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Preface

No single volume, certainly not a textbook, can come close to including all of the important topics in
inorganic chemistry. The field is simply too broad in scope and it is growing at a rapid pace. Inorganic
chemistry textbooks reflect a great deal of work and the results of the many choices that authors must
make as to what to include and what to leave out. Writers of textbooks in chemistry bring to the task
backgrounds that reflect their research interests, the schools they attended, and their personalities. In
their writing, authors are really saying “this is the field as I see it.” In these regards, this book is similar
to others.

When teaching a course in inorganic chemistry, certain core topics are almost universally included. In
addition, there are numerous peripheral areas that may be included at certain schools but not at oth-
ers depending on the interests and specialization of the person teaching the course. The course content
may even change from one semester to the next. The effort to produce a textbook that presents cover-
age of a wide range of optional material in addition to the essential topics can result in a textbook for
a one semester course that contains a thousand pages. Even a “concise” inorganic chemistry book can
be nearly this long. This book is not a survey of the literature or a research monograph. It is a text-
book that is intended to provide the background necessary for the reader to move on to those more
advanced resources.

In writing this book, I have attempted to produce a concise textbook that meets several objectives. First,
the topics included were selected in order to provide essential information in the major areas of inor-
ganic chemistry (molecular structure, acid-base chemistry, coordination chemistry, ligand field theory,
solid state chemistry, etc.). These topics form the basis for competency in inorganic chemistry at a
level commensurate with the one semester course taught at most colleges and universities.

When painting a wall, better coverage is assured when the roller passes over the same area several times
from different directions. It is the opinion of the author that this technique works well in teaching
chemistry. Therefore, a second objective has been to stress fundamental principles in the discussion of
several topics. For example, the hard-soft interaction principle is employed in discussion of acid-base
chemistry, stability of complexes, solubility, and predicting reaction products. Third, the presentation
of topics is made with an effort to be clear and concise so that the book is portable and user friendly.
This book is meant to present in convenient form a readable account of the essentials of inorganic
chemistry that can serve as both as a textbook for a one semester course upper level course and as a
guide for self study. It is a textbook not a review of the literature or a research monograph. There are
few references to the original literature, but many of the advanced books and monographs are cited.

Although the material contained in this book is arranged in a progressive way, there is flexibility in
the order of presentation. For students who have a good grasp of the basic principles of quantum
mechanics and atomic structure, Chapters 1 and 2 can be given a cursory reading but not included in
the required course material. The chapters are included to provide a resource for review and self study.
Chapter 4 presents an overview structural chemistry early so the reader can become familiar with many
types of inorganic structures before taking up the study of symmetry or chemistry of specific elements.
Structures of inorganic solids are discussed in Chapter 7, but that material could easily be studied  Xi
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before Chapters 5 or 6. Chapter 6 contains material dealing with intermolecular forces and polarity
of molecules because of the importance of these topics when interpreting properties of substances and
their chemical behavior. In view of the importance of the topic, especially in industrial chemistry, this
book includes material on rate processes involving inorganic compounds in the solid state (Chapter 8).
The chapter begins with an overview of some of the important aspects of reactions in solids before
considering phase transitions and reactions of solid coordination compounds.

It should be an acknowledged fact that no single volume can present the descriptive chemistry of all
the elements. Some of the volumes that attempt to do so are enormous. In this book, the presenta-
tion of descriptive chemistry of the elements is kept brief with the emphasis placed on types of reac-
tions and structures that summarize the behavior of many compounds. The attempt is to present an
overview of descriptive chemistry that will show the important classes of compounds and their reac-
tions without becoming laborious in its detail. Many schools offer a descriptive inorganic chemistry
course at an intermediate level that covers a great deal of the chemistry of the elements. Part of the
rationale for offering such a course is that the upper level course typically concentrates more heav-
ily on principles of inorganic chemistry. Recognizing that an increasing fraction of the students in
the upper level inorganic chemistry course will have already had a course that deals primarily with
descriptive chemistry, this book is devoted to a presentation of the principles of inorganic chemistry
while giving an a brief overview of descriptive chemistry in Chapters 12-15, although many topics
that are primarily descriptive in nature are included in other sections. Chapter 16 provides a survey
of the chemistry of coordination compounds and that is followed by Chapters 17-22 that deal with
structures, bonding, spectra, and reactions of coordination compounds. The material included in this
text should provide the basis for the successful study of a variety of special topics.

Doubtless, the teacher of inorganic chemistry will include some topics and examples of current or per-
sonal interest that are not included in any textbook. That has always been my practice, and it provides
an opportunity to show how the field is developing and new relationships.

Most textbooks are an outgrowth of the author’s teaching. In the preface, the author should convey to
the reader some of the underlying pedagogical philosophy which resulted in the design of his or her
book. It is unavoidable that a different teacher will have somewhat different philosophy and method-
ology. As a result, no single book will be completely congruent with the practices and motivations of
all teachers. A teacher who writes the textbook for his or her course should find all of the needed top-
ics in the book. However, it is unlikely that a book written by someone else will ever contain exactly
the right topics presented in exactly the right way.

The author has taught several hundred students in inorganic chemistry courses at Illinois State
University, Illinois Wesleyan University, University of Illinois, and Western Kentucky University using
the materials and approaches set forth in this book. Among that number are many who have gone on
to graduate school, and virtually all of that group have performed well (in many cases very well!) on
registration and entrance examinations in inorganic chemistry at some of the most prestigious institu-
tions. Although it is not possible to name all of those students, they have provided the inspiration
to see this project to completion with the hope that students at other universities may find this book
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useful in their study of inorganic chemistry. It is a pleasure to acknowledge and give thanks to Derek
Coleman and Philip Bugeau for their encouragement and consideration as this project progressed.
Finally, I would like to thank my wife, Kathleen, for reading the manuscript and making many helpful
suggestions. Her constant encouragement and support have been needed at many times as this project
was underway.
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Chapter

Light, Electrons, and Nuclei

The study of inorganic chemistry involves interpreting, correlating, and predicting the properties and
structures of an enormous range of materials. Sulfuric acid is the chemical produced in the largest ton-
nage of any compound. A greater number of tons of concrete is produced, but it is a mixture rather
than a single compound. Accordingly, sulfuric acid is an inorganic compound of enormous impor-
tance. On the other hand, inorganic chemists study compounds such as hexaaminecobalt(III) chlo-
ride, [Co(NH3)6|Cls, and Zeise's salt, K[Pt(C,H,)Cl;]. Such compounds are known as coordination
compounds or coordination complexes. Inorganic chemistry also includes areas of study such as non-
aqueous solvents and acid-base chemistry. Organometallic compounds, structures and properties of
solids, and the chemistry of elements other than carbon are areas of inorganic chemistry. However,
even many compounds of carbon (e.g., CO, and Na,CO3) are also inorganic compounds. The range
of materials studied in inorganic chemistry is enormous, and a great many of the compounds and
processes are of industrial importance. Moreover, inorganic chemistry is a body of knowledge that is
expanding at a very rapid rate, and a knowledge of the behavior of inorganic materials is fundamental
to the study of the other areas of chemistry.

Because inorganic chemistry is concerned with structures and properties as well as the synthesis of
materials, the study of inorganic chemistry requires familiarity with a certain amount of information
that is normally considered to be physical chemistry. As a result, physical chemistry is normally a pre-
requisite for taking a comprehensive course in inorganic chemistry. There is, of course, a great deal of
overlap of some areas of inorganic chemistry with the related areas in other branches of chemistry. A
knowledge of atomic structure and properties of atoms is essential for describing both ionic and cova-
lent bonding. Because of the importance of atomic structure to several areas of inorganic chemistry,
it is appropriate to begin our study of inorganic chemistry with a brief review of atomic structure and
how our ideas about atoms were developed.

1.1 SOME EARLY EXPERIMENTS IN ATOMIC PHYSICS

It is appropriate at the beginning of a review of atomic structure to ask the question, “How do we
know what we know?” In other words, “What crucial experiments have been performed and what do
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+ Cathode rays
<

W FIGURE 1.1 Design of a cathode ray tube.

the results tell us about the structure of atoms?” Although it is not necessary to consider all of the early
experiments in atomic physics, we should describe some of them and explain the results. The first
of these experiments was that of J. ]. Thomson in 1898-1903, which dealt with cathode rays. In the
experiment, an evacuated tube that contains two electrodes has a large potential difference generated
between the electrodes as shown in Figure 1.1.

Under the influence of the high electric field, the gas in the tube emits light. The glow is the result of
electrons colliding with the molecules of gas that are still present in the tube even though the pressure
has been reduced to a few torr. The light that is emitted is found to consist of the spectral lines charac-
teristic of the gas inside the tube. Neutral molecules of the gas are ionized by the electrons streaming
from the cathode, which is followed by recombination of electrons with charged species. Energy (in
the form of light) is emitted as this process occurs. As a result of the high electric field, negative ions
are accelerated toward the anode and positive ions are accelerated toward the cathode. When the pres-
sure inside the tube is very low (perhaps 0.001 torr), the mean free path is long enough that some of
the positive ions strike the cathode, which emits rays. Rays emanating from the cathode stream toward
the anode. Because they are emitted from the cathode, they are known as cathode rays.

Cathode rays have some very interesting properties. First, their path can be bent by placing a magnet
near the cathode ray tube. Second, placing an electric charge near the stream of rays also causes the
path they follow to exhibit curvature. From these observations, we conclude that the rays are electri-
cally charged. The cathode rays were shown to carry a negative charge because they were attracted to a
positively charged plate and repelled by one that carried a negative charge.

The behavior of cathode rays in a magnetic field is explained by recalling that a moving beam of
charged particles (they were not known to be electrons at the time) generates a magnetic field. The
same principle is illustrated by passing an electric current through a wire that is wound around a com-
pass. In this case, the magnetic field generated by the flowing current interacts with the magnetized
needle of the compass, causing it to point in a different direction. Because the cathode rays are nega-
tively charged particles, their motion generates a magnetic field that interacts with the external mag-
netic field. In fact, some important information about the nature of the charged particles in cathode
rays can be obtained from studying the curvature of their path in a magnetic field of known strength.

Consider the following situation. Suppose a cross wind of 10 miles/hour is blowing across a tennis
court. If a tennis ball is moving perpendicular to the direction the wind is blowing, the ball will follow
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a curved path. It is easy to rationalize that if a second ball had a cross-sectional area that was twice that
of a tennis ball but the same mass, it would follow a more curved path because the wind pressure on it
would be greater. On the other hand, if a third ball having twice the cross-sectional area and twice the
mass of the tennis ball were moving perpendicular to the wind direction, it would follow a path with
the same curvature as the tennis ball. The third ball would experience twice as much wind pressure as
the tennis ball, but it would have twice the mass, which tends to cause the ball to move in a straight
line (inertia). Therefore, if the path of a ball is being studied when it is subjected to wind pressure
applied perpendicular to its motion, an analysis of the curvature of the path could be used to deter-
mine the ratio of the cross-sectional area to the mass of a ball, but neither property alone.

A similar situation exists for a charged particle moving under the influence of a magnetic field. The
greater the mass, the greater the tendency of the particle to travel in a straight line. On the other hand,
the higher its charge, the greater its tendency to travel in a curved path in the magnetic field. If a par-
ticle has two units of charge and two units of mass, it will follow the same path as one that has one
unit of charge and one unit of mass. From the study of the behavior of cathode rays in a magnetic
field, Thomson was able to determine the charge-to-mass ratio for cathode rays, but not the charge or
the mass alone. The negative particles in cathode rays are electrons, and Thomson is credited with the
discovery of the electron. From his experiments with cathode rays, Thomson determined the charge-to-
mass ratio of the electron to be —1.76 X 10® coulomb/gram.

It was apparent to Thomson that if atoms in the metal electrode contained negative particles (elec-
trons), they must also contain positive charges because atoms are electrically neutral. Thomson pro-
posed a model for the atom in which positive and negative particles were embedded in some sort of
matrix. The model became known as the plum pudding model because it resembled plums embedded
in a pudding. Somehow, an equal number of positive and negative particles were held in this material.
Of course we now know that this is an incorrect view of the atom, but the model did account for sev-
eral features of atomic structure.

The second experiment in atomic physics that increased our understanding of atomic structure was
conducted by Robert A. Millikan in 1908. This experiment has become known as the Millikan oil drop
experiment because of the way in which oil droplets were used. In the experiment, oil droplets (made
up of organic molecules) were sprayed into a chamber where a beam of x-rays was directed on them.
The x-rays ionized molecules by removing one or more electrons producing cations. As a result, some of
the oil droplets carried an overall positive charge. The entire apparatus was arranged in such a way that
a negative metal plate, the charge of which could be varied, was at the top of the chamber. By varying
the (known) charge on the plate, the attraction between the plate and a specific droplet could be varied
until it exactly equaled the gravitational force on the droplet. Under this condition, the droplet could
be suspended with an electrostatic force pulling the drop upward that equaled the gravitational force
pulling downward on the droplet. Knowing the density of the oil and having measured the diameter
of the droplet gave the mass of the droplet. It was a simple matter to calculate the charge on the drop-
let, because the charge on the negative plate with which the droplet interacted was known. Although
some droplets may have had two or three electrons removed, the calculated charges on the oil droplets
were always a multiple of the smallest charge measured. Assuming that the smallest measured charge
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particles

W FIGURE 1.2 Arepresentation of Rutherford's experiment.

corresponded to that of a single electron, the charge on the electron was determined. That charge
is —1.602 X 107! coulombs or —4.80 X 10 ®esu (electrostatic units: 1esu = 1g"? cm?? sec™ ).
Because the charge-to-mass ratio was already known, it was now possible to calculate the mass of the
electron, which is 9.11 X 107 3'kg or 9.11 X 10~ 28g.

The third experiment that is crucial to understanding atomic structure was carried out by Ernest
Rutherford in 1911 and is known as Rutherford’s experiment. It consists of bombarding a thin metal
foil with alpha (o) particles. Thin foils of metals, especially gold, can be made so thin that the thick-
ness of the foil represents only a few atomic diameters. The experiment is shown diagrammatically in
Figure 1.2.

It is reasonable to ask why such an experiment would be informative in this case. The answer lies in
understanding what the Thomson plum pudding model implies. If atoms consist of equal numbers of
positive and negative particles embedded in a neutral material, a charged particle such as an « particle
(which is a helium nucleus) would be expected to travel near an equal number of positive and nega-
tive charges when it passes through an atom. As a result, there should be no net effect on the « particle,
and it should pass directly through the atom or a foil that is only a few atoms in thickness.

A narrow beam of « particles impinging on a gold foil should pass directly through the foil because
the particles have relatively high energies. What happened was that most of the « particles did just
that, but some were deflected at large angles and some came essentially back toward the source!
Rutherford described this result in terms of firing a 16-inch shell at a piece of tissue paper and having
it bounce back at you. How could an « particle experience a force of repulsion great enough to cause
it to change directions? The answer is that such a repulsion could result only when all of the positive
charge in a gold atom is concentrated in a very small region of space. Without going into the details,
calculations showed that the small positive region was approximately 10~ 3cm in size. This could be
calculated because it is rather easy on the basis of electrostatics to determine what force would be
required to change the direction of an « particle with a +2 charge traveling with a known energy.
Because the overall positive charge on an atom of gold was known (the atomic number), it was pos-
sible to determine the approximate size of the positive region.
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Rutherford’s experiment demonstrated that the total positive charge in an atom is localized in a very
small region of space (the nucleus). The majority of o particles simply passed through the gold foil,
indicating that they did not come near a nucleus. In other words, most of the atom is empty space.
The diffuse cloud of electrons (which has a size on the order of 10~8cm) did not exert enough force
on the « particles to deflect them. The plum pudding model simply did not explain the observations
from the experiment with « particles.

Although the work of Thomson and Rutherford had provided a view of atoms that was essentially cor-
rect, there was still the problem of what made up the remainder of the mass of atoms. It had been pos-
tulated that there must be an additional ingredient in the atomic nucleus, and this was demonstrated in
1932 by James Chadwick. In his experiments a thin beryllium target was bombarded with « particles.
Radiation having high penetrating power was emitted, and it was initially assumed that they were high-
energy ~ rays. From studies of the penetration of these rays in lead, it was concluded that the particles
had an energy of approximately 7 MeV. Also, these rays were shown to eject protons having energies
of approximately 5MeV from paraffin. However, in order to explain some of the observations, it was
shown that if the radiation were ~ rays, they must have an energy that is approximately 55MeV. If an «
particle interacts with a beryllium nucleus so that it becomes captured, it is possible to show that the
energy (based on mass difference between the products and reactants) is only about 15 MeV. Chadwick
studied the recoil of nuclei that were bombarded by the radiation emitted from beryllium when it was
a target for o particles and showed that if the radiation consists of ~ rays, the energy must be a function
of the mass of the recoiling nucleus, which leads to a violation of the conservation of momentum and
energy. However, if the radiation emitted from the beryllium target is presumed to carry no charge and
consist of particles having a mass approximately that of a proton, the observations could be explained
satisfactorily. Such particles were called neutrons, and they result from the reaction

%,Be+4,He —[13,C| —12,C+n (1.1)

Atoms consist of electrons and protons in equal numbers and, in all cases except the hydrogen atom,
some number of neutrons. Electrons and protons have equal but opposite charges, but greatly dif-
ferent masses. The mass of a proton is 1.67 X 1024 grams. In atoms that have many electrons, the
electrons are not all held with the same energy; later we will discuss the shell structure of electrons in
atoms. At this point, we see that the early experiments in atomic physics have provided a general view
of the structures of atoms.

1.2 THE NATURE OF LIGHT

From the early days of physics, a controversy had existed regarding the nature of light. Some promi-
nent physicists, such as Isaac Newton, had believed that light consisted of particles or “corpuscles.”
Other scientists of that time believed that light was wavelike in its character. In 1807, a crucial experi-
ment was conducted by T. Young in which light showed a diffraction pattern when a beam of light was
passed through two slits. Such behavior showed the wave character of light. Other work by A. Fresnel
and E Arago had dealt with interference, which also depends on light having a wave character.



8 CHAPTER1 Light, Electrons, and Nuclei

Visible light
Red <TOY GBIV vilet
Long wave 2 Short wave : )
radio g radio Infrared Uv X-rays y-rays
I I I I I I I I
1072ev 107 %V 107%ev  107%eV 1eV 1 keV 1 MeV 1 GeV
Energy
B FIGURE 1.3 The electromagnetic spectrum.
Emitted
Ilght

Sourc Prism Hp = 486.13 nm

Sllt H, = 434.05 nm

Hs =410.17 nm

W FIGURE 1.4  Separation of spectral lines due to refraction in a prism spectroscope.

The nature of light and the nature of matter are intimately related. It was from the study of light emit-
ted when matter (atoms and molecules) was excited by some energy source or the absorption of light
by matter that much information was obtained. In fact, most of what we know about the structure of
atoms and molecules has been obtained by studying the interaction of electromagnetic radiation with
matter or electromagnetic radiation emitted from matter. These types of interactions form the basis of
several types of spectroscopy, techniques that are very important in studying atoms and molecules.

In 1864, J. C. Maxwell showed that electromagnetic radiation consists of transverse electric and mag-
netic fields that travel through space at the speed of light (3.00 X 108 m/sec). The electromagnetic spec-
trum consists of the several types of waves (visible light, radio waves, infrared radiation, etc.) that form
a continuum as shown in Figure 1.3. In 1887, Hertz produced electromagnetic waves by means of an
apparatus that generated an oscillating electric charge (an antenna). This discovery led to the develop-
ment of radio.

Although all of the developments that have been discussed are important to our understanding of the
nature of matter, there are other phenomena that provide additional insight. One of them concerns
the emission of light from a sample of hydrogen gas through which a high voltage is placed. The basic
experiment is shown in Figure 1.4. In 1885, J.J. Balmer studied the visible light emitted from the gas
by passing it through a prism that separates the light into its components.
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This series of spectral lines for hydrogen became known as Balmer’s series, and the wavelengths of
these four spectral lines were found to obey the relationship

LRy [i—i] (12)
A 22 n?

where X\ is the wavelength of the line, n is an integer larger than 2, and Ry is a constant known as
Rydberg's constant that has the value 109,677.76 cm™!. The quantity 1/X is known as the wave number
(the number of complete waves per centimeter), which is written as v (“nu bar”). From Eq. (1.2) it can
be seen that as n assumes larger values, the lines become more closely spaced, but when n equals infin-
ity, there is a limit reached. That limit is known as the series limit for the Balmer series. Keep in mind
that these spectral lines, the first to be discovered for hydrogen, were in the visible region of the elec-
tromagnetic spectrum. Detectors for visible light (human eyes and photographic plates) were available
at an earlier time than were detectors for other types of electromagnetic radiation.

Eventually, other series of lines were found in other regions of the electromagnetic spectrum. The Lyman
series was observed in the ultraviolet region, whereas the Paschen, Brackett, and Pfund series were
observed in the infrared region of the spectrum. All of these lines were observed as they were emitted
from excited atoms, so together they constitute the emission spectrum or line spectrum of hydrogen atoms.

Another of the great developments in atomic physics involved the light emitted from a device known
as a black body. Because black is the best absorber of all wavelengths of visible light, it should also be
the best emitter. Consequently, a metal sphere, the interior of which is coated with lampblack, emits
radiation (blackbody radiation) having a range of wavelengths from an opening in the sphere when it
is heated to incandescence. One of the thorny problems in atomic physics dealt with trying to predict
the intensity of the radiation as a function of wavelength. In 1900, Max Planck arrived at a satisfactory
relationship by making an assumption that was radical at that time. Planck assumed that absorption
and emission of radiation arises from oscillators that change frequency. However, Planck assumed that
the frequencies were not continuous but rather that only certain frequencies were allowed. In other
words, the frequency is quantized. The permissible frequencies were multiples of some fundamental
frequency, vy. A change in an oscillator from a lower frequency to a higher one involves the absorption



10 CHAPTER1 Light, Electrons, and Nuclei

~

Ejected electrons™

~
€ — - —e—-——— —— - _A

W FIGURE 1.5  Apparatus for demonstrating the photoelectric effect.

of energy, whereas energy is emitted as the frequency of an oscillator decreases. Planck expressed the
energy in terms of the frequency by means of the relationship

E = hv (1.3)

where E is the energy, v is the frequency, and h is a constant (known as Planck’s constant,
6.63 X 10~ %" erg sec = 6.63 X 1073*] sec). Because light is a transverse wave (the direction the wave is
moving is perpendicular to the displacement), it obeys the relationship

Av=c¢ (1.4)

where ) is the wavelength, v is the frequency, and c is the velocity of light (3.00 X 10'°cm/sec). By
making these assumptions, Plank arrived at an equation that satisfactorily related the intensity and fre-
quency of the emitted blackbody radiation.

The importance of the idea that energy is quantized is impossible to overstate. It applies to all types
of energies related to atoms and molecules. It forms the basis of the various experimental techniques
for studying the structure of atoms and molecules. The energy levels may be electronic, vibrational, or
rotational depending on the type of experiment conducted.

In the 1800s, it was observed that when light is shined on a metal plate contained in an evacuated
tube, an interesting phenomenon occurs. The arrangement of the apparatus is shown in Figure 1.5.
When the light is shined on the metal plate, an electric current flows. Because light and electricity are
involved, the phenomenon became known as the photoelectric effect. Somehow, light is responsible for
the generation of the electric current. Around 1900, there was ample evidence that light behaved as a
wave, but it was impossible to account for some of the observations on the photoelectric effect by con-
sidering light in that way. Observations on the photoelectric effect include the following:

1. The incident light must have some minimum frequency (the threshold frequency) in order for
electrons to be ejected.

2. The current flow is instantaneous when the light strikes the metal plate.

3. The current is proportional to the intensity of the incident light.
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In 1905, Albert Einstein provided an explanation of the photoelectric effect by assuming that the inci-
dent light acts as particles. This allowed for instantaneous collisions of light particles (photons) with
electrons (called photoelectrons), which resulted in the electrons being ejected from the surface of
the metal. Some minimum energy of the photons was required because the electrons are bound to
the metal surface with some specific binding energy that depends on the type of metal. The energy
required to remove an electron from the surface of a metal is known as the work function (w,) of the
metal. The ionization potential (which corresponds to removal of an electron from a gaseous atom) is
not the same as the work function. If an incident photon has an energy that is greater than the work
function of the metal, the ejected electron will carry away part of the energy as kinetic energy. In other
words, the kinetic energy of the ejected electron will be the difference between the energy of the inci-
dent photon and the energy required to remove the electron from the metal. This can be expressed by
the equation

1

Emv2 = hv — w, (15)
By increasing the negative charge on the plate to which the ejected electrons move, it is possible to stop
the electrons and thereby stop the current flow. The voltage necessary to stop the electrons is known
as the stopping potential. Under these conditions, what is actually being determined is the kinetic
energy of the ejected electrons. If the experiment is repeated using incident radiation with a different
frequency, the kinetic energy of the ejected electrons can again be determined. By using light having
several known incident frequencies, it is possible to determine the kinetic energy of the electrons corre-
sponding to each frequency and make a graph of the kinetic energy of the electrons versus v. As can be
seen from Eq. (1.5), the relationship should be linear with the slope of the line being h, Planck’s con-
stant, and the intercept is —w,. There are some similarities between the photoelectric effect described
here and photoelectron spectroscopy of molecules that is described in Section 3.4.

Although Einstein made use of the assumption that light behaves as a particle, there is no denying the
validity of the experiments that show that light behaves as a wave. Actually, light has characteristics of
both waves and particles, the so-called particle-wave duality. Whether it behaves as a wave or a particle
depends on the type of experiment to which it is being subjected. In the study of atomic and molecu-
lar structure, it necessary to use both concepts to explain the results of experiments.

1.3 THE BOHR MODEL

Although the experiments dealing with light and atomic spectroscopy had revealed a great deal about
the structure of atoms, even the line spectrum of hydrogen presented a formidable problem to the
physics of that time. One of the major obstacles was that energy was not emitted continuously as the
electron moves about the nucleus. After all, velocity is a vector quantity that has both a magnitude
and a direction. A change in direction constitutes a change in velocity (acceleration), and an acceler-
ated electric charge should emit electromagnetic radiation according to Maxwell’s theory. If the mov-
ing electron lost energy continuously, it would slowly spiral in toward the nucleus and the atom would
“run down.” Somehow, the laws of classical physics were not capable of dealing with this situation,
which is illustrated in Figure 1.6.
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B FIGURE 1.6  Asthe electron moves around the nucleus, it is constantly changing direction.

M FIGURE 1.7  Forces acting on an electron moving in a hydrogen atom.

Following Rutherford’s experiments in 1911, Niels Bohr proposed in 1913 a dynamic model of the
hydrogen atom that was based on certain assumptions. The first of these assumptions was that there
were certain “allowed” orbits in which the electron could move without radiating electromagnetic
energy. Further, these were orbits in which the angular momentum of the electron (which for a rotat-
ing object is expressed as muvr) is a multiple of h/2w (which is also written as #),

myr = nho_ nh (1.6)
2r

where m is the mass of the electron, v is its velocity, r is the radius of the orbit, and 7 is an integer that
can take on the values 1, 2, 3, ..., and 7 is h/2x. The integer n is known as a quantum number or, more
specifically, the principal quantum number.

Bohr also assumed that electromagnetic energy was emitted as the electron moved from a higher
orbital (larger n value) to a lower one and absorbed in the reverse process.

This accounts for the fact that the line spectrum of hydrogen shows only lines having certain wave-
lengths. In order for the electron to move in a stable orbit, the electrostatic attraction between it and
the proton must be balanced by the centrifugal force that results from its circular motion. As shown
in Figure 1.7, the forces are actually in opposite directions, so we equate only the magnitudes of the
forces.
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The electrostatic force is given by the coulombic force as e?/r? while the centrifugal force on the elec-
tron is mv?/r. Therefore, we can write

2 2
m _ e_z (1.7)
r r
From Eq. (1.7) we can calculate the velocity of the electron as
2
v= [ (1.8)
mr
We can also solve Eq. (1.6) for v to obtain
y= (1.9)
2wmr

Because the moving electron has only one velocity, the values for v given in Egs. (1.8) and (1.9) must

be equal:
2
S = (1.10)
mr  2wmr

We can now solve for r to obtain

n2h?
T—4ﬂ_2mez (1.11)

In Eq. (1.11), only r and n are variables. From the nature of this equation, we see that the value of r,
the radius of the orbit, increases as the square of n. For the orbit with n = 2, the radius is four times
that when n = 1, etc. Dimensionally, Eq. (1.11) leads to a value of r that is given in centimeters if the
constants are assigned their values in the cm-g-s system of units (only k, m, and e have units).

