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Preface

It is gratifying to launch the third edition of our book. Its coming to
life testifies about the task it has fulfilled in the service of the commu-
nity of chemical research and learning. As we noted in the Prefaces
to the first and second editions, our book surveys chemistry from the
point of view of symmetry. We present many examples from chem-
istry as well as from other fields to emphasize the unifying nature of
the symmetry concept. Our aim has been to provide aesthetic plea-
sure in addition to learning experience. In our first Preface we paid
tribute to two books in particular from which we learned a great deal;
they have influenced significantly our approach to the subject matter
of our book. They are Weyl’s classic, Symmetry, and Shubnikov and
Koptsik’s Symmetry in Science and Art.

The structure of our book has not changed. Following the Intro-
duction (Chapter 1), Chapter 2 presents the simplest symmetries
using chemical and non-chemical examples. Molecular geometry
is discussed in Chapter 3. The next four chapters present group-
theoretical methods (Chapter 4) and, based on them, discussions of
molecular vibrations (Chapter 5), electronic structures (Chapter 6),
and chemical reactions (Chapter 7). For the last two chapters we
return to a qualitative treatment and introduce space-group symme-
tries (Chapter 8), concluding with crystal structures (Chapter 9).

For the third edition we have further revised and streamlined our
text and renewed the illustrative material. We have expanded the
sections dealing with biopolymers and quasicrystals in particular. We
have added an Epilogue.

We dedicated the first edition to the memory of József Pollák
(1901–1973), who was the stepfather of one of us (IH). The third
edition we dedicate to our children and grandchildren, and to the
memory of our parents.
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vi Preface

We note with pleasure our joint interest in both chemistry and
symmetry for the past forty years that is behind this book. Our joint
writing efforts have been an important facet of our professional as
well as married life for these forty years.

Budapest, January 2008 Magdolna Hargittai
István Hargittai
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Chapter 1

Introduction

Artists treat facts as stimuli
for the imagination,

while scientists use their imagination
to coordinate facts.
Arthur Koestler [1]

Fundamental phenomena and laws of nature are related to symmetry
and, accordingly, symmetry is one of science’s basic concepts.
Perhaps it is so important in human creations because it is omnipresent
in the natural world. Symmetry is beautiful although alone it may not
be enough for beauty, and absolute perfection may even be irritating.
Function, utility, and aesthetic appeal are the reasons for symmetry in
technology and the arts.

Much has been written about symmetry, for example, in Béla
Bartók’s music [2]. It is not known, however, whether he consciously
applied symmetry or was simply led intuitively to the golden ratio
so often present in his music. Another unanswerable question is how
these symmetries contribute to the appeal of Bartók’s music, and how
much of this appeal originates from our innate sensitivity to symmetry.
Bartók declined to discuss the technicalities of his composing and
merely stated that he created after nature.

The world around us abounds in symmetries and they have been
studied for centuries. More recently, research has probed into the role
of symmetry in human interactions along with representatives of the
animal kingdom. Special attention has been given to mate selection.
One of the first appearances of this facet of symmetry in the popular
press was an article in The New York Times, with an intriguing title,
“Why Birds and Bees, Too, Like Good Looks” [3].

M. Hargittai, I. Hargittai, Symmetry through the Eyes of a Chemist, 3rd ed.,
DOI: 10.1007/978-1-4020-5628-4 1, C© Springer Science+Business Media B.V. 2009
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2 1 Introduction

The above examples illustrate that we like to consider symmetry in
a broader sense than how it just appears in geometry. The symmetry
concept provides a good opportunity to widen our horizons and to
bring chemistry closer to other fields of human activities. An inter-
esting aspect of the relationship of chemistry with other fields was
expressed by Vladimir Prelog in his Nobel lecture [4]:

Chemistry takes a unique position among the
natural sciences for it deals not only with material
from natural sources but creates the major parts of
its objects by synthesis. In this respect, as stated
many years ago by Marcelin Berthelot, chemistry
resembles the arts; the potential of creativity is
terrifying.

Of course, even the arts are not just for the arts’ sake and chem-
istry is certainly not done just for chemistry’s sake. But in addition
to creating new medicines, heat-resistant materials, pesticides, and
explosives, chemistry is also a playground for the organic chemist to
synthesize exotica including propellane and cubane, for the inorganic
chemist to prepare compounds with multiple metal–metal bonds, for
the stereochemist to model chemical reactions after a French parlor
trick (cf. Section 2.7), and for the computational chemist to create
undreamed-of molecules and to write detailed scenarios of as yet
unknown reactions. Symmetry considerations play no small role in
all these activities. The importance of blending fact and fantasy was
succinctly expressed by Arthur Koestler in the chapter-opening quota-
tion. Lucretius gave an early illustration of an imaginative use of
the concept of shape in the first century BCE: “atoms with smooth
surfaces would correspond to pleasant tastes, such as honey; but those
with rough surfaces would be unpleasant” [5].

Chemical symmetry has been noted and investigated for centuries
in crystallography which is at the border between chemistry and
physics. It was more physics when crystal morphology and other prop-
erties of the crystal were described. It was more chemistry when the
inner structure of the crystal and the interactions between its building
units were considered. Later, descriptions of molecular vibrations
and the establishment of selection rules and other basic principles
happened in all kinds of spectroscopy. This led to another uniquely
important place for the symmetry concept in chemistry with practical
implications.



1 Introduction 3

The discovery of handedness, or chirality, in crystals and molecules
brought the symmetry concept nearer to the chemical laboratory.
All this, however, concerned more the stereochemist, the structural
chemist, the crystallographer, and the spectroscopist rather than the
synthetic chemist. Symmetry used to be considered to lose its signifi-
cance as soon as the molecules entered the chemical reaction. Orbital
theory and the discovery of the conservation of orbital symmetry
have encompassed even this area. It was signified by the 1981 Nobel
Prize in chemistry awarded to Kenichi Fukui and Roald Hoffmann
(Figure 1-1): “for their theories, developed independently, concerning
the course of chemical reactions” [6].

During the past half a century, fundamental scientific discoveries
have been aided by the symmetry concept. They have played a role in
the continuing quest for establishing the system of fundamental parti-
cles [7]. It is an area where symmetry breaking has played as impor-
tant a role as symmetry. The most important biological discovery
since Darwin’s theory of evolution was the double helical structure of
the matter of heredity, DNA, by Francis Crick and James D. Watson
(Figure 1-2) [8]. In addition to the translational symmetry of helices
(see, Chapter 8), the molecular structure of deoxyribonucleic acid as
a whole has C2 rotational symmetry in accordance with the comple-
mentary nature of its two antiparallel strands [9]. The discovery of the
double helix was as much a chemical discovery as it was important
for biology, and lately, for the biomedical sciences.

In the 1980s, two important discoveries in molecular science and
solid-state science were intimately connected with symmetry. One

Figure 1-1. Kenichi Fukui (left), 1994, and Roald Hoffmann, 1994 (photographs
by the authors).



4 1 Introduction

Figure 1-2. Left: James D. Watson, 2003; Center: a sculpture of the double helix
by Bror Marklund at Uppsala University; and Right: Francis Crick (photographs by
the authors).

was the C60 molecule, buckminsterfullerene [10] and fullerene chem-
istry. It has greatly contributed to the emergence of nanoscience
and nanotechnology. The other discovery was the quasicrystals [11].
Buckminsterfullerene will be mentioned again in Section 3.7. and
the quasicrystals in Section 9.8. Here, we present only some general
considerations.

The C60 molecule was named after Buckminster Fuller (1895–
1983), the American designer (Figure 1-3). The U.S. Pavilion at the
Montreal Expo 1967 (Figure 1-4) was built according to his design
and it inspired the discoverers of buckminsterfullerene in finding the

Figure 1-3. Left: Buckminster Fuller, 1973 (photograph by and courtesy of Lloyd
Kahn, Bolinas, California); Right: Avogadro and his law on an Italian stamp.
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Figure 1-4. The U.S. Pavilion at the Montreal Expo 1967 with a pentagon indicated
in the close-up (photographs taken in 1995 by the authors).

structure of C60. Fuller was not a bona fide scientist, but geometry was
central to his peculiar philosophy. To him Avogadro’s law (Figure 1-3)
showed that chemists considered volumes as material domains and not
merely as abstractions. Fuller recognized the importance of synergy
for chemistry [12]:

Chemists discovered that they had to recognize
synergy because they found that every time they
tried to isolate one element out of a complex
or to separate atoms out, or molecules out, of
compounds, the isolated parts and their separate
behaviors never explained the associated behaviors
at all. It always failed to do so. They had to deal
with the wholes in order to be able to discover the
group proclivities as well as integral characteristics
of parts. The chemists found the Universe already
in complex association and working very well.
Every time they tried to take it apart or separate it
out, the separate parts were physically divested of
their associative potentials, so the chemists had to
recognize that there were associated behaviors of
wholes unpredicted by parts; they found there was
an old word for it—synergy.

Curiously, Avogadro has also been proposed to be the godfather of
fullerenes for he was the inventor of the concept of monoelemental
compounds [13]. The suggestion came from D. E. H. Jones who had
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brought up the idea of the hollow-shell graphite molecule almost two
decades prior to the discovery of buckminsterfullerene [14]. Jones also
referred to a biological analogy of what would be considered today a
model of a giant fullerene molecule. A few pentagons are seen inter-
spersed in the generally hexagonal pattern of Aulonia hexagona shown
in Figure 1-5 [15]. The similarity is striking to Fuller’s Geodesic
Dome at the 1967 Montreal Expo.

In chemistry, the first suggestion of a C60 molecule came from Eiji
Osawa (Figure 1-6) who tried to construct closed three-dimentional
molecules with aromaticity and hit on the truncated icosahedral shape
purely on the basis of symmetry considerations [17]. The next step
was the computational work by Gal’pern (Figure 1-6) and Bochvar
who determined the truncated icosahedral shape for C60 to represent
an energy minimum [18]. These early reports originally appeared
in Japanese and in Russian, respectively. They had no impact and
received recognition only after the work of Harry Kroto, Richard
Smalley, Robert Curl (Figure 1-7), and their students had brought
great publicity to the new molecule.

The Geodesic Dome played an important role in leading the
discoverers of buckminsterfullerene to the right hypothesis about its
molecular structure. Both Kroto and Smalley had visited the Dome
almost two decades before, and what they could vaguely remember
assisted them and their colleagues to arrive at the highly symmetrical
truncated icosahedral geometry (Figure 1-8) (see, also, Section 2.8

Figure 1-5. Ernst Häckel’s Aulonia hexagona in D’Arcy W. Thompson, On Growth
and Form [16].
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Figure 1-6. Eiji Osawa (left), 1994 (photograph by the authors) and Elena Gal’pern
(courtesy of Elena Gal’pern, Moscow).

on Polyhedra) during the exciting days following the crucial
experiment [19].

Mathematicians have, of course, known for a long time [21] that
one can close a cage of even-number of vertices with any number
of hexagons (except one), provided that 12 pentagons are included
in the network. The truncated icosahedron has 12 pentagons and
20 hexagons, and it is one of the semi-regular solids of Archimedes
(see, Section 2.8). Leonardo da Vinci (1452–1519) drew a hollow
framework of this structure to illustrate the book De Divina Propor-
tione by Luca Pacioli (Figure 1-8). All such carbon substances

Figure 1-7. The principal discoverers of buckminsterfullerene: From left to right,
Robert F. Curl, 1998; Harold W. Kroto, 1994; and Richard E. Smalley, 2004
(photographs by the authors).
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Figure 1-8. Models of the truncated icosahedron: Leonardo da Vinci’s drawing for
Luca Pacioli’s De Divina Proportione (left) and decoration at the Topkapi Sarayi in
Istanbul (photograph by the authors) [20].

whose cage molecules contain 12 pentagons and various numbers of
hexagons, are called fullerenes, of which C60 has the special name
buckminsterfullerene. Another artful representative of this shape is
above an entrance to an exhibition hall at the Topkapi Palace (Topkapi
Sarayi, in Turkish) in Istanbul (Figure 1-8).

An early and beautiful example of the fullerene-type structures
was found in China [22]. Dragon sculptures are common in China
as guards standing in front of important buildings. They appear in
pairs. The female has a baby lion under the left paw and the male has
a sphere under the right paw. This sphere is said to represent a ball
made of strips of silk which was a favorite toy in ancient China. The
surface of the ball is usually decorated by a regular hexagonal pattern.
We know, however, that it is not possible to cover the surface of the
sphere by a regular hexagonal pattern. Usually, there are considerable
chunks of the sphere hidden by the dragon’s paw and the stand itself
on which the dragon and the sphere stand. There is at least one dragon
sculpture (Figure 1-9) under whose paw the sphere is decorated by a
hexagonal pattern interspersed by pentagonal shapes. This sculpture
stands in front of the Gate of Heavenly Purity in the Forbidden City,
and dates back to the reign of Qian Long (1736–1796) of the Qing
Dynasty. Balls made of strips of silk are popular decorations in Japan.
They are called temari and patterns corresponding to the buckminster-
fullerene structure occur among them [23].



1 Introduction 9

Figure 1-9. Gold-plated dragon sculpture in front of the Gate of Heavenly Purity
(Qianqingmen) in the Forbidden City, Beijing, with close-up (photographs by the
authors) [24].

Incidentally, the stormy interest in buckminsterfullerene started
subsiding a few years after the initial discovery because the original
discoverers only observed but failed to produce the substance, so no
chemistry could have been performed on it. Wolfgang Krätschmer
and Donald Huffman (Figure 1-10) and their students changed this
situation in 1990 when they obtained quantities of C60 from graphite
in a discharge experiment [25]. Their work made the new substance
commonly available. The buckminsterfullerene story had an appeal
for a broad readership even beyond chemists [26].

The other important symmetry-related discovery was the quasicrys-
tals. Both the truncated icosahedral structure of buckminsterfullerene
and the regular but nonperiodic network of the quasicrystals are
related to fivefold symmetry. In spite of this intimate connection
between them at an intellectual level, their stories did not cross. The
conceptual linkage between them is provided by Fuller’s physical
geometry and this is also what relates them to the icosahedral structure
of viruses (see, Section 9.5.2 on Icosahedral Packing).

The actual experimental discovery of quasicrystals was a
serendipity, notwithstanding some pertaining predictions [28]. It used
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Figure 1-10. Wolfgang Krätschmer and Donald Huffman re-enacting their first
production of buckminsterfullerene, in 1999 in Tucson, Arizona (photograph by the
authors) [27].

to be a fundamental dogma of crystallography that fivefold symmetry
is a noncrystallographic symmetry. We shall return to this question
in Section 9.3. There have been many attempts to cover the surface
with regular pentagons without gaps and overlaps and some exam-
ples [29] are shown in Figure 1-11. Then, Roger Penrose found two
elements that, by appropriate matching, could tile the surface with
long-range pentagonal symmetry though only in a nonperiodic way

Figure 1-11. Attempts of pentagonal tiling by (a) Dürer (after Crowe) [32];
(b) Shubnikov (after Mackay); and (c) Kepler (after Danzer et al.) [33, 34].
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Figure 1-12. Roger Penrose, 2000 (photograph by the authors) and a Penrose tiling.

(Figure 1-12) [30]. This pattern was extended by Alan Mackay
into the third dimension and he even produced a simulated diffrac-
tion pattern that showed 10-foldedness (Figure 1-13) [31]. It was
about the same time that Dan Shechtman was experimenting with
metallic phases of various alloys cooled with different speeds and
observed 10-foldedness in an actual electron diffraction experiment
(Figure 1-14) for the first time. The discovery of quasicrystals has
added new perspective to crystallography and the utilization of
symmetry considerations.

Figure 1-13. Alan L. Mackay, 1982 (photograph by the authors) and his simulated
“electron diffraction” pattern of three-dimensional Penrose tiling [31] (photograph
courtesy of Alan Mackay, London).
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Figure 1-14. Dan Shechtman (photograph by the authors) and his electron diffrac-
tion pattern with 10-fold symmetry (photograph courtesy of Dan Shechtman, Haifa).

While considering the symmetries of individual molecules or
extended structures, we should not lose sight of the place of symmetry
considerations in the large picture of studying nature. In this, we
turn to the chemical engineer turned theoretical physicist Eugene
P. Wigner (1902–1995). He worked out fundamental relationships of
profound importance for the place of symmetry with respect to the
laws of nature and observable physical phenomena. In this discus-
sion, the term physics stands for physical sciences that include chem-
istry. In his Nobel lecture, Wigner stated that the symmetry principles
“provide a structure and coherence to the laws of nature just as the
laws of nature provide a structure and coherence to a set of events,”
the physical phenomena [35]. David J. Gross, a recent Nobel laureate
physicist summarized Wigner’s teachings in a simple diagram [36]:

Symmetry principles → Laws of nature → Physical phenomena

Wigner (Figure 1-15) was well known for his legendary politeness
and modesty that was perceived by some as somewhat forced and
artificial. However, there was nothing forced or artificial when he
showed modesty in formulating the principal task of physics and
stressed the limitations in its ambitions:

Physics does not endeavor to explain nature. In
fact, the great success of physics is due to a restric-
tion of its objectives: it only endeavors to explain
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Figure 1-15. Eugene P. Wigner with one of the authors in 1969, in front of the
(then) Department of Physics at the University of Texas at Austin (photograph by
unknown photographer).

the regularities in the behavior of objects. This
renunciation of the broader aim, and the specifica-
tion of the domain for which an explanation can be
sought, now appears to us an obvious necessity. In
fact, the specification of the explainable may have
been the greatest discovery of physics so far. . . .

The regularities in the phenomena which phys-
ical science endeavors to uncover are called the
laws of nature. The name is actually very appro-
priate. Just as legal laws regulate actions and
behavior under certain conditions but do not try
to regulate all actions and behavior, the laws of
physics also determine the behavior of its object of
interest only under certain well-defined conditions
but leave much freedom otherwise [37].

To emphasize the pioneering character of Wigner’s contribution, we
quote another Nobel laureate theoretical physicist, Steven Weinberg,
according to whom “Wigner realized, earlier than most physicists,
the importance of thinking about symmetries as objects of interest
in themselves” [38]. Wigner had formulated his views on symmetries
in the 1930s when physicists talked about symmetries in the context
of specific theories of nuclear force. “Wigner was able,” Weinberg
continues, “to transcend that and he discussed symmetry in a way,
which didn’t rely on any particular theory of nuclear force” [39].
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Another Nobel laureate physicist, Gerard ‘t Hooft traced back to
Wigner the notion that symmetry can break in many different ways
and that “Both symmetry and symmetry breaking are examples of
patterns that we see in Nature” [40].

Beyond Wigner’s statements of general validity, the question may
be asked whether “chemical symmetry” differs from any other kind of
symmetry? Furthermore, whether symmetries in the various branches
of the physical sciences can be distinguished as to their character-
istic features and whether they could be hierarchically related? The
symmetries in the great conservation laws of physics [41] are, of
course, present in any chemical system. The symmetries of molecules
and their reactions are part of the fabric of biological structure. Left-
and-right symmetry is so important for living matter that it may be
matched only by the importance of “left-and-right” symmetry in the
world of fundamental particles, including the violation of parity, as if
a circle is closed, but that is, of course, an oversimplification.

When we stress the importance of symmetry, it is not equivalent
with declaring that everything must be symmetrical. In particular,
when the importance of left-and-right symmetry is stressed, it is
their relationship, rather than their equivalence, that has outstanding
significance.

It has already been referred to that symmetry considerations
have continued their fruitful influence on the progress of contem-
porary chemistry. This is so for contemporary physics as well. It
is almost surprising that fundamental conclusions with respect to
symmetry could be made even during recent decades. It was related
by C. N. Yang that Paul A. Dirac considered Albert Einstein’s most
important contributions to physics “his introduction of the concept
that space and time are symmetrical” [42]. The same Dirac also
had the prescience to write as early as 1949 that “I do not believe
that there is any need for physical laws to be invariant under reflec-
tions” [43]. Then, in 1956, Tsung Dao Lee and Chen Ning Yang
(Figure 1-16) suggested a set of experiments to show that conservation
of parity may be violated in the weak force of nuclear intera-
tions [44]. Indeed, three different experiments almost simultane-
ously confirmed Lee and Yang’s supposition within months [45]. The
discovery happened “swiftly” during an “exciting period” [46]. It had
long-range effects and since then broken symmetries have received
increasing attention [47]. The term “relates to situations in which
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Figure 1-16. Tsung Dao Lee and Chen Ning Yang at the time of the Nobel cere-
monies in December 1957 in Stockholm (courtesy of the Manne Siegbahn Institute
through Ingmar Bergström, Stockholm).

symmetries which we expect to hold are valid only approximately
or fail completely” [48]. The three basic possibilities are incomplete
symmetry, symmetry broken by circumstances, and spontaneously
broken symmetry.

“Symmetry is a stunning example of how a rationally derived
mathematical argument can be applied to descriptions of nature
and lead to insights of the greatest generality” [49]. But what is
symmetry? We may not be able to answer this question satisfac-
torily, at least not in all its possible aspects. According to the
crystallographer (and symmetrologist) E. S. Fedorov—as quoted by
A. V. Shubnikov—“symmetry is the property of geometrical figures
to repeat their parts, or more precisely, their property of coinciding
with their original position when in different positions” [50]. To this,
the symmetrologist (and crystallographer) A. V. Shubnikov added
that while symmetry is a property of geometrical figures, obviously,
“material figures” may also have symmetry. He further stated that
only parts which are in some sense equal among themselves can
be repeated, and noted the two kinds of equality, to wit, congruent
equality and mirror equality. These two equalities are the subsets of
the metric equality concept of Möbius, according to whom “figures
are equal if the distances between any given points on one figure are
equal to the distances between the corresponding points on another
figure” [51]. According to the geometer H. S. M. (Donald) Coxeter,



16 1 Introduction

“When we say that a figure is ‘symmetrical’ we mean that there is
a congruent transformation which leaves it unchanged as a whole,
merely permuting its component elements” [52].

Symmetry also connotes harmony of proportions, which is a rather
vague notion, according to Hermann Weyl [53]. This very vagueness,
at the same time, often comes in handy when relating symmetry and
chemistry, or generally speaking, whenever the symmetry concept is
applied to real systems. Mislow and Bickart [54] communicated an
epistemological note on chirality in which much of what they have
to say about chirality, as this concept is being applied to geomet-
rical figures versus real molecules, solvents, and crystals, is true about
the symmetry concept as well. They argue that “it is unreasonable
to draw a sharp line between chiral and achiral molecular ensem-
bles: in contrast to the crisp classification of geometric figures, one
is dealing here with a fuzzy borderline distinction, and the qualifying
‘operationally’ should be implicitly or explicitly attached to ‘achiral’
or ‘racemic’ whenever one uses these terms with reference to
observable properties of a macroscopic sample.” Further, they quote
Scriven [55]: “when one deals with natural phenomena, one enters
‘a stage in logic in which we recognize the utility of imprecision.’”
The human ability to geometrize non-geometrical phenomena greatly
helps to recognize symmetry even in its “vague” and “fuzzy” varia-
tions. In accordance with this, Weyl referred to Dürer who “consid-
ered his canon of the human figure more as a standard from which to
deviate than as a standard toward which to strive” [56].

Symmetry in its rigorous sense helps us to decide problems quickly
and qualitatively. The answers lack detail, however [57]. On the other
hand, the vagueness and fuzziness of the broader interpretation of
the symmetry concept allow us to talk about degrees of symmetry,
to say that something is more symmetrical than something else. An
absolutist geometrical approach would allow us to distinguish only
between symmetrical and asymmetrical possibly with dissymmetrical
thrown in for good measure. So there must be a range of criteria
according to which one can decide whether something is symmet-
rical, and to what degree. These criteria may very well change with
time. A case in point is the question as to whether or not molecules
preserve their symmetry upon entering a crystal structure or upon
the crystal undergoing phase transition. Our notion about structures
and symmetries may evolve as more accurate data become available
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(though their structures and symmetries are unchanged, of course,
by our notions). A whole new approach is developing to analyze
symmetry properties in terms of a continuous scale rather than of a
discrete “yes/no” [58].

Recognizing structural and other kinds of regularities has always
been important in chemistry. Above we quoted Wigner in connection
with the tasks of the physical sciences. He stressed the importance of
observing regularities. He learned this from his mentor in preparing
his doctoral research, Michael Polanyi. Wigner mentioned this in
his two-minute speech at the Nobel award banquett in Stockholm in
1963:

I do wish to mention the inspiration received
from Polanyi. He taught me, among other things,
that science begins when a body of phenomena
is available which shows some coherence and
regularities, that science consists in assimilating
these regularities and in creating concepts which
permit expressing these regularities in a natural
way. He also taught me that it is this method of
science rather than the concepts themselves (such
as energy) which should be applied to other fields
of learning [59].

Linus Pauling was a master in noticing regularities among large
amounts of data. It has been argued, for example, that at the time of the
first edition of The Nature of the Chemical Bond [60], Linus Pauling
had access to less than 0.01% of the structural information of 50 years
later, yet his ideas on structure and bonding have stood the test of
time [61].

The history of periodic tables and especially Dmitrii I. Mendeleev’s
seminal discovery, also demonstrates chemists’ never-ending quest
for beauty and harmony [62]. He was looking for a simple system
for presenting the elements as he was writing a general chemistry
text for his students. The Soviet stamp block, issued for the centen-
nial of the Periodic Table, depicts its earliest version (Figure 1-17a).
Approximately 700 periodic tables were published during the first one
hundred years after the original discovery in 1869. E. G. Mazurs [63]
collected, systematized, and analyzed them in a unique study. Classi-
fication of all the tables reduced their number to 146 different types
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Figure 1-17. (a) Soviet stamp block issued to the centenary of Mendeleev’s Peri-
odic System; (b) The Periodic Table of the Elements as a fresco at what is today the
Mendeleev Institute of Metrology in St. Petersburg and was the Board of Weights
and Measures in Mendeleev’s time (photograph by and courtesy of Alexander
Belyakov, St. Petersburg) [65].

and subtypes which are described by such terms as “helices, space
lemniscates, space concentric circles, space squares, spirals, series
tables, zigzags, parallel lines, step tables, tables symmetrical about
a vertical line, mirror image tables, tables of one revolution and of
one row, tables of planes, revolutions, cycles, right side as well as left
side electronic configuration tables, tables of concentric circles and
parallel lines, right side as well as left side shell and subshell tables.”
Figure 1-17b shows the traditional, rectangular-shaped table in form
of a wall-decoration displayed on the facade of the St. Petersburg
college building where Mendeleev used to work. The characteristic
symmetry of this arrangement is periodicity itself. Figure 1-18 is a
spiral representation of the Periodic System (drawn proportionally
to the increasing mass of the elements, prior to the understanding
of the foundation of the system in the electronic structure of the
elements) [64].

The quest for symmetry and harmony has, of course, contributed
more than mere aesthetics in establishing the Periodic Table of



1 Introduction 19

Figure 1-18. Spiral periodic system, after H. Erdmann [66] (computer graphics by
Judit Molnár, Budapest).

the elements. Beauty and reason blend in it in a natural fashion.
C. A. Coulson, theoretical chemist and professor of mathematics,
concluded his Faraday lecture on symmetry with the words:

Man’s sense of shape—his feeling for form—the
fact that he exists in three dimensions—these must
have conditioned his mind to thinking of structure,
and sometimes encouraged him to dream dreams
about it. I recall that it was Kekulé himself who
said: “Let us learn to dream, gentlemen, and then
we shall learn the truth.” Yet we must not carry
this policy too far. Symmetry is important, but it is
not everything. To quote Michael Faraday writing
of his childhood: “Do not suppose that I was a
very deep thinker and was marked as a precocious
person. I was a lively imaginative person, and
could believe in the Arabian Nights as easily as
in the Encyclopedia. But facts were important to
me, and saved me.” It is when symmetry interprets
facts that it serves its purpose: and then it delights
us because it links our study of chemistry with
another world of the human spirit—the world of
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order, pattern, beauty, satisfaction. But facts come
first. Symmetry encompasses much—but not quite
all! [67]
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Chapter 2

Simple and Combined Symmetries

Beauty is the first test. . .
Godfrey Harold Hardy [1]

2.1. Bilateral Symmetry

The simplest and most common of all symmetries is bilateral
symmetry, yet at first sight, it does not appear as overwhelmingly
important in chemistry as in our every-day life. The human body
has bilateral symmetry, except for the asymmetric location of some
internal organs. A unique description of the symmetry of the human
body is given by Thomas Mann in The Magic Mountain as Hans
Castorp is telling about his love to Clawdia Chauchat∗ [2]:

How bewitching the beauty of a human body,
composed not of paint or stone, but of living,
corruptible matter charged with the secret fevers of
life and decay! Consider the wonderful symmetry
of this structure: shoulders and hips and nipples
swelling on either side of the breast, and ribs
arranged in pairs, and the navel centered in
the belly’s softness, and the dark sex between
the thighs. Consider the shoulder blades moving
beneath the silky skin of the back, and the back-
bone in its descent to the paired richness of the
cool buttocks, and the great branching of vessels

∗This passage is in French in both the German original and English translation of
Mann’s The Magic Mountain (see, References).

M. Hargittai, I. Hargittai, Symmetry through the Eyes of a Chemist, 3rd ed.,
DOI: 10.1007/978-1-4020-5628-4 2, C© Springer Science+Business Media B.V. 2009
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26 2 Simple and Combined Symmetries

and nerves that passes from the torso to the arms
by way of the arm pits, and how the structure of
the arms corresponds to that of the legs!

Earlier, Mann discusses the symmetry of the human body in more
detail, stressing the harmony between its external appearance and
internal organization [3]:

It leaned thus, turning to smile, the gleaming
elbows akimbo, in the paired symmetry of its limbs
and trunk. The acrid, steaming shadows of the
armpits corresponded in a mystic triangle to the
pubic darkness, just as the eyes did to the red,
epithelial mouth-opening, and the red blossoms
of the breast to the navel lying perpendicularly
below. . .

For Hans Castorp understood that this living body,
in the mysterious symmetry of its blood-nourished
structure, penetrated throughout by nerves, veins,
arteries, and capillaries; with its inner framework
of bones—marrow-filled tubular bones, blade-
bones, vertebræ—which with the addition of lime
had developed out of the original gelatinous
tissue and grown strong enough to support the
body weight; with the capsules and well-oiled
cavities, ligaments and cartilages of its joints,
its more than two hundred muscles, its central
organs that served for nutrition and respiration,
for registering and transmitting stimuli, its protec-
tive membranes, serous cavities, its glands rich in
secretions; with the system of vessels and fissures
of its highly complicated interior surface, commu-
nicating through the body-openings with the outer
world—he understood that this ego was a living
unit of a very high order, remote indeed from those
very simple forms of life which breathed, took in
nourishment, even thought, with the entire surface
of their bodies.
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Figure 2-1. Egyptian sculpture from 2700 BCE (photograph by and courtesy of
László Vámhidy, Pécs, Hungary).

The bilateral symmetry of the human body is emphasized by the static
character of many Egyptian sculptures (Figure 2-1). Mobility and
dynamism, however, do not diminish the impression of bilateralness
of the human body (Figure 2-2).

Figure 2-2. Bilateral symmetry of the human body: Sculptures at the top of a
building at Piccadilly Circus, London (photograph by the authors).
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Already Kepler noted in connection with the shape of the animals
that the

. . .upper and lower depends on their habitat,
which is the surface of the earth . . . The second
distinction of front and back is conferred on
animals to put in practice motions that tend from
one place to another in a straight line over the
surface of the earth . . . bodily existence entailed
the third diameter, of right and left, should be
added, whereby an animal becomes so to speak
doubled [4].

Bilateral symmetry is very common in the animal kingdom
(Figure 2-3). It always appears when up and down as well as forward
and backward are different, whereas left-bound and right-bound
motion have the same probability. As translational motion along
a straight line is the most characteristic for the vast majority of
animals on Earth, their bilateral symmetry is trivial. This symmetry
is characterized by a reflection plane, or mirror plane, and its usual
label is m.

Bilateral symmetry is found in some flowers, conspicuously, in
orchids (Figure 2-4). Also, leaves often have bilateral symmetry, but
it may be only accidental for a tree. Generally, trees and many other

Figure 2-3. Animals of bilateral symmetry (photographs by Zoltán Bagosi,
Budapest Zoo, used with permission).



2.1. Bilateral Symmetry 29

Figure 2-4. Flowers and leaves of bilateral symmetry (photographs by the authors).

plants have radial, cylindrical, or conical symmetries with respect
to the trunk and stem. Although these symmetries may occur in a
very approximate way, they can be recognized without any ambiguity
(Figure 2-5).

Figure 2-5. Conical and radial symmetries of trees (photographs by the authors).
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The symmetry plane of the human face is sometimes emphasized
by artists (Figure 2-6a–c) while other artists idealize the faces they
present (Figure 2-6d–f). Of course, there are minute variations, or
even considerable ones as we age, between the left and right sides
of the human face (see, e.g., Figure 2-7). Differences between the left
and right hemispheres of the brain have been the subject of intensive
studies [5].

Bilateral symmetry has outstanding importance in man-made
objects due to its functional role. The bilateral symmetry of various
vehicles, for example, is determined by their translational motion.
On the other hand, the cylindrical symmetry of the Lunar Module
is consistent with its function of vertical motion with respect to the

(a) (b) (c)

(d) (e) (f)

Figure 2-6. Human faces in artistic expression. (a) Henri Matisse, Portrait of
Lydia Delektroskaya (reproduced by permission from the State Hermitage Museum,
St. Petersburg); (b) Jenő Barcsay, Woman’s head (used with permission from Ms.
Barcsay); (c) George Buday, Miklós Radnóti, wood-cut, 1969 (used with permis-
sion from George Buday, R. E.); (d) Buddha sculpture in Japan; (e) St. Peter at the
St. Peter’s Square, Rome; (f) Bust of D. I. Mendeleev in front of Moscow State
University (d; e; f, photographs by the authors).
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(b) (c) (a) 

Figure 2-7. Professor Alan L. Mackay’s face; (a) Right-side composite; (b) Orig-
inal; (c) Left-side composite (photographs by the authors, used with permission of
Alan L. Mackay, London).

moon’s surface. Examples of cylindrical symmetry, related to the pref-
erential importance of the vertical direction are the stalactites and
the stalagmites in caves (Figure 2-8), formed of calcium carbonate.
The occurrence of radial-type symmetries rather than more restricted
ones necessitates a spatial freedom in all relevant directions. Thus,
for example, the copper formation in Figure 2-9a has a tendency to
form cylindrically symmetric structures. On the other hand, the solid-
ified iron dendrites obtained from iron-copper alloys, after dissolving
away the copper, display bilateral symmetry in Figure 2-9b.

Both folk music and music by master composers are rich in symme-
tries. Figure 2-10 shows two examples with bilateral symmetry. The
first example is from Bartók’s Microcosmos series written specifi-

Figure 2-8. Calcium carbonate stalactites and stalagmites in a cave in southern
Germany (photographs by the authors).
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(a) (b) 

Figure 2-9. (a) Electrolytically deposited copper, magnification × 1000. Courtesy
of Maria Kazinets, Beer Sheva; (b) Directionally solidified iron dendrites from an
iron-copper alloy after dissolving away the copper, magnification × 2600. Courtesy
of J. Morral, Storrs, Connecticut.

(a)

(b)

(c1) (c2)

Figure 2-10. (a) Bartók: Microcosmos, Unisono No. 6. The vertical dasched line
indicates the plane of reflection; (b) Bartók: Microcosmos, Unisono No. 1; (c) Draw-
ings inspired by the Unisono No. 1 by early teenagers, Komló Music School (cour-
tesy of Mária Apagyi, Pécs, Hungary).
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Figure 2-11. Double-headed eagles in (left) Madrid; (center) Prague; and (right)
Moscow (photographs by the authors).

cally for children. Figure 2-10a of Unisono No. 6 illustrates a mirror
plane which includes a sound. The introductory piece of the Micro-
cosmos is depicted in Figure 2-10b. It has only approximate bilateral
symmetry though the two halves are markedly present. When some
school children in their early teens were asked to express their impres-
sions in drawing while listening to this piece of music for the first
time, they invariably produced patterns with bilateral symmetry. Two
of the drawings are reproduced in Figure 2-10c.

Weyl calls bilateral symmetry also heraldic symmetry as it is so
common in coats of arms [6]. Characteristically, the eagles of the
Habsburgs (Figure 2-11a and b) and the Russian Romanovs (Figure
2-11c) were double headed.

2.2. Rotational Symmetry

The contour of the simple and powerful oriental symbol yin yang
(Figure 2-12a) has twofold rotational symmetry in that a half rotation
about the axis perpendicular to the midpoint of the drawing brings
back the original figure. This rotation axis is a symmetry axis. The
Taiwanese stamp with two fish (shown in Figure 2-12b) is reminis-
cent of yin yang.

The order of a rotation symmetry axis tells us how many times
the original figure reoccurs during a complete rotation. The elemental
angle is the smallest angle of rotation by which the original
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(a) (b) 

Figure 2-12. Contour of yin yang and two fish on a Taiwanese stamp.

figure is reproduced. Thus, for twofold rotational symmetry, the
order of the rotation axis is two and the elemental angle is 180◦.
The corresponding numbers for threefold, fourfold, etc., rotational
symmetries are three and 120◦, four and 90

◦
, etc., respectively. The

order of rotation axes (n) may be 1, 2, 3, . . . up to infinity, ∞, thus
it may be any integer. The order 1 means that a complete rotation is
needed to bring back the original figure, thus there is a total absence
of symmetry which means asymmetry. A one-fold rotation axis is an
identity operator. The other extreme is the infinite order; the circle
has such symmetry. This means that any, even infinitesimally small
rotation leads to congruency.

Figures 2-13–2-15 illustrate rotational symmetries in flowers,
rotating parts of machinery, and hubcaps. Seldom does exclu-
sively rotational symmetry have functional importance in flowers.
In contrast, the motion of rotating parts in machinery is reinforced
by having only rotational symmetry and no symmetry planes. There

Figure 2-13. Hawaiian flowers with only rotational symmetry (photographs by the
authors).
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Figure 2-14. Rotating parts of machinery (photographs by the authors).

are hubcaps with rotational symmetry only, but just as well can a
hubcap with multiple symmetry planes fulfill its function—serving
as protection and decoration. It is only our perception that might
favor a hubcap with rotational symmetry over a hubcap with higher
symmetry. The perception is that rotation favors motion whereas
symmetry planes stop motion. This is why we suggest that recy-
cling companies, banks, and transportation companies often choose
logos with rotational symmetry only. A small sampler of examples is
presented in Figure 2-16. Finally, a curious appearance of rotational
only symmetries is found in sculptures of two, three or even more
interweaving fish and dolphins (Figure 2-17).

Figure 2-15. Hubcaps with only rotational symmetry (photographs by the authors).
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(a)

(b)

(c)

Figure 2-16. Logos: (a) Recycling; (b) Banking; (c) Transportation (photographs
by the authors).

(a) (b) (c)

Figure 2-17. Sculptures of interweaving fish and dolphins: (a) Twofold in Wash-
ington, DC; (b) Threefold in Prague; (c) Fourfold in Linz, Austria (photographs by
the authors).
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2.3. Combined Symmetries

The symmetry plane and the rotation axis are symmetry elements.
If a figure has a symmetry element, it is symmetrical. If it has no
symmetry element, it is asymmetrical. Even an asymmetrical figure
has a one-fold rotation axis; or, actually, an infinite number of one-
fold rotation axes.

The application of a symmetry element is a symmetry operation and
the symmetry elements are the symmetry operators. The consequence
of a symmetry operation is a symmetry transformation. Strict defi-
nitions refer to geometrical symmetry, and will serve us as guidelines
only. They will be followed qualitatively in our discussion of primarily
non-geometric symmetries, according to the ideas of the Introduction.

So far symmetries with either a symmetry plane or a rotation
axis have been discussed. These symmetry elements may also be
combined. The simplest case occurs when the symmetry planes
include a rotation axis.

2.3.1. A Rotation Axis with Intersecting Symmetry Planes

A dot between n and m in the label n·m indicates that the axis is in
the plane. This combination of a rotation axis and a symmetry plane
produces further symmetry planes. Their total number will be n as a
consequence of the application of the n-fold rotational symmetry to
the symmetry plane. The complete set of symmetry operations of a
figure is its symmetry group.

Figure 2-18 shows two flowers. The Vinca minor† has four-fold
rotational symmetry and no symmetry plane. The Norwegian tulip
has three-fold rotational symmetry with the axis of rotation in a
symmetry plane. The three-fold rotation axis will, of course, rotate
not only the flower but any other symmetry element, in this case
the symmetry plane, as well. The 120◦ rotations will generate alto-
gether three symmetry planes, and these planes will make an angle
of 60◦ with each other. There is though an alternative description of
the symmetries of the Norwegian tulip. Start with recognizing the

†This plant has been used to extract physiologically important alkaloids. One of the
derivatives has become an important medicine that dilates blood vessels in the brain.
Cavinton� has been a popular drug for improving memory.
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Figure 2-18. Top left: Vinca minor; Top right: Norwegian tulip; Bottom: stone-
carvings along the Via Appia Antica in Rome (photographs by the authors).

three symmetry planes cutting through the petals. The three symmetry
planes are at 120◦ relative to each other. Where they intersect, that line
is an axis of threefold rotation. The two flowers we chose for closer
examination have been immortalized by a Roman artist: The lower
part of Figure 2-18 shows an ancient stone carving along Via Appia
Antica in Rome depicting two flowers that may very well represent
Vinca minor and the Norwegian tulip.

Fivefold symmetry appears frequently among primitive organisms.
Examples are shown in Figure 2-19. They have fivefold rotation axes
and intersecting (vertical) symmetry planes as well. The symmetry
class of the starfish is 5·m. This starfish consists of ten congruent
parts, with each pair related by a symmetry plane. The whole starfish
is unchanged either by 360◦/5 = 72◦ rotation around the rotation axis,
or by mirror reflection through the symmetry planes which intersect at
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an angle of 36◦. Fivefold rotation with coinciding mirror reflection is
quite common among fruits and flowers. This symmetry is also rather
common among molecules. On the other hand, this symmetry is used
to be considered absent in the world of crystals as will be discussed in
more detail in the chapter on crystals.

Examples of n·m symmetries are shown in Figure 2-20. It is a much
favored symmetry by designers of important buildings.

2.3.2. Snowflakes

In addition to a rotation axis with intersecting symmetry planes
(which is equivalent to having multiple intersecting symmetry planes),
snowflakes have a perpendicular symmetry plane. This combination
of symmetries is labeled m·n:m and it is characteristic of many other

(a)

Figure 2-19. (a) Starfish after Haeckel [7]; (Continued)
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(b) (c)

(d) (e)

Figure 2-19. (b) Starfish; (c) Carrion flower (Stapelia gigantea pallida in Honolulu,
Hawaii) [8]; (d) Flower in Hawaii; (e) Apple blossom (b–e, photographs by the
authors).

highly symmetrical objects, such as prisms, bipyramids, bicones,
cylinders, and ellipsoids. Due to their high symmetries, these shapes
are relatively simple. Some examples are shown in Figure 2-21; they
all have m·n:m symmetries: the pentagonal prism, m·5:m, the trig-
onal bipyramid, m·3:m, and the bicone and the cylinder, m·∞:m
symmetry.

One of the most beautiful and most common examples of this
symmetry is the m·6:m symmetry of snow crystals. The virtually
endless variety of their shapes and their natural beauty make them
outstanding examples of symmetry. The fascination in the shape and
symmetry of snowflakes goes far beyond the scientific interest in their
formation, variety, and properties. The morphology of the snowflakes
is determined by their internal structures and the external conditions
of their formation. The mechanism of snowflake formation has been
the subject of considerable research efforts. It is well known that
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(a)

(c)

(b)

Figure 2-20. Examples in architecture: (a) Eiffel Tower, Paris, from below; (b)
Cupola of the Parliament building in Budapest; (c) Pentagon in Washington, DC
(photographs by the authors).

Figure 2-21. Examples of m·n:m symmetries: from the left, pentagonal prism; trig-
onal bipyramid; bicone; cylinder.
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the internal hexagonal arrangement of the water molecules produced
by the hydrogen bonds is responsible for the hexagonal symmetry
of snowflakes. This does not explain yet the countless number of
different shapes of snowflakes, and why even the smallest variations
from the basic underlying shape of a snowflake are repeated in all six
directions.

According to L. L. Whyte, the translator of Kepler’s New Year’s
Gift, the snowflake is “an important clue to the shaping agencies of
nature. . .” [9]. As the puzzling questions concerning snowflakes are
related to their morphology rather than to their internal structures,
these questions will be discussed at some length in the present section.
The process of solidification of fluids into crystals has been simulated
by mathematical models. These simulations showed that crystals with
sharp tips grew rapidly and had high stability, while crystals with
fat shapes grew slowly and were less stable. However, when these
slowly growing shapes were slightly perturbed, they tended to split
into sharp, rapidly growing tips. This observation led to the hypoth-
esis of the so-called points of marginal stability [10]. According to
this model, the snow crystal may start with a relatively stable shape.
The crystal may, however, be easily destabilized by a small pertur-
bation. A rapid process of crystallization from the surrounding water
vapor ensues. The rapid growth gradually transforms the crystal into
another semi-stable shape. A subsequent perturbation may then occur
resulting again in a new direction of growth with a different rate. The
marginal stability of the snowflake makes the growing crystal very
sensitive to even slight changes in its microenvironment.

The uniqueness of snowflakes may be related to the marginal
stability. The ice starts crystallizing in a flat six-fold pattern of water
crystals so it is growing in six equivalent directions. As the ice is
quickly solidifying, latent heat is released which flows between the
growing six bulges. The released latent heat retards the growth in
the areas between these bulges. This model accounts for the dendritic
or tree-like growth. Both the minute differences in the conditions of
two growing crystals and their marginal stability make them develop
differently. “Something that is almost unstable, will be very suscep-
tible to changes, and will respond in a large way to a small force”
[11]. At each step of growth slightly new micro-environmental condi-
tions are encountered, causing new and new variations in the branches.
However, it is assumed that each of the six branches will encounter
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exactly the same micro-environmental conditions, hence their almost
exact likeness.

The marginal stability model is attractive in its explanation of the
great variety of snowflake shapes. It is somewhat less convincing
in explaining the repetitiveness of the minute variations in all six
directions since the micro-environmental changes may occur also
across the snowflakes themselves and not only between the spaces
assigned to different snowflakes.

In order to explain the morphological symmetry of the dendritic
snow crystals, D. McLachlan [12] suggested a mechanism decades
ago, which has not yet been seriously challenged. He posed the very
question already mentioned above: “How does one branch of the
crystal know what the other branches are doing during growth?”
McLachlan noted that the kind of regularity encountered among the
snowflakes is not uncommon among flowers and blossoms or among
sea animals in which hormones and nerves coordinate the develop-
ment of the living organisms.

McLachlan’s explanation for the coordination of the growth among
the six branches of a snow crystal is based on the existence of thermal
and acoustical standing waves in the crystal. As the snowflake grows
by deposition of water molecules upon a small nucleus, it undergoes
thermal vibrations at temperatures between 250 and 273 K. The water
molecules strike and bounce off the nucleus and those which stay add
to the growth. Branching occurs at points with high concentration of
water molecules. If the starting ice nucleus has the hexagonal shape
shown in Figure 2-22a and the conditions favor dendritic growth,
then the six corners would be receiving more molecules and would
be releasing more heat of crystallization than the flat portions. The
dendritic development evolving from this situation is shown in Figure
2-22b. The next stage in the development of a snowflake is the produc-
tion of a new set of equally spaced dendritic branches determined by
the modes of vibration along the spines of the flake. The long spines
of Figure 2-22c are thought to be particular molecular arrays which
correspond to the ice structure. The molecules are vibrating and the
energy distribution between the modes of vibration is influenced by
the boundary conditions. When one of the spines becomes “heavily
loaded” at some point, then nodes are induced along this spine. These
nodes will eject dendritic branches that are equally spaced as indi-
cated in Figure 2-22d–f. The question of how the standing waves in
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Figure 2-22. McLachlan’s selection [13] of Bentley’s snowflake images [14] to
illustrate the coordinated growth of the six branches of a snowflake based on the
standing wave theory.

one of the six branches are coupled with those in the other branches
is answered by considering the torque about an axis through the
intersection point. This torque transmits the same frequencies and
induces the same nodes in all the branches. Thus, McLachlan asserts
that the dendritic development is identical in all six branches and is
independent of the particular branch in which the change in the
conditions occurred.

Intensive research has continued into the mechanism of snowflake
formation [15]. This research encompasses the broader question of
dendritic crystal growth. New approaches, such as fractal models,
and copious use of computer simulation have greatly facilitated
these attempts. It is fascinating how dendritic growth penetrates even
chemical synthetic work witnessed by the development of dendrimer
chemistry of ever increasing complexity, which is an example of nano-
chemistry par excellence [16]. An illustration is given in Figure 2-23.

Returning to the snowflakes, an eloquent description of their beauty
and symmetry is given by Thomas Mann in The Magic Mountain [18]:
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Figure 2-23. Dendrimers in chemistry after Tomalia and Durst [17], reproduced
with permission from Springer-Verlag.

. . . Indeed, the little soundless flakes were coming
down more quickly as he stood. Hans Castorp
put out his arm and let some of them to rest on
his sleeve; he viewed them with the knowing eye
of the nature-lover. They looked mere shapeless
morsels; but he had more than once had their like
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under his good lens, and was aware of the exquisite
precision of form displayed by these little jewels,
insignia, orders, agraffes—no jeweller, however
skilled, could do finer more minute work. Yes, he
thought, there was a difference, after all, between
this light, soft, white powder he trod with his skis,
that weighed down the trees, and covered the open
spaces, a difference between it and the sand on
the beaches at home, to which he had likened it.
For this powder was not made of tiny grains of
stone; but of myriads of tiniest drops of water
which in freezing had darted together in symmet-
rical variation—parts, then, of the same inorganic
substance which was the source of protoplasm, of
plant life, of the human body. And among these
myriads of enchanting little stars, in their hidden
splendour that was too small for man’s naked
eye to see, there was not one like unto another
and endless inventiveness governed the develop-
ment and unthinkable differentiation of one and
the same basic scheme, the equilateral, equian-
gular hexagon. Yet each, in itself—this was the
uncanny, the anti-organic, the life-denying char-
acter of them all—each of them was absolutely
symmetrical, icily regular in form. They were too
regular, as substance adapted to life never was to
this degree—the living principle shuddered at this
perfect precision, found it deathly, the very marrow
of death—Hans Castorp felt he understood now the
reason why the builders of antiquity purposely and
secretly introduced minute variation from absolute
symmetry in their columnar structures.

The coldness and lifelessness of too much symmetry is as beautifully
expressed by Thomas Mann as the beauty of the hexagonal symmetry
of the snow crystal. Michael Polányi remarked that an environment
that was perfectly ordered was not a suitable human habitat [19].
Crystallographers Fedorov and Bernal simply stated “Crystallization
is death” [20].
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Human interest in snowflakes has a long history. The oldest known
recorded statement on snowflake forms dates back to the second
century BCE and comes from China according to Needham and
Lu Gwei-Djen [21]. Six was a symbolic number for water in many
classical Chinese writings. The contrast between five-pointed plant
structures and six-pointed snowflakes has become a literary common-
place in subsequent centuries. Of several relevant citations collected
by Needham and Lu Gwei-Djen, one is reproduced here, from a state-
ment by a physician from 1189 [22],

. . . the reason why double-kernelled peaches and
apricots are harmful to people is that the flowers
of these trees are properly speaking five-petalled
yet if they develop with sixfold (symmetry), twin-
ning will occur. Plants and trees all have the five-
fold pattern; only the yellow-berry and snowflake
crystals are hexagonal. This is one of the principles
of Yin and Yang. So if double-kernelled peaches
and apricots with an (aberrant) sixfold (symmetry)
are harmful, it is because these trees have lost their
standard rule.

The examination of snowflake shapes and their comparison with
other shapes has apparently been a great achievement in East Asia.
The involvement of Yin and Yang amply demonstrates how much
importance was given to these studies. As a forerunner of the modern
investigations of the correlation between snowflake shapes and envi-
ronmental, i.e., meteorological conditions, the following passage from
the thirteenth century is cited [23]: “The Yin embracing the Yang
gives hail, the Yang embracing the Yin gives sleet. When snow gets
six-pointedness, it becomes snow crystals. When hail gets three-
pointedness, it becomes solid. This is the sort of difference that arises
from Yin and Yang.”

The first known sketches of snowflakes from Europe in the
sixteenth century did not reflect their hexagonal shape. Johannes
Kepler was the first in Europe, who recognized the hexagonal
symmetry of the snowflakes as he described it in his Latin tractate
entitled The Six-cornered Snowflake published in 1611 [24]. By this
time Kepler had already discovered the first two laws of planetary
motion and thus found the true celestial geometry when he turned his
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attention to the snowflakes. He considered their perfect form and, for
the first time, sought the origin of shape and symmetry in the internal
structure. The relationship between crystal habit and the internal struc-
ture will be discussed in the chapter on crystals (Chapter 9).

Descartes observed and recorded the shapes of snow crystals.
Some of his sketches from 1635 are reproduced in Figure 2-24
after U. Nakaya [25]. As these were the first drawings of hexag-
onal snowflakes recorded, it was quite an achievement that even rare
versions such as those composed of a hexagonal column with plane
crystals developed at both ends could be found among them. More of
such important contributions in this field occurred in the seventeenth
century [26], among them Hooke’s observations using his microscope.
Branching in snow crystals has also been recorded by several investi-
gators. Among the later works, Scoresby’s observations and sketches
are especially important [27]. Figure 2-25 reproduces some of them.
Scoresby, who later became an arctic scientist made these drawings in
his log book in 1806 at the age of 16 while he was on a voyage with
his father to the Greenland whale fisheries.

There are two fundamental books—collections of snowflake
pictures—available today as a result of photomicrography.
W. A. Bentley devoted his lifetime to taking photomicrographs
of snow crystals and collected at least 6000 of them, and about half of
them appeared in his book co-authored with W. J. Humphreys [30].
This most well-known book on snowflakes is probably unsurpassable.
Bentley’s photomicrographs have been reproduced innumerable times
in various places—sometimes without indicating the source. Some

Figure 2-24. Snow crystals by Descartes from 1635 after Nakaya [28].
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Figure 2-25. Scoresby’s sketches of snowflakes from his log book (1806) after
Stamp and Stamp [29]. Reproduced by permission.

characteristic examples of snowflakes from this collection are shown
in Figure 2-26.

The other outstanding contribution is Nakaya’s [32]. He recorded
the naturally occurring snow crystals, classified them, and investi-
gated their mass, speed of fall, electrical properties, frequency of
occurrence, and so on. In addition, Nakaya and co-workers developed
methods of producing snow crystals artificially in their laboratory at
Hokkaido University in Sapporo. Nakaya and co-workers succeeded
in determining the conditions of formation of all different types of
snowflakes. The major part of the general classification of snow crys-
tals by Nakaya is given in Table 2-1 and Figure 2-27. The hexagonal
plane crystals are the most common and the best known.

Nakaya made important contributions not only to observing the
perfect or near perfect symmetries of the snow crystals but also the
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Figure 2-26. Snowflake photomicrographs by Bentley, from Bentley and
Humphreys [31].

distortions from hexagonal symmetry. Of course, the atomic arrange-
ment is always hexagonal, but the morphology or crystal habit may
be less than perfectly regular hexagonal. Nakaya calls such crys-
tals malformed and states that these asymmetric crystals may be
more common than the symmetric ones. Of course, the question
of symmetry is a matter of degree. Even the snowflakes which are
considered to be most symmetrical may reveal slight differences in
their branches when examined closely. Currently intensive work is
going on in studying snowflakes at the California Institute of Tech-
nology [34] and other laboratories. Meteorological research continues
to probe into the various weather conditions to investigate the circum-
stances of snowflake formation. This work involves field work and
observations as well as studying century-old records in archives.
A recent article in The New York Times focused attention to these
marvels of nature [35].
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Table 2-1. Part of Nakaya’s General Classification of Snow Crystalsa

Main groups Subgroups Types

Needle (N) 1. Simple a. Elementary needle
b. Bundle of needles

2. Combination

Columnar (C) 1. Simple a. Pyramid
b. Bullet
c. Hexagonal

2. Combination a. Bullets
b. Columns

Plane (P) 1. Regular developed in plane a. Simple plate
b. Branches in sector form
c. Plate with simple extensions
d. Broad branches
e. Simple stellar form
f. Ordinary dendritic form
g. Fernlike
h. Stellar form with plates at ends
i. Plate with dendritic extensions

2. Irregular number of branches a. Three-branched
b. Four-branched
c. Others
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Table 2-1. (Continued)

Main groups Subgroups Types

3. Twelve branches a. Fernlike
b. Broad branches

4. Malformed many
varieties

5. Spatial assemblage of
plane branches

a. Spatial hexagonal
b. Radiating

Column/plane combinations (CP) 1. Column with plane at both
ends

a. Column with plates
b. Column with dendrites

2. Bullets with plates a. Bullets with plates
b. Bullets with dendrites

3. Irregular
Columnar with extended side planes (S)
Irregular snow particles (I) 1. Ice

2. Rimed
3. Miscellaneous

aAfter U. Nakaya, Snow (in Japanese), Iwanami-Shoten Publ. Co., Tokyo, 1938 (latest printing, 1987).
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Figure 2-27. From Nakaya’s general classification of snow crystals [33].

2.4. Inversion

What is the symmetry of the 1,2-dibromo-1,2-dichloro-ethane
molecule as shown in Figure 2-28? There is no symmetry plane and no
rotation axis. However, any two atoms of the same kind are related by
a line connecting them and going through the midpoint of the central
bond. This midpoint is the only symmetry element of this molecule
and it is called the symmetry center or inversion point. The applica-
tion of this symmetry element interchanges the atoms, or more gener-
ally, any two points located at the same distance from the center along
the line going through the center. This interchange is called inversion.
The notation of inversion symmetry is i.

An inversion may also be represented as the consecutive appli-
cation of two simple symmetry elements, namely a twofold rota-
tion and mirror-reflection, or vice versa. For the molecule in
Figure 2-28, this could be described, for example, in the following
way: (a) rotate the molecule by 180◦ about the C–C bond as the
rotation axis and (b) apply a symmetry plane perpendicular to and
bisecting the C–C bond; or (a) apply a twofold rotation axis perpen-
dicular to the ClCCCl plane and going through the midpoint of the
C–C bond and then (b) apply a mirror plane coinciding with the
ClCCCl plane. These operations are indicated in Figure 2-28 and in
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Figure 2-28. The 1,2-dibromo-1,2-dichloroethane molecule. Its center of symmetry
is the midpoint of the C–C bond. An inversion is equivalent to the consecutive appli-
cation of twofold rotation and reflection.

both examples the results are invariant to the order in which the two
operations are performed.

The sphere is a highly symmetrical object which possesses a center
of symmetry. Conjugate locations on the surface of a sphere are
related by an inversion through the center of symmetry. The geograph-
ical consequences of such an inversion are emphasized in a news-
paper article on New Zealand by the famous journalist, the late
James Reston in his Letter from Wellington. Search for End of the
Rainbow [36]:

Nothing is quite the same here. Summer is from
December to March. It is warmer in the North
Island and colder in the South Island. The people
drive on the left rather than on the right. Even the
sky is different—dark blue velvet with stars of the
Southern Cross—and the fish love the hooks.

Madrid, Spain, corresponds approximately to Wellington, New
Zealand, by inversion.
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The notation of the symmetry center or inversion center is 1̄
while the corresponding combined application of twofold rota-
tion and mirror-reflection may also be considered to be just one
symmetry transformation. The symmetry element is called a mirror-
rotation symmetry axis of the second order, or twofold mirror-rotation
symmetry axis and it is labeled 2̃. Thus, 1̄ ≡ 2̃.

The twofold mirror-rotation axis is the simplest among the mirror-
rotation axes. There are also axes of fourfold mirror-rotation, sixfold
mirror-rotation, and so on. Generally speaking, a 2n-fold mirror-
rotation axis consists of the following operations: a rotation by
(360/2n)◦ and a reflection through the plane perpendicular to the rota-
tion axis. The symmetry of the snowflake involves this type of mirror-
rotation axis. The snowflake obviously has a center of symmetry. The
symmetry class m·6:m contains a center of symmetry at the inter-
section of the six-fold rotation axis and the perpendicular symmetry
plane. In general, for all m·n:m symmetry classes with n even, the
point of intersection of the n-fold rotation axis and the perpendic-
ular symmetry plane is also a center of symmetry. When n is odd
in an m·n:m symmetry class, however, there is no center of symmetry
present.

2.5. Singular Point and Translational Symmetry

The midpoint of a square is unique, there is no other point equivalent
to it (Figure 2-29); it is called a singular point. A corner of the same
square is not singular, the symmetry transformations of the square
reproduce it, and there are altogether four equivalent corner points of
the square. The same argument applies if the point happens to be on
one of the symmetry axes of the square. An arbitrarily chosen point in
a square will have 7 other equivalent points because of the symmetry
transformations of the square, so altogether there will be eight equiv-
alent points. In an asymmetric figure each point is singular and the
multiplicity of each point is one.

The symmetry classes characterizing figures or objects which have
at least one singular point are called point groups. The center of
the circular pattern of the pavement in Figure 2-30a is a singular
point. Another pattern is displayed by the pavement in Figure 2-
30b, consisting of identical arcs. If it is supposed that this pavement
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Figure 2-29. Singular point and the equivalence of points in a square.

in it. Assuming an infinite extent for this pavement pattern is
natural because of its periodicity. The absence of a singular point
leads to regularity expressed in infinite repetition which charac-
terizes translational symmetry. This kind of symmetry precludes
the presence of singular points though does not preclude the pres-
ence of a singular line or plane. The symmetry classes character-
izing entities with translational symmetry are called space groups.
One-dimensional space groups describe the symmetries involving
infinite repetition or periodicity in one direction, two-dimensional
space groups those involving periodicity in two directions and
three-dimensional space groups describe the symmetry classes when
periodicity is present in all three directions. Figure 2-31 and
Table 2-2 summarize the possible cases considering dimensionality
and periodicity.

(a) (b) 

Figure 2-30. Pavements in L’Aquila, Italy (photographs by the authors). The
system of concentric circles (a) Has point-group symmetry and the pattern of arcs;
(b) If extended to infinity, has space-group symmetry.

is a fragment of an infinitely large one, there is no singular point
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Figure 2-31. Dimensionality and periodicity in point groups and space groups. This
figure is consistent with Table 2-2.

2.6. Polarity

A line is polar if its two directions can be distinguished and a plane is
polar if its two surfaces are not equivalent. This definition of polarity
has, of course, nothing to do with charge separation. A polar line has
a “head” and a “tail” and a polar plane has a “front” and a “back.” A
vertical line on the surface of the Earth is polar with respect to gravity
and a sheet of paper with one of its sides painted is polar with respect
to its color.

An axis is polar if its two ends are not brought into coincidence by
the symmetry transformations of the symmetry group of its figure. An
analogous definition applies to the two sides of a polar plane.

If a symmetry group includes a center of symmetry, polarity is
excluded because in a centrosymmetric figure a directed line or
segment of a face changes direction by the inversion. In the case of the
absence of a center of symmetry, there will be at least one directed line
or face which is not accompanied by parallel counterparts reversed in
direction.

The significance of polar axes can be demonstrated, for example,
in crystal morphology. A few examples will be mentioned here
following Curtin and Paul’s review of the chemical consequences of
the polar axis in organic crystal chemistry [37]. Figure 2-32a shows a
centrosymmetric acetanilide crystal. The faces occur in parallel pairs
and the crystal is non-polar. On the other hand, the p-chloroacetanilide
crystal shown in Figure 2-32b is noncentrosymmetric and some of the
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Table 2-2. Dimensionality (m) and Periodicity (n) of Symmetry Groups Gm
n after Engelhardta

Periodicity
Dimensionality

n = 0
no periodicity

n = 1
periodicity in
one direction

n = 2
periodicity in
two directions

n = 3
periodicity in
three directions

m = 0, Dimensionless G0
0

m = 1, One-dimensional G1
0 G1

1

m = 2, Two-dimensional G2
0 G2

1 G2
2

m = 3, Three-dimensional G3
0 G3

1 G3
2 G3

3
aW. Engelhardt, Matematischer Unterricht 1963, 9(2), 49.
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Figure 2-32. Two crystals from Groth’s Chemische Kristallographie [38].
(a) Centrosymmetric rhombic bipyramidal acetanilide; (b) Noncentrosymmetric
rhombic pyramidal p-chloroacetanilide.

faces occur without parallel ones at the opposite end of the crystal.
This crystal has a polar axis parallel to its long direction.

The morphological symmetry differences between the acetanilide
and p-chloroacetanilide crystals originate from their internal
structures. The acetanilide molecules appear in pairs and the two
molecules in each pair are related by an inversion center. On the other
hand, the p-chloroacetanilide molecules are all aligned in one direc-
tion. The molecular arrangements in the two crystals are shown in
Figure 2-33.

Even very simple structures may form polar crystals. For example,
in a polar crystal composed of diatomic molecules AB, the molecular
axis will be oriented more along the polar direction of the crystal than
perpendicular to it. Furthermore, as there is an ABAB. . . array in the
crystal, it is required that the spacing between the atom A and the two
adjacent atoms B be unequal in order to have a polar axis present,

A B A B A B . . .

Curtin and Paul characterize this situation from the point of view
of a submicroscopic traveler proceeding along this array of atoms.
The observer is able to determine the direction of travel thanks to the
difference in spacing. The distance is always longer from atom B to
atom A and shorter from atom A to the next atom B in one direction
whereas the reverse is true in the opposite direction.
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Figure 2-33. Left: The centrosymmetric arrangement of acetanilide molecules
of the crystal resulting in centrosymmetric crystal habit; Right: The p-acetanilide
molecules are aligned in a head-tail orientation resulting in the occurrence of a
polar axis of the crystal habit [39]. Both are reprinted with permission from c©
1981 American Chemical Society and D. Y. Curtin and I. C. Paul.

Crystal polarity may have important consequences in the chemical
behavior. In solid/gas reactions, for example, crystal polarity may be
a source of considerable anisotropy. There are also important phys-
ical properties characterizing polar crystals, such as pyroelectricity
and piezoelectricity and others [40]. The primitive cell of a pyroelec-
tric crystal possesses a dipole moment. The separation of the centers
of the positive and negative charges changes upon heating. In this
process the two charges migrate to the two ends of the polar axis.
Piezoelectricity is the separation of the positive and negative charges
upon expansion/compression of the crystal. Both pyroelectricity and
piezoelectricity have practical uses.

2.7. Chirality

There are many objects, both animate and inanimate, which have no
symmetry planes but which occur in pairs related by a symmetry plane
and whose mirror images cannot be superposed. W. H. Thompson,
Lord Kelvin, wrote: “I call any geometrical figure or group of points
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‘chiral’, and say it has chirality, if its image in a plane mirror, ideally
realized, cannot be brought into coincidence with itself” [41]. He
called forms of the same sense homochiral and forms of the oppo-
site sense heterochiral. The most common example of a heterochiral
form is hands. Indeed, the word chirality itself comes from the Greek
word for hand, cheir. Figures 2-34 and 2-35 show heterochiral and
homochiral pairs of hands. Illustrations, however, may be found
in the most diverse examples and Figure 2-36 presents a sampler.
The simplest chiral molecules are those in which a carbon atom is
surrounded by four different ligands—atoms or groups of atoms at
the vertices of a tetrahedron. All the naturally occurring amino acids
are chiral, except glycine.

A chiral object and its mirror image are enantiomorphous, and they
are each other’s enantiomorphs. Louis Pasteur (Figure 2-37) was the
first who suggested that molecules can be chiral. In his famous exper-
iment in 1848, he recrystallized a salt of tartaric acid and obtained
two kinds of small crystals which were mirror images of each other
as seen by Pasteur’s models in Figure 2-38 preserved at Institut
Pasteur at Paris. Originally Pasteur may have been motivated to make
these large-scale models because Jean Baptiste Biot, the discoverer of
optical activity had very poor vision by the time of Pasteur’s discovery
[42]. Pasteur demonstrated chirality to Biot, who was visibly affected

(a) (b)

Figure 2-34. Heterochiral pairs of hands. (a) Tombstone in the Jewish cemetery in
Prague; (b) Sculpture Park in Budapest (photographs by the authors).
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(a) (b)

(c)

Figure 2-35. Homochiral pairs of hands. (a) Aguste Rodin, The Cathedral in the
Rodin Museum, Paris (reproduced by permission, photograph by the authors); (b)
U.S. stamp; (c) Logo with SOS distress sign at a Swiss railway station (photograph
by the authors).

by what he saw and told Pasteur: “My dear child, I have loved science
so much throughout my life that this makes my heart throb” [43].
The two kinds of chiral crystals have the same chemical composi-
tion, but differ in their optical activity. One is laevo-active (L) and
the other dextro-active (D). According to the Nobel laureate biologist
George Wald, “No other chemical characteristic is as distinctive of
living organisms as is optical activity” [44].

The true absolute configuration of molecules could not be deter-
mined at Pasteur’s time, so the organic chemist Emil Fischer had arbi-
trarily assigned an absolute configuration to sugars that had a 50%
chance of being correct [45]. It was a great achievement of crystal-
lography when Bijvoet and his associates determined the sense of
chirality of molecules [46]. Luckily, Fischer’s guess proved to be
correct. By now the absolute configuration has been established for
relatively simple molecules as well as for large biological molecules.
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(a)

(b) (c)

(d) (e)

Figure 2-36. Illustrations of chiral pairs. (a) Decorations (in Bern, Switzerland,
photograph by the authors) whose motifs of fourfold rotational symmetry are each
other’s mirror images; (b) Quartz crystals; (c) J. S. Bach, Die Kunst der Fuge,
Contrapunctus XVIII, detail; (d) Legs (detail of Kay Worden’s sculpture, Wave, in
Newport, Rhode Island), (photograph by the authors); (e) A molecule and its mirror
image in which a carbon atom is surrounded by four different atoms, for example,
CHFClBr.

If a molecule or a crystal is chiral, it is necessarily optically active.
The converse is, however, not true. There are non-enantiomorphous
symmetry classes of crystals that may exhibit optical activity.

L. L. Whyte extended the definition of chirality: “Three-
dimensional forms (point arrangements, structures, displacements,
and other processes) which possess non-superposable mirror images
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Figure 2-37. Louis Pasteur’s bust in front of the Institut Pasteur, Paris (photograph
by the authors).

are called ‘chiral’” [47]. A chiral process consists of successive states
all of which are chiral. The two main classes of chiral forms are screws
and skews. Screws may be conical or cylindrical and are ordered
with respect to a line. Examples for the latter are the left-handed and
right-handed helices in Figure 2-39.

Figure 2-38. Pasteur’s models at the Institut Pasteur (photographs by the authors).
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Figure 2-39. Left: Left-handed and right-handed helices at the Monastery in
Zagorsk, Russia; and Right: in an Italian monastery (photographs by the authors).

Vladimir Prelog offered yet another definition of chirality that
contains only subtle differences from previous definitions: “An object
is chiral if it cannot be brought into congruence with its mirror image
by translation and rotation. Such objects are devoid of symmetry
elements which include reflexion: mirror planes, inversion centers
or improper rotational axes” [48]. Prelog had a beautiful ex libris
bookplate by the Swiss graphic artis, Hans Erni (Figure 2-40). Prelog
maintained that the drawing represented all three basic paraphernalia
necessary for dealing with chirality, viz., human intelligence, a left
and a right hand, and two enantiomorphous tetrahedra. These two
tetrahedra are not regular because regular tetrahedra could not be
chiral due to their symmetry planes.

An interesting overview of the left/right problem in science is given
by Martin Gardner [50]. Distinguishing between left and right has
also considerable social, political, psychological connotations. For
example, left-handedness in children is viewed with varying degrees
of tolerance in different parts of the world. Figure 2-41 shows different
(homochiral and heterochiral) chairs a quarter of a century ago at the
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Figure 2-40. Hans Erni’s ex libris bookplate for Vladimir Prelog with a dedication
to one of the authors (courtesy of Vladimir Prelog, Zurich). A peculiar feature of
this drawing is that the two hands appear to be inverted and can be imagined as a
result of the two arms being crossed [49]. Erni made other versions of this drawing
in which the two hands appear to be non-inverted.

University of Connecticut. Older classrooms used to have chairs for
the right-handed students only whereas newer chairs were made for
both right-handed and left-handed students.

2.7.1. Asymmetry and Dissymmetry

Sometimes the terms asymmetry, dissymmetry, and antisymmetry are
confused in the literature although the scientific meaning of these

Figure 2-41. Classrooms with homochiral and heterochiral chairs in the 1980s at
the University of Connecticut (photographs by the authors).
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terms is in complete conformity with the grammar of these words.
Asymmetry means the complete absence of symmetry, dissymmetry
means the absence of certain symmetry and antisymmetry means the
symmetry of opposites (see Section 4.6). Pasteur used “dissymmetry”
for the first time as he designated the absence of a symmetry plane
in a figure. Accordingly, dissymmetry did not exclude all elements
of symmetry, only the absence of certain symmetries. Chirality is a
conspicuous example of dissymmetry.

Pierre Curie suggested a broad application of the term dissym-
metry. He called a crystal dissymmetric in case of the absence of
those elements of symmetry upon which depends the existence of
one or another physical property in that crystal. In Pierre Curie’s
original words: “Dissymmetry creates the phenomenon” (“C’est la
dissymétrie qui crée le phénomène”) [51]. Namely, a phenomenon
exists and is observable due to dissymmetry, i.e., due to the absence of
some symmetry elements from the system. Finally, Shubnikov called
dissymmetry the falling out of one or another element of symmetry
from a given group [52]. He argued that to speak of the absence
of elements of symmetry makes sense only when these symmetry
elements are present in some other structures.

Thus, from the point of view of chirality any asymmetric figure
is chiral, but asymmetry is not a necessary condition for chirality. All
dissymmetric figures are also chiral if dissymmetry means the absence
of usually a plane of reflection. In this sense, dissymmetry is synony-
mous with chirality.

Pasteur was aware of the possible implications of chirality. In his
words,

Is it not necessary and sufficient to admit that at
the moment of the elaboration of the primary prin-
ciples in the vegetable organism, [a dissymmetric]
force is present? . . . Do these [dissymmetric]
actions, possibly placed under cosmic influences,
reside in light, electricity, in magnetism, or in heat?
Can they be related to the motion of the earth, or
to the electric currents by which physicists explain
the terrestrial magnetic poles?

Pasteur’s discovery and subsequent work on chirality was a rich
starting point for many branches that grew from a common ground.
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It is only recently that minute differences have turned up in extremely
accurate computational works in the energies of chiral molecules
distinguishing them.

An assembly of molecules may be achiral for one of two reasons.
Either all the molecules present are achiral, or the two kinds of
enantiomorphs are present in equal amounts. Chemical reactions
between achiral molecules lead to achiral products. Either all product
molecules will be achiral or the two kinds of chiral molecules will
be produced in equal amounts. Chiral crystals may sometimes be
obtained from achiral solutions. When this happens, the two enan-
tiomorphs will be obtained in (roughly) equal numbers, as was
observed by Pasteur. Quartz crystals are an inorganic example of
chirality (Figure 2-36b). Roughly equal numbers of left-handed and
right-handed crystals are obtained from the achiral silica melt.

Incidentally, Pierre Curie’s teachings on symmetry are probably not
so widely known as they should be, considering their fundamental
and general importance. The fact that his works on symmetry were
characterized by extreme brevity may have contributed to this. Marie
Curie [53] and Aleksei V. Shubnikov [54] have considerably facili-
tated the dissemination of Curie’s teachings. Our discussion also relies
on their works. A critical and fascinating discussion of Pierre Curie’s
symmetry teachings can be found in the literature [55].

