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Preface

Polymers are now one of the major materials used in many industrial applications.
The prediction of their behavior depends on our understanding of these complex
systems. As happens in all experimental sciences, our understanding of complex
physical phenomena requires modeling the system by focusing on only those
aspects that are supposedly relevant to the observed behavior. Once a suitable
model has been identified, we have to validate it by solving it and comparing its
predictions with experiments. Solving the model usually requires some approx-
imation or approximations. The resulting solutions are known as theories under
those approximations. Indeed, the interpretation and analyses of experimental
data depend in a crucial way on the way a system is modeled and the availability of
corresponding reliable theories. This is also true for polymers, whose behavior
can be very complex. After more than 70 years of research and development,
polymer science and engineering has reached a high level of sophistication.
Application of modern computational tools and methods, and modeling and
theories of observed behavior, made it possible to solve, thereby understand,
many basic and applied problems, and along with that helped to resolve some
fundamental problems in polymer physics, physicochemistry, and polymer
mechanics. This book illustrates the progress achieved in using computational
methods to understand the behavior and reliability of various models in polymer
science and engineering. The editors wanted a well-balanced presentation from
scientists and engineers. Accordingly, their attempt was to seek contributions
from universities, industries, and national laboratories so that the book could
represent a wide array of topics of interest in the field. The main desire was to have
a book that will not only function as a resource for people active in the field but will
also help educate them and graduate students.

One of the tough jobs the editors had was of limiting the number of contributions
to keep the size of the book manageable. Their job was made easy though by
the contributors, who are well recognized in their respective fields. The editors
are pleased to present their reviews for the benefit of the reader. The selection of the
topics covered in this book in no way reflects their bias; rather, it reflects the
strengths of the contributors. The topics cover a range of problems in polymers,

XV



including liquid crystals and biopolymers. Since in many cases the science and
engineering are not well distinguishable, the editors decided to use a ‘‘mixed’’
approach in presenting the contributions in the book in alphabetic order of the
authors.
The chapter by Beris and Housiadas (‘‘Computational Viscoelastic Fluid

Mechanics and Numerical Studies of Turbulent Flows of Dilute Polymer Solutions’’)
aims at resolving the famous long-standing problems of turbulent drag reduction.
This contribution describes recent efforts and achievements in direct computations
of near-wall turbulent flows of dilute polymer solutions and comparisons with
experimental data.
In spite of many efforts, attempts to model complicated properties of liquid

crystalline polymers (LCPs) are far from being complete. The constitutive equations
of continuum type for thermotropic LCPs were proposed only last year. Multipara-
metric character of these equations is the challenging problem for LCP simulations.
The chapter by Chen and Leonov (‘‘Liquid Crystalline Polymers: Theories, Experi-
ments, and Nematodynamic Simulations of Shearing Flows’’) reviews the major
findings in this field, describes new continuum theory valid for thermotropic LCPs,
and illustrates simulations of their shearing flows.
Glasses form an important part not only of industry but also of our daily life. A

satisfactory understanding of glasses is not within our reach at present, mainly
because it represents a nonequilibrium state of matter, which seems to not follow
Nernst�s postulate or the third law of thermodynamics. Gujrati in his chapter
(‘‘Energy Gap Model of Glass Formers’’) addresses the issue by elevating to a
fundamental level the observed fact that the energy of a glass is much higher than
that of the corresponding crystal (an energy gap) even at absolute zero. The chapter
therefore deals with glass formation in a supercooled liquid for which a more
thermodynamically stable state exists in the form of a crystal. The resulting metast-
ability is studied thermodynamically by treating it as constrained equilibrium. The
theoretical model is also supported by performing simple exact calculations.
Polymer nanocomposites are prospective newmaterials. Nevertheless, their prop-

erties are still not well understood. The chapter by Heinz, Patnaik, Pandey, and
Farmer (‘‘Modeling of Polymer Matrix Nanocomposites’’) demonstrates the applica-
tion of modern computational methods for investigating dispersion of various
nanofillers in polymer matrices under the action of microscopic forces. In addition,
an attempt is made to calculate the thermal conductivity in a model system of
nanotubes in polymer matrix.
Predicting flow properties of polymers such as interfacial slip is of paramount

importance in industries and poses a major challenge at present. It truly requires a
multiscale attack. Ilg, Mavrantzas, and Öttinger provide in their contribution (‘‘Mul-
tiscaleModeling and Coarse Graining of Polymer Dynamics: Simulations Guided by
Statistical Beyond-Equilibrium Thermodynamics’’) a comprehensive treatment of
polymer flow dynamics by borrowing ideas from nonequilibrium thermodynamics.
They develop a multiscale modeling approach, which successfully bridges micro-
scopic andmacroscopic scales. By using GENERIC formalism, they attempt to avoid
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thermodynamic inconsistency that is present in most coarse-grained models. They
achieve this by carefully separating timescales.

Studying charged polymers in aqueous solutions provides another example of a
major challenge in polymer technology, and is considered by Kundagrami, Kumar,
and Muthukumar (‘‘Simulations and Theories of Single Polyelectrolyte Chains’’).
Only single chains are considered. Chain connectivity and topological considera-
tions are the sources of complication in understanding the interactions between the
solute and the solvent. They consider two different kinds of theoretical methods,
variational and self-consistent, and employ Langevine dynamics for their simula-
tions.

Studies of polymerization kinetics have a long history. Nevertheless, many pro-
blems in this field remain unresolved. Using computational methods, several of
these problems are clarified in the chapter by Litvinenko (‘‘Computational Studies of
Polymer Kinetics’’). Special attention is paid to the effect of chain transfer reactions
on polymer molecular weight and applications to different types of polymerization
methods.

Modeling of polymer processing has more than a 60-year history. Computational
methods gave many possibilities for optimization of processing operations. The
chapter by Mitsoulis (‘‘Computational Polymer Processing’’) provides a comprehen-
sive review of simulations and computational efforts for a majority of polymer
processing operations and also forecasts the future development in this important
part of polymer industry.

Multicomponent melts that are commonly found in such varied situations as
material fabrification, reinforcement, blending, and so on are discussed in the
chapter by Müller (‘‘Computational Approaches for Structure Formation in Multi-
component Polymer Melts’’). Only equilibrium properties are discussed along with
computational approaches for coarse-grained models in the mean field approxima-
tion. Both hard-core and soft-core models are used to cover a multitude of scales of
length, time, and energy. Attention is also paid to methods that go beyond the mean
field approximation.

The chapter by Poldneff and Heinstein (‘‘Computational Mechanics of Rubber
and Tires’’) reviews the latest achievements in using finite element analysis for
solving highly nonlinear problems of rubber and tire mechanics, with several
illustrative examples of industrial importance.

Application of ideas from polymers has begun to revolutionize bio-related dis-
ciplines. Therefore, this review book will not be complete without a chapter detailing
such an application. The last chapter (‘‘Modeling the Hydrodynamics of Elastic
Filaments and its Application to a Biomimetic Flagellum’’) by Stark attempts to
model Nature�s successful strategies for propulsion such as of sperm cells and fluid
transport such as of mucus. The artificial cilium is based on a superparamagnetic
filament, actuated by an external magnetic field; the latter allows one to explore the
filament�s capacity to transport fluid.

The editors hope that the collection of reviews will be beneficial to graduate
students, scientists, and engineers, whether practicing or just eager to familiarize
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themselves with new models and computational tools. The editors also take full
responsibility for any shortcoming of the book.
Finally, the editors offer their sincere thanks to Manfred Kohl for inviting us to

take on this project and to Stefanie Volk and Claudia Nussbeck, all at Wiley-VCH, for
their patience and help to ensure the completion of this project.

August 2009 Puru Gujrati and Arkady Leonov
Akron, OH, USA
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Computational Viscoelastic Fluid Mechanics and Numerical
Studies of Turbulent Flows of Dilute Polymer Solutions
Antony N. Beris and Kostas D. Housiadas

1.1
Introduction and Historical Perspective

According to the late A.B. Metzner [1], the phenomenon of polymer-induced drag
reductionwas independently discovered by two researchers, K.J.Mysels inMay 1945,
as reported by the discoverer at an AIChE symposiumon drag reduction in 1970, and
B.A. Toms in the summer of 1945, as reported by the discoverer at the IUTAM
symposium on the structure of turbulence and drag reduction held in Washington,
DC in 1976. The original fluids studied in these two first experimental investigations
were micellar aluminum disoaps or rubber in gasoline (K.J. Mysels) and polymethyl
methacrylate in monochlorobenzene (B.A. Toms). However, due to the war, the first
records in an accessible publication were found later [2, 3] with journal contributions
evenmuch later [4, 5]. Since that time, the field has literally exploded with 500 papers
until the seminal review by Virk [6] and 4900 papers by 1995 [1].

The first attribution of drag reduction to fluid viscoelasticity was by Dodge and
Metzner [7], whereas the first description of drag reduction as �Toms effect� was by
Fabula at the Fourth International Congress on Rheology, held in 1996 [8]. The first
measurements of viscoelasticity of drag-reducing fluids were performed byMetzner
and Park [9] and Hershey and Zakin [10]. The first articulations of a �maximum drag
reduction asymptote� for dilute polymer solutions were reported by Castro and
Squire [11], Giles and Pettit [12], and Virk et al. [13]. As far as the first proposed
mechanisms of drag reduction due tofluidmechanical effects are concerned, Lumley
attributed drag reduction to molecular stretching in the radial flow patterns in
turbulent flows [14]. Simultaneously, Seyer andMetzner [15] clarified it even further,
as due to high extensional deformation rates in radial flow patterns in turbulent
flows and high resistance to stretching of viscoelastic fluids. More recently, Lumley
and Blossey [16] elaborated further by arguing that polymer additives, by boosting the
extensional viscosity of the fluid, affect especially the structure of the turbulent
bursts; see also Ref. [17]. This same mechanism is also suspected to be operative
when other additives are employed, such asmicellar surfactant solutions [2, 4, 18–20]
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and fiber suspensions [21]. Ever since Virk [6] made the first thorough review of drag
reduction, the interest in the phenomenon continues uninterrupted – see, for
example, the experimental works [22–26], the more recent reviews by Sellin and
Moses [27, 28] and Bushnell and Hefner [29], the book by Gyr and Bewersdorff [30],
and the latest reviews by Nieuwstadt and Den Toonder [31], Graham [32], and White
and Mungal [33].

The phenomenon of polymer-induced drag reduction [5, 6, 34, 35] describes the
effect of relatively small quantities, as small as on the order of ppm by weight, of a
highmolecularweight polymer,whichwhen added to a lowmolecularweight solvent,
such as water or crude oil, reduce the turbulent drag; see Figure 1.1 for a represen-
tation of some early but standard experimental results as adapted from Virk [6].
According to Metzner [1], Lummus et al. [36] recorded what appears to be the first
commercial exploitation of turbulent drag reduction, using polymeric additives to
increase oil well drilling rates in 50 wells in the United States and Canada. Increases
in drilling rate were tabulated. The first publicly recorded usage of drag reduction in
pipelines appears to be that of Burger et al. [37], who reported results for 1 and 2 in.

Figure 1.1 Velocity profiles in flows with drag
reduction. The different symbols represent
different polymer solutions; the open circles
provide the pure solvent (water) base data.
As polymer additives are introduced, and for
the same pressure drop (equivalently, the

same wall stress, i.e., the same velocity slope
at the wall), the flow rate increases, from the
base line to the maximum (Virk) asymptote,
called �Ultimate Profile� in the figure [6].
(Reprinted with permission from John Wiley &
Sons)
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tubes as well as 14 and 48 in. pipelines. The best available estimates of usage in
petroleum transportation in 2004, obtained from industry sources, state that drag
reducers are employed to treat approximately 20 million barrels of hydrocarbons per
day, which may be compared with a worldwide crude oil production rate of about
80 million bpd. A major application is in facilitating the oil transfer through the
Alaskan pipeline [38]. Commercial-scale tests of drag-reducing additives in munic-
ipal heating and cooling systems are described by Zakin et al. [18], with emphasis on
surfactant additives – there is also a reference to an application to the heating system
of pipelines in offshore drilling [20]. It is interesting to note that the drag reductions
achieved by using surfactant (colloidal) additives are very large andmay exceed those
of the �maximum drag-reducing asymptote� for dilute polymer solutions, as is also
the case when fiber–polymer mixtures are employed [39]. We are unaware of any
regular commercial use of these materials. Incidentally, marine applications of
turbulent drag reduction have been studied for many decades and measurements
performed of dilute solutions of fish mucus that is polymeric in nature in turbulent
pipe flow exhibited as much as 66% reduction in friction drag [40]. Even snails were
found to produce a mucus that reduces drag [40].

During the past 15 years, the most significant progress undoubtedly came in the
theoretical front from the development of direct numerical simulations (DNS) due to
advances in computational viscoelastic fluid mechanics, models, methods, and
computer hardware (parallel computing). The goal was to theoretically understand
in more depth the nature and the underlying mechanisms of polymer-induced drag
reduction. The simulations, with the exception of some limited work on homoge-
neous viscoelastic turbulence [41], have primarily focused on the analysis of inho-
mogeneous turbulent viscoelastic flows. Even there, with the exception of some
limited work on boundary layer flows [42, 43] – see also the very recent review by
White and Mungal [33] – and pipe flow [44], the bulk of the work has focused on
simulations of channelflow. The veryfirst simulations (those reported byOrlandi [45]
and Den Toonder et al. [44]) used ad hoc constitutive relationships for the stress
that attempted to empirically capture the increase in the resistance to extensional
deformation so characteristic to polymeric systems. As a result, they did get some
encouraging results, exhibiting the right trends with increasing viscoelasticity in the
flow, in agreement with experimental observations [23, 30, 44]. For example, they
noticed a decrease in the strength of longitudinal structures accompanied by an
increase in their spacing with increasing polymer concentration [45] and drag
reduction with the right changes in the root mean square (rms) values of the velocity
fluctuations and velocity probability distribution functions (pdf), exhibiting increas-
ing intermittency [44].

However, thefirstDNSbased on amicroscopically originated constitutive equation
for the polymer dynamics (the finite extensibility nonlinear elastic with the Peterlin
approximation (FENE-P) model [46]) was conducted by Sureshkumar et al. [47]. In
this work, for a fixed friction Reynolds number and other rheological parameters,
drag reduction was observed as theWeissenberg number increased beyond a critical
onset value. Moreover, accompanying drag reduction, characteristic changes were
observed in the velocity and vorticity mean and rms values, the Reynolds stress, and
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the energy spectra all in qualitative agreement with experimental observations
obtained with drag-reducing dilute polymer solutions [22, 23, 48]. Shortly afterward,
DNS based on a network-based constitutive model, the Giesekus model [49], also
produced similar results [50]. These large-scale (three-dimensional and time-depen-
dent) simulations under turbulent conditions are similar to the ones carried out for
Newtonian fluids [51, 52] and also account for the presence of the polymer additives
through a full modeling of the coupled effect of additives on the flow.

Since these initial works, we have seen a flourishing of DNS works by our own
[53–58] and many other [59–66] research groups. We include in the discussion here
only those works that involve the fully coupled flow and polymer concentration
problem; there are many more works that monitored the polymer molecular
extension against a fixed flow field obtained fromNewtonian DNS (see, for example,
Ref. [67]) – this is a much simpler computational problem, many of the numerical
stability problems emerge only when the fully coupled problem is considered. Of
interest is the spectral DNS work by De Angelis et al. [59] showing as main effect of
viscoelasticity a quite concentrated action on bursting phenomena and a stabilization
of the streaks resulting in fewer, bigger, coherent structures, reinforcing previous
results [47]. Later work [60] involving the application of a Karhunen–Lo�eve (K-L)
decomposition for the extraction of information on larger coherent structures in the
flow (following Refs [68–70] and others) has reported that the main change in
viscoelasticity is primarily an energy redistribution among the K-L modes, while the
spatial profile of the most energetic modes stays the same. This is in contrast to the
findings in Ref. [58] where a similar K-L decomposition has also revealed substantial
changes in the spatial structure of the most energetic modes and an overall enhance-
ment of the energy content of the first fewmodes of the decomposition upon addition
of viscoelasticity.However, thismaybe just due to thehigher elasticity offlows indirect
numerical simulations in Ref. [58] allowing to more clearly see these effects.

Another work worth mentioning as a measure of the activity in the field is that of
Ptasinski et al. [62]. The authors in this work asserted that they have simulated cases
close to maximum drag reduction by using model parameters (such as a high
Weissenberg number, 50, a high extensibility parameter value, 33, and, primarily, a
small solvent to total viscosity ratio, of order 0.5) implying a high polymer contri-
bution. The results indeed seem to be in agreement with expectations (such as a law-
of-the-wall with a significantly high slope) with drag reductions on the order of
60–65% for the higher elasticity cases. However, there still remain questions
primarily due to the small computational domain size used (minimal channel of
(3� 2� 2) made dimensionless by the half channel-height and small mesh resolu-
tion of (48� 32� 100) in the x, y, and z directions, respectively, along with mixed
spectral (along the period directions, x and y) and finite difference (along the wall-
normal direction, z) approximations). Given the fact that, as mentioned above, one
dominant effect of viscoelasticity is to lead to substantially larger organized coherent
structures than those seen in Newtonian flows, the use of this minimal computa-
tional domain size places questions on the validity of the final results. Even more
questions are placed based on the small mesh resolution used, especially along the
shear direction. For the Reynolds number used (friction Reynolds number of 180), a
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mesh size of at least 96 ought to have been used. Moreover, the technique used was
not immune to flow instabilities (as also the standard spectral method), and an extra
conformation diffusionwas also needed to be used (let alone the diffusion introduced
by the use of the finite difference approximation along the sheatwise (z) direction).
So, although progress is definitely made, still there are questions regarding the
validity of this and othermaximumdrag reduction results thatmake that state still, in
our opinion, unsolved. To achieve a solution in this regime is a very demanding task
both from a computational perspective and from a polymer modeling perspective.

Other works used, instead of spectral, lower order accuracy finite difference
approximations, but they have to be noted here since they employed more suita-
ble numerical formulations for the constitutive equations that explicitly avoided the
introduction of artificial diffusivity in the numerical solution [61, 63–66]. Those
works also employed the FENE-P model to simulate dilute polymer solutions
[61, 63, 64] or the Giesekus model for surfactant turbulent flow [19, 65, 66].

Moreover, we have recently seen, in addition to straight DNS computations, some
very substantial theoretical analyses, as very elegant analyses based on the exami-
nation of exact coherent states in plane shearflow, by Stone et al. [71]. These represent
unstable solutions of the laminar flow problem in terms of traveling waves – see also
the excellent review by Graham [32]. The analysis of the effects of viscoelasticity on
these states has shown [72] that they mirrored the changes observed in experiments
and simulations of fully turbulent flows of polymer solutions: this similarity estab-
lishes again the importance of large-scale structures in turbulent flow. Their
modification by viscoelasticity elegantly reveals most of the drag-reducing effects.
This work followed a similar analysis performed only relatively recently for Newto-
nian turbulent flows [73]. An exciting development was also the recent experimental
discovery of the dominant traveling wave mode in a Newtonian turbulent pipe flow
field [74] indicating the physical significance in further theoretical investigations of
large coherentmotion structures in turbulent flows. These results are also consistent
with other methods of analysis of large-scale coherent motion such as the K-L
decomposition ([68–70] and references therein). As already mentioned, K-L analysis
of viscoelastic turbulent channelflowhas also been conducted by deAngelis et al. [60],
Housiadas et al. [58], and,more recently, byHandler et al. [75] and Samanta et al. [76],
indicating a significant enhancement of the energy contained in the large scales as
viscoelasticity sets in. The relevance of these results in improving our understanding
makes these types of analyses highly desirable in future work, along with more
traditional analysis of the turbulence statistics. In parallel, there is considerable recent
work, taking sometimes advantage of the insight developed thanks to DNS results,
aimed at developing k�e-type turbulentmodels applicable for drag-reducing polymer
flows – see, for example, Refs [17, 77] and references therein. However, due to space
limitations, we will not discuss any further these and related investigations.

This chapter aims to present, in a conciseway, themajor elements and results from
applications of computational viscoelastic fluid mechanics in numerical studies
(DNS) of turbulent channel flows of homogeneous, dilute, polymer solutions under
drag-reducing conditions. In the next section, we present a summary and outline of
governing equations with emphasis on polymer modeling. In Section 1.3, we
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describe key elements of the spectral method algorithm as the principal numerical
method used in DNS investigations. Section 1.4 overviews the main results of the
DNS with an emphasis on the principal effects of the variation of key dimensionless
numbers and rheological characteristics on the most important turbulent statistics.
A discussion on the influence of numerical parameters is also included. Finally,
Section 1.5 contains the conclusions and some thoughts for future work.

1.2
Governing Equations and Polymer Modeling

The first among the governing equations used in DNS are the mass andmomentum
balances, which for an incompressible, isothermal, and constant polymer concen-
tration flow in a channel are given in dimensionless form as

r � u ¼ 0; ð1:1Þ

Du
Dt

¼ �rpþ b0
Ret0

r2uþ 1�b0
Ret0

r � t þ ex; ð1:2Þ

where D=Dt � ðq=qtÞþ u � r denotes the material derivative, b0 � ðg�s=g�0Þ ¼
ðg�s=ðg�s þ g�p0ÞÞ is the ratio of the solvent viscosity g�s to the total zero shear rate
viscosity of the solution g�0, and Ret0 is the zero shear rate friction Reynolds number,
Ret0 � ðu�th�=n�0Þ, where u�t is the friction velocity defined as u�t �

ffiffiffiffiffiffiffiffiffiffiffiffi
t�w=r�

p
, where

t�w is the total wall shear stress and r� is the constant density of the solution, h� is the
half channel width, and n�0 � ðg�0=r�Þ is the zero shear rate kinematic viscosity
of the solution. In Eqs. (1.1) and (1.2), u ¼ uxex þ uyey þ uzez is the (dimensionless)
velocity vector, where ex; ey; ez are the unit vectors along the axes, p is the (dimen-
sionless) periodic part of the pressure, and t is the (dimensionless) extra
stress tensor, introduced due to the presence of polymer in the flow. Themomentum
balance, Eq. (1.2), has been formulated for pressure-drivenflow along the streamwise
direction x, and this is how the constant term ex arises. Equations (1.1) and (1.2) have
been nondimensionalized by using the characteristic scales reported in the first
column in Table 1.1, usually referred to as �computational scales,� as opposed to the
�zero shear rate wall scales� and the �actual wall scales� reported in columns 2 and 3,
respectively. In Table 1.1, u�b is the average (bulk) velocity, g

�
p0 is the zero shear rate

polymer viscosity, k�B is the Boltzmann constant, T� is the absolute temperature, and
K� is the characteristic elastic spring strength of the nonlinear elastic dumbbell. Note
that the superscript asterisk denotes a dimensional quantity. More details can be
found in Ref. [78].

Note that in viscoelastic turbulent flows, because of the shear thinning effect
[35, 79], we have to distinguish between two different types of wall units. One is based
on the zero shear properties and the other, applicable for channel and boundary layer
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flows, on the stationary wall conditions [78]. The advantage of the first is that it gives
rise to quantities that are a priori known so that it makes easier the setting up of
numerical computations. In fact, in practice, the numerical simulations are set only
in terms of such nondimensionalization. However, because of shear thinning, the
actual viscous shear viscosity next to thewall is different from its zero shear rate value.
As a result, the proportionality of the velocity and the distance that it is expected to
hold in the viscous sublayer next to the wall, when both are expressed in terms of wall
units, uþ ¼ yþ [34], no longer holds when the zero shear rate viscosity is used
to scale the length distance. Therefore, to allow a physical interpretation of the
results, it is necessary to use the actual wall viscosity value in order to construct
the dimensionless wall length and time units. However, a disadvantage of this
approach is that since with viscoelastic systems the total shear viscosity is not a
material property but essentially an �effective� quantity that can be determined only a
posteriori after the full solution is known, such nondimensionalization can also be
performed only a posteriori. For dilute solutions, since the bulk of the solution shear
viscosity is due to the solvent and stays constant, we only have small changes due to
this rescaling from zero shear rate (nominal) to the actual wall values. Moreover, as
DNS information indicates [78], the correction can be approximated on the basis of
the laminar steady shear flow model predictions, albeit the shear flow that is
established in the shear sublayer next to the wall is neither laminar nor steady in
time. For brevity, we leave such a correction out of the reported calculations here, all
of which are therefore reported in terms of zero shear rate quantities except for the
drag reduction where those corrections can be both important and essential for an
accurate estimation (see Section 1.4.1).

Equations (1.1) and (1.2) are not closed because of the presence of the extra stress
tensor t. Therefore, one more equation is required, which is provided by a
viscoelastic constitutive model [35, 49, 79]. According to nonequilibrium thermo-
dynamics, the most thermodynamically consistent way to describe the constitutive
model is in terms of internal (structural) variables for which separate evolution
equations are to be described [49]. The simplest case is when a single, second-order

Table 1.1 Characteristic computational and wall scales for fixed wall stress except for the last
column that is for fixed flux conditions.

Quantity Computational
scale

Reference
wall scale

Actual
wall scale

Computational
scale (fixed flux)

Length h� n�0=u
�
t n�=u�t h�

Velocity u�t u�t u�t u�b
Time h�=u�t n�0=u

�2
t n�=u�2t h�=u�b

Pressure t�w t�w t�w r�u�2b
Polymer stress g�p0u

�
t=h

� g�p0u
�2
t =n�0 g�p0u

�2
t =n� g�p0u

�
b=h

�

Conformation k�BT
�=K� k�BT

�=K� k�BT
�=K� k�BT

�=K�
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andpositive definite, tensor, the conformation tensor, c , is used. In that case, themost
general constitutive equation is given, in dimensionless form, as [80]

Dc

Dt
¼ c � ruþruT � c þ g þ Dþ

0

Ret0
r2c ; ð1:3Þ

where the superscript Tdenotes the transpose and g ¼ g ðc Þ is a second-order tensor
that models the relaxation effects and can be interpreted as a restoring force to

equilibrium.
On the right-hand side of the constitutive equation, Eq. (1.3), a diffusion term has

been added, as proposed by Sureshkumar and Beris [81], so that in turbulent
simulations the high wavenumber contributions of the conformation tensor do not
diverge during the numerical integration of this equation in time. This parallels the
introduction of a numerical diffusion term in any scalar advection equation (e.g.,
a concentration equation with negligible molecular diffusion) that is solved along
with the flow equations under turbulent conditions [82]. In Eq. (1.3), Dþ

0 is the
dimensionless numerical diffusivity [54–56]. The issue of the numerical diffusivity is
further discussed in Sections 1.3.2 and 1.4.3.

For the cases considered here, the relaxation term g simplifies into the following
expression:

g ¼ �t�aWet � t ; ð1:4Þ

where the Weissenberg number We is defined as

We � l�u�t
h�

¼ l�ðu�tÞ2
n�0

 !
n�0
h�u�t

� �
� Wet0

Ret0
;

in terms of the zero shear rate friction Weissenberg number, Wet0 � l�ððu�tÞ2=n�0Þ,
and the zero shear rate frictionReynolds number,Ret0, where l

� is the relaxation time
of the polymer chains. The polymer extra stress tensor is directly connected to c ,
through

t ¼ c � dH
dc ;

ð1:5Þ

where H is the Hamiltonian (total energy of the system) [49, 80, 83]. For the cases
considered here, Eq. (1.5) simplifies in the following dimensionless expression:

t ¼
f ðc Þc�I

We
: ð1:6Þ

The conformation tensor has a definite physical origin and interpretation, typically
associated with the second moment of a suitably defined chain end-to-end distri-
bution function [84]

c � hRRi; ð1:7Þ
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where R is the chain end-to-end distance vector. It is important to note here that it is
exactly this association that also induces a very special property in the conformation
tensor, its positive definiteness. In fact, this property is absolutely essential for its
proper interpretation and the thermodynamic consistency (i.e., the requirement
of a nonnegative entropy production) of the accompanying evolution equations
[49, 83, 85]. Indeed, the eigenvalues of c and their corresponding eigenvectors have

the physical meaning of the square of the average macromolecular size along the
primary three directions and the orientation of these directions in space, respectively.
More discussion on the implication of the positive definiteness requirements on the
numerical methods follows in Section 1.3.2.

When We! 0, then f ! 1 and c ! I , which give that t ¼ rvþðrvÞT, and
Eqs. (1.1) and (1.2) are reduced to the Navier–Stokes equations. Neglecting the
numerical diffusion term and depending on the rheological parameters, a, b0, and
the specific form for function f ¼ f ðc Þ, entering Eqs. (1.5), (1.2) and (1.6), respec-

tively, the following well-known constitutive models are recovered:

f ¼ 1; a ¼ 0; b0 ¼ 0 : Maxwell; ð1:8aÞ

f ¼ 1; a ¼ 0; 0 < b0 < 1 : Oldroyd-B; ð1:8bÞ

f ¼ 1; a > 0; 0 < b0 < 1 : Giesekus; ð1:8cÞ

f ¼ L2�3
L2�trðc Þ ; a ¼ 0; 0 < b0 < 1 : FENE� P; ð1:8dÞ

where L is the maximum polymer chain extensibility parameter. Note that f ! 1 as
L!1; thus, in this case the FENE-P reduces to the Oldroyd-Bmodel. So far, in DNS
of viscoelastic turbulent flows, basically two constitutive models were employed.
First, to describe the finite chain length effects in dilute solutions of long flexible
macromolecules, the FENE-P model [35, 49, 84] was used. This model arises as
an averaging approximation of a microscopic kinetic theory description of the end-
to-end distribution of themacromolecular chain deformation with the conformation
tensor representing the secondmoment of that distribution [84]; see Eq. (1.1). Notice
that for this model, due to the inherent finite chain extensibility, there is an upper
bound for the conformation tensor in addition to its positive definiteness con-
straint [35]. Second, the network-based Giesekus model [35, 49, 84] has also been
used to describe drag-reducing turbulent channel flows of surfactant solutions [19,
65, 66] and viscoelastic effects in concentrated polymer solutions.

Finally, the appropriate boundary conditions are the standard nonslip conditions at
the channel walls and periodicity conditions along the homogeneous directions:

uðx; y ¼ �1; zÞ ¼ 0; ð1:9aÞ

u; p; c periodic in x; z directions: ð1:9bÞ
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Noboundary conditions are applied at thewalls for the conformation (or the stress)
tensor since even in the presence of numerical diffusion, the numerical diffusivity
Dþ

0 is nonzero only in the bulk; for more details, see Refs [50, 54, 78].

1.3
Numerical Methods for DNS

Outside the spectral method-based DNSwork, special mention needs to bemade for
two finite difference works. First, Min et al. [64] used a special upwind finite
difference formulation through which they managed to simulate without additional
diffusivity for the stress a highly elastic turbulent viscoelastic case (corresponding to
Oldroyd-B model) for which maximum drag reduction is obtained. Although the
method used has admittedly some distinct advantages over the spectral approach in
terms of enhanced stability, one should still be cautious of the fact that the lower order
finite difference approximations used in Min�s work (as well as in above-mentioned
other finite difference works, to a greater extent) also introduce diffusion in the
results based on the diffusive character of the finite difference approximations (in
Min�swork, all approximations are second-orderfinite differences except for a fourth-
order scheme used to approximate the stress divergence term in the momentum
equation). Thus, the results of the maximum drag reduction need further indepen-
dent corroboration.

Second,we need tomention thework by Yu andKawaguchi [65] that, within afinite
difference approximation, employed a special MINMOD finite difference formula-
tion that they demonstrated to be more accurate and more stable than the corre-
sponding formulation that employs an artificial diffusion term.However, it should be
noted that since they patterned the value of the numerical diffusivity after the work
of Dimitropoulos et al. [50], they used significant larger values for it than the ones
used in subsequent spectral works [54], also reported here. Yu and Kawaguchi used
the Giesekus constitutive model for various flow and rheological parameter values.
Whenever those values happen to be close to the ones used in spectral simula-
tions [55], the results are similar. Yu and Kawaguchi [65] also ran simulations at
much lower viscosity ratios, corresponding to much higher maximum extensional
viscosities, andunder these conditions they reported very high drag reductions (more
than 70%).

We believe that as far as investigating the large-scale features of turbulence is
concerned, lower order approximations are powerful enough, if formulated suitably,
to give valuable results. However, we also believe that if one wants to investigate in
detail turbulence inmany scales of length and time, it is hard to beat the accuracy and
efficiency of spectral methods, albeit one has to abide by their limitations in simple
geometry applications. Since most of our emphasis is on developing a better
understanding of themechanisms of drag reduction through a detailed investigation
of interactions between viscoelasticity and turbulence at multiple scales of length
and time, we believe that our primary emphasis on the spectral methods is fully
justified.
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1.3.1
Spectral Methods: Influence Matrix Formulation

In a fully spectral representation, each primary dependent variable, S ¼ Sðx; y; z; tÞ,
is approximated through a triple series expansion in terms of its spectral coefficient,
ŝrkl ¼ ŝrklðtÞ. This involves a double Fourier series along the two periodic directions
(streamwise and spanwise, usingNx andNz Fouriermodes, respectively) andNy þ 1
Chebyshev orthogonal polynomial series along the nonperiodic (shear) direction:

Sðx; y; z; tÞ ¼
XðNx=2Þ�1

r¼�ðNx=2Þ

XðNz=2Þ�1

k¼�ðNz=2Þ

XNy
l¼0

ŝrklðtÞTlðyÞ exp 2pi
x
Lx

rþ z
Lz

k

� �� �
; ð1:10Þ

where the three subscripts �r�, �k�, and �l� of the generic spectral coefficient ŝrkl are
used to denote the corresponding mode in the streamwise, spanwise, and shearwise
directions, respectively. The Chebyshev orthogonal polynomials are defined in
Refs [86, 87].

The time integration of Eqs. (1.1)–(1.3), where the g tensor is given by Eq. (1.4) and

the stress tensor t by Eq. (1.6), is performed by first formally integrating these
equationswith respect to time from t ¼ tn to t ¼ tnþ 1. Then, the following discretized
equations are derived:

r � unþ 1 ¼ 0; ð1:11Þ

unþ1�unþ
ðtnþ1

tn

u �ru dt¼�rpeff þ b0
Ret0

r2
ðtnþ1

tn

u dtþ 1�b0
Ret0

ðtnþ1

tn

r�t dtþDtex;

ð1:12Þ

c nþ1�c n ¼
ðtnþ1

tn

F dtþ Dþ
0

Ret0
r2

ðtnþ1

tn

c dt; ð1:13Þ

where Dt¼ tnþ1�tn, and, for clarity, we have defined the effective pressure,

peff �
Ð tnþ1

tn
pdt, and a second-order tensor: F ��u �r c þ c �ruþruT � c�t�

aWet �t . Note that neither any boundary condition is imposed for the pressure

nor any additional approximation is used as in the fractional step method [87, 88].
Instead, to solve for the pressure variable, an iterative approach, the influencematrix
or Green�s function method, described in Refs [87, 89], is followed.

We describe next two slightly different solution procedures used to find the
solution at the time step �n þ 1�.

1.3.1.1 The Semi-Implicit/Explicit Scheme
The first scheme is a classical mixed semi-implicit/explicit scheme [51, 52]. Accord-
ing to this scheme, all linear terms in Eqs. (1.11)–(1.13) are treated implicitly and
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nonlinear terms explicitly based on the second-order Adams–Basforth formula:

unþ 1�un þ
Dt
2
ð3un � r un�un�1 � r un�1Þ

¼ �r peff þ Dtb0
2Ret0

r2ðunþ 1 þ unÞ

þ Dtð1�b0Þ
2Ret0

r � ðt nþ 1 þ tnÞþDtex; ð1:14Þ

c nþ 1�c n ¼
Dt
2
ð3F n�F n�1Þþ

Dt Dþ
0

2Ret0
r2ðc nþ 1 þ c nÞ: ð1:15Þ

Equation (1.11) remains unchanged. Then, the following steps are used to calculate
the required solution at the new time step.

Step 1: The quantity c nþ 1=2 ¼ c n þ
Dt
2
ð3F n�F n�1Þ is calculated first, and

Eq. (1.15) is rearranged as follows:

r2ðc nþ 1 þ c nÞ�
2Ret0
Dt Dþ

0
ðc nþ 1 þ c nÞ ¼ � 2Ret0

Dt Dþ
0
ðc nþ 1=2 þ c nÞ: ð1:16Þ

Equation (1.16) is a Helmholtz equation with the unknown sum c nþ 1 þ c n. This

is first transformed in the spectral domain where, due to the separability of the
Helmholtz equation, the equations for each pair of Fourier modes (r, k) are fully
decoupled with the only coupling appearing among the Chebyshevmodes. Thus,
by solving theHelmholtz equation with a fast solver [86], the updated solution for
the conformation tensor c nþ 1 is obtained, from which, with the aid of Eq. (1.6),
the extra stress tensor t nþ 1 is calculated.

Step 2: By taking the divergence of Eq. (1.13) and demanding the continuity
equation, Eq. (1.11), to be satisfied, a Poisson equation for peff is obtained:

r2peff ¼ r � �Dt
2
ð3un � r un�un�1 � r un�1Þþ

1�b0
Ret0

r � ðt nþ 1 þ t nÞÞ:
�

ð1:17Þ
Equation (1.17) is solved with the same solver as the Helmholtz equation for the
conformation tensor by using the influence matrix method [87, 89].
Step 3: The quantity

unþ 1=2 ¼ un�
Dt
2
ð3un � r un�un�1 � r un�1Þ

�r peff þ 1�b0
Ret0

r � ðtnþ 1 þ tnÞþDt ex

is evaluated first. Then, Eq. (1.14) is rearranged to give another Helmholtz
equation for the sum unþ 1 þ un:

r2ðunþ 1 þ unÞ�
2Ret0
Dt b0

ðunþ 1 þ unÞ ¼ � 2Ret0
Dt b0

ðunþ 1=2 þ unÞ; ð1:18Þ
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which is solved by using the fast solver andby applying no-slip andno-penetration
conditions at the walls. These wall divergence values are all that is needed in order
to obtain the correct boundary conditions for the effective pressure by enforcing
the requirement that the actual velocity field is divergent free on the boundaries,
y ¼ �1 (influence matrix technique [47, 89]). This is achieved by considering the
final pressure and velocity as the linear superposition of the homogeneous
solution and a weighted sum over appropriate Green�s functions [47, 89]. The
solution of Eq. (1.17) completes the update of all the dependent variables. Then,
the same procedure is applied in order to further advance in the next time step.

1.3.1.2 The Fully Implicit Scheme
The fully implicit scheme is based on the second-order accurate Adams–Moulton
formulae, that is, at each time step, n þ 1, all terms (both linear and nonlinear) in
Eqs. (1.11)–(1.13) are integrated implicitly as follows:

ðt¼tnþ 1

t¼tn

gðtÞ dt � Dt
2
ðgn þ gnþ 1Þ; n > 0: ð1:19Þ

In this case, Eqs. (1.12) and (1.13) are given as

unþ 1�un þ
Dt
2
ðun � run þ unþ 1 � runþ 1Þ ¼ �rpeff

þ Dtb0
2Ret0

r2ðunþ 1 þ unÞþ
Dtð1�b0Þ
2Ret0

r � ðtnþ 1 þ t nÞþDt ex;

ð1:20Þ
c nþ 1�c n ¼

Dt
2
ðF n þF nþ 1Þþ

Dt Dþ
0

2Ret0
r2ðc nþ 1 þ c nÞ: ð1:21Þ

Since the governing equations are nonlinear, the implementation of the implicit
algorithm requires an iterative method. A direct iterative scheme based on Newton�s
method is computationally too demanding. Instead, as an alternative, a predictor-
corrector scheme can be used with the corrector to be iteratively applied until a
convergence criterion is met. To this end, in Eqs. (1.19) and (1.20) unþ 1, tnþ 1, peff ,

and c nþ 1 are replaced by ujþ 1
nþ 1, t

jþ 1
nþ 1, p

jþ 1
eff , and c jþ 1

nþ 1, respectively, whenever they

appear in a linear way in Eqs. (1.19) and (1.20) and by uj
nþ 1, t

j
nþ 1, p

j
eff , and c jnþ 1,

respectively, whenever they appear in a nonlinear way, where j ¼ 0; 1; 2; . . . . There-
fore, Eqs. (1.19) and (1.20) become

ujþ 1
nþ 1�un þ

Dt
2
ðun � r un þ uj

nþ 1 � r uj
nþ 1Þ

¼ �r peff þ Dt b0
2Ret0

r2ðujþ 1
nþ 1 þ unÞ

þ Dtð1�b0Þ
2Ret0

r � ðt jþ 1
nþ 1 þ tnÞþDt ex; ð1:22Þ
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c jþ 1
nþ 1�c n ¼

Dt
2
ðF n þF j

nþ 1Þþ
Dt Dþ

0

2Ret0
r2ðc jþ 1

nþ 1 þ c nÞ: ð1:23Þ

The initial guess for the solution that is required to start the iterative procedure at
each time step is obtained either by using a second-order extrapolation scheme, that
is, X 0

nþ 1 � 2Xn�Xn�1 where X ¼ u; t ; c , or by simply applying the semi-implicit/
explicit scheme described in Section 1.3.1.1. Note that at each step of the iterative
procedure, all nonlinear terms are known. Therefore, a procedure similar to the one
described for the semi-implicit/explicit scheme can be applied. It is also worth noting
that the last step in the full implicit scheme is the satisfaction of the divergence-free
condition, which in spectral space can be enforced tomachine accuracy. The implicit
use of the continuity in the development of the Poisson equation for the pressure is
not enough to guarantee with machine accuracy the satisfaction of the divergence-
free condition due to approximation error involved in the solution of the Poisson
equation caused by the coupling of theChebyshevmodes.However, the structure and
linearity of the continuity equation is such to allow a posteriori correction of the
velocity field (in spectral space) so that it is identically satisfied.

The advantage of the full implicit scheme and the direct enforcement of the
continuity equation can be more clearly seen when we formulate a suitable Poisson
equation for the pressure by taking the divergence of the momentum equation,
Eq. (1.2):

r2p ¼ � qðr � uÞ
qt

þ b0
Ret0

r2ðr � uÞ
� �

þ �r � ðu � r uÞþ 1�b0
Ret0

r � ðr � tÞ
� �

:

ð1:24Þ

With the semi-implicit/explicit scheme, the terms in the first parentheses of the
right-hand side of Eq. (1.18) are not identically zero. However, with the full implicit
scheme in which the continuity equation is satisfied with machine accuracy, these
terms are zero and therefore the periodic part of the pressure is more accurately
evaluated.

Finally, it should be noted that the spectral coefficient for nonlinear terms can be
optionally evaluated using the three half rule for dealiasing along all directions [86].
According to this procedure, and starting from the original (Nx)� (Ny þ 1)�Nz

spectral coefficients, all nonlinear terms are evaluated in an extended physical space
with (3Nx/2)� (3Ny/2 þ 1)� (3Nz/2) points. This is efficiently accomplished by first
extending the spectral coefficients, for all dependent variables, by a half in each
direction. The additional spectral coefficients are set equal to zero and the extended
spectral information is transformed into the extended physical space and all
nonlinear terms are evaluated. Then, the results are transformed back into the
extended spectral space and are truncated to the original spectral space. The three half
rule employed here makes the dealiasing complete (i.e., all the aliasing error is
removed) for all quadratic terms and partial for higher order nonlinear terms. In fact,
the only partial dealiasing occurs in the calculation of the Peterlin function when the
FENE-P model is used (see Eq. (1.6)) since all other nonlinearities are quadratic.
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1.3.1.3 Typical Simulation Conditions
Most of the simulation results that are reported in the literature and all those
considered here are for zero shear rate friction Reynolds numbers, Ret0, 125, 180,
395, and 590. For viscoelastic simulations, the zero shear rate friction Weissenberg
numberWet0 varies from 6 to 125, the viscosity ratio b0 varies from 0.6 to 0.99, and
theGiesekusmolecular extensibility parametera is 1=900. A typical viscoelastic case,
for whichmany reliable results are available, isRet0 ¼ 180,Wet0 ¼ 50, b0 ¼ 0:9, and
L ¼ 30 (when the FENE-Pmodel is used) or a ¼ 1=900 (when the Giesekusmodel is
used). In this case, an adequate computational domain to capture all the main
turbulent events is Lx � Ly � Lz ¼ 9� 2� 4:5, which means that in wall units is
0 	 xþ 	 LxRet0, �Ret0 	 yþ 	 Ret0, and 0 	 zþ 	 LzRet0. Each dependent var-
iable is approximated by Nx and Nz Fourier modes along the streamwise and
spanwise directions, respectively, andNy þ 1Chebyshev polynomials along the shear
direction, and for this particular friction Reynolds number and computational
domain size, are Nx � Ny � Nz ¼ 96� 96� 96. The time step of numerical inte-
gration Dt in computational units is 5� 10�4 for viscoelastic case and 10�3 for
Newtonian case in the fully implicit method; the semi-implicit and explicit schemes
require much smaller Dt, that is, Dt ¼ 2� 10�4 and 5� 10�4, respectively.

1.3.2
The Positive Definiteness of the Conformation Tensor

Asmentioned above, the conformation tensor c is a second-order internal structural
parameter that has a definite physical origin and interpretation, typically associated
with the second moment of a suitably defined chain end-to-end distribution func-
tion [84]. It is exactly this association that also induces a very special property in the
conformation tensor, its positive definiteness. In fact, this property is absolutely
essential for its proper interpretation. The eigenvalues of c and their corresponding
eigenvectors have the physical meaning of the square of the averagemacromolecular
size along the primary three directions and the orientation of those directions in
space, respectively. For this physical interpretation to be possible, it is clear that all
those eigenvalues need to be positive, that is, that c is positive definite. This is
therefore a property that all models need to preserve and indeed most of them do,
provided their corresponding governing equations are exactly solved [49, 90].

However, in numerical simulations of viscoelastic flows the positive definiteness
of the conformation tensor can be occasionally lost due to the accumulation of
numerical error [54, 55]. Moreover, under these conditions the evolutionarity of the
models is not guaranteed [90, 91]. As a consequence, under certain circumstances
this can lead to catastrophic Hadamard instabilities [90]. It is therefore advantageous
if a general way existed to guarantee the preservation of the positive definiteness in
numerical simulations. This is not dissimilar to concentration profile calculations
where the nonnegative character of various concentration variables is an essential
feature to allow a physical interpretation of the results. Indeed, various techniques
have been proposed to circumvent the numerical loss of nonnegativeness,most often
through the use of an exponential mapping [92]. However, the development of the
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exponential mapping here is a more delicate situation due to the tensorial character
of the conformation tensor.

Upwind techniques can and have been developed that preserve the positive
definiteness and simultaneously do the smoothing of high frequencies [64, 65].
However, their application is restricted to low-order finite difference schemes. For
higher order schemes, such as spectral methods, the only alternative to achieve the
necessary smoothing is the explicit addition of artificial numerical diffusion. This
idea was first developed by Crochet and coworkers [93, 94] with regard to laminar
viscoelastic flows where the equivalence of artificial diffusion to upwind approxima-
tions was demonstrated. It was further utilized in a spectral method developed
by Sureshkumar and Beris [95] for viscoelastic turbulent simulations. A drawback of
the latter method is that its application may destroy the positive definiteness of the
conformation tensor. In addition, the conformation tensor can grow beyond its
physical bounds. Although these aphysical results appear typically in a small fraction
of the computational domain, they still hinder the physical interpretation and cast
doubt on the accuracy of the results. However, other alternatives exist, as discussed
in the following.

Indeed, new variable representations have recently been developed [41, 96–98] that
explicitly avoid the loss of positive definiteness of the conformation tensor. Vaithia-
nathan and Collins [41] use either a continuous eigen decomposition of the
conformation tensor (which, when used to numerically solve for eigenvalues, may
require an occasional corrective action so that all eigenvalues of Care nonnegative) or
a Cholesky decomposition c ¼ L � LT that automatically guarantees by construction
that when one numerically follows L , and for any value of L , c will retain its positive
definiteness. Explicit ways of constructing equations for new variables and imple-
menting their numerical solution were also given. This scheme allowed the solution
to be obtained in homogeneous viscoelastic turbulence up to highWe numbers, the
spectra though showed a sharp increase in the magnitude of the high-frequency
modes. On the other hand, Fattal and Kupferman [96] proposed an exponential
decomposition, c ¼ expðAÞ, so that, again, when one numerically follows the
evolution ofA (which is the logarithm of c ) and for any value ofA , the corresponding
c remains positive definite. Also, here explicit directions were offered as to how to
construct the evolution equation for A.

So far, this approach has been followed in several works.Wehere note only the first
two. The first is a finite difference simulation of the lid-driven flow of an Oldroyd-B
fluid for which the results appeared convergent up toWe¼ 2 with the appearance of
oscillations at higher We values [97]. The second work concerns the finite element
simulation of the flow of a viscoelastic fluid past a cylinder using either an Oldroyd-B
or a Giesekus model [49]; convergence results were obtained up to a higher We
number than before. The convergence is ultimately limited only because of artifacts
of the model (in the case of Oldroyd-B) or lack of sufficient resolution to resolve the
small scales of the Giesekus model. Either one of these techniques is promising in
making spectral (and othermacroscopic) simulations equally compatible with hybrid
micro–macro simulations as far as the capability of eithermethod to produce physical
results is concerned. In addition, adopting the simpler exponential representation
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for the conformation tensor of Fattal and Kupferman [96], Housiadas et al. [99] have
developed a simpler mapping that offers numerical advantages. This most recent
idea is based on the Cayley–Hamilton theorem that is used to analytically relate the
conformation tensor c to its logarithm tensor A. In fact, the process of updating c
employs three simple successive mappings, each one of which is introduced to
preserve a specific property of c : its boundness, its positive definiteness, and (for
computational convenience) the avoidance of underflow or overflow error in calcula-
tions. Although the method has already produced promising full DNS results [99],
more work is required to improve its computational efficiency before it can seemore
widespread utilization. The most important outcome so far is the verification of
previous DNS spectral results without the drawback of any physical violations on the
conformation tensor.

1.4
Effects of Flow, Rheological, and Numerical Parameters on DNS of Turbulent
Channel Flow of Dilute Polymer Solutions

1.4.1
Drag Reduction Evaluation

One of the most significant quantities to be evaluated in viscoelastic turbulent flow
simulations is undoubtedly the achieved drag reduction [47, 54, 78]. The drag
reduction is properly defined on the basis of the ratio of the drag observed after the
introduction of the polymer additives versus the drag obtained with pure solvent,
while keeping the same bulk Reynolds number [34], taking into account that all
transitional effects are eliminated so that to avoid miscounting for drag reduction
changes, if any, occurring related to the onset of turbulence [14] are determined
as [78]

DR ¼ 1� ReðviscÞt

ReðNewtÞt

 !2

Reb

; ð1:25Þ

where the bulk Reynolds number Reb is defined in terms of the average
streamwise velocities �u�av and the wall shear rate (effective) kinematic viscosity
n� as Reb � ð2h��u�av=n�Þ. Now, when the viscoelastic system resulting from the
addition of polymers to the Newtonian solvent is really very dilute, the bulk shear
viscosity hardly changes, and the bulk Reynolds numbers in both cases (the
viscoelastic and the Newtonian one) are simply proportional to the bulk (average)
flow velocity; keeping that constant while one measures the pressure drop is
therefore sufficient for a drag reduction measurement. In reality though, we do
have changes in the effective solution viscosity, and these changes need to be
taken into account when calculating the bulk Reynolds number. However, still
this effect is typically low.
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Most importantly for computational viscoelastic fluid mechanics, most of the
channel DNS calculations are not performed for a constant flux (which would have
naturally resulted in a constant bulk Reynolds number) but for a constant pressure
drop per unit length that results in a constant zero shear rate friction Reynolds
number. These runs lead to substantial variations in the (instantaneous and average)
bulk Reynolds number from which the drag reduction needs to be estimated.
Knowing roughly the relationship between the friction and the average bulkReynolds
number for a Newtonian fluid (from the experimentally determined and DNS
confirmed empirical relationships for the skin friction factor – see, for example,
Ref. [34]), one can extract such a relationship that also takes into account the already
mentioned (in Section 1.2) shear thinning effect in association with viscoelastic
results [78].

Thefinal expression, relying on the average streamwise velocities �uðviscÞav and �uðNewtÞav

evaluated from the viscoelastic and the Newtonian simulations, respectively, at the
same Ret0, is given [78] as

DR ¼ 1�m2ð1�nÞ=n
w

�u
ðviscÞ
av

�u
ðNewtÞ
av

 !�2=n

Ret0

¼ 1�m�2
w

ReðviscÞb

ReðNewtÞb

 !�2=n

Ret0

; n � 1:14775;

ð1:26Þ
where

mw ¼ b0

1þ 1�b0
2Ret0

Dð�txyÞ
ð1:27Þ

andDð�txyÞ is the averagewall shear stress at the twowalls. Note that for theOldroyd-B
constitutive model that does not show shear thinning behavior, the mean viscosity
ratio at the wall mw is 1. By an overbar, we denote x, z, and time-averaged quantities:

�g � 1
LxLzTf

ðx¼Lx

x¼0

ðz¼Lz

z¼0

ðt¼t0 þTf

t¼t0

gðx; y; z; tÞ dx dz dt; ð1:28Þ

where t0 is the required integration time to reach stationary state (beyond which the
statistics are taken), Tf is the integration time in stationary state, and D denotes the
difference of the measured values at the two walls, Dð.Þ ¼ ð.Þtop wall�ð.Þbottom wall,
used in order to average the wall results for antisymmetric quantities such as txy. For
dilute systems, mw can be very well approximated by considering the steady-state
simple shear flow model predictions corresponding to the average wall shear rate
[55, 56, 78]. Equation (1.26) describes the drag reduction for runs performed at
constant zero shear rate frictionReynolds number,while Eq. (1.25) describes the drag
reductionwhen the bulkReynolds number is kept constant. Note that thismeans that
if the flux is the quantity that is instead maintained constant between runs, there is
a corresponding correction that also needs to be implemented to accommodate
potential viscosity changes.
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1.4.2
Effects of Flow and Rheological Parameters

From our computational viscoelastic DNS work and others (see, for example,
Ref. [66]), a rich information has been accumulated concerning the effects that
various rheological and flow parameters have on key turbulence statistics and the
drag reduction. We will like to present here, drawing from our own work for
convenience, some indicative results that we believe have especially led us to improve
our understanding of the polymer-induced drag reduction. First, in Figure 1.2, we
have collected some representative data on the mean streamline velocity profiles
corresponding to a variety of models and model parameter values. It is reassuring to
see there that the numerical results look very similar to the experimental data sample
presented in Figure 1.1. More specifically, we see in Figure 1.2 that under conditions
little departing from the Newtonian reference case (i.e., corresponding to either
small Weissenberg number or small extensional parameter L, and/or small polymer
concentration that is proportional to 1�b0), we have a small departure from the
Newtonian turbulent results, consisting of a simple parallel translation to higher
values of the log linear law segment, in agreement with experimental results [23].
In contrast, under conditions corresponding to higher viscoelasticity, we see that the
velocity log-law profile moves further away, and eventually even its slope increases,
almost reaching the level of Virk�s maximum drag reduction asymptote, exactly in
parallel to the trends exhibited by the most drag reduction experimental data shown
in Figure 1.1. Therefore, we have confirmed here themain experimental finding that
with viscoelasticity the shape of the viscous sublayer remains practically unchanged;
however, the buffer layer widens and the log-law layer is pushed higher.

Figure 1.2 DNS results for themean velocity profiles, obtained for various parameter values of the
FENE-P constitutive model, the Newtonian representing the pure viscous solvent base case.
(Adapted from Ref. [56].)
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Already in Figure 1.2, by comparing results collected at variousReynolds numbers,
we can see that the effect of the Reynolds number, as far as the mean velocity profile
(and therefore the drag reduction) is concerned, isminimal.We can also see that even
more clearly in Figure 1.3, where results have been collected for fixed rheological
parameters (corresponding to a moderate drag reduction case, calculated with the
FENE-P model) and at different friction Reynolds numbers. We see that the primary
effect of increasing the friction Reynolds number is to be able to allow the log-linear
layer to develop more, as well as to push further from the wall as small downturn on
the profile that can be attributed to a centerline effect. Note that exactly similar
behavior is obtained with Newtonian DNS, also reported in the same figure for
comparison purposes. Needless to say those Newtonian DNS results, collected with
the same code as in the viscoelastic case, are in perfect agreement with the
literature [100].

The effect of the Reynolds and Weissenberg numbers on drag reduction can be
most clearly seen in Figure 1.4, where we present the Weissenberg number
dependence of the drag reduction, calculated according to the expressions provided
in Section 1.4.1. The various curves in Figure 1.4 correspond to different combina-
tions of other rheological parameters and the friction Reynolds number, as indicated
in that figure. First, it is important to note that for the range of Reynolds numbers
considered, there is minimal, if any, effect that they have on drag reduction. In fact,
this parallels what we saw in Figures 1.2 and 1.3 before. As it turns out, one will have
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Figure 1.3 Effect of the friction Reynolds number on themean velocity profile. (Adapted from [54].)
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to go to higher order turbulent statistics to see a clear Reynolds number effect – see
below for an example and Ref. [58] for more details – on the exception, possibly of
results obtained at the smallest Reynolds number,Ret0 ¼ 125, which being very close
to the turbulent transition regime (that can change, depending on viscoelasticity)
can introduce some bias in calculations. Similar Reynolds effects are also observed
with Newtonian fluids based on experimental [101] and DNS [100] data. Thus, we
focus here on discussing results obtained at higher Ret0, 180 and more.

Second, note that the various curves shown in Figure 1.4, each one corresponding
to a different model with all rheological parameters other than the Wet0 number
fixed, are sigmoidal in shape, with all curves exhibiting a clear onset, around
Wet0 ¼ 6�8 and saturation forWet0 > 100. Themain difference between the various
curves is then just a question of scale, with the scale determined by the maximum
drag reduction obtained at saturation in the limit of very highWet0. This saturation
value appears to be predominantly dictated by the maximum extensional viscosity
that is predicted for a steady extensional flow by the correspondingmodel andmodel
parameter values: the higher the maximum extensional viscosity, the higher the
saturation value for DR. Therefore, an extensional viscosity that significantly in-
creases above the Newtonian limit is identified as the most significant prerequisite
for additive-induced drag reduction to take place; the higher the extensional viscosity,
the higher the effect. This is most appropriately measured by the Trouton ratio,
defined as the ratio of the extensional to shear viscosity [79]. This is consistent with
the very high values attributed for the Trouton ratio of even dilute drag-reducing
polymer solutions [102] also mirrored, although not to the same high levels, by the
Trouton ratio of drag-reducing surfactant solution [103]. For the FENE-P, the

0 25 50 75 100 125

0

10

20

30

40

50

60

70

Oldroyd-B, β
0
=0.9,

Re
τ0

=180

Giesekus

β
0
=0.9, α=1/900

Re
τ0

=125,180

FENE-P, L=60, β
0
=0.8

Re
τ0

=180,395,590

FENE-PB, β
0
=0.9, L=30

Re
τ0

=125,180

FENE-P, L=30, β
0
=0.9

Re
τ0

=125,180

Friction Weissenberg number, Weτ0

D
ra

g
 R

e
d

u
c
ti
o

n
 %

, 
D

R

Figure 1.4 Drag reduction predictions as a function ofWe for various values of model parameters.
(Adapted from [56] and unpublished data.)

1.4 Effects of Flow, Rheological, and Numerical Parameters on DNS of Turbulent Channel Flow j21



maximum extensional viscosity ratio to the shear viscosity is proportional to
ð1�b0ÞL2, where b0 is the ratio of the solvent viscosity to the total solution viscosity
andL is themaximumextensibility parameter. Then, themonotonic increase inDR is
indeed observed as we change accordingly the relevant parameter values – compare
the FENE-P curves in Figure 1.4 corresponding to L¼ 30, b0¼ 0.9 (low extensional
viscosity) and L¼ 60 and b0¼ 0.8 (high extensional viscosity). However, when the
models vary, there are further secondary effects that enter the picture – one of the
main results from DNS is the relatively high sensitivity of the results to details of
the rheology and the rheological modeling.

A secondary dependency of DR, beyond that on the extensional viscosity and the
Trouton ratio, on the particular constitutive model used is to be expected. This is
because various other rheological characteristics (e.g., the second normal stress
difference in simple shear flow) that may also be important in the mechanisms
underlying drag reduction [104] critically depend on themodel. Indeed, in Figure 1.4
we note a significant increase in drag reduction as wemove from FENE-P (L¼ 30) to
Giesekus (a¼ 1/900), even when the maximum extensional viscosity predicted
under these conditions from both models is the same. This enhancement of drag
reductionwith theGiesekusmodel has also been observed by other investigators [65],
and it is consistent with the hypothesis on the effect of second normal stress
difference (present only in the Giesekus model) in drag-reducing flows [104].

It is of interest that even smaller differences between themodels, for example, only
affecting the detail way that the extensional viscosity depends on the extensional rate
(at steady state) and/or the time (during transients), without affecting other rheo-
logical parameters, such as the second normal stress difference, may also contribute
to significant changes in the predicted drag reduction. Such is the casewhen a variant
of the FENE-P model, the FENE-PB, is introduced in the calculations [57]. Note that
both the FENE-P and the FENE-PB predict zero second normal stress difference in
simple shear flow and for the same L value (L¼ 30 here) the same maximum
extensional viscosity [57]. However, the fact that the latter corresponds to a higher
steady-state extensional viscosity at intermediate extensional rates reaching the
asymptotic maximum value at smaller extensional rates [57], and also corresponds
to faster transients, is sufficient to lead to significantly higher drag reductions, almost
as high as those observed with the Giesekusmodel (a¼ 1/900), as seen in Figure 1.4.

Even more striking than the above observations is the fact that additional simula-
tions show that there is also a secondary effect to the flow keeping the same model
and the same maximum extensional viscosity! Indeed, when the combination of the
L and b0 parameters is varied in the FENE-P model, in such a way as to keep the
maximum extensional viscosity constant, ð1�b0ÞL2 ¼ 90, we still see some changes
in the solution and in particular in the drag reduction, as shown in Figure 1.5. As we
can see there, the drag reduction seems to significantly increase for small values of
the extensibility parameter L, corresponding to smaller values of the solvent ratio, b0.
A possible explanation of this effect can be again the detail way the extensional
viscosity responds to intermediate extensional rates at steady state and/or to
intermediate times during transients, albeit the differences in this case are much
smaller than those seen before between the FENE-PB and the FENE-P cases. This
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further reinforces our belief that although the extensional viscosity is the primary
factor that controls drag reduction, one needs to consider supplemental information
in addition to its maximum predicted (saturation) value at infinite extensional rates.
Thismay be explained since despite the fact that typical extensional rates encountered
in turbulent DNS are large, they are not infinite, and they definitely vary with time.
Thus, it is also important to examine the dependence of the extensional viscosity on
the extensional rate and/or time, and the current data seem to support such a view.

Beyond this correlation of model parameters with average macroscopic effects,
such as represented by the overall drag reduction, one can find in the detailed
numerical results a wealth of additional information. For example, looking at the
root mean square of the velocity fluctuation profiles, such as those shown in
Figure 1.6, one can clearly see that with increasing viscoelasticity the turbulent
velocity fluctuations become more anisotropic. While the rms values of the stream-
line component increase, those in the shearwise and spanwise directions decrease.
The increased anisotropicity has also been confirmed recently through the calcula-
tion from DNS of the Lumley anisotropic tensors [105] as has been measured
experimentally [106, 107]; it is also interesting to note that this anisotropy tensor
information may be used to better understand the drag reduction mechanism [108].
As also seen for Figure 1.6, these changes are accompanied with a clear shift of the
streamline rms maximum, typically occurring in the buffer layer, further away from
the wall, offering another indication (beyond that seen with the mean streamline
profiles in Figure 1.2) of the widening of the wall eddies structures with viscoelas-
ticity. Incidentally, this is also further corroborated by a recent analysis of the large,
coherent structures in the flow (eddies) [58, 75].

Form the above DNS findings, it became obvious that the coherence of the large-
scale structures is significantly enhanced in the presence of polymer additives.
Simultaneously, the eddies become considerably weaker and therefore less capable
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of transferringmomentum from thewall. This effect emerges, therefore, naturally as
themainmechanism through which turbulence increases drag. This effect has been
unequivocally connected through DNS to the enhanced resistance to extension
offered by polymer molecules in their stretched state. For example, in Figure 1.7
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Figure 1.6 The rms velocity fluctuations at friction Reynolds 180. (Adapted from Ref. [54].)

