B, in which there is no solubility between
components, is:

G ¼ xA W GA þ xB W GB (11:16)

In this expression, W GA is the standard (W signifies the value at P ¼ 1 atm) molar Gibbs
energy of the pure component A and xA is the mole fraction of component A. The
Gibbs energy of the mechanical mixture serves as a reference state for the properties of
a solution, in which there is chemical mixing between components on an atomic or
molecular level.

The total Gibbs energy of a two-component solution containing nA moles of
component A and nB moles of component B is obtained by integrating the last term of
Eq. 11.13 under the condition of constant composition in order that the partial molar
Gibbs energies be constant. That expression can be written out explicitly as:

dG ¼ @G

@nA

� �
P,T ,nB

dnA þ @G

@nB

� �
T ,T ,nA

dnB (11:17)
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If the solution is at constant temperature and one atm pressure, the result of integration is:

(nA þ nB)G ¼ nA W GA þ nB W GB (11:18)

where the symbol W GA has been used to represent the partial molar Gibbs energy of the
Ath component (which is also the chemical potential, mA). Note that this quantity is equal
to the molar Gibbs energy when the component is pure. Here each side of Eq. 11.14
will be divided by (nA þ nB) and, in general, xi will be used as the symbol to represent
the mole fraction of the ith component, for example, xA ¼ nA/(nA þ nB). This gives the
following expression for the total Gibbs energy of the solution:

G ¼ xA W GA þ xB W GB (11:19)

The Gibbs energy of mixing, DGmix, is defined as the difference between Eqs. 11.19
and 11.16.

DGmix ¼ (xA W GA þ xB W GB)� (xA W GA þ xB W GB) (11:20)

Equation 11.20 can be rewritten using the chemical potential in place of the partial molar
Gibbs energy. Doing so, while also allowing for nonstandard state conditions gives:

DGmix ¼ xA(mA��mA)þ xB(mB ��mB) (11:21)

In Eq. 11.21, mA is equivalent to the partial molar Gibbs energyGA and �mA is the chemi-
cal potential of the pure component A. If both components have low vapor pressures, the
chemical potential of the ith component in solution relative to the pure component is
approximately equal to:

mi ��mi ¼ RT ln
Pi
�Pi

� �
(11:22)

where �Pi is the vapor pressure of the pure component i at the same temperature as the
solution. Hence, Eq. 11.21 becomes:

DGmix ¼ RT xA ln
PA
�PA

� �
þ xB

PB
�PB

� �� �
(11:23)

If the atomic mixing in a solid or liquid solution is a random mingling of similar size
atoms with negligible interactions, the solution obeys Raoult’s law (Raoult, 1887) and is
said to be ideal. In this case:

Pi ¼ xi
�Pi (11:24)

where xi is the mole fraction of the ith component. Substitution of Eq. 11.24 into
Eq. 11.23 gives the Gibbs energy of mixing for an ideal two-component solution,
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DGmix(ideal), which may be expressed as:

DGmix(ideal) ¼ RT[(xA ln xA)þ (xB ln xB)] (11:25)

where �R[xA ln xA þ xB ln xB] is termed the ideal entropy of mixing. Finally, combining
Eqs. 11.16 and 11.20, obtains:

(xA W GA þ xB W GB)� (xA W GA þ xB W GB) ¼ RT[(xA ln xA)þ (xB ln xB)] (11:26)

When DGmix has a positive sign, the components are immiscible. No solution formation
will occur, because the system is in a lower energy state as a two-phase mixture. This is
the case with the metallic Ag–Si, for example, where a two-phase field expands the entire
compositional range at temperatures below the solidus (melting point). A polycrystalline
Ag–Si alloy of any composition in this system is simply a mechanical mixture of grains
of pure Ag, or grains of pure Si, in a matrix of Ag–Si eutectic. Note, however, at temp-
eratures above the liquidus a single-phase liquid solution (Ag, Si) does form.

If DGmix is negative, a system is able to lower its total Gibbs energy by forming a
solution, the extent of which will depend on the magnitude of DGmix. In the Bi–Sb
system (Fig. 11.2), for example, DGmix is highly negative below the solidus, correspond-
ing to a high mutual-solid solubility. A single-phase continuous substitutional solid sol-
ution, in which Bi and Sb randomly mix in the lattice, exists over the entire compositional
range. By contrast, in the Pb–Sn system, there is only partial solid solubility of one
component in another, and a two-phase field exists below the solidus and between the
terminal phases, which are bordered by solvus lines, where the limits of solubility of
Pb in Sn and Sn in Pb are located. As in the Ag–Si system, a single-phase liquid solution
is present above the liquidus in the Bi–Sb and Pb–Sn phase diagrams.

Real solutions deviate from ideal behavior. The deviation in the Gibbs energy of
mixing is measured with the excess Gibbs energy function, GEX, which can be positive
or negative, representing positive or negative deviations from ideality:

DGmix(real) ¼ GEX þ RT[xA ln xA þ xB ln xB] (11:27)

The regular solutionmodel, introduced by the American UCBerkeley chemist Joel Henry
Hildebrand (1881–1983) is the simplest way to consider these other contributions to the
Gibbs energy (Hildebrand, 1929). In this case, GEX is of the form:

GEX ¼ xAxBV (11:28)

whereV is an empirical composition-independent interaction energy parameter. Positive
values represent repulsive interactions between components and negative values
represent attractive interactions. Therefore, the Gibbs energy of mixing in the binary
solution, gives:

DGmix(real) ¼ xAxBVþ RT[xA ln xA þ xB ln xB] (11:29)
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Thus, the total Gibbs energy of the binary system, as given by the regular solution
model, is:

G ¼ xA W GA þ xB W GB þ RT[xA ln xA þ xB ln xB]þ xAxBV (11:30)

Models incorporating linear composition dependencies toV (the subregular solution
model), as well as others allowing for complex composition dependencies, have been
developed. The most commonly used model is by Austrian-born American immigrant
Otto R. Redlich (1896–1978) and Albert Theodore Kister (d. 2002) of the Shell
Development Company in 1948, which is now known as the Redlich–Kister polynomial
(Redlich and Kister, 1948). The total Gibbs energy of a binary system, using the Redlich–
Kister model is:

G ¼ xA W GA þ xB W GB þ RT[xA ln xA þ xB ln xB]þ xAxB
X
v

Vv
i (xA � xB)

v (11:31)

which becomes the regular model if v ¼ 0, and the subregular model if v ¼ 1. In practice,
v does not usually rise above two (Saunders and Miodownik, 1998).

The excess Gibbs energy of a ternary (or higher-order) substitutional solution at a
composition point p can be estimated geometrically by extrapolation of the excess
Gibbs energies in the binary subsystems at points a, b, and c. There are several possible
ways of doing this, but the most commonly used method is by Muggianu, in which the
total Gibbs energy becomes equal to (Muggianu et al., 1975):

G ¼ xA W GA þ xB W GB þ xC W GC þ RT[xA ln xA þ xB ln xB þ xC ln xC]

þ xAxB
X
v

Vv
i (xA � xB)

v þ xAxC
X
v

Vv
i (xA � xC)

v

þ xBxC
X
v

Vv
i (xB � xC)

v (11:32)

Equation 11.32 is used to model a single-phase liquid in a ternary system, as well as a
ternary substitutional-solid solution formed by the addition of a soluble third component
to a binary solid solution. The solubility of a third component might be predicted, for
example, if there is mutual solid solubility in all three binary subsets (AB, BC, AC).
Note that Eq. 11.32 does not contain ternary interaction terms, which are usually small
in comparison to binary terms. When this assumption cannot, or should not, be made,
ternary interaction terms of the form xAxBxCLABC where LABC is an excess ternary inter-
action parameter, can be included. There has been little evidence for the need of terms of
any higher-order. Phase equilibria calculations are normally based on the assessment of
only binary and ternary terms.

11.5.2 Gibbs Energy Expressions for Phases with
Long-Range Order

When there are significant differences in the electronegativities, atomic radii, and/or
crystal structures (bonding preferences), between the components, rather than randomly
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mixing, they assume an atomic arrangement exhibiting long-range order. This class
of substance constitutes a very large fraction of the new materials reported in the scien-
tific literature. Examples include interstitial solid solutions, intermediate phases, disor-
dered stoichiometric compounds, and even ionic liquids. Such phases can be modeled
thermodynamically as solutions with interlocking sublattices, on which the different
species mix.

In general, the sublattice models consist of two sets of positions (e.g. anions and
cations), or sublattices, that are distinguishable by different fractional occupancies of
each component. If each sublattice is totally occupied by a different species, this corre-
sponds to full long-range order. When detailed crystallographic data is incorporated
into the sublattice model, it is often referred to as the compound energy formalism.
Essentially, this simply corresponds to the use of multiple sublattices, one for each
type of site in the crystal structure. The compound energy, then, is the Gibbs energy of
all the end-member compounds of the solution phase, each with the same crystal structure
as the original solvent.

The difference between the compound energy model and the simple two-sublattice
model can be illustrated with two ternary intermetallic phases from the Al–Mg–Zn
system. One of these two phases is known to contain a constant composition of 54.5
atomic percent magnesium and an extended homogeneity range of aluminum and zinc,
corresponding to the formula Mg6(Al,Zn)5. However, no crystallographic data is avail-
able for this phase. Therefore, it is appropriately thermodynamically modeled by two
sublattices, in which one sublattice is exclusively occupied by Mg, while Al and Zn
are allowed to randomly mix on the second sublattice (Liang et al., 1998).

By comparison, early crystallographic data by Bergman and Pauling indicate that the
three components in the BCC phase Mg32(Zn,Al)49 (Pearson symbol cI162) are distrib-
uted with specific fractional occupancies over four distinct lattice sites in the space group
Im3 (Bergman et al., 1952). This phase was thus modeled with four sublattices (Liang
et al., 1998). This compound is a cubic Frank–Kasper phase. Of the 162 atoms in the
unit cell, 98 have icosahedral coordination. Metastable icosahedral quasi-crystals of
Mg32(Zn,Al)49 with five-fold rotational symmetry (rather than the BCC phase) and,
hence, no three-dimensional translational periodicity, can be obtained by rapid solidifica-
tion (Sastry and Ramachandrarao, 1986).

The Gibbs energy expressions for sublattice solutions are actually quite similar to the
regular solution model. This is because a substitutional solution can be considered as
consisting of a single sublattice on which the atoms mix. However, in the compound
energy model, the equations for multiple sublattices can quickly get rather complicated.
For the simplest case, in which there is only a single component (z) of fixed stoichiometry
on one sublattice (v) and two randomly mixed components (i, j) in a second sublattice (u)
(e.g. Mg6(Al,Zn)5), the Gibbs energy is written as:

G ¼
X
i

yi W Gi:z þ RTu
X
i

yi ln yi þ
X
i

X
j.i

yiyj
X
v

Lvij(yi � yj)
v (11:33)

In this expression, yi is the fractional site occupation for component i (the number of
atoms of component i on the sublattice, divided by the total number of sites on that
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sublattice), Lvij is an interaction energy parameter for mixing between components i and j
on the sublattice, and W Gi : z is the Gibbs energy of the compound when the sublattice u is
completely occupied by i.

Interstitial solid solutions are treated similarly. The structure is again approximated
with a two-sublattice model, but where one sublattice is occupied by substitutional
elements, and one by the smaller interstitial elements (e.g. C, N, H) and vacancies. It
follows, from Eq. 11.27, that for a binary interstitial solution, the Gibbs energy is
given by:

G ¼ yi W Gi:z þ yVa W GVa:z þ RT(yi ln yi þ yVa ln yVa)

þ yiyVa
X

LviVa(yi � yVa)
v (11:34)

where Va denotes a vacancy. All the sites in the second sublattice are vacant in the
compound whose Gibbs energy is GVa:z, this term is thus the same as that of the pure
substance, Gz.

A large number of oxides reported in the literature are actually sublattice solutions.
Partial substitution of one species for another in one sublattice is a common approach for
tailoring the properties of materials. In cases where the solute ions and solvent ions are of
different charge (aliovalent), charge neutrality must be maintained. For example, at temp-
eratures above 10008C, lanthanum oxide, La2O3, is known to dissolve considerable
amounts of SrO, and SrO dissolves a small amount of La2O3. It is believed that the
dissolution mechanism in the case of strontium dissolution in La2O3 involves aliovalent
cation (La3þ/Sr2þ) substitution with the formation of charge compensating anion (O22)
vacancies (Grundy et al., 2002). For the general case of two randomly distributed cations
(i, j) on a cation lattice, with anions (k) and vacancies (Va) randomly distributed on
the anion lattice, (i, j)n(k, Va)m, the Gibbs energy can be expressed as:

G ¼ yvi y
m
k

W Gi:k þ yvj y
m
k

W Gj:k þ yvi y
m
Va

W Gi:Va þ yvj y
m
Va W Gk:Va

þ RT[n(yvi ln y
v
i ln y

v
j )þ m(ymk ln y

m
k þ ymVa)]þ GEX (11:35)

where, in a first approximation, GEX is sometimes set to zero.

Example 11.3

The dissolution of strontium in La2O3 has been modeled (Grundy et al., 2002)
with a two-sublattice expression, in which Sr2þ and La3þ randomly mix on the
cation sublattice and vacancies are introduced in the anion sublattice to maintain
charge neutrality, that is, (La3þ, Sr2þ)2(O

22, Va)3. Similarly, the dissolution of
lanthanum in SrO was modeled by assuming that La3þ ions and charge compen-
sating vacancies replace Sr2þ in the cation sublattice, that is (Sr2þ, La3þ,
Va)1(O

22)1. Write the Gibbs energy expression in the compound energy model
for each phase.
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Solution

Using Eq. 11.35, for the La2O3 solid solution, gives:

G ¼ yv
La3þy

u
O2� W GLa3þ:O2� þ yv

Sr2þy
u
O2� W GSr2þ:O2� þ yv

La3þy
u
Va

W GLa3þ:Va

þ yv
Sr2þ y

u
Va

W GSr2þ:Va þ RT [2(yv
La3þ In yv

La3þ þ yv
Sr2þ In yv

Sr2þ )

þ 3(yu
O2� In yuO2� þ yuVa In yuVa)]þ GEX

Modifying Eq. 11.35, to account for vacancies on the cation lattice, gives for the

SrO solid solution:

G ¼ yv
Sr2þy

u
O2� W GSr2þ:O2� þ yv

La3þ y
u
O2� W GLa3þ:O2� þ yvVaY

u
O2� W GVa:O2

þ RT [(yv
La3þ In yv

La3þ þ yv
Sr2þ In yv

Sr2þ þ yuVa In yuVa)]þ GEX

In the type of solutions described by Eqs. 11.33 and 11.34, each component is randomly
distributed over only one sublattice. In many cases, the constituents are randomly distrib-
uted in more than one sublattice. For a random distribution of two components (i, j)
on two sublattices (v, u), the Gibbs energy can be expressed (Hillert and Staffansson,
1970) as:

G ¼ yvi y
m
i

W Gi:i þ yvj y
m
j

W Gj:j þ yvi y
m
j

W Gi:j þ yvj y
m
i

W Gj:i

þ RT[(yvi ln y
v
i )þ (yvj ln y

v
j þ ymi ln y

m
i þ ymj ln y

m
j )]þ GEX (11:36)

Example 11.4

The intermetallic phase b–SbSn has the rock-salt structure with one lattice
almost exclusively occupied by antimony and the other by tin. Write the Gibbs
energy expression using the compound energy model for a ternary phase includ-
ing bismuth, where it is assumed that Bi goes preferentially into the mostly Sb
sublattice.

Solution

Using Eq. 11.36, gives:

G ¼ yvSb y
u
Sb

W GSb:Sb þ yvSn y
u
sn

W GSn:Sn þ yvSb y
u
Sn

W GSb:Sn þ yvSn y
u
Sb

W GSn:Sb

þ yvBi y
u
Sn

W GBi:Sn þ yvBi y
u
Sb

W GBi:Sb þ RT (yvSb In yvSb þ yv
Sn In yvSn

þ yvBi In yv
Bi þ yuSn In yuSn þ yuSb In yuSb)þ GEX
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Example 11.5

For each of the following oxides, decide if the compound energy model would be
appropriate for modeling the Gibbs energy of formation.

1. Pb2MnReO6, prepared under 1 atm pressure at 5508C by direct reaction of
the oxides.

Crystallographic data – space group P21/n, Z ¼ 2, cation positions:

Atom Site x y z Occ.

Pb 4e 0.9743 0.0126 0.2458 1
Mn1 2c 0.5 0 0.5 0.86
Re1 2c 0.5 0 0.5 0.14
Mn2 2d 0.5 0 0 .86
Re2 2d 0.5 0 0 0.14

2. La2CaB10O19, prepared under 1 atm pressure at 9308C by direct reaction of
the oxides.

Crystallographic data – space group C2, Z ¼ 2, cation positions:

Atom Site x y z Occ.

La 4c .1624 0 1405 1
Ca 2b 0 20.1855 0.5 1
B1 4c .4326 0.1919 0.1249 1
B2 4c 20.0397 0.3219 0.1608 1
B3 4c 0.3272 20.4884 0.2072 1
B4 4c 0.1142 20.4406 0.2688 1
B5 4c 0.2327 0.0212 0.5289 1

3. Ce2Zr2O7.36, prepared under argon at room temperature from reaction of
Ce2Zr2O7 with NaOBr.

Crystallographic data – space group Fd3m, Z ¼ 8, atom positions:

Atom Site x y z Occ.

Ce 16c 0 0 0 1
Zr 16d 0.5 0.5 0.5 1
O1 48f 0.4058 0.125 0.125 1
O2 8a 0.125 0.125 0.125 1
O3 8b 0.375 0.375 0.375 0.36

Solution

1. From the crystallographic data, Mn and Re are seen to both occupy the
same two sets of lattice sites (2c, 2d ). This phase is a sublattice solution
and could be described by Eq. 11.36.
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2. This is a stoichiometric compound, not a solid solution. Each type of cation
exclusively occupies its own set of lattice sites; the sublattices are not
alloyed. The compound energy model does not apply. The free
energy of formation must be measured.

3. This compound was prepared by intercalation of oxygen into the
interstices of a host structure. The Gibbs energy of the product should
be modeled with Eq. 11.34.

11.5.3 Other Contributions to the Gibbs Energy

The Gibbs energy models for the various types of phases that have been described
thus far have been based on random distributions of atoms on one or more sublattices.
Full long-range order occurs if the solute atoms completely occupy one sublattice and
the solvent atoms completely occupy another. However, when the sublattices are not
completely occupied, the atoms have a choice of which particular sites on their sub-
lattice they want to reside in. This gives rise to the possibility for short-range ordering.
Short-range order means that the atoms do not arrange themselves at random within
each sublattice. There is always a tendency for short-range ordering. In order to
obtain the highest possible accuracy in a thermodynamic description of a system,
the expression for the configurational entropy should account for the occurrence of
this ordering. The description of short-range order is usually made by statistical ther-
modynamic or combinatoric models like the cluster variation method (CVM) and the
MC method.

In fact, although the CVM has been extended to the treatment of atoms in a solid sol-
ution, it was originally developed to describe cooperative magnetic phenomena, that is,
the configurations of spins in a ferromagnet (Kikuchi, 1951). Magnetism is a physical
effect that can contribute significantly to the total Gibbs energy for a system. The
energy released can often exceed those of ordinary phase transformations (Saunders
and Miodownik, 1998). The effects on phase equilibria can include the following: a
marked change in solid solubility, distortion of miscibility gaps, and stabilization of meta-
stable phases. In fact, the magnetic Gibbs energy may be large enough to even cause
structural changes in unary systems (e.g. pure elements).

Zener was one of the first to examine the influence of magnetism on phase equilibria,
although he considered only binary iron alloys (Zener, 1955). He postulated that the
effect of alloying on the Gibbs energy is proportional to the effect on the Curie tempera-
ture, TC. Zener assumed that changes to the Curie temperature are linearly proportional to
changes in composition, that is, DTC/Dx is constant. With these assumptions, the follow-
ing expression holds:

Gmag(alloy)� Gmag(Fe) ¼ �x dT
dx

Smag(Fe) (11:37)

where Smag is the magnetic entropy. When the end-members exhibit different magnetic
states, however, nonlinear behavior in TC may be observed (Saunders and Miodownik,
1998). It is assumed in Zener’s model that, upon alloying, changes in the mean
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number of unpaired spins per Fe atom, n and, hence, the magnetization, will be reflected
in changes in TC. Zener’s model was superseded by formulations that attempt to simulate
experimental values for the magnetization, in addition to TC. The reader is referred to
more specialized texts, such as Saunders andMiodownik (1998), for a detailed discussion
of magnetic formulations and short-range ordering models.

11.5.4 Phase Diagram Extrapolations – the CALPHAD Method

The use of computer methods for solving thermodynamic problems is known as compu-
tational thermodynamics.When employed specifically for generating phase diagrams, the
term CALPHAD (CALculation of PHAse Diagrams) is commonly used. The CALPHAD
technique, which has made it possible for nonthermodynamic experts to routinely make
phase diagram calculations, is now widely practiced by scientists and engineers from
many different disciplines. The CALPHAD journal, dedicated to reporting calculated
phase diagrams and thermodynamic assessments, has been published since 1977.

An excellent example illustrating the value of the CALPHAD method involves the
quest for lead-free solder alloys. It is believed that the major constituents of most lead-
free solders will come primarily from a group of 13 elements: Ag, Al, Au, Bi, Cu, Ga,
Ge, In, Mg, Sb, Si, Sn, and Zn. One of the most important criteria for any solder alloy
is its melting point range. This information can be obtained directly from the phase dia-
gram. The number of possible alloy systems for the above group of thirteen elements is
given by combinatorics as n!/[m!(n2m)!], where n ¼ 13, and m ¼ 2 for binary systems,
3 for ternary, and so on. Although all of the phase diagrams for the possible binary com-
binations have been published, only a fraction of the 286 ternary systems is available. It is
obvious that phase diagram calculations can greatly expedite the acquisition of melting
point data, in comparison to experimentation, in such a situation (Lalena et al., 2002).