Pierre Curie’s above quoted statement concerning the role of
dissymmetry in “creating” a phenomenon is part of a broader formu-
lation. It says that in every phenomenon there may be elements of
symmetry compatible with, though not required by, its existence.
What is necessary is that certain elements of symmetry shall not exist.
In other words, it is the absence of certain symmetry elements which
is a necessary condition for the phenomenon to exist.

Another important statement of Pierre Curie’s is that when several
phenomena are superposed in the same system, the dissymmetries are
added together. As a result, only those symmetry elements that were
common to each phenomenon will be characteristic of the system.

Finally, concerning the symmetry relationships of causes and
effects, Marie Curie formulated the following principles from Pierre
Curie’s teachings (Figure 2-42) [56]. (1) “When certain causes
produce certain effects, the elements of symmetry in the causes ought
to reappear in the effects produced.” (2) “When certain effects reveal
a certain dissymmetry, this dissymmetry should be apparent in the
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Figure 2-42. Bust of Marie and Pierre Curie in Paris (photograph by the authors).

causes which have given them birth.” However, (3) “The converse of
these two statements does not hold . . . [and] the effects produced can
be more symmetrical than their causes.”

2.7.2. Vital Importance

Living organisms contain a large number of chiral constituents, but
only L-amino acids are present in proteins and only D-nucleotides
in nucleic acids. This happens in spite of the long-held view that
the energy of both enantiomorphs is equal and their formation has
equal probability in an achiral environment. However, only one of the
two occurs in nature, and the particular enantiomorphs involved in
life processes are the same in humans, animals, plants, and microor-
ganisms. The origin of this phenomenon is a great puzzle which,
according to Prelog [57], may be regarded as a problem of “molec-
ular theology.” Lately, very accurate computational work for rela-
tively small systems has revealed minute differences in energy, which
through cooperative effects could have contributed to the dominance
of one of the two forms. The last word has not been said about the
differences of chiral pairs, and further development may reveal inter-
esting new knowledge.

The problem of preference has long fascinated those interested in
the molecular basis of the origin of life [58]. There are, in fact, two
questions. One is why do all the amino acids in a protein have the
same L-configuration or why do all the components of a nucleic acid,
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that is, all its nucleotides, have the same D-configuration? The other
question, the more intriguing one, is why that particular configura-
tion happens to be the L for the amino acids and why it happens to
be the D for nucleotides in all living organisms? This second ques-
tion seems to be impossible to answer satisfactorily at the present
time.

According to Prelog [59], a possible explanation is that the creation
of living matter was an extremely improbable event, which occurred
only once. We may then suppose that if there are living forms
similar to ours on a distant planet, their molecular structures may
be the mirror image of the corresponding molecular structures on
the earth. We know of no structural reason at the molecular level
for living organisms to prefer one type of chirality over another, and
the minute energy differences referred to above have not yet found
any reasonable interpretation. (There may be reasons at the atomic
nuclear level. The violation of parity at the nuclear level has already
been referred to in the Introduction). Of course, once the selection is
made, the consequences of this selection must be examined in rela-
tion to the first question. The fact remains, however, that chirality is
intimately associated with life. This means that at least dissymmetry
and possibly asymmetry are basic characteristics of living matter.
Stephen F. Mason has compiled a meticulous and critical review of
this question in the concluding chapter titled “Biomolecular hand-
edness” in his comprehensive treatise, Chemical Evolution through
the 1980s [60]. Carefully measured optical activities of crystalline
materials dissolved in water showed appreciable influence of parity-
violating energy differences in the crystallization process in some
cases [61].

In 1960, John B. S. Haldane published a note in Nature [62] in
which he returned to Pasteur’s ideas [63] in the wake of the discovery
of parity violation. Haldane is quoting Pasteur in French, but what we
quote here we communicate in English translation.‡ Haldane begins
with mentioning the discovery of parity violation that has led to the
notion of the asymmetrical universe. This was first enunciated by
Pasteur: “It is inescapable that dissymmetric forces must be opera-
tive during the synthesis of the first dissymmetric natural products.”

‡We are grateful to Professor Alan L. Mackay (London) for the English translation.
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Then Haldane continues quoting Pasteur: “What might these forces
be? I, for my part, think that they are cosmological. The universe is
dissymmetric and I am persuaded that life, as it is known to us, is a
direct result of the dissymmetry of the universe or of its indirect conse-
quences. The universe is dissymmetric.” Although Pasteur believed
that there is a sharp gap between vital and nonliving processes, he
attributed the dissymmetry of living matter to the dissymmetry of the
structure of the universe and not to a vital force.

Concerning the first question, Orgel [64] suggests that we compare
the DNA structure to a spiral staircase. The regular DNA right-handed
double helix is composed of D-nucleotides. On the other hand, if a
DNA double helix were synthesized from L-nucleotides, it would be
left-handed. These two helices can be visualized as right-handed and
left-handed spiral staircases, respectively. Both structures can perform
useful functions. A DNA double-helix containing both D- and
L-nucleotides, however, could not form a truly helical structure at all
since its handedness would be changing. Orgel suggested considering
the analogous spiral staircase as depicted in Figure 2-43.

If each component of a complex system is replaced by its mirror
image, the mirror image of the original system is obtained. However,
if only some components of the complex system are replaced by
their mirror images, a chaotic system emerges. Chemical systems that
are perfect mirror images of each other behave identically, whereas
systems in which only some but not all components had been replaced
by their mirror images have quite different chemical properties. If,
for example, a naturally occurring enzyme made up of L-amino acids
synthesizes a D-nucleotide, then the corresponding artificial enzyme
obtained from D-amino acids would synthesize the L-nucleotide. On
the other hand, a corresponding polypeptide containing both D- and
L-amino acids would probably lack the enzymatic activity. A most
charming example is given by Lewis Carroll, through his heroine,
Alice, when she wonders, “Perhaps Looking-glass milk is not good
to drink. . .” [66].

It has been known for some time that the two enantiomers of
drugs and pesticides may have vastly different responses in a living
organism. Natural products extracted from plants and animals are
pure—in that they contain only one of the two possible enantiomers—
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Figure 2-43. Helical staircase with changing handedness from Orgel (reproduced
with permission from Leslie L. Orgel, Ja Jolla, California) [65].

while the synthesized ones are obtained in a 1:1 ratio of the two
versions. In some cases, the other member of the twin is harmless,
in addition to the one exerting the beneficial action. In other cases,
however, the drug molecule has an “evil twin.”

A tragic example was the thalidomide case. It was known as
Contergan in Europe, and it is N-phthaloyl-�-aminoglutarimide (its
model is shown in Figure 2-44). It was originally marketed as a seda-
tive in the late-1950s. It was also given to pregnant women suffering
from morning sickness. The drug was marketed as a racemate and by
the early 1960s, many birth defects in Western Europe were associ-
ated with thalidomide. When thalidomide was administered to preg-
nant women in the first trimester of their pregnancy, it acted as a
teratogen, causing stunted or deformed arms and legs in the infants.
In the wake of the many tragedies, the drug was withdrawn from
the market. The tragedies occurred worldwide except in the Soviet
block where it was not available and the United States where the Food



2.7. Chirality 73

Figure 2-44. Thalidomide images (Computer drawing by Ilya Yanov, Jackson,
Mississippi).

and Drug Administration (FDA) had never approved it. The lack of
approval originated from the mistaken belief by an FDA agent who
suspected incidences of peripheral neuropathy, which, as it turned out,
was unconnected with the teratogenic effect of thalidomide.

Research on thalidomide did not stop with its removal from the
market. For a while, it was used as an excellent example of one
version being beneficial and the other harmful. Accordingly, it was
suggested that had the beneficial isomer been resolved and adminis-
tered selectively, the tragedies could have been avoided. Later studies,
however, reported that thalidomide undergoes rapid interconversion
between the enantiomers in the human organism, so resolvation could
not have eliminated the dangers. Thalidomide research continues due
to its potentials for beneficial uses as, for example, in treating inflam-
matory and autoimmune diseases [67]. The thalidomide tragedies
facilitated the introduction of stringent regulations about the approval
of chiral drugs especially in the European Union and the United
States.

There are a few examples on the next page in which twin-
enantiomers have different properties.
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Right-hand version Left-hand version
Ethambutol

Treats tuberculosis Causes blindness
Penicillamine

Treats joints Very toxic
Naproxen

Reduces pain, fever, inflammation Toxic for the liver
(however, carries the risk of heart disease)

Propoxyphene∗

Pain reliever Cough medicine
Norgestrel

Negligible contraceptive activity, Contraceptive
but no harmful effect

Asparagin
Bitter Sweet

Carvon
Caraway smell Spearmint smell

Limonene
Lemon smell Orange smell

In the light of the above set of examples, it is obvious why it is
so important to produce chirally “pure” substances [68]. Three scien-
tists from among those who worked out reliable and efficient tech-
niques for this purpose were awarded the Nobel Prize for Chemistry
in 2001, K. Barry Sharpless, William S. Knowles, and Ryoji Noyori.
The Swedish academician who introduced the three scientists at the
award ceremony stressed that they “have developed chiral catalysts in
order to produce only one of the [chiral] forms” [69]. Chiral produc-
tion and separation continue to be among the most practical problems
in the application of chemical advances [70].

2.7.3. La coupe du roi

Among the many chemical processes in which chirality/achirality
relationships may be important is the fragmentation of some
molecules and the reverse process of the association of molecular frag-
ments. Such fragmentation and association can be considered gener-
ally and not just for molecules. The usual cases are those in which an
achiral object is bisected into achiral or heterochiral halves. On the

∗ Note that the names of the respective medications are each other’s mirror images,
Darvon R© versus Novrad R©.
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(a)

(c)

(b)

Figure 2-45. Dissection of an equilateral triangle into (a) Achiral; (b) Homochiral;
and (c) Heterochiral segments after Shubnikov and Koptsik [72]. Used with permis-
sion from Nauka Publishers, Moscow.

other hand, if an achiral object can be bisected into two homochiral
halves, it cannot be bisected into two heterochiral ones. A relatively
simple case is the tessellation of planar achiral figures into achiral,
heterochiral, and homochiral segments. Such tessellations are illus-
trated for the equilateral triangle in Figure 2-45 [71].

Anet et al. [73] have cited a French parlor trick called la coupe
du roi—the royal section—in which an apple is bisected into two
homochiral halves, as shown in Figure 2-46. An apple can be easily
bisected into two achiral halves. On the other hand, it is impos-
sible to bisect an apple into two heterochiral halves. Two heterochiral
halves, however, can be obtained from two apples, both cut into two
homochiral halves in the opposite sense. According to la coupe du roi
two vertical half cuts are made through the apple. One cut goes from
the top to the equator, and another, perpendicularly, from the bottom to
the equator. In addition, two nonadjacent quarter cuts are made along
the equator. If all this is properly done, the apple should separate into
two homochiral halves.

The first chemical analog of la coup du roi was demon-
strated by Cinquini et al. [74] by bisecting the achiral molecule
of cis-3,7-dimethyl-1,5-cyclooctanedione into homochiral halves,
viz. 2-methyl-1,4-butandiol. The reaction sequence is depicted in
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Figure 2-46. The French parlor trick la coupe du roi: An apple can be cut into two
homochiral halves in two ways which are enantiomorphous to each other. (An apple
cannot be cut into two heterochiral halves. Two heterochiral halves originating from
two different apples cannot be combined into one apple).

Figure 2-47 after Cinquini et al. [75] who painstakingly documented
the analogy with the pomaceous model. Only examples of the
reverse coupe du roi had been known prior to their work. Thus
Anet et al. [76] reported the synthesis of chiral 4-(bromomethyl)-6-
(mercaptomethyl)[2.2]metacyclophane. They then showed that two
homochiral molecules can be combined to form an achiral dimer as
shown in and illustrated by Figure 2-48.

2.8. Polyhedra

“A convex polyhedron is said to be regular if its faces are regular and
equal, while its vertices are all surrounded alike” [79]. A polyhedron
is convex if every dihedral angle is smaller than 180◦. The dihedral
angle is the angle formed by two polygons joined along a common
edge.

There are only five regular convex polyhedra, a very small number
indeed. The regular convex polyhedra are called Platonic solids
because they constituted an important part of Plato’s natural philos-
ophy. They are: the tetrahedron, cube (hexahedron), octahedron,
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Figure 2-47. La coupe du roi and the reaction sequence transforming cis-3,7-
dimethyl-1,5-cyclooctanedione into 2-methyl-1,4-butanediol. After Cinquini et al.
[77].

dodecahedron, and the icosahedron. The faces are regular polygons;
regular triangles, regular pentagons, or squares.

A regular polygon has equal interior angles and equal sides.
Figure 2-49 presents a regular triangle, a regular quadrangle, i.e.,
square, a regular pentagon, and a few more. As the number of sides
approaches infinity, the circle is the limit. The regular polygons have
an n-fold rotational symmetry axis perpendicular to their plane and
going through their midpoint. Here n is 1, 2, 3, . . . up to infinity for
the circle.

The five regular polyhedra and some of their characteristic
symmetry elements are shown in Figure 2-50 with their parameters
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Figure 2-48. Reverse la coup du roi and the formation of dimer from two
homochiral 4-(bromomethyl)-6-(mercaptomethyl) [2.2]metacyclophane molecules.
After Anet et al. [78]. Reprinted with permission from c© 1983 American Chemical
Society and Kurt Mislow.

compiled in Table 2-3. A commemorative stamp honoring Leonhard
Euler and his equation, V − E + F = 2, where V, E, and F are the
number of vertices, edges, and faces, are reproduced in Figure 2-51.
The equation is valid for polyhedra having any kind of polygonal

Figure 2-49. Regular polygons.
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Figure 2-50. The five Platonic solids with some of their characteristic symmetry
elements.

faces. According to Weyl [80], the existence of the tetrahedron, cube,
and octahedron is a fairly trivial geometric fact, but the discovery of
the regular dodecahedron and the regular icosahedron was “one of the
most beautiful and singular discoveries made in the whole history of
mathematics.” However, according to Coxeter [81], to ask the ques-
tion who first constructed the regular polyhedra is like asking the
question who first used fire.

Many primitive organisms have the shape of the pentagonal dodeca-
hedron. As will be seen later, pentagonal symmetry used to be consid-
ered forbidden in the world of crystal structures. Belov [82] suggested
that the pentagonal symmetry of primitive organisms represents their
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Table 2-3. Characteristics of the Regular Polyhedra

Name Polygon Number
of faces

Vertex
figure

Number
of vertices

Number
of edges

Tetrahedron 3 4 3 4 6
Cube 4 6 3 8 12
Octahedron 3 8 4 6 12
Dodecahedron 5 12 3 20 30
Icosahedron 3 20 5 12 30

defense against crystallization. Polyhedral-shaped radiolarians from
Ernst Haeckel’s book [83] have been reproduced frequently in trea-
tises on symmetry; in Figure 2-52, we show a few of them. Two artistic
representations of the regular pentagonal dodecahedron are shown in
Figure 2-53.

Figure 2-54 shows Kepler and his planetary model based on the
regular solids [84]. According to this model the greatest distance of
one planet from the sun stands in a fixed ratio to the least distance of
the next outer planet from the sun. There are five ratios describing the
distances of the six planets which were known to Kepler. A regular
solid can be interposed between two adjacent planets so that the inner
planet, when at its greatest distance from the sun, lays on the inscribed
sphere of the solid, while the outer planet, when at its least distance,
lays on the circumscribed sphere.

Arthur Koestler in The Sleepwalkers called this planetary model
[86] “. . . a false inspiration, a supreme hoax of the Socratic daimon,
. . .” However, the planetary model which is also a densest packing
model probably symbolizes Kepler’s best attempt at attaining a unified

Figure 2-51. Euler and his equation, e − k + f = 2, corresponding to V − E + F =
2, where the German e (Ecke), k (Kante), and f (Fläche) correspond to vertex (V),
edge (E), and face (F) in English, respectively (East German postal stamp).
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Figure 2-52. Radiolarians from Haeckel’s book [85].

view of his work both in astronomy and in what we call today crystal-
lography.

Inorganic chemistry is especially rich in systems that can be
described by two or more polyhedra, nested into each another. An
interesting case is the W6S8(PEt3)6 crystal [88] in which there is
a central octahedron formed by the tungsten atoms, surrounded by
a sulfur cube that is enveloped by an octahedron formed by the
phosphine ligands (Figure 2-55). Structures in which several poly-
hedra are nested in each other are sometimes called keplerates,
referring to Kepler’s beautiful structure of the nested five Platonic
solids [90].

There are excellent monographs on regular figures, of which we
single out those by Coxeter and by László Fejes Tóth as especially
noteworthy [91]. The Platonic solids have very high symmetries and
one especially important common characteristic. None of the rota-
tional symmetry axes of the regular polyhedra is unique, but each axis
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(a) (b)

Figure 2-53. Two artistic representations of the regular pentagonal dodecahedron.
(a) Pentagonal dodecahedron as part of the sculpture symbolizing “Industry” at the
Commons in Boston (photograph by the authors); (b) Leonardo da Vinci’s dodeca-
hedron in a book of Luca Pacioli, De Divina Proportione, published in 1509.

Figure 2-54. Johannes Kepler on Hungarian memorial stamp and his Planetary
Model based on the regular solids [87].
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Figure 2-55. Nesting of different regular polyhedra in the structure of W6S8(PEt3)6,
after Saito et al. [89].

is associated with several equivalent axes to itself. The five regular
solids can be classified into three symmetry classes:

Tetrahedron 3/2·m = 3/4̃
Cube and Octahedron 3/4·m = 6̃/4
Dodecahedron and Icosahedron 3/5·m = 3/1̃0

It is equivalent to describe the symmetry class of the tetrahedron
as 3/2·m or 3/4̃. The skew line relating two axes means that they
are not orthogonal. The symbol 3/2·m denotes a threefold axis, and a
twofold axis which are not perpendicular and a symmetry plane which
includes these axes. These three symmetry elements are indicated in
Figure 2-50. The symmetry class 3/2·m is equivalent to a combination
of a threefold axis and a fourfold mirror-rotation axis. In both cases
the threefold axes connect one of the vertices of the tetrahedron with
the midpoint of the opposite face. The fourfold mirror-rotation axes
coincide with the twofold axes. The presence of the fourfold mirror-
rotation axis is easily seen if the tetrahedron is rotated by a quarter
of rotation about a twofold axis and is then reflected by a symmetry
plane perpendicular to this axis. The symmetry operations chosen as
basic will then generate the remaining symmetry elements. Thus, the
two descriptions are equivalent.

Characteristic symmetry elements of the cube are shown in
Figure 2-50. Three different symmetry planes go through the center
of the cube parallel to its faces. Furthermore, six symmetry planes
connect the opposite edges and also diagonally bisect the faces.
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The fourfold rotation axes connect the midpoints of opposite faces.
The sixfold mirror-rotation axes coincide with threefold rotation
axes. They connect opposite vertices and are located along the body
diagonals. The symbol 6̃/4 does not directly indicate the symmetry
planes connecting the midpoints of opposite edges, the twofold rota-
tion axes, or the center of symmetry. These latter elements are gener-
ated by the others. The presence of a center of symmetry is well seen
by the fact that each face and edge of the cube has its parallel counter-
part. The tetrahedron, on the other hand, has no center of symmetry.

The octahedron is in the same symmetry class as the cube.
The antiparallel character of the octahedron faces is especially
conspicuous. As seen in Figure 2-50, its fourfold symmetry axes go
through the vertices, the threefold axes go through the face midpoints,
and the twofold axes go through the edge midpoints.

The pentagonal dodecahedron and the icosahedron are in the same
symmetry class. The fivefold, threefold and twofold rotation axes
intersect the midpoints of faces, the vertices and the midpoints of
edges of the dodecahedron, respectively (Figure 2-50). On the other
hand, the corresponding axes intersect the vertices and the midpoints
of faces and edges of the icosahedron (Figure 2-50).

Consequently, the five regular polyhedra exhibit a dual relationship
as regards their faces and vertex figures. The tetrahedron is self-dual
(Table 2-3).

It is an intriguing question as to why there are only five regular
polyhedra? Keeping in mind the definition that a regular polyhedron
has equal and regular polygons as its faces and all of its vertices are
alike, the explanation is rather simple. Take first the simplest regular
polygon, the equilateral triangle, as the face for a polyhedron. At
least three of them need to join at a vertex to make a solid. This is
the basis for the tetrahedron. When there are four and five of them,
the octahedron and icosahedron are obtained, respectively. However,
when we try to have six equilateral triangles to join at a common
vertex, they will lie flat, yielding a regular hexagon. Obviously,
larger numbers are out, too. Take now the next regular polygon, the
square. Three of them at a vertex will yield the cube. Four squares,
however, will lie in a plane; thus, with the square, there is only one
kind of regular polyhedron. The next regular polygon is the regular
pentagon. Joining three of them will eventually lead to the regular
dodecahedron. Four of them cannot fit. It is impossible to build a
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Figure 2-56. The four regular star polyhedra [93]. From the left, the small stellated
dodecahedron; great dodecahedron; great stellated dodecahedron; and the great
icosahedron. Used by permission from Oxford University Press.

polyhedron with three regular hexagons in the vertex since they will
lie flat. Here, we reached the limit.

If the definition of regular polyhedra is not restricted to convex
figures, their number rises from five to nine [92]. The additional four
are depicted in Figure 2-56; they are called by the common name of
regular star polyhedra. One of them, viz., the great stellated dodeca-
hedron, is illustrated by the decoration at the top of the Sacristy of St.
Peter’s Basilica in Vatican City in Figure 2-57.

The sphere deserves special mention. It is one of the simplest
possible figures and, accordingly, one with high and complicated

Figure 2-57. Great stellated dodecahedron as decoration at the top of the Sacristy
of St. Peter’s Basilica, Vatican City (photograph by the authors).
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symmetry. It has an infinite number of rotation axes of infinite
order. All of them coincide with body diagonals going through the
midpoint of the sphere. The midpoint, which is also a singular point,
is the center of symmetry of the sphere. The following symmetry
elements may be chosen as basic ones: two infinite-order rotation axes
which are not perpendicular plus one symmetry plane. Therefore, the
symmetry class of the sphere is ∞/∞·m. Concerning the symmetry of
the sphere George Kepes quotes Copernicus [94]:

. . . the spherical is the form of all forms most
perfect, having need of no articulation; and
the spherical is the form of greatest volumetric
capacity, best able to contain and circumscribe all
else; and all the separated parts of the world—
I mean the sun, the moon, and the stars—are
observed to have spherical form; and all things tend
to limit themselves under this form—as appears in
drops of water and other liquids whenever of them-
selves they tend to limit themselves. So no one may
doubt that the spherical is the form of the world, the
divine body.

An artistic representation of a sphere is shown in Figure 2-58.

Figure 2-58. Artistic representation of a sphere in front of the World Trade Center
in New York City, which was also destroyed in the terror attack on September 11,
2001 (photograph by the authors).



2.8.Polyhedra
87

Table 2-4. The Thirteen Semiregular Polyhedra

Number of Number of rotation axes

No. Name Faces Vertices Edges 2-fold 3-fold 4-fold 5-fold

1 Truncated tetrahedrona 8 12 18 3 4 0 0
2 Truncated cubea 14 24 36 6 4 3 0
3 Truncated octahedrona 14 24 36 6 4 3 0
4 Cuboctahedronb 14 12 24 6 4 3 0
5 Truncated cuboctahedron 26 48 72 6 4 3 0
6 Rhombicuboctahedron 26 24 48 6 4 3 0
7 Snub cube 38 24 60 6 4 3 0
8 Truncated dodecahedrona 32 60 90 15 10 0 6
9 Icosidodecahedronb 32 30 60 15 10 0 6

10 Truncated icosahedrona 32 60 90 15 10 0 6
11 Truncated icosidodecahedron 62 120 180 15 10 0 6
12 Rhombicosidodecahedron 62 60 120 15 10 0 6
13 Snub dodecahedron 92 60 150 15 10 0 6
aTruncated regular polyhedron.
bQuasiregular polyhedron.
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Figure 2-59. The 7 special semi-regular polyhedra. First two rows: the so-called
truncated regular polyhedra; Third row: the quasi-regular polyhedra.

In addition to the regular polyhedra, there are various families
of polyhedra with diminishing degrees of regularity. The so-called
semi-regular or Archimedean polyhedra are similar to the Platonic
polyhedra in that all their faces are regular and all their vertices are
congruent. However, the polygons of their faces are not all of the same
kind. The 13 semi-regular polyhedra are listed in Table 2-4 and some
of them are depicted in Figure 2-59. Table 2-4 also enumerates their
rotation axes.

The simplest semi-regular polyhedra are obtained by symmetri-
cally shaving off the corners of the regular solids. They are the trun-
cated regular polyhedra and are marked with the superscript “a” in
Table 2-4. One of them is the truncated icosahedron, the shape of
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Figure 2-60. Shapes and various modes of linkage of truncated octahedral-shaped
sodalite units [97]. Used by permission from Plenum Press and Brian Beagley.

the C60 buckminsterfullerene molecule. Two of the semi-regular poly-
hedra are classified as so-called quasi-regular polyhedra. They have
two kinds of faces, and each face of one kind is entirely surrounded
by faces of the other kind. They are marked with the superscript “b”
in Table 2-4. All these special 7 semi-regular polyhedra are shown
in Figure 2-59. The remaining six semi-regular polyhedra may be
derived from the other semi-regular polyhedra.

The structures of zeolites, aluminosilicates, are rich in polyhedral
shapes, including the channels and cavities they form [95]. One of
the most common zeolites is sodalite, Na6[Al6Si6O24]·2 NaCl, whose
name refers to its sodium content. The sodalite unit has the shape of
a truncated octahedron. The three models of Figure 2-60 represent
different modes of linkages between the sodalite units. It is especially
interesting to see the different cavities formed by different modes of
linkage [96]. Two artistic representations of semi-regular polyhedra
are shown in Figure 2-61.

The prisms and antiprisms are also important polyhedron families.
A prism has two congruent and parallel faces and they are joined
by a set of parallelograms. An antiprism also has two congruent
and parallel faces but they are joined by a set of triangles. An infi-
nite number of prisms and antiprisms exist and a few are shown in
Figure 2-62. A prism or an antiprism is semiregular if all its faces are
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(a) (b)

Figure 2-61. Two artistic representations of semi-regular polyhedra (photographs
by the authors). (a) Snub cube fountain in Pasadena, California [98]; (b) Cubocta-
hedron on top of a garden lantern in the Shugakuin Imperial Villa in Kyoto [99].

regular polygons. A cube can be considered a square prism, and an
octahedron a triangular antiprism.

There are many additional polyhedra that are important in
discussing molecular geometries and crystal structures. Santiago
Alvarez compiled an extensive discussion of polyhedra of varying
regularity, their relationships, and many examples from inorganic
chemistry [100]. We will return to this topic in the next Chapter.

Figure 2-62. Prisms and antiprisms.



References 91

References

1. G. H. Hardy, A Mathematician’s Apology, Cambridge University Press,
Cambridge, 1941.

2. T. Mann, The Magic Mountain. The cited passage is in French both in the orig-
inal German (see, e.g., T. Mann, Der Zauberberg. S. Fischer Verlag, Frank-
furt am Main, 1960; 1974, p. 477; the book was originally published by S.
Fischer Verlag, Berlin, 1924) and its English translation (see, e.g., T. Mann,
The Magic Mountain. Translated from the German by H. T. Lowe-Porter.
Alfred A. Knopf, New York, 1946, pp. 342–343). The English translation cited
in our text was kindly provided by Dr. Jack M. Davis, Professor of English,
University of Connecticut, Storrs, 1984.

3. Mann, The Magic Mountain, pp. 276–277 (German edition, pp. 386–387).
4. J. Kepler, Strena, seu De Nive Sexangula, 1611. English translation by L. L.

Whyte, The Six-cornered Snowflake, Clarendon Press, Oxford, 1966.
5. S. P. Springer, G. Deutsch, Left Brain, Right Brain, Freeman & Co., San Fran-

cisco, 1981; J. B. Hellige, Hemispheric Asymmetry. What’s Right and What’s
Left, Harvard University Press, Cambridge, MA, 1993.

6. H. Weyl, Symmetry, Princeton University Press, Princeton, New Jersey, 1952,
p. 9.

7. E. Häckel (Haeckel), Kunstformen der Natur. Vols. 1-10, Verlag des Bibli-
ographischen Instituts, Leipzig, 1899–1904.

8. M. Hargittai, “Hawaiian flowers with fivefold summetry” in I. Hargittai, ed.,
Fivefold Symmetry. World Scientific, Singapore, 1992 pp. 529–541.

9. L. L. Whyte, “Foreword.” In J. Kepler (ed.), The Six-Cornered Snowflake, pp.
v–vii, p. vi.

10. G. Taubes, “The Snowflake Enigma.” Discover 1984, 5(1), 74–78, p. 75.
11. Ibid.
12. D. McLachlan, “The Symmetry of Dendritic Snow Crystals.” Proc. Natl.

Acad. Sci. U.S.A. 1957, 43, 143–151.
13. Ibid.
14. W. A. Bentley, W. J. Humphreys, Snow Crystals. McGraw-Hill, New York and

London, 1931.
15. J. Nittmann, H. E. Stanley, “Tip Splitting without Interfacial-Tension and

Dendritic Growth-Patterns Arising from Molecular Anisotropy” Nature 1986,
321, 663–668; S. Kai, ed., Pattern Formation in Complex Dissipative Systems,
World Scientific, Singapore, 1992; Y. Furukawa, W. Shimada, “3-Dimensional
Pattern-Formation During Growth of Ice Dendrites – Its Relation to Universal
Law of Dendritic Growth.” J. Crystal. Growth 1993, 128, 234–239; R.
Kobayashi, “Modeling and Numerical Simulations of Dendritic Crystal-
Growth.” Physica D 1993, 63, 410–423.

16. D. A. Tomalia, “Birth of a New Macromolecular Architecture: Dendrimers
as Quantized Building Blocks for Nanoscale Synthetic Organic Chemistry.”
Aldrichimica Acta 2004, 37(2), 39–57.



92 2 Simple and Combined Symmetries

17. D. A. Tomalia, H. D. Durst, “Genealogically Directed Synthesis – Starburst
Cascade Dendrimers and Hyperbranched Structures.” Top. Curr. Chem. 1993,
165, 193–313.

18. Mann, The Magic Mountain, p. 480.
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90. A. Müller, P. Kögerler, A. W. M. Dress, “Giant Metal-Oxide-Based Spheres

and Their Topology: from Pentagonal Building Blocks to Keplerates and
Unusual Spin Systems.” Coord. Chem. Rev. 2001, 222, 193–218.



References 95

91. Coxeter, Regular Polytopes; L. Fejes Tóth, Regular Figures, Pergamon Press,
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Chapter 3

Molecular Shape and Geometry

Form is a diagram of forces.
D’Arcy W. Thompson [1]

A molecule is a collection of atoms kept together by interactions
among those atoms. For some purposes it is better to consider the
molecule as consisting of the nuclei of its constituent atoms and
its electron density distribution. Generally, it is the geometry and
symmetry of the arrangement of the atomic nuclei that is considered
to be the geometry and symmetry of the molecule itself. At a certain
point in science history, spatial considerations entered the description
of molecules. While we take this for granted today, the first steps in
this direction were not without hurdles. The year 1874 was the birth
of stereochemistry although the term itself was only introduced as
late as 1890, by Victor Meyer to describe the three-dimensional posi-
tions of the atoms in a molecule. The basic concepts were proposed
by J. H. van ‘t Hoff and J. A. Le Bel, and van ‘t Hoff published a
booklet called La Chimie dans l’Espace (Chemistry in Space) [2].
When the two scientists suggested the idea of the tetrahedral geomet-
rical arrangement of the bonds radiating from the carbon atom, it
was revolutionary, and some found it too radical. The most vocal
critic of the new views was an outstanding organic chemist, Hermann
Kolbe, who ridiculed van ‘t Hoff in the most blatant way [3]. The
true breakthrough came with X-ray crystallography, which yielded a
large amount of direct structural information. In time, other powerful
techniques joined in and modern structural chemistry commenced.
Theories and models appeared in parallel with the growing amount
of experimental data, and the observation of trends and regularities
greatly facilitated the development of this new field of chemistry [4].
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Molecules are finite figures with at least one singular point in
their symmetry description. Thus, point groups are applicable to
them. There is no inherent limitation on the available symmetries for
molecules. Molecules in the gas phase are considered to be free. They
are so far apart that they are unperturbed by interactions from other
molecules and thus can be considered isolated from each other. On
the other hand, intermolecular interactions may occur between the
molecules in condensed phases, i.e., in liquids, melts, amorphous
solids, or crystals. In the present discussion all molecules will be
assumed unperturbed by their environment, regardless of the phase
or state of matter in which they exist.

Molecules are never motionless. They are performing vibrations all
the time. In addition, the gaseous molecules, and also the molecules
in liquids, are performing rotational and translational motion as well.
Molecular vibrations constitute relative displacements of the atomic
nuclei with respect to their equilibrium positions and occur in all
phases, including the crystalline state, and even at the lowest possible
temperatures. The magnitude of molecular vibrations is relatively
large, amounting to several percent of the internuclear distances. Typi-
cally, there are about 1012–1014 vibrations per second.

Symmetry considerations are fundamental in any description of
molecular vibrations, as will be seen later in detail (Chapter 5).
First, however, the molecular symmetries will be discussed, ignoring
entirely the motion of the molecules. Various molecular symme-
tries will be illustrated by examples. A simple model will also be
discussed to gain some insight into the origins of the various shapes
and symmetries in the world of molecules. Our considerations will
be restricted, however, to relatively simple, thus rather symmetrical
systems. The importance and consequences of intramolecular motion
involving relatively large amplitudes, will be commented upon in the
final section of this chapter.

3.1. Isomers

The empirical formula, or sum formula, of a chemical compound
expresses its composition. For example C2H4O2 indicates that the
molecule consists of two carbon, four hydrogen and two oxygen
atoms. This formulation, however, provides no information on the
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order in which these atoms are linked. This particular empirical
formula may correspond to methyl formate (3-1), acetic acid (3-2),
and glycol aldehyde (3-3). Only the structural formulae for these
compounds, shown below, distinguish among them. This is called
structural isomerism.

Although these molecules, as a whole, are not symmetric, some
of their component parts may be symmetrical. They possess what is
called local symmetry. Similar atomic groups in different molecules
often have similar geometries, and thus similar local symmetries. The
structural formulae reveal considerable information about these local
symmetries, or at least their similarities and differences in various
molecules. The above simplified structural formulae are especially
useful in this respect. This approach is widely applicable in organic
chemistry, where relatively few kinds of atoms build an enormous
number of different molecules. A far greater diversity of structural
peculiarities is characteristic for inorganic compounds.

The symbol for the carbon atom occurs twice in all three simplifed
structural formulae above, a fact that indicates differences in the struc-
tural positions of these carbon atoms. The same applies to the oxygen
atoms. On the other hand, three hydrogens are equivalent in both
methyl formate and acetic acid, with the fourth being different in the
two molecules. There are three different types of hydrogen positions
in glycol aldehyde.

Molecules are structural isomers if they have the same empirical
formula but the distances between corresponding atoms are not the
same (Figure 3-1). Structural isomers are of two types. If their atomic
connectivities are the same, they are diastereomers, and if their atomic
connectivities are different, they are constitutional isomers. Some
diastereomers become superimposable by rotation about a bond, and
they are called rotational isomers. Depending on the magnitude of the
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Figure 3-1. The hierarchy of isomers.

barrier to rotation, geometrical isomers (high barrier) and conformers
(low barrier) are distinguished.

Identical molecules have the same formula, the same atomic
connectivity, and the same distances between corresponding atoms.
In addition, they are superimposable (homomers). Enantiomers have
the same formula, the same atomic connectivity, and the same
distances between corresponding atoms, but they are not superimpos-
able, instead, they are mirror images of each other (cf. Section 2.7 on
chirality).

3.2. Rotational Isomerism

The four-atomic chain is the simplest system for which rotational
isomers are possible, as shown in Figure 3-2. Rotational isomers,
or conformers, are various forms of the same molecule related by
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Figure 3-2. Rotational isomerism of a four-atomic chain.

rotation around a bond as axis. The rotational isomers of a molecule
are described by the same empirical formula and by the same
structural formula. Only the relative positions of the two bonds (or
groups of atoms) at the two ends of the rotation axis are changed.
The molecular point groups for different rotational isomers may be
entirely different.

Rotational isomers can be conveniently represented by so-called
projection formulae in which the two bonds (or groups of atoms)
at the two ends are projected onto a plane which is perpendicular
to the central bond. This plane is denoted by a circle whose center
coincides with the projection of the rotation axis. The bonds in
front of this plane are drawn as originating from the center, while
the bonds behind this plane, i.e., the bonds from the other end of
the rotation axis, are drawn as originating from the perimeter of the
circle.

The drawings by Degas End of the Arabesque and Seated Dancer
Adjusting Her Shoes may be looked at as illustrations of the stag-
gered and eclipsed conformations of the molecule A2B–BC2 [5].
The dancers and their projection-like representations are depicted
in Figure 3-3 along with the projectional representations of two
conformers of the molecule A2B–BC2. The projections in Figure 3-3
represent views along the B–B bond, i.e., the dancer’s body. The plane
bisecting the B–B bond is shown by the circle and it corresponds to the
dancer’s skirt. The dancer’s arms and legs refer to the bonds B–A and
B–C, respectively. Incidentally, the bouquet in the right hand of the
dancer in the staggered conformation might be viewed as a different
substituent.

Two important cases in rotational isomerism are distinguished by
considering the nature of the central bond. When it is a double bond,
rotation of one form into another is hindered by a high potential
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barrier. This barrier may be so high that the two rotational isomers
will be stable enough to make their physical separation possible. An
example is 1,2-dichloroethylene.

The symmetry of the cis isomer is characterized by two mutually
perpendicular mirror planes generating also a two-fold rotational axis.
This symmetry class is labeled mm. An equivalent notation is C2v as

Figure 3-3. Projectional representation of rotational isomers [6]; Top, left: drawing
after Degas’ End of the Arabesque by Ferenc Lantos; Right: drawing after Degas’
Seated Dancer Adjusting Her Shoes by Ferenc Lantos; Middle: contour drawings
of the dancers; Bottom: staggered and eclipsed rotational isomers of the A2BBC2

molecule by projections representing view along the B–B bond.
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will be seen in the next section. The trans isomer has one twofold
rotation axis with a perpendicular symmetry plane, its symmetry class
is 2/m (C2h).

Rotational isomerism relative to a single bond is illustrated by
ethane and 1,2-dichloroethane, both depicted in Figure 3-4. First, take
the ethane molecule, H3C–CH3. During a complete rotation of one
methyl group around the C–C bond relative to the other methyl group,

(a)

(b)

Figure 3-4. Potential energy functions for rotation about a single bond, � is
the angle of rotation. (a) Ethane, H3C–CH3. There are two different symmetrical
forms. Both the staggered form with D3d symmetry and the eclipsed form with D3h

symmetry occur three times in a complete rotational circuit; (b) 1,2-dichloroethane,
ClH2C–CH2Cl. There is no other symmetrical form in the region between the two
symmetrical staggered forms shown. The eclipsed form with C2v symmetry and the
staggered form with C2h symmetry occur once, while the staggered form with C2

symmetry occurs twice in a complete rotational circuit.
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the ethane molecule appears three times in the stable staggered form
and three times in the unstable eclipsed form. As all the hydrogen
atoms of one methyl group are equivalent, the three energy minima are
equivalent, and so are the three energy maxima, as seen in Figure 3-4a.
The situation becomes more complicated when the three ligands
bonded to the carbon atoms are not the same. This is seen for 1,2-
dichloroethane in Figure 3-4b. There are three highly symmetrical
forms. Of these two are staggered with C2h and C2 symmetries, respec-
tively. The third is an eclipsed form with C2v symmetry. This form has
Cl/Cl and H/H eclipsing.

Figure 3-4 shows only the symmetrical conformers by projection
formulae. The symmetrical forms always belong to extreme ener-
gies, either minima or maxima. The barriers to internal rotation in the
potential energy functions depicted in Figure 3-4 are about 10 kJ/mol.
Typical barriers for systems where the double bonds would be consid-
ered to be the “rotational axis” may be as much as 30 times greater
than those for systems with single bonds.

3.3. Symmetry Notations

So far, the so-called International or Hermann-Mauguin symmetry
notations have been used in the descriptions in this text. Another,
older system by Schoenflies is generally used, however, to describe
the molecular point-group symmetries. This notation has been given
in parenthesis in the preceding section. The Schoenflies notation has
the advantage of succinct expression for even complicated symmetry
classes combining various symmetry elements. The two systems are
compiled in Table 3-1 [7] for a selected set of symmetry classes.
The set includes all point-group symmetries in the world of crys-
tals which are restricted to 32 classes. The reasons and significance
of these restrictions will be discussed later in the chapter on crystals
(Section 9.3). There are no restrictions on the point-group symmetries
for individual molecules, and a few further, so-called limiting, classes
are also listed in Table 3-1.

The Schoenflies notation for rotation axes is Cn, and for mirror-
rotation axes the notation is S2n, where n is the order of the rota-
tion. The symbol i refers to the center of symmetry (cf. Section 2.4).
Symmetry planes are labeled �; �v is a vertical plane, which always
coincides with the rotation axis with an order of two or higher, and
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Table 3-1. Symmetry Notations of the Crystallographic and a Few Limiting Groups

Hermann-Mauguin Schoenflies Hermann-Mauguin Schoenflies

Crystallographic groups
1 C1 3̄m D3d

1̄ Ci 6̄ C3h

m Cs 6 C6

2 C2 6/m C6h

2/m C2h 6̄m2 D3h

mm C2v 6mm C6v

222 D2 622 D6

mmm D2h 6/mmm D6h

4 C4 23 T
4̄ S4 m3̄ Th

4/m C4h 4̄3m Td

4mm C4v 432 O
4̄2m D2d m3m Oh

422 D4 Limiting groups
4/mmm D4h ∞ C∞
3 C3 ∞2 D∞
3̄ S6 ∞/m C∞h

3m C3v ∞mm C∞v

32 D3 ∞/mm D∞h

�h is a horizontal plane, which is always perpendicular to the rotation
axis when it has an order of two or higher.

Point-group symmetries not listed in Table 3-1 may easily be
assigned the appropriate Schoenflies notation by analogy. Thus, e.g.,
C5v, C5h, C7, C8, etc. can be established. Such symmetries may well
occur among real molecules.

These systems of notation have been well established and widely
used. Nonetheless, other systems might be and have been suggested
though none has gone into practice. We mention here one such sugges-
tion by outstanding mathematicians whose system has merits, but only
time will tell whether it might gain acceptance [8].

3.4. Establishing the Point Group

Figure 3-5 shows a possible scheme for establishing the molecular
point group that has been widely used to reliably establish molecular
symmetries [9].
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Figure 3-5. Scheme for establishing the molecular point groups [10].

First, an examination is carried out whether the molecule belongs to
some “special” group. If the molecule is linear, it may have a perpen-
dicular symmetry plane (D∞h) or it may not have one (C∞v). Very high
symmetries are easy to recognize. Each of the groups T, Th, Td, O, and
Oh, has four threefold rotation axes. Both icosahedral I and Ih groups
require ten threefold rotation axes and six fivefold rotation axes. The
molecules belonging to these groups have a central tetrahedron, octa-
hedron, cube, or icosahedron.

If the molecule does not belong to one of these “special” groups, a
systematic approach is followed. Firstly, the possible presence of rota-
tion axes in the molecule is checked. If there is no rotation axis, then it
is determined whether there is a symmetry plane (Cs). In the absence
of rotational axes and mirror planes, there may only be a center of
symmetry (Ci), or there may be no symmetry element at all (C1). If
the molecule has rotation axes, it may have a mirror-rotation axis with
even-number order (S2n) coinciding with the rotation axis. For S4 there
will be a coinciding C2, for S6 a coinciding C3, and for S8, both C2

and C4.
In any case the search is for the highest order Cn axis. Then it is

ascertained whether there are n C2 axes present perpendicular to the
Cn axis. If such C2 axes are present, then there is D symmetry. If in
addition to D symmetry there is a �n plane, the point group is Dnh,
while if there are n symmetry planes (�d) bisecting the twofold axes,
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the point group is Dnd. If there are no symmetry planes in a molecule
with D symmetry, the point group is Dn.

Finally, if no C2 axes perpendicular to Cn are present, then the
lowest symmetry will be Cn, when a perpendicular symmetry plane
is present, it will be Cnh, and when there are n coinciding symmetry
planes, the point group will be Cnv.

3.5. Examples

In this section, actual molecular structures are shown for the various
point groups. The Schoenflies notation is used and the characteristic
symmetry elements are enumerated.

C1: There are no symmetry elements except the one-fold rotation
axis, or identity, of course. C1 symmetry is asymmetry. Examples are:

C2, C3, C4, C5, C6, . . . , Cn : One twofold, threefold, fourfold, five-
fold, sixfold rotation axis, respectively, and it can be continued by
analogy. Cn has one n-fold rotation axis. Examples: Figure 3-6a. The
most famous molecule that has C2 symmetry is deoxyribonucleic acid
(DNA) whose double helical structure will be discussed in more detail
in Chapter 8. Here, suffice it to note that the C2 symmetry “would
make a model of DNA suitable for use as a staircase in a space ship”
because “these elements are twofold rotation axes passing through
each of the base pairs at right angles to the helical axis; each of them
brings one of the chains into congruence with its partner of oppo-
site polarity by a rotation of 180◦” [11]. The C2 symmetry played
an important role in the discovery of the double helix and is inti-
mately related to the genetic function of the molecule [12]. Another
important biological system that also has C2 symmetry, even though
in an approximate way only, is the photosynthetic reaction center
(Figure 3-6b). Whereas the C2 symmetry of DNA has well-defined
functional implications, no such meaning of this symmetry for the
process of photosynthesis has been uncovered (yet?) [13]. This is how
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chemistry Nobel laureate Johann Deisenhofer who first noticed this
symmetry described the moment as he was locating the chlorophyll
molecules in the structure [14]:

It was extremely exciting to localize these features
and build models for them. When I stepped back
to see the arrangement, the unexpected observa-
tion about it was symmetric. There was a symmetry
in the arrangement of the chlorophyll that nobody
had anticipated. Nobody, to this day, completely

(a)

(b)

Figure 3-6. (a) Molecules illustrating Cn symmetries; (b) The structure of the
photosynthetic reaction center with approximate C2 symmetry (courtesy of Johann
Deisenhofer, Dallas, Texas) [15].
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understands the purpose of this symmetry. I think
it can be understood only on the basis of evolution.
I think that the photosynthetic reaction started out
as a totally symmetric molecule. Then it turned out
to be preferable to disturb its symmetry, sticking to
an approximate symmetry but changing subtly the
two halves of the molecule. Because of the differ-
ence in properties of the two halves, the conclu-
sion had been, before the structure came out, that
there cannot be symmetry; that it has to be an
asymmetric molecule. Now when people looked
at the structure, it looked totally symmetric to the
naked eye. That realization was the high point I
will never forget.

Deisenhofer’s description is a beautiful illustration for some of the
ideas about the importance of symmetries occurring in an approxi-
mate way as discussed in the Introduction (Chapter 1). The near-C2

symmetry of the photosynthetic reaction center [16] and its elucida-
tion [17] have been discussed in the literature.

Ci: Center of symmetry. Examples:

Cs: One symmetry plane. Examples:
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S4: One fourfold mirror-rotation axis.

S6: One sixfold mirror-rotation axis, which is, of course, equivalent to
one threefold rotation axis plus center of symmetry. Example:

C2h, C3h, ..., Cnh: One twofold, threefold, ..., n-fold rotation axis with
a perpendicular to it symmetry plane. Examples: Figure 3-7.

Figure 3-7. Examples with rotational axis and perpendicular symmetry plane, Cnh.

C2v, C3v, C4v, C5v, C6v, ..., Cnv: C2v, Two perpendicular symmetry
planes whose crossing line is a twofold rotation axis; C3v, One three-
fold rotation axis with three symmetry planes which include the rota-
tion axis. The angle is 60◦ between two symmetry planes; C4v, One
fourfold rotation axis with four symmetry planes which include the
rotation axis. The four planes are grouped in two nonequivalent pairs.
One pair is rotated relative to the other pair by 45◦. The angle between
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the two planes within each pair is 90◦. This series can be continued
by analogy. When n is even, there are two sets of symmetry planes.
One set is rotated relative to the other set by (180/n)◦. The angle
between the planes within each set is (360/n)◦. When n is odd, the
angle between the symmetry planes is (180/n)◦. Examples: Figure 3-8.

C∞v: One infinite-fold rotation axis with infı̀nite number of symmetry
planes which include the rotation axis. Example: Figure 3-8.

Figure 3-8. Examples with rotation axis and symmetry planes containing the rota-
tion axis, Cnv.

D2: Three mutually perpendicular twofold rotation axes.

D3: One threefold rotation axis and three twofold rotation axes
perpendicular to the threefold axis. The twofold axes are at 120◦, so
the minimum angle between two such axes is 60◦ Examples:
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D4: One fourfold rotation axis and four twofold rotation axes which
are perpendicular to the fourfold axis. The four axes are grouped in
two nonequivalent pairs. One pair is rotated relative to the other pair
by 45◦. The angle between the two axes within each pair is 90◦.

D5, D6, D7, ..., Dn: This series can be continued by analogy. It is
characterized by one n-fold rotation axis and n twofold rotation axes
perpendicular to the n-fold axis.

D2d: Three mutually perpendicular twofold rotation axes and two
symmetry planes. The planes include one of the three rotation axes
and bisect the angle between the other two. Example: Figure 3-9.

Figure 3-9. Dnd symmetries.

D3d: One threefold rotation axis with three twofold rotation axes
perpendicular to it, and three symmetry planes. The angle between the
twofold axes is 60◦. The symmetry planes include the threefold axis
and bisect the angles between the twofold axes. Examples: Figure 3-9.

D4d, D5d, D6d, D7d, . . ., Dnd: D4d One fourfold rotation axis with four
twofold rotation axes perpendicular to it, and four symmetry planes.
The angle between the twofold axes is 45◦. The symmetry planes
include the fourfold axis and bisect the angles between the twofold
axes. The series can be continued by analogy. Examples: Figure 3-9.



3.5. Examples 113

D2h: Three mutually perpendicular symmetry planes. Their three
crossing lines are three twofold rotation axes, and their crossing point
is a center of symmetry. Examples: Figure 3-10.

Figure 3-10. Dnh symmetries.

D3h: One threefold rotation axis, three symmetry planes (at 60◦) which
contain the threefold axis, and another symmetry plane perpendicular
to the threefold axis. Examples: Figure 3-10.

D4h: One fourfold axis, one symmetry plane perpendicular to it, and
four symmetry planes which include the fourfold axis. The four planes
make two pairs. One pair is rotated relative to the other pair by 45◦.
The two planes in each pair are perpendicular to each other. Example:
Figure 3-10.

D5h: One fivefold rotation axis, one symmetry plane perpendicular
to it, and five symmetry planes which include the fivefold rotation
axis. The angle between the adjacent five planes is 36◦. Example:
Figure 3-10.

D6h: One sixfold rotation axis, one symmetry plane perpendicular to
it, and six symmetry planes which include the sixfold axis. The six
planes are grouped in two sets. One set is rotated relative to the other
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set by 30◦. The angle between the planes within each set is 60◦. Exam-
ples: Figure 3-10.

Dnh: The series can be continued by analogy. There will be one
n-fold rotation axis, one symmetry plane perpendicular to it, and n
symmetry planes which include the n-fold axis. When n is even, there
are two sets of symmetry planes. One set is rotated relative to the
other set by (180/n)◦. The angle between the planes within each set
is (360/n)◦. When n is odd, the angle between the symmetry planes
is (180/n)◦.

D∞h: One ∞-fold axis and a symmetry plane perpendicular to it. Of
course, there are also ∞ number of symmetry planes which include
the ∞-fold rotation axis. Example: Figure 3-10.

T: Three mutually perpendicular twofold rotation axes and four three-
fold rotation axes. The threefold axes all go through a vertex of
a tetrahedron and the midpoint of the opposite face center. The
twofold axes connect the midpoints of opposite edges of this tetra-
hedron. Example: Figure 3-11.

Figure 3-11. T symmetries.

Td: In addition to the symmetry elements of symmetry T, there are
six symmetry planes, each two of them being mutually perpendicular.
All of these symmetry planes contain two threefold axes. Examples:
Figure 3-11.
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Th: In addition to the symmetry elements of symmetry T, there is
a center of symmetry, which introduces also three symmetry planes
perpendicular to the twofold axes. Example: Figure 3-11.

Oh: Three mutually perpendicular fourfold rotation axes and four
threefold rotation axes which are tilted with respect to the fourfold
axes in a uniform manner, and a center of symmetry. Examples:

Ih: The most characteristic feature of this point group is the presence
of six fivefold rotation axes. Examples:

3.6. Consequences of Substitution

A tetrahedral AX4 molecule, for example, methane, CH4, has the point
group of the regular tetrahedron, Td. Gradual substitution of the X
ligands by B ligands leads to less symmetrical tetrahedral configura-
tions (Figure 3-12 top), until complete substitution is accomplished,
where Td symmetry is re-established. If each consecutive substitution
introduces a new kind of ligand, then the symmetry will continue
to decrease. This is shown for the tetrahedral case in the bottom of
Figure 3-12.

Let us consider now an octahedral AX6 molecule, e.g., sulfur
hexafluoride, SF6, which has the symmetry of the regular octahedron
Oh. Substitution of an X ligand by a B ligand results in an AX5B
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Figure 3-12. Substitution in a tetrahedral AX4 molecule. Top: Gradual substitution
of the ligands X by ligands B; Bottom: Substitution of the ligands X by different
ligands.

molecule whose symmetry is C4v. The substitution of a second X
ligand by another ligand B may lead to alternative structures as the
sites of the five X ligands after the first substitution are no longer
equivalent. The symmetry variations in this substitution process are
illustrated in Figure 3-13. A yet larger variety is obtained if each
consecutive substitution introduces a new kind of ligand.

Another example among fundamental structures is the benzene
geometry, D6h. Gradual substitution of an increasing number of hydro-
gens by ligands X results in the symmetry variations illustrated in
Figure 3-14. As regards the molecular point group, the monosubsti-
tuted and the pentasubstituted derivatives are equivalent. All deriva-
tives can be grouped in such pairs with each of the trisubstituted
benzenes constituting a pair by itself. Again, only the simplest case
is considered here, with one kind of ligand used in all substituted
positions. The symmetry decrease in the molecular point group for
the substituted derivatives occurs because of the presence of the
substituent ligands. It does not presuppose a change in the hexag-
onal symmetry of the benzene ring itself. Modern structure anal-
yses have determined, however, that an appreciable deformation
of the ring may also take place depending on the nature of the
substituents. The largest deformation usually occurs at the so-called
ipso angle adjacent to the substituent. According to the general
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Figure 3-13. Gradual substitution of the ligands X in an octahedral AX6 molecule
by ligands B.

observation, electronegative substituents tend to compress the ring
while electropositive substituents elongate it [18].

Complex formation usually implies the association of molecules
or other species which may also exist separately in chemically non-
extreme conditions. Complex formation often has important conse-
quences on the shapes and symmetries of the constituent molecules,
determined also by the energy requirements of the geometrical
changes [19]. The H3N·AlCl3 donor–acceptor complex, for example,
has a triangular antiprismatic shape with C3v symmetry (Figure 3-15).
The symmetry of the donor part (NH3) remains unchanged in the
complex and the geometrical changes are relatively small. On the
other hand, there are more drastic geometrical changes in the acceptor
part (AlCl3) due to loss of coplanarity of the four atoms and this
results in a reduction in the point group. However, the structural
changes in the acceptor part may also be viewed as if the complex
formation completes the tetrahedral configuration around the central
atoms in the component molecules. The nitrogen configuration may
be considered to be tetrahedral already in ammonia with the lone
pair of electrons being the fourth ligand. For aluminum, it is indeed
the complexation that makes the tetrahedral configuration complete.
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Figure 3-14. The symmetries of benzene and its C6HnX6-n derivatives.

Coordination molecules often demonstrate the utility of polyhedra in
describing molecular shapes, symmetries, and geometries. Of course,
such description may be useful in many other classes of compounds
as well.

Figure 3-15. The uncomplexed ammonia and aluminium trichloride molecules and
the triangular antiprismatic shape of the H3N·AlCl3 donor–acceptor complex.
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3.7. Polyhedral Molecular Geometries

In the Preface to the Third Edition of his Regular Polytopes [20],
the great geometer H. S. M. Coxeter calls attention to the icosahe-
dral structure of a boron compound in which twelve boron atoms
are arranged like the vertices of an icosahedron. It had been widely
believed that there would be no inanimate occurrence of an icosahe-
dron, or of a regular dodecahedron either.

In 1982, the synthesis and properties of a new polycyclic C20H20

hydrocarbon, dodecahedrane, was reported [21]. The twenty carbon
atoms of this molecule are arranged like the vertices of a regular
dodecahedron. When, in the early 1960s, H. P. Schultz discussed the
topology of the polyhedrane and prismane molecules (vide infra) [22],
at that time it was in terms of a geometrical diversion rather than true-
life chemistry. Since then it has become real chemistry.

It should be reemphasized that the above high-symmetry examples
refer to isolated molecules and not to crystal structures. Crystallog-
raphy has, of course, been one of the main domains where the impor-
tance of polyhedra has been long recognized, but they are not less
important in the world of molecules.

In the First Edition of Regular Polytopes, Coxeter stated, “...
the chief reason for studying regular polyhedra is still the same as
in the times of the Pythagoreans, namely, that their symmetrical
shapes appeal to one’s artistic sense” [23]. The success of modern
molecular chemistry does not diminish the validity of this state-
ment. On the contrary. There is no doubt that aesthetic appeal has
much contributed to the rapid development of what could be termed
polyhedral chemistry. One of the pioneers in the area of polyhedral
borane chemistry, Earl Muetterties, movingly described his attraction
to the chemistry of boron hydrides, comparing it to M. C. Escher’s
devotion to periodic drawings [24]. Muetterties’ words are quoted
here [25]:

When I retrace my early attraction to boron hydride
chemistry, Escher’s poetic introspections strike a
familiar note. As a student intrigued by early
descriptions of the extraordinary hydrides, I had
not the prescience to see the future synthesis
developments nor did I have then a scientific
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appreciation of symmetry, symmetry operations,
and group theory. Nevertheless, some inner force
also seemed to drive me but in the direction of
boron hydride chemistry. In my initial synthesis
efforts, I was not the master of these molecules;
they seemed to have destinies unperturbed by my
then amateurish tactics. Later as the developments
in polyhedral borane chemistry were evident on the
horizon, I found my general outlook changed in a
characteristic fashion. For example, my doodling,
an inevitable activity of mine during meetings,
changed from characters of nondescript form to
polyhedra, fused polyhedra and graphs.

I (and others, my own discoveries were not
unique nor were they the first) was profoundly
impressed by the ubiquitous character of the three-
center relationship in bonding (e.g., the boranes)
and nonbonding situations. I found a singular
uniformity in geometric relationships throughout
organic, inorganic, and organometallic chemistry:
The favored geometry in coordination compounds,
boron hydrides, and metal clusters is the polyhe-
dron that has all faces equilateral or near equilat-
eral triangles...∗

The polyhedral description of molecular geometries is, of course,
generally applicable as these geometries are spatial constructions. To
emphasize that even planar or linear molecules are also included,
the term polytopal could be used rather than polyhedral. The real
utility of the polyhedral description is for molecules possessing a
certain amount of symmetry. Because of this and also because of the
introductory character of our discussion, only molecules with rela-
tively high symmetries will be mentioned, but involving quite diverse
examples.

Both the tetraarsene, As4, and the methane, CH4, molecules have
tetrahedral shapes (Figure 3-16) and Td symmetry. However, there is
an important difference in their structures. In the As4 molecule, all

∗Reproduced by permission from Academic Press.
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Figure 3-16. The molecular shapes of As4 and CH4.

the four constituting nuclei are located at the vertices of a regular
tetrahedron, and all the edges of this tetrahedron are chemical bonds
between the As atoms. In the methane molecule, there is a central
carbon atom, and four chemical bonds are directed from it to the four
vertices of a regular tetrahedron where the four protons are located.
The edges are not chemical bonds.

The As4 and CH4 molecules are clear-cut examples of the two
distinctly different arrangements. However, these distinctions are not
always so unambiguous. Two independent studies reported the struc-
ture of zirconium borohydride, Zr(BH4)4. Both described its geom-
etry by the same polyhedral configuration, while they differed in the
assignment of the chemical bonds (Figure 3-17). The most important

Figure 3-17. The molecular configuration of zirconium borohydride, Zr(BH4)4, in
two interpretations but described by the same polyhedral shape. Left: the zirconium
atom is directly bonded to the four tetrahedrally arranged boron atoms [28]; Right:
the zirconium and the tetrahedrally arranged boron atoms are not bonded directly;
their linkage is established by four times three hydrogen bridges [29].
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difference in the two interpretations concerned the linkage between
the central zirconium atom and the four boron atoms situated in the
four vertices of a regular tetrahedron. According to one interpreta-
tion [20], there are four Zr–B bonds in the tetrahedral arrangement,
while according to the other [27], there is no direct Zr–B bond, but
each boron atom is linked to the zirconium atom by three hydrogen
bridges.

The discovery of buckminsterfullerene (see, also, in Chapter 1) with
its intriguing shape, focused attention to polyhedral molecular geome-
tries even by many outside of chemistry. The event is often consid-
ered to be the birth of nanoscience and nanotechnology although they
existed before even though under less fancy names. Buckminster-
fullerene, C60, discovered in 1985 [30], was the first runner-up for
the title, “Molecule of the Year” in 1990 [31], and received the title
in 1991 [32]. On this occasion, the Editorial of Science stated, among
others, that

Part of the exhilaration of the fullerenes is the
shock that an old reliable friend, the carbon
atom, has for all these years been hiding a
secret life-style. We were all familiar with the
charming versatility of carbon, the backbone of
organic chemistry, and its infinite variation in
aromatic and aliphatic chemistry, but when you
got it naked, we believed it existed in two well-
known forms, diamond and graphite. The finding
that it could exist in a shockingly new structure
unleashes tantalizing new experimental and theo-
retical ideas [33].

Then it added something that certainly carried a flavor of the
broadest possible implications: “Perhaps the least surprising might
be that improving life through science is a path that would see all
the citizens of the world holding hands like carbon atoms in C60 and
like them, welcoming any newcomer, no matter how different his or
her skills or challenges.” Figure 3-18 shows a series of fullerenes,
the C20 molecule of the shape of dodecahedron being the smallest.
Due to its extreme curvature and supposed reactivity, its existence had
been in doubt until 2000, when it was produced from dodecahedrane,
C20H20 [34].
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Figure 3-18. A few members of the fullerene family. Buckminsterfullerene, C60, is
“the roundest, most symmetrical large molecule found so far” [35].

3.7.1. Boron Hydride Cages

The boron hydrides are one of most beautiful classes of polyhedral
compounds whose representatives range from simple to rather
complicated systems. Our description here is purely phenomeno-
logical. Only in passing is reference made to the relationship of the
characteristic polyhedral cage arrangements of the boron hydrides and
the peculiarities of multicenter bonding that has special importance
for their structures.

All faces of the boron hydride polyhedra are equilateral or nearly
equilateral triangles. Those boron hydrides that have a complete poly-
hedral shape are called closo boranes (the Greek closo meaning
closed). One of the most symmetrical, and, accordingly, most stable
polyhedral boranes is the B12H12

2– ion. Its regular icosahedral config-
uration is shown in Figure 3-19. The structural systematics of BnHn

2–

closo boranes and related C2Bn-2Hn closo carboranes, are presented in
Table 3-2 after Muetterties [36]. In carboranes some of the boron sites
are taken by carbon atoms. In the icosahedral ion [Pt@Pb12]2–, the
platinum atom is inclosed in a regular icosahedral lead cluster [37],
analogous to B12H12

2–.
Another structural class of the boron hydrides is the so-called quasi-

closo boranes. They are related to the closo boranes by removing
a framework atom from the latter and adding in its stead a pair of
electrons. Thus one of the polyhedron framework sites is taken by an
electron pair.
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Figure 3-19. Boron skeletons of boron hydrides. Left: Regular icosahedral boron
skeleton of B12H12

2–; Right: Closo, nido, and arachno boranes after Williams [38]
and Rudolph [39]. The genetic relationships are indicated by diagonal lines. Used
with permission, copyright (1976) American Chemical Society.

There are boron hydrides in which one or more of the polyhe-
dral sites are truly removed. Figure 3-19 shows the systematics of
borane polyhedral fragments as obtained from closo boranes, after
R. E. Williams [40] and R. W. Rudolph [41]. All the faces of the poly-
hedral skeletons are triangular, and thus the polyhedra may be termed
deltahedra and the derived fragments deltahedral. The starting delta-
hedra are the tetrahedron, the trigonal bipyramid, the octahedron, the
pentagonal bipyramid, the bisdisphenoid, the symmetrically tricapped
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Table 3-2. Structural Systematics of BnHn
2– closo Boranes and C2Bn–2Hn closo

Carboranesa

Polyhedron, point group Borane Dicarbaborane

Tetrahedron, Td (B4Cl4)b –
Trigonal bipyramid, D3h – C2B3H5

Octahedron, Oh B6H6
2– C2B4H6

Pentagonal bipyramid, D5h B7H7
2– C2B5H7

Dodecahedron (triangulated), D2d B8H8
2– C2B6H8

Tricapped trigonal prism, D3h B9H9
2– C2B7H9

Bicapped square antiprism, D4d B10H10
2– C2B8H10

Octadecahedron, C2v B11H11
2– C2B9H11

Icosahedron, Ih B12H12
2– C2B10H12

aAfter E. L. Muetterties, ed., Boron Hydride Chemistry. Academic Press,
New York, 1975.
bB4H4 not known.

trigonal prism, the bicapped square antiprism, the octadecahedron,
and the icosahedron [42].

A nido (nest-like) boron hydride is derived from a closo borane
by the removal of one skeleton atom. If the starting closo borane
is not a regular polyhedron, then the atom removed is the one at a
vertex with the highest connectivity. An arachno (web-like) boron
hydride is derived from a closo borane by the removal of two adjacent
skeleton atoms. If the starting closo borane is not a regular polyhe-
dron, then again, one of the two atoms removed is at a vertex with the
highest connectivity. Complete nido and arachno structures are shown
in Figure 3-20 together with the starting boranes [43]. The fragmented
structures are completed by a number of bridging and terminal hydro-
gens. The above examples are from among the simplest boranes and
their derivatives.

3.7.2. Polycyclic Hydrocarbons

Some fundamental polyhedral shapes are realized among polycyclic
hydrocarbons. The bond arrangements around the carbon atoms in
such configurations may be far from the energetically most advan-
tageous, causing strain in these structures. The strain may be so large
as to render particular arrangements too unstable to exist under any
reasonable conditions. On the other hand, the fundamental character
of these shapes, their high symmetry, and aesthetic appeal make them
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Figure 3-20. Examples of closo/nido and closo/arachno structural relationships
after Muetterties [44]. Top: Closo-B6H6

2– and nido-B5H9; Bottom: Closo-B7H7
2–

and arachno-B5H11.

an attractive and challenging “playground” to the organic chemist
[45]. Incidentally, these substances are often building blocks for such
important natural products as steroids, alkaloids, vitamins, carbohy-
drides, antibiotics, etc.

Tetrahedrane, (CH)4, would be the simplest regular polyhedral
polycyclic hydrocarbon (Figure 3-21a). However, since it has such
a high strain energy, it has not (yet?) been prepared in spite of consid-
erable efforts [46]. By now, over 10 different derivatives of tetrahe-
drane have been prepared, for example, tetra-tert-butyltetrahedrane
(Figure 3-21b) [47]. It is amazingly stable, perhaps because the
substituents help “clasp” the molecule together.

The next Platonic solid is the cube, and the corresponding poly-
cyclic hydrocarbon, cubane, (CH)8 (Figure 3-21c), has been known
for some time [49]. The strain energy of the CC bonds in cubane is
among the highest known. It is unstable thermodynamically but stable
kinetically, “like a rock” [50]. Referring to its instability, Marchand
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Figure 3-21. Polyhedral molecular models. (a) Tetrahedrane, (CH)4; (b) Tetra-tert-
butyltetrahedrane, {C[C(CH3)3]}4 [48]; (c) Cubane, (CH)8; (d) Dodecahedrane,
(CH)20; (e) C60H60; (f) Triprismane, C6H6; pentaprismane, C10H10; and hexapris-
mane, C12H12.
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considered cubane as a physical organic chemist’s “subject/patient”
by analogy with the clinical psychologists studying deviants to learn
more about normal behavior [51]. He also demonstrated the riches of
the chemistry developed from the cubane base.

The preparation of dodecahedrane, (CH)20, (Figure 3-21d) by
Paquette et al. [52] followed Schultz’s prediction almost two decades
before, concerning possible hydrocarbon polyhedranes [53]:

Dodecahedrane is the one substance of the
series with almost ideal geometry, physically the
molecule is practically a miniature ball bearing!
One would expect the substance to have a low
viscosity, a high melting point, but low boiling
point, high thermal stability, a very simple infrared
spectrum and perhaps an aromatic-like p.m.r.
spectrum. Chemically one might expect a rela-
tively easy (for an aliphatic hydrocarbon) removal
of a tertiary proton from the molecule, for the
negative charge thus deposited on the molecule
could be accommodated on any one of the twenty
completely equivalent carbon atoms, the carbanion
being stabilized by a ’rolling charge’ effect that
delocalizes the extra electron.

In the (CH)n convex polyhedral hydrocarbon series each carbon
atom is bonded to three other carbon atoms. The fourth bond is
directed externally to a hydrogen atom. Around the all-carbon poly-
hedron, there is thus a similar polyhedron whose vertices are protons.
The edges of the all-carbon polyhedron are carbon–carbon chemical
bonds, while the edges of the larger all-proton polyhedron do not
correspond to any chemical bonds. This kind of arrangement of the
polycyclic hydrocarbons is not possible for the remaining two Platonic
solids. There are four bonds meeting at the vertices of the octahe-
dron and five at the vertices of the icosahedron. For similar reasons,
only seven of the 13 Archimedian polyhedra can be considered in the
(CH)n polyhedral series. One of them is the so-called “fuzzyball,” or
C60H60, a predicted form of fully hydrogenated buckminsterfullerene
(Figure 3-21e) [54]. Table 3-3 presents some characteristics of the
polyhedranes.
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Table 3-3. Characterization of Polyhedrane Moleculesa

Name Formula Geometry and number of faces (all regular) Face angles

Tetrahedrane (CH)4 Triangle, 4 60◦

Cubane (CH)8 Square, 6 90◦

Dodecahedrane (CH)20 Pentagon, 12 108◦

Truncated tetrahedrane (CH)12 Triangle, 4; Hexagon, 4 60◦

Truncated octahedrane (CH)24 Square, 6; Hexagon, 8 90◦; 120◦

Truncated cubane (CH)24 Triangle, 8; Octagon, 6 60◦; 135◦

Truncated cuboctahedrane (CH)48 Square, 12; Hexagon, 8; Octagon, 6 90◦; 120◦; 135◦

Truncated icosahedrane (CH)60 Pentagon, 12; Hexagon, 20 108◦; 120◦

Truncated dodecahedrane (CH)60 Triangle, 20; Decagon, 12 60◦; 144◦

Truncated icosidodecahedrane (CH)120 Square, 30; Hexagon, 20; Decagon, 12 90◦; 120◦; 144◦
aAfter H. P. Schultz, “Topological Organic Chemistry: Polyhedranes and Prismanes.” J. Org. Chem. 1965, 30, 1361–1364.
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The cubane molecule may also be considered and called tetrapris-
mane (vide infra). It may be described as composed of eight iden-
tical methine units arranged at the corners of a regular tetragonal
prism with Oh symmetry and bound into two parallel four-membered
rings conjoined by four four-membered rings. Triprismane, (CH)6

[55], has D3h symmetry and pentaprismane, (CH)10 [56], has D5h

symmetry. Triprismane, pentaprismane, and hexaprismane, C12H12

(not yet prepared), are shown in Figure 3-21f. The quest for a
synthesis of pentaprismane is a long story with a happy ending [57].
Hexaprismane, (CH)12, which is the face-to-face dimer of benzene has
not yet been prepared. A recent study showed that this dimerization
would not only be symmetry-forbidden (see, Chapter 7), but would
also be hindered by a high energy barrier [58]. Table 3-4 presents
some characteristic geometric information on the hydrocarbon pris-
mane molecules. The description of the general n-prismane is that it
is composed of 2n identical methine units arranged at the corners of
a regular prism with Dnh symmetry and bound into two parallel n-
membered rings conjoined by n four-membered rings.

Incidentally, the regular prisms and the regular antiprisms are also
semiregular, i.e., Archimedian, solids. Moreover, the second prism, in
its most symmetrical configuration, is a regular solid, the cube; and the
first antiprism, in its most symmetrical configuration, is also a regular
solid, the octahedron.

Only a few highly symmetrical structures have been mentioned
above. The varieties become virtually endless if one reaches beyond

Table 3-4. Characterization of Prismane Moleculesa

Name Formula Geometry and number of
faces (all regular)

Face angles

Triprismane C6H6 Triangle, 2; Square, 3 60◦; 90◦

Tetraprismane
(cubane)

C8H8 Square, 6 90◦

Pentaprismane C10H10 Pentagon, 2; Square, 5 108◦; 90◦

Hexaprismane C12H12 Hexagon, 2; Square, 6 120◦; 90◦

Heptaprismane C14H14 Heptagon, 2; Square, 7 128◦34′; 90◦

n-Prismane C2nH2n n-gon, 2; Square, n –b; 90◦
aAfter H. P. Schultz, “Topological Organic Chemistry: Polyhedranes and
Prismanes.” J. Org. Chem. 1965, 30, 1361–1364.
bApproaches 180◦ as n increases.



3.7. Polyhedral Molecular Geometries 131

Figure 3-22. Left: Ice crystal structure; Right: the iceane hydrocarbon molecule.

the most symmetrical convex polyhedral shapes. For example, the
number of possible isomers is 5,291 for the tetracyclic structures of
the C12H18 hydrocarbons with 12 skeletal carbon atoms [59]. Of all
these geometric possibilities, however, only a few are stable [60].
One is iceane shown in Figure 3-22. The molecule may be visu-
alized as two chair cyclohexanes connected to each other by three
axial bonds. Alternatively, the molecule may be viewed as consisting
of three fused boat cyclohexanes. The trivial name iceane had been
proposed for this molecule by Fieser [61] almost a decade before
its preparation [62]. As Fieser was considering the arrangement of
the water molecules in the ice crystal (Figure 3-22), he noticed
three vertical hexagons with boat conformations. The emerging hori-
zontal (H2O)6 units possess three equatorial hydrogen atoms and three
equatorial hydrogen bonds available for horizontal building. Fieser
further noted that this structure “suggests the possible existence of
a hydrocarbon of analogous conformation of the formula C12H18,
which might be named ‘iceane.’ The model indicates a stable strain-
free structure analogous to adamantane and twistane. ‘Iceane’ thus
presents a challenging target for synthesis” [63]. Within a decade the
challenge was met.