Figure 1.7 Vorticity (with blue) and trace of
conformation tensor (with yellow) isosurfaces,
close to their maximum values, obtained in a
FENE-P polymer simulation of turbulent
channel flow. The flow is from back to front with
the bottom and top surfaces representing the
channel walls. The close-to-maximum vorticity

isosurfaces paint the eddies, whereas the close-
to-maximum trace of the conformation tensor
isosurfaces the location of the most stretched
polymer chains in the flow – their close
correlation is an indication of the role of the
polymers in eddies formation. Alternative
rendering of the data also shown in Ref. [58].
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we see that the most stretched molecules (as documented from the isosurfaces
corresponding to close to the maximum value obtained for the trace of the confor-
mation tensor that can be used to characterize the macromolecular deformation) are
to be found near the surface of those eddies (as represented by vorticity isosurfaces at
values close to themaximum streamline vorticity). Also, in that figure one can notice
the large size of the eddies,much larger than the correspondingNewtonian turbulent
channel flow, that closely parallels the increase in the streak spacing also observed
in experiments with dilute polymer solutions [23]. In fact, from the first DNS
publication [47] it has been noted that the empirically derived linear relationship
between the increased streak spacing lþ and the drag reduction DR, at small values
of drag reduction for dilute polymer solutions [23], lþ ¼ 1:9DRþ 99:7, has also been
confirmed from the DNS results [47]. This substantial increase in the streaky
structures has also been confirmed in subsequent DNS works with both FENE-P
and Giesekus models [50].

The main outcome of the DNS studies has, therefore, been the ample supply of
evidence (a small sample of which is provided here) in favor of an extensional
viscosity thickening-driven drag reduction mechanism exactly as foreseen by Metz-
ner and coworkers [15] and also independently postulated by Lumley [14]: as the
eddies form at thewall, they seewith viscoelasticity an increased resistance due to the
predominantly extensional character of the velocity deformation and the enhanced
resistance to extensional deformation offered by polymers. As a result, the eddies are
larger in length, have smaller vorticity values, and are more sluggish; therefore, they
become less effective in transferring momentum from the wall, resulting in drag
reduction. This is also illustrated in the significantly depressed, by viscoelasticity,
values for the streamwise vorticity as seen in Figure 1.8. In the same figure, we see
the changes in the vorticity close to the wall because of the changes in the friction
Reynolds number.Most of the changes happenwhen theReynolds number increases
from 125 to 180, then some changes still occur as the Reynolds number increases to
395, from which point there are no perceptible changes as the Reynolds number
increases further to 590. The vorticity is one of the quantities most sensitive to
Reynolds number change. Figure 1.8 provides evidence that for Reynolds number
larger than 395 the results next to wall have converged.

Finally, a very important quantity for determining the wall friction is the Reynolds
stress. As numerousDNS studies [47, 54–57, 59, 60, 62–65, 109] have shown, amajor
viscoelastic effect is a significant lowering in the Reynolds stress in agreement with
experimental evidence [22, 23, 25, 26, 62, 110]. In addition, results from a more
detailed quadrant analysis have also been reported [58, 111] and showmost changes
due to viscoelasticity to be concentrated with the fourth and second quadrant events
that are found to be significantly decreased in magnitude due to viscoelasticity in the
viscous sublayer and the buffer layers, as has been observed experimentally [22, 23].
Furthermore, for a constant friction Reynolds number, we have shown [53, 58] that
viscoelasticity is responsible for significantly lowering the production in theReynolds
stresses, in agreementwith experiments [23, 48]. A similar decrease is observed in the
magnitudes of the terms representing the pressure–velocity gradient correlations,
transport, and the overall (viscous and viscoelastic) diffusion and dissipation.
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Simultaneously, the peaks in the profiles widen and shift toward the centerline. The
changes are on the order of 30–70% and are localized in the near-wall boundary layer
(yþ < 75�100), leaving the region far away from the wall virtually unaffected.
Regarding the terms appearing on the enstrophy budgets, the changes observed
due to viscoelasticity are qualitatively similar but muchmore dramatic inmagnitude
with reductions of 80–90% being typical. In fact, it is this drastic annihilation of the
enstrophy in the wall boundary that may explain the saturation of the drag reduction
at a level of about 30–40% obtained with the FENE-P dilute polymer solution
constitutive model [58].

1.4.3
Effects of Numerical Parameters

It is important to mention several computational and numerical issues related to the
sensitivity of the results to

. time integration scheme;

. different values for the numerical diffusivity;

. different mesh sizes;

. different computational domain sizes;

. long time integration (both in transient and in stationary state).

First, we should comment on the semi-implicit/explicit and fully implicit schemes.
The fully implicit scheme givesmore physical results and ismore accurate andmore
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Figure 1.8 Effect of the friction Reynolds number on the vorticity components. (Adapted from
Ref. [54].)
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stable allowing considerably larger time steps of integration to be used. On the other
hand, it requires both more computational memory andmore arithmetic operations
per time step. A comparison between these two schemes is offered in Figure 1.9, in
which the average vorticity components are given as a function of the distance from
the wall. It is clearly seen there that the fully implicit scheme with Dt¼ 10�3 and
mesh size 96� 97� 96 yields the same statistics with the semi-implicit/explicit
scheme with Dt¼ 2� 10�4 and mesh size 144� 145� 144.

Second, we present some thoughts about the role of artificial diffusivity in relation
to spectral simulations. So far, all indications are that some diffusivity in viscoelastic
turbulence simulations is unavoidable (added either explicitly, as is done in spectral
methods, or implicitly by using diffusive low-order approximations, such as finite
differences, especially when upwind formulations or linearizations in particle
Lagrangian formulations [112] are used) aswe have seen in all successful simulations
of complex viscoelastic flows. Indeed, it is believed that the need to have a confor-
mation diffusion term is the same as the need to add a diffusive term in solving for a
passive scalar advection equation in a turbulent flow: it is due to the feature that
any chaotic flow field has in creating finer and finer features in the distribution of any
passive scalar that it is advected upon its action ([82] and references therein). We
stipulate that this is exactly what is happening with the conformation tensor. This
becomes even more obvious when one examines the equation for each one of the
conformation tensor eigenvalues (Eq. (16) in Ref. [41]) that is exactly like a passive
scalar advection equation plus two extra scalar terms, one representing velocity
gradient stretching and the other polymer relaxation.

However, the magnitude of the artificial diffusivity has to be kept small, and,
when probing convergence of the results with mesh refinement, for consistency,
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as the mesh resolution increases, the numerical diffusivity should also decrease.
Indeed, this is happening in the convergence study shown in Figure 1.10. The fact
that after two successive refinements of the mesh resolution (accompanied by
corresponding decreases in the numerical diffusivity) the results for the rms
velocities are almost the same is a strong evidence that at least in that case we have
reached convergence in the results to a solution independent of the value of the
artificial diffusivity. Although every effort has been made in the reported calcula-
tions to use diffusivity values that were judged as similarly not altering the
physical content of the results, it is to be noted that as the parameter values
and/or models change, the role of numerical diffusivity needs to be carefully
reexamined. In particular, this is one of the most important factors as extreme
range of the parameter values is reached, such as when we approach maximum
drag reduction.

In view of the observed enhancement of the larger scales of turbulence by the
viscoelasticity of the flow, special attention has also to be paid to viscoelastic
simulations to allow a large enough computational domain so that even the larger
scales of turbulence can develop. So far, only limited investigations of this effect
have been carried out mainly due to the significant computational cost associated
with it. Such an example is offered here for the rather small friction Reynolds
number 125. In this case, as shown in Figure 1.11, the results obtained after a
significant enlargement of the domain by 50% in each direction are almost the
same. In this figure, it is interesting to point out another characteristic result
arising from the interaction of viscoelasticity with the turbulent flow. In particular,
note that the average profile for the trace of the conformation tensor shows a
pronounced peak not at the wall (where themaximum shear rates are obtained) but
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rather at the beginning of the buffer layer where most of the eddies action takes
place. This is a clear indication that the most significant molecular deformation
occurs due to the transient extensional characteristics of the flow that accompany
the formation of eddies. Note that the issue of identification of the velocity
structures that give rise to that pronounced peak in macromolecular deformation
(and therefore is critical in the elucidation of details of the drag reduction
mechanism) is still a subject of active investigation [105].

1.5
Conclusions and Thoughts on Future Work

We offered in this chapter an overview of some of the most important elements of
recent viscoelastic computational work on turbulent channel flow under drag-
reducing conditions. After a brief history on the polymer-induced drag reduction
phenomenon and presentation of recent computational works, we focused on
spectral DNS of turbulent channel flow for dilute polymer solutions. We first
presented the governing equations, with emphasis on the two most popular models
(FENE-P andGiesekus). Then,we presented the key elements of the spectralmethod-
based numerical algorithms. Following that we discussed in some detail the most
important changes to the turbulence induced by viscoelasticity. We can summarize
those here as a significant enhancement of the size of the buffer layer, the streamline
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velocity fluctuations, and the size of the main eddies that form there, while there is
a significant weakening of the streamwise vorticity, and therefore the intensity of the
eddies, the Reynolds stress, and the shearwise and spanwise velocity fluctuations.
All these were found to contribute to drag reduction through the displacement of the
log-law component of the mean streamline velocity profile in agreement with
experimental observations. The sensitivity of the above findings to flow and rheo-
logical parameters provided significant evidence for the primary role of the exten-
sional viscosity in drag reduction, exactly as originally proposed by Metzner and
Lumley.

At present, the numerical simulation activity in this area is focusing on deepening
our understanding of the changes induced by viscoelasticity in the structure of
turbulenceflows. For example, we canmentionhere the continuingwork on the exact
coherent states [72], on large-scale structure dynamics through K-L analysis in
time [105], and, most recently, on the investigation of the effects of viscoelasticity
on small (dissipative) scales of turbulence and intermittency through an analysis of
the probability density functions of the velocity and velocity derivatives [113]. These
investigations, in addition to further elucidating the underlyingmechanism for drag
reduction, can also contribute possibly to the development of low-dimensional
models of turbulence from first principles. In parallel, as the work to develop various
k�e-based empirical models of drag reduction [17] is continuing, the DNS data are
expected to be further utilized to test those ideas.

Still considerable challenges remain as the strength of viscoelasticity increases
and the region of maximum drag reduction is approached due to the very steep
computational requirements to evaluate mesh-converged numerical solutions un-
der those conditions. Issues related to polymer inhomogeneities are also important
– see, for example, the experimental data of Refs [26, 114] suggesting polymer
aggregation and filament formation under conditions of maximum drag reduction.
In addition, there is a considerable room for improvement in the development of
LES and averaged equations for general viscoelastic turbulent flows, moving beyond
channel and pipe flows. One thing is sure that the polymer-induced drag reduction
problem is a very challenging one that will keep numerical analysts occupied for a
long time.
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2
Modeling of Polymer Matrix Nanocomposites
Hendrik Heinz, Soumya S. Patnaik, Ras B. Pandey, and Barry L. Farmer

2.1
Introduction

Nanocomposites are materials made of nanometer-sized particles dispersed in a
matrix, typically but not exclusively, composed of a polymeric material. Although the
term�nanocomposites� has been fashionable for the last fewdecades, thesematerials
have been around for a long time. Besides the synthetic nanocomposites of recent
interest, similarly constructed materials are also found in nature – spider silk, bone,
and nacre from abalone represent a few cases of organic, inorganic, and organic/
inorganic nanocomposites in the biological world. The multifunctional nature of
these biological nanocomposites stems from the presence of different structures and
compositions. In spider silk, the exceedingly high flexibility and toughness is
attributed to the presence of alternating alanine-rich crystalline blocks that impart
hardness and glycine-rich amorphous blocks that provide elasticity. Together, the
nanostructured morphology of these hard and soft components accounts for the
incrediblemechanical properties of dragline spider silk (five times tougher than steel
by weight and up to 30% stretch without breaking). The multifunctional nature of
bone leading to its high strength is accomplished by a hierarchical structure
consisting of carbonated apatite platelets and collagen fibrils. Similarly, the nacreous
layers in red abalone consist of aragonite plates in between layers of organic matrix
resulting in a composite structure with fracture toughness about 3000 times greater
than that of inorganic aragonite alone.

In addition to these natural examples, synthetic nanocomposites have been in use
since early civilization. The concept of enhancing the properties of materials by
introducing nanofillers can be traced back to as early as 100 BC. The bright color and
corrosion resistance of the Maya blue paint has been attributed to its nature as an
organoclay nanocomposite.

The second half of the last century has seen many applications of nanoscale
organoclays to control the flow of polymer solutions and gels. More recently,
nanocomposites have been the subject of a very rapidly growing body of research.
Alongwith advances in tools to characterize and control structure at ever-smaller size
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scales, the advantages of new physical properties that can be achieved by controlling
nanoscalemorphology and dispersion, and thereby effectively changing the nature of
the parent matrix, have generated great interest in these materials. Nanocomposites
are being developed for a wide range of applications. The conventional definition of
nanoparticles has included particles that are less than 100nm in at least one
dimension. Due to their extremely large surface to volume ratio, in most cases,
the nanoparticles have dramatically different properties compared to their bulk size
equivalents, and the presence of nanoparticles distributed within a host matrix at
the nanometer scale has provided extraordinary improvement in properties. These
properties, however, depend not only on the properties of the individual constituents
but also on their morphology and interfacial characteristics.

Polymer matrix nanocomposites represent a subclass of nanocomposites consist-
ing of nanoparticulates in a polymermatrix. The discovery of carbonnanotubes in the
1990s, the developments in processing of nanoparticles and nanocomposites, and
the realization that sometimes only small loading of the nanoparticles can provide
exceptional improvement in properties have all led to an unprecedented increase in
polymer nanocomposite research [1] in recent years. Although it is now understood
that along with the properties of the matrix and the filler, the filler size and
distribution, and the nature of its interfacial characteristics with the matrix dictate
the properties of the nanocomposites, a thorough understanding of the underlying
physics is still in its infancy. For polymer matrix nanocomposites, the presence of
nanofillers not only introduces interfacial area but alsomodifies the properties of the
host matrix material over several radii of gyration from the particle surface. The
observed enhancement in properties has contributions both from the confined
polymer layers close to the filler particle and from the effective entanglements that
arise when the average distance between the particles is comparable to the radius of
gyration of the polymer chains. To maximize the enhancement in properties, the
relative effects of these various factors need to be better understood. With rapid
advances in computer power over the last fewdecades and the tantalizing similarity of
the important size scale that dictates nanocomposite properties and the size of
computational models that hardware and software can now address, computer
modeling and simulations are playing an increasing role in providing this funda-
mental understanding, along with guiding synthesis and characterization of
nanocomposites [2].

Comprehensive modeling of polymer nanocomposites calls for description of the
material at many size scales – from chemical bonding to chain aggregates spanning
sizes from angstrom to millimeters in length. The multiphysics aspects of their
multifunctional properties require the study of molecular processes from bond
vibrations to collective motion of polymer chains ranging from femtoseconds to
seconds in timescale. Thus, the hierarchical structure andmultifunctional properties
of nanocomposites span multiple length and timescales, requiring a multiscale
modeling approach. Althoughboth sequential and concurrentmultiscale approaches
are being developed, by far themajority of development to date has been in the area of
parameter-passing sequential approaches where different scale computationalmeth-
ods are linked such that quantities calculated from simulations at one scale are used
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as parameters for the next larger scale. Such hierarchicalmethods have been found to
be particularly effectivewhenmaterial behavior can be separated into different length
and timescales. An excellent review of the applications of variousmultiscalemethods
for studying polymer nanocomposites has recently been provided by Zeng et al. [3].
Rather than providing another comprehensive review of the application of modeling
and simulation techniques to polymer nanocomposites in this chapter, we shall
address some additional important aspects that have been the subjects of our own
ongoing efforts in modeling nanocomposites. We have utilized Monte Carlo (MC)
modeling to augment molecular and coarse-grain dynamics methods, and we have
developed force fields that suitably represent the interactions of organic materials
(hostmatrix) and inorganicmaterials (the nanoparticulate components). Using these
approaches, we have focused on two important aspects of modeling polymer
nanocomposites: factors responsible for good dispersion of nanoparticles in the
polymer matrix and the effects of polymer chain and filler interactions on material
properties. These are strongly interrelated – chain filler interaction is one of the
important factors controlling dispersion behavior and good dispersion is needed to
enhance the macroscopic properties. However, these two aspects present unique
modeling challenges. Traditional homogenization theories that were developed for
microcomposites have been found lacking in describing the dispersion behavior of
nanocomposites, primarily because the representative volume element canno longer
be considered to be homogeneous. The comparable dimensions of the nanoparticles
and the polymer chains require the use of nonlocal constitutive equations. Further-
more, the interplay between the change in conformational entropy of the polymer
chains close to the particles and the polymer–nanoparticle interaction energies
determine the polymer configuration and its properties close to the nanoparticles.
Therefore, anymodel describing the dispersion behavior should take all these details
into consideration. A full atomistic representation of such systems is not always
practical. A reasonable size polymer clay system with 5% loading can require up to a
billion atoms [3] and even a simple nanocomposite made with 5% loading of carbon
nanotubes dispersed in a thermoset polymers can require half a million atoms.
Multiscale modeling studies [4–6] have presented arguments for the validity of
coarse-grainedmodels and thesemodels represent a growing area of nanocomposite
modeling. In the first section of this chapter, we summarize some of our own efforts
in modeling polymer clay nanocomposites using coarse-grained Monte Carlo
simulations. In the second section, we present some of our work in atomistic
molecular dynamics (MD) modeling of interfaces between polymer and nanotube,
as well as clay and metals. The detailed nature of the property of interest dictates
whether a strong orweak interface is desirable and atomic simulations are helping us
shape our understanding of how to achieve the desired interactions and properties.
Although computationally costly, atomistic simulations play a special role in the study
of nanocomposites, and MD simulations have been widely used to provide detailed
insight of various nanoscale interfaces. The reliability of results from atomistic
simulations strongly depends on the quality of the forcefields and molecular models
used. We include a description of our efforts in developing accurate forcefields for
inorganic–organic interfaces and molecular models for cross-linked polymers.

2.1 Introduction j39



Weconclude the chapterwith selected examples of applications of nanocomposites
where computational models might be especially informative, summarizing the
results of our studies thereon. Nanostructured materials may offer advantageous
thermal transport, but such properties have not received nearly as much attention as
mechanical properties. Thus, we have included a section on thermal properties
across interfaces.

2.2
Polymer Clay Nanocomposites and Coarse-Grained Models

Nanoclay composites [7] may consist of a range of organic and inorganic compo-
nents [8, 9], in addition to clay platelets. The spatial distribution of these components
is crucial in determining physical properties of these nanocomposites. In particular,
the distribution of clay platelets (the largest component) in a polymer matrix is very
important in designing nanoclay composites with desirable thermal andmechanical
characteristics [7, 8, 10–17], such as reducing gas permeability, reducing flame
propagation, and enhancing strength with respect to tensile response. A typical clay
platelet (e.g., montmorillonite) is of the order of hundreds of nanometers in lateral
size but only one nanometer in thickness. These platelets stack together with an
interlayer spacing of the order of a nanometer to forma layered structure. Controlling
the distribution of individual clay platelets in an appropriate polymer matrix is,
therefore, crucial to achieving enhanced thermomechanical characteristics.

Enormous efforts have beenmade in recent years [7, 8, 10–28] to understand the
dispersion of platelets in a range of host matrices. Critical to dispersion are
controlling or achieving an intercalated or exfoliated structure. In an intercalated
structure, clay plates are separated by an interleaving layer of (typically) organic
material, but the platelets retain a stacked morphology. In an exfoliated material,
individual clay platelets are distributed in the host matrix, with little or no
correlation between the positions of the platelets. Processing may still result in
some correlation of the orientations of the platelets even though they may be
isolated from each other. Achieving exfoliation and a uniform distribution of the
individual clay platelets remains a technical challenge due to their unique char-
acteristics. Understanding the exfoliation and intercalation of the layers of clay
platelets is a key to finding ways to control their distribution. In laboratory
experiment, it is difficult to monitor the basic mechanisms that lead to a unique
dispersion of the components of the nanocomposite. Computer simulations
[25–28] have become valuable learning tools in such systems [18–23, 25, 26] where
it is easier to invoke hypotheses and constraints and explore a range of parameters
usually inaccessible in laboratory experiments.

Many of the previous studies [18, 19, 23–26] deal with the intercalation of polymer
in a slit or �gallery� formed by two constrained surfaces/platelets with little or no
dynamics. While some of the theoretical investigations [23, 24] are too crude to
incorporate relevant fluctuations, others lack ample dynamics of its components. For
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example, Lee et al. have used MD simulation to study the intercalation of polymer
chains in a slit withfixed surfaces [25] and surfaceswith constrainedmovement along
the longitudinal direction for variable slit spacing [26]. Sinsawat et al. [27] have
examined the intercalation and exfoliation processes of clay sheets using an off-lattice
MD simulation. It was difficult to investigate desired structural evolution (in
particular, long-time exfoliation) due to the relatively long relaxation times in these
materials – a typical bottleneck in computer simulations of such complex systems
with off-latticemethods. Thus, the utility of a powerful computational tool such as off-
lattice simulations is severely limited despite its strength in probing the microscopic
structural details in depth.

We have proposed a Monte Carlo bond-fluctuating model [29, 30] for clay platelets
with ample degrees of freedom on a discrete lattice to capture some of the pertinent
details including multiscale mode dynamics [28, 31–33]. Unlike the kink analysis
[34, 35] of platelets, we have studied the exfoliation of a stack (layer) of sheets by the
bond fluctuation model. With a coarse-grained model, effects of solvent on the
exfoliation and dispersion of platelets can be examined in a hostmatrix with effective
solvent [28] by Monte Carlo simulations. While this study provides insight into
how the exfoliation is enhanced by increasing the temperature and changing the
quality of solvent, the solvent fluctuations are neglected as in a typical mean field
approximation. Very recently, we have examined [36] the exfoliation of a stack of
platelets in a matrix with explicit solvent particles. With a relatively strong attractive
interaction between sheets and the solvent particles, we find that the stack of sheets
remains intact via intercalation of solvent particles into the interstitial spacing
(gallery) between the sheets. For weaker attractive-to-repulsive interactions
between sheets and solvent particles, the sheets easily exfoliate. We have also
extended [37] this study to incorporate polymer molecules (i.e., replacing solvent
particles with chains) in the presence of a stack of platelets and examined the effect of
the molecular weight of polymer chains and their interaction with sheets on
exfoliation.

Attempts are thus being made to push forward the computer simulation of
nanoclay composites to incorporate the dynamics of each component, that is,
platelets, polymer, and solvent and their cooperative and competing effects via a
coarse-grained description. With the efficiency of the coarse-grained approach, it is
possible to cover much larger time and possibly spatial scales. We must, however,
caution that the coarse-grained system considered thus far is still far from reality
but represents a step toward developing a model closer to realistic systems. In the
following, we point out how the constituents of composite components are
described in a coarse-grained approximation. A brief remark is made on relevant
methods to cover appropriate characteristic details at different timescales. Modeling
of a platelet is then described and its multiscale dynamics is pointed out via an
interconnection to particles and chains. Models for clay platelets in solvent particles
and in a polymermatrix are considered and results of the distribution of constituents
and their dynamics are discussed systematically. We conclude with a remark on the
future outlook.
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2.2.1
Coarse-Grained Components

In computer simulation and in the interpretation of the results of laboratory
measurements, constituents of a nanocomposite are conceptualized by such repre-
sentations as particles, chains, sheets and aggregates. These constituents are
assembled in a composite via such basic mechanisms as attractive (noncovalent)
interactions, covalent bonding, physical entanglement or simply hardcore confine-
ment, and combinations thereof. The morphology of nanocomposites depends not
only on the concentration and composition of their basic components but also on
their assembly processes (e.g., compaction, consolidation via shaking and tapping,
annealing, and quenching). The fabrication (assembly) involves thermodynamics
and kinetic aspects such as changes in and out of equilibrium, and pinning
(arresting) of evolving structures at local and global scales.

Understanding the fundamental issues from the atomic or molecular scale
to macroscopic morphology in such a complex system is challenging. Most
analytical theories [11] are severely limited for such complex systems that exhibit
linear and nonlinear response properties on different spatial and temporal
scales. Computer simulations remain the primary choice to probe multiscale
phenomena from microscopic characteristics of constituents to macroscopic ob-
servables in such complex systems. Most real systems [9] are still too complex to be
fully addressed by computing and computer simulations alone. Coarse-grained
descriptions are almost unavoidable in developing models for such nanocomposite
systems.

What are the basic building blocks and how are they incorporated in a model to
describe the assembly of a nanocomposite and characterize its physical properties?
The concept of a particle, the smallest unit, can be used to describe constituents in
nearly any physical, chemical, and biological system. Basic building blocks such as a
chain, sheet, microaggregate, or microgel, for example, can be designed by tethering
the particles, incorporating appropriate interactions among them, and imposing
other constraints such as prescribed neighborhood (i.e., in a covalent bonding of
specific constituents), some of which will be described in this chapter in a hierar-
chical fashion.We consider here the nanoclay composite and focus on the exfoliation
and dispersion of clay platelets (sheets) in a solvent and a polymermatrix represented
by particles and chains, respectively.

2.2.2
Methods and Timescales

In computer simulation [30] by standard Monte Carlo and MD methods, one
generally considers off-lattice, discrete lattice, and their combination if feasible,
depending on the system and properties of interest. Advantages and disadvantage of
these for describing a particular system aremore transparent with specific examples;
it is, however, worth pointing out some general features here.

42j 2 Modeling of Polymer Matrix Nanocomposites



2.2.2.1 Off-Lattice (Continuum) Approach
Aparticle can execute its stochasticmotionwith consecutive hops in any direction in a
continuumhost space, that is, in virtually unlimited directions as opposed to a limited
number of possible moves to neighboring grid points on a fixed grid (see below).
Because of the large degrees of freedom accessible to a particle, the off-lattice
approach is extremely valuable in probing the short timescale, for example, vibration
spectra of a simple liquid. Let us consider a polymer chain [30] designed by tethering
consecutive particles (particles or beads) with spring bonds, that is, bead-spring
model. The conformations and dynamics of a single polymer chain in free space or
dilute solution can be described very well by the bead-spring model in a continuum
host lattice, that is, the short time Rouse dynamics and long time diffusion of the
chain can be verified with good accuracy along with the scaling of its radius of
gyration with molecular weight. The problem becomes much more complex in the
melt whenmany chains are included in the simulation box. Ideally, the dynamics of a
polymer chain is expected to exhibit different characteristics over the range of longer
timescales, that is, Rouse, reptation, postreptation, and diffusion. In large-scale
simulations of melts with the bead-spring model of the polymer chains, one can
recover short time Rouse dynamics and reptation in part. Since they require both
large chain sizes and high concentration, it is not feasible to recover longer time
dynamics, that is, postreptation and diffusion beyond reptation. Thus, the feasibility
of this bottom-up, off-lattice approach for the bead-spring chain systems in a complex
melt breaks down beyond a certain timescale. In order to cover longer scales, one has
to resort to another level of coarse-grained approach.

2.2.2.2 Discrete Lattice Approach
Consider the random motion of a particle on a cubic lattice. The particle occupies a
lattice node and can hop from one lattice node to another nearest-neighbor node.
Since there are only six nearest-neighbor sites available for the particle to hop to, its
degrees of freedom are severely limited in comparison to a particle in a continuum
space described above. However, if one calculates the root mean square (rms)
displacement of the particles on the discrete cubic lattice as a function of time steps,
one can show that its asymptotic behavior is diffusive, similar to that of the particle in
a continuum space. The degrees of freedom of a particle can be improved by
describing the particle as a cube (say the unit cube) on a cubic lattice where the
particle (cube) can hop to one of its 26 adjacent cubic spaces (sites). The polymer
chain [30] can be described by tethering the consecutive particles (cubes) by bonds of
fluctuating length (between 2 and

p
10 with an exception of

p
8, expressed in

multiples of the length of the edge of the unit cube). If the size of the polymer
chain is long enough, one can recover both the short time Rouse dynamics and the
long time diffusion with this bond fluctuation model of the polymer chain. Note the
difference between the bond-fluctuating and bead-spring model of the polymer
chain. The degrees of freedom of the polymer chain (for both particle and bond) are
much larger for a chain described by the bead-spring model in a continuum space
than that of the bond-fluctuating model on a discrete lattice. Therefore, one needs a
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relatively long chain length to recover the short time Rouse dynamics with the bond-
fluctuating chain. There is no problem in recovering the asymptotic diffusivemotion
with relatively smaller bond-fluctuating chains. In this top-down approach, one needs
longer chain lengths to approach shorter timescales; the longer chain length provides
larger degrees of freedom for the chain. The advantage of this approach is the
simplicity and the computational efficiency of the discrete lattice. The equilibrium
and asymptotic properties of a complex melt can be studied more effectively and
efficiently with the bond-fluctuating chains.

2.2.2.3 Hybrid Approach
In principle, one can exploit the effectiveness of both top-down and bottom-up
approaches by implementing bothmethods in appropriate systems. For example, one
may use discrete lattice simulation to reach around a particular point in thermody-
namic phase space (large-scale stirring) followed by off-lattice simulation (small-scale
stirring) to capture themicroscopic details. This is an efficientmethod to reach closer
to equilibriumwhile capturing appropriate short-scale details. Thishasbeenused [38]
to show how a system of polymer chains assembles into short-range folds and long-
range aggregates. The disadvantage of such method is the lack of universal applica-
tions – one has to develop such a method for a specific system.

For simplicity and consistency, we restrict ourselves to a discrete-lattice system
with the bond-fluctuation method to describe basic constituents such as polymer
chains and clay platelets in this section. As mentioned above, we focus on the
distribution of clay platelets, for example, their exfoliation and dispersion, in a
complex dynamic polymer and solvent matrix. Dynamics of particles [39] (hardcore,
interacting) and polymer chains [30] (dilute solution, melt) have been extensively
studied in the last few decades. Self-organizing structural evolutions leading to phase
separation, segregation, and mixing resulting from the cooperative and competing
characteristics of these constituents have also been studied in detail over the years.
Despite a large volume of work, such studies for clay platelets in the presence of
polymer chains and solvent particles with computer simulations are limited [9, 11]
particularly due to difficulties encountered in extending the simulations to model
platelets. Our goal is to understand the structural evolution in a complex mixture of
interacting solvent (represented by particles), polymer chains, and clay platelets
(represented by flexible sheets). It would be prudent to describe the model for the
platelet and point out its unique conformation and dynamics first.

2.2.3
Coarse-Grained Sheet

The morphology and shape of a sheet play crucial roles in its specific functions.
A platelet or tethered membrane [33, 40–44] exhibits unique conformational char-
acteristics as it wrinkles and crumples under various physical constraints, such as
quality of solvent and temperature, while entropy dissipates from its open bound-
aries. As pointed out above, one can tether particles – the smallest units in a coarse-
grained description – to formboth sheets and other hierarchical units such as chains,
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aggregates, and microgel particulates. To appreciate the collective dynamics of the
tethered particles in a sheet [33, 40, 45], it would be appropriate to briefly summarize
the characteristics of an untethered particle first.

We know that the stochastic motion of a particle exhibits a range of dynamics
(anomalous diffusion, diffusion, and drift) from short to long asymptotic time
regime. Let us consider the motion of a random walk of a particle on a cubic lattice
in which a particle hops to one of its nearest-neighbor sites (six on a cubic lattice)
randomly at each time step. The probability that the random walker reaches a
distance R from the origin (the starting point) in t hops (or time steps) is P(t,R)¼
A exp(�R2/C1t), where A and C1 are constants. The root mean square displacement
(R) can be evaluated by integrating it with this distribution and provides R¼C2t

1/2

with a diffusion constant C2. The motion can be explicitly monitored in a computer
simulation and the power-law relation between the rms displacement (R) and the
time step (t) can be verified,

R ¼ Dtn; ð2:1Þ

where D is a constant (diffusion) and n is the exponent. The exponent n¼ 1/2
characterizes the diffusive motion of the random walker.

The characteristic dynamics [45] of the particle changes if a direction, say þ x, is
selected with a biased probability B (0�B� 1). In the presence of bias, themotion is
diffusive (R�Dt1/2) in the short time and drift (R�Bt) in the long time. The
crossover from diffusion to drift occurs around the time step tc� (D/B)2 where
the crossover time tc depends on the bias. This simple example illustrates how
the characteristic multiple dynamics of amobile particle depends on the bias and the
time regimes. The motion of the particle becomes more complex [39] if we place
the mobile particle in a heterogeneous porous matrix, that is, a percolating medi-
um [46]. The restricted movement of particles leads to well-defined long time
dynamics characterized by anomalous diffusion [39, 46] at the percolation threshold
where n¼ 0.20 for the random walk motion of a particle at the percolation threshold
in three dimensions. The crossover from short to long time dynamics depends on the
heterogeneity (porosity) of the underlyingmatrix. Applying a bias (B) to the stochastic
motionof the randomwalker in a percolatingmediumaddsmore complexitywith the
exponent n depending onB and the fraction of the conducting sites [39, 46]. Thus, the
characteristic dynamics of a simple particle executing its stochastic motion is very
rich and depends on the underlying host matrix, bias, and time range.

When particles are tethered together in a string, that is, a polymer chain, their
motion becomesmore complex. Apolymer chain [30] is described by a set of particles
(nodes) tethered together in a string via appropriate bonds in a coarse-grainedmodel.
In a dilute solution, the stochastic motion of an interior particle is restricted due to
constraints imposed by adjacent particles (connected bonds) and excluded volume
effects. The rms displacement of the particle varies with the time step (t) as described
by Eq. (2.1) but with a different power-law exponent n. The short time motion is
known to be slow with n¼ 1/4 (Rouse dynamics) [30] while the long time motion is
still diffusive (n¼ 1/2). In the long time (asymptotic) regime, the polymer chain
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behaves like a particle (random walker) while the internal structure of the coarse-
grained chain becomes crucial in the short time dynamics. Themotion of the particle
in the chain becomes much more complex when the chain is placed in a complex
environment, for example, in the melt where it exhibits multiple dynamics, namely,
rouse, reptation, postreptation, diffusion in order of increasing timescales [30]. The
crossovers from one dynamics to another depends on the molecular weight,
environment, and so on and play a key role in orchestrating the viscoelastic properties
of the polymer systems [30]. The fundamental characteristics of a particle in an
assemblage is thus important in understanding the basic characteristics of such
building blocks and their cooperative and/or competing behavior in the morpho-
logical structures in composites.

In a coarse-grained description, a sheet is a set of particles tethered together in a
plane, in analogy with and in extension of the concept used for modeling a polymer
chain. Accordingly, one can use off-lattice [25–27] or on-lattice bond fluctuation
models for a sheet [33, 40]. Despite the apparent strength in exploring the micro-
scopic structural details, the large degrees of freedom (for particles and bonds) with
off-lattice simulations create a bottleneck in computing [27] in probingmany complex
issues in nanocomposites due to long relaxation time. In order to accelerate the
relaxation process, a bond-fluctuating model on a discrete lattice becomes a viable
choice [33].

Aplatelet (sheet) is described [33] by a set of L2s particles tethered together by bonds
with an initial configuration on a square grid (see Figure 2.1) on a cubic lattice of size
L3. A particle is represented by a unit cube (i.e., eight sites) of the lattice. In the bond
fluctuation model for a polymer chain [30], the minimum bond length between
particles is twice the lattice constant due to excluded volume. The bond length
between particles can fluctuate between 2 and

p
10 with an exception of

p
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(expressed as multiples of the length of the edge of the unit cube) as the particle

Figure 2.1 Model of a sheet in its initial configuration where nearest-neighbor particles are
bonded with fluctuating bond length. Size of the sheet 162 (particles are represented by spheres) on
a 1283 lattice. (From Ref. [40].)
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executes its stochasticmove to one of its 26 adjacent cubes (referred to as sites) similar
to the bond fluctuation model for a polymer chain [29, 30].

A stochastic move is defined as follows: select a particle at a site i and select one of
its 26 neighboring sites, say j. If site j is empty and the constraint on the changes in the
bond lengths (due to the proposed move) to all connected particles is satisfied, then
the particle is moved from site i to site j. On the other hand, if either of the criteria is
notmet, the particle remains at its original site i. Attempts tomove each particle once
defines the unit Monte Carlo step (MCS) time. A simulation then consists of a large
number of such (MCS) steps, typically millions.

The excluded volume, self-avoiding sheet (SAS) deforms and wrinkles propagate
as its particles execute their stochastic motion. The conformation and dynamics of
the sheet can be studied by keeping track of the rms displacement of the center of
mass of the sheet and that of its center (interior) particle, radius of gyration, as a
function of molecular weight and rigidity of the covalent bonds. Effects of the quality
of the solvent and entanglement barriers (e.g., polymer chains matrix) can be
incorporated (see below). A few observations from our computer simulations are
briefly discussed in the next section.

2.2.3.1 Conformation and Dynamics of a Sheet
In addition to excluded volume, the conformation and dynamics of a sheet can be
controlled by introducing (intrasheet) interactions among its particles as well as
interactions and constraints with other constituents in the host matrix. The physical
properties of the sheet (clay platelet or tethered membrane) depend on the type of
interaction with the underlying matrix (e.g., solvent), concentration, temperature,
and a host of external and internal parameters.

In a simple model [33, 40], one can use empty lattice sites to represent an effective
solvent medium in which a particle can exchange its position with the solvent sites.
The interaction energy of a particle can be described by

E ¼ SijJði; jÞ; ð2:2Þ
where i runs over each particle and j over neighboring sites within a range r. Different
types of particle–particle ( J(n,n)¼ enn) and particle–solvent ( J(n,s)¼ ens) interactions
(e.g., square-well, Lennard-Jones, etc.) can be considered within a range (r) that itself
can be varied. Let us consider a square-well potential with r¼p8, enn¼�1 or þ 1,
and ens¼ 0.5 for simplicity. Each particle executes its stochastic move to one of its
neighboring sites based on the Metropolis algorithm – that is, determined by the
change in energy DE due to a possible change in configuration (caused by the move
from site i to site j) via hopping probability exp(�DE/T), within excluded volume and
bond fluctuation constraints mentioned above; T is the reduced temperature mea-
sured in an arbitrary unit (involving Boltzmann constant and interaction energy).
Periodic boundary conditions are used along each direction.

Wrinkles are caused by the local movements of particles and propagate along their
connected pathways of the membrane. How the global dynamics emerge from the
interplay between the competition and cooperation of these local dynamicalmodes is
one of the fundamental questions to be addressed.
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One of the unique features of a tethered membrane is the dissipation of prop-
agating wrinkles from the open edges (best seen in visual animations). The number
of configurations due to local modes (due to changes in positions of particles) is a
measure of the configurational entropy. Since the entropy dissipates from the edges,
it is rather difficult to retain many structural changes for a long time. As a result, the
global conformation of the sheets retains its planar conformation that can be verified
from the scaling of its radius of gyration (Rg) with the size, Rg� Ls. The sheet can be
crumpled, of course, if one imposes severe constraints. Regardless, a sheet expands
(repulsive) or contracts (attractive) at low and high temperatures depending on the
particle–particle interaction (attractive, repulsive). From systematic simulations [28],
one can predict how the radius of gyration varies with the temperature.

The collective dynamics of the sheet can be examined by tracking the motion (rms
displacement) of its center of mass. It is often diffusive in simple (unconstrained)
systems in the asymptotic time regime. The dynamics of the center ofmass, however,
does not elucidate the effect of internal structure succinctly due to mode averaging.
Such details can be captured bymonitoring themotion of an interior particle, say, the
center one.

Themean square displacement of the center particle of the sheet with the time step
shows well-definedmodes from short to long time regimes (see Figures 2.2 and 2.3).
FromFigure 2.2, we can recognize three types of power-law dynamics in sequence: (i)
short time dynamics, Rn / tn1 , with n1� 1/8, followed by (ii) a faster dynamics
Rn / tn2 with n2� 1/3 before slowing down substantially, Rn / tn3 with n3� 1/10.
Although a closer examination of the data in Figure 2.2 (t� 107) shows the onset of

Figure 2.2 Variationofmeansquare displacement of the center particle (R2
n)with the time step tof

themembrane of size 642 on a 2003 lattice at time steps with interactions enn¼�1, 1 and ens¼�0.5
and T¼ 2; 10–1000 independent samples are used. (From Ref. [33].)
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diffusive behavior in the long time despite largefluctuations (see thefigure inset), the
larger scale simulation results shown in Figure 2.3 clarify it with much better
accuracy, Rn / tn4 with n4� 1/2. Note that the short time dynamics (n1� 1/8,
analogue of Rouse dynamics of a polymer chain but with half the size of its exponent)
and long time asymptotic diffusion (n4� 1/2) are similar to that of a polymer chain.
However, the intermediate dynamic modes (described by the exponent n2, for
example) are unique features of the sheet. Thus, the segmental motion of a tethered
membrane exhibits multiscale dynamics much richer than that of a chain. Further-
more, the type and range of the multiscale dynamics depends on the type of sheet
(enn) and the matrix in which it is embedded. One would expect the intermediate
dynamics to exhibit its consequences in the viscoelastic properties of a nanoclay
composite, analogous to that of the polymer melt (reptation) [30].

In order to cover the full range of multiscale dynamics, one needs a relatively large
dimension of the sheet in our bondfluctuation (top-down) approach as in studying the
multiscale dynamics of polymer chains. Asmentioned above, a composite consists of
a number of components represented by particles, chains, and sheets. Multiscale
characteristics of each component, for example, particles, chains, and sheets, are
further modified when a large number of these constituents are placed in a
simulation box, that is, by their concentrations (volume fractions). Interaction and
physical constraints at higher concentrations introducemultiple relaxation times for
composites to reach equilibrium or steady state. In order to carry out a systematic
investigation and drawmeaningful conclusions, we restrict ourselves to constituents

Figure 2.3 Variation of mean square
displacement of the center of mass (R2

c ) of the
membrane of size 642 and that of its center
particle (R2

n) with the time step ton a 2003 lattice

at time steps with interactions enn¼�1 and
ens¼�0.5 and T¼ 2. About 50–100
independent samples are used.
(From Ref. [33].)
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of smaller sizes and appropriately lower concentrations to capture their cooperative
response properties.

2.2.4
Coarse-Grained Studies of Nanocomposites

We consider a cubic lattice of size L3 as a host matrix. The components of the
composites such as particles, chains, and sheets (described above) are then placed
into the box (Figure 2.4).

Before dropping in all components at once and studying their stochastic and
steady-state properties, it is good to systematically examine one component at a time,
that is, clay platelets in a solvent, polymermatrix, and so on. Since clay platelets are the
largest constituents of the composite and they stack together in layers, understanding
their distribution (exfoliation and dispersion) in an appropriate matrix is crucial.
Therefore, we place a layer of stacked platelets, each of size L2s first in the center of the
simulation box [28] when preparing the sample. Subsequently, we add solvent
particles and/or polymer chains each of length (molecular weight) Lc as desired.
As mentioned above, a coarse-grained polymer chain is a set of Lc particles tethered
together by fluctuating bonds [29, 30] while a platelet (sheet) is described by a set of L2s
particles tethered together by flexible bonds on a square grid. Initially, four sheets,
each in a planar square grid configuration, are stacked together with a small

Figure 2.4 Representation of a coarse-grainedmodel formixture of clay platelets, polymer chains,
and solvent particles in a cubic box.
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separation of distance of 4 (lattice constants) in the center of the lattice. Attempts are
made to insert solvent particles (each of the same size as an individual particle of a
sheet) and/or chain particles randomly to occupy a fractionw of the lattice sites. These
matrix components, that is, solvent (individual) particles and chains of particles, are
moved randomly (keeping the sheets in the same initial position) for about a million
time steps to prepare the initial state of the sample (see below).

In addition to excluded volume, solvent particles and polymer chains interact with
sheets with a short-range square-well pair potential. The interaction energy of a
particle (representing particle, chain, or sheet) is described by

E ¼ SijVði; jÞ; ð2:3Þ

where i runs over each particle and j over neighboring sites within a range r¼p6.
Clay–solvent (V(c,s)¼ e) and clay polymer interactions (V(p,s)¼ e) are taken to be the
same for all particles within the range (r). We have used a range of values of e to
examine the effect of interaction. For example, V(c,s)¼ e¼�1 and 1 represent sheets
in the polymer matrix with attractive and repulsive interactions, respectively. Addi-
tional interactions, for example, sheet–sheet and polymer–polymer, can be included
as desired. However, it is better to start with simpler interactions, for example, purely
excluded volume, and add more interactions systematically. The distance r is
measured in units of the lattice constant and the interaction energy is in arbitrary
units as before [28, 31–33, 36, 37]. The Metropolis algorithm is used to move each
particle (solvent particle, particle of sheets, or of polymer chains) stochastically.
Periodic boundary conditions are used along each direction. Attempts to move each
particle once (on average) define the unit Monte Carlo step time constant [30].

After the sample has been prepared (solvent particles and polymer chains moved
randomly while keeping the sheets in the initial stacked configuration mentioned
above), the Monte Carlo simulation is performed for a sufficiently long time
(typically of the order of million time steps here) to evaluate morphological changes
in the distribution of sheets and polymer chains. We study the density profiles of
sheets, chains, and solvent particles as well as variations of the root mean square
displacements and radius of gyration of chains and sheets with time steps. As inmost
simulations, a number of independent samples are used to obtain statistical
averages of these quantities. Further, different lattice sizes are used to assure
that the qualitative results are independent of the finite size effects. In the
following, we focus on the effect on exfoliation and intercalation of the interaction
between the matrix (solvent, polymer) and clay platelets and molecular weight of
polymer.

2.2.4.1 Probing Exfoliation and Dispersion
One of the main questions of interest in nanocomposites is how can one disperse
platelets of common clay (e.g., montmorillonite)? Instead of considering all the
components of a composite (Figure 2.4), let us first consider only a stack of self-
avoiding (excluded volume) sheets with a small interlayer spacing (as shown in
Figure 2.5) placed on a cubic lattice in an otherwise empty box. If these sheets
are allowed to execute their stochastic motion, they will obviously disperse (see
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Figure 2.5), a basic principle of flow from high to low concentration. How fast they
disperse depends on the size of sheets and the thickness of the interlayer spacing.
However, even in simple clay composite systems, platelets are exposed to an
interacting environment, and therefore incorporation of solvent and other con-
straints is highly desirable.

2.2.5
Platelets in Composite Matrix

Solvent constitutes one of the simple host matrices for a layer of clay platelets to
exfoliate and disperse. How can solvent be incorporated? Consider a layer of four
sheets as shown in Figure 2.5 with a small interstitial separation (four lattice
constant) – the minimum number of sheets (four) to incorporate the effect of
external (exposed) and internal surfaces in the stack. In an effective medium
approximation, the empty lattice sites may constitute the effective solvent medium
if each particle interacts with the solvent (empty) sites. Each particle can exchange its
position with the neighboring solvent site depending on the change in its energy via
Boltzmann probability distribution in addition to excluded volume and bond
fluctuation constraints (described above). Note that the effective medium represen-
tation [28] of the solvent is a crude approximation as there is no fluctuation in its
concentration and its movement is highly correlated with that of the sheet particles.
However, it is possible to incorporate the effects of temperature and quality of solvent
on the exfoliation [28]. For example, the quality of the solvent (type and strength of the
solvent–sheet interactions) can constrain the platelets to retain a stacked structure or
drive them to adopt a fully exfoliatedmorphology. Raising the temperature enhances
the mobility and dispersion [28].

2.2.5.1 Solvent Particles
Describing the effective solvent medium by empty lattice sites is efficient, but it is
difficult to identify mobility, fluctuation, and correlations. Representing the solvent
bymobile particles (say, eachwith the same size as a particle of the sheet) on a fraction

Figure 2.5 A stack of four SAS sheets (left) each of size 162 and their dispersion (right) in an empty
space after 105 steps on a 1283 sample. (From Ref. [40].)
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of lattice sites could be a viable approach. A layer of platelets is now immersed in such
a solvent, the concentration of which can be varied (Figure 2.6). Interactions between
the solvent and the particles of the sheets describe the quality of the solvent. Both
solvent and particles of the clay platelets can perform their stochastic motion. The
interaction between solvent particles and platelets and the temperature orchestrate
their spatial distribution. In addition to dispersion of platelets, one can investigate the
intercalation of the solvent particles into the interstitial spacing between the sheets.
Extensive computer simulations are performed to investigate the density profile and
mobility of platelets and solvent particles. Figure 2.6 shows the snapshots toward the
end of the simulation to illustrate the effect of the quality of solvent and temperature
on the dispersion of the layered platelets. We find that the attractive interaction
between the solvent and the sheets leads to intercalation of solvent particles between
interstitial platelet layers. The solvent-mediated interaction between sheets (via
interstitial particles) tends to retain the layeredmorphology. Lowering the interaction
strength reduces their cohesion, and sheets begin to disperse; a repulsive interaction
causes the platelets to fully exfoliate. Dispersion of layered sheets is also enhanced by
raising the temperature.

Density profiles of clay and solvent provide some insight into the distribution of
clay and solvent particles that help clarify the effects of temperature and that of the
quality of solvent (particle–solvent interaction). Let us define the y-axis (normal to the
initial platelet planes) as the longitudinal direction; the z- and x-axes constitute

Figure 2.6 Snaps of stacked platelets (each of size 162) after 106 time steps on 643 lattice with
clay–solvent interaction ens¼�2 (T¼ 1, left top, T¼ 5 right top), ens¼�1 (T¼ 1, left bottom),
ens¼ 1 (T¼ 1, right bottom). Solvent particle concentration is 0.2. (From Ref. [36].)
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transverse directions. The planar density (di) is

di ¼ 1
L2

X
j;k

ri; j;k; ð2:4Þ

where ri, j,k¼ 1 if the lattice site i, j, k (at theCartesian coordinate x, y, z) is occupied by
a particle and ri, j,k¼ 0 if it is empty. The transverse density profile (dx) for clay and
solvent particles at T¼ 1, 2, 5, 10 is presented in Figure 2.7 for the particle–solvent
interactions e¼ 1, �1, and �2. At the low temperature T¼ 1 and e¼�2, the clay
density profile shows that the platelets remain nearly static in the center of the lattice.

The corresponding density profile of the solvent particles follows a remarkably
similar pattern with a lowermagnitude which implies the solvent particles follow the
clay platelets. As expected, the temperature (T¼ 1) is too low and the attractive
interaction energy (ens¼�2) between the platelets and solvent is too strong to
separate the platelets. Reducing the attractive interaction energy to e¼�1 leads to
a considerable change in the density profiles for both clay and solvent.While there is a
considerable change in the structural distribution of clay platelets, the corresponding
shift in solvent density is not as large. This is because the overall solvent density is low.
However, the shape of the solvent density profile suggests that the distribution of
intercalated solvent preserves its memory of the close proximity of clay platelets. By
changing the interaction further to e¼ 1, we see that the distribution of solvent

Figure 2.7 Transverse planar density (dx) of
clay (filled) and solvent (open) particles
versus x at T¼ 1–10 with clay–solvent
interaction ens¼ 1, �1, �2; plates are in the

zx-plane initially (Figure 2.6). A stack of four
platelets each a size of 162 is used on a lattice of
size 643 each with 10 independent runs.
(From Ref. [36].)
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particles is nearly homogeneous throughout while the clay platelets remain in the
center of the lattice in distorted configurations. This is consistent with the snapshots
seen in Figure 2.6. When the temperature is raised to T¼ 2, the distribution of
solvent particles is nearly homogeneous except with e¼�2. At high temperature
(T¼ 5, 10), the distribution of solvent remains homogeneous and the clay platelets
somewhat exfoliated. Note that it is difficult to reach a fully exfoliated state even with
our efficient computer simulationmodel despite the long simulation runs. However,
the trend is clear.

2.2.5.2 Polymer Matrix
The preceding study is extended [37] by replacing solvent particles with polymer
chains. A set of typical snapshots at the end of simulations is presented in Figures 2.8
and 2.9 with attractive and repulsive interactions between the polymers and the
sheets with the polymermatrix densityw¼ 0.2. Let us examine these figures to probe
the effect of interaction between the sheets and the polymer chains and their
molecular weight. Because of the entropic constraints on the conformations, shorter
chains can move and intercalate more easily than the chains with higher molecular
weights.

Snapshots with the lowest molecular weight (Lc¼ 4) polymermatrix show that the
sheets maintain their layered configuration with e¼�1 (attractive) interaction

Figure 2.8 Snapshots of the final
configurations with the attractive (e¼�1)
interaction between polymer matrix and
sheets) after 106 time steps. Sample size 643

is used with the polymer volume fraction

w¼ 0.2 and polymer chain lengths Lc¼ 4
(first row, first column), 16 (first row,
second column), 32 (second row, first column),
and 64 (second row, second column).
(From Ref. [37].)
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(Figure 2.8) and disperse well with e¼ þ 1 (repulsive) interaction (Figure 2.9). One
may draw an immediate conclusion that the type of interaction between the polymer
matrix and the sheets affects their exfoliation. The concept of a gallery between the
sheets and intercalation of polymer chains therein is obviously more suitable for the
layered configuration with e¼�1 where sheets are held together via interactions
mediated by the interstitial polymer chains. The repulsive polymer matrix (e¼ þ 1)
leads to a well-exfoliated configuration (Figure 2.9 with Lc¼ 4). There is no well-
defined layering or gallery at the end of the equilibration. The intercalation of chains
into the initial stacked structure with a gallery separates the sheets in time and the
concept of gallery becomes irrelevant.

Apart from conformational constraints, interactions between sheets and polymer
or solvent particles determine the behavior: interstitial polymer chains (solvent)
maintain the layered structure when e¼�1 and exfoliate the stacked sheets (with
relatively isotropic dispersion) when e¼ þ 1. The effect of dynamic polymer matrix
on the exfoliation becomes somewhat smeared at higher molecular weights as the
constraints on sheetmobility are enhanced. For example, with Lc¼ 64, the dispersion
of sheets is constrained; their stacked (layered) morphology persists due to an
entangled polymer matrix even with the repulsive interaction (e¼ þ 1). Thus, the
entropic trapping (cage) of sheets becomes more clear with Lc¼ 64 especially at
higher polymer volume fraction w¼ 0.2 (see below). Note that the size of higher
molecular weight polymer chains (e.g., Lc¼ 64) is much larger than the linear

Figure 2.9 Snapshots of the final
configurations with the repulsive e¼ 1
interaction between polymer matrix and
sheets) after 106 time steps. Sample size 643

is used with the polymer volume fraction

w¼ 0.2 and polymer chain lengths Lc¼ 4
(first row, first column), 16 (first row,
second column), 32 (second row, first column)
and 64 (second row, second column).
(From Ref. [37].)
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dimension of the sheets that may not be representative of a laboratory sample.
However, it accentuates the physical mechanism, for example, entropic trapping
without increasing the concentration of the polymermatrix for a theoretical analysis.

In general, the exfoliation is suppressed by the attractive polymer matrix
and its higher molecular weights; the repulsive interaction causes them to exfoliate
in a relatively low molecular weight of polymer at least at these volume fractions
(w¼ 0.1, 0.2). These observations seem consistent with theoretical studies by Balazs
et al. [23, 47]. Note that the polymer entanglements become dominant with the high
molecular weight polymer (e.g., Lc¼ 64) even at the polymer volume fractionw¼ 0.2
where the layering persists regardless of the type of interaction between the
polymer matrix and the platelets. Thus, the layering is favorable in an attractive
matrix and further re-enforced by higher molecular weight of the polymer chains
(Figure 2.8). In contrast, the exfoliation is enhanced in repulsive matrix but can be
suppressed by higher molecular weight of the polymer matrix (Figure 2.9). Identi-
fying the trend in exfoliation of sheets becomes complex at the intermediate
molecular weight of the polymer matrix due to the interplay between the interac-
tion-driven thermodynamics and the underlying structural entropy. Attempts are
alsomade to quantitatively confirm these observations [37], some of which are briefly
discussed here.

Figure 2.10 shows the longitudinal density profile of sheets in an attractive polymer
matrix with molecular weight Lc¼ 4–64 at the volume fraction w¼ 0.2. The

Figure 2.10 Variation of the density of sheets with the longitudinal distance. Statistics: sample
size 643, polymer volume fraction w¼ 0.2, e¼�1, 10 independent samples, 106 time steps. (From
Ref. [37].)
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oscillatory profile with fourmaxima in the density of sheets (location of sheets) shows
that the layered structure is sustained at long times. The interlayer spacing, however,
decreases when the molecular weight of the polymer is increased. Sheets are held
together via attractive interaction with the interstitial (intercalated) polymer chains
especially at lowmolecularweights. Intercalation of polymer chains ismoreprevalent
at lower molecular weight (Lc� Ls) due to lower energy. As a result, the intersheet
distance is higher due to intercalation of shorter chains. Intercalation becomes
increasingly difficult with the higher molecular weight polymer (Lc> Ls). The
probability of adsorption of polymer chains to the external surfaces of the layered
sheets increases with Lc while their entanglement becomes more dominant. For
example, at Lc¼ 64 (�Ls), polymer chains seem to form a cage surrounding the
sheets via (i) adsorption at the sheets and (ii) entanglement of chains. Both the
entanglement of the polymer matrix and its attractive interaction with the sheets
push the sheets closer.

The corresponding longitudinal density profile of polymer chains is presented in
Figure 2.11. One can immediately note the complementary oscillation in polymer
density in the same regions of the lattice, for example, zx planes around y¼ 20–44.
The complementary variation of the polymer density to that of the platelets is rather
easy to see by comparing Figures 2.10 and 2.11. For example, the dominant polymer
density maxima peaks for Lc¼ 4 are around y¼ 24, 30, 36 where the platelet density
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Figure 2.11 Variation of the polymer density with the longitudinal distance. Statistics: sample
size 643, polymer volume fraction w¼ 0.2, e¼�1, 10 independent samples, 106 time steps.
(From Ref. [37].)
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shows its minima. The locations of maxima peaks of the platelet density are around
y¼ 20, 28, 34, 42 where polymer density has its minima. The polymer density is
higher between the sheet layers. Increasing themolecular weight of polymer smears
their distribution with larger fluctuations in contrast to well-defined and systematic
shifts in density peaks for sheets (Figures 2.10 and 2.11). A close examination of
Figure 2.11, however, reveals a systematic trend: themagnitude of themaxima peaks
increases on increasing the molecular weight, for example, from Lc¼ 4 to Lc¼ 16,
followed by a decreasing (reverse) trend with Lc¼ 32 to Lc¼ 64, a nonmonotonic
dependence of interlayer polymer density on themolecularweight.Now,wewill try to
explain this trend.

Since the interaction between the polymer chains and the sheets is attractive,
the energy is lower with a larger number of chain particles close to the sheet surface
including the interstitial spacing between the sheets. Increasing themolecular weight
from Lc¼ 4 allows more particles to interact with the sheets that reduces the energy
until it reaches the linear dimension of the sheet, that is, Lc¼ Ls¼ 16. A chain
(in the interstitial gallery)with the conformation comparablewith the twoneighboring
sheets has lower energy than chains with both lower molecular weight (Lc< Ls) and
higher molecular weight (Lc> Ls). Chains with lower molecular weights have lower
number of particles surrounding the sheets since the packing of chains with lower
molecular weight in the gallery is not as efficient as those with the higher molecular
weight and vice versa. On increasing the molecular weight (i.e., Lc¼ 32, 48, 64),
the probability of intercalation of the whole chain in the gallery (interstitial spacing
between sheets) becomes lower due to larger fluctuations with larger radius of
gyration. The number of sheet particles surrounding the polymer chain within the
range of interaction is, therefore, lower for larger chains (Lc> Ls). Chains in the gallery
become less close-packed, resulting in a lower density. It is extremely difficult to
intercalate large chains (Lc¼ 64) due to a comparatively large radius of gyration and its
fluctuation and enhanced entanglement of the polymer matrix at w¼ 0.2 in compar-
ison to a lower polymer density (follows). As a result, the polymer density profile with
Lc¼ 64 exhibits lower density in the sheet regions, dispersion of platelets is arrestedby
the entangled or spanning network of the polymer cage – an entropic-induced
layering.

We have also examined [37] a number of such physical quantities as variation of the
rms displacement of chains and sheets, and their radius of gyration, to supplement
our general observations. For example, the effect of molecular weight on the
dynamics of the polymermatrix is more apparent [37] when we analyze the variation
of the rms displacement of the center of mass of the polymer chains with time steps
for both an attractive and a repulsive interactionmatrix. A systematic slowing down is
seen on increasing the molecular weight regardless of interaction. At a high
molecular weight, the motion of the polymer chains becomes so slow that the free
volume for sheets to move is arrested in a nearly quasistatic state over simulation-
accessible timescales. The dynamics of the polymer matrix slows down considerably
on increasing themolecular weight of the polymer chains. We know that percolation
of chains [48] depends strongly on their molecular weight and that the percolation
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threshold decreases on increasing the molecular weight of the polymer chains.
Because of the spanning network of polymer chains, with and without their
entanglement, the relaxation of free volume becomes very slow.

2.2.6
Conclusions and Outlook

We have shown examples of investigations of exfoliation and dispersion of clay
platelets and intercalation of solvent particles and polymer chains by coarse-grained
computer Monte Carlo simulations. As pointed out, many of the early studies on
intercalation of polymer chains dealwith confined surfaceswith little or nodynamics,
particularly with the off-lattice molecular dynamics simulations [25, 26]. Although
attempts [27] have been made more recently to incorporate the dynamics of clay
platelets to examine the intercalation and exfoliation, covering sufficient timescales
has not been feasible. Despite enormous literature on the subject, we are not aware of
any computer simulation to date that shows intercalation and exfoliation so clearly
with freelymobile stackedsheets, solventparticles, orpolymerchains concurrently. In
thepresenceofsolventparticlesor lowmolecularweightpolymer (Lc� Ls), thestacked
platelet configurationpersistswith attractivematrix (e¼�1) via an indirect intersheet
interaction mediated by the intercalated solvent particles or polymer chains. The
stacked platelets exfoliate in the presence of repulsive solvent or polymer matrix
(e¼ þ 1) with low molecular weights. In a polymer matrix with high molecular
weight, the stacked (layered) platelet configuration is trapped in a cage via entangle-
ment and/or percolation of surrounding polymer chains, an entropic trapping.
Although the entropic cage formed by mobile chains is dynamic, the relaxation time
for the cage renewal is too large to provide free volume for sheets to exfoliate. In the
polymer matrix with intermediate molecular weight, the interplay between the
interaction-controlled thermodynamics and structural constraints leads to a complex
dispersionbehaviorwith varyingdegrees of layering and exfoliationdependingon the
molecularweightof thematrix and typeof interaction–asubjectof continued interest.

Regardless of insights gained, the systems considered so far, clay platelets in
solvent particles and clay platelets in a polymer matrix were still simplified and
subject to assumptions of interaction parameters. A more realistic scenario in
agreement with available experimental surface data would involve attractive clay-
clay interactions, attractive polymer-polymer interactions, and attractive polymer-clay
interactions tuned such that a small positive interface tension results upon disper-
sion. Specific surface modification of the clay minerals could then be represented by
further simulations withmodified interaction parameters for clay-clay attraction and
clay-polymer attraction. Such semi-quantitative correlations with experiment might
explain exfoliation processes more insightfully and remain as a future challenge. A
natural extension is to consider clay platelets in the simultaneous presence of both
solvent particles and polymer chains as shown in Figure 2.4. Incorporating particles
having the characteristics of amino acids and peptides in the presence of clay
platelets [49] would be a step toward understanding biofunctionalized nanomaterials
and biomineralization.
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2.3
All-Atom Models for Interfaces and Application to Clay Minerals

Force fields to describe the interactions between organic molecules and inorganic
components such as clay minerals have heretofore been associated with substantial
uncertainties. In this section, we will describe necessary strategies to derive com-
patible force fields for reliable simulations of surfactants, biopolymers, and synthetic
polymers in contact with oxidicminerals and explain characteristic properties of clay-
organic interfaces relevant to exfoliation in nanocomposites.

The complexity of interfacial regions in polymer composites with organically
modified clay minerals or metal particles necessitates the understanding of inter-
actions at the molecular level up to length scales of micrometers. As outlined in the
introductory sections, nanocomposites are bulk materials of interfaces and the
design of interfacial regions allows control over structural, mechanical, electrical,
optical, and barrier properties. A major challenge that remains is reliably and
reproducibly achieving a homogeneous dispersion of layered silicates (Figure 2.12),
termed exfoliation, in conventional polymer matrices instead of an intercalated,
partially exfoliated, or agglomerated layers of clay mineral in the matrix.

Miscibility is related to interface tensions, and such interfacial processes could
only recently be simulated quantitatively with chemical details. Classical MD
simulation, in combination with coarse-grainedMonte Carlo approaches to generate

Figure 2.12 Part of a montmorillonite lamella
(cation exchange capacity¼ 91meq/100 g)
modified with n-C18H37�NH3

þ surfactants.
Corresponding chemical compositions of the
natural and modified mineral are Na0.333[Si4O8]

[Al1.667Mg0.333O2(OH)2] and (n-
C18H37�NH3)0.333[Si4O8]
[Al1.667Mg0.333O2(OH)2], respectively.
Interfaces of suchmodified fillers with polymers
influence a range of nanocomposite properties.
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thermodynamic equilibrium structures, allows the analysis of structural, dynamic,
thermal, and mechanical properties of up to 106 atoms at timescales up to 1ms. For
the desired quantitative estimates, however, the quality of the energy expression is of
primary importance, namely, the quality of the force field in classical semiempirical
simulations. The strength of such forcefields is the full chemical detail and the ability
to simulate nonbonded interactions and dynamic phenomena at a low computational
cost, that is, 106–109 times faster than with ab initio methods. A limitation is the
difficulty in simulating the formation of new covalent bonds, for example, the
reaction of end-functionalized surfactants attached to the clay mineral surface with
functional groups on the polymer chain, which requires a combination with
quantum-mechanical methods or direct adjustments of the molecular connectivity
in the course of the simulation. Therefore, the combination of classical models both
with electronic structure methods for covalent effects and with coarse-grained
models to access larger macroscopic length and timescales is also important.