[(g cm?/sec?) sec]* _
88" cm?/sec)’] (1.12)

From Eq. (1.7), we see that

2
mv?2 =< (1.13)
T

Multiplying both sides of the equation by 1/2 we obtain

—my?=— (1.14)
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where the left-hand side is simply the kinetic energy of the electron. The total energy of the electron is
the sum of the kinetic energy and the electrostatic potential energy, —e?/r.
2 2 2 2
2 T 2r T 2r
Substituting the value for r from Eq. (1.11) into Eq. (1.15) we obtain

e  2m2?met

F=—S —
2r n2h?

(1.16)
from which we see that there is an inverse relationship between the energy and the square of the
value n. The lowest value of E (and it is negative!) is for n = 1 while E = 0 when n has an infinitely
large value that corresponds to complete removal of the electron. If the constants are assigned val-
ues in the cm-g-s system of units, the energy calculated will be in ergs. Of course 1] = 107 erg and
1cal = 4.184].

By assigning various values to n, we can evaluate the corresponding energy of the electron in the orbits
of the hydrogen atom. When this is done, we find the energies of several orbits as follows:

n=1, E=-21.7X10"12 erg
n=2, E=-543X10"12 erg
n=3, E=-241X10"12 erg
n=4, E=-1.36X10"%* erg
n=>5, E=-0.87X10"12 erg
n==6, E=-0.63X10"12 erg
n = oo, E=0

These energies can be used to prepare an energy level diagram like that shown in Figure 1.8. Note that
the binding energy of the electron is lowest when n = 1 and the binding energy is 0 when n = o

Although the Bohr model successfully accounted for the line spectrum of the hydrogen atom, it could
not explain the line spectrum of any other atom. It could be used to predict the wavelengths of spec-
tral lines of other species that had only one electron such as He", Li>*, and Be3*. Also, the model was
based on assumptions regarding the nature of the allowed orbits that had no basis in classical physics.
An additional problem is also encountered when the Heisenberg Uncertainty Principle is considered.
According to this principle, it is impossible to know exactly the position and momentum of a par-
ticle simultaneously. Being able to describe an orbit of an electron in a hydrogen atom is equivalent
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to knowing its momentum and position. The Heisenberg Uncertainty Principle places a limit on the
accuracy to which these variables can be known simultaneously. That relationship is

Ax X A(mv) > h (1.17)

where A is read as the uncertainty in the variable that follows. Planck’s constant is known as the fun-
damental unit of action (it has units of energy multiplied by time), but the product of momentum
multiplied by distance has the same dimensions. The essentially classical Bohr model explained the
line spectrum of hydrogen, but it did not provide a theoretical framework for understanding atomic
structure.

14 PARTICLE-WAVE DUALITY

The debate concerning the particle and wave nature of light had been lively for many years when
in 1924 a young French doctoral student, Louis V. de Broglie, developed a hypothesis regarding the
nature of particles. In this case, the particles were “real” particles such as electrons. De Broglie realized
that for electromagnetic radiation, the energy could be described by the Planck equation

E=h=2% (1.18)
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However, one of the consequences of Einstein’s special theory of relativity (in 1905) is that a photon
has an energy that can be expressed as

E = mc? (1.19)

This famous equation expresses the relationship between mass and energy, and its validity has been
amply demonstrated. This equation does not indicate that a photon has a mass. It does signify that
because a photon has energy, its energy is equivalent to some mass. However, for a given photon there is
only one energy, so

he
me2 = — 1.20
3 (1.20)
Rearranging this equation leads to
A=l (1.21)
mc

Having developed the relationship shown in Eq. (1.21) for photons, de Broglie considered the fact that
photons have characteristics of both particles and waves, as we have discovered earlier in this chapter.
He reasoned that if a “real” particle such as an electron could exhibit properties of both particles and
waves, the wavelength for the particle would be given by an equation that is equivalent to Eq. (1.21)
except for the velocity of light being replaced by the velocity of the particle:

A== (1.22)

In 1924, this was a result that had not been experimentally verified, but the verification was not long
in coming. In 1927, C. J. Davisson and L. H. Germer conducted the experiments at Bell Laboratories in
Murray Hill, New Jersey. A beam of electrons accelerated by a known voltage has a known velocity.
When such a beam impinges on a crystal of nickel metal, a diffraction pattern is observed! Moreover,
because the spacing between atoms in a nickel crystal is known, it is possible to calculate the wave-
length of the moving electrons, and the value corresponds exactly to the wavelength predicted by the
de Broglie equation. Since this pioneering work, electron diffraction has become one of the standard
experimental techniques for studying molecular structure.

De Broglie’s work clearly shows that a moving electron can be considered as a wave. If it behaves in
that way, a stable orbit in a hydrogen atom must contain a whole number of wavelengths, or otherwise
there would be interference that would lead to cancellation (destructive interference). This condition
can be expressed as

mvr=n—h (1.23)
2w

This is precisely the relationship that was required when Bohr assumed that the angular momentum of
the electron is quantized for the allowed orbits.
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Having now demonstrated that a moving electron can be considered as a wave, it remained for an
equation to be developed to incorporate this revolutionary idea. Such an equation was obtained and
solved by Erwin Schrodinger in 1926 when he made use of the particle-wave duality ideas of de Broglie
even before experimental verification had been made. We will describe this new branch of science,
wave mechanics, in Chapter 2.

1.5 ELECTRONIC PROPERTIES OF ATOMS

Although we have not yet described the modern methods of dealing with theoretical chemistry (quan-
tum mechanics), it is possible to describe many of the properties of atoms. For example, the energy
necessary to remove an electron from a hydrogen atom (the ionization energy or ionization potential) is
the energy that is equivalent to the series limit of the Lyman series. Therefore, atomic spectroscopy is
one way to determine ionization potentials for atoms.

If we examine the relationship between the first ionization potentials for atoms and their atomic num-
bers, the result can be shown graphically as in Figure 1.9. Numerical values for ionization potentials
are shown in Appendix A.

Several facts are apparent from this graph. Although we have not yet dealt with the topic of elec-
tron configuration of atoms, you should be somewhat familiar with this topic from earlier chemistry
courses. We will make use of some of the ideas that deal with electron shells here but delay presenting
the details until later.

1. The helium atom has the highest ionization potential of any atom. It has a nuclear charge of
+2, and the electrons reside in the lowest energy level close to the nucleus.

2. The noble gases have the highest ionization potentials of any atoms in their respective periods.
Electrons in these atoms are held in shells that are completely filled.
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3. The group IA elements have the lowest ionization potentials of any atoms in their respective
periods. As you probably already know, these atoms have a single electron that resides in a shell
outside of other shells that are filled.

4. The ionization potentials within a period generally increase as you go to the right in that period.
For example, B < C < O < F. However, in the case of nitrogen and oxygen, the situation is
reversed. Nitrogen, which has a half-filled shell, has a higher ionization potential than oxygen,
which has one electron more than a half-filled shell. There is some repulsion between the two
electrons that reside in the same orbital in an oxygen atom, which makes it easier to remove one
of them.

5. In general, the ionization potential decreases for the atoms in a given group going down in the
group. For example, Li > Na > K > Rb > Cs and F > Cl > Br > 1. The outer electrons are far-
ther from the nucleus for the larger atoms, and there are more filled shells of electrons between
the nucleus and the outermost electron.

6. Even for the atom having the lowest ionization potential, Cs, the ionization potential is approxi-
mately 374 k] mol 1.

These are some of the general trends that relate the ionization potentials of atoms with regard to their
positions in the periodic table. We will have opportunities to discuss additional properties of atoms later.

A second property of atoms that is vital to understanding their chemistry is the energy released when
an electron is added to a gaseous atom,

X(g)+e(g) — X (g) AE = electron addition energy (1.24)

For most atoms, the addition of an electron occurs with the release of energy, so the value of AE is neg-
ative. There are some exceptions, most notably the noble gases and group IIA metals. These atoms have
completely filled shells, so any additional electrons would have to be added in a new, empty shell.
Nitrogen also has virtually no tendency to accept an additional electron because of the stability of the
half-filled outer shell.

After an electron is added to an atom, the “affinity” that it has for the electron is known as the electron
affinity. Because energy is released when an electron is added to most atoms, it follows that to remove
the electron would require energy, so the quantity is positive for most atoms. The electron affinities for
most of the main group elements are shown in Table 1.1. It is useful to remember that 1eV per atom
is equal to 96.48 kJ/mol.

Several facts are apparent when the data shown in Table 1.1 are considered. In order to see some of
the specific results more clearly, Figure 1.10 has been prepared to show how the electron affinity varies
with position in the periodic table (and therefore orbital population). From studying Figure 1.10 and
the data shown in Table 1.1, the following relationships emerge:

1. The electron affinities for the halogens are the highest of any group of elements.

2. The electron affinity generally increases in going from left to right in a given period. In general,
the electrons are being added to the atoms in the same outer shell. Because the nuclear charge
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Table 1.1 Electron Affinities of Atoms in kJ mol ™.

H
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Li Be B C N 0o? F
59.6 —18 26.7 121.9 -7 141 328
Na Mg Al Si P sb Cl
529 =21 44 134 72 200 349
K Ca ScZn Ga Ge As Se Br
48.4 —186 18 -9 30 116 78 195 325
Rb Sr Y Cd In Sn Sb Te |
47 —146 30 —26 30 116 101 190 295
Cs Ba La - Hg Tl Pb Bi Po At
46 —46 50 - —18 20 35 91 183 270
9—845kJmol™" for addition of two electrons.

b—531kJmol~! for addition of two electrons.

Be Mg

Atomic number

B FIGURE 1.10  Electron affinity as a function of atomic number.

increases in going to the right in a period, the attraction for the outer electron shell increases
accordingly.

3. In general, the electron affinity decreases going downward for atoms in a given group.

4. The electron affinity of nitrogen is out of line with those of other atoms in the same period
because it has a stable half-filled shell.

5. Whereas nitrogen has an electron affinity that is approximately zero, phosphorus has a value
greater than zero even though it also has a half-filled outer shell. The effect of a half-filled
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shell decreases for larger atoms because that shell has more filled shells separating it from the
nucleus.

. In the case of the halogens (group VIIA), the electron affinity of fluorine is lower than that of

chlorine. This is because the fluorine atom is small and the outer electrons are close together and
repelling each other. Adding another electron to an F atom, although very favorable energetically,
is not as favorable as it is for chlorine, which has the highest electron affinity of any atom. For
Cl, Br, and I, the trend is in accord with the general relationship.

. Hydrogen has a substantial electron affinity, which shows that we might expect compounds

containing H™ to be formed.

. The elements in group IIA have negative electron affinities, showing that the addition of an elec-

tron to those atoms is not energetically favorable. These atoms have two electrons in the outer
shell, which can hold only two electrons.

. The elements in group IA can add an electron with the release of energy (a small amount)

because their singly occupied outer shells can hold two electrons.

As is the case with ionization potential, the electron affinity is a useful property when considering the
chemical behavior of atoms, especially when describing ionic bonding, which involves electron transfer.

In the study of inorganic chemistry, it is important to understand how atoms vary in size. The relative
sizes of atoms determine to some extent the molecular structures that are possible. Table 1.2 shows the
sizes of atoms in relationship to the periodic table.

Some of the important trends in the sizes of atoms can be summarized as follows.

1. The sizes of atoms in a given group increase as one progresses down the group. For example, the

covalent radii for Li, Na, K, Rb, and Cs are 134, 154, 227, 248, and 265 pm, respectively. For F,
Cl, Br, and I the covalent radii are 71, 99, 114, and 133 pm, respectively.

Table 1.2 Atomic Radii in Picometers (pm).

H

78

Li Be B C N (0] F
152 113 83 77 71 72 71
Na Mg Al Si P S cl
154 138 143 117 110 104 99
K Ca Sc...Zn Ga Ge As Se Br
227 197 161...133 126 123 125 117 114
Rb Sr Y..dd In Sn Sb Te |
248 215 181 ... 149 163 140 141 143 133
Cs Ba La...Hg Tl Pb Bi Po At
265 217 188 ... 160 170 175 155 167 —
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2. The sizes of atoms decrease in progressing across a given period. Nuclear charge increases in
such a progression while electrons in the outer shell are contained in the same type of shell.
Therefore, the higher the nuclear charge (farther to the right in the period), the greater the
attraction for the electrons and the closer to the nucleus they will reside. For example, the radii
for the first long row of atoms are as follows.

Atom: Li Be B C N 0) F
Radius, pm 134 13 83 77 71 72 71

Other rows in the periodic table follow a similar trend. However, for the third row, there is
a general decrease in radius except for the last two or three elements in the transition series.
The covalent radii of Fe, Co, Ni, Cu, and Zn are 126, 125, 124, 128, and 133 pm, respectively.
This effect is a manifestation of the fact that the 3d orbitals shrink in size as the nuclear charge
increases (going to the right), and the additional electrons populating these orbitals experience
greater repulsion. As a result, the size decreases to a point (at Co and Ni), but after that the
increase in repulsion produces an increase in size (Cu and Zn are larger than Co and Ni).

3. The largest atoms in the various periods are the group IA metals. The outermost electron resides
in a shell that is outside other completed shells (the noble gas configurations) so it is loosely
held (low ionization potential) and relatively far from the nucleus.

An interesting effect of nuclear charge can be seen by examining the radius of a series of species that
have the same nuclear charge but different numbers of electrons. One such series involves the ions that
have 10 electrons (the neon configuration). The ions include AI**, Mg?*, Na*, F~, O?~, and N3, for
which the nuclear charge varies from 13 to 7. Figure 1.11 shows the variation in size of these species
with nuclear charge.

Note that the N3~ ion (radius 171 pm) is much larger than the nitrogen atom, for which the covalent
radius is only 71 pm. The oxygen atom (radius 72 pm) is approximately half the size of the oxide ion
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M FIGURE 1.11  Radii of ions having the neon configuration.
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(radius 140 pm). Anions are always larger than the atoms from which they are formed. On the other
hand, the radius of Na* (95pm) is much smaller than the covalent radius of the Na atom (radius
154 pm). Cations are always smaller than the atoms from which they are formed.

Of particular interest in the series of ions is the AI** ion, which has a radius of only 50 pm while the atom

has a radius of 126 pm. As will be described in more detail later (see Chapter 6), the small size and high
charge of the AI>* ion causes it (and similar ions with high charge-to-size ratio or charge density) to have
some very interesting properties. It has a great affinity for the negative ends of polar water molecules so
that when an aluminum compound is dissolved in water, evaporating the water does not remove the water
molecules that are bonded directly to the cation. The original aluminum compound is not recovered.

Because inorganic chemistry is concerned with the properties and reactions of compounds that may
contain any element, understanding the relationships between properties of atoms is important. This
topic will be revisited numerous times in later chapters, but the remainder of this chapter will be
devoted to a brief discussion of the nuclear portion of the atom and nuclear transformations. We now
know that it is not possible to express the weights of atoms as whole numbers that represent multiples
of the mass of a hydrogen atom as had been surmised about two centuries ago. Although Dalton’s
atomic theory was based on the notion that all atoms of a given element were identical, we now know
that this is not correct. As students in even elementary courses now know, the atomic masses represent
averages resulting from most elements existing in several isotopes. The application of mass spectros-
copy techniques has been of considerable importance in this type of study.

1.6 NUCLEAR BINDING ENERGY

There are at present 116 known chemical elements. However, there are well over 2000 known nuclear
species as a result of several isotopes being known for each element. About three-fourths of the nuclear
species are unstable and undergo radioactive decay. Protons and neutrons are the particles which are
found in the nucleus. For many purposes, it is desirable to describe the total number of nuclear par-
ticles without regard to whether they are protons or neutrons. The term nucleon is used to denote
both of these types of nuclear particles. In general, the radii of nuclides increase as the mass number
increases with the usual relationship being expressed as

R =r1,A13 (1.25)

where A is the mass number and ry is a constant that is approximately 1.2 X 10713 cm.

Any nuclear species is referred to as a nuclide. Thus, }H, 23;Na, 12,C, 238,,U are different recognizable
species or nuclides. A nuclide is denoted by the symbol for the atom with the mass number written to
the upper left, the atomic number written to the lower left, and any charge on the species, g~ to the
upper right. For example,

A +
ZXq

As was described earlier in this chapter, the model of the atom consists of shells of electrons surround-
ing the nucleus, which contains protons and, except for the isotope 'H, a certain number of neutrons.
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Each type of atom is designated by the atomic number, Z, and a symbol derived from the name of the
element. The mass number, A, is the whole number nearest to the mass of that species. For example, the
mass number of 41 H is 1, although the actual mass of this isotope is 1.00794 atomic mass units (amu).
Because protons and neutrons have masses that are essentially the same (both are approximately 1
atomic mass unit, amu), the mass number of the species minus the atomic number gives the number of
neutrons, which is denoted as N. Thus, for 1*;N, the nucleus contains seven protons and eight neutrons.

When atoms are considered to be composed of their constituent particles, it is found that the atoms
have lower masses than the sum of the masses of the particles. For example, 4,He contains two electrons,
two protons, and two neutrons. These particles have masses of 0.0005486, 1.00728, and 1.00866 amu,
respectively, which gives a total mass of 4.03298 amu for the particles. However, the actual mass of 4,He
is 4.00260amu, so there is a mass defect of 0.030377 amu. That “disappearance” of mass occurs because
the particles are held together with an energy that can be expressed in terms of the Einstein equation,

E = mc? (1.26)
If 1 gram of mass is converted to energy, the energy released is
E =mc? = 1g X (3.00 X 10'° cm/sec)? = 9.00 X 10%° erg

When the mass being converted to energy is 1amu (1.66054 X 10~2*g), the amount of energy released
is 1.49 X 10 3erg. This energy can be converted to electron volts by making use of the conversion that
1eV = 1.60 X 10 '2erg. Therefore, 1.49 X 10 3erg/1.60 X 10~ '2erg/eV is 9.31 X 10%eV. When deal-
ing with energies associated with nuclear transformations, energies are ordinarily expressed in MeV
with 1MeV being 10°eV. Consequently, the energy equivalent to 1amu is 931 MeV. When the mass
defect of 0.030377 amu found for 4,He is converted to energy, the result is 28.3 MeV. In order to make
a comparison between the stability of various nuclides, the total binding energy is usually divided by
the number of nucleons, which in this case is 4. Therefore, the binding energy per nucleon is 7.07 MeV.

As a side issue, it may have been noted that we neglected the attraction energy between the electrons
and the nucleus. The first ionization energy for He is 24.6 eV and the second is 54.4 eV. Thus, the total
binding energy of the electrons to the nucleus in He is only 79.9¢V, which is 0.000079 MeV and is
totally insignificant compared to the 28.3MeV represented by the total binding energy. Attractions
between nucleons are enormous compared to binding energies of electrons in atoms. Neutral atoms
have the same number of electrons and protons, the combined mass of which is almost exactly the
same as that of a hydrogen atom. Therefore, no great error is introduced when calculating mass defects
by adding the mass of an appropriate number of hydrogen atoms to that of the number of neutrons.
For example, the mass of 1,0 can be approximated as the mass of 8 hydrogen atoms and 8 neutrons.
The binding energy of the electrons in the 8 hydrogen atoms is ignored.

When similar calculations are performed for many other nuclides, it is found that the binding energy
per nucleon differs considerably. The value for ',0 is 7.98 MeV, and the highest value is approxi-
mately 8.79 MeV for >¢,¢Fe. This suggests that for a very large number of nucleons, the most stable
arrangement is for them to make >°,4Fe, which is actually abundant in nature. Figure 1.12 shows the
binding energy per nucleon as a function of mass number of the nuclides.
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With the highest binding energy per nucleon being for species like >°,¢Fe, we can see that the fusion of
lighter species to produce nuclides that are more stable should release energy. Because the very heavy
elements have lower binding energy per nucleon than do nuclides having mass numbers from about
50 to 80, fission of heavy nuclides is energetically favorable. One such nuclide is 235y,U, which under-
goes fission when bombarded with low-energy neutrons:

235 U +1on — 922, Kr + 141, Ba + 3!)n (1.27)

When 23°,U undergoes fission, many different products are obtained because there is not a great deal of
difference in the binding energy per nucleon for nuclides having a rather wide range of mass numbers. If
the abundances of the products are plotted against the mass numbers, a double humped curve is obtained,
and the so-called symmetric split of the 23°,U is not the most probable event. Fission products having
atomic numbers in the ranges of 30-40 and 50-60 are much more common than are two 44Pd isotopes.

1.7 NUCLEAR STABILITY

The atomic number, Z, is the number of protons in the nucleus. Both the proton and neutron have
masses that are approximately 1 atomic mass unit, amu. The electron has a mass of only about 1/1837
of the proton or neutron, so almost all of the mass of the atoms is made up by the protons and neu-
trons. Therefore, adding the number of protons to the number of neutrons gives the approximate mass
of the nuclide in amu. That number is called the mass number and is given the symbol A. The number
of neutrons is found by subtracting the atomic number, Z, from the mass number, A. Frequently, the
number of neutrons is designated as N and (A — Z) = N. In describing a nuclide, the atomic number
and mass number are included with the symbol for the atom. This is shown for an isotope of X as #,X.
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Table 1.3 Numbers of Stable Nuclides Having Different Arrangements of Nucleons.

z N Number of Stable Nuclides
even even 162

even odd 55

odd even 49

odd odd 4

Although the details will not be presented here, there is a series of energy levels or shells where the
nuclear particles reside. There are separate levels for the protons and neutrons. For electrons, the num-
bers 2, 10, 18, 36, 54, and 86 represent the closed shell arrangements (the noble gas arrangements).
For nucleons, the closed shell arrangements correspond to the numbers 2, 8, 20, 28, 50, and 82 with
a separate series for protons and neutrons. It was known early in the development of nuclear science
that these numbers of nucleons represented stable arrangements, although it was not known why these
numbers of nucleons were stable. Consequently, they were referred to as magic numbers.

Another difference between nucleons and electrons is that nucleons pair whenever possible. Thus,
even if a particular energy level can hold more than two particles, two particles will pair when they are
present. Thus, for two particles in degenerate levels, we show two particles as 1! rather than 11, As a
result of this preference for pairing, nuclei with even numbers of protons and neutrons have all paired
particles. This results in nuclei that are more stable than those which have unpaired particles. The least
stable nuclei are those in which both the number of neutrons and the number of protons is odd. This
difference in stability manifests itself in the number of stable nuclei of each type. Table 1.3 shows the
numbers of stable nuclei that occur. The data show that there does not seem to be any appreciable dif-
ference in stability when the number of protons or neutrons is even while the other is odd (the even-
odd and odd-even cases). The number of nuclides that have odd Z and odd N (so-called odd-odd
nuclides) is very small, which indicates that there is an inherent instability in such an arrangement.
The most common stable nucleus which is of the odd-odd type is 4,N.

1.8 TYPES OF NUCLEAR DECAY

Figure 1.13 shows graphically the relationship between the number of neutrons and the number of
protons for the stable nuclei.

We have already stated that the majority of known nuclides are unstable and undergo some type of
decay to produce another nuclide. The starting nuclide is known as the parent and the nuclide pro-
duced is known as the daughter. The most common types of decay processes will now be described.

When the number of neutrons is compared to the number of protons that are present in all stable
nuclei, it is found that they are approximately equal up to atomic number 20. For example, in 4°,,Ca
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B FIGURE 1.13  The relationship between the number of neutrons and protons for stable nuclei.

it is seen that Z = N. Above atomic number 20, the number of neutrons is generally greater than the
number of protons. For 23°y,U, Z = 92, but N = 143. In Figure 1.13, each small square represents a
stable nuclide. It can be seen that there is a rather narrow band of stable nuclei with respect to Z
and N, and that the band gets farther away from the line representing Z = N as the atomic number
increases. When a nuclide lies outside the band of stability, radioactive decay occurs in a manner that
brings the daughter into or closer to the band of stability.

1. Beta (—) decay (3~). When we consider '4,C, we see that the nucleus contains six protons and eight
neutrons. This is somewhat “rich” in neutrons, so the nucleus is unstable. Decay takes place in a man-
ner that decreases the number of neutrons and increases the number of protons. The type of decay
that accomplishes this is the emission of a 3~ particle as a neutron in the nucleus is converted into
a proton. The 3~ particle is simply an electron. The beta particle that is emitted is an electron that is
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produced as a result of a neutron in the nucleus being transformed into a proton, which remains in
the nucleus.

n—ptte (1.28)

The ejected electron did not exist before the decay, and it is not an electron from an orbital. One com-
mon species that undergoes 3~ decay is 4¢C,

4.C oMU N+e (1.29)

In this decay process, the mass number stays the same because the electron has a mass that is only
1/1837 of the mass of the proton or neutron. However, the nuclear charge increases by 1 unit as the
number of neutrons is decreased by 1. As we shall see later, this type of decay process takes place when
the number of neutrons is somewhat greater than the number of protons.

Nuclear decay processes are often shown by means of diagrams that resemble energy level diagrams,
with the levels displaced to show the change in atomic number. The parent nucleus is shown at a
higher energy than the daughter. The x-axis is really the value of Z with no values indicated. The decay
of 14¢C can be shown as follows.

1480
B-

14
vd)

2. Beta (+) or positron emission (3"). This type of decay occurs when a nucleus has a greater number
of protons than neutrons. In this process, a proton is converted into a neutron by emitting a positive
particle known as a 37 particle or positron. The positron is a particle having the mass of an electron but
carrying a positive charge. It is sometimes called the antielectron and shown as e™. The reaction can be
shown as

pt - n+ef (1.30)
One nuclide that undergoes 3* decay is 1430,

4.0 — 4N + et (1.31)
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In 3" decay, the mass number remains the same but the number of protons decreases by 1 while the
number of neutrons increases by 1. The decay scheme for this process is shown as follows.

1480

B+

D ——

In this case, the daughter is written to the left of the parent because the nuclear charge is decreasing.

3. Electron capture (EC). In this type of decay, an electron from outside the nucleus is captured by the
nucleus. Such a decay mode occurs when there is a greater number of protons than neutrons in the
nucleus.

§3Cu —“— 1§{Ni (1.32)

In electron capture, the nuclear charge decreases by 1 because what happens is that a proton in the
nucleus interacts with the electron to produce a neutron.

pt + e E— n (1.33)
inside nucleus outside nucleus inside nucleus '

In order for this to occur, the orbital electron must be very close to the nucleus. Therefore, electron cap-
ture is generally observed when the nucleus has a charge of Z = 30. However, a few cases are known
in which the nucleus has a considerably smaller charge than this. Because the electron that is captured
is one in the shell closest to the nucleus, the process is sometimes called K-capture. Note that electron
capture and 3% decay accomplish the same changes in the nucleus. Therefore, they are sometimes com-
peting processes and the same nuclide may decay simultaneously by both processes.

4. Alpha (o) decay. As we shall see later, the alpha particle, which is a helium nucleus, is a stable parti-
cle. For some unstable heavy nuclei, the emission of this particle occurs. Because the « particle contains
a magic number of both protons and neutrons (2), there is a tendency for this particular combination
of particles to be the one emitted rather than some other combination such as ®;Li. In alpha decay, the
mass number decreases by 4 units, the number of protons decreases by 2, and the number of neutrons
decreases by 2. An example of alpha decay is the following:

2P, U — 215 Th + (1.34)
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5. Gamma emission (vy). Gamma rays are high-energy photons that are emitted as an atomic nucleus
undergoes deexcitation. This situation is entirely equivalent to the spectral lines emitted by atoms as
electrons fall from higher energy states to lower ones. In the case of gamma emission, the deexcitation
occurs as a proton or neutron that is in an excited state falls to a lower nuclear energy state. However,
the question naturally arises as to how the nuclide attains the higher energy state. The usual process
is that the excited nuclear state results from some other event. For example, 3%,Cl decays by 3~ emis-
sion to 38 4Ar, but this nuclide exists in an excited state. Therefore, it is designated as 3% gAr* and it
relaxes by the emission of gamma rays. A simplified decay scheme can be shown as follows.

b

3818Ar*

3818Ar

Gamma emission almost always follows some other decay process that results in an excited state in the
daughter nucleus due to a nucleon being in a state above the ground state.

The decay of 22°33Ra to 22234Rn can occur to either the ground state of the daughter or to an excited
state that is followed by emission of a ~ ray. The equation and energy diagram for this process are
shown as follows.