The value of the CALPHADmethod lies not in the ability to generate phase diagrams
for thermodynamically assessed systems (that has already been done experimentally!),
but rather in its ability to make phase equilibria predictions on multiple-component sys-
tems (e.g. ternary) for which phase diagrams are not available. The predictions are based
on extrapolation from the requisite subsystems. In fact, the term CALPHAD is normally
taken to mean phase diagram extrapolation. By extrapolation, one is essentially calculat-
ing the phase boundaries in a system by modeling the free energies of the substances, as a
new component is added, through equations like those given in Sections 11.5.1 and
11.5.2. The substances may be liquids, substitutional solutions, or sublattice phases.
For example, a binary oxide with composition AxByOz can be extrapolated into a ternary
phase in which a third metal, C, substitutes on one of the cation sublattices, for example,
(A, C )xByOz, Ax(B, C )yOz, or (A, C )x(B, C )yOz. It is very important to understand that
extrapolation cannot be use to predict the existence of a hitherto unknown stoichiometric
compound or phase with a unique crystal structure. Consequently, it is also impossible to
calculate accurate phase boundaries for a system as a new component is added unless
thermochemical information for every existing phase is known. For example, Figure
11.15 illustrates how the unaccounted-for existence of a high-melting line compound
might result in largely erroneous liquidus and solidus contours in a calculated
phase diagram.
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Extrapolations enable one to find the stability ranges for all the known phases of the
system as new components are added. For example, extrapolation allows us to predict the
solubility extent of A in the lattice of B and the solubility extent of B in the lattice of A. Of
course, for the complete phase diagram theGibbs energy calculationsmust be includes for
all the allotropic forms of each element and, indeed, all the structures exhibited by every
element (even nonallotropic ones) across thewhole system. Of great utility in accomplish-
ing this are lattice stabilities, defined as the Gibbs energy differences between all the
various crystal structures in which a pure element may exist in the system, as a function
of T, P, and V (e.g. W GHCP-Fe 2 W GFCC-Fe). Equivalently, the lattice stability may be con-
sidered as the Gibbs energy of formation of one state of a pure element from another.

It is possible in many cases to predict highly accurate phase equilibria in multi-
component systems by extrapolation. Experience has shown extrapolation of assessed
(n 2 1) data into an nth order system works well for n � 4, at least with metallurgical
systems. Thus, the assessment of unary and binary systems is especially critical in the
CALPHAD method. A thermodynamic assessment involves the optimization of all
the parameters in the thermodynamic description of a system, so that it reproduces the
most accurate experimental phase diagram available. Even with experimental determi-
nations of phase diagrams, one has to sample compositions at sufficiently small intervals
to ensure accurate reflection of the phase boundaries.

Several computer programs for extrapolating phase diagrams are commercially avail-
able, including Thermo-calc (Sundam et al., 1985), ChemSage (Eriksson and Hack,
1990), PANDAT (Che et al., 2001), and MT-DATA (Davies et al., 1995). Each of
these software packages is similarly constructed and consists of no fewer than four inte-
gral parts:

1. A user interface allowing one to easily specify the temperature, pressure, and
composition ranges over which equilibrium calculations are to be made.

A AB B A B

Figure 11.15. Neglecting the existence of a high-melting line compound (AB) in the phase

equilibria calculations (left) can result in a largely erroneous liquidus or solidus in an

extrapolated phase diagram (right).
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2. A database of thermodynamically assessed systems, containing critically checked
and internally consistent thermochemical data for the phases taking part in the
equilibrium.

3. The algorithms (proprietary!) for making equilibrium calculations, normally
based on the minimization of the total Gibbs energy of a system.

4. A graphics routine for plotting or printing the results, namely, the phase diagram.

The general methodology used can be described as follows. The user sets up the problem
by specifying the type of calculation to be made (e.g. isotherm, isopleth, or liquidus pro-
jection) and then selects the database from which the thermodynamic data will be
imported. The system components are defined, as well as the phases that are present
and the temperature, pressure, and composition ranges over which to make the equili-
brium calculations. All of this is accomplished via the user interface.

Databases with assessed thermodynamic data for hundreds of substances are avail-
able, including: alloys, semiconductors, geochemical compounds (silicates and other
main-group oxides), aqueous solutions, and molten salts. The bulk of the commercially
available databases are onmetallurgical systems since the CALPHADmethod finds ready
applicability in the fields of metals processing and alloy development.

Common approaches for the tailoring of nonmetallic (ceramic) materials properties
involve topochemical methods (those where the crystal structure remains largely unaf-
fected) and the preparation of phases in which one or more sublattices are alloyed. In prin-
ciple, such materials are within the realm of CALPHAD. On the other hand, as has
already been stated, extrapolation does not really aid the discovery of new or novel
phases, with unique crystal structures. Furthermore, assessed thermochemical data for
the vast majority of ceramic systems, particularly transition metal compounds, are pre-
sently not available in commercial databases for use with phase diagram software. This
does not necessarily preclude the use of the CALPHAD method on these systems;
However, it does require the user to carry out their own thermodynamic assessments
of the (n 2 1)th-order subsystems and to import that data into a database for extrapolation
to nth-order systems, which is not a trivial task.

One normally finds the thermodynamic properties in a database given in the form of
parameters to some kind of polynomial function like Eq. 11.38 below, expressing the
temperature dependence to G.

G(T) ¼ aþ bT þ cT ln (T)þ
Xn
2

dnT
n (11:38)

Each of the concentration-dependentG terms in the equations presented earlier can have a
temperature dependency given by Eq. 11.38. Similar equations can be written for
other thermodynamic properties, from which the Gibbs energy can be computed, such
as the enthalpy of formation, entropy, and heat capacity. Equation 11.38 is a much
more efficient way of incorporating information into a software database than tables
containing discrete values, which is important for minimizing computer resource
requirements.
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Finally, the equilibrium phase boundaries in a phase diagram are computed by
minimizing the total Gibbs energy of the system. Another approach is to minimize
the difference between the chemical potentials of the components in all the phases
that are present at each value for the composition, temperature, and pressure. The chemi-
cal potentials of the components in each phase are the same at equilibrium. The source
codes used by the individual programs are highly proprietary, but most of them essen-
tially work by a local minimization routine, such as the technique of steepest descent
using Lagrange’s method of undetermined multipliers. The procedure can be found in
most undergraduate calculus textbooks. It is a general method, owing to Joseph
L. Lagrange (1736–1813), for finding critical points (minima) of a function subject
to constraints. The number of multipliers used is determined by the number of con-
straints. For thermochemical calculations, example constraints include mass balance
or the compositional ranges for each phase.

Once the system and constraints are defined, the user supplies an initial guess (start
point) for the equilibrium values. An iterative process begins and convergence is achieved
when the difference in the total Gibbs energy between two successive steps is below a
predefined limit. It should be pointed out that the closer the start point is to the true
value, the less iterations required and the less the likelihood that local minima owing
to metastable equilibria interfere with finding the one true global minimum, or one
true equilibrium value for the Gibbs energy. One must always be aware of the possibility
of obtaining metastable diagrams, from getting trapped in local minima; easy even for
skilled and experienced users. Of course, in some cases, the researcher may very well
be primarily interested in the metastable equilibria!

Mats H. Hillert (b. 1924) and Lawrence (Larry) Kaufman (b. 1931) studied
together at M. I. T. Kaufman (right photo) received his D.Sc. in physical
metallurgy in 1955, and Hillert (left photo) his D.Sc. in 1956. Hillert became a
research associate with the Swedish Institute of Metals Research in 1948. In
1961, he was appointed professor of physical metallurgy at the Royal Institute
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of Technology in Stockholm (KTH), becoming emeritus in 1990. Hillert devised
Gibbs energy expressions for sublattice phases, time-temperature
transformation diagrams for steels, and contributed to the understanding of
the energetics of liquid phase separations, such as spinodal decomposition.
He authored the textbook Phase Equilibria, Phase Diagrams, and Phase
Transformations. Hillert was elected a foreign associate of the United States
National Academy of Engineering in 1997.

Kaufman was with the Lincoln Laboratory at M. I. T. from 1955 to 1958,
ManLabs from 1958 to 1988, and Alcan Aluminum Corporation from 1988 to
1996. Kaufman derived expressions for thermochemical lattice stabilities for
allotropic and nonallotropic elements. He provided an early model for the
thermodynamic description of iron, including magnetic contributions, and he
was the founding editor of the CALPHAD journal. Kaufman is now a consultant
and lecturer in the materials science and engineering department at M. I. T.

Through their parallel and independent efforts on both sides of the Atlantic,
which began in the 1950s with mathematically modeling known phase diagrams
for unary and binary systems, Kaufman and Hillert are considered founding
fathers of the CALPHAD method, the field of computational thermodynamics
concerned with the extrapolation of phase diagrams for multicomponent
systems. (Source: L. P. Kaufman, personal communication, February 08, 2004.)

(Photo courtesy of the department of materials science and engineering, KTH (Royal
Institute of Tehnology). Reproduced with permission.)

(Photo courtesy of Larry Kaufman. Reproduced with permission.)

PRACTICE PROBLEMS

1) Define the following terms in the context of thermodynamics: system (open and
closed), component, phase, an state property.

2) Differentiate between the following: entropy, free energy, internal energy, enthalpy.

3) List as many thermodynamic state functions as you can. Which are intensive? Which
are extensive?
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4) List as many conjugate pairs as you can.

5) Define the state property chemical potential. How does the chemical potential give
another way of looking for phase equilibria?

6) Describe isopleths and isotherms of ternary phase diagrams.

7) What is a tie line? What is the lever rule?

8) What is a substitutional solution? What is an ordered sublattice phase?

9) Describe the basic premise behind the CALPHAD method.
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12

SYNTHETIC STRATEGIES

In this chapter, some of the synthetic strategies employed in inorganic materials synthesis
are considered. Materials synthesis is an intellectually vast and economically important
area that cannot be covered in a single text, let alone a single chapter. The purpose of
this chapter is to review, and maybe introduce, some of the important techniques being
used. The references at the end of the chapter are meant to provide a representative
glimpse of this extensive and expanding field as opposed to being an exhaustive list.
This chapter also provides an opportunity to further illustrate some of the fundamental
principles discussed in the previous chapters, such as phase diagrams, bandgaps, and
diffusion coefficients.

More importantly after discussing the individual methods, this chapter demonstrates
how these stand-alone methods are increasingly being coupled to each other providing
new and exciting opportunities in materials synthesis. One of the difficulties in inorganic
solid-state synthesis is the lack of a small set of techniques for the practitioner to master.
Unlike organic chemistry, where a few basis skills can lead to a wide variety of syntheses,
solid-state inorganic chemistry requires many specialize methods including flux, ion
exchange, and high temperature. This is a consequence of the variety of atoms, structures,
and phases encountered in solid-state synthesis.

Despite the disjointed nature of solid-state synthesis, there are global themes
currently being pursued. One of them, and the subject of part of this chapter, is lower
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reaction temperatures. As will be seen in this chapter, this seemingly simple goal is
having a profound consequence on the entire field of inorganic materials design.
While in the past these innumerable synthetic methods led to isolation and specialization
among the users, a growing trend among synthetic chemists is to combine these well-
defined methods. This trend is coupled to the goal of lower reaction temperatures. Is it
precisely because more and more synthesis is being done at lower temperatures that
hybrid techniques are possible.

Synthetic strategy has at least two meanings. The first involves using a given tech-
nique and employing chemical and physical arguments as to what series of compounds
should be prepared and why. For example, in 1970, Gamble et al. reported that the reac-
tion of TaS2 with pyridine resulted in an increase in the superconducting temperature
of the TaS2 from 0.7 K to 3.3–3.5 K, a remarkable increase at the time (Gamble et al.,
1970). Subsequently, thousands of papers have been published exploring the use dif-
ferent intercalating agents into a wide variety of transition metal dichalcogenides and
other layered compounds. This work was driven by the search for materials with increas-
ingly large superconducting critical temperatures. The intercalated metal dichalcogenides
have been replaced with the metal oxides as the focal point of high temperature super-
conductor research setting off another round of intense systematic synthesis in 1986,
although in 1989, the Noble Prize winning Russian physicist V. L. Ginzburg said

“As I have said in the past, it seems to me that the best candidates [for Tc # 300–400 K] are
organic superconductors and inorganic layered compounds, particularly intercalated ones.”

—(Ginzburg, 1989).

The second meaning of synthetic strategy, and the subject of this chapter, involves
the preparative techniques. Solid-state synthesis has always suffered from the lack of
unifying principles upon which to base synthetic attempts. In contrast, organic chemical
synthesis can be planned in detail owing to simple concepts such as electronegativity
and steric hinderance. Nevertheless, solid-state synthesis has blossomed and continues
to be an active area of research. In some sense, the lack of a unifying set of rules has
liberated the solid-state synthetic chemist: many an interesting and unexpected result
has come from a “let’s see what happens when . . .” approach, or, put more formally
by A. W. Sleight,

“The main lesson to be learned from the discovery of high temperature superconductors
is that we are, in general, not yet clever enough to produce breakthrough compounds
by design. Therefore, we must conduct exploratory synthesis of new compounds in order
to discover their unexpected properties.”

—(Sleight, 1989).

12.1 SYNTHETIC STRATEGIES

Solid-state synthesis is rich in the variety of techniques used to prepare materials. In this
chapter some of the major methods used today will be presented and discussed. Some
of these methods, such as direct combination, have been in use since the beginning of
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chemistry. Others, such as photonic materials, involved the latest high technology in
lithography, patterning, and masking. The methods discussed will include:

1. Direct synthesis

2. Low temperature

3. Defects

4. Combinatorial

5. Decomposition

6. Thin films

7. Photonic

8. Nanosynthesis

12.1.1 Direct Combination

This classic method of preparation remains the bulwark of solid-state synthesis. The
starting materials can be elements as in the preparation TaS2:

Ta(s)þ 2S(s) jTaS2(s):

In the case of oxides, where use of the elemental oxygen gas presents additional
challenges, oxides are often used as reagents:

BaO(s)þ TiO2(s) jBaTiO3(s):

This type of traditional solid-state chemical synthesis is characterized by high tempera-
tures and long reaction times. If the reagents, such as tantalum and sulfur, react with
oxygen at high temperature, then reactions are carried out in vacuum or inert
atmospheres. Often, a sealed glass ampule is used as the reaction vessel. This brings
additional safety concerns into the synthetic strategy.

The fundamental reason for the use of high reaction temperatures in the direct-
combination method is diffusion coefficients. In solution, where organic synthesis typi-
cally occurs, the diffusion coefficient for species is typically 1025 cm2/s. Hence, species
bump into each other frequently. In the solid state, however, if a crystallite of BaO and
a crystallite of TiO2 are in contact with each other (Fig. 12.1), the diffusion coefficients
for the Baþ2 through the BaTiO3 and into the TiO2 and the Tiþ4 through the BaTiO3

and into the BaO are orders of magnitude smaller than 1025 cm2/s, typically 10210 to
10215 cm2/s. The significance of these numbers is better realized when one considers
a one-dimensional diffusion model and asks how far a particle diffuses in a given time
with a particular diffusion coefficient. The solution to such a problem has been
worked out in detail, and according to Fick’s law of diffusion, the average displacement
in one dimension is (Crank, 1975):

kxl ¼
ffiffiffiffiffiffiffiffi
2Dt
p

(12:1)
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where D is the diffusion coefficient and t is the time in seconds. This means that particles
will move about 100 microns per hour with D ¼ 10212 cm2/s.

Therefore, higher reaction temperatures are used in order to decrease the diffusion
coefficients where:

D(T) ¼ D0e
�Ea=RT (12:2)

where Ea is the activation energy barrier to diffusion. Even with the increase in the diffu-
sion coefficient, long reaction times are still required because the diffusion coefficient
does not approach the solution phase value.

The requirement of high temperature to produce practical diffusion coefficients
imposes severe limitations on the type of reactants that one can use. Hence, the two
examples above involve reagents that are stable at high temperature. Moreover, the pro-
ducts formed at these necessarily high temperatures represent the thermodynamically
stable phase. From a practical point of view one is faced with the frustration that the
temperature, at which most devices operate, is significantly lower than the high prepara-
tive temperatures. Hence an active goal of synthetic research involves developing low
temperature methods for producing solid-state compounds.

12.1.2 Low Temperature

Low temperature in the solid-state synthesis business covers the range from room
temperature to roughly 3008C, the maximum temperature of most oil baths or routine
laboratory drying ovens. Low-temperature methods have the advantage of using a
wider range of reactants, accessing phases unstable at high temperature, and being less
expense to execute. Here three distinct low-temperature methods are dicussed:

1. Sol-gel

2. Solvothermal

3. Intercalation

and later in the chapter we will see how these methods are being combined with other
synthetic strategies.

BaO

BaTiO3

TiO2

Figure 12.1. BaO and TiO2 diffusing through BaTiO3.
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12.1.2.1 Sol-Gel. The sol-gel method is a variation on the gel method for pro-
ducing single crystals of ionic materials (Brinker and Scherer, 1990). The gel method
has been used for many years to produce single crystals of materials formed from ions,
where direct combination results in instantaneous product formation and hence no
large single crystals. A good example is the formation of lead iodide from Pbþ2 and
I2. When these two are combined as aqueous solutions:

Pbþ2(aq)þ I�(aq) j PbI2(s)

the yellow product forms immediately and has no large crystals as seen in the photograph
in Figure 12.2. When the two ions, however, are held apart from each other by an inert
aqueous gel, the ions slowly diffuse together and beautiful large crystals are produced
(Henisch, 1970). The gel is produced by the dehydration of silicic acid (Fig. 12.3):

H4SiO4(aq) j SiO2(s)þ 2H2O(l ):

Figure 12.2. Formation of PbI2(s) from Pbþ2(aq) and I2(aq).

Si OO

O

O

H

H

H

H Si OO

O

O

Si

Si

Si

Si + 2H2O

Figure 12.3. Silicic acid condensing to SiO2 and water.
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The water produced as a result of the dehydration is trapped in the three-dimensional net
formed by the SiO2 producing a gel with the consistency of Jellow. To produce large
single crystals of PbI2, the Pb

þ2 ions are incorporated into the gel and an aqueous solution
of I2 is placed on top of the gel once the gel has set. As shown schematically in
Figure 12.4, large single crystals of PbI2 grow and are suspended in the gel.

Since the silicic acid spontaneously dehydrates, it is formed when need by the
hydrolysis of sodium metasilicate within an acidic aqueous medium:

Na3SiO3(aq)þ 3H2O(l) j Si(OH)4(aq)þ 3NaOH(aq)

It is at this stage that the metal ions are incorporated into the gel. For example, if acetic
acid is used to cause the gelling, then lead acetate can be added to the acetic acid and
lead ions will become embedded in the gel.

In the sol-gel synthetic method, the gel graduates from inert background material to
product. The underlying chemistry remains the same. The silicon-dioxide network is
often generated from tetraethyl orthosilicate (Si(OCH2CH3)4), commonly abbreviated
TEOS. An alcoholic solution of TEOS undergoes hydrolysis and condensation when
added to water to produce SiO2(s) and ethanol:

Si(OCH2CH3)4 þ 2H2O j SiO2(s)þ 4CH3CH2OH

By chemically modifiying TEOS, chemically modified SiO2(s) can be prepared, a feat not
easily achieved by attempting to chemically react the robust SiO2(s) directly. Chaput,
et al., attached a carbazole-9-carbonyl chloride (CB) to 3-aminopropyltriethoxysilane
as shown in Figure 12.5 (Chaput et al., 1996). Similarly, they attached the well-known
nonlinear optical dye, Disperse Red 1 (DR1), to a derivative of TEOS, as shown in
Figure 12.6. When these chemically modified TEOS are mixed with TEOS and the
hydrolysis/condensation occurs, SiO2(s) is produced, which contains organic dyes

Figure 12.4. Gel growth of single crystalline PbI2(s).

SYNTHETIC STRATEGIES506



covalently bonded to the silicon atoms (Fig. 12.7) where the spacing between the CB and
DR1 groups is determined by the ration of CB to DR1 to TEOS.

The field of sol-gel synthesis has blossomed with this approach of chemically
modifying the monomers prior to their polymerization into a covalently bonded three-
dimensional network. This chemistry is reminiscent of traditional organic polymer
chemistry where the chemical changes are inflicted on the monomers, which are more
labile than the polymer. Hence a polymer can be chemically modified by constructing
it with modified monomers. These monomers lend themselves to the usual chemical
manipulations of substitution, elimination, extraction, purification, and so forth. The
sol-gel method can be performed at room temperature, another highly attractive synthetic
feature. The various sol-gel procedures, terminology, and conditions are summarized in
Figure 12.8.

12.1.2.2 Solvothermal. The next low-temperature method to be discussed,
solvothermal, requires some heating. Like sol-gel, solvothermal is a derivative method.
It comes from the hydrothermal method. Hydrothermal synthesis uses water as a solvent

NH

O

Cl

H2N(CH2)3Si(OCH2CH3)3 NH

O

NH(CH2)3Si(OCH2CH3)3

Figure 12.5. Carbazole-9-carbonyl chloride (CB) attached to 3-aminopropyltriethoxysilane.

O2N N

N N

OH

O2N N

N N

OCONH(CH2)3Si(OEt)3

Figure 12.6. Disperse Red 1 (DR1) attached to a derivative of TEOS.
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with temperatures and pressures well above 1008C and 1 atm. This method was made
famous by Bell Laboratories with the synthesis of quartz single crystals (Laudise,
1987). Owing to the very high pressures involved in the quartz crystal synthesis,
typically over 20,000 PSI, expensive equipment is required. The critical temperature
and pressure of water are 373.948C and 3200 PSI respectively. At this point the
liquid and vapor phases of water coalesce and form a single phase with a density of
0.322 g cm23.