We focus in this section on improvements in energy models for the inorganic
components to allow reliable simulations of inorganic–organic interfaces at the
nanometer scale, the self-assembly and cohesive energies of various alkylammonium
surfactants on montmorillonite surfaces, and on a relation between packing density,
tilt angle, and the occurrence of thermal phase transitions of surface-grafted alleyl
chain. A focus throughout this discussion is the close agreement between experi-
mental data and simulation results that helps establish a realistic understanding of
the interfacial structure and dynamics.

2.3.1
Force Fields for Inorganic Components

Force field parameters for inorganic constituents have been a major hurdle in the
quantitative analysis of interfaces in nanocomposites while energy models for
surfactants, polymers, and biopolymers have been developed in sufficient reliability
to simulate densities, cohesive energies, and interface energies. At the classical
atomistic level, several force fields are in use, such as AMBER [50], CHARMM [51],
CVFF [52], COMPASS [53], OPLS-AA [54], PCFF [55], andUFF [56]. For example, the
energy expressions of CVFF [52], and PCFF [55] (same as COMPASS [53]), are as
follows:
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PCFF (and COMPASS)
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The term �force field� refers to the set of adjustable parameters in such models,
such as equilibrium bond lengths r0;ij and angles q0;ijk, vibration constants Krn;ij,
Kqn;ijk, or atomic charges qi, which are used in the simulation. The majority of such
force fields were developed for small organic and large biological macromolecules
(AMBER, CHARMM, CVFF, and OPLS-AA), some force fields can be applied to a
wider range of material structures (CVFF, COMPASS, and PCFF), and some are
useful only for specific systems (UFF). A common theme of biologically oriented
force fields is the focus on protein structure, which has led to data structures that are
difficult to apply to bonded frameworks of inorganic structures and inorganic–bio-
logical or organic–inorganic interfaces. Furthermore, the transferability of para-
meters between force fields is limited by virtue of their use of different scaling factors
for nonbonded interactions between 1,4-bonded atoms and differences in combi-
nation rules to obtain 12-6 or 9-6 Lennard-Jones interaction parameters betweenpairs
of different atom types.

These differences complicate somewhat the development of a unified, accurate
force field for inorganic, organic, and biological chemical species. A present func-
tional solution to this problem involves the extension of CVFFand PCFF for accurate
inorganic parameters, using the existing (bio)molecular parameters and focusing on
their continued improvement. Inorganic parameters can be transferred to biomo-
lecular force fields such as Lennard-Jones parameters for fcc metals. We will thus
outline a method to derive reliable force fields for inorganic components using the
examples of layered silicates and metals.

In accordance with the typical energy expressions shown in Eqs. (2.5) and (2.6),
atomic charges, van der Waals parameters, bonded properties, and the compatibility
of the parameters for inorganic components with existing force fields for organic
molecules are essential for reliable simulations of the minerals themselves and an
unlimited scope of hybrid interfaces (Table 2.1) [57]. Inorganic minerals often also
include defects, for example, AlOOH ! MgOOH� � � �Naþ in montmorillonite,
which require suitable model descriptions to ensure the success of a simulation. In
the following sections, we describe the derivation of an accurate force field param-
eterization for the examples of layered silicates and fcc metals that also applies to
other chemical species.
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2.3.1.1 Atomic Charges
A major parameter in the simulation of both inorganic and organic components is
the magnitude and distribution of polarity in the models. Atomic charges reflect the
distribution of the valence electron density among the atoms and arguably are most
important for meaningful results from molecular simulations which has been
discussed by Heinz and Suter (Figure 2.13) [58]. Atomic charges perform best in
simulations when they coincide with atomic charges derived from experimentally
measured electron deformation densities through mapping on spherical atomic
basins. For example, this approach works well for simple molecules such as H2O in
the condensed phase with an experimental O charge �0.74	 0.1e compared to
�0.82	 0.05e in simulations, or for SiO2 in various tetrahedrally coordinated
silicates with an experimental Si charge þ 1.18	 0.15e compared to þ 1.1	 0.1e
as a suitable value inmolecular simulation. By considering atomic charges first in the

Figure 2.13 (a) The extended Born model
assumes ionization to partial atomic charges
and distinguishes covalent (step 2, step 5) and
ionic contributions (step 3, step 4) to chemical
bonding. (b) For example, covalent bonding
contributions are represented by atomization
energies of the elements (up to 0.8MJ/atom)

and often dominate over ionic contributions
represented by ionization potentials/
electron affinities (up to 0.7MJ/atom).
Darker shading means higher potential for
covalent bonding and a tendency
toward lower atomic charges.
(After Ref. [58].)

Table 2.1 Influence of force field parameters on the simulation of inorganic components and
inorganic–organic interfaces, for example, in composite materials.

Parameters in a classical simulation Effect

Atomic charges Interface structure, energy, and long-range
(polar) interactions

Van der Waals parameters (LJ well depth) Surface and interface energies
Vibrational constants Elastic properties
Compatibility of the energy expression
with FFs for (bio)organic compounds

Scope of application

Distribution and parametrization of charge
defects

Interface structure and dynamics
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process of parameterization, it is possible to obtain the best agreement between
computed densities, surface tensions (electrostatic and van derWaals contributions),
and vaporization energies (when applicable) with experimental data after identifi-
cation of the rest of the parameters. The sensitivity of molecular models to atomic
charges is exemplified for computed surface tensions and cleavage energies of
layered silicates inTable 2.2.Using other atomic charges, agreementwith experiment
cannot be obtained, although it is also very important to use appropriate Lennard-
Jones parameters that contribute the van derWaals portion to the surface tension. On
the basis of electron deformation densities, experimental values for atomic charges
have become available for an increasing number of minerals and organic crystals
with a typical uncertainty of	0.1e or less [58]. In a similar way, estimates for atomic
charges can be derived from dipole moments with the same accuracy. For example,
the dipole moment of H2CO in the gas phase equals a C charge þ 0.40e compared to
þ 0.40	 0.05e as a suitable value in molecular simulation. Measurements of dipole
moments, however, often relate to the gaseous state and may differ somewhat from
the dipole moment in the liquid or solid state. The use of electron deformation
densities or dipole moments, in most cases, leads to suitable estimates of atomic
charges that are up to an order of magnitude more accurate compared to charges
derived from ab initio approaches that strongly depend on basis sets, exchange, and
correlation energies, and often assumenonintuitive partition schemes of the electron
density [58].When experimental data on the electron distribution are not available for
a given system, access to physically justified atomic charges is provided by an
extended Born model that takes into account the atomization energies, ionization
energies, and electron affinities of the constituting atoms (Figure 2.13). This model
weights covalent and ionic contributions to chemical bonding in the correct pro-
portion and gives excellent estimates of atomic charges when employed relative to
one or two reference compounds nearby in the periodic table, particularly when the
reference compounds have similar atomization and ionization potential. For exam-
ple, themost suitable Si charge of þ 1.1	 0.1e in tetrahedral oxygen coordinationhas
been initially derived only on the basis of this model and is firmly supported by
various comparisons across the periodic table [58].

2.3.1.2 Lennard-Jones Parameters
In conjunction with atomic charges, the parameters r0;ii and eii in the 12-6 or 9-6
Lennard-Jones potential are critical for reproducing surface energies, interface
energies, and solvation energies of inorganic components. In particular, the well
depth eii (Eqs. (2.1) and (2.2)) has a profound influence on surface and cleavage
energies of layered silicates due to the contribution of van der Waals energy
(Table 2.2). The discussion of computed surface energies for inorganic solids in
relation to experimental data is fairly recent and provides an important test of amodel
with regard to interfacial interactions. The first such comparison for Spinel,
Mg2Al2O4 [59] showed an overestimate of 50% in the computation, related to
shortcomings both in atomic charges and in Lennard-Jones parameters. Even greater
deviations of 50–500% are associated with other models (Table 2.2). In these cases,
the subtle interplay of interfacial interactions in nanocomposites during the disper-
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Table 2.2 Comparison of experimental and computed cleavage energies for pyrophyllite, montmorillonite, and mica in mJ/m2 according to Ref. [57].

References in ref. [57] Pyrophyllite Montmorillonite
DEcleav

Mica
DEcleav

Principal charges
(e)

Principal well depths
(kcal/mol)

ctot cel cvdW Sitet Aloct Si Al O

Exptl. 39.7 5.8 33.9 50–200 375 1.2 1.45
This work 40 8 32 140 380 1.1 1.45 0.03 0.03 0.015
[13, 15] [155] 4 3 0 0 49
[16] [>30] [>300] [>500] 2.4 0.47
[17] �515 2 �517 �3000 �433 0.52 1.33 0 0 0
[18] �1094 13 �1107 �433 �162 1.4 1.68 0 0 6.86
[19] [>15] 1.2 3 0 0
[20] [>15] 1.2 2.8
[22] CLAYFF 81 30 51 167 484 2.1 1.58 10�6 10�6 0.155
[23] 265 155 110 251 683 4 3 0.04 9.04 0.228
[25] 260 8 252 340 631 1.1 1.45 0.40 0.50 0.06

The strong influence of principal atomic charges and Lennard-Jones well depths on computed surface tensions and cleavage energies can be seen. Sitet refers to Si in
tetrahedral oxygen coordination and Aloct refers to Al in octahedral oxygen coordination.
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sion of inorganic minerals, or the interaction with solvents, cannot be captured.
Therefore, a new rationale to assign parameters for van der Waals interactions was
introduced by Heinz et al. [57]. Lennard-Jones parameters r0;ii and eii can be
assigned in two steps, leading to computed interfacial tensions within 5% of
experimental values. First, the van derWaals equilibriumdistances r0;ii are assigned
on the basis of experimentally known crystallographic or van der Waals values
across the periodic table [60]. With an uncertainty of approximately 	10%, these
distances are directly suited for force field parameterizations and adjust the
computed density. Second, well depths eii are assigned. The parameterization of
well depths is more demanding compared to atomic charges since there is less
experimental justification of these quantities. Accuratewell depth values are known
for rare gases, and individual values across the periodic table approximately
increase toward the end of each row. However, additional adjustments are needed
according to polarizability and charge of the atom, and the extent of covalent
bonding plays a role due to nonbonded exclusions between 1,2, 1,3, and sometimes
1,4 bonded atoms. These trends can be derived from existing force fields [57] and,
ultimately, the well depths eii are fitted so that the computed surface tension agrees
with experiment. In the final model, computed solvation energies with water or
organic solvents should also coincide with experimental values, as well as the
computed vaporization energy if the compound boils within 	200 K of the chosen
reference temperature (force fields parameterized at 298 K will typically need
changes when applied at temperatures outside a	200 K range). More information
on the physical interpretation of the Lennard-Jones parameters r0;ii and eii can also
be found in the context of fcc metals [61].

2.3.1.3 Bonded Parameters
Equilibrium bond lengths, bond angles, and vibration constants are known from X-
ray data and spectroscopy, and may be implemented in molecular models without
major modifications [57]. Initial values of vibration constants can be obtained from
compilation of interatomic force constants and then optimization by the following
procedure [57]: (1) Short MD trajectories of 5 ps with snapshots every 3 fs are
computed, followed by analysis of the Fourier transform of the velocity autocorre-
lation function. The transform equals the computed superposition of IR and Raman
spectra. (2) As long as differences with experiment persist, vibration constants are
iteratively adjusted and step (1) repeated. In addition to suitable vibration constants,
this approach also provides insight both into the coupling between internal degrees of
freedom and into limitations of the accuracy of vibration modes in the force field
model. Dihedral angles and rotation barriers can be set to zero formineral structures.
In contrast, for chain molecules, dihedral angles and rotation barriers are important
for the dynamics, and current force fields often overestimate torsion barriers. For
example, the eclipsed barrier in n-butane was measured at 3.95 kcal/mol [62] while
several force fields assume 5–6 kcal/mol on the basis of ab inito results. Thus, chain
rotation in simulations is sometimes slowed down by a factor up to 30 (2 kcal/
mol� 3.4 RT) compared to experiment so that adjustments in force fields for
polymers and biopolymers are also important.
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In brief, we have described a physical basis for a new generation of force fields that
encompass inorganic, organic, and biomolecular constituents on a commonmodel-
ing platform. To date, accurate models for layered silicates (mica, montmorillonite,
and pyrophyllite) [57] and fcc metals (Ag, Al, Au, Cu, Ni, Pb, Pd, and Pt) [61] are
available for quantitative simulation of nanocomposites using material-oriented
(extended CVFF, extended PCFF) and biologically oriented force fields.

2.3.2
Self-Assembly of Alkylammonium Ions on Montmorillonite: Structural
and Surface Properties at the Molecular Level

The capability of atomistic simulation in comparison to experiment is nicely
documented through the understanding of molecular-level properties related to the
dispersion of organically modified clay minerals in polymer matrices. The following
considerations explain relevant factors for exfoliation andmay lend themselves to all-
atom simulations of assemblieswith polymers, although the simulation of such large
assemblies is yet the domain of coarse-grained models (Section 2.2). A substantial
body of experimental data, including X-ray, TEM,NEXAFS, IR, NMR,DSC, dielectric
measurements, and surface energies is available for alkylammonium-modified clay
minerals. However, the data provide only indirect evidence of the actual structure,
surface properties, and thermal behavior [18, 63–78]. MD simulations with the
models described in the previous section use the same unit definitions as in
experiment and agree closely with available data, in most cases quantitatively
[10, 57, 58, 79–87], which provides the link to molecular-level details.

Organically modified clay minerals are synthesized through the incubation of
montmorillonite in water/ethanol solution with surfactants below the criticalmicelle
concentration.Upon completion of the ion exchange reaction and removal of solvent,
alkylammonium ions arrange on the surface in characteristic patterns (Figure 2.14).
Hereby, the presence of AlO(OH) ! MgO(OH)� � � �Naþ charge defects in the
montmorillonite octahedral sheet leads to the positioning of positively charged
ammonium head groups in locations on the surface where previously Naþ ions
have resided [10, 40, 57, 79, 88]. The alkyl tails of the surfactants are forced by van
der Waals interactions into characteristic interlayer structures upon removal of
the solvent. At low cation exchange capacity (CEC), layer-by-layer alkyl structures
are formed with increasing chain length (Figure 2.14a) whereas at higher CEC, the
packing density increases, the layering effect diminishes, and the character of
the surfactants shifts toward self-assembled monolayers (Figure 2.14b). Therefore,
the surfactants tilt to a greater extent relative to the surface plane as the CEC
increases [10].

In the assembly process, the distinction between primary and quaternary ammo-
nium head groups plays a major role (Figure 2.15). Both primary and quaternary
ammonium ions are attached to the surface primarily through an electrostatic bond
caused by the charge defects AlO(OH) ! MgO(OH)� � � �NR4

þ . In addition, pri-
mary ammonium head groups form hydrogen bonds with oxygen in the montmo-
rillonite surface that consists of characteristic [Si,O] dodecacycles (Figure 2.15a). Each
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Figure 2.15 The organic–inorganic interface.
(a) R�NH3

þ head groups form hydrogen
bonds with oxygen on the silicate surface. The
average O � � �H distance is approximately
150 pm and the mean N to O distance is
245 pm. (b) R�N(CH3)3

þ head groups do not

form hydrogen bonds with the surface. The
average O � � �H distance is almost twice as
large, approximately 290 pm, and themeanN to
O distance is 390 pm. As a result, themobility of
R�NMe3

þ surfactants on the surface is higher
than that of R�NH3

þ surfactants.

Figure 2.14 Representative MD snapshots of
alkylammonium montmorillonites, viewed
along the y-direction. (a) CEC¼ 91 meq/100 g
and NH3

þ�Cn chains. The difference between
partially formed layers (C2, C14) and completely

formed layers (C10, C22) can be seen.
(b) CEC¼ 145meq/100 g and NMe3

þ�Cn

chains. The successive formation of
layers with decreasing order can
be seen.
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primary ammonium cation can form up to three hydrogen bonds and assumes a
position a short distance from the montmorillonite surface plane, resulting in an
approximately 3.0–3.5 kcal/mol stronger bond to the surface and less lateralflexibility
compared to a quaternary ammonium ion. The latter are positioned substantially
further above the superficial cavities and cannot formhydrogen bonds on the surface
(Figure 2.15b) [10, 57].

The successive formation of alkyl layers with increasing surfactant length at low
CEC can be seen in the computed gallery spacing (Figure 2.16a). Stepwise increases
in the computed basal plane spacing of the organically modified layered silicates are
found as the chain length increases, and the curve for R�N(CH3)3

þ surfactants is
slightly shifted to the left due to a higher surfactant volume compared to R�NH3

þ

surfactants (three additional CH2 groups). The gallery spacing increases steeply
when one alkyl layer is densely packed and additional interlayer material forms an
additional, frustrated alkyl layer on top. In these regions, we also observe a drop in
interlayer density (NMe3

þ�C10 and NH3
þ�C12 in Figure 2.16b) that gradually

recovers until the next alkyl layer is densely packed (see also Figure 2.16). The
periodic changes in interlayer density are also accompanied by changes in the
percentage of gauche conformations of the surfactants (Figure 2.16c). Thereby, the
two different head groups show distinctive behavior. For the R�N(CH3)3

þ system
that is less strongly bound to the surface, the lowest energy state is all-anti (all-trans).
The required lateral space for such extended chains is available only in weakly
packed alkyl layers that accordingly show the lowest percentage of gauche con-
formations, about 15%. When the alkyl layers are densely packed, the surfactant
chains adjust by folding and the percentage of gauche conformations increases to
35%. For the R�NH3

þ system that is more strongly bound to the surface due to
hydrogen bonds, the preferred tripod arrangement on the surface (Figure 2.15a)
leads to kinks in the first N-terminal torsion angles due to confinement of the alkyl
chains between the stacked silicate layers. Therefore, the percentage of gauche
conformations is very high at 40% for short chains and responds less to changes
in interlayer density as the chain length increases (Figure 2.16c). For chains longer
thanC20, the percentage of gauche torsions converges to 20–25% for both head groups
that resembles a liquid-like state. In comparison, <5% gauche torsions are found in
crystalline C18 surfactants and 39% gauche torsions in unconstrained, liquid octa-
decylamine (at 100 
C) [10, 57].

A comparatively smoother increase in basal plane spacing and weaker steps in the
basal plane spacing as a function of chain length are found at higher CEC
(Figure 2.17a). The curve for R�N(CH3)3

þ head groups is also slightly offset to
the left due to higher surfactant volume relative to the R�NH3

þ head groups. A
softer, undulating increase in gallery spacing leads to weaker fluctuations in
interlayer density at high CEC (Figure 2.17b). The fluctuations are larger for the
formation of the first and second alkyl layers and converge with the formation of
pseudomultilayers to a steady value. Then, the structure becomes reminiscent of
polymer brushes (Figure 2.14b). The steady interlayer density in the semiliquid state
of the alkyl chains is computed at 725 kg/m3, in reasonable agreement with the
experimental density of crystalline long-chain alkanes approximately 800 kg/m3,
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Figure 2.16 (a) Computed basal plane
spacing, (b) interlayer density, and (c) average
conformation of the alkyl chains between the
silicate layers for alkylammonium-modified

montmorillonite with CEC¼ 91meq/100 g. The
series NH3

þ�CnH2nþ 1 and N
(CH3)3

þ�CnH2nþ 1 with n¼ 2, 4, . . ., 22 are
shown.
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Figure 2.17 (a) Computed basal plane
spacing, (b) interlayer density, and (c) average
conformation of the alkyl chains between the
silicate layers for alkylammonium-modified

montmorillonite with CEC¼ 145meq/100 g.
The series NH3

þ�CnH2nþ 1 and N
(CH3)3

þ�CnH2nþ 1 with n¼ 2, 4, . . ., 22 are
shown.
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since a somewhat higher density is expected for the crystalline phase. The percentage
of gauche conformations in the alkyl backbones is nearly invariant in a 25–30% range
for different chain length and different head group structure (Figure 2.17c), although
peaks up to 45% are seen at short chain length for both head groups. Particularly for
R�NH3

þ , the preference for a tripod arrangement of the head group on the surface
(Figure 2.15a) leads to extra gauche conformations due to confinement between the
montmorillonite lamellae. The relative weight of this effect on the percentage of
gauche conformations diminishes as the chain length increases. The evidence for
the confined head group tripod arrangement as a cause of the high percentage of
gauche conformation at short chain length comes from the analysis of the percentage
of gauche conformations of the alkyl chains on the outermontmorillonite surfaces (to
vacuum) that are not confined (Figure 2.14) and exhibit only between 15 and 25%
gauche conformations at short chain length [10].

These computational findings are consistent with a variety of experimental data.
Foremost, the gallery spacing measured by X-ray diffraction has been known for
decades [18, 63–65, 67, 69, 78] and is reproduced quantitatively by simulation
(Table 2.3) [10, 79, 86, 88]. The difference between experiment and simulation is
approximately 5%, and both approaches have associated errors. Uncertainties in
experimental gallery spacing are associated with a distribution of interlayer environ-
ments due to heterogeneities within the natural montmorillonite, uncertainty in
CEC (	5mequiv/100 g), and nonequilibrium structures in the interlayer space
depending on the process history of the sample. Residual amounts of water may
also be present in the sample. Uncertainties in computed gallery spacingmay include
an overestimate by 2–3% owing to the limited accuracy of the energy model and an
open simulation box in the z-direction during molecular dynamics simulation. In
cases where the CEC was very accurately known, differences of only 2–3% are
seen [10].

Table 2.3 Comparison of experimental and computed basal plane spacings (nm).

Expt
CEC¼ 90
Me3NRþ

Sim
CEC¼ 91
Me3NR

þ

Expt
CEC¼ 90
H3NR

þ

Sim CEC¼ 91
H3NRþ

Expt
CEC¼ 150
H3NRþ

Sim
CEC¼ 145
H3NRþ

C4 1.42 (2) 1.40 (2) 1.36 (3) 1.45 (2)
C6 1.36 (3) 1.42 (2) 1.50 (3) 1.44 (2)
C8 1.42 (2) 1.43 (2) 1.36 (3) 1.42 (2)
C10 1.45 (3) 1.48 (3) 1.80 (3) 1.89 (3)
C12 1.66 (9) 1.78 (3) 1.70 (3) 1.62 (3) 1.87 (3) 1.97 (3)
C14 1.77 (10) 1.85 (3) 1.75 (3) 1.80 (3) 2.03 (3) 2.09 (3)
C16 1.81 (10) 1.86 (3) 1.75 (3) 1.88 (3) 2.28 (3) 2.29 (3)
C18 1.85 (3) 1.90 (3) 1.85 (2) 1.91 (3) 2.30 (3) 2.36 (3)
Std dev
to Expt

0.07 0.08 0.08

Standard deviations of the last digit are given in brackets. (After Ref. [10].)

2.3 All-Atom Models for Interfaces and Application to Clay Minerals j73



Infrared and NMR spectroscopy have been further employed to probe the
backbone conformation of alkylammonium surfactants attached to montmorillonite
andmica surfaces [22, 25, 26, 30, 74]. The symmetric and asymmetric CH2 stretching
vibrations exhibit shifts from�2848 to�2854 cm�1 and from�2917 to�2928 cm�1,
respectively, which indicate conformational transitions from predominantly anti
(s-trans) to gauche. The conformational details presented in Figures 2.16c and 2.17c
are confirmed by IR data, including the sharp increase in the percentage of gauche
conformations for short R�NH3

þ chains at CEC¼ 143meq/100 g. Similarly, 13C
NMR chemical shifts are suitable to monitor transitions from an ordered array of
chains to disorder, which is indicated by a shift from a single peak at 33 pm to a
combination of peaks at both 33 and 30 ppm. NMR data are also in agreement with
observations in the simulation, particularly in the description of thermal transitions
as discussed in Section 3.3. For a detailed comparison of experimental IR and NMR
data with the simulation, the reader may refer to Ref. [10].

Another interesting aspect arises from the different modes of binding of the
surfactants to the clay mineral surface (Figure 2.15). Diffusion of surfactants on the
montmorillonite surface is possible by hopping across the cavities by Brownian
motion. When ion exchange with surfactants is incomplete, hopping of surfactants
may also be caused by local concentration gradients of defect sites. The self-diffusion
of the surfactants by Brownian motion, that is, the exchange rate between adjacent
surfactants, has been analyzed in MD simulation. A correlation within a group of at
least two surfactants is characteristic of the motion of the surfactants. This results
from their desire to remain close to charge defects.

1) The surfactants confined in the interlayer space between two silicate layers show
virtually no lateral mobility on a timescale of 10 ns in the simulation, indepen-
dent of CEC, head group, and chain length. 2D diffusion constants at room
temperature are �10�9 cm2/s, related to close packing of the chains. Self-
diffusion then requires conformational changes in the backbone and concerted
movements of alkylammonium ions (Figure 2.14),which is associatedwithhigh-
energy barriers. Qualitatively, we expect the lowest diffusion constants (and
highest energy barriers) for high CEC, H-bonded NH3 head groups, and long
alkyl chains.

2) Significantly higher diffusion rates can be found only on single, unconfined
surfaces such as on the outside of the duplicate structures (Figure 2.14). The
order of magnitude of self-diffusion is still sensitive to the CEC, head group
chemistry, and chain length. Surfactants with NH3 head groups (both at low and
at high CEC, any chain length) yield either no net movement on the surface or
occasional jumps to a neighbor cavity at a timescale of 1 ns. Alkyl chains with
NMe3 head groups exhibit more frequent hopping on the surface. At CEC¼ 145
meq/100 g for any chain length and at CEC¼ 91meq/100 g for chains longer
than C6, 2D diffusion constants are still <10�7 cm2/s. Rapid motion on the
surface is seen only for the smallest quaternary ammonium ions at low CEC.
Computed 2D diffusion constants are 5:0� 10�6 cm2/s for Me3NEt

þ and
1:5� 10�6 cm2/s for Me3NBu

þ at CEC¼ 91meq/100 g, which amounts to
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approximately 20% and 6% of the 3D self-diffusion constant of liquid water at
room temperature (2:3� 10�5 cm2/s) [10, 84].

In addition to conventional alkylammonium surfactants as compatibilizers
between the clay mineral and a polymer matrix, other functionalized surfactants
may be employed. Examples are ammonium-functionalized, azobenzene-contain-
ing surfactants with light-responsive properties. Azobenzene can then act as a
nanoscale actuator during a photon-induced trans–cis isomerization (Figure 2.18).
MD simulation has explained changes in the basal plane spacing upon photo-
isomerization in agreement with X-ray diffraction and UV/Vis spectral data. The
trans–cis isomerization takes place quantitatively in the constrained geometries,
and the isomerization reaction was examined for flexible, semiflexible, and rigid
azobenzene derivatives. Conformational flexibility of intercalated azo dyes facil-
itates molecular rotation in the interlayer space and causes small to no changes in
gallery spacing upon photoisomerization, unless differences in solvation energy
between the two isomers are exploited by adding a cointercalate. For example, 6-(4-
phenylazophenyl)hexylammonium ions on montmorillonite do not lead to
changes in the gallery spacing upon photoconversion due to the flexibility of the
alkyl-containing backbone. This leads to a parallel orientation of the azobenzene
substituents to the surface with a preference toward perpendicular orientation of
the phenyl rings relative to the surface. In contrast, conformationally rigid azo dyes
support reversible actuation in the interlayer space upon isomerization, particu-
larly in near-upright orientation of the azobenzene unit on the surface. For
example, (4-phenylazophenyl)ammonium ions lead to a change of up to 11% in
gallery spacing upon trans–cis isomerization (Figure 2.18). Rigid trans-isomers are

Figure 2.18 Snapshots of montmorillonite
(CEC¼ 143mequiv/100 g) modified with
(4-phenylazophenyl)ammonium ions in
near-upright orientation on the surface.
The basal plane spacing changes by 2.17 Å
(11%) on photoisomerization. The average tilt
angle of the connectors between the

ammonium N atoms and the phenyl
40-C atoms of the surfactants relative
to the surface normal increases from
27 to 58
 upon trans ! cis conversion.
The cis-configured surfactant assumes
a higher interlayer density.
(From Ref. [86].)
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found to be sterically more demanding than the corresponding cis-isomers that
flexibly arrange into dense interlayer structures. The use of rigid dications, such as
(4,40-phenylazophenyl)diammonium ions, to achieve changes in gallery spacing
upon photoisomerization is more effective when they act as cross-links between
two montmorillonite layers and less effective when they are doubly bonded to the
same montmorillonite layer. Significant controllable actuation also depends on, or
is supported by, the presence of cointercalates that can reversibly enter into and exit
from the interlayer gallery space. Simulation results indicate that experimentally
achieved reversible changes in gallery spacing of 0.9 Å (4%)may be improved up to
2.8 Å (14%) through (1) the presence of a cointercalate to compensate, and possibly
overcompensate, associated changes in interlayer density; (2) conformational
rigidity of the azobenzene-containing moieties, and (3) upright orientation of the
dye molecules on the surface. A moderate-to-high cation exchange capacity, the
absence of flexible alkyl spacers in the surfactants, and the use of rigid macrocyclic
�pedestals� support this objective. To date, few rigid azobenzene derivatives and
cointercalates have been explored in the interlayer space, and further advances in
this direction appear feasible [86].

From the computational perspective, a classical molecular dynamics approach
to simulate the trans–cis isomerization of azobenzene and its derivatives was
developed. The procedure is based on a temporary modification of the torsion
potential to model the impact of photon energy and is compatible with any force
field containing three-term torsion potentials (Eq. (2.6)) or one-term torsion poten-
tials (Eq. (2.5)). By incorporating UV spectroscopic data and ab initio understanding
of the isomerization reaction into the model, it accounts for the input of excitation
energy, the timescale of the reaction, the relative energies of the trans- and the cis-
isomers, as well as for the barrier to thermal conversion. Testing on simple
azobenzene systems indicates that it is possible to retrieve details about the reaction
dynamics and to probe the sensitivity to external pressure, temperature, approximate
excitation time (duration and number of laser pulses), and the molecular environ-
ment in large systems [86].

Simulations have also provided quantitative understanding of known surface
energies, cleavage energies [68, 70, 73, 89–91], and reconstruction processes upon
separation of clay mineral layers, including the principal difference between
natural alkali clay and organically modified clay minerals that is critical for under-
standing separation processes of montmorillonite layers in nanocomposites
(Figure 2.19). The cleavage energy of layers of the pure minerals mica and mont-
morillonite in vacuum (equivalent to an inert medium) comprises mostly electro-
static contributions that are four–five times stronger than dispersion contributions
(Figure 2.19a). In the range 0.2–0.8 nm separation, alkali ions partition between the
silicate sheets and rearrange on the surface with a tendency to stay close to the charge
defects (Figure 2.19b). Upon completion of the (equilibrium) separation process,
silicate layers remain as electrically neutral units and feel no significant Coulomb
interactions between them. Rearrangements of Kþ ions on the surface of the silicate
layers (jump from one cavity to another) are associated with a high barrier (�20 kcal/
mol Kþ in mica).
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As a consequence, a layer of organic surfactant of a thickness >0.8 nm can
effectively shield polar interactions and reduce the high cleavage energy of alkali
clays up to 90%. Attached organic layers are flexible upon separation of the clay
mineral layers and modify their superficial arrangement at medium separation
(1–2 nm) to maintain van der Waals interactions (Figure 2.19c and d). Total
interaction energies become smaller than 1mJ/m2 at 1.5 nm separation for alkali
clay and at 3 nm separation for octadecylammonium (C18)-clay. Therefore, long-
range effects between separated layers of montmorillonite or organically modified
montmorillonite are minor. Such residual interactions are related to lateral head
group mobility on the clay mineral layer and of a Coulomb multipole nature; no
contributions from van der Waals interactions are seen. Cleavage energies as well
as their Coulomb and van der Waals contributions are obtained in very good
agreement with experiment (Table 2.4) and complement experimental data of
surface forces and surface tensions for mica, montmorillonite, C18-mica, and C18-
montmorillonite [84].

The possible computational accuracy for cleavage energies has been	1mJ/m2 for
alkali clays and	3mJ/m2 for octadecylammonium-modified clays. In principle, this

Figure 2.19 Cleavage of montmorillonite
layers by stepwise separation inMD simulation.
Energy components (van der Waals, Coulomb,
total, internal) and representative structures are

shown for (a and b) potassiummontmorillonite
and for (c andd) octadecylammonium-modified
montmorillonite (CEC¼ 91 mequiv/100 g).
(After Ref. [84].)
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performance is sufficient to study interactions with chemically different solvents and
polymers that often have surface tensions in the range 20–60mJ/m2. Future
challenges include more accurate approaches to sample the phase space and to
analyze thermodynamic quantities, particularly entropic contributions. Future mod-
els will also allow the direct simulation of interfaces of organically modified clay
minerals and polymer matrices in full atomistic detail, in which the CEC, the
surfactant chain length and architecture, the chemistry of the polymer, the polymer
chain length, and the volume fraction of organoclay can be explicitly varied.
Computed interface tensions [92] indicate the thermodynamic potential for exfoli-
ation: the closer to zero, or ideally negative, the higher the tendency for dispersion in
the polymer matrix.

2.3.3
Relationship Between Packing Density and Thermal Transitions of Alkyl Chains on
Layered Silicate and Metal Surfaces

The detailed information on specific systems has also led to the conceptual under-
standing of structural and surface properties of a wide range of alkyl modified clay
mineral andmetal surfaces, including the occurrence of thermal-phase transitions of
the tethered surfactants in some instances (Figure 2.20). Extensive experimental
characterization and simulation using molecular dynamics and Monte Carlo meth-
ods suggest a model on the basis of the packing density as a single geometry
parameter that explains the average segmental tilt angle of the surfactants, the likely
surface structure, and the occurrence of thermal order–disorder transitions in good
approximation (Figure 2.20) [87]. As a central quantity, the packing density l0 is
defined as the ratio between the average cross-sectional area of an all-anti configured
surfactant chain AC;0 and the available surface area per alkyl chain AS:

l0 ¼ AC;0

AS
: ð2:7Þ

In this model, we consider a minimum chain length of 10 carbon atoms since
shorter chains do not form sufficiently distinctive patterns on the surface and do not
yield significant thermal transitions. Furthermore, we assume a typical temperature

Table 2.4 Cleavage energy (mJ/m2) and its components according to experiment and simulation.

Mica
(CEC 251)

C18-Mica Montm.
(CEC 91)

C18-Montm.

Sim Expt Sim Expt Sim Expt Sim Expta)

Coulomb 298 �1	 2 113 �1	 2 1	 1
VdW 85 45	 2 20 39	 2 40	 1
Internal 0 1	 2 0 2	 2
Total 383 375 45	 3 133 50–200 40	 3 41

a) For C18-montmorillonite, surface tensions are given (see text).

78j 2 Modeling of Polymer Matrix Nanocomposites



range of 250–400K for the thermal transitions and the absence of cross-links between
the alkyl chains as cross-linked chains have a higher resistance to order–disorder
transitions. Under these conditions, the key observation is that the packing density
determines the surface structure and thermal behavior while the chemical details of
the surface, the surfactant head group, and the surfactant chains only fine-tune
specific interactions, chemical functionality, and actual temperature of thermal
transitions (Figure 2.20).

The packing density can be easily modified for layered silicates such as mon-
tmorillonites and micas by changing the CEC or the type of surfactant while such
control is still a challenge onmetal and oxide surfaces. The packing density l0 further
correlates with the collective segmental tilt angle q0 of the alkyl chains relative to the
surface normal [79, 87]

l0 ¼ cos q0: ð2:8Þ
More details of this concept, which also applies to surfactants grafted on metal

surfaces and curved surfaces with a distance-dependent radius of curvature, are
described in Ref. [87].

2.4
Interfacial Thermal Properties of Cross-Linked Polymer–CNT Nanocomposites

Over the past decade, a significant amount of research has been carried out on carbon
nanotube reinforced polymers. The high modulus, high strength, and high thermal
and electrical conductivities of CNTs have made it an ideal candidate to be explored

0  0  0.2 0.2  0  0.75 0.75  0 1

Amorphous

(up to 40% gauche)

Semicrystalline Quasicrystalline

No phase transitions Reversible phase No phase transitions

 (a) (b) (c)

Figure 2.20 The range of homogeneous alkyl
layers (chain length �C10) on even surfaces
includes (a) disordered chains oriented parallel
to the surface, (b) intermediately ordered chains

with an intermediate collective tilt angle, and (c)
nearly vertically oriented, all-anti configured
chains. Significant reversible thermal
transitions are found only in case (b).
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for use in reinforced polymer nanocomposites for structural and multifunctional
applications. The extraordinary properties of CNTs have, however, not always
translated into similar properties of the polymer nanocomposites and extensive
research has pointed out that both good dispersion and good interfacial properties are
extremely critical to realize ultimate composite properties. The effective bulk
properties have been found to depend on several factors that include CNT–polymer
bonding, alignment of CNTs, and uniformity of dispersion. The dispersion in turn
depends on factors such as diameter, chirality, and length of CNTs [93]. Due to the
difficulty in individually controlling these factors experimentally, modeling and
simulations have been proven to be very useful in providing insight into their
relative significance.Multiscalemodeling studies have focused on different aspects –
frommesoscale simulations of the dispersion process [6, 94] to finite element-based
simulation of the dependence of mechanical properties on interfacial strength [95]
and continuum-based micromechanical models with effective interfaces [96].

Experimental and theoretical studies on interfacial characterization have found
improvement in mechanical properties with better bonding between the CNT
and the polymer that subsequently improves the interfacial strength and
stress transfer between them. An atomic-level understanding of the physics and
chemistry of the interfaces is essential to tailor these interfaces for various
multifunctional applications, and atomistic simulations can provide insight into
the molecular structure. Several theoretical studies have looked at the structure
and mechanical properties of these interfaces [97–99] and a few have looked
specifically at bonding energies. Panhuis et al. [100] have presented one of the
earliest studies on selective interaction of polymer backbone and CNTs, and Elliot
and coworkers [101] have reported MD studies that show large deviations from
results expected from simple rule-of-mixture models for cases with strong
interfacial interactions. One of the effective techniques to improve the interfacial
bonding has been found to be chemical functionalization of CNTs. Although
chemical functionalization has been found to negatively affect the mechanical
properties of individual CNTs [102–104], it can enhance that of the interface [96].
Functionalization can also modify the stacking and solvation properties that in
turn can improve the dispersion. The functional groups can also act as tethers that
increase the interaction with the polymer matrix.

Along with goodmechanical properties, good thermal conductance in composites
is also of primary interest for many thermal management applications [105, 106].
However, unlike electrical conductivity where a filler volume fraction above a
percolation threshold is found to provide a dramatic increase in the electrical
conductivity of the polymer matrix, the thermal conductivity is orders of magnitude
less than that predicted by an engineering rule of mixtures [105]. Although the
thermal conductivity of multiwall CNTS is in the range of 3000W/(m K) and even
higher than that for single-wall CNTs, the experimental values for polymer compo-
sites are around 0.3–0.4W/(m K), a very modest improvement from that of the
pristine matrix [105]. This has been attributed to a very high interfacial Kapitza
resistance [107], and Keblinski et al. have reported an exceptionally small interface
thermal conductance ofG� 12MW/(m2K) [108] for a nanotube submerged in octane
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liquid. They have calculated the thermal resistance between two nanotubes to be
equivalent to the resistance of a 20 nm thick layer of polymer with a standard
conductivity of 0.25W/(mK), implying that the thermal conductivity is primarily
controlled by the interface thermal conductance. Similar to improving the mechan-
ical properties, chemical functionalization is also being considered as a means to
improve the interfacial bonding and thereby the thermal conductance of poly-
mer–CNT composites. There are two main competing factors – the reduction in
the intrinsic thermal conductivity due to introduction of scattering centers and the
strengthening of the interfacial bonding, both of which depend on parameters such
as the grafting density and chain length of functional groups, and CNT tube
lengths [109, 110].

Thermoset polymers are network-forming polymers widely used in composites
and as adhesives and coatings. One of the important classes of thermosetting
polymers are epoxy-based thermosets that are the primary polymers used in
advanced aerospace applications due to their high modulus and fracture strength,
low creep, and stable high temperature performance. Nanostructured reinforcement
of these polymers was initially investigated for their potential to provide better
mechanical properties but are now also being explored for multifunctional applica-
tions in the area of thermal management [105, 106]. Atomistic simulations of
thermoset–CNT interfaces with and without functionalization of CNTs provide
insight into the nature of thermal transport at these interfaces and help with our
understanding of controlling them.

2.4.1
Model Building

Building atomisticmodels for highly cross-linked thermoset polymers is a challenge,
and there has been a steady progress by several research groups in creating
representative molecular models. Some of the earlier work focused on understand-
ing the reaction kinetics of the cross-linking process and the effect of polymerization,
molecular weight distribution, polydispersity, and sol–gel transition, using lat-
tice [111] as well as nonlattice [112] Monte Carlo simulations. Subsequent atomistic
studies did consider topological information. Doherty et al. [113] created
networks using lattice-based simulations and polymerization molecular dynamics
scheme, whereas Yarovsky and Evans [114] have presented a methodology to cross-
link epoxy resins in a single-step procedure and Xu and coworkers [115] have
performed cross-linking simulations for epoxy resin using an iterative MD/MM
procedure. This [115] approach was used to build small model systems carrying
out one cross-link per iteration. For lightly cross-linked polymers (PDMS
networks), Heine et al. [116] formulated a method using a united atom model and
a dynamic cross-linking approach based on cutoff distance criteria. Here, the newly
formed topology is relaxed based on a modified potential that is linear at large
distances and quadratic at short distances. Amore robust approach tomodel network
polymers was recently presented [117] that provides a stepwise procedure to build a
highly cross-linked system of epoxy-based networks. It combines Heine�s dynamic
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cross-linking concept [116] at an atomistic level with Xu�s iterative MD/MM con-
cept [118] and a new multistep relaxation procedure for relaxing the molecular
topology during cross-linking. This dynamic cross-linking approach has been
applied to an epoxy-based thermoset (EPON-862/DETDA) and several material
properties such as density, glass transition temperature, thermal expansion coeffi-
cient, and volume shrinkage during curing were calculated and found to be in good
agreement with experimental results [117]. The simulations also highlight the
distribution of molecular weight build-up and inception of gel point (Figures 2.21
and 2.22) during the network formation, paving the way for characterizing
both thermodynamic and structural properties as a function of temperature and
degree of curing.

Figure 2.21 Plot of weight averagemolecular weight (circles), largestmolecular weight (squares),
and secondary cycles (diamonds) as a function of cure conversion. The dashed lines are guide to the
eye. The dotted line suggests theoretical gel point [117].

Figure 2.22 Plot of largest molecular weight (circles), second-largest molecular weight (squares),
and weight averaged reduced molecular weight (diamonds) as a function of cure conversion. The
dashed lines are guide to the eye. The dotted line suggests theoretical gel point [117].
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2.4.2
Thermal Conductivity

MD simulations provide not only a convenient method of estimating thermal
conductivity but also additional atomistic information that is useful in relating to
the nanoscale structure and conformations [119]. Although classical MD cannot
simulate electron–electron or electron–photon interactions, the dominance of phonon
contributions to thermal conductivity of CNTs has made this approach suitable
for studying thermal transport behavior in CNTs for a wide range of temperatures
[120, 121]. In general, there are two methods to compute thermal conductivity in a
solid [122, 123]. Nonequilibrium molecular dynamics (NEMD) [124] is widely
used to calculate temperature profiles in molecular systems. It is also known as the
directmethodbecause it is analogous to experimental conditions and provides a direct
physical representation of heat flow. The general approach is to apply a constant heat
flux and calculate the thermal conductivity from the resulting temperature gradient
using Fourier�s law that states that under steady-state conditions, the amount of heat
flow per unit area in unit time is directly proportional to the temperature gradient at
the cross section. The thermal conductivity l can be defined as

l ¼
Q

ADt
dT
dz

; ð2:9Þ

whereQ is heat flow through the cross section, A is the cross-sectional area, Dt is the
time for which heat isflowing, and dT/dz is the steady-state temperature gradient. In a
representative case, the system of interest is first built with desired periodic boundary
conditionsdependingon the specificproblemof interest and is then equilibratedat the
desired temperature and pressure. After equilibration, a heat flux is imposed on the
system by adding a fixed amount of energy to the atoms at the hot end of the model
system and removing the same amount of energy from atoms at the cold end at every
timestep. Indoing so, a temperaturegradient is establishedacross the systemandheat
flows from thehot to the cold region. The temperature of each region can be calculated
as

Ti ¼ 1
3NikB

XNi

k¼1
mkv

2
k ; ð2:10Þ

whereNi is number of atoms in ith region and the temperature gradient is calculated
by the slope of the resulting temperature profile.

Similarly, the heat flux per unit area, Q/A Dt is calculated as

Q
ADt

¼ 1
ADt

1
2

XNB

k¼1
mk v2k�vp2k

� �* +
; ð2:11Þ

where vpk and vk are the velocities of the atoms before and after rescaling to a desired
temperature, respectively, and NB is the number of atoms in the boundary layers.
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Once the temperature gradient and the heat flux are known, the thermal conductivity
is subsequently calculated.

Another approach to calculate thermal conductivity is equilibrium molecular
dynamics (EMD) [125] that uses the Green–Kubo relation derived from linear
response theory to extract thermal conductivity from heat current correlation func-
tions. The thermal conductivity l is calculated by integrating the time autocorrelation
function of the heat flux vector and is given by

l ¼ 1
kBT2V

ð1
0

hJðtÞ � Jð0Þi dt: ð2:12Þ

Here, J(t) is the heat flux vector at time t and is defined as

JðtÞ ¼ d
dt

XN
i¼1

riEi ð2:13Þ

and

Ei ¼ 1
2
miv2i þ

1
2

XN
j 6¼i

uðrijÞ: ð2:14Þ

mi and vi represent themass and velocity of atom i, u(rij) is the total potential energy of
atom i, and rij is the distance between atom i and j. A 12-6 Lennard-Jones potential for
nonbonded van der Waals interactions along with an Ewald summation for electro-
static interactions yield the heat current vector J(t) [126] to be

JðtÞ¼1
2

XN
i¼1

miv2i þ
XN
j 6¼i

uðrijÞ
2
4

3
5viþ1

2

XN
i¼1

XN
j 6¼i

rijFR
ij

� �
�viþ1

2

XN
i¼1

XN
j¼1

vi �$Sij ð2:15Þ

Fij represents the short-range vanderWaals force and real part of theEwald–Coulomb
force (calculated within certain cutoff distance). In addition, it also includes forces
due to bonded interaction terms such as bond stretching, angle bending, and so on.
On the other hand, tensor S represents the forces due to electrostatic interactions
beyond the cutoff distance.

The thermal conductance across nanointerfaces is mostly studied using constant
flux simulations [107–109, 127–129]. The high thermal interfacial resistance between
tube and matrix, and between two tubes, indicates that even for high loading, the
thermal conductivity of these nanocomposites will be limited by the interfacial
resistance [107]. Chemical functionalization has been found to reduce this interfacial
resistance [106, 109]. The radial temperature profile from molecular dynamics
simulation of two adjacent carbon nanotubes submerged in a thermoset polymer
(Figure 2.23a) shows a significant temperature difference between the tubes that
improves on adding covalent bonds between the tubes (Figure 2.23b) [106]. The
temperature profile of two (10,0) CNTs placed with a separation distance of 11.18Å
between the tube axes was monitored. To analyze heat conduction between the
nanotubes, one of the tubes was heated and its effect on the adjacent nanotube was
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Figure 2.23 (a) Schematic of two SWCNTs
aligned sidewise in epoxy (EPON-862 cross-
linked with DETDA) based matrix. Heat is
pumped into one SWCNT (shown in red) and
taken out from the other SWCNT (shown in

blue). (b) Temperature difference (in 
C)
between two simulated nanotubes. The number
of bonds indicates the number of covalent
bonds between the tubes (diameter¼ 7.83 Å
and length¼ 42.6 Å).
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monitored as a function of increasing number of single covalent bonds between the
tubes. The temperature difference between the tubes was found to significantly
decrease by the introduction of only a few bonds indicating the importance of
covalent bonding between the tubes toward improving the transverse thermal
conductance across nanotubes.

2.5
Conclusion

Interfacial Thermal Properties of Cross-Linked Polymer–CNT Nanocomposites
Computer modeling and simulations are playing an ever increasing role in helping
us control and design synthetic polymer matrix composites. Along with providing a
fundamental understanding of the underlying physics responsible for their unique
characteristics, simulations are also guiding synthesis and characterization of these
materials. This chapter describes some of our own on-going efforts in modeling
nanocomposites, using coarse-grained and all-atom models. Methods, timescales,
and comparison to experimental data are discussed. The application of coarse-
grained models to platelet dispersion in polymer matrices using on-lattice Monte
Carlo simulation qualitatively reveals the influence of interaction strength on
agglomeration versus exfoliation of the inorganic filler material. Novel force fields
in full atomic resolution facilitate accurate exploration of interfacial regions in the
1–10 nm nanometer range and reproduce surface and interface properties in
excellent agreement with experiment. Computation of thermal conductance across
carbon nanotube and epoxy matrix interface provides better understanding of the
nature of interfacial thermal resistance and the effect of covalent bonding in
improving this resistance.
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3
Computational Studies of Polymer Kinetics
Galina Litvinenko

3.1
Introduction

An important problem in the chemistry of high molecular weight compounds is
obtaining polymers with predetermined properties that, in turn, are defined by their
molecularweight characteristics and conditions of synthesis. In general, whether it is
a free radical (FR), cationic, or anionic polymerization, the kinetic scheme of the
process includes the following steps: chain initiation, propagation, termination,
and various chain transfer reactions. In principle, in order to calculate the kinetics
andmolecularweight distribution (MWD), one should solve an enormousnumber of
kinetic equations for the time evolution of the concentrations R(l) of active macro-
molecules (or free radicals) of each value of chain length l. It is clear that brute-force
programs may be applied only for short chains, l� 10 (oligomerization), whereas
for high molecular weight polymers special approaches and approximations that
simplify calculations should be used.

In most situations when, for example, such reactions as chain transfer or
termination take place, obtaining analytical expressions for the MWD is rather
complicated or even impossible. However, it is often sufficient to know only average
degrees of polymerization (DP)

number average DP �Pn ¼P lRðlÞ=PRðlÞ;
weight average �Pw ¼P l2RðlÞ=P lRðlÞ;
z-average �Pz ¼

P
l3RðlÞ=P l2RðlÞ etc:

and the polydispersity index (PDI), �Pw=�Pn.
The most common way to calculate average DPs is to use the well-known

mathematical method of statistical moments. By definition, the MWD moment of
the ith order is given by mi ¼

P
liRðlÞ. The use of this method decreases the number

of equations to solve from almost infinite set of equations for R(l) to several
differential equations for mi. Therefore, in order to calculate �Pn, �Pw, and �Pz, one
has to solve only four equations since �Pn ¼ m1=m0, �Pw ¼ m2=m1, and �Pz ¼ m3=m2. At
the same time, the zeroth and the first MWD moments have a clear physical sense.
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Thus, m0 ¼
P

RðlÞ is the total concentration of chains and m1 ¼ M0�M is the
amount of the polymer formed.

Sometimes, the use of generating functions GðyÞ ¼P1
l¼1 RðlÞyl is very helpful in

calculating MWD. The generating function transformation converts the infinite set
of differential equations for R(l) to a single ordinary equation and in many cases (but
not always!) can provide the total MWD. In this case, R(l) is proportional to the lth
derivative of G(y) over y,

RðlÞ ¼ 1
l!
� dlG
dyljy¼0

:

Statistical moments, in turn, are related to G(y) as

m0 ¼ Gjy¼1; m1 ¼
dG
dy jy¼1

; m2 ¼ m1 þ
d2G
dy2 y¼1:j

For highmolecularmass polymers, the continuumapproximationwas proved very
useful. It is assumed that chain length may continuously change rather than
stepwise. The approximation consists in replacing the differences such as R(l)�
R(l� 1) with the derivatives dR(l)/dl and the sums over l by the corresponding
integrals. This approach allows one to obtain results in a much simpler and closed
form. This is the common approximation in modeling free radical polymerization.
For nonterminating polymerization, a comparison of the exact solutions and the
results obtained under the continuum approximation was undertaken by several
authors for chain transfer to monomer and slow initiation [1, 2]. It is recognized that
some fine details can be lost. For example, instead of the Poisson (or Gauss) MWD
of living polymers with the polydispersity index PDI ¼ 1þ �P�1

n , the continuum
approximation gives the Dirac d-function with a polydispersity strictly equal to unity.
Nevertheless, the difference between the discrete and the continuum approaches is
getting smaller for higher �Pn. For �Pn > 50, it is already negligible.

In fact, nowadays, the appearance of powerful computers and special software
programs, such as MATLAB, CHEMKIN, and so on, and especially those intended
exactly for kinetic calculations in polymerization, such as PREDICI (polyreaction
distributions by countable system integration), has considerably facilitated calcula-
tions. For example, PREDICI [3] applies the Galerkin approximation [4] for the
representation of chain length distributions and the adaptive Rothe method [5] for
time discretization.WhenusingPREDICI, the engineer should only correctly choose
reactions in a special window, and all other jobs will be done by the program package
itself. Numerous comparisons performed by the author of this review of the results
obtained using this software with the results obtained with other methods confirm
the validity of PREDICI formost, if not all possible situations, of the homogeneous as
well as emulsion and suspension polymerization. Nevertheless, this does not mean
that all other methods of MWD and kinetic calculations are outdated. Of course,
numerical calculations are very helpful, but they hardly give the possibility to
qualitatively analyze and to predict polymer characteristics. Much more helpful in
this regard are the good old methods especially when analytical solutions can be
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obtained. The area of polymerization processes is extremely extensive, and it is
impossible to discuss all calculationproblems in a single review. Thus,most attention
will be paid to the nonterminating polymerization.

3.2
Batch Polymerization

3.2.1
Ideal Living Polymerization

The simplest from the viewpoint of kinetics andMWD – although, probably, complex
in chemical mechanism – is the classical scheme of formation of living polymers [6].
It includes only one type of reactions, namely, chain propagation:

RðlÞ þM�!kp Rðlþ 1Þ: ð3:1Þ
Here, M is the monomer and R(l) is the growing polymer chain containing l

monomerunits. The initiation in such systems is presumed tobe instantaneous. This
means that the total concentration of growing chainsR ¼PRðlÞ is constant from the
very beginning of polymerization and is equal to the initiator concentration I0.

If the dependence ofR(l) on length l is known, it is possible to calculate the average
DPs and the polydispersity.

According to Eq. (3.1), the dependence ofmonomer concentration andR(l) on time
are to be calculated from the set of equations

dM
dt

¼ �kpRM

dRðlÞ
dt

¼ kpM½Rðl�1Þ�RðlÞ� ði ¼ 1; 2; . . .Þ
ð3:2Þ

with the initial conditions:

M ¼ M0; RðlÞ ¼ I0dl;1;

where di,j is the Kronecker d-symbol, dij ¼ 1; i ¼ j
0; i 6¼ j:

�

The set of Eq. (3.2) is easy to integrate and it results in the following expression for
the dependence of monomer conversion x ¼ ðM0�MÞ=M0 on time

x ¼ 1�e�kpI0t ð3:3Þ
and for the dependence of fraction of chain length l, fnðlÞ � RðlÞ=I0, on conversion

fnðlÞ ¼ e�bxðbxÞl�1

ðl�1Þ! : ð3:4Þ

Here, b ¼ M0=I0.
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Equation (3.3) may be expressed in a different form as the dependence of
polymerization rate on time

� 1
M0

� dM
dt

¼ kpI0:

In this form, it represents a straight line with a slope kpI0. Any deviation from the
straight line indicates to proceed further reactions that affect the concentration of
active centers.

Function (3.4) represents the Poisson distribution. This expression for the MWD
of living polymers was obtained by Flory for the first time many years ago [7].

From Eq. (3.4), it follows that number average DP linearly increases with
conversion, �Pn ¼ bx, and at full conversion �Pn ¼ b. This is why the parameter b
is often designated as �theoretical degree of polymerization.�

At a sufficiently high b, a characteristic of most polymerization processes, the
discrete Poisson distribution may be very good approximated by the continuous
Gauss distribution

fnðlÞ �
exp �ðl��PnÞ2

2�Pn

 !
ffiffiffiffiffiffiffiffiffiffiffi
2p�Pn

p :

For this case, the polydispersity index characterizing the broadness of distribution
is equal to

�Pw

�Pn
¼ 1þ 1

�Pn
:

As can be seen, �Pw=�Pn decreases from 2 at t = 0 to 1 + 1/b at full monomer
conversion.

The Poisson distribution is the narrowest MWD that may be obtained. Any
additional reaction will result in broadening MWD. First, the initiation may be
noninstantaneous

M þ I�!ki Rð1Þ:

The effect of finite initiation rate on the kinetics andMWDwas studied in Ref. [8],
where it was shown that slow initiation may increase the polydispersity index to
maximum 4/3. This result is very clear from the following considerations, without
excessive mathematics as in Ref. [8].

In the case of very slow initiation, new chains will be generated at an almost
constant rate, thus the distribution will be proportional to the step function,
f ðlÞ ¼ qðLmax�lÞ=Lmax, where the step function q(x) is 0 for x� 0 and 1 for x> 0,
and Lmax ¼ kp

Ð
M dt is the maximum chain length at time t. According to the

definition of DPs, the number average DP for such f(l) is equal to Lmax/2 and the
weight average to 2Lmax/3; hence, the polydispersity index is 4/3. It can be shown that
the criterion of instantaneous initiation is the condition bki=kp � 1 rather than
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ki=kp � 1. Thus, taking into account that usually b� 1 initiation can be considered
as instantaneous, even for small ratios of ki/kp.

Other important reactions affecting kinetics and MWD are various chain transfer
reactions. They are discussed in the next section.

3.2.2
Effect of Chain Transfer Reactions

Chain transfer reactions are considered here irrespective of the exact chemical
mechanisms of transfer that are discussed in detail, for example, in the compre-
hensive reviewofGlasse [9]. It should be stressed that all calculationswere performed
bearing inmind anionic polymerization, so themain concern in all theoretical papers
reviewed is the absence of kinetic termination rather than the anionic mechanism of
chain propagation. Thus, the conclusions drawn are valid for all processes that satisfy
this condition.

3.2.3
Chain Transfer to Solvent

Chain transfer to solvent is the best investigated reaction among all chain transfer
reactions. Thefirst evidence of chain transfer to solvent based on the formation of low
molecular weight polymers and on the direct detection of solvent fragments in
macromoleculeswas obtainedmore than half a century ago for various combinations
ofmonomers and solvents. These include the polymerization of butadiene in toluene
[9] or styrene in liquid ammonia [10]. Later on, chain transfer to aromatic solventswas
reported for many other systems. Therefore, the most important is not a qualitative
result (whether chain transfer to solvent takes place or not) but rather quantitative one
(to what extent it goes). That is why this reaction deserves to be considered in detail.

The effects of chain transfer to solvent on molecular masses and MWDs of
polymers formed in nonterminating polymerizations have been theoretically studied
in a number of papers [11–18]. A detailed review is given in Ref. [19]. Most studies
have examined common types of polymerization, that is, homopolymerization by
monofunctional initiators (of the type RMt with a single active center). The calcula-
tions have been based on the kinetic scheme 3.1 that was proposed initially by
Higginson and Wooding [11].

In this scheme, S is the solvent, S	 is an intermediate active species arising due to
chain transfer, and R(l) and P(l) are the growing and dead macromolecules,
respectively, containing l monomer units. Later on, a similar scheme was indepen-
dently proposed in Refs [12, 15] for spontaneous transfer

ðb0Þ RðlÞ�!ksp PðlÞ þ S	:

It should be said that in spite of that chemistry of chain transfer to solvent and
spontaneous transfer is different, the two mechanisms are identical both in math-
ematics and in results at ksp¼ ktsS.
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Instantaneous primary initiation was assumed in all papers. In combination with
the absence of chain termination, this means that the total concentration of active
species R + S	 is constant from the very beginning of polymerization and is equal
to the concentration of initiator I0. As was discussed previously, this is satisfied for
bki/kp� 1.

The effect of chain transfer on the average degrees of polymerization was studied
muchearlier for free radical polymerization. For this case, thenumber averagedegree
of polymerization of the polymer formed during a short time interval from t to t + dt
(instantaneous �Pn) is calculated as the amount of monomer converted into polymer
during dt divided by the number of newly formed macromolecules. The simple
expression was obtained that relates �Pn to the constants of chain transfer [20, 21]

1
�Pn

¼ 1
�P0
n

þ Cm þ Cs
S
M

þ Ci
1
M

: ð3:5Þ

Here,Cm ¼ ktm=kp,Cs ¼ kts=kp, andCi ¼ kti=kp are the relative constants of chain
transfer to monomer, solvent, and initiator, respectively, and �P0

n is the number
average DP in the absence of chain transfer reactions. Using an expression of this
type at low conversions (M�M0) when the difference between instantaneous �Pn and
the experimentally measured time-averaged DP is small, and from Eq. (3.5), it is easy
to evaluateCm,Cs, andCi.However, this procedure usually cannot be applied to living
polymerizations. First, this expression does not take into account the contribution
from growing macromolecules. For nonterminating polymerizations with long-
living active centers, it is correct only if chain transfer is extremely extensive. Second,
in some cases, it is difficult to isolate the polymer at low conversions due to very high
polymerization rates. Moreover, because the ratio of the chain transfer rate, ktsSR, to
the propagation rate, kpMR, increases in the course of polymerization, the effect of
chain transfer canbe small at low conversions but becomes significant toward the end
of the process. Therefore, it is necessary to derive expressions that can be used over
the entire range of conversions.

In accordance with Scheme 3.1, the evolution of the system in time can be
described by the following set of differential equations:

dM
dt

¼ �MðkpRþ kriS	Þ;

dRðlÞ
dt

¼ kpM½Rðl�1Þ�RðlÞ��ktsSRðlÞ þ dl;1kriS	M;

dPðlÞ
dt

¼ ktsSRðlÞ;

dS	

dt
¼ ktsSR�kriS	M:

ð3:6Þ

The first term on the right side of Eq. (3.6) describes the increase in chain
length due to propagation, the second is the disappearance of R(l) due to chain
transfer, and the third denotes the formation of short active chains as a result of
reinitiation.
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Propagation (a) R(l + 1)R(l) + M
kp

Chain transfer to solvent  (b) P(l) + S*R(l) + S

Reinitiation (c) R(1)S* + M

k s

k ri

Scheme 3.1

The set (3.6) was used to calculate average DPs and full MWDs. Except for one
publication [11], the calculations were performed assuming that reinitiation is fast
compared to chain transfer and, consequently, the total concentration of growing
chains R is equal to I0. Then, the dependence of monomer conversion
x ¼ ðM0�MÞ=M0 on time is described by the expression slightly different from
Eq. (3.3)

x ¼ ð1þ aÞð1�e�kpI0tÞ:
Here, the parameter a ¼ ktsS=kpM0 characterizes the intensity of chain transfer.

Normally, a
 1, otherwise no polymer would be formed.
Although the expressions for �Pn and �Pw in Refs [15, 18, 22] differ from each other

in the form, this difference is not important and disappears if one takes into account
that a
 1 and the �theoretical� DP = b=M0/I0� 1. Here, b is the degree of
polymerization of the living polymer formed in the absence of side reactions. Then,
the dependence of the number and weight average DPs on conversion can be
expressed as

�Pn ¼ bx

1�cs ln
1�x þ a

1þ a

� � ; ð3:7Þ

�Pw ¼ 2b
ðcs�1Þx x� x2

2
� 1�ð1�xÞcsþ1

cs þ 1

" #
; ð3:8Þ

where cs =ab = ktS/kpI0.
It should be mentioned that expression (3.7) for the number average DP can be

easily derived without solving the full set (3.6). By definition, �Pn is equal to the total
number of moles of monomer converted into polymer, M0x, divided by the total
number of macromolecules. The latter increases in time due to chain transfer at a
constant rate ktsSR and hence, at time t it is I0 þ ktsSI0t. Replacing time with
conversion yields formula (3.7).