226, . Ra — 222,Rn + (1.35)

226,¢ Ra

*
226,¢ Rn

2260 Rn

1.9 PREDICTING DECAY MODES

For light nuclei, there is a strong tendency for the number of protons to be approximately equal to the
number of neutrons. In many stable nuclides, the numbers are exactly equal. For example, 4,He, %,C,
16.0, 20,;Ne, and %°,,Ca are all stable nuclides. In the case of the heavier stable nuclides, the num-
ber of neutrons is greater than the number of protons. Nuclides such as %;,Zn, 2°%;,Pb, and 23°5,U
all have a larger number of neutrons than protons with the difference increasing as the number of
protons increases. If a graph is made of number of protons versus number of neutrons and all the
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stable nuclides are located on the graph, it is seen that the stable nuclides fall in a rather narrow band.
This band is sometimes referred to as the band of stability as shown in Figure 1.13. If a nucleus has
a number of either type of nuclide that places it outside this band, the nuclide will typically undergo
a type of decay that will bring it into the band. For example, 4;C has 6 protons and 8 neutrons. This
excess of neutrons over protons can be corrected by a decay process that transforms a neutron into a
proton. Such a decay scheme can be summarized as

n— pt+e” (1.36)
Therefore, ;C undergoes radioactive decay by 3~ emission,
4C -4 N+e (1.37)

On the other hand, 430 has 8 protons but only 6 neutrons. This imbalance of protons and neutrons
can be corrected if a proton is transformed into a neutron as is summarized by the equation

pt - n+et (1.38)

Thus, 430 undergoes decay by positron emission,

140 514N + et (1.39)

Electron capture accomplishes the same end result as positron emission, but because the nuclear
charge is low, positron emission is the expected decay mode in this case. Generally, electron capture is
not a competing process unless Z = 30 or so.

Figure 1.14 shows how the transformations shown in Egs. (1.37) and (1.39) are related to the rela-
tionship between the numbers of protons and neutrons for the two decay processes. The point labeled
a on the graph and the arrow starting from that point shows the decay of '4;C. Point b on the graph
represents 1430, and the decay is indicated by the arrow.

Although the use of the number of protons and neutrons to predict stability is straightforward, there
are further applications of the principles discussed that are useful also. For example, consider the
following cases:

34,81 t;, = 2.8 sec
33,81 t;, = 6.2 sec

32,,Si t;, = 100 years
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Although all three of these isotopes of silicon are radioactive, the heaviest of them, 34Si, lies farthest
from the band of stability and it has the shortest half-life. Generally, the farther a nuclide lies from the
band of stability, the shorter its half-life. There are numerous exceptions to this general rule and we
will discuss some of them here. First, consider these cases:

(even-odd) 27,Mg  t, = 9.45 min

(even-even) 2,,Mg  t;;, = 21.0 hours

Although 28Mg is farther from the band of stability than is 2’Mg, the former is an even-even nuclide
while the latter is an even-odd nuclide. As we have seen earlier, even-even nuclides tend to be more
stable. Consequently, the even-even effects here outweigh the fact that 2*Mg is farther from the band of
stability. Another interesting case is shown by considering these isotopes of chlorine:

(odd-odd)  3,,Cl 1, =37.2min

(odd-even) #?1,Cl ), = 55.7 min

38 39

In this case, the °°,Cl is an odd-odd nucleus, whereas °°;;Cl is an odd-even nucleus. Thus, even
though %°,,Cl is farther away from the band of stability, it has a slightly longer half-life. Finally, let us
consider two cases where both of the nuclei are similar in terms of numbers of nucleons. Such cases
are the following:

(odd-even) #,Cl 4, =37.2 min

(even-odd) P gAT ), = 259 years
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In this case, there is no real difference with respect to the even/odd character. The large difference in
half-life is related to the fact that 3% ,Cl is farther from the band of stability than is 3°4Ar. This is in
accord with the general principle stated earlier. While specific cases might not follow the general trend,
it is generally true that the farther a nuclide is from the band of stability, the shorter its half life will be.

In some cases, a nuclide may undergo decay by more than one process at the same time. For example,
%4Cu undergoes decay by three processes simultaneously:

6428Ni by electron capture, 19%
84 sCu — B4 Niby B* emission, 42%

6430Zn by B~ emission, 39%

The overall rate of disappearance of **Cu is the sum of three processes, but by making use of different
types of counting methods, it is possible to separate the rates of the processes.

There are three naturally occurring radioactivity series that consist of a sequence of steps that involve o
and (3 decay processes until a stable nuclide results. The uranium series involves the decay of 238,,U in
a series of steps that eventually produces 2°°4,Pb. Another series involves 23°,,U that decays in a series
of steps that ends in 2%g,Pb, which is stable. In the thorium series, 232;Th is converted into 2°°g,Pb.
Although there are other individual nuclides that are radioactive, these are the three most important
naturally occurring decay series.

The characteristics of nuclei described here are intimately related to how certain species figure promin-
ently in chemistry (such as dating materials by determining their carbon-14 content). The use of isoto-
pic tracers is a technique that finds applications in all areas of chemistry.
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M QUESTIONS AND PROBLEMS

1. If a short-wave radio station broadcasts on a frequency of 9.065 megahertz (MHz), what is the wavelength of
the radio waves?

2. One of the lines in the line spectrum of mercury has a wavelength of 435.8 nm. (a) What is the frequency of
this line? (b) What is the wave number for the radiation? (c) What energy (in k] mol™!) is associated with this
radiation?

3. The ionization potential for the NO molecule is 9.25 eV. What is the wavelength of a photon that would just
ionize NO with the ejected electron having no kinetic energy?

4. What is the de Broglie wavelength of an electron (mass 9.1 X 10~28g) moving at 1.5% of the velocity of
light?

5. What energy is associated with an energy change in a molecule that results in an absorption at 2100cm™!?
(a) in ergs; (b) in joules; (c) in k] mol ™.

6. What wavelength of light will just eject an electron from the surface of a metal that has a work function of
2.75eV?

7. If an electron in a hydrogen atom falls from the state with n = 5 to that where n = 3, what is the wavelength of
the photon emitted?

8. If a moving electron has a kinetic energy of 2.35 X 10~ 12erg, what would be its de Broglie wavelength?

9. The work function for barium is 2.48 eV. If light having a wavelength of 400 nm is shone upon a barium cath-
ode, what is the maximum velocity of the ejected electrons?

10. If a moving electron has a velocity of 3.55 X 10° m/sec, what is its de Broglie wavelength?
11. What is the velocity of the electron in the first Bohr orbit?

12. In each of the following pairs, select the one that has the highest first ionization potential: (a) Li or Be; (b) Al or F;
(c) CaorP; (d) Zn or Ga.

13. In each of the following pairs, which species is larger? (a) Li* or Be?"; (b) AP* or F~; (c) Na' or Mg?*;
(d)S*” orF.

14. In each of the following pairs, which atom releases the greater amount of energy when an electron is added?
(@) PorC; (b) NorNa; (c)Hor; (d) S or Si.

15. The bond energy in H," is 256k] mol~!. What wavelength of electromagnetic radiation would have enough
energy to dissociate H,*?

16. For the HCI molecule, the first excited vibrational state is 2886 cm ™! above the ground state. How much energy
is this in erg/molecule? In kJ mol~1?

17. The ionization potential for the PCl; molecule is 9.91eV. What is the frequency of a photon that will just
remove an electron from a PCl; molecule? In what spectral region would such a photon be found? From which
atom in the molecule is the electron removed?

18. Arrange the following in the order of increasing first ionization potential: B, Ne, N, O, P.

19. Explain why the first ionization potentials for P and S differ by only 12kJ mol™! (1012 and 1000kJ mol ™},
respectively) whereas those for N and O differ by 88 k] mol ™! (1402 and 1314 kJ mol !, respectively).

20. Arrange the following in the order of increasing first ionization potential: H, Li, C, E O, N.
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21. Arrange the following in the order of decreasing amount of energy released when an electron is added to the
atom: O, E N, Cl, S, Br.

22. Arrange the following in the order of decreasing size: Cl, O, I, 02, Mg”, F~.
23. Calculate the binding energy per nucleon for the following: 18;0; 23,,Na; 4°,,Ca.

24. Predict the decay mode for the following and write the reaction for the predicted decay mode: (a) 3%S;
(b) oF; (c) ¥5Ca.

25. How much energy (in MeV) would be released by the fusion of three 4,He nuclei to produce '%,C?



Chapter

Basic Quantum Mechanics and
Atomic Structure

In the previous chapter, we saw that the energies of electron orbits are quantized. It was also men-
tioned that dealing with an electron in an atom would require considering the wave character of the
moving particle. The question remains as to how we proceed when formulating and solving such a
problem. The procedures and methods employed constitute the branch of science known as quantum
mechanics or wave mechanics. In this chapter, we will present only a very brief sketch of this impor-
tant topic because it is assumed that readers of this book will have studied quantum mechanics in a
physical chemistry course. The coverage here is meant to provide an introduction to the terminology
and basic ideas of quantum mechanics or, preferably, provide a review.

2.1 THE POSTULATES

In order to systematize the procedures and basic premises of quantum mechanics, a set of postulates
has been developed that provides the usual starting point for studying the topic. Most books on quan-
tum mechanics give a precise set of rules and interpretations, some of which are not necessary for
the study of inorganic chemistry at this level. In this section, we will present the postulates of quan-
tum mechanics and provide some interpretation of them, but for complete coverage of this topic the
reader should consult a quantum mechanics text such as those listed in the references at the end of
this chapter.

Postulate I: For any possible state of a system, there exists a wave function ¢ that is a function of the
parts of the system and time and that completely describes the system.

This postulate establishes that the description of the system will be in the form of a mathematical
function. If the coordinates used to describe the system are Cartesian coordinates, the function ¢ will
contain these coordinates and the time as variables. For a very simple system that consists of only a
single particle, the function ¢, known as the wave function, can be written as

¥ =1(x,y,21) (2.1)

35
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If the system consists of two particles, the coordinates must be specified for each of the particles, which
results in a wave function that is written as

U = (X, Y1020, %9, V20 29, 1) (2.2)
As a general form of the wave function, we write
v = Y(q;t) (2.3)

where the ¢; are appropriate coordinates for the particular system. Since the form of the coordinates is
not specified, the g; are referred to as generalized coordinates. Because v describes the system in some
particular state, the state is known as the quantum state and v is called the state function or complete wave
function.

There needs to be some physical interpretation of the wave function and its relationship to the state of
the system. One interpretation is that the square of the wave function, v, is proportional to the prob-
ability of finding the parts of the system in a specified region of space. For some problems in quantum
mechanics, differential equations arise that can have solutions that are complex (contain (—1)"? = i).
In such a case, we use ¢ *v), where ¥* is the complex conjugate of ¢. The complex conjugate of a func-
tion is the function that results when i is replaced by —i. Suppose we square the function (a + ib):

(a +ib)? = a? + 2aib + i%b? = a? + 2aib — b? (2.4)

Because the expression obtained contains i, it is still a complex function. Suppose, however, that
instead of squaring (a + ib) we multiply by its complex conjugate, (a — ib):

(a +ib)(a —ib) = a? — i?b? = a? +b? (2.5)

The expression obtained by this procedure is a real function. Thus, in many instances we will use the
product ¢*1 instead of 42, although if 1 is real, the two are equivalent.

For a system of particles, there is complete certainty that the particles are somewhere in the system. The
probability of finding a particle in a volume element, dr, is given by 1)*% dr so that the total probabil-
ity is obtained from the integration

fw*w dr (2.6)

An event that is impossible has a probability of zero and a “sure thing” has a probability of 1. For a
given particle in the system, the probability of finding the particle in all of the volume elements that
make up all space must add up to 1. Of course, the way of summing the volume elements is by per-
forming an integration. Therefore, we know that

Jurvdr =1 (2.7)

All space
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When this condition is met, we say that the wave function, v, is normalized. In fact, this is the defini-
tion of a normalized wave function.

However, there are other requirements on v that lead to it being a “well-behaved” wave function. For
example, since the integral shown above must equal 1.00 ..., the wave function cannot be infinite.
As a result, we say that ¢ must be finite. Another restriction on ¢ relates to the fact that there can be
only one probability of finding a particle in a particular place. As an example, there is only one prob-
ability of finding an electron at a particular distance from the nucleus in a hydrogen atom. Therefore,
we say that the wave function must be single valued so that there results only one value for the prob-
ability. Finally, we must take into account the fact that the probability does not vary in an abrupt
way. Increasing the distance by 1% should not cause a 50% change in probability. The requirement
is expressed by saying that ¢) must be continuous. Probability varies in some continuous manner, not
abruptly. A wave function is said to be well behaved if it has the characteristics of being finite, single
valued, and continuous.

Another concept that is important when considering wave functions is that of orthogonality. If the func-
tions ¢, and ¢, are related so that

[or0,ar o [o0,0 dr=1 (2.8)

the functions are said to be orthogonal. In this case, changing the limits of integration may determine
whether such a relationship exists. For Cartesian coordinates, the limits of integration are —o to +o
for the coordinates x, y, and z. For a system described in terms of polar coordinates (r, 6, and ¢), the
integration limits are the ranges of those variables, 0 — %, 0 — 7, and 0 — 27, respectively.

Postulate II: For every dynamical variable (also known as a classical observable) there exists a corre-
sponding operator.

Quantum mechanics is concerned with operators. An operator is a symbol that indicates some math-
ematical action must be performed. For example, operators with which you are familiar include (x)'/?
(taking the square roof of x), (x)? (squaring x), and dy/dx (taking the derivative of y with respect to x).
Physical quantities such as momentum, angular momentum, position coordinates, and energy are
known as dynamical variables (classical observables for a system), each of which has a corresponding
operator in quantum mechanics. Coordinates are identical in both operator and classical forms. For
example, the coordinate r is simply 7 in either case. On the other hand, the operator for momentum
in the x direction (p,) is (#/i)/(d/dx). The operator for the z component of angular momentum (in
polar coordinates) is (%/i)/(d/d¢). Kinetic energy, 1/2mv?, can be written in terms of momentum,
p, as p?/2m so it is possible to arrive at the operator for kinetic energy in terms of the operator for
momentum. Table 2.1 shows some of the operators that are necessary for an introductory study of
quantum mechanics. Note that the operator for kinetic energy is obtained from the momentum opera-
tor because the kinetic energy, T, can be expressed as p?/2m. Note also that the operator for poten-
tial energy is expressed in terms of the generalized coordinates, ¢; because the form of the potential
energy depends on the system. For example, the electron in a hydrogen atom has a potential energy
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Table 2.1 Some Common Operators in Quantum Mechanics.
Quantity Symbol Used Operator Form
Coordinates XV zr XY,z r
Momentum
x P ho
i Ox
y Py h 9
i dy
z P ho
i 0z
Kinetic energy p? n2( o2 92 92
— —— |t =+ —
2m 2m|0%x 0%y 0%z
Kinetic energy T _n g
i Ot
Potential energy 4 V(g)
Angular momentum
L, (Cartesian) h ) )
X5 V5D
il Oy Ox
L, (polar) h o
¢

that is —e?/r, where e is the charge on the electron. Therefore, the operator for the potential energy is
simply —e?/r, which is unchanged from the classical form.

Operators have properties that can be expressed in mathematical terms. If an operator is linear, it
means that

alpy + ¢,) = ag +ag, (2.9)

where ¢, and ¢, are functions that are being operated on by the operator «. Another property of the
operators that is often useful in quantum mechanics is that when C is a constant,

a(Co) = C(ag) (2.10)
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An operator is Hermitian if
f¢1*a¢2 dr = fqbza*gbl* dr (2.11)

It can be shown that if an operator, «, meets this condition, the quantities calculated will be real rather
than complex or imaginary. Although it is stated without proof, all of the operators to be discussed
subsequently meet these conditions.

Postulate III: The permissible values that a dynamical variable may have are those given by a¢ = ad,
where « is an operator corresponding to the dynamical variable whose permissible values are a and ¢
is an eigenfunction of the operator a.

When reduced to an equation, Postulate III can be written as

a ¢ = a ¢
operator _wave constant wave (2.12)
function (eigenvalue) function
When an operator operates on a wave function to produce a constant times the original wave function,
the function is said to be an eigenfunction of that operator. In terms of the equation just shown, the
operator « operating on ¢ yields a constant a times the original wave function. Therefore, ¢ is an eigen-
function of the operator a with an eigenvalue a. We can use several examples to illustrate these ideas.

Suppose ¢ = ¢** where a is a constant and the operator is a = d/dx. Then
dp/dx = a e** = (constant) e™ (2.13)

Thus, we see that the function ¢* is an eigenfunction of the operator d/dx with an eigenvalue of a. If
we consider the operator ( )? operating on the same function, we find

(eax)2 = eZax, (214)

which does not represent the original function multiplied by a constant. Therefore, ¢* is not an
eigenfunction of the operator ( )2. When we consider the function ™ (where n is a constant) being
operated on by the operator for the z component of angular momentum, (7%/i)(d/d¢), where h/27 is
represented as 7 (read as “h bar”), we find

h
i

d(einé)

i = nze"”‘? (2.15)

1

which shows that the function ¢ is an eigenfunction of the operator for the z component of angular
momentum.

One of the most important techniques in quantum mechanics is known as the variation method. That
method provides a way of starting with a wave function and calculating a value for a property (dynamical
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variable or classical observable) by making use of the operator for that variable. It begins with the
equation a¢ = a¢. Multiplying both sides of the equation by ¢* we obtain

¢*Oé¢ = ¢*a¢ (216)

Because « is an operator, it is not necessarily true that ¢*a¢ is equal to pa¢*, so the order in writing
the symbols is preserved. We now perform integration using the equation in the form

Joravar = [orasar (2.17)

All space All space

However, the eigenvalue a is a constant, so it can be removed from the integral on the right-hand side
of the equation. Then, solving for a gives

(ay = Joravdr

(2.18)
Joroar
The order of the quantities in the numerator must be preserved because « is an operator. For exam-
ple, if an operator is d/dx, it is easy to see that (2x)(d/dx)(2x) = (2x)(2) = 4x is not the same as
(d/dx)(2x)(2x) = (d/dx)(4x?) = 8x.

If the wave function ¢ is normalized, the denominator in Eq. (2.18) is equal to 1. Therefore, the value
of a is given by the relationship

(a)= [ora0 ar (2.19)

The value of a calculated in this way is known as the average or expectation value, and it is indicated by
a or {a). The operator to be used is the one that corresponds to the variable being calculated.

The utilization of the procedure just outlined will be illustrated by considering an example that is
important as we study atomic structure. In polar coordinates, the normalized wave function for the
electron in the 1s state of a hydrogen atom is

1 1

o= g e (2:20

where a, is a constant known as the first Bohr radius. Note that in this case the wave function is real
(meaning that it does not contain i) so ¢ and ¢* are identical. We can now calculate the average value
for the radius of the 1s orbit by making use of

(r)= flﬁ*(operator)d) dr (2.21)
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where the operator is simply 7, which is the same in operator or classical form. The volume element,
dr, in polar coordinates is dr = 7% sin 0 dr df d¢. Making the substitutions for dr and the operator, we
obtain

27

o 3/2
TRl oot

Although this integral looks like it might be very difficult to evaluate, it becomes much simpler when
some factors are combined. For example, the r that is the operator is the same as the r in the volume
element. Combining these gives a factor of 3. Next, the factors involving 7 and 4, can be combined.
When these simplifications are made, the integral can be written as

I

We can further simplify the problem by recalling the relationship from calculus that

1

3/2
] ~rl% 12 gin 6 dr df do (2.22)
o

1
ay’

e~ 2% 3 sin @ dr df do (2.23)

||
o%g
o =¥
3

[ [fesmaxay= [ fxyax [y (2.24)

which allows us to write the integral above in the form

T 2T

= L_e2rla 3 ar [ [sinoands (2.25)
a, 00

0

From a table of integrals, it is easy to verify that the integral involving the angular coordinates can be
evaluated to give 47. Also from a table of integrals, it can be found that the exponential integral can be
evaluated by making use of a standard form,

5 |
fx" e dx = bi”tl (2.26)
0

For the integral being evaluated here, b = 2/a, and n = 3, so that the exponential integral can be writ-
ten as

00

fr36*27/a0 dr = (2.27)
) (2/a0)*

Making the substitutions for the integrals and simplifying, we find that

<r> = (3/2)a0 (2.28)
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where a,, the first Bohr radius, is 0.529 A. The expectation value for the radius of the 1s orbit is 1.5
times that distance. Note that a complicated-looking problem actually turns out to be much simpler
than might have been supposed. In this case, looking up two integrals in a table removes the neces-
sity for integrating the functions by brute force. A great deal of elementary quantum mechanics can be
handled in this way.

It may have been supposed that the average value for the radius of the first orbit in a hydrogen atom
should evaluate to 0.529 A. The answer to why it does not lies in the fact that the probability of find-
ing the electron as a function of distance from the nucleus in a hydrogen atom can be represented as
shown in Figure 2.1. The average distance is that point where there is an equal probability of finding
the electron on either side of that distance. It is that distance that we have just calculated by the fore-
going procedure. On the other hand, the probability as a function of distance is represented by a func-
tion that goes through a maximum. Where the probability function has its maximum value is the most
probable distance, and that distance for an electron in the 1s state of a hydrogen atom is a,.

The applications of the principles just discussed are many and varied. It is possible to calculate the
expectation values for a variety of properties by precisely the procedures illustrated. Do not be intimi-
dated by such calculations. Proceed in a stepwise fashion, look up any needed integrals in a table, and
handle the algebra in a clear, orderly manner.

In addition to the postulates stated earlier, one additional postulate is normally included in the
required list.

Postulate IV: The state function, 1, results from the solution of the equation
Hy = Ey

where H is the operator for total energy, the Hamiltonian operator.

a, 32a, r

W FIGURE 2.1  The probability of finding the electron as a function of distance from the nucleus.
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For a variety of problems in quantum mechanics, the first step in the formulation is to write the
equation

Hy = Ey
and then substitute the appropriate function for the Hamiltonian operator. In classical mechanics,
Hamilton’s function is the sum of the kinetic (translational) and potential energies. This can be written as

H=T+V (2.29)

where T is the kinetic energy, V is the potential energy, and H is Hamilton’s function. When written in
operator form, the equation becomes

Hy = Ey (2.30)

For some systems, the potential energy is some function of a coordinate. For example, the potential
energy of an electron bound to the nucleus of a hydrogen atom is given by —e?/r, where e is the charge
on the electron and r is a coordinate. Therefore, when this potential function is placed in operator
form, it is the same as in classical form, —e?/r (see Table 2.1).

In order to put the kinetic energy in operator form, we make use of the fact that the kinetic energy can
be written in terms of the momentum as

1 (mv)? _ p* (2.31)
2 2m 2m

Because momentum has x, y, and z components, the momentum can be represented as

2 2 2
T:P_x+p_y+P_z (2.32)
2m  2m  2m

Earlier it was shown that the operator for the x component of momentum can be written as
(7/i)(0/dx). The operators for the y and z components have the same form except for the derivatives
being with respect to those variables. Because the momentum in each direction is squared, the opera-
tor must be correspondingly used twice:

2 p2 @2

[Ei == =-p2— (2.33)

As a result, the operator for the total kinetic energy is

h2 | 9?2 9? 0? h?

where V? is the Laplacian operator, which is often referred to as simply the Laplacian.
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2.2 THEHYDROGEN ATOM

There are several introductory problems that can be solved exactly by quantum mechanical meth-
ods. These include the particle in a one-dimensional box, the particle in a three-dimensional box, the
rigid rotor, the harmonic oscillator, and barrier penetration. All of these models provide additional
insight into the methods of quantum mechanics, and the interested reader should consult a quantum
mechanics text such as those listed in the references at the end of this chapter. Because of the nature of
this book, we will progress directly to the problem of the hydrogen atom, which was solved in 1926 by
Erwin Schrodinger. His starting point was a three-dimensional wave equation that had been developed
earlier by physicists who were dealing with the so-called flooded planet problem. In this model, a
sphere was assumed to be covered with water, and the problem was to deal with the wave motion that
would result if the surface were disturbed. Schrédinger did not derive a wave equation. He adapted
one that already existed. His adaptation consisted of representing the wave motion of an electron by
means of the de Broglie relationship that had been established only 2 years earlier. Physics was pro-
gressing at a rapid pace in that time period.

We can begin directly by writing the equation

Hy = Ey (2.35)

and then determine the correct form for the Hamiltonian operator. We will assume that the nucleus
remains stationary with the electron revolving around it (known as the Born-Oppenheimer approxi-
mation) and deal with only the motion of the electron. The electron has a kinetic energy of (1/2)mv?,
which can be written as p?/2m. Equation (2.34) shows the operator for kinetic energy.

The interaction between an electron and a nucleus in a hydrogen atom gives rise to a potential energy
that can be described by the relationship —e?/r. Therefore, using the Hamiltonian operator and postu-
late IV, the wave equation can be written as

D2 Gay = Ey (2.36)
2m T

Rearranging the equation and representing the potential energy as V gives
V2 + 2 (E - V) =0 (237)
h2 '

The difficulty in solving this equation is that when the Laplacian is written in terms of Cartesian coor-
dinates we find that r is a function of x, y, and z,

r=x2+y2+2z? (2.38)

The wave equation is a second-order partial differential equation in three variables. The usual tech-
nique for solving such an equation is to use a procedure known as the separation of variables. However,
with r expressed as the square root of the sum of the squares of the three variables, it is impossible
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to separate the variables. To circumvent this problem, a change of coordinates to polar coordinates is
made. After that is done, the Laplacian must be transformed into polar coordinates, which is a tedious
task. When the transformation is made, the variables can be separated so that three second-order differ-
ential equations, each containing one coordinate as the variable, are obtained. Even after this is done,
the resulting equations are quite complex, and the solution of two of the three equations requires the
use of series techniques. The solutions are described in detail in most quantum mechanics books, so
it is not necessary to solve the equations here (see suggested readings at the end of this chapter), but
Table 2.2 shows the wave functions. These wave functions are referred to as hydrogen-like wave functions
because they apply to any one-electron system (e.g., He™, Li2™).

From the mathematical restrictions on the solution of the equations comes a set of constraints known
as quantum numbers. The first of these is n, the principal quantum number, which is restricted to inte-
ger values (1, 2, 3, ...). The second quantum number is I, the orbital angular momentum quantum
number, and it must also be an integer such that it can be at most (n — 1). The third quantum number
is m, the magnetic quantum number, which gives the projection of the [ vector on the z axis as shown
in Figure 2.2.

The three quantum numbers that arise as mathematical restraints on the differential equations
(boundary conditions) can be summarized as follows:

n = principal quantum number =1, 2, 3 ...
I = orbital angular quantum number =0, 1, 2, ..., (n —1)
m = magnetic quantum number = 0, 1, £2,...,4£]

Note that from the solution of a problem involving three dimensions, three quantum numbers result,
unlike the Bohr approach, which specified only one. The quantum number 7 is essentially equivalent
to the n that was assumed in the Bohr model of hydrogen.

A spinning electron also has a spin quantum number that is expressed as =1/2 in units of /. However,
that quantum number does not arise from the solution of a differential equation in Schrodinger’s
solution of the hydrogen atom problem. It arises because, like other fundamental particles, the elec-
tron has an intrinsic spin that is half integer in units of #, the quantum of angular momentum. As a
result, four quantum numbers are required to completely specify the state of the electron in an atom.
The Pauli Exclusion Principle states that no two electrons in the same atom can have identical sets of four
quantum numbers. We will illustrate this principle later.

The lowest energy state is that characterized by n = 1, which requires that I = 0 and m = 0. A state for
which | = 0 is designated as an s state so the lowest energy state is known as the 1s state, since states
are designated by the value of n followed by a lower case letter to represent the [ value. The values of |
are denoted by letters as follows:

Value of I 0 1 2 3

State designation: sharp principal diffuse fundamental
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M FIGURE 2.2  Projections of vectors / = 1and / = 2 on the z-axis.

B FIGURE 2.3  The three-dimensional surface representing the probability region of an s orbital.

The words sharp, principal, diffuse, and fundamental were used to describe certain lines in atomic
spectra, and it is the first letter of each word that is used to names, p, d, and f states.

For hydrogen, the notation 1s! is used, where the superscript denotes a single electron in the 1s state.
Because an electron can have a spin quantum number of +1/2 or —1/2, two electrons having opposite
spins can occupy the 1s state. The helium atom, having two electrons, has the configuration 1s? with
the electrons having spins of +1/2 and —1/2.

As we have seen in earlier sections, wave functions can be used to perform useful calculations to deter-
mine values for dynamical variables. Table 2.2 shows the normalized wave functions in which the
nuclear charge is shown as Z (Z = 1 for hydrogen) for one electron species (H, He™, etc.). One of
the results that can be obtained by making use of wave functions is that it is possible to determine
the shapes of the surfaces that encompass the region where the electron can be found some fraction
(perhaps 95%) of the time. Such drawings result in the orbital contours that are shown in Figures 2.3,
2.4, and 2.5.

It is interesting to examine the probability of finding an electron as a function of distance when s
orbitals having different n values are considered. Figure 2.6 shows the radial probability plots for the
25 and 3s orbitals. Note that the plot for the 2s orbital has one node (where the probability goes to 0)
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B FIGURE 2.4  The three-dimensional surfaces of p orbitals.