The hydrothermal method for producing single crystals of quartz works by taking
advantage of the slight solubility of SiO2(s) in supercritical water:

SiO2 þ 2H2O ! Si(OH)4

SiOSiOSiOSiOSiOSi OO

O

O

O

O

DRl

O

O

O

O

O

CB

O

Figure 12.7. Spacing of CB and DR1 on a SiO2 backbone.
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Figure 12.8. Summary of sol-gel processing.
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This is the reverse reaction from the gel synthesis mentioned. Even at and above the criti-
cal point of water, however, this equilibrium lies too far to the left to be of practical use.
Hence mineralizers, like sodium hydroxide, are added to assist in the dissolution,
for example:

3SiO2 þ 2OH�  ! Si3O
�2
7 þ H2O

The dissolution of the SiO2(s) occurs in the dissolving end of the growth chamber
and subsequent deposition of SiO2(s) occurs in the crystal growth end. These ends are
defined by their temperatures with the dissolution end being hotter than the deposition
end. This process is used today to grow massive amounts of single crystal quartz necess-
ary for frequency oscillators in modern electronic devices. The process also occurs
naturally, which results in spectacular crystals of quartz in veins and geodes that can
be purchased at most rock shops.

Hydrothermal recrystallization is not confined to quartz. Some II–VI compounds,
such as ZnSe, ZnTe, CdSe, and CdTe, have also been recrystallized into large single
crystals using the technique (Kolb, 1968), as well as aluminum orthophosphate, AlPO4

(Kolb, 1980). The technique can also be used preparatively as in the case of potassium
titanyl phosphate (Laudise et al., 1986):

KH2PO4 þ TiO2  ! KTiOPO4 þ H2O

Hydrothermal synthesis does not require the water to be above its critical point. Huan,
et al. published a synthesis of VOC6H5PO3XH2O prepared from phenylphosphonic
acid, C6H5PO(OH)2 and vanadium(III) oxide, V2O3 (Huan et al., 1990). The two reagents
were added to water, sealed in a Teflonw acid digestion bomb, and heated to 2008C.
Pure water has a vapor pressure of 225 PSI at 2008C, well within the bursting pressure
of the bomb (1800 PSI). Unlike the quartz example, in this case, the solvent became
incorporated into the final product.

The solvothermal method uses solvents above their boiling points, but not necess-
arily above their critical points. The method can be employed using sealed glass tubes,
acid digestion bombs, or high-pressure autoclaves. A popular method is to use Teflon
digestion bombs and microwave heaters. As in the hydrothermal method, the solvent
can become part of the final product. Li et al., have reviewed the use of the solvothermal
method for preparing metal chalcogenides in an ethylenediamine solvent (Li et al., 1999).
Ethylenediamine has a normal boiling point of 1178C, and a critical temperature and
pressure of 3208C and 913 PSI, respectively. A typical reaction (unbalanced) described
by Li includes:

CuCl2 þ Sb2Se3 þ C2N2H8 jCu2SbSe3(C2N2H8)

where C2N2H8 is ethlenediamine, H2NCH2CH2NH2. The reaction temperature would be
less than 2508C, the maximum operating temperature for the Teflon-lined digestion
bomb. This compound, Cu2SbSe3(C2N2H8), is an interesing example of a broad class
of compounds that will be discussed next, known as intercalation compounds.
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12.1.2.3 Intercalation. The final low-temperature method to be discussed is
intercalation. This method could be viewed either as a post-synthetic modification of
a material or a parallel event occurring during the synthesis of a material. The solvo-
thermal synthesis of Cu2SbSe3(C2N2H8) is a good example of the latter. In this section,
however, the focus will be on the former. As a post-synthetic modification, intercala-
tion can be used to chemically alter a material that has been produced using some
other technique.

The technique owes its name to the notion of inserting an extra day into the calendar
(Whittingham and Jacobson, 1982). The term is used extensively in biochemistry to
describe the insertion of one molecular fragment into the space defined by another
(Mathews et al., 2000). The most important example is the intercalation of ethidium
bromide, a planar molecular species, as shown in Figure 12.9, into the space defined
by two DNA base pairs. In materials synthesis, the most extensively studies intercalation
reactions have involved graphite.

Graphite is a layered material, and under the right conditions, it will accept atomic
and molecular species between the adjacent carbon sp3 sheets. The region between the
covalently bonded carbon sheets is known as the van der Waals gap, because the bonding
between the neutral sheets is van der Waals in character. If the species being inserted,
or intercalated, into the graphite host is too big to fit between the layers, the host will
relax and expand as necessary to accommodate the guest. Such intercalation reactions
have the virtue of often being carried out at room temperature, or at least under very
mild conditions.

Graphite intercalation is often accompanied by oxidation reduction chemistry
(Whittingham and Jacobson, 1982). For example, when graphite is intercalated with
potassium, the black graphite converts to a gold lustrous metallic-looking compound
as a result of the graphite host being reduced:

8C(s)þ K(g) jKC8

Intercalated compounds are often written with the host first, so KC8 is usually written
C8K even though the graphite is reduced. Conversely, when graphite is intercalated
with nitric acid the host graphite is oxidized:

24Cþ 4HNO3 jC24NO33HNO3

N

NH2H2N

CH2CH3

Figure 12.9. Molecular structure of ethidium bromide.
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This ability of graphite to participate in intercalation reaction, as either an oxidizing
agent or a reducing agent, is a result of the peculiar band structure of graphite.

Graphite is an example of an extended solid with a band gap equal to 0.0 eV
at 0 K. Hence it can readily accept electrons into its vacant conduction band or
relinquish electrons from its full valence band. Other hosts used in intercalation
reactions, such as transition metal dichalcogendies and transition metal oxyhalides,
tend to prefer acting as oxidizing agents only given the high formal oxidation state of
the metal ion.

Intercalation reactions do not always result in electron transfer. The transition metal
phosphorus chalcogenide, M2P2S6 form a series of layered compounds with M being
a first row divalent transition metal ion (Brec, 1986). Clement, et al., have intercalated
a series of stilbazolium compounds into Mn2P2S6 with the sum of the resulting
compounds showing significant second harmonic nonlinear generation efficiencies
(Coradin et al., 1996). This work is a classic example of the utility of the intercalation
strategy (Gomez-Romero and Sanchez, 2004). The host, Mn2P2S6, was prepared by
a traditional high temperature (approxately 7008C) direct combination reaction as
described earlier:

2Mnþ 2Pþ 6S jMn2P2S6

A stoichiometric mixture of the elements was heated in a sealed evacuated glass
ampule. A near quantitative conversion to the green transparent crystals of Mn2P2S6 is
often realized. In addition, single crystals of Mn2P2S6 will grown in the reaction tube
and can be as large as a few centimeters on the edge. Given the layered nature of these
compounds, the crystals are always very thin, ,0.1 mm. The Mn2P2S6 host crystallizes
in a layered structure composed of neutral S(Mn, P2)S sheets. The van der Waals gap (c)
occurs between sulfur layers: S(Mn, P2)S c S(Mn, P2)S c S(Mn, P2)S.

In Clement’s work, the van der Waals gap in the Mn2P2S6 was expanded using an
aqueous solution tetramethylammonium chloride at room (or near room) temperature
in an intercalation reaction:

Mn2P2S6 þ 2x(CH3)4N
þ jMn2�xP2S6[(CH3)4N

þ]2xH2Oy þ xMnþ2

In this type of intercalation reaction,where cations are inserted, the host releasesmetal ions
to compensate for the charge. This converts the host to a defect structure, the topic of the
next section in this chapter. Finally, the expanded host, Mn22xP2S6((CH3)4N

þ)2xH2Oy,
is converted to the desired product with an ion exchange reaction:

Mn2�xP2S6[(CH3)4N
þ]2xH2Oy þ DAMSþ jMn1:72P2S6(DAMSþ)0:46H2Oy

þ 2x(CH3)4N
þ,

where DAMSþ, shown in Figure 12.10, is the 4-[4-(dimethylamino)-alpha-styryl]-1-
methylpyridinium cation, a known organic species with nonlinear optical properties.
It is these low temperature intercalation reactions that render the final material,
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Mn1.72P2S6(DAMSþ)0.46H2Oy, optically nonlinear. This material could not have been
prepared in one step because the reaction temperature required to produce the Mn2P2S6
would have destroyed the organic component. In a similar fashion, when ethidium
bromide is intercalated into DNA it imparts new properties on the DNA, specifically,
rendering the DNA fluorescent since ethidium bromide itself is fluorescent.

12.1.3 Defects

Here attention will be confined to point defects, such as missing or additional atoms in
a crystal lattice, which disrupts the ideal stoichiometry. For example, oxygen atoms miss-
ing from TiO2 to produce TiO22x makes TiO22x a defect material. In the previous dis-
cussion of intercalated materials, Mn22xP2S6[(CH3)4N

þ]2xH2Oy is a defect structure.
Also, Erþ3 substituting for Yþ3 in Y2O3 producing a material such as Y1.9Er0.1O3 is a
defect material. The utility of both types of strategies will be discussed.

Solid oxide conductors, such as ZrO2, which form the basis of chemical sensors,
rely on the presence of defects to induce ionic conductivity (Madou and Morrison,
1989). If every lattice site was occupied with the correct atom, then it would be impos-
sible for any atoms to move within the material. It would be like an auditorium with
no empty seats: in order for one person to move, everyone would have to move.
Similarly, in a perfect crystal, ionic conduction will be difficult if there are no vacant
spots for an ion to move into.

Modifying a stoichiometric oxide into a defect structure can be as simple as heating
the material in air or vacuum:

ZrO2(s) jZrO2�x(s)þ x

2
O2(g)

This type of reaction presents a challenge when trying to prepare an oxide at high temp-
erature. Often, an overpressure of oxygen gas is needed to prevent the type of decom-
position shown above. This proved especially important during the frantic period
of solid-state synthesis that followed the first reports of the high-temperature oxide super-
conductors in 1986 (Bednorz and Muller, 1986). These materials have the formula
YBa2Cu3Ox, where 6 � x � 7. When x ¼ 6, the material is a semiconductor. When
x ¼ 7, it is a superconductor, but the optimum composition for the superconducting
phase occurs for x slightly less than 7 (Nelson et al., 1987). In the intercalation example,
the defects formed at room temperature as a charge compensation mechanism.

One of the most fruitful areas of research in solid-state synthesis is the synthesis of
doped materials. Here the solid-state chemist takes advantage of a powerful concept in

NH3C

N(CH3)2

Figure 12.10. Molecular structure of the 4-[4-(dimethylamino)-alpha-styryl]-1-methylpyridi-

nium cation (DAMSþ).
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chemistry taught from the freshmen chemistry course onward: the periodic law. Elements
of a given group display similar chemical properties. Hence if lanthanum phosphate,
LnPO4, can be prepared in a particular crystallographic space group, then all members
of the group IIIA should be amenable to the same phosphate structure. Indeed, the
lathanide phosphates form such a series (Ushakov et al., 2001). From a properties
perspective, however, one may not want a pure LnPO4 material, but one with a mixture
of lanthanide ions.

Heer et al., produced materials with a mixture of lanthanide ions with compositions
such as YbPO4: 5%Erþ3 and LuPO4: 49%Ybþ3, 1%Tmþ3 (Heer et al., 2003). Their
reason for this formulation has to do with the interplay of the electronic transitions of
the dopant ions. The suitability of the hosts YbPO4 and LuPO4 to accommodate a variety
of different lanthanide trivalent ions is the key to this type of synthetic strategy.
The fundamental principle remains the periodic law. The similarity of the rare-earth
trivalent ions provides the synthetic chemist with an overabundance of choices when
considering substitutions. In Heer’s work, the incorporated ions work together to produce
materials known as upconversionmaterials (Risk et al., 2003).When such compounds are
irradiated at long wavelengths of light, they emit light at short wavelengths. In this
particular case, four photons of 978 nm radiation are absorbed by the Ybþ4 ions
(Fig. 12.11), the energy is transferred to a Tmþ3, and emission of one photon of
476 nm radiation results. The radiative, nonradiative, and multiphoton relaxation pro-
cesses required for this elegant effect are all due to the specific energy levels of the
dopant ions (Dieke, 1968).

Figure 12.11. Energy transfer from Ybþ3 to Tmþ3.
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Many routine commercially available inorganic materials are the result of this doping
for the purpose of achieving particular optical properties. The ruby laser and the neody-
nimiumYAG laser both owe their performance to the use of deliberately doped inorganic
materials, where the host and the dopant are members of the same class of compounds
(Silfvast, 1996). In the ruby laser case, Cr2O3 and Al2O3 for an almost continuous
series (Eliseev et al., 1999). In the neodynium YAG laser, the two relevant end members
of the solid solution are Nd3Al5O12 and Y3Al5O12. In both cases the concentration of
the substitutional dopant (Crþ3 and Ndþ3) is about 1 percent. This level is part of the
synthetic strategy to optimize the performance of the laser. For example, at higher
concentrations, the linewidth of the laser line broadens.

From the example of YbPO4: 5%Erþ3 and LuPO4: 49%Ybþ3, 1%Tmþ3, it can be
seen that doping, under favorable conditions, allows the synthetic chemist to produce
a material with desired properties, in this case optical properties. One of the challenges
presented by doping experiments is the infinite number of possibilities for doping
levels. While rationale and clever planning may narrow the field considerably, there is
still the possibility of needing to prepare a large number of samples, each with a slightly
different composition. This leads to the next synthetic strategy, combinatorial synthesis.

12.1.4 Combinatorial Synthesis

The seemingly uncountable number of permutations, and the lack of a theoretical basis
for selecting which materials to produce, has led to an entirely new area of synthetic
chemistry called combinatorial chemistry (Xiang and Takeuchi, 2003). Combinatorial
synthesis is a fancy term for what previously would have been described as the shot-
gun approach to synthesis. In other words, lacking a specific stoichiometric target, the
synthetic chemists prepares all combinations and then sorts through the batch to find
the one or ones with interesting or desired properties. The synthesis and characterization
of high-temperature superconducting oxides presents a compelling case for such an
approach. The original compound had a formula of YBa2Cu3O72x; compositions now
look like Bi2Sr2CaCu2O8 (Missori et al., 1994). Attempting to systematically vary the
concentration of each of the five elements in this latter compound would be a monumental
task. The combinatorial synthetic strategy has matured to the point that there is now
an American Chemical Society publication, the Journal of Combinatorial Chemistry,
devoted to this approach. More will be said about this approach and a specific example
given when hybrid strategies are considered at the end of this chapter.

12.1.5 Spinodal Decomposition

Crystallization, whether from the molten state or from a solvent, relies upon slow cooling
to produce larger crystals and fast cooling to produce small crystals. In both cases, crystal-
lization results in the segregation of impurities. Impurity atoms usually do not fit into
the crystal lattice of the solute crystallizing from a solvent. This allows crystallization
from a solvent to be used as a purification technique. Likewise, impurity atoms in a
polycrystalline metal tend to segregate at the grain boundaries during solidification
because of their mismatch with the lattice of the metal atoms. Crystallization is more
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of a purification strategy than a synthetic strategy. Yet crystallization, as will be shown,
can be manipulated for synthetic purposes.

A key feature of crystallization is that as tiny crystals form, they are unstable with
respect to redissolving. As shown in Figure 12.12, for a tiny crystal to increase its size,
it must undergo an increase in its Gibbs free energy, a thermodynamically unfavorable
situation. However, upon passing a critical size, further growth is characterized by a
decrease in the Gibbs free energy. It is not until the crystals grow beyond this critical
size that further growth is thermodynamically favored. This presents the interesting
question of how do the big crystals appear if the little crystals are unstable? The
answer has been provided by classical nucleation theory and involves fluctuations in par-
ticle sizes (Adamson, 1982). The term for separation of one phase from another under
these conditions is called nucleation and growth, distinguishing it from the mechanism
that is the subject of this section, spinodal decomposition. Nucleation and growth
occurs in multicomponent systems such as alloys and glasses when the overall Gibbs
free energy, G, versus composition, x (mole fraction), has positive concavity as shown
in Figure 12.13 (Clerc and Cleary, 1995). When G versus composition has negative
concavity, as shown in region between composition a and b, solidication still occurs
but by the alternate mechanism, spinodal decomposition.

Spinodal decomposition is characterized by spontaneous separation of two or more
phases where the formation of the phases does not depend on the growth of crystallites
beyond a critical size in order for the process to be spontaneous. It is rapid and cannot
be avoided by dropping the temperature of the sample quickly in order to suppress
diffusion. The morphology of systems, prepared by spinodal decomposition, have charac-
teristic intermingling connections as shown in Figure 12.14a. This spinodal pattern has
been exploited in the glass industry by preparing mixtures of the glass components,
such as Na2O, B2O3, and SiO2, which fall in the corresponding three component spinodal
decomposition range equivalent to region a–b in Figure 12.13 (West, 1984). When this

Figure 12.12. Gibbs free energy, G, versus crystal radius for small crystals.
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Figure 12.13. Gibbs free energy, G, versus composition for a two-component system with a

miscibility gap.

Figure 12.14. Spinodal decomposition pattern (a) with minor component leached out (b).
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mixture is cooled, an interconnected second phase (minor phase) separates out from the
major phase. This minor phase, because of its connectivity, can be chemically etched
out of the major phase, Figure 12.14b, leaving a porous form of the major component.

12.1.6 Thin Films

This represents one of the most active and important areas of inorganic materials design
because many of a material’s properties depend only on its surface. For example, the
hardness of a cutting tool depends on the hardness of the surface of the cutting tool
touching the machined item.

In Chapter 9 properties of antireflection coatings were examined. At that time the
simplified case of a single film separating air and a substrate was considered. Here the
discussion is on how such a film might be produced. Actual films, such as the anti-
reflective coatings on the lenses found in eyeglasses, contain multiple layers plus a
protective coating.

Thin films, which are defined as ranging from a monolayer to several microns in
thickness, are prepared in two ways: physical and chemical deposition. Thin films are
deposited on an inert bulk material called the substrate. In physical deposition, the
material to be used in the film already exists and is simply being transferred to a substrate.
In chemical deposition, the material constituting the film is prepared as part of the film
deposition. Both of the methods have a variety of specific variations, and a few will be
considered here.

The simplest physical deposition involves direct heating sublimation. This method
requires that the material have an appreciable vapor pressure at a temperature where the
material is stable. One difficulty with this method is that if the material can be sublimed
onto a substrate, it can also be sublimed off! For materials with prohibitively low vapor
pressures, three modifications to direct heating have been developed: electron-beam
heating, sputtering, and laser ablation. In these methods, a sample of the material to be
prepared as a thin film is targeted with either an electron beam, an ion (or atomic)
beam, or a laser beam. Small bits of the material are dislodged into the gas phase and con-
dense on a cooler substrate. The target material is dislodged either by momentum transfer
in the case of sputtering or local heating in the case of electron beam and laser ablation. In
all of these approaches, the stoichiometry of the thin film is an issue. A stoichiometric
target, such as MgF2, does not guarantee a stoichiometric film. Thin-film production
requires methods such as X-ray photoelectron spectroscopy or Auger spectroscopy to
characterize the film with respect to stoichiometry and composition (Woodruff and
Delchar, 1986). The antireflection coatings discussed in Chapter 9 are applied to the
lenses in eyeglasses by electron beam heating of SiO2 and TiO2 targets to form a four-
layer coating that is effective over a wider range of wavelengths and effective incident
angles than can be achieved with a single layer of a single composition.

Chemical vapor methods for thin-film synthesis bring to the substrate surface the
chemical reagents, in the gas phase, needed to synthesize the material to be prepared
as a thin film. The chemical reaction is allowed to occur at or near the substrate surface,
and the resulting material, having a vapor pressure considerably less than the reagent
gases, deposits onto the surface. A nice example of this is the synthesis of the classic
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spinel compound, MgAl2O4, on a silicon or iron substrate reported by Mathur et al.
(2004). The chemistry behind their approach centers of the following decomposition
reaction:

MgAl2(OR)4(g) jMgAl2O4(s)þ R0(g)þ R00(g)þ � � �

The challenge for this type of chemistry is to produce a compound with the desired metal
and oxygen atoms that has a significant vapor pressure. As a consequence, therefore,
thin-film synthesis has provided motivation for continued research and development in
molecular organometallic chemistry. The compound MgAl2O4 is important because of
its high melting point, mechanical stability, and chemical inertness, all features that
make the processing of MgAl2O4 into useful forms difficult. Hence a method, like the
one being developed by Mathur et al. (2004), could provide a convenient way to process
this important refractory material.

A now famous example of using a decomposition reaction to produce a thin
film involves the production of diamond films from the decomposition of methane
(May, 2000):

CH4(g) jC(s, dia)þ 2H2

Such a simplified overall reaction is woefully inadequate to describe the details of how
this chemistry proceeds. For example, the methane gas is present as a small impurity
(1% vol) in hydrogen gas. The methane can be heated at a hot filament or decomposed
in a microwave discharge.