A typical dependence of the averageDPs on conversion is shown in Figure 3.1. The
deviationfromthestraight line (livingpolymer) ismoresignificant forhighervaluesof
a. The occurrence of chain transfer results in the decrease of �Pn at high conversions
even at small intensities of chain transfer when �Pw increases with conversion.
However, at higher a, �Pw also begins to fall after some maximum value. This is a
crucial difference between chain transfer to solvent and all other chain transfer
reactions. This difference can be used to elucidate the mechanism of transfer.
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At full conversion, the average DPs are [15, 22]

�Pn ¼ b

1�cs ln a
; �Pw ¼ b

cs þ 1
; �Pz ¼ 2b

cs þ 2
: ð3:9Þ

While the average DPs of the final polymer decrease with increasing intensity of
chain transfer, the behavior of the polydispersity indexPDI¼ �Pw/�Pn ismore complex.
As can be shown, the ratio �Pw/�Pn as a function of a has a maximum. The position of
the maximum is defined by the condition �ln a ¼ cs þ 2. Thus, for typical values
b¼ 103, the maximal value of the polydispersity index �Pw=�Pn � 4:62 is reached at
a� 3.62� 10�3. For very intensive chain transfer (cs� 1), �Pw=�Pn � �ln a. The ratio
�Pz/�Pw varies over a shorter interval from about 1 for cs
 1 to 2 for cs� 1.
Several words should be said about the importance of taking into account the

reinitiation step for the calculation of averageDPs. Sometimes, similar to free radical
polymerization, the consumption of monomer at this step is neglected leading to the
following expression for �Pn:

�Pn ¼ bx
1�cs lnð1�xÞ :

This expression almost coincides with the exact solution (3.7) for the whole
conversion range except for values of x close to 1 because it gives a senseless limiting
value �Pn ! 0 at x! 1. At highmonomer conversion, the contribution of reinitiation
tomonomer consumption becomes comparable with that of propagation and should
be taken into account, whereas the simplified scheme of chain transfer does not

0,80,60,40,2
0,0

0,2

0,4

0,6

0,8

1,0

DP/b

1.0

living polymer

b = 103

(-----) : Pw
(- - -) : Pn

a = 10-4

a = 10-4

conversion

Figure 3.1 Dependence of average DPs of polymer formed under conditions of chain transfer to
solvent on conversion.
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exclude the transfer of active center from one solvent molecule to another when no
new polymer chains are formed.

Someobservations should also bemadeon the reinitiation kinetics. For free radical
polymerization, only reactions with fast reinitiation are regarded as chain transfer.
The processes with slow reinitiation are called inhibition. In this case, the kinetics
and molar masses are described by equations quite different from those for chain
transfer to solvent [20]. Nevertheless, our calculations demonstrated that in nonter-
minating polymerization, in contrast to free radical polymerization, Eqs. (3.7) and
(3.8) derived originally for fast initiation remain also valid for slow reinitiation (kri/
kts
 1). In fact, the main condition for the validity of Eqs. (3.7) and (3.8) is not the
high rate of reinitiation compared to transfer but the quasisteady-state approximation
with regard to S	, which is valid when bkri/kp� 1.On the other hand, it was shown in
Ref. [11] that slow reinitiation leads to the second-order kinetics with respect to
monomer. This effect was not, however, observed in anionic polymerization of
nonpolar monomers.

It should also be noted that while Eqs. (3.7) and (3.8) were obtained for chain
transfer to solvent, theymay be successfully applied to chain transfer to impurities or
to a specially added transfer agent if the transfer constant Cs¼ kts/kp is small
(Cs� 0.1). However, when the rate constants of chain transfer and propagation are
comparable, the consumption of chain transfer agent should be taken into account,
S=S0 ¼ ð1�xÞCs ; hence, the effect of this transfer type on the average DPs is smaller
than that of chain transfer to solvent (the consumption of the latter is negligible). In
this case, one can obtain the dependence of �Pn on conversion as

�Pn ¼ bx

1þ S0
I0

1�ð1�xÞCs

h i :

If Cs
 1, then, ð1�xÞCs � 1�Cs lnð1�xÞ, and this expression transforms into
Eq. (3.7).

It is possible to obtain from set (3.6) the full MWD functions. This can be done in
different ways. One is the direct solution of the equations for R(l) and P(l) [18].
However, thismethod is tedious and the resulting expressions are represented in the
form of sums over l, which is extremely inconvenient for analysis. As was already
mentioned, the use of the direct approach is reasonable only for oligomerization
(l� 10). The weight fraction of macromolecules of length l

fwðlÞ ¼ l
RðlÞ þ PðlÞÐ1

0 ðRðlÞ þ PðlÞÞ dl

was calculated independently in Refs [12, 13] under condition of constant monomer
concentration and is given by

fwðlÞ ¼ lpl�1ð1�pÞ2:
Here, p ¼ kpM=ðkpM þ ktsSÞ is the probability of propagation. However, the

process usually proceeds at a variable monomer concentration. Nanda and Jain
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[15] were the first who tried to derive MWD functions for arbitrary conversions, but
they did not succeed in obtaining analytical expressions. Such an expression was
derived in Ref. [22] for the general case of initiators of arbitrary functionality that will
be considered later. In particular, for a monofunctional initiator, the weight distri-
bution is described by a relatively simple expression

fwðzÞ ¼ csz
x

1�ln
1�x þ a

1þ a

� �
dðzÞ þ cs

x
ð1�zÞcs�1�z

1�x
1�x þ z

� �� �
qðx�zÞ

þ 1�x þ a

1þ a

� �cs

dðx�zÞ:

Here, z¼ l/b is the normalized length and d(z) is the Dirac delta function.
At full conversion, the above expression is simplified to

fwðzÞ ¼ csð1�zÞcs�1qð1�zÞ:

3.2.4
Multifunctional Initiators

Along with the simplest case of one-ended growing chains discussed above, more
complicated processes also occur. For example, electron transfer initiators such as
sodium naphthalene, widely used in the study of living polymers, form growing
chains with two living ends [6]. Initiators with two or more active centers are also
used, in particular, for the synthesis of ABA-type block copolymers or star-shape
polymers. In the case of living polymers, the use of multifunctional initiators has no
effect on the polymer MWD (except, of course, for an m-fold increase in DP for the
initiator of functionality m). But in the presence of chain-breaking reactions, the
functionality of growing chains greatly affects the MWD. It was observed long ago
that the effect of impurities on the MWD is different for one- or two-ended living
polymers [6]. MWD calculations of polymers formed with multifunctional initiators
under conditions of chain transfer to solvent were considered in detail in Ref. [22].
The calculations were based on Scheme 3.1 generalized for the case when a growing
chain may contain an arbitrary number of active centers.

In such a case, it is convenient to subdivide polymer chains into two types: primary,
or direct chainsD(i,l), containing the fragmentation of the initiatormolecule, and the
secondary, or transfer chains T(i,l), formed during chain transfer to solvent. Such
a subdivision can be done, of course, even if the initiator is monofunctional [15], the
difference between chains of different types greatly increases with increasing
initiator functionality. Therefore, reactions for chain transfer and reinitiation can
now be written as follows:

In Scheme 3.2, the symbol i denotes the number of active centers on the
macromolecule. For an initiator of functionality m, the value of i can lie between
0 andm for direct chains, whereas for transfer chains it is either 0 or 1. Ifm is greater
than 2, the direct macromolecules are branched, whereas the secondary are always
linear.
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The same simple considerations made in the preceding section afford the
possibility of calculating the number average DP without solving the full set of
differential equations. If we denote now by I0 the total concentration of active centers
(i.e., themolar concentration of initiator I0/m), the dependence of �Pn on conversion is
described by expression similar to Eq. (3.7).

�Pn ¼ mbx

1�mcs ln
1�x þ a

1þ a

� � : ð3:10Þ

Here, b¼M0/I0 and cs¼ab are the same as for monofunctional initiators.
Weight- and z-average DPs of the total polymer and of the primary and secondary
fractions were also calculated [22]. The description of conversion for average DPs of
the total polymer is similar to that for monofunctional initiator. The behavior of the
direct polymer is the least sensitive to chain transfer.

Expressions for the average DPs of the final polymer are provided in Table 3.1. The
characteristics of the secondary polymer obviously donot depend on the functionality
of initiator.

An analysis of these expressions shows that the dependence of the number average
DP of the total polymer on the initiator functionality is already small for cs> 0.1, and
at cs� 1 it ceases to depend on the initiator functionality, and

�Pn � 1
a ln a

whereas �Pw increases almost linearly with m even at cs� 1 (Figure 3.2). As a result,
under otherwise similar conditions, thepolydispersity index in case ofmultifunctional

Table 3.1 Average degrees of polymerization for a multifunctional initiator.

Polymer Degree of polymerization

Number average Weight average z-average

Total
bm

1�mcs ln a
b

cs þm

ðcs þ 1Þ2 b
2c2s þ ðm2 þ 3mÞcs þ 2m2

ðcs þ 1Þðcs þ 2Þðcs þmÞ

Primary
bm

cs þ 1
b
ðm þ 1Þcs þ 2m
ðcs þ 1Þðcs þ 2Þ b

c2sðm þ 1Þðm þ 2Þ þ csðm þ 2Þð5m�1Þ þ 6m2

ðcs þ 1Þðcs þ 3Þ ðm þ 1Þcs þ 2m½ �

Transfer � b

ðcs þ 1Þ ln a

b

cs þ 2
2b

cs þ 3

D (i–1,l) + S*D (i,l) + S

T (0,l) + S*T (1,l) + S

T (1,1)S* + M
k ri

k ts

k ts

Scheme 3.2
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initiators is higher than for monofunctional ones. For example, at b¼ 103 and
a¼ 10�4 (cs¼ 0.1), the polydispersity index is equal to 1.74 for monofunctional,
2.47 for bifunctional, and 4.0 for tetrafunctional initiators.

The form of the MWD curves is determined by superposing the contributions
from the direct and transfer fractions. As far as the total rate of chain transfer is
concerned, ktsMI0 is proportional to the total concentration of active centers and
hence does not depend on initiator functionality, the relationship between these
fractions does not depend on the functionality either, and theweight fraction of direct
polymer, v =Wdirect/Wtotal, is given by

v ¼ 1�ð1�xÞcsþ1

xðcs þ 1Þ : ð3:11Þ

At full conversion (x¼ 1), this ratio converts intov ¼ ðcs þ 1Þ�1. For example, for
cs¼ 1, only a half polymer is formed on the initiator molecules.

The change in the initiator functionality at a constant intensity of chain transferwill
cause a shift in the DP of the primary polymer to higher values, whereas the
distribution of the secondary polymer does not depend on m. As a result, the MWD
of the total polymer has a distinct bimodality. Typical MWD curves for various
initiator functionalities are shown in Figure 3.3.

Therefore, polymerization withmultifunctional initiators is the only case of a one-
state polymerization (i.e., polymerization where all active centers are of the same
nature and reactivity) leading to a bimodal MWD. It is worth noting that the MWD
cannot havemore than twomaxima independent of the functionality of initiator. The
same is valid for all other kinds of chain transfer.

8642
0

1

2

3

4

5

6

7

8 DP/b
(-----) : Pw
(- - - ) : Pn

b = 103

0.3

0.1

0.01

1

0.3

a = 0.1

initiator functionality

Figure 3.2 Dependence of average DPs of the total polymer on the initiator functionality.
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3.2.5
Chain Transfer to Polymer

Chain transfer to polymer is another important reaction that can greatly affect the
structure of macromolecules and, hence, the properties of the polymers. Moreover,
contrary to chain transfer to solvent that can be eliminated or at least suppressed by
the use of another solvent, transfer to polymer is an inherent property of the
polymerizing system. The effect of this reaction on molecular weight characteristics
of polymers has been studied only for free radical polymerization [23–25]. In
particular, it was shown that transfer to polymer may cause gelation if termination
proceeds via combination. Principal results for living polymerization were obtained
in Ref. [26].

The occurrence of chain transfer to polymer gives rise to the formation of
macromolecules that simultaneously contain more than one active center even if
the initiator is monofunctional. If one denotes R(i,l) the concentration of macro-
molecules containing i active centers and l monomer units, the reaction of chain
transfer to polymer can be represented as follows:

Rði; lÞ þ Rðj; nÞ�!ktp Rði�1; lÞ þ Rð jþ 1; nÞ
Rðiþ 1; lÞ þ Rð j�1; nÞ:

(
ð3:12Þ

This reaction does not affect the rate of monomer consumption; hence, the
dependence of monomer conversion on time is given by Eq. (3.3). There is no effect
on thenumber averageDP, either, because thenumber of chains doesnot change due
to this reaction type. Nevertheless, chain transfer to polymer leads to the formation of
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Figure 3.3 MWD of final polymer obtained with initiators of different functionalities. cs� 1.
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branched polymer, thus broadening the MWD. The number of side branches Nbr

increases with time at a rate

dNbr

dt
¼ ktp

X
i;j

X
l;n

inRði; lÞRðj; nÞ ¼ ktpI0M0x:

The average degree of branching permonomer unit, rm¼Nbr/M0x, is given by the
well-known Flory expression [27] that is valid for all addition polymerization
processes independent of their mechanisms:

rm ¼ �Cp 1þ lnð1�xÞ
x

� �
: ð3:13Þ

Here, Cp is the relative constant of chain transfer to polymer, Cp¼ ktp/kp. When
chain transfer to solvent proceeds along with chain transfer to polymer, this
expression for nonterminating polymerization changes to [26]

rm ¼ �Cp 1þ 1
x
ln
1�x þ a

1þ a

� �
:

More informative is the average degree of branching per polymer chain rp ¼
Nbr=Nch. These two parameters are connected by the obvious relationship: rp ¼
rm�Pn. Therefore, for the polymerization under conditions of combined chain
transfer to polymer and solvent,

rp ¼ �cp

x þ ln
1�x þ a

1þ a

1�cs ln
1�x þ a

1þ a

: ð3:14Þ

Here, cp¼bCp is the intensity of chain transfer to polymer.
Equations (3.13) and (3.14) show that in the absence of chain transfer to solvent,

both rm and rp go to infinity when x! 1. Two approaches [26] were suggested to
avoid this singularity. The reinitiation step similar to Scheme 3.1 enables one to
exclude from the total number of branching Nbr those sites of branching that do not
add a single monomer unit. This procedure leads to the following finite limiting
values of rm and rp

rmðx ¼ 1Þ ¼ �Cpð1þ ln CpÞ;
rpðx ¼ 1Þ ¼ �cpð1þ lnCpÞ:

On the other hand, as shown in Ref. [26] the formation of relatively long side
branches containing, say, 10–20 units, ends at x¼ 90–95%. Branches formed at
higher conversions have only a small effect on polymer properties. So, it was
suggested to use the values of rm and rp calculated at this conversion as final.

It is interestingtocomparetheeffectsofchaintransfertopolymerinnonterminating
and free radical polymerizations. Calculations [26] were performed for an ideal free
radical polymerization, that is, in the absence of the gel effect. At equal Cp and �Pn,
the number of branches per macromolecule for nonterminating and free radical
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polymerizations becomes comparable to moderate conversions, and at high conver-
sions,anionicrpisevenhigherthanthatforthefreeradicalpolymerization(Figure3.4).

Another important feature of the polymer formed under conditions of chain
transfer to polymer is the distribution of polymer between the main chains and the
side branches. The weight fraction of polymer in the side branches vs is defined by
the expression [26]

vs � W
M0x

¼ 1� 1
x

ðx
0

ð1�yÞcp ecpy dy: ð3:15Þ

The increase invs with conversion calculated for different values of cp is shown in
Figure 3.5.

As seen, the final values of living and free radical vs calculated at equal Cp and �Pn

are comparable, but the conversion behavior is different. For anionic polymerization,
a marked increase invs is observed only at high conversion, whereas for free radical
polymerizationvs is relatively high even at small conversions. This difference can be
explained by different mechanisms of side branch formation. In free radical
polymerization, each newly formed side radical quickly grows to a long chain
whereas in nonterminating polymerization, the growth of bothmain and side chains
continues during the whole process.

One more distinction between living and free radical polymerizations is the
relationship between the average length of the backbone Lb and the side branches
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Figure 3.4 Dependence of the average number of branches per macromolecule on conversion
for living (LP) and free radical polymerization.
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Ls. These parameters can be easily calculated if vs is known:

Lb ¼ M0xð1�vsÞ
Nch

¼ ð1�vsÞ�Pn;

Ls ¼ M0xvs

Nbr
¼ vs

rp
�Pn:

ð3:16Þ

The analysis of expressions (3.16) shows that side branches formed in anionic
polymerization aremuch shorter than the backbone. Thus, for typical values (b¼ 103

andCp¼ 10�3), the ratio Lb/Ls is about 5 at x¼ 0.9 and increases up to about 20 by full
conversion. On the other hand, in free radical polymerization with short-living active
centers, the average lifetimes of active centers in the side andmain chains are equal,
that is, Lb� Ls.

The weight and z-average DPs for a polymer formed under conditions of chain
transfer to polymer and simultaneous chain transfer to polymer and solvent were
numerically calculated using the method of statistical moments [26]. Effect of chain
transfer to polymer on theMWDbroadening in living and free radical polymerization
is shown in Figure 3.6. The results show that for living polymerization, the
contribution of transfer to polymer in the increase in polydispersity index is much
smaller than that for transfer to solvent. This is explained by the fact that main effect
that broadens MWDs is a sharp decrease in �Pn under chain transfer to solvent,
whereas transfer to polymer does not change �Pn.

As seen in Figure 3.6, in nonterminating polymerizations the average DPs depend
on the intensity of chain transfer to polymer to a significantly less extent than in free
radical polymerization. As discussed in the following section, the situation is quite
different, however, for continuous mode of polymerization.
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Figure 3.5 Dependence of weight fraction of polymer in side branches on conversion.
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3.2.6
Chain Transfer to Monomer

The first theoretical papers on anionic chain transfer to monomer were published
long ago [2]. Later on, the effect of chain transfer to monomer on the molecular
characteristics of the polymers formed in nonterminating polymerization was
considered in a number of publications [28–33]. Usually, chain transfer is described
according to a scheme that is similar to the free radical polymerization [21]

RðlÞ þM�!ktm PðlÞ þ Rð1Þ: ð3:17Þ
According to Eq. (3.17), the evolution of growing R(l) and dead P(l) macromole-

cules in time is described by differential equations:

dRðlÞ
dt

¼ kpM½Rðl�1Þ�RðlÞ��ktmMRðlÞ þ dl;1ktmI0M;

dPðlÞ
dt

¼ ktmMRðlÞ:
ð3:18Þ

Since the rate constant (reactivity) of transfer ktm ismuch less than the propagation
rate kp, the consumption of monomer due to the chain transfer may be neglected.
Then, the dependence of monomer conversion on time is given by the same
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Figure 3.6 Effect of chain transfer to polymer on the polydispersity index. cp = 1; PDI0 is the
polydispersity index in the absence of chain transfer.
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relation (3.3), x ¼ 1�expð�kpI0tÞ, as in the absence of transfer. The solution of
Eq. (3.18) gives the following dependence of the number and weight average DPs on
conversion

�Pn ¼ bx
1þ cmx

; �Pw ¼ 2b
c2mx

cmx�1þ e�cmx½ �: ð3:19Þ

Here, cm ¼ bktm=kp ¼ bCm characterizes the intensity of chain transfer to mono-
mer.As follows from formulas (3.19), at small andmoderate values of cm, both �Pn and
�Pw increase with conversion. At high cm (cm> 10), the averageDPs quickly approach
even at low conversions of the stationary values �Pn ¼ C�1

m and �Pw ¼ C�1
m , and

after that they do not change. The polydispersity index cannot exceed 2 however
large cm is. These results are different from the chain transfer to solvent when �Pw/�Pn

can exceed 4 and a decrease of �Pn is observed at high conversion. In addition, as the
ratio of propagation and transfer rates is constant, the average DPs under chain
transfer to monomer do not depend on the monomer concentration, whereas in the
case of chain transfer to solvent, this dependence manifests itself through the
parameter a.

The effect of simultaneous chain transfer tomonomer and solvent was considered
in Refs [28, 29]. Since the number of polymeric chains due to the two reactions
increases additively, it is easy to calculate �Pn

�Pn ¼ bx

1þ cmx�cs ln
1�x þ a

1þ a

� � :

The effect of chain transfer to monomer for multifunctional initiators was
considered in Ref. [34]. Because of the complexity of the original differential
equations, the author managed to derive analytical expressions without approxima-
tions only for �Pn.However, taking into account that km/kp ismuch less than unity and
using methods of statistical moments, it was rather easy to derive the following
analytical expressions for the evolution of average DPs with conversion [35]

�Pn ¼ mbx
m þ cmx

; �Pw ¼ b
ðm�1Þð1�e�cmxÞ2�2ð1�e�cmxÞ þ 2cmx

c2mx
: ð3:20Þ

Here, m is the functionality of initiator.
The chain length distribution of the polymer formed under conditions of chain

transfer to monomer was calculated in a number of papers [2, 34, 36]. However, the
continuum approximation was not used and the results are represented in the form
of very complicated sums over the chain length. This complexity was the reason for
erroneous MWD curves of the polymer formed in the presence of chain transfer to
monomer for the case of initiator of functionality m = 3, calculated in Ref. [34] by
a graphicalmethod.Using the continuumapproximation, and neglecting ktm/kp, one
can obtain [35] a fairly simple expression for theweight fraction ofmacromolecules of
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normalized length z ¼ l=b, at monomer conversion

fwðz; xÞ ¼ z e�cmz

mx

�
dðz�mxÞ þmcm 1þ cmðx�zÞ½ �qðx�zÞ

þ
Xm
i¼1

Xi
k¼0

ð�1ÞkCi
mC

k
i
cim½z�ðm�iþ kÞx�ði�1Þ

ði�1Þ! qðz�ðm�iþ kÞxÞ
�
;

where z ¼ l=b and Ci
m ¼ m!

i!ðm�iÞ!.
For monofunctional initiator, this expression becomes much simpler

fwðz; xÞ ¼ z e�cmz

x
dðx�zÞ þ c2mðx�zÞqðx�zÞ	 


: ð3:21Þ

Figure 3.7 shows typical MWD curves for polymer obtained under conditions of
transfer to monomer for multifunctional initiator. As seen from this figure, at m
higher than 2 and not very high cm, the MWD can be multimodal.

3.3
Continuous Polymerization

The main distinction of polymerization in continuous stirred tank reactors (CSTRs)
from batch/plug-flow polymerization is the distribution of reactor residence times.
In a single CSTR, the distribution ofmolecules in residence time (i.e., the probability
to be in the reactor during time period t is given by [37, 38]
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Figure 3.7 Final (x = 1) MWD of polymer obtained in polymerization under conditions of chain
transfer tomonomer for initiators of various functionalities (numbers at the curves). The intensity of
transfer cm= 0.5 (a) and 5 (b).
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f ðtÞ ¼ 1
t
exp � t

tÞ
� �

:

Here, t is the average residence time defined by the reactor volume and flow rates
of the components. If the volume of a separate reactor isVand the volumetric rate is q,
then t ¼ V=q. In the processes with short-living active species, for example, in free
radical polymerization, this distinction does not affectMWDs.On the contrary, in the
processes where the average lifetime of active species is large compared to the mean
residence time t, the transition from batch polymerization to CSTR gives rise to the
distribution in chain growth times. This, in turn, results in crucial changes in the
MWD, even in the absence of any chain transfer. The chain transfer reactions should
lead to even more significant differences.

Obviously, the increase in the number of reactors in a series approaches the
process to the batch one because residence time distribution becomes narrower;
thus, in the kth reactor [37]

fkðtÞ ¼ ðt=tÞk�1 expð�t=tÞ
k!t

:

However, in commercial processes the number of reactors is limited (usually three
tofive), thus the difference betweenMWDof batch and continuous processesmay be
considerable. These conclusions were qualitatively formulated long ago by Denbigh
[39]. Nevertheless, they seem to be underestimated in spite of a wide use of CSTR in
commercial polymer synthesis. Till the late 1980s, such processes remained poorly
studied except for modeling of few particular polymerization systems [40, 41]. There
were also general indications that the polymer formed in a CSTR has the most
probable Flory chain length distribution with the polydispersity index equal to
2 instead of the very narrow Poisson distribution, characteristic of polymer produced
in living batch polymerization [6, 38]. Later on, papers [42–47] reported results of
modeling of the structure and MWD of living polymers formed in CSTRs under
various conditions. Some publications took into account chain transfer to solvent
[48], impurity [44], ormodifier [49, 50].However, only single CSTRwas considered. A
detailed theoretical study of nonterminating polymerization in CSTRs, including
chain transfer to solvent and polymer, was undertaken by the author [51–53].

A series of r identical continuous stirred tank reactors is considered

Monomer, solvent, initiator, and other components, if appropriate, are fed into the
first reactor at a constant volumetric rate. The concentrations of monomer, solvent,
and initiator in the input stream are M0, S, and I0, respectively.

The kinetic schemeof polymerization inCSTR is the same as for batch process, but
differential equations for the concentrations of monomer Mk and macromolecules
Rk(b,i,l) (b, i, and l denote, respectively, the number of branches, the number of active
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centers, and the number of monomer units) in the kth reactor of the series comprise
additional terms related to enter and exit from the reactor. In the most general case
when chain transfer reactions to monomer, polymer, and solvent are possible, the
corresponding equations take the following form [53]:

dMk

dt
¼ Mk�1�Mk

t
�kp;kMkI0; ð3:22Þ

dRkðb; i; lÞ
dt

¼ Rk�1ðb; i; lÞ�Rkðb; i; lÞ
t

�ikp;kMk
qRkðb; i; lÞ

ql

þ ktp;klI0½Rkðb�1; i�1; lÞ�Rkðb; i; lÞ�
þ ðktp;kðM0�MkÞ þ kts;kSþ ktmMÞ½ðiþ 1ÞRkðb; iþ 1; lÞ�iRkðb; i; lÞ�

þ I0
t
dk;1db;0di;1dl;1 þ ðkts;kSI0 þ ktmMI0Þdb;0di;1dl;1: ð3:23Þ

The first term on the right-hand side of Eq. (3.23) describes the input and output
from the kth reactor, the second describes the increase in chain length due to
propagation, the next two are responsible for the variation in the number of
branching b and active centers i due to chain transfer, and two last terms describe
the formation of short (l = 1) linear (b = 1) chains due to instantaneous initiation and
chain transfer to solvent. In the general case, the temperature in different reactors can
be varied; therefore, the reactivities also bear index k.

This set of equations gives the possibility to calculate the dynamic behavior of a
CSTR and, what is more important, the characteristics of the steady state. In contrast
to free radical polymerization where multiple steady states and even oscillating
regimes can exist owing to the second-order chain termination reaction and the gel
effect [54], Eqs. (3.22) and (3.23) have only one stationary solution. Hereinafter,
steady-state parameters of the MWD are discussed.

3.3.1
MWD of Living Polymers Formed in CSTR

First, the simplest case of ideal living polymerization (the absence of termination
and any chain transfer reaction) is considered. The kinetic scheme of such process
contains only propagation step 1.1. The polymer formed in such a case is linear
(b = 0), and each macromolecule contains one active center (monofunctional
initiator)

Rkðb; i; lÞ ¼ RkðlÞdi;1db;0:

Then, Eq. (3.23) simplifies to

dRkðlÞ
dt

¼ Rk�1ðlÞ�RkðlÞ
t

�kp;kMk
qRkðlÞ
ql

þ I0
t
dk;1dðlÞ ¼ 0: ð3:24Þ
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Equation (3.24) shows that changing temperature in the reactors and, hence,
reactivities of propagation, results in the possibility, at least in principle, of obtaining
a desired conversion in the kth reactor, xk ¼ 1�Mk=M0,

xk ¼ jk þ xk�1

jk þ 1
; ð3:25Þ

where jk = kp,kI0t.
Using the stationary solution of Eq. (3.24) makes it easy to calculate the average

DPs in the kth reactor:

�Pn;k ¼ bxk; �Pw;k ¼ 2b
xk

Xk
j¼1

xjðxj�xj�1Þ: ð3:26Þ

Here, as before, b ¼ M0=I0 is the �theoretical� DP of living polymer. The chain
length distribution calculated from stationary Eq. (3.24) is described by the
expression

RkðlÞ ¼ ð�1Þkþ1I0
b

Yk
j¼1

ej

 !Xk
j¼1

expð�elj=bÞQk
n ¼ 1
n 6¼ j

ðej�enÞ
; ð3:27Þ

where ej ¼ ðxj�xj�1Þ�1.
As mentioned, in a single CSTR the MWD represents Flory distribution

RðlÞ ¼ ðI0=bÞ e�l=bx with the number average DP, �Pn ¼ bx1 and the polydispersity
index equal to 2. The behavior ofMWD at increasing number of reactors depends on
the distribution of conversions over reactors. The conversion mode that gives the
narrowest MWD at a given conversion at the outlet of the last reactor, xr ¼ X , may be

determined from the condition
qð�Pw;r=�Pn;rÞ

qxk jxr¼X
¼ 0. This condition and expres-

sions (3.26) suggest that in this mode the increment of conversion in each reactor
should be equal, xk�xk�1 ¼ X=r, that is, xk ¼ Xðk=rÞ (the so-called mode of equal
distribution of conversions). In this case, Eq. (3.27) considerably simplifies,

RkðlÞ ¼ I0
bx1

� expð�l=bx1Þ
ðk�1Þ! � l

bx1

� �k�1

;

and PDI is equal to �Pw;r=�Pn;r ¼ 1þ r�1. Thus, it depends only on the number of
reactors and is independent of final conversion.

Under nonstationary conditions, in particular at periodic change of input con-
centration, it is possible to obtain even more narrow MWD [42–44] than 1þ r�1,
obtained for stationary process.However, such regime, similar to the regime of equal
distribution of conversions, is hardly practicable on a commercial scale. More
realistic is the isothermal regime (temperature in all reactors is equal). For such a
case, the conversion in the kth reactor is described by a known function [39]
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xk ¼ 1�ðjþ 1Þ�k; ð3:28Þ
and Eq. (3.26) for the number and weight average DPs transforms into

�Pn;k ¼ bxk; �Pw;k ¼ 2b 1� 1þ ðjþ 1Þ�k

jþ 2

( )
: ð3:29Þ

Equation (3.29) shows that in isothermal regime, contrary to the regime of equal
distribution of conversions, the polydispersity does depend on the outlet conversion.
However, as seen from Figure 3.8, the difference becomes noticeable only at high
conversions at the outlet of the series.

Thus, contrary to batch polymerization, obtaining narrow MWDs in continuous
polymerization is rather a complicated problem even in the absence of secondary
reactions. The narrowingMWD is favored by the increasing number of reactors (this
is trivial because the process approaches the batch polymerization) and, in the
isothermal regime,maximumpossible decrease in conversion in thefirst reactor. For
example, in order to obtain polymer with �Pw;r=�Pn;r < 1:3--1:4 at the outlet conversion
at least 90%, it is necessary to maintain the conversion in the first reactor x1 not
higher than 50% and use at least four to five reactors (see Figure 3.9).

An important practical consequence of MWD broadening compared to batch
polymerization is the appearance of a high molecular weight fraction, that is, the
polymerswithDPs several timeshigher than the average values. This is also the result
of the residence time distribution. In real commercial reactors, the fraction of high
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Figure 3.8 Dependence of polydispersity index on final conversion for the regime of equal
distribution of conversion (dashed line) and isothermal regime.
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molecular weight polymer will be even higher due to imperfect stirring, existence of
stagnant zones, and so on. A considerable contribution to the MWD broadening is
made by chain transfer reaction.

3.3.2
Chain Transfer to Solvent

Using stationary Eqs. (3.22) and (3.23), the method of statistical moments enables to
obtain the following expression for the number average degree of polymerization in
the isothermal regime:

�Pn;k ¼ bxk
1þ kcsj

;

�Pw;k ¼ 2b
1�cs

1�ð1�xkÞð1þ csjÞ�1

xkðcsjþ cs þ 1Þ � 2�xk
jþ 2

8<
:

9=
;:

ð3:30Þ

Here, similar to the batch process, cs = kt,kS/kp,kI0 represents the intensity of chain
transfer to solvent in the kth reactor, and the conversions xk are given by formula
(3.28).

The comparison of the average DPs of polymer formed in batch [22] and
continuous [52, 53] polymerization at equal conversions shows that in a CSTR �Pn
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Figure 3.9 Dependence of PDI (solid line) and conversion (dashed line) on the reactor number for
isothermal regime at the given conversion in the first reactor (indicated in the plot).
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is always smaller, especially at very high conversions. At the same time, at moderate
values of cs and final conversion X, the weight average DP can be even greater than
that formed in batch polymerization (Figure 3.10). For three tofive reactors in a series
and cs< 0.5, the average DPs are the highest if X = 80–90%.

The polydispersity index in the first reactor is always equal to 2, independent of
conversion and intensity of chain transfer. This is in contrast to batch polymerization,
where �Pw=�Pn can exceed 4. TheMWDof the polymer formed in thefirst reactor is the
most probable Flory distribution, as for living polymerization in CSTR, but with
a considerably smaller �Pn. Typical MWD curves of the polymer formed in CSTRs are
shown in Figure 3.11.

Due to chain transfer reactions, the concentration of reactive direct chains, that is,
the macromolecules formed via primary initiation, decreases. This worsens the
conditions for subsequent modification reactions, for example, functionalization.
The weight fraction qw of active polymer in the kth reactor is

qw;k ¼ ð1þ csjÞ�k�ð1�xkÞ
ð1�csÞxk

: ð3:31Þ

Equation (3.31) and Figure 3.12 show that at X = 0.9 a considerable part of
macromolecules in the output flow is already inactive at small cs� 0.1. For example,
for one CSTR qw = 0.53 and for three reactors qw = 0.77. In this case, it is possible to
obtain 90% weight fraction of active polymer at 90% conversion only at cs< 0.0123
when one reactor is used and cs< 0.04 for a series consisting of three reactors.
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Figure 3.10 Average degree of polymerization versus conversion at the outlet for cs = 0.1 and
different numbers of reactors.
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Therefore, in nonterminating polymerization the use of CSTR instead of batch
process greatly enhances the role of chain transfer reactions. This is explained by
much smaller operating concentrations of the monomer even in the first reactor. In
some cases, this might be useful, for example, the use of such weak chain-
transferring solvent as ethylbenzene (which has almost no effect on batch polymer-
ization of styrene) in continuous process, which enables one to obtain highmolecular
weight polystyrene with fourfold decreased amount of butyllithium [48]. Similarly,
the control of polybutadiene molecular weight by the addition of 1,2-butadiene is
more pronounced in CSTR than in batch polymerization [40]. And, of course, the use
of CSTR is favorable for manufacturing low molecular weight polymers (e.g.,
nonfunctional liquid rubbers) in chain-transferring solvents. On the other hand,
for the synthesis of high molecular weight polymers even relatively weak chain
transfer can cause certain problems.

3.3.3
Chain Transfer to Monomer

For isothermal conditions, the following expressions were obtained for the average
degree of polymerization in the kth reactor
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Figure 3.11 Comparison of MWDs formed in continuous and batch processes at 90% conver-
sion. cs = 0.5.

118j 3 Computational Studies of Polymer Kinetics



�Pn;k ¼ bxk
1þ cmxk

; �Pw;k ¼ 2b
cm

1� j
xk

Xk
j¼1

ð1�xjÞQk
n¼j

ð1þ cmjð1�xnÞÞ

8>>><
>>>:

9>>>=
>>>;
: ð3:32Þ

Here, as in the batch process, cm ¼ b ktm=kp represents the intensity of chain
transfer to monomer.

Similar to transfer to solvent, thepolydispersity index in thefirst reactor is equal to2;
the increasing number of reactors makes the MWD narrower.

By comparing Eqs. (3.30) and (3.32), one can conclude that at equal final
conversions and intensity of transfer cm= cs, the effect of chain transfer to
monomer on �Pn and �Pw is not so pronounced as in the case of transfer to
solvent (see Figure 3.13). For example, for a single reactor operating at 90%
conversion and at cm= cs = 0.5, the number average degree is 0.16b for chain
transfer to solvent and 0.62b for chain transfer to monomer. One more distinction
of these two reactions is that �Pn, in contrast to chain transfer to solvent, is
independent of the number of reactors in the series being defined only by final
conversion X.

1,00,50,0
0,0

0,5

1,0

batch pmzn

r =3

r = 5

r = 1

qw

gs

Figure 3.12 Dependence of weight fraction of active chains on the intensity of chain transfer to
solvent cs. Final conversion 90%.
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3.3.4
Chain Transfer to Polymer

The most dramatic difference between batch and CSTR polymerization can be
observed under conditions of chain transfer to polymer. Similar to batch polymer-
ization, this reaction does not change �Pn, but leads to the formation of branched
polymer. The average number of branching permacromolecules, rp, calculated from
Eq. (3.23) is

rp;k ¼
cpðkj�xkÞ

1þ kcsjþ cmxk
;

where cp = bktp/kp characterizes the intensity of chain transfer to polymer.
For a single CSTR, the dependence of rp on conversion and cp is compared in

Figure 3.14 with batch polymerization. As seen, at equal conversions and intensity of
chain transfer to polymer, rp is much higher in CSTRs. This difference is the most
significant for a single reactor. Nevertheless, in continuous polymerization, even for
three reactors in the series, rp is 1.5–2 times higher than in batch polymerization.

The relationship between average lengths of backbone and side branches Lb and Ls
also differs from that of batch polymerization. While in batch polymerization, side
branches are considerably shorter than main chains as shown in Section 3.1, in the
first CSTR of the series Lb = Ls, because here all active centers, whether in themain or
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Figure 3.13 Comparison of the effect of chain transfer to monomer and solvent in a single
CSTR. Outlet conversion X = 0.9.
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side chains, have equal probability of growth. In subsequent reactors, the ratio Lb/Ls
decreases but still remains higher than in batch polymerization.

The weight fraction of polymer in side branches, vs ¼ Ws=M0x, for the first
reactor is

vs ¼
cpjx

1þ jðcpx1 þ csÞ
:

As follows from this expression, vs is much higher than in batch polymerization
[26], and at high conversionsmain portion of polymer is located in side branches even
at small cp (see Figure 3.15).

The difference between batch and continuous polymerization is the most pro-
nounced for MWD. The weight average degree of polymerization in the first reactor,
calculated using the method of statistical moments, is

�Pw;1 ¼
2bx1½1þ 2jðcpx1 þ csÞ�

½1þ jðcpx1 þ csÞ�½1�2jðcpx1�csÞ�
: ð3:33Þ

The dependence of the polydispersity index �Pw/�Pn on conversion in the first
reactor is shown in Figure 3.16.

While in batch polymerization the increase in �Pw/�Pn by the end of the process
is only 10–20% even at a relatively high cp = 1, the polydispersity in continuous
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Figure 3.14 Dependence of the reduced average number of branchings arising due to chain
transfer to polymer on conversion.
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processes can achieve very high values even at small intensities of chain transfer
(cp< 0.01). Moreover, the analysis of Eq. (3.33) shows that at certain values of
parameters and conversions �Pw goes to infinity, which means gelation. Equation
(3.33) shows that the critical conversion of gel formation in the first reactor is to be
calculated from the condition

x1;cr ¼
2cs�1þ ½ð2cs�1Þ2 þ 8cp�1=2

4cp
ð3:34Þ

or, in the absence of chain transfer to solvent,

x1;cr ¼
ð8cp þ 1Þ1=2�1

4cp
:

Adetailed analysis shows thatmost dangerous from the viewpoint of gelation is the
first reactor of the series. If �Pw of the polymer formed in the first reactor is finite, it
cannot go to infinity in subsequent reactors. The occurrence of chain transfer to
solvent (or spontaneous transfer) reduces the danger of gelation and, as follows from
Eq. (3.34), at cs> cp no gelation can occur at any conversion. In this regard, it should
be noted that most patents propose to add some quantity of chain transfer agent to
suppress gel formation.
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Figure 3.15 Weight fraction of polymer in side branches versus cp. Solid lines x = 0.9, dashed
lines x = 0.95.
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3.4
Conclusions

This chapter distinctly shows that the results obtained in laboratories in batch
polymerization cannot be uncritically applied to continuous processes. Some com-
plications can arise even for such simple systems as living polymers, but the
difference in the structure of macromolecules formed in batch and continuous
polymerization is most pronounced for chain transfer to polymer. This is explained
by the different conditions of polymer formation. In batch polymerization, the
probability of branching increases with increasing conversion; therefore, the main
part of side branches is formed at high conversion and thus cannot grow to high
lengths owing to lack of free monomer. On the contrary, in a CSTR the monomer
concentration and conversion are constant, and each active center, independent of its
position in the chain, has equal probability of growth. In addition, due to the
distribution in residence time, the degree of polymerization of a small part of
macromolecules, with their age much higher than t, is much larger than �Pn. As
a result, chain transfer will occurmainly on thesemacromolecules. They will contain
a large number of active centers that favors gelation.
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Figure 3.16 Dependence of polydispersity index on conversion in a single CSTR.
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The appearance of an increasing number of processes with long-living active
species, such as generation of Ziegler–Natta or lanthanide-based catalysts or new
cationic and certain free radical polymerizations with controlled chain propa-
gation, makes the results obtained especially important for polymerization
engineering.

Nomenclature

B number of branches in a macromolecule
Ci ¼ kti=kp constant of chain transfer to initiator
Cm ¼ ktm=kp constant of chain transfer to monomer
Cs ¼ kts=kp constant of chain transfer to solvent
fw(l) weight fraction of polymer of length l
i number of active centers in a macromolecule
I0 initiator concentration
ki rate constant of initiation
kp rate constant of propagation
kri rate constant of reinitiation
ksp rate constant of spontaneous chain transfer
ktm rate constant of chain transfer to monomer
ktp rate constant of chain transfer to polymer
kts rate constant of chain transfer to solvent
l number of monomer units in a macromolecule
Lb average length of backbone
Ls average length of side branches
m initiator functionality
M monomer concentration
M0 initial monomer concentration
P(l) concentration of dead macromolecules with l monomer units
�Pn number average degree of polymerization
�Pw weight average degree of polymerization
�Pz z-average degree of polymerization
r number of reactors in a series of CSTR
Rk(b,i,l) macromolecule with b branching, i active centers and l monomer

units
R(l) concentration of growing macromolecules with l monomer units
S solvent concentration

x ¼ M0�M
M0

monomer conversion
xk conversion in the kth reactor
X conversion at the outlet from the series of CSTR

a ¼ ktsS
kpM0

parameter characterizing rate of chain transfer to solvent

b ¼ M0=I0 degree of polymerization of ideal living polymer at full conversion
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cm= bCm intensity of chain transfer to monomer
cs =ab intensity of chain transfer to solvent
cp = bCp intensity of chain transfer to polymer
j ¼ kpI0t effective parameter defining monomer conversion in a CSTR
rm average number of branching per monomer unit
rp average number of branching per polymer chain
t average residence time in one reactor
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4
Computational Polymer Processing
Evan Mitsoulis

4.1
Introduction

4.1.1
Polymer Processing

Polymer processing is defined as the �engineering activity concernedwith operations
carried out on polymericmaterials or systems to increase their utility� [1]. Primarily, it
deals with the conversion of raw polymeric materials into finished products,
involving not only shaping but also compounding and chemical reactions leading
to macromolecular modifications and morphology stabilization, and thus to �value-
added� structures [2]. The subject matter of polymer processing in general has been
superbly laid out in the 1979monograph by Tadmor andGogos andhas been updated
significantly in the 2006 second edition [2]. Notable additions to the subject are the
two very recent books by C.D. Han on rheology and processing of polymers [3]. They
provide a wealth of information on rheological modeling of various polymer
processes and an extensive list of relevant references. An excellent overview article
has also appeared [4], where important up-to-date information on the polymer-
processing industry is given, together with the most important developments in
various polymer processes, and amost informative list of references and textbooks on
the subject for further reading.

Synthetic polymers can be classified into two categories. Thermoplastics (by far the
largest volume) can be melted by heating, solidified by cooling, and remelted
repeatedly. Major types are polyethylene (PE), polypropylene (PP), polystyrene (PS),
polyvinyl chloride (PVC), polycarbonate (PC), polymethyl methacrylate (PMMA),
polyethylene terephthalate (PET), and polyamide (PA, nylon). Thermosets are
hardened by the application of heat and pressure, owing to cross-linking, that is,
the creation of permanent three-dimensional networks. They cannot be softened by
heating for reprocessing. Bakelite, epoxies, and most polyurethanes are thermosets.
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This chapter is devoted to the processing of thermoplastics and its computations.
Thermoplastics are usually processed in themolten state.Molten polymers have very
high viscosity values and exhibit shear-thinning (pseudoplastic) behavior. As the rate of
shearing increases, the viscosity decreases, owing to alignments and disentangle-
ments of the long molecular chains. The viscosity also decreases with increasing
temperature. In addition to the viscous behavior, molten polymers exhibit elasticity.
Elasticity is responsible for a number of unusual rheological phenomena [5–7],
including stress relaxation and normal stresses. Slow stress relaxation causes frozen-
in stresses in injection-molded and extruded products. Normal stress differences are
responsible for someflow instabilities during processing and also extrudate swelling,
that is, the significant increase in cross-sectional area when a molten material is
extruded out of a die.

The most important polymer processing operations are extrusion and injection
molding (Vlachopoulos and Strutt, 2003). Extrusion is material-intensive and injec-
tion molding is labor-intensive. Both these processes involve the following sequence
of steps: (a) heating andmelting the polymer, (b) pumping the polymer to the shaping
unit, (c) forming the melt into the required shape and dimensions, and (d) cooling
and solidification. Other processing methods include calendering, roll coating, wire
coating, fiber spinning, film casting, film blowing, blow molding, thermoforming,
compression molding, and rotational molding (Figure 4.1).

4.1.2
Historical Notes on Computations

All these processes have been analyzed computationally in varying degrees of
complexity. The mathematical analysis of the processes has followed the develop-
ment of high-speed digital computers. Computational polymer processing was first
tackled in the 1950s using analytical solutions for a few tractable problems, such as
flows in channels with the power-lawmodel of pseudoplasticity [8]. Then, the advent
of digital computers saw numerical solution of simple problems in simple geom-
etries, usingmainly the finite differencemethod (FDM) due to its simplicity.With an
increase in computer power, the 1970s saw the utilization of themore involved finite
element method (FEM), which proved more capable in handling complicated
geometries and boundary conditions (BCs) [9]. Two-dimensional (2D) flow problems
in polymer processing were then handled for the first time [10]. The 1980s saw an
overwhelming majority of computational works dealing with viscoelasticity (see book
by Crochet et al. [11], and a review article by Crochet and Walters [12]). The efforts
were directed toward overcoming the high Weissenberg number (Wi) problem
(HWNP) [13], which did not allow solution of the viscoelastic models above a critical
Wi number on the order of 1 (see below), where most phenomena were not very
different from their inelastic counterparts. As expected, and due to a gigantic effort by
many researchers around the world, this problem was eventually resolved success-
fully by using numerical schemes best suited for hyperbolic equations [14] in the late
1980s and early 1990s. Crochet�s group and others then managed to reach highly
viscoelastic numerical solutions in the range 1<Wi< 100 [15].
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From these significant efforts on viscoelasticity, the first 2D and then 3D FEM
codes developed into commercial packages, with varying degrees of success, in the
1990s. Among these, some software particularly suited for polymer processing were
POLYFLOW [16] and POLYCAD [17]. More recently, polymer processing software
were made available from www.compuplast.com [18] and www.polyXtrue.com [19].
Other software were more generic in nature for viscous fluids, such as FIDAP,
FLUENT, NEKTON, PHOENICS, and so on [20]. All these software use sophisticated
mesh generation schemes and solvers for solving the governing differential equa-
tions alongwith appropriate boundary conditions. The FEM is the numericalmethod
of choice for most packages, while inroads have also been made with the finite
volume method (FVM) and the boundary element method (BEM).

This chapter reviews somemajor contributions regarding polymermelt flows that
appear in polymer processing and discusses several issues (usually still unresolved)
and their influence in polymer processing. Due to the vastness of the subject
matter, the outlay of what follows is rather personal and subjective, but it is hoped
that it will add some focus to the present state of affairs in polymer processing
computations.

Figure 4.1 Photographs of various polymer processes. (From various issues of Plastics
Engineering.)
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4.2
Mathematical Modeling

4.2.1
Governing Conservation Equations

In order to study polymer flows in processing equipment, it is essential to consider
first the governingflowequations. Theflowof incompressiblefluids (suchaspolymer
solutions and melts, at least in situations where they are considered as incompress-
ible for pressures below 100MPa) is governed by the conservation equations ofmass,
momentum, and energy [2, 6, 21], that is,

r � v ¼ 0; ð4:1Þ

rv � rv ¼ �rpþr � t; ð4:2Þ

rcpv � rT ¼ kr2T þ t : rv; ð4:3Þ
where v is the velocity vector, p is the scalar pressure, t is the extra stress tensor, r is
the density, cp is the heat capacity, k is the thermal conductivity, and T is the
temperature.

The above system of conservation equations is usually called the Navier–Stokes
equations in fluid mechanics.

4.2.2
Constitutive Equations

The above system of conservation equations is not closed for non-Newtonian fluids
due to the presence of the stress tensor t. The required relationship between the
stress tensor t and the kinematics (velocities and velocity gradients)must be given by
appropriate rheological constitutive equations, and this is an eminent subject in
theoretical rheology [5, 6, 22]. A cartoon showing the importance of stresses for
polymers has been put forward in Figure 4.2, where a zebra is losing its stripes under
stress. The implicit message is that polymers under stress exhibit unusual, unex-
pected, and counterintuitive behavior or that the wrong constitutive equation may
give stresses totally inappropriate for a polymer undergoing deformation and flow.

For purely viscous fluids, the rheological constitutive equation that relates the
stresses t to the velocity gradients is the generalizedNewtonianmodel [5, 6, 21] and is
written as

t ¼ gð _cÞ _c; ð4:4Þ

where _c ¼ rvþrvT is the rate-of-strain tensor and gð _cÞ is the apparent viscosity
given in its simplest form by the power-law model [5]

gð _cÞ ¼ K _cn�1; ð4:5Þ
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where K is the consistency index and n is the power-law index (usually 0< n< 1,
representing a degree of shear-thinning). Another popular model for viscosity
computations, among others, is the Carreau model [5] given by

gð _cÞ ¼ g1 þ g0½1þðlC _cÞ2�
n�1
2 ð4:6Þ

and the Cross model [23] given by

gð _cÞ ¼ g1 þ g0

1þðlC _cÞ1�n : ð4:7Þ

In the above equations, g0 is the zero shear rate viscosity, g1 is the infinite shear
rate viscosity, lC is a time constant, and n is again the power-law index. The
magnitude _c of the rate-of-strain tensor is given by

_c ¼
ffiffiffiffiffiffiffiffiffi
1
2
II _c

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð _c : _cÞ

r
; ð4:8Þ

where II _c is the second invariant of the rate-of-strain tensor. The Carreau model
describes well the shear-thinning behavior of polymer solutions and melts for all
shear rates and exhibits two plateaus for low and for high shear rates, while for
intermediate to high shear rates it represents well the power law. For example, for a
low-density polyethylene (LDPE) melt, experimental data at different temperatures
are fitted well with the Carreau model, as evidenced in Figure 4.3.

The effect of temperature on the viscosity is of primordial importance in polymer
processing, where tight control of temperatures is required for a successful

Figure 4.2 The stress state of a polymer melt is essential for any computation. A cartoon
showing a zebra losing its stripes is a good analogue for the computation of a polymer melt
with the wrong model.
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operation. The viscosity as a function of temperature is given by an exponential
relationship, according to

gT ¼ g0 exp ½�bT ðT�T0Þ�; ð4:9Þ
where bT is a temperature-shift factor in the expression that relates viscosity to
temperature andg0 is the viscosity at a reference temperature,T0. The values ofbT for
polymers are usually in the range of 0.01–0.04/�C, but occasionally they may reach
0.1/�C or more for some polymers.

Another expression for the temperature-dependence of the viscosity is the Ar-
rhenius law [21]:

gT ¼ g0 exp
Ea

Rg

1
T
� 1
T0

� �� �
; ð4:10Þ

where Rg is the ideal gas constant (¼ 8.13 J/(Kmol)), Ea is the activation energy
(J/mol), T is the absolute temperature (K), and T0 is the absolute reference temper-
ature (K).

Then combining Eqs. (4.8) and (4.9) yields

bT ¼ Ea

Rg T T0
: ð4:11Þ

Non-Newtonian fluids (polymer solutions and melts) are rheologically complex
materials, which exhibit both viscous and elastic effects, and are therefore called
viscoelastic [6]. Regarding viscoelasticity, a plethora of constitutive equations
exist with varying degrees of success and popularity. Standard textbooks on the

Figure 4.3 Non-Newtonian viscosity of an LDPE melt at several temperatures [5].
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subject [5, 6, 22, 24–26] list categories of these equations and their predictions in
several types of flow and deformation. There are constitutive equations of differential
type, of integral type, molecular models, and so on. From the differential models,
eminent in the early 1980s were the upper convected Maxwell (UCM) and the
Oldroyd-B models. Then, in the 1990s the Phan-Thien/Tanner (PTT) and the
Giesekus models were among the most popular, while in the 2000s the �pom-pom�
model has been themodel of choice for computations. From the integralmodels, theK-
BKZmodel (from the initials of Kaye, Bernstein, Kearsley and Zapas) has been by far
the most popular. This subject matter is more fully explored in Chapter 1.

As an example of a popular viscoelastic constitutive equation used in the past 25
years, which possesses enough degree of complexity so as to capture as accurately as
possible the complex nature of polymeric liquids, we present here the K-BKZ integral
constitutive equation with multiple relaxation times proposed by Papanastasiou
et al. [27] and further modified by Luo and Tanner [28]. This is often referred to in the
literature as K-BKZ/PSM model (from the initials of Papanastasiou, Scriven,
Macosko) and is written as

t ¼ 1
1�q

ðt
�1

XN
k¼1

Gk

lk
exp � t�t0

lk

� �
HðIC�1 ; IIC�1Þ C�1

t ðt0Þ þqCtðt0Þ
� �

dt0; ð4:12Þ

where t is the stress tensor for the polymer, lk and Gk are the relaxation times and
relaxation moduli, respectively, N is the number of relaxation modes, q is a material
constant, Ct is the Cauchy–Green tensor, C�1

t is the Finger strain tensor, and IC�1 ,
IIC�1 are its first and second invariants. The function H is a strain-memory (or
damping) function, and the following formula was proposed by Papanastasiou
et al. [27]:

HðIC�1 ; IIC�1Þ ¼ a

ða�3Þþ bIC�1 þð1�bÞIIC�1
; ð4:13Þ

where a and b are nonlinear model constants to be determined from shear and
elongational flow data, respectively. The q-parameter (a negative number) relates the
second normal stress difference N2¼ t22–t33 to the first N1 according to

N2

N1
¼ q

1�q
: ð4:14Þ

The linear viscoelastic storage and loss moduli, G0 and G00, can be expressed as a
function of frequency v as follows:

G0ðvÞ ¼
XN
k¼1

Gk
ðvlkÞ2

1þðvlkÞ2
; ð4:15aÞ

G
00 ðvÞ ¼

XN
k¼1

Gk
ðvlkÞ

1þðvlkÞ2
: ð4:15bÞ

These functions are independent of the strain-memory function, and only lk and
Gk can be determined from dynamic data of the viscoelastic moduli. As an example,
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we give in Figure 4.4a and Table 4.1 the fitting of experimental G0 and G00 data for
another popular benchmark LDPE melt (the IUPAC-LDPE, melt A) [29], where it is
shown that a spectrum of eight relaxation times, ranging from 10�4 to 103 s is able to
capture well the data at all frequencies.

The strain-memory function is derived from the first and second invariants
of the Finger strain tensor. For simple shear flow, the strain-memory function is
given as

HðIC�1 ; IIC�1Þ ¼ a

aþ c2
; ð4:16Þ

where c is the shear strain. The strain-memory function in simple shearflowdepends
on a but not on b. This is expected since a is viewed as a shear parameter, while b is
viewed as an elongational parameter.

The above constitutive equation has been successfully used for fitting the data for
many polymer solutions andmelts [27, 30]. Apart from fitting well theG0 andG00, the
model can give a good fit for other rheological data, as shown in Figure 4.4b, with the
values of the model for parameters a, b, and q given in Table 4.1. The full fitting
involves the determination of the relaxation spectrum (parameters N, lk, and Gk)
from experimental data on the storage and loss moduli, G0 and G00. Then, the
nonlinear parameters, a and b, are determined from shear and elongational data, in
this case from shear viscosity, gS, first normal stress difference, N1, and uniaxial
elongational viscosity, gE. The value of q is usually set to be a small negative number
(around�0.1) according to experimental evidence [28]. Other extensional viscosities
in planar extension,gP, and in biaxial extension,gB, are predicted by themodel. These
predictions can also be extended to transient effects for all rheological functions at
different times [27].

This integral model has been used in numerical flow simulations for a number of
flowproblemsmore or less successfully (see Refs [28, 31–34]). A recent review [35] on
the subject gives a list of problems solved with this model through numerical
simulation, including many flows from polymer-processing operations. Other flows
solved with a number of different constitutive equations can be found in a recent
book on computational rheology [36].

4.2.3
Dimensionless Groups

Before proceeding with the boundary conditions, it is interesting to examine the
relevant dimensionless numbers in polymer processing. The dimensionless groups
are calculated at a reference temperature, here taken as the temperature of the
process, T0. As a characteristic length, it is usually assumed the smallest dimension,
for example, in a capillary tube its radius, R. As a characteristic speed, it is usually
assumed the average velocity defined by

V ¼ Q=pR2: ð4:17Þ

134j 4 Computational Polymer Processing



Frequency, w (s-1) 
10-4 10-3 10-1 10-1 100 101 102 103

10-4 10-3 10-1 10-1 100 101 102 103

Lo
ss

 M
od

ul
us

, G
" 

(P
a)

S
to

ra
ge

 M
od

ul
us

, G
' (

P
a)

10-1

100

101

102

103

104

105

106

10-1

100

101

102

103

104

105

106

G'

G"

(a)

Shear  (Extensional)  Rate, g (e) (s-1)  

S
he

ar
  (

E
xt

en
si

on
al

) 
 V

is
co

si
ty

, h
S
, (

h E
, ,

 h
P
, h

B
) 

(P
a.

s)
  

100

102

104

105

106

107

F
irs

t  
N

or
m

al
  S

tr
es

s 
 D

iff
er

en
ce

,  
N

1 
  (

P
a)

100

102

104

105

106

107

hS

N1

(b)

hE

hP

hB

Figure 4.4 Rheological data and their best fit for the IUPAC-LDPE melt-A using the K-BKZ/PSM
integral constitutive equation with eight relaxation modes and the data of Table 4.1 [32]. Symbols
correspond to experimental data [29], solid lines correspond to their best fit.
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A characteristic apparent shear rate is then defined according to

_ca ¼ V=R ð4:18Þ
and a characteristic viscosity is given as a function of apparent shear rate and
reference temperature, that is,

�g ¼ gð _ca;T0Þ: ð4:19Þ

For a power-law model, the characteristic viscosity can be found as

�gðT0Þ ¼ t

_ca
¼ K _cn�1

a ; ð4:20Þ

where the material parameters K and n are calculated at T0.
The relative importance of inertia forces in the equation ofmomentum is assessed

by the Reynolds number, defined for Newtonian fluids by

Re ¼ rVD
m

; ð4:21Þ

where D is the characteristic diameter (¼ 2R).
For power-law fluids, Boger and Walters [7] gives a generalized Re�

Re� ¼ rV2�nDn

8n�1K

4n
3nþ 1

� �n

: ð4:22Þ

It is noted that for most polymer melt flows the Re number is usually small, in the
range of 0.0001–0.01. Therefore, these flows are inertialess or creeping.

For viscoelastic fluids with a relaxation time l, several dimensionless groups can be
defined, but these can be seen as being equivalent [21]. For example, the Deborah
number (De) is defined as

De ¼ l

tp
¼ l _c; ð4:23Þ

Table 4.1 Material parameter values used in Eq. (4.12) for fitting the data of the IUPAC-LDPE
(sample A) melt at 150 �C (a¼ 14.38, q¼�1/9) [28].

k lk (s) Gk (Pa) bk (�)

1 10�4 1.29� 105 0.018
2 10�3 9.48� 104 0.018
3 10�2 5.86� 104 0.08
4 10�1 2.67� 104 0.12
5 100 9.80� 103 0.12
6 101 1.89� 103 0.16
7 102 1.80� 102 0.03
8 103 1.00� 100 0.002
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where l is amaterial relaxation time, tp is a process relaxation time usually taken to be
equal to 1/ _c, and _c is a shear rate usually evaluated at the channel wall. The
Weissenberg number (Wi, also written as We or Ws) is defined as

Wi ¼ l
V
R
: ð4:24Þ

The recoverable shear or stress ratio (SR) is defined as

SR ¼ N1;w

2tw
; ð4:25Þ

where N1,w¼ t11–t22 is the first normal stress difference and tw is the shear stress,
both evaluated at the channel wall. The equivalence is evident when we take

_c ¼ V=R; N1;w ¼ Y1 _c
2; tw ¼ g _c; l ¼ Y1=2g; ð4:26Þ

whereY1 is the first normal stress difference coefficient and g is the shear viscosity.
The case of De¼Wi¼ SR¼ 0 corresponds to inelastic fluids (l¼Y1¼ 0), while it is
understood that De¼Wi¼ SR¼ 1 corresponds to the elastic effects being as impor-
tant as the viscous effects, and for De¼Wi¼ SR> 1 the elastic effects dominate the
flow over the viscous effects.

The relative importance of surface tension effects (usually for polymer solutions) is
assessed by the capillary number defined by

Ca ¼ mV
c

; ð4:27Þ

where c is the surface tension. For very viscous fluids, such as polymer melts, the
surface tension effects are negligible (Ca ! 1), and the boundary terms, including a
force balance with the capillary forces, can be set to zero.

The relative importance of each term in the energy equation is assessed through a
variety of dimensionless groups [37, 38].

The Peclet number is defined by

Pe ¼ rCpVD

k
: ð4:28Þ

The Peclet number is a measure of convective heat transfer with regard to
conductive heat transfer. High Pe values indicate a flow dominated by convection.
From a numerical point of view, these flows are notorious because of instabilities that
manifest themselves in the form of spurious oscillations in the temperature field.
Special upwinding techniques must then be used to remedy the oscillations [37].

Another group related to Pe is the Graetz number defined by

Gz ¼ rCpVD2

kL
¼ Pe

D
L
; ð4:29Þ

where L is the axial length of the die. The Graetz number can be understood as the
ratio of the time required for heat conduction from the center of the capillary to the
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wall and the average residence time in the capillary. As with Pe, a large value of Gz
means that heat convection in the flow direction is more important than conduction
toward the walls.

The Nahme number is defined by

Na ¼ bT�gV
2

k
: ð4:30Þ

The Nahme number is a measure of viscous dissipation effects compared to
conduction; hence, it is an indicator of coupling of the energy and momentum
equations. For values ofNa> 0.1–0.5 (depending ongeometry and thermal boundary
conditions), the viscous dissipation leads to considerable coupling of the conserva-
tion equations, and a nonisothermal analysis is necessary.

The relative importance of heat transfer mode at the boundaries is expressed in
terms of the dimensionless Biot number defined by

Biot ¼ qT
qr

� �
w

ri
ðTs�TwÞ ; ð4:31Þ

where ri is the local radius (gap), Ts is some temperature of the surroundings, and Tw
is the local boundary wall temperature. A high value of Biot (>100) approaches
isothermal conditions (Biot¼1), while a low value of Biot (<l) describes poor heat
transfer to the surroundings (nearly adiabatic case, for which Biot¼ 0). Usual Biot
values in highly viscous flows inside dies or other processing equipment range
between 10 and 100 [38].

For engineering calculations, the specific heat flux q is often described by the
Nusselt number

Nu ¼ hTD
k

; ð4:32Þ

where hT is a heat transfer coefficient. However, as explained by Winter [38], the
Nusselt number is not adequate for describing the wall heat flux in flows with
significant viscous dissipation.

4.2.4
Boundary Conditions

The solutionof the conservationEqs. (4.1–4.3) and constitutive Eq. (4.4) (or Eq. (4.12))
is possible only after a set of boundary conditions has been imposed on the flow
domain. Boundary conditions for flow analysis are highly dependent on the problem
at hand, and as such they defy a complete description for all polymer processing
applications. However, a rough guide encompassing most of the types of boundary
conditions used in the past follows.

For steady-state problems, the set of equations is elliptic for viscous flows and
elliptic-hyperbolic for viscoelastic flows. Elliptic problems have boundary conditions
everywhere in the perimeter of the domain, while in hyperbolic problems boundary
conditions are more difficult to determine and may need some degree of trial
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and error. This is especially true at the outflowboundaries, which aremore often than
not �artificial� or �computational� boundaries, arbitrarily set to reduce the compu-
tational domain.

Forunsteady-state problems, the set of equations is parabolic due to time, and it also
requires initial conditions at time t¼ 0. Then, the solution proceeds in time until a
steady-state is reached (if such exists).

The boundary conditions can be either �fixed� or �natural.� These types refer,
respectively, to the primary variables (velocities, pressures, and temperatures) or
variables involving their derivatives (stresses, surface tractions, heat fluxes, etc.).

The usual flow boundary conditions in polymer processing are as follows:

(a) Along the domain entry, a fully developed velocity profile is imposed, according
to the assumed constitutivemodel and corresponding to the apparent shear rate
_ca, which is in turn related to the volumetric flow rate Q. If viscoelasticity is
involved through some viscoelastic constitutive model, then the fully developed
stress profiles have to be imposed as well.

(b) Along the center line (if one exists, as is the case in axisymmetric flows), and
because of symmetry, the radial velocity component is set to zero, as well as the
shear stresses.