There is a close relationship between the adamantane, C10H16,
molecule and the diamond crystal. The Greek word adamant means
diamond and diamond has been termed the “infinite adamantylogue to
adamantane” [64]. While iceane has D3h symmetry, adamantane has
Td. This high symmetry can be clearly seen when the configuration of
adamantane is described by four imaginary cubes packed one inside
the other, two of which are shown in Figure 3-23. Similar structures
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Figure 3-23. Adamantane and its analogs. Left: Adamantane, C10H16 or
(CH)4(CH2)6; in two representations; Right: P4O6 (top) and (PO)4O6 (bottom).

are found among inorganic compounds where, by analogy to adaman-
tane, (CH)4(CH2)6, the general formula is A4B6. Here A may be, e.g.,
P, As, Sb, or PO, as illustrated in Figure 3-23.

Adamantane molecules may be imagined to join at vertices, edges,
or even at faces. Examples are shown in Figure 3-24; most of them,
however, have not yet been synthesized [65].

Figure 3-24. Joined adamantanes. Top, left: joined at vertices, [1]diadamantane
[66]; Top, right: joined at edges, [2]diadamantane [67]; Bottom: joined at faces,
diamantane (congressane) [68], triamantane [69], and three isomers of tetramantane:
“iso” C3v; “anti”, C2h; and “skew”, C2 [70].
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3.7.3. Structures with Central Atom

Adamantane is sometimes regarded as the cage analog of methane
while diamantane and triamantane as the analogs of ethane and
propane. Methane has, of course, a tetrahedral structure with the
point group of the regular tetrahedron, Td. Important structures may
be derived by joining two tetrahedra, or, for example, two octa-
hedra, at a common vertex, edge, or face as shown in Figure 3-25.
Ethane, H3C–CH3, ethylene, H2C=CH2, and acetylene, HC≡CH, may
be derived formally from joined tetrahedra in such a way. The analogy
with the joining tetrahedra is even more obvious in some metal halide
structures with halogen bridges [71]. Thus, e.g., the Al2Cl7

– ion may
be considered as two aluminum tetrachloride tetrahedra joined at a
common vertex, or the Al2Cl6 molecule may be looked at as two such
tetrahedra joined at a common edge. These examples are shown in
Figure 3-26.

Figure 3-25. Joined tetrahedra and octahedra.

In mixed-halogen complexes, such as potassium tetrafluoroalumi-
nate, KAlF4 [72], there is also a tetrahedral metal coordination. In
fact, the regular or nearly regular tetrahedral tetrafluoroaluminate part
of the molecule is an especially well defined structural unit. It is
relatively rigid, whereas the position of the potassium atom around
the AlF4 tetrahedron is rather loose. The most plausible model for
this molecule is also shown in Figure 3-26. The KAlF4 molecule
is merely a representative from a large class of compounds with
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Figure 3-26. The configurations of the Al2Cl7– ion and Al2Cl6 and KAlF4

molecules.

great practical importance: the mixed halides have greatly enhanced
volatility compared with the individual metal halides.

For tetralithiotetrahedrane, (CLi)4, the structure with the lithium
atoms above the faces of the carbon tetrahedron was found in the
calculations to be more stable than with the lithium atoms above the
vertices (Figure 3-27) [73].

The prismatic cyclopentadienyl and benzene complexes of tran-
sition metals are reminiscent of the polycyclic hydrocarbon pris-
manes. Figure 3-28 shows ferrocene, (C5H5)2Fe, for which both the
barrier to rotation and the free energy difference between the prismatic
(eclipsed) and antiprismatic (staggered) conformations are very small
[75]. Figure 3-28 also presents a prismatic model with D6h symmetry
for dibenzene chromium, (C6H6)2Cr.

Molecules with multiple bonds between metal atoms often have
structures with beautiful and highly symmetrical polyhedral shapes.
The square prismatic [Re2Cl8]2– ion, shown in Figure 3-29, played
an important role in the history of the discovery of metal–metal

Figure 3-27. Model of the (CLi)4 molecule [74].
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Figure 3-28. Prismatic molecular models. Ferrocene: prismatic (D5h) and antipris-
matic (D5d); dibenzene chromium: prismatic (D6h).

Figure 3-29. The square prismatic structure of the [Re2Cl8]2– ion which played a
historic role in the discovery of metal–metal multiple bonds (see, text) and a Soviet
stamp with the same structure. The building in the background is the research insti-
tute in Moscow where the first such structure was prepared.

multiple bonds [76]. The first report of the very short Re–Re bond
appeared in 1958, in Russian, from the Inorganic Chemistry Insti-
tute of the Soviet Academy of Sciences in Moscow [77]. The authors,
Ada Kotel’nikova and V. G. Tronev, recognized the presence of direct
metal–metal bonding, but failed to suspect that it might be multiple
bonding. The bond was so short that it was suspect. A few years later
F. Albert Cotton reinvestigated the structure, confirmed the findings of
the Moscow scientists, and introduced the notion of Re–Re quadruple
bonding [78]. The original study by Kotel’nikova and Tronev was
commemorated on a postage stamp issued for the fiftieth anniversary
of their Institute (Figure 3-29).

Figure 3-30 shows another molecule with metal–metal multiple
bond. Its shape is similar to the paddles that propel riverboats. There
is then a whole class of hydrocarbons called paddlanes [79] and one
of their representatives is also shown in Figure 3-30.
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Figure 3-30. Left: Dimolybdenum tetraacetate, Mo2(O2CCH3)4 [80]; Right:
[2.2.2.2]Paddlane.

3.7.4. Regularities in Nonbonded Distances

The structure of the ONF3 molecule is depicted in Figure 3-31 with
the bond lengths, bond angles, and nonbonded distances. The shape of
the molecule well approximates a regular tetrahedron formed by three
fluorines and one oxygen. The nonbonded F···F and F···O distances
representing the lengths of the edges of a tetrahedron are equal within
the experimental errors of their determination [81]. The molecule has
C3v symmetry, and the central nitrogen atom is obviously not in the
center of the tetrahedron of the four ligands.

In some molecular geometries, the so-called intramolecular 1,3
separations are remarkably constant. The “1,3” label refers to the
interactions between two atoms in the molecule which are separated
by a third atom. The near equality of the nonbonded distances in the
ONF3 molecule is a special case. What is more commonly observed is
the constancy of a certain 1,3 nonbonded distance throughout a series
of related molecules. Significantly, this constancy of 1,3-distances
may be accompanied by considerable changes in the bond lengths

Figure 3-31. The molecular geometry of ONF3 with: Left: bond lengths and bond
angles; and Right: nonbonded distances [82].
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and bond angles within the three-atom group. The intramolecular 1,3
interactions have also been called intramolecular van der Waals inter-
actions, and L. S. Bartell postulated a set of intramolecular nonbonded
1,3 radii [83]. These 1,3 nonbonded radii are intermediate in value
between the corresponding covalent radii and “traditional” van der
Waals radii, all compiled for some elements in Table 3-5.

Figure 3-32 shows some structural peculiarities which originally
prompted Bartell to recognize the importance of the intramolecular
nonbonded interactions [84]. It was an interesting observation that the
three outer carbon atoms in H2C=C(CH3)2 were arranged as if they
were at the corners of an approximately equilateral triangle, as shown
in Figure 3-32. The central carbon atom in this arrangement is obvi-
ously not in the center of the triangle, consequently, the bond angle
between the bulky methyl groups is smaller than the ideal 120◦. In the

Table 3-5. Covalent, 1,3 Intramolecular Nonbonded and van der Waals Radii of
Some Elements

Element Covalent
radiusa (Å)

1,3 Intramolecular
nonbonded radiusb (Å)

Van der Waals
radiusa (Å)

B 0.817 1.33
C 0.772 1.25
N 0.70 1.14 1.50
O 0.66 1.13 1.40
F 0.64 1.08 1.35

Al 1.202 1.66
Si 1.17 1.55
P 1.10 1.45 1.90
S 1.04 1.45 1.85
Cl 0.99 1.44 1.80

Ga 1.26 1.72
Ge 1.22 1.58
As 1.21 1.61 2.00
Se 1.17 1.58 2.00
Br 1.14 1.59 1.95

aAfter L. Pauling, The Nature of the Chemical Bond, 3rd ed. Cornell University
Press, Ithaca, New York, 1960.
bAfter L. S. Bartell, “Molecular Geometry: Bonded Versus Nonbonded Interac-
tions.” J. Chem. Educ. 1968, 45, 754–767; C. Glidewell, “Intramolecular Non-
bonded Atomic Radii – Application to Heavier p Elements.” Inorg. Chim. Acta
1976, 20, 113–118.
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Figure 3-32. Geometrical consequences of nonbonded interactions after L. S.
Bartell [85]. (a) The three outer carbon atoms of H2C=C(CH3)2 are in the corners
of an approximately equilateral triangle, leading to a relaxation of the bond angle
between the ethyl groups; (b) Considerations of nonbonded interactions in the inter-
pretation of the C–C single bond length changes in a series of molecules.

other example, in Figure 3-32, the C–C bond lengthening is related to
the increasing number of nonbonded interactions. Of course, the 1,3-
intramolecular nonbonded radii (Table 3-5) are purely empirical, but
so are the other kinds of radii. Thus, the 1,3-nonbonded radii may be
updated from time to time.

Of the observations of constancy of nonbonded distances, here
we single out one [86]. The O···O nonbonded distances in XSO2Y
sulfones have been found to be remarkably constant at 248 pm in
a relatively large series of compounds. At the same time the S=O
bond lengths vary up to 5 pm and the O=S=O bond angles up to 5◦

depending on the nature of the X and Y ligands. The geometrical vari-
ations in the sulfone series could be visualized (Figure 3-33) as if the
two oxygen ligands were firmly attached to two of the four vertices of
the ligand tetrahedron around the sulfur atom, and this central atom
were moving along the bisector of the OSO angle depending on the X
and Y ligands. The sulfuric acid, H2SO4, or (HO)SO2(OH), molecule
has its four oxygens around the sulfur at the vertices of a nearly regular

Figure 3-33. Tetrahedral sulfur configurations; from the left: sulfones; sulfuric acid;
alkali sulfates.
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tetrahedron. Compared with the differences in the various OSO angles
(up to 20◦) and in the two kinds of SO bonds (up to 15 pm), the largest
difference among the six O···O nonbonded distances is only 7 pm [87].

The alkali sulfate molecules used to appear in old textbooks with
the following structural formula:

However, the SO4 groups have nearly regular tetrahedral configura-
tion in such molecules. The metal atoms are located on axes perpen-
dicular to the edges of the SO4 tetrahedron. Thus, this structure is
bicyclic as shown in Figure 3-33.

3.7.5. The VSEPR Model

Numerous examples of molecular structures have been introduced in
the preceding sections. They are all confirmed by modern experiments
and/or calculations. We would like to know, however, not only the
structure of a molecule and its symmetry, but also, why a certain struc-
ture with a certain symmetry is realized.

It has been a long-standing goal in chemistry to determine the
shape and measure the size of molecules, and also to calculate these
properties. Today, quantum chemistry is capable of determining the
structure of molecules of ever growing complexity, starting from the
mere knowledge of the atomic composition, and without using any
empirical information. Such calculations are called ab initio. The
primary results from these calculations are, however, wave functions
and energies which may also be considered “raw measurements,”
similar to some experimental data. At the same time there is a desire
to understand molecular structures in simple terms—such as, for
example, the localized chemical bond—that have proved so useful to
chemists’ thinking. There is a need for a bridge between the measure-
ments and calculations on one hand, and simple qualitative ideas, on
the other hand. There are several qualitative models for molecular
structure that serve this purpose well. These models can explain, for
example, why the methane molecule is regular tetrahedral, Td, why
ammonia is pyramidal, C3v, why water is bent, C2v, and why the xenon
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Figure 3-34. Molecular configuration of OPF3 (C3v) and OClF3 (Cs).

tetrafluoride molecule is square planar, D4h. It is also important to
understand why seemingly analogous molecules like OPF3 and OClF3

have so different symmetries, the former C3v, and the latter Cs, as seen
in Figure 3-34.

The structure of a series of the simplest AXn type molecules will
be examined in terms of one of these useful and successful qualitative
models. A is the central atom, the Xs are the ligands, and not neces-
sarily all n ligands are the same.

Qualitative models simplify. They usually consider only a few, if
not just one, of the many effects that are present and are interacting
in a most complex way. The measure of the success of a qualitative
model is in its ability to create consistent patterns for interpreting indi-
vidual structures and structural variations in a series of molecules and,
above all, in its ability to correctly predict the structures of molecules,
not yet studied or not even yet prepared.

One of the simplest models [88] is based on the following postu-
late: The geometry of the molecule is determined by the repulsions
among the electron pairs in the valence shell of its central atom. The
valence shell of an atom may have bonding pairs and other electron
pairs that do not participate in bonding and belong to this atom alone.
The latter are called unshared or lone pairs of electrons. The above
postulate emphasizes the importance of both bonding pairs and lone
pairs in establishing the molecular geometry. The model is appro-
priately called the Valence Shell Electron Pair Repulsion or VSEPR
model. The bond configuration around atom A in the molecule AXn

is such that the electron pairs of the valence shell are at maximum
distances from each other. Thus, the situation may be visualized in
such a way that the electron pairs occupy well-defined domains of the
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Table 3-6. Arrangements of Two to Six Electron
Pairs That Maximize Their Distances Apart

Number of electron pairs
in the valence shell

Arrangement

2 Linear
3 Equilateral triangle
4 Tetrahedron
5 Trigonal bipyramid
6 Octahedron

space around the central atom corresponding to the concept of local-
ized molecular orbitals.

If it is assumed that the valence shell of the central atom retains
its spherical symmetry in the molecule, then the electron pairs will be
at equal distances from the nucleus of the central atom. In this case
the arrangements at which the distances among the electron pairs are
at maximum, will be those listed in Table 3-6. If the electron pairs
are represented by points on the surface of a sphere, then the shapes
shown in Figure 3-35 are obtained by connecting these points. Of the
three polyhedra appearing in Figure 3-35, only two are regular, viz.,
the tetrahedron and the octahedron. The trigonal bipyramid is not a
regular polyhedron; although its six faces are equivalent, its edges and
vertices are not. Incidentally, the trigonal bipyramid is not a unique
solution to the five-point problem. Another, and only slightly less
advantageous arrangement, is the square pyramidal configuration.

Figure 3-35. Molecular shapes from a points-on-the-sphere model.
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The repulsions considered in the VSEPR model may be expressed
by the potential energy terms

Vi j = k/rn
i j

where k is a constant, rij is the distance between the points i and j; and
the exponent n is large for strong, or “hard,” repulsion interactions
and small for weak, or “soft,” repulsion interactions. This exponent
n is generally much larger than it would be for simple electrostatic
Coulomb interactions. Indeed, when n is larger than 3, the results
become rather insensitive to the value of n. That is very fortunate
because n is not really known. This insensitivity to the choice of n
is what provides the wide applicability of the VSEPR model.

3.7.5.1. Analogies

It is easy to illustrate the three-dimensional consequences of the
VSEPR model with examples from our macroscopic world. We need
only to blow up a few balloons that children play with. If groups of
two, three, four, five, and six balloons, respectively, are connected at
the ends near their openings, the resulting arrangements are shown in
Figure 3-36. Obviously, the space requirements of the various groups
of balloons acting as mutual repulsions, determine the shapes and
symmetries of these assemblies. The balloons here play the role of
the electron pairs of the valence shell.

Another beautiful analogy with the VSEPR model, and one found
directly in nature, is demonstrated in Figure 3-37. These are hard-
shell fruits growing together. The small clusters of walnuts, e.g., have
exactly the same arrangements for two, three, four, and five walnuts
in assemblies as predicted by the VSEPR model or as those shown by
the balloons. The walnuts—when they grow close to each other—are

Figure 3-36. Shapes of groups of balloons.
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Figure 3-37. Walnut clusters (photographs by the authors).

required to accommodate themselves to each other’s company and
find the arrangements that are most advantageous considering the
space requirements of all. Incidentally, the balloons and the walnuts
may take us one step further in analogies as they may be consid-
ered as “soft” and “hard” objects, with weak and strong interactions,
respectively.

3.7.5.2. Molecular Shapes

Using the VSEPR model, it is simple to predict the shape and
symmetry of a molecule from the total number of bonding pairs, n,
and lone pairs, m, of electrons in the valence shell of its central atom.
The molecule may then be written as AXnEm where E denotes a lone
pair of electrons. Only a few examples will be described here for illus-
tration. For a comprehensive coverage see, e.g., the monograph [89].

First, we consider the methane molecule, shown in the second row
of Figure 3-38, together with ammonia and water. Originally, there
were four electrons in the carbon valence shell, and these formed
four C–H bonds, with the four hydrogens contributing the other four
electrons. Thus, methane is represented as AX4 and its symmetry is,
accordingly, regular tetrahedral. In ammonia, originally there were
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Figure 3-38. Bond configurations with 2, 3, 4, 5, and 6 electron pairs in the valence
shell of the central atom [90].

five electrons in the nitrogen valence shell, and the formation of the
three N–H bonds added three more. With the three bonding pairs and
one lone pair in the nitrogen valence shell, ammonia may be written
as AX3E, and, accordingly, the arrangement of the molecule is related
to a tetrahedron. However, only in three of its four directions do we
find bonds, and consequently ligands, while in the fourth there is a
lone pair of electrons. Hence a pyramidal geometry is found for the
ammonia molecule. The bent configuration of the water molecule can
be similarly deduced.

In order to establish the total number of electron pairs in the valence
shell, the number of electrons originally present and the number of



3.7. Polyhedral Molecular Geometries 145

bonds formed need to be considered. A summary of molecular shapes
based on the arrangements of two to six valence shell electron pairs is
shown in Figure 3-38.

The molecular shape to a large extent determines the bond angles.
Thus, the bond angle X–A–X is 180◦ in the linear AX2 molecule,
it is 120◦ in the trigonal planar AX3 molecule, and 109◦28’ in the
tetrahedral AX4 molecule. The arrangements shown in Figure 3-38
correspond to the assumption that the strengths of the repulsions from
all electron pairs are equal. In reality, however, the space require-
ments and, accordingly, the strengths of the repulsions from various
electron pairs may be different depending on various circumstances
as described in the following three subrules [91]:

1. A lone pair, E, in the valence shell of the central atom has a greater
space requirement in the vicinity of the central atom than does
a bonding pair. Thus, a lone pair exercises a stronger repulsion
towards the neighboring electron pairs than does a bonding pair, b.
The repulsion strengths weaken in the following order:

E/E > E/b > b/b

This order is well illustrated by the various angles in sulfur diflu-
oride in Figure 3-39 as determined by ab initio molecular orbital
calculations [92]. This is also why, for example, the bond angles
H–N–H of ammonia, 106.7◦, are smaller than the ideal tetrahe-
dral value, 109.5◦. Unless stated otherwise, the parameters in the
present discussion are taken from the Landolt Börnstein Tables
[93].

Figure 3-39. The angles of sulfur difluoride as determined by ab initio molecular
orbital calculations [94].

2. Multiple bonds, bm, have greater space requirements than do
single bonds and thus exercise stronger repulsions toward the
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neighboring electron pairs than do single bonds. The repulsion
strengths weaken in the following order:

bm/bm > bm/b > b/b

A consequence of this is that the bond angles will be larger
between multiple bonds than between single bonds. The structure
of dimethyl sulfate in Figure 3-40 provides a good example in that
it has three different types of OSO bond angles, and they decrease
in the following order [95]:

S=O/S=O > S=O/S−O > S−O/S−O

Figure 3-40. The three different kinds of oxygen–sulfur–oxygen bond angles in the
dimethyl sulfate molecule as determined by electron diffraction [96].

3. A more electronegative ligand decreases the electron density in the
vicinity of the central atom as compared with a less electronega-
tive ligand. Accordingly, the bond to a less electronegative ligand,
bX, has a greater space requirement than the bond to a more elec-
tronegative ligand, bY. The repulsion strengths then weaken in the
following order:

bX/bX > bX/bY > bY/bY

Consequently, the bond angles are smaller for more electronegative
ligands than for less electronegative ligands. An example of this
effect can be seen in a comparison of sulfur difluoride (98◦) and
sulfur dichloride (103◦).

It is interesting to compare the implications expressed by these
subrules with the depiction of some localized molecular orbitals in
Figure 3-41 [97]. The lone pair of electrons occupies more space than
do the bonding pairs in the vicinity of the central atom. Also, a bond to
a more electronegative ligand such as fluorine occupies less space in
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Figure 3-41. Localized molecular orbitals represented by contour lines denoting
electron densities of 0.02, 0.04, 0.06, etc. electron/bohr3 from theoretical calcula-
tions for the S–H, S–F, and S=O bonds and the lone pair on sulfur [98].

the vicinity of the central atom than does a bond to a less electroneg-
ative ligand such as hydrogen. Finally, a double bond occupies more
space than a single bond. The angular ranges of the corresponding
contours in the electron density plots are all in good qualitative agree-
ment with the postulates of the VSEPR model.

The VSEPR model has a fourth subrule that concerns the relative
availability of space in the valence shell:

4. There is less space available in a completely filled valence shell
than in a partially filled valence shell. Accordingly, the repulsions
are stronger and the possibility for angular changes are smaller in
the filled valence shell than in the partially filled one. Thus, for
example, the bond angles of ammonia (107◦) are closer to the ideal
tetrahedral value than are those of phosphine (94◦).

Thus, the differences in the electron pair repulsions may account
for the bond angle variations in various series of molecules. The ques-
tion now arises as to whether these differences have any effect on the
symmetry choice of the molecules. In the four-electron-pair systems
the differences in the electron pair repulsions have a decisive role in
the sense that the AX4, EBX3, E2CX2 molecules have Td, C3v, and C2v

symmetries, respectively. Within each series, however, the symmetry
is preserved regardless of the changes in the ligand electronegativities.
For example, only the bond angles change in the molecules EBX3, and
EBY3; the symmetry remains the same.
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Ligand electronegativity changes may have decisive effects,
however, on the symmetry choices of various bipyramidal systems,
of which the trigonal bipyramidal configuration is the simplest.

When five electron pairs are present in the valence shell of the
central atom, the trigonal bipyramidal configuration is usually found,
although a tetragonal pyramidal arrangement cannot be excluded in
some cases. Even intermediate arrangements between these two may
appear to be the most stable in some special structures. The trig-
onal bipyramidal configuration with an equilateral triangle in the
equatorial plane has D3h symmetry while the square pyramidal has
C4v symmetry. The intermediate arrangements have C2v symmetry
or nearly so. Indeed, rearrangements often occur in trigonal bipyra-
midal structures performing low-frequency large-amplitude motion.
Such rearrangements will be illustrated later.

The positions in the D3h trigonal bipyramid are generally not equiv-
alent, and the axial ligand position is further away from the central
atom than the equatorial one. This has no effect on the symmetry
of the AX5 structures, and this is comforting from the point of view
of the applicability of the VSEPR model in establishing the point-
group symmetries of such molecules. On the other hand, when there
is inequality among the electron pairs, the differences in the axial
and equatorial positions do have importance for symmetry consider-
ations. The PF5 molecule, as an AX5 system, shows unambiguously
D3h symmetry in its trigonal bipyramidal configuration. However, the
prediction of the symmetry of the SF4 molecule, which may be written
as AX4E, is less obvious. For SF4 the problem is where will the lone
pair of electrons occur?

An axial position in the trigonal bipyramidal arrangement has three
nearest neighbors at 90◦ away and one more neighbor at 180◦. For
an equatorial position there are two nearest neighbors at 90◦ and two
further ones at 120◦. As the closest electron pairs exercise by far
the strongest repulsion, the axial positions are affected more than the
equatorial ones. In agreement with this reasoning, the axial bonds are
usually found to be longer than the equatorial ones. If there is a lone
pair of electrons with a relatively large space requirement, it should
be found in the more advantageous equatorial position. Accordingly,
the SF4 structure has C2v symmetry, as does the ClF3 molecule, which
is of the AX3E2 type. Finally, the XeF2 molecule is AX2E3 with all
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three lone pairs in the equatorial plane, hence its symmetry is D∞h.
All these structures are depicted in Figure 3-38.

By similar reasoning, the VSEPR model predicts that a double bond
will also occupy an equatorial position. Thus, the point group may
easily be established for the molecules O=SF4 (C2v), O=ClF3 (Cs),
XeO3F2 (D3h), and XeO2F2 (C2v). We note the Cs symmetry for the
OClF3 molecule (Figure 3-34) as a consequence of the bipyramidal
geometry with both the Cl=O double bond and the lone pair in the
equatorial plane. The molecule OPF3 (Figure 3-34) is only seemingly
analogous. There is no lone pair in the phosphorus valence shell in
this structure, and thus the molecule has a distorted tetrahedral bond
configuration. The P=O double bond is along the three-fold axis, and
the point group is C3v, like that for ammonia.

Lone pairs and/or double bonds replaced single bonds in the above
examples. Similar considerations are applicable when only ligand
electronegativity changes take place. A typical example is demon-
strated by a comparison of the structures of PF2Cl3 and PF3Cl2. The
chlorine atoms are less electronegative ligands than the fluorines,
and they will be in equatorial positions in both structures as seen in
Figure 3-42. The point groups are C2v for PF3Cl2 and D3h for PF2Cl3

[99]. Were the chlorines in the axial positions in PF3Cl2, this molecule
would also have the much higher symmetry D3h. This is an interesting
example also from the point of view that the highest symmetries do
not necessarily occur in any given structure. This is not, however, in
contradiction with the “Principle of Maximum Symmetry” as stated
by I. David Brown, “A compound will adopt the structure with the
highest symmetry that is consistent with the constraints acting on it”
[100]. In the example above, the constraint is a chemical one, viz., the
electronegativity difference between the ligands chlorine and fluorine
that leads to a spatial constraint with respect to their bonding electron
domains.

Figure 3-42. The molecular structures of PF3Cl2 and PF2Cl3 are not analogous: the
chlorine ligands occupy equatorial positions in both cases.
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All six electron pairs are equivalent in the AX6 molecule and so
the symmetry is unambiguously Oh. An example is SF6. The IF5

molecule, however, corresponds to AX5E and its square pyramidal
configuration has C4v symmetry. There is no question here as to
the preferred position for the lone pair, as any of the six equivalent
sites may be selected. When, however, a second lone pair is intro-
duced, then the favored arrangement is that in which the two lone
pairs find themselves at the maximum distance apart. Thus for XeF4,
i.e., AX4E2, the bond configuration is square planar, point group D4h.
These structures are depicted in Figure 3-38.

The difficulties encountered in the discussion of the five-electron-
pair valence shells are intensified in the case of the seven-electron-
pair case. Here again the ligand arrangements are less favorable than
for the nearest coordination neighbors, i.e., six and eight. It is not
possible to arrange seven equivalent points in a regular polyhedron,
while the number of nonisomorphic polyhedra with seven vertices is
large, viz., 34 [101]. A few of them are shown in Figure 3-43. No
single one of them is distinguished, however, from the others on the
basis of relative stability. There may be quite rapid rearrangements
among the various configurations. One of the early successes of the
VSEPR model was that it correctly predicted a non-regular structure
for XeF6 by considering it as a seven-coordination case, AX6E.

Numerous examples, a wealth of structural data and detailed
considerations on the potentials and limitations of the applicability
of the VSEPR model are given in a monograph [102].

Figure 3-43. A sample of configurations for seven electron pairs in the valence
shell.
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3.7.5.3. Historical Remarks

The simplicity of the VSEPR model is one of its primary strengths.
In addition, the model provides a continuity in the development of the
qualitative ideas about the nature of the chemical bond and its corre-
lation with molecular structure. Abegg’s octet rule [103] and Lewis’
theory of the shared electron pair [104] may be considered as direct
forerunners of the model. Lewis’ model of the cubical atom deserves
special mention. It was instrumental in shaping the concept of the
shared electron pair. It also permitted a resolution of the apparent
contradiction between the two distinctly different bonding types, viz.,
the shared electron pair and the ionic electron-transfer bond. In terms
of Lewis’ theory, the two bonding types could be looked at as mere
limiting cases. Lewis’ cubical atoms are illustrated in Figure 3-44.
They are also noteworthy as an example of a certainly useful though
not necessarily correct application of a polyhedral model.

Sidgwick and Powell were first to correlate the number of electron
pairs in the valence shell of a central atom and its bond configura-
tion [106]. Then Gillespie and Nyholm introduced allowances for the
difference between the effects of bonding pairs and lone pairs, and
applied the model to large classes of inorganic compounds [107].

There have been attempts to provide quantum-mechanical founda-
tions for the VSEPR model. These attempts have developed along two
lines. One is concerned with assigning a rigorous theoretical basis
to the model, primarily involving the Pauli exclusion principle. The
other line was the numerous quantum chemical calculations, which
have already produced a large amount of structural data consistent
with the VSEPR model, demonstrating its ability to capture important
effects determining the structure of molecules. It has also been shown
that while the total electron density distribution of a molecule does
not provide any evidence for the localized electron pairs, the charge
concentrations obtained by deriving the second derivative of this
distribution parallel the features of these localized pairs [108]. This
may be considered as supporting evidence, or even physical basis, for
the VSEPR model. We would stress, however, that the VSEPR model
is a qualitative tool, and as such, it over-emphasizes some effects and
ignores many others. Its simplicity, wide applicability, and predictive
power have been repeatedly demonstrated, making it useful both in
research and education.
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Figure 3-44. G. N. Lewis’ cubical atoms and some molecules built from such atoms
(top) and his original sketches (bottom) [105].

3.7.6. Consequences of Intramolecular Motion

Imagine the merry-go-round (Figure 3-45) revolving, and one of the
wooden horses getting lifted and, upon its returning to the ground
level, the next horse is getting lifted, and so on. In addition to the
real revolution of the whole circle, the vertical motion is transmitted
from horse to horse which can be considered pseudorotation. If we
take a snapshot of the merry-go-round in operation and the exposure
is long enough, there will be a blurred image of all the horses up
in the elevated position in addition to the ground circle. With a very
short exposure, however, we can get an image in which the moment
is captured with a single horse being lifted. Another fitting analogy
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may be the Dance by Henri Matisse (Figure 3-45). Let us imagine the
following coreography for this dance: one of the dancers jumps and is
thus out of the plane of the other four. As soon as this dancer returns
into the plane of the others, it is now the role of the next to jump, and
so on. The exchange of roles from one dancer to another throughout
the five-member group is so quick that if we take a normal snapshot,
we will have a blurred picture of the five dancers. However, if we can
use a very short exposure, it will be possible to capture a well-defined
configuration of the dancers.

The above descriptions well simulate the pseudorotation of the
cyclopentane, (CH2)5, molecule (Figure 3-46), although on a different
time scale. This molecule has a special degree of freedom when the
out-of-plane carbon atom exchanges roles with one of its two neigh-

Figure 3-45. Merry-go-round in Bologna, Italy (photograph by the authors) and
Henri Matisse’s Dance (The Hermitage, St. Petersburg, reproduced by permission).
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Figure 3-46. Two models of the cyclopentane molecule from its pseudorotation.

boring carbon atoms (and their hydrogen ligands). This is equivalent
to a rotation of this motion by 2�/5 about the axis perpendicular to the
plane of the in-plane carbons [109]. All three examples emphasize the
importance of the relationship between the time-scale of motion and
the time-scale of measurement. This relationship must be taken into
account when making a conclusion about the symmetry of a structure
in motion.

In discussing molecular structure, an extreme approach is to
disregard intramolecular motion and to consider the molecule to be
motionless. A frozen, completely rigid molecule is a hypothetical
state corresponding to the minimum position of the potential energy
function for the molecule. Such a motionless structure has an impor-
tant and well-defined physical meaning and is called the equilibrium
structure. It is this equilibrium structure that emerges from quantum
chemical calculations. On the other hand, real molecules are never
motionless, not even at the temperatures approaching 0 K. Further-
more, the various physical measurement techniques determine the
structures of real molecules. As our discussion of the merry-go-round
and Matisse’s Dance illustrated, the relationship between the life-
time of the configuration under investigation and the time-scale of
the investigating technique is of crucial importance.

Large-amplitude, low-frequency intramolecular vibrations may
lower the molecular symmetry of the average structure from the higher
symmetry of the equilibrium structure. Some examples from metal
halide molecules are shown in Figure 3-47.

If we determine the average interatomic distances of symmetric
triatomic molecules, for example, the emerging geometry will always
be bent, regardless whether the equilibrium structure is linear or bent
because of the consequences of bending vibrations (Figure 3-48).
In order to distinguish between them, the potential energy func-
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Figure 3-47. Equilibrium versus average structures of simple metal halide
molecules with low-frequency, large-amplitude deformation vibrations.

tion describing the bending motion must be scrutinized [110]. The
bending potential energy functions of ZnCl2 and SrBr2 are shown
in Figure 3-48; the bending angle �e = 0◦ corresponds to the linear
configuration. The minimum of the potential energy appears at �e = 0◦

for both molecules. It is also seen though that the minimum is much
more shallow for SrBr2 than for ZnCl2. Figure 3-48 shows two
more bending potential energy functions, those of SiBr2 and, again,
of SrBr2, but at very diffent scales as compared with the previous
example. The relatively high barrier at �e = 0◦ for SiBr2 indicates an
unambiguously bent configuration. Further enlarging the scale reveals
a small barrier at �e = 0◦ for SrBr2, so small that it lies below the level
of the ground vibrational state. Such structures are called quasilinear.

Rapid interconversion of the nuclei takes place in the bullvalene
molecule under very mild conditions in fluid media. This process
involves making and breaking bonds, but this is accompanied by only
very small shifts in the nuclear positions. The molecular formula is
(CH)10 and the carbon skeleton is shown at the top of Figure 3-49.
There are only four different kinds of carbon positions (and hydrogen
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Figure 3-48. Bending motion and a sampler of potential energy functions. Top:
bending vibration of a linear triatomic molecule, where r is the instantaneous
distance between the end atoms and re is the equilibrium distance of the linear
configuration (r<re); Bottom: Comparison of bending potential functions for linear
and bent models of symmetric triatomic molecules [111].

positions, accordingly) and all four positions are being interconverted
simultaneously [112].

Hypostrophene is another (CH)10 hydrocarbon whose trivial name
was chosen to reflect its behavior, the Greek hypostrophe meaning
turning about [115]. The molecule is ceaselessly undergoing the
intramolecular rearrangements indicated at the bottom of Figure 3-49.
The atoms have a complete time-averaged equivalence yet hypostro-
phene could not be converted into pentaprismane.

Permutational isomerism among inorganic substances was discov-
ered by R. S. Berry for trigonal bipyramidal structures [116].
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Figure 3-49. The interconversion of bullvalene [113] (top) and hypostrophene
[114].

Although the trigonal bipyramid and the square pyramid have
different symmetries, D3h versus C4v, they easily interconvert by
means of bending vibrations as is illustrated in Figure 3-50. The
change in the potential energy during this structural reorganization
is also shown. The permutational isomerism of an AX5 molecule,
e.g., PF5, is easy to visualize as the two axial ligands replace two of
the three equatorial ones, while the third equatorial ligand becomes
the axial ligand in the transitional square pyramidal structure. The
rearrangements quickly follow one another without any position being
constant for any significant time period. The C4v form originates from
a D3h structure and yields then again to another D3h form. A some-
what similar pathway was established for the (CH3)2NPF4 molecule
in which the dimethylamine group is permanently locked in an equato-
rial position whereas the fluorines exchange in pairs all the time [117].

The structure of the (CH3)2NPF4 molecule and its investigation by
NMR spectroscopy is also a good example to demonstrate the impor-
tance of the relationship between the lifetime of a configuration and
the time-scale of the investigating technique. The 31P NMR spectra
of (CH3)2NPF4 at low temperatures provide evidence of two different
kinds of P–F bond in this molecule, viz., axial and equatorial. At low
temperatures the interconversion is slow and the lifetimes of the fluo-
rines in the axial and equatorial positions are much greater than the
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Figure 3-50. Berry-pseudorotation of PF5-type molecules with a potential energy
function and R. Stephen Berry (photograph by the authors).

interaction time for producing the spectrum. So the two kinds of P–F
bond give separate resonances in the spectrum. At higher temper-
atures the intramolecular exchange of the fluorine positions accel-
erates and the lifetimes of the fluorines in the axial and equatorial
positions decrease. As the interaction time needed to produce the
spectrum remains the same, the spectrum becomes simpler and the
nonequivalent fluorines are no longer distinguished. Since the time-
scale of NMR spectroscopy is commensurable with the lifetimes of
separate configurations in intramolecular motion, different molec-
ular shapes may be observed at different temperatures. Other tech-
niques utilize interactions at different time-scales. Thus, for example,
the time-scale of electron diffraction is several orders of magnitude
smaller and, accordingly, the two different fluorine positions will
always be distinguished in an electron diffraction analysis.

Iodine heptafluoride, IF7, has a pentagonal bipyramidal structure
of at least approximately D5h symmetry [118]. Its dynamic behavior
has been desribed by pseudorotation. The rearrangement that char-
acterizes the PF5 molecule also describes well the permutation of
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the atomic nuclei in five-atom polyhedral boron skeletons in borane
molecules [119].

W. N. Lipscomb elaborated a general concept for the rearrange-
ments of polyhedral boranes according to which two common
triangulated faces are stretched to a square face in the borane poly-
hedra [120]. There is an intermediate polyhedral structure with square
faces. In the final step of the rearrangement, the intermediate config-
uration may revert to the original polyhedron with no net change,
but it may as well turn into a different arrangement. The arrange-
ment has rectangular faces with an orthogonal linkage with respect
to the bonding situation in the original polyhedron (Figure 3-51). Of
the many possible examples, the rearrangements of dicarba-closo-
dodecaboranes are illustrated in Figure 3-52. There are three isomers
of this beautiful carborane molecule:

1,2-dicarba-closo-dodecaborane, or o-C2B10H12,

1,7-dicarba-closo-dodecaborane, or m-C2B10H12, and

1,12-dicarba-closo-dodecaborane, or p-C2B10H12.

Whereas the ortho isomer easily transforms into the meta isomer
in agreement with the above mentioned model, the para isomer is
obtained only under more drastic conditions and only in a small
amount [121].

A similar model has been proposed for the so-called carbonyl
scrambling mechanism in molecules like Co4(CO)12, Rh4(CO)12,

Figure 3-51. Lipscomb model of the rearrangement in polyhedral boranes
(top) with the polyhedral rearrangement of icosahedron/cuboctahedron/icosahedron
[122].
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Figure 3-52. Structures of ortho-, meta-, and para-dicarba-closo-dodecaborane
[123].

and Ir4(CO)12 [124]. The carbonyl ligands can have several modes
of coordination, viz., terminal and a variety of bridging possibili-
ties. Rapid interconversion between the different coordination modes
is possible, even in the solid state [125]. These metal-carbonyl
molecules belong to a large class of compounds whose general
formula is Mm(CO)n, where M is a transition metal. The usually small

Figure 3-53. The structure of [Co6(CO)14]4– in two representations after [127]: Left:
the octahedron of the cobalt cluster possesses six terminal and eight triply bridging
carbonyl groups; Right: an omnicapped cube of the carbonyl oxygen envelopes the
cobalt octahedron.
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m-atomic metal clustser polyhedron is enveloped by another polyhe-
dron whose vertices are occupied by the carbonyl oxygens [126]. An
attractive example is the structure of [Co6(CO)14]4– in which the octa-
hedral metal cluster has six terminal and eight triply bridging carbonyl
groups, as shown in Figure 3-53. This structure may also be repre-
sented by an omnicapped cube enveloping an octahedron, which is
also depicted in Figure 3-53. These models are reminiscent of another
model in which, also, polyhedra were enveloping other polyhedra.
That model was Kepler’s planetary system in his Mysterium cosmo-
graphicum published in 1595 and mentioned in the previous Chapter.
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Amsterdam and New York, 1977; V. Horváth, A. Kovács, I. Hargittai, “Struc-
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Chapter 4

Helpful Mathematical Tools

What we have to learn to do we learn by doing.
Aristotle [1]

4.1. Groups

So far our discussion has been non-mathematical. Ignoring math-
ematics, however, does not make things necessarily easier. Group
theory is the mathematical apparatus for describing symmetry oper-
ations. It facilitates the understanding and the use of symmetries. It
may not even be possible to successfully attack some complex prob-
lems without the use of group theory. Besides, groups are fascinating.
In his book series, the mathematician, James Newman, characterized
group theory in the following way: “The Theory of Groups is a branch
of mathematics in which one does something to something and then
compares the result with the result obtained from doing the same thing
to something else, or something else to the same thing” [2].

This introductory chapter gives the reader the tools necessary
to understand the next three chapters in which molecular vibra-
tions, electronic structure, and chemical reactions are discussed.
Further reading is recommended for broader knowledge of the subject
[3–11].

A mathematical group is a very general idea. It is a collection
(set) of symbols or objects together with a rule telling us how to
combine them. A simple example is a set of two numbers and addition
for the rule. The theory of groups has a wide range of applications
far beyond pure mathematics; especially in physics and chemistry.
Symmetry and group theory are inherently related to each other.
When the symmetries of molecules are characterized by Schoenflies

M. Hargittai, I. Hargittai, Symmetry through the Eyes of a Chemist, 3rd ed.,
DOI: 10.1007/978-1-4020-5628-4 4, C© Springer Science+Business Media B.V. 2009

169



170 4 Helpful Mathematical Tools

Figure 4-1. Symmetry operations in the C2v point group.

symbols, for example, C2v, C3v or C2h , these symbols represent well-
defined groups of symmetry operations. Let us consider first the C2v

point group. It consists of a twofold rotation, C2, and two reflections
through mutually perpendicular symmetry planes, �v and �′

v, whose
intersection coincides with the rotation axis. All the corresponding
elements are shown in Figure 4-1. One more operation can be added
to these, called the identity operation, E. Its application leaves the
molecule unchanged. The set of the operations C2, �v, �′

v, and E
together make a mathematical group.

A mathematical group is a set of elements related by certain rules.
They will be illustrated on the symmetry operations.

1. The product of any two elements of a group is also an element of
the group. The product here means consecutive application of the
elements rather than common multiplication. Thus, for example,
the product �v · C2 means that first a twofold rotation is applied to
an operand

∗
and then reflection is applied to the new operand. Let

us perform these operations on the atomic positions of a sulfuryl
chloride molecule as is shown in Figure 4-2a. The same final result
is obtained by simply applying the symmetry plane �′

v, as is also
shown in Figure 4-2b. Thus

∗
Shortly, we shall use a wide range of operands related to molecular structure.
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Figure 4-2 (a) Consecutive application of two symmetry operations, C2 and �v to
the nuclear positions of the SO2Cl2 molecule. (b) Application of �′

v to SO2Cl2.

�v · C2 = �′
v

The products of the elements in a group are generally not
commutative. That means that the result of the consecutive appli-
cation of the symmetry operations depends on the order in which
they are applied. This is why it is so important to read the multi-
plication sign as “preceded by.” Figure 4-3 gives an example for
the ammonia molecule, which belongs to the C3v point group.
Depending on whether the C3 operation is applied first and then
the �′′

v or vice versa, the effect is different. There are some groups
for which multiplication is commutative, they are called Abelian
groups. The C2v point group is an example. Thus, in Figure 4-2a
we could get the same result first applying the �v reflection and
then the twofold rotation.

2. One element in the group must commute with all other elements in
the group and leave them unchanged. This is the identity element,
E. Thus,

E · X = X · E = X

3. The products of the elements in a group are always associative.
That means that if there is a consecutive application of several
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Figure 4-3. Illustration for the non-commutative character of the symmetry opera-
tions.

symmetry operations, their application may be grouped in any way
without changing the final result as long as the order of the appli-
cation remains the same. Thus, for example,

C2 · �v · �′
v = C2 · (�v · �′

v) = (C2 · �v) · �′
v

4. For each element in a group, there is an inverse or reciprocal
operation which is also an element of the group and satisfies the
following condition:

X · X−1 = X−1 · X = E

For example,

C2 · C−1
2 = C−1

2 · C2 = E

or

�v · �−1
v = �−1

v · �v = E

The symmetry operation corresponding to an inverse operation can
be found in group multiplication tables. These tables contain the prod-
ucts of the elements of a group. An example is shown in Table 4-1, for
the C2v point group. Here each element of the group, that is, each
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Table 4-1. Group Multiplication Table for the C2v Point Group

C2� E C2 �� �′
v

E E C2 �� �′
v

C2 C2 E �′
v ��

�� �� �′
v E C2

�′
v �′

v �� C2 E

symmetry operation, is listed only once in the initial row at the top
and in the initial column at the far left. In forming the product of any
two elements, one belonging to the row and the other to the column,
the order of the application of the elements is strictly defined. First, the
element in the top row is applied, followed by the application of the
element in the far left column. The result is found at the intersection
of the corresponding column and row. Any one of the results is also
a symmetry operation belonging to the C2v point group. In fact, each
row and each column in the field of the results is a rearranged list of
the initial operations, but no two rows or two columns may be iden-
tical. From the C2v multiplication table, it is seen that the inverse oper-
ation of C2 is C2, since their intersection is E; similarly, the inverse
operation of �v is �v in this group.

The multiplication table of the C3v point group is compiled in
Table 4-2. Here,

C3 · C3 = C2
3

means two successive applications of the threefold rotation. Applying
it once yields a 120◦ rotation, while C2

3 corresponds to a 240◦ rotation

Table 4-2. Group Multiplication Table for the C3v Point Group

C3� E C3 C2
3 �� �′

v �′′
v

E E C3 C2
3 �� �′

v �′′
v

C3 C3 C2
3 E �′′

v �� �′
v

C2
3 C2

3 E C3 �′
v �′′

v ��

�� �� �′
v �′′

v E C3 C2
3

�′
v �′

v �′′
v �� C2

3 E C3

�′′
v �′′

v �� �′
v C3 C2

3 E
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altogether. Accordingly, for example, the meaning of C2
5 is a rotation

by 2 · (360◦/5) = 144◦.
The number of elements in a group is called the order of the group.

Its conventional symbol is h. The group multiplication tables show
that h = 4 for the C2v point group and h = 6 for C3v.

A group may be divided into two kinds of subunit: subgroups
and classes. A subgroup is a smaller group within a group that still
possesses the four fundamental properties of a group. The identity
operation, E, is always a subgroup by itself, and it is also a member of
all other possible subgroups.

A class is a complete set of elements, in our case symmetry opera-
tions, of the group that are conjugate to one another (in mathematics
they are usually called conjugacy class). Elements A and B of a group
are conjugates, if there is some group element, Z, for which

B = Z−1 · A · Z

Designating a conjugate B to a symmetry operation A is also called
a similarity transformation. B is a similarity transform of A by Z,
or, in other words, A and B are conjugates. Elements belong to one
class if they are conjugate to one another. The inverse operation can
be applied with the aid of the multiplication table and rule 4 given
above,

Z−1 · Z = Z · Z−1 = E

To find out what operations belong to the same class within a
group, all possible similarity transformations in the group have to be
performed. Let us work this out for the C3v point group and begin with
the identity operation. Since E commutes with any other elements Z
(see under rule 2 above), we have

Z−1 · E · Z = Z−1 · Z · E = E · E = E

for all elements in the class. Consequently, E is not conjugate with any
other element, and it always forms a class by itself. This is true for all
other point groups as well.
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Consider now �v:

E−1 · (�v · E) = E−1 · �v = �v

C−1
3 · (�v · C3) = C−1

3 · �′
v = C2

3 · �′
v = �′′

v

(C2
3 )−1 · (�v · C2

3 ) = (C2
3 )−1 · �′′

v = C3 · �′′
v = �′

v

�−1
v · (�v · �v) = �−1

v · E = �v · E = �v

�′−1
v · (�v · �′

v) = �′−1
v · C3 = �′

v · C3 = �′′
v

�′′−1
v · (�v · �′′

v ) = �′′−1
v · C2

3 = �′′
v · C2

3 = �′
v

We have performed all possible similarity transformations for the
operation �v. As a result, it is seen that the three operations expressing
vertical mirror symmetry belong to the same class. We could reach the
same conclusion by similarity transformations on either of the other
two �v operations.

Next let us examine C3:

E−1 · (C3 · E) = E−1 · C3 = E · C3 = C3

C−1
3 · (C3 · C3) = C−1

3 · C2
3 = C2

3 · C2
3 = C3

(C2
3 )−1 · (C3 · C2

3 ) = (C2
3 )−1 · E = C3 · E = C3

�−1
v · (C3 · �v) = �−1

v · �′′
v = �v · �′′

v = C2
3

�′−1
v · (C3 · �′

v) = �′−1
v · �v = �′

v · �v = C2
3

�′′−1
v · (C3 · �′′

v ) = �′′−1
v · �′

v = �′′
v · �′

v = C2
3

According to these transformations, C3 and C2
3 are conjugates and

thus belong to the same class.
The order of a class is defined as the number of elements in the

class. For example, the order of the class of the reflection operations
in C3v is 3, and the order of the class of the rotation operations is 2.
The order of a class, or a subgroup, is an integral divisor of the order
of the group.

The mathematical handling of the symmetry operations is done by
means of matrices.



176 4 Helpful Mathematical Tools

4.2. Matrices

A matrix is a rectangular array of numbers, or symbols for numbers.
These elements are put between square brackets. A numerical
example of a matrix is shown here:

⎡
⎣

3 1 0 2
5 7 0 −3
0 0 −2 1

⎤
⎦

Generally a matrix has m rows and n columns:

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

· ·
· ·
· ·

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎥⎦

The above matrix may be represented by a capital letter A. Another
notation is [ai j ]. The symbol ai j represents the matrix element
standing in the ith row and the jth column. The number of rows is
m, and the number of columns is n, and 1 ≤ i ≤ m and 1 ≤ j ≤ n.

There are some special matrices important for our discussion. A
square matrix has equal numbers of rows and columns. According to
the general notation, a matrix [ai j ] is a square matrix if m = n. The
dimension of a square matrix is the number of its rows or columns.

A special square matrix is the unit matrix, in which all elements
along the top-left-to-bottom-right diagonal are 1 and all the other
elements are zero. The short notation for a unit matrix is E. Some
unit matrices are presented here:

[
1 0
0 1

] ⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
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A column matrix consists of only one column. Column matrices are
used to represent vectors. A vector is characterized by its length and
direction. A vector in three-dimensional space is shown in Figure 4-4.
If one end of the vector is at the origin of the Cartesian coordinate
system, then the three coordinates of its other end fully describe the
vector. These three Cartesian coordinates can be written as a column
matrix:

⎡
⎣

x1

y1

z1

⎤
⎦

Thus, this column matrix represents the vector.
While column matrices are used to represent vectors, square

matrices are used to represent symmetry operations. Performing a
symmetry operation on a vector is actually a geometrical transforma-
tion. How can these geometrical transformations be translated into
matrix “language”? Consider a specific example and see how the
symmetry operations of the Cs symmetry group can be applied to the
vector of Figure 4-4. For a matrix representation, we first write (or
usually just imagine) the coordinates of the original vector in the top

Figure 4-4. Representation of a vector in three-dimensional space.
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row and the coordinates of the vector resulting from the symmetry
operation in the left-hand column:

x1 y1 z1 ← original vector

resultant vector

x ′
1

y′
1

z′
1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

Then we examine the effect of the symmetry operation in detail. If
a coordinate is transformed into itself, 1 is placed into the intersection
position, and if it is transformed into its negative self, –1 is put into
the intersection. Both these positions will be along the diagonal of
the matrix. If a coordinate is transformed into another coordinate or
into the negative of this other coordinate, 1 or –1 is placed into the
intersection position, respectively. These intersection positions will be
off the matrix diagonal.

There are two symmetry operations in the Cs point group, E and �h .
The identity operation, E, does not change the position of the vector
so it can be represented by a unit matrix.

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣

x1

y1

z1

⎤
⎦ =

⎡
⎣

x1

y1

z1

⎤
⎦

Accordingly,

E · v1 = v1

If the matrix elements are aij and the vector components are bj, then
the components of the product vector ci are given by

ci =
∑

j

ai j · b j .

To get the first member of the resulting matrix, all the elements of
the first row of the square matrix are multiplied by the consecutive
members of the column matrix and then added together. To get the
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second member, the same procedure is followed with the second row
of the square matrix, and so on, as shown below:

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣

x1

y1

z1

⎤
⎦ =

⎡
⎣

1 · x1 + 0 · y1 + 0 · z1

0 · x1 + 1 · y1 + 0 · z1

0 · x1 + 0 · y1 + 1 · z1

⎤
⎦ =

⎡
⎣

x1

y1

z1

⎤
⎦

The other symmetry operation of the Cs point group is the hori-
zontal reflection (see Figure 4-5). In matrix language this operation
can be written as follows:

x1 y1 z1

x ′
1

y′
1

z′
1

⎡
⎢⎣

1 0 0

0 1 0

0 0 −1

⎤
⎥⎦ ·

⎡
⎢⎣

x1

y1

z1

⎤
⎥⎦ =

⎡
⎢⎣

1 · x1 + 0 · y1 + 0 · z1

0 · x1 + 1 · y1 + 0 · z1

0 · x1 + 0 · y1 + (−1) · z1

⎤
⎥⎦ =

⎡
⎢⎣

x1

y1

−z1

⎤
⎥⎦

E · v1 = v2

It often happens that the coordinates are not transformed simply
into each other by a symmetry operation. Trigonometric relations
must be used to express, for instance, the consequences of three-fold
rotation.

Figure 4-5. Reflection of a vector by a horizontal mirror plane.



180 4 Helpful Mathematical Tools

Figure 4-6. Rotation of a vector by an angle � in the xy plane.

Figure 4-6 illustrates a vector rotated by an angle � in the xy plane.
The coordinates of the rotated vector are related to the coordinates
of the original vector in the following way (r is the length of the
vector, 	 is an auxiliary angle shown in Figure 4-6, and the rotation is
anticlockwise):

x1 = r · cos 	 and y1 = r · sin 	 (4-1)

x2 = r · cos(� + 	) and y2 = r · sin(� + 	) (4-2)

Utilizing the trigonometric expressions:

cos(� + 	) = cos � · cos 	 − sin � · sin 	 (4-3a)

sin(� + 	) = sin � · cos 	 + cos � · sin 	 (4-3b)

and substituting Eqs. (4-3) and (4-1) into Eq. (4-2), we get:

x2 = r · cos � · cos 	 − r · sin � · sin 	 = x1 · cos � − y1 · sin � (4-4a)

y2 = r · sin � · cos 	 + r · cos � · sin 	 = x1 · sin � + y1 · cos � (4-4b)
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The same equations in matrix formulation:

[
cos � − sin �
sin � cos �

]
·
[

x1

y1

]
=

[
x2

y2

]

The square matrix above is the matrix representation of a rotation
through an angle �.

Since matrices can be used to represent symmetry operations, the
set of matrices representing all symmetry operations of a point group
will be a representation of that group. Moreover, if a set of matrices
forms a representation of a symmetry group, it will obey all the
rules of a mathematical group. It will also obey the group multipli-
cation table. Let the SO2Cl2 molecule serve as an example again. This
molecule belongs to the C2v point group and some of its symmetry
operations have already been illustrated in Figure 4-2.

There are four operations in the C2v point group. The identity oper-
ation, E, leaves the molecule unchanged, so we can imagine that the
corresponding matrix will be a 5 × 5 unit matrix.

The twofold rotation (C2) changes the positions of the two chlorine
atoms and also the positions of the two oxygen atoms. The sulfur atom
remains in place. To construct the corresponding matrices the same
procedure can be applied as used before with a vector. The original
nuclear positions of the molecule can be written (or just imagined)
at the top row and the nuclear positions resulting from the symmetry
operation at the far left column. Thus the C2 operation will lead to the
following result:

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

S1

Cl2

Cl3

O4

O5

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

S1

Cl3

Cl2

O5

O4

⎤
⎥⎥⎥⎥⎦

�v changes the positions of the two chlorines and leaves the other
three atoms in place:
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⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

S1

Cl2

Cl3

O4

O5

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

S1

Cl3

Cl2

O4

O5

⎤
⎥⎥⎥⎥⎦

Finally, �v
′ changes the positions of the two oxygen atoms, and

leaves the sulfur and the two chlorines in their original positions:
⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

S1

Cl2

Cl3

O4

O5

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

S1

Cl2

Cl3

O5

O4

⎤
⎥⎥⎥⎥⎦

Since each of these four 5 × 5 matrices represent one of the
symmetry operations of the C2v point group, the set of these four 5 × 5
matrices will be a representation of this group. They will also obey the
C2v multiplication table. As was shown in Figure 4-2,

�v · C2 = �′
v

The corresponding matrix representations are the following:
⎡
⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎦ =

�v C2⎡
⎢⎢⎢⎣

1·1 + 0·0 + 0·0 + 0·0 + 0·0 1·0 + 0·0 + 0·1 + 0·0 + 0·0 . . .
0·1 + 0·0 + 1·0 + 0·0 + 0·0 0·0 + 0·0 + 1·1 + 0·0 + 0·0 . . .
0·1 + 1·0 + 0·0 + 0·0 + 0·0 0·0 + 1·0 + 0·1 + 0·0 + 0·0 . . .
0·1 + 0·0 + 0·0 + 1·0 + 0·0 0·0 + 0·0 + 0·1 + 1·0 + 0·0 . . .
0·1 + 0·0 + 0·0 + 0·0 + 1·0 0·0 + 0·0 + 0·1 + 0·0 + 1·0 . . .

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎦

�′
v
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The multiplication is shown here in detail only for the first two
columns of the resulting matrix. The elements of the product matrix
are given by:

cik =
∑

j

ai j · b jk

To get the first member of the first row, all elements of the first row
of the first matrix are multiplied by the corresponding elements of the
first column of the second matrix and the results are added. To get
the second member of the first row, all elements of the first row of
the first matrix are multiplied by the corresponding members of the
second column of the second matrix and the results are added, and so
on. To get the second-row members, the same procedure is repeated
with the second-row members of the first matrix, and so on. It is also
possible to visualize the second matrix as a series of column matrices
and then consider the multiplication of each of these column matrices,
one by one, by the first matrix.

4.3. Representation of Groups

Any collection of quantities (or symbols) which obey the multiplica-
tion table of a group is a representation of that group. These quan-
tities are the matrices in our examples showing how certain charac-
teristics of a molecule behave under the symmetry operations of the
group. The symmetry operations may be applied to various charac-
teristics or descriptions of the molecule. The particular description
to which the symmetry operations are applied forms the basis for a
representation of the group. Generally speaking, any set of algebraic
functions or vectors may be the basis for a representation of a group.
Our choice of a suitable basis depends on the particular problem we
are studying. After choosing the basis set, the task is to construct the
matrices which transform the basis or its components according to
each symmetry operation. The most common basis sets in chemical
applications are summarized in Section 4.11. Some of them will be
used in the following discussion.
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Let us now work out the representation of a point group for a
very simple basis. We will choose just the changes, 
r1 and 
r2,
of the two N–H bond lengths of the diimide molecule, N2H2 (4-1).

These two vectors may be used in the description of the
stretching vibrations of the molecule. The molecular symmetry is
C2h . Figure 4-7 helps to visualize the effects of the symmetry oper-
ations of this group on the selected basis. There are four symmetry
operations in the C2h point group, E, C2, i, and �h . E leaves the
basis unchanged, so the corresponding matrix representation is a unit
matrix:

E ·
[


r1


r2

]
=

[
1 0
0 1

]
·
[


r1


r2

]
=

[

r1


r2

]

Figure 4-7. The four symmetry operations of the C2h point group applied to the
two N–H bond length changes of the HNNH molecule.
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Both C2 and i interchange the two vectors, 
r1 “goes into” 
r2 and
vice versa;

C2 ·
[


r1


r2

]
=

[
0 1
1 0

]
·
[


r1


r2

]
=

[

r2


r1

]

i ·
[


r1


r2

]
=

[
0 1
1 0

]
·
[


r1


r2

]
=

[

r2


r1

]

finally, �h leaves the molecule unchanged:

�h ·
[


r1


r2

]
=

[
1 0
0 1

]
·
[


r1


r2

]
=

[

r1


r2

]

With this basis the representation consists of four 2 × 2 matrices.
Let us take now a more complicated basis, and consider all the

nuclear coordinates of HNNH shown in Figure 4-8a. These are the
so-called Cartesian displacement vectors and will be discussed in
Chapter 5 on molecular vibrations. Let us find the matrix representa-
tion of the �h operation (see Figure 4-8b). The horizontal mirror plane
leaves all x and y coordinates unchanged while all z coordinates will
“go” into their negative selves. In matrix notation this is expressed in
the following way:

�h ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

y1

z1

x2

y2

z2

x3

y3

z3

x4

y4

z4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

y1

z1

x2

y2

z2

x3

y3

z3

x4

y4

z4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

y1

−z1

x2

y2

−z2

x3

y3

−z3

x4

y4

−z4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 4-8. (a) Cartesian coordinates as basis for a representation; (b) Effect of �h ;
(c) Effect of C2.

Take one more operation, the C2 rotation (Figure 4-8c). This oper-
ation introduces the following changes:

x1, y1, and z1 to −x4, −y4, and z4,

x2, y2, and z2 to −x3, −y3, and z3,

x3, y3, and z3 to −x2, −y2, and z2,

x4, y4, and z4 to −x1, −y1, and z1.
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In matrix notation:

C2 ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

y1

z1

x2

y2

z2

x3

y3

z3

x4

y4

z4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

y1

z1

x2

y2

z2

x3

y3

z3

x4

y4

z4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x4

−y4

z4

−x3

−y3

z3

−x2

−y2

z2

−x1

−y1

z1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Considering all four symmetry operations of the C2h point group,
the complete representation of the displacement coordinates of HNNH
as basis consists of four 12 × 12 matrices. Working with such big
matrices is awkward and time-consuming. Fortunately, they can be
simplifed. We shall not go into the details of how this is done since
only the easiest and quickest methods utilizing matrix representations
will be used in the next chapters. We shall merely outline the proce-
dure leading from the big unpleasant representations of symmetry
operations to simpler tools [12]. With the help of suitable similarity
transformations, matrices can be turned into so-called block-diagonal
matrices. A block-diagonal matrix has nonzero values only in square
blocks along the diagonal from the top left to the bottom right. The
merits of block-diagonal matrices are best illustrated in their multi-
plication. Suppose, for example, that two 5 × 5 matrices are to be
multiplied, as follows:

⎡
⎢⎢⎢⎢⎣

2 3 0 0 0
1 2 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

1 2 0 0 0
2 1 0 0 0
0 0 2 2 0
0 0 1 2 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

8 7 0 0 0
5 4 0 0 0
0 0 3 4 0
0 0 3 4 0
0 0 0 0 2

⎤
⎥⎥⎥⎥⎦
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The determination of the first row is already quite complicated:

2 · 1 + 3 · 2 + 0 · 0 + 0 · 0 + 0 · 0 = 8

2 · 2 + 3 · 1 + 0 · 0 + 0 · 0 + 0 · 0 = 7

2 · 0 + 3 · 0 + 0 · 2 + 0 · 1 + 0 · 0 = 0

2 · 0 + 3 · 0 + 0 · 2 + 0 · 2 + 0 · 0 = 0

2 · 0 + 3 · 0 + 0 · 0 + 0 · 0 + 0 · 1 = 0

Notice that the product of two equally block-diagonalized matrices—
such as those two above—is another similarly block-diagonalized
matrix. It is especially important that this resulting matrix can be
obtained simply by multiplying the corresponding individual blocks
of the original matrices. Check this on the above example:

[
2 3
1 2

]
·
[

1 2
2 1

]
=

[
2 · 1 + 3 · 2 2 · 2 + 3 · 1
1 · 1 + 2 · 2 1 · 2 + 2 · 1

]
=

[
8 7
5 1

]

[
1 1
1 1

]
·
[

2 2
1 2

]
=

[
1 · 2 + 1 · 1 1 · 2 + 1 · 2
1 · 2 + 1 · 1 1 · 2 + 1 · 2

]
=

[
3 4
3 4

]

[2] · [1] = [2]

Generally, if two matrices A and B can be transformed by similarity
transformation into identically shaped block-diagonalized matrices,
their product matrix C will also have the same block-diagonal form:

⎡
⎣

A1

A2

A3

⎤
⎦ ·

⎡
⎣

B1

B2

B3

⎤
⎦ =

⎡
⎣

C1

C2

C3

⎤
⎦

The multiplication will also be valid for the individual blocks:
A1 · B1 = C1

A2 · B2 = C2

A3 · B3 = C3

Since the blocks themselves will obey the same multiplication table
that the big matrices do, each block will be a new representation for an
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operation of the group. Thus, if the above A and B matrices are repre-
sentations for the respective symmetry operations �v and �′

v in the C2v

point group, so will be the matrices A1, A2, and A3 and B1, B2, and B3,
respectively. The C2v multiplication table (Table 4-1) shows that

�v · �′
v = C2

and, accordingly, not only the big C matrix but also the small matrices
C1, C2, and C3, will be representations of the C2 operation. This way
the big matrices reduce into smaller ones which are more convenient
to handle. Let us suppose that the above big matrices A, B, and C
together with the E matrix constitute a representation for the C2v point
group. This is called then a reducible representation of the group,
indicating that it is possible to find a similarity transformation that
reduces all its matrices into new ones with smaller dimension. If this
is repeated until it is no longer possible to find a similarity transfor-
mation to reduce simultaneously all the matrices of a representation
into smaller ones, we call this representation irreducible. Suppose now
that in the example above the small matrices along the diagonals of
the big ones cannot be reduced further by a similarity transforma-
tion. In this case each set of the small matrices will be an irreducible
representation of the C2v point group. The set of A1, B1, C1, and E1

will be an irreducible representation, so will be the set of A2, B2, C2,
and E2, and yet another irreducible representation will be the set of
A3, B3, C3, and E3. Thus, the reducible representation was reduced to
three irreducible representations. Since the symmetry operations can
be applied to all kinds of bases for a molecule, there may be countless
numbers of reducible representations. The important thing is that all
these representations reduce into a small and finite number of irre-
ducible representations for practically all point groups. These irre-
ducible representations, often called symmetry species, are then used
in many areas of chemistry to describe symmetry properties.

4.4. The Character of a Representation

Considering the sizes of the initial matrices, using irreducible repre-
sentations is a great improvement. Fortunately, even further simplifi-
cation is possible. Instead of working with irreducible representations
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we can use simply their characters. The utility of this approach will
be amply demonstrated later. The character

∗
of a matrix is the sum of

its diagonal elements. For the following matrix

1

0 7 1 1

0 0

3

2

–2 –4

1

1

2 0 3

the character is:

1 + 7 + 0 + (−4) = 4

Since a representation—reducible or irreducible—is a set of
matrices corresponding to all symmetry operations of a group, the
representation can be described by the set of characters of all these
matrices. For the simple basis of 
r1 and 
r2 used before for the
HNNH molecule in the C2h point group, the representation consisted
of four 2 × 2 matrices:

characters

E =
[

1 0
0 1

]
1 + 1 = 2

C2 =
[

0 1
1 0

]
0 + 0 = 0

i =
[

0 1
1 0

]
0 + 0 = 0

�h =
[

1 0
0 1

]
1 + 1 = 2

Thus, the characters of this representation are

2 0 0 2

∗
In linear algebra this is usually called trace.
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We do not know yet, however, whether this representation is
reducible or irreducible. To answer this question, first we have to
know the characters of the irreducible representations of the C2h point
group.

4.5. Character Tables and
Properties of Irreducible Representations

The characters of irreducible representations are collected in so-called
character tables. We shall not discuss here how to find the charac-
ters of a given irreducible representation. The character tables are
always available in textbooks and handbooks, or on the Internet, and
some of them are also given in the subsequent chapters of this book.
Table 4-3 shows the character table for the C2h point group. The top
row contains the complete set of symmetry operations of this group.
The left column shows, for the time being, some temporary names.
� is the generally used label for the representations. The main body
of the character table contains the characters themselves. Thus, each
row constitutes the characters of an irreducible representation, and the
number of rows gives us the number of irreducible representations of
the particular point group. The irreducible representations have some
important and useful properties:

1. The sum of the squares of the dimensions of all irreducible repre-
sentations in a group is equal to the order of the group. The dimen-
sion of an irreducible representation is simply the dimension of
any of its matrices, which is the number of rows or columns of the
matrix. Since the identity operation always leaves the molecules
unchanged, its representation is a unit matrix. The character of
a unit matrix is equal to the number of rows or columns of that
matrix, as is demonstrated on the next page:

Table 4-3. A Preliminary Character Table for the C2h Point Group

C2h E C2 i �h

�1 1 1 1 1
�2 1 −1 1 −1
�3 1 1 −1 −1
�4 1 −1 −1 1
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E =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ character = 1 + 1 + 1 = 3

E =
[

1 0
0 1

]
character = 1 + 1 = 2

E = [
1
]

character = 1

From this it follows that the character under E is always
the dimension of the given irreducible representation. The
one-dimensional representations are nondegenerate and the two- or
higher-dimensional representations are degenerate. The meaning
of degeneracy will be discussed in Chapter 6.

2. The sum of the squares of the absolute values of characters of any
irreducible representation in a group is equal to the order of the
group.

3. The sum of the products of the corresponding characters (or one
character with the conjugate of another in case of imaginary char-
acters) of any two different irreducible representations of the same
group is zero.

4. The characters of all matrices belonging to operations in the same
class are identical in a given irreducible representation.

5. The number of irreducible representations of a group is equal to
the number of classes of that group.

Let us check these rules on the C2h character table given above. All
four irreducible representations have 1 as their character under E, so
all of them are one-dimensional. Applying rule 1,

12 + 12 + 12 + 12 = 4

This is, indeed, the order of the group since there are four symmetry
operations in C2h. Let us check rule 2 with the �2 representation:

12 + (−1)2 + 12 + (−1)2 = 4
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This is, again, the order of the group. Let us form the sum of the
products of �3 and �4 according to rule 3:

1 · 1 + 1 · (−1) + (−1) · (−1) + (−1) · 1 = 0

Since all four symmetry elements in C2h stand by themselves, rule
4 cannot be checked with this point group. Finally, the number of irre-
ducible representations is four just as the number of classes, according
to rule 5.

Table 4-4 shows a preliminary character table for the C3v point
group. The complete set of symmetry operations is listed in the upper
row. Clearly, some of them must belong to the same class since
the number of irreducible representations is 3 and the number of
symmetry operations is 6. A closer look at this table reveals that the
characters of all irreducible representations are equal in C3 and C2

3 and
also in �v, �′

v, and �′′
v , respectively. Thus, according to rule 4 C3 and

C2
3 form one class, and �v, �′

v, and �′′
v together form another class.

A complete character table is given in Table 4-5 for the C3v point
group. The classes of symmetry operations are listed in the upper row,
together with the number of operations in each class. Thus, it is clear
from looking at this character table that there are two operations in the
class of threefold rotations and three in the class of vertical reflections.
The identity operation, E, always forms a class by itself, and the same
is true for the inversion operation, i (which is, however, not present in
the C3v point group). The number of classes in C3v is 3; this is also the
number of irreducible representations, satisfying rule 5 as well.

Consider now the symbols used for the names of the irreducible
representations. These are the so-called Mulliken symbols, and their
meaning is described below, along with other Mulliken symbols
collected in Table 4-6.

Letters A and B are used for one-dimensional irreducible represen-
tations, depending on whether they are symmetric or antisymmetric

Table 4-4. A Preliminary Character Table for the C3v Point Group

C3� E C3 C2
3 �� �′

v �′′
v

�1 1 1 1 1 1 1
�2 1 1 1 −1 −1 −1
�3 2 −1 −1 0 0 0
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Table 4-5. Complete Character Table for the C3v Point Group

C3� E 2C3 3��

A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xz, yz)

with respect to rotation around the principal axis of the point group.
Antisymmetric behavior here means changing sign or direction.

∗
The

character for a symmetric representation is +1, and this is designated
by the letter A. An antisymmetric behavior is represented by the letter
B and has −1 character. E is the symbol§ for two-dimensional, and T
(sometimes F) the symbol for three-dimensional representations. The
subscripts g and u indicate whether the representation is symmetric or
antisymmetric with respect to inversion. The German gerade means
even and ungerade means odd. The superscripts ′ and ′′ are used for
irreducible representations which are symmetric and antisymmetric
with respect to a horizontal mirror plane, respectively. The subscripts
1 and 2 with A and B refer to symmetric (1) and antisymmetric (2)
behavior with respect to either a C2 axis perpendicular to the principal

Table 4-6. Symbols for Irreducible Representations of Finite Groups

Dimension of
Representation

Character under Symbol(s)

E Cn i �h C a
2 or ��

1 1 1 A
1 −1 B

2 2 E
3 3 T

1 Ag Bg Eg Tg

–1 Au Bu Eu Tu

1 A′ B ′

−1 A′′ B ′′

1 A1 B1

–1 A2 B2

a C2 axis perpendicular to the principal axis

∗
Antisymmetry will be discussed in the next Section.
§Not to be confused with the symbol of the identity operation, which is also E.
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axis or, in its absence, to a vertical mirror plane. The meaning of
subscripts 1 and 2 with E and T is more complicated, and will not
be discussed here. The character tables of the infinite groups, C∞v and
D∞h , use Greek rather than Latin letters: � stands for one-dimensional
representations and , 
, � etc., for two-dimensional representations.

It is always possible to find a behavior that remains unchanged
under any of the symmetry operations of the given point group. Thus,
there is always an irreducible representation which has only +1 char-
acters. This is the totally symmetric irreducible representation, and it
is always the first one in any character table.

The character tables usually consist of four main areas (sometimes
three if the last two are merged), as is seen in Table 4-5 for the C3v and
in Table 4-7 for the C2h point group. The first area contains the symbol
of the group (in the upper left corner) and the Mulliken symbols refer-
ring to the dimensionality of the representations and their relationship
to various symmetry operations. The second area contains the classes
of symmetry operations (in the upper row) and the characters of the
irreducible representations of the group.

The third and fourth areas of the character table contain some
chemically important basis functions for the group. The third area
contains six symbols: x, y, z, Rx, Ry, and Rz. The first three are the
Cartesian coordinates that we have already used before as bases for
a representation of the C2h point group (see, p. 186). The symbols
Rx, Ry, and Rz stand for rotations around the x, y, and z axes, respec-
tively. A popular toy, the spinning top, is helpful in visualizing the
consequences of symmetry operations on rotation. Let us work out
the characters for rotation around the z axis in the C3v point group
(Figure 4-9a). Obviously, the identity operation leaves the rotating
spinning top unchanged (character 1). So does the rotation around the
same axis since the rotational symmetry axis is indistinguishable from
the axis of rotation of the toy. The corresponding character is again 1.

Table 4-7. The C2h Character Table

C2h E C2 i �h

Ag 1 1 1 1 Rz x2, y2, x2, xy
Bg 1 −1 1 −1 Rx, Ry xz, yz
Au 1 1 −1 −1 z
Bu 1 −1 −1 1 x, y
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Figure 4-9. (a) Applying the identity and the C3 operation to a rotating spinning
top; (b) Illustration of the effect of mirror planes on the rotating spinning top.

Now place a mirror next to the rotating toy (Figure 4-9b). Irrespec-
tive of the position of the mirror, the rotation of the mirror image will
always have the opposite direction with respect to the real rotation.
Accordingly, the character will be –1.

Thus, the characters of the rotation around the z axis in the C3v point
group will be:

1 1 − 1

Indeed, Rz belongs to the irreducible representation A2 in the C3v

character table. In other words, Rz transforms as A2, or, it forms a
basis for A2.

The fourth area of the character table contains all the squares and
binary products of the coordinates according to their behavior under
the symmetry operations. All the coordinates and their products listed
in the third and fourth areas of the character table are important basis
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functions. They have the same symmetry properties as the atomic
orbitals under the same names; z corresponds to pz, x2 − y2 to dx2−y2 ,
and so on. We shall meet them again in the discussion of the properties
of atomic orbitals.