A more exotic form of chemical vapor thin-film production uses molecular beam
epitaxy. In this case, individual layers of reagents, sometimes monatomic in thickness,
are deposited sequentially. An elegant example of this strategy applied to inorganic
materials synthesis is provided by the work of Johnson et al. (2003). Bi2Te3(s) and
TiTe2(s) are immiscible; Both are layered structures similar to graphite. By sequentially
depositing thin films of tellurium, bismuth, and titanium, Harris et al. (2003) were able
to produce a final product with the stoichiometry (Bi2Te3)x(TiTe2)y which, although it
is metastable, will have a long halflife for the same reasons given at the beginning of
this chapter concerning the need for high temperatures in direct combination solid-state
reactions: diffusion coefficients in solids are low. Hence the spontaneous thermodynami-
cally favored reaction:

(Bi2Te3)x(TiTe2)y j xBi2Te3 þ yTiTe2

will be very slow.
This type of reaction represents the ultimate control solid-state synthetic chemists

seek, namely, the bottom-up ability to build a compound atom by atom. Harris et al.
(2003) took advantage of the two dimensional nature of Bi2Te3 and TiTe2, such that
their synthetic challenge was layer by layer. The secret to their success lies in the fact
that two important principles control any synthetic efforts: thermodynamics and kinetics.
Phase diagrams, which are discussed in Chapter 11, owe allegiance to thermodynamics
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and have traditionally provided the synthetic chemist with boundaries and targets for
planning chemical syntheses. The example of (Bi2Te3)x(TiTe2)y, however, represents a
synthetic achievement that lies outside of traditional phase diagram constraints.
Johnson et al. (2003) have prepared materials that are not stable according to the relevant
phase diagrams, but have kinetic stability that mimics thermodynamic stability on any
relevant time scale.

12.1.7 Photonic Materials

Chapters 4 and 5 emphasize the band gap in materials. This is a critical parameter of a
material determining its utility in transistors, lasers, and detectors. Until recently, altering
a material’s band gap involved chemical modifications to affect bond lengths, atomic
orbital overlaps, and electronegativity. A nice example of this is the series GaPxAs12x

where the band gap is systematically varied from 2.27 to 1.40 eV as x varies from 1 to 0
(Fig. 12.15). This represents a traditional chemical approach to achieving a desired
property. A more recent approach to preparing materials with specific band gaps involves
what have become known as photonic materials.

In photonic materials, the band gap is determined by geometric arrangement of a
dielectric material. The underlying principle of how photonic materials work is best
explained usingMaxwell’s equations (Joannopoulos et al., 1995). Once again, the central
importance of Maxwell’s equations is confronted when optical properties of materials are
discussed. In photonic materials, a periodic structure is produced in one, two, or three
dimensions. The periodic property is a dielectric constant. A trivial macroscopic one-
dimensional example would be a collection of individual microscope slides separated
by layers of Saran Wrapw. This would produce a one-dimensional modulation in the
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Figure 12.15. Band gap values for GaPxAs12x and other semiconductors.
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refractive index, varying between 1.42 and 1.53, on a length scale of millimeters. In order
for photonic materials to be of practical interest, the order of the periodicity must be
similar to the wavelength of visible, ultraviolet, infrared, or microwave electromagnetic
radiation. Currently, silicon separated by air has been prepared on the length scale of
100 nm (Salib et al., 2004). The refractive index in this case varies between 1.00 and
3.42 at 8 ¼ 10 mm.

This synthetic strategy provides great flexibility to the synthetic chemist. In principle,
any band gap in any configuration (loops, lines, pockets, . . .) can be prepared. The
drawback to this technique is the high technical demands required for the preparation
of the arrays. Lithography, patterning, and masking at X-ray wavelengths limits the
number of researchers who can participate in this type of synthesis.

Despite the technical challenges, the field of photonic materials continues to rapidly
progress as an area of active research. One of the strongly motivating factors driving this
research is the unexpected and unexplored properties accessible in photonic construc-
tions, where the limits and restrictions of normal chemical ideas such as coordination
number, valence, and electronegativity, do not apply. For example, photonic materials
prepared for the microwave region, where the length scale is micrometers, have been
prepared which exhibit a negative refractive index (Pendry and Smith, 2004). In this
material, consisting of copper rings separated by either air or Teflon, the modulation of
the refractive index at microwave frequencies results in a material that displays a negative
bulk refractive index. One of the consequences of this, as shown in Figure 12.16, is that

Figure 12.16. Refraction of light as it passes into a medium with a negative refractive index.
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light is bent backwards. This remarkable effect, discussed almost 40 years ago by
Veselago, but only recently observed with the advent of photonic materials, provides
a glimpse into what might be possible with this newly emerging synthetic strategy
(Veselago, 1968). In the field of optical fibers, photon materials (called single-mode
photonic crystal fiber lasers or PCF lasers) have the potential to revolutionize high-
power fiber lasers operating in single mode (Limpert et al., 2004).

12.1.8 Nanosynthesis

There are two approaches to the preparation of nanoparticles and nanocrystals. The first
is sometimes called the top-down approach and the second, the bottom-up approach.
Top-down methods essentially convert a coarse-grained polycrystalline sample into a
nanocrystalline form. For example, the individual grains in a metal will subdivide into
domains as small as 20 nm when subjected to large shearing strains while under pressure.
This is known as the severe plastic deformation, or SPD, technique. Nanocrystals of
alloys may also be obtained by the devitrification of a metallic glass, if the alloy can
be put into the amorphous state to start with. Nanoporous metals can be produced by deal-
loying, which involves selectively etching the more active components of homogeneous
solid solution alloys (e.g. Ag in Ag–Au alloys). Unfortunately, most of the aforemen-
tioned techniques do not necessarily produce well-controlled grain morphologies.

The goal of materials research is really the reverse process, the bottom-up method.
In this approach, it is hoped that perfect well-controlled nanoparticles, nanostructures,
and nanocrystals can be synthesized, which may be compacted into macroscopic
nanocrystalline samples, or assembled into superlattice arrays, which may, in turn, be
used in a variety of applications such as nanoelectronic or magnetic devices. Some scien-
tists have even envisioned a time when so-called molecular assemblers will be able to
mechanically position individual atoms or molecules, one at a time, in some predefined
way (Drexler, 1986). The feasibility of such machines has been hotly debated but, regard-
less, such systems engineering goals are not really within the scope of this chapter. At
present, methods for synthesizing metal and ceramic clusters and nanoparticles fall in
one of two broad categories: liquid phase techniques or vapor/aerosol methods.

12.1.8.1 Liquid Phase Techniques. One well-known chemical method for
synthesizing nanoscale metal particles is reduction of the metal ions with an aqueous
solution of NaBH4 (Dragieva, 1999). Another chemical technique, used for preparing
nano-oxides, is the precipitation of a metal hydroxide from a salt solution (e.g. AlCl3)
by the addition of a base (e.g. NH4OH). The product is washed and calcined to obtain
a final ultrafine oxide powder (e.g. Al2O3).

A soft chemical route, known as the sol-gel method, has also been employed for the
preparation of nano-oxides with uniform size and shape. This is a multistep process,
usually consisting of hydrolysis of a metal alkoxide in an alcoholic solution to yield a
metal hydroxide, followed by polymerization by elimination of water (gel-formation),
drying off the solvent, and densification of the product to yield an ultrafine powder
(Rao and Raveau, 1998; Khaleel and Richards, 2001).
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A relatively new route to nanoparticles, which has been employed for the preparation
of colloidal silver nanoparticles (Maillard et al., 2002), as well as gold-coated iron
nanoparticles (Zhou et al., 2001), and nanoparticles of compound semiconductors
(e.g. CdTe, CdS, and Cd1 yZnyS) (Pileni, 1993), is the reverse micelle method. A reverse
micelle is a spherical cluster of surfactant molecules (commonly sodium bis (2-ethyl-
hexyl) sulfosuccinate (NaAOT)) suspended in a nonpolar solvent. In a nonpolar solvent,
the hydrocarbon tails of the surfactant molecules become oriented towards the exterior
of the aggregate, while the polar sulfonate headgroups are localized in the interior. The
combination of the associated surfactant molecules (the reverse micelle) together with
the nonpolar solvent constitutes a lyotropic phase and is a type of liquid crystalline order-
ing. Surfactant in water is another example of a lyotropic phase, but one that results in
the formation of micelles instead of reverse micelles. Just as micelles can solubilize
grease and oil in their nonpolar interior, reverse micelles have the ability to solubilize
water, forming a so-called water pool. The water pool can accommodate hydrolysis
and precipitation reactions for the preparation of insoluble nanoparticles. Usually, a
solvent such as dodecanethiol is added to induce a size-selective synthesis as well as
to coat the particles in order to protect them from surface reactions.

There are some major challenges associated with compacting nanoparticles into
nanocrystalline phases. Nanoparticles are usually difficult to prepare in monodisperse
form and the high surface area to volume ratio imparts enhanced surface reactivity,
particularly with metals. Owing to the latter reason, it has been seen that nanometals
are generally coated with a protective shell of ligand molecules. The nonuniform
shapes and sizes of most nanometal particles, along with the more-or-less spherical pro-
tective ligand shells surrounding them, makes the assemblage of these clusters into three-
dimensional nanocrystals difficult (Schmid, 2001). However, some groups have been
able to overcome these obstacles and produce metal nanocrystals with edge lengths of
�100 nm from 4 5 nm sized clusters (Harfenist et al., 1997; Wang et al., 1998).

Template-directed syntheses are often used to produce nanostructured particles such
as mesoporous materials with voids less than 50 nm in diameter. The challenge is to cap-
ture the desired size and shape of the particle such that it is preserved once the template is
removed, usually by calcination. In the early 1990s, researchers at Mobil Oil Corporation
showed that mesoporous silicates could be synthesized by using lyotropic liquid crystal-
line phases (e.g. surfactant/solvent systems) as the template (Beck et al., 1992; Kreske
et al., 1992). With low surfactant concentrations, lyotropic systems are biphasic in
nature. That is, the individual micelles are not joined together. Consequently, fine pow-
ders of the mesoporous materials are typically obtained from these systems. Attard later
showed that, with a high surfactant concentration, homogeneous (monophasic) lyotropic
systems characterized by continuous spatially periodic architectures are possible (Attard
et al., 1995). The hydrolysis and polycondensation of silica precursors in these mono-
phasic templates were shown to produce monolithic mesoporous silica whose architec-
ture is essentially that of the liquid crystalline phase. For example, silica cylinders with
lengths greater than 10 m and diameters 20–30Å were prepared from sol-gel precursors.

A very recent novel liquid-phase route to hollow nanocrystals of cobalt oxide and
cobalt sulfide takes advantage of the Kirkendall effect (Section 6.4.1). Injection of sulfur
or oxygen into a colloidal cobalt nanocrystal dispersion created hollow nanocrystals of
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the chalcogenide as a direct result of the differing intrinsic diffusion coefficients of cobalt
and sulfur or oxygen, the outward transport of cobalt atoms through the chalcogenide,
being balanced by an inward flow of vacancies to the metal-chalcogenide interface
(Yin et al., 2004).

12.1.8.2 Vapor/Aerosol Methods. A few vapor/aerosol methods are avail-
able for the preparation of nanoparticles or films. One is a PVD process known as
the sputtering technique, in which atoms are sputtered (knocked loose) from a source,
known as the target, by bombarding it with high-energy ions in a vacuum chamber
filled with an inert gas. The ions are produced by creating a large potential difference
between the target and substrate. The ionization of the inert gas forms a plasma (a neutral
collection of positively charged ions and negatively charged electrons) and the negative
potential on the sputtering target attracts the positive ions, which are accelerated by the
electric field. The atoms dislodged from the sputtering target deposit on a substrate.

A related technique is the evaporation method, whereby a bulk metal is heated with
an inert gas in a vacuum chamber. The heating may be by various means, say, for example
from an induction current generated by a varying magnetic field. The heating causes
the metal to emit atoms, which collide with inert gas molecules, lose kinetic energy,
and condense as metal clusters on a cold finger or on a substrate. If metal oxides are
desired, oxygen may be introduced into the vacuum chamber along with the inert gas.
Alternatively, ammonia or an alkane, respectively, may be introduced to produce metal
nitrides or carbides.

Rather than produce an atomic vapor by evaporation from a solid surface, an aerosol
may be generated from an aqueous salt solution by an atomization procedure. The aerosol
can then be evaporated so that the salt condenses into a particle. This is known as
the spray-pyrolysis technique. The flame decomposition method is a modification of
this technique, in which the aerosol is introduced into a high-temperature flame
(1200–3000 K). The precursor is vaporized and oxidized to form metal-oxide particles.

12.1.8.3 Combined Strategies. As mentioned at the beginning of this chapter,
the well defined solid-state synthetic methods are themselves being combined to produce
new materials. For example, thin-film preparative strategies have been coupled to combi-
natorial methods. Takahashi et al. reported in the Journal of Combinatorial Chemistry
a synthesis of Tb12x2yScxPryCa4O(BO3)3 deposited on an aluminum oxide substrate
(Takahashi et al., 2004). They were interested in the photoemission properties of this
series of compounds. Their results are summarized in the three component phase diagram
shown in Figure 12.17, the three components being TbCa4O(BO3)3, ScCa4O(BO3)3,
and PrCa4O(BO3)3 with the contours representing white-light emission intensity. From
this they conclude that the optimum composition is Tb0.6Sc0.4Ca4O(BO3)3, and that Pr
has no positive effect.

The beauty of this experiment is that the continuous range of x and y can be inves-
tigated in a single experiment. Preparing, by direct combination, enough individual
samples to support the conclusion drawn using the combinatorial method would
require an enormous investment in time and effort. This illustrates that the combina-
torial method’s great strength lies in its screening capability. Once the formula
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Tb0.6Sc0.4Ca4O(BO3)3 has been established as optimal, more traditional methods can be
employ for mass production.

The combinatorial and thin-film strategies make an ideal pairing. Much of the inor-
ganic materials synthesis done using the combinatorial approach results in thin-film
products. This should not be interpreted to mean that combinatorial methods are restricted
to inorganic thin-film synthesis. Potentially the most important application of combina-
torial methods has been in the screening of chemical compounds for their pharmacolo-
gical utility. This involves the use of organic compounds and is outside the scope of
this textbook.

Thin-film preparation can be coupled to other synthetic strategies such as sol-gel syn-
thesis. For example, Qide et al. presented a synthesis of TiO2 thin films prepared by the
sol-gel method (Qide et al., 2003). The interest in thin films of TiO2 lies in the application
of these films to photocatalysis. TiO2 has been shown to be photocatalytic with respect to
the oxidation of organic contaminants such as chloroform (Fujishima et al., 1999):

CHCl3(aq)þ H2O(l)þ 1
2O2(aq) jCO2(aq)þ 3HCl(aq)

This reaction proceeds under ultraviolet light in the presence of TiO2, presumably at the
surface of the insoluble TiO2 particles.

The approach of Qide et al. to produce thin films of TiO2 via a sol-gel strategy uses
a mixture of titanium isopropoxide, ethanol, water, and triethanolamine. The chemistry
is similar to what is used in the silicate gel where a hydrolysis/condensation reaction
is exploited (Wright and Sommerdijk, 2001):

Ti(OC3H7)4(soln)þ 4H2O jTiO2(s)þ 4HOC3H7

Figure 12.17. Three component phase diagram for TbCa4O(BO3)3, ScCa4O(BO3)3, and

PrCa4O(BO3)3 with resulting luminescence indicated by the contours.
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The gel produced from this reaction is coated on an inert substrate, such as glass or
stainless steel, and the sample is heated to 500 EC for 1 h in air. The films produced
are characterized by thickness, grain size, pore size, surface area, and photocatalytic
activity. Photocatalytic activity is determined by measuring the rate of discoloring of
aqueous solution of methyl organge, a typical organic dye.

The motivating force for the application of a technique like sol-gel to thin-film syn-
thesis is the simplicity, because in this case simplicity brings low cost. If the above
example were to become a commercially viable method for removing organic contami-
nants from water, then the producing method of the TiO2 thin films would have to be
economically viable. The high vacuum, ultra clean, equipment intensive approach of
methods already discussed, such as molecular beam epitaxy or laser ablation, would
not be able to meet that cost requirement. The sol-gel method does bring with it, however,
its own limitations. For example, the alkoxides used as starting materials can be expensive
and sensitive to moisture, both challenges for large scale production designs.

A third example of the crossover among these synthetic strategies involves the prep-
aration of doped oxides. The importance of doping as a synthetic strategy used to achieve
desired properties has already been discussed. Doping and thin-film preparation come
together nicely when chemical vapor deposition is used to prepare the films.

McKittrick et al. prepared (Y12xEux)2O3 films employing just such a strategy
(McKittrick et al., 2000). The objective is to produce a compound with photoluminescent
and cathodoluminscent properties suitable for flat-panel displays. Yttrium tris(2,2,6,6-
tetramethyl-3,5-heptanedionate) can be decomposed to produce Y2O3:

Y(C11H19O2)3(g) jY2O3(s)

Owing again to the periodic law, a series of compounds Ln(C11H19O2)3, where Ln is a
tripositive lanthanide ion are expected and found. Hence, with careful control of the
mixing of Y(C11H19O2)3 and Eu(C11H19O2)3 vapors, thin films can be produced with
the formula (Y12xEux)2O3. In McKittrick’s work on this project, x ranged from 0.18
to 0.31. This provides yet another example of how molecular organometallic chemistry
supports thin-film synthesis. The reagents, also known as precursors, necessary to pro-
duce the lanthanide thin films are commercially available, for example from Strem
Chemicals, Inc., Table 12.1.

An intriguing possibility for preparing a doped material using chemical-vapor
deposition involves the diamond thin films mentioned earlier. If p-doped and n-doped
diamond could be produced by mixing appropriate gases with the methane in the

TABLE 12.1. Reagents Necessary to Produce Lanthanide
Thin Films

Precursor Melting Point Form

Eu(C11H19O2)3 188–189 EC yellow powder
Y(C11H19O2)3 170–173 EC white
Nd(C11H19O2)3 209–212 EC light purple
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chemical-vapor deposition, it might be possible to produce integrated circuits based on
diamond instead of silicon. Since the diffusion coefficient for the dopants in the diamond
would be very low (the reason why attempting to dope the diamond directly fails)
the doped material would be stable to extremely high temperatures. As an added
bonus, control over the final composition would be tighter, given that it is easier to
purify methane than it is to purify silicon.

12.2 SUMMARY

In this chapter, several of the major synthetic strategies used in the preparation of modern
inorganic materials have been discussed. During this discussion it becomes apparent
that inorganic materials synthesis is a diverse field with many specialized pockets of
expertise, each suited for a particular synthesis. The cost and technical infrastructure
required to participate in this endeavor can be extensive with a method such as molecular
beam epitaxty or photonic materials synthesis. On the other hand, sol-gel and direct com-
bination methods can easily be incorporated into undergraduate and even high-school
curricula. Nonetheless, these low-cost methods make invaluable contributions to the
overall field as evidenced by the discovery of high-temperature superconductors!

In addition to surveying the major strategies, the growing trend to combine strategies
has also been examined. This has proven particularly productive in the area of thin-film
preparation, where combinational and sol-gel techniques are being increasingly adapted.

PRACTICE PROBLEMS

1) Why is high temperature often employed in solid-state synthesis?

2) What are some advantages of performing solid-state synthesis at lower temperatures?

3) Organic synthesis is more systematic and predictable than solid-state synthesis.
What accounts for the systematic nature of organic synthesis?
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4) The description of PbI2(s) single-crystal formation in a gel suggests that any metal–
anion combination is suitable. What limitations does this method have?

5) Compare and contrast the solvothermal and hydrothermal synthetic methods.

6) Describe how the intercalation synthetic method can be viewed as a mix of both
high- and low-temperature synthetic methods.

7) Diamond has a number of properties, such as wide band gap, high breakdown
electric field, and low dielectric constant, which make it an ideal candidate for
semiconductor applications. Why has diamond not been used more often in
semiconductor applications?

8) Combinatorial synthesis has recently been applied to photocatalytic decompo-
sition of water. If a formula of M1M2M3Oy, for example Fe2O3�Cr2O3�Cs2O
or Fe2Cr2Cs2O7, was being considered where 60 different metals were possible
for M1, M2, and M3, how many combinations are possible?

9) How does physical-vapor deposition differ from chemical-vapor deposition?

10) Why have photonic materials received so much attention lately?
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13

AN INTRODUCTION TO
NANOMATERIALS

No textbook intended for inorganic materials science and engineering students of the
twenty-first century could possibly be considered complete without covering nano-
materials (1 nm ¼ 10 Å). Unfortunately, full justice cannot be done to this subject
matter with a single chapter. It has been chosen, therefore, only to present a brief history
of nanomaterials, explain why their properties differ from those of the macroscopic
counterparts, and to introduce some of the more common preparative techniques. It is
hoped that this will be sufficient to motivate the student to pursue further knowledge
in this relatively young, but rapidly growing, field.

The credit for inspiring nanotechnology usually is attributed to physicist Richard
Phillips Feynman (1918–1988), who shared the 1956 Nobel Prize in physics for his
contributions to the field of quantum electrodynamics. In December of 1959, during
an after-dinner lecture at the annual meeting of the American Physical Society,
Feynman declared that

“the principles of physics, as far as I can see, do not speak against the possibility of
maneuvering things atom by atom . . . a development which I think cannot be avoided.”

—(Feynman, 1960)
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Among the many avenues of technology, which Feynman believed would be
touched by this research, was information storage. He speculated that one day there
would be the ability to place all the printed information since the Gutenberg Bible,
in a cube of material 0.1 mm wide. This corresponds to one bit of information per
5 � 5 � 5 cube of 125 atoms. If the discussion here is talking about atoms with 1.5 Å
radius and that this collection of 125 atoms is a discrete particle then, roughly, this
corresponds to one bit per 1.7 � 103 [125 � (4pr3/3)] cubic angstroms of volume.
How close is this prediction today? At the time of this writing, magnetic storage devices
(e.g. computer hard disks), with storage densities of at least 30 Gigabits per square
inch, which corresponds to one bit per 2.1 � 106 square angstroms, are commercially
available. Clearly, excitement is high!

Nanotechnology has already begun to bear fruit in other areas as well. Nanosized
tungsten carbide grains are now used in machining tool drill bits in order to improve
fracture toughness, wear resistance, and hardness. A tiny fuel cell for mobile devices
using carbon nanohorns as the electrodes has been developed. This fuel cell has about
ten times the energy capacity of a standard lithium battery. Field-effect transistors
made from carbon nanotubes have been shown to out-perform the most advanced silicon
transistors. Such molecular-scale circuits will allow electronic computers to approach the
theoretical limits for size and speed, before the anticipated optical computers, with their
photonic signal-processing circuits, totally revolutionize the industry.