(c) Along solid walls, usually the no-slip velocity boundary condition is imposed,
which states that the velocity of the fluid is that of the boundary, that is, zero if
the boundary is stationary or nonzero if the boundary is moving. In cases where
thefluid slips at thewall, as is the casewith somepolymers [39], then a slip lawhas
tobeassumedbasedonmeasurements,whichrelates the tangential velocity to the
tangential componentsof thestress tensor,while thenormal velocity is set to zero.

(d) Along the domain exit, it is not clear what are the correct or physical boundary
conditions for all situations. The best candidate appears to be the �open� or
�free� boundary condition advocated by Papanastasiou et al. [40], which basically
assumes an extrapolation of the governing equations to the artificial exit
boundary. However, the vast majority of the computations assume a long
enough domain, where they impose zero surface tractions and zero transverse
velocity (assuming implicitly a fully developed profile at exit). For viscoelastic
models, fully developed stresses based on the model at hand are used, unless
there is a known force or velocity imposed at the exit boundary.

(e) In problems with free surfaces, and especially for polymermelts due to their very
viscous character (zero surface tension assumed), zero surface tractions are
imposed along with a kinematic boundary condition of no flow normal to the
surface, that is, n�v¼ 0, where n is the unit outward normal vector to the surface.

For the thermal boundary conditions, the situation is even more difficult to describe
due to themany types of thermal conditions used in polymer processing.However, in
the vast majority of computations, the following set of boundary conditions is a good
representation of what has been applied, based on the previous flow sets:

(a) Along the domain entry, a set (quite often constant) temperature profile is
assumed, sometimes based on measurements or settings.
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(b) Along the center line (if one exists, as is the case in axisymmetric flows), and
because of symmetry, the heat flux is set to zero.

(c) Along solid walls, either isothermal walls (a set temperature) are assumed or
adiabatic walls (heat flux set to zero) or a heat balance between the fluid and the
solid boundary [37, 38]. In the latter case, a local Biot number can then be
calculated, which is neither 0 (adiabatic walls) nor1 (isothermal walls) butmay
range between 10 and 100. Other types of wall thermal boundary conditions
involve a known heat flux at the wall based onmeasurements of an effective heat
transfer coefficient, but this is also tantamount to having a nonzero local Biot
number.

(d) Along the domain exit, the same comments apply as above, regarding the flow
BCs, with the best candidate being the �open� or �free� BC. However, the
majority of computational problems have assumed a long enough domain so as
to impose a zero heat flux at exit.

(e) In problemswith free surfaces, a zero heatflux is usually imposed, that is, n�q¼ 0,
or a heat balance according to

qn ¼ hTðTf�TaÞ; ð4:33Þ

where hT is a heat transfer coefficient to the ambient cooling medium (e.g., air)
of temperature Ta, and Tf is the unknown free surface temperature. A more
elaborate set of conditions has been applied to the process of film blowing,
where turbulent air blowing outside and inside the film bubble requires a
sophisticated coupling and interaction between the two fluids (blowing air and
stretched polymer melt) [41–43].

For unsteady-state processes, and in particular in injection molding, initial
conditions are also needed, while the boundary conditions applied inside the mold
must invariably take into account the interaction between the mold and the flowing
and solidifying polymermelt. The variety of such conditionsmakes a full description
beyond the scope of this chapter. The interested reader can finduseful information in
the manuals of custom-made commercial computer software, such as MOLD-
FLOW [44], and in a recent thesis [20].

4.3
Method of Solution

Asmentioned inSection4.1, computationalpolymerprocessingwasfirst tackled in the
1950s using analytical solutions, and since the 1960s numerical solutions have been
madepossiblewith a variety of numericalmethods. TheFEM is thenumericalmethod
of choice for most works and it is included in most commercial packages, which are
able to handle polymer-processing flows. We will give here in some more detail the
requirements for solving viscous and viscoelastic polymer flow problems with FEM.

Implementation of a finite element formulation for the mass and momentum
equations uses the primitive variables approach, that is, velocities and pressure (in 2D,
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this is called u-v-p formulation). For viscoelastic formulations, the stresses are also
needed as discrete variables, and this leads to amixed variable approach (called u-v-p-t
formulation or EVSS for elastic–viscous split stress). A better formulation also
requires the rates of strain as extra variables, thus leading to an enhanced mixed
variable approach (called u-v-p-t-g formulation or DEVSS-G for discontinuous elas-
tic–viscous split stress–strain rate). Variations of these also exist. For the energy
formulation, temperature T is the single primitive field variable. Special streamline
upwind/Petrov–Galerkin (SU/PG) techniques are used for highly convective flows
(high Pe numbers) [37]. More details about the SU/PG scheme can be found in the
landmark paper by Marchal and Crochet [14].

At this point, it is perhaps instructive to give a feel of the complexity of solving flow
problems in polymer processingwith viscous or viscoelastic constitutivemodels, and
in the latter case the differences between using differential and integral models to
describe polymer melts. We take as an example a 2D flow problem and the FEM
employing a typical 9-node Lagrangian quadrilateral element, as shown in Figure 4.5.
A viscous problem, based on the u-v-p formulation, would require 22 dof per element
(9u, 9v, and 4p variables). If the flow problem is also coupled with the thermal
problem, then we have 31 dof/element (9T variables). A serendipity element is
cheaper as it has only 8 nodes (it lacks the centroid node), thus giving 20(28) dof/
element (flow/þ thermal problem).

Now for a viscoelastic problem, with one (1) relaxation mode, the stresses and the
strain rates have to be added to the nodal unknowns. In 2D flows, we distinguish
betweenplanar (txx, tyy, txy; gxx, gyy, gxy) and axisymmetricflows (trr, tzz, trz, tqq; grr, gzz,
grz, gqq). These extra nodal unknowns are defined at the corner nodes (due to linear
interpolation), thus adding 4� 3¼ 12 stresses and 4� 3¼ 12 strain rates, a total of 24
extra dof (planar); and 4� 4¼ 16 stresses and 4� 4¼ 16 strain rates, a total of 32
dof (axisymmetric). Thus, the total dof/element are 22 þ 24� 46(55) dof/element
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Figure 4.5 A 9-node Lagrangian isoparametric finite element used in the u-v-p-T formulation of
2D polymer melt flows [14, 37].
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(flow/þ thermal planar problem) and 22 þ 32¼ 54(63) dof/element (flow/þ ther-
mal axisymmetric problem). Note that these numbers are for a single relaxation
model.

For the eight relaxation modes describing the IUPAC-LDPE of Figure 4.4, the
corresponding numbers become 214(223) dof/element (flow/þ thermal planar
problem) and 278(287) dof/element (flow/þ thermal axisymmetric problem). These
numbers are collectively given in Table 4.2, and are necessary for solving any problem
with a differential viscoelastic model, for example, the popular �pom-pom� model.

It is then obvious that even for a sparse FEM mesh of a 1000 elements the total
numbersofdof climbs toO(105). So, it is not surprising that even in today�s computers
many viscoelastic problems have not been solved with the full spectrum and differ-
ential viscoelastic models (such as the �pom-pom�) even for simple 2D flows.

The situation is different with integral constitutive models, such as the K-BKZ/
PSM model of Eq. (4.12). In this case, the formulation remains u-v-p(-T) with the
same number of dof/element as in viscous flows. The stresses are then calculated a
posteriori along streamlines according to the integral of Eq. (4.12) using a 15-point
Gauss–Laguerre quadrature suitable for exponentially fading functions [45]. The
summation used in the integration is very fast with digital computers, and it does not
make much difference in computational time by using either one or eight relaxation
modes. Most of the computational time is used for the solution of the u-v-p problem,
while the a posteriori computation of the stresses takes approximately an equal
amount of CPU time. Thus, it was possible to solve many 2D flow problems by the
year 2000 in the personal computers (PCs) of the day, as evidenced in a series of
papers by the author and his coworkers [35].

As an example, we give here the case of flow through a contraction of the IUPAC-
LDPE melt-A, using Eq. (4.12) with eight relaxation modes and the data of Table 4.1,

Table 4.2 Degrees of freedom analysis needed for differential versus integral constitutive models
for the 2D finite element of Figure 4.5.

Integral models Differential models

u-v-p(-T) (dof/element) u-v-p(-T)
(dof/element)

tk (dof/element) gk (dof/element)

Planar Axisym. Planar Axisym.

8u 9u 4txx 4trr 4gxx 4grr
8v 9v 4tyy 4tzz 4gyy 4gzz
4p 4p 4txy 4trz 4gxy 4grz
8T 9T — 4tqq — 4gqq

20(28) 22(31) 12 16 12 16

1-mode total (planar): 22(31) þ 12 þ 12¼ 46(55)
1-mode total (axisym.): 22(31) þ 16 þ 16¼ 54(63)
8-mode total (planar): 22(31) þ 8� 12 þ 8� 12¼ 214(223)
8-mode total (axisym.): 22(31) þ 8� 16 þ 8� 16¼ 278(287)
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and employing the computational method of streamline integration developed by
Luo and Mitsoulis [34]. In the year 2000, working on a PC Pentium-II at 300MHz
with 128MB RAM, for a mesh with 640 elements it was taking 20 CPU s for
the frontal solution of the u-v-p system of equations and another 20 CPU s for the
calculation of stresses for each iteration. To get a solution at an elevated flow
rate (corresponding to an apparent shear rate _ca ¼ 100 s�1), about 1000 iterations
were needed for a total of 11 CPU h. In today�s computers (Intel Core2 Duo at
2� 2.66GHz with 2GB RAM), the same problem can be solved in the same overall
time but with 10 times the number of finite elements (6400) and the results are the
same, just smoother. Thus, it has been possible to solve viscoelastic problems of
multimodefluids, such as polymermelts, inmore complex geometries, such as those
encountered in polymer processing, as will be discussed in the following section.

4.4
Polymer Processing Flows

Polymer processing flows may be classified into steady-state flows (e.g., extrusion and
its subsequent processing flows, such as roll- or wire-coating, calendering, fiber
spinning, film blowing, film casting, etc.) and unsteady-state flows (e.g., injection
molding and other molding processes, such as blowmolding, thermoforming, etc.).
In the first classification, we deal with continuous processing, where time is not of
essence, and is not part of the solution. In the second classification, we deal with
discontinuous (or batch) processes, where a process cycle is completed, and where
time is of primary essence, as each plastic object is produced in a set time interval.

4.4.1
Extrusion

4.4.1.1 Flow Inside the Extruder
The flow inside the extruder has been a challenge computationally from the early
1960s when it was possible to solve numerically simple problems, not amenable to
analytical solutions. The complicated nature of the extruder channel with its helical
screw configuration and the different zones of solids-conveying, melting, and melt-
conveying (see Figure 4.6) have rendered its modeling and simulation a formidable
intellectual task. Accordingly, some brilliant minds have come to the fore and
answered the challenge, more or less successfully. The early model of Tadmor [2]
has seen many successful applications, and it has been built upon to render it more
complete and user-friendly by many others [2]. It is still used in the industry for the
analysis and design of screws and extruders due to its simplicity and ease of
calculations. For example, the software package NEXTRUCAD [17] uses the finite
volume method for simulating solids transport, melting, and metering in single-
screw extruders. It supports conventional single-flighted screws, barrier screws of
Maillefer/Uniroyal types and parallel-flight designs, and screws with mixing ele-
ments. The simulation results include solid-bed profile, pressure build-up, and bulk
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temperature along the screw axis, along with extruder output, power requirement,
torque, and average residence time. Typical results are of the form shown in
Figure 4.7. These results can be had in a matter of a few minutes in modern PCs.

More complicated models have been published in the open literature [47], while
the first fully 3D computational effort of the whole extruder was made in 1984 [48]
based on the assumption of a very viscous fluid even for the solids-conveying zone.
Since then, more computational effort has been expended on the subject. For
example, the work of Moysey and Thompson [49] uses the discrete element method
to study interactions of polymer pellets as they flow in the solids-conveying zone.
These authors have shown interesting patterns in the extruder, which can be used for
analysis anddesign, albeit on amuchmore demanding basis due to the full 3Dnature
of the geometry.

The related subject of modeling and computations in a twin-screw extruder
(Figure 4.8), its kneading elements, and its mixing characteristics has been under-
taken by a notable number of researchers. Starting with the monograph of

Figure 4.6 Single-screw extrusion: (a) photograph of an extruder [16] and (b) schematic of the
extruder and its zones.
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Figure 4.7 Typical results from a commercial software (EXTRUCAD) for extruder simulation
showing the development of solids bed, pressure, and temperature as a function of the number of
turns of the screw [17].

Figure 4.8 Twin-screw extrusion: (a) simulation of the pressure drop in the system and (b)
simulation of particle tracking in the intermeshing chamber of the extruder [16].
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Janssen [50], White and his group [51] and Funatsu and his group [52] have worked
extensively on the subject and providedmany clues about the relative features of twin-
screw extrusion and its advantages and drawbacks. For example, Figure 4.9 shows the
progression of particles in a fully 3D simulation at different time frames [52]. The
important issue of deformation and mixing has been undertaken by Manas-Zloc-
zower and her group [53, 54] who in a series of papers have analyzed what happens
inside a twin-screw extruder and how its design and operating conditions affect the
polymer melt under consideration.

In all these cases of simulation inside extruders, the major focus has been the
development of efficient geometry modules to describe in a quick and user-friendly
way the complicated geometrical characteristics of screws and extruder channels. The
question of adequately describing the rheology of thepolymermelt is usually resolved
with good viscosity data as a function of shear rate and temperature (Eq. (4.19)). The
Carreau model (Eq. (4.6)) for the former and the exponential model (Eq. (4.9)) or
Arrheniusmodel (Eq. (4.10)) for the latter are sufficient in these computations, where
viscoelasticity does not seem to be of importance or has not been attempted in any
meaningful way. The predominance of shear flow inside the extruder seems to be the
justification for that.

4.4.1.2 Flow in an Extruder Die (Contraction Flow)
Few flows have received somuch attention both experimentally and computationally
than the flow in a contraction. It is related to the flow in the final stage of the extruder,
that of the forming die (see Figure 4.6b), which, in the simplest of cases is just a
tubular orifice through which the polymer exits to the atmosphere from a larger
reservoir. It is also the main feature in rheometry for measurements of viscosity. A
simplified version of the problem is depicted in Figure 4.10. The polymeric fluid
passes from a larger reservoir of diameterDres to a smaller tube of diameterD0. In the
analogous sudden planar contraction, there is a step change in slit width. The

Figure 4.9 Twin-screw extrusion. Simulation of marker tracking at various time instants for
different configurations and a given flow rate and screw speed [52].
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presence of the abrupt contraction gives rise to many interesting flow patterns,
including secondary flows in the reservoir, while the singularities at the salient
corners render the problem extremely difficult to solve with any of the known
numerical techniques. Contrary to the situation inside the extruder, here viscoelas-
ticitymay indeed play a significant role and distinguish the behavior among different
polymer melts.

For any fluid, Newtonian or non-Newtonian, there is in these geometries a region
of extensional flow near the center line and the contraction plane, while shear
dominates near the walls. The well-known and different entry patterns of LDPE and
HDPEmelts (Figure 4.11) in a 20-to-1 circular contractionwith their distinct behavior
have beguiled the scientific community for more than 40 years, since they appeared
in the work of Bagley and Birks [55]. While for Newtonian fluids fluid inertia can
change theflowand the shape of the salient corner vortex [56],muchmore interesting
transitions occur for viscoelastic fluids, such as polymer melts, as the flow rate is
increased and flow becomes more elastic. The early studies by Giesekus have been
followed by studies by Boger and coworkers [7, 56–60].

Using the rheological data for typical LDPE and HDPE melts and their best fit
using the K-BKZ/PSMmodel [34] hasmade it possible to successfully simulate these
distinct flow patterns, as shown in Figure 4.12 [34]. Simulations have shown that a
strain-hardening elongational viscosity exhibited by the branched LDPE is primarily
responsible for big vortices in the contraction. On the other hand, the linear HDPE
melt exhibiting strain-thinning in elongation, generates no vortices for the samewall
shear stresses. Further results have been obtained for different polymers and
different conditions, including stress birefringence [61, 62]. It is interesting to note
that while the flow of polymer melts through contractions has more or less been
resolved successfully from a computational point of view, there are still difficulties
with some polymer solutions [31]. For the latter, experiments show a pulsating flow
with a lip vortex that oscillates near the entry to the die, while simulations show a

Figure 4.10 Schematic representation of an abrupt contraction [31].
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Figure 4.11 Flow patterns of LDPE and HDPE melts flowing through a 20 : 1 axisymmetric
contraction before unstable conditions set in. Note the big vortex for LDPE and the absence of any
vortex activity for HDPE [55].

Figure 4.12 Viscoelastic simulation of flow patterns for the melts of Figure 4.11 using the K-BKZ
integral model (Eq. (4.12)) [34].
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stable flow with strong vortex growth [31]. Obviously, any steady-state, two-dimen-
sional, axisymmetric simulations are incapable of reproducing three-dimensional,
time-dependent effects, such as the pulsating flow patterns exhibited by some
polymer solutions in contractions.

4.4.1.3 Flow Outside the Extruder – Extrudate Swell
Asmuch interest as has been shown for contraction flows, an equal amount has been
devoted to the flow just outside the extruder, where the accompanying phenomenon
of �extrudate swell� (formerly known as �die swell�) [63] is a major preoccupation in
the polymer processing industry. An extra computational difficulty arises from the
free surfaces present at the exit, which are unknown a priori, and must be found
iteratively as part of the solution, by satisfying extra free-surface BCs,which have long
been established to be of the kinematic type for polymer melts [64]. Thus, the
Newtonian extrudate swell problem was solved first, and it has been since a
benchmark problem against which all computer software for polymer processing
are checked.While the small Newtonian swelling of 13% for tubular dies and 18% for
slit dies is easy to get, the viscoelastic case ismuch harder to solve and to achieve good
agreement with experiments. It requires sophisticated numerical schemes, a thor-
ough rheological characterization of the melt at hand, and a careful increase in
viscoelastic loading (or equivalently a careful increase in extrusion flow rate) to
achieve the large swelling ratios experimentally observed. Although this has been
feasible for some 20 years now, it is still not a trivial matter for 3D problems and
inverse die design.

Some typical examples of successful extrudate swell simulations are given in
Figure 4.13 in extrusion fromorifice dies for the IUPAC-LDPEmelt-Awith thedata of
Table 4.1 [32]. As the flow rate increases, the vortex inside the reservoir increases and
so does the extrudate swell outside the die, which can reach as much as 100%, in
agreement with the experiments by Meissner [29]. Another example is given in
Figure 4.14 for the flow of an HDPE melt through tapered annular dies, where the
effect of die design is obvious and in agreement with experiments [65]. Namely, for
the same flow rate a diverging annular die produces the least swelling, followed by a
straight annular die, and then by a converging annular die, which produces the most
swelling due to enhanced memory phenomena of the melt during its flow [66].

It is obvious that these successful simulations are feasible because of (a) thorough
rheological characterization, (b) fitting with a sophisticated multimode integral
model, and (c) simplicity of geometry. As mentioned above, for 3D problems, this
is still not an easy matter. For example, Baird and Collias [23] show extrudate cross
sections for two polymer melts (polyethylene and rigid PVC) and the die cross
sections that produced them (Figure 4.15). Extrudate swell is responsible for a
mismatch between die used and polymer produced. This leads then to the inverse
design, as shown in Figure 4.16. Namely, what should be the die shape for a required
product? Ellwood et al. [67] have shown how this is possible for Newtonianfluids, and
modern software packages claim that they can handle this problem, as shown in
Figure 4.17 from www.polyflow.be [16]. For complicated geometries and viscoelastic
polymer melts, this is still though a formidable task!
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4.4.1.4 Coextrusion Flows
An interesting variation of extrusion is coextrusion of two ormorefluids through dies
(Figure 4.18). Coextrusion is practiced increasingly in the polymer processing
industry to impart special qualities on films, especially in packaging (food and
beverage) and elsewhere [68]. In the coextrusion process, two or more fluids come
together in a die and flow having a common interface. Computationally, this is a
difficult problem because the interfaces are not known a priori and must be found
iteratively like the free surfaces of extrudate swell. A typical example of coextrusion is
given here. The flow inside the dies of two polymer solutions is shown from
experiments in Figure 4.19 [69], while the simulations are shown in Figure 4.20 [70].
There is good agreement of the flow patterns, including the presence of recirculation
in the lower fluid. To obtain such a good agreement, it was necessary to know (a) the
viscous rheological properties of the two polymers (Carreau model sufficed), (b) the
geometry of the coextrusion die, and (c) the flow rate for each polymer solution. This
is the case because inside the coextrusion die, the flow is dominated by shear,
therefore a purely viscous model is sufficient.

On the other hand, viscoelastic coextrusion simulations (Figure 4.21) show the
relative importance of the stratification of two polymer melts of different viscoelastic
strength in the extrudate swelling.Namely, a PS/HDPE (inner/outer) and aHDPE/PS

Figure 4.13 Simulation of vortex growth and enhanced extrudate swell as the apparent shear rate
increases for extrusionof the IUPAC-LDPEmelt-A through a circular orifice. Viscoelastic simulations
with the K-BKZ integral model (Eq. (4.12)) with data given in Table 4.1 [32].
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Figure 4.14 Simulation of extrudate swell from tapered annular dies for an HDPE melt. Memory
phenomena are present manifested in enhanced swelling from converging dies. Viscoelastic
simulations with the K-BKZ integral model (Eq. (4.12)) [66].
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Figure 4.15 Die design for polymer melts. A square die will not produce a square extrudate due to
viscoelastic phenomena. The right design must be a star-shaped die [23].

Figure 4.16 Schematic representation for the inverse problem of designing a die that produces a
squared section polymer product [67].

Figure 4.17 3D simulations for die design using the commercial software POLYFLOW: (a)
extrusion of a bundle of three fibers and (b) extrusion of a �parrot� toy extrudate [16].
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configuration will give different swelling behavior for the same flow rate, according to
their elastic nature, something which cannot be predicted a priori [46].

Computations for many layers (multilayer coextrusion) and different configura-
tions are best handled by the lubrication approximation theory (LAT) for quick
engineering calculations [68]. However, FEM 2D simulations are also feasible and
provide good insight for industrial applications as shown by the author [71]. It is
understood that 3Dviscoelastic effects for polymermeltsflowing in a coat-hanger die,
such as the one shown in Figure 4.18b, are again not a trivial matter, even for two
fluids. A great piece of work for viscoelastic 2D and 3D effects in multilayer polymer
coextrusion is the thesis by Dooley [72] with many references therein, and the
author�s own papers (see Ref. [73]).

4.4.1.5 Extrusion Die Design
While inmost cases the extruder can be regarded as a �black box� with no extra effort
required for its analysis, this is not the case for die design. The latter remains inmany
industries, both small and large, a major challenge, for producing useful products of
different shapes and dimensions. This is accomplished with profile dies of an
amazing variety of shapes, of which the coat-hanger die represents one of the most
basic die designs. In all these cases, the No. 1 problem is balancing the flow at the die
exit so that nouneven thickness offilmor sheet or extrudate distortionwill ensue, and
the product will have everywhere precise dimensions. To that effect, appropriate
software has been developed (e.g., PROFILECAD fromPOLYDYNAMICS, Inc. [17]),

Figure 4.18 Multilayer coextrusion simulations using the commercial software POLYFLOW: (a) 5-
layer 2D coextrusion and (b) 2-layer 3D coextrusion in a coat-hanger die [16]. In both cases, there is a
simultaneous determination of the unknown a priori interfaces.
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which significantly cuts down on trials used inmachine shops for prototype designs.
The principles behind such profile design are pressure balancing and cross-flow
minimization [74, 75]. The problem is also amenable to the inverse design meth-
odology, mentioned above (see Figures 4.16 and 4.17), as explained by Marchal [76]
and Debbaut and Marchal [77]. This area of modeling is still nascent and needs
further attention to improve profile die design.

4.4.2
Postextrusion Operations

The term applies tomany different continuous shaping operations after the polymer
has exited the extruder, in the vast majority of cases as a hot homogeneous melt. The
postextrusion operations can be classified into two types: (i) shear dominated, such as

Figure 4.19 Flow patterns in coextrusion dies: (a) stable configuration and (b) unstable
configuration with recirculation [69].
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calendering, roll coating, wire coating, and so on, where the polymer melt is guided
by walls, and (ii) extension dominated, such as fiber spinning, film casting, film
blowing, and so on, where the polymermelt is stretched or pulled, so that extension is
the major mode of deformation and flow. In shear-dominated flows, viscoelastic
effects have been shown to be minimal, so computationally purely viscous, non-
isothermal models are capable of correctly simulating the processes and predict flow
patterns and engineering quantities of interest (pressures, torques, forces, etc.). This
is not the case for extension-dominated flows, where viscoelastic effects are dom-
inant, and usually a purely viscousmodel gives wrong andmisleading predictions. In
these cases, a thorough viscoelastic simulation is necessary, as has been found in the
literature and will be shown below.

4.4.2.1 Calendering
In the process of calendering, amolten polymer enters usually as a sheet on one of the
two rotating rolls and leaves on the other with a reduced thickness. The process is
schematically shown in Figure 4.22. It is seen that due to the reduced area, amelt bank
is created before the nip region. In this melt bank, a very interesting flow
pattern develops with multiple recirculation regions, as shown in Figure 4.23 from

Figure 4.20 Simulated flow patterns in coextrusion dies corresponding to cases (a) and (b) of
Figure 4.19 [70].
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experiments on rigid PVC by Agassant and Espy [78, 79]. A huge vortex appears in the
melt bank, while smaller ones developnear the entering sheet andnear thenip region.

A purely viscous nonisothermal model (power law with slip at the wall) for PVC is
able to capture this vortex behavior, as evidenced in Figure 4.24a [80, 81]. The
simulations also provide the temperature field (Figure 4.24b) [80, 81] and the
pressure distribution (Figure 4.25), which is in good agreement with experiments
when slip is included. When the calendering process is stable (i.e., when the melt
bank is stable), the experimental streamlines are very similar to the computed ones
(the presence of two stable recirculating regions). When the calendering process is

Figure 4.21 Simulation of extrudate swell from
coextrusion circular dies for a combination of
HDPE and PS melts (PS/HDPE¼ inner/outer).
A different configuration produces different
swelling for the same flow rate due to different

viscoelastic properties of the melts, hence
different stress ratio, SR. Viscoelastic
simulations with the K-BKZ integral model
(Eq. (4.12)) [46].
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unstable (high output rate or too big a melt bank), the bank and the recirculating
regions vary in the third direction, and a spiral flow ensues. The spiral flow in the
third direction shown in Figure 4.26 was observed by Unkr€uer [82] and gives rise to
several instabilities as pointed out also by Agassant and Espy [78]. Computationally,
the stability of calendering has not been tackled yet and remains an unsolved
problem.

A 3D analysis of calendering was performed by Luther andMewes [83] and reveals
the spiral motion in the third or z-direction as shown in Figure 4.27. Although this
work represents the only 3D effort to date in the open literature, it is not a trivial
matter to reproduce it or use it iteratively for design purposes. Therefore, a very
interesting 3D computation of calendering still remains a challenge.

4.4.2.2 Roll Coating
In the process of roll coating, a sheet is producedmuch as in calendering but usually
for polymeric solutions. In such flows, surface tension becomes important. Both
forward and reverse roll-coating operations are used in practice. The important work
by Coyle et al. [84–86] has done much to increase our understanding of the fluid
dynamics in both forward and reverse roll coating. The reverse process is schemat-

Figure 4.22 Schematic representation of calendering a plastic sheet [80, 81].

Figure 4.23 Experimental flow pattern in the melt bank of calendered rigid PVC [78, 79].
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ically depicted in Figure 4.28 (fromRef. [86]). Experiments coupled with theory show
interesting flow patterns with vortices and various types of instabilities, such as
cascade, ribbing, seashore, and so on. For example, in reverse roll coating of
Newtonian and shear-thinning inelastic fluids, vortices appear as evidenced in
Figure 4.29 [86]. Typical roll-coating instabilities experimentally observed are shown
schematically in Figure 4.30 [21]. The stability analysis was based on Newtonian
fluids with the capillary number as the nonlinear effect causing instabilities.
Experimental work based on shear-thinning inelastic fluids has shown that shear-
thinning also plays an important role, as evidenced in Figure 4.31 [86]. For
viscoelastic polymer solutions, the experimental work of Coyle et al. [86] showed
that the ribbing phenomenon becomes irregular and time-dependent. There is no
sharp transition to cascade instability, accompanied by the steep upturn in coating
thickness as speed ratio is increased. Rather, the coated film becomes mottled in
appearance and the average coating thickness stays relatively constant [86]. These
instabilities are due to secondary helical flows in the third dimension and must be
resolved before a better coating is obtained. Computationally, this still remains a
formidable task and has not been successfully addressed yet.

Figure 4.24 Nonisothermal simulations of flow in calendering rigid PVC with slip at the wall:
(a) flow pattern seen through streamlines and (b) isotherms [80, 81].
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Figure 4.25 Nonisothermal simulations of flow in calendering rigid PVC with slip at the wall.
Pressure distribution as found by the LAT, the FEM, and experimentally [80, 81].

Figure 4.26 Schematic representation of 3D flow in calendering, showing the vortex formation, the
melt bank development in the z-direction, and the pressure distributions along various positions in
the z-direction [83].
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Figure 4.27 3D simulation results in calenderingpower-law fluids, showing the finite element grids
used together with the spiral motion in the melt bank in the z-direction [83].

Figure 4.28 Schematic representation of reverse roll coating to study the flow in the metering
gap [85, 86].
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Figure 4.29 Predicted streamlines in flow for Newtonian and shear-thinning inelastic fluids in
reverse roll coating [85].

Figure 4.30 Schematic instabilities in roll coating [21].
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4.4.2.3 Wire Coating
The process of wire coating is depicted in Figure 4.32. A molten polymer, usually
under the influence of a pressure-driven flow, is extruded through a wire-coating die
having inside a �torpedo� (guider) to guide the wire. The position of the torpedo and
its guider tip is crucial for a good design that avoids recirculation and limits the level
of stresses generated in the melt as it enters from the annular channel into the die
region under the dragging action of the moving wire [87].

A design that generates a big vortex for a Newtonian fluidmay not generate one for
a polymermelt. This is evidenced in Figure 4.33, where the full solution of the steady-
state flow shows just that [88]. On the other hand, for a viscous polymer melt, a bad
design that leaves enough �gum space� between torpedo and die wall may generate a
vortex that is detrimental to the exiting melt [87]. Good designs based on the
appropriate �gum space� have been put forward, and these eliminate both the
unwanted vortices and the stress �jumps� along the die walls [87].

Successful simulations for a coating-grade LDPE melt have been performed by
Mitsoulis et al. [37]. These simulations were based on an industrial high-speed wire-

Figure 4.31 Effect of shear-thinning on the stability in reverse roll coating [86].
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coating die design, while for the polymer viscosity data were used for a wide range of
shear rates and temperatures. Purely viscous, nonisothermal simulations produced
the smooth streamline patterns inside and outside the die of Figure 4.34 and correctly
predicted the pressure drop as a function of wire speed, as evidenced in Figure 4.35.
Thus, successful simulations for wire coating need (a) good viscosity data as a
function of shear rate and temperature, (b) geometry data for the die design,
(c) correct boundary conditions for the nonisothermal analysis, and (d) operating
conditions, such as the final coating thickness andwire speed. Nonisothermal effects
were found to be ofmajor importance for good predictions, rather than slip effects as
it has been surmised by some people in the field.

Vortices may also be produced in wire-coating coextrusion, depending on the
viscosities of the two fluids, as evidenced in Figure 4.36 [89]. Accordingly, they can be
eliminated by a judicious choice of the polymer viscosities and/or temperatures [89].
The analysis of Tadmor and Bird [90] has shown that a nonzero second normal stress
difference N2 exhibited by polymer melts has a stabilizing effect on the wire-coating
process, by reducing the eccentricity thatmay appear in high-speed operations. A full
stability analysis of the process is still lacking.

4.4.2.4 Fiber Spinning
The fiber-spinning process is used throughout the plastics industry to manufacture
synthetic fibers. The process is schematically shown in Figure 4.37. The fibers are
produced by the extrusion of the polymer through a die, usually of circular cross
section, and taken up downstream at a higher velocity by the chill roll. The ratio of
take-up velocity to extrusion velocity is known as the draw ratio (DR).

The fiber-spinning process is a prime example of uniaxial extension. The process
consists of two regions: (i) the first is the extrudate swell region, where normal forces
accumulated during extrusion suddenly relax to cause swelling; (ii) the second is the
draw-down region, where the fiber diameter decreases according to the velocity

Figure 4.32 Schematic representation of flow in a wire-coating die [88].
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increase. Usually, cross-flow air is used to aid in the solidification of the fiber, which
occurs between the die and the chill roll. Spinning speeds range from 30 to 7000m/
min, with fiber diameters ranging from 4 mm to 2mm. At high spinning speeds
(4000m/min and greater), stress-induced crystallization can become a factor for
solidification and hence it can affect fiber properties [23, 91].

Numerical simulation of the fiber-spinning process began with the early work of
Matovich and Pearson [92], who analyzed the spinning of a Newtonian liquid and
arrived at an analytical solution. Attemptswere thenmade to analyze the processwith
differential constitutive models. Early work by Denn et al. [93] considered the upper
convected Maxwell model, including nonisothermal effects [94]. Later, Gagon and
Denn [95] used the PTT model and included nonisothermal effects to simulate

Figure 4.33 Simulated flow patterns of (a) Newtonian and (b) shear-thinning polymer melts
(LDPE) in a wire-coating die. The Newtonian fluid exhibits a big vortex, while in the same geometry
the LDPE melt flows without recirculation [88].
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experimental data given by George [96] for a PETmelt. They also included the extra
forces acting on the fiber, namely, inertia, gravity, and air drag. Keunings et al. [97]
used the UCM, Oldroyd-B, and PTT models to simulate short fibers using a two-
dimensional finite element method. The major findings on the process up to 1983
were reviewed by Denn [98].

Attempts were also made to analyze the fiber-spinning process with integral
constitutive models. Papanastasiou et al. [99] used the K-BKZ/PSM model to analyze
and simulate experimental data from Zeichner [100] for a polystyrene melt. More
recently, analyses have been performed by Fulchiron et al. [101], using the Wagner
integral model, and by Rauschenberger and Laun [102], using the K-BKZ model to
simulate spinning data obtained with the IUPAC-LDPE melt-A. The K-BKZ/PSM
model has also been used by Mitsoulis and Beaulne [103] for full rheological

Figure 4.34 Simulated flow patterns of an LDPEmelt in an industrial wire-coating die. The polymer
melt flows smoothly in a streamlined flow both (a) inside and (b) outside the die, verifying the good
die design [37].

4.4 Polymer Processing Flows j165



characterization and simulation of the process, including both the nonisothermal
effects and the effects of inertia, gravity, and air drag.

As an example of fiber-spinning simulations, we present results from this latter
work. The results have been obtained by a quick and approximatemethod of analysis
with the use of an efficient code, F-SPIN [104]. The one-dimensional formulation is
used instead of a 2D or 3D formulation since they require much more complicated
numerical techniques, a great deal of computing time, and greater computing power.
Startingwith the rheological characterization andfitting of datawith theK-BKZ/PSM
model (Eq. (4.12)) for a PETmelt, the velocity and temperature profiles are predicted
in Figure 4.38, in good agreement with the experiments by George [96].

The time-dependent simulation of the process has been performed by Beris and
Liu [105] and Liu and Beris [106]. Another development of importance in fiber
spinning is the inclusion of crystallinity. This has been addressed by Doufas
et al. [107], and the model is rather involved. Figure 4.39 shows a schematic of the
fiber due to crystallizationwith the distinct neck-in phenomenon. The simulations by
Doufas et al. [108] show good agreement for the velocity and the temperature profiles
with experiments under awide range of conditions for nylon fibers (Figure 4.40). The
problem still remains though about getting correct values for all the parameters
needed in such a sophisticatedmodel, and careful measurements have to bemade to
obtain them.
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Figure 4.36 Flow pattern of two Newtonian fluids in wire-coating coextrusion. Depending on the
viscosity ratio, a big vortex can be produced in this die design [88].

Figure 4.37 Schematic representation of the fiber-spinning process.
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4.4.2.5 Film Casting
The film-casting process is used industrially to manufacture thin flat sheets or films.
The process itself is portrayed in Figure 4.41, along with the respective Cartesian
coordinate system used in simulations. For this process, a polymeric material is
extruded through a rectangular die or slit and taken up at the drum or chill roll.
Afterward, the film is subjected to additional processes, such as biaxial extension or
thermoforming, to increase the tensile strength. Typical thicknesses can vary from10
to 2500mm, whereas lateral dimensions range from 40 to 320 cm. For untreated
films, the film-casting process has operating speeds ranging from 120 to 400m/min,
whereas if the film undergoes biaxial orientation, speeds range from 280 to 350m/
min. Cast films are primarily used in the packaging industry for either foodstuffs or
other consumer products, and other uses includemagnetic strips for audio and video
tapes. Film casting is very similar to thefiber-spinning process, except where afiber is
drawn uniaxially (stretching of a cylindrical rod), the film or sheet is drawn planarly
(stretching of a flat surface). After the film reaches the drum or chill roll, it is usually
trimmed at the sides to remove the thick edges (edge beads).
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T = T0
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Figure 4.39 Schematic representation of the single filament melt-spinning model [107, 108].
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In contrast to the fiber-spinning process, the film-casting process has received less
attention in the literature. Dobroth and Erwin [109] examined the causes of thick
edges or the edge bead effect (also called the bone effect) and attributed it to the change
from planar extension in the center of the film to uniaxial extension at the edges.

Figure 4.40 (a) Velocity and (b) temperature profiles for the spinning of industrial nylon melts at
290 �C. Symbols represent experimental measurements, while full lines are simulation predictions
using a Giesekus model with crystallization [108].
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Many studies have been conducted by the Co group [110–113] analyzing the stability
of the film-casting process with numerous constitutive models (UCM, Carreau,
Giesekus). Another major source of studies on the film-casting process has emerged
from Agassant�s group [114–117], which has analyzed stability and performed
simulations with the Newtonian and UCM models. An attempt was made by Alaie
and Papanastasiou [118] to simulate the data of Kase [119] employing a one-
dimensional approximation with no neck-in effect (thinning in the third direction)
and using the modified K-BKZ integral constitutive model. Debbaut et al. [120]
performed a two-dimensional analysis of the film-casting process with the use of the
Newtonian and UCMmodels. Sakaki et al. [121] performed a full three-dimensional
analysis of the film-casting process using only the Newtonian model.

Along the lines of their previous work on fiber spinning, Beaulne and Mitsou-
lis [122] studied steady-state film casting with the Newtonian, UCM, and integral
K-BKZ/PSM constitutive equations under isothermal and nonisothermal conditions
based on simplified 1D equations. Typical results from the simulations are shown in
Figure 4.42 and are compared against the previous simulations of two- and three-
dimensional type [120], for both the Newtonian and UCMmodels. It is seen that the
1D results compare well with the 2.5D results for all models regarding the dimen-
sionless film thickness (Figure 4.42b), while they compare well for the UCM but not
for theNewtonianmodel regarding the dimensionlessfilmwidth (Figure 4.42a). This
is explained in Figure 4.43, where the Newtonian model has big curvatures in the
width direction, contrary to the Maxwell model that does not. Next, results are
shown from viscoelastic simulations based on experiments conducted by Kase and

Figure 4.41 Schematic representation of the film-casting process.
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Matsuo [123] for a polypropylene melt. Fitting the rheological data with the K-BKZ/
PSM integral multimode model and knowing the operating conditions for the
process, the film thickness (Figure 4.44a) and its temperature (Figure 4.44b) are
well predicted by the 1D model. These results have been obtained by a quick and
approximatemethod of analysis with the use of an efficient code, F-CAST [124]. Such
a code can be used for parametric studies where there is a lack of experimental data
for the process. Beaulne and Mitsoulis [122] show such a parametric study for PET
and LDPE melts because they are commonly used in film casting.

4.4.2.6 Film Blowing
The film-blowing process is used industrially to manufacture plastic films that are
biaxially oriented. Many attempts have beenmade to predict andmodel this complex
but important process, which continues to mystify rheologists and polymer proces-
sing engineers worldwide. A constitutive equation, able to predict well the polymer
melt in all forms of deformation, is required to model the process, together with the
standard conservation equations of continuity,momentum, and energy. Pearson and
Petrie [125, 126] were the first to predict the forces within the blown film by the use of
the thin-shell approximation, force balances, and the Newtonian constitutive equa-
tion. The use of the thin-shell approximation and force balances is standard in any
attempt tomodel thefilm-blowingprocess, and it has beenused in the vastmajority of
subsequent studies.

The process itself is portrayed in Figure 4.45, where a polymer melt is extruded
through an annular die, and biaxial extension is effected by slight internal pressur-
ization and axial drawing.Cooling air is supplied by air ring jets surrounding themid-
to upper portion of the bubble. Theheight above the die atwhich solidification occurs,
also known as freeze line, can be controlled by the cooling air. Both the deformation of
the bubble and the changes in velocity and temperature are negligible above the
freeze line in most processes. The bubble dimensions are measured in terms of the
blow-up ratio (BUR), the draw ratio (DR), and the thickness reduction (TR). The BUR,
which is the ratio of the bubble radius at the freeze line to the inner die radius, is
typically in the range of 1–4. TheDR is the ratio of the velocity at the freeze line to that
of the average velocity at the die, and is typically in the range of 10–40. The TR is the

MaxwellNewtonian

Figure 4.43 Edge bead effect for the Newtonian and the Maxwell (UCM) models. At a given cross
section, theNewtonian edge beadoccupies amuch larger area than theUCMedgebead, at the same
flow rate [120, 122].
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ratio of the die annular spacing to the thickness at the freeze line and is typically in the
range of 20–200. The bubble is then flattened by a set of guide rolls and taken up by a
set of nip rolls that forman airtight seal at the upper end of the bubble, thus forming a
double-layered collapsed tube or sheet. Finally, the film is wound onto reels and sold
as �lay-flat� tubing or trimmed at the edges and wound into two reels of flat film.
While the film is being drawn and blown, it undergoes a nonuniform biaxial
deformation. The biaxial extension of the film is the primary attraction of the
film-blowing process, which increases the strength of the film in two directions
and allows precise control over the mechanical, shrink, and optical properties of the
finished product.

There have been numerous studies on the film-blowing process. Since the initial
thin-shell approximation proposed by Pearson and Petrie [125, 126] with the
Newtonian model assumed for deformation, various rheological models have been
incorporated in simulations, such as the power-lawmodel [127, 128], a crystallization
model [129], the Maxwell model [130–133], the Leonov model [133], a viscoplasti-
c–elastic model [134], the K-BKZ/PSM model [135–137], and a nonisothermal
viscositymodel [138]. Acomplete set of experimental datawas reportedbyGupta [139]
for the Styron 666 polystyrene and by Tas [140] for three different grades of LDPE.

An approach different from that of Pearson and Petrie [125, 126] was used by
Housiadas and Tsamopoulos [141, 142] according to a mapping technique. Thus,
they were able to solve the time-dependent flow problem of the bubble formation

Figure 4.45 Schematic representation of the film-blowing process.
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and examined various aspects of the effects of forces at play in film blowing. They
included viscoelasticity, nonisothermal effects, gravity, surface tension, air drag, in a
series of parametric studies. The results give the bubble shape and the temperature
and forces along the bubble, but no comparison was made with experimental
results. Doufas and McHugh [143] addressed the subject of crystallinity in the
blown film along similar lines to their previous work in fiber spinning. The stability
and dynamic analysis of the process has also been recently addressed by Shin
et al. [144].

A lack of agreement with experimental results despite the use of sophisticated
viscoelastic models [136, 137] has put into question the analysis of the process based
solely on rheological models and the force balance on a thin film. The work of Wolf
et al. [41] showed that air cooling outside and inside the film are of primary
importance to correctly account for the forces exerted on the blown film. This line
of work was taken up in a series of papers by Sidiropoulos and Vlachopoulos
[42, 43, 145, 146], who unequivocally showed that the blown air determines in a
large measure the process. In all these cases, though, a known bubble shape is
assumed and the simulations are based on turbulent air flow around and inside the
bubble (see Figure 4.46). A full interaction of the viscoelastic filmwith the blowing air
is still lacking and presents another difficult task for the numerical analysis of the
process.

4.4.3
Unsteady-State Processes

Unsteady-state processes are very important in polymer processing, as the bulk of
distinct plastic objects aremanufactured in batchmode,within a time cycle. Injection
molding is themost widely practiced process, followed by blowmolding and its close
relation, thermoforming. This has been a vast subject of research and development
for the past 50–60 years, and it is impossible here to list allmajor developments in the
field. Some highlights will be given, with key references for the interested reader to
search deeper in these fascinating subjects.

4.4.3.1 Blow Molding
Extrusion blowmolding or injection (stretch) blowmolding is themethod of choice to
form any kind of hollow product, such as bottles, gas tanks, car bumpers, and so on.
The whole process can be broken into four stages: (a) extrusion, (b) pinch-off,
(c) blowing, and (d) cooling. The variation of the injection (stretch) blow molding is
shown in Figure 4.47 [147], while the variation of extrusion blowmolding is shown in
Figure 4.48, alongwith FEMcomputations of a blownplastic bottle [16]. Thefinal goal
of the extrusion blow molding process consists of a blown bottle with a uniform
thickness or at least a formed container where the minimum thickness of the blown
product is above the minimum thickness everywhere else.

The demand for hollow products with geometric complexity and increased
functionality is growing. Hence, together with the process operating parameters
and the polymer rheology, the geometrical shape of a new hollow product brings its
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own additional difficulties. Consequently, the design and development of a new
product, a new shape, remains a challenging task for the engineer since several
technological and economic requirements must be met. The monograph by Rosato
andRosato [148] presents anupdated survey of the complete blowmolding operation.
Additional modeling background is given by DeLorenzi and Nied [149].

Figure 4.46 Cooling air streamlines around (a) a long-neck and (b) a shot-neck blown-film bubble
for different operating setups of the adjustable air ring. Turbulent air simulations around a known
and fixed bubble shape giving rise to the Coanda and Venturi effects [42, 43].
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In both types of blow molding, the process is a time-dependent moving boundary
flow problem with free surfaces, where the polymer melt comes to an eventual
contact with the walls, and after taking the shape of the mold it solidifies. This is
indeed a very difficult problem, and different types of approximation have been used.
DiRaddo and Garcia-Rejon [150] have used a neural network computing approach
that predicts the thickness of the part from the initial configuration and the operating
properties, thus getting rid of the classical fluid dynamics approach. Another study
addresses the problem of parison formation [151], which is really a time-dependent
variant of the annular extrudate swell problem. In this way, viscoelasticmodels can be
used for predicting the parison thickness. The whole inflation process with a
viscoelastic fluid was modeled by Schmidt et al. [152], who used sophisticated
mesh-generation techniques to track the evolution of the moving boundaries in
time. McEvoy et al. [153] used the commercial code ABAQUS and elastoviscoplastic
models from solid mechanics to model the process. Viscoplasticity was also used by
Wang et al. [154] to obtain fully 3D bottle shapes. Viscoelasticity with the integral
multimode K-BKZ constitutive model (Eq. (4.12)) was employed by Debbaut and
Homerin [155]. A novel approach based on FEM with a dynamic explicit procedure
was used by Marckmann et al. [156] and more recently by Erchiqui [157], who also
used the K-BKZ integral model (Eq. (4.12)). Nonisothermal effects have been
addressed by Yang et al. [158]. Most works deal with PET due to its predominance
in manufacturing plastic bottles [147, 158]. The degree of complexity of the
models used has increased, and it appears now that a good understanding of
predictive capabilities for the thickness, temperature, stress, and strain variations
can be had.

4.4.3.2 Thermoforming
Thermoforming is the process of shaping a heated thermoplastic sheet by applying a
positive air pressure, a vacuum, mechanical drawing, or combinations of these
operations (see Figure 4.49). Thermoforming is the method of choice to form any
kind of largeflat product, such as a car door panel, a truckwinddeflector, a yogurt cup,
food trays, and so on. Various types of thermoforming techniques have been
developed, such as plug-assist forming, drape forming, and matched mold

Figure 4.47 Schematic representation of the injection stretch blow-molding process [147].
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forming. The objective is to achieve good thickness distribution and to limit
peripheral waste.

The whole process can be broken down into three stages: (a) extrusion, (b)
inflation, and (c) cooling.

Mathematical modeling can provide valuable insights into mold design and
process improvement. The objective of computer simulation of thermoforming is

Figure 4.48 Schematic representation of the
blow-molding process [16]: (a) simulation
results at different time instants of parison
extrusion (time-dependent annular extrudate

swell) and (b) simulation results of the blow-
molding process color-coded for thickness (red:
thickest; blue: thinnest).
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Figure 4.49 Schematic representation of
straight vacuum thermoforming in three steps:
(a) a thermoplastic sheet is clamped to the
mold, is heated well above its glass transition

temperature, and vacuum is applied; (b) the
sheet is quickly bent (inflated) under vacuum;
and (c) the finished hollow product is cooled
and taken out of the mold [161].
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an accurate determination of thickness distribution throughout the entire area of a
finished product. This is of great importance in thermoforming in complex three-
dimensional geometries. In such situations, it is possible to have corners, edges,
bumps, dents, and other highly stretched areas with thicknesses below an acceptable
limit. In production, such articles will be discarded. Thus, computer simulationmay
lead to a rational mold design without the need to perform expensive trial-and-error
procedures. The prediction of thickness distribution via computer simulations will
enable themold designer and the process engineer to select an optimum frommany
possible alternatives. Themonograph by Throne [159] presents an updated survey of
the complete thermoforming operation.

Three types of modeling techniques have been used in the past: (a) simple mass
balances. Thesemodels involve only geometrical considerations and are independent
of material behavior [160]; (b) finite element analysis with the membrane approxima-
tion. This is applicable for thin-walled parts for which bending resistance is
negligible [149, 161]; (c) finite element analysis without the membrane approximation.
This is applicable for thick-walled parts and multilayer thermoforming [162, 163].

Biaxial extensional behavior is important. Strain-hardening, that is, increasing
resistance of the resin to extension as deformations increase, cannot be neglected
anymore. Otherwise, inaccurate results would be calculated. POLYFLOW [16] has
implemented differential viscoelasticmodels in 2DandK-BKZviscoelasticmodels in
3D in order to take this behavior into account.

Most of the time a membrane approximation for the sheet is considered (fast
computations). The sheet is modeled as a surface deforming in a 3D environment.
However, in some specific situations where the temperature, velocity, or thermal
gradient across the thickness cannot be neglected anymore, a full 3D simulation
including volume elements across the sheet can be done as well.

Earlywork byNied et al. [161] and byKouba et al. [164] considered themembrane as
an elastic material obeying the Ogden model for large deformation of rubber sheets.
Typical results are shown inFigure 4.50 for a 3Dsheet being inflated (fromRef. [165]).
Another 3D work [166] has used the Mooney–Rivlin strain-energy function for
describing the material. Erchiqui [167] has used the K-BKZ integral model, while in
other works hyperelastic and viscoelastic models have been assumed [168, 169].
Nonisothermal effects have been included in a recent publication onPETsheets [170].
In this work, it is instructive to look at the table of data (35 values) needed tomodel the
process to get a feel of the degree of its complexity.

The development of sophisticated meshing algorithms and the overall agreement
with experiments show that thermoforming is now feasible for 3D computations of
complicated shapes. However, more work is needed regarding solidification and
crystallization of the melts.

4.4.3.3 Injection Molding
Injection molding is a major polymer processing operation for producing
identical articles from a hollow mold. It is an intermittent cyclic process with
the following steps: (i) filling stage: a polymer melt is injected into the cold-walled
cavity where it spreads under the action of high pressures and fills the mold;
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(ii) packing stage: after the mold is filled, high pressure is maintained, and
additional melt flows into the cavity to compensate for density changes (shrinkage)
during cooling; and (iii) cooling stage: the melt is cooled, and the shaped article is
ejected. More information on the overall injection molding process is provided in
Refs [2, 21, 171, 172].

During the filling–packing–cooling cycle, the polymer properties, mold design,
and molding conditions interact to produce the thermomechanical history experi-
enced by the polymer melt, which in turn determines the physical properties of the
molded article. Understanding the links between process conditions and product
properties is crucial for successful operation, and a predictivemodel enables process
optimization for given product specifications.

The filling stage is the most complex and important step in the sequence and has
attractedmuch attention in the literature. The implications and the problems related
to the mathematical modeling of mold filling have been presented in a review by
Mavridis et al. [173–175]. Earlier reviews have also been presented (see, Ref. [176]),
while the latest review can be found in a most recent thesis [20].

Figure 4.50 Simulation of thermoforming a hollow product showing the many drop-downmenus
of the software [165].
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The process in its entirety is a formidable task to tackle. The flows are time-
dependent, 3D, compressible, and nonisothermal, withmoving free boundaries, and
solidification and crystallization phenomena taking place inside the molds. Despite
(or perhaps because of) its complexity, injection molding has received the most
attention in modeling and software development. Tremendous growth has been
achieved byMOLDFLOW [42, 177, 178], which in the late 1970s and early 1980s used
engineering ingenuity to produce useful approximate solutions in molds (it is
instructive to quote the original developer, Colin Austin, telling the author in
1985: �I started it on my kitchen table!�. Since then MOLDFLOW has grown
incredibly and put down vast resources and efforts to address all these issues, more
or less successfully. The software has moved from two-dimensional analysis to 2.5D
and 3D, given the continued improvements in computer speed and memory. A
typical example from a MOLDFLOW simulation on a PC window is given in
Figure 4.51, where a great variety of drop-down menus is available. The whole
process is broken into different stages and modules, and very fast solutions can be
had with today�s PCs [20]. However, since this is a proprietary software, all details are
not available, and academics are still working toward developing more detailed
models and computational tools for specific problems of the process. In particular,

Figure 4.51 Simulation of injection molding showing the many drop-down menus of the
MOLDFLOW software [44].
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many challenges still remain with regard to warpage and shrinkage of the molded
parts.

It is worth noting that most of the early developments in modeling and simulation
came from Kamal�s group at McGill University in Canada [176, 179, 180] and from
Wang�s groupatCornellUniversity in theUnitedStates [181]. Important contributions
were made by Vlachopoulos�s group at McMaster University in Canada to the well-
known�fountainflow�phenomenonof injectionmolding(Figure4.52) [173–175,182].

Figure 4.52 Schematic representation of flow
patterns during the injection filling of an end-
gated rectangular mold whose width is much
greater than its thickness. (a) advancement of
the flow front with fountain flow and

solidification at the mold walls, (b) width
direction flow fronts at various times, and
(c) velocity profiles in the fully developed region
and schematic representation of the fountain
effect in the front region [2].
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Otherpeople have alsomade contributions, toonumerous to include in this chapter, so
the interested reader may refer to Kennedy�s thesis [20].

The process continues to be a challenging subject for academics, and every year at
the Annual Technical Conference (ANTEC) of the Society of Plastics Engineers (SPE)
in theUnited States, the injectionmolding sessions are numerous andwell-attended.
As mentioned in Kennedy�s thesis [20], the subject of geometry (Figure 4.53),
material properties, mechanical properties, additives, and so on need further work
in order to predict the ultimate morphology and end-use properties of the molded
product.

4.5
Conclusions

The focus of this chapter was based on the work done so far both in academia and in
commercial software companies dedicated to polymer processing. Examples from
some interesting and important polymerflowshave been reviewed, such as those that
arise from polymer processing operations with viscous (inelastic) and viscoelastic
polymermelts. The topic is vast and this chapter deals exclusivelywith the continuum
approach of flow problems. Although experimental evidence has accumulated over
the years from various researchers and for various processes, the theory and
predictions have lagged behind, mainly due to the complexity of the subject.

On the basis of what has been laid out in this chapter, an attempt is made in
Table 4.3 to show the impact of computations on various polymer processes outlined

Figure 4.53 Modern injection-molding software, such as MOLDFLOW, can handle such
complicated shapes as the Kodak Advantix camera [20].
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above. Aprofessor�s marking scheme has been adopted, and themarks are obviously
subjective. Therefore, extrusion gets an A both for the extruder and the die design
because many software exist that are routinely used by people in the field to design
screws and dies rather successfully. The twin-screw extrusion gets a B because of its
complexity and the relatively less attention it has received in software development.
Coextrusion also gets aBbecause of its complexity, the unknown interfaces, themany
layers, and data needed to feed into the computer (many of these have to be guessed).

The postextrusion processes follow. So, calendering gets an A because of
the lubrication approximation (LAT), which has served the designers well. However,
a full 3D analysis is not an easy matter. Roll coating is more difficult and gets a Bþ
due to the splitting and unknown free surfaces present. Wire coating gets an A
because the analysis and design do not seem to hide anymajor secrets, at least for the
polymer melts used industrially. For the shear-free processes, fiber spinning gets a
Bþ because despite many efforts, the effects of viscoelasticity and flow-induced
crystallization need perhaps too many data not readily available for any meaningful
computation. The same is true for film casting, although a 1D approach can give
some insight into the process at hand. Film blowing appears to be worse off getting
a B due to the severe interaction of turbulent blowing air with the stretched
viscoelastic film.

The time-dependent or unsteady molding processes are more difficult and take
longer computationally due to time effects. Thus, blowmolding gets a B, again due to
viscoelasticity and cooling effects and the many parameters needed for the full
simulation. Thermoforming gets an A because of the thin-membrane approxima-
tion, which allows apparently fast solutions even for complicated 3D shapes. Finally,
injection molding gets an A mainly due to the vast efforts of all those engineers and
computer analysts who over the years havemadeMOLDFLOWa force to reckonwith.

Table 4.3 Impact of simulations and computations on different polymer processes.

Process Mark

Extrusion–extruder A
Extrusion die design A
Twin-screw extrusion B
Coextrusion B
Calendering A
Roll coating Bþ
Wire coating A
Fiber spinning Bþ
Film casting Bþ
Film blowing B
Blow molding B
Thermoforming A
Injection molding A

Letter marking scheme corresponding to % (Aþ ¼ 90–100, A¼ 85–89, A�¼ 80–84, Bþ ¼ 75–79,
B¼ 70–74, B�¼ 65–69, C¼ 60–69, D¼ 50–59, F¼ fail).
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Another computational difficulty is related to the stability of polymer-processing
flows. For example, many steady-state flows show vortices in stable operation, which
may spiral out of control in an unstable operation. On top of viscoelasticity, which is
still verymuch an active topic of research, onemust consider the linear andnonlinear
stability analysis, which can give operating windows, ever so crucial for good
operations. This is still a much sought after subject, especially for such complicated
flows as calendering and coating flows, shear-free flows, and flows through extruder
channels and injectionmolds. It is guaranteed to keep the scientific community (and
one might add, the academic community) busy for many years to come.

4.6
Current Trends and Future Challenges

Although the growth of the plastics industry is likely to continue, especially in
developing countries, this industry is considered to have reached a stage of maturity
[4]. Research and development efforts by major resin and machine producers have
been severely curtailed in recent years, including their computational analysis and
design departments. The plastic processors and original equipment manufacturers
are not big enough to sustain major R&D programs that could lead to �quantum
jumps� in technology.

At a recent workshop of university and industry experts [183], it was concluded that
future efforts should go beyond machinery design and process analysis and opti-
mization. The focus should be on predicting and improving the product properties of
polymer-based products. The term macromolecular engineering was introduced as
being more descriptive of future developments in the transformation of monomers
into long-chain molecules and their subsequent shaping or molding into numerous
useful products.

The prediction of end-use properties of polymeric products is faced with some
huge challenges. The current polymer-processing simulation approach, which is
based on the continuummechanics of non-Newtonian fluids, such as was the focus
of the present chapter [23, 184–187], must be combined with models describing
macromolecular conformations, relaxation, and polycrystalline morphologies [188].
The various types of constitutivemodels, whether continuum [26], reptation [189], or
pom-pom [190], have had limited success in predicting the unusual rheological
phenomena exhibited by polymeric liquids, even under isothermal conditions. A
few notable exceptions were achieved with the K-BKZ integral model, which has
been successfully applied in polymer-processing flows, such as flows through
extrusion dies, in fiber spinning, film casting, thermoforming, and so on. Deter-
mination of heat-transfer coefficients [42, 43] and modeling of flow-induced crys-
tallization [107, 108, 191] are necessary for the eventual prediction of end-use
properties of films and other extruded products. Viscoelasticity is important to
predict stresses that influence crystallization, size of crystals, their properties, and
so on. Numerous problems remain unresolved in other polymer processes, such as
the prediction of shrinkage, warpage, and stress cracking in injection molding.
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The goal of precise end-use property prediction frommolecular characteristics of the
polymer and the processing conditions is likely to remain the biggest challenge for a
considerable time.
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5
Computational Approaches for Structure Formation
in Multicomponent Polymer Melts
Marcus M€uller

5.1
Minimal, Coarse-Grained Models, and Universality

Blending different polymer species is a versatile strategy to fabricate new materials
[1, 2]. A technologically important example is rubber-toughened polystyrene, where
the brittle polystyrene is reinforced by a rubber material, polybutadiene. Unlike
metallic alloys, however, multicomponent polymer blends often do not mix on
a microscopic scale. Owing to the connectivity of monomeric units along the
macromolecule, the translational entropy is greatly reduced and a minuscule repul-
sion x between unlike monomeric units gives rise to local demixing. The different
components segregate into domains, which are separated by interfaces, such that the
materialcanbeconceivedasanassemblyofinterfaces.Themorphologyofthematerial–
the size and spatial arrangement of domains – dictates the mechanical properties.

Phase separation in multicomponent polymer blends is technologically an
important process. Thus, much effort has been directed toward controlling the
morphology of a blend. In thermodynamic equilibrium, two incompatible polymers
will separate into macroscopically large domains. Due to the slow dynamics of the
long macromolecules and the small thermodynamic driving force for coarsening of
the morphology, this ultimate equilibrium state is often not reached on experimen-
tally relevant timescales. Both the thermodynamics and the kinetics of phase
separation can be utilized to tailor the experimentally observed morphology. For
instance, by adding copolymers to the blend, one can reduce the interfacial tension [3]
and hinder the coalescence of domains [4] and, thereby, achieve a beneficial, finer
dispersion of the two components.

Likewise, microphase separation [5] in block copolymer materials has attracted
abiding interest. In a dibelock copolymer, two chemically different species are
irreversibly bonded together to form a single macromolecule. The linkage of the
two parts prevents macroscopic phase separation and the different species arrange
into periodical spatial structures with a length scale that is dictated by the molecular
extension,Re. Depending on the volume fraction, f, of the different blocks, a variety of
microphase-separated structures can be formed including lamellar structures,
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cylindrical domains arranged on a hexagonal lattice, or micellar structures that
crystallize on aBCC lattice [5–7]. These fascinatingmaterials have been employed, for
example, to template structures at the nanoscale [8–10].

In both cases, a theoretical description has to deal with amultitude of length, time-,
and energy scales, which range from the atomistic characteristics of the constituent
chemical repeat units (length scale: Angstrom; timescale: 10�12s; and energy scale:
eV) to the long time and large length scales associated with the kinetics of macro-
phase separation, the annihilation of defects, or the motion of grain boundaries in
microphase-separated structures (length scale: mm; timescale: hours or days; energy
scale: kBT ).Up to now, there is no single computational technique for simultaneously
describing all these different scales [11], and we will restrict ourselves to the
discussion of coarse-grained models that are able to address large time- and length
scales and yet retain the notion of molecular conformations. These models build a
bridge between the atomistic description of chemical details and continuummodels
(e.g., phase-field models), where the relevant degrees of freedoms are collective
variables (e.g., local density fields) rather than the microscopic coordinates of the
individual molecules.

Coarse-grained models for dense polymeric systems are built upon the concept
that the characteristics on short length scales and timescales can be parameterized by
a small number of coarse-grained parameters or invariants. Systems that differ in
their atomistic architecture but that are characterized by the same coarse-grained
parameters will exhibit the same behavior on large length and time scales. This
concept is illustrated in Figure 5.1. The universality of the behavior of multicom-
ponent polymermelts is indeed confirmed by experiments. Its foundation lays in the
Gaussian, self-similar structure of the polymers in a dense melt [12, 13]. Concep-
tually, a coarse-grained model can be obtained by successively lumping a small
number of neighboring repeat units along the molecular backbone into effective
interaction centers [11]. For instance, interactions between these effective interaction
centers can be explicitly constructed by inverse Boltzmann sampling [14, 15].
Typically, they are softer than those between the original repeat units, they depend
on the thermodynamic state of the system (i.e., temperature and density), and they
are comprised of multibody interactions. If the polymers are very long, this coarse-
graining procedure can be repeated over and over again. The limiting model that is
obtained aftermany coarse-graining steps is characterized only by a small number of
relevant interactions, that is, starting with systems that differ in their microscopic
structure one arrives at a common, limiting, coarse-grained model that can be
characterized by the strength of a small number of relevant interactions. The coarse-
grained parameters are invariants that parameterize these relevant interactions [16].
The concept of successive elimination of the degrees of freedom is formally described
by the renormalization group theory of polymers [13, 17–19], and it shares many
aspects with critical phenomena. It rationalizes the experimental observation of
universal behavior and justifies the use of minimal, coarse-grained models. Both
different experimental systems and different computational models will exhibit the
same behavior on large length scales if they converge toward the same system under
successive elimination of degrees of freedom.
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The limiting model for a multicomponent polymer melt is characterized by the
following relevant interactions: (i) the connectivity of the long, flexible macromole-
cules, (ii) repulsive interactions between all segments in a dense liquid that restricts
long wavelength density fluctuations, (iii) the density of molecules, and (iv) the
thermal interactions between the different molecular species in a multicomponent
melt, which drive macroscopic phase separation or self-assembly. The strength of
these interactions can be described by the following coarse-grained parameters:

1) The shape of a long flexible macromolecule in a melt is Gaussian and solely
described by its mean-squared end-to-end distance,R2

e. This parameter serves to
identify the unit of length.Obviously, it does not explicitly depend on the number
of effective interaction centers that are used to describe the molecular contour.