W FIGURE 2.5 Three-dimensional representations of the five d orbitals.
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W FIGURE 2.6  Radial distribution plots for 2s and 3s wave functions.
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whereas that for the 3s orbital has two nodes. It can be shown that the nodes occur at r = 2a, for the
2s orbital and at 1.90a, and 7.104,, for the 3s orbital. It is a general characteristic that ns orbitals have
(n — 1) nodes. It is also noted that the distance at which the maximum probability occurs increases as
the value of n increases. In other words, a 3s orbital is “larger” than a 2s orbital. Although not exactly
identical, this is in accord with the idea from the Bohr model that the sizes of allowed orbits increase
with increasing n value.

2.3 THE HELIUM ATOM

In previous sections, the basis for applying quantum mechanical principles has been illustrated.
Although it is possible to solve exactly several types of problems, it should not be inferred that this
is always the case. For example, it is easy to formulate wave equations for numerous systems, but
generally they cannot be solved exactly. Consider the case of the helium atom, which is illustrated in
Figure 2.7 to show the coordinates of the parts of the system.

We know that the general form of the wave equation is

Hy = E¢ (2.39)

in which the Hamiltonian operator takes on the form appropriate to the particular system. In the case
of the helium atom, there are two electrons, each of which has kinetic energy and is attracted to the
+2 nucleus. However, there is also the repulsion between the two electrons. With reference to Figure
2.7, the attraction terms can be written as —2e?/r; and —2e?/r,. The kinetic energies can be represented
as 1mv,” and 1mv,? which in operator forms are written as (—#%/2m)V,? and (—#?/2m)V,?. However,
we now must include the repulsion between the two electrons, which gives rise to the term +e?/r;, in
the Hamiltonian. When the complete Hamiltonian is written out, the result is

. K2 h2 2e2 2e2 &2
H:__v12__v22__—_+— (2.40)
2m 2m n 5} N2
z
r12/,/”'/e2
e1// r2//
~N
N /
\\ Vi
A
69 y

B FIGURE2.7  (oordinate system for the helium atom.
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from which we obtain the wave equation for the helium atom,
Hyp = Ey) (2.41)

or

K2 K2 2e2  2e?2 2
=V =V — - —+ — = E (2.42)
2m 2m n T, o

In order to solve the wave equation for the hydrogen atom, it is necessary to transform the Laplacian
into polar coordinates. That transformation allows the distance of the electron from the nucleus to
be expressed in terms of r, 6, and ¢, which in turn allows the separation of variables technique to be
used. Examination of Eq. (2.40) shows that the first and third terms in the Hamiltonian are exactly
like the two terms in the operator for the hydrogen atom. Likewise, the second and fourth terms are
also equivalent to those for a hydrogen atom. However, the last term, e2/r;,, is the troublesome part of
the Hamiltonian. In fact, even after polar coordinates are employed, that term prevents the separation
of variables from being accomplished. Not being able to separate the variables to obtain three simpler
equations prevents an exact solution of Eq. (2.40) from being carried out.

When an equation describes a system exactly but the equation cannot be solved, there are two general
approaches that are followed. First, if the exact equation cannot be solved exactly, it may be possible to
obtain approximate solutions. Second, the equation that describes the system exactly may be modified
to produce a different equation that now describes the system only approximately but which can be
solved exactly. These are the approaches to solving the wave equation for the helium atom.

Because the other terms in the Hamiltonian essentially describe two hydrogen atoms except for the
nuclear charge of +2, we could simply neglect the repulsion between the two electrons to obtain
an equation that can be solved exactly. In other words, we have “approximated” the system as two
hydrogen atoms, which means that the binding energy of an electron to the helium nucleus should
be 27.2¢V, twice the value of 13.6eV for the hydrogen atom. However, the actual value for the first
ionization potential of helium is 24.6 eV because of the repulsion between the two electrons. Clearly,
the approximate wave equation does not lead to a correct value for the binding energy of the electrons
in a helium atom. This is equivalent to saying that an electron in a helium atom does not experience
the effect of being attracted by a nucleus having a +2 charge, but an attraction which is less than that
value because of the repulsion between electrons. If this approach is taken, it turns out that the effec-
tive nuclear charge is 27/16 = 1.688 instead of exactly 2.

If the problem is approached from the standpoint of considering the repulsion between the electrons
as being a minor irregularity or perturbation in an otherwise solvable problem, the Hamiltonian can
be modified to take into account this perturbation in a form that allows the problem to be solved.
When this is done, the calculated value for the first ionization potential is 24.58 eV.

Although we cannot solve the wave equation for the helium atom exactly, the approaches described
provide some insight in regard to how we might proceed in cases where approximations must be
made. The two major approximation methods are known as the variation and perturbation methods.
For details of these methods as applied to the wave equation for the helium atom, see the quantum
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mechanics books listed in the suggested readings at the end of this chapter. A detailed treatment of
these methods is beyond the scope of this book.

24 SLATER WAVE FUNCTIONS

We have just explained that the wave equation for the helium atom cannot be solved exactly because
of the term involving 1/r;,. If the repulsion between two electrons prevents a wave equation from
being solved, it should be clear that when there are more than two electrons the situation is worse. If
there are three electrons present (as in the lithium atom) there will be repulsion terms involving 1/r,,,
1/r13, and 1/r,5. Although there are a number of types of calculations that can be performed (particu-
larly the self-consistent field calculations), they will not be described here. Fortunately, for some situ-
ations, it is not necessary to have an exact wave function that is obtained from the exact solution of a
wave equation. In many cases, an approximate wave function is sufficient. The most commonly used
approximate wave functions for one electron are those given by J. C. Slater, and they are known as
Slater wave functions or Slater-type orbitals (usually referred to as STO orbitals).

Slater wave functions have the mathematical form
Ui = Rya(r)e#10m Y, (0,0) (2.43)
When the radial function R, (r) is approximated, the wave functions can be written as
U = TN, (6, 6) (2.44)

where s is a constant known as a screening constant, n* is an effective quantum number that is related
to n, and Y} ,(6,¢) is a spherical harmonic that gives the angular dependence of the wave function. The
spherical harmonics are functions that depend on the values of [ and m as indicated by the subscripts.
The quantity (Z — s) is sometimes referred to as the effective nuclear charge, Z*. The screening con-
stant is calculated according to a set of rules that are based on the effectiveness of electrons in shells to
screen the electron being considered from the effect of the nucleus.

The calculation of the screening constant for a specific electron is as follows.
1. The electrons are written in groups as follows:
1s|252p | 3s3p | 3d | 4s4p | 4d | 4f | 5s5p | 5d | ...

2. Electrons residing outside the shell in which the electron being described resides do not con-
tribute to the screening constant.

3. A contribution of 0.30 is assigned for an electron in the 1s level, but for other groups 0.35 is
added for each electron in that group.

4. A contribution of 0.85 is added for each electron in an s or p orbital for which the principle
quantum number is one less than that for the electron being described. For electrons in s or
p orbitals which have an n value of two or more lower than that of the orbital for the electron
being considered, a contribution of 1.00 is added for each electron.
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5. For electrons in d and f orbitals, a contribution of 1.00 is added for each electron in orbitals
having lower n than the one where the electron being considered resides.

6. The value of n* is determined from 7 as based on the following table.

n=1 2 3 4 5 6
n* =1 2 3 3.7 4.0 4.2

To illustrate the use of the foregoing rules, we will write the Slater wave function for an electron in
an oxygen atom. The electron resides in a 2p orbital, so n = 2, which means that n* = 2. There are
four electrons in the 2p orbitals in an oxygen atom, so the fourth electron is screened by three others.
However, an electron in a 2p orbital is also screened by the two electrons in the 1s orbital and two in
the 2s orbital. Two electrons in the 1s level give screening that can be written as 2(0.85) = 1.70. The
screening constant is the same for electrons in the 2s and 2p states, and the electron in the 2p state that
is being considered has five other electrons involved in screening. Therefore, those five give a contribu-
tion to the screening constant of 5(0.35) = 1.75. Adding the contributions gives a total screening con-
stant of 1.70 + 1.75 = 3.45, which means that the effective nuclear charge is 8 — 3.45 = 4.55. Using
this value gives (Z — s)/n* = 2.28 and a Slater wave function that can be written as

¢ = re” 228y, (6, ¢) (2.45)

The important aspect of this approach is that it is now possible to arrive at an approximate one-electron
wave function that can be used in other calculations. For example, Slater-type orbitals form the basis
of many of the high-level molecular orbital calculations using self-consistent field theory and other
approaches. However, in most cases, the Slater-type orbitals are not used directly. Quantum mechanical
calculations on molecules involve the evaluation of a large number of integrals, and exponential integrals
of the STO type are much less efficient in calculations. In practice, the STO functions are represented as a
series of functions known as Gaussian functions, which are of the form a exp(—br?). The set of functions
to be used, known as the basis set, is then constructed as a series of Gaussian functions representing each
STO. When a three-term Gaussian is used, the orbitals are known as a STO-3G basis set. The result of
this transformation is that the computations are completed much more quickly because Gaussian inte-
grals are much easier to compute. For a more complete discussion of this advanced topic, see the book
Quantum Chemistry by J. P. Lowe, listed in the references at the end of this chapter.

2.5 ELECTRON CONFIGURATIONS

For n = 1, the only value possible for both I and m is 0. Therefore, there is only a single state possible, the
one forn = 1,1 = 0, and m = 0. This state is denoted as the 1s state. If n = 2, it is possible for [ to be 0 or
1. For the I = 0 state, the n = 2 and | = 0 combination gives rise to the 2s state. Again, m = 0 is the only
possibility because of the restriction on the values of m being 0 up to =I. Two electrons can be accom-
modated in the 2s state, which is filled in the beryllium atom, so the electron configuration is 1s? 2s2.

For the quantum state for which n = 2 and I = 1, we find that there are three values of m possible, +1,
0, and —1. Therefore, each value of m can be used with spin quantum numbers of +1/2 and —1/2.
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above. The six possible sets of quantum numbers can be shown as follows.

Electron 1 Electron 2 Electron 3 Electron 4 Electron 5 Electron 6
n=2 n=2 n=2 n=2 n=2 n=2
=1 =1 =1 =1 =1 =1
m=+1 m=20 m=—1 m=+1 m=20 m=—1
s=+1/2 s=+1/2 s=+1/2 s=—1/2 s=-1/2 s=-1/2

A state for which I = 1 is known as a p state, so the six sets of quantum numbers just shown belong
to the 2p state. Population of the 2p state is started with boron and completed with neon in the first
long period of the periodic table. However, each m value denotes an orbital, so there are three orbitals
where electrons can reside. Electrons remain unpaired as long as possible when populating a set of orbit-
als. For convenience, we will assume that the orbitals fill by starting with the highest positive value
of m first and then going to successive lower values. Table 2.3 shows the maximum population of
states based on the value for .

According to the Bohr model, the quantum number n determines the energies of the allowed states
in a hydrogen atom. We now know that both n and [ are factors that determine the energy of a set of
orbitals. In a general way, it is the sum (n + [) that determines the energy, and the energy increases as
the sum of n and I. However, when there are two or more ways to get a particular sum of (n + I) the
combination with lower n is normally used first. For example, the 2p state has (n + 1) = (2 + 1) = 3 as
does the 3s state where (n + 1) = (3 + 0) = 3. In this case, the 2p level fills first because of the greater
importance of the lower n value. Table 2.4 shows the scheme used to arrange the orbitals in the order
in which they are normally filled. As a result, the general order of filling shells is as follows, with the
sum (n + I) being given directly below for each type of shell.

State 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 65
(n+h |1 2 3 3 4 4 5 5 5 6 6 6

By following the procedures described, we find that for the first 10 elements, the results are as follows.

H 1s!

He 152

Li 152 25!

Be 152 252

B 152252 2p!
C 152 252 2p?
N 152252 2p°
0 152 252 2p*
F 152252 2p°
Ne 152 252 2p®
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Table 2.3 Maximum Orbital Populations.

IValue State m Values Possible Maximum Population
0 S 0 2

1 p 0, =1 6

2 d 0,%£1,%2 10

3 f 0,*£1,*2,+3 14

4 g 0,*1,%2, 3,4 18

Table 2.4 Filling of Orbitals According to Increasing
(n+ 1) Sum®.

n I (n+1) State
1 0 1 1s

2 0 2 2s

2 1 3 2p
3 0 3 3s

3 1 4 3p
4 0 4 4s

3 2 5 3d
4 1 5 4p
5 0 5 5s
4 2 6 4d
5 1 6 5p
6 0 6 65
4 3 7 4f
5 2 7 5d
6 1 7 6p
7 0 7 7s
“In general, energy increases in going down in the table.

For some of the atoms, this is an oversimplification because an electron configuration like 152 252 2p?
does not give the complete picture. Each m value denotes an orbital in which two electrons can reside
with opposite spins. When | = 1, m can have the values of +1, 0, and —1, which denote three orbitals.
Therefore, the two electrons could be paired in one of the three orbitals or they could be unpaired and
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reside in different orbitals. We have already stated that we will start with the highest positive value
of m first and with the positive value of s. For a 2p? configuration, two possible arrangements are as
follows:

Tl T

m=+10 -1 +10 -1

Although the explanation will be provided later, the configuration on the right is lower in energy than
the one on the left. As we have already stated, electrons remain unpaired as long as possible. Therefore,
the carbon atom that has the electron configuration 1s 2s? 2p? has two unpaired electrons. In a similar
way, the nitrogen atom has three electrons in the 2p orbitals,

171
m=+10

T
-1

so it has three unpaired electrons. On the other hand, the oxygen atom, which has the configuration
152 252 2p*, has only two unpaired electrons.

—
pud

1
-1

T
0

3
Il
+

It is important when discussing the chemistry of elements to keep in mind the actual arrangement of
electrons, not just the overall configuration. For example, with the nitrogen atom having one electron
in each of the three 2p orbitals, the addition of another electron would require it to be paired in one of
the orbitals. Because of repulsion between electrons in the same orbital, there is little tendency of the
nitrogen atom to add another electron. Therefore, the electron affinity of nitrogen is very close to 0. We
have already mentioned in Chapter 1 that the ionization potential for the oxygen atom is lower than
that of nitrogen even though the oxygen atom has a higher nuclear charge. We can now see why this
is so. Because oxygen has the configuration 1s? 2s? 2p*, one of the 2p orbitals has a pair of electrons in
it. Repulsion between the electrons in this pair reduces the energy with which they are bound to the
nucleus so it is easier to remove one of them than it is to remove an electron from a nitrogen atom.
There are numerous other instances in which the electron configuration gives a basis for interpreting
properties of atoms.

We could follow the procedures just illustrated to write the electron configurations of elements 11
through 18 in which the 3s and 3p orbital are being filled. However, we will not write all of these out;
rather, we will summarize the electron configuration of argon, 1s? 2s? 2p? 3s% 3p%, as (Ar). When this is
done, the next element, potassium, has the configuration (Ar) 4s' and that of calcium is (Ar) 4s. The
sum (n + 1) is 4 for both the 3p and 4s levels, and the lower value of n is used first (3p). The next levels
to be filled are those for which (n + 1) = 5, and these are the 3d, 4p, and 5s. In this case, the 3d orbitals
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have the lower n, so that set of orbitals is filled next. Therefore, the configurations for the next few ele-
ments are as follows.

Sc (Ar) 452 3d'  Ti (Ar) 4s? 3d?  V (Ar) 4s? 3d3

Following this pattern, we expect chromium to have the configuration (Ar) 4s® 3d*, but it is actually
(Ar) 4s' 3d°. The reason for this will be explained later, but we will mention here that it has to do with
the interaction of electrons having the same spin by means of coupling of their angular momenta. The
next element, Mn, has the configuration (Ar) 4s? 3d°, and filling of the 3d shell is regular until copper
is reached. There, instead of the configuration being (Ar) 4s? 3d°, it is (Ar) 4s' 3d'°, but the configura-
tion of zinc is the expected 4s? 3d'°.

It is not necessary here to list all of the irregularities that occur in electron configurations. We should
point out that irregularities of the type just discussed occur only when the orbitals involved have ener-
gies that differ only slightly. There is no case where an atom such as carbon is found with the ground
state configuration of 152 2s' 2p3 or 152 25 2p! 3s! instead of 1s% 252 2p2. The difference in energy
between the 2s and 2p states and that between the 2p and 3s states is simply too great for an electron
to reside in the higher state unless there has been electron excitation by some means. Electron configu-
rations for atoms can now be written by making use of the procedures described earlier and referring
to the periodic table shown in Figure 2.8. Table 2.5 gives the ground state electron configurations for
all of the atoms.

2.6 SPECTROSCOPIC STATES

We have already alluded to the fact that within an overall electron configuration of an atom, there is
interaction of the electrons by means of coupling of angular momenta. This results from the fact that a
spinning electron that is moving in an orbit has angular momentum resulting from its spin as well as
from its orbital movement. These are vector quantities that couple in accord with quantum-mechanical
rules. In one of the coupling schemes, the individual spin angular momenta of the electrons couple to
give an overall spin of S. In addition, the orbital angular momenta of the electrons couple to give an
overall orbital angular momentum, L. Then, these resulting vector quantities couple to give the total
angular momentum vector, J, for the atom. Coupling occurs by this scheme, which is known as L-S or
Russell-Saunders coupling, for atoms in approximately the top half of the periodic table.

In a manner similar to that by which the atomic states were designated as s, p, d, or f, the letters S, P,
D, and F correspond to the values of 0, 1, 2, and 3, respectively, for the angular momentum vector,
L. After the values of the vectors L, S, and J have been determined, the overall angular momentum
is described by a symbol known as a term symbol or spectroscopic state. This symbol is constructed as
(2511, where the appropriate letter is used for the L value as listed earlier, and the quantity (2S + 1) is
known as the multiplicity. For one unpaired electron, (2S + 1) = 2, and a multiplicity of 2 gives rise to
a doublet. For two unpaired electrons, the multiplicity is 3, and the state is called a triplet state.

Figure 2.9 shows how two vectors can couple according to the quantum-mechanical restrictions.
Note that vectors I; and I, having lengths of 1 and 2 units can couple to give resultants that are 3,
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1A VIIIA
y 18
1 2
H IIA WA IVA VA  VIA VIA | He
1.0079| 5 13 14 15 16 17 | 4.0026
3 4 5 6 7 8 9 10
Li Be B c N 0 F Ne
6.941 |9.0122 10.81 | 12.011 {14.006715.9994|18.9984| 20.179
11 12 13 14 15 16 17 18
Na | Mg | yg vB8 VB VB VIB ——VIB— B e | Al Si P S cl Ar
22.9808( 24.305 | g5 4 5 5 7 8 9 0 1 12 |26.9815(28.0855(30.9738| 32.06 | 35.453 | 39.948
19 | 20 | 21 22 | 23 | 24 | 25 | 26 | 27 | 28 | 20 | 30 | 31 32 | 33 | 34 | 35 | 36
K Ca Sc Ti \Y Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
39.0983| 40.08 [44.9559| 47.88 |50.9415 51.996 [54.9380| 55.847 |58.9332| 58.69 |63.546 | 65.38 | 69.72 | 72.59 [74.9216| 78.96 |79.904 | 83.80
37 | 38 | 39 | 40 | 41 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 52 | 53 | 54
Rb | sr Y zz | Nb | Mo | Tc R Rh | Pd | Ag | Cd In Sn | sb | Te [ Xe
85.4678| 87.62 88.9059| 91.22 [92.9064| 95.94 | (98) |101.07 [102.906 106.42 [107.868| 112.41 | 114.82 | 118.69 | 121.75 | 127.60 [126.905| 131.29
55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 82 | 83 | 84 | 8 | 86
Cs | Ba | La* | Hf | Ta | W | Re | Os Ir Pt | Au | Hg 3l Pb Bi Po | At | Rn

132.905| 137.33 |138.906( 178.48 [180.948| 183.85 |186.207| 190.2 | 192.22 | 195.09 [196.967| 200.59 |204.383( 207.2 [208.980| (209) | (210) | (222)

87 88 89 104 105 106 107 108 109 110 111
Fr Ra Ac* Rf Ha Sg Ns Hs Mt Ds Rg
(223) [226.025[227.028| (257) | (260) | (263) | (262) | (265) | (266) | (271) | (272)

58 59 60 61 62 63 64 65 66 67 68 69 70 7

Lanthanide | o | pr | Nd | Pm | Sm | Eu | Gd | To | Dy | Ho | Er | Tm | Yo | Lu

Series 140.12 (140.908( 144.24 | (145) | 150.36 | 151.96 | 157.25 [158.925( 162.50 |164.930| 167.26 (168.934| 173.04 |174.967,
*Actinide 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Series Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

232.038[231.036/238.029(237.048| (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (260)

B FIGURE 2.8  The periodic table of the elements.

2, or 1 units in length. Therefore, the resultant, R, for these combinations can be written as |l; + 1,|,
|ll + 12 - 1| or |ll - lzl

In heavier atoms, a different type of coupling scheme is sometimes followed. In that scheme, the
orbital angular momentum, I, couples with the spin angular momentum, s, to give a resultant, j, for a
single electron. Then, these j values are coupled to give the overall angular momentum for the atom,
J. Coupling of angular momenta by this means, known as j-j coupling, occurs for heavy atoms, but we
will not consider this type of coupling further.

In L-S coupling, we need to determine the following sums in order to deduce the spectroscopic state of
an atom:

L=x] S§=3%5; M=%m=LL-1L-2,..,0,...,-L J=]|L+S|,.. LS5

Note that if all of the electrons are paired, the sum of spins is 0, so a singlet state results. Also, if all
of the orbitals in a set are filled, for each electron with a positive value of m there is also one having
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Table 2.5 Electronic Configurations of Atoms.

y4 Symbol Configuration y4 Symbol Configuration

1 H 15 56 Ba (Xe) 652

2 He 152 57 La (Xe) 5d" 652

3 Li 152 25! 58 Ce (Xe) 4f2 652

4 Be 152 252 59 Pr (Xe) 4f3 652

5 B 152252 2p! 60 Nd (Xe) 4f* 652

6 C 152 252 2p? 61 Pm (Xe) 4f° 652

7 N 152252 2p° 62 Sm (Xe) 4f° 652

8 0 152 252 2p* 63 Eu (Xe) 4f7 652

9 F 152252 2p° 64 Gd (Xe) 4f7 5d" 65>

10 Ne 152 252 2p° 65 Tb (Xe) 4f° 652

11 Na (Ne) 3s' 66 Dy (Xe) 4f"" 652

12 Mg (Ne) 352 67 Ho (Xe) 41" 652

13 Al (Ne) 352 3p! 68 Er (Xe) 4f'2 652

14 Si (Ne) 352 3p? 69 Tm (Xe) 4f13 652

15 P (Ne) 352 3p° 70 Yb (Xe) 4f'* 652

16 S (Ne) 352 3p* 71 Lu (Xe) 4 5d" 652

17 cl (Ne) 3s23p° 72 Hf (Xe) 4f'* 5d? 652

18 Ar (Ne) 352 3p® 73 Ta (Xe) 4 5d° 652

19 K (Ar) 4s 74 w (Xe) 414 5d* 652

20 Ca (Ar) 4s? 75 Re (Xe) 4f'* 5d° 652

21 Sc (Ar) 3d" 4s? 76 Os (Xe) 4f1* 5d° 652

22 Ti (Ar) 3d? 452 77 Ir (Xe) 4f'* 5d” 652

23 \Y (Ar) 3d° 4s? 78 Pt (Xe) 4 54° 65"

24 Cr (Ar) 3d° 4s' 79 Au (Xe) 414 540 65

25 Mn (Ar) 3d° 4s? 80 Hg (Xe) 4f14 5d'0 652

26 Fe (Ar) 3d° 4s? 81 Tl (Xe) 414 5d' 652 6p!
27 Co (Ar) 3d 452 82 Pb (Xe) 4f1* 5d"° 652 6p?
28 Ni (Ar) 3d® 4s? 83 Bi (Xe) 41 5d'0 652 6p°
29 Cu (Ar) 3d'0 45" 84 Po (Xe) 44 5d'° 652 6p*
30 Zn (Ar) 3d'° 452 85 At (Xe) 4f14 5d'° 652 6p°
31 Ga (Ar) 3d'0 4s% 4p’ 86 Rn (Xe) 4f14 5d'° 652 6p°
32 Ge (Ar) 3d'0 452 4p? 87 Fr (Rn) 75’

33 As (Ar) 3d'0 452 4p3 88 Ra (Rn) 752

(Continued)
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Table 2.5 (Continued)
y4 Symbol Configuration y4 Symbol Configuration
34 Se (Ar) 3d'° 45% 4p* 89 Ac (Rn) 6d" 752
35 Br (Ar) 3d'° 45% 4p° 90 Th (Rn) 6d? 752
36 Kr (Ar) 3d‘° 452 4p° 91 Pa (Rn) 5f2 6d" 752
37 Rb (Kr) 55 92 u (Rn) 53 6d" 75°
38 Sr (Kr) 55 93 Np (Rn) 5f° 752
39 Y (Kr) 4d" 552 94 Pu (Rn) 5f6 752
40 Zr (Kr) 4d? 552 95 Am (Rn) 5f7 752
41 Nb (Kr) 4d* 557 96 Cm (Rn) 5f7 6d" 752
42 Mo (Kr) 4d° 55" 97 Bk (Rn) 5f8 6d" 752
43 Tc (Kr) 4d° 552 98 cf (Rn) 510752
44 Ru (Kr) 4d” 55" 99 Es (Rn) 511 7s
45 Rh (Kr) 4d® 55" 100 Fm (Rn) 512 7s
46 Pd (Kr) 4d"° 101 Md (Rn) 513 752
47 Ag (Kr) 4d'° 55" 102 No (Rn) 5f1* 7s
48 cd (Kr) 4d"° 552 103 Lr (Rn) 5f'* 6d" 752
49 In (Kr) 4d'° 552 5p! 104 Rf (Rn) 5f1* 6d? 752
50 Sn (Kr) 4d'0 552 5p? 105 Ha (Rn) 5f% 6d> 752
51 Sb (Kr) 4d'° 552 5p3 106 Sg (Rn) 5f1* 6d* 752
52 Te (Kr) 4d'° 552 5p* 107 Ns (Rn) 5f1* 6d° 752
53 I (Kr) 4d'° 552 5p° 108 Hs (Rn) 5f1* 6d° 752
54 Xe (Kr) 4d1° 552 5p° 109 Mt (Rn) 5f1* 6d” 752
55 Cs (Xe) 65 110 Ds (Rn) 5% 64® 752

111 Rg (Rn) 5f1* 6d° 752

A
1 1
A 1 )
2 2 A 2
R=3 R=2 R=1

B FIGURE 2.9  Vector sums for two vectors having lengths of 2 and 1 units. The resultant can have values of 3, 2, or 1.
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a negative m value. Therefore, the sum of the m values is 0 (which means that L = 0), which leads to
the conclusion that for an electron configuration that represents all filled shells, the spectroscopic state
is 1S,. The subscript 0 arises because the combination J =L + S = 0 + 0 = 0. This is the case for the
noble gas atoms, which have all filled shells. We will now illustrate the application of these principles
by showing how to determine the spectroscopic states of several atoms.

For the hydrogen atom, the single electron resides in the 1s state, so the I and m values for that orbital
are 0 (which means that L is also 0), and the single electron has a spin of 1/2. Because L = 0, the spec-
troscopic state is an S state, and the multiplicity is 2 because the sum of spins is 1/2. Therefore, the
spectroscopic state of the hydrogen atom is 2S. Note that the state being denoted as an S state is not
related to the sum of spins vector, S. The value of J in this case is |0 + 1/2| = 1/2, which means that
the spectroscopic state for the hydrogen atom is written as 2S;,. Any electron in an s orbital has ! and
m values of 0 regardless of the n value. As a result, any atom, such as Li, Na, or K, having all closed
shells and an ns' electron outside the closed shells has a spectroscopic state of 2S; J2-

In the simple example just given, only one spectroscopic state is possible. In many cases, more than
one spectroscopic state can result from a given electron configuration because the electrons can be
arranged in different ways. For example, the electron configuration np? could be arranged as

n__ ot
m=+10-1 +10 -1

which result in different spectroscopic states. With the electrons paired as shown in the diagram on the
left, the state will be a singlet, whereas that on the right will give rise to a triplet state. Although we will
not show the details here, the np? configuration gives rise to several spectroscopic states, but only one
of them is the state of lowest energy, the spectroscopic ground state. Fortunately there is a set of rules,
known as Hund's rules, that permits us to determine the ground state (which usually concerns us most)
very easily. Hund'’s rules can be stated as follows.

1. The state with the highest multiplicity gives the lowest energy for equivalent electrons.
2. For states having the highest multiplicity, the state with highest L is lowest in energy.

3. For shells that are less than half filled, the state with the lowest J lies lowest in energy, but for
shells that are more than half filled, the lowest energy state has the highest J value.