13.1 HISTORY OF NANOTECHNOLOGY

The study of nanosized particles has its origin in colloid chemistry, which dates back to
1857 whenMichael Faraday (1791–1867) set out to systematically investigate the optical
properties of thin films of gold. Faraday prepared a suspension of ultra-small metallic
gold particles in water by chemically reducing an aqueous solution of gold chloride
with phosphorus (Faraday, 1857). To this day, nanoscale metal particles are still produced
by chemical reduction in aqueous solutions.

Faraday called his ruby-colored mixture colloidal gold. He showed that, like a
solution, the mixture was transparent when looked through, but when a ray of light
was shined into the fluid, the particles within the ray created a blue opalescence owing
to the scattering of the light (which subsequently became known as the Tyndall
effect). He further showed how the color of the mixture changed from ruby to blue on
the addition of a salt, which he reasoned as being due to particle coagulation. Finally,
he demonstrated how this effect was not observed when gelatin was added to the mixture,
thereby preventing coagulation. Faraday’s suspension survives in the collections of the
Royal Institution of Great Britain in London and has yet to settle!

In 1861, chemist Thomas Graham (1805–1869) discovered that certain substances,
such as starch and gelatin particles, which he called colloids, diffuse very slowly through
water and that they do not form crystals (Graham, 1861). Based on the slow diffusion
and lack of sedimentation, Graham deduced that the particles were about 1–100 nm in
size. The size limits of colloids were later extended to the currently accepted range of

AN INTRODUCTION TO NANOMATERIALS532



1 to 1000 nm by Wolfgang Ostwald (1883–1943), son of physical chemist and Nobel
laureate Friedrich Wilhelm Ostwald.

The term nanomaterials now encompasses clusters (aggregates containing between
3 to 1000 atoms), nanostructured single particles (e.g. nanotubes), nanocrystalline
phases (e.g. bulk polycrystalline samples with nano-sized crystallites, as well as superlat-
tice assemblies of nanocrystals), and nanometer-thick thin films. The preparation of the
latter can be traced back to the 1930s with the development of the Langmuir–Blodgett
method for depositing mono- and multilayer organic thin films by repeatedly dipping a
substrate into water covered with a monolayer film (Langmuir, 1917; Blodgett, 1934,
1935). This method is named after Nobel laureate Irving Langmuir (1881–1957) and
his longtime colleague Katherine Blodgett (1898–1979), both of whom were GE scien-
tists. The preparation of metal nanopowders by thermal evaporation also dates back to
1930, with the work of American physicist August Hermann Pfund (1879–1949) and
the Dutch physicist Hermann Carel Burger (1893–1965) (Pfund, 1930; Burger and
van Cittert, 1930). They prepared what were described as “extremely fine” and “loosely
packed” crystalline deposits of the heavy group 15 elements on chamber walls and mica
substrates by direct thermal evaporation of bismuth and antimony in order to improve the
radiometric properties of thermopiles and thermocouples.

By 1960, arc-discharge, plasma, and flame methods had also been used to produce
submicron particles. However, the state of affairs in existence today had to await
advancement in numerous techniques for characterizing nanosized particles, including
spectroscopy, diffraction, and microscopy. For example, in 1982, IBM Zurich scientists
Gerd Binning and Heinrich Rohrer introduced the scanning tunneling microscope
(STM), an instrument for imaging the topography of metal surfaces with atomic resol-
ution (Binning and Rohrer, 1982). They were awarded the 1986 Nobel Prize in physics
for this development. In 1990, D. M. Eigler and E. K. Schweizer used an STM to produce
the now famous image of the letters “IBM,” spelled out of 35 Xenon atoms on a nickel
surface (Eigler and Schweizer, 1990). This development was a major milestone for nano-
technology, proving it was now possible to manipulate individual atoms. Since the 1990s,
many groups have been able to manipulate surface atoms. In 2008, one group reported
that they had been able to determine both the lateral and vertical forces required for
moving a cobalt atom and a carbon monoxide molecule across platinum and copper sur-
faces. This accomplishment makes it possible to quantify friction at the atomic level,
which should be invaluable to nanoelectronics and bioengineering (Ritter et al., 2008).

High-resolution mass spectroscopy enabled the 1985 discovery of the soccer ball-
like C60 allotrope of carbon, buckminsterfullerene, from the products of laser vaporiza-
tion of graphite (Kroto et al., 1985). The C60 molecule was isolated in 1990 (Taylor
et al., 1990) Multiwalled carbon nanotubes were reported in 1991 from high-resolution
transmission-electron microscopy studies of the material deposited on graphite rod
electrodes during the arc-discharge synthesis of fullerenes (Iijima, 1991). In 1993, it
was reported that single-walled nanotubes were obtained from the addition of metals,
such as cobalt, to the graphite electrode (Iijima, 1993).

Since the discovery of carbon nanotubes, a large amount of effort has been devoted
to understanding their formation conditions and to synthesizing nanotubes of other
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layered solids, such as MoS2 (Feldman et al., 1995) and BN (Chopra et al., 1995).
Nanoparticles of layered structures with a high fraction of their atoms on the prismatic
face, perpendicular to the basal plane (parallel to c), are more likely to contain a larger
number of unsaturated or dangling bonds on that face, which destabilize the planar
topology below some critical size. These particles are more stable as nanotubes and
other fullerene-like hollow structures, although the exact folding mechanism is not
clear. The analogous driving forces, under which hollow macroscopic fibers are
formed from naturally occurring minerals with layered polyhedral networks, was inves-
tigated as early as 1930 by Pauling (Pauling, 1930; Tenne et al., 1998). There are also
examples of substances with nonlayered crystal structures that have been synthesized
in nanotube form including: GaN (Goldberger et al., 2003), SiO2 (Yu et al., 1998),
Al2O3, (Ajayan et al., 1996), and bismuth (Li et al., 2001). Since they do not form spon-
taneously, these particles are usually synthesized with some sort of templating process
or by thin-film rolling techniques.

Many chalcogenide semiconductors were also at the center of early attention, such as
ME, withM ¼ Zn, Cd, Hg, and Pb and E ¼ S, Se, and Te (Babcock et al., 1998). Initially,
research on nanocrystalline ceramics was focused on simple binary compounds. Among
the earliest reported nanoceramics were MgO (Utampanya and Klabunde, 1991), TiO2

(Melendres et al., 1989), and AlN (Chow et al., 1994).

13.2 NANOMATERIALS PROPERTIES

The key to understanding why the properties of nanomaterials differ from those of their
macroscopic counterparts is the intermediate location of the nanoscale. The nanoscale
range is usually taken to be from 1 to 100 nm (although some researchers use the
range 1–1000 nm). This scale is between those traditionally of interest to condensed
matter physicists (e.g. a mole of copper atoms with a volume of 7.1�1021 nm3) and
chemists (e.g. the water molecule with a diameter of about 0.3 nm). Owing to its inter-
mediate nature, this field of study is sometimes referred to as mesoscopic physics.

The smallest nanoparticles do not behave like free atoms, molecules, or extended
solids. In fact, if a crystalline solid was to be taken and mechanically divided up into smal-
ler and smaller pieces, until it approached the size of a single unit cell, it would be found
that, perhaps to some surprise, the properties of these small pieces do not correspond
to those of the macroscopic solid. Rather, nanomaterials have unusual optical, magnetic,
and electronic properties that are size-dependent.

Why is this? As a first step towards answering this question, consider electronic struc-
ture. Recalled how the density and energy levels of MOs or COs depend on the number
of atomic orbitals that are combined. It has been pointed out in this textbook that
the energy separation between both MOs and COs decreases with an increase in the
number of atomic orbitals. Hence, in a macroscopic solid with �1023 atoms, quasi-
continuous energy bands with an infinitesimal separation between the COs are produced.
As illustrated in Figure 13.1, the situation becomes intermediate between a macroscopic
sample, with its bands, and a single molecule or cluster, with discrete energy levels, as the
sample size reaches the nanoscale range. Quite simply stated, the smaller nanoparticles
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are on the borderline between molecule and bulk, where the band structure begins to
disappear and discrete energy levels begin to dominate.

13.2.1 Electrical Properties

The discussed picture of a transition, from bands to discrete energy levels, predicts
a decrease in metallic conductivity as the number of atoms in a sample decreases. At
what point does a metal cease to be a metal? More generally, one might ask: At what
size does a particle of a material no longer exhibit behavior characteristic of the macro-
scopic sample? A conservative estimate of the range for conduction band formation
in an isotropic monatomic solid, such as a sphere or cube, might be between 104 to
105 atoms (Elliot, 1998). The distinction of an isotropic three-dimensional solid is an
important one. The smallest mesoscopic systems are small clusters of atoms called
quantum dots, which exhibit zero-dimensional (nonconducting) transport properties
because the volume of the sample is less than the electron Fermi wave vector, �10 nm
for most metals. As the size of a sample is increased beyond this regime in only one or
two dimensions, quantum wires (one-dimensional) or quantum wells (two-dimensional),
respectively, are obtained.

Although band structure calculations cannot really be used to study small clusters,
they can be used to explain the electronic properties observed in reduced dimensional
systems, like quantum wires and wells, with far fewer than 105 atoms. For example,
recall from Chapter 5 how a nanotube or nanographite ribbon of sufficient length can
be regarded as infinitely long and artificial periodic boundary conditions are imposed
along the tube or ribbon axis on a macroscopic scale. Most nanographites and nanotubes
are 1–100 mm in length, a size regime well above that required for quantum confinement

Bulk solid
Four atom
cluster

Six atom
clusterNanoparticle

Figure 13.1. The particle size regime at which a gradual transition occurs from quasi-

continuous energy bands to experimentally observe discrete energy levels fall somewhere in

the nanoscale range.
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along that axis. Only for extremely short lengths should the quantum confinement
be considered in all three orthogonal directions, that is, zero-dimensional quantum dot
formation.

It is precisely the topological change, from an infinite flat sheet (graphene) to a
finite-width ribbon or cylinder of nanometer dimensions and the accompanying boun-
dary conditions along these other directions, that account for the differences between
nanographite, nanotubes, and graphene. For example, in a nanotube, electrons are
confined to a discrete set of energy levels in the circumferential direction. Only wave vec-
tors satisfying the relation C . k ¼ 2pq, where C is the chirality vector and q is an integer,
are allowed in the corresponding reciprocal space direction (see Eq. 5.27 and let C ¼ N,
and q ¼ n).

Carbon nanotubes can only transport current along parallel one-dimensional chan-
nels down the tubular axis. This produces a set of continuous one-dimensional sub-
bands (giving rise to van Hove singularities in the DOS), making them quantum wires.
Nonetheless, the dispersion relations somewhat resemble that of graphene, but with
metallic or semiconducting behavior exhibited by the armchair or zigzag nanotubes,
respectively. The onset of metallicity has been observed in individual zigzag nanotubes
with the vapor phase intercalation of potassium atoms, which donate their electrons to the
vacant conduction band, thereby raising the Fermi level (Bockrath, 1999). As the diam-
eters of the semiconducting zigzag nanotubes increase, the band gap closes, correspond-
ing to the semimetallic graphene. Band structure calculations have thus proven very
useful for explaining the electronic properties of these reduced-dimensional systems.

13.2.2 Magnetic Properties

Nanosize particles are also interesting with regard to their magnetic properties. In the size
range of about 10 to 100 nm, single magnetic domains are observed and below this
regime, superparamagnetism. At the time of this writing, magnetic hard-disk coatings
are arrays of cobalt, chromium, and platinum or tantalum particles, between 10 and
20 nm in size, magnetically separated by chromium, which segregates to the grain bound-
aries decoupling the magnetic exchange between grains. With storage densities of
approximately 30–35 Gbits/in2, this corresponds to one bit of data per 103 grains. The
ultimate goal in magnetic hard disks is to achieve storage densities of one bit per
single-domain ferromagnetic particle, close to, but above, the superparamagnetic limit
(�10 nm in size).

Another interesting aspect, unique to the smallest nanoparticles, is the paramag-
netism observed in diamagnetic samples, such as 2–4 nm palladium clusters, at very
low temperatures (,1 K) (Volokitin et al., 1996). A topic of current theoretical interest
is the search of a satisfactory explanation for ferromagnetism in ultra-small nanometals.
With discrete electronic energy levels, the validity of the Stoner criterion for itinerant
ferromagnetism (Section 8.5.2) comes into question. To be sure, there are other important
factors to consider with nanoscale magnetic particles, such as spin frustration on the
surface. Nonetheless, the gist of the matter is still: How small can a particle be and
still retain its bulk-like properties?
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13.2.3 Optical Properties

It is believed that nonlinear optical photonic crystals, which can bend and amplify elected
photons (wavelengths) of light, will dominant signal-processing technology after the
electronics era. This, combined with the intriguing properties of matter at the nanoscale,
has made nano-optics an active research field.

The optical properties of solid metallic nanoparticles are accounted for nicely
by classical electromagnetic theory (Mie scattering), which is effective for 2pr � l,
where r is the particle radius and l is the wavelength (the wavelength of visible light
is in the range of 400 to 700 nm). Mie scattering typically results in an exponential
decay profile with decreasing photon energy in the UV–Vis spectrum. Sometimes super-
imposed on this is a well-defined surface plasmon band. Plasmons are long wavelength
collective oscillations – like a charge density wave – involving all the conduction
electrons. Plasmons can be energetically excited, which appears as a pronounced reson-
ance in the optical absorbance spectra, corresponding to a transition from the ground
state of zero reflectivity (total transparency, or nonabsorbing) to a reflectivity of unity.
This resonance dominates the linear and nonlinear optical response of the material.

Resonance occurs when the wave vectors of the photon and plasmon are equal in
magnitude and direction for the same frequency of the waves. The frequency, n, of the
plasmon and, hence, of the photon required for resonance is given by:

n ¼
ffiffiffiffiffiffiffiffiffiffiffi
n0e2

10 me

s
(13:1)

where n0 is the electron density, e is the electron charge, me is the electron mass, and 10 is
the vacuum permittivity. The spectral line is of finite width owing to excitation lifetime
effects. As the particle size decreases, the width of the spectral line is broadened owing to
a reduction in the lifetime of the excitation.

Line-width broadening may also be caused by other fast relaxation mechanisms
in addition to a small particle size. For example, it is well known that, for spherical par-
ticles, radiation losses become more pronounced with increasing radius. In some metals,
these relaxation mechanisms are so strong that a well-defined plasmon resonance is not
observed, as in Fe, Pd, and Pt. Nanosized particles are interesting because the optical
resonance can be designed in. For example, in a nanoshell consisting of a dielectric
core surrounded by a metallic outer layer, the relative dimensions of these components
can be varied. This, in turn, varies the optical resonance, possibly over several-hundred
nanometers in wavelength.

The optical response of a nanocrystalline phase differs from those of an isolated
cluster. Linear and nonlinear optical properties in nanocrystalline phases are regulated
by particle–particle interactions. This is because the plasmon resonance absorption of
a nanoparticle is affected by scattering from the other nanoparticles in the assembly.
Generally, the particle–particle interactions lead to shifts in the surface plasmon reson-
ance frequencies and/or the appearance of additional low energy (long wavelength)
peaks in the optical absorption spectrum, with their location dependent on the geometry
of the assembly (Quinten and Kriebig, 1986).
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13.2.4 Thermal Properties

It has been taught early on that specific heat, thermal conductivity, and melting point
are intensive properties, that is, independent of the quantity of material present, and
thus are characteristic of a given substance. It may logically be argued that these proper-
ties would be independent of particle size. However, this intrinsic behavior holds only so
long as the fraction of surface atoms is small. For the most part, nanoparticles have higher
specific heats, higher thermal conductivities, and lower melting points than their bulk
counterparts do. It must be pointed out that this change in behavior does not represent
a breakdown in thermodynamics! In fact, they can be explained by statistical mechanical
arguments.

All of the aforementioned properties are linked to temperature-dependent atomic
vibrations or oscillatory displacements of the atoms about their equilibrium positions.
These atomic motions are coupled to give lattice vibrations called phonons, which are
important in describing specific heat and thermal conductivity. Surface atoms can
undergo higher-amplitude vibrations at a given temperature than those of the interior,
because they are not bound as strongly as atoms in the interior of a particle. The large
fraction of surface atoms in a nanocrystal (�50 percent for a 3 nm particle of iron)
then directly results in an increased specific heat and thermal conductivity, owing to
the enhanced average atomic displacement. Since melting occurs when atomic displace-
ments exceed a certain fraction of the interatomic distances in the solid, nanocrystals also
melt at lower temperatures (sometimes dramatically lower) than bulk crystals.

13.2.5 Mechanical Properties

The mechanical properties of some of the smallest nanoparticles have been investigated.
Atomic force microscopy (Salvetat et al., 1999) and micro-Raman spectroscopy
(Lourie and Wagner, 1998) have been used to determine the axial Young’s moduli of
individual carbon nanotubes. These materials are stiffer than any other known material,
with an axial Young’s modulus comparable to the in-plane Young’s modulus of graphite
(about 1 TPa) (Baker and Kelly, 1964). The C–C bonds in graphite and nanotubes
are very strong, being intermediate in length between that of a single-carbon bond and
of a double-carbon bond. The smallest diameter nanotubes (,1 nm) are predicted to
have a Young’s modulus perhaps as high as 5 TPa (Overney et al., 1993)! This is
owing to the presence of s bonding, in addition to the extended p system, around the
circumference. Of course, the van der Waals attractions between nanotubes in strands
or bundles of hexagonally packed nanotubes, like the interplanar forces in graphite, are
much weaker. Owing to their extraordinary strength, nanotubes are being investigated
as particle reinforcements for structural materials.

Like nanostructured particles, nanocrystalline phases also possess unique mechan-
ical properties. The elastic moduli of nanocrystalline phases are approximately the
same as those for materials with conventional grain sizes until the grain size becomes
smaller than �5 nm. Similarly, the hardness and yield strength increase with decreasing
grain size until about 20 nm (Lu and Liaw, 2001). Below this limit, however, things
become controversial. Grains in this ultra-small size regime cannot support dislocation
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activity since the stress required to bow out a dislocation approaches the theoretical shear
stress (Legros et al., 2000). Owing to the absence of dislocation activity, the empirical
Hall–Petch equation is generally not applicable.

Some data indicate inverse Hall–Petch behavior with nanophase metals as the grain
size reaches the critical limit of 10–20 nm. In this regime, the material softens with a
further decrease in grain size. Other results imply a continued increase in yield stress
and ductility with decreasing grain size. Still yet, some experiments indicate that the
yield stress is independent of grain size in this size regime. Owing to the large surface
area of nanoscale grains, a large percentage of the atoms are within the grain-boundary
regions. There is also an increase in the total grain-boundary volume because of the
very small grain sizes. Molecular dynamics simulations have suggested that the plastic
deformation mechanism, in the smallest nanocrystalline metals, involves grain-boundary
sliding and the emission/reabsorption of partial dislocations (Hemker, 2004).

Nanoceramic powders are more ductile, tougher, and stronger than their coarse-
grained counterparts; They can also be sintered at much lower temperatures. Superplas-
ticity can generally be observed in ceramics at smaller nanocrystalline sizes because the
superplastic deformation mechanism is thought to be more strongly influenced by lattice
diffusion than dislocation slip (Nakano et al., 2001).

13.2.6 Chemical Reactivity

The large surface area/volume ratio of nanoparticles means that most of their atoms are
on the surface, which allows nanoparticles to react as nearly stoichiometric reagents
in chemical reactions, unlike bulk solids. For example, a six-atom cluster in the shape
of an octahedron contains 100 percent of its atoms on the surface. If either the CCP or
HCP theme is followed, the next smallest close-packed collection of atoms that can be
built has a central atom coordinated to six others in one layer, three others in a layer
above, and three in a layer beneath. Hence, 12/13 ¼ 92 percent of the atoms in this cluster
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Figure 13.2. (a) A plot of the calculated metal-work functions versus experimental values and

(b) calculated atomic-ionization potentials versus experimental values. The solid lines represent

regions of +10 percent deviation. All axes are in electron volts. (After Wong et al., 2003).
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are on the surface. Dense close-packed clusters such as this are called full-shell clusters.
As the number of atoms in a three-dimensional full-shell cluster increases, the percentage
of surface atoms decreases. It is well known that surface atoms are more chemically reac-
tive than atoms in the interior. Thus, nanoparticles would be expected to be very reactive.

Figure 13.3. A comparison of the calculated ionization energies of small metal clusters versus

experimental values. (After Wong et al., 2003).
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Two quantities that can be related to the intrinsic chemical reactivity of atoms,
clusters, and bulk solids are the electron addition energy (or electron affinity) and the
electron removal energy (or ionization energy). Note that the ionization energy in elec-
tronvolts is numerically equal to the ionization potential in volts. These are all well-
understood properties for atoms. There is, generally, excellent agreement between exper-
imental measurements of these quantities and theoretical predictions. The same cannot
be said for solids or even clusters, however. The ionization energy and electron affinity
for a bulk metal are equivalent and given by the work function, which is the energy dif-
ference between the vacuum level and the highest occupied electron states. The electron
affinity for a semiconductor, however, is the energy difference between the vacuum level
and the conduction band minimum. Both the ionization energies and electron affinities
of bulk solids are dependent on surface cleanliness and the crystal face exposed.

In finite clusters, as with atoms, the properties are no longer equivalent and further-
more exhibit a particle-size dependency. Figure 13.2a shows the work function for
several metals (Wong et al., 2003). The atomic ionization energies for the same metals
are shown in Figure 13.2b. Note that the atomic ionization energies are normally about
twice the magnitude of the work function. Figure 13.3 shows the experimentally
measured ionization energies for small to large clusters of several of these metals fit to
a model by Wong containing only two parameters; a circumscribing radius (dependent
on the geometry of the cluster) and the number of atoms. It can be seen that, even
though the actual ionization energies of a cluster do not scale monotonically (always
increasing or always decreasing) with particle size, particularly in the small cluster
regime, the model is successful in yielding values reasonably close to the experimental
results, and exceptionally close in some cases.