2) The suppression of the density fluctuations can either be described by an
incompressibility constraint or by a finite but small compressibility, 1=k, of the
dense polymeric liquid. It is important to realize that this constraint can be

Figure 5.1 Illustration of properties on
different length scales for a binary polymer
blend. Coarse-grained models rely on the
assumption that properties on large length
scales depend onmicroscopic, chemical details
only via a small number of invariants or coarse-
grained parameters. For a symmetric,
incompressible, polymer blend, the set of

coarse-grained parameters comprises Re, xN,
�N, characterizing length and energy scales and
the strength of fluctuations, respectively. The set
of coarse-grained parameters depends on the
problem, for example, for asymmetric blends
(cf. Figure 5.2) also the ratio of the chain
extensions, g ¼ RðBÞ

e =RðAÞ
e , or the ratio of the

segmental volumes constitute invariants.
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enforced only after coarse-graining, that is, on a large length scale. On the length
scale of the atomistic constituents, density fluctuations and packing effects
always remain large.

3) The molecular density is parameterized by the invariant degree of polymeriza-

tion �N � ro
N

R3
e

� �2
where ro and N denote the density of coarse-grained

segments and the number of segments permolecule, respectively. TheGaussian

conformations in a melt give rise to Re �
ffiffiffiffi
N

p
and thus �N � N. This quantity

remains invariant as one lumps successively more repeating units into one
effective segment and, therefore, it is independent of the definition of a segment.ffiffiffiffiffi

�N
p

describes the number of neighboring partners a molecule interacts with,
and it sets the free energy scale of composition fluctuations.

4) The incompatibility between molecules is described by the product of the
Flory–Huggins parameter, x, and the number of segments, N, per molecule.
x denotes the strength of repulsion between different segments. The product,
xN, parameterizes the repulsion between molecules in a polymer blend or the
distinct blocks of the diblock copolymer.

Some of the coarse-grained parameters, Re and �N, can be easily measured by
experiments or in simulations. The other two parameters, xN and the suppression of
density fluctuations, koN, are thermodynamic characteristics, which are not directly
related to the structure (i.e., they cannot be simply expressed as a function of the
molecular coordinates). If density fluctuations of the polymeric liquid are small on
the length scale of interest (e.g., width of an interface between domains), then the
value of the compressibility has only aminor relevance and decreasing it even further
will not significantly affect the behavior of the system. Thus, field-theoretic calcula-
tions often take the idealized limit of strict incompressibility. In particle-based
simulations, however, one often softens the constraint in order to facilitate the
motion of the interaction centers and, thereby, reduces the viscosity of the polymer
liquid. The Flory–Huggins parameter, in turn, is a crucial coarse-grained parameter
and different methods have been devised to extract it from experiments or simula-
tions [16, 20–25]. We shall briefly discuss this important issue in Section 5.2.3, and
further refer the reader to the literature, where computer simulations have been
quantitatively compared with mean field predictions and where the role of fluctua-
tions on the coarse-grained parameters is discussed [16, 22].

While the development of coarse-grained models for studying equilibrium
properties has a rather well-understood conceptual foundation in its relation to
renormalization group calculations and critical phenomena, the development of
coarse-grainedmodels for the kinetics of phase transformation is awide-openfield. It
is tempting to postulate a similar universality for the dynamics as for the equilibrium
properties but the comparison with phase transitions of simple liquids reveals that
one equilibrium universality class can exhibit different dynamics depending on the
quantities that are conserved [26]. Moreover, it is not obvious that there exists a single
coarse-grained parameter that relates the time scale between different models. One
may adopt the pragmatic point of view that the largest single-chain relaxation
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time, t � R2
eo=D, where D denotes the self-diffusion coefficient, sets the relevant

timescale.
This chapter is organized as follows: In Section 5.2, we describe how to derive

a field-theoretic formulation of a particle-based model with spatially extended,
pairwise interactions between segments and discuss the mean field approximation
of the concomitant field-theoretic model [16, 27, 28]. In Section 5.3, we simplify this
field-theoretic model and motivate a minimal, coarse-grained model for compress-
ible, multicomponent, polymer blends. This model in conjunction with mean field
theory has been extraordinarily successful in predicting the properties of dense,
multicomponent, polymeric liquids [29]. Partial enumeration [30–34], Brownian
dynamics [35, 36], and importance-sampling techniques [37, 38] to calculate the
single-chain properties of non-Gaussian molecules in the mean field are briefly
mentioned. Finally, computer simulation techniques of the discretized versions of
the minimal, coarse-grained model are reviewed [39–42]. These techniques allow to
account for fluctuation effects. Section 5.4 presents different methods to calculate
free energies of soft matter system without invoking the mean field approxima-
tion [43–45]. The chapter closes with a brief summary and outlook.

5.2
From Particle-Based Models for Computer Simulations to Self-Consistent Field
Theory: Hard-Core Models

5.2.1
Hubbard–Stratonovich Transformation: Field-Theoretic Reformulation of the Particle-
Based Partition Function

Different particle-based models have been employed to computationally describe
multicomponent polymer melts on a coarse-grained scale [46–48]. In these models,
the coordinates of segments, fraðsÞg, are the degrees of freedom. The index, a, runs
over all polymers, a ¼ 1; . . . ; n, in the system and s parameterizes the location of the
segment along the molecule, s ¼ 1; . . . ;Na. Typically, segments interact via pairwise
potentials. Bonded, intramolecular potentials, Hb, and nonbonded interactions,
Hnb, can be distinguished. Segments along the backbone of the macromolecule are
bonded together by anharmonic springs. Nonbonded interactions are applied
between all segments, and they are typically comprised of a harsh repulsion at short
distances and a softer attraction at intermediate distances. For computational
convenience, nonbonded interactions are commonly cut off at a finite distance. The
harsh repulsion between segments characterizes the segmental excluded volume. It
gives rise to nontrivial liquid packing effects of the fluid of segments and, on large
length scales, this harsh repulsion restricts density fluctuations and produces the
typical behavior of a dense liquid. Often, the distance between bonded segments
along themacromolecule and the typical distance of nonbonded nearest neighbors in
the dense liquid, which can be identified by thefirst peak of the radial density–density
pair correlation function, are comparable. In this case, the bonded interactions do not
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strongly perturb the liquid, and the structure of a liquid of nonbonded segments
and polymers is quite similar. Often a maximal bond length is enforced, and the
combination of harsh repulsion and finite bond length is chosen as to prevent
the chain molecules from crossing through each other in the course of their
motion [47, 49]. Then, themodel captures the important condition of noncrossability
of chain molecules, which has important consequences for the single-chain dynam-
ics (i.e., entanglements) and results in a reptation-like motion of long macromole-
cules in a melt [12, 50].

Typical examples of this type of coarse-grained models are bead-spring models
using a Lennard-Jones potential between effective segments and an FENE-potential
or a bond length constraint as bonded interactions [47]. Repulsion between distinct
segment species can be modeled through different Lennard-Jones parameters.
Apopular choice consists in using a purely repulsive Lennard-Jones potential, which
is cut off and shifted at theminimumsc ¼

ffiffiffi
26

p
s [51, 52]. Anotherwidely used, coarse-

grained representation is the bond fluctuation model (BFM) [49, 53], where effective
segments live on a cubic lattice and block all eight corners of a unit cube from further
occupancy. Bonded segments along the chain are connected via one of the 108 bond
vectors that can adopt the lengths 2;

ffiffiffi
5

p
;
ffiffiffi
6

p
; 3, and

ffiffiffiffiffi
10

p
in units of the lattice

spacing. The repulsion between distinct monomer species can be described by
a simple square-well potential. Molecular dynamic simulations [47, 51] have been
utilized to study off-lattice models and Monte Carlo techniques in conjunction with
sophisticated reweighting techniques have been employed to extract information
about the phase behavior and interface properties [54–56] of lattice models.

In the following discussion, we use the example of a symmetric binary polymer
blend to develop the formalism of deriving a field-theoretic description, but the
technique can be easily generalized to asymmetric systems, block copolymers, and
their mixtures with homopolymers.

The starting point for a theoretical description is the partition function Z in the
canonical ensemble. Specifically, we consider nA polymers of species A and nB
macromolecules of species B in a volume, V, at temperature, T. Both species of the
symmetric blend are comprised of the same number, N ¼ NA ¼ NB, of effective
segments.

Z / 1
nA!nB!

ðYnA
a¼1

~DA raðsÞ½ �
YnB
b¼1

~DB rbðsÞ
� �

exp

"
�Hnb½frg�

kBT

#
; ð5:1Þ

where kB is Boltzmann constant. The factorials take account of the indistinguish-
ability of the A- and B-polymers. The integration �DA½ra� sums over all conformations
of the ath A-polymer within the microscopic model using the appropriate statistical
weight due to intramolecular interactions, that is,

~DA ra½ � ¼
YNA

s¼1

d3raðsÞexp
"
�Hb½frag�

kBT

#
: ð5:2Þ

The nonbonded interactions are comprised of two contributions,
Hnb ¼ Hmelt þHord.Hmelt is the harsh, short-ranged excluded volume interaction,
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represented by the avoidance of double-occupancy of lattice sites in the bond
fluctuation model. Hord describes the longer-ranged, thermal interactions that
distinguish the segment species. In the bond fluctuation model, these thermal
interactions are described by the square-well potential between neighboring, effec-
tive segments. Typically, the interaction range is extended over the nearest 54 lattice
sites, which constitute the first neighbor shell of the polymer liquid [20, 57]. In off-
lattice models, the distinction between harsh repulsive interactions, dictating the
liquid structure, and softer, longer-ranged interactions, which provide the cohesion
of the liquid, iswell established of liquid-state theory. In amodelwith purely repulsive
Lennard-Jones potentials [58, 59], however, the quantitative separation of the two
contributions (and, thus, the relation between the parameters of the Lennard-Jones
potential and the Flory–Huggins parameter) is a challenge because the interaction
between unlike species alters the local liquid structure.

Hmelt and Hord arise from pairwise interactions. For simplicity, we assume a
simple, symmetric form

Hmelt½frg� ¼
X

pairsfða;iÞ ðb; jÞg
VevðraðiÞ�rbð jÞÞ; ð5:3Þ

where the sum is taken over all pairs of segment i on polymer a and segment j on
polymer b, irrespective of their species, and

Hord½frg� ¼
X

pairsfða;iÞðb; jÞg
�VðraðiÞ�rbð jÞÞ; ð5:4Þ

where the plus-sign is used for interactions between unlike species, while the
interaction energy is negative for contacts between species of the same type. General-
izations to nonsymmetric choices of interactions are straightforward. These types of
coarse-grained representations areminimal, coarse-grainedmodels, and the different
interactions – bonding, harsh repulsion, longer-ranged interactions – and the density
are related to the four coarse-grained parameters, Re; kN; xN, and �N.

This particle-based description can be reformulated in a field-theoretic language
via a Hubbard–Stratonovich transformation. As the first step, we define the micro-
scopic normalized density of A-segments, which depends on the positions of all
segments, fraðsÞg, of A-polymers [60]:

ŵAðrÞ ¼
1
r0

XnA
a¼1

XN
s¼1

dðr�raðsÞÞ: ð5:5Þ

A similar expression holds for the density of B-segments. The normalization is
chosen such that the spatial average, ð1=VÞ Ð d3r ŵAðrÞ, equals the average compo-
sition, 0 � �wA ¼ nAN=r0V � 1, of the system. The energy of excluded volume
repulsion, Hmelt, then takes the form

Hmelt ŵA; ŵB

h i
¼ r20

2

ð
d3r d3r0 ŵAðrÞþ ŵBðrÞ

h i
Vevðr�r0Þ ŵAðr0Þ þ ŵBðr0Þ

h i

�ðnA þ nBÞN
2

Vevð0Þ; ð5:6Þ

5.2 From Particle-Based Models for Computer Simulations to Self-Consistent Field Theory j203



where Vev is the excluded volume interaction defined in Eq. (5.3). The last term
explicitly subtracts the self-interactions, which are included in the first term. Since
they contribute only a constant to the energy, which is independent of the config-
uration, they are irrelevant for the following discussion and omitted; theymerely give
rise to a shift of the chemical potential in the grand-canonical ensemble. Similarly,
one can rewrite the pairwise interactions, Hord, as a convolution of the interaction
potential Vðr�r0Þ with densities at positions r and r0.

By choosing linear combinations of the densities, ŵA and ŵB, we can eliminate the
cross term proportional to ŵAŵB in the interactions. By virtue of the symmetry of
the interactions, VAAðrÞ ¼ VBBðrÞ, these linear combinations simply are the total
segment density, r̂ � ŵA þ ŵB, and the difference of densities or composition,
ŵ � ŵA�ŵB. Then, the interaction energy is quadratic in r̂ and ŵ and the concom-
itant Boltzmann factor takes the form

exp �Hnb

kBT

� �
¼ exp � r0

2N

ð
d3r d3r0fr̂ðrÞVþ ðr�r0Þr̂ðr0Þ�ŵðrÞV�ðr�r0Þŵðr0Þg

� �
ð5:7Þ

with

Vþ ðrÞ ¼ r0N
kBT

VevðrÞ and V�ðrÞ ¼ r0N
kBT

VðrÞ: ð5:8Þ

Note that in models with harsh excluded volume interactions the repulsive part of
the binary interaction, coupling to the total density, is of order kBT per segment, that
is,
Ð
d3r Vþ ðrÞ � OðNÞ. The longer-ranged interactions that distinguish the segment

species and couple to the composition are only of order 1=N per segment. Thus, the
integrated strength is of order unity, that is,

Ð
d3r V�ðrÞ � Oð1Þ. The two interactions

also contribute with different signs to the energy. Physically, this is reflected in the
qualitatively different behavior of r̂ and ŵ: a dense polymer melt is nearly incom-
pressible, therefore r̂ will hardly vary in space and exhibit only minor thermal
fluctuations. This is in marked contrast to the composition, ŵ. It distinguishes the
A-rich and B-rich phase, and it exhibits strong thermal fluctuations in the vicinity of
the second-order demixing transition.

As the second step, we use the Hubbard–Stratonovich formula

exp
1
2
xax

� �
¼ 1ffiffiffiffiffiffiffiffiffi

2pa
p

ð þ¥

�¥
dy exp

"
� y2

2a
þ xy

	 
#
ð5:9Þ

at each point in space. The fieldW� is introduced by identifying a ¼ r0V�=N, x ¼ ŵ

and y ¼ r0W�=N. The field Wþ is also inserted by the Hubbard–Stratonovich
formula, but as a ¼ �r0Vþ =N < 0 we choose x ¼ r̂ and y ¼ r0iWþ =N with
i ¼ ffiffiffiffiffiffiffi�1

p
in order to make the integrals well behaved. Then, the field Wþ , that is

conjugated to the total density r̂, gives rise to an imaginary contribution. This
Hubbard–Stratonovich transformation leads to the exact rewriting of the partition
function:

204j 5 Computational Approaches for Structure Formation in Multicomponent Polymer Melts



Z / 1
nA!nB!

ðYnA
a¼1

~DA½raðsÞ�
YnB
b¼1

~DB½rbðsÞ�
ð¥
�¥

DWþDW�

exp �
ð
d3r d3r0

r0
2N

Wþ ðrÞV�1
þ ðr�r0ÞWþ ðr0Þ�i

ð
d3r

r0
N

Wþ ðrÞr̂ðrÞ
2
4

3
5

exp �
ð
d3r d3r0

r0
2N

W�ðrÞV�1
� ðr�r0ÞW�ðr0Þ�

ð
d3r

r0
N

W�ðrÞŵðrÞ
2
4

3
5

/ 1
nA!nB!

ð¥
�¥

DWþDW� eS½Wþ ;W��
ðYnA
a¼1

~DA raðsÞ½ �
YnB
b¼1

~DB rbðsÞ
� �

e
�r0

N

Ð
d3r ðiWþ r̂þW�ŵÞ

ð5:10Þ
with

S Wþ ;W�½ � ¼ � r0
2N

ð
d3rd3r0fWþ ðrÞV�1

þ ðr�r0ÞWþ ðr0ÞþW�ðrÞV�1
� ðr�r0ÞW�ðr0Þg:

ð5:11Þ
Here V�1

þ ðrÞ denotes the functional inverse of Vþ ðrÞ, which is defined by the
equation

ð
d3r V�1

þ ðr00�rÞVþ ðr�r0Þ ¼ dðr00�r0Þ ð5:12Þ

and a similar definition holds for V�1
� . At this stage, we tacitly assume that the

functional inverses of the potential exist. This property imposes a restriction on the
particle-basedmodels, which can be converted into afield-theoretic description.With
the use of the explicit form of the microscopic density, the argument of the last
exponential in Eq. (5.10) takes the form

r0

ð
d3r fiWþ r̂þW�ŵg ¼

XnA
a¼1

XNA

s¼1

WAðraðsÞÞþ
XnB
b¼1

XNB

s¼1

WBðrbðsÞÞ ð5:13Þ

with WA ¼ iWþ þW� and WB ¼ iWþ�W�. Thus, the chains do not mutually
interact, but we have reformulated the partition function in terms of independent
chains subjected to the external, fluctuating fields, iWþ and W�. We define the
partition function of a single A-polymer in the external field WAðrÞ as

QA WA½ � ¼
ð
~DA rðsÞ½ � exp � 1

N

XNA

s¼1

WAðrðsÞÞ
" #

ð5:14Þ

and a similar expressiondefinesQB½WB�. Then,weobtain for the partition function of
the multichain system:
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Z /
Ð
DWþDW� eS½Wþ ;W�� ðQA½iWþ þW��ÞnA

nA!
ðQB½iWþ þW��ÞnB

nB!

/
Ð
DWþDW� exp �F½Wþ ;W��

kBT

2
4

3
5;

ð5:15Þ
where the free energy functional, F , takes the form

F½Wþ ;W��
kBTðV=R3

eoÞ
ffiffiffiffiffi
�N

p ¼ �wAln
�wAr0V

eNQA½iWþ þW��
	 


þ �wBln
�wBr0V

eNQB½iWþ þW��
	 


þ 1
2V

ð
d3r d3r0fWþ ðrÞV�1

þ ðr�r0ÞWþ ðr0Þ þW�ðrÞV�1
� ðr�r0ÞW�ðr0Þg;

ð5:16Þ
�wA � nAN=r0V and �wB � nBN=r0V denote the average compositions.
Up to this stage we have reformulated the original problem in terms of a problemof

independent chains, in the fields iWþ andW�, without invoking any approximation.
Note that thefields are collective degrees of freedomand thuswehave arrived at afield-
theoretic reformulation of the particle-based model. The initial difficulty due to the
interactions between different molecules is now shifted to the equally formidable
problem of the functional integration over the fluctuating fields, iWþ and W�.

5.2.2
Mean Field Approximation

Unfortunately, we cannot perform the functional integral overWþ andW�. Tomake
further progress, we evaluate the functional integrals by a saddle-point approxima-
tion, that is, instead of integrating over all fields we estimate the integral by the most
probable value of the integrand [6, 28, 60–62]. At this stage we neglect fluctuations of
the external fields and, thereby, correlations between the chain molecules are
ignored.

We split the saddle-point integration into two steps [27, 63]: First, we approximate
the functional integral over Wþ by the most probable value of the integrand.

Z /
ð
DWþDW� exp �F ½Wþ ;W��

kBT

� �
�
ð
DW� exp �GEP½W��

kBT

� �
ð5:17Þ

with

GEP½W�� ¼ min
Wþ ðrÞ

F½Wþ ;W��:

The real field,Wþ , gives rise to an imaginary contribution toWA andWB that, in
turn, corresponds to a strongly oscillating behavior of the integrand. To evaluate those
oscillating contributions, the standard procedure is to extend the auxiliary fieldWþ
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into the complex plane and perform the integration parallel to the real axis. The
imaginary shift perpendicular to the real axis can be chosen such that the functional

derivative vanishes,
dF

dWþ ðrÞ ¼ 0, at Wþ ¼ wþ , where wþ is purely imaginary.

Consequently, the integrand has a stationary phase at wþ along the shifted path of
integration, and this region yields the dominant contribution to the integral. From
the condition of stationary phase, we obtain

1
kBT

dF

dWþ ðrÞ ¼ � ir0
N

ð
d3r0 V�1

þ ðr�r0ÞWþ ðr0Þ�nA
d lnQA½WA�
dWAðrÞ �nB

d lnQB½WB�
dWBðrÞ ¼! 0

ð5:18Þ
and the field that fulfills the saddle-point equation is denoted by a lower case letter,
wþ . The last terms are proportional to the densities, w	

A½WA�ðrÞ and w	
B½WB�ðrÞ, that

are created by a single A-polymer or B-polymer in the external field WA or WB,
respectively. To demonstrate this explicitly, we use the definition of the single-chain
partition function, Eq. (5.14) and calculate the functional derivative

d lnQA½WA�
dWAðrÞ ¼ 1

QA

d

dWAðrÞ
ð
~DA raðsÞ½ � e

�
Ð
d3r0WAðr0 Þ

1
N

XNA

s¼1

dðr0�raðsÞÞ

¼ � 1
QA

ð
~DA raðsÞ½ � 1

N

XNA

s¼1

dðr�raðsÞÞ e
�
Ð
d3r0WAðr0Þ

1
N

XNA

s¼1

dðr0�raðsÞÞ

� � 1
N

XNA

s¼1

dðr�raðsÞÞ
* +

single chain in external field; WA

ð5:19Þ

� � r0
nAN

w	
A WA½ �ðrÞ: ð5:20Þ

The prefactor has been chosen such that
Ð
d3rw	

AðrÞ ¼ V �wA.
Inserting this expression into the saddle-point equation for wþ , we obtainð

d3r0V�1
þ ðr�r0Þiwþ ðr0Þ ¼ w	

AðrÞþw	
BðrÞ

iwþ ðr00Þ ¼
ð
d3rVþ ðr00�rÞ½w	

AðrÞþw	
BðrÞ�; ð5:21Þ

where, in the last step, wehavemultiplied the expression byVþ ðr00�rÞ and integrated
over the volume using Eq. (5.12).

Substituting back the saddle-point value,wþ , into the partition function, Eq. (5.15),
we find
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ZEP �
ð
DW� exp �F ½wþ ;W��

kBT

� �
�
ð
DW� exp �GEP½W��

kBT

� �

with

GEP½W��
kBT

¼ nA ln
nA

eQA½iwþ þW��

0
@

1
Aþ nBln

nB
eQB½iwþ þW��

0
@

1
A

þ r0
2N

ð
d3r d3r0W�V�1

� W�� r0
2N

ð
d3r d3r0ðw	

A þw	
BÞVþ ðw	

A þw	
BÞ:

ð5:22Þ

Since iwþ is real, one has to evaluate the single-chain partition functions,QA and
QB, and single-chain densities, w	

A and w	
B, of molecules subjected to real but

fluctuating fields, WA ¼ iwþ ½W��þW� and WB ¼ iwþ ½W���W�. At this stage,
we have eliminated fluctuations of the field, Wþ , which is conjugated to the total
density, but retained thefluctuations of thefield that couples to the composition of the
blend. We refer to this scheme as external potential theory [27, 63, 64]. The
fluctuations can be sampled using real Langevin dynamic simulations [63] or Monte
Carlo simulations [65]. In practice, it often turns out that retaining the fluctuations in
W� is sufficient to capture most of the long-wavelength composition fluctuations
because the coupling between density and composition fluctuations is small in a
symmetric, multicomponent polymer melt (cf. Eq. (5.7)).

We proceed in deriving the self-consistent field theory for the binary polymer
blend, by also approximating the functional integral over thefield d,W�, by its saddle-
point value. The condition for the extremum becomes

1
kBT

DF
DW�ðrÞ ¼ þ r0

N

ð
d3r0V�1

� ðr�r0ÞW�ðr0Þ�nA
D lnQA½WA�
DWAðrÞ þ nB

D lnQB½WB�
DWBðrÞ ¼! 0;

ð5:23Þ

w�ðr00Þ ¼ �
ð
d3rV�ðr00�rÞðw	

AðrÞ�w	
BðrÞÞ: ð5:24Þ

The two Eqs. (5.21) and (5.24) relate the real saddle-point values, iwþ and w�, to
w	
A½iwþ þw��ðrÞ andw	

B½iwþ�w��ðrÞ, which are themselves functionals of the fields
(cf. Eq. (5.20)). Solving the interacting multichain problem within mean field theory
amounts to self-consistently fulfilling Eqs. (5.20),(5.21) and (5.24). The saddle-point
values of the fields acting on A- and B-polymers take to form

wA ¼ iwþ þw� ¼ R3
eo

kBT
ffiffiffiffiffi
�N

p dHnb

dŵAðrÞ
;

wA ¼ iwþ þw� ¼ R3
eo

kBT
ffiffiffiffiffi
�N

p dHnb

dŵBðrÞ
:

ð5:25Þ
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Substituting the saddle-point values, wþ and w�, back into the free energy
functional, we arrive at the mean field estimate for the Helmholtz free energy:

FSCFT

kBT
� F ½wþ ;w��

kBT
ð5:26Þ

¼ nA ln
nA

eQA½iwþ þw��

0
@

1
Aþ nB ln

nB
eQB½iwþ þw��

0
@

1
A

� r0
2N

ð
d3r d3r0½w	

AðrÞþw	
BðrÞ�Vþ ðr�r0Þ½w	

Aðr0Þ þw	
Bðr0Þ�

þ r0
2N

ð
d3r d3r0½w	

AðrÞ�w	
BðrÞ�V�ðr�r0Þ½w	

Aðr0Þ�w	
Bðr0Þ�:

ð5:27Þ

To calculate the thermal average of the composition, hŵi, we go back to the exact
expression for the partition function in Eq. (5.10)

hŵðrÞi � 1
Z

ð
DWþDW� eS½Wþ ;W�� 1

nA!nB!
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a¼1

~DA raðsÞ½ �
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~DB rbðsÞ
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Ð
DWþDW� eS½Wþ ;W�� Q
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w	
AðrÞ�w	

BðrÞ
� �

Ð
DWþDW� eS½Wþ ;W�� Q

nA
A QnB

B

nA!nB!

¼ hw	
AðrÞ�w	

BðrÞiW ;

ð5:29Þ

where the lastaverageh � � � iW isperformedoverallfields,Wþ andW�,withtheweight

eS½Wþ ;W�� Q
nA
A QnB

B

nA!nB!
:Within mean field approximation, this expression simplifies to

hŵðrÞi � hŵAi�hŵBi � w	
A½wA��w	

B½wB�: ð5:30Þ
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Similarly, we arrive at

hr̂ðrÞi � hŵAiþ hŵBi � w	
A½wA� þw	

B½wB�: ð5:31Þ

These equations identify the density that a single chain in the external field creates
as the thermodynamic average of the microscopic density.1)

5.2.3
Role of Compressibility and Local Correlations of the Fluid of Segments

The mean field approximation neglects fluctuations and correlations. Two types of
fluctuation effects can be distinguished: (i) long-ranged fluctuations in dense
polymer systems are small [16, 27]. Often their significance is controlled by the
inverse of the invariant degree of polymerization, Gi� 1= ~N. This parameter is
denoted as Ginzburg number. Equation (5.16) (and also Eq. (5.35)) demonstrates that
the scale of the free energy functional is set by �NkBT. Fluctuations of the collective
fields from their saddle-point values incur an increase of the free energy by an
amount of �NkBT and, thus, they are strongly suppressed for large �N. (ii) In addition,
particle-based models with harsh excluded volume interactions exhibit local, non-
universal, liquid-like correlations that are important and cannot be controlled by
a small parameter (such as Gi).

Since fluctuations and correlations are ignored in the mean field treatment, the
results of the literal mean field theory are quantitatively inaccurate [23]. There are
two possibilities to deal with this problem and extract accurate results in the limit
Gi! 0:

(a) The effect of local fluctuations is to renormalize the value of the coarse-grained
parameters. Thus, rather than predicting the value of the coarse-grained
parameters for a particle-based model, one should adjust those coarse-grained
parameters to account for the effect of local packing in the dense liquid of
segments or the avoidance of back-folding of the chain molecule due to the
excluded volume of the segments, and local composition fluctuations [16, 22–
25]. This approach is very much in the spirit of coarse-grained models and, in
fact, when the coarse-grained parameters are treated as adjustable parameters,
the mean field theory is able to simultaneously and accurately predict a variety
of thermodynamic and structural quantities in multicomponent polymer
melts [30, 55, 66–68].

(b) Alternatively, one can replace themicroscopic interactions,Hnb, as a function of
themicroscopic densities by an interaction free energy functional,FDFT, which
depends on the collective densities. This interaction free energy functional is
chosen, such that theminimization of the field-theoretic partition functionwith
respect to the collective fields and densities will yield accurate results. Density

1) One can also start fromEq. (5.28) and integrate by parts to obtain a relation between the average of the
microscopic density and the average of the field W�. After the saddle-point approximation,
hW�ðrÞiW � w�ðrÞ, and using Eq. (5.24), we obtain Eq. (5.31).
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functional theory explains that there exists such a FDFT, but its form is
unknown. Liquid-state theory of simple fluids, however, offers much guidance
in constructing suitable forms for polymeric systems. Particularly important is
the distinction between harsh repulsive interactions and long-ranged attrac-
tions in the fluid of segments [52, 69–77].

Both strategies have been successfully applied to a variety of problems in
multicomponent polymer melts and the predictions of the approximate mean field
theory have been quantitatively compared with the exact results of computer
simulations [16].

5.3
From Field-Theoretic Hamiltonians to Particle-Based Models: Soft-Core Models

5.3.1
Standard Model for Compressible Multicomponent Polymer Melts and Self-Consistent
Field Techniques

In the previous sections, we have motivated the use of minimal coarse-grained
models by their universal behavior on large length scales. Lumping successively
more atoms into one coarse-grained segment, the size of an effective segment,
Re=

ffiffiffiffi
N

p
, increases and the range of segmental interactions measured in units of

Re=
ffiffiffiffi
N

p
becomes smaller.Moreover, by virtue of universality, the detailed shape of the

interactions does notmatter and thus it is tempting to use the simplest possible form,
which is sufficient to parameterize the relevant interactions that are required to
reproduce the universal behavior of multicomponent polymer melts. Therefore, one
often utilizes zero-ranged, pairwise interactions of the form

Vevðr; r0Þ ¼ ko
kBT
ro

dðr�r0Þ and Vðr; r0Þ ¼ xo
2
kBT
ro

dðr�r0Þ: ð5:32Þ

Using these potentials, one can rewrite the nonbonded interactions, Hnb, in the
form

Hmelt wA;wB½ � ¼ rokBT
ko
2

ð
d3r½wA þwB�1�2; ð5:33Þ

Hord wA;wB½ � ¼ �rokBT
xo
4

ð
d3r½wA�wB�2; ð5:34Þ

where we have again added/omitted terms in the integrand that are linear in density.
These latter contributions are proportional to the number of polymers and can be
adsorbed in a shift of the chemical potential. Using the simple interactions in
conjunction with the Gaussian chain model, one arrives at the standard, field-
theoretic model of a weakly compressible multicomponent polymer melt.
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The parameters, Reo; xoN; �N, and koN are related to the coarse-grained para-
meters, R; xN; �N, and kN, respectively, but they are not identical due to the effect of
fluctuations and local correlations that have been discussed in Section 5.2.3. Only
within themean field approximation, the distinction between the bare parameters of
the standard model, which are denoted by the subscript �o�, and the coarse-grained
parameters can be neglected.

In the standardmodel, the bonded interactions,whichdescribe theGaussian chain
architecture, are given by the Wiener measure

�DA raðsÞ½ � ¼ DA raðsÞ½ � exp � 3N
2R2

eo

ðNa

0
ds

dr
ds

	 
2
" #

; ð5:36Þ

that is, the polymera is represented by a space curve, rðsÞ, and the contour parameter,
0 � s � Na, is a continuous variable.

Polymers in a melt exhibit self-similar structure from the length scale of the
polymer extension,Reo, down to amicroscopic cutoff. The latter length scale is set by
the range of interactions, the bond length, or the segment size. Using a continuous
description of the chain architecture and zero-ranged interactions, the microscopic
cutoff is eliminated, that is,Re is the only relevant length scale and, formally, the self-
similar structure is extended to arbitrarily small length scales.

For the simple interactions, Eqs. (5.33) and (5.34), the self-consistent condition that
relates the fields to the density takes the form

wA ¼ iwþ þw� ¼ � xoN
2

wA�wB½ � þ koN wA þwB�1½ �;

wB ¼ iwþ�w� ¼ þ xoN
2

wA�wB½ � þ koN wA þwB�1½ �:
ð5:37Þ

Sophisticated numerical techniques have been devised to study this standard
modelwithinmeanfield approximation. They exploit that themeanfield problemof a
Gaussian chain in an external field can be described by amodified diffusion equation
in an external field [60]. The latter leads to a partial differential equation that can be
solved by efficient computational techniques. Advanced real-space, spectral, and
pseudospectral algorithms have been devised to this end [28, 78–80].2)

Since thenotion of segments is eliminated, the chain discretization,N, is obviously
not a coarse-grained parameter. Only the combinations xoN, koN, and �N occur in the

2) In practice, however, all these numerical techniques use a discretization of space, real-space and
pseudospectral methods additionally discretize the chain contour. Thereby, a microscopic cutoff is
introduced via the numerical methodology.
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definition of themodel. xoN describes the incompatibility between polymers and the
corresponding length scale is thewidth,w, of the interface betweenA andBdomains.
Within the mean field approximation, one obtains

wSSL

Reo
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

6xoN
p ð5:38Þ

in the limit of strong segregation (SSL), xoN!¥.
By the same token, incompressibility cannot be enforced on the length scale of a

segment but only on a small fraction of Reo. The correlation length, jev, of density
fluctuations in the compressible standard model is given by

jev
Reo

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12koN

p ð5:39Þ

within mean field approximation for a one-component system at xoN ¼ 0. The two
length scales – the excluded volume screening length, jev, and the interfacial width,w
– define themicroscopic scales that correspond to the nonbonded interactions,Hmelt

andHord, respectively.
3) In order to avoid artifacts, thesemicroscopic scales have to be

larger than the microscopic length that arise from the discretization of space, DL, or
chain contour, b � Reo=

ffiffiffiffiffiffiffiffiffiffi
N�1

p
.

Themean field approximation of the standard model of multicomponent polymer
melts has been extraordinarily successful in describing the universal properties of
melts of long polymers. Moreover, simple analytical expressions for various quan-
tities can be obtained in the limit xoN!¥ (strong segregation limit) or at the onset of
ordering or demixing (weak segregation limit). In addition, much effort has been
directed toward describing fluctuation effects within the field-theoretic description,
and we direct the reader to Ref. [27].

5.3.2
Mean Field Theory for Non-Gaussian Chain Architectures

5.3.2.1 Partial Enumeration Schemes
One major advantage of the standard model is the absence of a microscopic cutoff
length scale. In some circumstances, however, the interactions xoN or koN become
so strong that the corresponding length scales, w or jev, respectively, become
comparable to the size of a chemical repeat unit and the local molecular structure on
these short length scales is not well-described by the continuous Gaussian chain
model. In this case, more detailed representations of the molecular architecture
have to be used. Efficient numerical schemes have been developed for molecular
representations on lattices by Scheutjens and Fleer [61] and the worm-like chain
model [81–83]. Both approaches allow a modeling of stiffness of the chain contour
on short-length scales and are able to describe the crossover from a rod-like behavior

3) The ratio of the coarse-grained parameters, Reo and �N, defines an additional microscopic scale,
p ¼ Reo=

ffiffiffiffiffi
�N

p
, which is denoted as packing length. This scale is proportional to the tube diameter of the

reptation motion of the long, flexible macromolecules in a melt.
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on short-length scales to the Gaussian behavior of flexible chains on large
scales [83].

In the case of general chain architectures, however, the mean field problem of
a single chain in an external field cannot be cast in the form of a modified diffusion
equation, and the density that a single chain creates in the external field and the
concomitant single-chain partition function have to be estimated by partial enumer-
ation [30–34]. Thismethodology has been successfully applied to study the packing of
short hydrocarbon chains in the hydrophobic interior of lipid bilayers [31, 32, 34] and
polymer brushes [33] and to quantitatively compare the results of Monte Carlo
simulations to the predictions of the mean field theory without adjustable para-
meters [30]. The latter application is illustrated in Figure 5.2.

In the partial enumeration scheme, we evaluate the single-chain problem by
considering a large ensemble of single-chain configurations, fraðsÞg. Typically, such
an ensemble is comprised of Nc ¼ 107 or more single-chain configurations (includ-
ing different intramolecular conformations and translations of the molecule). Then,
the densityw	

A½wA� of anAmolecule subjected to the externalfield,wA, and the ratio of
the single-chain partition function and its value in the absence of an external field,
~QA½wA�, can be estimated according to

w	
A wA½ � ¼ 1

Nc
~QA

XNc

a¼1

exp � 1
N

XN
s¼1

wAðraðsÞÞ
" #

nA
ro

XN
s¼1

dðr�raðsÞÞ
 !

; ð5:40Þ

~QA wA½ � ¼
PNc

a¼1
exp � 1

N

PN
s¼1 wAðraðsÞÞ

h i
Nc

: ð5:41Þ

Given the single-chain density, w	
A½wA�, one obtains improved estimates for the

external fields and this cycle of calculations is repeated until self-consistency of
Eq. (5.25) (or Eq. (5.37)) is obtained. Typically, one uses the same set of single-
chain conformations in each iteration such that the noise in w	

A½wA� due to the
finite number, Nc, of conformations does not interfere with the convergence of
the self-consistency condition. Calculating the single-chain density, w	

A½wA�, is
computationally expensive, but it can be easily implemented on parallel computers,
where each processor evaluates the Boltzmann weight of a subset of chain
conformations.

5.3.2.2 Monte Carlo Sampling of the Single-Chain Partition Function
and Self-Consistent Brownian Dynamics
The number of single-chain conformations exponentially increases with the chain
length. For instance, for a random walk withN�1 steps, the number of single-chain
conformations increases like VzN�1

eff , where V denotes the volume of the system and
this factor quantifies the translational degrees of freedom. zeff is an estimate of the
number of steps (or bonds) that connect subsequent steps (or segments) and the
second factor counts the number of intramolecular conformations. Thus, for all but
very short chains, the number of single-chain conformations,Nc, that are included in
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Figure 5.2 (a) Interface tension, cI, of an
asymmetric polymer blend. One species is
completely flexible, while the molecular
architecture of the other component of the
blend is semiflexible. The stiffness ismodeledby
a bond-angle potential of strength, f. Symbols
correspond to Monte Carlo simulations of the
bond fluctuation model for chain length
N ¼ 32, which have been obtained by analyzing
the spectrum of interface fluctuations. The
arrow on the left-hand side marks the interface
tension of a symmetric blend obtained from
semigrandcanonical Monte Carlo simulations.
Solid lines correspond to the prediction of the
self-consistent field theory using a partial
enumeration scheme to incorporate the chain
architecture on all length scales. The dashed line
corresponds to the prediction of the Gaussian
chain model in the strong segregation

limit [158],
cSSLR

2
e

kBT
¼

ffiffiffiffiffi
�N

p ffiffiffiffiffiffi
xN
6

r
2ð1þ gþ g2Þ

3ð1þ gÞ .

g ¼ RðBÞ
e =RðAÞ

e denotes the ratio of the chain
extensions, which is an additional invariant for
the asymmetric blend. The inset shows the
relative increase of the interfacial tension due to
stiffness disparity, f. (b) Estimates for the width
of the interface as a function of stiffness on the
lateral length scale B ¼ 3:8Re (circles) and
B ¼ 0:9Re (squares). Diamonds correspond to
an estimate of the intrinsic width from the
excess energy of the interface, which is as an
integral quantity less affected by interface
fluctuations. The prediction of the self-
consistent field theory using a partial
enumeration scheme and the strong
segregation limit for Gaussian chains,

wintr;SSL

Re
¼ 1ffiffiffiffiffiffiffiffiffi

6xN
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg2

2

r
, are shown by solid

and dashed lines, respectively. The inset shows
the relative variation as a function of stiffness, f.
Reprinted with permission from Ref. [30].
©1997, American Institute of Physics.
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the partial enumeration scheme is only a very small faction of the total number of
molecular conformations.

If the external field is strong, the typical chain conformations in the external field
will significantly differ from the original set of configurations. Under these condi-
tions, the finite original set of single-chain conformations, which is representative
ofmolecules in the absence of an externalfield, will only be a very poor representation
of the physical system under investigation and severe sampling problems occur in
Eq. (5.40). These problems are signaled by large fluctuations of the Boltzmann
weights of the single-chain conformations in the externalfield, that is, very few chains
dominate the weighted average.

One straightforward way to mitigate this problem is to calculate the density,
w	
A½wA�, of a single-chain in the external field, wA by computer simulation. Monte

Carlo simulations or Brownian dynamics can be used to create a sample of single-
chain conformations that are distributed according to the Boltzmann weight in
Eq. (5.40).Using this importance-sampling scheme, the density is simply obtained by
the nonweighted average over the generated single-chain conformations.

This procedure, however, is impractical because the generation of the represen-
tative set of single-chain conformations in the external field via importance sampling
is computationally more expensive than partial enumeration and one would have to
perform a computer simulation in each iteration cycle of the self-consistent adjust-
ment of fields and densities.

Two solutions of this sampling problem have been proposed:

(a) Rather than requiring that the ensemble of single-chain conformations is a
representative sample of conformations in the field, wA, that fulfills the self-
consistency condition, one can create a representative sample of single-chain
conformations in a field ~wA, which is sufficiently similar to the unknown field,
wA. Then, Eqs. (5.40) and (5.41) can be rewritten in the form [37, 38]:

w	
A wA½ �a exp � 1

N

XN
s¼1

fwAðraðsÞÞ�~wAðraðsÞÞg
" #

nA
ro

XN
s¼1

dðr�raðsÞÞ
* +

~wA

;

ð5:42Þ

~QA wA½ � ¼
exp � 1

N

PN
s¼1

fwAðraðsÞÞ�~wAðraðsÞÞg
� �� 

~wA

exp 1
N

PN
s¼1

~wAðraðsÞÞ
� �� 

~wA

; ð5:43Þ

where h � � � i~wA
denotes the importance sampling with respect to the Boltzmann

weight in the external field ~wA. The technique is an analogue of histogram
reweighting [84] for studying phase transitions. Typically, ~wA is obtained from
one of the first iterations of the self-consistent adjustment offields and densities
or it is the self-consistent solution for a nearby set of control parameters (e.g.,
composition or incompatibility). If ~wA � wA, the single-chain conformations
created by the importance-sampling procedure will also be representative for
conformations in the field wA and the same sample of conformations can be
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reused for different iterations of the self-consistent adjustment of fields and
densities. The Boltzmann weights in Eq. (5.42) stem only from the difference,
wA�~wA, and they will not strongly fluctuate if this difference remains small.
Thus, the sampling problem for the calculation of density is avoided. Apart from
the single computer simulationused to generate the ensemble of conformations
at the beginning, the computational cost is similar to the unbiased partial
enumeration technique.

While this strategymitigates the sampling problem for the density, it does not
solve the problem for the estimation of the single-chain partition function,
~QA½wA�. In the denominator of Eq. (5.43), the Boltzmann factors will strongly
fluctuate if there is little overlap between the representative sample for con-
formations generated in the field, ~wA � wA, and the typical conformations in
the absence of a field. Thus, the sampling problem is shifted from the
numerator to the denominator and the accurate calculation of the free energy
remains to be difficult with this method.

Avalos et al. [37, 38] have devised this technique for studying the adsorption of
macromolecules at surfaces. The underlying idea also shares common aspects
with techniques employed in self-consistent PRISM calculations [85].

(b) The second strategy to avoid the cost of a complete computer simulation of the
single-chain problem at each iteration of the self-consistent adjustment of fields
and densities consists in relaxing the external fields toward their saddle-point
values during the single-chain simulation [35, 36]. If the scheme converges to a
stationary state, the mean field solution may be recovered. Previously, this
numerical scheme has been employed in conjunction with Brownian dynamic
simulations and is denoted self-consistent Brownian dynamics. Ganesan and
coworkers [36] recommend to propagate the external fields on a timescale that is
much slower than the motion of individual segments. The authors emphasize,
however, that this schemeispurelyphenomenological and lacksafirmbasisat the
molecular level.Similar tomethod(a), theoverlapof theso-generatedsingle-chain
conformations with the original distribution in the absence of an external field
cannot be easily estimated and thus one cannot directly compute the free energy.

5.3.3
Single-Chain-in-Mean-Field Simulations and Grid-Based Monte Carlo Simulation
of the Field-Theoretic Hamiltonian

5.3.3.1 Single-Chain-in-Mean-Field Simulations
Within the field-theoretic formulation, the problem of mutually interacting chains is
equivalent to that of a single-chain in fluctuating, complex fields. We emphasize
again that this is an exact reformulation, which does not invoke any approximations.
While the fluctuating external fields are complex, their saddle-point values, which
make the dominant contribution to the integral over the fluctuating fields, are real.
Themeanfield approximation consists in replacing the fluctuating, complexfields by
their static, real saddle-point values. These saddle-point values of the external fields
are related to the mean field value of the local densities via the self-consistency
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condition, Eqs. (5.21) and (5.24). They have a simple interpretation as the average
interaction a segment experiences due to the surrounding, which is characterized by
the average densities, w	

AðrÞ and w	
BðrÞ.

Single-chain-in-mean-field (SCMF) simulation [40–42, 86] is an approximate,
computational method that retains the computational advantage of self-consistent
field theory but additionally includes fluctuation effects because, in contrast to self-
consistent theory, SCMF simulations aim at preserving the instantaneous descrip-
tion of thefluctuating interactions of a segmentwith its environment. In this particle-
based simulation technique, one studies an ensemble of molecules in fluctuating,
real, external fields. The explicit particle coordinates are the degrees of freedom and
not the collective variables, densities and fields.

An SCMF simulation cycle is comprised of two stages, which are illustrated in
Figure 5.3. First, during a short Monte Carlo simulation, the chains are decoupled
and are independently moved subjected to the external fields, ŵA and ŵB. This
decoupling allows an efficient implementation on parallel computers. In the second
stage, after a small predetermined number ofMonte Carlo moves of the ensemble of
independent molecules in the external fields is accomplished, the changes in
densities of the ensemble of chains due to the evolution of the molecules are
calculated. The new local densities are obtained and the external fields updated
according to Eqs. (5.21) and (5.24). It is important to note that in these equations the
average densities, w	

A and w	
B, are replaced by the instantaneous values, ŵA and ŵB,

obtained from the ensemble of explicit molecular conformations. Then, a new cycle
of SCMF simulations is commenced.

Figure 5.3 Illustration of the SCMF algorithm
for a lamellar phase of a symmetric diblock
copolymer. The snapshot on the left depicts five
explicit chain configurations out of the large

ensemble, which is comprised of thousands of
diblock copolymer molecules. The fluctuating
instantaneous densities of A- and B-segments
are indicated by the shading of the background.
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5.3.3.2 Minimal, Particle-Based, Coarse-Grained Model: Discretization of Space
and Molecular Contour
In order to turn this prescription into a practical algorithm, one has to specify the
molecular architecture and theway how to calculate the instantaneous densities from
the explicit particle coordinates. Since the SCMF simulation algorithm is particle-
based, it can be used with arbitrary single-chain models. In the following, we are
interested in the universal behavior of multicomponent polymer melts. Therefore,
we restrict ourselves to a bead-spring model, which is a computationally efficient
representation of a Gaussian polymer chain. Generalizations to more complex
molecular architectures are straightforward because the explicit molecular coordi-
nates are the fundamental degrees of freedom.

Hb½riðsÞ�
kBT

¼
XN�1

s¼1

3ðN�1Þ
2R2

eo
½riðsÞ�riðsþ 1Þ�2: ð5:44Þ

While the bond lengths between atomistic monomeric units in a chemically
realistic model are fixed, the harmonic potential between the coarse-grained seg-
ments stems from theGaussian distribution of distances between sufficiently distant
monomeric units along the backbone of a chemically realistic representation.

To relate the instantaneous densities of the ensemble of molecules to the external
fields, one has to introduce amicroscopic cutoff. Either one utilizes interactions with
a finite range in Eqs. (5.21) and (5.24) or one regularizes the d-function that appear in
Eq. (5.5) by a smoothing function offinite support.Wewill show that both techniques
are equivalent.

In the following discussion, we adopt zero-range,minimal interactions, Eqs. (5.33)
and (5.34), andwe regularize the instantaneous density by assigning it to a collocation
lattice with spacing DL, that is, the instantaneous density, ŵAðcÞ, of A-segments at
a grid point, c, is given by

ŵAðcÞ ¼
1

DL3

ð
d3rPðr; cÞŵAðrÞ ¼

1
ro DL3

XnA
i¼1

XN
s¼1

PðriðsÞ; cÞ; ð5:45Þ

where Pðr; cÞ denotes the assignment function onto the lattice. Often, a linear
assignment of the segment position, r, onto the point c of the collocation grid
[39, 43, 87] is used, that is,

Pðr; cÞ ¼ wðrx�cxÞwðry�cxÞwðrz�czÞ with wðdÞ ¼ 1� jdj
DL

; for jdj < DL;

0; otherwise;

8><
>:

ð5:46Þ
where d denotes the distance between the grid point and the segment position along
a Cartesian direction. Similar schemes are used for particle-in-cell techniques in
plasma physics [88] or particle-mesh methods in electrostatics [89, 90] in order to
assign a particle-based density/charge distribution onto a lattice. The spatial integrals
in Eqs. (5.33) and (5.34) are evaluated via the collocation grid
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Hnb

kBT
¼

ffiffiffiffiffi
�N

p DL3

R3
eo

X
c

koN
2

½ŵAðcÞþ ŵBðcÞ�1�2� xoN
4

½ŵAðcÞ�ŵBðcÞ�2
� �

;

ð5:47Þ
where the sum is taken over all grid points. Alternatively, this interaction energy can
also be obtained by using Eq. (5.5) for the instantaneous values of the microscopic
densities in conjunction with the following, finite-ranged potentials:

Vevðr; r0Þ ¼ ko
kBT
ro

vðr; r0Þ and Vðr; r0Þ ¼ xo
2
kBT
ro

vðr; r0Þ ð5:48Þ

with

vðr; r0Þ � 1
DL3

X
c

Pðr; cÞPðr0; cÞ: ð5:49Þ

The interactions are pairwise but not translationally invariant, that is, they do not
only depend on the distance, r�r0, between the particles but also depend explicitly on
their position relative to the collocation grid. The expression (5.49) also clarifies that
DL plays the role of the range of interactions.

Unlike the pairwise interactions of coarse-grained models with harsh excluded
volume interactions, the potentials in this coarse-grained model are soft, that is,
effective segments can strongly overlap. This is quite a natural property because each
segment represents the center of mass of a group of chemical repeat units. By the
same token, the liquid of coarse-grained segments does not exhibit pronounced
density–density correlations (i.e., packing effects).4)

Note also that the pairwise interactions in Eq. (5.49) are density dependent. Thus,
the interactions between coarse-grained entities are not potential energies but rather
free energies that depend on the thermodynamic state. Again, this property is
a natural consequence of the coarse-graining procedure that forms the basis of the
model. The density-dependence is such that the energy per molecule remains finite
in the limit of high density,

ffiffiffiffiffi
�N

p
� ro !¥.

5.3.3.3 Monte Carlo Simulations and Advantages of Soft Coarse-Grained Models
The discretized Edwards–Hamiltonian in Eq. (5.44) and the nonbonded, pairwise
interactions in Eq. (5.49) completely specify a coarse-grained, particle-based model
for a multicomponent polymer system.Without resorting to any approximation, one
can study the equilibriumproperties of this coarse-grained, particle-basedmodel by a
variety ofMonteCarlo simulation techniques,which canbe chosen either to faithfully
represent the single-chain dynamics [91] or to explore the configuration space of the
model most efficiently. For instance, sophisticated and highly efficient rebridging
techniques can beutilized to efficiently relax themacromolecular conformations [92].
There are two advantages of this class of soft, coarse-grained models:

4) In a particle-based model with harsh repulsions or the corresponding density functional theory, one
would also use different assignment functions to describe the difference in the interaction range of
Vev and V .
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(a) The increase in the molecular density, r0=N, is much more efficient to achieve
experimentally relevant, high invariant degrees of polymerization, N, than the
increase in the chain discretization, N.
Consider the example that one wants to describe a small patch of the lamellar
phase with cubic geometry ðL ¼ 5ReoÞ3, which is comprised of three lamellar
sheets of a symmetric diblock copolymer with �N ¼ 10 000 (cf. Figure 5.5 for
a similar system). In a particle-based model with hard-core repulsion, the
segment density is limited by rob

3 � 1, where b � Reo=
ffiffiffiffiffiffiffiffiffiffi
N�1

p
denotes the

statistical segment length. For higher densities, the liquid of segments freezes
into a crystal or it arrests in a glassy structure. Since,N ¼ ðrob3Þ2N, the onlyway
to achieve �N ¼ 10 000 is to consider chains comprised of N ¼ 104 beads. The
total number of interaction centers in a box of size ð5ReoÞ3 is
n ¼ N

ffiffiffiffiffi
�N

p
ðL=ReoÞ3 ¼ 1:25 � 108. Since these molecules in a dense melt reptate,

the single-chain relaxation time scales such as t ¼ toN3 ¼ to1012, where to is a
microscopic time that characterizes the motion of an individual segment. The
total number of segment motions to propagate the system by one single-chain
relaxation time is nt=to � 1020.
In a soft, coarse-grainedmodel without harsh repulsion between segments, one
can use a chain discretization of N ¼ 32 in order to faithfully represent the
Gaussian chain architecture.Using rob

3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�N=N

p
� 19 one achieves the value

�N ¼ 104. The system of size ð5ReoÞ3 is comprised of only n ¼ 4 � 105 segments.
More importantly, since the single-chain dynamics obeys Rouse behavior, only
t=to ¼ N2 segment movements are required to relax a chain conformation.
Thus, the total effort to simulate the system amounts to 4 � 108 segmentmotions
that are more than 10 orders of magnitude less than for models like the bond
fluctuation model or Lennard-Jones bead-spring models.

(b) The computation of the interactions in Eq. (5.47) via the collocation grid is
computationally very efficient in dense systems. In an off-lattice model with
a potential of range, DL, the energy of a segment is computed by evaluating
the interactions with all particles in a surrounding volume of size ð3DLÞ3. For
a typical parameter set, N ¼ 32, N ¼ 104, and DL=Reo ¼ 1=6, the number of
pairwise interactions to be computed amounts to 4 � 102. Assigning the particles
to grid-based density, one can calculate the energy of a segment by a sum over
the corresponding grid points. For a linear assignment (cf. Eq. (5.46)), there are
eight sites of the collocation lattice to be considered. Thus, evaluating the
interaction energy via the collocation grid saves another one or two orders of
magnitude in computation time.

5.3.3.4 Comparison Between Monte Carlo and SCMF Simulations:
Quasi-Instantaneous Field Approximation
It is important to realize that the externalfields in SCMFsimulations approximate the
instantaneous interactions of a molecule with its surrounding. Therefore, they are
frequently recalculated using the spatially inhomogeneous density distribution of the
ensemble at that instant of time. Thus, in contrast to the mean field theory or self-
consistent Brownian dynamics, SCMF simulations do not utilize the average fields
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but employ Eq. (5.37) to calculate the instantaneous, real, external fields, wA and wB,
mimicking the instantaneous interactions of a segment with its fluctuating sur-
rounding. The updating of the external fields utilizing the instantaneous density
distribution introduces correlations between the molecules and allows a description
of fluctuation effects [40, 41].

In the limit that the external fields follow the density distribution of the ensemble
instantaneously the method becomes accurate. The quasi-instantaneous field
approximation of the SCMF simulation consists in maintaining the external fields
at their most recent values until a short, predetermined number of Monte Carlo
moves has been accomplished, after which they are updated. The extent to which
the external fields fail to mimic the interactions at each moment in time controls the
quality of the quasi-instantaneous field approximation.

The comparison between SCMF simulations and Monte Carlo simulations of our
soft, coarse-grained model allows us to quantify the accuracy of the quasi-instanta-
neous field approximation [41]. For simplicity, we consider a localMonte Carlomove,
where one proposes to move an A-segment from position r to position r0. The
concomitant change in the grid-based A-density, dŵAðcÞ, is of the order 1=ro DL

3.
In the Monte Carlo simulations, one calculates the energy change DEMC and
accepts or rejects the proposed move via the Metropolis acceptance criterion,
pacc ¼ min ½1; e�DE �. The energy difference, DE, is comprised of bonded and
nonbonded contributions, DEMC ¼ DHb þDHMC

nb . The nonbonded contribution
DHMC

nb can be expanded as

DHMC
nb ¼ Hnb½ŵA½fr0g�; ŵB½fr0g���Hnb½ŵA½frg�; ŵB½frg��

¼
X
c

qHnb

qŵAðcÞ

����
ŵAðcÞ

dŵAðcÞþ
1
2

X
cc0

q2Hnb

qŵAðcÞqŵAðc0Þ

����
ŵAðcÞ;ŵBðc0Þ

dŵAðcÞdŵAðc0Þ þ � � � :

ð5:50Þ
In case of pairwise interactions (as discussed throughout this chapter), the

expansion terminates after the term of second order.Higher order termswill become
relevant only if one employs a density functional of higher orders for the
interactions [93].

If we propose the samemove in the SCMF simulations, the energy difference will
take the form DESCMF ¼ DHb þDHSCMF

nb . The bonded contribution is identical to
the value in the Monte Carlo simulations but the nonbonded contributions differ.

DHSCMF
nb ¼ ro DL

3

N

X
c

ŵAðcÞdŵAðcÞ: ð5:51Þ

The choice

ŵAðcÞ ¼ N
ro DL3

qHnb

qŵAðcÞ
ð5:52Þ

makes an energy change in the SCMF simulations equal to the energy change in the
Monte Carlo simulations to first order in dŵ. This is exactly the grid-based analogue
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of the saddle-point condition, Eq. (5.25), that we utilize to calculate the external field
from the instantaneous density distribution of the ensemble of chains. Thus, the
quasi-instantaneous field approximation of the SCMF simulation amounts to
approximating the full change of the energy due to a proposed Monte Carlo move
(cf. Eq. (5.50)) by its linear approximation (5.51) with respect to the concomitant
change of density. To leading order, the difference, dE ¼ DHMC

nb �DHSCMF
nb , between

energy changes entering the Metropolis criterion in the SCMF simulations and the
Monte Carlo simulation can be estimated by the second-order term in Eq. (5.50).
Since it is quadratic in the change of density, dŵAðcÞ, the quasi-instantaneous field
approximation becomes the more accurate, the denser the system is and the smaller
the density change between updates of the field is. For the specific model and move
considered, the error of the energy change is given by

dE ¼ ro DL
3

N
koN� xoN

2

	 

dŵAðcÞ2 ¼ kN� xoN

2

	 

e; ð5:53Þ

where

e ¼ V
nN2 DL3

¼ 1

N2
ffiffiffiffiffi
�N

p Reo

DL

	 
3

ð5:54Þ

is a small parameter that controls the accuracy of the quasi-instantaneous field
approximation [41]. In the limit, e � 1=max ðkoN; xoNÞ, and frequent updating of
the fields (strictly after every accepted MC move), the external fields accurately
describe the interactions with the surrounding segments and SCMF simulations
become quantitatively accurate.

The parameter, e, plays the same role as the Ginzburg parameter, Gi, does for
the mean field theory. The essential difference is that Gi ¼ 1= �N is a coarse-
grained parameter, that is, it is a property of the physical system. The parameter, e,
that controls the accuracy of the quasi-instantaneous field approximation, however,
also depends on the discretization of space, DL, and molecular contour, N. By
a careful choice of these discretization parameters of the soft, coarse-grained
model, one can reduce e even if Gi will not be small and fluctuation effects will be
important.

A suitable choice of the spatial discretization is DL ’ Reo=
ffiffiffiffiffiffiffiffiffiffi
N�1

p
because the

statistical segment length, b ¼ Reo=
ffiffiffiffiffiffiffiffiffiffi
N�1

p
, sets the microscopic length scale of the

discretized, Gaussian, single-chain structure. Then, e takes the simple form:

e ¼ 1ffiffiffiffiffiffiffiffiffi
N �N

p ¼
ffiffiffiffiffi
Gi
N

r
: ð5:55Þ

The quality of the quasi-instantaneous field approximation and the ability of SCMF
simulations to capture nontrivial correlation effects is illustrated by studying devia-
tions from the Gaussian chain statistics due to the correlation hole effect in polymer
solutions [94] and melt [95, 96]. These intermolecular correlations result in a power-
law decay of the intramolecular, bond–bond correlation function [95, 96] in a one-
component melt as shown in Figure 5.4.
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Figure 5.4 (a) Segment–segment radial
distribution functions, gðrÞ, for a one-

component melt with
ffiffiffiffiffi
�N

p
¼ 32, koN ¼ 50,

xoN ¼ 0, N ¼ 1024, and DL ¼ Reo=32. The
random phase approximation, Monte Carlo,
and SCMF simulation results for the total pair
correlation function, gtotðrÞ, are shown with
open circles, solid lines, and dashed lines,
respectively. The intermolecular part, ginterðrÞ, is
shown for Monte Carlo and SCMF simulations
with open and solid triangles. The average bond
length and the screening length, jev, of density
fluctuations is indicated by arrows. The good
agreement demonstrates the accuracy of the
quasi-instantaneous field approximation. (b)
Logarithmic plot of the decay of bond–bond
correlations along the chain contour for a
homopolymermelt (using the same parameters
as in panel a). The results of Monte Carlo and

SCMF simulations are represented by open
triangles and circles, respectively. The dashed
line marks the asymptotic power law [95]
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� ��3=2
in the limit N!¥.

bðiÞ ¼ rðiþ 1Þ�rðiÞ is the bond vector
connecting two subsequent segments along the
molecule [95]. The solid line,
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with g being the

number of segments contained inside an
excluded volume blob of size jev, captures finite
chain discretization effects. Reprinted with
permission from Ref. [41]. © 2006, American
Institute of Physics.
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5.3.4
Off-Lattice, Soft, Coarse-Grained Models

While the evaluation of the interactions in a dense system is computationally
beneficial, the underlying lattice structure requires the usage of special simulation
techniques to accurately calculate the contribution of the nonbonded interactions
to the pressure. These difficulties can be mitigated by using a soft, coarse-grained,
off-lattice model. Since forces are well defined in off-lattice models, one can use
Brownian dynamics or dissipative particle dynamics methods [97–103]. Also, simu-
lations under constant pressure or surface tension are feasible.

One possibility to motivate such an off-lattice description is to use the pairwise
interactions in Eq. (5.49) in conjunction with a linear assignment function P and
average the potential vðr; r0Þ over a uniform distribution of grid positions keeping the
particle positions, r; r0, fixed.

�vðr; r0Þ � 1
DL6

ð
d3 Dc

X
c

Pðr�Dc; cÞPðr0�Dc; cÞ: ð5:56Þ

This procedure restores translational invariance [41, 104] and results in a potential
of the form

DL3 �vðr; r0Þ ¼ �wðjrx�r 0xjÞ�wðjry�r 0yjÞ�wðjrz�r 0zjÞ with

�wðdÞ ¼

2
3
� d2

DL2
þ d3

2DL3
; for dj j < DL;

1
3
� d3

6DL3
; for 1 � dj j < 2DL;

0; otherwise:

8>>>>>>>>>><
>>>>>>>>>>:

ð5:57Þ

These interactions with cubic anisotropy can be well approximated by an isotropic
Gaussian form

DL3 �vðr; r0Þ � 3
2p

	 
3=2

exp � 3ðr�r0Þ2
2DL2

" #
: ð5:58Þ

Such a model with a Gaussian form of the interaction, v, has been utilized by
Zuckermann and coworkers [105] in order to investigate polymer brushes. TheDPD-
model of Groot and collaborators [100–102] also shares many features with this soft
coarse-grainedmodel. In thismodel, the conservative force is derived fromapairwise
potential of the form

vDPDðr; r0Þ /
1
2

1� r�r0j j
DL

0
@

1
A

2

; for r�r0j j < DL;

0; otherwise:

8>><
>>: ð5:59Þ
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While the calculation of the pairwise interactions in the off-lattice model is
computationally more demanding than in the grid-based version, this off-lattice
model retains the capability of investigating dense polymer systems with an exper-
imentally relevant invariant degree of polymerization, �N. This benefit crucially relies
on the ability to increase the density without introducing strong density–density
correlations or crystallization in the fluid of segments.