In accord with the first rule, the electrons remain unpaired as long as possible when filling a set of
orbitals because that is how the maximum multiplicity is achieved. With regard to the third rule, if a
state is exactly half filled, the sum of the m values that gives the L vector is 0 and |L + S| and |L — S|
are identical so only one J value is possible.

Suppose we wish to find the spectroscopic ground state for the carbon atom. We need not consider
the filled 1s and 2s shells because both give S = 0 and L = 0. If we place the two electrons in the 2p
level in the two orbitals that have m = +1 and m = 0, we will find that the sum of spins is 1, the
maximum value possible. Moreover, the sum of the m values will be 1, which leads to a P state. With
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S =1and L = 1, the J values possible are 2, 1, and 0. Therefore, by application of rule 3, the spectro-
scopic ground state for the carbon atom is 3Py, but there are two other states, >P; and 3P,, that have
energies that are only slightly higher (16.5 and 43.5cm ™}, respectively). It can be shown that there are
also states designated as 'D, and 'S, possible for the np? configuration. These have energies that are
10,193.7 and 21,648.4cm™! (122 and 259kJmol~!, respectively) above the ground state. Note that
these singlet states, which correspond to arrangements in which the two electrons have been forced to
pair, are significantly higher in energy than the ground state, and it is correct to say that the electrons
remain unpaired as long as possible.

As has already been mentioned, the ground state is generally the only one that is of concern. If we
need to determine the ground state for Cr**, which has the outer electron arrangement of 3d* (for
transition metals, the electrons are lost from the 4s level first), we proceed as before by placing the
electrons in a set d orbitals beginning with the highest m value and working downward while keeping
the electrons unpaired to give the highest multiplicity:

m=+2+10-1-2

For this arrangement, the sum of spins is 3/2 and the L value is 3. These values give rise to the J values
of 3 +3/2|,|3 +3/2 — 1], ..., |3 — 3/2]|, which are 9/2, 7/2, 5/2, and 3/2. Because the set of orbitals
is less than half filled, the lowest J corresponds to the lowest energy, and the spectroscopic ground state
for Cr3™" is 4F3/2. The spectroscopic states can be worked out for various electron configurations using
the procedures described above. Table 2.6 shows a summary of the spectroscopic states that arise from
various electron configurations.

Although we have not given a complete coverage to the topic of spectroscopic states, the discussion
here is adequate for the purposes described in this book. In Chapter 17 it will be necessary to describe
what happens to the spectroscopic states of transition metal ions when these ions are surrounded by
other groups when coordination compounds form.

Table 2.6 Spectroscopic States Arising for Equivalent Electrons.

Electron Configuration  Spectroscopic States  Electron Configuration Spectroscopic States
! 2 ¢ 3F,%P,'G,'D, s
52 s a3 4F (ground state)
p' ’p d* 5D (ground state)
p? 3p.'p, 'S o 65 (ground state)
P’ 4s,2D, 2P d® °D (ground state)
p* 3p,'D, 'S d’ 4F (ground state)
p° 2p d® 3F (ground state)
pe iy & 2p

d1 ZD d10 'IS




62 CHAPTER 2 Basic Quantum Mechanics and Atomic Structure

In this chapter, a brief review of quantum mechanical methods and the arrangement of electrons in
atoms has been presented. These topics form the basis for understanding how quantum mechanics is
applied to problems in molecular structure and the chemical behavior of the elements. The proper-
ties of atoms discussed in Chapter 1 are directly related to how the electrons are arranged in atoms.
Although the presentation in this chapter is not exhaustive, it provides an adequate basis for the study
of topics in inorganic chemistry. Further details can be found in the references.
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M QUESTIONS AND PROBLEMS

1. Determine which of the following are eigenfunctions of the operator d/dx (a and b are constants): (a) e”*; (b)
xe % () (1 + ).

2. Is the function sin e an eigenfunction of the operator d?/dx??
3. Normalize the function e”* in the interval zero to infinity.

4. Write the complete Hamiltonian operator for the lithium atom. Explain why the wave equation for Li cannot
be solved exactly.

5. Write a set of four quantum numbers for the “last” electron in each of the following: (a) Ti; (b) S; (c) Sr;
(d) Co; (e) AL

6. Write a set of four quantum numbers for the “last” electron in each of the following: (a) Sc; (b) Ne; (c) Se;
(d) Ga; (e) Si.

7. Draw vector coupling diagrams to show all possible ways in which vectors L = 3 and S = 5/2 can couple.
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8. Write a set of four quantum numbers for the “last” electron in each of the following: (a) Cl; (b) Ge; (c) As;
(d) Sn; (e) Ar.

9. Write complete electron configurations for the following: (a) Si; (b) S?7; (c) K*; (d) Cr?* ; (e) Fe?*; (f) Zn.
10. Determine the spectroscopic ground states for the following: (a) P; (b) Sc; (c) Si; (d) Ni?™.

11. The difference in energy between the 3P, and 3P; states of the carbon atom is 16.4cm™!. How much energy is
this in k] mol~1?

12. Determine the spectroscopic ground state for each of the following: (a) Be; (b) Ga; (c) F~; (d) AL (e) Sc.
13. Determine the spectroscopic ground state for each of the following: (a) Ti*"; (b) Fe; (c) Co?™; (d) Cl; (e) Cr?*.

14. The spectroscopic ground state for a certain first row transition metal is °Ss/,. (a) Which metal is it? (b) What
would be the ground state spectroscopic state of the +2 ion of the metal described in (a)? (c) What would be
the spectroscopic ground state for the +3 ion of the metal described in (a)?

15. What are all the types of atomic orbitals possible for n = 5?2 How many electrons can be held in orbitals which
have n = 52 What would be the atomic number of the atom that would have all of the shells with n = 5 filled?

16. Calculate the expectation value for 1/r for the electron in the 1s state of a hydrogen atom.

17. Calculate the expectation value for 2 for the electron in the 1s state of a hydrogen atom.
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Chapter

Covalent Bonding in
Diatomic Molecules

Although the first two chapters were devoted to presenting the basic principles of quantum mechan-
ics and their application to atomic structure, we must also be concerned with providing information
about the structure of molecules. In fact, the structures of molecules constitute the basis for their chem-
ical behavior. The observation that SF, reacts very rapidly and vigorously with water whereas SF; does
not exhibit this behavior is related to the difference in the structures of the molecules. A good under-
standing of molecular structure is necessary to interpret differences in chemical behavior of inorganic
species. Although the chemical formulas for CO, and NO, may not look much different, the chemistry
of these compounds is greatly different. In this chapter, a description of the covalent bond will be pre-
sented as it relates to diatomic molecules and their properties. In the next two chapters, bonding in
more complex molecules will be described, and the topic of molecular symmetry will be addressed.

3.1 THEBASICIDEAS OF MOLECULAR ORBITAL METHODS

The formalism that applies to the molecular orbital method will be illustrated by considering a hydro-
gen molecule, but a more detailed description of both H,™ and H, will be given in the next section.
To begin our description of diatomic molecules, let us imagine that two hydrogen atoms that are
separated by a relatively large distance are being brought closer together. As the atoms approach each
other, there is an attraction between them that gets greater the shorter the distance between them
becomes. Eventually, the atoms reach a distance of separation that represents the most favorable (min-
imum energy) distance, the bond length in the H, molecule (74 pm).

As the distance between the atoms decreases, the nuclei begin to repel each other, as do the two elec-
trons. However, there are forces of attraction between the nucleus in atom 1 and the electron in atom
2 and between the nucleus in atom 2 and the electron in atom 1. We can illustrate the interactions
involved as shown in Figure 3.1.

We know that for each atom the ionization potential is 13.6 eV, the bond energy for the H, molecule is
4.51eV (432k] mol™!), and the bond length is 74 pm. Keep in mind that bond energies are expressed
as the energy necessary to break the bond and are therefore positive quantities. If the bond forms, energy
equivalent to the bond energy is released so it is a negative quantity.

65
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B FIGURE 3.1 Interactions within a hydrogen molecule. The quantities represented as R are the repulsions and those as E are the attraction
energies. The subscripts indicate the nuclei and electrons involved.

o

Potential energy
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W FIGURE3.2  Theinteraction of two hydrogen atoms that form a molecule.

The fact that the nuclei do not get closer together does not mean that the forces of attraction and
repulsion are equal. The minimum distance is that distance where the total energy (attraction and
repulsion) is most favorable. Because the molecule has some vibrational energy, the internuclear dis-
tance is not constant, but the equilibrium distance is R,. Figure 3.2 shows how the energy of interac-
tion between two hydrogen atoms varies with internuclear distance.

In order to describe the hydrogen molecule by quantum mechanical methods, it is necessary to make
use of the principles given in Chapter 2. It was shown that a wave function provided the starting point
for application of the methods that permitted the calculation of values for the dynamical variables. It
is with a wave function that we must again begin our treatment of the H, molecule by the molecular
orbital method. But what wave function do we need? The answer is that we need a wave function for the
H, molecule, and that wave function is constructed from the atomic wave functions. The technique used
to construct molecular wave functions is known as the linear combination of atomic orbitals (abbrevi-
ated as LCAO-MO). The linear combination of atomic orbitals can be written mathematically as

¢ =X a;¢ (3.1)

In this equation, % is the molecular wave function, ¢ is an atomic wave function, and a is a weighting
coefficient that gives the relative weight in the “mix” of the atomic wave functions. The summation is
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over i, the number of atomic wave functions (number of atoms) being combined. If a diatomic mol-
ecule is being described, there are only two atoms involved, so the equation becomes

= ay + ayo, (3:2)

Although the combination has been written as a sum, the difference is also an acceptable linear com-
bination. The weighting coefficients are variables that must be determined.

In Chapter 2, it was shown that in order to calculate the average value for a dynamical variable a whose
operator is ¢, it is necessary to make use of the relationship

< > f Y*arp dr
=<4 3.3
[vrpdr G
If the property we wish to determine is the energy, this equation becomes
) f v* Hydr
E=<4 (3.4)
[vvar

where His the Hamiltonian operator, the operator for total energy. The expression shown in Eq. (3.2)
is substituted for 1 in the equation above, to give

P f(a]¢1* +a2¢2*)I:I (01 +ay6,)dr
[ (@ a6, )@y +a6,)dr

(3.5)

When the multiplications are carried out and the constants are removed from the integrals, we obtain

B= a,? f¢1*ﬁ [N dT+2ala2f¢l*I:I ¢, dt +ay? f¢z*ﬁ @, dr (3.6)
“12f¢1*¢1 ar +2aa, f¢1*¢2 d7'+022f¢2*¢2 dr .

In writing this equation, it was assumed that
[erfioydr= [ o1 ¢ dr (3.7)
and that
[ oo dar= [ o0 dr (3.8)

These assumptions are valid for a diatomic molecule composed of identical atoms (homonuclear
diatomic) because ¢; and ¢, are identical and real in this case. In working with the quantities in
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equations like Eq. (3.6), certain elements are frequently encountered. For simplicity, the definitions
that will be adopted are as follows.

Hy, = f¢1*H ¢y dr (3.9)
Hy, = [ 6 H o, dr (3.10)

Because H is the operator for total energy, Hy; represents the binding energy of an electron in atom 1 to its
nucleus. If the subscripts on the wave functions are both 2, the binding energy of electron 2 to its nucleus is
indicated. Such integrals represent the energy of an electrostatic interaction so they are known as Coulomb
integrals. Integrals of the type shown in Eq. (3.10) indicate the energy of the interaction of the electron
in atom 1 with the nucleus in atom 2. Therefore, they are known as exchange integrals. As a result of the
Hamiltonian being an operator for energy, both types of integrals represent energies. Furthermore, because
these integrals represent favorable interactions, they are both negative (representing attractions) in sign.

Because the integral shown in Eq. (3.9) represents the energy with which electron 1 is bound to nucleus
1, it is simply the binding energy of the electron in atom 1. The binding energy of an electron is the
reverse (with respect to sign) of the ionization potential. Therefore, it is customary to represent these
Coulomb integrals in terms of the ionization potentials by reversing the sign. Although it will not
be shown here, the validity of this approximation lies in a principle known as Koopmans' theorem. The
valence state ionization potential (VSIP) is generally used to give the value of the Coulomb integral. This
assumes that the orbitals are identical in the ion and the neutral atom. However, this relationship is not
strictly correct. Suppose an electron is being removed from a carbon atom, which has a configuration of
2p2. Because there are two electrons in a set of three orbitals, there are 15 microstates that represent the
possible permutations in placing the electrons in the orbitals. There is an exchange energy that is associ-
ated with this configuration because of the interchangeability of the electrons in the orbitals, and we say
that the electrons are correlated. When one electron is removed, the single electron remaining in the 2p
orbitals has a different exchange energy, so the measured ionization potential also has associated with it
other energy terms related to the difference in exchange energy. Such energies are small compared to the
ionization potential, so the VSIP energies are normally used to represent the Coulomb integrals.

The exchange integrals (also knows as resonance integrals) represent the interaction of nucleus 1 with
electron 2 and the interaction of nucleus 2 with electron 1. Interactions of this type must be related to
the distance separating the nuclei, so the value of an exchange integral can be expressed in terms of the
distance separating the atomic nuclei.

In addition to the integrals that represent energies, there are integrals of a type in which no operator
occurs. These are represented as

Si = f¢1*¢1 dr (3.11)

Sy = f¢1*¢z dr (3.12)
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Integrals of this type are known as overlap integrals, and in a general way, they represent effectiveness
with which the orbitals overlap in a region of space. If the subscripts are identical, orbitals on the same
atom are indicated, and if the atomic wave functions are normalized, the value of such an integral is 1.
As a result, we can write

N f¢1*¢1 dr = 85, = f¢2*¢2 dr =1 (3.13)

On the other hand, the integrals of the type

Su=[orerdr=5,= [ o, 617 (3.14)

are related to the degree of overlap of an orbital on atom 1 with an orbital on atom 2. If the two atoms
are separated by a large distance, the overlap integral approaches 0. However, if the atoms are closer
together, there is some overlap of the orbitals and S > 0. If the atoms were forced together in such
a way that the two nuclei coincided (internuclear distance is 0), we would expect S = 1 because the
orbitals would be congruent. Clearly, the value of an overlap integral like those shown in Eq. (3.14)
must be somewhere between 0 and 1, and it must be a function of the internuclear distance. With the
exchange integrals and overlap integrals both being functions of the internuclear distance, it should be
possible to express one in terms of the other. We will return to this point later.

The appearance of Eq. (3.6) can be simplified greatly by using the notation described earlier. When the

substitutions are made, the result is

a,’Hyy + 2a,a,H,, + a,°Hy,
a? + 2a,a,S,, + a,?

E =

(3.15)

in which we have assumed that S;; and S,, are both equal to 1 because of the atomic wave functions
being normalized. We now seek to find values of the weighting coefficients that make the energy a
minimum. To find a minimum in the energy expression, we take the partial derivatives with respect to
a, and a, and set them equal to 0:

=0 (3.16)

When the differentiations are carried out with respect to a; and a, in turn while keeping the other con-
stant, we obtain two equations that after simplification can be written as

a;(Hyy — E) +ay(Hy, = SpE) = 0 (3.17)

a;(Hy; — SypE) +ay(Hyy —E) =0 (3.18)
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W FIGURE3.3  Combination of two s orbitals to produce bonding and antibonding orbitals.

These equations are known as the secular equations, and in them the weighting coefficients a; and a, are
the unknowns. These equations constitute a pair of linear equations that can be written in the form

ax+by=0 and cx+dy=0 (3.19)

It can be shown that a nontrivial solution for a pair of linear equations requires that the determinant
of the coefficients must be equal to 0. This means that

Hyy —E  Hy, = SpF| 0
Hy = $,E Hy —E (3.20)

The molecule being described is a homonuclear diatomic, so H;, = Hy and S;, = S,;. If we represent
Si, and S,; by S and let Hy; = H,,, the expansion of the determinant yields

(H,, — E)2 — (Hy, — SE)> = 0 (3.21)
By equating the two terms on the left-hand side of Eq. (3.21), taking the square root gives
H,, — E = * (H,, — SE) (3.22)
from which we find two values for E (denoted as E, and E,):

Hy, + Hy, Hy, —Hy,
= —= and = —
b 1+ a 1- (3.23)

The energy state labeled Ej, is known as the bonding or symmetric state, whereas that designated as E, is
called the antibonding or asymmetric state. Because both H;, and H,, are negative (binding) energies, E;,
represents the state of lower energy. Figure 3.3 shows the qualitative energy diagram for the bonding
and antibonding molecular orbitals relative to the 1s atomic orbital.

Figure 3.4 shows a more correctly scaled energy level diagram that results for the hydrogen molecule.
Note that the energy for the 1s atomic orbital of a hydrogen atom is at —1312kJ mol ! because the
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M FIGURE3.4  The energy level diagram for the H, molecule.

ionization potential is 1312k] mol~! (13.6eV). Note also that the bonding molecular orbital has an
energy of —1528kJ mol !, which is lower than that of the 1s state.

If a hydrogen molecule is separated into the two constituent atoms, the result is equivalent to taking the
two electrons in the bonding molecular orbital and placing them back in the atomic orbitals. Because
there are two electrons, that energy would be 2(1528 — 1312) = 432kJ mol ™!, the bond energy of the
H, molecule. From the molecular orbital diagram, it can be seen that although the energy of the anti-
bonding state is higher than that of the hydrogen atom, it is still very negative. An energy of 0 does not
result because even when the atoms are completely separated, the energy of the system is the sum of
the binding energies in the atoms, which is 2(—1312) kJ] mol~!. The bonding and antibonding states
are “split” above and below the energy state of the electron in an atom, not above and below an energy
of 0. However, the antibonding state is raised a greater amount than the bonding state is lowered rela-
tive to the atomic orbital energy. This can be seen from the relationships shown in Egs. (3.23) because
in the first case the denominator is (1 + S) while in the otheritis (1 — S).

If we substitute the values for the energy as shown in Eq. (3.23) into the secular equations, we find
that

a, = a,(for the symmetric state) and a, = —a, (for the antisymmetric state)

When these relationships between the weighting coefficients are used, it is found that

Yy = ;e +ayp, = ﬁ(‘ﬁl + ¢2) (3.24)
Y, = mpy — ayp, = ﬁ(@ —9) (3.25)

If we let A represent the normalization constant, the condition for normalization is that

1= [ 426 +0)dr = Az[f¢12 ar+ [ o2 dr+2 [ 40, dT} (3.26)



72 CHAPTER 3 (ovalent Bonding in Diatomic Molecules

The first and second integrals on the right-hand side of this equation evaluate to 1 because the
atomic wave functions are assumed to be normalized. Therefore, the right-hand side of the equation
reduces to

1= A21+1+2S] (3.27)
and we find that the normalization constant is given by

A=t (3.28)

N2+ 28

and the wave functions can be represented as shown in Egs. (3.24) and (3.25).

Although we have dealt with a diatomic molecule consisting of two hydrogen atoms, the procedure
is exactly the same if the molecule is Li,, except that the atomic wave functions are 2s wave func-
tions and the energies involved are those appropriate to lithium atoms. The VSIP for lithium is only
513kJ mol ! rather than 1312kJ mol ! as it is for hydrogen.

When performing molecular orbital calculations, overlap and exchange integrals must be evaluated.
With modern computing techniques, overlap integrals are most often evaluated as part of the calcula-
tion. The wave functions are of the Slater type (see Section 2.4), and the overlap integrals can be evalu-
ated for varying bond lengths and angles. Many years ago, it was common for the values of overlap
integrals to be looked up in a massive set of tables that presented the values of the overlap integrals
for the various combinations of atomic orbitals and internuclear distances. These tables, known as the
Mulliken tables, were prepared by R. A. Mulliken and coworkers, and they were essential for giving part
of the data needed to perform molecular orbital calculations.

The exchange integrals, H;;, are evaluated by representing them as functions of the Coulomb integrals,
Hj;, and the overlap integrals. One such approximation is known as the Wolfsberg-Helmholtz approxi-
mation, which is written as

(3.29)

+
le — _Ks[Hll HZZ]

1+S

where H;; and H,, are the Coulomb integrals for the two atoms, S is the overlap integral, and K is a
constant having a numerical value of approximately 1.75. Because the overlap integral is a function of
the bond length, so is the exchange integral.

The quantity (H;; + H,,) may not be the best way to combine Coulomb integrals for cases where the
atoms have greatly different ionization potentials. In such cases, it is preferable to use the Ballhausen-
Gray approximation,

H,, = —=KS(H,,H,,)? (3:30)
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Another useful approximation for the H;, integral is that known as the Cusachs approximation and is
written as

I
Hl2 - ES(K ‘Sl)(Hll + H22) (331)

Although the energy of a chemical bond as a function of internuclear distance can be represented by
the potential energy curve shown in Figure 3.2, neither the Wolfsberg-Helmholtz nor the Ballhausen-
Gray approximation is a function that possesses a minimum. However, the approximation of Cusachs
is a mathematical expression that does pass through a minimum.

It has already been shown that the energy of the bonding molecular orbital can be written as
E, = (Hy + Hy)/(1 + S). Suppose there are two electrons in a bonding orbital having this energy and
the bond is being broken. If the bond breaking is homolytic (one electron ends up on each atom),
the electrons will reside in atomic orbitals having an energy of H;, (which is the same as H,, if a
homonuclear molecule is being disrupted). Before the bond is broken, the two electrons have a total
energy that is given by the expression 2[(H;; + Hy,)/(1 + S)], and after the bond is broken the bind-
ing energy for the two electrons is 2H;;. Therefore, the bond energy (BE) can be expressed as

(3.32)

—+
BE = 2H,, — 2[—H“ le]

14+S

In order to use this equation to calculate a bond energy, it is necessary to have the values for H;, (the
values for the Hj; integrals are usually available by approximating from the ionization potentials) and
S. To a rough approximation (known as neglecting the overlap), the value of S can be assumed to be 0
because the value is small (in the range 0.1 to 0.4) in many cases.

3.2 THEH,* AND H, MOLECULES

The simplest diatomic molecule consists of two nuclei and a single electron. That species, H,", has
properties some of which are well known. For example, in H," the internuclear distance is 104 pm
and the bond energy is 268 kJ/mol. Proceeding as illustrated in the previous section, the wave function
for the bonding molecular orbital can be written as

1
Yy = ay +ayp, = ﬁ(‘ﬁl + ¢2) (3.33)

This wave function describes a bonding orbital of the o type that arises from the combination of two
1s wave functions for atoms 1 and 2. To make that point clear, the wave function could be written as

1
Up(0) = Mgy T ardy) = m((bl(ls) + ¢2(1s)) (3.34)
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The foregoing expression is actually a one-electron wave function, which is adequate in this case but
not for the H, molecule. The energy associated with this molecular orbital can be calculated as shown
in Eq. (3.4), from which we obtain

()] = [ (@) F [ty(0)] dr (3.35)

When the approximation is made that the overlap can be neglected, S = 0 and the normalization con-
stant is 1/2". Therefore, after substituting the results shown in Eq. (3.34) for 1,(c) the expression for
the energy of the molecular orbital can be written as

E[(0)] = %f((z)l(ls) + 1)) H(€Z51(1s) + dyqy)) dT (3.36)

Separating the integral gives
1 - 1 - 1 - 1 -
E[gy(0)] = Efd)l(ls) H¢1(1s) dr + Ef¢2(ls) H ¢2(1s) dr + Ef‘?bl(ls) H¢2(1s) dr + Ef¢2(1s) H¢1(1s) dr (3.37)

As we saw earlier, the first two terms on the right-hand side of this equation represent the electron
binding energies in atoms 1 and 2, respectively, which are H;; and H,,, the Coulomb integrals. The
last two terms represent the exchange integrals, H,, and H,,. In this case, H;; = H,, and H, = Hy;
because the nuclei are identical. Therefore, the energy of the orbital is

E[¢y(0)] = Vo Hyy + Vo Hyy + Yo Hyy + V5 Hyy = Hyy + Hyy (3.38)

Although the development will not be shown here, the energy of the antibonding orbital can be
written as

E[¢,(0)] = %Hu + %Hn - %Hu - %le = H,, — Hy, (3:39)

We have already noted that in the case where S = 0, the molecular orbitals reside above and below
the atomic states by an amount H;,. Using this approach, the calculated values for the bond energy
and internuclear distance in H,™ do not agree well with the experimental values. Improved values
are obtained when an adjustment in the total positive charge of the molecule is made as was done in
the case of the helium atom. For H,¥, it turns out that the electron is acted on as if the total nuclear
charge were about 1.24 rather than 2. This is essentially the same approach as that taken in the case
of the helium atom (see Section 2.3). Also, the molecular orbital wave function was constructed by
taking a linear combination of 1s atomic wave functions. A better approach is to take an atomic wave
function that contains not only s character but also a contribution from the 2p, orbital that lies along
the internuclear axis. When these changes are made, the agreement between the calculated and experi-
mental properties of H," is much better.

The wave functions just described are one-electron wave functions, but the H, molecule has two
electrons to be dealt with. In the methods of molecular orbital theory, a wave function for the
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two electrons in the hydrogen molecule is formed by taking the product of the two one-electron wave
functions. Therefore, the wave function for the bonding molecular orbital in H, is written in terms of
the atomic wave functions, ¢, as

Uy 1o = [¢A,1 + ¢B,1][¢A,2 + ¢B,2] (3.40)

In this case, the subscript b indicates the bonding (o) orbital, A and B subscripts denote the two nuclei,
and subscripts 1 and 2 denote electrons 1 and 2, respectively. Expanding the expression on the right-
hand side of Eq. (3.40) gives

Up Wb = a1 Do T Pan P1 T Pan Pan T DB P2 (3.41)

In this expression, the term ¢ 4 ; ¢ g, essentially represents the interaction of two 1s orbitals for hydro-
gen atoms A and B. The term ¢ , , ¢ g ; represents the same type of interaction with the electrons inter-
changed. However, the term ¢ 1 ¢ 5, represents both electrons 1 and 2 interacting with nucleus A.
That means the structure described by the wave function is ionic, Hy~ Hg*. In an analogous way, the
term ¢ 51 ¢ p, represents both electrons interacting with nucleus B, which corresponds to the structure
H,* Hp~. Therefore, what we have devised for a molecular wave function actually describes the hydro-
gen molecule as a “hybrid” (a valence bond term that is applied incorrectly) of

H, : Hy <> Hy™ Hpt <> H, " - Hy™

As in the case of the H,™ molecule, the calculated properties (bond energy and bond length) of the
H, molecule do not agree well with the experimental values when this wave function is utilized. An
improvement is made by allowing the nuclear charge to be a variable with the optimum value being
about 1.20. Additional improvement between calculated and experimental values is achieved when the
atomic wave functions are not considered to be pure 1s orbitals but rather allow some mixing of the
2p orbitals. Also, the wave function shown in Eq. (3.41) makes no distinction in the weighting given
to the covalent and ionic structures. Our experience tells us that for identical atoms that have the same
electronegativity, an ionic structure would not be nearly as significant as a covalent one. Therefore,
weighting parameters should be introduced that adjust the contributions of the two types of structures
to reflect the chemical nature of the molecule.

The preceding discussion is presented in order to show how the basic ideas of the molecular orbital
approach are employed. It is also intended to show how to approach getting improved results after the
basic ideas are used to generate molecular wave functions. For the purposes here, it is sufficient to indi-
cate the nature of the changes rather than presenting quantitative results of the calculations.

A simple interpretation of the nature of a covalent bond can be seen by considering some simple
adaptations of the wave function. For example, it is ¢ that is related to probability of finding the elec-
trons. When we write the wave function for a bonding molecular orbital as 1, that means that because

7/)17 = ¢A + d)B/
Yy® = (da + P)> = Oa° + P57 + 2 adg (3.42)
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W FIGURE 3.5  Possible ways for overlap of p orbitals to occur.

Because the last term (when integration is performed over all space) becomes

f Padp dT

which is actually an overlap integral. The expression in Eq. (3.42) indicates that there is an increased
probability of finding the electrons between the two nuclei as a result of orbital overlap. This is, of
course, for the bonding molecular orbital. For the antibonding orbital the combination of atomic wave
functions is written as

%2 = (¢A - ¢B)2 = ¢A2 + ¢B2 -2 ¢A¢B (3~43)

This expression indicates that there is a decreased probability (indicated by the term —2¢,¢g) of find-
ing the electrons in the region between the two nuclei. In fact, there is a nodal plane between the
positive and negative (with respect to algebraic sign) of the two regions of the molecular orbital. As
a simple definition, we can describe a covalent bond as the increased probability of finding electrons
between two nuclei or an increase in electron density between the two nuclei when compared to the
probability or density that would exist simply because of the presence of two atoms.