The electron affinities of clusters behave in a similar manner. This fact, undoubtedly,
has a role to play in the chemistry exhibited by nanometals that has been reported in
the literature recently. For example, it has been shown that Au atoms (Gold is a noble
metal in the bulk state) supported on a TiO2 substrate shows a marked size effect in
their ability to oxidize the diatomic gas CO to CO2 via a mechanism involving O2 dis-
sociative chemisorption and CO adsorption (Valden et al., 1998). Small Ni particles
have also been found to dissociate CO (Doering et al., 1982). Smaller nanoparticles of
Ag can dissociate molecular oxygen to atomic oxygen at low temperatures, whereas in
the bulk state, the species adsorbed on the Ag surface is O�2 (Rao et al., 1992).

13.3 MORE ON NANOMATERIALS PREPARATIVE TECHNIQUES

Nanomaterials can be in the form of fibers (one-dimensional), thin films (two-
dimensional), or particles (three-dimensional). A nanomaterial is any material that has
at least one of its dimensions in the 1–100 nm size range. There are two major categories
into which all nanomaterials preparative techniques can be grouped: the physical (top-
down) approach and the chemical (bottom-up) approach. In this chapter, the primary
focus is on chemical synthesis. Nevertheless, the physical methods will be briefly, as
they have received a great deal more interest in the industrial sector because of their
promise to produce large volumes of nanostructured solids.
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13.3.1 Top-Down Methods for the Fabrication
of Nanocrystalline Materials

With the top-down approach, one starts with a bulk material and attempts to break it down
into nanoscaled materials through physical methods. Hence, most of these techniques
are really forms of fabrication, rather than synthesis. For nanostructured bulk phases,
including powders, the common methods are milling, devitrification of metallic glass,
and severe plastic deformation. For nanocrystalline thin films (films with nanosized
crystallites), methods include thermal vaporization (under high vacuum), laser ablation,
and sputtering (thermal plasma), all of which were discussed in Chapter 3. In order to
obtain nanocrystalline films with controlled grain morphologies and sizes from these
techniques, the experimental conditions (e.g. the temperature gradient between source
and substrate, gas pressure, gas-flow rate, sputtering time, source-substrate distance)
must be carefully selected for each system under investigation.

13.3.1.1 Nanostructured Thin Films. For conventional film growth by the
sputtering technique, gas pressures of only a few mTorr ( p , 100 mTorr) are typi-
cally used. However, higher pressures are utilized for nanocrystals. The nucleation
and growth of sputtered nanoparticles are often very sensitive to the gas pressure in a
complex way. One of the earliest studies designed to examine the effect of gas pressure
on nanoparticle size was on molybdenum (Chow et al., 1990). Three pressure regimes
were found:

1. At pressures below 150 mTorr, conventional film growth was observed;

2. At 200 , p, 400 mTorr, nanoparticle size decreased with increasing pressure
(presumably owing to decreased sputtering rate);

3. At p . 500 mTorr, larger particles were able to agglomerate in the vapor phase,
which lead to a particle size/pressure correlation similar to that observed in
thermal evaporation with p . 1 Torr.

In addition, it is usually necessary to use customized cluster sources for generating nano-
particles. In these devices, before reaching the deposition chamber where the substrate
is located, the ejected target atoms are made to pass through an aggregation or annealing
region, where the experimental parameters are carefully controlled, to allow for cluster
growth. A very popular cluster source in use today is the magnetron-sputtering source,
which utilizes magnets to confine electrons in the vicinity of the target, allowing
for higher ion-current densities at lower pressures and subsequent deposition rates at
lower pressures (Haberland, 1994; Haberland et al., 1996). Once formed, the clusters
are jet-propelled through a nozzle to form a cluster beam.

Ablation is a powerful technique that uses high-energy lasers to vaporize or ablate
materials from the surface. The wavelength of the laser is tuned for the specific material
in order to achieve maximum absorption of the energy, most often ultraviolet. The target
is vaporized, creating a plume of neutral metal atoms. The plume is then cooled with a
carrier gas to form clusters. It is possible to couple laser evaporation with laser pyrolysis
to form alloys.
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13.3.1.2 Nanocrystalline Bulk Phases. Mechanical attrition has become the
most common top-down preparatory route for powders containing nanosized particles.
Precursor bulk materials are placed in a mill where their grain size is continuously
ground down to between 3 and 25 nm submicron, depending on its crystal structure.
Milling beyond this minimum size results in amorphous materials. Mechanical attrition
also does not result in uniform crystal sizes or shapes, which is its major disadvantage.
There are two ways for the synthesis of nanoparticles using mechanical attrition; milling
of single precursor into smaller grains and mechanochemical synthesis.

Parameters, like milling time, size and shape of the vessel, number and size of media,
and the powder to media ratio, are typically taken from empirical research. The larger
the balls, the more frequent the collisions, up to a maximum, before there is a decrease
as the balls become too large for the vessel size. But the more balls, the lower the
impact velocity of the balls. For high-energy milling, impact efficiency is an important
consideration, as only those impacts that cause plastic deformation, fracturing, or cold
welding, matter.

For brittle starting materials, the grain size is reduced through a process of fracturing
and cold welding of smaller grains. With softer metals and intermetallic compounds,
the dominating force reducing the grain size is not fracturing, but instead creation and
aligning of dislocations, which results in shear bands. This process is similar to high-
temperature recrystallization but at lower temperatures restricting the grain growth.
Low temperature is essential in the formation of nanoparticles, often requiring milling
in liquids, or in refrigerated mill stations. The minimum grain size obtainable is deter-
mined by the balance of the dislocation accumulation and the recovery through forma-
tion of new grains. In the case of relatively low melting solids, like many with the
FCC crystalline structure, the minimum grain size scales inversely with the melting point.

Mechanochemical synthesis is an expansion of simple mechanical alloying/
attrition. Mechanochemical synthesis is essentially the solid-state reaction of materials
facilitated by milling. During the early 1970s, it was observed that the milling of
nickel or aluminum alloys in air resulted in the formation of metal oxide nanoparticles.
During the milling process, heat was generated that resulted in the oxidation of the
surface of the initial powders. These surface oxides were incorporated into the initial
materials through cold welding, or the joining of two interfaces through collision. With
ball milling, the cold welding was so complete that the oxide layer created on the interface
was completely integrated into the particle. In the late 1980s, researchers at the University
of West Australia discovered that if calcium is milled with CuO, Cu nanoparticles are
formed separated by CaO. The reduction of CuO by calcium typically takes place at
1400 K. This provided a simple method for the synthesis of alloys without first reducing
the metal oxides to metals. During the collisions, there is a �100 K temperature rise,
which results in an order of magnitude increase in the reaction enthalpy. Additionally,
there is the potential for extreme surface heating, which can lead to an increased rate
of reaction.

Other top-down methods are used for the production of ultrafine-grained (UFG)
metals and alloys. These include: the devitrification of metallic glass and severe
plastic deformation, in which a coarse-grained polycrystalline metal or alloy is subjected
to large shear strains under pressure, forcing the grains to subdivide into nanosized
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crystallites. Severe plastic deformation typically produces polycrystalline metals and
alloys that have grain sizes between 100 and 1000 nm, with subgrain domains. Metals
processed by SPD have high-dislocation densities and nonequilibrium grain boundaries.
The ultrasmall grain size and structural features impart high strength, good ductility,
superior superplasticity, low-friction coefficients, high-wear resistance, enhanced high-
cycle fatigue life, and good corrosion resistance, all of which make them attractive
in structural applications, medical implants, as well as the automotive and forming
industries (Zhu and Langdon, 2004).

The most promising SPD technique appears to be equal-channel angular pressing
(ECAP), also known as equal-channel angular extrusion (ECAE). In this method, an
ingot is repeatedly pressed through a special die with two channels of equal cross-section,
intersecting usually at an angle of 908. Elevated temperatures and increased channel
intersection angles can be used for hard-to-deform materials. The cumulative strain in
the ingot, built up with multiple passes through the die (usually four to six), leads to a
homogeneous UFG material. Equal-channel angular pressing was invented in 1977
in the former Soviet Union by Vladimir Segal (b. 1936), but its applicability to UFG
metals was first demonstrated in the early 1990s by Ruslan Z. Valiev (Lowe and
Valiev, 2004).

13.3.2 Bottom-Up Methods for the Synthesis
of Nanostructured Solids

In the chemistry community, most nanomaterials research is centered on the bottom-up
approach. In this technique, well-controlled nanoparticles are chemically synthesized
in a solution phase, and subsequently compacted or assembled into macroscopic
materials. Assembling bulk materials one nanoparticle at a time is not practical. For
example, even if one was able to sequentially assemble 10 million water molecules per
second, it would take over 3 million years to make a single drop of water! However,
self-assembly (Section 1.1.4), in which large numbers of particles assemble spontane-
ously, is under investigation as a synthetic route for nanomaterials.

Nanoparticles have very large surface area to volume ratios, which results in a
higher chemical reactivity relative to larger particles. Both the ionization energy and
the electron affinity of small clusters of atoms (e.g. ,100) exhibit a particle-size depen-
dency, in contrast to the particle-size independence of the work function in bulk
solids. Moreover, since most of the atoms are on the surface, nanoparticles can serve
as nearly stoichiometric reagents in chemical reactions. This large surface-to-interior-
atom ratio also tends to maximize the surface van der Waals forces that, together with
the tendency of the system to minimize the total surface, or interfacial energy, typically
results in agglomerates. Agglomeration can occur at several stages; during the synthesis,
drying, handling, or during processing. If the agglomerates are physically bound to
each other, as a result of sintering or synthesis, the agglomerate is referred to as aggregate
and it cannot be separated without further chemical treatment to break the bonding
between particles.

The tendency for agglomeration can often be reduced through physical separation,
such as sonication or mechanical shearing. However, a more effective method for
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lowering surface chemical reactivity in general, utilizes a protective shell of ligand
molecules. Chemical methods utilizing surfactants in this manner can produce very
homogeneous well-dispersed nanoparticles. The surfactant can be removed later for
further processing. Surfactants (amphiphiles) are a class of chemicals that raise or
lower the surface tension of a system. They get their name from “surface-active agent”
and they typically have polar and nonpolar sections. They are used to alter the surface
tension along interfaces. Surfactant molecules contain a long-chain hydrocarbon plus a
hydrophilic end. Typically, the hydrophilic-end group comes in the form of an ionic
group, such as a sulfate or quaternary amine, forming either anionic or cationic surfac-
tants, respectively. Nonionic surfactants having either ethers or alcohol functional
groups are also common. This combination of polar and nonpolar groups allows the sur-
factant to help solubilize water within an organic medium. Surfactants can also provide
control during the nucleation and growth phases by increasing the concentration needed
for nucleation or slowing the growth during Ostwald ripening. The more-or-less spherical
protective shell of surfactant molecules, however, makes the assemblage of nanoscaled
particles into three-dimensional crystals difficult.

Nevertheless, solution-phase techniques offer several design advantages, originating
from the molecular level control. The bottom-up approach generally leads to better
homogeneity, crystallinity, and enhanced physical properties. The chemical methods
also offer control over the particle size and size distribution, which physical methods
do not provide. Through the careful control of the parameters affecting the nucleation
and growth, the morphology and cation occupancies can likewise be controlled. There
are several preparative techniques for the chemical synthesis of nanoparticles, which
will now be discussed.

13.3.2.1 Precipitation. Precipitation reactions are among the oldest of tech-
niques for the synthesis of nanomaterials. The starting materials are dissolved in some
common solvent and a precipitating agent is added. The precipitating agent can be a
complexing, reducing, or oxidizing agent. This addition produces insoluble nuclei,
which then undergo Ostwald ripening. As with other syntheses at the solid–liquid inter-
face, precipitated nuclei are prone to further reactions, during the aging and drying stages.

The reduction of inorganic precursors does not always lead to a precipitate. For
example, hydrogen tetrachloroaurate(III) can be reduced using sodium citrate resulting
in a red colloidal solution. HAuCl4 is heated in distilled water and slowly titrated with
sodium citrate. The solution goes from a pale yellow to red. The size and color of the
colloidal solution can be controlled by varying the amount of sodium citrate added.
The sodium citrate acts as a reducing agent and the citrate ions help to stabilize the
gold colloid. The lower concentration of sodium citrate provides for less stabilization
so that the nanoparticles grow larger. If the surface energy can be controlled, reducing
the attraction of the particles, the resulting nanoparticles are stabilized more and do not
precipitate out.

The major advantage of precipitation synthesis, like the one described above, is that
large quantities of nanoparticles can be made; However, it can be difficult to tailor the size
since only kinetic factors are available to arrest growth. The addition of complexing
agents or surfactants can help control the particle size. Following the example of gold
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nanoparticles, it is possible to synthesize gold colloids using surfactants and nonaqueous
media. Brust refined the precipitation of aqueous HAuCl4 using a surfactant, tetraocty-
lammonium bromide and toluene (Brust et al., 1994). This creates a micelle in which
the gold is reduced using sodium borohydride. The surfactant helps stabilize the surface
of the gold and allow it to dispersible in the toluene phase. Any residual by-products are
removed by washing with sulfuric acid.

The size and morphology of the nanoparticles can be tailored, to a limited degree,
through control of the reaction conditions such as pH, cation concentration, and the
precipitating agent. The size can be controlled with a wide size distribution (typically
30 percent) centered about a desired value and they are roughly spherical. The greatest
effect on the size and distribution comes from the initial cation concentration. If the
metal concentration is increased in order to produce more material or larger nanoparticles,
there is a decrease in size uniformity.

The first controlled synthesis of magnetic nanoparticles utilizing this alkaline
precipitation technique was performed by Massart (Massart, 1981). In this synthesis,
Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 at a slightly basic pH of
8.2. These particles were irregular spheres 10 nm in diameter with a .50 percent size
distribution. Through size selection titration, a technique that disperses nanoparticles in
a solvent to form a stable colloidal suspension, the size distribution can be reduced to
less than one percent. The solution is titrated with an electrolyte solution or solvent
that disrupts the stable colloid, causing larger nanoparticles to precipitate out, which
leaves the particles suspended in the supernatant nearly monodispersed. Temperature
reduction has the same disruptive result. The precipitate can be collected using centri-
fugation or filtration, and the process repeated. This can reduce the size distribution to
,1 percent, generating a monodispersed colloidal solution. Massart later expanded the
synthesis of alkaline precipitation to include mixed ferrites (MFe2O4, where M ¼ Co,
Mn, and MnZn).

These mixed ferrites result in additional difficulties owing to the varying solubilities
of the metal hydroxides. In the case of (MnZn)Fe2O4, Fe(OH)3 starts to precipitate early
at pH 2.6, while Mn(OH)2 precipitates at a much higher pH of 9.4. Zn2þ is amphoteric
and precipitates as Zn(OH)2 at pH 7.6 but starts to redissolve at pH 9 forming
Zn(OH)4. Therefore, to result in a uniform metal precipitate the pH must be carefully
controlled at pH 8.6. The synthesis is further complicated by the propensity of iron
metal to oxidize, forming the a-Fe2O3. This is a common impurity phase resulting
in reduced magnetic properties. Fe3þ undergoes oxidation at pH . 9. Titration of
the metal by the base increases pH to the target value more slowly than does a titration
of the base by the metal. A slow titration tends to cause additional problems owing to
inhomogeneity. As the pH is slowly increased, the Fe3þ will be precipitated first
and nearly completely before the Zn and finally the Mn. This results in a central core
that oxidizes to form g-Fe2O3 coated by a shell of iron deficient ferrite.

Often, this inhomogeneity, which is caused by the different solubilities, can be
manipulated to an advantage. Precipitation reactions can be carried out sequentially in
which a second substance can be layered on top of a previously formed particle. For
example, the lattices of CdS and CdSe are nearly identical. Precipitated from solution,
the less soluble CdS will provide a nucleation site on to which CdSe will grow. CdSe
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is never found in the core. Tian et al. were able to prepare both the CdSe–CdS and the
CdS–CdSe core-shell structures, using cadmium perchlorate and hydrogen sulfide
or hydrogen selenide as the reactants, through judicious manipulation of the microemul-
sion conditions (Tian et al., 1996). This first example helped bring about other core-shell
structures relying on differential solubilities.

13.3.2.2 Hydrothermal Techniques. Hydrothermal reactions typically pro-
duce nanometer-sized particles that can be quenched to form a nanoparticle powder, or
cross linked to produce nanocrystalline structures (Feng and Xu, 2001). Hydrothermal
conditions allow for reduction in solubilities of ionic materials and thus more rapid
nucleation and increased ion mobility, resulting in faster growth. Via judicious choice
of the hydrothermal conditions, a measure of control can be exerted over the size and
morphology of the materials. As mentioned earlier, the viscosity and ionic strength of
solvents is a function of the temperature and pressure at which the reaction is carried
out. Other experimental parameters, such as the precursor material and the pH, have an
impact on the phase purity of the nanoparticle. The two principal routes for the formation
of nanoparticles are hydrolysis/oxidation, and the neutralization of hydroxides. There
have been limited successes with solvents other than water.

An example of the hydrothermal synthesis of nanoparticle is in the synthesis of
(MnZn)Fe2O4. The effects of reaction time and temperature were evaluated to determine
the effect on size and morphology of the nanoparticles. When the reaction time was
reduced and carried out at a higher temperature (1408C/0.5 h), there was a far greater
amount of surface hydroxides. At longer times and lower temperature (958C/50 h),
water was actually incorporated into the crystal structure (as opposed to water of
hydration) of the nanoparticle resulting in increased lattice distortions. This was reflected
in the thermogravimetric characterization, where the final dehydration was not achieved
until after 7008C. It is interesting to note that this particular hydrothermal synthesis
helped to elucidate a mechanism for the formation of mixed metal oxides of iron.
Time did not affect size, only crystallinity. The cation concentration and hydrothermal
conditions effected size within a narrow range.

In hydrothermal reactions, it is worth noting that, given the choice of starting
materials, the larger the spectator ions, the poorer the crystallinity. This is explainable
in terms of the electrostatic potential of the metal hydroxides. With lower electrostatic
potentials comes a greater likelihood that the metal sol will undergo oleation and
crosslink.

13.3.2.3 Micelle-Assisted Routes. An interesting phenomenon in water–oil–
amphiphile systems is the presence of self-assembled arrays of amphiphiles (surfactants)
called micelles. From 1948 to 1950, Philip Alan Winsor, at Shell’s Thornton Research
Centre, reported that upon simple mixing (i.e. without the need for high shear conditions),
oil, water, and amphiphiles yielded clear, macroscopically homogeneous single phases,
which he termed Type IV systems (Winsor, 1948, 1950). The term microemulsion
was later introduced by Jack H. Shulman, a Columbia University chemistry professor,
to denote these thermodynamically stable optically isotropic, transparent oil–water–
amphiphile dispersions (Shulman et al., 1959). Type IV systems contain small droplets
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of one liquid dispersed within the other, with a self-assembled layer of surfactant
molecules (micelles) along the interface between the two phases. The spontaneous
self-assembly of the micelle is driven by the thermodynamic tendency to minimize
the surface tension between the water and the oil in the presence of the amphiphile
(Hoar and Shulman, 1943).

Micelle solutions were originally characterized with a bulk aqueous phase where
the hydrophobic carbon chains were turned inward to help stabilize the oil phase.
Later, reverse micelles were also characterized, where the conditions were reversed. A
bulk oil phase was used with the hydrophilic head groups turned inward to help stabilize
the aqueous phase.

Micelles require very stringent conditions, dictated by the molar proportions of
oil, water, and surfactant. However, the formation of micelle solutions is driven by the
differences in the polarity of the two groups; any factor that affects the polarity, such
as temperature, co-surfactants, or salt concentration, also affect the stability of the micelle
solution. If the ratio of water to surfactant concentration changes greatly, the micelle
solution becomes unstable forming a traditional macromulsion.

When surfactants are dissolved in organic solvents they form spherical aggregates
called reverse micelles. Micelles can be formed both in the presence and absence
of water. However, in the absence of water they are very small. When water is added,
it is readily solubilized into the polar area of the micelle forming a water pool. This
water pool is characterized by v, the molar water to surfactant ratio (v ¼ [H2O]/[S]).
Typically, aggregates containing a small amount of water (below v ¼ 15) are usually
called reverse micelles, while microemulsions correspond to droplets containing large
amounts of water molecules. This distinction between micelle and microemulsion is
often blurred and the two terms are used interchangeably.

The spherical nature of the surfactant aggregates in reverse micelles is a response to
a thermodynamically driven process. It basically represents a need for the surfactants
to reach an energetically favorable packing configuration at the interface, depending on
the molecular geometry of the surfactant. The surfactant molecules can be represented
as a truncated cone, whose dimensions are determined by the hydrophilic and hydro-
phobic parts of the surfactant. Assuming water-in-oil droplets are spherical, the radius
of the sphere is expressed as:

R ¼ 3V
V

(13:2)

where, R is the radius, V is the volume, andV is the surface area. Assuming that the water
molecules govern the volume and the surfactant molecules determine the surface area,
then the water-pool radius can be expressed as:

RW ¼ 3Vaq[H2O]
s[S]

(13:3)

where RW is the radius of the water pool, Vaq is the volume of water molecules, and s is
the area per polar head group of surfactant. Various experiments have confirmed the
linear variation of the water-pool radius with the water content. In addition, the water-
pool radius is unaffected by changes in the volume of polar phase for any given v.
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When the surfactant counterions or metal ions from reactants are added to a micelle,
there is a change in the overall structure of the water pool of the micelle. For example, in
the well-characterized system of AOT–isooctane–water, IR absorption spectroscopy
shows that the water molecules solubilized within the aqueous core of small micelles
are in contact with and bound to the polar head group of the AOT. AOT, sodium
dioctylsulfosuccinate, is a well-characterized surfactant and is commonly used.
Being bound to the polar-head group inhibits the water molecules from forming their
normal hydrogen bonding found in bulk water. As v is increased there is a shift in the
IR spectrum toward that of bulk water indicating that the water molecules in the inner
core form bulk-like hydrogen bonds. Similar results have been seen with NMR spec-
troscopy. Other surfactants, such as cetyltrimethylammonium bromide (CTAB),
sodium dodecylsulfate (SDS) and polyethoxylates (Iegpal, Brij, and Tween), have also
been used. In addition to these structural differences, experiments measuring the
dynamics revealed that the motion of the water molecules inside the micelle differs
from that in the bulk.