The term antisymmetry has occurred several times above, and it is a
whole new idea in our discussion. It is again a point where chemistry
and other fields meet in a uniquely important symmetry concept.

4.6. Antisymmetry

Antisymmetry is the symmetry of opposites [13]. “Operations of anti-
symmetry transform objects possessing two possible values of a given
property from one value to the other” [14]. The simplest demonstra-
tion of an antisymmetry operation is by color change. Figure 4-10
shows an identity operation and an antiidentity operation. Nothing
changes, of course, in the former whereas merely the black-and-white
coloring reverses in the latter. Antimirror symmetry along with mirror
symmetry can be found in Figure 4-11.

Not only a symmetry plane but also other symmetry elements may
serve as antisymmetry elements. We have already seen the contour
of the oriental symbol Yin/Yang representing twofold rotational

Figure 4-10. Identity operation (top) and antiidentity operation (bottom).
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Figure 4-11. Mirror symmetries and antimirror symmetries: 1–2 and 3–4 mirror
symmetries; 1–4 and 2–3 antimirror symmetries.

symmetry in Figure 2-12a. The complete sign also has a black/white
color change and thus shows twofold antirotational symmetry:

Beside color change this symbol represents a whole array of oppo-
sites, such as night/day, hot/cold, male/female, young/old, etc.

Figure 4-12 illustrates different combinations of symmetry
elements, for example, twofold, fourfold, and sixfold antirotation
axes together with other symmetry elements after Shubnikov [15].
The fourfold antirotation axis includes a twofold rotation axis, and
the sixfold antirotation axis includes a threefold rotation axis. The
antisymmetry elements have the same notation as the ordinary ones
except that they are underlined. Antimirror rotation axes characterize
the rosettes in the second row of Figure 4-12. The antirotation axes
appear in combination with one or more symmetry planes perpen-
dicular to the plane of the drawing in the third row of Figure 4-12.
Finally, the ordinary rotation axes are combined with one or more
antisymmetry planes in the two bottom rows of Figure 4-12. In fact,
symmetry 1 · m here is the symmetry illustrated in Figure 4-11. The
black-and-white variation is the simplest case of color symmetry.
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Figure 4-12. Antisymmetry operations. First row: antirotation axes 2, 4, 6; Second
row: antimirror rotation axes 2, 4, 6; Third row: antirotation axes combined with
ordinary mirror planes 2·m, 4·m, 6·m; Fourth row: ordinary rotation axes combined
with antimirror planes 2 · m, 4 · m, 6 · m; Fifth row: 1 · m, 3 · m, after Shubnikov
[16]. Reproduced with permission from Nauka Publishing Co., Moscow.
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Figure 4-13. Ornament on a building in Spain with 4 · m symmetry. Photograph by
the authors.

These considerations become more and more complicated with
increasing the number of colors [16–19]. Figure 4-13 shows an
example of 4 · m symmetry. The detail of the tower of a gatehouse at
Park Güell (see Figure 4-14), the famous park in Barcelona built by
Antoni Gaudi also reveals 4 · m symmetry, that is, fourfold rotational
symmetry combined with antireflection.

All the above examples applied to point groups. Antisymmetry and
color symmetry, of course, may be introduced in space-group symme-
tries as well as examples illustrate in Figures 8-32, 8-37, and 9-46
(in the discussion of space groups). If we look only at the close-up
of the tower in Figure 4-14b, it also has tranlational antisymmetry,
specifically anti-glide-reflection symmetry together with similarity
symmetry (these symmetries will be discussed in Chapter 8).

Color change is perhaps the simplest version of antisymmetry. The
general definition of antisymmetry, at the beginning of this section,
however, calls for a much broader interpretation and application. The
relationship between matter and antimatter is a conspicuous example
of antisymmetry. There is no limit to down-to-earth examples, as well
as to abstract ones, especially if, again, symmetry is considered rather
loosely.

Figure 4-15 is another example of antimirror symmetry involving
color change. However, there is more than geometrical correspon-
dence in this Soviet poster from 1987. The text says “This is pere-
stroika to some,” implying dissatisfaction with the way reforms were
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(a) (b)

Figure 4-14. (a) The top of the tower of a gatehouse in Park Güell by Antoni
Gaudi in Barcelona, Spain, with 4·m symmetry; (b) Close-up of the tower, revealing
translational antisymmetry together with similarity symmetry. Photograph by the
authors.

Figure 4-15. Soviet (1987) poster on perestroika. Photograph by the authors.
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being carried out, amounting to mere color changes rather than
substantial ones.

∗

Figure 4-16a shows the logo of a sporting goods store in Boston,
Massachusetts. Geometrical correspondence is gone, yet we have no
difficulty in recognizing the antimirror symmetry relationship. The
antireflection plane relates a half-snowflake and a half-sun, symbol-
izing winter and summer, respectively. There are two coke machines
in the picture of Figure 4-16b. There is no geometrical correspon-
dence, but there is color reversal, and reversal of yet another, more
important, property, the sugar content. This makes the two machines
an example of antisymmetry with some abstraction.

Two old buildings with modern skyscrapers in the background and
the houses of a medieval Italian town with a radar locator in the
background express the antisymmetric relationship of old and new
(Figure 4-17), while the façade of the Notre Dame cathedral showing
an angel and the devil expresses the antisymmetry between good and
evil (Figure 4-18).

The above examples of antisymmetry may have implied at least
as much abstraction as any chemical application. The symmetric and

Figure 4-16. (a) Logo of a sporting goods store in Boston, Massachusetts; (b) Two
coke machines where color change and, even more important, reversal of sugar-
content, make the antisymmetric relationship. Photographs by the authors.

∗
The Russian word “perestroika” means restructuring.
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Figure 4-17. Buildings in (a) Boston; (b) New York City; (c) Old buildings in Erice,
Sicily, with a radar locator in the background. They all illustrate the antisymmetry
between new and old. Photographs by the authors.

antisymmetric behavior of orbitals describing electronic structure, and
vectors describing molecular vibrations may be perceived with greater
ease after the preceding diversion. Before that, however, some more
of group theory will be covered.

Figure 4-18. Façade of the Notre Dame cathedral in Paris illustrating the antisym-
metry between good and evil. Photograph by the authors.
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4.7. Shortcut to Determine a Representation

It was quite easy to find the irreducible representation of Rz before, as
the representation we worked out appeared to be an irreducible repre-
sentation itself. In most cases, however, a reducible representation is
found when the symmetry operations are applied to a certain basis.
Now a simpler way will be shown (1) to describe the representation
on a given basis without generating the matrices themselves and (2)
to reduce them, if reducible, to irreducible representations.

The diimide molecule (4-1) is our example again, and the basis
is the two N–H bond length changes (see Figure 4-7). It is easy to
generate the matrices corresponding to each operation using such a
simple basis; however, even this may not be necessary. As mentioned
before, instead of the representations themselves, we can work with
their characters. For this particular case the characters of the repre-
sentation have already been determined:

�1 2 0 0 2

But how can we know the character of a matrix without writing
down the whole matrix?

Looking back at the effect of the different symmetry opera-
tions on HNNH (Figure 4-7) it is recalled, for example, that C2

interchanges 
r1 and 
r2, so the diagonal elements of the matrix
will all be 0. Consequently, these vectors do not contribute to the
character.

This observation can be generalized: those basis elements that are
associated with an atom changing its position during the symmetry
operation will have zero contribution to the character. The basis
element that is unchanged by a given operation contributes +1 to the
character. Finally, the basis element that is transformed into its nega-
tive contributes −1. The only complication arises with the rotational
operations when the atom does not move during the symmetry oper-
ation but the basis element associated with it is rotated by a certain
angle. Here the matrix of the rotation has to be constructed as shown
in Section 4.2.

Returning to the diimide N–H bond length changes, let us see
how the above simple rules work. The identity operation, E, leaves
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the molecule unchanged, so the two vectors, 
r1 and 
r2, will each
contribute +1 to the character:

1 + 1 = 2

The effect of C2 has already been looked at. Its character is 0. The
effect of the inversion operation is the same as that of C2, so the char-
acter will be

0 + 0 = 0

Finally, operation �h leaves the two bonds unchanged, so both of
them contribute +1 to the character:

1 + 1 = 2

The result is the same as before:

�1 2 0 0 2

Now, check the rules with a larger basis set, the Cartesian displace-
ment coordinates of the atoms of HNNH (see Figure 4-8). Operation
E leaves all the 12 vectors unchanged, so its character will be 12. C2

brings each atom into a different position so their vectors will also
be shifted. This means that all vectors will have zero contribution to
the character. The same applies to the inversion operation. Finally, as
already worked out before, the horizontal reflection leaves all the x
and y vectors unchanged and brings the four z vectors into their nega-
tive selves. The result is

8 + (−4) = 4

The whole representation of the displacement vectors is:

�2 12 0 0 4

Both representations we constructed here are reducible since there
are no 2- and 12-dimensional representations in the C2h character table
(Table 4-7). The next question is how to reduce these representations.
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4.8. Reducing a Representation

It was discussed before that the irreducible representations can be
produced from the reducible representations by suitable similarity
transformations. Another important point is that the character of a
matrix is not changed by any similarity transformation. From this it
follows that the sum of the characters of the irreducible representa-
tions is equal to the character of the original reducible representation
from which they are obtained. We have seen that for each symmetry
operation the matrices of the irreducible representations stand along
the diagonal of the matrix of the reducible representation, and the
character is just the sum of the diagonal elements. When reducing
a representation, the simplest way is to look for the combination of
the irreducible representations of that group—that is, the sum of their
characters in each class of the character table—that will produce the
characters of the reducible representation.

First, reduce the representation of the two N–H bond length
changes of HNNH:

�1 2 0 0 2

The C2h character table shows that �1 can be reduced to Ag + Bu:

C2h E C2 i �h

Ag 1 1 1 1
Bg 1 –1 1 –1
Au 1 1 –1 –1
Bu 1 –1 –1 1

Ag + Bu 2 0 0 2

It may be asked, of course, whether this is the only way of decom-
posing the �1 representation. The answer is reassuring: The decompo-
sition of any reducible representation is unique. If we find a solution
just by inspection of the character table, it will be the only one. Often
this is the fastest and simplest way to decompose a reducible repre-
sentation.

A more general and more complicated way is to use a reduction
formula:
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ai = (1/h)
∑

R

χ (R) · χi (R)

where ai is the number of times the ith irreducible representation
appears in the reducible representation, h is the order of the group,
R is an operation of the group, χ (R) is the character of R in the
reducible representation

∗
and χ i(R) is the character of R in the ith

irreducible representation. The summation extends over all operations
of the group.

The reduction formula can be simplified by grouping the equivalent
operations into classes,

ai = (1/h)
∑

Q

N · χ (R)Q · χi (R)Q

where ai is the number of times the ith irreducible representation
appears in the reducible representation, h is the order of the group,
Q is a class of the group, N is the number of operations in class Q,
R is an operation of the group, χ (R)Q is the character of an operation
of class Q in the reducible representation, and χ i(R)Q is the character
of an operation of class Q in the ith irreducible representation. The
summation extends over all classes of the group.

The reduction formula can only be applied to finite point groups.
For the infinite point groups, D∞h and C∞h, the usual practice is to
reduce the representations by inspection of the character table.

For illustration, let us find the irreducible representations of the two
examples used before. First, on the basis of the two N–H distance
changes of diimide (i.e., �1):

C2h E C2 i �h

Ag 1 1 1 1
Bg 1 –1 1 –1
Au 1 1 –1 –1
Bu 1 –1 –1 1

�1 2 0 0 2

∗
Here and hereafter the short expression “character of R” stands for the character of

the matrix corresponding to operation R, in accordance with our previous discussion.
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The order of the group is 4. The number of times the irreducible
representation Ag appears in the reducible representation is

aAg = (1/4)[1 · 2 · 1 + 1 · 0 · 1 + 1 · 0 · 1 + 1 · 2 · 1]

= (1/4)(2 + 0 + 0 + 2) = 4/4 = 1

In the same way we can deduce the number of times the other irre-
ducible representations appear in �1:

aBg = (1/4)[1 · 2 · 1 + 1 · 0 · (−1) + 1 · 0 · 1 + 1 · 2 · (−1)] = 0

aAu = (1/4)[1 · 2 · 1 + 1 · 0 · 1 + 1 · 0 · (−1) + 1 · 2 · (−1)] = 0

aBu = (1/4)[1 · 2 · 1 + 1 · 0 · (−1) + 1 · 0 · (−1) + 1 · 2 · 1] = 1

That is, �1 = Ag + Bu , and the result is the same as before.
With the 12-dimensional reducible representation of the Cartesian

displacement vectors of HNNH, the inspection method probably does
not work. However, the reduction formula can be used. The reducible
representation is:

�2 12 0 0 4

and with applying the reduction formula, we obtain:

aAg = (1/4)[1 · 12 · 1 + 1 · 0 · 1 + 1 · 0 · 1 + 1 · 4 · 1] = 4

aBg = (1/4)[1 · 12 · 1 + 1 · 0 · (−1) + 1 · 0 · 1 + 1 · 4 · (−1)] = 2

aAu = (1/4)[1 · 12 · 1 + 1 · 0 · 1 + 1 · 0 · (−1) + 1 · 4 · (−1)] = 2

aBu = (1/4)[1 · 12 · 1 + 1 · 0 · (−1) + 1 · 0 · (−1) + 1 · 4 · 1] = 4

Thus,

�2 = 4Ag + 2Bg + 2Au + 4Bu

4.9. Auxiliaries

A few additional things need to be mentioned before embarking
on chemical applications of group theoretical methods. For detailed
descriptions and proofs we refer to References [21–23].
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4.9.1. Direct Product

Wave functions form bases for representations of the point group of
the molecule [24]. Suppose that fi and fj are such functions; then the
new set of functions, fi fj, called the direct product of fi and fj, is also
basis for a representation of the group. The characters of the direct
product can be determined by the following rule: The characters of
the representation of a direct product are equal to the products of the
characters of the representations of the original functions. The direct
product of two irreducible representations will be a new representation
which is either an irreducible representation itself or can be reduced
into irreducible representations. Tables 4-8 and 4-9 show some exam-
ples for direct products with the C2v and C3v point groups, respectively.

Table 4-8. Character Table and Some Direct Products for the C2v Point Group

C2� E C2 �� ��
′

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

A1·A2 1 1 −1 −1 = A2

A2·B1 1 −1 −1 1 = B2

B1·B2 1 1 −1 −1 = A2

Table 4-9. Character Table and Direct Products for the C3v Point Group

C3� E 2C3 3�v

A1 1 1 1
A2 1 1 −1
E 2 −1 0

A2·A2 1 1 1 = A1

A2·E 2 −1 0 = E
E·E 4 1 0 = A1 + A2 + E

4.9.2. Integrals of Product Functions

Integrals of product functions often occur in the quantum mechan-
ical description of molecular properties and it is helpful to know
their symmetry behavior. Why? The reason is that an integral whose



210 4 Helpful Mathematical Tools

integrand is the product of two or more functions will vanish unless
the integrand is invariant under all symmetry operations of the point
group. There is only one irreducible representation whose characters
are 1 for each symmetry operation of the point group, and this is the
totally symmetric irreducible representation. Therefore, an integral
will be nonzero only if the integrand belongs to the totally symmetric
irreducible representation of the molecular point group.

The representation of a product function can be determined by
forming the direct product of the original functions. The represen-
tation of a direct product will contain the totally symmetric represen-
tation only if the original functions whose product is formed belong
to the same irreducible representation of the molecular point group.
This follows directly from rules 2 and 3 in Section 4.5.

These rules can be extended to integrals of products of more than
two functions. For a triple product the integral will be nonzero only if
the representation of the product of any two functions is the same as,
or contains, the representation of the third function. If the integral is

∫
fi · f j · fk dτ

then the above condition is expressed by

� fi · � fk ⊂ � f j

where � stands for the representation and ⊂ means “is or contains.”
Very often, fj is a quantum-chemical operator, and then the expressions
are: ∫

fi ˆop. fkdτ

or with other notation,

〈 fi | ˆop.| fk〉
and

� fi · � fk ⊂ �ôp·

This kind of condition appears in energy integrals and spectral
selection rules, and in the discussion of chemical reactions.
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4.9.3. Projection Operator

The projection operator is one of the most useful concepts in the
application of group theory to chemical problems [25, 26]. It is an
operator which takes the non-symmetry-adapted basis of a representa-
tion and projects it along new directions in such a way that it belongs
to a specific irreducible representation of the group. The projection
operator is represented by P̂ i in the following form:

P̂ i = (1/h)
∑

R

χi (R) · R̂

where h is the order of the group, i is an irreducible representation
of the group, R is an operation of the group, χi (R) is the character of
R in the ith irreducible representation, and R̂ means the application
of the symmetry operation R to our basis component. The summation
extends over all operations of the group.

Consider now the construction of the A1 symmetry group orbital
of the hydrogen s atomic orbitals in ammonia as an example of the
application of the projection operator. (The various kinds of orbitals
will be discussed in detail in Chapter 6.) The projection operator for
the A1 irreducible representation in the C3v point group is

P̂ A1 = (1/6)
∑

R

χA1(R) · R̂

Applying this operator to the s orbital of one of the hydrogens (H1)
of ammonia, we obtain

P̂ A1s1 ≈ 1 · E · s1 + 1 · C3 · s1 + 1 · C2
3 · s1 + 1 · � · s1

+ 1 · �′ · s1 + 1 · �′′ · s1

= s1 + s2 + s3 + s1 + s2 + s3 ≈ s1 + s2 + s3

This expression is an approximation since the numerical factor of
1/6 was omitted. The coefficient (the normalization factor) in the
symmetry-adapted linear combinations can be determined at a later
stage by normalization. In an actual calculation this is necessary,
whereas here we are interested only in the symmetry aspects, which
are well represented by the relative values. In fact, the normalization
factors will be ignored throughout our discussions.
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Application of the projection operator will also be demon-
strated pictorially in forthcoming chapters. These representations will
emphasize the results of summation of symmetry-sensitive properties
while the absolute magnitudes will not be treated rigorously. Thus,
for example, the directions of vectors will be summed in describing
vibrations, and the signs of the angular components of the electronic
wave functions will be summed in describing the electronic structure.

4.10. Dynamic Properties

Molecular properties can be of either static or dynamic nature. A static
property remains unchanged by every symmetry operation carried out
on the molecule. The geometry of the nuclear arrangement in the
molecule is such a property: a symmetry operation transforms the
nuclear arrangement into another which will be indistinguishable from
the initial.

∗
The mass and the energy of a molecule are also static

properties.
Dynamic properties, on the other hand, may change under

symmetry operations. Molecular motion itself is a most common
dynamic property. In our previous discussions of molecular structure,
the molecules were mostly assumed to be motionless, and only the
symmetry of their nuclear arrangement was considered. However, real
molecules are never motionless, and their chemical behavior is influ-
enced by their motion to a great extent.

In order to appreciate the effects of symmetry operations on motion,
an example from our macroscopic world is invoked here, following
an idea of Orchin and Jaffe [27]. Suppose there exists a long wall
of mirror and one walks alongside this mirror (Figure 4-19 left). Our
mirror image will be walking with us with the same speed and in the
same direction (its velocity will be the same as ours). If we walk now
from a distance towards the mirror perpendicularly to it, our mirror
image will have a different velocity from ours: the speed will be the
same again but the direction will be just the opposite. Both we and
our mirror image will be walking towards the plane of the mirror, and
if we do not stop in time, we shall collide in that plane (Figure 4-19
right).

∗
Unless, of course, identical atoms are distinguished by labels as, e.g., in Figs. 4-2

and 4-3.
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Figure 4-19. Symmetric (left) and antisymmetric (right) consequencies of the
“mirror operation” for two movements. Drawing courtesy of the late György Doczi.

The consequences of the mirror operation were different for the two
movements. One was symmetric, and the other was antisymmetric.

There are analogous phenomena for all kinds of molecular motion
which may be symmetric and antisymmetric with respect to the
various symmetry operations of the molecular point group. The two
main kinds of motion in a molecule are nuclear and electronic.
The nuclear motion may be translational, rotational and vibrational
(Chapter 5). The electronic motion is basically the changes in the elec-
tron density distribution (Chapter 6).

4.11. Where Is Group Theory Applied?

It is primarily the description of the dynamic properties that is facil-
itated by group-theoretical methods. This is, in fact, an understate-
ment. The dynamic properties cannot be fully discussed without group
theory. On the other hand, this theory need not be used to determine
the point group symmetry of the nuclear arrangement of a molecule,
as has been shown before (cf. Figure 3-5).

The first step in the symmetry determination of the dynamic prop-
erties is the selection of the appropriate basis. Appropriate here means
the correct representation of the changes in the properties examined.
In the investigation of molecular vibrations (Chapter 5), either Carte-
sian displacement vectors or internal coordinate vectors are used.
In the description of the molecular electronic structure (Chapter 6),
the angular components of the atomic orbitals are frequently used
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bases. Since the angular wave function changes its “sign” under
certain symmetry operations, its behavior will be characteristic of
the spatial symmetry of a particular orbital. Molecular orbitals can
also be used as basis of representation. The simple scheme below
shows some important areas in chemistry where group theory is indis-
pensable, and the most convenient basis functions are also indicated:

Area Basis functions
Construction of molecular

orbitals
Atomic orbitals

Construction of hybrid orbitals Position vectors pointing toward
the ligands

Predicting the decrease of
degeneracies of d orbitals
under a ligand field

d Atomic orbitals

Predicting the allowedness of
chemical reactions

Molecular orbitals

Determining the number and
symmetries of molecular
vibrations

Cartesian displacement vectors

Normal coordinate analysis
(symmetry coordinates)

Internal coordinate
displacements

Group theory is also used prior to calculations to determine whether
a quantum-mechanical integral of the type

∫
�i ôp. �j d� is different

from zero or not. This is important in such areas as selection rules for
electronic transitions, chemical reactions, infrared and Raman spec-
troscopy, and other spectroscopies.
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Chapter 5

Molecular Vibrations

...the atoms march in tune.
Ralph W. Emerson [1]

Vibration is a special kind of motion: the atoms of every molecule
are permanently changing their relative positions at every temper-
ature (even at absolute zero) without changing the position of the
molecular center of mass. In terms of the molecular geometry these
vibrations amount to continuously changing bond lengths and bond
angles. Symmetry considerations will be applied to the molecular
vibrations in this chapter following primarily References [2–4]. Our
brief discussion is only an indication of yet another important applica-
tion of symmetry considerations. The mentioned references and two
other fundamental monographs [5, 6] on vibrational spectroscopy are
suggested for further reading. Our primary concern will be to examine
in simple terms the following question: What kind of information can
be deduced about the internal motion of the molecule from the mere
knowledge of its point-group symmetry?

5.1. Normal Modes

The seemingly random motion of molecular vibrations can always
be decomposed into the sum of relatively simple components, called
normal modes of vibration. Each of the normal modes is associated
with a certain frequency. Thus, for a normal mode every atom of the
molecule moves with the same frequency and in phase. Three char-
acteristics of normal vibrations will be examined: their number, their
symmetry, and their type.

M. Hargittai, I. Hargittai, Symmetry through the Eyes of a Chemist, 3rd ed.,
DOI: 10.1007/978-1-4020-5628-4 5, C© Springer Science+Business Media B.V. 2009
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5.1.1. Their Number

Since vibration is only one of the possible forms of motion, it has to
be separated from the others, translation and rotation. Consider first
a single atom. Its motion can be characterized by the three Cartesian
coordinates of its instantaneous position as shown in Figure 5-1. In
other words, the atom has three degrees of motional freedom. Consider
next a diatomic molecule. It will have 2×3 = 6 degrees of freedom.
We might think again that the three Cartesian coordinates of each
atom describe the motion of the molecule in space. However, this
is not quite so. Since the two atoms are not independent from each
other, they must move together in space. This means that three degrees
of freedom will account altogether for the translation of a diatomic
molecule (see Figure 5-2) — or of any polyatomic molecule, for that
matter. Two other degrees of freedom describe the rotation of the
diatomic molecule around the center of mass (see Figure 5-3a). The
rotation around the z axis (Figure 5-3b) need not be considered as it
is the axis of the molecule, and the rotation around it does not change
the position of the molecule.

Figure 5-1. Three motional degrees of freedom of an atom.

Thus of the six degrees of freedom, five have been accounted for.
The sixth will describe the movement of the two atoms relative to each
other without changing the center of the mass. This is the vibration of
the molecule:
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Figure 5-2. The three translational degrees of freedom of a diatomic molecule.

Figure 5-3. Rotation of a diatomic molecule; (a) Two rotational degrees of freedom
describe the rotation of the molecule around the center of mass; (b) Rotation around
the molecular axis does not change the position of the molecule.



220 5 Molecular Vibrations

The complete nuclear motion of an N-atomic molecule can be
described with 3N parameters; that is an N-atomic molecule has 3N
degrees of freedom. The translation of a molecule can always be
described by three parameters. The rotation of a diatomic or any linear
molecule will be described by two parameters and the rotation of a
nonlinear molecule by three parameters. This means that there are
always 3 translational and 3 (for linear molecules 2) rotational degrees
of freedom. The remaining 3N – 6 (for the linear case 3N – 5) degrees
of freedom account for the vibrational motion of the molecule. They
give the number of normal vibrations.

The translational and rotational degrees of freedom, which do not
change the relative positions of the atoms in the molecule, are often
called nongenuine modes. The remaining 3N – 6 (or 3N – 5) degrees
of freedom are called genuine vibrations or genuine modes.

5.1.2. Their Symmetry

The close relationship between symmetry and vibration is expressed
by the following rule: Each normal mode of vibration forms a basis
for an irreducible representation of the point group of the molecule.

Let us use the water molecule to illustrate the above statement. The
normal modes of this molecule are shown in Figure 5-4. The point
group is C2v, and the character table is given in Table 5-1. It is seen
that all operations bring vl and v2 into themselves so their characters
will be:

�v1 1 1 1 1
�v2 1 1 1 1

The behavior of the third normal mode, v3, is different. While E and
σ ′

v leave it unchanged, both C2 and �v bring it into its negative self:

Figure 5-4. Normal modes of vibration for the water molecule. The lengths of the
arrows indicate the relative displacements of the atoms.
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Table 5-1. The C2v Character Table

C2v E C2 �v(xz) �′
v (yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 –1 –1 Rz xy
B1 1 –1 1 –1 x, Ry xz
B2 1 –1 –1 1 y, Rx yz

each atom moves in the opposite direction after the operation. This
means that v3 is antisymmetric to these operations. The characters are:

�v3 1 −1 −1 1

Looking at the C2v character table, we can say that vl and v2 belong
to the totally symmetric irreducible representation A1, and v3 belongs
to B2.

It was easy to determine the symmetry of the normal modes of
the water molecule because we already knew their forms. Can the
symmetry of the normal modes of a molecule be determined without
any previous knowledge of the actual forms of the normal modes? The
answer is fortunately yes. From the symmetry group of the molecule
the symmetry species of the normal modes can be determined without
any additional information.

First, an appropriate basis set has to be found. Considering that a
molecule has 3N degrees of motional freedom, a system of 3N so-
called Cartesian displacement vectors is a convenient choice. A set of
such vectors is shown in Figure 5-5 for the water molecule. A separate
Cartesian coordinate system is attached to each atom of the molecule,
with the atoms at the origin. The orientation of the axes is the same
in each system. Any displacement of the atoms can be expressed by a
vector, and in turn this vector can be expressed as the vector sum of
the Cartesian displacement vectors.

Next, the set of Cartesian displacement vectors is used as a basis
for the representation of the point group. As discussed in Chapter 4,
the vectors connected with atoms that change their position during
an operation will not contribute to the character and thus they can be
ignored.

Continuing with the water molecule as an example, the basis
of the Cartesian displacement vectors will consist of nine vectors
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Figure 5-5. Cartesian displacement vectors as basis for representation of the water
molecule.

(see Figure 5-5). Operation E brings all of them into themselves, and
the character is 9. Operation C2 changes the position of the two
hydrogen atoms, so only the three coordinates of the oxygen atom
have to be considered. The corresponding block of the matrix repre-
sentation is:

C2 =
x ′

2

y′
2

z′
2

x2 y2 z2⎡
⎢⎣

−1 0 0

0 −1 0

0 0 1

⎤
⎥⎦

The character is (– l) + (– 1) + 1 = – 1.
The next operation is �v. Again, only the oxygen coordinates have

to be considered. Reflection through the xz plane leaves x2 and z2

unchanged and brings y2 into – y2. The character is 1 + 1 + (– 1) = 1.
Finally, operation �v

′ leaves all three atoms in their place, so all the
nine coordinates have to be taken into account. Reflection through
the yz plane leaves all y and z coordinates unchanged and takes all x
coordinates into their negative selves. The character will be: (– 1) + 1
+ 1 + (– 1) + 1 + 1 + (–1 ) + 1 + 1 = 3. The representation is:

�tot 9 −1 1 3

This is, of course, a reducible representation. Reduce it now with
the reduction formula (see Chapter 4):
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aA1 = (1/4)[1 · 9 · 1 + 1 · (−1) · 1 + 1 · 1 · 1 + 1 · 3 · 1]

= (1/4)(9 − 1 + 1 + 3) = 3

aA2 = (1/4)[1 · 9 · 1 + 1 · (−1) · 1 + 1 · 1 · (−1) + 1 · 3 · (−1)]

= (1/4)(9 − 1 − 1 − 3) = 1

aB1 = (1/4)[1 · 9 · 1 + 1 · (−1) · (−1) + 1 · 1 · 1 + 1 · 3 · (−1)]

= (1/4)(9 + 1 + 1 − 3) = 2

aB2 = (1/4)[1 · 9 · 1 + 1 · (−1) · (−1) + 1 · 1 · (−1) + 1 · 3 · 1]

= (1/4)(9 + 1 − 1 + 3) = 3

The representation reduces to:

�tot = 3A1 + A2 + 2B1 + 3B2.

These nine irreducible representations correspond to the nine
motional degrees of freedom of the triatomic water molecule. To
obtain the symmetry of the genuine vibrations, the irreducible repre-
sentations of the translational and rotational motion have to be sepa-
rated. This can be done using some considerations described in
Chapter 4. The translational motion always belongs to those irre-
ducible representations where the three coordinates, x, y, and z,
belong. Rotations belong to the irreducible representations of the point
group indicated by Rx, Ry, and Rz in the third area of the character
tables. In the C2v point group,

�tran = A1 + B1 + B2

and
�rot = A2 + B1 + B2

Subtracting these from the representation of the total motion, we
get

�tot = 3A1 + A2+ 2B1 + 3B2

− (�tran = A1 + B1 + B2)
− (�rot = A2+ B1 + B2)

�vib = 2A1 + B2
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Thus, of the three normal modes of water, two will have A1 and one
B2 symmetry. Let us stress again: this information could be derived
purely from the molecular point-group symmetry.

5.1.3. Their Types

The normal modes can usually—though not always—be associated
with a certain kind of motion. Those connected mainly with changes
in bond lengths are the stretching modes. The ones connected mainly
with changes of bond angles are the deformation modes. These may
be mainly either in-plane or out-of-plane deformation modes. The
simplest deformation mode is the bending mode.

Examine now the symmetries of these different types of vibration.
For this purpose a new type of basis set is used. Since we are inter-
ested in the changes of the geometrical parameters, these changes are
an obvious choice for basis set. The geometrical parameters are also
called internal coordinates, and the basis is the displacement of these
internal coordinates.

Let us continue with the water molecule and determine the
symmetry of its stretching modes. The molecule has two O–H bonds,
so the basis will be the changes of these O–H bonds. The representa-
tion of this basis set is

�str 2 0 0 2

and with inspection of the C2v character table we see that it reduces to
A1 + B2. This means that the stretching of the O–H bonds contributes
to the normal modes of A1 and B2 symmetry. (We shall later see that
these are the symmetric and antisymmetric stretches, respectively.)

The third internal coordinate which can be considered in the water
molecule is the bond angle, H–O–H. Its change will be the bending
mode. All symmetry operations leave this basis unchanged, so the
representation is:

�bend 1 1 1 1

and it belongs to the totally symmetric representation, A1. What can
we conclude? B2 appears only in the stretching mode, so the B2

normal mode will be a pure stretching mode. The A1 symmetry mode,
however, appears in both the stretching and the bending mode. At
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this point we cannot say whether one of the A1 normal modes will
be purely stretch and the other purely bend or they will be a mixture.
This depends on the energy of these vibrations. If they are energeti-
cally close, they can mix extensively. If they are separated by a large
energy difference, they will not mix. In the case of H2O, for example,
the two A1 symmetry modes are quite well separated, while in Cl2O
they are completely mixed.

Modes of different symmetry never mix, even if they are close in
energy. (This is a general rule which will have its analogous version
for the transitions among electronic states as will be seen later in
Chapters 6 and 7.)

The above analysis of the types of normal modes brings us to the
limit where simple symmetry considerations can take us. Nothing yet
has been said about the pictorial manifestation of the various normal
modes. Above we deduced, for example, that the B2 normal mode of
the water molecule is a pure stretch. The question may also be asked,
how does it look? This question can be answered with the help of
symmetry coordinates.

5.2. Symmetry Coordinates

The symmetry coordinates are symmetry-adapted linear combinations
of the internal coordinates. They always transform as one or another
irreducible representation of the molecular point group.

Symmetry coordinates can be generated from the internal coordi-
nates by the use of the projection operator introduced in Chapter 4.
Both the symmetry coordinates and the normal modes of vibration
belong to an irreducible representation of the point group of the
molecule. A symmetry coordinate is always associated with one or
another type of internal coordinate—that is pure stretch, pure bend,
etc.—whereas a normal mode can be a mixture of different internal
coordinate changes of the same symmetry. In some cases, as in H2O,
the symmetry coordinates are good representations of the normal
vibrations. In other cases they are not. An example for the latter
is Au2Cl6 where the pure symmetry coordinate vibrations would be
close in energy, so the real normal vibrations are mixtures of the
different vibrations of the same symmetry type [7]. The relationship
between the symmetry coordinates and the normal vibrations can be
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established only by calculations called normal coordinate analysis
[8, 9]. These calculations necessitate further data in addition to the
knowledge of molecular symmetry and are not pursued here.

Return now to the symmetry coordinates of the water molecule.
They can be generated using the projection operator. As has been
mentioned before, here we are interested only in the symmetry
aspects of the symmetry coordinates. Thus, the numerical factors are
omitted, and normalization is not considered. First, let us work out the
symmetry coordinate involving the stretching vibrations:

P̂ A1
r1 ≈ 1 · E · 
r1 + 1 · C2 · 
r1 + 1 · σ · 
r1 + 1 · σ ′ · 
r1

= 
r1 + 
r2 + 
r2 + 
r1 ≈ 
r1 + 
r2

P̂ B2
r1 ≈ 1 · E · 
r1 + (−1) · C2 · 
r1 + (−1) · σ · 
r1

+ 1 · σ ′ · 
r1 =
= 
r1 − 
r2 − 
r2 + 
r1 ≈ 
r1 − 
r2.

Figure 5-6. Generation of the symmetry coordinates representing bond stretching
for H2O.
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The same procedure is presented pictorially in Figure 5-6. The
bending mode of the water molecule stands alone (see the v2 mode
in Figure 5-4), so it will be a symmetry coordinate by itself.

Since the symmetry coordinates of water are good approximations
of the normal vibrations, the pictorial representations are applicable
to them as well. Indeed, the three normal modes of Figure 5-4 are the
same as the symmetry coordinates we just derived. The A1 symmetry
stretching mode is called the symmetric stretch while the B2 mode is
the antisymmetric stretch.

5.3. Selection Rules

The vibrational wave function, as any wave function, must form
a basis for an irreducible representation of the molecular point
group [3].

The total vibrational wave function, �v, can be written as the
product of the wave functions �i(ni), where �i is the wave function
of the ith normal vibration (i = 1 through m) in the nth state.

�v = �1(n1) · �2(n2) · �3(n3)......�m(nm)

In general, at any time, each of the normal modes may be in any
state. There is, however, a situation when all the normal modes are
in their ground states and only one of them gets excited into the
first excited state. Such a transition is called a fundamental transi-
tion. The intensity of the fundamental transitions is much higher than
the intensity of the other kinds of transitions.∗ Therefore, these are of
particular interest.

The vibrational wave function of the ground state belongs to the
totally symmetric irreducible representation of the point group of the
molecule. The wave function of the first excited state will belong to
the irreducible representation to which the normal mode undergoing
the particular transition belongs.

∗Were the vibrations strictly harmonic, only fundamental transitions would be
observable.
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A fundamental transition will occur only if one of the following
integrals has nonzero value:

〈
�◦

v |x | �i
v

〉
〈
�◦

v |y| �i
v

〉
〈
�◦

v |z| �i
v

〉

Here �◦
v is the total vibrational wave function for the ground state,

�i
v is the total vibrational wave function for the first excited state refer-

ring to the ith normal mode and x, y and z are Cartesian coordinates.
The condition for an integral of product functions to have a nonzero

value was given in Chapter 4. For the vibrational transitions this
condition can be expressed in the following way:

��◦
v
· ��i

v
⊂ �x or ��◦

v
· ��i

v
⊂ �y or ��◦

v
· ��i

v
⊂ �z

The considerations on the symmetries of the ground and excited
states and the above conditions lead to the selection rule for infrared
spectroscopy: A fundamental vibration will be infrared active if the
corresponding normal mode belongs to the same irreducible repre-
sentation as one or more of the Cartesian coordinates.

The selection rule for Raman spectroscopy can also be derived by
similar reasoning. It says: A fundamental vibration will be Raman
active if the normal mode undergoing the vibration belongs to the
same irreducible representation as one or more of the components of
the polarizability tensor of the molecule. These components are the
quadratic functions of the Cartesian coordinates given in the fourth
area of the character tables. The Cartesian coordinates themselves are
given in the third area. Thus, the symmetry of the normal modes of
a molecule is sufficient information to tell what transitions will be
infrared and what transitions will be Raman active. The normal modes
of the water molecule belong to the A1 and B2 irreducible representa-
tion of the C2v point group. By using merely the C2v character table, it
can be deduced that all three vibrational modes will be active in both
the infrared and Raman spectra.

Since a particular normal mode may belong to different symmetry
species in different point groups, its behavior depends strongly on the
molecular symmetry. Just to mention one example, the vl symmetric
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stretching mode of an AX3 molecule is not infrared active if the
molecule is planar (D3h). It is infrared active, however, if the molecule
is pyramidal (C3v). Vibrational spectroscopy is obviously one of the
best experimental tools to determine the symmetry of molecules.

5.4. Examples

The utilization of symmetry rules in the description of molecular
vibrations will be further illustrated by a few examples.

Diimide, HNNH. This molecule belongs to the C2h point group (see
Figure 4-7). The number of atoms is 4, so the number of normal vibra-
tions is 3 × 4 − 6 = 6.

Our first task is to generate the representation of the Carte-
sian displacement vectors of the four atoms of the molecule (see
Figure 4-8a–c). As was shown in Chapter 4 (Section 4.7), the repre-
sentation is

�tot 12 0 0 4

The reduction of this representation is also given in Chapter 4 (see
p. 208). The result is

�tot = 4Ag + 2Bg + 2Au + 4Bu

These 12 irreducible representations account for the 12 degrees of
motional freedom of HNNH. Subtracting the irreducible representa-
tions corresponding to the translation and rotation of the molecule
(see C2h character table, Table 5-2) leaves us the symmetry species of
the normal modes of vibration:

�tot = 4Ag + 2Bg + 2Au + 4Bu

− (�tran = + Au + 2Bu)
− (�rot = Ag + 2Bg )

�vib = 3Ag + Au + 2Bu

Next we will see what kind of internal coordinate changes can
account for each of these normal modes. There will have to be two
N–H stretching modes and one N–N stretching mode. For deformation
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Table 5-2. The C2h Character Table and the Representations of the Internal Coor-
dinates of Diimide

C2h E C2 i �h

Ag 1 1 1 1 Rz x2, y2, z2, xy
Bg 1 –1 1 –1 Rx, Ry xz, yz
Au 1 1 –1 –1 z
Bu 1 –1 –1 1 x, y

�NH 2 0 0 2 =Ag + Bu

�NN 1 1 1 1 =Ag

�NNH 2 0 0 2 =Ag + Bu

�HNNH
a 1 1 –1 –1 =Au

a Out-of plane deformation mode.

modes the two N–N–H angle bending modes are obvious choices, and
they will be in-plane deformation modes. These constitute five normal
vibrations so one is left to be accounted for. In deciding the nature of
this normal mode, inspection of the character table may help. Of the
above three different kinds of irreducible representations, Ag and Bu

are symmetric with respect to �h so they must be vibrations within
the molecular plane. The five vibrational modes suggested above then
account for 3Ag + 2Bu. The remaining Au normal mode, however, is
antisymmetric with respect to �h, so it must involve out-of-plane
motion. Consequently, this normal mode will be an out-of-plane
deformation mode.

We will work out next the representations of the internal coordi-
nates. The representation of the two N–H distance changes has been
given in Chapter 4 (Section 4.3). This and the other representations
are all shown in Table 5-2, together with the C2h character table. The
�NH representation has been reduced to Ag + Bu in Chapter 4 (Section
4.8). The reduction of the �NNH representation is the same. Both the
N–N stretching and the out-of-plane deformation are already irre-
ducible representations by themselves. Since Ag occurs three times,
we cannot tell without calculation whether there will be three pure Ag

modes, one N–H stretch, one N–N stretch, and one N–N–H bend, or
each of the three Ag modes will be a mixture of these three vibrations.
Similarly, there are two Bu symmetry normal vibrations, and they will
be either pure N–H antisymmetric stretching and N–N–H bending
modes or their mixtures. The only unambiguous assignment is that
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the Au symmetry normal mode will be the out-of-plane deformation
mode.

Generate now the symmetry coordinates of HNNH by means of the
projection operator (α is the N–N–H angle):

P̂ Ag 
r1 ≈ 1 · E · 
r1 + 1 · C2 · 
r1 + 1 · i · 
r1 + 1 · σh · 
r1

= 
r1 + 
r2 + 
r2 + 
r1 ≈ 
r1 + 
r2

P̂ Bu 
r1 ≈ 1 · E · 
r1 + (−1) · C2 · 
r1 + (−1) · i · 
r1

+ 1 · σh · 
r1 =
= 
r1 − 
r2 − 
r2 + 
r1 ≈ 
r1 − 
r2

P̂ Ag 
α1 ≈ 1 · E · 
α1 + 1 · C2 · 
α1 + 1 · i · 
α1 + 1 · σh · 
α1

= 
α1 + 
α2 + 
α2 + 
α1 ≈ 
α1 + 
α2

P̂ Bu 
α1 ≈ 1 · E · 
α1 + (−1) · C2 · 
α1 + (−1) · i · 
α1

+ 1 · σh · 
α1 =
= 
α1 − 
α2 − 
α2 + 
α1 ≈ 
α1 − 
α2.

The same procedure is depicted in Figure 5-7. The forms of the
symmetry coordinates of HNNH are shown in Figure 5-8. They might
approximate well the normal modes of the molecule, and again, they
might not.

Finally, let us decide which normal modes will be infrared active
and which ones will be Raman active. The Cartesian coordinates
belong to the Au and Bu irreducible representation of the C2h point
group, while their binary products belong to Ag and Bg. Consequently,
the selection rules are:

Infrared active: Au, Bu

Raman active: Ag.

This means that the Ag symmetry stretching modes and the Ag

symmetry bending mode will be Raman active, while the Bu symmetry
stretching and bending modes will be infrared active. Similarly, the Au

symmetry out-of-plane deformation mode will be infrared active.

Carbon dioxide, CO2. The molecule is linear and belongs to the
D∞h point group. The number of atoms is 3, so the number of normal
vibrations is: 3 × 3 – 5 = 4.
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Figure 5-7. Generation of some symmetry coordinates of HNNH; (a) Symmetry
coordinates corresponding to N–H bond stretches; (b) Symmetry coordinates repre-
senting in-plane deformation.
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Figure 5-8. Symmetry coordinates for the HNNH molecule.

The set of Cartesian displacement vectors as basis for a represen-
tation is shown in Figure 5-9. The symmetry operations of the point
group are also shown. The D∞h character table is given in Table 5-3.
Recall (Chapter 4) that the matrix of rotation by an angle � is

C� =
[

cos � − sin �
sin � cos �

]

The rotation by an arbitrary angle � will leave the three z coordi-
nates unchanged and the x and y coordinates mixed according to the
above expression. The following matrix represents the C� rotation:†

Figure 5-9. Cartesian displacement vectors of CO2.

†cos is abbreviated by c and sin by s in the matrix.
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Table 5-3. The D∞h Character Tablea

D∞h E 2C∞� ... ∞�v i 2S∞� ... ∞C2

�+
g 1 1 ... 1 1 1 ... 1 x2, y2, z2

�–
g 1 1 ... –1 1 1 ... –1 Rz

g 2 2c� ... 0 2 –2c� ... 0 (Rx, Ry) (xz, yz)


g 2 2c2� ... 0 2 2c2� ... 0 (x2-y2, xy)

... .. ... ... .. .. ... ... ..

�+
u 1 1 ... 1 –1 –1 ... –1 z

�–
u 1 1 ... –1 –1 –1 ... 1

u 2 2c� ... 0 –2 2c� ... 0 (x, y)


u 2 2c2� ... 0 –2 –2c2� ... 0

... .. ... ... .. .. ... ... ..

a c stands for cos.

x ′
1

y′
1

z′
1

x ′
2

y′
2

z′
2

x ′
3

y′
3

z′
3

x1 y1 z1 x2 y2 z2 x3 y3 z3⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c� −s� 0 0 0 0 0 0 0

s� c� 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 c� −s� 0 0 0 0

0 0 0 s� c� 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 c� −s� 0

0 0 0 0 0 0 s� c� 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The character will be: 3 + 6 cos�. The other relatively compli-
cated operation is the mirror-rotation by an arbitrary angle, S�. This
operation means a rotation around the z axis by angle �, followed by
reflection through the xy plane. This reflection interchanges the posi-
tions of the two oxygen atoms so they need not be considered. The
block matrix of the S� operation will be:
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x ′
2

y′
2

z′
2

x2 y2 z2⎡
⎢⎣

cos � − sin � 0

sin � cos � 0

0 0 −1

⎤
⎥⎦

The character is: –1 + 2 cos �.
Omitting the details of the determination of the remaining charac-

ters, the representation of the Cartesian displacement vectors is:

�tot 9 3 + 6 cos � 3 − 3 − 1 + 2 cos � − 1

Subtract the characters of the translational and rotational repre-
sentations. Remember that CO2 is linear and the rotation around the
molecular axis need not be taken into account.

�tot = 9 3 + 6 cos � 3 −3 −1 + 2 cos � −1
−(�tran = 3 1 + 2 cos � 1 −3 −1 + 2 cos � −1)
−(�rot = 2 2 cos � 0 2 −2 cos � 0)

�vib = 4 2 + 2 cos � 2 −2 2 cos � 0

The reduction formula cannot be applied to the infinite point groups
(Chapter 4). Here inspection of the character table may help. Since
2 cos� at S�

∞ appears with the u irreducible representation, it is
worth a try to subtract this one from �vib:

�vib = 4 2 + 2 cos � 2 −2 2 cos � 0
−(�u = 2 2 cos � 0 −2 2 cos � 0)

2 2 2 0 0 0

This representation can be resolved as the sum of �g and �u:

�g = 1 1 1 1 1 1
�u = 1 1 1 −1 −1 −1

�g + �u = 2 2 2 0 0 0
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Thus, the normal modes of the CO2 molecule will be

�vib = �g + �u + u

Since u is a degenerate vibration, it counts as two, and so we
indeed have the four necessary normal vibrations.

The obvious choice for the three internal coordinate changes is the
stretching of the two C=O bonds and the bending of the O=C=O angle.
Using these as bases for representations we can build up the symmetry
coordinates.

�str 2 2 2 0 0 0

We have already seen before that this representation reduces
as �g + �u. The u normal mode will correspond to the bending
vibration.

Since each of the three symmetry species, �g, �u, and u

appears only once, the symmetry coordinates will be good repre-
sentations of the normal modes. There is no possibility for mixing.
Figure 5-10 shows the forms of the normal vibrations of the CO2

molecule. The two bending modes are degenerate; they are of equal
energy.

Figure 5-10. Normal modes of vibration of the CO2 molecule.

Finally, apply the vibrational selection rules to CO2:

Infrared active: �u, u

Raman active: �g
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Accordingly, the symmetric stretching C=O normal mode should
appear in the Raman spectrum, while the antisymmetric stretching and
the degenerate bending modes are expected to appear in the infrared
spectrum.
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Chapter 6

Electronic Structure of Atoms
and Molecules

An atom must be at least as complex as a grand piano.
William K. Clifford [1]

Everything that counts in chemistry is related to the electronic struc-
ture of atoms and molecules. The formation of molecules from atoms,
their behavior and reactivity all depend on the electronic structure.
What is the role of symmetry in all this? In various aspects of the elec-
tronic structure, symmetry can tell us a good deal; why certain bonds
can form and others cannot, why certain electronic transitions are
allowed and others are not, and why certain chemical reactions occur
and others do not. Our discussion of these points is based primarily
on some monographs listed in References [2–8].

To describe the electronic structure, the electronic wave function
�(x, y, z, t) is used, which depends, in general, on both space and
time. Here, however, only its spatial dependence will be considered,
�(x, y, z). For detailed discussions of the nature of the electronic wave
function, we refer to texts on the principles of quantum mechanics
[9–12]. For a one-electron system the physical meaning of the elec-
tronic wave function is expressed by the product of � with its complex
conjugate �∗. The product �∗· � d� gives the probability of finding
an electron in the volume d� = dx dy dz about the point (x, y, z).

A many-electron system is described by a similar but multivariable
wave function

�(x1 , y1 , z1, . . . , xi , yi , zi , . . . , xn , yn , zn).

M. Hargittai, I. Hargittai, Symmetry through the Eyes of a Chemist, 3rd ed.,
DOI: 10.1007/978-1-4020-5628-4 6, C© Springer Science+Business Media B.V. 2009
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The product �∗·� d� gives the probability of finding the first electron
in dτ1, about the point (x1, y1, z1), and the ith electron in dτi about the
point (xi, yi, zi), all at the same time.

The symmetry properties of the electronic wave function and
the energy of the system are two determining factors in chemical
behavior. The relationship between the wave function characterizing
the behavior of the electrons and the energy of the system—atoms and
molecules—is expressed by the Schrödinger equation. In its general
and time-independent form, it is usually written as follows,

Ĥ� = E� (6-1)

where Ĥ is the Hamiltonian operator and E is the energy of the
system.

The Hamiltonian operator is an energy operator, which includes
both kinetic and potential energy terms for all particles of the system.
In our discussion, only its symmetry behavior will be considered.
With respect to the interchange of like particles (either nuclei or elec-
trons) the Hamiltonian must be unchanged under a symmetry oper-
ation. A symmetry operation carries the system into an equivalent
configuration, which is indistinguishable from the original. However,
if nothing changes with the system, its energy must be the same
before and after the symmetry operation. Thus, the Hamiltonian of
a molecule is invariant to any symmetry operation of the point group
of the molecule. This means that it belongs to the totally symmetric
representation of the molecular point group.

A fundamental property of the wave function is that it can be
used as basis for irreducible representations of the point group of a
molecule [13]. This property establishes the connection between the
symmetry of a molecule and its wave function. The preceding state-
ment follows from Wigner’s theorem, which says that all eigenfunc-
tions of a molecular system belong to one of the symmetry species of
the group [14].

In the expression of the energy of a system the following type of
integral appears: ∫

�i Ĥ� j dτ

Depending on the problem, �i and �j may be atomic orbitals used
to construct molecular orbitals, or they may represent two different
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electronic states of the same atom or molecule, etc. The energy, then,
expresses the extent of interaction between the two wave functions �i

and �j. As was shown in Chapter 4, an integral will have a nonzero
value only if the integrand is invariant to the symmetry operations of
the point group, i.e., it belongs to the totally symmetric irreducible
representation.

The above energy integral contains the Ĥ operator, which always
belongs to the totally symmetric irreducible representation. Therefore,
the symmetry of the whole integrand depends on the direct product of
�i and �j. As also was shown in Chapter 4, the direct product of
the representations of �i and �j belongs to, or contains, the totally
symmetric irreducible representation only if �i and �j belong to
the same irreducible representation. Consequently, the energy inte-
gral will be nonzero only if �i and �j belong to the same irreducible
representation of the molecular point group.

6.1. One-Electron Wave Function

Before discussing many-electron systems, the hydrogen atom (a one-
electron system) will be described. This is essentially the only atomic
system for which an exact solution of the wave function is available.
The spherical symmetry of the hydrogen atom makes it convenient to
express the wave function in a polar coordinate system. Such a system
is shown in Figure 6-1 with the proton in the origin. Ignoring the trans-
lational motion of the hydrogen atom, the Schrödinger equation can
be simplifed as follows [15]:

Ĥe� = E�e (6-2)

where Ĥe depends only on the coordinates of the electron.
The electronic wave function can be represented as a product of a

radial and an angular component:

�e = R(r ) · A(�, �) (6-3)

The radial wave function R(r) depends on two quantum numbers,
n and l. The principal quantum number, n, determines the elec-
tron shell. The numbers n = 1, 2, 3, 4, ... correspond to the shells
K, L, M, N, respectively. For the hydrogen atom, n completely deter-
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Figure 6-1. The relationship between Cartesian coordinates and spherical polar
coordinates, illustrated for the hydrogen atom with the proton at the origin.

mines the energy of the shell, which is inversely proportional to n2.
Since this energy is negative, E is smallest for the first (K) shell, and
increases with increasing n. The azimuthal quantum number, l, is asso-
ciated with the total angular momentum of the electron and deter-
mines the shape of the orbitals. It may have integral values from 0 to
n – 1. The s, p, d, f, ... orbitals correspond to the azimuthal quantum
numbers, l = 0, l, 2, 3, ..., respectively.

The angular wave function A(�, �) depends also on two quantum
numbers, l and ml. The magnetic quantum number, ml, is associated
with the component of angular momentum along a specific axis in the
atom. Since the hydrogen atom is spherically symmetrical, it is not
possible to define a specific axis until the atom is placed in an external
electric or magnetic field. This also means that the quantum number
ml has no effect on the energy and shape of the wave function of the
hydrogen atom in the absence of such an external field. Generally, ml

may have values –l, –l+1, ..., 0, ..., l–1, l, altogether 2l+1 of them, and
the orbitals are subdivided accordingly.

Usually we refer to the energy of orbitals while what is really
meant is the energy of an electron in that orbital. It was mentioned
earlier that only the principal quantum number n influences the orbital
energy in the hydrogen atom. This means that while 1s and 2s orbitals
have different energies, the 2s and all three 2p orbitals have the same



6.1. One-Electron Wave Function 243

energy, i.e., these four n = 2 orbitals are degenerate in the hydrogen
atom.

In many-electron atoms the value of l also influences the energy of
the orbitals; thus, the 2s and 2p orbitals, the 3s, 3p, and 3d orbitals, or
the 4s, 4p, 4d, and 4f orbitals will no longer be degenerate. However,
there are always three p orbitals, five d orbitals, and seven f orbitals
in a shell, and they differ only in the quantum number ml and will be
degenerate. As there are 2l + 1 values of ml for an orbital with quantum
number l, the p orbitals (l = 1) will always be threefold degenerate, the
d orbitals (l = 2) will always be fivefold degenerate, while the f orbitals
(l = 3) will always be sevenfold degenerate.

Harris and Bertolucci [16] illustrated the relationship between
symmetry and degeneracy of energy levels with a simple and attrac-
tive example. There are three parrallelepipeds in Figure 6-2. Each of
them has six stable resting positions. The potential energy of these
positions depends on the height of the center of the mass above the

Figure 6-2. Illustration of the interrelation of symmetry and degeneracy after Harris
and Bertolucci [17]. Used with permission. See text for details.
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supporting surface. This height, in turn, is determined by the choice
of face on which the body rests. Three different positions are possible
for the first parallelepiped (1) according to its three different kinds
of faces. The potential energy of 1 will be largest when it stands on
an ab face, since its center of mass is at the highest possible posi-
tion. There are only two energetically different positions for 2 since
its center of mass is at the same height when it rests on face bc or
on face ac. Parallelepiped 3 is indeed a cube, and all possible posi-
tions will be energetically equivalent. Looking at the degeneracy of
the most stable (lowest energy) position, it is twofold degenerate for 1,
four-fold degenerate for 2, and six-fold degenerate for the cube. Thus,
with increasing symmetry, the degree of degeneracy increases. The
connection between symmetry and degeneracy is strikingly obvious.
The greater the degree of symmetry the smaller will be the number of
different energy levels and the greater will be the degeneracy of these
levels.

This correlation between symmetry and degeneracy of energy
levels is fundamental to understanding the electronic structure of
atoms and molecules. This relationship is valid not only when
increasing symmetry renders the energy levels degenerate but also
when energy levels are split as molecular symmetry decreases.

Let us now return to the wave function description of electronic
structure. The separation of the wave function into two parts is conve-
nient since these two parts relate to different properties. The radial
part determines the energy of the system and is invariant to symmetry
operations. The square of the radial function is related to probability.
If we fix the angular variables, � and �, they define a direction from
the nucleus. Then the square of the radial function is proportional
to the probability of finding the electron in a volume element along
this direction. In order to determine the probability of finding the
electron anywhere in a spherical shell surrounding the nucleus at a
distance r from the nucleus, integration over both angular variables
must be performed. The result is the radial distribution function.

Consider now the angular part of the one-electron wave function. It
says nothing about the energy of the system but it can be altered by
symmetry operations. Therefore, we shall be dealing with this func-
tion in greater detail. The function A(�, �) may have different signs
(+ and –) in different spatial regions. A change in sign indicates a
drastic change in the wave function. These signs might be thought
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of as signs of the amplitudes of the wave function; they certainly
have nothing to do with electric charges. The places where the wave
function changes sign are called nodes. The number of nodes is n–1,
where n is the principal quantum number. Again, the squared function
has physical significance; it is positive everywhere. The probability
of finding an electron at a node is zero. However, as one proceeds in
either direction from the nodes, the squared wave function has equal
values relating to equal probabilities; to wit, the probability of finding
the electron on the “positive” or “negative” side of the wave function
is equal.

It usually helps to visualize and understand a problem in a picto-
rial way. However, since the wave function depends upon three vari-
ables, it can be represented only in four dimensions. To overcome
this problem, symbolic representations are used to emphasize various
properties of the wave function.

The angular wave function, A(�, �), is shown for the H 1s and
2pz orbitals in Figure 6-3a. The H 1s orbital is positive every-
where, but the 2pz orbital has one node, through which it changes
sign. The A2(�, �) function is shown for the same orbitals in
Figure 6-3b. For both orbitals, the shape of this function is similar
to the shape of the A(�, �) function, but this function is positive
everywhere. It represents the region in space where the electron
can be found with a large probability (usually 90 % or more). The
boundary surface of this space is determined by the square of the
angular function. The squared angular function does not say anything,
however, about the variation of the probability density within this
surface. That information is contained in the radial distribution func-
tion. A way to illustrate the latter is shown for the 1s and 2pz

orbitals in Figure 6-3c, where a cross section of the electron density

Figure 6-3. Representations of the hydrogen 1s and 2pz orbitals; (a) Plot of
the angular wave function, A(�, �); (b) Plot of the squared function, A2(�, �);
(c) Cross section of the squared total wave function, �2, representing the electron
density. Reprinted by permission of Thomas H. Lowry [18].
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distribution is depicted. The varying amount of shading reflects
the square of the radial function. Thus, this picture represents the
squared total wave function, �2. Rotating this picture around any
axis for the 1s orbital and around the z axis for the 2pz orbital
would give the three-dimensional representation of the total wave
function.

Whereas the square of the angular function has outstanding phys-
ical significance, the angular function itself contains valuable infor-
mation regarding the symmetry properties of the wave function. These
properties are lost in the squared angular function.

The well-known shapes of the one-electron orbitals are presented in
Figure 6-4; these are, in fact, representations of the angular wave func-
tions. The f orbitals will not be discussed further, since their partici-
pation in chemical bonding is limited. The representations depicted in
Figure 6-4 are used commonly for illustrations because they describe
accurately the symmetry properties of the wave function. In order
to give the total wave function, however, they must be multiplied
by an appropriate radial function. Another representation, shown in
Figure 6-5, is a three-dimensional computer drawing of the total func-
tion including both the radial and the angular functions. These are still
not real “pictures” of the orbitals, since they represent a cross section
of the wave function in one plane only. The vertical scale gives the
value of � for each point in the xy plane. These diagrams show how
the sign and magnitude of � vary in the xy plane, and they also help us
visualize the electronic wave function as a wave. On the other hand,
they do not illustrate its symmetry properties so well as do the simple
diagrams in Figure 6-4.

As mentioned before, the symmetry properties of the one-electron
wave function are shown by the simple plot of the angular wave
function. But, what are the symmetry properties of an orbital and how
can they be described? We can examine the behavior of an orbital
under the different symmetry operations of a point group. This will be
illustrated below via the inversion operation.

The s and d orbitals are transformed into themselves as the inver-
sion operation is applied to them (Figure 6-6). Both the magnitude
and the “sign” of the wave function will remain the same under the
inversion operation. These orbitals are said to be symmetric with
respect to inversion. The effect of the inversion operation on the p
orbitals is demonstrated in Figure 6-7. Whereas their magnitude does
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(a)

(b)

Figure 6-4. Shapes of one-electron orbitals. They are representations of the angular
wave function, A(�, �): (a) s, p, and d orbitals; (b) f orbitals.

not change, their “sign” changes upon inversion. These orbitals are
said to be antisymmetric with respect to inversion. In the character
tables, this is indicated by +1 for symmetric and –1 for antisymmetric
behavior under each symmetry operation. As mentioned in Chapter 4,
the atomic orbitals always belong to the same irreducible representa-
tions of the given point group as do their subscripts (x, y, z, xy, x2– y2,
etc.).
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Figure 6-5. Three-dimensional computer drawings of the total wave function, �,
of the iodine atom, calculated with a 3-21G basis set [19]. They show the values of
� in a cross section. Courtesy of István Kolossváry. (a) 1s orbital; (b) 2px orbital;
(c) 3dxy orbital.

Figure 6-6. The effect of inversion on the s and d orbitals. They are symmetric to
this operation.
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Figure 6-7. The effect of inversion on the p orbitals. They are antisymmetric
to inversion, as the inversion operation changes their sign.

6.2. Many-Electron Atoms

There is interaction among all the electrons in a many-electron
atom. Thus, the wave function for even one electron in a many-
electron system will, in principle, be different from the wave func-
tion for the one electron in the hydrogen atom. Since the electrons
are mutually indistinguishable, it is not possible to describe rigor-
ously the properties of a single electron in such a system. There is
no exact solution to this problem, and approximate methods must be
adopted.

In the most commonly utilized approximation, the many-electron
wave functions are written in terms of products of one-electron wave
functions similar to the solutions obtained for the hydrogen atom.
These one-electron functions used to construct the many-electron
wave function are called atomic orbitals. They are also called
“hydrogen-like” orbitals since they are one-electron orbitals and also
because their shape is similar to that of the hydrogen atom orbitals.
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Coulson referred to the atomic orbitals as “personal wave functions”
to emphasize that each electron is allocated to an individual orbital in
this model [20].

At this point we can, again, appreciate the possibility of separating
the total wave function into a radial and an angular wave function.
The angular wave function does not depend on n and r, so it will be
the same for every atom. This is why the “shapes”of atomic orbitals
are always the same. Hence, symmetry operations can be applied to
the orbitals of all atoms in the same way. The differences occur in the
radial part of the wave function; the radial contribution depends on
both n and r and it determines the energy of the orbital, which is, of
course, different for different atoms.

While the energy of a one-electron orbital depends only on n, in a
many-electron atom the energy of the orbital is determined by both
n and l. Thus, an electron in a 2p orbital has higher energy than an
electron in a 2s orbital. The order of orbital energies in many-electron
atoms is generally as follows:

1s < 2s < 2p < 3s < 3p < 4 s ≈ 3d < 4p < 5s < 4d < . . .

There are some cases, however, when the order is changed some-
what. For example, the 3d orbital sometimes lies below the 4s orbital.
A diagram which illustrates the order of orbital energies is shown in
Figure 6-8.

In addition to the three quantum numbers used to describe the
one-electron wave function, the electron has also a fourth, the spin
quantum number, ms. It is related to the intrinsic angular momentum
of the electron, called spin. This quantum number may assume the
values of +1/2 or –1/2. Usually the sign of ms is represented by arrows,
(↑ and ↓), or by the Greek letters � and 	. Thus, the wave function of
an orbital is expressed as

�e = R(r ) · A(�, �) · S(s) (6-4)

rather than as in Eq. (6-3). However, the introduction of spin does not
alter any of the properties discussed previously that relate to the shape
and symmetry of the orbitals. The reason is that the spin function is
independent of the spatial coordinates.
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Figure 6-8. The sequence of orbital energies.

An important postulate in connection with the spin of the electron is
called the Pauli principle. It states that if a system consists of identical
particles with half-integral spins, then all acceptable wave functions
must be antisymmetric with respect to the exchange of the coordinates
of any two particles. In our case, the particles are electrons, and the
Pauli principle is formulated accordingly: No two electrons in an atom
can have the same set of values for all four quantum numbers.

The electronic configuration of an atom tells us how many electrons
the atom has in its subshells. A subshell is a complete set of orbitals
that have the same n and l. The building up of electronic configu-
rations is governed by the Pauli principle and by Hund’s first rule,
according to which, for a given electronic configuration, the state with
the greatest number of unpaired spins has the lowest energy.

There is a marked periodicity in the electronic configuration of the
elements and this is the underlying idea of the periodic table (see
Chapter 1). As the chemical properties of the atoms are determined by
their electron configuration, the atoms with similar electron configu-
rations will have similar chemical properties.
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6.3. Molecules

6.3.1. Constructing Molecular Orbitals

In the discussion of the electronic structure of atoms, the Schrödinger
equation could be reduced to one involving only the electrons. This
was achieved by separating the electronic energy of the atom from the
nuclear kinetic energy, which is essentially determined by the transla-
tional motion of the atom.

Such a separation is exact for atoms. For molecules, only the trans-
lational motion of the whole system can be rigorously separated, while
their kinetic energy includes all kinds of motion, vibration and rotation
as well as translation. First, as in the case of atoms, the translational
motion of the molecule is isolated. Then a two-step approximation
can be introduced. The first is the separation of the rotation of the
molecule as a whole, and thus the remaining equation describes only
the internal motion of the system. The second step is the application of
the Born–Oppenheimer approximation, in order to separate the elec-
tronic and the nuclear motion. Since the relatively heavy nuclei move
much more slowly than the electrons, the latter can be assumed to
move about a fixed nuclear arrangement. Accordingly, not only the
translation and rotation of the whole molecular system but also the
internal motion of the nuclei is ignored. The molecular wave func-
tion is written as a product of the nuclear and electronic wave func-
tions. The electronic wave function depends on the positions of both
nuclei and electrons but it is solved for the motion of the electrons
only.

As was emphasized before (cf. Chapter 3), a molecule is not simply
a collection of its constituting atoms. Rather, it is a system of atomic
nuclei and a common electron distribution. Nevertheless, in describing
the electronic structure of a molecule, the most convenient way is to
approximate the molecular electron distribution by the sum of atomic
electron distributions. This approach is called the linear combina-
tion of atomic orbitals (LCAO) method. The orbitals produced by the
LCAO procedure are called molecular orbitals (MOs). An important
common property of the atomic and molecular orbitals is that both
are one-electron wave functions. Combining a certain number of
one-electron atomic orbitals yields the same number of one-electron
molecular orbitals. Finally, the total molecular wave function is the
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sum of products of the one-electron molecular orbitals. Thus, the final
scheme is as follows:

One-electron atomic orbitals (AOs)
|
| LCAO
↓

One-electron molecular orbitals (MOs)
|
| multiplication
| (and summation)
↓

Total molecular wave function

Although both atomic orbitals and molecular orbitals are one-
electron wave functions, the shape and symmetry of the molecular
orbitals are different from those of the atomic orbitals of the isolated
atom. The molecular orbitals extend over the entire molecule, and
their spatial symmetry must conform to that of the molecular frame-
work. Of course, the electron distribution is not uniform throughout
the molecular orbital. In depicting these orbitals, usually only the
portions with substantial electron density are emphasized.

When constructing molecular orbitals from atomic orbitals, there
may be a large number of possible linear combinations of the atomic
orbitals. Many of these linear combinations, however, are unneces-
sary. Symmetry is instrumental as a criterion in choosing among them.
The following statement is attributed to Michelangelo: “The sculpture
is already there in the raw stone; the task of a good sculptor is merely
to eliminate the unnecessary parts of the stone.” In the LCAO proce-
dure, the knowledge of symmetry eliminates the unnecessary linear
combinations. All those linear combinations must be eliminated that
do not belong to any irreducible representation of the molecular point
group. The reverse of this statement constitutes the fundamental prin-
ciple of forming molecular orbitals: Each possible molecular orbital
must belong to an irreducible representation of the molecular point
group. Another equally important rule for the construction of molec-
ular orbitals is that only those atomic orbitals can form a molec-
ular orbital that belong to the same irreducible representation of the
molecular point group. This rule follows from the general theorem
(see p. 210) about the value of an energy integral. This theorem can
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be restated for the special case of MO construction as follows: An
energy integral will be nonzero only if the atomic orbitals used for
the construction of molecular orbitals belong to the same irreducible
representation of the molecular point group.

The atomic orbitals in an isolated atom possess spherical symmetry.
When they are used for MO construction, however, their symmetry
must be considered in the symmetry group of the particular molecule.
When two atomic orbitals of the same symmetry form a molecular
orbital, the symmetry of the molecular orbital will be the same as that
of the component atomic orbitals.

In addition to complying with the symmetry rules, successful MO
construction requires certain energy conditions. In order for two
orbitals to interact appreciably, their energies cannot be too different.

The so-called overlap integral Sij is a useful guide in constructing
molecular orbitals. It is symbolized as

Sij =
∫

�i � j dτ (6-5)

where �i and �j are the two participating atomic orbitals. The physical
meaning of Sij is related to the measure of volume in which there is
electron density contributed by both atoms i and j. The knowledge
of the sign and magnitude of Sij is especially instructive; they can be
arrived at via the following considerations.

Positive overlap results from the combination of adjacent lobes
that have the same “sign.” The electron density originating from both
atoms will increase and concentrate in the region between the two
nuclei. The resulting MO is a bonding orbital. Some typical bonding
atomic orbital combinations are presented in Figure 6-9. Two kinds of
molecular orbitals are shown in this figure. A � orbital is concentrated
primarily along the internuclear axis. On the other hand, a � orbital
has a nodal plane going through this axis, and its electron density is
highest on either side of this nodal plane. The � orbitals are nonde-
generate, while the � orbitals are always doubly degenerate.

Negative overlap results from the combination of adjacent lobes
that have opposite “sign.” In such an instance, there will be no
common electron density in the region between the two nuclei;
instead, electron density will concentrate in the outside regions. Such
an MO is an antibonding orbital and is illustrated in Figure 6-10.
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(a)

(b)

Figure 6-9. Illustration of positive overlap between atomic orbitals. The result is a
bonding orbital: (a) � orbitals; (b) � orbitals.

(a)

(b)

Figure 6-10. Formation of antibonding orbitals by the combination of different
lobes of atomic orbitals: (a) � antibonding orbitals; (b) � antibonding orbitals.
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Figure 6-11. Zero overlap between atomic orbitals. There is no net interaction.

Zero overlap means that there is no net interaction between the two
atomic orbitals. They have both positive and negative overlaps that
cancel each other. Some examples are shown in Figure 6-11.

The energy changes in the formation of homonuclear and heteronu-
clear diatomic molecules are illustrated in Figure 6-12. The energy of
the bonding MO is smaller (larger negative value) than is the energy
of the interacting atomic orbitals. On the other hand, the energy of the
antibonding MO is larger than is the energy of the interacting atomic
orbitals. The largest energy changes occur when the two participating
atomic orbitals have equal energies. As the energy difference between
the participating atomic orbitals increases, the stabilization of the

(a)

(b)

Figure 6-12. Energy changes during MO formation: (a) Homonuclear molecules;
(b) Heteronuclear molecules.
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bonding MO decreases. Molecular orbitals are not formed when the
participating atomic orbitals possess very different energies.

Thus, both symmetry and energy requirements must be fulfilled in
order to form molecular orbitals. Energetically, the 2s and 2p atomic
orbitals are suffı̀ciently similar to form molecular orbitals with each
other. For symmetry reasons, however, the px and py orbitals of one
atom of a homonuclear diatomic molecule cannot combine with the
2s orbital of the other atom because they belong to different irre-
ducible representations (see Figure 6-13a). On the other hand, for
example, the radial extension of the 4f orbitals of the lanthanide
elements is very small and they are well separated from the valence
region, therefore they cannot form molecular orbitals with many
ligand orbitals for energetic reasons despite their matching symme-
tries (see Figure 6-13b) [21].

(a)

(b)

Figure 6-13. (a) Combination of the 2s and 2px (or 2py) atomic orbitals does not
result in a molecular orbital because their symmetries do not match; (b) Combina-
tion of the 4f orbital of dysprosium and the 2p orbitals of chlorine does not result in
a molecular orbital because their energies (radial extention) are too different [22].
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Knowledge of the symmetry of the MOs is important for prac-
tical reasons. The energy of the orbitals can be calculated by costly
quantum chemical calculations. The symmetry of the molecular
orbitals, on the other hand, can be deduced from the molecular point
group and with the use of character tables, a process that requires
merely paper and pencil. Then, when all possible solutions that are
not allowed by symmetry have been excluded, only the energies of
the remaining orbitals need to be calculated.

We are, of course, concerned with the symmetry aspects of the
MOs and their construction. As was discussed before, the degen-
eracy of atomic orbitals is determined by ml. Thus, all p orbitals
are threefold degenerate, and all d orbitals are fivefold degenerate.
The spherical symmetry of the atomic subshells, however, necessarily
changes when the atoms enter the molecule, since the symmetry of
molecules is nonspherical. The degeneracy of atomic orbitals will,
accordingly, decrease; the extent of decrease will depend upon molec-
ular symmetry.

Various methods (described in Chapter 4) can be used to determine
the symmetry of atomic orbitals in the point group of a molecule,
i.e., to determine the irreducible representation of the molecular point
group to which the atomic orbitals belong. There are two possibilities
depending on the position of the atoms in the molecule. For a central
atom (like O in H2O or N in NH3), the coordinate system can always
be chosen in such a way that the central atom lies at the intersection
of all symmetry elements of the group. Consequently, each atomic
orbital of this central atom will transform as one or another irre-
ducible representation of the symmetry group. These atomic orbitals
will have the same symmetry properties as those basis functions in
the third and fourth areas of the character table which are indicated
in their subscripts. For all other atoms, so-called “group orbitals” or
“symmetry-adapted linear combinations” (SALCs) must be formed
from like orbitals. Several examples below will illustrate how this is
done.