3.3 DIATOMIC MOLECULES OF SECOND-ROW ELEMENTS

The basic principles dealing with the molecular orbital description of the bonding in diatomic molecules
have been presented in the previous section. However, somewhat different considerations are involved
when second-row elements are involved in the bonding because of the differences between s and p orbit-
als. When the orbitals being combined are p orbitals, the lobes can combine in such a way that the overlap
is symmetric around the internuclear axis. Overlap in this way gives rise to a o bond. This type of overlap
involves p orbitals for which the overlap is essentially “end on” as shown in Figure 3.5. For reasons that
will become clear later, it will be assumed that the p, orbital is the one used in this type of combination.

The essential idea is that orbital lobes of the same sign can lead to favorable overlap (the overlap
integral has a value >0). This can occur between orbitals of different types in several ways. Figure 3.6
shows a few of the types of orbital overlap that lead to bonding. As we shall see in later chapters, some
of these types are quite important.
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B FIGURE3.6  Some types of orbital overlap that lead to energetically favorable interactions.

Representing the p, orbitals on atoms 1 and 2 by z; and z,, the combinations of atomic wave functions
can be shown as

N S Py 2
Y(o,) = NS [0(z)) + ¢(2,)] (3.44)
Plo)* = ﬁ[ (1) = ¢(2,)] (3.45)

After the o bond has formed, further interaction of the p orbitals on the two atoms is restricted to the
px and p, orbitals, which are perpendicular to the p, orbital. When these orbitals interact, the region of
orbital overlap is not symmetrical around the internuclear axis but rather on either side of the internu-
clear axis, and a 7 bond results. Orbital overlap of this type is also shown in Figures 3.5 and 3.6. The
combinations of wave functions for the bonding 7 orbitals can be written as

Pme) = \/— [¢(x)) + 6(x,)] (3.46)

P(m y) = \/7 [¢(Y1 ¢(Y2)] (3.47)

The two bonding 7 orbitals represented by these wave functions are degenerate. The wave functions for
the antibonding states are identical in form except that negative signs are used in the combination of
atomic wave functions and in the normalization constants.
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B FIGURE 3.7  Energy level diagrams for diatomic molecules of second-row elements. Early members of the series follow the diagram shown in
(b), whereas later members follow (a).

The combination of three p orbitals on one atom with three p orbitals on another leads to the forma-
tion of one o and two m bonding molecular orbitals. The order in which the orbitals are populated is

a(2s) o* (25) o(2p,) m(2p,) ™(2p,) --- -

It might be assumed that the o(2p,) orbital would always have a lower energy than the two 7 orbitals,
but that is not necessarily the case. Orbitals of similar energy interact best when combining as a result
of hybridization. Mixing of the 2s and 2p, orbitals is allowed in terms of symmetry (see Chapter 5),
but the 25 and 2p, or 2p, results in zero overlap because they are orthogonal. For the elements early
in the second period where the nuclear charge is low, the 2s and 2p orbitals are similar in energy,
so it is possible for them to hybridize extensively. For the later members of the group (N, O, and F),
the higher nuclear charge causes the difference in energy between the 2s and 2p orbitals to be great
enough that they cannot hybridize effectively. One result of hybridizing orbitals is that their energies
are changed, and in this case that results in the order of filling the o and 7 orbitals to be reversed so
that for B, and C,, there is experimental evidence to show that the 7 orbitals lie lower in energy than
the o orbital. For the atoms later in the second period, the extent of hybridization of the 2s and 2p
orbitals is slight, which results in the ¢ orbital lying lower in energy than the two 7 orbitals. The order
of filling the molecular orbitals is

o(25) o (25) 7(2p,) 7(2p,) 0(29) ..

Figure 3.7 shows both of the molecular orbital energy diagrams that result for diatomic molecules of
second-row elements.

The fact that the B, molecule is paramagnetic shows that the highest occupied molecular orbitals (usu-
ally abbreviated as HOMO) are the degenerate 7 orbitals, each of which is occupied by one electron.
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Further evidence that this is the correct energy level scheme to be used for C, comes from the fact that
the molecule is diamagnetic. The molecular orbital configurations for these molecules can be written as

B, (0)* (0*)* (m)' ()
C, (0) (o) (7)? (7)?

Sometimes, these configurations are shown with the atomic orbitals indicated from which the molecu-
lar orbitals arise. For example, B, could be described as

B, [0(29)F [(o* (291 [n(2p.)] [m(2p,)]!

Although the subject of symmetry has not yet been discussed in this book, it is true that o orbitals that
are bonding in character have “g” symmetry because the wave functions are symmetric with respect to
the center of the bond. Essentially, this means that if ¥(x, y, z) is equal to ¥(—x, —y, —z), the function
is said to be an even function or to have even parity. This is signified by “g,” which comes from the
German word gerade, meaning “even.” If ¢(x, y, z) is equal to —¢(—x, —y, —z) the function has odd
parity and it is indicated by “u” which comes from the word ungerade, meaning “uneven.” An atomic
s orbital is g whereas a p orbital is u in symmetry. Although a bonding o orbital is g, 7 bonding orbit-
als have u symmetry because they are antisymmetric with respect to the internuclear axis. Antibonding
molecular orbitals of each type have the symmetry labels reversed. Sometimes the symmetry character
of the molecular orbital is indicated by means of a subscript. When this is done, the representation for
B, is

BZ (O—g)2 (O—u)2 (T(l.l)1 (T(u )1

Molecular orbitals are sometimes given numerical prefixes to show the order in which the orbitals hav-
ing those type and symmetry designations are encountered. When this is done, the order of filling the
molecular orbitals for the second-row elements is shown as

lo, 1o 204 1w, 1w, 1w, I, 20,

In this case, “1” indicates the first instance where an orbital of that type is encountered. A “2” indicates
the second time an orbital having the designation following the number is encountered. The various
ways to identify molecular orbitals are shown here because different schemes are sometimes followed
by different authors.

In writing these configurations for diatomic molecules of second-row elements, we have omitted the
electrons from the 1s orbitals because they are not part of the valence shells of the atoms. When con-
sidering the oxygen molecule, for which the ¢ orbital arising from the combinations of the 2p, orbitals
lies lower in energy than the 7 orbitals, we find that the electron configuration is

0, (0)? (¢7)? (0)* (m)* (x)* (=)' (=*)'
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B FIGURE3.8  Molecular orbital diagrams for second-row homonuclear diatomic molecules.

Note that there are two unpaired electrons in the degenerate 7* orbitals, and as a result, the oxygen
molecule is paramagnetic. Figure 3.8 shows the orbital energy diagrams for the diatomic molecules
of the second-row elements. Keep in mind that in these molecular orbital diagrams the atomic orbit-
als are not all at the same energy, so neither do the molecular orbitals of the same type have the same
energy for different molecules.

A concept that is important when considering bonds between atoms is the bond order, B. The bond
order is a measure of the net number of electron pairs used in bonding. It is related to the number of
electrons in bonding orbitals (N},) and the number in antibonding orbitals (N,) by the equation

1
B =Ny = N,) (3.48)

The bond order for each diatomic molecule is given in Figure 3.8, as is the bond energy. Note that there
is a general increase in bond energy as the bond order increases. This fact makes it possible to see why
certain species behave as they do. For example, the bond order for the O, molecule is (8 — 4)/2 = 2,
and we say that a bond order of 2 is equivalent to a double bond. If an electron is removed from
an oxygen molecule, the species O," results, and the electron removed comes from the highest occu-
pied orbital, which is a 7* (antibonding) orbital. The bond order for O," is (8 — 3)/2 = 2.5, which is
higher than that of the O, molecule. Because of this, it is not at all unreasonable to expect there to be
some reactions in which an oxygen molecule reacts by losing an electron to form O,", the dioxygenyl
cation. Of course, such a reaction would require the reaction of oxygen with a very strong oxidizing
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B FIGURE3.9  Molecular orbital diagrams for some heteronuclear molecules and ions of second-row elements.

agent. One such oxidizing agent is PtF; which contains platinum in the +6 oxidation state. The reac-
tion with oxygen can be written as

PtE, + 0, — O," + PtF," (3.49)

Although this reaction shows the formation of O,™, it is also possible to add one electron to the O,
molecule to produce O,~, the superoxide ion, or two electrons to form 0,2, the peroxide ion. In each
case, the electrons are added to the antibonding 7* orbitals, which reduces the bond order from the
value of 2 in the O, molecule. For O, the bond order is 1.5, and it is only 1 for O,%~, the peroxide
ion. The O-O bond energy in the peroxide ion has a strength of only 142kJ mol~! and, as expected,
most peroxides are very reactive compounds. The superoxide ion is produced by the reaction

K+ 0, — KO, (3.50)

In addition to the homonuclear molecules, the elements of the second period form numerous impor-
tant and interesting heteronuclear species, both neutral molecules and diatomic ions. The molecular
orbital diagrams for several of these species are shown in Figure 3.9. Keep in mind that the energies of
the molecular orbitals having the same designations are not equal for these species. The diagrams are
only qualitatively correct.

It is interesting to note that both CO and CN™ are isoelectronic with the N, molecule. That is, they
have the same number and arrangement of electrons as the N, molecule. However, as we will see later,
these species are quite different from N, in their chemical behavior. The properties of many homo-
nuclear and heteronuclear molecules and ions are presented in Table 3.1.
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Table 3.1 Characteristics of Some Diatomic Species.

Species N, N, B® R, pm DE’, eV
H,* 1 0 0.5 106 2.65
H, 2 0 1 74 4.75
He,* 2 1 0.5 108 3.1
Li, 2 0 1 262 1.03
B, 4 2 1 159 3.0
G 6 2 2 131 5.9
N, 8 2 3 109 9.76
0, 8 4 2 121 5.08
F, 8 6 1 142 1.6
Na, 2 0 1 308 0.75
Rb, 2 0 1 — 0.49
S, 8 4 2 189 437
Se, 8 4 2 217 337
Te, 8 4 2 256 2.70
N,* 7 2 2.5 112 8.67
0," 8 3 2.5 112 6.46
BN 6 2 2 128 40
BO 7 2 2.5 120 8.0
CN 7 2 25 118 8.15
co 8 2 3 113 11.1
NO 8 3 25 115 7.02
NO™* 8 2 3 106 —
SO 8 4 2 149 5.16
PN 8 2 3 149 5.98
Sio 8 2 3 151 8.02
LiH 2 0 1 160 25
NaH 2 0 1 189 2.0
PO 8 3 2.5 145 5.42
9B is the bond order, (N, — N)/2.

bDE is the dissociation energy (1eV = 96.48kJ mol™ n.
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34 PHOTOELECTRON SPECTROSCOPY

Most of what we know about the structure of atoms and molecules has been obtained by studying
the interaction of electromagnetic radiation with matter. Line spectra reveal the existence of shells of
different energy where electrons are held in atoms. From the study of molecules by means of infrared
spectroscopy, we obtain information about vibrational and rotational states of molecules. The types
of bonds present, the geometry of the molecule, and even bond lengths may be determined in specific
cases. The spectroscopic technique known as photoelectron spectroscopy (PES) has been of enormous
importance in determining how electrons are bound in molecules. This technique provides direct
information on the energies of molecular orbitals in molecules.

In PES, high-energy photons are directed to the target from which electrons are ejected. The photon
source that is frequently employed is the He(I) source, which emits photons having an energy of
21.22¢€V as the excited state 2s' 2p! relaxes to the 1s? ground state. The ionization potential for the
hydrogen atom is 13.6 €V, and the first ionization potential for many molecules is of comparable mag-
nitude. The principle on which PES works is that a photon striking an electron causes the electron to
be ejected. The kinetic energy of the ejected electron will be

1 2 _

3 mv? = hy — I (3.51)
where hv is the energy of the incident photon and I is the ionization potential for the electron. This
situation is somewhat analogous to the photoelectric effect (see Section 1.2). In PES, a molecule, M, is
ionized by a photon,

hw+M — MT +e” (3.52)

Electrons that are ejected are passed through an analyzer, and by means of a variable voltage, elec-
trons having different energies can be detected. The numbers of electrons having specific energies are
counted, and a spectrum showing the number of electrons emitted (intensity) versus energy is pro-
duced. In most cases, when an electron is removed during ionization, most molecules are in their
lowest vibrational state. Spectra for diatomic molecules show a series of closely spaced peaks that
correspond to ionization that leads to ions that are in excited vibrational states. If ionization takes
place with the molecule in its lowest vibrational state to produce the ion in its lowest vibrational state,
the transition is known as an adiabatic ionization. When a diatomic molecule is ionized, the most
intense absorption corresponds to ionization with the molecule and the resulting ion having the same
bond length (see Section 17.6). This is known as the vertical ionization, and it leads to the ion being
produced in excited vibrational states. In general, the molecule and the ion have nearly identical bond
lengths when the electron is ejected from a nonbonding orbital.

Applications of the PES technique to molecules have yielded an enormous amount of information
regarding molecular orbital energy levels. For example, PES has shown that the bonding 7 orbitals in
oxygen are higher in energy than the ¢ orbital arising from the combination of the 2p wave functions.
For nitrogen, the reverse order of orbitals is found. When electrons are ejected from the bonding o5,
orbital of O,, two absorption bands are observed. There are two electrons populating that orbital, one
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with a spin of +% and the other with a spin of —%. If the electron removed has a spin of —', the
electron having a spin of +v2 remains, and it can interact with the two electrons in the 7* orbitals that
have spins of +Y. This can be shown as follows, where (¢)!(*"?) means that there is one electron hav-
ing a spin of +% in the ¢ orbital, and so forth.

0, (0)? (0%)? (0.)1(+%) (7)? (x)? (ﬂ*)1(1+%) (ﬂ*)1(+y2)
If the electron removed from the o orbital has a spin of +4, the resulting O,* ion is
0,"  (0)? (0*)? (6)%) (m)? ()2 (w*)'HA) ()0

These two O, ions have slightly different energies, as is exhibited by their photoelectron spectra.
Studies such as these have contributed greatly to our understanding of molecular orbital energy dia-
grams. We will not describe the technique further, but more complete details of the method and its
use can be found in the references at the end of this chapter.

3.5 HETERONUCLEAR DIATOMIC MOLECULES

Atoms do not all have the same ability to attract electrons. When two different types of atoms form
a covalent bond by sharing a pair of electrons, the shared pair of electrons will spend more time in
the vicinity of the atom that has the greater ability to attract them. In other words, the electron pair
is shared, but it is not shared equally. The ability of an atom in a molecule to attract electrons to it is
expressed as the electronegativity of the atom. Earlier, for a homonuclear diatomic molecule we wrote
the combination of two atomic wave functions as

= ayy + ayh, (3.53)

where we did not have to take into account the difference in the ability of two atoms to attract elec-
trons. For two different types of atoms, we can write the wave function for the bonding molecular
orbital as

Y=g+ Ao, (3.54)

where the parameter \ is a weighting coefficient. Actually, a weighting coefficient for the wave func-
tion of one atom is assumed to be 1, and a different weighting factor, ), is assigned for the other atom
depending on its electronegativity.

When two atoms share electrons unequally, it means that the bond between them is polar. Another
way to describe this is to say that the bond has partial ionic character. For the molecule AB, this is
equivalent to drawing two structures, one of which is covalent and the other ionic. However, there are
actually three structures that can be drawn

AB «— ATB™ «~ A B*

3.55
I I 111 ( )
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If we write a wave function for the molecule to show a combination of these structures, it is
written as

1/)molecule = awl + bl/)II + C¢III (3'56)

where a, b, and ¢ are constants and ¥, ¢y, and 1y, are wave functions that correspond to the structures
I, 11, and 111, respectively. Generally, we have some information about the magnitudes of a, b, and c. For
example, if the molecule being considered is HE the resonance structure H~ F* will contribute very
little to the actual structure of the molecule. It is contrary to the chemical nature of the H and F atoms
to have a structure with a negative charge on H and a positive charge on E Accordingly, the weighting
coefficient for structure III must be approximately 0. For molecules that are predominantly covalent in
nature, even structure II will make a smaller contribution than will structure I.

The dipole moment, x, for a diatomic molecule (the situation for polyatomic molecules that have sev-
eral bonds is more complex) can be expressed as

w=qgXr (3.57)

where ¢ is the quantity of charge separated and r is the distance of separation. If an electron were com-
pletely transferred from one atom to the other, the quantity of charge separated would be e, the charge
on an electron. For bonds in which an electron pair is shared unequally, g is less than e, and if the
sharing is equal there is no charge separation, ¢ = 0, and the molecule is nonpolar. For a polar mol-
ecule, there is only one bond length, r. Therefore, the ratio of the actual or observed dipole moment
(topbs) to that assuming complete transfer of the electron (fonic) Will give the ratio of the amount of
charge separated to the charge of an electron:

Hionic er e (358)

The ratio g/e gives the fraction of an electron that appears to be transferred from one atom to another.
This ratio can also be considered as the partial ionic character of the bond between the atoms. It fol-
lows that the percent of ionic character is 100 times the fraction of ionic character. Therefore,

100 Hobs

Hionic

% lonic character = (3.59)

The actual structure of HF can be represented as a composite of the covalent structure H-E in which
there is equal sharing of the bonding electron pair, and the ionic structure H* F~, where there is com-
plete transfer of an electron from H to F. Therefore, the wave function for the HF molecule wave func-
tion can be written in terms of the wave functions for those structures as

wmolecule = wcovalem + Awionic (3'60)
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The squares of the coefficients in a wave function are related to probability. Therefore, the total contri-
bution from the two structures is 12 + A2 while the contribution from the ionic structure is given by
A2, As aresult, A2/(12 + \?) gives the fraction of ionic character to the bond and

100 A2

% Ionic character = m (3.61)
because 12 = 1. Therefore,
Hobs — A2 (3 62)
Hionic (1 + )‘2) ‘

For the HF molecule, the bond length is 0.92 A (0.92 X 10" 8cm = 0.92 X 10"'“m) and the measured
dipole moment is 1.91 debye or 1.91 X 10~ '8 esu cm. If an electron were completely transferred from
H to E the dipole moment (o) would be

=480%X10"10esux0.92X108cm = 4.41X 10718 esucm = 4.41D

Hionic
Therefore, the ratio piops/ tlionic is 0.43, which means that

2

from which we find that A = 0.87. Therefore, the wave function for the HF molecule can be written as

wmolecule = wcovalenl + 0'87wionic (364)

From the foregoing analysis, it appears that we can consider the polar HF molecule as consisting of a
hybrid made from a purely covalent structure contributing 57% and an ionic structure contributing
43% to the actual structure:

H:F < H'F~

57% 43%

Of course, HF is actually a polar covalent molecule, but from the extent of the polarity, it behaves as if
it were composed of the two structures shown above. A similar analysis can be carried out for all of the
hydrogen halides, and the results are shown in Table 3.2.

A simple interpretation of the effect of two atoms in a diatomic molecule is seen from the molec-
ular orbital description of the bonding. Different atoms have different ionization potentials, which
results in the values for the Coulomb integrals used in a molecular orbital calculation being differ-
ent. In fact, according to Koopmans’ theorem, the ionization potential with the sign changed gives
the value for the Coulomb integral. In terms of a molecular orbital energy level diagram, the atomic
states of the two atoms are different and the bonding molecular orbital will be closer in energy to that
of the atom having the higher ionization potential. For example, in the HF molecule, there is a single
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Table 3.2 Parameters for Hydrogen Halide Molecules, HX.
% lonic

character

(100 f1ops/
Molecule r,pm Hobsr D HMionicr D Hionic) XX~ XH
HF 92 1.91 441 43 1.9
HCI 128 1.03 6.07 17 0.9
HBr 143 0.78 6.82 11 0.8
HI 162 0.38 7.74 5 0.4
1 debye 10~ ¢ esu cm. The electronegativities of atoms Hand X are x 4 and X s

o bond between the two atoms. The ionization potential for H is 1312kJ/mol (13.6eV), whereas that
for F is 1680kJ/mol (17.41eV). When the wave functions for the hydrogen 1s and fluorine 2p orbital
are combined, the resulting molecular orbital will have an energy that is closer to that of the fluorine
orbital than to that of the hydrogen orbital. In simple terms, that means that the bonding molecular
orbital is more like a fluorine orbital than a hydrogen orbital. This is loosely equivalent to saying that
the electron spends more time around the fluorine atom, as we did in describing bonding in HF in
valence bond terms.

The bonding in heteronuclear species can be considered as the mixing of atomic states to generate
molecular orbitals with the resulting molecular orbitals having a larger contribution from the more
electronegative atom. For example, the ionization potential for Li is 520kJ/mol (5.39 eV), whereas that
of hydrogen is 1312kJ/mol (13.6eV). Therefore, the bonding orbital in the LiH molecule will have a
great deal more of the character of the hydrogen 1o orbital. In fact, the compound LiH is substantially
ionic and we normally consider the hydrides of the group IA metals to be ionic. When we consider the
compound LiE the ionization potentials of the two atoms (energy of the atomic states for which the
wave functions are being combined) are so different that the resulting “molecular orbital” is essentially
the same as an atomic orbital on the fluorine atom. This means that in the compound, the electron is
essentially transferred to the F atom when the bond forms. Accordingly, we consider LiF to be an ionic
compound in which the species present are Li* and F~.

3.6 ELECTRONEGATIVITY

As has just been described, when a covalent bond forms between two atoms, there is no reason to
assume that the pair of electrons is shared equally between the atoms. What is needed is some sort of
way to provide a relative index of the ability of an atom to attract electrons. Linus Pauling developed
an approach to this problem by describing a property now known as the electronegativity of an atom.
This property gives a measure of the tendency of an atom in a molecule to attract electrons. Pauling
devised a way to give numerical values to describe this property that makes use of the fact that the
covalent bonds between atoms of different electronegativity are more stable than if they were purely
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covalent (with equal sharing of the electron pair). For a diatomic molecule AB, the actual bond energy,
Dyp, is written as

1
Dpg = E[DAA + Dgg] + App (3.65)
where Dy, and Dy are the bond energies in the purely covalent diatomic species A, and B,, respec-
tively. Because the actual bond between A and B is stronger than if the bond were purely covalent, the
term A,y corrects for the additional stability. The degree to which the sharing of the electron pair is
unequal depends on the property known as electronegativity. Pauling related the additional stability

of the bond to the tendency of the atoms to attract electrons by means of the equation
App = 96.48 x5 — gl (3.66)

In this equation, x, and xg are values that describe the electron-attracting ability (electronegativity)
of atoms A and B, respectively. The constant 96.48 appears so that the value of A,z will be given in
kJ mol~!. If the constant is 23.06, the value of A, will be in kcal mol™!. Note that it is the difference
between the values for the two atoms that is related to the additional stability of the bond. With the
values of A,z known for many types of bonds, it is possible to assign values for x, and xg, but only
when there is a value known for at least one atom. Pauling solved this problem by assigning a value of
4.0 for the electronegativity of fluorine. In that way, the electronegativities of all other atoms are posi-
tive values between 0 and 4. Based on more recent bond energy values, the value of 3.98 is sometimes
used. It would not have made any difference if the fluorine atom had been assigned a value of 100
because other atoms would then have electronegativities between 96 and 100.

With the electronegativity of the fluorine atom being assigned a value of 4.0, it was now possible to deter-
mine a value for hydrogen because the H-H and F-F bond energies were known, as was the bond energy
for the H-F molecule. Using those bond energies, the electronegativity of H is found to be about 2.2. Keep
in mind that it is only the difference in electronegativity that is related to the additional stability of the
bond, not the actual values. Pauling electronegativity values for many atoms are shown in Table 3.3.

Whereas the approach just described is based on the average bond energy of A, and B, as described by
the arithmetic mean, ¥2(Dy, + Dgg), a different approach is based on the average bond energy being
given by (Das X Dgg)”. This is a geometric mean, which gives a value for the additional stability of the
molecule as

A" = D, — (Dyp X Dgg)” (3.67)

For molecules that are highly polar, this equation gives better agreement with the electronegativity dif-
ference between the atoms and the additional stability of the bond than does Eq. (3.65).

Pauling based electronegativity values on bond energies between atoms, but that is not the only way to
approach the problem of the ability of atoms in a molecule to attract electrons. For example, the ease
of removing an electron from an atom, the ionization potential, is related to its ability to attract elec-
trons to itself. The electron affinity also gives a measure of the ability of an atom to hold on to an elec-
tron that it has gained. These atomic properties should therefore be related to the ability of an atom in
a molecule to attract electrons. Therefore, it is natural to make use of these properties in an equation
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Table 3.3 Pauling Electronegativities of Atoms.

H

2.2

Li Be B C N 0] F
1.0 1.6 2.0 2.6 3.0 34 4.0
Na Mg Al Si P S @
1.0 1.3 1.6 1.9 2.2 2.6 3.2
K Ca Sc...Zn Ga Ge As Se Br
0.8 1.0 12..17 1.8 2.0 2.2 2.6 3.0
Rb Sr Y..Cd In Sn Sb Te I
0.8 0.9 1.1..15 1.8 2.0 2.1 2.1 2.7
Cs Ba La...Hg Tl Pb Bi Po At
0.8 0.9 1.1..15 14 1.6 1.7 1.8 2.0

to express the electronegativity of an atom. Such an approach was taken by Mulliken, who proposed
that the electronegativity, x, of an atom A could be expressed as

1
Xa =5 [Ix + Exl (3.68)

In this equation, I, is the ionization potential and E, is the electron affinity for the atom, and it is
the average of these two properties that Mulliken proposes to use as the electronegativity of the atom.
When the energies are expressed in electron volts, the Mulliken electronegativity for the fluorine atom
is 3.91 rather than the value of 4.0 assigned by Pauling. In general, the electronegativity values on the
two scales do not differ by very much.

If a property is as important as is electronegativity, it is not surprising that a large number of approaches
have been taken to provide measures of the property. Although we have already described two approaches,
we should also mention one additional method. Allred and Rochow made use of the equation

*

VA

+0.744 (3.69)

In this equation, Z* is the effective nuclear charge, which takes into account the fact that an outer elec-
tron is screened from experiencing the effect of the actual nuclear charge by the electrons that are closer
to the nucleus (see Section 2.4). In principle, the Allred-Rochow electronegativity scale is based on the
electrostatic interaction between valence shell electrons and the nucleus.

Probably the most important use of electronegativity values is in predicting bond polarities. For exam-
ple, in the H-F bond, the shared electron pair will reside closer to the fluorine atom because it has
an electronegativity of 4.0 while that of the hydrogen atom is 2.2. In other words, the electron pair
is shared, but not equally. If we consider the HCI molecule, the shared electron pair will reside closer
to the chlorine atom, which has an electronegativity of 3.2, but the electron pair will be shared more
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nearly equally than is the case for HF because the difference in electronegativity is smaller for HCl. We
will have many opportunities to use this principle when describing structures of inorganic compounds.

Having shown that the weighting coefficient (A) of the term giving the contribution of an ionic struc-
ture to the molecular wave function is related to the dipole moment of the molecule, it is logical to
expect that equations could be developed that relate the ionic character of a bond to the electronega-
tivities of the atoms. Two such equations that give the percent ionic character of the bond in terms of
the electronegativities of the atoms are

% lonic character = 16 [y, — xg| 3.5 [xa — X5 (3.70)

% Ionic character = 18 |y, — xg/** (3.71)

Although the equations look very different, the calculated values for the percent ionic character are
approximately equal for many types of bonds. If the difference in electronegativity is 1.0, Eq. (3.70)
predicts 19.5% ionic character while Eq. (3.71) gives a value of 18%. This difference is insignificant for
most purposes. After one of these equations is used to estimate the percent ionic character, Eq. (3.61)
can be used to determine the coefficient X in the molecular wave function. Figure 3.10 shows how per-
cent ionic character varies with the difference in electronegativity.

When the electrons in a covalent bond are shared equally, the length of the bond between the atoms
can be approximated as the sum of the covalent radii. However, when the bond is polar, the bond is
not only stronger than if it were purely covalent, it is also shorter. As shown earlier, the amount by
which a polar bond between two atoms is stronger than if it were purely covalent is related to the dif-
ference in electronegativity between the two atoms. It follows that the amount by which the bond is
shorter than the sum of the covalent radii should also be related to the difference in electronegativity.
An equation that expresses the bond length in terms of atomic radii and the difference in electronega-
tivity is the Schomaker-Stevenson equation. That equation can be written as

Tag = Ta T 75 = 9.0 [xa — Xgl (3.72)
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where x, and xj are the electronegativities of atoms A and B, respectively, and r, and ry are their cova-
lent radii expressed in picometers. This equation provides a good approximation to bond lengths.
When the correction for the difference in electronegativity is applied to polar molecules, the calculated
bond lengths agree considerably better with experimental values.

In this chapter, the basic ideas related to the molecular orbital approach to covalent bonds have been
presented. Other applications of the molecular orbital method will be discussed in Chapters 5 and 17.