Microviscosity experiments using a molecular probe indicated a greater viscosity
in micelles compared to bulk. The viscosity decreases rapidly up to v � 10 and then
decreases slowly as the micelle size increases. Additional studies using fluorescence
probes revealed two different solvation rates inside the micelle. Zhong attributed the
different solvation to water bound rates to the polar head group of AOT and bulk water
inside the micelle (Zhong et al., 2002). It is this increased viscosity and extended
solvation sphere that limits the lower size of particles, which can be synthesized using
reverse micelles.

The geometric model of the micelle used above depends only on the volume of the
droplet determined by water molecules and the surface area of the droplet determined by
the surfactant molecules. As a result, when a reactant is dissolved inside the droplet it
could affect the overall size of the droplet and the relationship tov in the following ways:

1. If the solute is located on the outside of the micelle in the bulk hydrocarbon phase
then the overall ratio of surfactant to water is unchanged. As a result, there should
be no change in the size of the water pool.

2. Addition of a solute into the water pool increases the overall volume, while keep-
ing the surface area constant. This results in an increase of the observed size of the
water pool.

3. Addition of a solute bound to the interface layer increases the surface area, while
keeping the overall volume constant. This results in a reduction in the size of
water pool.

4. If the solute induces the formation of small aggregates surrounding the solute,
this would produce two sizes of micelles. The surface area would be reduced
as surfactant is used in the aggregates about the solute, therefore the size of the
water would be decreased.

Studies involving small-angle X-ray scattering (SAXS) and neutron scattering
(SANS) have been used to determine which case is most accurate using a variety of reac-
tants. In general, these studies have shown that the most likely situation is 2) or 3)
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depending on the polarity of the reactant. Where proteins were used, their low polarity
helped to stabilize them at the interface level as in case 3. In the case of ions, the
highly polar water pool creates a preferential location, as in case 2. Small-angle X-ray
scattering and SANS were very helpful in distinguishing between cases 1), 2), and 3),
but not in case 4). To eliminate case 4) as a possibility, quenching experiments were car-
ried out using a hydrated electron as a probe. Since the surfactant molecules would be
coordinated to the solute in case 4), reaction times are greatly reduced and in many
cases no reaction was observed. It is the increase in the volume of the water pool that
limits the upper size of particles, which can be synthesized using reverse micelles

Owing to the small size, micelles are subject to Brownian motion. They collide con-
tinuously with a small fraction of the droplets existing as short-lived dimers expelling
a small amount of surfactant into the continuous oil phase. This limited dimerization
allows the contents of the micelles to be exchanged. This exchange will eventually
lead to the contents of the micelle being distributed over the entire micelle population.
During the course of the SANS experiments on the nanosecond and microsecond time
scale, the uniformity of the micelle was elucidated. In experiments that have a long
measuring time, micelles appear to be monodispersed and the water appears to be
completely contained within the micelle. As the measuring time starts to approach the
lifetime of the dimers, the micelles start appearing polydispersed with thewater appearing
to be continuous.

This previous work, characterizing the dynamic nature of micelles, has demon-
strated that micelles are in a constant state of agitation from Brownian motion.
This motion results in micelle collisions that distribute any solutes within the micelle
during a dimer formation. The dimer is short lived, averaging only around 100 ns
before it decoalesces. During dimer formation, surfactant is expelled into the continuous
oil phase. During long measuring times, the micelle appears as static rigid shells and
surfactant is not observed in continuous phase. These studies have helped to elucidate
the more common relationship, which take into account the viscosity, hydration
sphere, and dynamic nature of the micelles. As with the hydrothermal reactions, changes
in the structure of the water pool have a pronounced impact on the overall kinetics of
the reaction.

Although there are many examples of reverse micelles used as nanoreactors, there
are only a few examples of direct micelles being used. Sodium dodecylsulfate is the
principle surfactant used in these reactions owing to the morphology of the aggregate.
Micelle reactions, either reverse or direct, are very complicated. One has the chemistry
involved with the chemical reaction, and then the micelle/surfactant parameters.
Often, one can resort to chemometric modeling to help gain an understanding; Here, a
chemometric model for predicting the size of a ferrite from the synthesis conditions of
surfactant concentration, metal concentration, base concentration, and temperature. The
synthesis was later expanded to include the mixed ferrites.

Just as with hydrothermal synthesis, it is possible to carry out the reaction in non-
aqueous media, it is possible to form micelles using alcohol as the polar phase. Using
ethanol as the polar phase, it is possible to further tailor the solubilities of metal hydrox-
ides. In the SrFe12O19 hexaferrite, simply coprecipitation strontium and iron to make the
mixed metal hydroxide results in a mixed-oxide phase. Sr(OH)2 has such a high solubility
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in water that inhomogeneous precipitates are formed. Carrying out the reaction using
ethanol as the polar phase greatly reduces the solubility, resulting in a more uniform
precipitate.

13.3.2.4 Thermolysis, Photolysis, and Sonolysis. The decomposition of
organometallic precursors is probably the simplest method to prepare nanoparticles.
This decomposition may be driven by heat (thermolysis), light (photolysis), or sound
(sonolysis). Advantages of using organometallic compounds are that precursors can be
made that have the constituents in molecular proximity to each other. Then as the precur-
sor is decomposed the constituents remain close and the resultant nanoparticle can have a
controlled crystallinity and morphology. Controlling the temperature or exposure to light
or sound provides a kinetic control over the growth of the nanoparticles. In order to gain
additional thermodynamic controls over the nucleation it is possible to carry out the
decomposition in the presence of polymers, organic capping agents, or structural hosts.
The capping agent provides a means to sterically hinder the growth of the nanoparticle
preventing coalesce and agglomeration.

Metal carbonyls are the precursor of choice owing in part to ease in the decompo-
sition. The carbonyls are decomposed in the presence of stabilizing polymers, spherical
nanoparticles are formed. Through the combination of surfactants it is possible to change
the morphology. In order for the decomposition reactions to maintain uniform size and
morphology, it is important to achieve rapid nucleation and controlled growth. As a
result, the metal carbonyl is typically injected into a hot solution; This provides the
rapid nucleation. The injection leads to a slight reduction in the temperature, coupled
together with a reduction of temperature provides the slow growth. This rapid injection
style of reaction allows size distribution focusing, by separating nucleation from
growth. When a surfactant mixture is used, such as oleic acid and TOPO, and quenched
shortly after injection, nanorods (4 nm � 25 nm) of HCP Co are formed. The change
from spheres to rod is a result of the differential absorbance of the surfactant on the
facets of the nanoparticle.

It is possible to create more complex compounds and morphologies such as alloys
or core-shell structures. The nucleation step still occurs with the injection of the metal
carbonyl. However, when other organometallic precursors are in the solution the alloy
can grow on the nuclei through transmetallation. To prepare core/shell material, the
nuclei are allowed to react, then the temperature is reduced and a second precursor is
introduced. The initial injection provided the nucleation, which the additional materials,
when decomposed, grow on the initial nuclei.

When the decomposition is facilitated through the use of the ultrasonic or acoustic
waves it is called sonolysis or sonochemistry. Ultrasonic irradiation is carried out with
an ultrasound probe, such as a titanium horn operating at 20 kHz. During sonication,
the formation, growth, and collapse of bubbles occur in an adiabatic fashion and with
extreme energies. The acoustic cavitation involved the localized hot spot of temperatures
in excess of 5000 K and a pressure of �1800 atmospheres. Since the reaction is adiabatic
with little bulk heating, there is a subsequent cooling rate of 109 K/s. The cavitation is
dependent on the solvent not coupling with the precursors. Generally volatile precursors
in low vapor-pressure solvents are used to optimize the yield.
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Nanostructured particles are easily produced by sonochemically treating volatile
organometallic precursors. The powders formed are usually amorphous, agglomerated,
and porous. To get the crystalline phases, these powders must be further annealed;
however, this annealing temperature is lower than that needed to do the solid-state con-
version. These powders had a surface area, which was over a hundred times greater
than powders commercially available.

When the sonolysis is done in high-boiling organics, highly porous amorphous pow-
ders are formed. For example, an amorphous iron powder was produced by the sonocation
of iron carbonyl in decalin. This powder was comprised of small crystallites (5 Å) and had
a surface area of 120 m2/g1.

If stabilizers or polymers are added post sonication or during sonication, then metal
colloids result. These stabilizers could be alkyl thiols, PVP, oleic acid, and SDS. If the
sonication is done in the presence of oxygen then oxides are formed. The size of the
self-assembled monolayer-coated nanoparticles is determined by the surfactant concen-
tration in the coating solution.

If the sonolysis is done in the presence of a support or porous host, then colloidal
metal particles are formed. These powders have a surface area over a hundred times
greater than powders commercially available and are amorphous. Such materials are
generally considered for catalytic reactions and not for magnetic applications.

13.3.2.5 Sol-Gel Methods. In 1967, Maggio P. Pechini (b. 1923) developed a
sol-gel method for lead and alkaline-earth titanates and niobates, materials which do not
have favorable hydrolysis equilibria (Pechini, 1967; Lessing, 1989). This method is also
known by the names Pechini and liquid mix process. Pechini worked for the Sprague
Electric Company in Massachusetts, which was interested in manufacturing ceramic
capacitors. In the Pechini method, cations are chelated and then, with the aid of poly-
alcohols, the chelate is cross-linked to create a gel through esterification. This has the
distinct advantage of allowing the use of metals that do not have stable hydroxo species.
The chelating agent needs to have multiple carboxylate groups. Initially, Pechini used
citric acid. This has often been replaced with EDTA (ethylenediamine tetraacetate),
which has the advantage of chelating most metals and, with four carboxylate groups, is
easily cross-linked to form the gel. It is also possible to use polyvinyl alcohols that
provide for a three-dimensional network during the gel formation. The gelled composite
is sintered, pyrolysing the organic and leaving nanoparticles, which are reduced by the
pyrolized gel.

The limitations of the Pechini method, like many techniques, lies in the lack of size
and morphological control. With traditional sol-gel methods, the particles are part of
the gel structure, in the Pechini method the metal cations are trapped in the polymer
gel. This reduces the ability to grow controlled shapes. The size is controlled, to an
extent, by the sintering process and the initial concentration of metals in the gel.

Sol-gel processing can be used to prepare a variety of materials, including glass,
powders, films, fibers, and monoliths. Traditionally, the sol-gel process generally
involves hydrolysis and condensation of a metal alkoxide. Metal alkoxides are good pre-
cursors because they readily undergo hydrolysis; That is, the hydrolysis step replaces an
alkoxidewith a hydroxide group fromwater and a free alcohol is formed. Once hydrolysis
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has occurred, the sol can react further and condensation (polymerization) occurs. It is
these condensation reactions that lead to gel formation.

Factors that need to be considered in a sol-gel process are solvent, temperature,
precursors, catalysts, pH, additives, and mechanical agitation. These factors can influence
the kinetics, growth reactions, and hydrolysis and condensation reactions. The solvent
influences the kinetics and conformation of the precursors, and the pH affects the
hydrolysis and condensation reactions. Acidic conditions favor hydrolysis, which
means that fully, or nearly fully, hydrolyzed species are formed before condensation
begins. Under acidic conditions there is a low crosslink density that yields a denser
final product when the gel collapses. Basic conditions favor the condensation reaction;
Thus condensation begins before hydrolysis is complete. The pH also affects the iso-
electric point and the stability of the sol. These, in turn, affect the aggregation and particle
size. By varying the factors that influence the reaction rates of hydrolysis and conden-
sation, the structure and properties of the gel can be tailored. Since these reactions
are done at room temperature, further heat treatments need to be done to get to the
final crystalline state. Because the as-synthesized particles are amorphous or metastable,
annealing/sintering can be done at lower temperatures than those required in conven-
tional solid-state reactions.

Sol-gel routes can be used to prepare pure, stoichiometric, dense, equiaxed, and
monodispersed particles of TiO2 and SiO2, but this control has not been extended to
the metal ferrites. Generally the particles produced are agglomerated. Ultrafine powders
of CoFe2O4 (�30 nm) and NiFe2O4(5–30 nm) are produced after being fired at 4508C
and 4008C, respectively. Most of the ferrite sol-gel synthesis focus has been cobalt ferrite
doping studies with Mn, Cr, Bi, Y, La, Gd, Nd, and Zn.

Sol-gel routes have been attractive for the preparation of hexagonal ferrites. For
example, the M-type hexagonal ferrite, Ba12xSrxFe12O19, formed 80–85 nm hexagonal
platelets after a 9508C calcination for 6 h. Nanospheres of the W-type ferrite,
BaZn22xCoxFe16O27, resulted after calcination in air for 4 h at 6508C. The particle size
ranged from 10 nm to 500 nm (6508C–12508C) and increased with increasing calcina-
tion temperatures. U type hexagonal ferrite was also prepared, with 10–25 nm spherical
particles formed at 7508C. The grain size could be changed by increasing the calcination
temperature. These calcined powders had an amorphous layer on them. Yttrium iron
garnets, with particle sizes from 45–450 nm, have also been prepared. Mathur and
Shen have prepared the manganite perovskite, La.67Ca.33MnO3 by dissolving the
metal precursors in an acidic ethanolic solution (Mathur and Shen, 2002). Drying the
solution at 1208C and calcining at 300–4008C leads to preceramic foam, which forms
nanocrystalline La.67Ca.33MnO3 (40 nm) after a 6508C heat treatment.

It should be noted that the sol-gel process is particularly attractive for the synthesis
of multicomponent particles with binary or ternary compositions using double alkoxides
(two metals in one molecule), or mixed alkoxides (with mixed metaloxane bonds
between two metals). Atomic homogeneity is not easily achieved by coprecipitating
colloidal hydroxides from a mixture of salt solutions, since it is difficult to construct
double metaloxane bonds from metal salt.

Hybrid materials such as metal-oxide and organics-oxide can be prepared using
the sol gel approach. For example, controlled nanoheterogeneity can be achieved in
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metal/ceramic nanocomposites. Reduction of metal-oxide particles in hydrogen
provided the metal-ceramic nanocomposite powders such as Fe in silica, Fe2O3 and
NiFe2O4. The metal particles, a few nanometers in size with a very narrow size dis-
tribution even for high metal loading, were statistically distributed in the oxide matrix
without any agglomeration, as a result of anchoring the metal complexes to the oxide
matrix. The narrow particle size distribution could not be achieved if the sol-gel
processing was performed without complexation of metal ions.

13.3.2.6 PolyolMethod. The term polyol is short for polyalcohol, for example,
ethylene or propylene glycol. In the polyol method, the polyol acts as solvent, reducing
agent, and surfactant. The polyol synthesis was first described in 1983 by Michel Figlarz,
Fernand Fiévet, and Jean-Pierre Lagier at the University of Paris (Figlarz et al., 1983).
The polyol method is an ideal method for the preparation of larger nanoparticles with
well-defined shapes and controlled particle sizes. In this method, precursor compounds,
such as hydroxides, oxides, nitrates, sulfates, and acetates, are either dissolved or sus-
pended in a polyol. For example, with CuO, the general ratio of metal oxide to polyol
is 0.07 :1. The reaction mixture is then heated to reflux. As the temperature is increased,
the reduction potential of the glycol increases, which leads to nucleation. During the reac-
tion, the metal precursors become solubilized in the diol, forming an intermediate, and are
reduced to form metal nuclei, eventually giving metal particles. Submicron-size particles
can be synthesized by increasing the reaction temperature or inducing heterogeneous
nucleation upon addition of foreign particles or forming foreign nuclei in-situ.

Nanoparticle size is controlled by the use of initiators, such as sodium hydroxide.
The hydroxide helps to deprotonate the glycol, which increases the reducing power.
The reduction using ethylene glycol is a one-electron step in which Cu2O is the intermedi-
ate structure. During the reduction, the CuO is partially reduced creating Cu2O with a
smaller grain size than the parent precursor. As the reaction approaches completion,
the Cu nanoparticle begins to aggregate and sinter. The degree of sintering depends
on the temperature, reduction time, and ratio of CuO:ethylene glycol. The sintering is
owing to the high-reaction temperature and the Brownian motion of the particles,
which lead to increased atomic mobility, which in turn results in increased probably of
particle collision, followed by adhesion and finally agglomeration.

Increases in the amount of sodium hydroxide cause an increase in the reaction rate.
The mean particle size decreases as the hydroxide ratio increases, and the mean particle
size becomes less dependent on the initial precursor morphology. While sodium hydrox-
ide helps deprotonate the glycol, it also increases the solubility of the CuO precursor
through the creation of hydroxo species. This shifts the rate determining step from the
dissolution to the reduction. Adding as little as 0.01 M of NaOH results in the reaction
half-life beginning to decrease by a factor of six.

The polyol method has also been shown as a useful preparative technique for the
synthesis of nanocrystalline alloys and bimetallic clusters. Nanocrystalline Fe10Co90
powder, with a grain size of 20 nm, was prepared by reducing iron chloride and cobalt
hydroxide in ethylene glycol without nucleating agents. Nickel clusters were prepared
using Pt or Pd as nucleation agents. The nucleating agent was added 10 min after the
nickel–hydroxide–PVP–ethylene glycol solution began refluxing. The Ni particle
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size was reduced from about 140 nm to 30 nm when a nucleating agent was used.
Reduction of particle size was also obtained by decreasing the nickel hydroxide concen-
tration and by the use of PVP. Nickel, prepared without nucleating agents, had an oxi-
dation temperature of 3708C. Smaller nickel particles, synthesized with nucleating
aids, oxidized at a lower temperature of 2608C, as expected from the higher surface
area of finer particles.

Desorption studies showed the adsorbed surface species were CO moieties and H2O,
and nitrogen-containing species were not observed. This indicated that ethylene glycol,
not the polymer, was adsorbed on the surface of particles. The ethylene glycol had
only half monolayer coverage. When this protective glycol was completely removed
from the surface, oxidation occurred. It was suggested that the Ni–Pd and Ni–Pt particles
had a 7–9 nm Pd nucleus and a 6–8 nm Pt nucleus, respectively. Oxidation studies
showed that some alloying of Ni with Pt occurred. Cobalt nickel alloys of 210 to
260 nm particle sizes were also prepared using either silver or iron as nucleating agents.

Polymer protected bimetallic clusters were also formed using a modified polyol
process. The modification included the addition of other solvents and sodium hydroxide.
In the synthesis of Co–Ni with average diameters of between 150 to 500 nm, PVP and
ethylene glycol were mixed with either cobalt or nickel acetate with PVP. The glycol
and organic solvents were removed from solution by acetone or filtration. The PVP-
covered particles were stable in air for extended periods of time (months).

In contrast to aqueous methods, the polyol approach resulted in the synthesis of met-
allic nanoparticles protected by surface adsorbed glycol, thus minimizing the oxidation
problem. The use of a polyol solvent also reduces the hydrolysis problem of ultrafine
metal particles, which often occurs in aqueous systems. Oxide nanoparticles can be
prepared, however, with the addition of water, which makes the polyol method act
more like a sol-gel reaction (forced hydrolysis). For example, a 5.5 nm CoFe2O4 has
been prepared by the reaction of ferric chloride and cobalt acetate in 1,2-propanediol
with the addition of water and sodium acetate.

13.3.2.7 High TemperatureOrganic Polyol Reactions (IBMNanoparticle
Synthesis). In order to achieve rapid nucleation in polyol reactions, a general rule of
thumb is that the higher the temperature of the glycol, the faster the nucleation and the
more uniform the nanoparticles formed. This empirical rule prompted the evaluation
of other solvents, such as propylene glycol. In the mid-1990s, researchers at IBM
begin using ethylene glycol as the reducing agent, but in higher boiling-point solvents
like dioctyl ether. In addition, they began using carbonyls and other organometallics in
place of precursors like oxides. In 2000, they reported the synthesis and characterization
of monodisperse nanocrystals of metals and nanocrystal hybrid assemblies (Sun et al.,
2000), and semiconductors (Murray et al., 2000), using a high-temperature solution-
phase approach. Each nanocrystal contains an inorganic crystalline core coordinated
by an organic monolayer, which allows for the self-assembly of multiple nanocrystals
into a hybrid organic–inorganic superlattice material (Murray et al., 2001).

The IBM nanoparticle synthesis route is a combination of the polyol method and the
thermolysis routes. The rapid injection of the organometallic precursor into a hot solution
containing the polyol stabilizing agents allows for the immediate formation of nuclei.
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Since the capping agents/surfactants are present, the size and shape of the nanoparticles
are controlled. By adjusting the reaction conditions, such as time, temperature, precursor
concentration, as well as surfactant type and concentration, size and morphology can be
controlled. In general, increasing the reaction time causes an increase in nanocrystal
size, as does increasing the reaction temperature. Ostwald ripening also may force
some of the smaller nanocrystals to disappear as they redeposit onto larger nanocrystals.
Higher surfactant-to-reagent concentration ratios favor the formation of smaller nano-
crystals (Sun et al., 1999).