First, however, consider the symmetry properties of the central
atom orbitals. Take the C4v point group as an example. Its character
table is presented in Table 6-1. The pz and dz2 atomic orbitals of the
central atom belong to the totally symmetric irreducible representation
A1, the dx2−y2 orbital belongs to B1 and dxy to B2. The symmetry prop-
erties of the (px, py) and (dxz, dyz) orbitals present a good opportunity
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Table 6-1. The C4v Character Table

C4v E 2C4 C2 2�v 2�d

A1 1 1 1 1 1 z x2+y2, z2

A2 1 1 1 −1 −1 Rz

B1 1 −1 1 1 −1 x2–y2

B2 1 −1 1 −1 1 xy
E 2 0 −2 0 0 (x, y) (Rx, Ry) (xz, yz)

for illustrating two-dimensional representations. Taking the three p
orbitals as basis functions, the symmetry operations of the C4v point
group are applied to them. This is shown in Figure 6-14. The matrix
representations are given here:

E =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

C4 =
⎡
⎣

0 1 0
−1 0 0

0 0 1

⎤
⎦ C3

4 =
⎡
⎣

0 −1 0
1 0 0
0 0 1

⎤
⎦ C2 =

⎡
⎣

−1 0 0
0 −1 0
0 0 1

⎤
⎦

σv(xz) =
⎡
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎦ σv(yz) =

⎡
⎣

−1 0 0
0 1 0
0 0 1

⎤
⎦

σd =
⎡
⎣

0 1 0
1 0 0
0 0 1

⎤
⎦ σ ′

d =
⎡
⎣

0 −1 0
−1 0 0

0 0 1

⎤
⎦

All these matrices can be simultaneously block-diagonalized into
a 2×2 and a 1×1 matrix. The set of the 1×1 matrices corresponds
to pz and the set of the 2×2 matrices corresponds to px and py. The
representations are:

E 2C4 C2 2�v 2�d

pz 1 1 1 1 1 A1

(px, py) 2 0 −2 0 0 E
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Figure 6-14. The symmetry operations of the C4v point group applied to the 2p
orbitals.

Notice that the operations C4 and �d transform px into py and vice
versa. They cannot be separated from one another so they together
belong to the two-dimensional representation E.

If two or more atomic orbitals are interrelated under a symmetry
operation of the point group and, accordingly, they together belong to
an irreducible representation, their energies will also be the same. In
other words, these orbitals are degenerate. Such atomic orbitals are
parenthesized in the character tables.

The direct connection between symmetry and degeneracy of the
atomic orbitals is demonstrated here once again. The higher the
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symmetry of the molecule, the greater will be the interrelation of
the orbitals upon symmetry operations. Consequently, their ener-
gies become less and less distinguishable. The following example
shows how the degeneracy of p orbitals decreases with diminishing
symmetry:

Free atom Spherical (px, py, pz) Threefold degenerate
symmetry

Oh point group T1u (px, py, pz) Threefold degenerate

C4v point group A1 pz Nondegenerate
E (px, py) Twofold degenerate

C2v point group A1 pz Nondegenerate
B1 px Nondegenerate
B2 py Nondegenerate

The degree of degeneracy of atomic orbitals always corresponds
to the dimension of the irreducible representation to which these
atomic orbitals belong. The same is true for molecular orbitals. Thus,
knowing the symmetry of a molecule and looking at the character
table, one can determine at once the maximum possible degeneracy
of its molecular orbitals. The irreducible representation having the
highest dimension will show this.

6.3.2. Electronic States

The orbitals and electronic configurations are useful descriptions.
However, they are only models, and they employ approximations. The
energy of an orbital has rigorous physical significance for systems that
contain only a single electron. In many-electron systems, the energy
of the orbitals loses its physical meaning, and only the energies of the
(ground and excited) states are real. It is these states that are described
by the total electronic wave functions. Electronic transitions, in fact,
represent changes in the state of an atom or a molecule and not neces-
sarily in the electronic configurations.

We shall not be concerned with the atomic states. The systematic
way of determining them is given, for example, in References [4]
and [7]. Molecular states and the determination of their symmetries,
however, will be briefly introduced [23].
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First, let us consider the customary notations. Assume that a hypo-
thetical ground state molecule of the C2v point group has four elec-
trons, two in an A1 symmetry and two in a B1 symmetry orbital. In
short notation this can be written as a2

1b2
1. An electron occupying an A1

symmetry orbital is represented by a1, the lower-case letter indicating
that this is the symmetry of an orbital and not of an electronic state.
If two electrons occupy an orbital, the notation is a2

1. The symmetry
of a state is represented by capital letters, just as are the irreducible
representations.

The symmetry of the electronic states can be determined from the
symmetry of the occupied orbitals. There are two different cases:

l. States with fully occupied orbitals. An electronic configuration in
which all orbitals are completely filled possesses only one elec-
tronic state, and it will be totally symmetric. This can be seen for
the case of nondegenerate orbitals. The wave function describing
the electronic state can be written as the product of the one-electron
orbitals. The symmetry of the product is given by the characters
of the direct product representation. However, the product of any
orbital with itself will always give the totally symmetric represen-
tation, no matter what characters it has, both 1 · 1 and (–1)·(–1)
equal 1, i.e., in each class of the point group the characters of the
product will be 1. The same is true for degenerate orbitals, although
the procedure in this case is not as simple.

2. States with partially occupied orbitals. First of all, the completely
filled orbitals are ignored for the reasons described above. The
symmetry of the state will be given by the direct product of the
partially filled orbitals.

Let us consider some examples for the above hypothetical
molecule. The supposed ground state and the configurations of two
different singly excited states are represented in Figure 6-15.

The ground state a2
1b2

1 has only fully occupied orbitals, so its
symmetry is A1. The first excited state, a2

1b1a2, has one fully occupied
orbital, a2

1, so this is not considered. The symmetry of this state will
be given by the direct product B1· A2. Table 6-2 lists the direct prod-
ucts under the C2v character table. The symmetry of the state is B2.
The other excited state in our example has the configuration a2

1b1b2.
The direct product is given in Table 6-2; the state symmetry is A2.
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Figure 6-15. Different states of a molecule with C2v symmetry.

Table 6-2. C2v Character Table and Some Direct Product Representations

C2v E C2 �v(xz) σ ′
ν(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 x, Ry xz
B2 1 −1 −1 1 y, Rx yz

B1·A2 1 −1 −1 1 B2

B1·B2 1 1 −1 −1 A2

Since we are concerned only with the spatial symmetry properties,
the electron spin and its role in determining the electronic states have
been neglected in the above description.

6.3.3. Examples of MO Construction

6.3.3.1. Homonuclear Diatomics

a) Hydrogen, H2. There are two 1s hydrogen atomic orbitals available
for bonding. The molecular point group is D∞h. This molecule does
not have a central atom, so the symmetry operations of the point group
are applied to both 1s orbitals, since they together form the basis for
a representation of this point group. The 1s orbital of one hydrogen
atom alone does not belong to any irreducible representation of the
D∞h point group. Several symmetry operations of this group trans-
form one of the two 1s orbitals into the other rather than into itself (see
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(a) (b)

Figure 6-16. Some symmetry operations of the D∞h point group applied to: (a)
One 1s orbital in the hydrogen molecule; (b) The two 1s orbitals of the hydrogen
molecule together.

Figure 6-16a). Thus, they must be treated together; in this way they
form a basis for a representation. All symmetry operations are indi-
cated in Figure 6-16b. The D∞h character table is given in Table 5-3.
The characters of this representation will be

D∞h E 2C∞� ∞�v i 2S∞� ∞C2

2 H(1s) 2 2 2 0 0 0

This is a reducible representation of the D∞h point group which
reduces to �g + �u. Two molecular orbitals must be generated, one
with �g and the other with �u symmetry. The two possible combina-
tions are the bonding and antibonding orbitals which can be formed
from the two 1s atomic orbitals.

The two electrons in the hydrogen molecule will occupy the lower
energy bonding orbital, and none will go into the antibonding orbital.

Hence, the molecule is stable.
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b) Other Homonuclear Diatomic Molecules. The principle utilized
to construct molecular orbitals is the same as that for the hydrogen
molecule. For helium, the MO picture is the same as for hydrogen
except that here the additional two electrons occupy the antibonding
�u orbital, and, therefore, the molecule is unstable.

In the series from lithium through neon, similar symmetry consid-
erations apply, except that in these examples the second electron shell
must be considered. The two 2s orbitals, as was found to be the case
for the two 1s orbitals, form MOs that possess �g and �u symmetry.
As regards the 2p orbitals, the two 2pz orbitals lie along the molec-
ular axis and belong to the same irreducible representation as the
2s orbitals. They also combine to give MOs that possess �g and �u

symmetry:

The 2s and 2pz orbitals of the same atom belong to the same irre-
ducible representation of the D∞h point group. Their energies are
also similar so they cannot be separated completely. Another way of
making linear combinations is to first combine the 2s and 2pz orbitals
of the same atom

and then combine the resulting orbitals into MOs.

The result is essentially the same as before.
The 2px and 2py orbitals of the two atoms together form a repre-

sentation that reduces to �g and �u. These correspond to two doubly
degenerate � orbitals, one of which lies in the yz plane
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and the other in the xz plane. The relative energies of these orbitals are
known from energy calculations. In most cases the order is as follows:

1σg < 1σu < 2σg < 2σu < 3σg < 1πu < 1πg < 3σu

while in some cases 1πu < 3σg.

6.3.3.2. Polyatomic Molecules

Before working out actual examples, let us recall what was said about
the symmetry properties of atomic orbitals. If there is a central atom
in the molecule, its atomic orbitals belong to some irreducible repre-
sentation of the molecular point group. For the other atoms of these
molecules, SALCs are formed from like orbitals. These new orbitals
are then coupled with the central atom AOs to form MOs.

If the molecule does not have a central atom (e.g., C6H6), we begin
with the second step, first forming different group orbitals and then
combining them, if possible, into MOs. Examples will be given for
both cases.

a) Water, H2O. The molecular symmetry is C2v. There are six atomic
orbitals available for MO construction: two H 1s, one oxygen 2s and
three oxygen 2p. They can combine to produce six MOs. As the
molecule has a central atom, its AOs will belong to some of the irre-
ducible representations of the C2v point group by themselves. Group
orbitals must be formed from the H 1s orbitals. The symmetry oper-
ations applied to them are shown in Figure 6-17. The C2v character
table was given in Table 6-2. The reducible representation is:

C2v E C2 �v(xz) σ ′
ν(yz)

2 H(1s) 2 0 0 2
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Figure 6-17. The C2v symmetry operations applied to the two hydrogen 1s orbitals
of water as basis functions.

This representation reduces to A1 + B2. The projection operator (see
Chapter 4) is used to form these SALCs. Since we are interested only
in symmetry aspects, numerical factors and normalization are omitted.

P̂ A1s1 ≈ 1 · E · s1 + 1 · C2 · s1 + 1 · σ · s1 + 1 · σ ′ · s1

= s1 + s2 + s2 + s1 = 2s1 + 2s2 ≈ s1 + s2

P̂ B2s1 ≈ 1 · E · s1 + (−1) · C2 · s1 + (−1) · σ · s1 + 1 · σ ′ · s1

= s1 − s2 − s2 + s1 = 2s1 − 2s2 ≈ s1 − s2

Thus, the two hydrogen group orbitals (�1 and �2) will have the forms:

ϕ2 = s1 − s2:

ϕ1 = s1 + s2:

The available AOs are summarized according to their symmetry
properties in Table 6-3. Since only orbitals of the same symmetry can
overlap, two combinations are possible: one has A1 symmetry and the
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Table 6-3. The Atomic Orbitals of Water Grouped According to their Symmetry
Properties

O orbitals H group orbitals

A1 2s, 2pz �1

A2

B1 2px

B2 2py �2

other has B2 symmetry. The remaining two orbitals of oxygen (one
with A1 and the other with B1 symmetry) will be nonbonding in the
water molecule.

If we choose the oxygen 2s orbital for bonding and leave the 2pz

orbital nonbonding (from the symmetry point of view the opposite
choice or a mixed orbital would do just as well; actually if the two
arbitals are close in energy, they mix), the MOs of the water molecule
can be constructed as shown in Figure 6-18. These MOs are compared
with the calculated contour diagrams of the water molecular orbitals
in Figure 6-19.

The construction of the molecular orbitals of the water
molecule can also be represented by a qualitative MO diagram
(see Figure 6-20). The relative energies of the orbitals are also indi-
cated in Figure 6-20. What information can be deduced from such a
diagram? First, there are two bonding orbitals occupied by four elec-
trons; these correspond to the two O–H bonds of water. There are
two nonbonding orbitals also occupied; these are the two lone pairs of
oxygen. Finally, there are two antibonding orbitals that are empty, so
there is a net energy gain in the formation of H2O and the molecule is
stable.

b) Ammonia, NH3. This example is given primarily to illustrate the
construction of degenerate molecular orbitals. The symmetry of the
molecule is C3v. There are seven atomic orbitals available for bonding:
three H 1s, one N 2s, and three N 2p AOs; hence, seven MOs must be
formed. Since the nitrogen atom is a central atom, the coordinate axes
can be chosen so that its AOs lie on all symmetry elements of the
C3v point group. The pertinent character table is given in Table 6-4.
The N 2s and 2pz orbitals will have A1 symmetry and the 2px and
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Figure 6-18. Construction of the molecular orbitals of water.

2py orbitals together belong to the E irreducible representation. Group
orbitals must be formed from the three H 1s orbitals. The symmetry
elements of the C3v point group applied to these orbitals are shown in
Figure 6-21; their representation is given in Table 6-4.

This representation can now be reduced by using the reduction
formula introduced in Chapter 4:
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Figure 6-19. Contour diagrams of the molecular orbitals of water. Computer
drawing by Zoltán Varga with Gaussview [24].

Figure 6-20. Qualitative MO diagram for water.
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Figure 6-21. The C3v symmetry operations applied to the three hydrogen atom 1s
orbitals of ammonia as basis function.

Table 6-4. The C3v Character Table and the Reducible Representation of the
Hydrogen Group Orbitals of Ammonia

C3v E 2C3 3�v

A1 1 1 1 z x2+ y2, z2

A2 1 1 −1 Rz

E 2 −1 0 (x, y) (Rx, Ry) (x2–y2, xy) (xz, yz)

3 H(1s) 3 0 1

aA1 = (1/6)(1 · 3 · 1 + 2 · 0 · 1 + 3 · 1 · 1) = 1

aA2 = (1/6)(1 · 3 · 1 + 2 · 0 · 1 + 3 · 1 · (−1)) = 0

aE = (1/6)(1 · 3 · 2 + 2 · 0 · (−1) + 3 · 1 · 0) = 1

Thus, the representation reduces to A1 + E. Next, let us use the
projection operator to generate the form of these SALCs:

P̂ A1 s1 ≈ 1 · E · s1 + 1 · C3 · s1 + 1 · C2
3 · s1 + 1 · σ · s1 + 1 · σ ′ · s1 + 1 · σ ′′ · s1

= s1 + s2 + s3 + s1 + s2 + s3 = 2(s1 + s2 + s3) ≈ s1 + s2 + s3

The same procedure is illustrated pictorially in Figure 6-22, after
Reference [25].
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Figure 6-22. Generation of the A1 symmetry orbital of the 3H group orbitals of
ammonia.

For the construction of the E symmetry group orbitals, a time-
saving simplification will be introduced [26]. First of all, it utilizes
the fact that the rotational subgroup Cn in itself contains all the infor-
mation needed to construct the SALCs in a molecule that possesses a
principal axis Cn. The rotational subgroup of C3v is C3, and its char-
acter table is given in Table 6-5. If we perform the three symmetry
operations of the C3 point group and check the generation of the A1

symmetry SALC of NH3 (Figure 6-22), we see that the application of
these three operations suffices to define the form of this orbital.

The difficulty in applying the projection operator for this symmetry
group arises from the fact that the C3 character table contains
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Table 6-5. The C3 Character Table

C3� E C3 C2
3 � = exp (2 �i/3)

A1 1 1 1 z, Rz x2+y2, z2

E

{
1 ε ε∗

1 ε∗ ε

}
(x, y) (Rx, Ry) (x2–y2, xy) (yz, xz)

imaginary characters for the E representation. They can be eliminated
by following the procedure used in Reference [27]. The character �
corresponds to exp (2�i/n), where n is the order of the rotation axis;
in our case, 3. Using Euler’s formula, exp(iα) = cos α + i sin α (and
the complex conjugate of � will be: ε∗ = cos α − i sin α), the charac-
ters for the E representation will be:

{
1 − 1

2 + i
√

3/2 −1
2 − i

√
3/2

1 − 1
2 − i

√
3/2 −1

2 + i
√

3/2

}
(a)

(b)

Using two different ways to obtain linear combinations of these char-
acters will make it possible to eliminate the imaginary characters. One
way may be summing Eqs. (a) and (b), resulting in

2 −1 −1

The other linear combination may be obtained by subtraction of
Eq. (b) from Eq. (a) and dividing the result by i

√
3. This linear combi-

nation results in the “characters”

0 1 −1

not satisfying all the relationships of irreducible representations, but
it serves our purpose of showing the shape of the SALCs. Our “quasi
character table” for the C3 point group is now:

A 1 1 1

E

{
2 −1 −1

0 1 −1

}
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When the projection operator is applied to one of the ls orbitals of
the hydrogen group orbitals with the two E representations, the two E
symmetry doubly degenerate SALCs result:

P̂ E1
s1 ≈ 2 · E · s1 + (−1) · C3 · s1 + (−1) · C2

3 · s1 = 2s1 − s2 − s3

P̂ E2
s1 ≈ 0 · E · s1 + 1 · C3 · s1 + (−1) · C2

3 · s1 = s2 − s3

Figure 6-23 illustrates the same procedure pictorially.

Figure 6-23. Projection of the two E symmetry group orbitals of the three H 1s
orbitals in ammonia.

The next step is the MO construction. The orbitals used for this
purpose are summarized in Table 6-6. An A1 and a doubly degen-
erate E symmetry combination is possible here, and there will be a
nonbonding orbital with A1 symmetry left on nitrogen. Figure 6-24
illustrates the building of MOs. Again, they can be compared with

Table 6-6. The Atomic Orbitals of Ammonia Sorted According to their Symmetry
Properties

N orbitals H group orbitals

A1 s, pz �1

E (px, py) �2
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Figure 6-24. Construction of molecular orbitals for ammonia.
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Figure 6-25. Contour diagrams of the molecular orbitals of ammonia. Computer
drawing by Zoltán Varga with Gaussview [28].

the calculated contour diagrams of the ammonia molecular orbitals
in Figure 6-25. The qualitative MO diagram is given in Figure 6-26.
The following conclusions can be drawn: (l) There are three bonding
orbitals occupied by electrons; these correspond to the three N–H
bonds; (2) there is a nonbonding orbital also occupied by electrons;
this corresponds to the lone electron pair; and (3) the three anti-
bonding orbitals are unoccupied, so the MO construction is energeti-
cally favorable, and the molecule is stable.

c) Benzene, C6H6. The molecular symmetry is D6h. There are 30 AOs
that can be used for MO construction; six H 1s, six C 2s, and 18 C 2p
orbitals. Since this molecule does not contain a central atom, each AO
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Figure 6-26. Qualitative MO diagram for ammonia.

must be grouped into SALCs in such a way that they can transform
according to the symmetry operations of the D6h point group. It is
straightforward to combine like orbitals, for example, the hydrogen 1s
orbitals, the carbon 2s orbitals, and so on. The following combinations
will be used here:

�1(6 H 1s), �2(6 C 2s), �3(6 C 2px , 2py), and �4(6 C 2pz).

The next step is to determine how these group orbitals transform in the
D6h point group. The D6h character table is given in Table 6-7. Since
most of the AOs in the suggested group orbitals are transformed into
another AO by most of the symmetry operations, the representations
will be quite simple, though still reducible:

��1 6 0 0 0 2 0 0 0 0 6 0 2
��2 6 0 0 0 2 0 0 0 0 6 0 2
��3 12 0 0 0 0 0 0 0 0 12 0 0
��4 6 0 0 0 −2 0 0 0 0 −6 0 2

These representations can be reduced by applying the reduction
formula.
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Table 6-7. The D6h Character Table

D6h E 2C6 2C3 C2 3C ′
2 3C ′′

2 i 2S3 2S6 �h 3�d 3��

A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2+y2, z2

A2g 1 1 1 1 –1 –1 1 1 1 1 –1 –1 Rz

B1g 1 –1 1 –1 1 –1 1 –1 1 –1 1 –1
B2g 1 –1 1 –1 –1 1 1 –1 1 –1 –1 1
E1g 2 1 –1 –2 0 0 2 1 –1 –2 0 0 (Rx, Ry) (xz, yz)
E2g 2 –1 –1 2 0 0 2 –1 –1 2 0 0 (x2–y2, xy)
A1u 1 1 1 1 1 1 –1 –1 –1 –1 –1 –1
A2u 1 1 1 1 –1 –1 –1 –1 –1 –1 1 1 z
B1u 1 –1 1 –1 1 –1 –1 1 –1 1 –1 1
B2u 1 –1 1 –1 –1 1 –1 1 –1 1 1 –1
E1u 2 1 –1 –2 0 0 –2 –1 1 2 0 0 (x, y)
E2u 2 –1 –1 2 0 0 –2 1 1 –2 0 0
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First �1:

aA1g = (1/24)(1 · 6 · 1 + 2 · 0 · 1 + 2 · 0 · 1 + 1 · 0 · 1 + 3 · 2 · 1

+ 3 · 0 · 1 + 1 · 0 · 1 + 2 · 0 · 1 + 2 · 0 · 1 + 1 · 6 · 1 + 3 · 0 · 1 + 3 · 2 · 1)

= (1/24)(6 + 6 + 6 + 6) = 24/24 = 1

aA2g = (1/24)(6 − 6 + 6 − 6) = 0

aB1g = (1/24)(6 + 6 − 6 − 6) = 0

aB2g = (1/24)(6 − 6 − 6 + 6) = 0

aE1g = (1/24)(12 − 12) = 0

aE2g = (1/24)(12 + 12) = 1

aA1u = (1/24)(6 + 6 − 6 − 6) = 0

aA2u = (1/24)(6 − 6 − 6 + 6) = 0

aB1u = (1/24)(6 + 6 + 6 + 6) = 1

aB2u = (1/24)(6 − 6 + 6 − 6) = 0

aE1u = (1/24)(12 + 12) = 1

aE2u = (1/24)(12 − 12) = 0

Thus, the first representation reduces to the following irreducible
representations:

��1 = A1g + E2g + B1u + E1u

Without giving details of the other three reductions, the results are:

��2 = A1g + E2g + B1u + E1u

��3 = A1g + A2g + 2E2g + B1u + B2u + 2E1u

��4 = B2g + E1g + A2u + E2u

Similarly to the case of ammonia, the rotational subgroup of D6h,
that is C6, contains enough information to generate the SALCs of
benzene. The C6 character table is given in Table 6-8, and, again,
contains imaginary characters. These can be handled in the same way
as was done for ammonia, keeping in mind that the solution is right for
the determination of the shape of the SALCs but the derived “quasi-
characters” are not real characters.

These “quasi-characters” for the two E representations are:

E1

{
2 1 −1 −2 −1 1
0 1 1 0 −1 −1

}
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Table 6-8. The C6 Character Table

C6 E C6 C3 C2 C2
3 C5

6 ε = exp (2 �i/6)

A 1 1 1 1 1 1 z, Rz x2+y2, z2

B 1 –1 1 –1 1 –1

E1

{
1 ε − ε∗ −1 − ε ε∗

1 ε∗ − ε −1 − ε∗ ε

}
(x, y)(Rx, Ry) (xz, yz)

E2

{
1 − ε∗ − ε 1 − ε∗ − ε

1 − ε − ε∗ 1 − ε − ε∗

}
(x2–y2, xy)

E2

{
2 −1 −1 2 −1 −1
0 1 −1 0 1 −1

}

Benzene consists of 30 MOs; only a few of these will be
constructed and shown here. It may be a good exercise for the
reader to construct the remaining MOs of benzene by following the
procedure demonstrated here. The SALCs are sorted according to
their symmetry properties in Table 6-9. Inspection of this table reveals
that the first three group orbitals have common irreducible repre-
sentations, so they can be mixed with each other. They consist of
24 AOs; thus, 24 MOs will be formed. Since each bonding MO has
its antibonding counterpart, there will be 12 bonding and 12 anti-
bonding molecular orbitals. The former will be the bonding orbitals of

Table 6-9. The Symmetry of the Different Group Orbitals of Benzene

�1

H group orbital
�2

C 2s group orbital
�3

C 2px, 2py

group orbital

�4

C 2pz group orbital

A1g + + +
A2g +
B1g

B2g +
E1g +
E2g + + ++
A1u

A2u +
B1u + + +
B2u +
E1u + + ++
E2u +
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benzene, since there are six C–C and six C–H bonds. The fourth group
orbital does not belong to any irreducible representation common to
the other three, so it will not be mixed with them. This representation
corresponds to the � orbitals of benzene by itself.

Let us now construct the A1g and B1u symmetry � orbitals of
benzene. The totally symmetric representation, A1g, appears three
times, once in each of �1, �2, and �3. Two A1g representations can
be combined into an MO, and the third one can represent an MO by
itself. These three SALCs can be generated by using the projection
operator pictorially as shown in Figure 6-27. The forms of these group
orbitals are such that �2(A1g) can be taken as an MO by itself (C–C �
bond; cf. also the corresponding orbital, 2A1g, in the contour diagram
in Figure 6-28a), and the other two group orbitals can be combined
into molecular orbitals as shown in Figure 6-29. The contour diagram
of the bonding MO is depicted by the 3A1g orbital in Figure 6-28a.

The next MO will be of B1u symmetry. This irreducible representa-
tion also appears in �1, �2, and �3. Take this time the corresponding
�1 and �2 group orbitals and combine them into molecular orbitals:

P̂ B1u s1 ≈1 · E · s1 + (−1) · C6 · s1 + 1 · C3 · s1 + (−1) · C2 · s1

+ 1 · C2
3 · s1 + (−1) · C5

6 · s1 = s1 − s2 + s3 − s4 + s5 − s6,

or pictorally:

The B1u symmetry SALC of �2, i.e., the group orbital of the six C
2s AOs, will have a similar form:

The combination of these �1 and �2 SALCs affords the bonding
and antibonding combinations shown in Figure 6-30. The contour
diagram corresponding to the bonding MO is the 2B1u orbital in
Figure 6-28a.
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Figure 6-27. Generation of the A1g symmetry group orbitals of benzene.



6.3. Molecules 283

(a) (b)

Figure 6-28. Contour diagrams of some molecular orbitals of benzene. Computer
drawing by Zoltán Varga with Gaussview [29]: (a) � orbitals; (b) � orbitals.

Since there is only one B2u symmetry orbital among the SALCs, the
one in �3, it will be a MO by itself. Let us generate this MO:

P̂ B2u py(C1) ≈ 1 · E · py1 + (−1) · C6 · py1 + 1 · C3 · py1

+ (−1) · C2 · py1 + 1 · C2
3 · py1 + (−1) · C5

6 · py1

= py1 − py2 + py3 − py4 + py5 − py6

Figure 6-29. Bonding and antibonding combination of A1g symmetry group orbitals
of benzene.
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Figure 6-30. Bonding and antibonding combination of B1u symmetry group orbitals
of benzene.

This group orbital has the following shape:

Compare the above orbital with 1B2u (Figure 6-28a).
The � orbitals of benzene will be the two doubly degenerate and

the two non-degenerate combinations of the �4 group orbital itself.
All of these are shown below.

A2u symmetry orbital: this corresponds to the totally symmetric
representation in the rotational subgroup C6; so, even without using
the projection operator, its form can be given by:

�4(A2u) = pz1 + pz2 + pz3 + pz4 + pz5 + pz6

The corresponding orbital in Figure 6-28b will be the 1A2u orbital.
B2g symmetry orbital: using the projection operator, we obtain:

P̂ B2g pz(C1) ≈ 1 · E · pz1 + (−1) · C6 · pz1 + 1 · C3 · pz1

+ (−1) · C2 · pz1 + 1 · C2
3 · pz1 + (−1) · C5

6 · pz1

= pz1 − pz2 + pz3 − pz4 + pz5 − pz6
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This is the 1B2g orbital of Figure 6-28b.
The two E1g symmetry SALCs are constructed in Figure 6-31.

Compare them to the contour diagram of the 1E1g orbitals in
Figure 6-28b.

Finally, the two E2u symmetry orbitals are expressed as follows:

P̂ E1
2u pz(C1) ≈ 2 · E · pz1 + (−1) · C6 · pz1 + (−1) · C3 · pz1

+ 2 · C2 · pz1 + (−1) · C2
3 · pz1 + (−1) · C5

6 · pz1

= 2pz1 − pz2 − pz3 + 2pz4 − pz5 − pz6

Figure 6-31. The two E1g symmetry group orbitals formed from the carbon 2pz

orbitals in benzene.
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P̂ E2
2u pz(C1) ≈ 0 · E · pz1 + 1 · C6 · pz1 + (−1) · C3 · pz1

+ 0 · C2 · pz1 + 1 · C2
3 · pz1 + (−1) · C5

6 · pz1

= pz2 − pz3 + pz5 − pz6 .

Their forms are:

These SALCs correspond to the contour diagram of the 1E2u orbital
(Figure 6-28b). Figure 6-32 shows the relative energies of the benzene
� orbitals.

Figure 6-32. Relative energies of the benzene � orbitals.

6.3.3.3. Short Summary of MO Construction

The steps of MO construction can now be summarized as follows:

1. Identify the symmetry of the molecule.
2. List all atomic orbitals that are intended to be used for MO

construction.
3. See whether or not the molecule has a central atom. If it does,

then look up in the character table the irreducible representations
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to which its atomic orbitals belong. If there is no central atom in
the molecule, proceed to the next step.

4. Construct group orbitals (SALCs) from the atomic orbitals of like
atoms.

5. Use these orbitals as bases for representations of the point group.
6. Reduce these representations to their irreducible components.
7. Apply the projection operator to the AOs for each of these irre-

ducible representations to obtain the forms of the SALCs.
8. These SALCs will either be MOs by themselves, or they can be

combined with other SALCs or central atom orbitals of the same
symmetry. Each of these combinations will give one bonding and
one antibonding MO of the same symmetry.

9. Normalization has been ignored throughout our discussion.
However the SALCs must be properly normalized in all calcula-
tions [30]. This may be done at the end of the SALC construction,
i.e., after step 7 in our list.

6.4. Quantum Chemical Calculations

Gay-Lussac (1778–1850) wrote in 1809: “We are perhaps not far
removed from the time when we shall be able to submit the bulk of
chemical phenomena to calculaton” [31]. One hundred and ten years
later, in 1998, John Pople shared the Nobel Prize in Chemistry “for
his development of computational methods in chemistry,” with Walter
Kohn (in his case, “for his development of the density-functional
theory”), Figure 6-33. So even if Gay-Lussac was, perhaps, somewhat
too optimistic, eventually his dreams came true—the development of
computational chemistry has been amazing. Quantum chemistry is
not a topic of this book, we are only mentioning it briefly because
of its inherent relationship to the symmetry concept. For discussion
of the topic we refer the reader to a few of the available monographs
[32–36].

The results of quantum chemical calculations usually yield the
wave functions and the energies of a system. Numerous integrals
must be evaluated even for the simplest molecules. Their number can
be conveniently reduced, however, by applying the theorem according
to which an energy integral,

∫
�iĤ�j d�, is nonzero only if �i and �j
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Figure 6-33. Walter Kohn (left) and John Pople, the 1998 Nobel laureates in Chem-
istry. Photograph by the authors.

belong to the same irreducible representation of the molecular
point group.

Most chemical and physical properties of the molecule can be
calculated, including the geometry, conformational properties, barrier
to internal rotation, relative stabilities of various isomers as well as
of different electronic states. Spectroscopic constants, such as dipole
moments, quadrupole moments, and vibrational frequencies can be
calculated and thermodynamic quantities determined. In the second
edition of this book, we wrote: “State-of-the-art calculations of molec-
ular geometry involving relatively light atoms are as reliable as the
results of the best experiments”[37]. Since then, there has been a
tremendous progress, and today it is possible to calculate much larger
systems with good accuracy. The quantum chemical codes as well
as the applied basis sets are continuously improving. While years
ago, calculation of molecules involving heavy metals, such as the
lanthanides or actinides, was a formidable task, today the available
effective core potentials make these calculations affordable and more
and more reliable. Computational studies of large biological macro-
molecules have also become an important tool in molecular biology
and biological chemistry [38].

Here we focus mostly on one property, molecular geometry. With
the ever increasing accuracy of computations, it is important to
realize that while calculations provide information on the equilibrium
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geometry, the various experiments yield some effective geometries for
the molecule, averaged over molecular vibrations. Depending on the
magnitude of these vibrations and their structural influence, the equi-
librium and average structures may differ to various extents. Exam-
ples of rather extreme effects were mentioned in Section 3.7.6. This is
why the following caveat has been issued: “For truly accurate compar-
ison, experimental bond lengths [or, generally, geometries] should be
compared with computed ones only following necessary corrections,
bringing all information involved in the comparison to a common
denominator” [39].

The application of computational chemistry is especially advanta-
geous when structural differences rather than absolute values of the
structural parameters are sought. Important systematic errors cancel
to a large extent in the determination of structural differences in calcu-
lations as well as in experiments. The importance of small structural
differences in understanding various effects in series of substances has
been recognized [40].

Small structural changes are especially important in molecular
recognition. It has been noted, e.g., that “... subtle changes of molec-
ular structure may result in severe changes of inclusion behavior of a
potential host molecule due to the complicated interplay of weak inter-
molecular forces that govern host-guest complex formation” [41].

Quantum chemical calculations have also proved to be important
tools in aiding the experimental determination of molecular geometry
in that they can provide reliable constraints in the experimental anal-
ysis (see, e.g., the structure analysis of 2-nitrophenol [42] and of metal
halides that have a complex vapor composition [43, 44] or constitute
very floppy systems [45]).

The difference is not merely practical, it is conceptual as well. R.D.
Levine [46] distinguished between physical and chemical shapes.
According to him, the physical shape corresponds to a hard space-
filling model, whereas the chemical shape describes how molecular
reactivity depends on the direction of approach and distance of the
other reagent. In terms of geometry representations, the chemical
shape can be related to the average structures determined from the
experiments and the physical shape to the hypothetical equilibrium
structure.

Quantum chemical calculations, of course, are the exclusive source
of information for systems that are not amenable to experimental
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study. Such systems include transition states, highly reactive and
unstable or even unknown species. Computations are used in drug
design, materials science, surface science, just to mention a few
new areas. Quantum chemical calculations have proved to be not
only complementary to experiments or be their alternatives, but
have opened up new research areas as well. Schafer has predicted
that chemical research will migrate each year from experiment to
computation for the forseable future [47] and would level off at about
50% each [48].

6.5. Influence of Environmental Symmetry

Symmetry has a major role in two widely used and successful
approaches of chemistry, viz., the crystal field and ligand field theories
of coordination compounds. This topic has been thoroughly covered
in textbooks and monographs on coordination chemistry. Therefore, it
is mentioned here only in passing.

Hans Bethe showed that the degenerate electronic state of a cation
is split by a crystal field into nonequivalent states [49]. The change
is determined entirely by the symmetry of the crystal lattice. Bethe’s
original work was concerned with ionic crystals, but his concept has
more general applications. When an atom or an ion enters a ligand
environment, the symmetry of the ligand arrangement will influ-
ence the electron density distribution of that atom or ion. The orig-
inal spherical symmetry of the atomic orbitals will be lost, and the
symmetry of the ligand environment will be adopted. As a conse-
quence of the usual decrease of symmetry, the degree of degeneracy
of the orbitals decreases.

The s electrons are already nondegenerate in the free atom, so
their degeneracy does not change. They will always belong to the
totally symmetric irreducible representation of the symmetry group.
The p orbitals, however, are threefold degenerate, and the d orbitals
are fivefold degenerate. To determine their splitting in a certain point
group, we must use them, in principle, as bases for a representation of
the group. In practice, we can find in the character table of the point
group the irreducible representations to which the orbitals belong. An
orbital always belongs to the same irreducible representation as do
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Table 6-10. Splitting of Atomic Orbitals in Different Symmetry Environments

s p d

Oh a1g t1u eg + t2g

Td a1 t2 e + t2
D∞h �g �u + �u �g + �g + 
g

D4d a1 b2 + e1 a1 + e2 + e3

D4h a1g a2u + eu a1g + b1g + b2g + eg

C4� a1 a1 + e a1 + b1 + b2 + e
C2� a1 a1 + b1 + b2 2a1 + a2 + b1 + b2

its subscripts. Some orbital splittings that accompany the decrease in
environmental symmetry are shown in Table 6-10.

As environmental symmetry decreases, the orbitals will become
split to an increasing extent. In the C2v point group, for example,
all atomic orbitals will be split into nondegenerate levels. This is not
surprising since the C2v character table contains only one-dimensional
irreducible representations. This result shows at once that there are no
degenerate energy levels in this point group. This has been stressed in
Chapter 4 in the discussion of irreducible representations.

The symmetry of the ligand environment gives an important but
limited amount of information about orbital splitting. Both the octa-
hedral and cubic ligand arrangements, for example, belong to the Oh

point group, and we can tell that the d orbitals of the central atom will
split into a doubly degenerate and a triply degenerate pair. But nothing
is revealed about the relative energies of these two sets of degenerate
orbitals.

The problem of relative energies is dealt with by crystal field theory.
This theory examines the repulsive interaction between the ligands
and the central atom orbitals. Consider first an octahedral molecule
(Figure 6-34), and compare the positions of one eg (e.g., dx2−y2) and
one t2g (e.g., dyz) orbital. The others need not be considered, as they are
degenerate with, and thus have the same energy as, one of the eg or t2g

orbitals. The lobes of the dx2−y2 orbital point towards the ligands. The
resulting electrostatic repulsion will destabilize this orbital, and its
energies will increase accordingly. The dyz orbital, on the other hand,
points in directions between the ligands. This is an energetically more
favorable position; hence, the energy of these orbitals will decrease.

Examine now the cubic arrangement in Figure 6-35. It can be
seen that the dyz orbital is in a more unfavorable situation relative to
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Figure 6-34. The orientation of the different symmetry d orbitals in an octahedral
environment.

the ligands than is the dx2−y2 orbital, so their relative energies will
be reversed (see Figure 6-36). Some other typical orbital splittings
and the corresponding changes in the relative energies are shown in
Figure 6-37.

Prediction of Structural Changes. Crystal field theory is frequently
applied to account for and even predict structural and chemical
changes. A well-known example is the variation of first row transition
metal ionic radii in an octahedral environment as illustrated in
Figure 6-38 [50]. The dashed line connects the points for Ca, Mn, and
Zn, i.e., atoms with spherically symmetrical distribution of d elec-
trons. Since the shielding of one d electron by another is imperfect,
a contraction in the ionic radius is expected along this series. This in
itself would account only for a steady decrease in the radii, whereas
the ionic radii of all the other atoms are smaller than interpolation
from the Ca–Mn–Zn curve would suggest. As is well known, the

Figure 6-35. The orientation of the different symmetry d orbitals in a cubic
environment.
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Figure 6-36. Relative energies of the d orbitals in octahedral and cubic ligand
environment.

Figure 6-37. The d orbital splittings in different ligand environments.
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Figure 6-38. The variation of octahedral M2+ ionic radii [51].

non-uniform distribution of d electrons around the nuclei is the origin
of this phenomenon. In the octahedral environment the d orbitals split
into orbitals with t2g and eg symmetry. The electrons, added gradu-
ally, occupy t2g orbitals in Sc2+, Ti2+, and V2+ as well as in Fe2+, Co2+,
and Ni2+, if only high-spin configurations are considered. Since these
orbitals are not oriented towards the ligands, the degree of shielding
between the ligands and the positively charged atomic cores decreases
along with the ionic radius. The fourth electron in Cr2+ as well as the
ninth electron in Cu2+ occupy eg symmetry orbitals. The degree of
shielding thus somewhat increases and, accordingly, there is a smaller
relative decrease in the ionic radii.

6.6. Jahn–Teller Effect

“Somewhat paradoxically, symmetry is seen to play an important
role in the understanding of the Jahn–Teller effect, the very nature
of which is symmetry destruction” [52]. In a recent review the orig-
inal paper published by Jahn and Teller [53] was called “one of the
most seminal papers in chemical physics” [54]. Only a brief discus-
sion of this effect will be given here; for more detail we refer the
reader to References [55–59]. Bersuker says that all structural instabil-
ities and distortions of high-symmetry configurations of polyatomic
systems are of Jahn–Teller origin (here he also refers to other related
effects, such as the Renner–Teller effect and the pseudo-Jahn–Teller
effect—they will be mentioned later). Bersuker likes to call this the
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“Jahn–Teller approach” and he considers the usual formulation of
the effect somewhat obsolete [60]. Here, we will mostly discuss the
Jahn–Teller effect according to its conventional meaning, but will
also discuss briefly Bersuker’s approach. According to the original
formulation of the Jahn–Teller effect, [61] a non-linear symmetrical
nuclear configuration in a degenerate electronic state is unstable and
gets distorted, thereby removing the electronic degeneracy until a
non-degenerate ground state is achieved. This formulation indicates
the strong relevance of this effect to orbital splitting and generally
to the relationship of symmetry and electronic structure discussed in
previous sections. Owing to the coupling of the electronic and vibra-
tional motions of the molecule, the ground-state orbital degeneracy is
removed by distorting the highly symmetrical molecular structure to
a lower-symmetry structure. An important aspect of the Jahn–Teller
effect is that it represents an exception to the Born-Oppenheimer
approximation (see in Section 6.3.1) since it involves the coupling
of the electronic and nuclear motions in the molecule. Due to this
mixing, a Jahn–Teller distorted molecule is expected to be inherently
dynamic.

Jahn–Teller distortion can only be expected if the energy integral
〈
�0

∣∣∣∣
�E

�q

∣∣∣∣ �0

〉
(6-6)

has nonzero value (�0 is the ground-state electronic wave function of
the high-symmetry nuclear configuration, and q is a normal mode of
vibration). According to what has already been said about the value
of an energy integral (Section 4.9.2), this can only happen if the direct
product of �0 with itself is, or contains, the irreducible representation
of the q normal mode of vibration:

��0 · ��0 ⊂ �q (6-7)

Since �0 is degenerate, its direct product with itself will always
contain the totally symmetric irreducible representation and, at least,
one other irreducible representation. For the integral to be nonzero,
q must belong either to the totally symmetric irreducible representa-
tion or to one of the other irreducible representations contained in the
direct product of �0 with itself. A vibration belonging to the totally
symmetric representation, however, does not decrease the symmetry
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of the molecule. Accordingly, in order to have a Jahn–Teller type
distortion, q must belong to one of the other irreducible representa-
tions.

Let us see an example, the H3 molecule, which has the shape of an
equilateral triangle. Its symmetry is D3h, the electronic configuration
is a′2

1 e′, and the symmetry of the ground electronic state is E′. Thus,
the electronic state of the molecule is degenerate and is subject to
Jahn–Teller distortion.

The symmetry of the normal mode of vibration that can take the
molecule out of the degenerate electronic state will have to be such
as to satisfy Eq. (6-7). The direct product of E′ with itself (see
Table 6-11) reduces to A′

1 + A′
2 + E ′. The molecule has three normal

modes of vibration [(3 × 3) – 6 = 3], and their symmetry species are
A′

1 + E ′. A totally symmetric normal mode, A′
1, does not reduce the

molecular symmetry (this is the symmetric stretching mode), and thus
the only possibility is a vibration of E′ symmetry. This matches one of
the irreducible representations of the direct product E′ · E′; therefore,
this normal mode of vibration is capable of reducing the D3h symmetry
of the H3 molecule. These types of vibrations are called Jahn–Teller
active vibrations.

The two E′ symmetry vibrations of the H3 molecule are the angle
bending and the asymmetric stretching modes (see Figure 6-39). They
lead to the dissociation of the molecule into H2 and H. Indeed, H3 is so
unstable that it cannot be observed as it would immediately dissociate
into H2 and H. This is one of the reasons why it has been so difficult
to find experimental evidence of the Jahn–Teller effect for quite some
time. The structures that are predicted to be unstable are often not
found, and the observed structures are so different from them that the

Table 6-11. The D3h Character Table and the Reducible Representation E′ · E′

D3h E 2C3 3C2 �h 2S3 3��

A′
1 1 1 1 1 1 1 x2+y2, z2

A′
2 1 1 –1 1 1 –1 Rz

E′ 2 –1 0 2 –1 0 (x, y) (x2–y2, xy)
A′′

1 1 1 1 –1 –1 –1
A′′

2 1 1 –1 –1 –1 1 z
E′′ 2 –1 0 –2 1 0 (Rx, Ry) (xz, yz)

E′·E′ 4 1 0 4 1 0 = A′
1 + A′

2 + E ′
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Figure 6-39. The two E′ symmetry normal modes of vibration of the H3 molecule
leading to dissotiation.

connection is not obvious (other reasons of the difficulty encountered
in observing the Jahn–Teller effect will be given later).

Obviously, only molecules with partially filled orbitals display
Jahn–Teller distortion. As was shown in Section 6.3.2, the electronic
ground state of molecules with completely filled orbitals is always
totally symmetric, and thus cannot be degenerate. In comparison with
the above-mentioned unstable H3 molecule, H+

3 has only two elec-
trons in an a′

1 symmetry orbital; therefore, its electronic ground state
is totally symmetric, and the D3h-symmetry triangular structure of
this ion is stable (see, e.g., Reference [62]). On the other hand, take
the benzene molecule, e.g., whose ground electronic state is of A1g

symmetry and the molecule is stable and its structure is well under-
stood. At the same time, in its cation, C6H+

6 , it loses one electron
from an e1g-symmetry doubly-degenerate orbital, so that orbital is
left with only one electron. The electronic state of the cation has E1g

symmetry and thus, it is subject to Jahn–Teller effect. Indeed, its vibra-
tional spectrum is extremely complicated and can only be satisfactory
explained if the Jahn–Teller distortion is taken into consideration (see,
e.g., Reference [63]).

Transition metals have partially filled d orbitals, and therefore their
compounds are obvious candidates for Jahn–Teller systems. Let us
consider an example from among the much studied cupric compounds
[64]. Suppose that the Cu2+ ion with its d9 electronic configuration
is surrounded by six ligands in an octahedral arrangement. We have
already seen (Table 6-10 and Figure 6-36) that the d orbitals split into
a triply (t2g) and a doubly (eg) degenerate level in an octahedral envi-
ronment. For Cu2+ the only possible electronic configuration is t2g

6eg
3.
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Suppose now that of the two eg orbitals, dz2 is doubly while dx2−y2

is only singly occupied. Thus, the two ligands along the z axis are
better screened from the electrostatic attraction of the central ion,
and will move farther away from it, than the four ligands in the xy
plane. The opposite happens if the unpaired electron occupies the dz2

orbital. In both cases the octahedral arrangement undergoes tetrag-
onal distortion along the z axis, in the former by elongation, while in
the latter by compression. The original Oh symmetry reduces to D4h.
The symmetry-reducing vibrational mode here is of eg symmetry and
has the form shown in Figure 6-40. The splitting of d orbitals in both
environments is given in Table 6-10 and is also shown here:

Oh → D4h

eg → a1g + b1g

(dx2−y2, dz2) (dz2) (dx2−y2)

t2g → eg + b2g

(dxz, dyz, dxy) (dxz, dyz) (dxy)

Figure 6-41 illustrates the tetragonal elongation and compression
of an octahedron. For the Cu2+ ion the relative energies of the dz2 and
dx2−y2 orbitals depend on the location of the unpaired electron.

Consider now a qualitative picture of the splitting of the t2g

orbitals. If the ligands are somewhat further away along the z
axis, their interaction with the dxz and dyz orbitals will decrease,
and so will their energy compared with that of the dxy orbital.
This is illustrated by the left-hand side of Figure 6-41. Tetragonal

Figure 6-40. The symmetry-reducing vibrational mode of eg symmetry for an
octahedron.
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Figure 6-41. Tetragonal distortion of the regular octahedral arrangement around
a d 9 ion.

compression can be accounted for by similar reasoning (cf. right-hand
side of Figure 6-41).

The splitting of the d orbitals in Figure 6-41 shows the validity of
the “center of gravity rule.” One of the eg orbitals goes up in energy as
much as the other goes down. From among the t2g orbitals, the doubly
degenerate pair goes up (or down) in energy half as much as the non-
degenerate orbital goes down (or up). Thus, for the Cu(II) compounds
the splitting of the fully occupied t2g orbitals does not bring about a net
energy change. The same is true for all other symmetrically occupied
degenerate orbitals, such as t3

2g, e4
g, or e2

g. On the other hand, the occu-
pancy of the eg orbitals of Cu2+ is unsymmetrical, since two electrons
go down and only one goes up in energy, and here there is a net energy
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gain in the tetragonal distortion. This energy gain is the Jahn–Teller
stabilization energy.

The above example referred to an octahedral configuration. Other
highly symmetrical systems, for example, tetrahedral arrangements,
can also display this effect. For general discussion, see, e.g. Refer-
ences [65–67].

The Jahn–Teller effect enhances the structural diversity of Cu(II)
compounds [68]. Most of the octahedral complexes of Cu2+, for
example, show elongated tetragonally distorted geometry. Crystalline
cupric fluoride and cupric chloride both have four shorter and two
longer copper–halogen interatomic distances, 1.93 vs. 2.27 Å and 2.30
vs. 2.95 Å, respectively [69].

The square planar arrangement can be regarded as a limiting case of
the elongated octahedral configuration. The four oxygen atoms are at
1.96 Å from the copper atom in a square configuration in crystalline
cupric oxide, whereas the next nearest neighbors, two other oxygen
atoms, are at 2.78 Å. The ratio of the two distances is much larger
than in the usual distorted octahedral configuration [70].

Tetragonal compression around the central Cu2+ ion is much
rarer; K2CuF4 is an example with two shorter and four longer Cu–F
distances, viz., 1.95 vs. 2.08 Å [71].

There are also numerous cases when experimental investigation
failes to provide evidence for Jahn–Teller distortion. For example,
several chelate compounds of Cu(II), as well as some compounds
containing the [Cu(NO2)6]4– ion, show no detectable distortion from
the regular octahedral structure (see Reference [72] and references
therein).

Bersuker [73–75] has shown the need for a more sophisticated
approach to account for such phenomena. We attempt to convey at
least the flavor of his ideas here. Jahn–Teller distortions are of a
dynamic nature in systems under no external influence. This means
that there may be many minimum-energy distorted structures in such
systems. Whether an experiment will or will not detect such a dynamic
Jahn–Teller effect, depends on the relationship between the time scale
of the physical measurement used for the investigation, and the mean
lifetime of the distorted configurations. If the time period of the
measurement is longer than the mean lifetime of the distorted config-
urations, only an average structure, corresponding to the undistorted
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high-symmetry configuration will be detected. Since different phys-
ical techniques have different time scales, one technique may detect a
distortion which appears to be undetected by another.

The static Jahn–Teller effect can be observed only in the presence
of an external influence. Bersuker [76, 77] stresses this point as the
opposite statement is found often in the literature. According to the
statement criticized, the effect is not to be expected in systems where
low-symmetry perturbations remove electronic degeneracy. However,
it is exactly the low-symmetry perturbations that make the Jahn–Teller
distortions static and thus observable. Such a low-symmetry perturba-
tion can be the substitution of one ligand by another. In this case one of
the previously equivalent minimum-energy structures, or a new one,
will become energetically more favored than the others.

The so-called cooperative Jahn–Teller effect is another occurance
of the static distortions. Here, interaction, that is, cooperation between
different crystal centers, make the phenomenon observable. Without
interaction, the nuclear motion around each center would be indepen-
dent and of a dynamic character.

Lattice vibrations tend to destroy the correlation among Jahn–
Teller centers. Thus, with increasing temperature, these centers may
become independent of each other at a certain point, and their static
Jahn–Teller effects convert to dynamic ones. At this point the crystal
as a whole becomes more symmetric. This temperature-dependent
static ⇔ dynamic transition is called a Jahn–Teller phase transi-
tion. Below the temperature of the phase transition, the cooperative
Jahn–Teller effect governs the situation providing static distortion; the
overall structure of the crystal is of a lower symmetry. Above this
temperature, the cooperation breaks down, the Jahn–Teller distortion
becomes dynamic and the crystal itself becomes more symmetric.

The temperature of the Jahn–Teller phase transition is very high
for CuF2, CuCl2, and K2CuF4 among the examples mentioned above
[78]. Therefore, at room temperature their crystal structures display
distortions. Other compounds have symmetric crystal structures at
room temperature as their Jahn–Teller phase transition occurs at
lower temperatures. Cupric chelate compounds and [Cu(NO2)6]4–

compounds, such as K2PbCu(NO2)6 and Tl2PbCu(NO2)6, can be
mentioned as examples [79]. Further cooling, however, may make
even these structures distorted.
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Our last examples of Jahn–Teller distortion are from among gas-
phase metal halides, manganese trifluoride and the gold trihalides.
Both manganese and gold have partially filled d orbitals in their
trihalides; manganese has four and gold eight d electrons. Manganese
trifluoride is one of the typical Jahn–Teller cases in its crystal with
a strongly elongated octahedral arrangement of the fluorine atoms
around manganese. Without the ramifications of the Jahn–Teller
effect, we would expect a tigonal planar geometry of D3h symmetry
for the gas-phase molecules of these trihalides. However, both experi-
ments and computations found that these gas-phase molecules have a
lower, C2v symmetry structure [80–83]. In the assumed D3h-symmetry
structure, these molecules have a partially filled e′-symmetry orbital
and an E′ electronic state. Using the same line of thought as for the H3

molecule, the direct product of E′ with itself reduces to A′
1 + A′

2 + E ′.
The four-atomic metal trihalides have 6 normal modes of vibration
[(3 × 4) – 6 = 6] with symmetries A′

1 + A′′
2 + 2E ′(as we discussed

earlier, each doubly-degenerate vibration, E′, counts as two). We can
see that there is no A′′

2-symmetry irreducible representation among the
ones that the direct product of the ground electronic state symmetry,
E′, with itself reduces to. There are two matches between the irre-
ducible representations and the normal modes of vibration: A1 and E′.
The totally symmetric A1 vibration cannot take out the molecules from
the D3h-symmetry structure, so the only possibility is one of the two E′

vibrations (see Figure 6.42), just as was the case with the H3 molecule.
However, while for the H3 molecule both of these vibrations resulted
in dissociation, for these metal trihalides, the angle bending vibration
results in a stable structure of C2v symmetry that is of lower energy

Figure 6-42. The two e′ symmetry normal modes of vibration of a metal trihalide
molecule.
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than the higher symmetry D3h structure. This is why C2v symmetry is
observed as the ground-state structure of these metal trihalides.

The question might arise whether it would not be more “straight-
forward” for the MnF3 molecule to distort into a structure of C3v

symmetry? The D3h character table (Table 6-11) helps us to under-
stand the reason. The out-of-plane vibration—that would make the
molecule pyramidal—is of a2

′′ symmetry. However, there is no irre-
ducible representation with a2

′′ symmetry among the irreducible repre-
sentations that the direct product of E′ with itself reduces to (see,
above). Therefore, a C3v-type of distortion is not possible—at least
not in the Jahn–Teller manner.

Coming back to the C2v-symmetry distortion of metal trihalides;
the e′-symmetry angle bending vibration can distort the molecule in
two ways. Either one of the bond angles decreases while the opposite
bond lengthens, or the other way around, the bond angle increases and
the opposite bond shortens (Figure 6-43). In fact, both structures are
real. Figure 6-44 shows the potential energy surface (see Chapter 7)
of the AuCl3 molecule. This is a so-called Mexican-hat type potential
energy surface. The high-energy point at the tip of the hat corresponds
to an undistorted D3h-symmetry structure. The surface of the brim of
the hat warps producing three wells separated by three humps of equal
height. The three wells correspond to the minima with a structure in
which one of the bond angles opens and the opposite bond shortens
(Figure 6-43 left; there are three of these structures because the same
distortion might happen involving each of the three bond angles and
the opposite bonds). The three humps correspond to the so-called
transition-states (see Chapter 7 in more detail), and these structures
have one smaller bond angle with an elongated bond opposite to it
as seen in Figure 6-43 right. As Figure 6-44 shows, the Jahn–Teller

Figure 6-43. The two types of structures that might result from an e′-type vibration
of a metal trihalide molecule.
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Figure 6-44. The “Mexican-hat” potential energy surface of the AuCl3
molecule [84], copyright 2001, American Chemical Society.

distortion stabilizes the lower-symmetry structures compared to the
high-symmetry one.

Quantum chemical calculations revealed that there are two possible
E′ symmetry electronic states for a D3h-symmetry gold trihalide. In
one of them (high-spin state) there is one electron on each of the
two e′ orbitals with parallel spins (see Figure 6-45); this is the one
that should be the ground state according to Hund’s rule. However,
symmetry lowering would not bring about any energy gain; with one
orbital going up and the other down with no net change. The other
E′-symmetry state (low-spin) has two electrons with opposite spins
in one of the two e′ orbitals and is less stable than the high-spin
state. However, the distortion of this low-spin state (see Figure 6-45)

Figure 6-45. High-spin and low-spin electronic configuration of gold trihalides and
the splitting of the low-spin E′ state of gold trihalides.
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brings about a substantial energy gain. In fact, the energy lowering
is so large that the distortion of this higher energy state produces the
overall lowest energy structure that will be the ground state; this is the
C2v-symmetry structure in Figure 6-43 left. The energy gain by the
Jahn–Teller distortion of the less stable trigonal planar structure is so
large that it can “pay the price” for the spin pairing and still produce
an overall lower-energy structure.

At this point, it is of interest to quote Edward Teller about the
discovery of the Jahn–Teller effect (Figure 6-46) [85]:

This effect had something to do with Lev Landau.
I had a German student in Göttingen, R. Renner,
and he wrote a paper on degenerate electronic
states in the linear carbon dioxide molecule,
assuming that the excited, degenerate state of
carbon dioxide is linear.

Figure 6-46. Edward Teller (courtesy of Lawrence Livermoore Nartional Labo-
ratory) and Lev Landau (courtesy of Alexei Abrikosov, from A.A. Abrikosov:
Academician L. D. Landau: Short Biography and Review of his Scientific Work,
Nauka, Moscow, 1965, in Russian).
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In the year 1934 both Landau and I were in Niels
Bohr’s Institute in Copenhagen and we had many
discussions. He disagreed with Renner’s paper, he
disliked it. He said that if the molecule is in a
degenerate electronic state then its symmetry will
be destroyed and the molecule will no longer be
linear. Landau was wrong. I managed to convince
him and he agreed with me. This was probably the
only case when I won an argument with Landau.

A little later I went to London, and met Jahn.
I told him about my discussion with Landau, and
about the problem in which I was convinced that
Landau was wrong. But it bothered me that he was
usually not wrong. So maybe he is always right
with the exception of linear molecules. Jahn was
a good group-theorist, and we wrote this paper,
the content of which you know, that if a molecule
has an electronic state that is degenerate, then the
symmetry of the molecule will be destroyed. That
is the Jahn–Teller theorem.

The Jahn–Teller theorem has a footnote: this
is always true with the only exception of linear
molecules. So the amusing story of the Jahn–
Teller effect is that I first worked with my
student, Renner, on a paper that presented the
only general exception to the Jahn–Teller effect. It
really should be the Landau–Jahn–Teller theorem
because Landau was the first one who expressed
it, unfortunately using the only exception where it
was not valid.

Linear molecules are the only exception to the Jahn–Teller effect.
But linear molecules may also have instabilities in their degenerate
electronic states and this is called the Renner–Teller effect. It was
first described by Renner in a theoretical paper on the degenerate
first excited electronic state of carbon dioxide [86]. It took more than
twenty years to find the first experimental evidence of this effect, in
the electronic absorption spectrum of the NH2 radical [87]. The NH2

radical has one electron on a � orbital and thus a  electronic state
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in its ground state, where it is bent; while it is linear in the excited
nondegenerate state.

Another, recently found, example of the Renner–Teller effect is
the chromium dichloride, CrCl2, molecule [88]. Based on high-level
computations and electron diffraction experiments, it was found that
the gas-phase molecule is not linear as could be expected for a tran-
sition metal dihalide but rather bent. According to the computations,
among the different high-spin electronic states, the g twofold degen-
erate state is the lowest in energy. However, it is not stable and
splits into two nondegenerate states, of B2 and A2 symmetry, respec-
tively, of which the B2 state is the ground state with a bond angle of
about 147◦.

Chromium in its dichloride has a d4 electronic configuration and in
its crystals is subject to the Jahn–Teller effect. Indeed, chromium has
a tetragonally distorted octahedral coordination in its crystals [89].
CrCl2 is a fascinating molecule in that it displays both the Jahn–Teller
and the Renner–Teller effects.

Another structural phenomenon related to the Jahn–Teller effect
is the pseudo-Jahn–Teller effect. This happens when two electronic
states of a molecule, the ground state and an excited state are close
enough in energy and thus, they can mix under nuclear displacements
[90]. The pseudo-Jahn–Teller effect can appear separately from the
real Jahn–Teller effect, or together with it; their magnitude can also
be either very small, or substancial.

It is stressed that the physical bases for the Jahn–Teller effect
and the pseudo-Jahn–Teller effect are quite different. Jahn–Teller
distortion occurs due to the coupling of the electronic and vibrational
motions of the molecule; i.e., the coupling of a degenerate electronic
wave function with the vibrational wave function. In case of the
pseudo-Jahn–Teller effect, the vibronic interaction happens between
two electronic states that are close in energy and are not necessarily
degenerate (although because of their similar energies we might
consider them “pseudo-generate”[91]); i.e., here the vibronic coupling
is between two electronic wave functions. The effect pushes the two
states apart. The two states must belong to the same irreducible
representation of the new point group as before and can continue to
interact, which, obviously, is not the case with the Jahn–Teller effect.

In concluding this section, we mention that Bersuker points to a
very general applicability of the Jahn–Teller effect, much beyond
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molecules [92]. Obviously, the Jahn–Teller effect, degeneracy, and
symmetry breaking are inherently related to each other. Thus, it must
have been phenomena triggered by a Jahn–Teller type coupling of
degenerate states to the motions of particles that led to the symmetry
breaking after the Big Bang that, eventually, led to the formation of
the Universe.
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80. M. Hargittai, B. Réffy, M. Kolonits, C. J. Marsden, J.-L. Heully, “The Structure

of the Free MnF3 Molecule – A Beautiful Example of the Jahn–Teller Effect.”
J. Am. Chem. Soc. 1997, 119, 9042–9048.
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Chapter 7

Chemical Reactions

By some fortuitous concourse of atoms.
Marcus Tullius Cicero [1]

The chemical reaction is the “most chemical” event. The first appli-
cation of symmetry considerations to chemical reactions can be
attributed to Wigner and Witmer [2]. The Wigner–Witmer rules
are concerned with the conservation of spin and orbital angular
momentum in the reaction of diatomic molecules. Although symmetry
is not explicitly mentioned, it is present implicitly in the principle of
conservation of orbital angular momentum. It was Emmy Noether
(1882–1935), a German mathematician, who established that there
was a one-to-one correspondence between symmetry and the different
conservation laws [3, 4].

The real breakthrough in recognizing the role that symmetry plays
in determining the course of chemical reactions has occurred only
recently, mainly through the activities of Woodward and Hoffmann
[5, 6], Fukui [7, 8], Bader [9, 10], Pearson [11], Halevi [12, 13],
and others. The main idea in their work is that symmetry phenomena
may play as important a role in chemical reactions as they do in the
construction of molecular orbitals or in molecular spectroscopy. It is
even possible to make certain symmetry based “selection rules” for
the “allowedness” and “forbiddenness” of a chemical reaction, just as
is done for spectroscopic transitions.

The series of articles written by Woodward and Hoffmann in the
middle of the 1960s caused a considerable stir in the organic chemistry
community. For decades afterwards organic chemists were checking
and trying out reactions proposed by the orbital symmetry rules. In
2003, the first paper of their series [14] was the 88th most cited paper
in the Journal of the American Chemical Society [15].
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Before describing the symmetry rules for chemical reactions,
however, we would like to mention some limitations. Symmetry rules
can usually be applied to comparatively simple reactions, the so-called
concerted reactions. In a concerted reaction all relevant changes occur
simultaneously; the transformation of reactants into products happens
in one step with no intermediates.

At first sight it would seem logical that symmetry rules can be
applied only to symmetrical molecules. However even nonsymmetric
reactants can be “simplified” to related symmetrical parent molecules.
As Woodward and Hoffmann put it, they can be “reduced to their
highest inherent symmetry” [16]. This is, in fact, a necessary crite-
rion if symmetry principles are to be applied.

What does this mean? For example, propylene, H2C=CHCH3, must
be treated as its “parent molecule”, ethylene. The reason is that it is
the double bond of propylene which changes during the reaction, and
it nearly possesses the symmetry of ethylene. Salem calls this feature
“pseudosymmetry” [17].

The statement: a chemical reaction is “symmetry allowed” or
“symmetry forbidden,” should not be taken literally. When a reaction
is symmetry allowed, it means that it has a low activation energy. This
makes it possible for the given reaction to occur, though it does not
mean that it always will. There are other factors which can impose
a substantial activation barrier. Such factors may be steric repul-
sions, difficulties in approach, and unfavorable relative energies of
orbitals. Similarly, “symmetry forbidden” means that the reaction,
as a concerted one, would have a high activation barrier. However,
various factors may make the reaction still possible; for example, it
may happen as a stepwise reaction through intermediates. In this case,
of course, it is no longer a concerted reaction.

Most of the symmetry rules explaining and predicting chemical
reactions deal with changes in the electronic structure. However, a
chemical reaction is more than just that. Breakage of bonds and forma-
tion of new ones are also accompanied by nuclear rearrangements and
changes in the vibrational behavior of the molecule. (Molecular trans-
lation and rotation as a whole can be ignored.)

As has been shown previously, both the vibrational motion and the
electronic structure of the molecules strongly depend on symmetry.
This dependence can be fully utilized when discussing chemical
reactions.
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Describing the structures of both reactant and product molecules
with the help of symmetry would not add anything new to our previous
discussion. What is new and important is that certain symmetry rules
can be applied to the transition state in between the reactants and prod-
ucts. This is indeed the topic of the present Chapter.

7.1. Potential Energy Surface

The potential energy surface is the cornerstone of all theoretical
studies of reaction mechanisms [18]. The topography of a potential
energy surface contains all possible information about a chemical
reaction. However, how this potential energy surface can be depicted
is another matter.

The total energy of a molecule consists of the potential and the
kinetic energy of both the nuclei and the electrons. The coulombic
energy of the nuclei and the electronic energy together represent
the whole potential energy under whose influence the nuclei carry
out their vibrations. Since the energies of the (ground and various
excited) electronic states are different, each state has its own potential
energy surface. We are usually interested in the lowest energy poten-
tial surface which corresponds to the ground state of the molecule.
An N atomic molecule has 3N–6 internal degrees of freedom (a
linear molecule has 3N–5). The potential energy for such a molecule
can be represented by a 3N–6-dimensional hypersurface in a 3N–5-
dimensional space. Clearly the actual representation of this surface is
impossible in our limited dimensions.

There are ways, however, to plot parts of the potential energy hyper-
surface. For example, the energy is plotted with respect to the change
of two coordinates during a reaction and molecular rearrangement in
Figure 7-1a and b. Such drawings help to visualize the real poten-
tial energy surface. It is like a rough topographic map with mountains
of different heights, long valleys of different depths, mountain paths
and holes. Since energy increases along the vertical coordinate, the
mountains correspond to energy barriers and the holes and valleys to
different energy minima.

Studying reaction mechanisms means essentially finding the most
economical way to go from one valley to another. Two adjacent
valleys are connected by a mountain path: this is the road that the
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(a) (b)

Figure 7-1. Three-dimensional potential energy surfaces: (a) Energy hypersurface
for FSSF ⇔ SSF2 isomerization (detail). Reproduced with permission [19] copy-
right (1977) American Chemical Society; (b) Potential energy surface of the molec-
ular rearrangement of AgI3, with the corresponding structures indicated on the sides
[20]. Copyright (2005) American Chemical Society.

reactant molecules must follow if they want to reach the valley on the
other side, which will correspond to the product(s). The top of the
pass is called the saddle point or col. The name saddle point refers
to the saddle on a horse. Starting from the center of the saddle, it is
going up in the direction of the head as well as the tail, and it is going
down in the direction of both sides. The configuration of nuclei at the
saddle point is sometimes called a transition state, sometimes a tran-
sition structure, in other cases an activated complex, and yet in other
cases, a supermolecule. Transition state is the most commonly used
term, although it is somewhat ambiguous (see Section 7.1.1).

7.1.1. Transition State, Transition Structure

The region of the potential energy surface indicating the transition
state is illustrated in Figure 7-2, while a modern sculpture reminiscent
of a potential energy surface at and around the saddle point is shown
in Figure 7-3.

The term transition state is sometimes used interchangeably with
the term transition structure, although in a strict sense the two are
not identical. Transition state is the quasi-thermodynamic state of
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Figure 7-2. Potential energy surface by Williams in the region of the transition
structure in different representations [21]: (a) Three-dimensional representation of
the saddle-shaped potential energy surface; (b) Two-dimensional potential energy
curve produced by a vertical cut through the surface in (a) along the reaction path
(indicated by bold dashed line) from reactants (R) to products (P); (c) Energy
contours produced by horizontal cuts through the potential energy sufrace in (a).
Adapted with permission from Reference [21].

Figure 7-3. Saddle-shaped sculpture in Madrid, Spain. Photograph by the authors.
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the reacting system as defined by Eyring [22]. The transition struc-
ture, on the other hand, is the molecular structure at the saddle point.
As was shown by Houk et al. [23], when a reaction has a large
activation barrier and a slowly varying entropy in the region of the
potential energy maximum, the transition-state geometry and the tran-
sition structure are about the same. This is illustrated in Figure 7-4a.
However, when the barrier of the reaction is low and the entropy varies
rapidly in the region of the potential energy minimum, the transition-
state geometry differs from the transition structure (Figure 7-4b).

As Williams stated [25]:

The transition state is of strategic importance
within the field of chemical reactivity. Owing to its
location in the region of the highest energy point
on the most accessible route between reactants and
products it commands both the direction and the
rate of chemical change. Questions of selectivity
(“Which way is it to the observed product?”) and
efficiency (“How easy is it to get there?”) may
be answered by a knowledge of the structure and
properties of the transition state.

The development of transition-state theory is due to Eyring and
Polanyi [26], while the term transition state was first used by Evans
and Polanyi [27]. Since then, it has been obvious that the proper-
ties of the region between the reactants and the products need to be

Figure 7-4. Variation of 
G and E along a raction path, after Houk et al. [24],
I, transition structure; II, transition state. (a) The transition state and the transi-
tion structure coincide; (b) The transition state and the transition structure differ.
Adapted with permission.
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known in order to understand reaction mechanisms. However, the life-
time of the transition state is usually less than 10–12 s, and, there-
fore, for a long time this state could only be studied by theoretical
methods. Only recently have experimental techniques become avail-
able that make the study of elementary reactions possible in real
time. Direct measurements of the transition state have been carried
out using different sophisticated spectroscopic techniques (see, e.g.,
References [28–30]). An example is the laser experiments that make it
possible to record snapshots of chemical reactions in the femtosecond
(10–15 s) time scale, thus providing direct real-time observations of the
transition state [31–34].

At the same time, with the ever increasing capabilities of compu-
tational techniques, it has become possible to calculate the details of
transition-state geometries and energetics with great precision. Due
to the increasing reliability of quantum-chemical calculations on the
one hand and to the possibility of real-time experimental observation
of transition-state geometries on the other, the investigation of the
structure and dynamics of elementary chemical reactions has become
one of the most exciting areas of modern chemical research. Nothing
proves this better than the Nobel Prize for Chemistry in 1999, awarded
to Ahmed Zewail “For his studies of the transition states of chemical
reactions using femtosecond spectroscopy.”

7.1.2. Reaction Coordinate

How does symmetry come into the picture? It happens through
the movement of the nuclei along the potential energy surface. As
discussed in detail in Chapter 5, all possible internuclear motions of a
molecule can be resolved into sets of special motions corresponding
to the normal modes of the molecule. These normal modes already
have a symmetry label since they belong to one of the irreducible
representations of the molecular point group. The changing nuclear
positions during the course of a reaction are collectively described by
the term reaction coordinate. In simple cases, we may assume that
the chemical reaction is dominated by one of the normal modes of
vibration, and thus this vibrational mode is the reaction coordinate.
By selecting this coordinate, we may cut a slice through the poten-
tial energy hypersurface along this particular motion. This was done
by Williams [35] in Figure 7-2 by cutting a slice of (a) in order to
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produce (b). Figure 7-2b shows the reaction path along the reaction
coordinate. Points R and P are minima, corresponding to the initial
(reactants) and final (products) stages of the reaction, while TS is the
saddle point corresponding to the transition structure and the energy
barrier.

The diagram in Figure 7-2b has several important features. First of
all, it represents only a slice of the potential energy hypersurface. It is
the variation along one coordinate, and it is supposed that all the other
possible motions of the nuclei, that is, all the other normal vibrations,
are at their optimum value, so their energy is at minimum. Therefore,
this reaction path can be taken as a minimum energy path. All other
possible motions will be orthogonal to the reaction coordinate and
will not contribute to it. In other words, if we would try to leave the
reaction path sideways, that is, along some other vibrational mode, the
energy would invariably increase.

Figure 7-2a illustrates this point. The bold line shows the reaction
path. It goes through a maximum point, which is the reaction barrier.
The surface, however, rises on both sides of the reaction coordinate.
Thus, with respect to the energy of the other vibrational coordinates,
the reaction follows a minimum energy path indeed.

7.1.3. Symmetry Rules for the Reaction Coordinate

Symmetry rules to predict reaction mechanisms through the analysis
of the reacton coordinate were first applied by Bader [36] (see, also,
Reference [37]) and were further developed by Pearson [38].

The energy variation along the reaction path can be characterized
in the following way. The energy of all vibrational modes except the
reaction coordinate is minimal all along the path, i.e.,

�E

�Qi
= 0 and

�2 E

�Q2
i

> 0 (7-1)

where Qi is any coordinate (3N–7 for nonlinear molecules) except Qr,
the reaction coordinate. With respect to symmetry these vibrations are
unrestricted. (Of course, every normal mode must belong to one or
another irreducible representation of the molecular point group.)
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The energy variation of the reaction coordinate is different. At every
point, except at the maximum and minimum values, it is nonzero,

�E

�Qr
�= 0 (7-2)

This is simply the slope of the curve on the potential energy diagram.
At the minimum points (R and P in Figure 7-2a):

�E

�Qr
= 0 and

�2 E

�Q2
r

> 0 (7-3)

At the saddle point (TS in Figure 7-2a):

�E

�Qr
= 0 and

�2 E

�Q2
r

< 0 (7-4)

In order to predict reaction mechanisms and to estimate energy
barriers, the energy can be expressed in terms of the reaction coor-
dinate using second-order perturbation theory in such a way that the
expression contains symmetry-dependent terms (see References [39]
and [40] for details).

The expression of energy contains two different types of energy
integrals:

〈
�0

∣∣∣∣
�E

�Qr

∣∣∣∣ �0

〉
and

〈
�0

∣∣∣∣
�E

�Qr

∣∣∣∣ �i

〉
(7-5)

where �0 and �i are the wave functions of the ground state and an
excited state, respectively. In the actual calculations, these wave func-
tions are approximated by molecular orbitals, but their relationship
remains the same.

Examine now the two energy integrals separately, bearing in mind
what was said about the conditions necessary for an integral to have
nonzero value (Chapter 4). The first integral contains only the ground-
state wave function. It appears in the first-order perturbation energy
term that expresses the effect of changing the nuclear positions on the
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original electron distribution. This integral will have nonzero value
only if

��0 · ��0 ⊂ �Qr (7-6)

that is, if the direct product of the representation of �0 with itself (a
function with the same symmetry) contains the representation of Qr.