3.7 SPECTROSCOPIC STATES FOR MOLECULES

For diatomic molecules, there is coupling of spin and orbital angular momenta by a coupling scheme
that is similar to the Russell-Saunders procedure described for atoms. When the electrons are in a spe-
cific molecular orbital, they have the same orbital angular momentum as designated by the m, value.
As in the case of atoms, the m; value depends on the type of orbital. When the internuclear axis is the
z-axis, the orbitals that form o bonds (which are symmetric around the internuclear axis) are the s, p,,
and d orbitals. Those which form 7 bonds are the p,, p,, d,,, and d,, orbitals. The d,>_? and d,, can
overlap in a “sideways” fashion with one stacked above the other, and the bond would be a § bond.
For these types of molecular orbitals, the corresponding m, values are

c: m =0
m =*1
6: m =2

As in the case of atoms, the molecular term symbol is written as 257!, where L is the absolute value of
M; (the highest positive value). The molecular states are designated as for atoms except for the use of
capital Greek letters:

M; = 0 the spectroscopic state is £
M; =1 the spectroscopic state is IT

<
I

2 the spectroscopic state is A

After writing the molecular orbital configuration, the vector sums are obtained. For example, in H, the
two bonding electrons reside in a ¢ orbital, and they are paired so S = + ¥2 +(—%2) = 0. As shown
earlier, for a o orbital the m, is 0 so the two electrons combined have M| = 0. Therefore, the ground
state for the H, molecule is '3. As in the case of atoms, all filled shells have ¥ s; = 0, which results in a
13 state.

The N, molecule has the configuration (0)? (¢*)? (0)?* (7)? (7)% so all of the populated orbitals are
filled. Therefore, the spectroscopic state is 'S. For O, the unfilled orbitals are (7,*)! (m,*)! and the
filled orbitals do not determine the spectroscopic state. For a 7 orbital, m; = *1. These vectors could
be combined with spin vectors of *4. If both spins have the same sign, |S| = 1 and the state will be a
triplet. If the spins are opposite, |S| = 0 and the state is a singlet. Because M; = ¥ m; and the m; values
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for the 7 orbitals are *1, the possible values for M; are 2, 0, and —2. Possible ways to combine Mg and
M; are shown below when the values are (m;,,s):

ML MS
1 0 -1
: (1)L~ 1)

0 L)L) WAL= L=)A).(L=))
=) (1))

-2 L)) (1L=1)

Those cases for M; = 2 result when the spins are opposed and, therefore, represent a !A state. There is
one combination where M; = 0 with the S vector having values of +1, 0, and —1, which corresponds
to 3%. The remaining combinations correspond to the 'S term. Of these states ('A,'Y, and 3X), the
one having the highest multiplicity lies lowest in energy, so the ground state of the O, molecule is 3.
The ground state could be identified quickly by simply placing the electrons in separate 7 orbitals with
parallel spins and obtaining the M; and Mg values.

For the CN molecule, the configuration is (0)? (0,)* (m,)* (m,)? (o). The single electron in the o,
orbital gives M; = 0 and S = ¥, so the ground state is 3%. Several species such as N,, CO, NO™, and
CN™ have the configuration (o) (0,)? (m,)? (7,)? (0,)? which is a closed-shell arrangement. Therefore,
the ground state for these species is '¥. The NO molecule has the configuration (0)? (0,)? (m,)?
(m)? (0.)*(m,*)", which gives rise to S = %2 and M; = 1. These values give rise to a ground state that
is 211
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Il QUESTIONS AND PROBLEMS

1. For each of the following, draw a molecular orbital energy level diagram and give the bond order. Tell whether
the species would be more or less stable after gaining an electron. (a) O,"; (b) CN; (c) S,; (d) NO; (e) Be,*.

2. Explain in terms of molecular orbitals why Li, is stable but Be, is not.
3. Which has the greater bond energy, NO or C,? Explain by making appropriate drawings.

4. Numerical data are given below for the BN and BO molecules. Match the properties to these molecules and
explain your answers.

Data: 120 pm, 128 pm, 8.0¢V, 4.0eV.

5. If the H-H and S-S bond energies are 266 and 432Kk] mol ™}, respectively, what would be the H-S bond
energy?

6. The stretching vibration for NO is found at 1876cm™!, whereas that for NO" is at 2300cm ™ !. Explain this
difference.

7. What is the CI-F bond length if the covalent radii of Cl and F are 99 and 71 pm, respectively? Explain your
answer in terms of resonance.

8. Consider a diatomic molecule A, in which there is a single o bond. Excitation of an electron to the o* state gives
rise to an absorption at 15,000cm ™. The binding energy of an electron in the valence shell of atom A is —9.5€V.
(a) If the overlap integral has a value of 0.12, determine the value of the exchange integral, H,.

(b) Calculate the actual values of the bonding and antibonding molecular orbitals for the A, molecule.
(c) What is the single bond energy in the A, molecule?

9. Arrange the species 0,27, O,", O,, and O, in the order of decreasing bond length. Explain this order in terms
of molecular orbital populations.

10. Explain why the electron affinity of the NO molecule is 88k] mol~! but that of the CN molecule is
368kJ mol .

11. In the spectrum of the CN molecule, an absorption band centered around 9,000cm™! appears. Explain the

possible origin of this band in terms of the molecular orbitals in this molecule. What type of transition is
involved?

12. Consider the Li, molecule, which has a dissociation energy of 1.03 eV. The first ionization potential for the Li
atom is 5.30eV. Describe the bonding in Li, in terms of a molecular orbital energy diagram. If a value of 0.12
is appropriate for the overlap integral, what is the value of the exchange integral?

13. For a molecule XY, the molecular wave function can be written as

wmolecule = wcovalenl +0.70 wionic

Calculate the percent of ionic character in the X-Y bond. If the X-Y bond length is 142 pm, what is the dipole
moment of XY?
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14.

15.

16.

17.

What Pauling electronegativity is predicted for an element X if the H-X bond energy is 402 k] mol~!2 The H-H
bond energy is 432 k] mol ™! and the X-X bond energy is 335k] mol~!. What would be the percent ionic char-
acter of the H-X bond? If the molecular wave function is written as

wmolecule = wcovalem +A wionic

what is the value of \?

Suppose the bond energies of A, and X, are 210 and 345k] mol ™!, respectively. If the electronegativities of
A and X are 2.0 and 3.1, respectively, what will be the strength of the A-X bond? What will be the dipole
moment if the internuclear distance is 125 pm?

For a molecule XY, the molecular wave function can be written as

wmolecule = wcovalem +0.50 wionic

Calculate the percent ionic character of the X-Y bond. If the bond length is 148 pm, what is the dipole moment
of XY?

Determine the spectroscopic ground states for the following diatomic molecules: (a) BN; (b) C,*; (¢) LiH;
(d)CN7; (e) G,



Chapter

A Survey of Inorganic
Structures and Bonding

Molecular structure is the foundation on which chemistry, the study of matter and the changes it under-
goes, rests. Much of chemistry is concerned with changes at the molecular level as structures are eluci-
dated and chemical reactions occur. This is true not only in inorganic chemistry, but also in all areas of
chemical science. Consequently, this chapter is devoted to an overview of some of the basic ideas con-
cerning bonding and the structure of molecules. Although other aspects of bonding will be discussed in
later chapters, this chapter is intended to provide an introduction to structural inorganic chemistry early
in the study of the subject. More details concerning the structure of specific inorganic materials will be
presented in later chapters, because most of the structures discussed here will be revisited in the con-
text of the chemistry of the compounds. It should be kept in mind that for many purposes, a theoreti-
cal approach to bonding is not necessary. Accordingly, this chapter provides a nonmathematical view of
molecular structure that is useful and adequate for many uses in inorganic chemistry. Because some of the
principles are different for molecules that contain only single bonds, this topic will be introduced first.

In this chapter, the descriptions of molecular structure will be primarily in terms of a valence bond
approach, but the molecular orbital method will be discussed in Chapter 5. As we shall see, construc-
tion of molecular orbital diagrams for polyatomic species is simplified by making use of symmetry,
which will also be discussed in Chapter 5.

4.1 STRUCTURES OF MOLECULES HAVING SINGLE BONDS

One of the most important factors when describing molecules that have only single bonds is the repul-
sion that exists between electrons. Repulsion is related to the number of electron pairs both shared
and unshared around the central atom. When only two pairs of electrons surround the central atom
(as in BeH,), the structure is almost always linear because that gives the configuration of lowest energy.
When there are four pairs of electrons around the central atom (as in CH,), the structure is tetrahedral.
From your prior study of chemistry, the hybrid orbital types sp and sp® used to describe these cases are
probably familiar. It is not unusual to hear someone say that CH, is tetrahedral because the carbon
atom is sp> hybridized. However, CH, is tetrahedral because that structure represents the configuration
of lowest energy, and our way of describing a set of orbitals that matches that geometry is by combining

95
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the wave functions for the 2s and three 2p orbitals. It can be shown that the four resulting orbitals
point toward the corners of a tetrahedron.

Based on the requirement that repulsion should be minimized, idealized structures can be obtained
based on the number of electrons surrounding the central atom. However, unshared pairs (some-
times called lone pairs) of electrons behave somewhat differently than do shared pairs. A shared pair
of electrons is essentially localized in the region of space between the two atoms sharing the pair. An
unshared pair of electrons is bound only to the atom on which they reside, and as a result, they are
able to move more freely than a shared pair, so more space is required for an unshared pair. This has
an effect on the structure of the molecule.

Figure 4.1 shows the common structural types that describe a very large number of inorganic mol-
ecules. Linear, trigonal planar, tetrahedral, trigonal bipyramid, and octahedral structures result when

Number of pairs Number of unshared pairs of electrons on central atom
on central atom
and hybrid type 0 1 2 3
2 080
sp
Linear
BeCl,
3
sp?
Trig. planar Bent
BCly SnCl,
4
sp®
Tetrahedral Trig. pyramid Bent
CH, NH; H,O
5
sp3d
Trig. bipyramid  Irreg. tetrahedral ~ “T” shaped Linear
PClg TeCly CIF3 ICl,~

6
sp3d?

Octahedral Sq. base bipyr. Square planar
SFg IFs ICl,~

W FIGURE4.1  Molecular structure based on hybrid orbital type.
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there are 2, 3, 4, 5, and 6 bonding pairs, respectively, but no unshared pairs on the central atom. The
hybrid orbital types for these structures are sp, sp?, sp>, sp>d, and sp3d?, respectively.

Rationalizing the probable structure for a molecule involves finding the number of electrons around
the central atom and placing them in orbitals pointing in directions that minimize repulsion.
However, there are complications when the details of the structure are considered. For example, a mol-
ecule such as BF; has only three pairs of electrons around the central atom (three valence shell elec-
trons from B and one from each F atom). Therefore, the structure that gives the lowest energy is a
trigonal plane with bond angles of 120°,

F

|
PN
F F

and the hybrid orbital type is sp?>. On the other hand, there are also six electrons around Sn in the
gaseous SnCl, molecule (four valence electrons from Sn and one from each Cl atom). Molecules that
have the same number of electrons are said to be isoelectronic. However, the hybrid orbital type may
not be sp? because the bond angle certainly is not 120° in this case, and the structure of SnCl, is

0

Sn
/ \
Cl 95° Cl

The unshared pair of electrons resides in an orbital that might be considered as sp?, but since the
electrons are held to only one atom, there is more space required than there is for a shared pair. A
shared pair is more restricted in its motion because of being attracted to two atoms simultaneously.
As a result, the repulsion between the unshared pair and the shared pairs is sufficient to force the
bonding pairs closer together, which causes the bond angle to be much smaller than the expected
120°. In fact, the bond angle is much closer to that expected if p orbitals are used by Sn. On
the other hand, the Sn-Cl bonds are quite polar, so the bonding electron pairs reside much closer to the
Cl atoms, which makes it easier for the bond angle to be small than if they were residing close to
the Sn atom.

In some molecules that involve sp? hybrid orbitals on the central atom, the bond angles deviate con-
siderably from 120°. For example in F,CO, the bond angle is 108°:
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Various explanations have been proposed for the large deviation of the bonding from that expected on
the basis of sp? hybrids. One simple approach to this problem is to consider that C-F bonds are quite
polar with the shared electron pairs drawn closer to the fluorine atoms. Therefore, those bonding pairs
are farther apart than they would be if they were being shared equally by C and E There is less repul-
sion between the bonding pairs of electrons, and the effect of the C-O double bond is that the 7 orbit-
als give rise to some repulsion with the C-F bonding pairs, forcing them closer together. Using this
approach, we would expect the bond angle in phosgene, Cl,CO, to be larger than it is in F,CO because
the electron pairs in the C-Cl bonds will reside closer to the carbon atom than if the bonds were C-F.
Therefore, the bonding electron pairs would be closer to each other in F,CO than in Cl,CO. In either
case, the carbon atom is at the positive end of the bond dipole because both F and Cl atoms have
higher electronegativities than carbon. The structure of Cl,CO,

Cl
111.3° cC—o0

Cl

indicates that this interpretation is correct. Of course, the Cl atoms are larger than the F atoms, so it
is tempting to attribute the larger bond angle in CI,CO to that cause. The structure of formaldehyde,
H,CO, is useful in this connection because the H atom is smaller than either F or Cl. However, the
structure

H

N

125.8° c—0

H

indicates that repulsion between the terminal atoms may not be significant. In this case, the H-C-H
bond angle is larger than that expected for sp? hybrids on the central atom. When the polarity of the
C-H bonds is considered, it is found that the carbon atom is at the negative end of the bond dipoles
(see Chapter 6). Therefore, the C-H bonding pairs of electrons reside closer to the carbon atom (and
hence closer to each other), and we should expect repulsion between them to cause the bond angle to
be larger than 120°. The measured bond angle is in agreement with this rationale.

It is interesting to also see the difference in the bond angles in OF, and OCI,, which have the
structures
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Although it might be tempting to ascribe this difference in bond angles to the difference in size
between F and Cl, the location of bonding pairs of electrons is also important. The O-F bonds are polar
with the bonding pairs closer to the fluorine atoms (and thus farther away from O and each other)
allowing the bond angle to be smaller. The O-Cl bonds are polar, but with oxygen having the higher
electronegativity, the shared pairs of electrons are closer to the oxygen atom (and to each other). As
a result, there should be greater repulsion between the bonding pairs in OCl, than in OF,, and the
OCl, bond angle is the larger of the two in agreement with this rationale. In both cases, there are two
unshared pairs of electrons on the oxygen atom, and the bond angle deviates from the tetrahedral
angle. If the situation were as simple as the effect produced by the unshared pairs, we would expect the
bond angle to be slightly larger in OCl, because the CI atoms are larger than E A difference of 8° prob-
ably indicates more repulsion between bonding pairs also.

In the CH, molecule, the bond angle is the expected value, 109° 28’. There are eight electrons around
the carbon atom (four valence shell electrons from C and one from each H atom), which results in a
regular tetrahedral structure. In the ammonia molecule, the nitrogen atom has eight electrons around
it (five from the N atom and one from each H atom), but one pair of electrons is an unshared pair.

N
/
H 10740 H

H

Although the hybrid orbital type used by N is sp?, the bond angles in the NH; molecule are 107.1°
rather than 109° 28’ found in a regular tetrahedron. The reason for this difference is that the unshared
pair requires more space and forces the bonding pairs slightly closer together. Although a structure
such as that just shown displays a static model, the ammonia actually undergoes a vibrational motion
known as inversion. In this vibration, the molecule passes from the structure shown to that which is
inverted by passing through a trigonal planar transition state:

- H
N H
/ ~— - ~ - H
H H N H < H
H
C3V D3h CSV

This vibration has a frequency that is approximately 1010 sec !. The barrier height for inversion
is 2076cm™!, but the difference between the first and second vibrational states is only 950 cm ™,
which is equivalent to 1.14k] mol !. Using the Boltzmann distribution law, we can calculate that
the second vibrational state is populated only to the extent of 0.0105, so clearly there is not a suffi-
cient amount of thermal energy available to cause the rapid inversion if the molecule must pass over
a barrier that is 2076cm ™! in height. In this case, the inversion involves quantum mechanical tunnel-
ing, which means that the molecule passes from one structure to the other without having to pass

over the barrier.
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The structure of the H,O molecule shows the effect of two unshared pairs of electrons:

In this case, the two unshared pairs of electrons force the bonding pairs closer together so the observed
bond angle is only 104.4°. Two unshared pairs in the H,O molecule cause a greater effect than does
one unshared pair in the NH; molecule. The effects that produce slight deviations from the bond
angles expected for regular geometric structures are the result of a principle known as valence shell elec-
tron pair repulsion, VSEPR. The basis for this principle is that in terms of repulsion,

unshared pair — unshared pair > shared pair — unshared pair > shared pair — shared pair

When the effects of unshared pairs are considered according to this scheme, not only is the correct
overall structure often deduced, but also the slight deviations from regular bond angles are often
predicted.

An interesting application of VSEPR is illustrated by the structure of SF,. The sulfur atom has 10 elec-
trons around it (six valence shell electrons from S and one from each of the four F atoms). We predict
that the structure will be based on a trigonal bipyramid, but there are two possible structures:

F F

w =55 s

F/ F/ __900
F

Only one of these structures is observed for the SF, molecule. In the structure on the left, the unshared
pair of electrons is located at ~90° from two bonding pairs and ~120° from the other two bonding
pairs. In the structure on the right, the unshared pair is located at ~90° from three bonding pairs and
180° from the other bonding pair. These two possibilities may not look very different, but the repul-
sion between electron pairs is inversely related to the distance of separation raised to an exponent that
may be as large as 6. A small difference in distance leads to a substantial difference in repulsion. As a
result, the structure that has only two bonding electron pairs at 90° from the unshared pair is lower in
energy, and the structure on the left is the correct one for SF,. In structures based on a trigonal bipyramid,
unshared pairs of electrons are found in equatorial positions.

Note that violations of the octet rule by the central atom occur with atoms such as sulfur and phos-
phorus. These are atoms that have d orbitals as part of their valence shells, so they are not limited to
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a maximum of eight electrons. There is another interesting feature for molecules that are based on the tri-
gonal bipyramid model for five bonds. If we consider the molecules PF5 and PCls, there are 10 electrons
around the phosphorus atom (five bonds) that point toward the corners of a trigonal bipyramid:

F Cl
158 pm 214 pm
F Cl
~ ~
153 pm P—F 204 pm P —ClI
/ /
F Cl
F Cl

However, the bonds in the axial positions are slightly longer than those in the equatorial posi-
tions. For this type of structure, the hybrid bond type on the phosphorus atom is considered as
sp>d. However, the hybrid orbital type that gives three bonds in a trigonal plane is sp?, and it can
be shown that the dp combination is one that gives two orbitals directed at 180° from each other.
Therefore, sp>d hybrids can be considered as sp? + dp, and the bond lengths reflect the fact that the
orbitals used in bonding three of the chlorine atoms are different than for the other two. This is a
general characteristic of molecules having five pairs of electrons around the central atom in a struc-
ture based on a trigonal bipyramid, and the axial bonds are usually longer than those in the equato-
rial plane.

One of the interesting aspects of the structure in which five pairs of electrons surround the central
atom is that the equatorial positions make use of sp? hybrids whereas the axial bonds are dp. As we
have seen, any unshared pairs of electrons are found in equatorial positions. A further consequence of
this is that peripheral atoms of high electronegativity bond best to orbitals of low s character, and
peripheral atoms of low electronegativity bond better to orbitals of high s character. The result of this
preference is that if the mixed halide PCI;F, is prepared, the fluorine atoms are found in axial posi-
tions. Also, atoms that can form multiple bonds (which usually have lower electronegativity) bond
better to orbitals of higher s character (the sp? equatorial positions).

In view of the principles just described, the molecule PCl,F; would be expected to have two fluorine
atoms in the axial positions and two chlorine atoms and one fluorine atom in equatorial positions.
However, at temperatures greater than —22°C, the nuclear magnetic resonance (NMR) spectrum of
PCl,F; shows only one doublet, which results from the splitting of the fluorine resonance by the 3'P.
When the NMR is taken at —143°C, the NMR spectrum is quite different and shows the presence of fluo-
rine atoms bonded in more than one way. It is evident that at temperatures above —22°C either all of
the fluorine atoms are equivalent or somehow they exchange rapidly so that only fluorine atoms in one
environment are present. Earlier, the inversion vibration of the NH; molecule, which has a frequency
that is on the order of 1010 sec™!, was described. The question arises as to what type of structural change
could occur in PCI,F; or PF5 that would make the fluorine atoms in equatorial and axial positions appear
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equivalent on the time scale of NMR experiments. A mechanism that is believed to correctly describe
this situation is known as the Berry pseudorotation, and it is illustrated in the following scheme:

a a
N
_—¢ //e ‘ a
e—x___ —> e—X —> o x_
- T s
2l
A A e
Dan Cav Dan

In this process, the groups initially in equatorial positions are e, ¢, and e, whereas those in axial posi-
tions are a and A. These designations are only to keep track of the positions, because all peripheral
atoms would have to be identical for the symmetry designations to be correct. The molecule passes
through a square base pyramid configuration as the rotation of four of the groups occurs. This mecha-
nism is similar to the inversion of the ammonia molecule except for the fact that the movement of
atoms is by rotational motion. At very low temperature, thermal energy is low and the vibration occurs
slowly enough that the fluorine resonance indicates fluorine atoms in two different environments
(axial and equatorial). At higher temperatures, the structural change is rapid, and only one fluorine
environment is indicated. As we saw for NHj, not all molecules have static structures.

Perhaps no other pair of molecules exhibits the effect of molecular structure on reactivity like SF, (sp>d
orbitals) and SF; (sp>d? orbitals), whose structures are

F F
120°F S@ 120\ S /
F F
b.p. —40°C b.p. —63.4 °C (subl.)

SF; is a remarkably inert compound. In fact, it is so unreactive that it is used as a gaseous dielectric
material. Also, the gas can be mixed with oxygen to create a kind of synthetic atmosphere, and rats can
breathe the mixture for several hours with no ill effects. On the other hand, SF, is a very reactive mol-
ecule that reacts with H,O rapidly and vigorously:

SF, +3 H,0 — 4 HF + H,S0, (4.1)

Because of the instability of H,SOj, this reaction can also be written as

SF, +2 H,0 — 4 HF + SO, (4.2)
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The fact that SF does not react with water is not due to thermodynamic stability. Rather, it is because
there is no low-energy pathway for the reaction to take place (kinetic stability). Six fluorine atoms
surrounding the sulfur atom effectively prevent attack, and the sulfur atom has no unshared pairs of
electrons where other molecules might attack. In SF,, not only is there sufficient space for an attack-
ing species to gain access to the sulfur atom, but also the unshared pair is a reactive site. As a result of
these structural differences, SF; is relatively inert, whereas SF, is very reactive.

There are several compounds that consist of two different halogens. These interhalogen compounds
have structures that contain only single bonds and unshared pairs of electrons. For example, in BrF;,
the bromine atom has 10 electrons surrounding it (seven valence shell electrons and one from each
fluorine atom). The structure is drawn to place the unshared pairs of electrons in equatorial posi-
tions based on a trigonal bipyramid. Because of the effects of the unshared pairs of electrons, the axial
bonds are forced closer together to give bond angles of 86°:

Except for slight differences in bond angles, this is also the structure for CIF; and IF;. When IF; reacts
with SbFs, the reaction is

IF, + SbE, — IE," + SbF," (4.3)

The structure of IF," can be deduced by recognizing that there are eight electrons around the iodine
atom. There are seven valence electrons from I, one from each of the two fluorine atoms, but one elec-
tron has been removed, giving the positive charge. The electrons will reside in four orbitals pointing
toward the corners of a tetrahedron, but two pairs are unshared.

F\ /
o=
F

Note that the structures of many of these species are similar to the model structures shown in
Figure 4.1. Although the hybrid orbital type is sp>, the structure is characterized as bent or angular, not
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tetrahedral. On the other hand, the IF,” ion, which has 10 electrons around the iodine atom, has a
linear structure.

Note that in this case the unshared pairs of electrons are in equatorial positions, which results in a
linear structure for IF,” even though the hybrid orbital type is sp*d. It is the arrangement of atoms, not
electrons, that determines the structure for a molecule or ion. It is apparent that the simple procedures
described in this section are adequate for determining the structures of many molecules and ions in
which there are only single bonds and unshared pairs of electrons.

Xenon forms several compounds with fluorine, among which are XeF, and XeF,. With filled s and p
valence shell orbitals, the xenon atom provides eight electrons while each fluorine atom contributes
one electron. Therefore, in XeF,, there are 10 electrons around the Xe atom, which makes the XeF,
molecule isoelectronic with the IF,” ion. Both XeF, and IF,™ are linear. In XeF,, there are 12 electrons
around the Xe atom, which results in the structure being

F\Q/ F
The molecule is square planar, as is IF,~, which is isoelectronic with XeF,.

Although we have described the structures of several molecules in terms of hybrid orbitals and VSEPR,
not all structures are this simple. The structures of H,O (bond angle 104.4°) and NH; (bond angles
107.1°) were described in terms of sp* hybridization of orbitals on the central atom and comparatively
small deviations from the ideal bond angle of 109° 28’ caused by the effects of unshared pairs of elec-
trons. If we consider the structures of H,S and PHj; in those terms, we have a problem. The reason
is that the bond angle for H,S is 92.3°, and the bond angles in PH; are 93.7°. Clearly, there is more
than a minor deviation from the expected tetrahedral bond angle of 109° 28’ caused by the effect of
unshared pairs of electrons!

If the bond angles in H,S and PH; were 90°, we would suspect that the orbitals used in bonding were
the 3p valence shell orbitals. The sulfur atom has two of the p orbitals singly occupied, and overlap of
hydrogen 1s orbital could produce two bonds at 90°. Similarly, the phosphorus atom has the three 3p
orbitals singly occupied, and overlap of three hydrogen 1s orbitals could lead to three bonds at 90°.
Although we were correct to assume that sp> orbitals were used by the central atoms in H,O and NHj,
it appears that we are not justified in doing so for H,S and PH3.
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Why does hybridization occur when the central atom is oxygen or nitrogen but not when it is S or
P? The answer lies in the fact that there are two major results of hybridization of orbitals. The first is
that the orbitals are directed in space at different angles than are the unhybridized atomic orbitals. We
have already seen the types of structures that result and how less repulsion results. However, the other
result of hybridization is that the orbitals are changed in size. The hybridization of 3s and 3p orbitals
on sulfur or phosphorus would produce more favorable bond angles with regard to repulsion, but
the overlap between those orbitals and the hydrogen 1s orbitals is less effective. The hydrogen orbital
can overlap better with a smaller unhybridized p orbital on sulfur or phosphorus. The result is that
the orbitals used by the central atom have a very slight degree of hybridization but closely resemble
pure p orbitals. Based on this analysis, we would expect that H,Se and AsH; would have bond angles
that deviate even more from the tetrahedral bond angle. In accord with this, the bond angles for these
molecules are 91.0° and 91.8°, respectively, indicating that the bonding orbitals on the central atoms
are nearly pure p orbitals. The hydrogen compounds of the heavier members of groups V and VI have
bond angles that are even closer to right angles (H,Te, 90°; SbH3, 91.3°).

4.2 RESONANCE AND FORMAL CHARGE

For many species, the approach taken earlier with molecules that have only single bonds and unshared
pairs of electrons is inadequate. For example, the molecule CO has only 10 valence shell electrons with
which to achieve an octet around each atom. The structure |C=O| makes use of exactly 10 electrons,
and that makes it possible to place an octet (three shared pairs and one unshared pair) around each
atom. A simple procedure for deciding how to place the electrons is as follows:

1. Determine the total number of valence shell electrons from all of the atoms (XN) that are avail-
able to be distributed in the structure.

2. Multiply the number of atoms present by eight to determine how many electrons would be
required to give an octet around each atom (S).

3. The difference (S-N) gives the number of electrons that must be shared in the structure.

4. If possible, change the distribution of electrons to give favorable formal charges (discussed later
in this chapter) on the atoms.

For CO, the total number of valence shell electrons is 10, and to give octets around two atoms would
require 16 electrons. Therefore, 16 — 10 = 6 electrons must be shared by the two atoms. Six electrons
are equivalent to three pairs or three covalent bonds. Thus, we are led to the structure for CO that was
shown earlier.

For a molecule such as SO,, we find that the number of valence shell electrons is 18, whereas three
atoms would require 24 electrons to make three octets. Therefore, 24 — 18 = 6, the number of elec-
trons that must be shared, which gives a total of three bonds between the sulfur atom and the two
oxygen atoms. However, because we have already concluded that each atom in the molecule must
have an octet of electrons around it, the sulfur atom must also have an unshared pair of electrons
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that is localized in the atom in addition to the three pairs that it is sharing. This can be shown as in
the structure

///
\\

O,

However, the same features are shown in the structure

/7 N\
P

A situation in which the electrons can be arranged in more than one way constitutes resonance. In
Chapter 3, the resonance structures HF and H* F~ were used to describe HE but in the case of SO,
neither of the resonance structures contains ions. The structures just shown involve different ways of
arranging the electrons that still conform to the octet rule. The true structure of SO, is one that lies
halfway between the two structures shown (a hybrid made up of equal contributions from these two
structures). It does not spend part of the time as one structure and part of the time as the other. The
molecule is all of the time a resonance hybrid of the structures shown. In this case, the two structures
contribute equally to the true structure, but this is not always the case. As a result of the unshared pair
of electrons on the sulfur atom, the bond angle in SO, is 119.5°.