This method was initially exploited by IBM for the synthesis of FePt nanoparticles
and ferromagnetic nanocrystal superlattices. Whereas in a thermolysis reaction, iron
barbonyl and platinum organometallics result in the formation of platinum coated iron
nanoparticles, in the presence of a polyol like 1,2-hexadecanediol, an increase in the
rate of platinum decomposition leads to alloy nanoparticles. The chain length of the diol
determines the resultant nanoparticle size. Surfactants that bind more tightly to the nano-
crystal, or larger molecules, provide greater steric hindrance and slow the deposition rate
of new material to the nanocrystal, resulting in smaller average size (Murray et al., 2001).
The temperature determines the rate of decomposition and the rate of nucleation. Higher
temperatures promote faster nucleation rates, which limit the size distribution of the nano-
crystals, resulting in a more monodispersed sample. Superlattices are formed when the
nanocrystals self-assemble via interactions between the organic monolayers. For FePt,
the result is an HCP structure of nanoparticles that can be over a micron in size.
Changing the alkyl group on the surfactants can change the interparticle distance. By
changing the alkyl group from dodecyl to hexyl, gives particle spacing of 1 nm and a
superlattice that is closest cubic packed.
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APPENDIX 1

The 230 space groups, classified into the 32 isogonal crystallographic point groups.
The symbol � denotes one of the 65 chiral space groups.

Triclinic

1� P1 1 (C1)
2 P1̄ 1̄ (Ci)

Monoclinic

3� P2 2 (C2)
4� P21 00

5� C2 00

6 Pm m (C1h ¼ Cs)
7 Pc 00

8 Cm 00

9 Cc 00

10 P2/m 2/m (C2h)
11 P21/m 00

12 C2/m 00

13 P2/c 00

14 P21/c 00

15 C2/c 00
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Orthorhombic

16� P222 222 (D2)
17� P2221 00

18� P21212 00

19� P212121 00

20� C2221 00

21� C222 00

22� F222 00

23� I222 00

24� I212121 00

25 Pmm2 mm2 (C2v)
26 Pmc21 00

27 Pcc2 00

28 Pma2 00

29 Pca21 00

30 Pnc2 00

31 Pmn21 00

32 Pba2 00

33 Pna21 00

34 Pnn2 00

35 Cmm2 00

36 Cmc21 00

37 Ccc2 00

38 Amm2 00

39 Abm2 00

40 Ama2 00

41 Aba2 00

42 Fmm2 00

43 Fdd2 00

44 Imm2 00

45 Iba2 00

46 Ima2 00

47 Pmmm mmm (D2h)
48 Pnnn 00

49 Pccm 00

50 Pban 00

51 Pmma 00

52 Pnna 00

53 Pmna 00

54 Pcca 00

55 Pbam 00

56 Pccn 00

57 Pbcm 00

58 Pnnm 00

59 Pmmn 00

60 Pbcn 00

61 Pbca 00

62 Pnma 00

63 Cmcm 00
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64 Cmca mmm (D2h)
65 Cmmm 00

66 Cccm 00

67 Cmma 00

68 Ccca 00

69 Fmmm 00

70 Fddd 00

71 Immm 00

72 Ibam 00

73 Ibca 00

74 Imma 00

Tetragonal

75� P4 4 (C4)
76� P41 00

77� P42 00

78� P43 00

79� I4 00

80� I41 00

81 P4̄ 4̄ (S4)
82 I4̄ 00

83 P4/m 4/m (C4h)
84 P42/m 00

85 P4/n 00

86 P42/n 00

87 I4/m 00

88 I41/a 00

89� P422 422 (D4)
90� P4212 00

91� P4122 00

92� P41212 00

93� P4222 00

94� P42212 00

95� P4322 00

96� P43212 00

97� I422 00

98� I4122 00

99 P4mm 4mm (C4v)
100 P4bm 00

101 P42cm 00

102 P42nm 00

103 P4cc 00

104 P4nc 00

105 P42mc 00

106 P42bc 00

107 I4mm 00

108 I4cm 00

109 I41md 00

110 I41cd 00
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111 P4̄2m 4̄2m (D2d)
112 P4̄2c 00

113 P4̄21m 00

114 P4̄21c 00

115 P4̄m2 00

116 P4̄c2 00

117 P4̄b2 00

118 P4̄n2 00

119 I4̄m2 00

120 I4̄c2 00

121 I4̄2m 00

122 I4̄2d 00

123 4/mmm 4/mmm (D4h)
124 4/mcc 00

125 4/nbm 00

126 4/nnc 00

127 4/mbm 00

128 4/mnc 00

129 4/nmm 00

130 4/ncc 00

131 42/mmc 00

132 42/mcm 00

133 42/nbc 00

134 42/nnm 00

135 42/mbc 00

136 42/mnm 00

137 42/nmc 00

138 42/ncm 00

139 I4/mmm 00

140 I4/mcm 00

141 I41/amd 00

142 I41/acd 00

Trigonal

143� P3 3 (C3)
144� P31 00

145� P32 00

146� R3 00

147 P3̄ 3̄ (S6 ¼ C3i)
148 R3̄ 00

149� P312 32 (D3)
150� P321 00

151� P3112 00

152� P3121 00

153� P3212 00

154� P3221 00

155� R32 00
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156 P3m1 3m (C3v)
157 P31m 00

158 P3c1 00

159 P31c 00

160 R3m 00

161 R3c 00

162 P3̄1m 3̄m (D3d)
163 P3̄1c 00

164 P3̄m1 00

165 P3̄c1 00

166 R3̄m 00

167 R3̄c 00

Hexagonal

168� P6 6 (C6)
169� P61 00

170� P65 00

171� P62 00

172� P64 00

173� P63 00

174 P6̄ 6̄ (C3h)
175 P6/m 6/m (C6h)
176 P63/m 00

177� P622 622 (D6)
178� P6122 00

179� P6522 00

180� P6222 00

181� P6422 00

182� P6322 00

183 P6mm 6mmm (C6v)
184 P6cc 00

185 P63cm 00

186 P63mc 00

187 P6̄m2 6̄m2 (D3h)
188 P6̄c2 00

189 P6̄2m 00

190 P6̄2c 00

191 P6/mmm 6/mmm (D6h)
192 P6/mcc 00

193 P63/mcm 00

194 P63/mmc 00

Cubic

195� P23 23 (T )
196� F23 00

197� I23 00

198� P213 00

199� I213 00
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200 Pm3̄ m3 (Th)
201 Pn3̄ 00

202 Fm3̄ 00

203 Fd3̄ 00

204 Im3̄ 00

205 Pa3̄ 00

206 Ia3̄ 00

207� P432 432 (O)
208� P4232 00

209� F432 00

210� F4132 00

211� I432 00

212� P4332 00

213� P4132 00

214� I4132 00

215 P4̄3m 4̄3m (Td)
216 F4̄3m 00

217 I4̄3m 00

218 P4̄3n 00

219 F4̄3c 00

220 I4̄3d 00

221 Pm3̄m m3m (Oh)
222 Pn3̄n 00

223 Pm3̄n 00

224 Pn3̄m 00

225 Fm3̄m 00

226 Fm3̄c 00

227 Fd3̄m 00

228 Fd3̄c 00

229 Im3̄m 00

230 Ia3̄d 00
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APPENDIX 2

The 47 Possible Forms Distributed Among the Different Crystal Systems1

Crystal
Class

Symmetry
Elements2

Forms Occurring in the
Respective Crystal Class

Representative Inorganic/
Mineral Substances

Triclinic
1 E Pedion Ca8B18Cl4 . 4H2O
1̄ E, i Pinacoid MnSiO3

Monoclinic

2 E, C2 Sphenoid, pedion, pinacoid FeAl2(SO4)4 . 22H2O
m E, sh Sphenoid, pedion, pinacoid CaMg(AsO4)F
2/m E, C2, I, sh Prism, pinacoid As2S3

Orthorhombic

222 E, C2, C02, C02 Disphenoid, prism, pinacoid ZnSO4 . 7H2O
mm2 E, C2, sv, sv Pyramid, prism, dome, pinacoid,

pedion
BaAl2Si3O10 . 2H2O

mmm E, C2, C02, C02sv,
sv, sh

Dipyramid, prism, pinacoid Sulfur

(Continued)
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Crystal
Class

Symmetry
Elements2

Forms Occurring in the
Respective Crystal Class

Representative Inorganic/
Mineral Substances

Tetragonal

4 E, 2C4, C2 Tetragonal pyramid, tetragonal
prism, pedion

None known

4̄ E, 2S4, C2 Tetragonal disphenoid, tetragonal
prism, pinacoid

Ca2B(OH)4AsO4

4/m E, 2C4, C2, i, 2S4,
sh

Tetragonal dipyramid, tetragonal
prism, pinacoid

PbMoO4

422 E, 2C4, C2, 2C02,
2C2
00

Tetragonal trapezohedron,
tetragonal dipyramid,
ditetragonal prism,
tetragonal prism, pinacoid

Pb2CO3Cl2

4mm E, 2C4, C2, 2sv,
2sd

Ditetragonal pyramid, tetragonal
pyramid, ditetragonal prism,
tetragonal prism, pedion

Pb2Cu(OH)4Cl2

4̄2m E, C2, 2C02, 2sd, 2S4 Tetragonal scalenohedron,
tetragonal disphenoid,
tetragonal bipyramid,
ditetragonal prism, tetragonal
prism, pinacoid

Cu2FeSnS4

4/mmm E, 2C4, C2, 2C02,
2C002, i, 2S4, sh,
2sv, 2sd

Ditetragonal dipyramid,
tetragonal dipyramid,
ditetragonal prism, tetragonal
prism, pinacoid

Rutile

Trigonal (Rhombohedral)

3 E, 2C3 Trigonal pyramid NaIO4 . 3H2O
3̄ E, 2C3, i, 2S6 Rhombohedron, hexagonal

prism, pinacoid
FeTiO3

32 E, 2C3, 3C02 Trigonal trapezohedron,
rhombohedron, trigonal
dipyramid, ditrigonal prism,
hexagonal prism, trigonal prism,
pinacoid

Low quartz

3m E, 2C3, 3sv Ditrigonal pyramid, trigonal
pyramid, hexagonal pyramid,
ditrigonal prism, trigonal prism,
hexagonal prism, pedion

KBrO3

3̄m E, 2C3, 3C02, Hexagonal scalenohedron,
rhombohedron, hexagonal
dipyramid, dihexagonal
prism, hexagonal prism,
pinacoid

Corundum

(Continued)
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Crystal
Class

Symmetry
Elements2

Forms Occurring in the
Respective Crystal Class

Representative Inorganic/
Mineral Substances

Hexagonal

6 E, 2C6, 2C3, C2 Hexagonal prism, pedion Nepheline
6̄ E, 2C6, sh, 2S3 Trigonal dipyramid, trigonal

prism, pinacoid
None

6/m E, 2C6, 2C3, C2, i,
2S3, 2S6, sh

Hexagonal dipyramid, hexagonal
prism, pinacoid

Apatite

622 E, 2C6, 2C3, C2,
3C02, 3C002

Hexagonal trapezohedron,
hexagonal dipyramid,
dihexagonal prism, hexagonal
prism, pedion

High quartz

6mmm E, 2C6, 2C3, C2,
3sv, 3sd

Dihexagonal pyramid, hexagonal
pyramid, dihexagonal prism,
hexagonal prism, pedion

Wurtzite

6̄m2 E, 2C3, 3C02, sh,
2S3, 3sv,

Ditrigonal dipyramid, trigonal
dipyramid, hexagonal
dipyramid, ditrigonal prism,
hexagonal prism, trigonal prism,
pinacoid

BaTiSi3O9

6/mmm E, 2C6, 2C3, C2,
3C02, 3C002 i, 2S3,
2S6, sh, 3sv, 3sd

Dihexagonal dipyramid,
hexagonal dipyramid,
dihexagonal prism, hexagonal
prism, pinacoid

Beryl

Cubic

23 E, 8C3, 3C2 Tetartoid, deltohedron,
tristetrahedron, pyritohedron,
tetrahedron, dodecahedron, cube

NaBrO3

m3 E, 8C3, 3C2, i, 8S6,
3sh

Diploid, trisoctahedron,
trapezohedron, pyritohedron,
octahedron, dodecahedron, cube

Pyrite

432 E, 8C3, 3C2, 6C2,
6C4

Gyroid, trisoctahedron,
trapezohedron, tetrahexahedron,
octahedron, dodecahedron, cube

None

4̄ 3m E, 8C3, 3C2, 6sd,
6S4

Hextetrahedron, deltohedron,
tristetrahedron, tetrahexahedron,
tetrahedron, dodecahedron, cube

Sphalerite

m3m E, 8C3, 3C2, 6C2,
6C4, 6sd, i, 8S6,
3sh, 3sh, 6S4

Hexoctahedron, trisoctahedron,
trapezohedron, tetrahexahedron,
octahedron, dodecahedron, cube

Diamond

1See, Buerger, M. Elementary Crystallography, MIT Press, 1978, pp. 112–168.
2E ¼ identity element, i ¼ inversion center, Cn ¼ n-fold proper rotation axis, Sn ¼ n-fold improper rotation
(rotoreflection) axis, sv ¼ vertical mirror plane (reflection plane contains principal axis), sh ¼ horizontal
mirror plane (reflection plane ? to principal axis), sd ¼ diagonal mirror plane (reflection plane contains
principal axis and bisects the angle between the two-fold axes normal to the principal axis).
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APPENDIX 3

Solutions to selected end-of-chapter problems (marked in text by an asterisk).

CHAPTER 1

5)

Ra(608) ¼
1 0 0

0 cos 60 � sin 60
0 sin 60 cos 60

2
664

3
775 ¼

1 0 0

0
1
2
�

ffiffiffi
3
p

2

0

ffiffiffi
3
p

2
1
2

2
66664

3
77775

Rb(608) ¼
cos 60 0 � sin 60
0 1 0

sin 60 0 cos 60

2
664

3
775 ¼

1
2

0 �
ffiffiffi
3
p

2
0 1 0ffiffiffi
3
p

2
0

1
2

2
66664

3
77775

Principles of Inorganic Materials Design, Second Edition. By John N. Lalena and David A. Cleary
Copyright # 2010 John Wiley & Sons, Inc.

569



9) The rotation matrix for the 2608 rotation about the [1 1 1] direction, which in the

1ffiffiffi
3
p ,

1ffiffiffi
3
p ,

1ffiffiffi
3
p

� �
axis is: R[1 1 1](�608)

¼
0:666667 0:666667 �0:333333
�0:333333 0:666667 0:666667

0:666667 �0:333333 0:666667

2
64

3
75

The rotation matrix for the 2908 rotation about the [1 0 0] direction, which in the
k1 0 0l axis, is:

R[1 0 0](908) ¼
1 0 0
0 0 1
0 �1 0

2
4

3
5

The product matrix, J, of the two rotations is:

J ¼
0:666667 0:666667 �0:333333
0:666667 �0:333333 0:666667

0:333333 �0:666667 �0:666667

2
64

3
75

The rotation angle is

cos�1([0:6667� 0:3333� 0:6667� 1]=2) ¼ u ¼ 2:300 radians

2:3000� 180=p ¼ 131:88

On inspection it can be seen that J is a nonsymmetric matrix ( jij = jji). Therefore,
the components of the rotation axis are:

u0x ¼ [0:6667� (�0:6667)]=2 sin(131:8) ¼ 0:8943

u0y ¼ [0:3333� (�0:3333)]=2 sin(131:8) ¼ 0:4470

u0z ¼ [0:6667� 0:6667]=2 sin(131:8) ¼ 0

From vector algebra, it is known that any ordered set of three numbers that can be
obtained from kux, uy, uzl by multiplying all of them by the same positive constant
k is also a set of direction numbers for the vector r, in that they define the direction
of the vector. Hence choosing k to be (1/0.4470) gives: [0.8943/0.4470, 0.4470/
0.4470, 0] or k2 1 0l. Therefore, the equivalent axis angle pair is rotation by
131.88 about k2 1 0l.
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10) The rotation angle is given by Eq. 1.19 as:

J11 þ J22 þ J33 ¼ 1þ 2 cosf

0:36þ 0:60þ 0:60 ¼ 1þ 2 cosf

0:56 ¼ 2 cosf

0:28 ¼ cosf

þ73:7 ¼ f

The rotation axis is given by Eq. 1.20:

u0x ¼
J23 � J32
2 sinf

¼ 0� 0:64
2 sin 73:7

¼ � 1
3

u0y ¼
J31 � J13
2 sinf

¼ 0:48� (�0:80)
2 sin 73:7

¼ 2
3

u0z ¼
J12 � J21
2 sinf

¼ 0:48� (�0:80)
2 sin 73:7

¼ 2
3

So, the axis is denoted as: � 1
3 ,

2
3 ,

2
3

� �
, which has direction indices of the general

form [1 2 2].

CHAPTER 2

1) Using Eq. 2.4 gives 6.5 � 103 distinct boundaries.

4) Annealing is the term applied to the process by which a solidification product is
held at an elevated temperature for an extended time period and then slowly
cooled for the purposes of relieving internal stress, increasing plasticity, and
producing a specific microstructure through grain growth. Sintering refers to
the heating of a polycrystalline aggregate at a temperature below its solidus (melt-
ing point), but high enough that grain coalescence occurs via solid-state
diffusion.

7) The three principle methods of strengthening materials are: grain-size reduction,
solid-solution strengthening, and plastic-deformation processes, like strain (work)
hardening.

CHAPTER 3

3) VSEPR theory indicates nothing about the nature of the chemical bond (loca-
lized Heitler–London versus delocalized Hund–Mulliken). It simply predicts
the geometrical shape, specifically, the X–X, M–X and/or X–M–X bond
angles in the molecule.

6) Based on Eq. 3.1, the bond energies would be predicted to increase with increas-
ing ion charges.
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9) A solid-solution alloy consists of random substitution of one element for another
in the same sublattice or into interstitial sites. An IMC is an ordered placement of
two or more elements into different sublattices.

CHAPTER 4

5) Utilization of Gibbs’ relations (Eqs. 4.21–4.23) yields:

a� ¼ 2pffiffiffi
3
p

a
xþ 2p

a
y b� ¼ � 2pffiffiffi

3
p

a
xþ 2p

a
y c� ¼ 2p

c
z

Thus the triangular (hexagonal) lattice is its own reciprocal, but the reciprocal
lattice is rotated with respect to the crystal lattice.

7) If the three vectors a, b, and c are written in terms of unit vectors, the determinant
of [a b c] is ja b cj, which is expressed as:

ax ay az

bx by bz

cx cy cz

								

								
and [a b c] ¼ axbycz þ bxcyaz þ cxaybz � axcybz � bxaycz � cxbyaz.

CHAPTER 5

1) Equation 5.52 is:

E(k) ¼+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ e�ik�a1 þ e�ik�a2 )(1þ eik�a1 þ eik�a2 )

p
E(10)

This can be expanded by multiplying the two trinomials to obtain:

E(k)¼+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þeika1þeika2þe�ika1þ1þe�ika1eika2þe�ika2þe�ika2eika1þ1

p
E(10)

The equivalency between Eqs. 5.52 and 5.53 is then made evident by
use of the following two relations: eika¼cos(ka)þ i sin(ka) and e�ika¼
cos(ka)� i sin(ka). Making the substitutions and simplifying leads to:

E(k)¼+E(10)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{3þ2 cos(k �a1)þ2cos(k �a2)þ2 cos[k �(a2�a1)]}

p

4) The guiding principles can be listed as follows.

1) Combining atomic orbitals must have the same symmetry about the inter-
nuclear axis.
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2) The strength of the interactions generally decreases in going from s to p to d
symmetry.

3) Orbitals of very different energies give small interactions.

4) The many-electron wave function in a crystal forms a basis for some irredu-
cible representation of the space group. This means that the wave function,
with a wave vector k, is left invariant under the symmetry elements of the
crystal class (e.g. translations, rotations, reflections) or transformed into a
new wave function with the same wave vector k.

CHAPTER 6

4) None. From Eq. 6.6, it is seen that the conductivity tensor is isotropic in the ab
plane perpendicular to the c axis.

7) Using the values given for ktot and s in the relation ktotal ¼ kph þ selLT, kph can
be readily calculated as:

kph ¼ ktotal � selLT

kph ¼ 2:2� 40,000(0:0000000165)(298) ¼ 2:0Wm�1 K�1

CHAPTER 8

1) 16 terms, 252 microstates.

7) All cases have 1808 M–X–M angles. Hence, the sign of the superexchange
comes directly from the middle portion of Table 8.5. The Mn4þ–O–Mn3þ

superexchange interaction gives a d3 and a d4 cation, and the sign is positive
(ferromaganetic). The Fe3þ–O–Fe3þ superexchange interaction, gives two d5

cations, so the sign is negative (antiferromagnetic). The Co3þ–O–Co4þ

superexchange interaction gives a d6 and a d5 ion and the sign is negative
(antiferromagnetic).

CHAPTER 10

2) EVRH ¼ 201.1; ER ¼ 397.1; GVRH ¼ 78.7; BVRH ¼ 150.6.

5) Following Example 10.3 in the text:

50,000N ¼ F ¼ sA0 ¼ s
d0
2

� �2
p ¼ (97,000� 106)

1x
0:34

� � 0:02m
2

� �2
p

1x ¼ 5:57� 10�4 mm

1z ¼ 0:000557
0:34

� �
¼ 0:00164mm

8) 18.4 MPa.
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Crystal field stabilization energy

(CFSE), 164
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Crystallographic point group, 19
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Twin, 61
Twist, 63

Grain homogeneity, 72–74
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Magnetic domains, 88, 357–359
Magnetic exchange integral, 342, 343
Magnetic exchange interactions, 341–350
Magnetic field intensity, 315, 316

Effective, 340
Magnetic induction, 315
Magnetic moment, 314

Effective, 338
Orbital contribution, 326
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Extrinsic, 156–157
Intrinsic, 154–156

Poisson, Siméon-Denis, 414
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Semi-metal, 261, 262
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