Concerning �0 there are two possibilities: it can be degenerate or
nondegenerate. If �0 is degenerate, the molecule will be unstable
(this is the case of the Jahn–Teller effect, see Section 6.6) and it
will undergo a distortion that reduces the molecular symmetry and
destroys the degeneracy of �0. Consider now the case when �0 is
nondegenerate. We know that the direct product of two nondegen-
erate functions with the same symmetry always belongs to the totally
symmetric irreducible representation. Therefore, Qr must also belong
to the totally symmetric irreducible representation so that the inte-
gral will have a nonzero value. We can conclude that, except at a
maximum or at a minimum, the reaction coordinate belongs to the
totally symmetric irreducible representation of the molecular point
group.

The reaction coordinate is just one particular normal mode in the
simplest case. It must always be, however, a symmetric mode, and this
is so even if a more complicated nuclear motion is considered for the
reaction coordinate. Such a motion can always be written as a sum of
normal modes. Of these modes, however, only those which are totally
symmetric will contribute to the reaction coordinate. The nonsym-
metric modes may contribute only at the extremes of the potential
energy function.

The second integral in Eq. (7-5) appears in the second-order pertur-
bation energy term, and it expresses the mixing in of the first excited
state into the ground state during the reaction:

〈
�0

∣∣∣∣
�E

�Qr

∣∣∣∣ �i

〉
. (7-7)

This integral will be nonzero only if the direct product of the represen-
tations of the wave functions �0 and �i contains the representation to
which the reaction coordinate belongs,

��0 · ��i ⊂ �Qr (7-8)
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This expression contains important information regarding the
symmetry of the excited states as well. Only those excited states can
participate in the reaction whose symmetry matches the symmetry of
both the ground state and the reaction coordinate. We already know
that Qr belongs to the totally symmetric irreducible representation
except at maxima and minima. This implies that only those excited
states can participate in the reaction whose symmetry is the same
as that of the ground state. This information is instrumental in the
construction of correlation diagrams, as will be seen later.

The reaction coordinate can possess any symmetry at maxima and
minima provided that the condition of Eq. (7-8) is fulfilled. This
also means that at the maximum point the symmetry of the excited
state may differ from that of the ground state. However, any minute
distortion will remove the system from the saddle point. The reac-
tion coordinate must then become again totally symmetric. How
can this happen? Obviously, this can happen by changing the point
group of the system. By reducing the symmetry, nonsymmetric vibra-
tional modes may become symmetric, and the reaction coordinate
may become totally symmetric. This reasoning may even help in
predicting how the symmetry will be reduced; we just have to find
the point group in which the reaction coordinate becomes totally
symmetric.

Two examples will illustrate how these rules work. One involves the
reduction of symmetry which occurs when a linear molecule becomes
bent [41]. The other example involves transforming a planar molecule
into a pyramidal one.

For a linear AX2 molecule of D∞h symmetry the normal mode that
reduces it to C2v is the �u bending mode (Figure 7-5a). In the C2v

point group, this normal mode becomes totally symmetric. (The other
component of the �u mode becomes the rotation of the molecule.)

For an AX3 planar molecule the symmetry is D3h. The puckering
mode (Figure 7-5b) of A2

′′ symmetry reduces it to C3v. In the C3v point
group, the symmetry of this vibration is A1.

Concerning the energy integral in Eq. (7-7), Bader called attention
to an interesting phenomenon [42]. If the excited state �i lies very
close to the ground state �0, a distortion occurs that will push the
two states apart. This phenomenon is similar to the Jahn–Teller effect
(but it is not the same) and is called the pseudo Jahn–Teller effect (see
Chapter 6). The symmetry of the distortion is predicted by Eq. (7-7).
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Figure 7-5. The effect of symmetry lowering on the reaction coordinate: (a)
Bending of a linear AX2 molecule [�2(�u) → �2(A1)]; (b) Puckering of a planar
AX3 molecule [�2 (A′′

2) → �2(A1)].

7.2. Electronic Structure

7.2.1. Changes During a Chemical Reaction

A chemical reaction is a consequence of an interaction between
molecules. The electronic aspects of these interactions can be
discussed in much the same way as the interaction of atomic electron
distributions forming molecules. The difference is that while MOs are
constructed from the AOs of the constituent atoms, in describing a
chemical reaction the MOs of the product(s) are constructed from
the MOs of the reactants. Before a reaction takes place (i.e., while
the reacting molecules are still far apart), their electron distribu-
tion is unperturbed. When they approach each other, their orbitals
begin to overlap, and distortion of the original electron distribution
takes place. There are two requirements for a constructive interaction
between molecules: symmetry matching and energy matching. These
two factors can be treated in different ways. The approaches of Fukui
[43, 44], and of Woodward and Hoffmann [45, 46] differ somewhat.
Since those are the two most successful methods in this field, we shall
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concentrate on them. First, the basis of each method will be presented
briefly, followed by a few classical examples, each of which will be
treated in some detail.

7.2.2. Frontier Orbitals: HOMO and LUMO

A successful chemical reaction requires both energy and symmetry
matching between the MOs of the reactants. The requirements are
essentially the same as in case of constructing MOs from AOs; only
orbitals of the same symmetry and comparable energy can overlap
successfully. The strongest interactions occur between those orbitals
which are close to each other in energy. However, the interaction
between filled MOs is destabilizing since the energy of one orbital
increases by about as much—actually a little more—as that of the
other decreases (see Figure 7-6a). The most important interactions
occur between the filled orbitals of one molecule and the vacant
orbitals of the other. Moreover, since the interaction is strongest for
energetically similar orbitals, the most significant interactions can be
expected between the highest occupied molecular orbital (HOMO) of
one molecule and the lowest unoccupied molecular orbital (LUMO)
of the other (Figure 7-6b). The labels HOMO and LUMO were incor-
porated by Fukui into a descriptive collective name: frontier orbitals.
The first article in this topic appeared in 1952 [47], and the idea has

Figure 7-6. (a) Interaction of two filled orbitals. The interaction is destabilizing,
and so the reaction will not occur; (b) Interaction of the highest occupied MO
(HOMO) of one molecule with the lowest unoccupied MO (LUMO) of another
molecule.
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been extended to a host of different reactions in the succeeding years
(see, e.g., References [48] and [49]).

Fukui recognized the importance of the symmetry properties of
HOMOs and LUMOs perhaps for the first time in connection with the
Diels-Alder reaction. According to his Nobel lecture [50], however,
it was only after the appearance of the papers by Woodward and
Hoffmann in 1965 that he “became fully aware that not only the
density distribution but also the nodal property”—that is, symmetry—
“of the particular orbitals have significance in . . . chemical reactions.”

The concept of frontier orbitals simplifes the MO description of
chemical reactions enormously, since only these MOs of the reactant
molecules need to be considered. Several examples of this approach
will be given in Section 7.3.

7.2.3. Conservation of Orbital Symmetry

The first papers by Woodward and Hoffman outlining and utilizing the
idea of conservation of orbital symmetry appeared in 1965 [51–53].
Salem [54] called the discovery of orbital symmetry conservation a
revolution in chemistry:

It was a major breakthrough in the field of
chemical reactions in which notions preexisting
in other fields (orbital correlations by Mulliken,
and nodal properties of orbitals in conjugated
systems, by Coulson and Longuet-Higgins) were
applied with great conceptual brilliance to a
far-reaching problem. Chemical reactions were
suddenly adorned with novel significance.

The idea and the principles of drawing correlation diagrams follows
directly from the atomic correlation diagrams of Hund [55] and
Mulliken [56]. They are very useful for predicting the “allowedness”
of a given concerted reaction. In constructing correlation diagrams,
both the energy and the symmetry aspects of the problem must be
considered. On one side of the diagram the approximate energy levels
of the reactants are drawn, while on the other side those of the
product(s) are indicated. A particular geometry of approach must
be assumed. Furthermore, the symmetry properties of the molecular
orbitals must be considered in the framework of the point group of
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the supermolecule. In contrast to the frontier orbital method, it is
not necessarily the HOMOs and LUMOs that are considered. Instead,
attention is focused upon those molecular orbitals which are associ-
ated with bonds that are broken or formed during the chemical reac-
tion. We know that each acceptable molecular orbital must belong
to one irreducible representation of the point group of the system.
At least for nondegenerate point groups, this MO must be either
symmetric or antisymmetric with respect to any symmetry element
that may be present. (The character under any operation is either
1 or –1.)

Among all possible symmetry elements, those must be consid-
ered which are maintained throughout the approach and which bisect
bonds that are either formed or broken during the reaction. There
must always be at least one such symmetry element. The next step
is to connect levels of like symmetry without violating the so-called
noncrossing rule. According to this rule, two orbitals of the same
symmetry cannot intersect [57]. Thus, the correlation diagram is
completed. These diagrams yield valuable information about the tran-
sition state of the chemical reaction. The method will be illustrated
with examples in Section 7.3.

7.2.4. Analysis in Maximum Symmetry

In the analysis in maximum symmetry approach two points are
considered when predicting whether or not a chemical reaction can
occur. One such point involves the allowedness of an electron transfer
from one orbital to another. The other involves consideration of the
reaction-decisive normal vibration. In both cases symmetry arguments
are used. This approach, developed by Halevi, [58–60] is thorough
and rigorous. It is similar in part to the Bader–Pearson method and
in part to the Woodward–Hoffmann method. It incorporates several
features of each of these methods. First, the transformation of both the
molecular orbitals (electronic structure) and the displacement coordi-
nates (vibrations) are examined in the context of the full symmetry
group of the reacting system. All ways of breaking the symmetry of
the system are explored, and no symmetry elements which are retained
along the pathway are ignored. The correlation diagrams are called
“correspondence diagrams” in this approach to distinguish them from
the Woodward–Hoffmann diagrams.
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Halevi’s method to determine whether a chemical reaction is
allowed or forbidden considers both the electronic and vibrational
changes in the molecule. Of course, its high degree of rigor may
render its application more complicated as compared with the
methods which focus only upon changes in the electronic structure.
The approaches introduced by Fukui and Woodward and Hoffmann
seem to have received more widespread acceptance and utilization.

7.3. Examples

7.3.1. Cycloaddition

7.3.1.1. Ethylene Dimerization

The interaction of two ethylene molecules will be considered in
two geometrical arrangements. The two molecules adopt a mutually
parallel approach in one arrangement and a mutually perpendicular
approach in the other. Applications of various methods will be consid-
ered briefly.

(a) Parallel Approach, HOMO-LUMO. According to the frontier
orbital method only the HOMOs and the LUMOs of the two
ethylene molecules need to be considered. A further simplification
is introduced in the pictorial description of the interactions. Although
the molecular orbitals of the reactants are used to construct the MOs
of the products, the former are usually drawn schematically as atomic
orbitals from which they are built. The reason is that the form of the
atomic orbitals is better defined and better understood than is the form
of the molecular orbitals without resorting to actual calculations.

The MOs of ethylene can be constructed according to the princi-
ples given in the preceding chapter. The HOMO of ethylene is the
bonding MO, and the LUMO is the antibonding MO composed of the
two pz orbitals of carbon. These MOs are of b1u and b2g symmetry,
respectively in the D2h point group. Figure 7-7 shows them both in a
simplified way along with the corresponding contour diagrams.

Consider first the frontier orbital interactions between two ethy-
lene molecules that approach one another in parallel planes (“face
to face”). Their HOMOs and LUMOs are indicated in Figure 7-8
on the left and right, respectively. Also shown is the behavior of
these orbitals with respect to the symmetry plane bisecting the two
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Figure 7-7. The HOMO and LUMO of ethylene.

breaking � bonds. Since the HOMOs are symmetric and the LUMOs
are antisymmetric with respect to this operation, there is a symmetry
mismatch between the HOMO of one molecule and the LUMO of the
other. The symmetry-allowed combination is between the two filled
HOMOs. Since the interaction of two filled molecular orbitals of the
same energy is destabilizing, the reaction will not occur thermally.

(b) Parallel Approach, Correlation Diagram. Now consider the ethy-
lene dimerization using the Woodward–Hoffmann approach. There
is again the important condition mentioned before which must be
fulfilled: for the whole reacting system at least one symmetry element

Figure 7-8. Frontier orbital interactions in the face-to-face approach of two ethy-
lene molecules. S indicates symmetric and A indicates antisymmetric behavior with
respect to the �′′ symmetry plane.
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must persist throughout the entire process. Let us consider the reaction
in this respect. Each separate ethylene molecule has D2h symmetry.
When two of these molecules approach one another with their molec-
ular planes parallel as shown in Figure 7-9, the whole system retains
this symmetry. Finally, the product cyclobutane is of D4h symmetry.
Since D2h is a subgroup of D4h, the symmetry elements of D2h persist.

One of the symmetry elements in the D2h point group is the
symmetry plane �′ (Figure 7-9). All of the MOs considered in this
reaction, that is, those associated with the broken � bonds of the two
ethylene molecules and the two new � bonds of cyclobutane lie in
the plane of this symmetry element. All of them will be symmetric
to reflection in this plane. There will be no change in their behavior
with respect to this symmetry operation during the reaction. This
brings us back to a very important point in the construction of
correlation diagrams: the symmetry element chosen to follow the reac-
tion must bisect bonds broken or made during the process. Adding
extra symmetry elements, like �′ above, will not change the result.
It is not wrong to include them; it is just not necessary. Considering,
however, only such symmetry elements could lead to the erroneous
conclusion that every reaction is symmetry allowed.

As was found to be the case when constructing MOs from AOs, the
symmetry of the reacting system as a whole must be considered rather
than just the symmetry of the individual molecules alone. Figure 7-10
illustrates this point with respect to one of the reflection planes. The
plane transforms the MO drawn as the two pz orbitals of the two

Figure 7-9. The symmetry of reactants, transition structure, and product in the
face-to-face dimerization of ethylene.
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Figure 7-10. The � MO of one ethylene molecule alone does not belong to any irre-
ducible representation of the point group of the system of two ethylene molecules.

carbon atoms of one ethylene molecule into the molecular orbital of
the other ethylene molecule. Thus, each MO of the reacting system
has a contribution from each pz orbital.

The possible combinations of the � and �∗ orbitals of the two ethy-
lene molecules are presented on the left side of Figure 7-11 in order of
increasing energy. Consideration of these MOs shows that �1 + �2 and
�1

∗ + �2
∗ are in proper phase to form a bonding MO (that is, closing

the ring). The right side of Figure 7-11 illustrates this, together with
the formation of the antibonding orbitals of cyclobutane.

The construction of the correlation diagram is shown in
Figure 7-12. The two crucial symmetry elements are indicated in the
upper part of the figure. The molecular orbitals of the reactants and
their behavior with respect to these symmetry elements are indicated
in order of increasing energy at the left side of the diagram; the corre-
sponding product MOs are shown at the right in this same figure.

Since � and �′′ are maintained throughout the reaction, there must
be a continuous correlation of orbitals of the same symmetry type.
Therefore, orbitals of like symmetry correlate with one another and
they can be connected. This, the crucial idea of the Woodward-
Hoffmann method, is shown in the central part of the diagram.

Inspection of this correlation diagram immediately reveals that
there is a problem. One of the bonding orbitals at the left corre-
lates with an antibonding orbital on the product side. Consequently,
if orbital symmetry is to be conserved, two ground state ethylene
molecules cannot combine via face-to-face approach to give a ground-
state cyclobutane, or vice versa. This concerted reaction is symmetry
forbidden.∗

∗Note that considerations of either one of the crucial symmetry elements, � and �′′,
alone would give the same result.
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Figure 7-11. Molecular orbitals of the ethylene–ethylene system and the construc-
tion of molecular orbitals of cyclobutane. (The energy scale refers to the reactant
orbitals only.)

(c) State Correlation. The correlation diagram in Figure 7-12 refers
to molecular orbitals. The molecular orbitals and the corresponding
electronic configurations are, however, only substitutes for the real
wave functions which describe the actual electronic states. It is the
electronic states that have definite energy and not the electronic
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Figure 7-12. Construction of the correlation diagram for ethylene dimerization with
parallel approach. Adaptation of Figure 10.19 from Reference [61] with permission.
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Table 7-1. The Symmetry of Molecular Orbitals in the Face-to-Face Dimerization
of Ethylenea

Ethylene + Ethylene Cyclobutane

Character under Orbital occupation Character under
�′ � �′′ �′ � �′′

(xz) (xy) (yz) D2h D2h (xz) (xy) (yz)

1 –1 –1 b2g ——— ——— b2g 1 –1 –1
1 1 –1 b3u ——— ——— b1u 1 –1 1
1 –1 1 b1u —|—|— —|—|— b3u 1 1 –1
1 1 1 ag —|—|— —|—|— ag 1 1 1
aThe orientation of the coordinate axes is given in Figure 7-9.

configurations (cf. Chapter 6). Since electronic transitions occur phys-
ically between electronic states, the correlation of these states is of
interest. It was Longuet-Higgins and Abrahamson who drew attention
to the importance of state-correlation diagrams [62].

The rules for the state correlation diagrams are the same as for
the orbital correlation diagrams; only states that possess the same
symmetry can be connected. In order to determine the symmetries
of the states, first the symmetries of the MOs must be determined.
These are given for the face-to-face dimerization of ethylene in
Table 7-1. The D2h character table (Table 7-2) shows that the two
crucial symmetry elements are the symmetry planes �(xy) and �′′(yz).
The MOs are all symmetric with respect to the third plane, �′(xz) (vide
supra). The corresponding three symmetry operations will unam-
biguously determine the symmetry of the MOs. Another possibility
is to take the simplest subgroup of D2h which already contains the
two crucial symmetry operations, that is, the C2v point group (cf.,

Table 7-2. The D2h Character Table

D2h E C2(z) C2(y) C2(x) i �(xy) �(xz) �(yz)

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 –1 –1 1 1 –1 –1 Rz xy
B2g 1 –1 1 –1 1 –1 1 –1 Ry xz
B3g 1 –1 –1 1 1 –1 –1 1 Rx yz
Au 1 1 1 1 –1 –1 –1 –1
B1u 1 1 –1 –1 –1 –1 1 1 z
B2u 1 –1 1 –1 –1 1 –1 1 y
B3u 1 –1 –1 1 –1 1 1 –1 x
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Reference [63]). In these two approaches only the designation of the
orbitals and states is different; the outcome, i.e., the state correlation
diagram, is the same.

In determining the symmetries of the states (see Chapter 6), we
must remember that states with completely filled orbitals are always
totally symmetric. In other cases, the symmetry of the state is deter-
mined by the direct product of the incompletely filled orbitals.

The ground-state configuration of the two-ethylene system is a2
gb2

1u
(see Table 7-1). This state is totally symmetric, Ag. The excitation
of an electron from the HOMO to the LUMO will give an electron
configuration: a2

gb1ub3u. The direct product is:

b1u · b3u = b2g

This yields a state of B2g symmetry. The electronic configuration of
the product is a2

gb2
3u , again with Ag symmetry. This electron configu-

ration corresponds to a doubly excited state of the reactants. Finally,
the state correlation diagram can be drawn (Figure 7-13).

An obvious connection between states that possess the same elec-
tronic configuration would be the one indicated by dashed lines in
Figure 7-13. This does not occur, however, because states of the same
symmetry cannot cross. This is, again, a realization of the noncrossing
rule, which applies to electronic states as well as to orbitals. Instead
of crossing, when two states are coming too close to each other they
will turn away, and so the two ground states, both of Ag symmetry and
also two Ag symmetry excited states will each mutually correlate.

Figure 7-13. State correlation diagram for the ethylene dimerization.
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The solid line connecting the two ground states in Figure 7-13
indicates that there is a substantial energy barrier to the ground-
state-to-ground-state process; this reaction is said to be “thermally
forbidden”.

Consider now one electron in the reactant system excited photo-
chemically to the B2g state. Since this state correlates directly with the
B2g state of the product, this reaction does not have any energy barrier
and may occur directly. It is said that the reaction is “photochemically
allowed.” Indeed, it is an experimental fact that olefin dimerization
occurs smoothly under irradiation.

This observation can be generalized. If a concerted reaction is ther-
mally forbidden, it is photochemically allowed and vice versa; if it is
thermally allowed then it is photochemically forbidden.

Although the state correlation diagram is physically more mean-
ingful than the orbital correlation diagram, usually the latter is used
because of its simplicity. This is similar to the kind of approximation
made when the electronic wave function is replaced by the products
of one-electron wave functions in MO theory. The physical basis for
the rule that only orbitals of the same symmetry can correlate is that
only in this case can constructive overlap occur. This again has its
analogy in the construction of molecular orbitals. The physical basis
for the noncrossing rule is electron repulsion. It is important that this
applies to orbitals—or states—of the same symmetry only. Orbitals of
different symmetry cannot interact anyway, so their correlation lines
are allowed to cross.

(d) Parallel Approach, Orbital Correspondence Analysis. It is worth-
while to see what additional information can be learned from orbital
correspondence analysis [64, 65]. The correspondence diagram of the
ethylene dimerization reaction is drawn after Halevi in Figure 7-14.
It is essentially the same as the correlation diagram in Figure 7-12
with the following difference: Here the maximum symmetry of the
system, D2h, is taken into consideration, and the irreducible represen-
tation of each MO in this point group is shown. The solid lines of
the diagram connect molecular orbitals of the same symmetry. This
is the same as the correlation diagram derived from consideration of
the crucial symmetries. In addition, we can see that the required tran-
sition toward producing a stable ground-state cyclobutane would be
from an MO of b1u symmetry to another MO of b3u symmetry. The
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Figure 7-14. Correspondence diagram of the face-to-face dimerization of ethylene.
After Reference [65] reproduced with permission.

symmetry of the necessary vibration is given by the direct product of
these MOs:

b1u · b3u = b2g

The B2g symmetry motion of a rectangle of D2h symmetry would be
an in-plane vibration that shortens one of the diagonals and lengthens
the other:
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This result suggests a stepwise mechanism—and also it shows the
value of the additional information yielded by the orbital correspon-
dence approach. In the suggested stepwise mechanism the first step is
the formation of a transoid tetramethylene biradical. Then, this inter-
mediate rotates, thereby permitting closure of the cyclobutane ring
in a second step. The nature of this reaction has been studied exten-
sively. The reverse of ethylene dimerization, the pyrolysis of cyclobu-
tane, was experimentally observed long ago [66]. Soon after, quantum
chemical calculations and thermochemical considerations suggested
that the pyrolysis proceeds through a 1,4-biradical intermediate [67].
As to ethylene dimerization, it is subject to continuing interest. The
reactive intermediate tetramethylene radical was identified by experi-
ment using femtosecond laser techniques. Quantum chemical calcula-
tions still do not completely agree on the nature of the reaction and of
the intermediate [68], for recent literature, see, e.g., Reference [69].

(e) Orthogonal Approach. Let us consider ethylene dimerization in yet
another approach. Assume that the orientation of the two molecules is
orthogonal:

There is one symmetry element that is maintained in this arrange-
ment, i.e., the C2 rotation. Considering the behavior of the reactant
� MOs and the product � MOs under the C2 operation, the correla-
tion diagram shown in Figure 7-15 can be drawn. It shows that both
bonding MOs of the reactant side correlate with a bonding MO on
the product side. There is a net energy gain in the reaction, and the
process is “thermally allowed”.

One of the ethylene molecules enters the above reaction antarafa-
cially; this means that the two new bonds are formed on opposite sides
of this molecule:
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Figure 7-15. Correlation diagram for the orthogonal orientation of two ethylene
molecules in the dimerization reaction. Adaptation of Figure 10.22 from reference
[70] with permission.

The other ethylene molecule enters the reaction suprafacially; this
means that the two new bonds are formed on the same side of this
second molecule:

Thus, in the orthogonal approach the two molecules enter the reac-
tion differently: one of them antarafacially and the other suprafacially.
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On the other hand, in the parallel approach of two ethylenes, both
molecules enter the reaction suprafacially:

The following abbreviation is often used in the literature: �2s + �2s

means that both ethylene molecules are approaching in a suprafacial
manner, while �2s+ �2a indicates that the same molecules are reacting
in a process which is suprafacial for one component and antarafacial
for the other. The number �2 indicates that two � electrons are
contributed by each ethylene molecule.

Just for the sake of completeness it is worthwhile mentioning
that, according to the orbital correspondence analysis, this �2s + �2a

cycloaddition of ethylene is also thermally forbidden [71]. Quantum
chemical calculations [72] reported a transition structure for this ther-
mally allowed concerted reaction, but due to steric repulsions between
some of the hydrogens, this transition structure is very high in energy.
Indeed, the reaction is not observed experimentally.

7.3.1.2. Diels–Alder Reaction

(a) HOMO–LUMO Interaction. Another famous example that demon-
strates the applicability of symmetry rules in determining the course
of chemical reactions is the Diels–Alder reaction. It was discussed in
Fukui’s seminal paper [73] on the frontier orbital method. Figure 7-16
illustrates the HOMOs and LUMOs of ethylene (dienophile) and buta-
diene (diene). The only symmetry element common to both the diene
and dienophile is the reflection plane that passes through the central
2,3-bond of the diene and the double bond of the dienophile. The
symmetry behavior of the MOs with respect to this symmetry element
is also shown.

There are two favorable interactions here. One is between the
HOMO of ethylene and the LUMO of butadiene, and the other is
between the HOMO of butadiene and the LUMO of ethylene. These
two interactions occur simultaneously. There is, however, a differ-
ence in the role of these two interactions because of their different
symmetry behavior. The HOMO of ethylene and the LUMO of
butadiene are symmetric with respect to the symmetry element that
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Figure 7-16. HOMO–LUMO interaction in the Diels–Alder reaction.

is maintained throughout the reaction. There is no nodal plane at
this symmetry element, so the electrons can be delocalized over the
whole new bond. Thus, both carbon atoms of ethylene are bound
synchronously to both terminal atoms of butadiene.

The situation is different with the other HOMO–LUMO interac-
tion. These orbitals are antisymmetric with respect to the symmetry
element, and the two ends of the new linkage are separated by a
nodal plane. Therefore, two separate chemical bonds will form, each
connecting an ethylene carbon atom with a terminal butadiene carbon
atom. From this consideration, it follows that the first symmetric inter-
action is the dominant one. Also, the symmetric pair (HOMO of ethy-
lene and LUMO of butadiene) are closer in energy and thus give a
stronger interaction.

(b) Orbital Correlation Diagram. The ethylene and butadiene
molecules must approach each other in the manner indicated at the
top of Figure 7-17 in order to participate in a concerted reaction.
There is only one persisting symmetry element in this arrangement,
viz. the � plane which bisects the 2,3-bond of the diene and the double
bond of the dienophile. The orbitals affected by the reaction are the �
orbitals of the reactants which will be broken; two new � bonds and
one new � bond are formed in the product. The � orbitals and their
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Figure 7-17. Orbital correlation diagram for the ethylene-butadiene cycloaddition.
Adaptation of Figure 10.20 from reference [74] with permission.
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antibonding pairs for the reactants are shown on the left-hand side of
Figure 7-17. The new � and � orbitals, both bonding and antibonding,
of the product cyclohexene are on the right-hand side of this figure.
These are the orbitals that are affected by the reaction. The behavior
of these orbitals with respect to the vertical symmetry plane is also
indicated. The correlation diagram shows that all the filled bonding
orbitals of the reactants correlate with filled ground-state bonding
orbitals of the product. The reaction, therefore, is symmetry allowed.
The predictions that arise by application of the correlation method and
by application of the HOMO–LUMO treatment are identical.

The ethylene–butadiene cycloaddition is a good example to illus-
trate that symmetry allowedness does not necessarily mean that the
reaction occurs easily. This reaction has a comparatively high acti-
vation energy, around 120–150 kJ/mol, depending on the method of
determination. A large number of quantum chemical calculations has
been devoted to this reaction with conflicting results and it has been
the subject of heated debates (for references, see, References [75]
and [76]). The difficulty is that, apparently, the stepwise reaction has
an activation energy very similar to that of the concerted reaction.
The opposite reaction, the breaking of cyclohexene into butadiene
and ethylene, was also studied by femtosecond-resolved mass spec-
trometry [77]. According to the latest results, this prototype Dields–
Alder reaction follows the concerted mechanism, for which the barrier
height of the transition-state is about 13 kJ/mol lower than that of the
stepwise mechanism [78].

7.3.2. Intramolecular Cyclization

(a) Orbital Correlation for the Butadiene/Cyclobutene Intercon-
version. The electrocyclic interconversion between an open-chain
conjugated polyene and a cyclic olefin is another example for the
application of the symmetry rules. The simplest case is the intercon-
version of butadiene and cyclobutene:
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This process can occur in principle in two ways. In one the two ends
of the open chain turn in the opposite direction into the transition state.
This is called a disrotatory reaction.

The other possibility is a conrotatory process in which the two ends
of the open chain turn in the same direction.

The ring opening of substituted cyclobutenes proceeds at relatively
low temperatures and in conrotatory fashion [79], as illustrated by the
isomerization of cis- and trans-3,4-dimethylcyclobutene [80]:

This stereospecificity is well accounted for by the correlation
diagrams constructed for the unsubstituted butadiene/cyclobutene
isomerization in Figs. 7-18 and 7-19. Since two double bonds in buta-
diene are broken and a new double bond and a single bond are formed
during the cyclization, two bonding and two antibonding orbitals must
be considered on both sides. The persisting symmetry element is a
plane of symmetry in the disrotatory process. The correlation diagram
(Figure 7-18) shows a bonding electron pair moving to an antibonding
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Figure 7-18. Correlation diagram for the disrotatory closure of butadiene. Adapta-
tion of Figure 10.14 from reference [81] with permission.

level in the product, and, thus, the right-hand side corresponds to
an excited-state configuration. The disrotatory ring opening is thus
a thermally forbidden process.

Figure 7-19 shows the same reaction with conrotatory ring closure.
Here, the symmetry element maintained throughout the reaction is
the C2 rotation axis. After connecting orbitals of like symmetry, it is
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Figure 7-19. Correlation diagram for the conrotatory ring closure in the butadiene-
cyclobutene isomerization. Adaptation of Figure 10.12 from reference [82] with
permission.

seen that all ground-state reactant orbitals correlate with ground-state
product orbitals, so the process is thermally allowed.

(b) Symmetry of the Reaction Coordinate–Cyclobutene Ring Opening.
It is interesting to consider the butadiene–cyclobutene reaction from
a somewhat different viewpoint, viz., to determine whether the
symmetry of the reaction coordinate does indeed predict the proper
reaction. Let us look at the reaction from the opposite direction, i.e.,
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the cyclobutene ring opening process. From the symmetry point of
view, this change of direction is irrelevant.

The symmetry group of both cyclobutene and butadiene is C2v but
the transition state is of C2 symmetry in the conrotatory and Cs in
the disrotatory mode. Pearson [83] suggested that this reaction might
be visualized in the following way. In the cyclobutene–butadiene
transition, two bonds of cyclobutene are destroyed, to wit the ring-
closing � and the opposite � bonds. Hence, four orbitals are involved
in the change, the filled and empty � and �∗ orbitals and the filled and
empty � and �∗ orbitals. These orbitals are indicated in Figure 7-20.
Their symmetry is also given for the three point groups involved.

Figure 7-21 demonstrates the nuclear movements involved in the
conrotatory and disrotatory ring opening. These movements define the
reaction coordinate, and they belong to the A2 and B1 representation
of the C2v point group, respectively.

The two bonds of cyclobutene can be broken either by removing
electrons from a bonding orbital or by putting electrons into an anti-
bonding orbital. Consider the � → �∗ and the � → �∗ transitions.

Figure 7-20. The molecular orbitals participating in the cyclobutene ring opening.
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Figure 7-21. The symmetry of the reaction coordinate in the conrotatory and disro-
tatory ring opening of cyclobutene.

According to Pearson [84], the direct product of the two representa-
tions must contain the reaction coordinate:

� → �∗ : a1 · a2 = a2

� → �∗ : b1 · b2 = a2

A2 is the irreducible representation of the conrotatory ring opening
motion, so this type of ring opening seems to be possible. We can test
the rules further. During a conrotatory process, the symmetry of the
system decreases to C2. The symmetry of the relevant orbitals also
changes in this point group (see Figure 7-20). Both a1 and a2 become
a, and both b1 and b2 become b. Therefore, these orbitals are able
to mix. Also, the symmetry of the reaction coordinate becomes A.
This is consistent with the rule saying that the reaction coordinate,
except at maxima and minima, must belong to the totally symmetric
representation of the point group.

The next step is to test whether the disrotatory ring opening is
possible. The � → �∗ and � → �∗ transitions obviously cannot be
used here, since they correspond to the conrotatory ring opening of A2

symmetry. Let us consider the � → �∗ and the � → �∗ transitions:

� → �∗ : a1 · b2 = b2

� → �∗ : b1 · a2 = b2

Both direct products contain the B2 irreducible representation. It
corresponds to an in-phase asymmetric distortion of the molecule,
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which cannot lead to ring opening. The symmetry of the disrotatory
reaction coordinate is B1 (Figure 7-21). Moreover, if we consider
the symmetry of the orbitals in the Cs symmetry point group of
the disrotatory transition, it appears that � and �∗ as well as �
and �∗ belong to different irreducible representations. Hence, their
mixing would not be possible anyway. The prediction from this
method is the same as the prediction from the orbital correlation
diagrams. While examination of the reaction coordinate gives more
insight into what is actually happening during a chemical reac-
tion, it is somewhat more complicated than using orbital correlation
diagrams.

An ab initio calculation of the cyclobutene to butadiene ring
opening [85] led to the following observation. In the conrotatory
process, first the C–C carbon single bond lengthens followed by
twisting of the methylene groups. The C–C bond lengthening is a
symmetric stretching mode with A1 symmetry and the methylene twist
is an A2 symmetry process which was earlier supposed to be the reac-
tion coordinate. This apparent controversy was resolved by Pearson
[86], who emphasized the special role of the totally symmetric reac-
tion coordinate. The effect of the C–C stretch is shown in Figure 7-22.
The energies of the � and �∗ orbitals increase and decrease, respec-
tively, as a consequence of the bond lengthening. The A1 symmetry
vibrational mode does not change the molecular symmetry. The
crucial � → �∗ and � →�∗ transitions, which are symmetry related to

Figure 7-22. The effect of C–C stretching on the energies of the critical orbitals in
the cyclobutene ring opening.
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the A2 twisting mode, occur more easily. Apparently, the large energy
difference between these orbitals is the determining factor in the
actual process. The transition structure for this electrocyclic reaction
has been studied extensively by means of quantum-chemical calcu-
lations [87]. Their results fully support the conclusions of the above
reasoning.

We have to stress again that there might be special reasons that
make a disrotatory process or a stepwise mechanism favored over the
conrotatory process; such as ring-strains and steric effects [88].

7.3.3. Generalized Woodward–Hoffmann Rules

The selection rules for chemical reactions derived by using symmetry
arguments show a definite pattern. Woodward and Hoffmann general-
ized the selection rules on the basis of orbital symmetry considerations
applied to a large number of systems [89]. Two important observa-
tions are summarized here; we refer to the literature for further details
[90, 91].

(a) Cycloaddition. The reaction between two molecules is thermally
allowed if the total number of electrons in the system is 4n + 2 (n is an
integer), and both components are either suprafacial or antarafacial. If
one component is suprafacial and the other is antarafacial, the reaction
will be thermally allowed if the total number of electrons is 4n.

(b) Electrocyclic reactions. The rules are similar to those given above.
A disrotatory process is thermally allowed if the total number of elec-
trons is 4n + 2, and a conrotatory process is allowed thermally if the
number of delocalized electrons is 4n. For a photochemical reaction,
both sets of rules are reversed.

7.4. Hückel–Möbius Concept

There are a number of other methods used to predict and interpret
chemical reactions without relying upon symmetry arguments. It is
worthwhile to compare at least some of them with symmetry-based
approaches.
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The so-called “aromaticity rules” are chosen for comparison, as
they provide a beautiful correspondence with the symmetry-based
Woodward–Hoffmann rules. A detailed analysis [92] showed the
equivalence of the generalized Woodward–Hoffmann selection rules
and the aromaticity-based selection rules for pericyclic reactions.
Zimmermann [93] and Dewar [94] have made especially important
contributions in this field.

The word “aromaticity” usually implies that a given molecule is
stable, compared to the corresponding open chain hydrocarbon. For
a detailed account on aromaticity, see, e.g., Reference [95]. The
aromaticity rules are based on the Hückel–Möbius concept. A cyclic
polyene is called a Hückel system if its constituent p orbitals overlap
everywhere in phase, i.e., the p orbitals all have the same sign above
and below the nodal plane (Figure 7-23). According to Hückel’s rule
[96], if such a system has 4n + 2 electrons, the molecule will be
aromatic and stable. On the other hand, a Hückel ring with 4n elec-
trons will be antiaromatic.

Based on simple Hückel molecular orbital calculations,
Heilbronner predicted that if the Hückel ring is twisted once,
as shown in Figure 7-24a, the situation is reversed [97]. Dewar
[98] referred to this twisted ring as an “anti-Hückel system.” It is
also called a “Möbius system” [99], an appropriate name indeed.
The Möbius strip is a—somewhat against common-sense—two-
dimensional surface with only one side. It is formed by twisting the
strip by 180◦ around its own axis and then attaching its two ends.
There is a phase inversion at the point where the two ends meet,
as seen in Figure 7-24a and b. The Möbius strip was discovered
simultaneously and independently by two German mathematicians,
August Ferdinand Möbius (1790–1868) and Johann Benedict Listing
(1808–1882). It fascinates mathematicians and artists as well as

Figure 7-23. Illustration of a Hückel ring.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 7-24. (a) Illustration of a Möbius ring; (b) Möbius strip. Drawing by the late
Gyorgy Doczi; (c) Möbius strip-sculpture, Evanston, IL; (d) Möbius strip-sculpture,
Cambridge, Massachussetts; (e) Möbius strip-sculpture at Fermilab in Batavia, Illi-
nois; (f) Möbius strip on the facade of a Moscow scientific institute. Photographs by
the authors.
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chemists [100]. Figure 7-24c–f depict Möbius strips from different
parts of the world.

According to Zimmermann [101] and Dewar [102], the allowedness
of a concerted pericyclic reaction can be predicted in the following
way: A cyclic array of orbitals belongs to the Hückel system if it
has zero or an even-number phase inversions. For such a system, a
transition state with 4n + 2 electrons will be thermally allowed due to
aromaticity, while the transition state with 4n electrons will be ther-
mally forbidden due to antiaromaticity.

A cyclic array of orbitals is a Möbius system if it has an odd
number of phase inversions. For a Möbius system, a transition
state with 4n electrons will be aromatic and thermally allowed,
while that with 4n + 2 electrons will be antiaromatic and ther-
mally forbidden. For a concerted photochemical reaction, the rules
are exactly the opposite to those for the corresponding thermal
process.

Even though the stability of Möbius systems was predicted
over 40 years ago [103], for a long time no such systems were
synthesized. One possible reason for this is the expected strain
in the twisted structure. Based on quantum chemical calculations,
different groups suggested the stability of [4n]annulenes [(CH)n,
with n = 3–5], but it was also shown that there are many possible
isomers of this system that are close in energy and thus the
Möbius system might easily flip back to the less strained Hückel
structures [104].

The first real Möbius systems ([16]annulenes) were only synthe-
sized a few years ago [105]. In these systems the authors achieved
enough rigidity for the molecules so that they would not flip back to
a Hückel system. It was also determined that these Möbius-twisted
annulenes are more aromatic in their character than the Hückel-
systems [106].

The rules based on the Hückel–Möbius concept have their coun-
terpart among the Woodward–Hoffmann selection rules. There was a
marked difference between the suprafacial and antarafacial arrange-
ments in the application of the Woodward–Hoffmann treatment of
cycloadditions. The disrotatory and conrotatory processes in elec-
trocyclic reactions presented similar differences. The suprafacial
arrangement in both of the reacting molecules in the cycloaddition
as well as the disrotatory ring closure in Figure 7-25 correspond to
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Figure 7-25. Comparison of the disrotatory ring closure and the �2s + �2s reaction
with the Hückel ring.

the Hückel system. On the other hand, the suprafacial–antarafacial
arrangement as well as the conrotatory cyclization have a phase
inversion (Figure 7-26), and they can be regarded as Möbius systems.
All the selection rules mentioned above are summarized in Table 7-3;
their mutual correspondence is evident.

Both the Woodward–Hoffmann approach and the Hückel–Möbius
concept are useful for predicting the course of concerted reac-
tions. They both have their limitations as well. The applica-
tion of the Hückel–Möbius concept is probably preferable for
systems with low symmetry. On the other hand, this concept can
only be applied when there is a cyclic array of orbitals. The
conservation of orbital symmetry approach does not have this
limitation.
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Figure 7-26. Comparison of the conrotatory ring closure and the �2s + �2a reaction
with the Möbius ring.

Table 7-3. Selection Rules for Chemical Reactions from Different Approaches

Approacha Reaction Thermally
Allowed

Thermally
Forbidden

1 s + s 4n + 2 4n
a + a 4n + 2 4n
s + a 4n 4n + 2

2 Disrotatory 4n + 2 4n
Conrotatory 4n 4n + 2

3 Hückel system: sign inversion
even or 0

4n + 2 4n

Möbius system: sign
inversion odd

4n 4n + 2

a1: Woodward–Hoffmann cycloaddition; 2: Woodward–Hoffmann electrocyclic
reaction; 3: Hückel–Möbius concept.
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7.5. Isolobal Analogy

So far, our discussion of reactions has been restricted to organic
molecules. However, all the main ideas are applicable to inor-
ganic systems as well. Thus, for example, the formation of
inorganic donor–acceptor complexes may be conveniently described
by the HOMO–LUMO concept. A case in point is the formation
of the aluminum trichloride–ammonia complex (cf. Figure 3-15).
This complex can be considered to result from interaction between
the LUMO of the acceptor (AlCl3) and the HOMO of the
donor (NH3).

The potential of a unified treatment of organic and inorganic
systems has been expressed eloquently in Roald Hoffmann’s Nobel
lecture [107] entitled “Building Bridges between Inorganic and
Organic Chemistry.”

The main idea is to examine the similarities between the struc-
tures of relatively complicated inorganic complexes and relatively
simple and well-understood organic molecules. Then the structure and
possible reactions of the former can be understood and even predicted
by the considerations working so well for the latter. Two important
points were stressed by Hoffmann:

1. “It is the resemblance of the frontier orbitals of inorganic and
organic moieties that will provide the bridge that we seek between
the subfields of our science.”

2. Many aspects of the electronic structure of the molecules
discussed and compared are heavily simplified, but “the time
now, here, is for building conceptual frameworks, and so simi-
larity and unity take temporary precedence over difference and
diversity.”

One of the fastest growing areas of inorganic chemistry is tran-
sition metal organometallic chemistry. In a general way, the struc-
ture of transition metal organometallic complexes can be thought of
as containing a transition metal–ligand fragment, such as M(CO)5,
M(PF3)5, M(allyl) and MCp (Cp = cyclopentadienyl), or in general,
MLn. All these fragments may be derived from an octahedral
arrangement:
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In describing the bonding in these fragments, first the six octahedral
hybrid orbitals on the metal atom are constructed. Hybridization is not
discussed here, but symmetry considerations are used in constructing
hybrid orbitals just as in constructing molecular orbitals [108]. In an
octahedral complex, the six hybrid orbitals point towards the ligands,
and together they can be used as a basis for a representation of the
point group. The Oh character table and the representation of the six
hybrid orbitals are given in Table 7-4. The representation reduces to

�Oh = A1g + Eg + T1u

Inspection of the Oh character table shows that the only possible
combination from the available (n–1)d, ns, and np orbitals of the
metal is:

s px , py, pz dx2−y2, dz2

a1g t1u eg

These six orbitals will participate in the hybrid, and the remaining t2g

symmetry orbitals (dxz, dyz, and dxy) of the metal will be nonbonding.
Six ligands approach the six hybrid orbitals of the metal in forming

an octahedral complex. These ligands are supposed to be donors, or, in
other words, Lewis bases with even numbers of electrons. Six bonding
� orbitals and six antibonding �∗ orbitals are formed, with the ligand
electron pairs occupying the bonding orbitals as seen in Figure 7-27.
As a consequence of the strong interaction, all six hybrid orbitals of
the metal are removed from the frontier orbital region, and only the
unchanged metal t2g orbitals remain there.

We can also deduce the changes that will occur in the five-, four-,
and three–ligand fragments as compared to the ideal six-ligand case
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Table 7-4. The Oh Character Table and the Representation of the Hybrid Orbitals of the Transition Metal in an ML6 Complex

Oh E 8C3 6C2 6C4 3C2

(=C2
4 )

i 6S4 8S6 3�h 6�d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 –1 –1 1 1 –1 1 1 –1

Eg 2 –1 0 0 2 2 0 –1 2 0 (2z2–x2–y2,
x2–y2)

T1g 3 0 –1 1 –1 3 1 0 –1 –1 (Rx, Ry, Rz)

T2g 3 0 1 –1 –1 3 –1 0 –1 1 (xz, yz, xy)

A1u 1 1 1 1 1 –1 –1 –1 –1 –1

A2u 1 1 –1 –1 1 –1 1 –1 –1 1

Eu 2 –1 0 0 2 –2 0 1 –2 0

T1u 3 0 –1 1 –1 –3 –1 0 1 1 (x, y, z)

T2u 3 0 1 –1 –1 –3 1 0 1 –1

�h 6 0 0 2 2 0 0 0 4 2
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Figure 7-27. Molecular orbital construction in an ideal octahedral complex forma-
tion. Reproduced by permission [109], copyright (1982) The Nobel Foundation.

with the help of Figure 7-27. The situation is illustrated in Figure 7-28.
With five ligands, only five of the six metal hybrid orbitals will
interact; the sixth orbital, the one pointing to where no ligand is, will
be unchanged. Consequently, this orbital will remain in the frontier
orbital region, together with the t2g orbitals. With four ligands, two of
the six hybrid orbitals remain unchanged and with three ligands, three.
Always, those metal hybrid orbitals, which point towards the missing
ligands in the octahedral site, remain unchanged.

Figure 7-28. Molecular orbitals in different MLn transition metal-ligand fragments.
Adapted with permission [110], copyright (1982) The Nobel Foundation.
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Now we shall seek analogies between transition metal complexes
and simple, well-studied organic molecules or fragments. In principle,
any hydrocarbon can be constructed from methyl groups (CH3),
methylenes (CH2), methynes (CH), and quaternary carbon atoms.
They can be imagined as being derived from the methane molecule
itself which has a tetrahedral structure:

The essence of the “isolobal analogy” concept is to establish simi-
larities between these simple organic fragments and the transition
metal ligand fragments, and then to build up the organometallic
compounds. As defined by Hoffmann, “two fragments are called
isolobal, if the number, symmetry properties, approximate energy and
shape of the frontier orbitals and the number of electrons in them
are similar—not identical, but similar” [111]. However the molecules
involved are not and need not be either isoelectronic or isostructural.

The first analogy considered here is a d7-metal-ligand fragment, for
example, Mn(CO)5 and the methyl radical, CH3:

Though the two fragments belong to different point groups, C4v and
C3v, respectively, the orbitals that contain unpaired electron belong
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to the totally symmetric representation in both cases. Since the three
occupied t2g orbitals of the ML5 fragment are comparatively low
lying, the frontier orbital pictures of the two fragments should be
similar. If this is so, then they are expected to show some simi-
larity in their chemical behavior, notably in reactions. Indeed, both
of them dimerize, and even the organic and inorganic fragments can
codimerize, giving (CO)5MnCH3:

Following this analogy the four-ligand d8-ML4 fragments (e.g.,
Fe(CO)4) are expected to be comparable with the methylene radical,
CH2:

Both fragments belong to the C2v point group, and the representa-
tion of the two hybrid orbitals with the unpaired electrons is:

C2v E C2 � �′

� 2 0 0 2
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This reduces to a1 + b2. Although the energy ordering differs in the
two fragments, this fact is not important, since both will participate
in bonding when they interact with another ligand, and their original
ordering will thereby change anyway.

Consider the possible dimerization process: two methylene radi-
cals give ethylene, which is a known reaction. Similarly the mixed
product, (CO)4FeCH2, or at least its derivatives, can be prepared. The
Fe2(CO)8 dimer, however, is unstable; and has only been observed in
a matrix; it was prepared by the photolysis of Fe2(CO)9 at low temper-
ature [112, 113]. Spectroscopic studies [114] as well as computations
[115] suggest that there are two isomers of this species, one with two
CO bridges and another with an Fe–Fe bond. The latter, with D2h

symmetry, would be the isolobal analogue of ethylene. However, it is
not clear yet what the symmetry of this species is. All this illustrates
that the isolobal analogy suggests only the possible consequences of
the similarity in the electronic structure of two fragments. It says
nothing, however, about the thermodynamic and kinetic stability of
any of the possible reaction products.

Although Fe2(CO)8 is unstable, it can be stabilized by complexa-
tion. The molecule in Figure 7-29a consists of two Fe2(CO)8 units
connected through a tin atom [116]. Using the inorganic/organic
analogy, this molecule can be compared to spiropentane (Figure
7-29b).

An example of a d 9-ML3 fragment is Co(CO)3. This is isolobal to
a methyne radical, CH:
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(a)

(b)

Figure 7-29. (a) The molecular geometry of Sn[Fe2(CO)8]2. Reproduced by
permission [117], copyright (1982) The Nobel Foundation; (b) The organic analog:
spiropentane.

Both have C3v symmetry. The representation of the three hybrid
orbitals with an unpaired electron is:

C4v E 2C2 3σv

� 3 0 1

It reduces to a1 + e. Again, the ordering is different, but the simi-
larity between their electronic structure is obvious. A series of
molecules and their similarities are illustrated in Figure 7-30. The
first molecule is tetrahedrane and the last one is a cluster with metal-
metal bonds which can be considered as being the inorganic analog of
tetrahedrane.

Only a few examples have been given to illustrate the isolobal
analogy. Hoffmann and his co-workers have extended this concept
to other metal–ligand fragment compositions with various d orbital
participations. Some of these analogies are summarized in Table 7-5.
Hoffmann’s Nobel lecture [119] contained several of them, and many
more can be found in the references given therein and in later works.
Just to mention one example: recent computational studies, based
on the isolobal analogy, suggest that by substituting CH groups by
their isolobal large-metal fragments (such as Os(PH3)3), the activation
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Figure 7-30. Molecular geometries from tetrahedrane to its inorganic analog.
Adapted with permission [118], copyright (1982) The Nobel Foundation.

Table 7-5. Isolobal Analogies

Organic Transition metal coordination number

fragment 9 8 7 6 5

CH3 d1–ML8 d3–ML7 d5–ML6 d7–ML5 d9–ML4

CH2 d2–ML7 d4–ML6 d6–ML5 d8–ML4 d10–ML3

CH d3–ML6 d5–ML5 d7–ML4 d9–ML3

barrier of a reaction may be reduced and thus potentially important
new molecules could be prepared [120].

References

1. A. L. Mackay, A Dictionary of Scientific Quotations, Adam Hilger, Bristol,
1991, p. 57/85.
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Elektronenkonfiguration des Benzols und verwandter Verbindungen.” Z.
Phys. 1931, 70, 204–286; “Quantentheoretische Beiträge zum Problem der
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Chapter 8

Space-Group Symmetries

The beauty of life is,. . . geometrical beauty. . .

J. Desmond Bernal [1]

8.1. Expanding to Infinity

Up to this point, structures of mostly finite objects have been
discussed. Thus, point groups were applicable to their symmetries.
A simplified classification of various symmetries was presented in
Chapter 2 (cf., Figure 2-31 and Table 2-2). Point-group symmetries
are characterized by the lack of periodicity in any direction. However,
repetition is a fundamental feature in our world, both in nature and in
what we create. “Whatever can be done once can always be repeated,”
this is how Louise B. Young begins the description of shapes and
structures of nature in the book, The Mystery of Matter [2]. Periodicity
may be introduced by translational symmetry. If periodicity is present,
space groups are applicable for the symmetry description. There is a
slight inconsistency here in the terminology. Even a three-dimensional
object may have point-group symmetry. On the other hand, the so-
called dimensionality of the space group is not determined by the
dimensionality of the object. Rather, it is determined by its periodicity.
The following groups are space-group symmetries where the super-
script refers to the dimensionality of the object, and the subscript to
the periodicity.

G1
1

G2
1 G2

2

G3
1 G3

2 G3
3
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Objects or patterns which are periodic in one, two, and three
directions will have one-, two-, and three-dimensional space groups,
respectively. The dimensionality of the object/pattern is merely a
necessary but not a satisfactory condition for the “dimensionality”
of their space groups. We shall first describe a planar pattern after
Budden [3] in order to get the flavor of space-group symmetry.
Also, some new symmetry elements will be introduced. Later in
this chapter, the simplest one-dimensional and two-dimensional space
groups will be presented. The next Chapter will be devoted to the
three-dimensional space groups which characterize crystal structures.

A symmetric pattern expanding to infinity always contains a basic
unit, a motif, which is then repeated infinitely throughout the pattern.
Figure 8-1a presents a planar decoration. The pattern shown is only
part of the whole as the latter expands, in principle, to infinity!
The pattern is obviously highly symmetrical. Figure 8-1b shows the
system of mutually perpendicular symmetry planes by solid lines.

Figure 8-1. Planar decoration with two-dimensional space group after Budden [4].
(a) The decoration; (b) Symmetry elements of the pattern; (c) Some of the glide
reflection planes and their effects in the pattern.
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Some of the fourfold and twofold rotation axes are also indicated in
this figure. A new symmetry element in our discussion is the glide
reflection (called also, glide mirror), which is shown by a dashed line.
Some of these glide reflections are indicated separately in Figure 8-1c.
A glide-mirror plane is a combination of translation and reflection.
It is a symmetry element that can be present in space groups only.
The glide-reflection plane involves an infinite sequence of consecu-
tive translations and reflections. Whereas in a simple canon, there is
only repetition of the tune at certain intervals in time, as shown in
Figure 8-2a; Figure 8-2b shows a different canon in which repetition
is combined with reflection. Two further patterns with glide-reflection
symmetry are given in Figure 8-3. They are also thought to extend to
infinity, at least in our imagination.

Simple translation is the most obvious symmetry element of the
space groups. It brings the pattern into congruence with itself over
and over again. The shortest displacement through which this trans-
lation brings the pattern into coincidence with itself is the elemen-
tary translation or elementary period. Sometimes it is also called
the identity period. The presence of translation is seen well in the
pattern in Figure 8-1. The symmetry analysis of the whole pattern was
called by Budden the analytical approach. The reverse procedure is the

Figure 8-2. Top: Canon illustrating simple repetition; Bottom: repetition combined
with glide reflection.



374 8 Space-Group Symmetries

Figure 8-3. Illustrations for glide mirrors. (a) Pillow-edge from Buzsák, Hungary
(used with permission from Györgyi Lengyel); (b) Function describing simple
harmonic motion (reflection occurs following translation along the t axis by half
a period, T/2).

synthetic approach in which the infinite and often complicated pattern
is built up from the basic motif. Thus, the pattern of Figure 8-1a may
be built up from a single crochet. There are several ways to proceed.
For example, the crochet may be subjected to simple translation,
then reflection, and then transverse reftection. The horizontal array
obtained this way is a one-dimensional pattern. It can be extended to
a two-dimensional pattern by simple translation or by glide reflection.
Eventually the complete two-dimensional pattern of Figure 8-1 can be
reconstructed. In this synthetic approach, instead of the single crochet,
any other motif combined from it could be selected for the start. If the
crosslike motif were chosen, which contains eight of these crochets,
then only translations in two directions would be needed to build up
the final pattern. To learn the most about the structure and symmetries
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of a pattern, it is advantageous to select the smallest possible motif for
the start.

The one-dimensional space groups are the simplest of the space
groups. They have periodicity only in one direction. They may refer
to one-dimensional, two-dimensional, or three-dimensional objects,
cf., G1

1, G2
1, and G3

1, of Table 2-2, respectively. The “infinite” carbon
chains of the carbide molecules

. . . =C=C=C=C=C= . . .

. . . −C≡C−C≡C−C≡ . . .

represent one-dimensional patterns. The elementary translation or
identity period is the length of the carbon–carbon double bond in
the uniformly bonded chain while it is the sum of the lengths of the
two different bonds in the chain consisting of alternating bonds. As
the chain of molecules extends along the axis of the carbon–carbon
bonds, this axis can be called the translation axis. The carbon-carbon
axis is a singular axis, and it is not polar as the two directions along
the chain are equivalent. Earlier we have seen the binary array ...
A B A B A B ... in a crystal. The unequal spacings between the atom
A and the two adjacent atoms B produced a polar axis (cf., Section 2.6
on polarity).

8.2. One-Sided Bands

Figure 8-4 presents two band decorations; one of them has a polar
axis while the other has a nonpolar axis. An important feature of these
patterns is that they have a polar singular plane, which is the plane of
the drawing. This plane is left unchanged during the translation. Such
two-dimensional patterns with periodicity in one direction are called
one-sided bands [5].

There are altogether seven symmetry classes of one-sided bands.
They are illustrated in Figure 8-5 for a suitable motif, a black triangle.
A brief characterization of the seven classes is given here, following
their notation:

l. (a). The only symmetry element is the translation axis. The trans-
lation period is the distance between two identical points of the
consecutive black triangles.
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(a)

(b)

Figure 8-4. Polar (a) And nonpolar; (b) Decorations of Byzantine mosaics from
Ravenna, Italy, with one-dimensional space-group symmetry (photographs by the
authors).

Figure 8-5. The seven symmetry classes of one-sided bands.
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Figure 8-6. Illustration of the seven symmetry classes of one-sided bands by
Hungarian needlework [8]. The numbering corresponds to that of Figure 8-5.
(1) Edge decoration of table cover from Kalocsa, Southern Hungary; (2) Pillow-end
decoration from Tolna county, Southwest Hungary; (3) Decoration patched onto
a long embroidered felt coat of Hungarian shepherds in Bihar county, Eastern
Hungary; (4) Embroidered edge-decoration of bed-sheet from the 18th century.
Note the deviations from the described symmetry in the lower stripes of the pattern;
(5) Decoration of shirt-front from Karád, Southwest Hungary; (6) Pillow decora-
tion pattern from Torocko (Rimetea), Transylvania, Romania; (7) Grape-leaf pattern
from the territory east of the river Tisza.
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2. (a)·ã. Here the symmetry element is a glide-reflection plane (ã).
The black triangle comes into coincidence with itself after trans-
lation through half of the translation period (a/2) and reflection in
the plane perpendicular to the plane of the drawing.

3. (a):2. There is translation and twofold rotation axis in this class.
The twofold rotation axis is perpendicular to the plane of the one-
sided band.

4. (a):m. The translation is achieved by transverse symmetry planes
in this pattern.

5. (a)·m. Here the translation axis is combined with a longitudinal
symmetry plane.

6. (a)·ã:m. Combination of glide-reflection plane with transverse
symmetry planes characterizes this class. These elements generate
new ones such as twofold rotation. Consequently, there are alter-
native descriptions of this symmetry class. One of them is
by combining twofold rotation with glide reflection—the corre-
sponding notation is (a):2·ã. Another is by combining twofold rota-
tion with transverse reflection for which the notation is (a):2:m.

7. (a)·m:m. This pattern has the highest symmetry achieved by a
combination of transverse and longitudinal symmetry planes. In
this description the twofold axes perpendicular to the plane of the
drawing are generated by the other symmetry elements. An alter-
native description is (a):2·m.

The seven one-dimensional symmetry classes for the one-sided
bands are illustrated by patterns of Hungarian needlework in
Figure 8-6 [6]. This kind of needlework is a real “one-sided band.”
Figure 8-7 presents a scheme to facilitate establishing the symmetry
class of one-sided bands [7].

8.3. Two-Sided Bands

If the singular plane of a band is not polar, the band is two-sided.
The one-sided bands are a special case of the two-sided bands.
Figure 8-8a shows a one-sided band generated by translation of a leaf
motif. Figure 8-8b depicts a two-sided band characterized by a glide-
reflection plane. There is a translation by half of the translation period
and then a reflection in the plane of the drawing. The leaf patterns are
paralleled by patterns of the triangle in Figure 8-8. A new symmetry
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Figure 8-7. Scheme for establishing the symmetry of a one-sided band after
Crowe [9].

element is illustrated in Figure 8-8c, the twofold (or second-order)
screw axis, 21. The corresponding transformation is a translation by
half the translation period and a 180◦ rotation around the translation
axis. Bands have altogether 31 symmetry classes, including the seven
one-sided bands. Table 8-1 gives two different notations for the seven
one-sided band classes and for the two two-sided ones shown in
Figure 8-8b and c as illustrations.

The so-called coordinate, or international, notation refers to the
mutual orientation of the coordinate axes and symmetry elements
[11]. The notation always starts with the letter p, referring to the trans-
lation group. Axis a is directed along the band, axis b lies in the plane
of the drawing, and axis c is perpendicular to this plane. The first,
second, and third positions of the symbol after the letter p indicate
the mutual orientation of the symmetry elements with respect to the
coordinate axes. If no rotation axis or normal of a symmetry plane
coincides with a coordinate axis, the number 1 is placed in the corre-
sponding position in the symbol. The coincidence of a rotation axis,
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Figure 8-8. One-sided and two-sided bands using a one-sided leaf motif and a one-
sided black triangle motif. (a) One-sided bands generated by simple translation.
The plane of the drawing is a polar singular plane; (b) Two-sided bands generated
from the same motifs as before, by introducing a glide-reflection plane. The singular
plane in the plane of the drawing is no longer polar. The glide-reflection plane coin-
ciding with the plane of the drawing is labeled ã11 [10]. Note that the two sides of
the leaves are of different color (black and white); (c) Two-sided bands generated
from the same motifs as before, by introducing a screw axis of the second order,
21. Used with permission from Nauka Publishers, Moscow; (d) Pavement in Erice,
Italy as an example of a one-sided band; (e) Lamps on the Alexander III Bridge in
Paris (photographs by the authors).
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Table 8-1. Examples of Notations of Band Symmetries

Noncoordinate notation Coordinate
(international) notation

(a) p1
(a)·ã p1a1
(a):2 p112
(a):m pm11
(a)·m p1m1
(a)·2:m≡(a):2·ã≡(a): ã·m pma2
(a)·m :m≡(a):2·m pmm2
(a)·21 p2111
(a)· ã11 p11a

2 or 21, or the normal of a symmetry plane, m or ã, with one of the
coordinate axes is indicated by placing the symbol of this element in
the corresponding position in the notation.

8.4. Rods, Spirals, and Similarity Symmetry

The “infinite” carbide molecule is, of course, of finite width. It is
indeed a three-dimensional construction with periodicity in one direc-
tion only. Thus, it has one-dimensional space-group symmetry (G3

1).
It is like an infinitely long rod. For a rod, the axis is a singular axis,
and it has no singular plane. All kinds of symmetry axes may coincide
with the axis of the rod, such as a translation axis, a simple rotation
axis, or a screw-rotation axis. Of course, these symmetry elements,
except the simple rotation axis, may characterize the rod only if it
expands to infinity. As regards symmetry, a tube, a screw, or various
rays are as much rods as are the stems of plants, vectors, or spiral stair-
ways. A conspicuous example is the nanotubes and nanorods that are
finding broadening applications in current science and technology due
to their ability of providing novel mechanical, electrical, and thermal
properties, and other uses, such as hydrogen storage [12]. A computer
drawing and an analogy in artistic expression are shown in Figure 8-9.
The symmetries of the structural diversity in the nanoworld have been
discussed extensively [13]. Many of our examples throughout this
book would also qualify for belonging to the nanoworld.

We have stressed above the necessity of considering our objects
extending to infinity at least in one direction in order to qualify
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Figure 8-9. Nanotubes; (a) Computer graphic by Zoltán Varga, Budapest; (b) Deco-
ration in the Royal Palace in Bangkok, Thailand (photograph by the authors).

for applying space-group symmetry description to them. However,
real objects are, of course, not infinite. For symmetry considerations,
it may be convenient to look only at some portions of the whole,
where the ends are not yet in sight, and extend them in thought to
infinity. A portion of an iron chain and a chain of beryllium dichlo-
ride in the crystal are shown in Figure 8-10. Translation from unit to
unit is accompanied by a 90◦ rotation around the translation axis. A
portion of a spiral stairway displaying screw-axis symmetry is shown
in Figure 8-11a. The imaginary impossible stairway of Figure 8-11b
indeed seems to go on forever.

A screw axis brings the infinite rod into coincidence with itself after
a translation through a distance t accompanied by a rotation through
an angle �. The screw axis is of the order n = 360◦/�. It is a special
case when n is an integer. The iron chain and the beryllium dichloride
chain have a fourfold (or fourth-order) screw axis, 42. Their overall
symmetry is (a)·m·42:m. For the screw axis of the second order, the
direction of the rotation is immaterial. Other screw axes may be either
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Figure 8-10. Rods with 42 screw-axis. (a) Iron-chain in the vicinity of the Royal
Palace in Madrid (photograph by the authors); (b) Beryllium dichloride chain in the
crystal.

Figure 8-11. (a) Spiral staircase (and its shadow) in Cambridge, England,
displaying screw-axis symmetry (photograph by the authors); (b) “Impossible
stairway” (drawn after a movie poster advertising Glück im Hinterhaus).
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left-handed or right-handed. The pair of left-handed and right-handed
helices of Figure 2-39 is an example.

The scattered leaf arrangement around the stems of many plants
is a beautiful occurrence of screw-axis symmetry in nature. The
stem of Plantago media shown in Figure 8-12a certainly does not
extend to infinity. It has been suggested, however, that for plants the
plant/seed/plant/seed ... infinite sequence, at least in time, provides
enough justification to apply space groups in their symmetry descrip-
tion. Let us consider now the relative positions of the leaves around
the stem of Plantago media. Starting from leaf “0,” leaf “8” will be
in eclipsed orientation to it. In order to reach leaf “8” from leaf “0,”

(a) 

(c)

(b)

Figure 8-12. (a) The scattered leaf arrangement (phyllotaxis) of Plantago media
(drawing by Ferenc Lantos, Pécs). Fibonacci numbers of spirals in the patterns of;
(b) Scales of a pinecone; and (c) A cactus in Hawaii (b and c, photographs by the
authors).
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the stem has to be circled three times. The ratio of the two numbers,
viz., 3/8, tells us that a new leaf occurs at each three/eighths part of
the circumference of the stem. The ratio 3/8 is characteristic in phyl-
lotaxis, as are 1/2, 1/3, 2/5, and even 5/13. Very little is known about
the origin of phyllotaxis. What has been noted a long time ago is that
the numbers occurring in these characteristic ratios, viz.,

1, 1, 2, 3, 5, 8, 13, . . .

are members of the so-called Fibonacci series, in which each consec-
utive number is the sum of the previous two. Fibonacci numbers can
be observed also in the numbers of the spirals of the scales of pine
cones as viewed from below, displaying 13 left-bound and 8 right-
bound spirals of scales as in Figure 8-12b. Left-bound and right-bound
spirals in strictly Fibonacci numbers are found in other plants as well.
The plate of seeds of the sunflower appears as if a compressed scat-
tered arrangement around the stem. Another example is the spirals
of cactus thorns in Figure 8-12c. It is a striking observation that the
continuation of the ratios of the characteristic leaf arrangements even-
tually leads to a famous irrational number, 0.381966. . ., expressing
the golden mean!

An important application of one-dimensional space groups is for
polymeric molecules in chemistry. Figure 8-13 illustrates the structure
and symmetry elements of an extended polyethylene molecule. The
translation, or identity period, is shown, which is the distance between
two carbon atoms separated by a third one. However, any portion with
this length may be selected as the identity period along the polymeric
chain. The translational symmetry of polyethylene is characterized by
this identity period.

The discovery of stereoregular organic polymers dates back to the
mid-1950s. First, Karl Ziegler used his catalysts to produce such poly-
mers under mild conditions, but they were not highly ordered struc-
turally. This problem was solved by Giulio Natta, who—in the words
of the Swedish presenter of their Nobel Prizes—broke the monopoly
of nature over making stereoregular polymers [14]. The structural
aspects had great importance for practical applications that skyrock-
eted following Ziegler and Natta’s works. There is a schematic repre-
sentation of the configuration of isotactic, syndiotactic, and atactic
vinyl polymers in Figure 8-14, which was shown in Natta’s Nobel
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Figure 8-13. Top: The structure and translation period of the polyethylene chain
molecule; Bottom: Symmetry elements of the polyethylene chain molecule.

Figure 8-14. Schematic representation of the structures of isotactic (top); syndio-
tactic (middle); and atactic (bottom) vinyl polymers [15].



8.4. Rods, Spirals, and Similarity Symmetry 387

lecture and has been quoted in many other publications ever since.
The labels to characterize the configurations were carefully chosen,
using Greek words. Isos is the same and tasso means to put in order,
hence “isotactic”; syn dyo means every two and combined with refer-
ence to order yields “syndiotactic”; finally “atactic” means lacking
order. The isotactic structure can be imagined as achieved by repe-
tition through simple translation, whereas the syndiotactic structure
by repetition through glide reflection. Usually, these polymers take a
helical structure whose determination was greatly aided by the fact
that, by then, there was a lot of information available about the struc-
ture of the alpha-helix of proteins as well as about the double helix of
nucleic acids.

Biological macromolecules are often distinguished by their helical
structures to which one-dimensional space-group symmetries are
applicable. Figure 8-15a shows Linus Pauling’s sketch of a polypep-
tide chain, which he drew while he was looking for the structure
of alpha-keratin. When he decided to fold the paper, he arrived at
the alpha-helix. The solution may have come in a sudden moment,

(a) (b) 

Figure 8-15. (a) Linus Pauling’s sketch of the polypeptide chain in 1948. The
alpha-helix came together eventually when he folded the paper along the creases
[16]; (b) Computer-drawing of the alpha-helix (courtesy of Ilya Yanov, Jackson,
Mississippi).
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Figure 8-16. Helical segments; Left: isotactic poly-4-methylpentene having 3.5
monomeric units per pitch; Right: alpha-helix having 3.7 amino acid residues per
pitch [17].

but Pauling had been working on the problem on and off for almost
two decades. Figure 8-15b also depicts an alpha-helix structure as a
computer drawing. A segment of one of Natta’s polymers and that of
alpha-helix are given in Figure 8-16. The structure of alpha-helix is
accomplished by intramolecular hydrogen bonds.

When James Watson and Francis Crick reported their suggestion
for the structure of deoxyribonucleic acid (DNA) [18], it had impor-
tant novel features. One was that it had two helical chains, each coiling
around the same axis, but having opposite direction. The two helices
complement each other, which is a simple consequence of the twofold
symmetry of the double helix with the axis of twofold rotation being
perpendicular to the axis of the molecule. The other novel feature was
the manner in which the two chains are held together by the purine
and pyrimidine bases. They wrote: [the bases] “are joined in pairs,
as a single base from one chain being hydrogen-bonded to a single
base from the other chain, so that the two lie side by side with iden-
tical z-coordinates. One of the pair must be purine and the other a
pyrimidine for bonding to occur” [19]. A little later they mention that
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“. . .if the sequence of bases on one chain is given, then the sequence
on the other chain is automatically determined” [20]. Thus, symmetry
and complementarity appear most beautifully in this model. The paper
culminates in a final remark that sounds like a symmetry description
of a simple rule to generate a pattern: “It has not escaped our notice
that the specific pairing we have postulated immediately suggests a
possible copying mechanism for the genetic material” [21].

A diagrammatic sketch of the double helix by Odile Crick illus-
trates this article, whose harmony and proportions have remained
unsurpassed. It is also interesting that when Crick decided to erect a
metallic sculpture above the entrance to his Cambride home, he chose
a single helix rather than a double helix (Figure 8-17). The reason may
have been that the realization of the helical structure of biological
macromolecules was a most important milestone. It was also Crick
and his two colleagues who worked out the theory of diffraction of
the polypeptide (single) helix [22], which was then applicable to the
description of diffraction by any helical structure. In their study, Crick
and his associates assumed a structure that was based on Pauling’s
alpha-helix.

Figure 8-17. Francis Crick’s Golden Helix structure above the entrance to the
Cricks’ former home in Cambridge, UK. (Photograph by the authors).
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We have mentioned above the long quest by Pauling for the struc-
ture of alpha keratin. Symmetry considerations helped him greatly
in finding the solution. At one point he remembered a mathemat-
ical theorem that referred to a general operation that converts an
asymmetric object into another asymmetric object. The asymmetric
object might be an amino acid and the operation was a rotation–
translation—that is, a rotation around an axis combined with a transla-
tion along the axis—and repetition of this operation produces a helix.
This put Pauling onto the right course [23]. Artistic representations of
the double helix are shown in Figure 8-18. The double helix is held
together by the hydrogen bonds of the base pairs in between the two
helices. This is depicted in one of the artistic expressions of the double
helix (Figure 8-18c).

It has been a question of contention whether, and to what extent,
Erwin Chargaff’s findings about the 1:1 ratios of purine and pyrimi-
dine bases in the DNA molecules of diverse organisms helped Watson
and Crick’s discovery [24]. For our discussion it is instructive to
note the importance and relevance of Chargaff’s observation. What
he did was nothing less than the discovery of a pattern where there
seemed to be none. Looking at the raw data and their scatter on the
purine and pyrimidine contents of DNA from various organisms, it
is understandable that Chargaff felt “a great reluctance to accept such

Figure 8-18. Artistic representations of the double helix; (a) Spirals Time—Time
Spirals by Charles A. Jencks; (b and c) Sculpture of the double helix in the lobby
of the Watson School; both sculptures are at Cold Spring Harbor Laboratory, Cold
Spring Harbor, New York (photographs by the authors).
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regularities” [25]. However, at the end, he did, and communicated the
1:1 ratios.

The structure and assembly of the tobacco mosaic virus (TMV) is
an interesting example of helical symmetry. It has a simple rod shape
with a regular helical array of protein molecules and there is a single-
stranded ribonucleic acid molecule embedded in this protein coat. The
model of TMV is shown in Figure 8-19 in two representations. Aaron
Klug called attention to an important difference between ordinary
polymers and biological macromolecules: “The key to biological
specificity is a set of weak interactions. A polymer chemist could start
building the model in the middle or at any other point.” However, for
building a model for a biological macromolecule, it is “important to
find the special sequence for initiating nucleation” [26].

Whereas helical symmetry is characterized by a constant amount of
translation accompanied by a constant amount of rotation, in spiral
symmetry the amounts of translation and rotation change gradually
and regularly. D’Arcy Thompson capitalized this word in his descrip-
tion, “. . .a Spiral is a curve which, starting from a point of origin,

Figure 8-19. Models of the tobacco mosaic virus (TMV) structure; Left: Aaron
Klug with the model at the Laboratory of Molecular Biology, Cambridge, UK
(photograph by the authors); Right: graphical representation of the model (courtesy
of Aaron Klug, Cambridge, UK).
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continually diminishes in curvature as it recedes from that point; or,
in other words, whose radius of curvature continually increases. . .”
[27]. An important difference between helices and rods is that while
helices can only form around rods, spirals may form along a rod or
in a plane and the scattered leaf arrangement and the sunflower seed-
plate may serve as their respective examples. An artistic double spiral
is seen in Figure 8-20 as detail of a sculpture from the garden of a
research institute where structures of biological macromolecules are
investigated.