The double bond that is shown in each of the two structures just shown is not localized as is reflected
by the two resonance structures. However, the two single bonds and the unshared pair are localized
as a result of the hybrid orbitals in which they reside. The hybrid orbital type is sp?, which accounts
for the bond angle being 119.5°. There is one p orbital not used in the hybridization that is perpen-
dicular to the plane of the molecule, which allows for the 7 bonding to the two oxygen atoms simul-
taneously. The 7 bond is described as being delocalized, and this can be shown as follows:
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A single S-O bond has a length of approximately 150 pm, but as a result of the multiple bonding
between sulfur and oxygen, the observed bond length in SO, where the bond order is 1.5 is 143 pm.
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The following are rules that apply to drawing resonance structures. Remember that resonance relates to
different ways of placing electrons in the structures, not ways of arranging the atoms themselves.

1. The atoms must be in the same relative positions in all structures drawn. For example, it can be
demonstrated experimentally that the SO, molecule has a bent or angular structure. Structures
showing the molecule with some other geometry (e.g., linear) are not permitted.

2. Structures that maximize the number of electrons used in bonding (consistent with the octet
rule) contribute more to the true structure.

3. All resonance structures drawn must show the same number of unpaired electrons if there are
any. A molecule or ion has a fixed number of unpaired electrons, and all resonance structures
drawn for that species must show that number of unpaired electrons.

4. Negative formal charges normally reside on the atoms having higher electronegativity.
The NO, molecule illustrates the application of rule 3. Because the NO, molecule has a total of 17

valence shell electrons, there are eight pairs of electrons and one unpaired electron. Structures drawn
for NO, must reflect this. Therefore, we draw the structure for NO, as
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Note that the unpaired electron resides on the nitrogen atom, giving it a total of seven electrons.
Because the oxygen atom has higher electronegativity, the oxygen atoms are given complete octets.
This is also consistent with the observation that NO, dimerizes by pairing of electrons on two mol-
ecules as shown by the equation

2-NO, = O,N : NO, (4.4)

Note that in the NO, molecule the bond angle is much larger than the 120° expected when the central
atom is using sp? hybrid orbitals. In this case, the nonbonding orbital located on the nitrogen atom
contains only one electron, so repulsion between that orbital and the shared electron pairs is small.
Therefore, the bond angle is larger because the repulsion between the bonding pairs is not balanced by
the repulsion of the single electron in the nonbonding orbital. However, when the structure of NO,™
is considered, there is an unshared pair of electrons on the nitrogen atom:

/ VRN
//O/ 124pn/ °,
N = N 115°
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The repulsion between the unshared pair and the bonding electrons is much greater than in NO,, as
is reflected by the bond angle being only 115°. The N-O bond length is 124 pm in NO,™ because the
nitrogen atom has an octet of electrons. There is less residual attraction for the bonding pairs of elec-
trons, so the N-O bonds are longer than in NO.,.

The concept of formal charges is a very useful one that is essentially a way of keeping track of electrons.
In order to determine the formal charge on each atom in a structure, we must first apportion the elec-
trons among the atoms. This is done according to the following procedure:

1. Any unshared pairs of electrons belong to the atom on which the electrons are located.
2. Shared electron pairs are divided equally between the atoms sharing them.

3. The total number of electrons on an atom in a structure is the sum from steps 1 and 2.
4

. Compare the total number of electrons that appear to be on each atom to the number of
valence shell electrons that it normally has. If the number of electrons in the valence shell is
greater than indicated in step 3, the atom appears to have lost one or more electrons and has a
positive formal charge. If the number indicated in step 3 is larger than the number in the valence
shell, the atom appears to have gained one or more electrons and has a negative formal charge.

5. Structures that have formal charges with the same sign on adjacent atoms will contribute little
to the true structure.

6. The sum of formal charges on the atoms must total the overall charge on the species.

Earlier we showed the structure |C=O| for the carbon monoxide molecule. Each atom has one
unshared pair of electrons and there are three shared pairs. The triple bond is only about 112.8 pm in
length. If the shared pairs are divided equally, each atom appears to have three electrons from among
those shared. Therefore, each atom in the structure appears to have a total of five electrons. Carbon nor-
mally has four electrons in its valence shell, so in the structure shown it has a formal charge of —1. An
oxygen atom normally has six valence shell electrons, so it appears that the oxygen atom has lost one
electron, giving it a formal charge of +1. Of course, the procedure is simply a bookkeeping procedure
because no electrons have been lost or gained.

Formal charges can be used to predict the stable arrangement of atoms in many molecules. For exam-
ple, nitrous oxide, N,O, might have the structures shown as follows:
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It might be tempting to assume that the structure on the left is correct, but not when the formal
charges are considered. Note that the formal charges are circled to distinguish them from ionic charges.
Following the procedure just outlined, the formal charges are

N—O0=—N
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A +2 formal charge on oxygen, the atom with the second highest electronegativity, is not in agree-
ment with the rules for distributing formal charges. Therefore, the correct structure is the one shown
on the right, which also accounts for the fact that N,O can react as an oxidizing agent because the
oxygen atom is in a terminal position. In general, the atom of lowest electronegativity will be found as the
central atom. Although we know that the arrangement of atoms is NNO, there is still the problem of
resonance structures. For the N,O molecule, three resonance structures can be shown as follows.
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N=N=0 <> IN=N—0I <= IN—N=0I

| 1l I

Structure III will contribute approximately 0% to the true structure because it has like formal charges on
adjacent atoms, it has a positive formal charge on the oxygen atom while a nitrogen atom has a —2 formal
charge, and it has higher formal charges overall. Deciding the relative contributions from structures I and II
is somewhat more difficult. Although structure II has the negative formal charge on the oxygen atom, it also
has a triple bond between the two nitrogen atoms, which results in six shared electrons in a small region of
space. Two double bonds are generally preferred over a triple bond and a single bond. Structure I has two
double bonds even though it places a negative formal charge on a nitrogen atom. As a result of these fac-
tors, we suspect that structures I and I would contribute about equally to the actual structure.

In this case, there is a simple experiment that will determine whether this is correct. Structure I places a
negative formal charge on the terminal nitrogen atom, while structure II places a negative formal charge
on the oxygen atom on the opposite end of the molecule. If the two structures contribute equally, these
effects should cancel, which would result in a molecule that is not polar. In fact, the dipole moment of
N,O is only 0.17 D, so structures I and II must make approximately equal contributions.

Bond lengths are also useful when deciding contributions from resonance structures. Structure I
shows a double bond between N and O, while structure II shows the N-O bond as a single bond.
If the structures contribute equally, the experimental N-O bond length should be approximately
half way between the values for N-O and N=O, which is the case. Thus, we have an additional
piece of evidence that indicates structures I and II contribute about equally to the actual struc-
ture. The observed bond lengths in the N,O molecule are shown below (in picometers).
1126 118.6
N——N——-0

Known bond lengths for other molecules that contain bonds between N and O atoms are useful
in assessing the contributions of resonance structures in this case. The N=N bond length is 110 pm,
whereas that for the N=N bond is usually approximately 120 to 125 pm depending on the type of
molecule. Likewise, the nitrogen-to-oxygen bond length in the NO molecule in which the bond order
is 2.5 is 115 pm. On the other hand, in NO* (which has a bond order of 3), the bond length is 106
pm. From these values, it can be seen that the observed bond lengths in N,O are consistent with the
fact that the true structure is a hybrid of structures I and II shown earlier.

We can also illustrate the application of these principles by means of other examples. Consider the cya-
nate ion, NCO™. In this case, there are 16 valence shell electrons that need to be distributed. To provide
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a total of three octets, 24 electrons would be needed. Therefore, eight electrons must be shared, which
means that there will be a total of four bonds, two from the central atom to each of the terminal atoms.
Four bonds in the form of two double bonds in each direction can be expected to give a linear structure.
Our first problem is how to arrange the atoms. Showing the total of 16 electrons, the arrangements can
be illustrated as follows (the formal charges also indicated):

SHONO, SHCHS) Q@O 0O

N=C=0 N=0=¢C C=N=0
|

Deciding which arrangement of atoms is correct is based on the formal charge on the central atom. In
the first structure, there are four shared pairs of electrons on the carbon atom, and dividing each pair
equally leads to a total of four electrons around the carbon atom. Because a carbon atom normally has
four valence-shell electrons, the carbon atom in structure I has a formal charge of 0. In structure II, divid-
ing each of the bonding pairs equally leads to accounting for four electrons on the oxygen atom, which
normally has six valence-shell electrons. Therefore, in structure 11, the oxygen atom has a formal charge
of +2. Of the three atoms in the structure, oxygen has the highest electronegativity, so this structure is
very unfavorable. In structure 11I, dividing each bonding pair equally makes it appear that the nitrogen
atom has four electrons on it, but there are five electrons in the valence shell of nitrogen. This results in a
formal charge of +1 on the nitrogen atom and a —2 formal charge on the carbon atom.

Both structures II and III have an arrangement of atoms that places a positive formal charge on atoms
that are higher in electronegativity than carbon. Consequently, the most stable arrangement of atoms
is as shown in structure I. Some compounds containing the ion having structure III (the fulminate
ion) are known, but they are much less stable than the cyanates (structure I). In fact, mercury fulmi-
nate has been used as a detonator.

As a general rule, we can see that for triatomic species containing 16 electrons, the fact that there must
be four bonds to the central atom will result in a positive formal charge on that atom unless it is an
atom that has only four valence-shell electrons. Therefore, in cases where one of the three atoms is
carbon, that atom is likely to be the central atom. A nitrogen atom in the central position would be
forced to have a +1 formal charge, and an oxygen atom would have a +2 formal charge. By consider-
ing the structures of numerous 16-electron triatomic species it will be generally found that the central
atom is the one having the lowest electronegativity.

Now that we have determined that structure I is correct for the cyanate ion, we still need to consider
resonance structures. In keeping with the rules given earlier, the acceptable resonance structures that
can be devised are

In structure I, the formal charges are —1, 0, and 0 on the nitrogen, carbon, and oxygen atoms, respec-
tively. In structure II, the corresponding formal charges are 0, 0, and —1. However, in structure III, the
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formal charges on the atoms are nitrogen —2, carbon 0, and oxygen + 1. Immediately, we see that the
most electronegative atom, oxygen, has a positive formal charge, and we realize that if the actual struc-
ture is a resonance hybrid of these three structures, structure III will contribute approximately 0%. This
structure essentially represents removing electron density from an oxygen atom and placing it on a
nitrogen atom. We now must estimate the contributions of the other two structures.

Although structure II has a negative formal charge on the atom having the highest electronegativity, it also
has a triple bond, which places a great deal of electron density in a small region of space. The repulsion that
arises causes the bond to be less favorable than the —1 formal charge on the oxygen atom would suggest.
On the other hand, the two double bonds in structure I still provide a total of four bonds without as much
repulsion as that resulting from a triple bond. Structure I also has a —1 formal charge on nitrogen, the
second most electronegative of the three atoms. When all of these factors are considered, we are led to the
conclusion that structures I and II probably contribute about equally to the true structure.

For CO,, the structure contains two ¢ bonds and two 7 bonds, and it can be shown as
0=c=0

Two ¢ bonds are an indication of sp hybridization on the central atom, which leaves two p orbit-
als unhybridized. These orbitals are perpendicular to the molecular axis and can form 7 bonds with

p orbitals on the oxygen atoms.
O C i
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In CO,, the C=0 bond length is 116 pm, which is slightly shorter than the usual length of C=0 bonds,
which are approximately 120 pm. Note that CO,, NO,*, SCN~, OCN~, and N,O are all triatomic
molecules having 16 electrons and all are linear.

There are several important chemical species that consist of four atoms and have a total of 24 valence-
shell electrons. Some of the most common isoelectronic species of this type are CO52~, NO;~, SO5, and
PO;~ (known as the metaphosphate ion). Because four atoms would require a total of 32 electrons for
each to have an octet, we conclude that eight electrons must be shared in four bonds. With four bonds to
the central atom, there can be no unshared pairs on that atom if the octet rule is to be obeyed. Therefore,
we can draw the structure for CO52~ showing one double C=0 bond and two single C-O bonds as

Q
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The double bond could also be shown in the other two positions, so the true structure is a resonance
hybrid of the three structures. The structure is a trigonal plane that has three identical bonds with each
being an average of one double bond and two single bonds. The result is that there is a bond order
of 1.33. Because the structure is a trigonal plane, we understand that the hybrid orbital type used by
carbon is sp2. As a result, there is one additional p orbital on the central atom that is perpendicular to
the plane, and that orbital is empty. Therefore, a filled p orbital on an oxygen atom can overlap with
the empty p orbital on the carbon atom to yield a m bond. This @ bond is not restricted to one oxygen
atom, because the other two also have filled p orbitals that can be used in © bonding. The result is that
the © bond is delocalized over the entire structure:

0 0%
505

Note that because the carbon atom has a formal charge of 0, there is no necessity to draw structures
having more than one double bond. The carbon atom has no valence-shell orbitals other than 2s and
2p orbitals, so only four pairs of electrons can be held in four valence-shell orbitals. The structures of
CO, CO,, and CO;%~ have been described in which the bond orders are 3, 2, and 4/3 and the bond
lengths are 112.8, 116 (in CO,, but ~120 in most C=0 bonds), and 132 pm, respectively. As expected,
the bond length decreases as the bond order increases. A typical bond length for a C-O single bond is
143 pm, so we have four C-O bond lengths that can be correlated with bond order. Figure 4.2 shows
the relationship between the bond order and bond length for these types of C-O bonds.

A relationship such as this is useful in cases where a C-O bond length is known because from it the
bond order can be inferred. On this basis, it is also sometimes possible to estimate the contributions
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B FIGURE4.2  The relationship between bond order and bond length for bonds between carbon and oxygen.



4.2 Resonance and Formal Charge 113

of various resonance structures. Pauling proposed an equation relating bond length relative to that of
a single bond between the atoms that is written as

D, =D, —71logn (4.5)
where D,, is the bond length for a bond of order n, D, is the length of a single bond, and 7 is the bond
order. Using this equation, calculated bond lengths for C-O bonds having bond orders of 4/3, 2, and
3 are 134, 122, and 106 pm, respectively. The calculated length of a bond of 4/3 order is quite close
to that in CO;2~. In many molecules, the length of a C=0O bond is approximately 120 pm, so the
agreement is again satisfactory. In the case of the C=O bond, the molecule that possesses this bond is
carbon monoxide, which has some unusual characteristics because of ionic character (see Chapter 3),

so the agreement is not as good between the experimental and calculated bond length. However, Eq.
(4.5) is useful in many situations to provide approximate bond lengths.

For the SO5 molecule, the structure we draw first by considering the number of valence shell electrons
and the octet rule is
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In this case, even with there being one double bond, the formal charge on the sulfur atom is +2,
so structures that show two double bonds are possible, which can reduce further the positive formal
charge. In order for structures such as
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to be drawn, the sulfur atom has 10 electrons around it, which means that the octet rule is not obeyed.
However, in addition to the 3s and 3p valence orbitals, the sulfur atom also has empty 3d orbitals that
can overlap with filled p orbitals on oxygen atoms. Therefore, unlike the carbon atom in CO;?~, the
sulfur atom in SO;3 can accept additional electron density, and structures showing two double bonds
are permissible. The S-O bond length in SO, where the bond order is 1.5 is 143 pm. That is almost
exactly the S-O bond length in SO3, which indicates that a bond order of about 1.5 is correct for this
molecule. Therefore, there must be some contributions from structures that show two double bonds
because the bond order would be 4/3 if only one double bond is present.

The sulfate ion, SO,2~, exhibits some bonding aspects that deserve special consideration. First, there
are five atoms, so 40 electrons would be required to provide an octet of electrons around each atom.
However, with only 32 valence-shell electrons (including the two that give the —2 charge), there must
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be eight electrons shared. The four bonds will be directed toward the corners of a tetrahedron, which
gives the structure
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Although this structure agrees with several of our ideas about structure and bonding, there is at least
one problem. If we determine the formal charges on the atoms, we find that there is a —1 formal charge
on each oxygen atom but a +2 formal charge on the sulfur atom. Although sulfur has a lower electro-

negativity than oxygen, there is disparity in the electron densities on the atoms. This situation can be
improved by taking an unshared pair on one of the oxygen atoms and making it a shared pair:
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There is no reason that any particular oxygen atom should be chosen, so there are four equivalent
structures in which the double bond is shown to a different oxygen atom in each one. The question
arises as to how this type of bonding occurs. When an oxygen atom is bonded to the sulfur atom by a
single bond, there are three unshared pairs of electrons that reside in p orbitals on the oxygen atom.
Although the sulfur atom makes use of sp> hybrid orbitals (from 3s and 3p valence shell orbitals) in
forming the four single bonds, the 3d orbitals are not greatly higher in energy, and they are empty. The
symmetry (mathematical signs) of the filled p orbitals on an oxygen atom matches that of a d orbital.
Therefore, electron density is shared between the oxygen and sulfur atoms, but the electrons come
from filled orbitals on the oxygen atom. The result is that there is some double bond character to each
S-O bond as a result of 7 bond formation, and the S-O bond lengths are shorter than expected for a
single bond between the atoms.

In the H,SO, molecule, there are two oxygen atoms that are bonded to hydrogen atoms and the sulfur
atom. These oxygen atoms are unable to participate effectively in = bonding, so the structure of the
molecule is

O
‘143pm
154 pm
S
H—0 | o
O\



4.2 Resonance and Formal Charge 115

This structure reflects the fact that there is significant multiple bonding to two oxygen atoms, but not
to the two others that have hydrogen atoms attached. This behavior is also seen clearly in the structure
of HSO, ™,
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Note that the distance between the sulfur atom and the three oxygen atoms that do not have hydrogen
attached is slightly greater than the corresponding distance in H,SO,. The reason is that the back dona-
tion is now spread over three terminal oxygen atoms rather than only two. The bond order of S-O
bonds is slightly greater in H,SO, than in HSO,~ when only terminal oxygen atoms are considered.

The PO,>~ (known as the orthophosphate ion) and ClO,~ ions are isoelectronic with SO,2~ ion, and
their structures are
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Although the phosphorus atom in PO,>~ has a positive formal charge, it has a significantly lower elec-
tronegativity than oxygen. Therefore, there is not as much contribution from structures having double
bonds. On the other hand, a +3 formal charge on the chlorine atom in ClO,~ can be partially relieved
by shifting some electron density from nonbonding orbitals on oxygen atoms to the empty d orbitals
on the chlorine atom:

As in the case of the SO,2” ion, this is accomplished by overlap of filled p orbitals on oxygen atoms
with empty d orbitals on the chlorine to give = bonds. The result of the contributions from structures
in which there is some double bond character is that the bonds between chlorine and oxygen atoms
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are shorter than expected if the bonds were only single bonds. There is no reason why there can not be
some double bond character to more than one oxygen atom, which results in structures like
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As expected, the extent to which the bonds in ClO,~ are shortened from the single bond distance is
rather large.

The following structure of the H;PO, molecule is similar in many regards to that of H,SO,, but there
are some significant differences:
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In sulfuric acid, the distance between the sulfur atom and the oxygen atoms without hydrogen atoms
attached is 143 pm; the corresponding P O distance in H3PO, is 152 pm. This indicates that there
is much less double bond character to the P-O bonds than there is to the S-O bonds. This is to be
expected because of the +2 formal charge on sulfur when the structure is drawn showing only single
bonds, whereas the phosphorus atom has only a +1 formal charge in a structure for H;PO, showing
only single bonds. Moreover, the phosphorus atom has a lower electronegativity than sulfur (2.2 com-
pared to 2.6) so less double bonding to relieve a negative formal charge would be expected. The bond
length of the HO-P single bond is 157 pm.

A structure for phosphorous acid, (HO),HPO, can be drawn as follows:

o

147 pm

N

0—H

154y

H—0

I—7ov—

One of the hydrogen atoms is bound directly to the phosphorus atom and is not normally acidic. Note
that in this case, the distance between the phosphorus atom and the oxygen atom without a hydrogen
atom attached is only 147 pm, indicating more double bond character than there is in the corresponding
bond in the H;PO, molecule.
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Another interesting structure is that of the dithionite ion, $S,0,2~, which is shown as

/ 259 pm \
o / \ o)

o 0
In several compounds that contain S-S single bonds, the bond length is approximately 205 pm. The
very long S-S bond in S,0,2" is indicative of “loose” bonding, which is illustrated by the fact that

when 3°S0O, is added to a solution containing S,0,2~, some of the 3°SO, is incorporated in S,0,%
ions. In contrast, the structure of dithionate, $,0427,
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contains an S-S bond of more normal length, and the ion is more stable than is $,0,2". In S,0,27,
the SO bonds are typical of SO bonds that have very little double bond character (151 pm). The fact
that the SO bonds in dithionate have substantial double bond character is indicated by the 143 pm
bond length, which is equal to that in SO,.

4.3 COMPLEX STRUCTURES—A PREVIEW OF COMING ATTRACTIONS

In addition to the structures discussed so far in this chapter, inorganic chemistry involves many oth-
ers that can be considered to be chains, rings, or cages. In this section, several of the important struc-
tures will be described without resorting to theoretical interpretation. Some of the structures shown
occur for several isoelectronic species so they represent structural types. In some cases, reactions are
shown to illustrate processes that lead to products having such structures. These structures are often
the result of an atom bonding to others of its own kind (which is known as catenation) or the for-
mation of structures in which there are bridging atoms (especially oxygen, because oxygen normally
forms two bonds). An example of the latter type of structure is the pyrosulfate ion, S,0,2". This ion
can be formed by adding SOj; to sulfuric acid, or by removing water (as in heating and thus the name
pyrosulfate) from H,SO, or a bisulfate:

H,S0, + SO, — H,S,0, (4.6)

2 NaHSO, A Na,$,0, + H,0 (4.7)
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The structure of the S,0,2~ ion contains an oxygen bridge,

In this structure, as in the case of SO,2~, there is some double bond character to the bonds between
the sulfur atoms and the terminal oxygen atoms. In addition to being the structure of S,0,2~, this is
the structure of the isoelectronic species P,0,*” (the pyrophosphate ion), Si,0,°~ (pyrosilicate) and
Cl,0; (dichlorine heptoxide). The peroxydisulfate ion, S,042~, has a peroxide linkage between the two
sulfur atoms:

Dichlorine heptoxide, Cl,0, results from the dehydration of HCIO, with a strong dehydrating agent
such as P,O:

12HCIO, + P,0,, — 6 Cl,0, + 4 H,PO, (4.8)
The di- or pyrophosphate ion results from the partial dehydration of phosphoric acid,

2 H,,O, — H,P,0, + H,0 (4.9)

which can be shown as a molecule of water being formed from two H3;PO, molecules:
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0 el 0
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H H

The polyphosphoric acids can be considered as arising from the reaction of H,P,0O, with additional
molecules of H;PO, by the loss of water. In the following process, the product is HsP30,,, which is
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known as tripolyphosphoric acid:
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HsP3049 + HO
The pyrophosphate ion also results from the dehydration of a salt such as Na,HPO,,
2 Na,HPO, A Na,P,0, + H,0 (4.11)
Complete hydration of P,O,, in excess water produces orthophosphoric acid (H3;PO,),
P,0,, + 6 H,0 — 4 H;PO, (4.12)
but partial hydration of the oxide P,O,, produces H,P,0:

P,0,, + 4 H,0 — 2 H,P,0, (4.13)

Elemental phosphorus is obtained on a large scale by the reduction of calcium phosphate with carbon
in an electric furnace at 1200 to 1400°C:

2 Cay(PO,), + 6 Si0, +10C — 6 CaSiO; +10 CO + P, (4.14)

The element has several allotropic forms that are made up of tetrahedral P, molecules.

Combustion of phosphorus produces two oxides, P,O4 and P40,y depending on the relative concen-
trations of the reactants.

P, +30, — P,0, (4.15)

P, +50, — P,0,, (4.16)
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The structures of both P,O¢ and P,O, are based on the P, tetrahedron. In the case of P,Oy, there is an
oxygen atom forming a bridge between each pair of phosphorus atoms along the edges of the tetrahe-
dron, resulting a structure which can be shown as

(4.10)

In this structure, the tetrahedron of phosphorus atoms is preserved. In keeping with the fact that
when compared to P,O4 POy has four additional oxygen atoms, these oxygen atoms are
bonded to the phosphorus atoms to give a structure that has not only the six bridging oxygen
atoms but also one terminal oxygen atom bonded to each of the phosphorus atoms:

Elemental phosphorus is only one of several elements whose structures are polyatomic species.
Another is the structure of elemental sulfur, which consists of puckered Sg rings:

TS
S/S\S 206 pm

Although this eight-membered ring represents the structure of the molecule in the rhombic crystal
phase, it is by no means the only sulfur molecule. Other ring structures have the formulas S4, S;, So,
Si0r S12, and S,,. Just as gaseous oxygen contains O, molecules, sulfur vapor contains S, molecules that
are paramagnetic. Selenium also exists as Seg molecules, but catenation is less pronounced than in the
case of sulfur, and tellurium shows even less tendency in this regard. Tellurium resembles metals in its
chemistry more than does either sulfur or selenium.
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Tetrasulfur tetranitride, S4N,, has a structure that can be considered as a hybrid of the following two
resonance structures:

T T
S S <> S S
R A

Although these structures show positions of the bonds in the resonance structures, the geometric struc-
ture of the molecule is

The distance between the sulfur atoms is considerably shorter than expected on the basis of radii of
the isolated atoms. Therefore, there is believed to be a long, weak bond between the sulfur atoms.
A very large number of derivatives of S,N, are known, and some of them are described in Chapter 15.

Elemental boron exists as an icosahedral B, molecule that has the structure

This structure has two staggered planes that contain five boron atoms in each, as well as two boron
atoms in apical positions.

No survey of polyatomic elements would be complete without showing the form of carbon that exists
as Cgo. Known as buckminsterfullerene (named after R. Buckminster Fuller, the designer of the geode-
sic dome), C4y has a cage structure that has 12 pentagons and 20 hexagons on the surface as shown
in Figure 4.3a. Each carbon atom makes use of sp? hybrid orbitals and is bonded by three o bonds
and one 7 bond, with the 7 bonds being delocalized. A very large number of derivatives of Cg, are
known, and other forms of carbon have general formula C, (x # 60). Carbon also exists as diamond
and graphite, which have the structures shown in Figure 4.3b and 4.3c.
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(a) (b)

M FIGURE 4.3 Some of the structures of elemental carbon (see Chapter 13).

In addition to the structures of these elements, a great deal of structural inorganic chemistry is concerned
with the silicates. These materials form a vast array of naturally occurring and synthetic solids whose
structures are based on the tetrahedral unit SiO,. There are structures that contain discrete SiO,*~ ions as
well as bridged structures such as Si,0,°~. Because the Si atom has two fewer valence-shell electrons than
the S atom, the SiO,*~ and SO,?~ ions are isoelectronic, as are the Si,0,°~ and S,0,%~ ions.
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The SiO,*~ ion, known as orthosilicate, occurs in minerals such as zircon, ZrSiO,, phenacite, Be,SiOy,,
and willemite, Zn,Si0O,. The SiO;?~ ion is known as the metasilicate ion. Some of the minerals that
contain the Si,0,°" ion are thortveitite, Sc,Si, O, and hemimorphite, Zn,(OH),Si, 0.

Another important silicate structural type is based on a six-membered ring that contains alternating Si
and O atoms and has the formula Si;0,°~
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The P;0,>~ ion (known as the trimetaphosphate ion) and (SOj);, a trimer of SOj, also have this
structure. The trimetaphosphate ion can be considered as the anion of the acid H3;P50, (trimetaphos-
phoric acid), a trimeric form of HPO; (metaphosphoric acid). Note that this acid is formally related to
H;5P30,, tripolyphosphoric acid, by the reaction

H,P,0, + H,0 = HsP,0,, (4.17)

A six-membered ring also is present in the anion of Na;B;Og. It contains bridging oxygen atoms but
has only one terminal oxygen atom on each boron atom:

B B
~
o~ So o
Although the complete description of its structure will not be shown here, boric acid, B(OH)3, has a
sheet structure in which each boron atom resides in a trigonal planar environment of oxygen atoms.
There is hydrogen bonding between the OH groups in neighboring molecules.
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Because there are numerous silicates whose structures are made up of r