The structure of thefluid depends on the formof the pairwise potential, v (or, in the
lattice-based description, on the assignment function, P). Our strategy is to choose
the soft, pairwise potential, v, between effective segments such that the density–
density pair correlation function of the fluid of nonbonded segments, gðrÞ, which
measures the probability of finding two segments a distance r apart, does not exhibit
much structure. Conceptually, inverse Boltzmann iteration [14] could be utilized to
construct such an interaction numerically. The so-generated potential would, how-
ever, depend on the thermodynamic state, that is, it is optimized for a certain density
(or �N).

More generally, one may wish to ensure that the choice of the soft, intersegment
potential, v, results in a liquid state. The phase diagram of fluids of soft particles has
been explored and exhibits quite a rich behavior [106–108]. In addition to the liquid
and crystal phases that occure in fluids with harsh repulsions exhibit at low
temperatures, these fluids exhibit either re-entrant melting or formation of cluster
crystals at high densities. The latter phases are thermodynamically stable crystal
phases that feature a lattice constant that is independent of density and, in turn, the
occupancy of a lattice site increases linearly with ro. In the present context, a coarse-
grained segment describes a chain segment comprised of a small number of
atomistic, monomeric repeat units, and a melt of these short chains does not exhibit
inhomogeneous structure. Therefore, the soft potential, v, should be chosen to avoid
the formation of cluster crystal.

It has been shown by computer simulation [109–111] and density functional
theory [106, 108] that the soft, purely repulsive, radially symmetric potential,
VðrÞ, will form cluster crystals at sufficiently high density if its Fourier
transform, ~VðkÞ, becomes negative for a range of wave vectors. Within mean
field approximation, the stability limit of the homogeneous liquid is given by the
l-line [108]

1þ ro
~Vðk	Þ
kBT

¼ 0; ð5:60Þ

where k	 denotes the wave vector at which the Fourier transform, ~V , of the potential
attains its minimum. The condition (5.60) can be fulfilled only if ~Vðk	Þ < 0. Then,
2p=k	 sets the lattice spacing of the cluster crystal.

The Gaussian form of the interaction potential, V , in Eq. (5.58) and the DPD-
potential in Eq. (5.59) are particularly suitable because their Fourier transforms are
nonnegative. Thus, Eq. (5.60) cannot be fulfilled and the liquid structure is stable
against the formation of cluster crystals.
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5.4
An Application: Calculating Free Energies of Self-Assembling Systems

5.4.1
Crystallization in Hard Condensed Matter Versus Self-Assembly of Soft Matter

One important application of self-consistent field theory is the calculation of free
energies of self-assembled morphologies or spatially inhomogeneous structures. In
order to obtain a mean field approximation of the free energy, one substitutes the
saddle-point values of the fields back into the free energy functional,F , of Eq. (5.16).
Comparing the free energy of different morphologies, phase diagrams as a function
of composition or molecular architecture can be constructed. With the same
technique, the free energy of interfaces between macroscopic domains in a homo-
polymer blend or the free energy of grain boundaries in self-assembling copolymer
systems, where morphologies with different orientations meet, can be accurately
determined. The calculation of free energies in self-assembling systems without
invoking the mean field approximation is a difficult task and, only recently, compu-
tational strategies to accomplish this purpose have been devised.

In order to illustrate the challenge, it is interesting to draw a comparison between
self-assembly in soft matter systems and crystallization in simple, hard condensed
matter systems (e.g., a Lennard-Jones solid). The local difference in volume fraction,
wðrÞ, of the two species of the amphiphilic systemplays a similar role as the density of
a hard crystal. Its dominant Fouriermode is the order parameter of the transition. In a
well-ordered hard crystal, each particle fluctuates little around its corresponding
crystal lattice position. Thus, the system resembles an Einstein crystal, in which
noninteracting particles are tethered by harmonic springs to their ideal lattice
positions. Frenkel andLaddhave used thermodynamic integration from this Einstein
crystal to the well-ordered solid for calculating the absolute free energy of a hard
crystal [112].

In a self-assembling soft matter system, the composition also fluctuates little
around the ideally ordered value; however, the molecules are in a liquid state, that is,
they diffuse and are not �tethered� to ideal positions. Therefore, there is no simple
reference state of the particle-based model with a known free energy, and previous
simulation techniques for calculating the absolute free energy of hard crystals do not
straightforward carry over to self-assembling soft matter systems.

In fact, even calculating the free energy of a homogeneous melt without
repulsion between the two different monomeric species (i.e., xoN ¼ 0), which
would be the analogue of an ideal gas in a simple, hard condensed matter system, is
a formidable task. In a liquid, the (bonded and nonbonded) interactions of
a segment with its surrounding are on the order kBT. Thus, the free energy per
molecule is proportional to kBTN. In order to accurately determine the location of
phase boundaries, to calculate the free energy costs of defects or grain boundaries,
or to assess the thermodynamic stability of morphologies, one needs to know the
free energy per molecule with an accuracy of Oð10�3kBTÞ. Therefore, the absolute
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free energy would be required to be known with a precision of the order
10�3=N � 10�5. The free energy difference between the disordered phase and
a self-assembled structure, however, is only of the order xoNkBT � kBT. Thus, it is
advantageous to directly calculate the free energy difference between the disordered
and the ordered state rather than to determine it as a difference of two large
absolute free energies.

5.4.2
Field-Theoretic Reference State: The Einstein Crystal of Grid-Based Fields

The property that the collective fields in the self-assembled state fluctuate little
around their saddle-point values in the self-assembled state has been exploited by
Fredrickson and coworkers [45] using the field-theoretic formulation of the particle-
based model in terms of the collective fields,Wþ andW� (cf. Eq. (5.15)). When one
employs a collocation lattice, these fields become a discrete set of continuous
variables, Wþ ðcÞ and W�ðcÞ. The integral over the fluctuating fields is performed
via a complex Langevin sampling, which mitigates the sign problem due to the
incompressibility field, Wþ . Both fields fluctuate around their saddle-point values,
which characterize the mean field approximation. Drawing an analogy between
the fluctuation of a particle in a hard crystal around their ideal lattice position and the
fluctuation of the grid-based fields around the mean field solution, Fredrickson and
coworkers transferred the Frenkel–Ladd method [112] from particles to discretized
fields [45]. The reference state of the Einstein crystal of grid-based fields is described
by the free energy functional

F ref Wþ ;W�½ � � FSCFT þ DL3

2

X
c

faþ DWþ ðcÞj j2 þa� DW�ðcÞj j2g; ð5:61Þ

where DW� � W��w� denote the deviations of the local fields from their saddle-
point values, and a� > 0 are real �spring� constants that dictate the magnitude of
fluctuations. FSCFT � F½wþ ;w�� is the mean field approximation of the free energy.
The free energy of this reference state can be easily calculated by performing the
Gaussian integrals over the fields at the different grid points and one obtains

Fref � �kBT ln
ð
DWþDW� exp �F ref ½Wþ ;W��

kBT

� �
; ð5:62Þ

¼ FSCFT� kBTV
2DL3

ln
2p

aþ DL3
þ ln

2p
a� DL3

� �
; ð5:63Þ

whereV=DL3 denotes the number of points the grid is comprised of. Then, one uses
a coupling parameter, l, to relate this reference system to the original system. To this
end, one performs simulations of a system characterized by the free energy
functional

Fl½Wþ ;W�� � lF½Wþ ;W��þ ð1�lÞF ref ½Wþ ;W��; ð5:64Þ
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where F ½Wþ ;W�� is the grid-based analogue of Eq. (5.16). The free energy
difference, F�Fref , between the original and the reference system can be estimated
via standard thermodynamic integration with respect to the parameter, l.

F�Fref ¼
ð1
0
dl

dFl

dl

� 
l

ð5:65Þ

¼
ð1
0
dl F Wþ ;W�½ �� F wþ ;w�½ �þ DL3

2

X
c

faþ Wþ�wþj j2þa� W��w�j j2g
 !* +

l

:

ð5:66Þ
The �spring� constants, a�, should be chosen as tominimize the absolute value of

integrand of Eq. (5.66) as a function of l [112]. Note that in simple crystals in hard
condensedmatter, all particles fluctuate around the ideal lattice position by the same
amount. The fluctuations of the fields, DW�ðcÞ, in a self-assembled structure,
however, depend on the spatial position, c.

In principle, the method is able to calculate the absolute free energies. In practice,
however, only differences of free energies between systems using the same spatial
discretization, DL3, are meaningful because the value of the free energy sensitively
depends on DL. This ultraviolet divergency [113] has to be regularized, for example,
by subtracting the free energy of the disordered state simulated on the same lattice.
The method has successfully been employed to determine fluctuation effects on the
phase diagram of copolymers [45].

5.4.3
Particle-Based Approach: Reversible Path in External Ordering Field

5.4.3.1 How to Turn a Disordered Melt into a Microphase-Separated Morphology
Without Passing Through a First-Order Transition?
Within a particle-based model, there is no well-defined reference state for the self-
assembled structure. However, one can try to relate the self-assembled structure to a
disordered melt (or a different self-assembled morphology) via a reversible path and
calculate the change of the free energy by thermodynamic integration. Typically,
transitions between disordered and ordered morphologies or between different self-
assembled structures are of first order. Thus, in an analogy to crystallization of hard
condensed matter, there is no path in the space of physical intensive variables – for
example, temperature, incompatibility, or composition – that reversibly connects
disordered and ordered structures.

Such a reversible path, however, can be constructed with the help of an external
ordering field that is adapted to the spatial structure of the self-assembled morphol-
ogy. Our method for self-assembling systems is inspired by the work of Sheu, Mou,
and Lovett calculating the absolute free energy of a Lennard-Jones solid [114]. Related
reversible integration paths between a solid and a liquid have been used by
Grochola [115] and Eike et al. [116] for calculating the free energy difference between
a solid and a liquid.
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To illustrate the computational method, we consider the free energy difference
between a disordered phase at xinitN ¼ xoN ¼ 0 and a lamellar, microphase-
separated morphology at xfinalN ¼ xoN ¼ 20 of a symmetric diblock copolymer.
Specifically, we use the minimal, coarse-grained model for a compressible multi-
component polymer melt with grid-based interactions as defined by Eqs. (5.44)
and (5.47). Generalizations to off-lattice representations or different molecular
architectures are straightforward.

The reversible path, which relates the disordered phase to the lamellar one, is
comprised of two branches. First, as illustrated in Figure 5.5, we structure the
homogeneous, disorderedmelt at low incompatibility, xinitN, by applying an external
ordering field, hðrÞ, that is conjugated to the composition, w ¼ wA�wB. The
nonbonded energy of the system in the external ordering field takes the form:

Hnb ¼ Hmelt þHord þHext; ð5:67Þ
where Hmelt, defined in Eq. (5.33), denotes the nonbonded interactions in the melt
without repulsion between different species. Hord � xo, given in Eq. (5.34), repre-
sents the thermal repulsion giving rise to self-assembly into the lamellarmicrophase,
and Hext is the contribution of the external ordering field:

Hext

kBTðV=R3
eoÞ

ffiffiffiffiffi
�N

p ¼ � lN
V

ð
d3r fextðrÞwðrÞ; ð5:68Þ

where lN characterizes the strength and fext the spatial variation of the external
ordering field.

Figure 5.5 Sketch of the reversible path that
connects the homogeneous, disordered state,
the externally ordered and the self-assembled
state. Configurational snapshots of a symmetric
diblock melt illustrate the different states. In the
snapshots three-dimensional contour plots of
the composition are shown. The B-rich
component is removed for clarity and the
interface between the different components is
colored blue. xinitN ¼ 0, xfinalN ¼ 20, and the

maximal strength of the ordering field is
lfinalN ¼ 10. The SCMF simulations
correspond to �N ¼ 14 884 and use a chain
discretization, N ¼ 32. The linear extension of
the simulation cell is L ¼ 4:77Reo and the
spacing of the lamellar structure is
Lo ¼ L= 2

ffiffiffi
2

p� � ¼ 1:686Reo. Reprinted with
permission from Ref. [43]. © 2008, American
Institute of Physics.
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Gradually increasing the external ordering field, hðrÞ ¼ lNfextðrÞ, from zero to
hfinal, along the first branch, we do not encounter any thermodynamic singularity
because the ordering is not collective, that is, themolecules gradually arrange into the
lamellar structure in response to the external ordering field but not by virtue of
pairwise interactions.

Along the second branch, we gradually replace the effect of the external ordering
field by pairwise interactions, that is, lN is decreased to zero and, in turn, xoN
increases from xinitN to xfinalN. Reference [114] demonstrated that the optimal choice
of the ordering field, hðrÞ, is such that the composition,wðrÞ, at xinitN in the presence
of the ordering field, hfinal (i.e., at the end of the first branch) closely mimics the
morphology at the final, self-assembled state, xfinalN, in the absence of the ordering
field. The second branch, xoNðlNÞ, of the transformation path has to be chosen such
that the variation of the structure along the branch is minimized. The absence of any
abrupt changes of the structure,wðrÞ, along the second branch indicates that it is also
free of any thermodynamic singularity. Thus, the two branches reversibly connect the
disordered and the ordered state in the expanded parameter space that includes
a spatially varying, external ordering field. Thus, one turns a disordered system into
a spatially ordered one without passing through a first-order transition [114].

The self-consistent field theory provides an accurate estimate of the ordering field,
hfinal, at the end of the first path and an appropriate choice of the second branch,
xoNðlNÞ. The system at xoN ¼ 0 in the static, external ordering field, hðrÞ, closely
resembles the single-chain problem of themean field theory. h plays the same role as
�w� in the mean field approximation. The difference between the system along the
first branch and the single-chain problem of the mean field theory is that density
fluctuations are not suppressed by ameanfield, iwþ , but by the pairwise interactions,
Hmelt. If density and composition fluctuations do not strongly couple, this difference
is negligible and we can use the self-consistent field theory to obtain an accurate
approximation of the external field that creates a given composition, wfinalðrÞ. Within
the mean field approximation, we obtain

hfinalðrÞ � xfinalN
2

wfinalðrÞ; ð5:69Þ

that is, lfinalN ¼ xfinalN=2 and fextðrÞ ¼ wfinalðrÞ.
If we apply the mean field theory to the system along the second branch of the

transformation path, then we obtain for the saddle-point value of the field, w�,
coupling to the composition:

w�ðrÞ ¼ � xoN
2

wðrÞ�hðrÞ: ð5:70Þ

Within the mean field approximation, the structure will not change along the
second branch of the integration path if w�ðrÞ remains constant. Thus, mean field
theory predicts

hðrÞ � xfinalN�xoN
2

wfinalðrÞ ð5:71Þ
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for the optimal, second branch of the path. More elaborated choices could be
envisioned if the self-consistent field theory were not accurate and the configurations
were to change significantly along this branch.

5.4.3.2 Thermodynamic Integration Versus Expanded Ensemble and Replica-Exchange
Monte Carlo Simulation
The free energy change along the transformation path in the two-dimensional
parameter space spanned by xoN and lN can be calculated via thermodynamic
integration. Let xoNðlNÞ with l1N � lN � lNpN denote such a path, then the free
energy change along this path is given by

DF
kBT

¼ �
ðlNpN
l1N

dlN hIextiþ dxoN
dlN

hIordi
	 


; ð5:72Þ

where we have introduced

Iord � � 1
kBT

qHord

qxoN
¼ 1

4

ffiffiffiffiffi
�N

p
DL3

R3
eo

X
c

½ŵAðcÞ�ŵBðcÞ�2; ð5:73Þ

Iext � � 1
kBT

qHext

qlN
¼

ffiffiffiffiffi
�N

p
DL3

R3
eo

X
c

hðcÞ½ŵAðcÞ�ŵBðcÞ�: ð5:74Þ

Advanced Monte Carlo algorithms can be utilized to accurately compute the free
energy difference [117]. We discretize the integration path into a set of sampling
points, liN, with i ¼ 1; . . . ;Np. These sampling points are grouped intoMr intervals,
Ij with j ¼ 1; . . .Mr, which share a common boundary point, that is, the first interval,
I1, is comprised of the sampling points l1N; . . . ; lNp=Mr

N, the second interval, I2,
contains the points lNp=Mr

N; . . . ; l2Np=Mr
N, and so on. This partitioning of the

integration path is illustrated in Figure 5.6.
Within each interval, we use an expanded ensemble technique to explore the

sampling points and configurations between neighboring intervals are swapped via
replica-exchangeMonte Carlomoves [118]. The partition function,Z, takes the form:

Z �
YMr

j¼1

X
liN2Ij

egðliNÞ

n!

ðYn
a¼1

~D raðsÞ½ � exp �Hmelt þHord þHext

kBT

	 

; ð5:75Þ

where gðliNÞ are theweighting factors of the expanded ensemble. These factors have
to be appropriately chosen in order to achieve approximately uniform sampling of the
different sampling points in each interval.

The Monte Carlo simulation comprises three distinct moves: (i) Canonical Monte
Carlo moves update the molecular conformations in the Mr replica. In this specific
application, we employ a Smart Monte Carlo algorithm [119] that utilizes strong
bonded forces to propose a trial displacement [43, 87]. The amplitude of the trial
displacement has been optimized in order to maximize the mean-square displace-
ment of molecules [91], and the single-chain dynamics closely resembles the Rouse-
dynamics of unentangled macromolecules [120]. (ii) Since each replica is an
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expanded ensemble [121], we attempt to change the control parameters, liN and
xiN � xoNðliNÞ, to neighboring sampling points along the integration path. These
Monte Carlo moves are accepted according to the Metropolis criterion

accðliN! lkNÞ ¼ min ð1; eIext ½lkN�liN� þ Iord½xkN�xiN� þ gðlkNÞ�gðliNÞÞ; ð5:76Þ
where both liN and lkN are within the same interval. Special care has to be taken at
the interval boundaries to fulfill detailed balance. (iii) The third Monte Carlo move
consists in swapping configurations at lN 2 Ii and l0N 2 Il, which are located in
neighboring intervals, Ii and Il. These replica-exchangemoves [122–124] are accepted
with probability

accðlN�l0NÞ ¼ min 1; e�½I 0ext�Iext �½l0N�lN��½I 0
ord�Iord�½x0oN�xoN�

� �
: ð5:77Þ

In order to sample all states of the expanded ensembles with uniform probability,
the weighting factors, gðliNÞ, should closely resemble the free energy

gðliNÞ�gðl1NÞ � FðliÞN�Fðl1NÞ
kBT

¼ �
ðliN
l1N

dlN hIextiþ dxoN
dlN

hIordi
	 


:

ð5:78Þ
An initial estimate for the weighting factors can be obtained by performing

simulations at a small number of fixed points along the path. Interpolating the

32 processors

32 processors

expanded−ensemble Monte Carlo move

replica−exchange Monte Carlo move

IIIIIII 7654321

integration path χλ(  N,  N)o

32 processors

32 processors

32 processors

32 processors

32 processors

Figure 5.6 Illustration of the discretization of
the integration path into Mr ¼ 7 overlapping
intervals. A configuration (replica) is associated
with each interval. Each interval, in turn, is
comprised of four states of an expanded
ensemble. Expanded-ensemble Monte Carlo
moves that change the values of lN and xoN
within one interval are indicated by horizontal

arrows. Replica-exchange Monte Carlo moves
are represented by bent arrows. The hierarchical
parallelization scheme – combining a moderate
parallel program for a single replica with replica-
exchange Monte Carlo simulation – allows an
efficient usage of massively parallel computers.
Adapted from Ref. [146]. Reproduced by
permission of the PCCP Owner Society.
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integrands, hIexti and hIordi, one obtains an initial estimate for the weighting factors
according to Eq. (5.78). Then, the weighting factors are iteratively refined. There are
several schemes available for this purpose (e.g., Wang-Landau sampling [125],
Transition-Matrix techniques [126–129], multicanonical recursion [130], or succes-
sive umbrella sampling [131]). Note that a nonoptimal choice of weighting factors, g,
does not affect the properties at fixed lN and xoN but the different sampling points
are visited with different rates. Thus, we use Eq. (5.78) and continuously improve the
estimate for hIexti and hIordi. This strategy avoids discarding information that has
been generated with a different choice of g [132]. Note that compared to other
reweighting techniques (utilized, for example, to calculate phase diagrams, interface
tensions, or potentials of mean force) [117], the free energy difference along the
integration path is large, Oð104kBTÞ, and a systematic method for obtaining/
improving the weighting factors is required.

If all states of the expanded ensembles are sampled, the probability, PðliNÞ of
finding the system at the sampling point, liN and xoNðliNÞwill be related to the free
energy according to

FðliNÞ
kBT

¼ gðliNÞ�ln P ðliNÞþ consti; ð5:79Þ

where the additive normalization constants differ for the different intervals, Ii.
Alternatively to Eq. (5.72), one can obtain the integrand of the thermodynamic
integration from

1
kBT

dF
dlN

¼ dg
dlN

� d ln P
dlN

: ð5:80Þ

The combination of expanded ensemble and replica-exchange techniques has
several advantages: (i) since every integration path is discretized intomany sampling
points, exploring the entire integration path by replica-exchange alone is impractical.
If we used a significantly smaller number of sampling points, however, the distri-
bution functions of neighboring replica would not overlap. (ii) The expanded
ensemble technique is useful because the probability distribution, PðliNÞ, provides
a very sensitive error estimate for the weighting factors and thus for the free energy.
A nonoptimal choice of the reweighting factor results in an extremely nonuniform
sampling of the integration path because the free energy change is large,
DF � Oð104kBTÞ, and, therefore, already small inaccuracies give rise to large
Boltzmann factors. In this preliminary stage, the replica-exchange technique ensures
that there is at least one sampling point visited in each interval. (iii) The combination
of a moderately parallel program, for example, SCMF simulation, Brownian or
molecular dynamics, for a single configuration, and replica-exchange allows to
efficiently utilize massively parallel computers with more than 1024 compute cores.
The simulations, which are presented in the following section have been performed
at the Julich supercomputer Center (JSC) and the Norddentsche Verbund for Hoch–
and Hochstleistungsrechen (HLRN).

The method can be readily applied for locating phase transitions between distinct
self-assembled morphologies or to calculate the free energy of defects and interfaces
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between morphologies with different orientation (e.g., T-junctions of a lamellar
phase). Generalizations to liquid crystalline phases with an orientational order
parameter can be envisioned by utilizing an external ordering director field that
couples to the orientational degrees of freedom. This generalization will also allow
the calculation of the free energy differences between different phases of coarse-
grained models for biological membranes.

The thermodynamic integration scheme can be applied to different models
including coarse-grained, particle-based models of amphiphilic systems and mem-
branes [133, 134] (e.g., soft DPD-models [135–137], Lennard-Jones models
[138, 139], or solvent-free models [140–142] of membranes) as well as field-theoretic
representations [28]. It can be implemented in Monte Carlo or molecular dynamic
simulations, as well as SCMF simulations [40–42, 86], field-theoretic simula-
tions [28], and external potential dynamics [27, 63, 64] or dynamic density functional
theory [143, 144].

5.4.3.3 Selected Applications
In order to calculate the free energy difference between the disordered state, xoN ¼ 0,
and the lamellar ordered structure at xfinalN ¼ 20, we discretize both branches of the
integration path such that thedistributions of the integrands, Iord and Iext, overlap for
neighboring points along the path of integration.

Qualitatively, we observe in the snapshots of Figure 5.5 that the ordering at the
beginning of the second branch (xoN ¼ 0, lN ¼ 20) is slightly more pronounced
than in the final stage (xfinalN ¼ 20, lN ¼ 0). We also note that the integrand along
the second branch seems to develop a singular curvature upon approaching its end
point, ðxN ¼ 20; lN ¼ 0Þ. This effect can be partially explained by the observation
that the local positions of the AB interfaces of the lamellae are harmonically coupled
to their ideally flat position by the external ordering field, lN, and capillary waves
gradually build up as one decreases lN! 0 [66, 145]. If the AB interfaces of
neighboring lamellae were not coupled but freely fluctuated, one would expect the
integrand to contain a term proportional to lN ln lN due to capillary waves.
Importantly, the variation of the integrands along both branches of the path is
completely gradual, indicating the absence of a first-order transition.

The absence of a first-order transition is also confirmed by Figure 5.7, where we
show the evolution of the strength of the ordering field, lN, during the course of the
expanded-ensemble simulation (without replica-exchange Monte Carlo moves). The
simulation data presented in Figure 5.7 correspond to a single configuration that
samples all different external field strengths, lN, of a branch. Four Intel Xeon dual
core processors needed about 10 days to generate these data. The system freely
diffuses along the lN-axis and there is no �kinetic barrier� between neighboring
lN-states. This observation demonstrates that the regions of configuration space
associated with neighboring lN-values overlap.

We also observe that the system visits all lN-states with roughly equal probability
(see the inset of Figure 5.7). This demonstrates that the weighting factors are very
accurate and the error in the free energy difference is on the order of a few kBT that,
in turn, is much smaller than the total free energy difference, Oð104ÞkBT . This

5.4 An Application: Calculating Free Energies of Self-Assembling Systems j235



observation demonstrates that we can accurately measure free energy differences of
the order of 10�3kBT per molecule.

From the graph, we can also obtain a rough idea of the relaxation time of the
expanded ensemble. With the ratio of 100 : 1 between SMC moves and attempts to
switch between neighboring states of the expanded ensemble, structural and
thermodynamic quantities relax on the same order of timescales. Note that the
relaxation time of the morphology is significantly larger than the single-chain
relaxation time, R2

eo=D.
In Figure 5.8, the variation of the free energy along the two branches is presented.

The dependence of the free energy at the beginning of the first branch can be
described by the random-phase approximation. The structure factor of composition
fluctuations, ScollðkÞ, quantifies the wavevector-dependent susceptibility of the
disordered melt (at xinitN ¼ 0) with respect to an external ordering field. Within
the random-phase approximation, the average composition variation that is induced
by the external field, ~hðkÞ ¼ lN~f extðkÞ in the disordered state is given by

hwAðkÞ�wBðkÞi ¼ 2
ScollðkÞ

N
~hðkÞ: ð5:81Þ

The Fourier transform of the external ordered field and its inverse are defined by

~hðkÞ ¼ Ð d3rhðrÞ expð�ikrÞ and hðrÞ ¼ 1
V

X
k
hðkÞ expðikrÞ, respectively. To linear

order in lN, the integrand of Eq. (5.72) is given by

0 100 200 300 400 500
Dt/Reo

2

0

2

4

6

8

10

λN

branch 1
branch 2

0 5 10λN
0.0

0.1

0.2

P
(λ

N
)

Figure 5.7 Evolution of the ordering field, lN,
in the course of the expanded ensemble
simulation along both branches. The system
parameters are identical to Figure 5.5. Smart
Monte Carlo moves are used to update the
molecular conformations. The local segment
motion gives rise to Rouse-like dynamics for all
but the very first Monte Carlo steps. �Time� is
measured in units of the Rouse-time of the

macromolecules. The inset presents the
probability, PðlNÞ, with which the different
states, ðlN; xoðlNÞÞ, of the expanded ensemble
are visited. No replica-exchange Monte Carlo
moves are performed for this simulation run,
and the figure presents the data for a single
configuration. Reprinted with permission from
Ref. [43],© 2008, American Institute of Physics.
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hIextiR3
eoffiffiffiffiffi

�N
p �

ð
d3r~f extðrÞhwAðrÞ�wBðrÞi ð5:82Þ

¼ 1
V

X
k

~f extð�kÞhwAðkÞ�wBðkÞi ð5:83Þ

¼ 2lN
V

X
k

ScollðkÞ
N

~f extðkÞ
��� ���2: ð5:84Þ

The second integrand in Eq. (5.72) does not contribute because xoN ¼ xinitN ¼ 0
does not change. Thus, we obtain for the free energy change DFð1Þ in the vicinity of
the starting point of the first branch:

DFð1Þ

kBT
� �ðlNÞ2

ffiffiffiffiffi
�N

p
V

R3
eo

X
k

ScollðkÞ
N

~f extðkÞ
V

�����
�����
2

; ð5:85Þ

which depends quadratically on lN.Within the random-phase approximation [5], the
collective structure factor for a symmetric diblock copolymer xoN ¼ 0 takes the

particularly simple form
ScollðkÞ

N
¼ SAA�SAB

N
, where the structure factors of a single

block and between different blocks are given by SAA=N ¼ 2=x2½e�x=2�1þ x=2� and
SAB=N ¼ ð½1�e�x=2�=xÞ2 with x ¼ ðkReoÞ2=6, respectively. For the specific case,

Lo ¼ 1:686Reo, we evaluate
P

k
ScollðkÞ

N
hðkÞ=Vj j2 ¼ 0:0760684 and the prediction

of Eq. (5.85) is compared with the simulation data in Figure 5.8. Excellent agreement
is found for lN! 0, but the induced composition fluctuations and the concomitant
free energy change is smaller than estimated by Eq. (5.85) for larger values of lN.
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Figure 5.8 Changes of the free energy along the two branches of the transformation path (thick
lines). The approximate expressions based on the random phase approximation (cf. Eqs. (5.85)
and (5.86)) are also shown. Reprinted with permission fromRef. [43].©2008, American Institute of
Physics.
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Although the structural changes along the second branch of the reversible path are
small, the variation of the free energy, DFð2Þ, is substantial. Much of the free energy
change is related to the difference how pairwise intermolecular interactions and
external ordering fields enter DF. To illustrate this effect, let us assume an idealized
structure, which was completely segregated, where AB-interfaces were perfectly
sharp, and the external ordering field, hðrÞ, perfectly matched this structure. Then,

the integrands in Eqs. (5.73) and (5.74) take the simple values Iord �
ffiffiffiffiffi
�N

p
V

4R3
eo

and

Iext �
ffiffiffiffiffi
�N

p
V

R3
eo

independent of lN. Inserting this result in Eq. (5.72), one obtains a

bound for the free energy change along the second branch of the transformation path

DFð2Þ

kBT
� �lN

ffiffiffiffiffi
�N

p
V

2R3
eo

; ð5:86Þ

which depends linearly on lN. This prediction is also shown in Figure 5.8.
Since we calculate free energy differences in Eq. (5.72), we arbitrarily set the free

energy of the initial, disordered state (xoN ¼ 0) to zero, and we have matched the
free energy at the end of the first branch with that of the beginning of the second.
From the data, we obtain a free energy difference of DF=kBT ¼ 11 607ð10Þ or
DF=nkBT ¼ �0:87659ð75Þ for a lamellar spacing, Lo ¼ 1:686Reo. The error estimate
refers to the statistical error of the result but does not include a possible systematic
overestimation of the free energy because of the deviation in the lamellar spacing
from its equilibrium value due to the finite size of the simulation cell.

This simulation technique can also be applied to calculate the free energy of grain
boundaries and T-junctions (see Figure 5.9) or the free energy difference of
diblock copolymer morphologies on chemically patterned surfaces (cf. Figure 5.10)
[146].

5.4.4
Simultaneous Calculation of Pressure and Chemical Potential in Soft, Off-Lattice Models

A third, alternativemethod for computing the free energy of self-assembling systems
and for calculating phase equilibria between different morphologies consists in
simultaneously calculating the pressure, p, and the chemical potential, m. At
coexistence, the different structures are characterized by the same pressure p,
temperature T , and thermodynamic potential

P
imini, where the sum is taken over

the different species of which the system is comprised. TheHelmholtz free energy of
the canonical ensemble can be obtained via F ¼ �pV þPimini.

An advantage of a soft, coarse-grained, off-lattice model is the ability to simulta-
neously and accurately calculate the pressure, p, and the chemical potential, m.
Abandoning the lattice-description allows a precise calculation of the pressure, p, and
simulations at constant pressure or tension. This is also possible in off-latticemodels
with harsh excluded volume interactions (e.g., a Lennard-Jones bead-spring model).
The accurate calculation of the chemical potential by particle insertion methods,
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however, is greatly facilitated by the soft interactions and accurate methods to
estimate its error exist [147].

This method has been recently utilized to estimate the location of the fluctuation-
induced, first-order transition between the disordered and the lamellar phase of
a symmetric diblock copolymer melt [144] and this application is illustrated in
Figure 5.11.

5.5
Outlook

In this chapter, we have discussed computational approaches for describing the
equilibrium properties ofmulticomponent polymermelts. The universal behavior of
dense multicomponent systems permits the use of minimal, coarse-grained models
that parameterize the relevant interactions via a small number of invariants or coarse-
grained parameters, Re, kN, xN, and �N. Both particle-based models and field-
theoretic representations have been devised to describe these universal properties.

Often, field-theoretic models are considered within themean field approximation.
Provided that the coarse-grained parameters have been identified and describe local

Figure 5.9 Sketch of the integration path to
obtain the excess free energy of a T-junction. The
snapshots illustrate the system configurations
at different stages along the path. For clarity, the
simulation cell and one periodic replica are
depicted. The B-component has been removed,
and the A-component is shaded in blue. The
interface between A-rich and B-rich regions is
shown as red surface. The thermodynamic
integration scheme is applied to a melt of
symmetric diblock copolymers with

�N ¼ 16 384, xoN ¼ 20, koN ¼ 50, N ¼ 128,
and DL=Reo � 0:09Reo and yields
DFR2

eo

kBTA
ffiffiffiffiffi
�N

p ¼ 0:19ð2Þ, where A denotes the area

of the T-junction. This result is in agreement
with self-consistent field calculations of Duque

et al. [159], predicting
DFR2

eo

kBTA
ffiffiffiffiffi
�N

p ¼ 0:21.

Adapted from Ref. [146]. Reproduced by
permission of the PCCP Owner Society.
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correlation effects on the scale of a segment, themean field theory becomes accurate
in the limit �N!¥. On the other hand, particle-based models, which include harsh
repulsions or excluded volume interactions, are limited to modest values of �N.
Therefore, Lennard-Jones bead-springmodels or the bondfluctuationmodels exhibit

Figure 5.10 Sketch of the integration path to
obtain the free energy difference between a
stretched lamellar phase on a pattern substrate
and a morphology that contains an interface
between stretched lamellae at the substrate,
which perfectly register with the substrate
pattern, and a bulk-like lamellar morphology,
which is rotated with respect to the morphology
at the bottom substrate. The snapshots
illustrate the system configurations at different
stages along the reversible transformation path.
The B-component has been removed, and the
A-component is shaded in blue. The interface
between A-rich and B-rich regions is shown as
red surface. The thermodynamic integration
scheme is applied to a supported thin film of
symmetric diblock copolymers with
�N ¼ 16 384, xoN ¼ 20, koN ¼ 50, N ¼ 128,
and DL=Reo � 0:09Reo, which assembles on a
substrate pattern consisting of stripes. The film
thickness is 1:5Reo and the lateral dimensions
are 5:7Reo 
 9:87269Reo. The stripes at the
supporting substrate attract the different

components of the diblock copolymer. The top
surface of the film is modeled as hard and
nonpreferential. The periodicity of the stripe
pattern, L, is 19:5% greater than the equilibrium
lamellar spacing of the diblock melt in the bulk.
On the left, lower panel, the diblock self-
assembles into standing lamellae that register
with the stripes. On the right, lower panel, the
morphology reconstructs at the patterned
substrate: at the bottom, the lamellae register
with the stripe pattern, on the top they tilt and
adopt a smaller lamellar spacing that is closer to
the equilibrium periodicity in the bulk. The
thermodynamic integration scheme predicts
the free energy difference between these two
morphologies to be very close,
DFR2

eo

kBTA
ffiffiffiffi
�N

p ¼ 0:01ð3Þ, indicating that a mismatch

of 20% is about themaximal tolerablemismatch
for obtaining defect-free ordering and
registration. Adapted from Ref. [146].
Reproduced by permission of the PCCP Owner
Society.
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Figure 5.11 Order–disorder transition (ODT)
of a symmetric diblock copolymer studied by a
soft, coarse-grained, off-lattice model. Monte
Carlo simulations are performed in the npT
ensemble and the pressure is kept constant at
pb3=kBT ¼ 18 (with b ¼ Reo=

ffiffiffiffiffiffiffiffiffiffi
N�1

p
).

ko ¼ 1:5625. The invariant degree of
polymerization, �N, and the chain discretization
are indicated in the key. The figure presents the
excess thermodynamic potential, mex, per

particle as a function of xoN. The curves have
been shifted for clarity. Empty and filled symbols
denote the disordered and lamellar phases,
respectively. Lines are linear fits to the data. The
crossing points identify the location of the
order–disorder transition. Errors are
comparable to the symbol size. Snapshots
illustrate the structure before and after the ODT
(i.e., at xoN ¼ 16 and 17). Adapted from
Ref. [44].

pronounced fluctuation effects. The experimentally relevant range of large but finite
invariant degrees of polymerization, �N � 104, can only be addressedwith soft coarse-
grained models because increasing the density, ro, of coarse-grained segments is
significantly more efficient in increasing �N than increasing the number, N, of
segment per molecule. These particle-based models correspond to discretized
versions of the standard field-theoretic description with a finite compressibility
term. The soft, interparticle potential avoids crystallization or vitrification, which
occur inmodels with harsh excluded volume; it should also be chosen as to suppress
the formation of cluster crystals [107–109] that may form in dense systems of soft,
purely repulsive particles.

These soft, particle-based models can be employed in conjunction with a variety
of simulation techniques including dissipative particle dynamics [100], Brownian
dynamics [35], Monte Carlo simulations [39, 41, 105], and single-chain-in-mean-field
simulations [40–42]. These simulation techniques permit the investigation of the
structureof large three-dimensionalpolymersystemswithexperimentally relevant �N.

Special simulation techniques have recently been devised to calculate free energies
of these structure-forming fluids [43–45]. We have discussed several methods, which
have been inspired by related approaches for calculating free energy of crystals inhard-
condensedmatter systems [43], rely on afield-theoretic representation via lattice-based
fields [45] or exploit the possibility of simultaneously and accurately measuring the
pressure and chemical potential due to the softness of the off-lattice potentials [44].
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The combination of efficient simulation models and computational methods for
calculating free energies opens a wide range of applications for soft coarse-grained
models not only limited to polymeric systems but also encompassing lipid mem-
branes and colloid-polymer mixtures. Given the small free energies (per molecule)
that distinguish different morphologies and the experimentally observed metasta-
bility and protracted relaxation of the structure formation process, it remains an
important and challenging task to devise efficient numerical models for studying the
kinetics of structure formation. To this end, both entanglement effects and a
description of collective flow have to be incorporated. Progress on these issues has
recently begun [35, 36, 87, 91, 148–157].
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6
Simulations and Theories of Single Polyelectrolyte Chains
Arindam Kundagrami, Rajeev Kumar, and Murugappan Muthukumar

6.1
Introduction

Understanding charged polymers in aqueous solutions continues to be a major
challenge. Even the very first question about the net charge of an isolated flexible
polyelectrolyte in dilute solutions is elusive from a full understanding. The key
contributor to the challenge is the topological correlation arising from the chain
connectivity, which is embedded on a collection of charges, which on their own are
long-range correlated. At the same time, the solution is electrically neutral, whereby
the polyelectrolyte chains are present in a neutralizing plasma constituted by the
counterions and other dissociated salt ions. As can be expected intuitively, there is an
interplay between the large polyelectrolytemacromolecules and small electrolyte ions
that are coupled electrostatically. Furthermore, there has been a resurge in exper-
imental activities in order to determine the effective charge of polyelectrolyte
molecules in solutions and their structure. The interpretation of experimental
observations depends on availability of reliable theories. An accurate theoretical
treatment of such a complex problem is a challenge. In view of this, only approximate
theories have been developed. In a parallel track, lots of computer simulation
activities have been pursued by many groups, in order to gain insight. While
computer simulation results can provide explanations of some trends observed in
experiments, the value of closed form analytical formulas cannot be underestimated
in providing explanation of already existing data, both simulation and experiments,
and in making predictions.

In the light of the above arguments, we present a brief review on the theoretical
methods and simulation results. We restrict ourselves to isolated flexible polyelec-
trolyte chains in solutions. In terms of simulations, we only consider the Langevin
dynamics method. For the theory part, we present a variational theory and self-
consistent field theory (SCFT), both of which start from an effective Hamiltonian
appropriate for flexible charged chains. The background plasma is treated at
different levels of sophistication, ranging from the Debye–H€uckel (DH) to the
Poisson–Boltzmann descriptions. In this chapter, we have stayed away from less
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diluted solutions, semiflexible polyelectrolytes, and phase behaviors of polyelec-
trolyte solutions.

For an uncharged polymer chain, there are three length measures: contour length
of the chain, L; the Kuhn segment length l, which parameterizes the local chemical
details, which in turn determines the number of Kuhn steps N in the chain; and the
radius of gyration of the chain. With respect to uncharged systems, there are two
additional length scales traditionally considered in theoretical treatments of salty
polyelectrolyte solutions. One is the Bjerrum length lB, which stipulates the strength
of the Coulomb interaction at a particular temperature T in a specific solvent of
dielectric constant e, given by

lB ¼ e2

4pe0ekBT
; ð6:1Þ

where e is the electron charge, e0 is the vacuum permittivity, and kB is the Boltzmann
constant. The other one is the Debye screening length k�1, which sets the length
scale for the screening of electrostatic interactions due to the dissociated ions, and is
given by

k2 ¼ 4plB
X
i

Z2
i ci; ð6:2Þ

where the sum is over all species (i) of mobile ions of valency Zi and number
concentration ci. In addition to the above two, a third length scale also arises [1] related
to the dielectric heterogeneity, which accounts for the difference in the dielectric
constant in the vicinity of the polymer chains and in the bulk solvent. In this chapter,
we consider these three length scales for the theoretical treatment of the effective
charge and conformation of a single isolated polyelectrolyte chain in both salt-free
and salty solutions, the latter in the presence of either monovalent or divalent ions.
Simulation models, however, ignore the dielectric inhomogeneity and consider the
bulk dielectric constant of the implicit solvent.

In experiments, the major variables are the molecular weight of the polymer, its
chemical identity in terms of the backbone structure, valency and size of counterions,
amount and valencies of dissolved electrolyte ions, dielectric constant of the solvent,
dielectric mismatch between the material constituted by the chain backbone and the
bulk solvent, and temperature. Many phenomena related to the effects from these
experimental variables have been documented in the literature. The typical non-
monotonic dependence of the average size of flexible polyelectrolyte chains on
temperature is now well known from computer simulations and experiments. At
very high temperatures, the chains in dilute salt-free solutions are in their athermal
states with self-avoiding walk (SAW) statistics. Although the chains are fully charged
at these conditions, the electrostatic repulsion among the monomers remains
negligible compared to the thermal fluctuations. With decreasing temperature,
electrostatics becomes progressively important and the chains expand even beyond
the excluded volume swelling due to intermonomer repulsion. At even lower
temperatures, counterions condense on the chains reducing the net polymer charge,
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and consequently the chains tend to contract again. Small-molecular monovalent
salts have long been known to enhance this condensation effect, and the resulting
contraction occurs at higher temperatures. Monovalent salts, however, gradually
reduce the size of flexible polyelectrolyte chains at temperatures typically way below
their modest values (e.g., room temperature for aqueous solutions). Addition of
divalent (or multivalent) salts, however, leads to a drastic qualitative change in
polyelectrolyte behaviors. A modest number of divalent counterions in water can
effectively neutralize and contract polyelectrolytes close to its Gaussian size at
room temperatures. Furthermore, additional divalent salt can even reverse the
charge on the polymer (the phenomenon is known as overcharging or charge inversion
or charge reversal) at certain physical conditions. A typical simulationmodel or theory
must address and successfully predict thesewell-known properties of charged chains
in salty environments.

The Manning model [2], originally designed for infinitesimally thin and infinitely
long rod-like molecules, has traditionally explained condensation of counterions on
flexiblepolyelectrolyte chains.However,Manning�s argument remains inadequate [1]
for flexible polyelectrolytes. A flexible chain is allowed to bend significantly due to its
charge compensation at lower temperatures, which renders substantial changes in its
conformational entropy. Furthermore, Manning�s assumption that the discrete
nature of the charged groups has a secondary effect becomes entirely invalid for
multivalent ions. This discreteness plays the key role in complete charge compen-
sation (and resulting contraction of polyelectrolytes) and subsequent overcharging at
modest temperatures by multivalent salt counterions. This overcharging behavior is
unexplainablewithin thePoisson–Boltzmann formalism that considers a continuum
description of the charge density. Initial theories [3], in order to address the
precipitation of chains for high counterion valence, considered the translational
free energy of the polyions and salt ions along with the screened electrostatic
interaction between charges. With prefixed values of the excluded volume exponent
n (that means prefixed radius of gyration, Rg), the free energy was minimized in
terms of counterion species, and the correlated multivalent ions were shown [4] to
induce attraction between monomers (through ion-�bridging�) leading to the col-
lapse of a chain. Redissolution of chainswas also observed at higher (multivalent) salt
concentrations, but it was explained by a reduced bridging force due to electrostatic
screening (as opposed to overcharging). Later, unscreened Coulomb interaction
within condensed ion-pairs was first addressed [5] without considering the chain
entropy, and the theory predicted dependencies of the degree of ionization, f , (which
is the total effective charge density of polyelectrolytes after accounting for the
condensed ions) on temperature and salt concentrations similar to Manning�s
argument. A two-state (rod-like and collapsed) model for condensation predicted [6]
that the chain collapse occurs when the total charge of the multivalent cations equals
to that of the ionizable groups of the polymer, implying the condensation of almost all
added multivalent ions at modest temperatures. The two-state theory [6, 7] treats the
collapsed state at low temperatures as an amorphous ionic solid similar to simple
electrolytes (say, NaCl) and, therefore, still ignores the chain entropy and bending-
related reorganization of condensed charges at low temperatures.
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A newly developed theory [1] successfully addresses the chain entropy of flexible
polyelectrolytes and its role in counterion distribution. This continuum theory
considers the condensation of counterions as an adsorption process. Condensation
in this argument is facilitated at lower temperatures but, unlike in previous
theories, is coupled with the configurational free energy of the polymer. This
adsorption theory [1] considers nondiscrete variable values for the size (Rg) of a
single chain that is treated as a continuous curve, and which facilitates an
appropriate description of entropy of a flexible chain. The theory treats both
salt-free and salty conditions with monovalent counterions in dilute solutions of
a flexible polyelectrolyte. The competition between the translational entropy of
counterions and the electrostatic energy gain of condensed ions is analyzed
parametrically reproducing all classical results including the chain-collapse (below
Gaussian dimensions) due to short-ranged dipole interactions at low tempera-
tures [8, 9]. Asmentioned before, in addition to the length scales lB (Bjerrum length)
and k�1 (Debye length) in the charged system the adsorption theory uses the
concept of a dielectric mismatch parameter, d, which captures the fact that the
dielectric constant has much lower values near the chain backbone of a polyelec-
trolyte or protein than in the bulk [10–12] solvent. In a typical polyelectrolyte
solution, d is the ratio of the bulk to local dielectric constants, and the distance from
the backbone in which e assumes its bulk value sets a new length scale. This
mismatch in e, if substantial, creates higher potential gradients that can electro-
statically guide counterions toward oppositely charged monomers. The theory
confirmed that this may significantly increase counterion condensation at modest
temperatures leading to a lower effective charge and smaller size of the polyelec-
trolyte. Monovalent counterion was, however, shown to contract a chain to its
Gaussian conformation at modest temperatures (say, room temperature at which
lB � 7A

�
for sodium polystyrene sulfonate (NaPSS) in water) only at higher con-

centrations of the added salt. The recent extension of the adsorption theory to
divalent counterions [13], however, predicts the expected charge neutralization and
overcharging under moderate conditions.

One of the merits of the variational theory is its utility in terms of simple
formulas for the effective degree of ionization and radius of gyration. Therefore,
it is necessary to validate the predictions of this theory with simulation and
experimental results. Furthermore, the variational theory has used the severe
approximation of uniform electrostatic expansion of the chain. In order to rely
on the predictions of the adsorption (variational) theory, it is necessary to assess
the severity of the approximations by comparing with more advanced field
theoretic calculations [14, 15]. We have organized this chapter along the following
line of thought. First, we provide simulation technique and key results. This is
then followed by a detailed description of Muthukumar�s adsorption theory by
using a variational formalism. The results of this theory are discussed along
with simulation and experimental results. After the variational formalism, the
SCFT is presented with adequate details to enable a beginner to master this
technique for this class of problems. In the formalism of SCFT, we present both
the saddle-point approximation leading to the self-consistent mean field theory
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(SCMFT) and the role of fluctuations. Finally, we offer a comparison between
different theoretical tools.

6.2
Simulation

6.2.1
Simulation Method

In the simulation, the polyelectrolyte solution containing added salt is modeled
as a collection of n chains each with N spherical beads of point unit electric charge
�e, nN=Zc counterions (Zc being the valency of the counterion), nþ cations of
added salt with valency Zþ , and nþZþ =Z� anions of added salt with valency Z�,
all placed in a cubic medium of dielectric constant e and volume L3. We have
systematically investigated the role of n, N, Zc, Zþ ¼ 1 and 2, and Z� ¼ 1 in
determining the various structural properties of the polyelectrolyte and counterion
distribution. In this model, the key parameters of electrostatic interaction between
two ions of valencies Zi and Zj are the Bjerrum length lB, given by Eq. (6.1) and
Coulomb strength parameter C defined by

C ¼ jZiZjjlB
l0

; ð6:3Þ

with kBT being the Boltzmann constant times the absolute temperature T , e0 is the
permittivity of vacuum, and l0 is the equilibrium bond length connecting two
successive beads of the chain. We first systematically explore the effect of the
Coulomb strength, C, which dictates the relative importance of thermal fluctuations
to Coulomb interactions. The interesting range of C is 3:2 > C > 2:4 for aqueous
solutions (0 < T < 100 �C) of polyelectrolytes with chemical charge separation along
chain backbone of about 0.25 nm and Zc ¼ 1. Since the vast majority of the
experiments on polyelectrolytes uses water as the solvent, we consider C ¼ 3 as a
special case in the simulations and the following theory. Both our simulations and
the theory are motivated by experimental systems such as solutions of sodium
polystyrene-sulfonate in water at room temperature containing salts of NaCl type
(monovalent) or BaCl2 type (divalent). The major issues addressed are the following.
The counterion distribution around a flexible polyelectrolyte molecule, being qual-
itatively different from the Manning condensation, reduces the net charge of the
polyelectrolyte from its highest value pertaining to the maximum ionization.
Simulations find that the net charge decreases with an increase in polymer concen-
tration (Cp) or an increase in the concentration of added salt (Cs). We have further
added divalent counterions from an additional salt to the solution containing the
polyelectrolyte chains and their monovalent counterions and monitored the redis-
tribution of counterion clouds. The divalent counterions competitively replace
and dominate over the monovalent counterions in shaping the counterion cloud
around the polymer. The extent of this competitive replacement depends on the
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concentration of the added divalent salt. For the simulated conditions, we have not
observed any overcharging of the polymer. The theory, however, predicts charge
reversal for certain ranges of parameters. Simultaneous to the computation of
counterion distribution and its correlation with polymer configuration, we have
monitored the radius of gyration Rg and static structure factor SðkÞ (k being the
scattering wave vector) of the polymer as functions of N, Cp, Cs, and Zþ .

We model each of the polyelectrolyte molecule as a freely jointed chain of N
spherical beads, each carrying a point unit charge of an electron,�e. All n chains and
various ions are placed in amediumof uniformdielectric constant e and themedium
is taken to be a cubic box of volume L3. Periodic boundary conditions are used in our
simulation. One must note that the dielectric heterogeneity of the solvent and the
medium has been treated in the theory but is not addressed in our simulations.

The total potential energy of the system consists of the following three parts:

1) Excluded volume: The nonelectrostatic part of potential interaction between
nonbonded beads of the chain is taken as a purely repulsive Lennard-Jones (LJ)
potential,

ULJ ¼ eLJ

��
s

r

�12

�2

�
s

r

�6

þ 1

�
r � s

¼ 0 r > s;

ð6:4Þ

where eLJ is the strength,s is thehard-core distance, and r is the distance between
two beads. eLJ is used as the unit of energy. By using the repulsive LJ potential, we
are considering only a hydrophilic system. We have not addressed any hydro-
phobic interaction that requires an additional parameter.We have used the same
form as in Eq. (6.4) to capture the nonelectrostatic excluded volume interactions
among the polymer beads and counterions. The values of s (hard-core distance)
are 0:8l0, 0:6l0, and 0:4l0 for the pairs of bead–bead, bead–counterion, and
counterion–counterion, respectively, where l0 is the equilibrium bond length.

2) Bond stretch: The potential energy associated with bond stretching of each bond
of the chain is taken to be

Ubond ¼ ksðl�l0Þ2; ð6:5Þ

where l is the bond length and l0 is the equilibrium bond length. The spring
constant ks is taken to be high enough (5000eLJ=l20) to allow fluctuations of the
bond length only within 10% of l0.

3) Electrostatic interaction: The electrostatic interaction among the charged beads
and counterions is taken to be the full Coulomb energy,

UCðrijÞ ¼ ZiZje2

4pe0erij
¼ ZiZjlBkBT

rij
; ð6:6Þ

where rij is the distance between the ions i and j, and Zk is the valency of the kth
ion. As already mentioned in the preceding section, we take lB=l0 ¼ 3 to
correspond to a typical experimental case (say, sodium polystyrene sulfonate
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in water at room temperature). In fact, lB=l0 ¼ 3:0 defines the room temperature
for our model system. After performing the systematic analysis as a function of
C, all representative simulations reported in this chapter are carried out at room
temperature. The Coulomb interaction is calculated with the standard Ewald
summation [16] technique.Wehave taken theEwald parameters k, rc, andKmax to
be 5=L, L=2, and 4, respectively.

The solvent is modeled as a uniform dielectric medium. The dynamics of the ith
particle (either a labeled bead or a labeled ion) is taken as

m
d2ri
dt2

¼ �zvi�rriUþFiðtÞ; ð6:7Þ

where m and z are the mass and friction coefficient, respectively, of the ith particle.
U is the net potential energy (described above) acting on the ith particle. Fi(t) is the
noise from the bath acting on the ith particle and is stipulated to satisfy thefluctuation
dissipation theorem,

hFiðtÞ �Fjðt0Þi ¼ dij6kBTzdðt�t0Þ: ð6:8Þ

In the present simulations, the mass of beads is taken as unit mass, and m ¼ 0:5
formass of all other ions. Friction coefficient is chosen as constant 1:0t�1, where t is
the time unit of the system. The velocity Verlet finite-differencing scheme is chosen
for the integration of Eq. (6.7). By fixing e, s, and kBT the salt concentration is varied
from salt-free to high salt. The monomer density of the solution is varied from
1� 10�5l�3

0 to 3� 10�2l�3
0 . The chain lengths considered are of N ¼ 20, 40, 60, and

100. For N ¼ 100, only one monomer density of 8� 10�4l�3
0 is considered, but at

many values of salt concentration. The Brownian time step dt is adjusted between
0:007t and 0:01t accordingly. The total duration of each simulation run takes from
5� 105 to 4� 106 time steps depending on the specific case. The largest system
simulated in this work consists of about 5000 charges. For the case of about 1000
charges, computation time required for 2 million steps on a single Alpha 533 MHZ
processor is 5 days. The computational time increases as a 3=2 power law of the total
number of charges [17].

Typical simulation protocol is as follows. First, the initial state consisting of n
polyelectrolyte chains each ofN beads and exactly neutralizing the number of counter-
ions and certain known number of salt ions is randomly generated inside the simula-
tion box. Then, the Langevin dynamics simulation is performed. Data on position and
velocity of all particles, as well as the energies of the system are gathered at every 1000
steps during the whole simulation course. Computations of physical quantities dis-
cussed below are carried out separately from the stored data on simulations.

6.2.2
Degree of Ionization

To obtain a quantitative measure of the counterion distribution around a poly-
electrolyte molecule, the following procedure is undertaken. For a given chain
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configuration, a tube is constructed around the chain backbone. The tube is a
nonoverlapping superposition of spheres of fixed radius rc centered on each bead
position. rc is a cutoff parameter. All ions other than the chain beads inside this
tube constitute the counterion cloud (worm) of this given polymer configuration.
Knowing the number and charges of all ions inside this worm and adding the
charges of all beads of the chain, one gets the net charge of the polymer in this
configuration. Averaging over many configurations in equilibrium gives the
average net charge (eQeff ) of the polymer, and the degree of ionization (a) of
the polymer is defined by a ¼ �Qeff=N. The dependence of Qeff on the cutoff
parameter rc is given in Figure 6.1 for a representative situation (N ¼ 100,
Cp ¼ 8� 10�4l�3

0 ) for both monovalent and divalent counterions. It is seen that
the net polymer charge approaches an asymptotic value for sufficiently large cutoff
length. The separation distance r0 at which the electrostatic energy of a pair of
monovalent ions (lBkBT=r0) is comparable to the kinetic energy (3kBT=2) of an
ion is 2l0 for our choice of temperature (lB ¼ 3l0). This distance is indicated in
Figure 6.1 by the vertical dotted line. At this value of rc the net polymer charge is
close to the asymptotic value within the error bars for the case of monovalent
counterions. For the case of divalent counterions, the net polymer charge has
already reached the asymptotic value for rc ¼ r0. In view of these observations, the
cutoff parameter rc is taken to be 2l0 in the simulations discussed in the remainder
of the chapter.
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Figure 6.1 Net polymer charge as a function of the cutoff radius rc of the counterion worm, for
N ¼ 100,Cpl30 ¼ 8� 10�4, and the salt-free case. The vertical dashed line denotes the choice of rc in
this chapter. Circles: monovalent counterions; squares: divalent counterions.
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6.2.3
Size and Shape of the Polyelectrolyte

The average radius of gyration Rg, defined by

R2
g ¼

1
N

X
i

hr2i i ð6:9Þ

is calculated for different values of N, L, and C, for three different valencies of
Zc(¼1, 2, and 3 corresponding tomonovalent, divalent, and trivalent, respectively). In
Eq. (6.9), ri is the distance of the ith bead from the center-of-mass of the chain and
angular brackets indicate the averaging over chain configurations. The typical results
are presented for N ¼ 100 and L ¼ 50l0 (monomer density of 8� 10�4l�3

0 ) in
Figure 6.2, where R2

g=N is plotted against C. It must be pointed out that for water
as the solvent, the interesting temperature range of 0–100 �C corresponds roughly to
the narrow range 3:2 > C > 2:4 for monovalent counterions. For multivalent coun-
terions, this range is expanded by the multiple of Zc. We assume that values of C
outside these ranges represent solvents different from water. In Figure 6.2, we have
also included the data for Rg when the chain is neutral and has only repulsive
Lennard-Jones interaction (that means Uc ¼ 0, to illustrate the role of electrostatics
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Figure 6.2 Simulation results:Rg forN ¼ 100,monomer density r ¼ 8� 10�4l�3
0 . (a)monovalent

counterions; (b) divalent; (c) trivalent; (d) superposition of figure (a)–(c).
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on Rg. Also, the data for the Lennard-Jones chain are collected in the same
temperature range as for the polyelectrolyte chain.

First, we consider Figure 6.2a, corresponding to monovalent counterions. At very
high temperatures (C! 0), weak electrostatic repulsion is present. Consequently,Rg

is higher than that for the LJ chain. As the temperature is lowered (that means C is
increased), the electrostatic repulsion between beads becomes even stronger and
consequently Rg begins to increase with C.

As the temperature is decreased even further (that means C is close to almost 0.5),
the intrachain electrostatic repulsion begins to bemitigated by electrostatic attraction
between beads and counterions. The rate of chain swelling with decrease in T begins
to decrease. As the temperature is lowered even more (that means C goes beyond
roughly 1), there are significant number of counterions close to the chain backbone,
as described below in detail, creating many dipoles. The interaction between these
dipoles leads to intrachain attraction, working against the intrachain swelling arising
from the uncompensated charges on the chain backbone. The net result is that Rg

decreases as C increases (that means Tdecreases). Yet, until C � 5:0 (that means for
T > 175 K if a solution with dielectric constant of 80 can be realized at these low
temperatures), Rg of the polyelectrolyte chain is bigger than the value expected for a
neutral chain in good solvents. Of course, as C becomes much higher than 5, the
chain begins to collapse into a compact structure, as theoretically expected. Typical
configurations of the chain are given in Figure 6.3 forN ¼ 100,Zc ¼ 1, and L ¼ 50l0
(r ¼ 8� 10�4l�3

0 ) at different values of C. The equivalent theoretical result is
presented in Figure 6.11b.

The analogous results of Figure 6.2a for divalent and trivalent counterions are
presented in Figure 6.2b and c, respectively. The results are compounded in
Figure 6.2d. It is clear from these figures that the extent of chain expansion is
weaker at lower values of C (that means higher temperatures) for higher valences of
counterions. This result agrees with recent experiments [3, 18, 19].

6.2.4
Effect of Salt Concentration on Degree of Ionization

We now consider the effect of salt concentration on a. In the simulation, first a salt-
free solution of polyelectrolyte chains and their monovalent counterions are equil-
ibrated. For specificity, we denote the counterion as X , and there are N counterions
(Zc ¼ 1), and take the polymer to be uniformly negatively charged. Next, we add a
fixed quantity of salt of either the type XY (Zþ ¼ 1 ¼ Z�) or the type AY2 (Zþ ¼ 2,
Z� ¼ 1) to the system and again equilibrate the system.We then collect the statistics
and compute the average number of various ions (X , Y , and A) in the counterion
worm surrounding the polymer defined as above with rc ¼ 2l0. We illustrate the key
results only for the case of N ¼ 100 and Cp ¼ 8� 10�4l�3

0 .
For the case of XY-type salt (say NaCl added to a solution of sodium polystyrene-

sulfonate), the number of X þ and Y� ions inside the counterion worm are plotted
in Figure 6.4a, as Cs is increased from 0 to 1:36M. (For example, Cs ¼ 0:01M
corresponds to nþ ¼ 187, L ¼ 126, and l0 ¼ 0:25 nm.) In Figure 6.4a, N ¼ 100 and
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Cpl30 ¼ 8� 10�4. As noted in Figure 6.1 for the salt-free solution, about 80% of
counterions (X þ ) are condensed (that means inside the counterion worm). As the
salt concentration is increased, the number of condensed counterions around the
polymer backbone also increases. At even higher salt concentrations, as the coun-
terion concentration inside the counterion worm increases, increasing number of
coions (Y�) are also brought inside the worm in an effort to maintain electroneu-
trality. By adding the numbers of X þ and Y� ions and their charges and combining
with the bare charge of the polymer chain, the effective degree of ionization of the
polymer is obtained as given in Figure 6.4b. The degree of ionization decreases
monotonically with salt concentration.

In case of adding AY2-type salt to a solution of polyelectrolyte with X þ being the
counterion (say BaCl2 added to a solution of sodium polystyrene-sulfonate), the
number of X þ ,A2þ , and Y� ions inside the counterion worm around the polymer is
monitored as a function of concentration of AY2 salt. The results for N ¼ 100 and
Cpl30 ¼ 8� 10�4 are given in Figure 6.4c. As soon as small amount of divalent cations
are present, these effectively replace the condensed monovalent counterions.
Depending on Cs, there are equilibrium concentrations of X þ and A2þ inside the
counterion worm. For example, as Cs changes from the salt-free case to 0:05M, the
number of the monovalent X þ ions decreases from 80 to 5, compensated by an
increase in the number of A2þ ions from 0 to about 45. In this low Cs regime,

Figure 6.3 Snapshots from the simulations. Structure and ionization rate of the polyelectrolyte
change as parameter C changes. (a) C ¼ 20; (b) C ¼ 7; (c) C ¼ 1; (d) C ¼ 0:13. Please note that
pictures shown here are not in the same scale.

6.2 Simulation j257



effectively all added divalent ions are condensed by replacing the monovalent
counterions. As more AY2 salt is added, the concentration of X þ remains at a low
value close to zero. But now the concentrations of A2þ and Y� increase monoton-
ically with an increase in Cs. By counting all ions inside the counterion worm, a is
obtained and its dependence on Cs is presented in Figure 6.4d. As expected, a
comparison of Figure 6.4b and d shows that a is reduced sharply by the divalent ions
of the salt in comparison with the case of monovalent ions of the salt. Further, it is to
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be noted that for both monovalent and divalent counterions from the salt, there is
no overcharging of the polymer at the temperature studied in the present simula-
tions (that means a is not negative). The equivalent theoretical result for the
effective charge and size as a function of salt concentration is given in Figure 6.12.
The degree of condensation for various types of ions is presented in Figure 6.13.
We will later notice that theory predicts overcharging in the presence of dielectric
inhomogoneity of the solvent. This variation of the dielectric constant is not
addressed in present simulations.