Interesting chemical examples of spirals occur in systems with
chemical oscillations. Oscillating reactions are often called Belousov–
Zhabotinsky reactions. Boris Belousov communicated his first obser-
vation in an obscure Russian medical publication [28] in the 1950s and
it was followed by Anatol Zhabotinsky’s first systematic studies [29]
in the 1960s. Although the chemical community was slow in catching
up and many viewed the first reports on oscillating reactions with
scepticism, research on nonlinear chemical phenomena has greatly
expanded by now along with research of nonlinear phenomena in

Figure 8-20. Artistic double spiral. Detail of a sculpture in the garden of the
Weizmann Institute, Rehovot, Israel (The Inner Light by Gidon Graetz; photograph
by the authors).
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(a)

(b) (c)

(d) (e)

Figure 8-21. (a) Spiral ring pattern in a reacting Belousov-Zhabotinsky system
[30]; (b) Tombstone in the Jewish cemetery, Prague (photograph by the authors);
(c) Galaxy, courtesy of Bruce Elmegreen, Yorktown Heights, New York [31]; (d)
Nautilus (photograph by and courtesy of Lloyd Kahn, Bolinas, California); (e) Fern
from the Big Island, Hawaii (photograph by the authors).

other fields. Figure 8-21 illustrates the spiral structure in a Belousov–
Zhabotinsky reaction. The two spirals shown make a heterochiral pair,
paralleled by one on a tombstone in Figure 8-21. Spirals abound in
nature. Some examples are shown also in Figure 8-21.

A gradual and regular change in size may appear by itself, that is,
without being part of a spiral. A regular change in size characterizes,
for example, homologous series, such as the alkanes, CnH2n+2,
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. . . C4H10, C5H12, C6H14, C7H16, . . .

with the increment of a methylene group, CH2. Examples from outside
chemistry are shown in Figure 8-22, where, again, it is up to our
imagination to extend the series to infinity. All the spirals above and
the phenomenon of phyllotaxis as well as the homologous series, the
series of railway wheels, and the family of mountain goats can be
considered as examples of similarity symmetry [32]. The mathemat-
ical concept of similarity holds one of the keys to understanding the
processes of growth in the natural world [33]. Similarity symmetry is
a good example of the convenient extension of the symmetry concept.
In addition to the definitions offered in the Introduction, here, we
suggest another one: A pattern is symmetrical if there is a simple rule

Figure 8-22. Examples of similarity symmetry (photographs by the authors). Top:
railway wheels, Foundry Museum, Budapest; Bottom: mountain goats, Budapest
Zoo.
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Figure 8-23. Fractals decorating a book cover [34]. (Computer graphics by and
courtesy of Clifford A. Pickover, Yorktown Heights, New York).

to generate it. According to this inclusive definition, for example,
Mandelbrot’s fractals fall naturally into the realm of symmetry. An
example is shown in Figure 8-23.

8.5. Two-Dimensional Space Groups

There are altogether 17 symmetry classes of one-sided planar
networks. Figure 8-24 illustrates them in a way analogous to the seven
symmetry classes of the one-sided bands (Figs. 8-5 and 8-6). The
most important symmetry elements and the coordinate notations of the
symmetry classes are also given. The first letter (p or c) in this nota-
tion refers to translation. The next three positions carry information
on the presence of various symmetry elements, where m denotes a
symmetry plane, g a glide-reflection plane, and 2, 3, 4, or 6 denotes
a rotation axis. The number 1, or a blank, indicates the absence of
a symmetry element. The representations of the symmetry classes
in Figs. 8-5 and 8-24 were inspired by the illustrations inside the
covers of Buerger’s Elementary Crystallography [35]. Along with the
purely geometrical configurations, Figure 8-24 presents 17 Hungarian
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Figure 8-24. (Continued on next page)
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Figure 8-24. The 17 symmetry classes of one-sided planar networks with the most
important symmetry elements and the notations of the classes indicated. Along with
the geometrical configurations, Hungarian needlework patterns are presented for
illustration. A brief description of the origin of these patterns is given here [36]:

p1 and p4 Patterns of indigo dyed decorations on textiles for clothing. Sellye,
Baranya county, 1899.

p2 Indigo dyed decoration with palmette motif for curtains. Currently very
popular pattern.

p3, p6, p6mm, p3m1, and p31m Decorations with characteristic bird motifs from
peasant vests. Northern Hungary.

pm Decoration with tulip motif for table-cloth. Cross-stitched needlework. From
the turn of the last century.

pmm2 Bed-sheet border decoration with pomegranate motif. Northwest Hungary,
19th century.

p4mm Pillow-slip decoration with stars. Cross-stitched needlework. Transylvania,
19th century.

cm Pillow-slip decoration with peacock tail motif. Cross-stitched needlework.
Much used throughout Hungary around the turn of the last century.

cmm2 Bed-sheet border decoration with cockscomb motif. Cross-stitched needle-
work. Somogy county, 19th century.

pg From a pattern-book of indigo dyed decoration. Pápa, Veszprém county, 1856.
pgg2 Children’s bag decoration. Transylvania, turn of the last century.
pmg2 Pillow-slip decoration with scrolling stem motif. Much used throughout

Hungary around the turn of the last century.
p4gm Blouse-arm embroidery. Bács-Kiskun county, 19th century.
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needlework patterns. A scheme for establishing the symmetry class of
one-sided two-dimensional space groups is given in Figure 8-25.

The lattice of the planar networks with two-dimensional space
groups is defined by two noncollinear translations. Such a lattice is
shown in Figure 8-26a. Given a particular lattice, the question is,
which pair of translations should be selected to describe it? An infinite
number of choices exists for each translation because a line joining
any two lattice points is a translation of the lattice. Figure 8-26b shows
a plane lattice and some of the possible choices for translation pairs
to describe it. A primitive cell is defined by choices of translation
pairs such as t1and t2 or t3 and t4. Only one lattice point is associated
with each primitive cell. This is understood if each lattice point in
Figure 8-26 is considered to belong to four adjacent cells, or only one
fourth of each point to belong to any one cell. As each cell contains
four corners, all this adds up to one whole point. Alternatively, by
displacing any one primitive cell, each primitive cell will contain only
one lattice point. On the other hand, a multiple cell contains one or
more lattice points in addition to the one shared at the corners. The
translation pair t5 and t6, for instance, defı̀nes a double cell. A cell is
called a unit cell if the entire lattice can be derived from it by trans-
lations. Thus, a unit cell may be either primitive or multiple. The unit
cell is chosen usually to represent best the symmetry of the lattice.
The translations selected as the edges of the plane unit cell are a and
b, and for a space lattice, a, b, and c. The latter are called the crystallo-
graphic axes. The angles between the edges of the three-dimensional
unit cell are �, 	, and �, but only � is needed for the plane lattice.

Figure 8-27 shows three planar networks based on the same plane
lattice. Two and only two lines intersect in each point of all three
networks. Accordingly, the parallelograms of all three networks have
the same area. All of them are unit cells, in fact, primitive cells. Each
of these parallelograms is determined by two sides a and b, and the
angle � between them. These are called the cell parameters.

The general plane lattice (a) shown in Figure 8-28 is called a paral-
lelogram lattice. The other four plane lattices of Figure 8-28 are
special cases of the general lattice. The rectangular lattice (b) has a
primitive cell with unequal sides. The so-called diamond lattice (c)
has a unit cell with equal sides. A special case of the diamond lattice is
when the angle between the equal sides of the unit cell is 120 degrees,
and this lattice (d) is then called rhombic, or triangular since the short
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Figure 8-25. Scheme for establishing the symmetry of planar networks after
Crowe [37].
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Figure 8-26. (a) Plane lattice defined by two non-collinear translations; (b) Illus-
tration of primitive and unit cells on a plane lattice (after Azaroff, [38] used with
permission from McGraw-Hill and L. V. Azaroff).

Figure 8-27. Different networks based on the same plane lattice.

Figure 8-28. The five unique plane lattices (a–e, see text).
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Table 8-2. Symmetries of the Five Unique Plane Lattices

Space group

Lattice Noncoordinate
notation

Coordinate
(international) notation

a) Parallelogram lattice (b/a):2 p2
b) Rectangular lattice (b:a):2·m pmm2
c) Diamond lattice (a/a):2·m cmm2
d) Hexagonal or triangular lattice (a/a):6·m p6mm
e) Square lattice (a:a):4·m p4mm

cell diagonal divides the unit cell into two equilateral triangles. This
lattice may also be considered as having hexagonal symmetry. Finally
there is the square lattice (e).

The five unique plane lattices were described above under the
assumption that the lattice points themselves have the highest possible
symmetry. In this case these five unique lattices will have the symme-
tries listed in Table 8-2.

When the point-group symmetries are combined with the plane
lattices, 17 two-dimensional space groups can be produced. In such
treatment, severe limitations are imposed on the possible point groups
that may be combined with lattices to produce space groups. Some
symmetry elements, such as the fivefold rotation axis, are not compat-
ible with translational symmetry and from this, forbidden symmetries
follow in classical crystallography. This and the lifting of such limita-
tions in modern crystallography will be examined in Chapter 9.

8.5.1. Simple Networks

The simplest two-dimensional space group is represented in four vari-
ations in Figure 8-29. This space group does not impose any restric-
tions on the parameters a, b, and �. The equal motifs repeated by
the translations may occur in the following four different versions
(strating from the upper left and clockwise): they may be completely
separated from one another; they may consist of disconnected parts;
they may intersect each other and; finally, they may fill the entire plane
without gaps and overlaps. Of course, such variations are possible for
any of the more complicated two-dimensional space groups as well.
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Figure 8-29. The simplest two-dimensional space group in four variations.

Especially intriguing are those variations which cover the whole
available surface without gaps. Of the regular polygons, this is
possible only with the equilateral triangle, the square, and the
regular hexagon. For the latter, characteristic examples are shown in
Figure 8-30 including some in which the hexagons have only approx-
imately regular shapes.

Planar motifs of irregular shape can be used in infinite numbers
to construct planar patterns covering the entire available surface.
M. C. Escher is famous—among others— for his periodic drawings
which fill the plane without gaps and overlaps [39]. Their symmetry
aspects have been discussed in detail by crystallographer Caroline
MacGillavry. She worked closely with the artist to create a set of
periodic drawings for instructions in crystallography. The patterns in
Figure 8-31 are from her book [40]. One of them has p1 symmetry.
The unit cell is the combination of a fish and a boat. The repetition of
the flies, butterflies, falcons, and bats in the Escher drawing, also in
Figure 8-31, is accomplished by mirror planes. The two-dimensional
space group is pmm and the mirror planes are indicated separately as
the borders of the primitive cell.

Canadian crystallographer François Brisse has designed a series
of two-dimensional space-group drawings related to Canada and
dedicated to the XIIth Congress of the International Union of Crys-
tallography (IUCr), Ottawa, 1981 [44]. One of them is shown in
Figure 8-32. The symbol of the XIIth IUCr Congress was a unit of
four stylized maple leaves related by fourfold rotation, and this is the
unit cell of the drawing. The maple leaf, Canada’s symbol, is shown
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(a) (b)

(c) (d)

Figure 8-30. Networks of regular hexagons covering the surface without gaps
or overlaps. (a) Honeycomb. Photograph by and courtesy of Pál Zoltán Örösi,
Budapest; (b) Moth compound eye (magnified x 2000). Photograph by and courtesy
of J. Morral, Storrs, Connecticut; (c) Computer-generated graphene-sheet model;
(d) Graphite-sheet-like window fence at Topkapi Sarayi in Istanbul (photograph by
the authors).
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Figure 8-31. Top: Caroline H. McGillavry [41] and one of M. C. Escher’s periodic
drawings, of fish and boats with space group p1 [42] (reproduced with permission
from the International Union of Crystallography). The unit cell consists of one fish
and one boat; Bottom: Another of Escher’s periodic drawings, of flies, butterflies,
falcons and bats [43] (reproduced with permission from the International Union of
Crystallography). The primitive cell is framed by the square whose sides are parts
of the mirror planes in the periodic drawing.

in a more natural appearance on a stamp. Disregarding the coloring,
the two-dimensional space group of the pattern is p4gm, the same as
that of the Portugese tile decoration in Figure 8-32.

Khudu Mamedov was another crystallographer who created peri-
odic drawings. His purpose was to immortalize ancient patterns found
in his native Azerbaijan. He and his pupils published a remark-
able little book Decorations Remember [46]. The space group of the
drawing Unity of Figure 8-33 is pl, with the basic motif consisting of
an old man and a young warrior. The repetition of the uniform shapes
truly satisfies the requirement of it being a two-dimensional space
group. A closer look, however, reveals distinct individuality of facial
expressions, especially for the old men. This diversity of the individ-
uals in the uniformity of the space goup is refreshing. Mamedov’s
former associates recently published a renewed version [47] of the
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(c) (d)

(a) (b)

Figure 8-32. (a) Periodic drawing by François Brisse [45] (reproduced with permis-
sion); (b) The basic motif is a stylized maple leaf and the unit cell displays fourfold
rotation; it was the symbol of the XIIth Congress of the International Union of
Crystallography, Ottawa, 1981; (c) Canadian stamp with the maple leaf; and (d) A
Portugese tile decoration (photograph by the authors). The patterns in the tile and in
Brisse’s drawing are related by a quarter of a circle rotation.

old book. The volume is luxuriously produced and many new patterns
have been added. However, this time computer graphics replaced the
original hand-drawings and the diversity of individuality is gone in
the new version of Unity [48].

The mathematician George Pólya prepared a set of drawings for the
17 two-dimensional space groups with patterns that completely fill the
surface without gaps or overlaps (Figure 8-34) [50]. A comprehen-
sive and in-depth treatise of tilings and patterns has been published by
Grünbaum and Shephard [51].
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Figure 8-33. Khudu Mamedov’s periodic drawing Unity [49].

8.5.2. Side-Effects of Decorations

Shubnikov and Koptsik analyzed the influence of the various space
groups of bands and networks on people’s perception of movement
[53]. A one-sided band decoration without a polar axis induces no
feeling of movement (see, e.g., Figure 8-4b). On the other hand,
bands with polar axes (an example is shown in Figure 8-4a) convey
the impression as if inducing left-bound or right-bound motion. A
further pattern of band decoration with no symmetry plane is shown in
Figure 8-35. A symmetry plane conveys the impression of preventing
motion perpendicular to it. They are supposed to induce calmness
and thus may be recommended for decorating the walls of halls for
serious meetings. On the other hand, the walls of dancing halls should
probably be decorated with patterns of rotational symmetry only. Two
wall decorations, both from the Alhambra so rich in such patterns, are
shown in Figure 8-36. The pattern of the Escher-like airline adver-
tisement in Figure 8-37 conveys a strong feeling of motion, both left-
bound and right-bound. There are no symmetry planes “preventing”
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Figure 8-34. The 17 two-dimensional plane groups by George Pólya [52].

Figure 8-35. Ancient band decoration in the Tarxien Temple in Malta, from 3600–
2500 BCE, with no symmetry planes induces the feeling of motion (photograph by
the authors).
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Figure 8-36. Wall decorations with symmetry planes (left) and without (right) in
the Alhambra, Granada, Spain (photographs by the authors).

Figure 8-37. Airline advertisement near O’Hare Airport, Chicago (photograph by
the authors).

left-bond or right-bound motion. The effects are enhanced by the
different coloring of the birds flying in opposite directions. Up and
down motion is perceived as if being hindered; there seem to be hori-
zontal symmetry planes (although they are approximate only, due
to the birds’ tails of the same color tilting in one direction, that is,
nonsymmetrically).

8.5.3. Moirés

The so-called Moiré patterns are created by superimposing infi-
nite planar patterns. The resulting pattern is a new two-dimensional
network. The simplest cases are illustrated in Figure 8-38. Consider
first two identical systems of lines on transparent paper being super-
imposed. The starting and resulting systems have a period of λ and d,
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Figure 8-38. Moiré patterns from the superposition of two patterns at increasing
angles. Top: two line systems; Bottom: two circle systems [54].

respectively and they are superimposed at an angle �. These parame-
ters have the following relationship:

λ = 2d sin(�/2).

This expression is well known as the Bragg law in X-ray diffraction
of crystals, where λ is the wave length of the X-rays, d is the distance
between atomic layers in the crystal, and �/2 is the angle at which the
X-rays hit the atomic layer. The patterns produced in Figure 8-38 have
twofold rotation axes perpendicular to their plane. Thus the superpo-
sition at angle � will produce the same result as at angles 180 + �.
Figure 8-38 (bottom) shows the interference of two identical infinite
systems of small circles at two different angles.
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Moirés patterns occur in the most diverse natural phenomena and
often occure in artistic creations as well [55]. They can be treated by
fairly simple mathematics [56].
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50. G. Pólya, “Über die Analogie der Kristallsymmetrie in der Ebene.” Z. Krist.

1924, 60, 278–282.
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Chapter 9

Crystals

...all the works of the crystallographers

...demonstrate that there is only variety
everywhere where they suppose uniformity...

Georges Leclerc [Comte de] Buffon [1]

... But I must speak again about crystals, shapes,
colors. There are crystals as huge as the colonnade
of a cathedral, soft as mould, prickly as thorns;
pure, azure, green, like nothing else in the world,
fiery black; mathematically exact, complete, like
constructions by crazy, capricious scientists, or
reminiscent of the liver, the heart ... There are
crystal grottos, monstrous bubbles of mineral mass,
there is fermentation, fusion, growth of minerals,
architecture and engineering art ... Even in human
life there is a hidden force towards crystalliza-
tion. Egypt crystallizes in pyramids and obelisks,
Greece in columns; the middle ages in vials;
London in grinny cubes ... Like secret mathe-
matical flashes of lightning the countless laws of
construction penetrate the matter. To equal nature
it is necessary to be mathematically and geomet-
rically exact. Number and phantasy, law and
abundance—these are the living, creative strengths
of nature; not to sit under a green tree but to create
crystals and to form ideas, that is what it means to
be at one with nature!

M. Hargittai, I. Hargittai, Symmetry through the Eyes of a Chemist, 3rd ed.,
DOI: 10.1007/978-1-4020-5628-4 9, C© Springer Science+Business Media B.V. 2009
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These are the words of Karel Čapek the Czech writer after his
visit to the mineral collection of the British Museum [2]. He added
a drawing (Figure 9-1) to his words to express his humility in front of
these miracles of nature. Figure 9-2 displays crystal images from the
mineral collection of Eötvös University, Budapest.

Figure 9-1. Karel Čapek’s drawing after his visit to the mineral collection of the
British Museum (reproduced with permission) [3].

The word crystal comes from the Greek krystallos, meaning clear
ice. The name originated from the mistaken belief that the beautiful
transparent quartz stones found in the Alps were formed from water
at extremely low temperatures. By the 18th century, the name crystal
was applied to other solids that were also bounded by many flat faces
and had generally beautiful symmetrical shapes. Crystals have also
been considered to be mystical. A sad angel looks hopelessly at the
huge polyhedron in Albrecht Dürer’s Melancholia, which is a trun-
cated rhombohedron (Figure 9-3). There has been some discussion as
to whether Dürer meant a particular mineral by it and, if so, which
one. It was concluded that this polyhedron “is simply an exercise in
accurate draughtsmanship and that the art historians have made rather
heavy weather of its explanation ... The integral proportions show that
no particular mineral was intended” [4]. The polyhedron was even
given a name, melancholyhedron and has been claimed to be formed
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(a) (b) (c)

(d) (e)

Figure 9-2. Crystals (a–c, e) Photographs by and courtesy of the associates of the
Mineral Collection of Eötvös University, Budapest; (d) Photograph by the authors
from the collection of Aldo Domenicano and Anna Rita Campanelli, Rome.

by twelve arsenic atoms around a nickel atom in the solid-state struc-
ture of nickel arsenide [5].

Space-group symmetries have played an outstanding role in
Escher’s graphic art. So what he wrote about crystals is also of
interest [7]:

Long before there were men on this globe, all
the crystals grew within the earth’s crust. Then
came a day when, for the very first time, a human
being perceived one of these glittering fragments
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Figure 9-3. The polyhedral arsenic skeleton in the NiAs crystal, resembling the
polyhedron in Dürer’s Melancholia [6].

of regularity; or maybe he struck against it with his
stone ax; it broke away and fell at his feet; then he
picked it up and gazed at it lying there in his open
hand. And he marveled.

There is something breathtaking about the basic
laws of crystals. They are in no sense a discovery of
the human mind; they just “are”—they exist quite
independently of us. The most that man can do is
to become aware, in a moment of clarity, that they
are there, and take cognizance of them.

The symmetry of the shapes of the crystals is their most easily
recognizable feature. The Russian crystallographer E. S. Fedorov

Figure 9-4. Different shapes of sodium chloride crystals as a consequence of the
influence of impurities.
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remarked that “the crystals glitter with their symmetry.” Obviously,
this outer symmetry is a consequence of the inner structure. However,
with the same inner structure, crystals may grow into different forms.
Besides, under natural conditions, crystals seldom grow into their
well-known regular forms. Under different conditions, in the pres-
ence of different impurities, for example, different forms may grow.
Figure 9-4 shows the influence of impurities upon the form of sodium
chloride crystals.

9.1. Basic Laws

It has been recognized already in the earliest stages in the history of
crystallography [8] that the most important characteristic of the outer
symmetry of the crystals is not really the form itself but rather two
phenomena expressed by two rules. One is the constancy of the angles
made by the crystal faces. The other is the law of rational intercepts
or the law of rational indices.

As early as 1669 the Danish crystallographer Steno made a detailed
study of ideal and distorted quartz crystals (Figure 9-5). He traced
their outlines on paper and found that the corresponding angles of
different sections were always the same regardless of the actual sizes
and shapes of the sections. Thus, all quartz crystals, however much
distorted from the ideal, could result from the same fundamental mode
of growth and, accordingly, corresponded to the same inner structure.

Instruments were developed to measure the angles made by the
crystal faces. In 1780 the contact goniometer, Figure 9-6a, was already
in usage. Later, for more precise measurement of the interfacial
angles, the reflecting goniometer was introduced (Figure 9-6b).

Another interesting phenomenon observed early in crystals is their
cleavage. It is characteristic that they break along well-defined planes.

Figure 9-5. Sections of ideal and distorted quartz crystals.
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(a)

(b)

Figure 9-6. Goniometers; (a) Contact goniometer from Haüy [9]; (b) Scheme of
reflecting goniometer.

Haüy noticed that the cleavage rhombs from any calcite crystal always
had the same interfacial angles. Thus, he suggested that all calcite
crystals could be built of these fundamental cleavage rhombs. This
is illustrated in Figure 9-7 which is from Haüy’s Traité de Cristal-
lographie [10]. From the units shown in Figure 9-7, it is possible to
build straight edges corresponding to the faces of a cube, as well as
inclined edges corresponding to the faces of an octahedron. Edges
inclined at other edges may also be built. Let the dimensions of the
cleavage unit be a and b (Figure 9-8); then tan Θ1 = b/a and tan Θ2 =
b/2a, and generally tanΘ = mb/na, where m and n are rational inte-
gers. By extension into the third dimension, we may have a reference
face making intercepts a, b, c on three axes. The intercepts made by
any other face must be in proportion of rational multiples of these
intercepts. This is called the law of rational intercepts.



9.1. Basic Laws 419

(a)

(b)

Figure 9-7. Cleavage rhombs and the stacking of cleavage rhombs from Haüy [11].
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Figure 9-8. Inclined edges from cleavage units and illustration for the law of
rational intercepts.

Usually the crystal faces are described by the reciprocals of the
multiples of the standard intercepts, hence the name “the law of
rational indices.” In Figure 9-8 three lines are adopted as axes which
may also be directions of the crystal edges. A reference face ABC
makes intercepts a, b, c on these axes. Another face of the crystal,
e.g., DEC, can be defined by intercepts a/h, b/k, c/l. Here h, k, l are
simple rational numbers or zero. They are called Miller indices. The
intercept is infinite if a face is parallel to an axis, and h or k or l will be
zero. For orthogonal axes the indices of the faces of a cube are (100),
(010), and (001). The indices of the face DEC in Figure 9-8 are (231).

The simple cleavage model of Haüy indeed revealed a lot about the
structure of crystals. However, it was not generally applicable since
cleavages do not always lead to cleavage forms that can necessarily fill
space by repetition, and, as is known, there are only a limited number
of space-filling polyhedra.

The characterization of the regularities in the outer form of the crys-
tals has led to the recognition of three-dimensional periodicity in their
inner structure. This was long before the possibility of determining
the atomic arrangements in crystals by diffraction techniques had
materialized.
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It was 200 years before Dalton and 300 years before X-ray crystal-
lography that Kepler discussed the atomic arrangement in crystals. In
his Strena seu de nive sexangula he presented arrangements of close-
packed spheres [12]. These are reproduced in Figure 9-9. Inciden-
tally, close packing of spheres was invoked and illustrated in Dalton’s
works (Figure 9-10) in relation to gas absorption [13]. A close-packed
arrangement of cannon balls expressing close packing is shown in
Figure 9-11. The fundamental importance of Kepler’s idea is that he
correlated, for the first time, the external forms of solids with their
inner structure. Kepler’s search for harmonious proportions is the
bridge between his epoch-making discoveries in heavenly mechanics
and his less widely known but similarly seminal ideas in what is called
today crystallography. As Schneer has remarked [14], the renaissance
era has provided a stimulating background for the beginnings of the
science of crystals.

It is to be noted that even after the discovery of Haüy’s model, atten-
tion was focused on the packing in crystals. The aim was to find those
arrangements in space that are consistent with the properties of the
crystals.

The symmetry of the form of the crystal is a consequence of its
structure. The same high symmetry of the form, however, may be
easily achieved for a piece of glass by artificial mechanical interven-
tion. By acquiring the same outer form, as is typical for a piece of
diamond, the piece of glass will not acquire all the other properties

Figure 9-9. Closely packed spheres by Kepler [15].
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Figure 9-10. Closely packed spheres by Dalton [16].

that the diamond possesses. The difference in value has long ago been
recognized. In the India of the sixth century portrayed by Kama Sutra
of Vatsayana, one of the arts which a courtesan had to learn was miner-
alogy. If she were paid in precious stones, she had to be able to distin-
guish real crystals from paste [17].

It is primarily the structure, and, accordingly, the outer and
inner symmetry properties of the crystal, that determines its many
outstanding physical properties. The mechanical, electrical, magnetic,
and optical properties of crystals are all in close conjunction with their
symmetry properties [18].

Figure 9-11. Arrangements of close packing: Cannon balls in the Castel Sant’
Angelo in Rome (photograph by the authors).
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In an actual crystal the atoms are in permanent motion. However,
this motion is much more restricted than that in liquids, let alone
gases. As the nuclei of the atoms are much smaller and heavier than
the electron clouds, their motion can be well described by small vibra-
tions about the equilibrium positions. In our discussion of crystal
symmetry, as an approximation, the structures will be regarded as
rigid. However, in modern crystal molecular structure determination
atomic motion must be considered [19]. Both the techniques of struc-
ture determination and the interpretation of the results must include
the consequences of the motion of atoms in the crystal.

9.2. The 32 Crystal Groups

Although the word crystal in its every-day usage is almost synony-
mous with symmetry, in classical crystallography there are severe
restrictions on crystal symmetry. While there are no restrictions in
principle for the number of symmetry classes of molecules, this is not
so for the crystals. All crystals, as regards their form, belong to one
or another of only 32 symmetry classes. They are also called the 32
crystal point groups. Figures 9-12 and 9-13 show them by examples
of actual minerals and by stereographic projections with symmetry
elements, respectively.

Stereographic projection starts by representing the crystal through a
set of lines perpendicular to its faces. The introduction of this method
of representation followed soon after the invention of the reflecting
goniometer. Let us place the crystal in the center of a sphere and
extend its face normals to meet the surface of the sphere as seen in
Figure 9-14a. A set of points will occur on the surface of the sphere
representing the faces of the crystal. Join now all the points in the
northern hemisphere to the South Pole, and mark the points on the
equatorial plane where these connecting lines intersect this plane.
This will create a representation of the faces on the upper half of the
crystal within a single circle as seen in Figure 9-14b. Performing a
similar operation for the points of the equator (Figure 14-c) and for
the points in the southern hemisphere (Figure 14-d), we arrive at the
representation of the whole crystal within the circle (Figure 14-e). The
points from the northern hemisphere are marked by dots, and those
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Figure 9-12. Representation of the 32 crystal point groups by actual minerals (after
Buerger; Dana; and Zorky) [20].

from the southern hemisphere by small circles. Some examples for
simple polyhedra are shown in Figure 9-15.

9.3. Restrictions

The restrictions we discuss in this Section are valid for classical crys-
tallography, but are no longer so in a broader domain of science about
crystals, called often generalized crystallography. Our discussion will
consider the broadening meaning of crystallography with emphasis on
the discovery of the so-called quasicrystals. However, it is instructive
to examine the origins of the restrictions in classical crystallography.
To have 32 symmetry classes for the external forms of crystals is a
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Figure 9-13. Representation of the 32 crystal point groups by stereographic
projections.

definite restriction, and it is the consequence of periodicity in the inner
structure. The translation periodicity limits the symmetry elements
that may be present in a crystal. The most striking limitation is the
absence of fivefold rotation. Consider, for example, planar networks
of regular polygons (Figure 9-16). Those with threefold, fourfold, and
sixfold symmetry cover the available surface without any gaps, while
those with fivefold, sevenfold, and eightfold symmetry leave gaps on
the surface. Figure 9-17 presents a planar network of octagons. It is
evident that the regular octagons cannot cover the surface without
gaps, and there are smaller squares among the octagons.

Let us examine now the possible types of symmetry axes in space
groups [22]. Figure 9-18 shows a lattice row with a period t. An n-fold



426 9 Crystals

Figure 9-14. The preparation of stereographic representation.

rotation axis, Cn, is placed in each lattice point. Since n rotations, each
by an angle �, must lead to superposition, it does not matter in which
direction the rotations are performed. Two rotations by � about two
axes but in opposite directions are shown in Figure 9-18. The two new
lattice points produced this way are labeled p and q. These two new
points are equidistant from the original row, and hence the line joining
them is parallel to the original lattice row. The length of the parallel
line joining p and q must be equal to some integer multiple m of the
period t. Were it not, then the line joining the two new lattice points p
and q would not be a translation of the lattice and the resulting array
would not be periodic.
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Figure 9-15. Representation of simple highly symmetrical shapes: (a) Cube;
(b) Tetrahedron; (c) Octahedron; (d) Rhombic dodecahedron.

Using Figure 9-18, it is possible to determine the possible values
that the rotation angle � can have in the lattice,

mt = t + 2t cos� m = 0, ±1,±2,±3, . . .

where +m or −m is taken depending on the direction of the rotation:

Figure 9-16. Planar networks of regular polygons with up to eight-fold symmetry.
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Figure 9-17. Octagonal planar network: Hungarian needlework [21].

Figure 9-18. Illustration to the determination of the possible throws that rotation
axes can have in space groups. After Azaroff [23]; Copyright (1960) McGraw-Hill,
Inc.; used with permission.

cos � = m − 1

2

Only the solutions corresponding to the range

−1 ≤ cos � ≤ 1

need be considered, and these are shown in Table 9-1. Five solu-
tions are possible, and, accordingly, only five kinds of rotation axes
are compatible with a lattice. Thus, not only fivefold symmetry is
not allowed in crystal structures in classical crystallography, but all
periods larger than six are impossible. Naturally, this applies to the
planar networks as well.
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Table 9-1. Allowed Rotation Axes n in a Lattice

Possible values of m − 1 cos � �(◦) n

–2 −1 180 2
–1 − 1

2 120 3
0 0 90 4

+1 + 1
2 60 6

+2 +1 360 or 0 1

The permissible periods of mirror-rotation axes have the same limi-
tations as those of the proper rotation axes.

Let us examine now the limitations on the screw axes. In a lattice
the screw axes must be parallel to a translation direction. After n rota-
tions by an angle � and n translations by the distance T, that is, after
n translations along the screw axis, the total amount of translation
distance in the direction of this axis must be equal to some multiple
of the lattice translation mt,

nT = mt

where n and m are integers. Rearranging this equation,

T = mt

n
,

where m, of course, may be 0, 1, 2, 3, etc., but n may only be 1, 2, 3,
4, or 6. It is then possible to determine the permissible values of the
pitch of the screw axes in lattices. They are summarized in Table 9-2,
taking also into consideration that (3/2)t = t + (1/2)t, (5/4)t = t + (1/4)t,
etc. There are only eleven screw axes that are allowed in a lattice, nm,
according to Table 9-2. The subscript in the notation is the m of the
expression T = (mt)/n. The proper rotation axes may be considered
to be special cases of the screw axes, with m = 0 and m = n. The 11
screw axes are shown in perspective in Figure 9-19. It is seen there that
some pairs are identical except for the direction of the screw motion.
Such screw axes are enantiomorphous. The enantiomorphous screw
axis pairs are the following:

31 and 32

41 and 43

61 and 65

62 and 64.
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Table 9-2. Possible Values of the Pitch T of an n-Fold Screw Axis

A. Possible values of T
n = 1 0t, 1t, 2t, . . .
n = 2 0t, (1/2)t, (2/2)t, (3/2)t, . . .
n = 3 0t, (1/3)t, (2/3)t, (3/3)t, (4/3)t, . . .
n = 4 0t, (1/4)t, (2/4)t, (3/4)t, (4/4)t, (5/4)t, . . .
n = 6 0t, (1/6)t, (2/6)t, (3/6)t, (4/6)t, (5/6)t, (6/6)t, (7/6)t, . . .

B. Possible values of T (redundancies eliminated)
n = 1
n = 2 (1/2)t,
n = 3 (1/3)t, (2/3)t
n = 4 (1/4)t, (2/4)t, (3/4)t
n = 6 (1/6)t, (2/6)t, (3/6)t, (4/6)t, (5/6)t

C. Notation of screw axes in a lattice
n = 2 21

n = 3 31 32

n = 4 41 42 43

n = 6 61 62 63 64 65
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Figure 9-19. The eleven screw axes. The simple twofold, threefold, fourfold and
sixfold axes are also shown for completeness. After Azaroff [24]; copyright (1960)
McGraw-Hill, Inc.; used with permission.
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Table 9-3. Possible Glide Planes

Glide type Symbol Translation component

Axial a a/2
Axial b b/2
Axial c c/2
Diagonal n a/2 + b/2; b/2 + c/2; or c/2 + a/2
Diamonda d a/4 + b/4; b/4 + c/4; or c/4 + a/4
aTranslation component is one-half of the true translation along the face diagonal
of a centered plane lattice.

Finally, the only remaining symmetry element is considered, the
glide-reflection plane. It causes glide reflection as a result of reflection
and translation. The translation component T of a glide plane is one-
half of the normal translation of the lattice in the direction of the glide.
A glide along the a axis is T = (1/2)a and this is called an a glide.
Similarly, a diagonal glide can have T = (1/2)a + (1/2)c. The different
possible glides are summarized in Table 9-3.

The fact that the crystal has a lattice framework imposes strict limi-
tations on the symmetry of its outer form. On the other hand, the ques-
tion arises as to whether it is possible to derive any information about
the crystal lattice from the knowledge of the symmetry of its outer
form.

The 32 crystal point groups can be classified by symmetry criteria.
They are usually grouped according to the highest ranking rotation
axis that they contain. The resulting groups are called crystal systems.
There are altogether seven of them and they are listed in Table 9-4.
The crystal point groups have to be combined with all possible space
lattices in order to produce the space groups.

9.4. The 230 Space Groups

There are 14 infinite lattices, called Bravais lattices, in three-
dimensional space. They are shown in Figure 9-20. These lattices
are the analogs of the five infinite lattices in two-dimensional space
(Figure 8-28). The Bravais lattices are presented as systems of points
at vertices of parallelepipeds. The corresponding parallelepipeds are
capable of filling space without gaps or overlap. The representation
of the lattices by systems of points is especially useful as it makes
it possible to join the lattice points in any desired way conforming
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Table 9-4. Characterization of Crystal Systems

System Minimal symmetry (diagnostic
symmetry elements)

Relations between edges and
angles of unit cell

Lattice type Numbering in
Figure 20

Triclinic 1 (or 1) a �= b �= c P 1
� �= 	 �= � �= 90◦

Monoclinic 2 (or 2) a �= b �= c P 2
� = � = 90◦ �= 	 C (or A) 3

Orthorhombic 222 (or 222) a �= b �= c P 4
� = 	 = � = 90◦ C(or B or A) 5

I 6
F 7

Trigonal 3 (3) a = b = c R 8
(rhombohedral) � = 	 = � �= 90◦

Hexagonal 6 (6) a = b �= c P 9
� = 	 = 90◦, � = 120◦

Tetragonal 4 (or 4) a = b �= c P 10
� = 	 = � = 90◦ I 11

Cubic Four 3 (or 3) a = b = c P 12
� = 	 = � = 90◦ I 13

F 14
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Figure 9-20. The 14 Bravais lattices.

with the symmetry requirements. In this way, not only the original
parallelepipedal forms but any other possible figures may be used as
building units for the space lattice.

The 14 Bravais lattices are enumerated in Table 9-4 as the following
types: primitive (P, R), side-centered (C), face-centered (F), and body-
centered (I). The numbering of the Bravais lattices in Table 9-4
corresponds to that in Figure 9-20. The lattice parameters are also
enumerated in the table. In addition, the distribution of lattice types
among the crystal systems is shown.

The actual infinite lattices are obtained by parallel translations of
the Bravais lattices as unit cells. Some Bravais cells are also prim-
itive cells, others are not. For example, the body-centered cube is a
unit cell but not a primitive cell. The primitive cell in this case is an
oblique parallelepiped constructed by using as edges the three directed
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segments connecting the body center with three nonadjacent vertices
of the cube.

The three-dimensional space groups are produced by combining
the 32 crystallographic point groups with the Bravais lattices. Since
the symmetry elements in a space lattice can have translation compo-
nents, indeed not only the 32 groups but also the analogous groups,
which have screw axes and glide planes, have to be considered. There
are altogether 230 three-dimensional space groups! Their complete
description can be found in Volume A of the International Tables for
Crystallography [25]. Only a few examples are discussed here.

There are only two combinations possible for the triclinic system.
They are named P1 and P1. For the monoclinic system three point
groups are to be considered and two lattice types. Combining P and
I lattices, on one hand, and point group 2 and symmetry 21 on the
other hand, the four possible combinations are P2, P21, I2, and I21.
The latter two, however, are equivalent; only their origins differ.

The description of the symmetry elements of the space groups is
similar to that of the point groups [26]. The main difference is that
the order by which the symmetry elements of the space groups are
listed may be of great importance, except for the triclinic system.
The order of the symmetry elements expresses their relative orien-
tation in space with respect to the three crystallographic axes. For
the monoclinic system, the unique axis may be the c or the b axis.
For the P2 space group, the complete symbol may be P112 or P121.
The ordering of symbols for the orthorhombic system is especially
important. The symmetry elements are usually listed in the order abc.
The space groups which belong to the crystal class 2mm are properly
presented as Pmm2, c being the unique axis.

In the tetragonal system, the c axis is the fourfold axis. The
sequence for listing the symmetry elements is c, a, [110], since the
two crystallographic axes orthogonal to c are equivalent. For example,
the three-dimensional space group notation P4m2 has the following
meaning: the unique axis in a primitive tetragonal lattice is a 4
axis, the two a 4 axes are parallel to m, and the [110] direction has
twofold symmetry. A similar sequence is used for listing the symmetry
elements of the hexagonal system, for which the c axis again is the
unique axis and the other two are equivalent. P denotes the primitive
hexagonal lattice while R denotes the centered hexagonal lattice in
which the primitive rhombohedral cell is chosen as the unit cell.



436 9 Crystals

All three crystallographic axes are equivalent in the cubic system.
The order of listing the symmetry elements is a, [111], [110]. When
the number 3 appears in the second position, it merely serves to distin-
guish the cubic system from the hexagonal one.

It may be of interest to add some new symmetry to a group or to
decrease its symmetry and examine the consequences. If the addi-
tion produces a new group, it is called a supergroup of the original
group. If eliminating symmetry leads to a new group, it is usually a
subgroup of the original one. For example, the point group 1 is obvi-
ously a subgroup of all the other 31 groups as it has the lowest possible
symmetry. On the other hand, the highest symmetry cubic group can
have no supergroups.

It is important to distinguish between the symmetry of the lattice
and the symmetry of the actual building elements of the crystal—
the atoms, ions, or molecules. In the illustration of Figure 9-21 the
lattice positions are occupied by spheres which have the highest
possible symmetry, while there is no discernible symmetry of the
lattice. However, the building elements have usually lower symme-
tries, especially in molecular crystals. There is a common misconcep-
tion about the difference between the crystal and its lattice. A crystal
is an array of units (atoms, ions, or molecules) in which a structural
motif is repeated in three dimensions. A lattice is an array of points,
and every point has the same environment of points in the same orien-
tation. Each crystal has an associated lattice, whose origin and basis
vectors can be chosen in various ways. Accordingly, for example, it

Figure 9-21. Artistic expression of atomic arrangement in an extended structure.
Sculpture Cosmonergy by Kawan-Mo Chung in downtown Seoul (photograph by
the authors).
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would be improper to speak about “interpenetrating lattices,” while it
is correct to talk about interpenetrating arrays of atoms [27].

The system of the 230 three-dimensional space groups was estab-
lished a long time ago, well before X-ray diffraction could have been
applied to the determination of crystal structure. These 230 three-
dimensional space groups were derived in their entirety by Fedorov,
Schoenflies, and Barlow working independently at the end of the 19th
century, and it will always be considered a great scientific feat. The
amateur Barlow considered oriented motifs; his method was hanging
pairs of gloves on a rack to make space group models. It was a truly
empirical approach. “He bought gloves by the gross, so the story goes,
mystifying the sales lady by answering ‘I don’t care’ to her first ques-
tion, ‘What size sir?’ ” [28].

An interesting statistical test was performed concerning the total
number of three-dimensional space groups some time in the mid-
1960s [29]. It was a uniquely appropriate point in the history of
crystallography for such a test: Already a large number of crystal
structures had been determined, but examples of all the space groups
had not yet been found among the actual crystals. The total number of
three-dimensional space groups had long before been firmly estab-
lished. Thus, the test was considered as much to be a check of
the applied statistical method as to be a source of crystallographic
information. Although there are 230 space groups, not all of them
are in practice distinguishable. So 11 enantiomorphous groups were
excluded from the count as were two more groups for other reasons.
Thus, the number of space groups to be considered was 217. The
3782 crystal structures that were reviewed showed a wide variation in
the frequency of occurrence of the different space groups. One group
occurred 355 times, while 33 groups occurred only once each. It was
also interesting that only 178 groups out of the total of 217 occurred.
Based on the available data of the distribution of the space groups
among the determined structures, the findings were extrapolated to
an indefinitely large sample. The statistical test led to an extrapolated
value of 216. The estimated accuracy of the procedure was 2%. Thus,
the estimate agreed with the accepted value of the total number of the
practically distinguishable space groups of 217.

The statistical analysis has also been applied separately to the
data on inorganic and organic crystals. In both cases the extrapolated
estimate for the total number of three-dimensional space groups was
smaller than when all data had been considered together. The total
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numbers estimated for the inorganic and organic structures were 209
and 185, respectively. Thus the conclusion could be made that the
inorganic and organic crystals belong to space groups with different
population distributions. Statistical analysis of population distribu-
tions among the three-dimensional space groups, according to various
criteria, has remained an important research tool [30].

In the following section, we will look in some more detail at the
symmetry systems of two fundamentally important crystals, rock salt
and diamond, following the descriptions by Shubnikov and Koptsik
[31]. The descriptions will be far from complete; they will aim
at giving some flavor for the characterization of these two highly
symmetrical structures.

9.4.1. Rock Salt and Diamond

The unit cell of the rock salt structure and the projection of this struc-
ture along the edges of the unit cell onto a horizontal plane are shown
in Figure 9-22a and b. The equivalent ions are related by translations
a = b = c along the edges of the cube, or (a + b)/2, (a + c)/2, (b + c)/2
along the face diagonals. All this corresponds to the face-centered
cubic group (F). The structure coincides with itself not only after these
translations, but also after the operations of the point group m3m (or
in other notation 6̃/4). The point-group symmetry elements are shown
also in Figure 9-22c. The symmetry elements of this group intersect
at the centers of all ions and thus they become symmetry elements for
the whole unit cell and, accordingly, for the whole crystal.

Among the projected symmetry elements in Figure 9-22c, there are
some which are derived from the generating elements. This is the
case, for example, for vertical glide-reflection planes with elemen-
tary translations a/2 and b/2 (represented by broken lines), translations
(dot-dash lines), vertical screw axes 21 and 42, and symmetry centers
(small hollow circles, some of which lie above the plane by 1/4 of the
elementary translation).

Two very simple descriptions of the rock salt crystal structure are
also given. According to one, the sodium and chloride ions occupy
positions with point-group symmetry m3m forming a checkered
pattern in the Fm3m space group. According to the other description,
the structure consists of two cubic sublattices in parallel orientation,
one of sodium ions and the other of chloride ions.
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Figure 9-22. The crystal structure of the rock salt after Shubnikov and Koptsik
[32]. (a) A unit cell; (b) Projection of the structure along the edges of the unit cell
onto a horizontal plane; (c) Projection of some symmetry elements of the Fm3m
space group onto the same plane. The vertical screw axes 21 and 42 are marked by
their respective symbols. Used with permission.

Figure 9-23 illustrates the diamond structure. It can be regarded
as a set of two face-centered cubic sublattices displaced relative to
each other by 1/4 of the body diagonal of the cube. Each of the two
sublattices has the F43m space group, and in addition there are some
operations transforming one to the other. The complete diamond struc-
ture has the space group Fd3m, where “d ” stands for a “diamond”
plane.

Among the projected symmetry elements in Figure 9-23c, there are
again some which are produced by the generating elements. Special
for the diamond structure are the symmetry elements which connect
the two subgroups F43m. They include vertical left-handed and right-
handed screw axes, 41 and 43, respectively, symmetry centers (small
hollow circles, 1/8 and 3/8 of the elementary translation c above
the plane), vertical “diamond” glide-reflection planes d represented
by dot-dash lines with arrows, and similar systems of connecting
elements in the horizontal directions.
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Figure 9-23. The diamond structure after Shubnikov and Koptsik [33]. (a) A unit
cell; the edges of the cube are the a, b, and c axes; (b) Two face-centered cubic
sublattices displaced along the body diagonal of the cube; (c) Projection of some
symmetry elements of the Fd3m space group onto a horizontal plane. The vertical
screw axes 41 and 43 are marked by appropriate symbols. Used with permission.

The subgroup F43m is common both to the rock salt space group
Fm3m and to the diamond space group Fd3m. The space group
Fd3m is obtained from Fm3m by replacing the symmetry planes m
by glide-reflection planes d with the latter displaced 1/8 along the
cube edges.

9.5. Dense Packing

Dalton [34] envisaged the structural difference between water and ice
in packing properties. Figure 9-24 reproduces a drawing from his 1808
book A New System of Chemical Philosophy. According to Dalton, the
“atoms” of ice arrange themselves in a hexagonal scheme, while the
“atoms” of water do not. In any case it is remarkable that the prin-
cipal difference between the water and ice structures is expressed in
packing density. Figure 9-25 originates from a different age and shows
the atomic and molecular arrangements in the crystals of 2Zn-insulin
from the work of Dorothy Hodgkin and her associates [35]. The
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Figure 9-24. Dalton’s models for water (1 and 3) and ice (2 and 4–6) [36].

molecular structure of insulin is extremely complicated but the molec-
ular packing, especially the arrangement of the insulin hexamers,
reminds us of Dalton’s hexagonal ice.

The symmetry of the crystal structure is a direct consequence of
dense packing. The densest packing is when each building element
makes the maximum number of contacts in the structure. First,
the packing of equal spheres in atomic and ionic systems will be
discussed. Then molecular packing will be considered. Only char-
acteristic features and examples will be dealt with here, following
Kitaigorodskii [38].∗

∗A. I. Kitaigorodskii’s name appears in two versions in this book and even more
in the literature. The rules of transliterations from the original Russian suggest
Kitaigorodskii, but his name was transliterated on many of his publications as
Kitaigorodsky.
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Figure 9-25. Atomic arrangement in the 2Zn-insulin crystal. The smaller projec-
tion drawing shows the molecular packing in the insulin hexameters. Courtesy of
Dorothy Hodgkin [37].

9.5.1. Sphere Packing

The most efficient packing results in the greatest possible density.
The density is the fraction of the total space occupied by the packing
units. Only those modes of packing are considered here in which each
sphere is in contact with at least six neighbors. The densities of some
packings are given in Table 9-5. There are stable arrangements with

Table 9-5. Densities of Sphere Packinga

Coordination number Name of packing Density

6 Simple cubic 0.5236
8 Simple hexagonal 0.6046
8 Body-centered cubic 0.6802

10 Body-centered tetragonal 0.6981
12 Closest packing 0.7405

aAfter A. F. Wells, Structural Inorganic Chemistry, 5th Edition,
Clarendon Press, Oxford, 1984.
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smaller numbers of neighbors, meaning lower coordination numbers,
when directed bonds are present. In our discussion, however, the exis-
tence of chemical bonds is not a prerequisite at all.

For three-dimensional six-coordination, the most symmetrical
packing is when the spheres are at the points of a simple cubic lattice
(Figure 9-26a). Each sphere is in contact with six others situated
at the vertices of an octahedron. In order to increase clarity, the
atoms are shown separated in the figure. The packing is more realisti-
cally represented when the spheres touch each other. Already Kepler
(Figure 9-9), and later Dalton (Figures 9-10, 9-24), employed such
representations.

(a) 

(c)

(b)

(d) 

Figure 9-26. Examples of sphere packing after Wells [39]. Reproduced with
permission. (a) Simple cubic; (b) The somewhat distorted cubic packing of arsenic;
(c) Simple hexagonal; (d) Body-centered cubic.

The structure of crystalline arsenic provides an example of some-
what distorted simple cubic packing. It is illustrated in Figure 9-26b.
The atoms are in the positions of the cubic structure. Each has three
nearest and three more distant neighbors. The layers formed by the
nearest bonded atoms may also be derived from a plane of hexagons.
These layers buckle as the bond angle decreases from 120◦.
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The simple hexagonal sphere packing is shown in Figure 9-26c.
The coordination number is eight. It is not very important for
crystal structures. Figure 9-26d shows the body-centered packing with
8-coordination. For the central atom the six next nearest neighbors
are at the centers of neighboring unit cells. In terms of polyhedral
domains, a truncated octahedron is adopted here. The central atom, in
fact, has a coordination number of 14.

It may often be convenient to describe the crystal structure in
terms of the domains of the atoms [40]. The domain is the polyhe-
dron enclosed by planes drawn midway between the atom and each
neighbor, these planes being perpendicular to the lines connecting the
atoms. The number of faces of the polyhedral domain is the coordi-
nation number of the atom and the whole structure is a space-filling
arrangement of such polyhedra.

The closest packing of equal circles on a plane surface has already
been considered. The closest packing of spheres on a plane surface
poses a similar problem. Again, the densest arrangement is when
a sphere is in contact with six others. Layers of spheres may then
be superimposed in various ways. The closest packing is when each
sphere touches three others in each adjacent layer, the total number
of contacts then being 12. Closest packing is thus based on closest
packed layers. Figure 9-27 illustrates this. The spheres in one layer are

Figure 9-27. Closest packing of ABC layers after Wells [41]. Reproduced with
permission.
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labeled A, and a similar layer can be placed above the first so that the
centers of the spheres in the upper layer are vertically above the posi-
tions B (or C). The third layer can be placed in two ways. The centers
of the spheres may lie above either the C or the A positions. The two
simplest sequences of layers are then ABABAB ... and ABCABC ...
They will have the same density (0.7405).

The packing based on the sequence ABABAB... is called hexagonal
closest packing and is illustrated by Figure 9-28a. Each sphere has
12 neighbors situated at the vertices of a coordination polyhedron.
The packing based on the sequence ABCABC... is called cubic closest
packing. It is illustrated in Figure 9-28b, and is characterized by cubic
symmetry.

(a) (b)

Figure 9-28. Close packing of spheres after Shubnikov and Koptsik [42]. (a)
Hexagonal closest packing; (b) Cubic closest packing. Used with permission.

The closest packing of equal spheres is achieved in an arrange-
ment in which each sphere touches three others in each adjacent layer.
The total number of neighbors is then 12. Although the packing in
any layer is evidently the densest possible packing, this is not neces-
sarily true of the space-filling arrangements resulting from stacking
such layers. Thus, consider the addition of a fourth sphere to the most
closely packed triangular arrangement [43]. The maximum number of
contacts is three in the emerging tetrahedral group. The space-filling
arrangement would require each tetrahedron to have faces common
with four other tetrahedra. However, regular tetrahedra are not suit-
able to fill space without gaps or overlaps because the angle of the
tetrahedron, 70◦32′, is not an exact submultiple of 360◦.

Alternatively, continue placing spheres around a central one, all
spheres having the same radius. The maximum number that can be
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placed in contact with the first sphere is 12. However, there is a little
more room around the central sphere than just for 12, but not enough
for a 13th sphere. Because of the extra room there is an infinite number
of ways of arranging the 12 spheres [44].

The question of densest packing of spheres has been an intriguing
problem in mathematics for centuries; it has been labeled “one of the
oldest math problems in the world” [45].

9.5.2. Icosahedral Packing

The most symmetrical arrangement is to place the 12 spheres at the
vertices of a regular icosahedron, which is the only regular poly-
hedron with 12 vertices. Thus, the icosahedral packing is the most
symmetrical. However, it is not the densest packing. Also, it is not a
crystallographic packing in terms of classical crystallography. When
icosahedra are packed together they will not form a plane, but will
gradually curve up and will eventually form a closed system as is
illustrated in Figure 9-29 [46].

Figure 9-29. Icosahedral polyoma virus drawn after Adolph et al. [47].

Buckminster Fuller recognized early the importance of icosahe-
dral construction and its great stability in geodesic shapes as well as
in viruses. He may have not had the rigorous scientific bases about
nucleic acids and about the viruses, but had a fertile imagination and
connected seemingly distant pieces of information about structures.
This is what he wrote [48]:

This simple formula governing the rate at which
balls are agglomerated around other balls or shells
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in closest packing is an elegant manifest of the
reliably incisive transactions, formings, and trans-
formings of Universe. I made that discovery in the
late 1930s and published it in 1944. The molec-
ular biologists have confirmed and developed my
formula by virtue of which we can predict the
number of nodes in the external protein shells of
all the viruses, within which shells are housed the
DNA-RNA-programmed design controls of all the
biological species and of all the individuals within
those species. Although the polio virus is quite
different from the common cold virus, and both
are different from other viruses, all of them employ
frequency to the second power times ten plus two
in producing those most powerful structural enclo-
sures of all the biological regeneration of life. It is
the structural power of these geodesic-sphere shells
that makes so lethal those viruses unfriendly to
man. They are almost indestructible.

Indeed, the discoverers of virus structures, Donald Caspar and
Aaron Klug stated that

the solution we have found ... was, in fact,
inspired by the geometrical principles applied
by Buckminster Fuller in the construction of
geodesic domes ... The resemblance of the design
of geodesic domes ... to icosahedral viruses had
attracted our attention at the time of the poliovirus
work ... Fuller has pioneered in the development
of a physically orientated geometry based on the
principles of efficient design [49].

The length of an edge of a regular icosahedron is some 5% greater
than the distance from the center to vertex. Thus, the sphere of
the outer shell of 12 makes contact only with the central sphere.
Conversely, if each sphere of an icosahedral group of 12, all touching
the central sphere, is in contact with its 5 neighbors, then the central
sphere must have a radius of some 10% smaller than the radius of
the outer spheres. The relative size considerations are important in the
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structures of free molecules as well if the central atom or group of
atoms is surrounded by 12 ligands [50].

An interesting case, and a step forward from the isolated molecule
towards more extended systems is when an icosahedron of 12 spheres
about a central sphere is surrounded by a second icosahedral shell
exactly twice the size of the first [51]. This shell will contain 42
spheres and will lie over the first so that spheres will be in contact
along the fivefold axes. Further layers can be added in the same
fashion. The third layer is shown in Figure 9-30, and this is what is
known as the Mackay icosahedron. It is an example of icosahedral
packing of equal spheres. The layers of spheres succeed each other
in cubic close packing sequence on each triangular face. Each sphere
which is not on an edge or vertex touches only six neighbors, three
above and three below. Each such sphere is separated by a distance of
5% of its radius from its neighbors in the plane of the face of the icosa-
hedron. The whole assembly can be distorted to cubic close packing
in the form of a cuboctahedron. This distortion may be envisaged as
a reversible process by the kind of transformation discussed earlier.
The Mackay icosahedron has “made tremendous impact on particle,
cluster, intermetallics, and quasicrystal researchers. . .” [52].

Figure 9-30. Icosahedral packing of spheres showing the third shell [53]. This is
popularly called “the Mackay icosahedron.”

Herbert Hauptman, a mathematician turned crystallographer and
chemistry Nobel laureate for 1985, has devoted a lot of attention to
close packing of spheres in the icosahedron. Figure 9-31 shows one
of his beautiful stained-glass models.
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Figure 9-31. Herbert Hauptman (photograph by the authors) and one of his stained-
glass models—an icosahedron—with densely packed spheres (photograph courtesy
of Herbert Hauptman, Buffalo, New York).

While the most symmetrical arrangement of 12 neighbors, viz.,
the icosahedral coordination, does not lead to the densest possible
packing, others do. The cuboctahedron and its “twinned” version,
alone or in combination, lead to infinite sphere packing with the
same high density (0.7405). Both coordination polyhedra are shown
in Figure 9-32. The “twinned” polyhedron is obtained by reflecting
one half of a cuboctahedron cut parallel to a triangular face across the
plane of section.

9.5.3. Connected Polyhedra

There are, of course, more complex forms of closest packing than
those considered so far. Besides, the species to be packed need not
be identical. Thus, close packing of atoms of two kinds could be
considered. Close-packed structures with atoms in the interstices
are also important. The interstice arrays may have very different

Figure 9-32. Cuboctahedron and “twinned” cuboctahedron.
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arrangements in various structures. A shorthand notation of some
configurations has been worked out [54] to facilitate the descrip-
tion of more complicated systems, which is illustrated in Figure 9-33.
Suppose, for example, that in a compound with composition AX2,
each atom A is bonded to four X atoms and that all four X atoms are
equivalent. Each X atom must then be bonded to two A atoms. The
lines of the squares in Figure 9-33 do not represent chemical bonds;
rather, these squares stand for polyhedral arrangements. Among the
AXn polyhedral groups the most common are the AX4 tetrahedra and
AX6 octahedra. They may appear in various orientations in the crystal
structures. Similar structural features have already been discussed for
the polyhedral molecular geometries. Whereas in molecules only two,
or at most a few, polyhedra were joined, here we deal with their infi-
nite networks.

Figure 9-33. Shorthand notation for some common structural units after Wells [55];
(a) Notations for tetrahedron; (b) Notations for octahedron.

Many crystal structures may be built from the two most impor-
tant coordination polyhedra, the tetrahedron and octahedron. They
may share vertices, edges, or faces. The ways how the poly-
hedra are connected introduce certain geometrical limitations with
important consequences as to the variations of the interatomic
distances and bond angles. Examples are shown in Figure 9-34 and
Figures 9-36–9-39 for a variety of ways to connect tetrahedral and
octahedral units. Tetrahedra share two vertices or/and three vertices
in Figure 9-34. For one of these, decorations analogous to its projec-
tion is shown in Figure 9-35. Octahedra share adjacent vertices and
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Figure 9-34. Connected tetrahedra [56]. (a) All tetrahedra share two vertices; (b)
and (c) All tetrahedra share three vertices; (d) and (e) Some tetrahedra share two,
others share three vertices.

Figure 9-35. Decorations, analogous to the pattern of Figure 9-34d, but extending
in two dimensions (photographs by the authors).
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Figure 9-36. Connected octahedra: (a) and (b) Two representations of four octa-
hedra sharing adjacent vertices and forming a tetramer; (c) Infinite chain of octa-
hedra connected at adjacent vertices; (d) Infinite chain of octahedra connected at
nonadjacent vertices.

form a tetramer in two representations in Figure 9-36a and b. Two
more examples show infinite chains of octahedra sharing adjacent
(Figure 9-36c) and nonadjacent (Figure 9-36d) vertices. Octahedra
sharing two, four, or six edges are presented in Figure 9-37. An
example of octahedra sharing faces and edges is seen in Figure 9-38.
Finally, a composite structure from tetrahedra and octahedra is shown
in Figure 9-39.

Figure 9-37. Octahedra sharing edges: (a) Two edges; (b) Four edges; (c) Six edges.
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Figure 9-38. Joined octahedra: sharing faces and edges in the Nb3S4 crystal [57].

The tetrahedra and octahedra are important building blocks of
crystal structures. The great variety of structures combining these
building blocks, on one hand, and the conspicuous absence of some
of the simplest structures, on the other hand, together suggest that
the immediate environment of the atoms is not the only factor which
determines these structures. Indeed, the relative sizes of the partici-
pating atoms and ions are of great importance.

9.5.4. Atomic Sizes

The interatomic distances are primarily determined by the position
of the minimum in the potential energy function describing the inter-
actions between the atoms in the crystal. The question is then, what
are the sizes of the atoms and ions? The extension of electron density
for an atom or an ion is not rigorously defined; no exact size can be

Figure 9-39. A composite structure (kaolin) built from joined tetrahedra and octa-
hedra (reproduced with permission) [58].
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assigned to it. Atoms and ions change relatively little when forming
a strong chemical bond, and even less for weak bonds. For the
present discussion of crystal structures, the atomic and ionic radii
should, when added appropriately, yield the interatomic and interionic
distances characterizing these structures.

Covalent and metallic bondings suppose a strong overlap of the
outermost atomic orbitals and so the atomic radii will be approxi-
mately the radii of the outermost orbitals. The atomic radii are empir-
ically obtained from interatomic distances [59]. For example, the
length of the bond C–C is 154 pm in diamond, Si–Si is 234 pm in
disilane, and so on. The consistency of this approach is shown by the
agreement between the Si–C bond lengths determined experimentally
and calculated from the corresponding atomic radii. The interatomic
distances appreciably depend on the coordination. With decreasing
coordination number, the bonds usually get shorter. For coordinations
8, 6, and 4, the bonds get shorter by about 2, 4, and 12%, respectively,
as compared with the coordination number of 12.

The covalent bond is directional and multiple covalent bonds are
considerably shorter than the corresponding single ones. For carbon
as well as for nitrogen, oxygen, or sulfur, the decrease on going from
a single bond to a double and a triple bond amounts to about 10 and
20%, respectively.

Establishing the system of ionic radii is even a less unambiguous
undertaking than that for atomic radii. The starting point is a system
of analogous crystal structures. Such is, for example, the structure of
sodium chloride and the analogous series of other alkali halide face-
centered crystals. In any case the ionic radii represent relative sizes,
and if the alkali and halogen ions are chosen for starting point, then the
ionic radii of all ions represent the relative sizes of the outer electron
shells of the ions as compared with those of the alkali and halogen
ions.

Consider now the sodium chloride crystal structure shown in
Figure 9-40. It is built from sodium ions and chloride ions, and it
is kept together by electrostatic forces. The chloride ions are much
larger than the sodium ions. As equal numbers of cations and anions
build up this structure, the maximum number of neighbors will be the
number of the larger chloride ions that can be accommodated around
the smaller sodium ion. The opposite would not work: although more
sodium ions could surround a chloride ion, the same coordination
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(a) (b)

Figure 9-40. The sodium chloride crystal structure in two representations. The
space-filling model is from W. Barlow [60].

could not be achieved around the sodium ions. Thus, the coordina-
tion number will obviously depend on the relative sizes of the ions. In
the simple ionic structures, however, only such coordination numbers
may be accomplished that make a highly symmetrical arrangement
possible. The relative sizes of the sodium and chloride ions allow
six chloride ions to surround each sodium ion in six vertices of an
octahedron. Figure 9-41 shows the arrangement of ions in cube-face
layers of alkali halide crystals with the sodium chloride structure. As

Figure 9-41. The arrangement of ions in cube-face layers of alkali halide crystals
with the sodium chloride structure. Adaptation from Pauling [61]. Copyright (1960)
Cornell University. Used by permission of the publisher, Cornell University Press.
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Figure 9-42. Cesium chloride crystal structure.

the relative size of the metal ion increases with respect to the size of
the halogen anion, greater coordination may be possible. Thus, for
example, the cesium ion may be surrounded by eight chloride ions
in eight vertices of a cube in the cesium chloride crystal as shown in
Figure 9-42.

9.6. Molecular Crystals

A molecular crystal is built from molecules and is easily distinguished
from an ionic/atomic crystal on a purely geometrical basis. At least
one of the intramolecular distances of an atom in the molecule is
significantly smaller than its distances to the adjacent molecules.
Every molecule in the molecular crystal may be assigned a certain
well-defined space in the crystal. In terms of interactions, there are
the much stronger intramolecular interactions and the much weaker
intermolecular interactions. Of course, even among the intramolec-
ular interactions, there is a range of interactions of various energies.
Bond stretching, for instance, requires a proportionately higher energy
than angular deformation, and the weakest are those interactions that
determine the conformational behavior of the molecule [62]. On the
other hand, there are differences among the intermolecular interac-
tions as well. For example, intermolecular hydrogen bond energies
may be equal to or even greater than the conformational energy differ-
ences. Thus, there may be some overlap in the energy ranges of the
intramolecular and intermolecular interactions.

The majority of molecular crystals are organic compounds. There
is usually little electronic interaction between the molecules in these
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crystals, although even small interactions may have appreciable struc-
tural consequences. The physical properties of the molecular crystals
are primarily determined by the packing of the molecules.

9.6.1. Geometrical Model

As structural information for large numbers of molecular crystals
has become available, general observations and conclusions have
appeared. An interesting observation was that there are character-
istic shortest distances between the molecules in molecular crys-
tals. The intermolecular distances of a given type of interaction
are fairly constant. From this observation a geometrical model has
been developed for describing the molecular crystals [63]. First, the
shortest intermolecular distances were found, and then the so-called
“intermolecular atomic radii” were postulated. Using these quan-
tities, spatial models of the molecules were built. Fitting together
these models, the densest packing could be found empirically. An
example of a packing arrangement is shown in Figure 9-43. The
molecules are packed together in such a way as to minimize the empty
space among them. The concave part of one molecule accommodates
the convex part of the other molecule. The example is the packing
of 1,3,5-triphenylbenzene molecules in their crystal structure. The
arrangement of the areas designated to the molecules is analogous to
a characteristic decoration pattern, an example of which is also shown
in Figure 9-43. The analogy is not quite superficial. The decoration is
from the metal-net dress of a Chinese warrior. The dress was made of
small units to maintain flexibility, the small units were identical for
economy, and they covered the whole surface without gaps to ensure
maximum protection.

The importance of symmetry in structure does not mean that the
highest symmetry is the most advantageous. This can be illustrated
beautifully in molecular crystals. Lucretius proclaimed two millennia
ago in his De rerum natura [65]:

Things whose fabrics show opposites that match,
one concave where the other is convex, and vice
versa, will form the closest union.

Lucretius could have meant this as a fundamental principle of the
best packing arrangements for molecules in crystals had he known
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(a) 

(c)

(b)

Figure 9-43. (a) Dove-tail dense packing of 1,3,5-triphenylbenzene molecules [64];
(b) Chinese decoration on a sculpture in the sculpture garden of the Ming tombs,
near Beijing; and (c) Detail of the armor (photographs by on the authors).

about molecules of arbitrary shape. At the dawn of the 20th century,
Lord Kelvin (William Thomson) returned to Lucretius’s observation.

Lord Kelvin’s geometry [66] was mostly forgotten, but we find it
instructive in understanding the development of crystal chemistry and
the teachings of symmetry in crystallography [67]. As Lord Kelvin
was building up the arrangement of molecular shapes, he examined
two basic variations (Figure 9-44). In one, the molecules are all
oriented in the same way, while, in the other, the rows of molecules
are alternately oriented in two different ways. Lord Kelvin considered
the puzzle of the boundary of each molecule as a purely geometrical
problem. He used nearly rectilinear shapes for partitioning the plane
but he did not let the molecules touch each other. Apart from this, he
created a modern representation of molecular packing in the plane,
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Figure 9-44. Arrangements of molecular shapes by Lord Kelvin (1904) [68].

including the recognition of the most important complementariness in
packing.

Lord Kelvin then came to extending the division of continuous two-
dimensional space into the third dimension. However, he restricted
his examinations to polyhedra and found one of the five space-filling
parallelohedra, which were discovered by E. S. Fedorov as capable
of filling the space in parallel orientation without gaps or over-
laps. The Fedorov polyhedra are the cube, the hexagonal prism, the
rhombic dodecahedron, an elongated rhombic dodecahedron with
eight rhombic and four hexagonal faces, and the truncated octahedron.

The complementary character of molecular packing is well
expressed by the term of dove-tail packing [69]. The arrangement
of the molecules in Figure 9-45a can be called head-to-tail. On the
other hand, the molecules of a similar compound are arranged head-
to-head as seen in Figure 9-45b. The head-to-head arrangement is less
advantageous for packing. This is well seen in the arrangement of the
molecules in the crystal displayed in the lower part of Figure 9-45b.
Many of Escher’s periodic drawings with interlocking motifs are also
excellent illustrations for the dove-tail packing principle. Figure 9-46
reproduces one of them. Note how the toes of the black dogs are the
teeth of the white dogs and vice versa in this drawing.

An important contribution appeared in 1940 by the structural
chemist Linus Pauling and the physicist turned biologist Max
Delbrück. They titled their note in Science, “The Nature of the
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(a)

(b)

Figure 9-45. (a) Head-to-tail [70]; and (b) Head-to-head [71] arrangement of
molecules and the crystal structure [70].



9.6. Molecular Crystals 461

Figure 9-46. Escher’s periodic drawing of dogs from MacGillavry’s book [72].
Reproduced with permission from the International Union of Crystallography.

Intermolecular Forces Operative in Biological Processes” [73]. The
note was prepared in response to a series of papers by the physicist
Pascual Jordan, who had suggested that a quantum mechanical stabi-
lizing interaction operates preferentially between identical or nearly
identical molecules or parts of molecules. The suggestion came up in
connection with the process of biological molecular synthesis, leading
to replicas of molecules present in the cell. Pauling and Delbrück
suggested precedence for interaction between complementary parts,
instead of the importance of interaction between identical parts. They
argued that the intermolecular interactions of van der Waals attrac-
tion and repulsion, electrostatic interaction, hydrogen bond formation,
and so forth give stability to a system of two molecules with comple-
mentary structures in juxtaposition, rather than two molecules with
identical structures. Accordingly, they argued that complementariness
should be given primary consideration in discussing intermolecular
interactions. They summarize their general argument as follows [74]:

Attractive forces between molecules vary inversely
with a power of the distance, and maximum
stability of a complex is achieved by bringing the
molecules as close together as possible, in such
a way that positively charged groups are brought
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near to negatively charged groups, electric dipoles
are brought into suitable mutual orientation, etc.
The minimum distances of approach of atoms are
determined by their repulsive potentials, which
may be expressed in terms of van der Waals radii;
in order to achieve maximum stability, the two
molecules must have complementary surfaces, like
die and coin, and also complementary distribution
of active groups.

The case might occur in which the two comple-
mentary structures happened to be identical;
however, in this case also the stability of the
complex of two molecules would be due to their
complementariness rather than their identity.

Complementariness remained on Pauling’s mind, and in 1948, he
discussed molecular replication [75]:

The detailed mechanism by means of which a gene
or a virus molecule produces replicas of itself is
not yet known. In general the use of a gene or a
virus as a template would lead to the formation
of a molecule not with identical structure but with
complementary structure. . . If the structure that
serves as a template (the gene or virus molecule)
consists of, say, two parts, which are themselves
complementary in structure, then each of these
parts can serve as the mold for the production of
a replica of the other part, and the complex of two
complementary parts thus can serve as the mold for
the production of duplicates itself.

At the time Pauling was working on the structure of proteins
culminating eventually in his discovery of the alpha-helix. Yet this
declaration sounds as if he were anticipating the mechanism of DNA
replication via the double helix. It came, however, only in 1953, and
it was not Pauling, but Watson and Crick, who discovered it.

Kitaigorodskii started his studies of molecular packing in the 1940s
under severe conditions at war time. His first paper [76] was very brief
but much to the point with the following title: “The Close-Packing of
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Molecules in Crystals of Organic Compounds.” He introduced “the
concept of shape of the molecule, what in turn makes it possible
to raise . . . the question concerning the packing of the molecules
within the crystal” [77]. In this paper, Kitaigorodskii proposed a three-
axial ellipsoid for the shapes of molecules, which was soon replaced
by arbitrary shapes that facilitated making observations of general
validity.

Because of the interlocking character, the packing in organic molec-
ular crystals is usually characterized by large coordination numbers,
i.e., by a relatively large number of adjacent or touching molecules.
Experience shows that the most often occurring coordination number
in organic structures is 12, so it is the same as for the densest packing
of equal spheres. Coordinations 10 or 14 occur also but less often.

Kitaigorodskii was a true pioneer in the field of molecular crys-
tals. First of all, he assigned real sizes and volumes to the molecules
by accounting for the hydrogen atoms, however poorly their positions
could be determined at the time. The whole molecule was considered
in examining their packing, rather than the heavy-atom skeleton only.
Figuratively speaking, and using Kitaigorodskii’s own expression, he
“dressed the molecules in a fur-coat of van der Waals spheres” [78].
This was in complete agreement with the molecular models intro-
duced from the early 1930s by Stuart and Briegleb to represent the
space-filling nature of molecular structures [79].

The geometrical model allowed Kitaigorodskii to make predictions
of the structure of organic crystals in numerous cases, knowing only
the cell parameters and, obviously, the size of the molecule itself [80].
In the age of fully automated, computerized diffractometers, this may
not seem to be so important, but it indeed is for our understanding the
packing principles in molecular crystals.

The packing as established by the geometrical model is what is
expected to be the ideal arrangement. Usually it does not differ much
from the real packing as determined by X-ray diffraction measure-
ments. When there are differences between the ideal and experimen-
tally determined packings, it is of interest to examine the reasons
of their occurrence. The geometrical model has some simplifying
features. One of them is that it considers uniformly the intermolecular
atom–atom distances. Another is that it considers interactions only
between adjacent atoms.
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The development of experimental techniques and the appearance
of more sophisticated models have pushed the frontiers of molecular
crystal chemistry much beyond the original geometrical model. Some
of the limitations of this model will be mentioned later. However, its
simplicity and the facility of visualization ensure this model a lasting
place in the history of molecular crystallography. It has also excep-
tional didactic value.

The so-called coefficient of molecular packing (k) has proved useful
in characterizing molecular packing. It is expressed in the following
way:

k = molecular volume

crystal volume/molecule

The molecular volume is calculated from the molecular geometry
and the atomic radii. The quantity crystal volume/molecule is deter-
mined from the X-ray diffraction experiment. For most crystals k is
between 0.65 and 0.77. This is remarkably close to the coefficient of
the dense packing of equal spheres (the density of closest packing of
equal spheres being 0.7405). If the form of the molecule does not
allow the coefficient of molecular packing to be greater than 0.6,
then the substance is predicted to transform into a glassy state with
decreasing temperature. It has also been observed that morphotropic
changes associated with loss of symmetry led to an increase in the
packing density. Comparison of analogous molecular crystals shows
that sometimes the decrease in crystal symmetry is accompanied by
an increase in the density of packing.

Another interesting comparison involves benzene, naphthalene, and
anthracene. When their coefficient of packing is greater than 0.68,
they are in the solid state. There is a drop in this coefficient to 0.58
when they go into liquid phase. Then, with increasing temperature,
their k is decreasing gradually down to the point where they start
to boil. The fused-ring aromatic hydrocarbons have served subse-
quently as targets of a systematic analysis of packing energies and
other packing characteristics [81].

Geometrical considerations have gained additional importance
due to their role in molecular recognition which implies “the
(molecular) storage and (supramolecular) retrieval of molecular struc-
tural information” [82]. The formation of supramolecular struc-
tures necessitates commensurable and compatible geometries of the
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partners. The molecular structure of the inclusion complex para-tert-
butylcalix[4]arene and anisole [83] is shown in Figure 9-47. The
representation is a combination of a line drawing of the calixarane
molecule and a space-filling model of anisole.

Figure 9-47. Two para-tert-butylcalix[4]arene molecules envelope an anisole
molecule after Andreetti et al. [84].

The supramolecular formations and the molecular packing in the
crystals show close resemblance, and the nature of the interactions
involved is very much the same. There is great emphasis on weak
interactions in both. According to Lehn, “beyond molecular chem-
istry based on the covalent bond lies supramolecular chemistry based
on molecular interactions—the associations of two or more chem-
ical entities and the intermolecular bond” [85]. Dunitz expressed
eloquently the relevance of supramolecular structures to molecular
crystals and molecular packing [86]:

... a crystal is, in a sense, the supramolecule
par excellence—a lump of matter, of macro-
scopic dimensions, millions of molecules long,
held together in a periodic arrangement by just
the same kind of non-bonded interactions as those
that are responsible for molecular recognition and
complexation at all levels. Indeed, crystallization
itself is an impressive display of supramolecular
self-assembly, involving specific molecular recog-
nition at an amazing level of precision.
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9.6.2. Densest Molecular Packing

Kitaigorodskii examined the relationship between densest packing
and crystal symmetry by means of the geometrical model [87]. He
determined that real structures will always be among those that have
the densest packing. First of all, he established the symmetry of those
two-dimensional layers that allow a coordination number of six in
the plane at an arbitrary tilt angle of the molecules with respect to
the axes of the layer unit cell. In the general case for molecules with
arbitrary form, there are only two kinds of such layers. One has inver-
sion centers and is associated with a non-orthogonal lattice. The other
has a rectangular net, from which the associated lattice is formed by
translations, plus a second-order screw axis parallel to a translation.
The next task was to select the space groups for which such layers
are possible. This is an approach of great interest since the result will
answer the question as to why there is a high occurrence of a few
space groups among the crystals while many of the 230 groups hardly
ever occur.

We present here some of the highlights of Kitaigorodskii’s consid-
erations [88]. First, the problem of dense packing is examined for
the plane groups of symmetry. The distinction between dense-packed,
densest-packed, and maximum density was introduced for the plane
layer of molecules. The plane was called dense-packed when coordi-
nation of six was achieved for the molecules. The term densest-packed
meant six-coordination with any orientation of the molecules with
respect to the unit cell axes. The term maximum density was used
for the packing if six-coordination was possible at any orientation of
the molecules with respect to the unit cell axes while the molecules
retained their symmetry.

For the plane group p1 it is possible to achieve densest packing with
any molecular form if the translation periods t1 and t2 and the angle
between them are chosen appropriately as illustrated in Figure 9-48.
The same is true for the plane group p2, shown also in Figure 9-48.
On the other hand, the plane groups pm and pmm are not suitable
for densest packing. As is seen in Figure 9-49, the molecules are
oriented in such a way that their convex parts face the convex parts
of other molecules. This arrangement, of course, counteracts dense
packing. The plane groups pg and pgg may be suitable for six-
coordination as an example shows it in Figure 9-50a. This layer is not
of maximum density and in a different orientation of the molecules
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(a) (b)

Figure 9-48. Densest packing with space groups (a) p1; and (b) p2 after
Kitaigorodsky [89].

(a) (b)

Figure 9-49. The symmetry planes in the space groups (a) pm; and (b) pmm prevent
dense packing; after Kitaigorodsky [90].

(a) (b)

Figure 9-50. Two forms of packing with pgg space groups after Kitaigorodsky [91].
(a) Densest packing of molecules with arbitrary shape; (b) Another orientation of
the molecules which reduces the coordination number to four.
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only four-coordination is achieved as seen in Figure 9-50b. For the
plane groups cm, cmm, and pmg, six-coordination cannot be achieved
for a molecule with arbitrary shape. For higher symmetry groups, for
example, tetragonal p4 or hexagonal p6, the axes of the unit cell are
equivalent, and the packing of the molecules is not possible without
overlaps. This is illustrated for group p4 in Figure 9-51.

Figure 9-51. Molecules of arbitrary shape cannot be packed in space group p4
without overlaps after Kitaigorodsky [92].

If the molecule, however, retains a symmetry plane, then it may
be packed with six-coordination in at least one of the plane groups,
pm, pmg, or cm. The form shown in Figure 9-52 is suitable for such
packing in pmg and cm, though not in pm. Thus, depending on the
molecular shape, various plane groups may be applicable in different
cases.

The criteria for the suitability as well as incompatibility of plane
groups for achieving molecular six-coordination have been consid-
ered. The next step is to apply the geometrical model to the examina-
tion of the suitability of three-dimensional space groups for densest

(a) (b)

Figure 9-52. Molecules with a symmetry plane achieve 6-coordination in the space
groups (a) cm; and (b) pmg after Kitaigorodsky [93].
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packing. The task in this case is to select those space groups in which
layers can be packed allowing the greatest possible coordination
number. Mirror planes, for instance, would not be applicable for
repeating the layers.

Low-symmetry crystal classes are typical for organic compounds.
Densest packing of the layers may be achieved either by translation at
an arbitrary angle formed with the layer plane, or by inversion, glide
plane, or by screw-axis rotation. In rare cases closest packing may
also be achieved by twofold rotation.

Kitaigorodskii [94] analyzed all 230 three-dimensional space
groups from the point of view of densest packing. Only the following
space groups were found to be available for the densest packing of
molecules of arbitrary form:

P1, P21, P21/c, Pca, Pna, P212121

For molecules with symmetry centers, there are even fewer suitable
three-dimensional space groups, namely:

P1, P21/c, C2/c, Pbca

In these cases all mutual orientations of the molecules are possible
without losing the six-coordination.

The space group P21/c occupies a strikingly special position among
the organic crystals. This space group has the unique feature that it
allows the formation of layers of densest packing in all three coordi-
nate planes of the unit cell.

The space groups P21 and P212121 are also among those providing
densest packing. However, their possibilities are more limited than
those of the space group P21/c, and these space groups occur only
for molecules that take either left-handed or right-handed forms.
According to statistical examinations performed some time ago, these
three groups are the first three in frequency of occurrence.

An interesting and fundamental question is the conservation of
molecular symmetry in the crystal structure. Densest packing may
often be well facilitated by partial or complete loss of molecular
symmetry in the crystal structure. There are, however, space groups
in which some molecular symmetry may “survive” densest packing
when building the crystal. Preserving higher symmetry though usually
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costs too great a sacrifice of packing density. On the other hand, there
may be certain energy advantage of some well-defined symmetrical
arrangements. The alternative to the geometrical model for discussing
and establishing molecular packing in organic crystals has been the
calculations of energy, based on carefully constructed potential energy
functions [95].

9.6.3. Energy Calculations and Structure Predictions

It is important to be able to determine a priori the arrangement of
molecules in crystals. The correctness of such predictions is a test for
our understanding of how crystals are built. A further benefit is the
possibility of calculating even those structures whose determination is
not amenable to experimental analysis. But even as part of an exper-
imental study, it is instructive to build good models, which can then
be refined. The main advantages of the geometrical model have been
seen above. Its main limitations are the following: It cannot account
for the structural variations in a series of analogous compounds. It is
restricted in correlating structural features with various other phys-
ical properties. Finally, it is unable to make detailed predictions for
unknown structures. Calculations seeking the spatial arrangement of
molecules in the crystal corresponding to the minimum of free energy
have become a much used tool. If the system is considered completely
rigid, the molecular packing may be determined by minimizing the
potential energy of intermolecular interactions.

Considering the molecules to be rigid, i.e., ignoring the vibrational
contribution, the energy of the crystal structure is expressed as a
function of geometrical parameters including the cell parameters, the
coordinates of the centers of gravity of the symmetrically indepen-
dent molecules, and parameters characterizing the orientation of these
molecules. In particular cases the number of independent parameters
can be reduced. On the other hand, considerations for the non-rigidity
of the molecules necessitate additional parameters. Minimizing the
crystal structure energy leads to structural parameters corresponding
to optimal molecular packing. Then it is of great interest to compare
these findings with those from experiment.

To determine the deepest minimum on the multidimensional energy
surface as a function of many structural parameters is a formidable
mathematical task. Usually, simplifications and assumptions are
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introduced concerning, for example, the space-group symmetry.
Accordingly, the conclusions from these theoretical calculations
cannot be considered to be entirely a priori.

The considerations on the intermolecular interactions can be
conveniently reduced to considerations of atom–atom nonbonded
interactions. Although these interactions can be treated by nonempir-
ical quantum mechanical calculations, empirical and semi-empirical
approaches have also proved useful in dealing with them. In the
description of the atom–atom nonbonded interactions it is supposed
that the van der Waals forces originate from a variety of sources.

In addition to the intermolecular interactions, the intramolecular
interactions may also be taken into account in a similar way. This
rather limited approach may nevertheless be useful for calculating
molecular conformation and even molecular symmetry. Deviations
from the ideal conformations and symmetries may also be estimated
this way, provided they are due to steric effects.

By summation over the interaction energies of the molecular pairs,
the total potential energy of the molecular crystal may be obtained in
an atom–atom potential approximation. The result is expected to be
approximately the same as the heat of sublimation extrapolated to 0 K
provided that no changes take place in the molecular conformation
and vibrational interactions during evaporation.

In many of the molecular packing studies, the crystal classes are
taken from the experimental X-ray diffraction determinations. The
optimal packing is then determined for the assumed crystal class. In
other cases, the crystal classes have also been established in the opti-
mization calculations.

Ideally, it should be possible to predict molecular packing, and thus
the crystal structure, from the knowledge of the composition of a
compound and the symmetry and geometry of its molecule. It has
proved, however, a rather elusive task. Two decades ago, the editor
of Nature expressed the frustration over the difficulty in predicting
crystal structures in the following words: “One of the continuing scan-
dals in the physical sciences is that it remains impossible to predict
the structure of even the simplest crystalline solids from a knowl-
edge of their chemical composition” [96]. There has been consider-
able progress in this respect, however, mainly due to the utilization of
the wealth of information from data banks, and in particular, from the
Cambridge Crystallographic Data Centre.



472 9 Crystals

It has also proved fruitful to use energy calculations with computer
graphic analysis. Plausible crystal-building scenarios have been
described which, while not being necessarily unique solutions, seem
to point in the right direction in conquering this important frontier of
structural science. An example is the construction of organometallic
crystals, illustrated here with Ru3(CO)12 in Figure 9-53. It is a simul-
taneous process in reality, but is broken down into three steps in
the model. First, a row of molecules is constructed in a head-to-tail
arrangement. The second step involves adding rows to form a layer
utilizing interlocking interactions. Finally, whole layers are added to
form a crystal [97]. By now, these studies have acquired rather histor-
ical importance because there is an increasing number of computa-
tional efforts to predict molecular packing from the composition of
substances. These efforts concentrate on selected classes of related

(a)

(b) (c)

Figure 9-53. Building a crystal of Ru3(CO)12 according to Braga and Grepioni
[98]; (a) Row of molecules; (b) Forming a layer; (c) Extending in three dimensions.
Copyright (1991) American Chemical Society.
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compounds rather than aim at finding a general approach. Maddox’s
two-decade-old lamentation seems to maintain its general validity.

A concerted use of geometry and energy considerations, as demon-
strated by the crystal-building of Ru3(CO)12, seems very promising.
Extending such studies point in the direction of a “Kitaigorodskian
dream,” as they “provide the starting point for the formulation of
a generalized force field for intermolecular interactions in organic
crystals” [99].

There seems to be a remarkable consistency between Buckminster
Fuller’s evaluation of chemistry (“chemists consider volumes as
material domains and not merely as abstractions,” see Chapter 1—
Introduction) and Kitaigorodskii’s geometrical model of crystal struc-
tures. In one of his last statements Kitaigorodskii (Figure 9-54) said
(when asked about his most important achievements in science): “I’ve
shown that the molecule is a body.† One can take it, one can hit
with it; it has mass, volume, form, hardness. I followed the ideas of
Democritos...” [100].

Figure 9-54. A. I. Kitaigorodskii (1914–1985) among his students in the late 1960s
in Moscow. István Orosz’s rendition of “Complementary Kitaigorodsky” [101].

†Another version is also attributed to Kitaigorodskii, “The molecule also has a body;
when it’s hit, it feels hurt all over.” This implied the possibility of structural changes
in the molecule upon entering the crystal structure, a symbolic departure from
Kitaigorodskii’s earlier views about the constancy of molecular geometry regard-
less whether in the gas phase or in the crystal.



474 9 Crystals

9.6.4. Hypersymmetry

There are some crystal structures in which further symmetries are
present in addition to those prescribed by their three-dimensional
space groups. The phenomenon is called hypersymmetry [102]. Thus,
it refers to symmetry features not included in the system of the
230 three-dimensional space groups. For example, phenol molecules,
connected by hydrogen bonds, form spirals with threefold screw axes
as indicated in Figure 9-55. This screw axis does not extend, however,
to the whole crystal, and it does not occur in the three-dimensional
space group characterizing the phenol crystal.

A typical characteristic of hypersymmetry operations is that they
exercise their influence in well-defined discrete domains. These
domains do not overlap—they do not even touch each other. The usual
hypersymmetry elements lead to point-group properties. This means
that no infinite molecular chains could be selected, for example, to
which these hypersymmetry operations would apply. They affect,
instead, pairs of molecules or very small groups of molecules. Thus,
they can really be considered as local point-group operations. These
hypersymmetry elements, accordingly, divide the whole crystalline
system into numerous small groups of molecules, or transform the
crystal space into a layered structure.

Figure 9-55. The molecules in the phenol crystal are connected by hydrogen bonds
and are forming spirals with a threefold screw axis. This symmetry element is not
part of the three-dimensional space group of the phenol crystal. After Zorky and
Koptsik [103].
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A prerequisite for hypersymmetry is that there should be chemi-
cally identical (having the same structural formula), but symmetrically
independent, molecules in the crystal structure—symmetrically inde-
pendent, that is, in the sense of the three-dimensional space group to
which the crystal belongs. The question then arises as to whether these
symmetrically independent but chemically identical molecules will
have the same structure or not. Only if they do have the same struc-
ture, conformation as well as bond configuration, can we talk about
the validity of the hypersymmetry operations. Here, preferably, quan-
titative criteria should be introduced, which is the more difficult since,
for example, with increasing accuracy, structures that could be consid-
ered identical before, may no longer be considered so later when more
accurate data become available.

On the other hand, since even a slightly different environment will
have some influence on the molecular structure, the hypersymmetry
operations will not be absolute. In this, the hypersymmetry operations
are somewhat different from the usual symmetry operations. The ulti-
mate goal is to find such a generalized formulation of the space-group
system that would allow the simultaneous consideration of the usual
symmetry as well as the hypersymmetry. When such a generalized
formulation of space groups encompassing usual and hypersymmetry
operations becomes available, the task of discovering crystals with
hypersymmetry will be greatly facilitated.

A special case of hypersymmetry is when the otherwise symmet-
rically independent molecules in the crystal are related by hypersym-
metry operations making them enantiomorphous pairs.

Hypersymmetry is a rather widely observed, and sometimes
ignored, phenomenon which is not restricted to any special class
of compounds. It may be supposed, however, that certain types of
molecules are more apt to have this kind of additional symmetry in
their crystal structures than others.

There are hypersymmetry phenomena in some crystal structures
that are characterized by extra symmetry operations applicable to infi-
nite chains of molecules. This kind of hypersymmetry has proved to
be more easily detectable and has been reported often in the litera-
ture [104].

Hypersymmetry may be interpreted on the basis of the symmetry
of the potential energy functions describing the conditions of the
formation of the molecular crystal. The molecules around a certain
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starting molecule will be related by the symmetry of the poten-
tial energy function itself or the symmetry of certain combina-
tions of the potential energy functions. The occurrence of some
screw axes of rotation by hypersymmetry elements has been success-
fully interpreted this way. In some instances energy calculations
as well as geometrical reasoning have shown the physical impor-
tance of hypersymmetry. This may appear, e.g., as stronger chemical
bonding among molecules. Hypersymmetry may often be described
as involving layered structure of a molecular crystal. This, again, may
have advantages for geometrical and energy considerations. Thus,
the phenomenon of hypersymmetry is another good example of how
symmetry properties and other properties are related to each other.

9.6.5. Crystal Field Effects

Elucidating the effects of intermolecular interactions may greatly
facilitate our understanding of the structure and energetics of crystals.
The geometrical changes of molecular structures cover a wide range in
energy. Molecular shape, symmetry, and conformation change more
easily upon the molecule becoming part of a crystal than do bond
angles and especially bond lengths.

Kitaigorodskii suggested four approaches to investigating the
effects of the crystalline field on molecular structure [105]: (1)
comparison of gaseous (i.e., free) and crystalline molecules; (2)
comparison of symmetrically (i.e., crystallographically) independent
molecules in the crystal; (3) analysis of the structure of molecules
whose symmetry in the crystal is lower than their free molecular
symmetry; and (4) comparison of the molecular structure in different
polymorphic modifications.

It is also possible that the molecule has higher symmetry in the
crystal than as a free unit in the gas. Thus, e.g., biphenyl has a higher
molecular symmetry—a coplanar structure—in the crystal than in the
vapor, where the two benzene rings are rotated by about 45◦ relative
to each other as shown below (9-1).

9-1
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9.6.5.1. Structure Differences in Free and Crystalline Molecules

The points 1 and 3 above both refer to the comparison of the struc-
tures of free and crystalline molecules as does the last example in
the previous section. Such comparisons provide, perhaps, the most
straightforward information, since the structure of the free molecule is
determined exclusively by intramolecular interactions. Any difference
that is reliably detected will carry information as to the effects of the
crystal field on the molecular structure. However, before discussing
more subtle structural differences in molecular crystals as compared
with free molecules, it is appropriate to point out some more striking
differences between ionic crystals and the corresponding vapor-phase
molecules.

Although molecules cannot be identified as the building blocks of
ionic crystals, the free molecules of some compounds may be consid-
ered as if they were taken out of the crystal. A nice example is sodium
chloride whose main vapor components are monomeric and dimeric
molecules. They are indicated in the crystal structure in Figure 9-56,
as is a tetrameric species. Mass spectrometric studies of cluster forma-
tion determined a great relative abundance of a species with 27 atoms
in the cluster. The corresponding 3×3×3 cube may, again, be consid-
ered as a small crystal [106].

Another series of simple molecules whose structure may easily
be traced back to the crystal structure is shown in Figure 9-57.
It is evident, for example, that various MX2 and MX3 molecules
may take different shapes and symmetries from the same kind of

Figure 9-56. Part of sodium chloride crystal structure with NaCl, (NaCl)2, and
(NaCl)4 units indicated. The species of 3x3x3 ions itself has a high relative abun-
dance in cluster formation.
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Figure 9-57. Different shapes of MX2 and MX3 molecules derived from the crystal
structure in which the central atom has an octahedral environment.

crystal structure. The crystal structure is represented by the octahe-
dral arrangement of six “ligands” around the “central atom.”

There seems to be even less structural similarity for many other
metal halides as the crystalline systems are compared with the
molecules in the vapor phase. Aluminum trichloride, e.g., crys-
tallizes in a hexagonal layer structure. Upon melting, and then,
upon evaporation at relatively low temperatures, dimeric molecules
are formed. At higher temperatures they dissociate into monomers
(Figure 9-58) [107]. The coordination number decreases from 6 to
4 and then to 3 in this process. However, at closer scrutiny, even
the dimeric aluminum trichloride molecules can be derived from the
crystal structure. Figure 9-59 shows another representation of crys-
talline aluminum trichloride which facilitates the identification of
the dimeric units. A further example is chromium dichloride illus-
trated in Figure 9-60. The small oligomers in its vapor have structures
[108] that are closely related to the solid structure [109]. Correla-
tion between the molecular composition of the vapor and their source
crystal has been established for some metal halides [110].

Gas/solid differences of different nature may occur in substances
forming molecular crystals. In some cases, e.g., the vapor contains
more rotational isomers than the crystal. Thus, for example, the vapor
of ethane–1,2–dithiol, HS–CH2–CH2–SH, consists of anti and gauche
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Figure 9-58. Structural changes upon evaporation of aluminium trichloride.

Figure 9-59. The crystal structure of aluminium trichloride after Müller [111]. The
dimeric unit with four-member ring is discernible. Copyright 1993 John Wiley &
Sons. Used by permission.

forms with respect to rotation about the central bond while only the
anti form was found in the crystal [113].

The comparison of the structures of free and crystalline molecules
has been based predominantly on the application of various experi-
mental techniques, but theoretical calculations play an ever increasing
role. Thus, it is important to comment upon the inherent differences
in the physical meaning of the structural information originating
from such different sources [114]. The consequences of intramolec-
ular vibrations on the geometry of free molecules have already been
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(a) (b)

Figure 9-60. Four-membered rings are present both in (a) The crystal; and (b) The
vapor-phase molecules of chromium dichloride [112].

mentioned. The effects of molecular vibrations and librational motion
in the crystal are not less important. To minimize their effects, it
is desirable to examine the crystal molecular structure at the lowest
possible temperatures. Also, the corrections for thermal motion are of
great importance. Especially when employing older data in compar-
isons and discussing subtle effects, these problems have to be consid-
ered. There is another source for differences in structural information,
which are only apparent differences and originate from the difference
in the physical meaning of the physical phenomena utilized in the
experimental techniques. When all sources of apparent differences
have been eliminated, and the molecular structure still differs in the
gas and the crystal, the intermolecular interactions in the crystal may
indeed be responsible for these differences [115].

The comparisons of gas/crystal structures may stimulate more accu-
rate structure determinations by experiment as well as calculations
of ever increasing sophistication. The gas/crystal structural changes
depend on the relative strengths of the intramolecular and inter-
molecular interactions. More pronounced changes are expected, for
example, in relatively weak coordination linkages under the influence
of the crystal field than in stronger bonds. Thus, the N–B bond of
donor-acceptor complexes is considerably longer in the gas than in the
crystal. The difference is about 5 pm for (CH3)3N–BCl3 (9-2) [116]
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9-2

and it may be supposed that the intermolecular forces somewhat
compress the molecule along the coordination bond in the crystal.
An extreme case of an 84 pm difference was reported for HCN–BF3

[117]. Another example is the silatrane structures where the relatively
weak N–Si dative bond is much longer in the gas than in the crystal.
This difference is 28 pm for 1-fluorosilatrane [118], represented here
(9-3) by the heavy-atom skeleton.

9-3

Gas/crystal comparisons are as of yet mainly confined to regis-
tering structural differences. The interpretation of these results is at
a qualitative initial stage. Further investigation of such differences
will enhance our understanding of the intermolecular interactions in
crystals.

9.6.5.2. Conformational Polymorphism

The investigation of different rotational isomers of the same
compound in different crystal forms (polymorphs) is another efficient
tool in elucidating intermolecular interactions. The phenomenon is
called conformational polymorphism. The energy differences between
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the polymorphs of organic crystals are similar to the free energy differ-
ences of rotational isomers of many free molecules, viz., a few kilo-
calories per mole. When the molecules adopt different conformations
in the different polymorphs, the change in rotational isomerism is
attributed to the influence of the crystal field since the difference in
the intermolecular forces is the single variable in the polymorphic
systems.

Polymorphism is ubiquitous [119], and most compounds can exist
in more than one crystalline form. Conformational polymorphism of
various organic compounds has been studied with a variety of tech-
niques in addition to X-ray crystallography. Among the molecules
investigated were N-(p-chlorobenzylidine)-p-chloroaniline, [9-4,
X = Cl (I)]

CH 

N X 

X 

9-4

which exists in at least two forms, and p-methyl-N-
(p-methylbenzylidene)aniline, [9-4, X = CH3 (II)], which exists
in at least three forms. For I, a high-energy planar conformation was
shown to occur with a triclinic lattice. A lower-energy form with
normal exocyclic angles was found in the orthorhombic form. It was
an intriguing question as to why molecule I would not always pack
with its lowest-energy conformation.

The X-ray diffraction work has been augmented by lattice energy
calculations employing different potential functions. The results did
not depend on the choice of the potential function, and they showed
that the crystal packing and the (intra)molecular structure together
adopt an optimal compromise. The minimized lattice energies were
analyzed in terms of partial atomic contributions to the total energy.
Even for the trimorphic molecule (II) the relative energy contribu-
tions of various groups were similar in all polymorphs. However, this
could only be achieved in some lattices by adopting a conformation,
different from the most favorable, with respect to the structure of the
isolated molecule. The investigation of conformational polymorphism
proved to be a promising tool for understanding the nature of the
crystal forces influencing molecular conformation, and even molec-
ular structure, in a broader sense.
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Possible variations in bond angles and bond lengths have been
ignored in the considerations described above. The energy require-
ments for changing bond angles and bond lengths are certainly higher
than those for conformational changes, and, accordingly, higher than
what may be available in polymorphic transitions. However, some
relaxation of the bond configuration may take place, especially if
considering that the (intra)molecular structure is also adopted as
a compromise between the bond configurations and the rotational
forms.

Bond configuration relaxation during internal rotation is another
phenomenon whose understanding might throw some light on the
correlations among the various intramolecular and intermolecular
interactions. In this case, quantum chemical calculations may be the
technique of choice. An early study, for example, targeted a series
of 1,2-dihaloethanes [120]. The bond angle C–C–X was observed to
change as much as 4◦ during internal rotation according to these calcu-
lations. If there is then a mixture of, say, anti and gauche forms, as is
often the case, and the relaxation of the bond configuration is ignored,
this may lead to considerable errors in the determination of the gauche
angle of rotation.

9.7. Beyond the Perfect System

The 230 space groups exhaustively characterize all the symmetries
possible for infinite lattice structures. So “exhaustively” that some
time ago some crystallographers and other scientists started viewing
this perfect system as a little too perfect and a little too rigid. These
views pointed toward the further development of our ideas on struc-
tures and symmetries.

There is an inherent deficiency in crystal symmetry in that crystals
are not really infinite. Alan Mackay argued that the crystal formation
is not the insertion of components into a three-dimensional framework
of symmetry elements; on the contrary, the symmetry elements are
the consequence [121]. The crystal arises from the local interactions
between individual atoms. He furthermore said that a regular structure
should mean a structure generated by simple rules, but the list of rules
considered to be simple and “permissible” should be extended. These
rules would not necessarily form groups. Furthermore, Mackay found
the formalism of the International Tables for X-Ray Crystallography
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to be too restrictive and quoted Bell, the historian of mathematics, on
the rigidity of the Euclidean geometry formalism: “The cowboys have
a way of trussing up a steer or a pugnacious bronco which fixes the
brute so that it can neither move nor think. This is the hog-tie and it is
what Euclid did to geometry” [122].

Mackay had a long list covering a whole range of transitions from
classical crystallographic concepts to what is termed the modern
science of structure at the atomic level. This list is reproduced in
Table 9-6. There is resonance of several of Mackay’s ideas with
other directions in modern chemistry, where the non-classical, the

Table 9-6. Mackay’s List of Transition from the Classical Concepts of Crystallog-
raphy to the Modern Concepts of a Science of Structurea

Classical concepts Modern concepts

Absolute identity of
components

Substitution and nonstoichiometry

Absolute identity of the
environment of each unit

Quasi-identity and quasiequivalence

Operations of infinite range Local elements of symmetry of finite range
“Euclidean” space elements

(plane sheets, straight lines)
Curved space elements. Membranes, micelles,

helices. Higher structures by curvature of
lower structures

Unique dominant minimum in
free energy configuration
space

One of many quasi-equivalent states;
metastability recording arbitrary information
(pathway); progressive segregation and
specialization of information structure

Infinite number of units.
Crystals

Finite numbers of units. Clusters; “crystalloids”

Assembly by incremental
growth (one unit at a time)

Assembly by intervention of other components
(“crystalase” enzyme). Information-controlled
assembly. Hierarchic assembly

Single level of organization
(with large span of level)

Hierarchy of levels of organization. Small span
of each level

Repetition according to
symmetry operations

Repetition according to program. Cellular
automata

Crystallographic symmetry
operations

General symmetry operations (equal “program
statements”)

Assembly by a single pathway
in configuration space

Assembly by branched lines in configuration
space. Bifurcations guided by “information”,
i.e., low-energy events of the hierarchy below

aA. L. Mackay, “De Niva Quinquangula: On the pentagonal snowflake.” Kritallo-
grafiya (Sov. Phys. Crystallogr.) 1981, 26, 910–919 (517–522).
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non-stoichiometrical, the non-stable, the non-regular, the non-usual,
the non-expected are gaining importance. For crystallography it seems
to be a long way yet to perform all the suggested transitions but the
breakthroughs so far have been fascinating and promising. Impres-
sive progress has been reported in the studies of liquids, amorphous
materials, metallic alloys as regards the description of their structural
regularities.

Liquid structures, for example, cannot be characterized by any of
the 230 three-dimensional space groups and yet it is unacceptable to
consider them as possessing no symmetry whatsoever. Bernal noted
presciently that the major structural distinction between liquids and
crystalline solids is the absence of long-range order in the former
[123]. A generalized description should also characterize liquid struc-
tures and colloids, as well as the structures of amorphous substances.
It should also account for the greater variations in their physical
properties as compared with those of the crystalline solids. Bernal’s
ideas have greatly encouraged further studies in this field which
is usually called generalized crystallography. Referring to Bernal’s
geometrical theory of liquids, Belov noted in Bernal’s obituary: “...
his last enthusiasm was for the laws of lawlessness” [124].

The paradoxical incompleteness and inadequacy of perfect
symmetry, compared with less-than-perfect symmetry, are well
expressed in a short poem entitled “Gift to a Jade” by the English
poet Anna Wickham [125]:

For love he offered me his perfect world.
This world was so constricted and so small
It had no loveliness at all,
And I flung back the little silly ball.
At that cold moralist I hotly hurled
His perfect, pure, symmetrical, small world.

The structures intermediate between the perfect order of crystals
and the complete disorder of gases are not merely rare exceptions.
On the contrary, they are often found in substances which are very
common in our environment or are widely used in various technolo-
gies. They include plastics, textiles, and rubber, among others. Glass is
an especially fascinating material whose amorphous atomic network
was discussed by Zachariasen a long time ago, but his teachings are
still considered to be valid [126]. Figure 9-61 shows Zachariasen’s
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two-dimensional representations of crystalline and amorphous struc-
tures of compounds of the same composition, A2O3. Guinier discussed
the intermediate structures between the extreme types of perfect order
and disorder, and he declared a quarter of a century ago that “The
distinction into two well separated classes is an oversimplification
of the complex reality” [127]. He envisaged a continuous passage
from the exact scheme of neighboring atoms in a crystal to the very
flexible arrangement in an amorphous body. The term paracrystal was
coined for domains with approximate long-distance order in the range
of a few tens to a few hundreds of atomic diameters. Today we call
the discipline dealing with such structures nanoscience. Figure 9-62
provides a schematic representation of a paracrystal lattice with one
atom per unit cell. The blackened areas indicate the regions where
an atom is likely to be found around the atom fixed at the origin. At
greater distances the neighboring sites first overlap, then merge, and
thus eventually the long-range order vanishes completely. Guinier’s
teachings have further enriched recent studies of complex inter-
metallic structures [128].

(a) (b)

Figure 9-61. Zachariasen’s [129] representation of the atomic arrangement in the
crystal (a) and glass (b) of A2O3.

One of the most fascinating examples of non-periodic regular
arrangements was described by Mackay in a paper titled—in obvious
reference to Kepler’s treatise about the six-cornered snowflake—De
nive quinquangula (on the pentagonal snowflake) [131]. A regular but
“non-crystalline” structure is built from regular pentagons in a plane.
It starts with a regular pentagon of given size (zeroth-order pentagon).
Six of these pentagons are combined to make a larger one (first-order
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Figure 9-62. Paracrystal lattice with one atom per unit cell adapted from Guinier
[130]. Used with permission.

pentagon). As is seen in Figure 9-63, the resulting triangular gaps are
covered by pieces from cutting up a seventh zeroth-order pentagon.
This indeed yields five triangles plus yet another regular pentagon of
the order –1. This construction is then repeated on an ever increasing
scale as indicated in Figure 9-63. The hierarchic packing of pentagons
builds up like a pentagonal snowflake. Attempts of pentagonal tiling
of the plane were already quoted in the Introduction, and will be
referred to again in the next Section.

Figure 9-63. Tiling with regular pentagons after Mackay [132].

Mackay called attention to yet another limitation of the 230 space-
group system. It covers only those helices that are compatible with
the three-dimensional lattices. All other helices that are finite in one
or two dimensions are excluded. Some important virus structures with
icosahedral symmetry are among them. Also, there are very small
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particles of gold that do not have the usual face-centered cubic lattice
of gold. They are actually icosahedral shells. The most stable config-
urations contain 55 or 147 atoms of gold. But icosahedral symmetry
is not treated in the International Tables and crystals are only defined
for infinite repetition.

Crystals are really advantageous for the determination of the struc-
ture of molecules. A crystal provides an amplification which multi-
plies the scattering of the X-rays from a single molecule by the
number of molecules in the array, perhaps by 1015. It also minimizes
the damage to individual molecules by the viewing radiation. The
spots are emphasized in the diffraction pattern and the background
is neglected. The damaged molecules transfer their scattering contri-
bution to the background as do those which are not repeated with
regular lattice periodicity. However, defects and irregularities may be
important and may well be lost in present-day sophisticated structural
analyses.

It is perhaps worth pointing out that every crystal is in fact defec-
tive, even if its only defect is that it has surfaces. However, if a crystal
is only a ten-unit-cell cube, about half of the unit cells lie in the
surface and thus have environments very different from those of the
other half. The physical observation is that very small aggregates need
not be crystalline, although they may nevertheless be perfectly struc-
tured. Mackay’s proposal is to apply the name crystalloid to them. He
offered the following definitions [133]:

Crystal: The unit cell, consisting of one or more atoms, or other
identical components, is repeated a large number of times by three
noncoplanar translations. Corresponding atoms in each unit cell have
almost identical surroundings. The fraction of atoms near the surface
is small and the effects of the surface can be neglected.

Crystallite: a small crystal where the only defect is the existence of
the external surface. The lattice may be deemed to be distorted but it
is not dislocated. Crystallites may further be associated into a mosaic
block.

Crystalloid: a configuration of atoms, or other identical compo-
nents, finite in one or more dimensions, in a true free energy
minimum, where the units are not related to each other by three lattice
operations.

The above ideas have been further developed mainly by translating
them into more quantitative descriptions and by applying them to



9.8. Quasicrystals 489

various structural problems. They can also be compared with similarly
new definitions mentioned in the next Section. These new attempts
of taxonomy by no means belittle the great importance of the 230
three-dimensional space groups and their wide applicability. What is
really expected is that they will eventually help in the systematization
and characterization of the less easily handled systems with varying
degrees of regularity in their structures.

The appearance of quasicrystals on the scene of materials has given
a great thrust to these developments.

9.8. Quasicrystals

The term “quasicrystal” was coined by Dov Levine and Paul Stein-
hardt, who studied the structure of metallic glasses by theoretical
means and modeling [134]. Using this term, they wanted to express
the connection between crystals on the one hand and quasiperiodic
long-range translational order, on the other. Here, long-range transla-
tional order means that the position of a unit cell far away in the lattice
is determined by the position of a given unit cell. In a crystal struc-
ture there is only one unit cell, whereas in a quasiperiodic structure
there is more than just one. The repetition of the unit cell is regular in
the crystal whereas it is not regular, nor is it random, in the quasiperi-
odic structure. In the two-dimensional space this is accomplished, for
instance, by a Penrose tiling [135], which was originally created more
as recreational mathematics than an extraordinarily important scien-
tific tool that it has eventually become. A Penrose tiling is shown
in the Introduction where some attempts of pentagonal tiling over
the centuries are also mentioned. There is a detailed and system-
atic discussion of pentagonal tilings in Grünbaum and Shephard’s
book [136].

The discovery of the Penrose tilings was a breakthrough in that
pentagonal symmetry occurred in a pattern otherwise described by
space group symmetry. Curiously, the Penrose tiling was first commu-
nicated not by its inventor but by Martin Gardner in the January 1977
issue of Scientific American [137]. Mathematical physicist Roger
Penrose himself published subsequently a paper in a university period-
ical which was then reprinted in a mathematical magazine. The title
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of the communication was rather telling, Pentaplexity, with a more
somber subtitle, A Class of Non-Periodic Tilings of the Plane [138].

Alan Mackay made the connection with crystallography [139]. He
designed a pattern of circles based on a quasi-lattice to model a
possible atomic structure. An optical transformation then created a
simulated diffraction pattern exhibiting local tenfold symmetry (see,
in the Introduction). In this way, Mackay virtually predicted the exis-
tence of what was later to be known as quasicrystals, and issued a
warning that such structures may be encountered but may stay unrec-
ognized if unexpected!‡

The unique moment of discovery came in April 1982 when Dan
Shechtman was doing some electron diffraction experiments on
alloys, produced by very rapid cooling of molten metals. In the exper-
iments with molten aluminum with added magnesium, cooled rapidly,
he observed an electron diffraction pattern with tenfold symmetry
(see, the pattern in the Introduction). It was as great a surprise as
it could have been imagined for any well-trained crystallographer.
Shechtman’s surprise was recorded with three question marks in his
lab notebook, “10-fold???” [140].

Fortunately, Mackay’s fear that quasicrystals may be encountered
but may stay unrecognized did not materialize. Although Shechtman
was not familiar with the Penrose tiling and its potential implications
for three-dimensional structures, he had what Louis Pasteur called, a
prepared mind for new things [141]. He did not let himself discour-
aged by the seemingly well-founded disbelief of many though did
not attempt to publish his observations until he and his colleagues
found a model that could be considered a possible origin of the
experimental observation. Ilan Blech constructed a three-dimensional
model of icosahedra filling space almost at random, and added restric-
tions to the model stipulating that the adjacent icosahedra touch each
other at edges, or, in a later version, at vertices. The model simu-
lated a diffraction pattern, which was consistent with Shechtman’s
observations.

The first report about Shechtman’s seminal experiment did not
appear until two and a half years after the experiment. The delay

‡Alan L. Mackay gave two remarkable lectures on fivefold symmetry at the
Hungarian Academy of Sciences, Budapest, in September, 1982, where he issued
this warning.
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was caused by Shechtman’s cautiousness and by some journal editors’
skepticism. The paper was titled modestly Metallic Phase with Long-
Range Orientational Order and No Translational Symmetry [142]. It
starts with the following sentence: “We report herein the existence
of a metallic solid which diffracts electrons like a single crystal but
has point group symmetry m3 5 (icosahedral) which is inconsistent
with lattice translations.” The three-page report was followed by an
avalanche of papers, conferences, schools, special journal issues, and
monographs.

Independent of Mackay’s predictions and Shechtman’s experi-
ments, there was another line of research by Steinhardt and Levine,
leading to a model encompassing all the features of shechtmanite (the
original quasiperiodic alloy was eventually named so) and other mate-
rials that are symmetric and icosahedral, but nonperiodic [143]. It was
a perfect timing that as soon as they built up their model and produced
its simulated diffraction pattern, they could see its proof from a real
experiment.

Steinhardt, like Mackay before (see, Section 9.7), felt the need
for redefinition of materials categories [144]. His suggestions now
included the newly discovered quasicrystals. Steinhardt has succinctly
characterized the crystals, glassy materials, and quasicrystals as
follows:

Crystal: highly ordered, with its atoms arranged in
clusters which repeat periodically, at equal inter-
vals, throughout the solid.
Glassy material: highly disordered, with atoms
arranged in a dense but random array.
Quasicrystal: highly ordered atomic structure, yet
the clusters repeat in an extraordinarily complex
nonperiodic pattern.

The appearance of quasicrystals caused a minirevolution in crystal-
lography. The lack of periodicity was a major obstacle in applying the
traditional terms and approaches to this domain of materials. This was
an interesting development also from the point of view of Mackay’s
suggestions for generalized crystallography. He truly anticipated the
breakdown of the perfect traditional system, which he felt a little too
perfect and, certainly, too rigid.
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It has been suggested to treat quasicrystals as three-dimensional
sections of materials that are periodic in more than three dimen-
sions. On the other hand, a new and more general formulation of
crystallography has also been proposed by David Mermin, which
would stay within the realm of three-dimensionality and would not
have the concept of periodicity in the focus of its foundation [145].
He compared abandoning the traditional classification scheme of
crystallography, based on periodicity, to abandoning the Ptolemaic
view in astronomy and likened changing it to a new foundation to
astronomy’s adopting the Copernican view. This is why he gave
the title “Copernican Crystallography” to his communication. The
suggestion was to build the new foundation on the three-dimensional
concept of point-group operations that would have the concept of
indistinguishable densities in its focus, rather than identical densi-
ties, to correspond to the character of quasisymmetries, describing,
among others, the quasicrystals. Incidentally, the first challenge to
the periodicity paradigm of crystallography was the observation of
incommensurately modulated structures [146]. At that time, however,
the new observations were brought into line with classical crystal-
lography. The change in the periodicity paradigm has been discussed
[147] in the light of Thomas Kuhn’s The Structure of Scientific Revo-
lutions [148]. Sadly, the giant of 20th century structural chemistry,
Linus Pauling never accepted the notion of quasicrystals; instead, he
maintained that the phenomena interpreted as quasicrystals could be
explained in terms of known crystal formations within the realms of
classical crystallography [149].

Figure 9-64 shows some beautiful representatives of quasicrystals
and Figure 9-65 depicts another quasicrystal and a modern sculpture
that could be taken as an artistic expression of a quasicrystal although
the artist was not aware of the existence of such materials. The artistic
appearance of quasicrystals, however, predates their scientific entry
by centuries [150]. The discovery of such cultural monuments has
generated lively discussions even in the general press [151].

Concluding, we quote again Mackay [155], who stated that

Amorphous materials may be shapeless, but they
are not without order. Order, like beauty, is in the
eyes of the beholder. If you look only with X-ray
diffraction eyes, then all you see is translational
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(a) (b)

(c)

Figure 9-64. Quasicrystals: (a–b) Flower-like icosahedral quasicrystal in a
quenched Al/Mn sample (from Csanády et al.) [152]; (c) Pentagonal dodecahedron
in quasicrystalline Al/Cu/Ru obtained by slow cooling from melt (courtesy of H.-U.
Nissen, Zurich) [153].

(a) (b)

Figure 9-65. (a) Triacontrahedral quasicrystal Al/Li/Cu (courtesy of F. Dénoyer,
Orsay) [154]; (b) Sculpture resembling a quasicrystal, by Peter Hächler, Switzer-
land. Photograph by the authors.
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order, to wit crystals. ... there is a wider range of
structures, between those of crystals and those of
gases, ... Other structures need not be failed crys-
tals but are sui generis.

As crystallography is becoming more general, transforming itself
into the science of structures, so may we anticipate a broadening appli-
cation of the symmetry concept in the description and understanding
of all possible structures [156].

9.9. Returning to Shapes

Concluding our discussion of crystal symmetries, let us return now
to those exquisite shapes that we think of when the word crystal is
mentioned. The words of the 19th century English writer John Ruskin
[157] and drawings of C. Bunn [158] (Figure 9-66) are cited here.

And remember, the poor little crystals have to live
their lives, and mind their own affairs, in the midst
of all this, as best they may. They are wonderfully
like humane creatures—forget all that is going on
if they don’t see it, however dreadful; and never
think what is to happen tomorrow. They are spiteful
or loving, and indolent or painstaking, with no
thought whatever of the lava or the flood which
may break over them any day; and evaporate them
into air-bubbles, or wash them into a solution of
salts. And you may look at them, once under-
standing the surrounding conditions of their fate,
with an endless interest. You will see crowds of
unfortunate little crystals, who have been forced
to constitute themselves in a hurry, their dissolving
element being fiercely scorched away; you will see
them doing their best, bright and numberless, but
tiny. Then you will find indulged crystals, who
have had centuries to form themselves in, and have
changed their mind and ways continually; and have
been tired, and taken heart again; and have been
sick, and got well again; and thought they would
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Figure 9-66. Crystal characters from C. Bunn’s book [159]. Reproduced with
permission.

try a different diet, and then thought better of it; and
made but a poor use of their advantages, after all.

And sometimes you may see hypocritical crys-
tals taking the shape of others, though they are
nothing like in their minds; and vampire crystals
eating out the hearts of others; and hermitcrab crys-
tals living on the shells of others; and parasite crys-
tals living on the means of others; and courtier
crystals glittering in the attendance upon others;
and all these, besides the two great companies of
war and peace, who ally themselves, resolutely to
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attack, or resolutely to defend. And for the close,
you see the broad shadow and deadly force of
inevitable fate, above all this: you see the multi-
tudes of crystals whose time has come; not a set
time, as with us, but yet a time, sooner or later,
when they all must give up their crystal ghost—
when the strength by which they grew, and the
breath given them to breathe, pass away from them;
and they fail, and are consumed, and vanish away;
and another generation is brought to life, framed
out of their ashes.
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1783–1788, p. 433; as quoted in A. L. Mackay, A Dictionary of Scientific
Quotations. Adam Hilger, Bristol, 1991, p. 43.

2. K. Čapek, Anglické Listy, Československý Spisovatel, Praha, 1970. The
English version cited in our text was kindly provided by Alan L. Mackay,
London.

3. Ibid.
4. A. L. Mackay, “Duerer’s technique.” Nature 1983, 301, 652. A careful anal-

ysis of the drawing is available: E. Schröder, Dürer. Kunst und Geometrie,
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E. Makovicky, F. Rull Pérez, P. Fenoll Hach-Alı́, “Decagonal patterns in the
Islamic ornamental art of Spain and Morocco.” Boletı́n de la Solidad Española
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Epilogue

At the end of our journey with symmetry in chemistry, we may ask the
question whether there is any specific chemical symmetry. Because
of its unifying nature, the answer should be that there is only one
symmetry concept. Yet there are different emphases in different fields.
In chemistry, we are seeking more the presence of symmetry whereas
in physics, the stress on symmetry breaking appears more mani-
fested. Crystals, for example, are often used in physics to demonstrate
symmetry breaking. This is understandable if we imagine ourselves to
shrink to the atomic size. In this case our wandering inside the crystal
gives us the impression of broken symmetry. For a chemist though
the regularity of a crystal projects perfect symmetry. Thus, we have to
take the scale into account when judging the presence or absence of
symmetry.

Another consideration is the extent that determines the effect on
whose basis we judge a property. Even the most extended monocrystal
is finite hence cannot be considered infinite to satisfy the requirement
of space-group symmetry. For an X-ray diffraction pattern though,
whose existence testifies to its symmetry, the crystal needs to be
merely large enough to produce such a pattern. Thus the infinity
criteria can be fulfilled even within finite domains.

There is then the interesting question whether symmetry can be
quantified or not? There have been elaborate and bona fide attempts
for such quantification and quantitative comparisons. Their success
is limited though because such questions can only be answered for
specific features but usually not in a general sense.

Returning to the question whether chemical and physical symme-
tries may be different, there is, again, a difference in current research.
In the physics of fundamental particles, the quest is still going on for
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uncovering the most fundamental level of the organization of matter
and finding the most universal level of symmetry. In chemistry, the
quest is more for the enhanced utilization of the already familiar
symmetries in areas of chemistry where they heretofore have not yet
found application. A shining example of success was the introduc-
tion of symmetry considerations in predicting the feasibility of chem-
ical reactions. Current studies are aiming at explaining and predicting
structural differences between gaseous and crystalline structures and
predicting and explaining different preferences of different substances
for crystallization. Further successes may occur in areas that we might
not even be thinking of yet as the next ones in the utilization of the
symmetry concept. Symmetry has been a most fruitful concept in
chemistry in understanding our science and making it more powerful.
It has also enhanced our pleasures in doing chemistry and connecting
it with other human endeavors.

In conclusion, we would like to stress that while symmetry is very
important in chemistry, it is only an ingredient. There is no chemistry
without the substances and their reactions and the separation of the
products, and so on. We have to bear this in mind even when we are
indulging in the symmetry aspects of our science.
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Donor-acceptor complexes, 356, 480
Double-headed eagles, 33



512 Index

Double helix, 3, 71, 107, 387–390
Dove-tail packing, 458, 459
Dunitz, J. D., 465
Dürer, A., 10, 16, 414, 416
Dynamic properties, 212–213

E
Eclipsed conformation, 101, 134
Egyptian sculptures, 27
Eiffel Tower, 41
Einstein, A., 14
Electrocyclic reactions, 350
Electron diffraction, 11–12, 146, 158, 307, 490
Electronic structure

changes during chemical reaction, 324–325
conservation of orbital symmetry, 326–327
frontier orbitals, 325–326
maximum symmetry analysis, 327–328
wave function description of, 241–249

Electronic wave function
fundamental property, 240
of hydrogen atom, 241–249
many-electron atoms, 249–251
one-electron atom, 241–249
symmetry properties of, 240–241, 246

Emerson, R. W., 217
Enantiomers, 71, 73, 100
Enantiomorphs, 61, 68–69
Energy calculations, for molecular crystals,

470–473
Environmental symmetry, influence of,

290–294
Equilibrium structure, 154–155
Erni, H., 65, 66
Escher, M. C., 119, 402, 404, 406, 415,

459, 461
Ethambutol, 74
Ethane, 103, 104, 133, 362
Ethylene cycloaddition, 343
Ethylene dimerization, 328–340

correlation diagram, 332–333, 335
correspondence diagram, 337
frontier orbital method, 328–329
HOMO and LUMO of, 328–329
MOs of ethylene–ethylene system, 332,

335
orthogonal approach, 338–340
parallel approach, 328–332, 336–338
state correlation, 332–336
symmetry of reactants, transition structure

and product in, 330
Woodward–Hoffmann approach, 329

Euclid, 484
Euler, 78, 80

F
Faraday, M., 19
Fedorov, E. S., 15, 46, 416, 437, 459
Fejes Tóth, L., 81
Ferrocene, 134–135
Fibonacci series, 384–385
Fischer, E., 62
Flowers, 28–29, 34–35, 37–39, 43, 47
Folk music, 31–33
Free and crystalline molecules, structure

differences in, 477–481
Frontier orbitals, 325–326
Fukui, K., 3, 313, 324, 325, 326, 328, 340
Fuller, R. B., 4, 5, 6, 9, 446, 447, 473
Fullerenes, 5–6, 8, 122–123

G
Gal’pern, E. G., 6, 7
Gardner, M., 65, 489
Gas/solid structural differences, 478
Gaudi, A., 200, 201
Gay-Lussac, J. L., 287
Generalized crystallography, 424, 485, 491
Generalized Woodward-Hoffmann rules, 350
Genuine modes, 220
Geodesic Dome, 6, 447
Geometrical isomers, 100
Geometrical model, of molecular crystals,

457–465
arrangements of molecular shapes,

458–459
dove-tail packing, 459–460
head-to-head arrangement, 459–460
head-to-tail arrangement, 459–460

Geometrical symmetry, 37
Gillespie, R. J., 151
Glassy materials, definition of, 491
Glide mirror, see Glide reflections
Glide reflections, 372–374, 378
Goniometers, 417–418
Graphite, 6, 9, 122, 403
Great dodecahedron, 85
Great icosahedron, 85
Great stellated dodecahedron, 85
Grepioni, F., 472
Gross, D. J., 12
Groth, P., 59
Group orbitals, 258
Groups, 169–197, 204–215

classes of, 174
elements, 170–172
irreducible representation of, 189
multiplication tables for, 172, 173
order of class and subgroup, 175
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reducible representation of, 189
representation of, 183–189
similarity transformations in, 174–175
subgroups, 174

Group theory,120, 169–197, 204–215
Grünbaum, B., 405, 489
Guinier, A., 486, 487

H
Haeckel, E., 39, 80, 81
Häckel, E., 6
Haldane, J. B. S., 70, 71
Halevi, F. A., 313, 327, 328, 336
Halevi’s method, 328
Hamiltonian operator, 240
Handedness, 3, 65, 70–72
Hauptman, H., 448, 449
Haüy, 418, 419, 420, 421
Helical symmetry, 391
Helices, translational symmetry of, 3
Helium (He), MO construction in, 265
Helix structure, 389
Heptaprismane (C14H14), 130
Heraldic symmetry, 33

See also bilateral symmetry
Hermann-Mauguin symmetry notations, 104
Heterochiral, 61

chairs, 66
pairs of hands, 61
segment, 74–75

Heteronuclear diatomic molecules, 256
Hexaprismane (C12H12), 127, 130
Highest occupied molecular orbital (HOMO),

325–327
of ethylene, 328–329

H3N · AlCl3 donor–acceptor complex,
117–118

Hodgkin, D., 440, 442
Hoffmann, R., 3, 4, 313, 314, 324, 326, 327,

328, 329, 331, 350, 351, 353, 354,
355, 356, 360, 363

HOMO, 325–329, 335, 340, 341, 343, 356
Homochiral, 61

chairs, 66
pairs of hands, 61–62
segment, 75

Homomers, 100
Homonuclear diatomic molecules, 256–257,

263–266
Houk, K. N., 318
Hubcaps, 34–35
Hückel–Möbius concept, 350–355
Hückel ring, 351, 354
Hückel system, 351, 353

Huffman, D., 9, 10
Human body

bilateral symmetry of, 27
symmetry of, 25–27, 30

Human face, symmetry plane of, 30
Humphreys, W. J., 48, 50
Hund, F., 251, 304, 326
Hund’s rule, 304
Hydrogen atom, 241–249
Hydrogen (H2) molecule, 263–264
Hydrogen-like orbitals, see Atomic orbitals

(AOs)
Hypersymmetry, in molecular crystals,

474–476
Hypostrophene, 156, 157

I
Iceane hydrocarbon molecule, 131
Ice crystal, 131
Icosahedral packing, 446–449
Icosahedral quasicrystal, 493
Icosahedral structures, 9
Icosahedron, 77, 79, 80, 83–85, 106, 125, 159
Icosidodecahedron, 87–88
Identity operation, 197
Infinite lattices of crystal, 432–434
Insulin, 440, 441, 442
Intermolecular atomic radii, 457
Internal coordinates, 213, 214, 224, 225, 229,

230, 236
International notations, see Symmetry
Intramolecular

cyclization, 343–450
orbital correlation for, 343–346
symmetry of reaction coordinate,

346–350
motion consequences, 153–161
nonbonded interactions, 136–138

geometrical consequences of, 138
1,3 separations, 136–137
van-der-Waals interactions, 137

Inversion operation, 205, 246, 249
Inversion symmetry, 53–55
Iodine atom, total wave function of, 248
Iodine heptafluoride (IF7), 158
Ir4(CO)12, 160
Iron dendrites formation, 31–32
Irreducible representation, 189–191

properties, 191–197
symbols for, 194

Isolobal analogy, 356–364
Isomers, 98–100

conformers, 100
constitutional, 99
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diastereomers, 99–100
enantiomers, 100
geometrical, 100
hierarchy of, 100
homomers, 100
rotational, 99–100
structural, 99–100

J
Jahn–Teller active vibrations, 296
Jahn–Teller distortion, 295–297, 300–305, 307
Jahn–Teller effect, 294–308, 323
Jahn–Teller phase transition, 301
Jahn–Teller stabilization energy, 300
Jones, D. E. H., 5–6

K
Kaolin, 453
Kekulé, 19
Kelvin, Lord/Thomson, W. H., 60, 458, 459
Kepler, J., 10, 28, 42, 47, 80, 82, 161, 421,

443, 486
Keplerates, 81
Kitaigordskii/Kitaigorodsky, A. I., 441, 467,

468, 473
Klug, A., 391, 447
Knowles, W. S., 74
Koestler, A., 1, 2, 80
Kohn, W., 287, 288
Kolbe, H., 97
Koptsik, V. A., 75, 406, 438, 439, 440,

445, 474
Kotel’nikova, A., 135
Krätschmer, W., 9, 10
Kroto, H. W., 6, 7
Kuhn, T., 492

L
Landau, L. D., 305, 306
Law of rational indices, 417, 420
Law of rational intercepts, 417,

418, 420
Laws of nature, and symmetry, 12–14
Leaves, bilateral symmetry in, 28–29
Le Bel, J. A., 97
Lee, T. D., 14, 15
Left-and-right symmetry, 14
Left-handed helices, 65
Lehn, J.-M., 465
Levine, D., 489, 491
Levine, R. D., 289
Lewis, G. N., 71, 151, 152, 357
Lewis’ theory, 151–152
Ligand field theory, 214, 290

Limiting groups, 104–105
Limonene, 74
Linear combination of atomic orbitals (LCAO),

252
Lipscomb, W. N., 159
Lipscomb model, of rearrangement in

polyhedral boranes, 159
L-nucleotides, 71
Logos with rotational symmetry, 35–36
Long-range pentagonal symmetry, 10
Longuet-Higgins, H. C., 326, 334
Lowest unoccupied molecular orbitals

(LUMO), 325–329
Lu, G.-D., 47
Lucretius, 2, 457, 458
Lunar Module, 30

M
MacGillavry, C., 402, 461
Mackay, A. L., 10, 11, 31, 70, 448, 483, 484,

486, 487, 488, 490, 491, 492
Mackay icosahedron, 448
Mamedov, K., 404, 406
Manganese trifluoride molecule, MnF3,

Jahn–Teller distortion of, 302–303
Mann, T., 25, 26, 44, 46
Many-electron atoms

order of orbital energies in, 250–251
wave function, 249–251

Marginal stability, 42
Matisse, H., 30, 153, 154, 155
Matrices

character of, 190
column matrices, 177
dimension, 176
mathematical tool for symmetry operations,

176–183
square matrix, 176
unit matrix, 176
vectors and, 177–178

Maximum symmetry analysis, 327–328
Mazurs, E. G., 17
Mendeleev, D. I., 17, 18, 30
Mendeleev’s periodic system, 18
Mermin, D., 492
Metal halide molecules, 155
Metal–carbonyl clusters, 160–161
Metal–metal multiple bonds, 135
Methane, 133

consequences of substitution on symmetry
of, 115–118

molecular shape, 120–121, 143–145
2-Methyl-1,4-butandiol, 75, 77
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p-Methyl-N-(p-methylbenzylidine) aniline,
482

Mexican-hat type potential energy surface,
303–304

Meyer, V., 97
Michelangelo, 253
Miller indices, 420
Minimum energy path, 320
Mirror operation for movements, 213
Mirror-rotation symmetry axis, 55
Mirror symmetry, 175, 197–198
Mislow, K., 16, 78
Moiré patterns, 408–410
Molecular crystals

arrangements of molecular shapes,
458–459

crystal field effects, 476–483
densest molecular packing, 466–470
energy calculations, 470–473
geometrical model, 457–465
hypersymmetry, 474–476
structure predictions, 470–473

Molecular orbitals (MOs), 252–261
antibonding orbital, 254–255
from atomic orbitals, 253–257
bonding orbital, 254–255
construction of

ammonia, 268–269, 271–277
benzene, 276–286
helium molecule, 265
homonuclear diatomics, 263–266
hydrogen molecule, 263–264
polyatomic molecules, 266–286
water molecule, 266–270

energy changes during formation of,
256–257

rule for construction of, 253–254
symmetry of, 258

Molecular packing, 466–470
Molecular point groups

establishing, 105–107
symmetries, 104

Molecular polarity, 57–60
Molecular recognition, 289, 464, 465
Molecular shapes

electronegative ligands and, 146–148
with lone pair, 145–147, 149
with multiple bonds, 145–146
from points-on-the-sphere model, 141
relative availability of space in valence

shell and, 147–148
VSEPR model, 143–151

Molecular vibrations
of carbon dioxide, 231, 233–236

in diimide, 229–233
normal modes, 217–225
selection rules, 227–229
symmetry coordinate, 225–227

Molecules, 252–287
consequences of substitution on symmetry

of, 115–118
electronic states, 261–263
homonuclear diatomics, 263–266

helium, 265
hydrogen, 263–264

many-electron atom, 249–251
molecular orbitals, 252–261, 264, 286–287
one-electron wave function, 241–249
polyatomic molecules, 266–286

ammonia, 268–269, 271–277
benzene, 276–286
water, 266–268

Movements, mirror operation for, 213
Möbius ring, 352, 355
Möbius systems, 351, 353–354
Muetterties, E., 119, 123, 125, 126
Mulliken, R. S., 193, 195, 326
Mulliken symbols, 193, 195
Multiplicity, 55
Music, 31–33

N
Nakaya, U., 48, 49, 50, 51, 52, 53
Nanoscience and nanotechnology, 4, 122
Nanotubes and nanorods, 381–382
Naproxen, 74
Natta, G., 385, 388
Needham, J., 47
Newman, J., 169
Noether, E., 313
Nonbonded distances, regularities in, 136–139
Noncrossing rule, 327, 335, 336
Noncrystallographic symmetry, 10
Non-enantiomorphous symmetry, 63
Norgestrel, 74
Normal coordinate analysis, 214, 226
Normal modes

bending mode, 224
deformation modes, 224
of molecular vibrations, 217–225
number, 218–220
stretching modes, 224
symmertry, 220–224
types, 224–225

n-Prismanes (C2nH2n), 130
Noyori, R., 74
Nyholm, R. S., 151
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O
OClF3, molecular configuration of, 140
Octahedral AX6 molecules, consequences of

substitution, 115–117, 150
Octahedron, 76, 79–81, 83

notations, 450, 452–453
One-dimensional space-groups, 376, 381, 385,

387
scheme for establishing symmetry class of,

398–399
One-electron atom

wave functions, 241–249
radial wave function, 241–242, 244–245
symmetry properties, 246

One-electron orbitals, shapes of, 246–247
One-sided bands, symmetry classes, 375–378
One-sided planar networks, symmetry classes

of, 397
ONF3 molecular geometry, 136
OPF3 molecular configuration, 140, 149
Optical activity, 61–63, 92
Orbital correlation diagrams for

butadiene–cyclobutene interconversion,
343–346

Diels–Alder reaction, 340–343
ethylene–butadiene cycloaddition, 342–343
intramolecular cyclization, 343–346

Orbitals, 242
effect of inversion on, 246, 248–249
sequence of energies in, 250–251, 266
symmetry conservation, 3, 326–327

d orbitals
energies in octahedral and cubic

environment, 292–293
splittings in different ligand environments,

292–294
symmetry in octahedral and cubic

environment, 291–292
Orgel, L. E., 71, 72
Osawa, E., 6, 7
Oscillating reactions, 392

P
Pacioli, L., 7, 8, 82
Paddlanes, 135–136
Paracrystal lattice, 486–487
Parity violation, 70
Pasteur, L., 61, 62, 64, 67, 68, 70, 71, 490
Pasteur’s models, 61, 64
Paul, I. C., 59, 60
Pauli exclusion principle, 151, 251
Pauling, L., 17, 137, 387, 388, 389, 390, 455,

459, 461, 462, 492
p-chloroacetanilide crystal, 57, 59

Pearson, R. G., 313, 320, 327, 347, 348, 349
Penicillamine, 74
Penrose, R., 10, 11, 489, 490
Penrose tilings, 11, 489
Pentagonal dodecahedron, 79, 80, 82, 84, 493
Pentagonal prism, 40–41
Pentagonal symmetry, 10, 79, 489
Pentaprismane (C10H10), 127, 130, 156
Periodic tables, 17–19
Permutational isomerism, 156–157
PF3Cl2, 149
PF2Cl3, 149
PF5-type molecules, 158
Phosphine, 147
Photosynthetic reaction center, 107–109
Piezoelectricity, 60
Pinecone scales, 384
Planetary model, 80, 82
Plantago media, 384–385
Plato, 76
Platonic solids, 76–81, 88, 126, 128

See also regular convex polyhedra
Point group

dimensionality and periodicity in
symmetry, 56–58

establishing, 105–107
symmetry, 55–56, 104–105

Point groups, 105–115
C2h , 105, 191, 195, 230
Cnh , 105, 107
Cnv , 105, 107
Cs , 105, 109, 178, 179, 349
C1, 105, 189
C2, 105, 108, 170, 173, 184
C3, 105, 108, 173, 193, 272, 273
C4, 105, 108, 115
C5, 105, 108, 115
C6, 108, 115
C2v , 105, 111, 193–194, 209, 221
C3v , 105, 111, 209, 268, 271, 273
C4v , 105, 111, 258–260, 360
C∞v , 105, 111
D2d, 105, 112
D3d, 105, 112
D4d, 125, 112
D∞h , 105, 114, 231, 263, 264, 265
D2h , 105, 113, 328, 330
D3h , 105, 113
D4h , 105, 113
D5h , 105, 113
D6h , 105, 113, 277–278
Dnd , 106–107
Dnh , 106
D2, 105, 111, 328, 330
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D3, 105, 111
D4, 105, 111
D5, 105, 111
Ih , 115
Oh , 115, 261, 291
S4, 105, 110
S6, 105, 110
T, 105
Td , 105, 125
Th , 105

Points-on-the-sphere model, 141
Polanyi, M., 17, 318
Polar axis, 57
Polarity and symmetry, 57, 59–60
Polar line, 57
Polycyclic hydrocarbons, 125–132
Polyethylene chain molecule, 385–386
Polyhedral boranes, 159
Polyhedral molecular geometries, 119–161

boron hydride cages, 123–125
intramolecular motion consequences,

153–161
non-bonded distances regularities, 136–139
polycyclic hydrocarbons, 125–132
structures with central atom, 133–136
VSEPR model, 139–153

analogies, 142–143
historical perpectives, 151–153
molecular shapes, 143–151

Polyhedrane molecules, 119, 128
Polyhedra, 76–90
Polymorphism, 481–483
Polypeptide chain, helical structures, 387–388
P4O6, 132
(PO)4O6 molecule structure, 132
Pople, J., 287, 288
Potassium tetrafluoroaluminate (KAlF4),

133–134
Potential energy surface, 315–324

reaction coordinate, 319–320
saddle point, 316, 318
transition state and transition structure,

316–319
Powell, H. M., 151
Pólya, G., 405, 407
Prelog, V., 2, 65, 66, 69, 70
Primitive organisms, pentagonal symmetry of,

79–80
Principal quantum numbers, 241–242
Prismane molecules, 119, 130
Prismatic cyclopentadienyl, 134
Prisms, 89–90, 125, 130

symmetry, 40–41
Projection formulae, 101

Projection operator, 211–212
Propoxyphene, 74
Pseudo-Jahn–Teller effect, 294, 307, 323
Pseudorotation, 153, 154, 158, 159
Pseudosymmetry, 314
Pyroelectricity, 60

Q
Quantum chemical calculations, 151, 154, 258,

287–290, 304, 319, 338, 340, 343,
350, 353, 483

Quantum numbers, 241–242, 250
Quartz crystals, 63, 68, 417
Quasicrystals, 4, 9, 11, 424, 489–494
Quasi-regular polyhedra, 89

R
Radial symmetry, 29, 31
Radiolarians, 80, 81
Rational indices, law of, 417, 420
Rational intercepts, law of, 417–418, 420
Reaction coordinate, 319–320

symmetry rules for, 320–324
Reducible representation, 189–191
Regular convex polyhedra, 76–80, 83–85,

89–90
characteristic symmetry elements, 77,

79–80
Regular dodecahedron, 79, 84, 119
Regular icosahedron, 79, 123
Regular pentagonal dodecahedron, 80, 82
Regular polygons, 77, 78, 84, 90
Regular star polyhedra, 85
Regular tetrahedron, 117, 121, 133
Renner, R., 294, 305, 306, 307
Renner–Teller effect, 294, 306–307
Representation

character of, 191–197
of groups, 183–189
irreducible, 189–191
reducible, 189–191
reduction, 206–208
shortcut to determine, 204–205

Reston, J., 54
Reverse coupe du roi, 76
Rh4(CO)12, 159
Rhombicosidodecahedron, 87
Rhombicuboctahedron, 87
Rock salt crystal structure, 438–440
Rotational isomerism, 100–104

projectional representation, 102, 104
Rotational isomers, 99–100
Rotational symmetry, 33–36

elemental angle, 34
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in flowers, 34
in hubcaps, 34–35
logos with, 35–36
in machinery rotating parts, 34–35
in Norwegian tulip, 37–38
order of, 33–34
in sculptures of interweaving fish and

dolphins, 36
in Taiwanese stamp with two fish, 33–34
in Vinca minor, 37–38
in yin yang contour, 33–34

Rotation axis with intersecting symmetry
planes, 37–39

Ru3(CO)12, 472–473
Ruskin, J., 494

S
Saddle-shaped sculpture, 317
Salem, L., 314, 326
Scattered leaf arrangements , 384, 392
Schoenflies notation, 104–105
Schrödinger, E., 240, 241, 252
Schrödinger equation, 240–241, 252
Scoresby, W., 48, 49
Screw-axis symmetry, 382–384
Screws, 64–65
Scriven, M., 16
Selection rules, in molecular vibrations,

227–229
Semiregular (Archimedean) polyhedra,

87–90
Shared electron pair, 151–152
Sharpless, K. B., 74
Shechtman, D., 11, 12, 490–491
Shephard, G. C., 405, 489
Shubnikov, A. V., 10, 15, 67, 68, 75, 198, 199,

406, 438, 439, 440, 445
SiBr2, bending potential energy functions, 156
Sidgwick, N. V., 151
Similarity transformation, 174
Simulated diffraction pattern, 11
Single bond, rotational isomerism relative to,

103–104
Singular point symmetry, 55–57
Small stellated dodecahedron, 85
Smalley, R. E., 6, 7
Sn[Fe2(CO)8]2, molecular geometry of, 363
Snow crystals, 40, 42, 43, 46, 47, 48, 49, 53
Snowflakes

classification, 50–53
formation, 44, 49–50
hexagonal symmetry, 42, 47–50
malformed crystals, 50
morphology of, 40, 42–44

photomicrographs, 48, 50
symmetries, 39–53, 55

Snub cube, 87, 90
Snub dodecahedron, 87
SO2Cl2, 171, 182
Sodalite unit, 89
Sodium chloride, 416–417, 454–455, 477
Space-groups symmetries, 56

band symmetries, 375–381
in crystal symmetries, 432–440
dimensionality, 372
expanding to infinity, 371–375
glide-reflection, 373–374, 380
identity period in, 373, 385
one-sided bands, 375–380
planar decoration with, 372–373
rods, 381–395
similarity symmetry, 381–395
spirals, 381–395
translation presence in, 373, 378–379, 385
two-dimensional, 395–410
two-sided bands, 378–381

Sphere, 85–86
Sphere packing, 442–446
Spin quantum number, 250
Spiral staircase, 71

screw-axis symmetry in, 382–383
Spiral symmetry, 391–393
Square matrix, 176
Square prismatic [Re2Cl8]2−ion structure,

134–135
SrBr2, bending potential energy functions,

155–156
Staggered conformation, 101, 104
Stalactites and stalagmites, 31
Standing wave theory, 43–44
Starfish, 38–40
Steno, 417
Steinhardt, P., 489, 491
Structural isomerism and isomers, 99–100
Sulfones, 138
Sulfur dichloride, 146
Sulfur difluoride, 145–146
Sulfur hexafluoride (SF6), consequences of

substitution, 115–116
Sulphuric acid, 138
Symmetry

bands symmetry, 375–381
bilateral, 25–33
broken, 14–15
center, 53–55
chemical, 2–3, 14, 16
chirality, 60–76
classes of one-sided
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bands, 375–380
planar networks, 395–401

combined, 37–53
concept of, 1–3, 16
consequences of substitution on,

115–119
coordinate in molecular vibrations,

225–227
definitions, 15–16
and degeneracy of energy levels, 243–244,

260–261
element and consequences, 37
environmental, 290–294
forbidden chemical reactions, 314, 331
and group theory, 169–170
and harmony, 18
of human body, 25–27
importance of, 14, 19
inversion, 53–55
and Jahn–Teller effect, 294–308
laws of nature and, 12–14
left-and-right, 14
notations, 104–105

of crystallographic groups, 105
of limiting groups, 104–105

planes, rotation axis with in, 37–39
polarity, 57–60
polyhedra, 76–90
rods, 381–395
rotational, 33–36
rotation axis, 37–39
rules

for chemical reactions, 313–315, 320,
340, 343

for reaction coordinate, 320–324
similarity symmetry, 381–395
singular point, 55–58
snowflakes, 39–53, 55
species, 189
spirals symmetry, 381–395
translational, 55–57

Symmetry-adapted linear combinations
(SALCs), 258, 266–267, 271–274,
277, 279–281, 283, 285–287

Synergy, importance for chemistry, 5

T
‘t Hooft, G., 14
Teller, E., 294–297, 299, 300–302, 305–308,

322, 323
Tetraarsene (As4), 120–121
Tetragonal bipyramidal systems, 148
Tetrahedral AX4 molecule, consequences of

substitution, 115–116

Tetrahedral sulphur configurations, 138
Tetrahedrane (CH)4,126–127, 129, 363, 364
Tetrahedron notations, 450–451, 453
Tetralithiotetrahedrane (CLi)4, 134
Tetra-tert-butyltetrahedrane, 126–127
Thalidomide, 72–73
Thompson, D. W., 6, 97, 391
Thompson, W. H./Lord Kelvin, 60, 458,

459, 499
Three-dimensional space-groups, 375, 437,

469, 474–475, 485
unit cell, 433, 438, 439, 444

Tobacco mosaic virus (TMV), 391
Transition-state geometries, of chemical

reactions, 316–319
Translational antisymmetry, 200–201
Translational symmetry, 55–57
Trees, conical and radial symmetries of, 29
Triacontrahedral quasicrystal, 493
Triamantane molecule structure, 132–133
1,3,5-Triphenylbenzene molecules, packing in

crystal structure, 457–458
Triprismane (CH)6, 127, 130
Tronev, V. G., 135
Truncated cube, 87–88
Truncated cuboctahedrane (CH)48,129
Truncated cuboctahedron, 87
Truncated dodecahedrane (CH)60, 129
Truncated dodecahedron, 87–88
Truncated icosahedral geometry, 6, 9
Truncated icosahedrane (CH)60, 129
Truncated icosahedron, 7–8, 88–89
Truncated icosidodecahedrane (CH)120, 129
Truncated icosidodecahedron, 87
Truncated octahedron, 87–89
Truncated tetrahedron, 87–88
T symmetry, 114
Twinned cuboctahedron, 449
Two-dimensional space-groups, 375, 395–410

lattice point, 398–399
Moirés, 408–410
planar decorations with, 372–373
plane lattices, 398, 400–402
primitive cell, 398
scheme for establishing symmetry class of,

398–399
side-effects of decorations, 406–408
simple networks, 401–406
symmetry classes, 395–401
unit cell, 398, 402, 405

U
Unit matrix, 176
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V
Valence Shell Electron Pair Repulsion

(VSEPR) model, 139–153
analogies, 142–143
historical perceptives, 151–153
molecular shapes, 143–151
quantum-mechanical foundations for, 151
three-dimensional consequences of,

142–143
van der Waals radii, 137
van ‘t Hoff, J. H., 97
Vatsayana, 422
Vectors

and matrix, 177–178
reflection by horizontal mirror plane, 179
representation in three-dimensional space,

177
rotation by an angle α in xy plane, 180

Vibrational transitions, 228
Vinca minor, rotational symmetry in, 37–38
Vinyl polymers, 385–387

W
Wald, G., 62
Walnut clusters, 143
Water and ice, structural difference between,

440–441
Water (H2O) molecule

cartesian displacement vectors, 222
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