6.2.5
Radial Distribution Functions

Following the standard practice, we define the radial distribution function for the
beads, gppðrÞ, as the ratio of number of pairs of beads with distance of separation in
the interval between r and rþ dr to the volumeof the shell with inner radius and outer
radius of r and rþdr. In the present binning, dr is taken as roughly 0.1l0. Similar to
gpp, the radial distribution functions for counterions, gccðrÞ, and for pairs of bead and
counterions, gpcðrÞ, are calculated. These distribution functions are plotted in
Figure 6.5a–c, for C ¼ 3, N ¼ 100, and L ¼ 50l0. The effect of counterion valency
is also included in these figures. As pointed out earlier,C ¼ 3 corresponds roughly to
the system of sodium polystyrene sulfonate in water at room temperature. At this
C ¼ 3 value, significant number of counterions are close to the beads, as revealed in
Figure 6.5b, where the first peak is located at r ¼ 0:55l0 corresponding to the hard
core distance between a bead and a counterion. In Figure 6.5a, the first peak at r ¼ l0
reflects the chain connectivity as the equilibrium bond length l0 has been chosen as
unit length.Weak second peaks in Figure 6.5a and b reflect the relatively poor order of
second shells in the expanded coil. However, it is worth noting that these peaks are
stronger as the counterion valency is higher. Figure 6.5c shows that the packing of
higher valency counterions is looser than that for monovalent counterions at this
Coulomb strength.

6.2.6
Dependence of Degree of Ionization on Polymer Density

In an effort to understand the role of translational entropy of counterions in
countering the attraction between the polymer and the counterions, the volume
is varied systematically and one calculates a. The representative results are
given in Figure 6.6a for r ¼ 8� 10�4l�3

0 and 8� 10�4l�3
0 , N ¼ 100, rc ¼ 1:0l0, and

Zc ¼ 1. As expected, the degree of ionization is higher if the volume of the system
is larger.

The value of the effective degree of ionization a of a chain is determined as
described above for different values of N and Cp in the salt-free case (nþ ¼ 0).
Eight different values of Cpl30 in the range of 10�5�10�2 have been considered for
N ¼ 20, 40, and 60. The results are presented in Figure 6.6b where the single data
point corresponds to N ¼ 100. By estimating the overlap concentration C	

pl
3
0 by
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3Nl30=4pR
3
g,C

	
pl
3
0 are 0.3, 0.1, and 0.03, respectively, forN ¼ 20, 40, and 60. Therefore,

polymer concentrations investigated are either below or comparable to the overlap
concentration. We have carried out simulations at higher concentrations, where we
observe a substantial slowing down of dynamics. Reliable averages cannot be
constructed at these concentrations, based on our present simulations. Therefore,
we do not present our simulation data for such higher concentrations. It is seen from
Figure 6.6b that the degree of ionization (proportional to the net polymer charge)
decreases with Cp. In other words, the number of counterions in the counterion
worm increases with polyelectrolyte concentration. This result is in stark contrast to
some recent claims [20]. However, our simulation results are intuitively obvious as
the counterions are required by electrostatics to be in the vicinity of polymer
segments. Furthermore, there appears to be a systematic N dependence of a at
lower values of Cp, where a depends on N for fixed values of Cp. However, as Cp

approaches C	
p, a becomes independent of N. The equivalent theoretical results are

presented in Figure 6.15.

6.2.7
Size and Structure of the Polyelectrolyte

The average radius of gyration Rg, defined by

R2
g ¼

1
N

X
i

hr2i i ð6:10Þ

is calculated for different values ofN,Cp,Cs, andZþ . In Eq. (6.10), r is the distance of
the ith bead from the center of mass of a labeled chain and angular brackets indicate
the averaging over chain configurations. The dependence of Rg onN,Cp,Cs, and the
valency of the counterion is given below. Naturally, this dependence is controlled by
the electrostatic interaction between the polymer and the counterions resulting in a,
electrostatic repulsion between polymer beads, excluded volume interaction between
polymer beads, configurational entropy of polymer chains, and the translational
entropy of counter ions and salt ions. While there are many scaling arguments
discussed extensively in the literature, there are only a few works [21–23] providing
formula for Rg with explicit numerical factors, capable of comparison with simula-
tions and experiments. Later in the section discussing our theory, we explain the self-
consistent double minimization with respect to the effective charge and size of the
chain. In this section, the effective charge is taken as an input from simulations and
used in a variational theory [21] inwhich the free energy isminimized as a function of
the size. The formula forRg in solutions of isolated chains andmany chains obtained
by the earlier work of Muthukumar are summarized here to facilitate a comparison
between theory and simulations.

6.2.7.1 Theoretical Background
In infinitely dilute solutions, the polyelectrolyte chains are essentially isolated. In
Muthukumar�s treatment [21] of this limit, the degrees of freedom of counterions
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and salt ions are integrated out within the Debye–H€uckel approximation of small
electrolytes to obtain an effective electrostatic interaction between chain segments.
This effective potential interaction (in units of kBT ) between two beads of valencyaZp

separated by distance r is the Debye–H€uckel interaction

wc

4p
e�kr

r
; ð6:11Þ

where

wc ¼ lBZ
2
pa

2; ð6:12Þ

and the inverse Debye length k is given by

k2 ¼ 4plB

�
Z2
crc þ

X
c

Z2
crc

�
: ð6:13Þ

rc and rc are the number densities of the counterion of the polymer and the cth salt
ions, respectively.Zc andZc are the valencies of the counterion and the cth salt ion. In
addition, the usual nonelectrostatic excluded volume interaction between two seg-
ments i and j is modeled as wl30dðri�rjÞ. Using a variational procedure and assuming
uniform expansion of the polymer by excluded volume and screened electrostatic
interaction, the result for Rg is given by [21]

R2
g ¼

Ll1
6
; ð6:14Þ

where L ¼ Nl0 is the contour length and l1=l0 is the square of the expansion factor of
the root mean square end-to-end distance of the polymer. l1, which may be called the
renormalized Kuhn length, is given by the formula
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ð6:15Þ

where a ¼ k2Ll1=6. We call Eqs. (6.12)–(6.15) as Muthukumar�s single screening
theory, labeled as ssM, for the convenience of references below. There are two
parameters, namely, a and w, in the theory. For a solution containing many
polyelectrolyte chains, the segment–segment interaction (both nonelectrostatic and
electrostatic) is progressively screened as Cp increases, in addition to the usual
Debye–H€uckel screening by randomly distributed small ions. The coupled double
screening was approximately treated in Refs [22, 23], and the final result forRg can be
written in the form of Eq. (6.14). Now l1 is dependent onCp also, and its explicit form
is available in Ref. [23]. We call this theoretical result Muthukumar�s double
screening theory, labeled as dsM. This theory is strictly valid for Cp > C		

p . Again,
there are two input parameters w and a.
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Both parameters a and w are known in our simulations. a is already discussed
above. For the repulsive LJ potential used in our simulations, w is given by the binary
cluster integral between beads,

w ¼ 1
l30

ð1
0

1�e�ULJðrÞ=kBT
	 


dr: ð6:16Þ

Substituting Eq. (6.4) in Eq. (6.16), w is found to be 2.0. The knowledge of w and a
allows a comparison between simulations and theory (ssM and dsM) without any
adjustable parameters.

Both ssM and dsM theories are based on the assumption that condensed counter-
ions are uniformly distributed along the chain backbone so that the degree of
ionization is uniform everywhere along the chain. This approximation fails drasti-
cally when multivalent counterions condense on the chain. The role of bridging
between nonbonded beads mediated by multivalent counterions has already been
emphasized [4, 24] by the groups of Joanny and Olvera de la Cruz. In the case of
divalent counterions considered here, each bridging contact is equivalent to a cross-
link junction of functionality four. As shown in Ref. [22], such a bridging results in an
attractive two-body interaction. Therefore, when bridging effects are present with
divalent counterions, w is replaced by

wþ Ebr

kBT
a2þ ð1�a2þ�aþ Þ; ð6:17Þ

where Ebr is the attractive energy associated with the formation of one bridge, a2þ
and aþ are the ratios of the numbers of condensed divalent and monovalent
counterions, respectively, within the counterion worm of a chain, to N. In making
this mean field estimate of bridging contribution, allowance is not made for any
correlation such as the interaction between the counterions and coions inside the
counterion worm.

6.2.7.2 Dependence of Radius of Gyration on Salt with Monovalent Counterions
The dependence of Rg on the concentration of XY-type salt (X þ is the counterion) is
illustrated in Figure 6.7a forN ¼ 100 andCpl30 ¼ 8� 10�4. Again, the decrease inRg

as Cs increases is expected due to the increased electrostatic screening, and Rg

eventually reaching the value of a neutral chain. The prediction of ssM theory is
included in Figure 6.7a as the continuous curve. In calculating this curve, a from
Figure 6.3b is used in Eq. (6.15). Although the theoretical curve is within the error
bars of simulation data, it underestimates Rg due to the various approximations
employed in the analytical derivation of Eqs. (6.12)–(6.15). The same trend was
noticed in comparing [25] with experimental data. Nevertheless, the agreement
between the ssM theory and the simulation data is good, given the complexity of the
problem and that there are no adjustable parameters. According to Eqs. (6.12)–(6.15),
for high enough salt concentrations, Rg is expected to approach the asymptotic limit

Rg � wl30 þ
wc

k2

	 
1=5
� C�1=5

s : ð6:18Þ
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In view of this, the simulation data of Figure 6.7a are given in Figure 6.7b as a
double logarithmic plot of Rg versus Cs. A crossover from a constant value of Rg

at low Cs to the scaling form of Eq. (6.18) at high Cs is only barely visible. The
dependence of Rg on Cs for different values of N(20, 40, 60) is given in Figure 6.7c
forCpl30 ¼ 10�3. The simulation data are given by open symbols and the predictions
of ssM are given by filled symbols. The agreement between the theory and the
simulation is excellent.

6.2.7.3 Bridging Effect by Divalent Counterions
The Cs dependence of Rg for the case of divalent counterions (AY2-type salt) is
presented in Figure 6.8a forN ¼ 100 andCpl30 ¼ 8� 10�4. As is seen in this figure,
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Figure 6.7 Dependence of Rg on salt concentration Cs for (X þ ,Y�)-type salt (N ¼ 100,
Cpl30 ¼ 8� 10�4). Open symbols are simulation data and the curve is ssM theory without any
adjustable parameters. (b) is the double logarithmic plot of (a).
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the divalent counterions are very effective in shrinking the polyelectrolyte chain.
The prediction of ssM theory, where the bridging effect is completely ignored (i.e.,
Ebr ¼ 0 in Eq. (6.17)) is given by the solid curve. In obtaining this curve, a from
Figure 6.3d is used in Eq. (6.12). There is a significant discrepancy between the
simulation data and the ssM theory, and we attribute this discrepancy to the
bridging effect caused by the divalent counterions. In an effort to account for
the bridging effect, we estimateEbr in our simulations as follows.When the divalent
counterion is involved in a bridge between two beads, the beads can be as far away
as 2rc and as close as 0:8l0. The counterion can be directly in between these beads
or can be at one vertex of a triangle (and the other two vertices being occupied by
the two beads). Instead of performing a detailed calculation of Ebr corresponding
to all shapes of this triangle, we estimate Ebr to be an average corresponding to
the beads being separated by 2:6l0 and the counterion placed right in the middle.
For such a geometry, Ebr turns out to be �9:23kBT . By scanning various config-
urations of the polymer, we find the number of condensed counterions inside the
counterion worm. The ratios of the average numbers of ions (n2þ for A2þ , nþ for
X þ , and n� for Y�) to N ¼ 100 are given in Table 6.1 for different representative
values of Cs (at Cpl30 ¼ 8� 10�4). Substituting the values of a2þ and aþ from
Table 6.1 in Eq. (6.17) and combining with ssM (Eqs. (6.12)–(6.15)), we get the
dashed curve, ssM0, displayed in Figure 6.8a. The agreement between simulation
data and ssM0 demonstrates the significant role played by divalent ions in forming
bridges between segments.

The data of Figure 6.8a are given as a double logarithmic plot in Figure 6.8b.
It is clear that Rg shrinks from a swollen state at low Cs to a compact state at
high Cs through a crossover. The scaling prediction of Eq. (6.18) is not adequate
to describe the bridging effect. The predictions of ssM and ssM0 are also
included in the figure for comparison. The N dependence of Rg as the con-
centration of AY2-type salt varies is given in Figure 6.8c. The discrepancy
between the simulation data and the ssM theory and a better agreement with
ssM0 clearly demonstrate the effect of bridging by the divalent counterions. The
theoretical double minimization predicts a first-order coil to globule transition
with increasing divalent salt in the presence of a dielectric inhomogeneity.
The absence of the dielectric inhomogeneity does not allow to have a similar
transition in the calculations.

6.3
The Variational Theory

We consider [1, 13] a linear flexible polyelectrolyte chain ofNmonomers in a solution
of volume V, the center of mass of the chain being at the origin of the coordinate
system. Each monomer is monovalently charged (negative) and of length l. The
solution (e.g., water) contains either no salt, only monovalent salt (Figure 6.9a), or
bothmono- and divalent salts (Figure 6.9b). As we shall see later, all the results for the
case when only the monovalent salt is present can be readily obtained as a specific
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example of the general case in which both salts are present. The system being
electroneutral for all cases will have a maximum of N monovalent counterions in
addition to the salt ions. We assume that the counterion from the monovalent salt
(e.g., Naþ from NaCl) is chemically identical to the counterion from the polymer
(e.g., Naþ fromNaPSS). Similarly, the coions from both types of salts, if present, are
of the same species (e.g., Cl� from NaCl and BaCl2). At any time, both monovalent
and divalent counterions (e.g., Ba2þ from BaCl2 as divalent counterions) can adsorb
on separate monomers. In addition, in the general scenario with the presence of
both types of salts, the Ba2þ -monomer ion-pair is viewed as a positive monovalent
ion, and the negative coions (Cl�) will adsorb onto some of these pairs as counterions
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(Figure 6.9). Therefore, ifM1 monovalent counterions andM2 divalent counterions
get adsorbed onto the chain (M1 þM2 � N), andM3 (negative) coions condense on to
the Ba2þ -monomer ion-pairs (M3 � M2), the effective (or average) degree of
ionization of the entire chain will be f ¼ ðN�M1�2M2 þM3Þ=N. We define our
variables further as follows: Rg is the radius of gyration of the chain. cs1 and cs2 are,
respectively, the number concentrations of the added monovalent and divalent salts.
Both types of salts are fully dissociated into n1 monovalent counterions (Naþ ), n2
divalent counterions (Ba2þ ), and n1 þ 2n2 coions (Cl�). Therefore, cs1 ¼ n1þ =V
and cs2 ¼ n2þ =V. The free energy of the system, consisting of the chain, condensed
and mobile counterions, and the solution, would depend on four independent
variables: M1;M2;M3, and Rg. The theory aims to evaluate M1;M2;M3, and Rg

self-consistently by expressing the free energyFof the systemas a function of all these
variables and electrostatic parameters, and further obtain their equilibrium values
minimizing F simultaneously with respect to these variables. As discussed later, this
four-dimensional minimization has to be extended with onemore variable when the
electrostatic bridging by divalent cations is considered.

The free energy F has six contributions [1, 13] F1;F2;F3;F4;F5, and F6 related,
respectively, to (i) entropy of mobility of the adsorbed counterions and coions along
the polymer backbone, (ii) translational entropy of the unadsorbed counterions and
coions (including salt ions) that are free to move within the volume V, (iii)

Table 6.1 Simulation data of average numbers of condensed ions (n2þ ¼ f2þN for A2þ ions,
nþ ¼ fþN for X þ ions, and n� ¼ f�N for Y� ions) at different concentrations of (A2þ ; 2Y�)-type
salt.

Cs f� fþ f2þ

0.0000 0.00 0.79 0.00
0.0085 0.00 0.62 0.10
0.0170 0.00 0.46 0.20
0.0256 0.00 0.29 0.30
0.0341 0.01 0.14 0.39
0.0426 0.01 0.08 0.43
0.0512 0.02 0.06 0.46
0.0597 0.03 0.03 0.48
0.0682 0.03 0.03 0.48
0.0768 0.04 0.03 0.48
0.0853 0.04 0.03 0.49
0.1024 0.05 0.05 0.48
0.1792 0.10 0.03 0.51
0.1962 0.11 0.03 0.52
0.2560 0.13 0.03 0.53
0.4266 0.20 0.03 0.56
0.6400 0.25 0.02 0.60
0.8533 0.32 0.02 0.63

N¼ 100 and Cp/0
3¼ 8� 10�4.
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fluctuations in densities of all these mobile ions (in the Debye–H€uckel form) except
the polymer, (iv) the unscreened electrostatic (Coulomb) energy of the monomer
counterion bound pairs (both monovalent and divalent counterions) and the mono-
mer counterion–coion triplets, (v) the entropic, electrostatic, and excluded volume
interactions between monomers of the polyelectrolyte with an average degree of
ionization f, and (vi) electrostatic correlation involving the charged monomers, the
neutral ion-pairs, and the ion-triplets along the backbone of the polymer (also known
as dipole–dipole interactions).

6.3.1
Free Energy

The entropic contribution arising from the various distributions of the adsorbed
counterions and coions is determined as follows. We note that for the general case of
both mono- and divalent salts being present, there are N monomers, M1 adsorbed
monovalent counterions (Naþ ),M2�M3 adsorbed divalent counterions (Ba

2þ ) with
no coion (Cl��) condensation, and M3 ion-triplets (�monomer-Ba2þ -Cl��) in the
system. Therefore, N�M1�M2 monomers remain with their bare charge uncom-
pensated. Consequently, the partition function is

Z1 ¼ N!

ðN�M1�M2Þ!M1!ðM2�M3Þ!M3!
: ð6:19Þ

Figure 6.9 Schematic diagram of the system
consisting of the isolated polymer chain,
condensed counterions, dissociated mobile
ions, and the solution as the background
interacting only through the dielectric constant
e. (a) Onlymonovalent salt. (b) Bothmono- and
divalent salt: possible charge complexes for
each monomer: (a) monomer (�1), (b)
monomer-monovalent (�1, þ 1), (c)

monomer-divalent (�1, þ 2), (d) monomer-
divalent-monocoion (�1, þ 2, �1), and (e) a
bridging configuration of monomer-divalent-
monomer. The dielectric constant el in the
vicinity of the chain is much lower than the bulk
value. To reach equilibrium, the major
competition is between the translational
entropy of the dissociated ions and the
Coulomb energy gain of the adsorbed ions.
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Let us define

a1 ¼ M1

N
; a2 ¼ M2

N
; a3 ¼ M3

N
: ð6:20Þ

Then, using F1 ¼ �kBT lnZ1, we have

F1

NkBT
¼ ð1�a1�a2Þ logð1�a1�a2Þþa1 log a1

þ ða2�a3Þ logða2�a3Þþa3loga3:

ð6:21Þ

The above expression implies two obvious limits:

a1 þa2 � 1 and a3 � a2: ð6:22Þ
To determine the translational entropy of the unadsorbed ions that are distributed

in the bulk volume V, we count mobile ions of various species as N�M1 þ n1þ
monovalent counterions (Naþ ), n2þ�M2 divalent counterions (Ba2þ ), and
n1þ þ 2n2þ�M3 monovalent coions (Cl�). Therefore, the partition function related
to the translational entropy in volume V is

Z2 ¼ VN�M1 þ n1þ þ n2þ �M2 þ n1þ þ 2n2þ �M3

ðN�M1 þ n1þ Þ!ðn2þ�M2Þ!ðn1þ þ 2n2þ�M3Þ!

¼ VN�M1�M2�M3 þ 2n1þ þ 3n2þ

ðN�M1 þ n1þ Þ!ðn2þ�M2Þ!ðn1þ þ 2n2þ�M3Þ! :
ð6:23Þ

Let us further define

N ¼ rV; n1þ ¼ cs1N
r

; n2þ ¼ cs2N
r

: ð6:24Þ

Using F2 ¼ �kBT lnZ2 and after some calculations we arrive at

F2

NkBT
¼
�
1�a1þ cs1

r

�
logðrð1�a1Þþcs1Þþ

�
cs2
r
�a2

�
logðcs2�ra2Þ

þ
�
cs1
r
þ2

cs2
r
�a3

�
logðcs1þ2cs2�ra3Þ

�
�
ð1�a1�a2�a3Þþ2

cs1
r
þ3

cs2
r

�
;

ð6:25Þ

with the constraint

M2�n2þ : ð6:26Þ
The free energy contribution from the correlations of all dissociated ions is given

by the Debye–H€uckel electrostatic free energy,

F3 ¼ �kBT
Vk3

12p
; ð6:27Þ
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where the inverse Debye length k is given by

k2 ¼ 4plB
X
i

Z2
i ni=V: ð6:28Þ

This result is obtained from the Debye–H€uckel theory, which is valid only in
specific regimes of salt concentration and temperature. One must be careful in
identifying regimes where the DH theory ceases to be valid (e.g., for very high salt
concentrations). Here, Zi is the valency of the dissociated ion of the ith species. For
our present case,

k2 ¼ 4plBfN�M1 þ n1þ þ 4ðn2þ�M2Þþ n1þ þ 2n2þ�M3g=V
¼ 4plBðN�M1�4M2�M3 þ 2n1þ þ 6n2þ Þ=V
¼ 4plB rð1�a1�4a2�a3Þþ 2cs1 þ 6cs2f g:

ð6:29Þ

Using the definitions from Eq. (6.24), we reach

F3

NkBT
¼ � 1

3

ffiffiffiffiffiffi
4p

p
l3=2B

1
r
frð1�a1�4a2�a3Þþ 2cs1 þ 6cs2g3=2: ð6:30Þ

To determine the electrostatic energy gain due to the adsorption of all sorts of
ions (Naþ , Ba2þ , and Cl�), we recount different numbers of ion-pairs and triplets
that form due to counterion adsorption. On the polymer chain, there are a1N pairs
of �monomer(�1) and Naþ ion,� ða2�a3ÞN pairs of �monomer(�1) and Ba2þ

ion,� and a3N triplets of �monomer(�1), Ba2þ , and Cl� ions�. In addition,
ð1�a1�a2ÞN monomers(�1) remain without being charge compensated. The
dielectric mismatch parameter, d, describes [1] a local dielectric constant, el, in
the vicinity of the chain backbone. Experiments have shown [10] that el can be as
small as one-tenth of the bulk value e (around 78 inwater) near the polyelectrolyte or
protein backbone. The dielectric constant increases exponentially [11, 12] from the
local value (corresponding to thematerial made from the chain backbone) to its full
bulk value over a distance of 1–10 A

�
from the chain monomers. The parameter

d ¼ ðel=eldÞ is, therefore, introduced [1], where d is the dipole length of the bound
ion-pair. The value of d is probably comparable to the Bjerrum length lB. The
schematic of Figure 6.9 reveals that d in the above form applies only to the
monomer-monovalent (Naþ ) and monomer-divalent (Ba2þ ) ion-pairs and not to
the divalent counterion–monovalent coion (Ba2þ -Cl�) ion-pair in the monomer-
divalent–monovalent triplet. In an ion-pair, there are two ions involved with a fixed
distance between them. For the triplet, however, there are three lengths involved (in
this case, Ba2þ -monomer, Ba2þ -Cl� and Cl�-monomer), and the interpretation of
d is not simple. We introduce a parameter d2 for the �monomer-Ba2þ -Cl�� triplet.
d2 is expected to be less than 4d (the value it would have assumed if there were two
point charges, þ 2e and�2e, respectively), but the determination of its actual value
would require a microscopic treatment. In principle, d2 would be a function of d.
For simplicity, we assume all ions and monomers to be of the same size, and
estimate d2 as follows. First, we write the electrostatic energy of counterion
adsorption in terms of d and d2:
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F4

NkBT
¼ �a1d~lB�2ða2�a3Þd~lB�a3d2~lB; ð6:31Þ

where ~lB ¼ lB=l, and the terms are written as Coulomb energies of bound
ion-pairs. To determine the limit of d2 in terms of d, one may note that if one
assumes the local dielectric constant el to apply only to the Ba2þ -monomer pair
energy, but not to the Ba2þ -Cl� pair (e ¼ ewater in that case) energy, then d2 turns
out to be

d2 ¼ 2þ 2
d

� �
d: ð6:32Þ

This should be the lowest value of d2. On the other hand, if el applies to both
Ba2þ -monomer and Ba2þ -Cl� pairs, then

d2 ¼ 4d: ð6:33Þ
This should be the highest value of d2, as already noticed before. In reality, d2

is likely to be somewhere between these two limiting values. We choose the
dielectric constant to be el (the local value pertaining to the chain backbone) for
the Ba2þ -monomer pair and ðel þ ebulkÞ=2 for the Ba2þ -Cl� pair. Then, d2 turns
out to be

d2 ¼ 2þ 4
dþ 1

� �
d: ð6:34Þ

In the above analysis, the repulsion between monomer and Cl� ions has been
ignored; it would bring a very small correction in all above three cases. Although the
counterion distribution and chain conformations sensitively depend on d2, it is
verified that the basic qualitative results are not affected regardless of d2 if it is
assigned any value in the range mentioned above. Therefore, we use Eq. (6.34) in all
of our representative calculations, unless mentioned otherwise.

The free energy of the isolated and flexible polyelectrolyte chain is obtained by the
variational method [1, 21] starting from the Edwards Hamiltonian,

H ¼ 3
2l

ðL
0
ds

�
qRðsÞ
qs

�2

þ w
2

ðL
0
ds
ðL
0
ds0 dðRðsÞ�Rðs0ÞÞ

þ lB
2

ðL
0
ds
ðL
0
ds0

1
jRðsÞ�Rðs0Þj exp �kjRðsÞ�Rðs0Þj½ 
;

ð6:35Þ

where L ¼ Nl, RðsÞ is the position vector of the chain at arc length s, and w is the
strength parameter for all short-ranged hydrophobic or excluded volume effects. An
effective expansion factor l1 is defined as follows:

hR2i ¼ Nll1 � Nl2~l1 ¼ 6R2
g; ð6:36Þ

where ~l1 ¼ l1=l. Here, hR2i is the mean square end-to-end distance, and l1 is the
effective expansion factor that measures the swelling of the chain compared to a
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Gaussian chain. Assuming uniform, spherically symmetric expansion or contraction
of the chain, one extremizes the free energy to obtain

F5

NkBT
¼ 3

2N
ð~l1�1�log~l1Þþ 4

3

�
3
2p

�3=2 wffiffiffiffi
N

p 1

~l1
3=2

þ 2

ffiffiffi
6
p

s
f 2~lB

N1=2

~l1
1=2

H0ðaÞ;
ð6:37Þ

where

H0ðaÞ ¼
ffiffiffi
p

p
2

2
a5=2

� 1
a3=2

� �
expðaÞ erfc ffiffiffi

a
p� �þ 1

3a
þ 2

a2
�

ffiffiffi
p

p
a5=2

�
ffiffiffi
p

p
2a3=2

;

ð6:38Þ
where

a � ~k2N~l1
2
=6: ð6:39Þ

Here, ~k ¼ kl. We further define two more dimensionless variables, ~r ¼ rl3 and
~csi ¼ csil3, where i stands for the ion species. The important factor f is our previously
defined average degree of ionization given by

f ¼ 1�a1�2a2 þa3: ð6:40Þ

In obtaining the free energy of the polymer, only a variational result has been used.
This method is equivalent to ignoring the vertex terms discussed in Ref. [26].
Inclusion of vertex terms is very complicated but leads to only minor corrections
in quantitative details for the case of an excluded volume chain. Similar minor
numerical corrections are expected for a chain with screened Coulomb interaction
because the Debye screening length is realistically finite. Another key assumption is
that the flexible polyelectrolyte chain swells uniformly with spherical symmetry in
order to facilitate an analytical expression for the free energy of the chain. In spite of
these approximations for polymer chain swelling, the predictions of~l1, with f taken as
an input from simulations, have been found to be in reasonable agreement with
simulation results as seen in Figures 6.7 and 6.8 of Ref. [27]. These arguments are
used to justify the use of Eq. (6.37) for the free energy of the chain. An alternative
expression for F5, as might emerge in the future, can be used in the present theory of
counterion adsorption without any loss of generality.

The electrostatic interaction only between monomers with nonzero monopole
charges, with or without condensed ions, is considered till now in this work (the
third-term in the polymer free energy F5). Further, F5 considers only the monopole
contribution of each ion-pair or ion-triplet. For example, a monomer-Naþ pair and
a monomer-Ba2þ -Cl� triplet would contribute identically to F5, although they have
different electrostatic effects. Similarly, a monomer-Ba2þ pair would be simply
treated as a þ 1 charge, although the pair has additional dipole effects. These
additional dipole or higher order multipole effects are critical when the average
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charge of the chain is close to zero.We have already observed in simulations [1, 8, 9]
that these ion-pair effects play a key role to collapse a chain below its Gaussian size
in the presence of monovalent counterions at very low temperatures (that means
when the degree of ionization is negligible). These correlations among neutral
ion-pairs and between neutral ion-pairs and charged monomers are addressed
theoretically by short-ranged, d-function potentials [1] that lead to a free energy
contribution of the form

F6

NkBT
� 4

3
3
2p

� �3=2

wid
2~lB

2 1ffiffiffiffi
N

p 1

~l1
3=2

; ð6:41Þ

where wi (< 0) are temperature dependent parameters, and are different for
dipole–dipole and dipole–monopole interactions. These contributions are attractive
and wouldmodify the excluded volume interaction (the second term in F5, Eq. (6.37)).
They can significantly reduce the size of the chain only around the isoelectric point
(f � 0), and the type of collapse is generally continuous or second order.

In addition to the short-ranged dipole correlations, there can be long-ranged
attraction between monomers mediated by multivalent counterions [28, 29]. This
attraction may compensate the residual Coulomb repulsion of the chain even at
higher degrees of ionization [30], and the extended conformation of the chain may
becomeunstable. This can aswell be treatedwith the concept of ion �bridging� [27, 31].
It is still not conclusively known what kind of collapse this correlation-induced long-
ranged attraction may induce. We briefly mention the short-ranged correlation
effects between the dipoles near the isoelectric point in this chapter. In addition, we
present an ion-bridging theory based on our model predicting the global instability
of a polyelectrolyte chain. One should notice here that the bridging interaction
reduces [27] the effective value of the excluded volume parameter w. Therefore, for
higher values of w, only very high Coulomb strength or divalent salt concentration
will allow the bridging effect to take place. In most of our analysis, we assume w to
be high enough to render the bridging effect negligible. Although we assume w to
be zero except in Section 6.3.11, choosing nonzero positive values of w only brings
minor quantitative changes to our results (and that even only near the isoelectric
point) in the �no bridging� scenario. When bridging is included (Section 6.3.11),
however, w is a very important parameter affecting the salt concentration or the
Coulomb strength required for the first-order transition to the collapsed state.

The total free energy F ¼ F1 þ F2 þF3 þ F4 þF5 is given in terms of the fraction of
adsorbed counterions and coions (a�s), the size of the polymer (l1), temperature and
the bulk dielectric constant (lB), the degree of polymerization (N), the monomer
density (r), monovalent and divalent salt concentrations (cs), and local dielectric
mismatch parameters (d and d2). The goal is to self-consistently determine the
fractions of the adsorbed ions (a1;a2, and a3) and the size (Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðNll1=6Þ
p

)
that minimize the free energy. Note that, for the salt-free case or if only the
monovalent salt is present, there are only two variables, a1 and Rg, which require
self-consistent determination. Further, d2 does not play any role for monovalent
salts. Therefore, it is a simultaneous minimization with respect to two variables
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(a1;Rg) if there are only monovalent counterions, but to four variables (a1;a2;a3;~l1)
if there are additional divalent counterions. Compared to a neutral system, there
are two additional length scales in a charged system. These are the Bjerrum length
(lB) related to the strength of the Coulomb interaction and the Debye length (k�1)
related to the screening of electrostatic forces. In addition, this formalism invokes
a third length scale due to the dielectric mismatch parameter d. In summary,
the important parameters that are varied in our analysis are lB, the salt concentrations
(cs1 and cs2), and d.

6.3.2
Effect of Coulomb Strength on Degree of Ionization and Size

6.3.2.1 Salt-Free Solutions
We start with an isolated polyelectrolyte chain at low concentrations and at modest
temperatures. Our results are first compared directly with the Manning result in
Figure 6.10where f is plotted against 1=~lBd ¼ 3, 3.5, and 4. According to theManning
argument, f is linear with 1=e, until it saturates at unity for ~lB � 1. In contrast,
our prediction is that f is a sigmoidal function of 1=e and ultimately saturates
asymptotically at~lB ! 0. Our results are in qualitative agreement with experimental
deductions [25] on the dependence of f on the dielectric constant of the solvent. The
shape of the curves in Figure 6.11a is representative of an adsorption process and is
different from the Manning postulate. The dependence of f on ~lB is given in
Figure 6.11a for N ¼ 1000, ~r ¼ 0:0005, w ¼ 0, w1 ¼ 0, w2 ¼ 0, at different values
of d. For all values of d, f decreases monotonically with~lB. For a given~lB, counterion
adsorption ismore (thatmeans lower f ) if the dielectricmismatchparameter is larger.
While the dielectric constant of pure water is about 80, the local dielectric constant in
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Figure 6.10 Comparison with Manning argument. f versus 1=~lB for d ¼ 3 (dot-dashed), 3.5
(dashed), and 4 (dotted). The solid line is the Manning argument.
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the region of ion-pair formation can be smaller [10] by an order of magnitude. Also,
the distance d between the ions constituting an ion-pair is comparable to the Bjerrum
length,which canbe larger than l, the chemical distance between consecutive charges
on chain backbone. Consequently, d can be around 3 for synthetic polyelectrolytes in
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Figure 6.11 (a) Effective charge f and (b) chain
expansion factor ~l1 versus ~lB at salt-free
conditions with only monovalent counterions
for N ¼ 1000, ~r ¼ 0:0005, w ¼ 0, w1 ¼ 0,
and w2 ¼ 0, ~cs1 ¼ 0 ¼ ~cs2. d ¼ 1 (dashed),
2 (dotted), 3 (triangle), 3.5 (solid),
4 (dot-dashed), and 5 (circle). (c), (d) Divalent
salt and overcharging: dependency on ~lB: the
degree of ionization ( f ) in (c), and the size
expansion factor (~l1) in (d), of the polyelectrolyte

chain plotted against~lB for different values of d.
Parameters are N ¼ 1000; ~r ¼ 0:0005;~cs1 ¼ 0,
and ~cs2 ¼ 0:0005. Collapse and subsequent
overcharging occur for higher values of d. The
isoelectric point is reached at lower values of lB
for higher values of d. The absolute value of
overcharging for d ¼ 1:5--1:7 is less than 2%.
The difference in effects of mono- and divalent
salt is evident.
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aqueous solutions. Although continuum concepts are invoked here, the parameter d
arises from local details and demands a development of a more microscopic theory.
In our theory, local dielectric mismatch is accounted for by taking d as only a
parameter. The results of Figure 6.11a clearly show the highly sensitive dependence
of f on d. For the commonly studied synthetic systems such as aqueous solutions of
sodium polystyrene sulfonates and polyvinylpyridinium salts, d is probably around
3.5 and ~lB is around 3. Under such assumptions, f is around 0.3. The theoretical
profiles have remarkable similarity to the simulation results (Figure 6.6a).

The dependence of the expansion factor~l1 for themean square end-to-end distance
on the Coulomb strength~lB given in Figure 6.11b for the same values of N, ~r, w, w1,
w2, and d as in Figure 6.11a. The nonmonotonic dependence of ~l1 on ~lB is in
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agreement with simulation results [8, 9, 27, 32]. The chain is Gaussian (~l1 ¼ 1) for
~lB ¼ 0. As ~lB increases, the intrachain electrostatic interaction is manifest and
consequently the chain expands. In this regime, the extent of counterion adsorption
is negligible due to the dominance of translational entropy of unadsorbed counter-
ions at higher temperatures. When~lB increases further (that means temperature is
reduced), more counterions adsorb onto the chain with a reduction of f and a
consequent less chain expansion. For higher values of ~lB, ~l1 approaches unity (that
means Gaussian statistics) in the present case where the short-ranged excluded
volume effects are ignored. Comparison to simulation results (Figure 6.2) suggests
excellent agreement. As discussed later in the article, the chain can shrink to sizes
smaller than the Gaussian size when correlations among the dipoles constituting the
ion-pairs are taken into account. It is also evident from Figure 6.11b that the extent of
chain expansion depends sensitively on the dielectric mismatch parameter, as in the
case of the effective charge of the polymer.

6.3.2.2 Divalent Salt and Overcharging
The ion distribution changes qualitatively once a divalent salt is added to the solution.
Our theory predicts that charge neutralization and subsequent charge reversal would
occur to an isolated flexible polyelectrolyte in aqueous solutions at room temperature
and at a modest presence of a divalent salt. The parameter d in our theory plays an
important role in charge reversal induced by counterion adsorption. Temperature is
also an important factor regulating the relative weight of the electrostatic energy gain
of ion adsorption. To show these effects, we plot the degree of ionization f and the
expansion factor ~l1 of the chain as functions of Bjerrum length lB (inverse temper-
ature and bulk dielectric constant) for various d values in Figure 6.11c–d. The other
parameters are N ¼ 1000, ~r ¼ 0:0005, ~cs1 ¼ 0, and ~cs2 ¼ 0:0005 ¼ ~r. The concen-
trations of the divalent salt and the polymer are chosen to be equal to ensure the
availability of enough divalent ions to adsorb on every monomer if physical
conditions permit. In Figure 6.11c, we notice that there is a negligible adsorption
for d ¼ 1 (which is the comparable value of d in simulations [27, 33] (Figure 6.3c–d).
Similar to themonovalent case (Figure 6.11a and b), the chain is neutralized only at
very low temperatures (there is a factor of two in lB because the Coulomb energy
gain for each ion-pair is twofold for divalent ions). At no temperature there is
overcharging for d ¼ 1. However, for d ¼ 1:5, we start to see nominal overcharging
that is only manifest through a little reswelling of the chain. The absolute value of
overcharging is less than 1% at these d values and we can extend our prediction of
the lower threshold value of the dielectric heterogeneity to be 1.5 for the whole
range of temperature (threshold d ’ 1:7 for~lB ¼ 3:0). There is, however, a drastic
qualitative change in the dependencies of f andRg on lB ford values 2 and above. At a
particular temperature T0, the chain is neutralized and if T is further reduced,
overcharging occurs (and the chain swells). T0 is higher for higher values of d as
expected (T�1 and d, both favor higher degree of adsorption). The absolute value of
the maximum overcharge and the reswelled size increase with d as well. In
particular, the reswelled size is larger than the original swelling for d ¼ 4:0. This
is despite the absolute effective charge being lower at the maximal reswelling
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because, at this point, the Coulomb strength for this large d value is high enough
(as we increase~lB) to have repulsion between monomers stronger than that at the
point of maximal swelling. Another point of note is that for higher temperatures,
just as for monovalent counterions, only a fraction of available divalent ions
adsorb. The optimal temperature at which the chain re-expansion is maximum
shifts to a higher valuewith higher values of d. For very low temperatures, sufficient
number of negative coions (Cl�) adsorb to gradually reneutralize the chain for all
d values.

6.3.3
Chain Contraction: Contrasting Effects of Mono- and Divalent Salts

In Figure 6.12, we plot the polyelectrolyte net charge versus increasing divalent
salt concentration. The net charge due to the adsorption of divalent counterions
becomes negligible as soon as the salt concentration reaches half the polymer
concentration (cs2 � r=2). Consequently, the chain shrinks to its Gaussian size at
around this isoelectric point. To compare with the case of monovalent counterions,
we plot both the degree of ionization f and the expansion factor ~l1 at ~lB ¼ 3:0 in
Figure 6.12. The other parameters areN ¼ 1000; d ¼ 2:5, and ~r ¼ 0:0005.Wenotice
that for the monovalent salt, degree of ionization f of the polyelectrolyte decreases
moderately and monotonically, and never changes sign. Consequently, the size
(l1 or Rg) also decreases monotonically with the Gaussian statistics being obtained
only at very high salt concentrations (or at very low temperatures). For the divalent
salt, however, the isoelectric point is achieved as soon as there are sufficient number
of divalent counterions available to neutralize the chain. That happens at a very
low cs2. As a result, the polyelectrolyte shrinks to Gaussian statistics near this
isoelectric point.

This continuous shrinkage of a generic polyelectrolyte (NaPSS) chain in water
occurs for modest values of d, at a modest presence of the divalent salt, and at room
temperature. This phenomenon has been noticed theoretically [6] and in experi-
ments [34–37] and simulations [27, 33].

6.3.4
Competitive Adsorption of Divalent Salts

To see the effect of gradual overcharging, the concentration of the divalent salt (cs2)
is increased, while keeping the concentration of the monovalent salt at zero
(cs1 ¼ 0).We have chosen a higher and a lower value of d ¼ 2:5 and 1.5, respectively,
to illustrate the role of the parameter d. Generally, at higher values of d, fractions of
adsorbed ion species are expected to increase. We notice that (Figure 6.13) both
divalent counterions and negative monovalent coions (a2 and a3, respectively)
adsorb progressively in higher numbers with increasing divalent salt concentra-
tion. The number of monovalent counterions (a1), however, decreases with
increasing cs2. This implies that in this competitive adsorption process, condensed
monovalent counterions, when challenged by a divalent salt, are replaced by
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divalent counterions. This happens for the entire physical range of the dielectric
mismatch parameter (as shown below in the diagrams of charged states). The
variables chosen in this specific calculation are the degree of polymerization
N ¼ 1000 and the monomer density ~r ¼ rl3 ¼ 0:0005 at ~lB ¼ 3:0 (value related
to flexible polymers of the sodium polystyrene sulfonate type in water at room
temperature). d2 is given by Eq. (6.34) throughout the chapter, unless noted
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Figure 6.12 Effect of valency of counterions:
comparison of the degree of ionization (f) in (a),
and the size expansion factor (~l1) in (b), of the
polyelectrolyte in the presence of either
monovalent or divalent salt. d ¼ 2:5 and other
parameters are N ¼ 1000; ~r ¼ 0:0005,
~lB ¼ 3:0;w ¼ 0, and ~cs1 ¼ 0. ~cs2 ¼ 0 is zero
when ~cs1 is added and vise versa. Divalent

counterions can neutralize and consequently
contract the polymer (to a Gaussian chain)
under moderate conditions of ~lB ¼ 3:0 for
NaPSS. For monovalent counterions, similar
contraction is possible only at very low
temperatures. If ~cs2 is increased beyond the
isoelectric point, the chain expands due to
overcharging.
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otherwise. For d ¼ 1:5, only 5% of the monomers are neutralized by monovalent
counterions for the salt-free situation (cs1; cs2 ¼ 0) (Figure 6.13a) whereas the
number increases to 35% for d ¼ 2:5 (Figure 6.13b). At this higher d value, almost
all available divalent counterions adsorb displacing the monovalent counterions
with increasing cs2. Negativemonovalent coions (Cl�) also adsorb on themonomer-
divalent ion-pair substantially. f decreases monotonically and reverses sign when cs2
is still well below the monomer concentration r. At cs2 � 80% of r, a1 drops below
5% and a2 is about 80% implying that almost all available divalent counterions
have adsorbed. The size of the chain decreases steeply (Figure 6.13d) due to
rapid neutralization but increases beyond the isoelectric point ( f ¼ 0) due to
repulsion among divalent cations that overcharge the chain. The size is dictated by
the third term in Eq. (6.37) at these salt concentrations. For higher values of cs2,
more negative coions condense on the chain to marginally reduce the (over)charge
of the chain. The number of condensed monovalent ions, however, decreases to
zero monotonically.

For the lower value of d, the original sign of the polyelectrolyte charge ( f ) is
preserved even at higher divalent salts (Figure 6.13a) with the minimum absolute
degree of ionization being around 0.27. Consequently, the size of the chain
(Figure 6.13c) remains substantially bigger than the Gaussian value for the entire
range of salt concentration.

6.3.5
Effect of Dielectric Mismatch Parameter

Both in salt-free and salty cases, the polymer charge depends sensitively on the
dielectric mismatch parameter. This is illustrated in the case of only monovalent
counterions in Figure 6.14a for N ¼ 1000,~lB ¼ 3, ~r ¼ 0:0005, ~cs1 ¼ 0:001, ~cs2 ¼ 0,
w ¼ 0, w1 ¼ 0, and w2 ¼ 0. In the presence of divalent salts, we further explore the
issue of overcharging by plotting f and~l1 against d for~lB ¼ 3 in Figure 6.14b and c.
The other parameters are the same as in Figure 6.11. At room temperature in
aqueous solutions, there can be no overcharging unless d is higher than a threshold
value that is around 1.7 for NaPSS. Only for d as high as 1.7, the dielectric
heterogeneity would be strong enough to electrostatically guide enough divalent
cations to be adsorbed and consequently reverse the charge of the chain. The strong
sensitivity of the total charge and conformation of the polymer to d is manifest in
Figure 6.14, in which f decreases from about 93% to zero (and subsequently ~l1
decreases from about 25 to 1, the Gaussian value) for d changing only from 1 to 1.7.
For very high values of d, Cl� ions progressively condense at higher numbers to
reduce overcharging.

6.3.6
Effect of Monomer Concentration and Chain Length

For a fixed N, as the volume of the system is reduced, the translational entropy of
dissociated ions is reduced with a consequent effect of enhanced counterion
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adsorption onpolymer. Therefore, f and~l1 are expected to decrease as ~r is increasedby
keeping all other parameters fixed. This result is illustrated in Figure 6.15a and b,
where f and~l1, respectively, are plotted against~lB forN ¼ 1000,~cs1 ¼ 0 ¼ ~cs2,d ¼ 3:5,
w ¼ 0, w1 ¼ 0, and w2 ¼ 0 (simulation results are shown in Figure 6.6a). The solid
and dashed curves correspond to ~r ¼ 0:0005 and 0.001, respectively. As the chain
length is decreased at a fixed monomer concentration, f and~l1 decrease as illustrated
in Figure 6.16a and b, where ~r ¼ 0005, w ¼ 0, w1 ¼ 0, w2 ¼ 0, and the solid and
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dashed curves correspond, respectively, to N ¼ 1000 and 500 (simulation results
are in Figure 6.6b). In the present theory, the effects of N and ~r are nontrivially
coupled. This is evident in Figure 6.16 by a comparison between the solid curves
(N ¼ 1000 and ~r ¼ 0:0005) and dot–dashed curves (N ¼ 500 and ~r ¼ 0:001), where
N~r is fixed at 0.5.

6.3.7
Free energy Profile

One of the advantages of our equilibrium adsorption theory is that it is possible to
compare the contributions of different factors in the total free energy (F1 to F5) as
functions of the critical parameters. The major conclusion of the theory [1] has been
that the equilibrium distribution of the adsorbed counterions and the size of the
polyelectrolyte are determined essentially by a competition between the translational
entropy of dissociated ions and the Coulomb energy gain of adsorbed ions. This is
indeed borne out by our calculation in the presence of divalent salts too, as shown in
Figure 6.17. In Figure 6.17a, the separate parts of the free energy are plotted against
theBjerrum length~lB for afixed divalent salt concentration (~cs2 ¼ 0:0005, equal to the
monomer density) and for a specific strength of dielectric mismatch (d ¼ 2:5). The
major contributions to the total free energy come from the translational entropy F2
(Eq. (6.25)) and the adsorption energy F4 (Eq. (6.31)). For higher temperatures
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Figure 6.15 Effect of monomer concentration. ~r ¼ 0:001 (dashed) and 0.005 (solid). (a) f versus
~lB. (b) ~l1 versus ~lB. These are under salt-free conditions with only monovalent counterions.
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(lower lB), the entropic term is favored as electrostatics remains negligible compared
to thermalfluctuations. For lower temperatures, electrostatics becomes progressively
relevant, and many ions condense reflecting substantial gain in F4. The entropic
contribution F1 (Eq. (6.21)) related to the mobility of condensed ions along the
backbone has negligible effect, and so does the Debye–H€uckel contribution F3
(Eq. (6.30)) at these salt concentrations.

In Figure 6.17b, similar free energy components are plotted against d at the same
salt concentration and for~lB ¼ 3:0. The curves in (a) and (b) are remarkably similar
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demonstrating the equivalence of the parameters lB and d. According to this
adsorption theory, reduction of any of temperature, the bulk dielectric constant e,
or the local dielectric constant el (near the hydrophobic regions of the chain
backbone) by a similar factor would induce very similar effects to polyelectrolyte
behaviors. This is especially valid for modest values of lB and d.
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Figure 6.17 Contributions to free energy:
separate parts of the free energy for a fixed
divalent salt concentration (~cs2 ¼ 0:0005) as
functions of (a) the Bjerrum length~lB and (b) the
dielectric mismatch strength (d). For (a),
d ¼ 2:5 and (b), ~lB ¼ 3:0. Parameters are
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the roles of ~lB and d is evident.
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6.3.8
Diagram of Charged States: Divalent Salt

A typical state diagram for polyelectrolyte charge is predicted (Figure 6.18a) in
which below a critical Coulomb strength (proportional to 1=T ; 1=e or d) there is no
overcharging with increasing divalent salt. Above this critical strength, electrostatics
is strong enough to adsorb sufficient number of counterions inducing overcharging.
For higher salt concentrations, we expect recharging of the polyelectrolyte due to
either screening of electrostatics [38] (for low Coulomb strengths) or coion (Cl�)
condensation (for high Coulomb strengths). The dashed line indicates that in this
regime of the salt concentration, the theory only predicts qualitative results. Our
theory shows that overcharging is an outcomeof both correlation-induced adsorption
related to the discreteness of divalent cations and dielectric heterogeneity related to
the local chemical structure of polyelectrolytes.

Following this proposed, tentative state diagramof the total charge f, we continue to
present the actual state diagrams calculated from our theory as functions of three
major variables – the Bjerrum length (lB), the divalent salt concentration (cs2), and the
dielectricmismatch parameter (d). In what follows, one of these variables isfixed and
the diagram of states (regions of negative and positive degrees of ionization) is
calculated numerically as functions of the other two. Figure 6.18b–d describes the
complete limiting charged states, parts of which have already been discussed in detail
in the preceding subsections.

In Figure 6.18b, the calculated state diagram at~lB ¼ 3:0 is presented as a function
of the divalent salt concentration ~cs2 and the dielectric mismatch parameter d. The
state diagram is qualitatively similar to the proposed one (Figure 6.18a), with the
strength of the Coulomb interaction being represented by d (Eq. (6.31)), ~lB being
fixed. To explain the diagram, we first choose a specific value of d ¼ 2:5 (see
Figures 6.12 and 6.13b) and monitor the charged state with increasing divalent salt
concentration. For low salt, there are not enough divalent counterions (Ba2þ ) to
neutralize the chain and the polyelectrolyte preserves its sign of charge (state A) of
salt-free conditions. At around cs2 � r=2, which is half the monomer concentration,
the charge of the polymer becomes zero (on the locus of first isoelectric points – the
solid line). If cs2 is increased further, the polymer charge is reversed (state B), and
at around cs2 � r, almost all monomers are neutralized by divalent counterions.
The charge reversal is maximum at around this point (on the locus of maximum
overcharging points – the dotted line). With cs2 increasing even further, more coions
(Cl�) are available in the solution and some of them adsorb on the monomer-Ba2þ

ion-pairs to reduce the degree of overcharging (state C). The first isoelectric points
between states A and B are reached at a higher cs2 for a lower d because a higher
fraction of divalent counterions would remain dissociated in the solution due to a
lower Coulomb energy gain. For values of d higher than’ 3, a substantial fraction of
monovalent counterions of the polymer (Naþ ) too remain adsorbed on the chain and
the chain charge is neutralizedwith fewer divalent counterions. Ifd is less than’ 1:7,
the state of overcharging (state B) is never reached and with increasing salt
concentration, the polymer charge goes through a minimum (on the locus of points
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Figure 6.18 (a) Sketch of the charged states for
an isolated polyelectrolyte chain (of NaPSS
type) in dilute solutions (water) in the presence
of a divalent salt (of BaCl2 type) as functions of
theCoulombstrength (lB � ðeTÞ�1) and the salt
concentration. Points left to the isoelectric line
(on which the net effective charge (degree of
ionization) of the polymer is zero) correspond
to states in which the sign of polymer charge is
unchanged (negative). However, there is a locus
of points for intermediate values of the salt
concentration at which the net charge is a
minimum. Right to the isoelectric line, the
effective polymer charge is reversed (positive). If
the isoelectric point is crossed along the line of
minimum charge from left to right, it becomes
the line ofmaximumovercharging. Dashed part
of the isoelectric line is beyond the validity of the
Debye–H€uckel theory employed here. (b) The
state diagram of the effective charge of the
polymer ( f) for ~lB ¼ 3:0 as functions of the
dielectric mismatch d and the divalent salt

concentration ~cs2. Parameters are
N ¼ 1000; ~r ¼ 0:0005; ~cs1 ¼ 0. Charged
states are A, D – negative; B, C – positive (note:
original polymer charge is negative). Lines are
isoelectric branch one (solid), maximum
overcharging (dotted), isoelectric branch two
(dot-dashed), and minimum charge (dashed);
(c) the state diagram of f at a fixed dielectric
mismatch strength (d ¼ 2:5) as functions of the
Bjerrum length ~lB and the divalent salt
concentration ~cs2. Other parameters, states,
and lines are the same as in (c). (d) The state
diagram of the total charge density on the
polymer ( f ) at a fixeddivalent salt concentration
(~cs2 ¼ 0:0005) as functions of the dielectric
mismatch strength d and the Bjerrum length~lB.
Other parameters are the same as in (b), (c).
Charged states are A – negative; B, C – positive;
and C1 – zero. Lines are isoelectric (solid),
maximum overcharging (dotted), and zero
charge (dashed and dot-dashed).



of minimum charge – the dashed line) before increasing again due to Cl� ion
adsorption. The line ofminimum charge (for d less than’ 1:7) expectedly continues
to be the line ofmaximumcharge reversal (ford greater than’ 1:7). For very high salt
concentrations, the Coulomb interaction is progressively screened and all adsorbed
ions begin to rejoin the solution (not included in the state diagram). We must,
however, be cautious that theDHapproximation (and consequentlyF3 inEq. (6.30)) is
not valid at this high salt regime. A salt concentration for which the Debye length is
equal to the Bjerrum length (k�1 � lB) can be tentatively set as the highest limit of
validity of the DH theory. For divalent salts, it turns out to be (see Eq. (6.29))

cs2�max ’ ð24pl3BÞ�1: ð6:42Þ
The steepness of the state boundary (the locus of second isoelectric points,

the dot-dashed line) implies that the polymer charge becomes zero again (only
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Figure 6.18 (Continued).
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applicable for d > 1:7) due to redissolution of condensed ions at least an order of
magnitude higher in salt concentrations.

The state diagram as a function of lB and cs2 for afixed value of d ¼ 2:5 is presented
in Figure 6.18c. The diagram is qualitatively similar to the previous one, although a
much higher salt concentration (note the difference in the scale of the coordinate) is
needed to reach the line of minimum charge (dashed) and the line of maximum
overcharging (dotted) at low values of ~lB (higher temperatures). In this regime,
electrostatics becomes progressively weaker with increasing temperature, and con-
sequently lower fractions of available divalent ions condense. Regarding this diagram
too, the degree of ionization and overcharging (absolute value of f ) can be obtained
for the particular value of ~lB ¼ 3:0 from Figure 6.13b. The slopes of the isoelectric
lines (branch one) in Figure 6.18b and c are opposite at high Coulomb strengths
because in the latter case a higher degree of Cl� adsorption at high lB requires more
divalent salt to neutralize the chain.

The state diagram as a function of ~lB and d for a fixed salt concentration
~cs2 ¼ 0:0005 (equal to the monomer concentration) is presented in Figure 6.18d.
One essential characteristic is that the degree of ionization remains steadily zero
(state C1) above a certain value of~lB (thatmeans below a certain temperature) because
the Coulomb attraction is strong enough to form the monomer-Ba2þ -Cl� ion-triplet
on everymonomer location. This critical value of~lB (on the lower boundary of the zero
charge state, the dot-dashed line) generally decreases with higher values of d (higher
electrostatic energy gain). The magnitude of the degree of ionization as a function of
~lB for fixed values of d can be obtained in Figure 6.11c and d, and as a function of d for
a fixed value of~lB in Figure 6.14b and c. Both figures can be analyzed in conjunction
with this state diagram. It is worth noting that there will be no overcharging
regardless of how high lB is if d is less than a critical value � 1:50 (see Figure 6.11).
We previously had established the critical d to be around 1.7 for~lB ¼ 3:0. It is to be
noted that although we see overcharging for d between 1.5 and 1.7 for~lB > 3:0, the
actual absolute value of excess charge is negligible (less than 2%) in this range.

6.3.9
Effect of Ion-Pair Correlations

The general consequence of interactions among ion-pairs and those between ion-
pairs and charged monomers is to introduce a negative short-ranged excluded
volume effect with its magnitude varying as d2~l

2
B. Therefore, this contribution

becomes progressively more important at higher~lB (that means lower temperature).
The chain size becomes smaller than the Gaussian size (that means~l1 < 1) at higher
~lB values, as illustrated in Figure 6.19, for N ¼ 1000, ~r ¼ 0:0005, ~cs1 ¼ 0 ¼ ~cs2,
d ¼ 3:5,w ¼ 0,w1 ¼ �0:01, andw2 ¼ 0. Similarly, chain shrinkage occurs forw < 0
and w2 < 0. In obtaining the curve with chain collapse, a term with repulsive three-
body interactions

F5;three-body ¼ w3

N~l
3
1

ð6:43Þ
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is included in the free energy (Eq. (6.37)) of the chain. The solid curve in Figure 6.19 is
the same as in Figure 6.11b, without ion-pair correlations.

6.3.10
Collapse in a Poor Solvent

It has already been remarked that the free energy described in Eqs. (6.21)–(6.41) is for
a single polyelectrolyte chain in a dilute solution, and it is valid for concentrations of
salt not too high (so that k�1 � lB, i.e., cs � ð8pl3BÞ�1 for amonovalent salt). It is valid,
however, for all temperatures, and can easily bemodified for any degree of ionization
(or ionizability) [39] of the polymer. In addition, the free energy is equally appli-
cable for multichain systems in infinitely dilute solutions in which the chains have
negligible interchain interaction (either excluded volume or electrostatic). Qualitative
analysis of the free energy shows that the size and charge of the polyelectrolyte chain
are primarily determined by the energy gain of ion-pairs (which is linearly propor-
tional to an effective Coulomb strength (~lBd)) relative to the translational entropy of
the mobile ions in the expanded state, and by the relative strength of w to w3 in the
collapsed state. We further use this theoretical model to explain the experimental
data [39] for the collapse of polyelectrolyte chains in a poor solvent. The parameter
ðeldÞ�1 inEq. (6.31) is the only adjustable parameter taken tofit the experimental data.
One notes that calibration of the excluded volume parameter w by the respective
uncharged chain is necessary to eliminate the uncertainty in determining the
nonelectrostatic interactions in charged polymers and that can be performed by
setting w3 ¼ 0 ¼ f in Eq. (6.37) (with Eq. (6.43)). Minimizing F5 with respect to~l1, in
this case, yields the familiar formula for chain expansion
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Figure 6.19 Ion-pair correlations shrink polymer size. ~l1 versus ~lB for N ¼ 1000, ~r ¼ 0:0005,
~cs1 ¼ 0 ¼ ~cs2, d ¼ 3:5, w ¼ 0, and w2 ¼ 0, w1 ¼ �0:01 (dashed), and w1 ¼ 0 (solid).
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a5�a3 ¼ 4
3

3
2p

� �3=2

w
ffiffiffiffi
N

p
; ð6:44Þ

where a2 ¼~l1. The functional dependence of the nonelectrostatic parameter w on
the solvent composition is established first by using Eq. (6.44) to determine w from
the expansion factor of the uncharged polymer chain. Later, by performing the double
minimization of the free energy of the charged polymer, a and f were determined
with ðeldÞ�1 as a parameter and then compared with the experimental data.

In order to quantify the solvent quality of the uncharged polyvinylpyridine (PVP)
the expansion factor a ¼ Rg=Rg;q and the second virial coefficientA2 weremeasured
as functions of wns, the nonsolvent volume fraction, and compared to the theory
(Eq. (6.44)), yielding the solvent quality parameter w as a function of wns. Note that
Eq. (6.44) is valid only for w � 0. For w < 0, we used values of w linearly extrapolated
from its value at the q-condition. q-Dimensions (A2 ¼ 0, Rg;q ¼ 29 nm) were
observed at wns ¼ 0:91. Below theta dimensions ternary interactions were included
(Eq. (6.43)). Asmentioned in the theory, a nonzero positive value ofw3 was required to
stabilize the chain collapse below q-dimensions. A fixed value of w3 ¼ 0:00165 was
chosen for both the uncharged and charged polymers used in our experiments.

In Figure 6.20, the expansion factor, a ¼ Rapp
g =Rg;q, of the uncharged PVP chains

(a) and of the polyions (b) is plotted versus wns along with the theoretical prediction.
Quantitative agreement is observed except close to the phase transition where the
experimental data show a broader phase transition regime as discussed in some
detail, below.

When the same dependency of w is used on wns, the expansion factor a for the
charged chain is fitted by the theoretical curve, with only one adjustable parameter,
ðeldÞ�1 ¼ 0:183 nm�1, which reflects the local dielectric constant in the vicinity of the
polyion backbone, el. Because the ion-pair energy (~lBd) and the temperature remain
constant for the entire range of the experiment, the effective charge f has negligible
variation in the expanded state. The chain free energy (Eq. (6.37) with Eq. (6.43)) in
this state is dominated by the electrostatic term and, consequently, the theoretical
chain dimension (corresponding to an approximately constant charge density) varies
little. Nevertheless, one notes that with increasing proportions ofwns (the nonsolvent
fraction) there is a slight increase in chain size due to a small increase in the value of
Bjerrum length (with decreasing dielectric constant) that marginally enhances the
intrachain monomeric repulsion captured in the third term of the free energy
(Eq. (6.37)). This small increase in the dimensions predicted by theory is smaller
than the experimental uncertainty for the Rg determination in the regime
0 < wns < 0:8. However, the size and shape of the chain undergoes a drastic change
at a threshold poorness of the solvent. Beyond the threshold poorness the chain
collapses, and that leads it to collect its counterions.

It must be noted that the theory presented above predicts a first-order coil-globule
transition for the chains if the excluded volume parameter w is smaller than a certain
threshold value and further provided that the three-body interaction parameter w3 is
also smaller than a critical value. The strength of the three-body interaction parameter
pertinent to our analysis is substantially lower than the critical value (contrast this
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with Figure 6.19) and, hence, the theory predicts afirst-order phase transition sharper
than the relatively broad transition regime observed in the experiments. One should
note that polydispersity in the chain length (N) and in the maximum degree of
ionization (fm ¼ Nc=N, where Nc is the number of ionizable monomers) could
broaden the transition due to a distribution of the threshold value of w. While the
chain length distribution has little effect (data not shown), the variation of the
number of charges per chain at constant chain length assuming a Gaussian
distribution was utilized for the fit shown in Figure 6.20b. So far, no explanation
can be given for the experimentally observed small decrease in a in the regime
0:8 < wns < 0:985. The value of 0.183 nm�1 for ðeldÞ�1 is equivalent to el ¼ 10:9) if

Figure 6.20 Expansion factor a is plotted
against the volume fraction of the nonsolvent,
wns, for the neutral polyvinylpyridine (a) and for
the charged QPVP4.3 (4.3% quarternized)
sample (b). The lines represent the fit according

to Eq. (6.44), with f ¼ fm ¼ 0 andw3 ¼ 0:00165
(a) and by minimizing the five contributions to
the free energy, as described in the theoretical
part, with ðeldÞ�1 ¼ 0:183 nm�1 as the only fit
parameter.
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the dipole length is assumed to be 0.5 nm. This value of el is in between the dielectric
constant (el ¼ 8:33) of 2-ethylpyridine, which is chemically close to the chain
backbone and that of the solvent (16< e< 21). However, given the uncertainty in
the dipole length d, that is, the mean distance of the bound counterions from the
respective polyion charges (which can vary from 0.3 nm to a few nm), the value for el
given above should not be overinterpreted. Nevertheless, we notice that the value of
ðeldÞ�1 is remarkably close to the value 0.175 nm�1 estimated for polymers of sodium
polystyrene sulfonate type in the original theory [1].

In Figure 6.21, the fraction of the effective charges c ¼ f =fm derived from the
experimental conductivity data is compared with the theoretically predicted
charge density obtained through the double minimization of the free energy
(Eqs. (6.21)–(6.37) and (6.43)). The observed qualitative agreement was to be
expected in view of the perfect match of the expansion factor shown above. As
mentioned before, the theoretical charge density in the expanded state is found
to be virtually constant due to the absence of variation in the effective Coulomb
strength ~lBd. Note that this happens despite the somewhat decreasing value of
the bulk dielectric constant with increasing wns because the Coulomb strength
relevant to the ion-pair energy depends only on the local (not the bulk) dielectric
constant related to the material of the polymer backbone. Again the experi-
mental data show a broader phase transition regime, but the location of the
phase boundary where no free counterions exist is well reproduced. The theory

Figure 6.21 (a) Effective charge density c ¼ f =fm (triangles, left scale) and the osmotic coefficient
(circles, right scale) as a function of the nonsolvent fraction, wns. The solid curve shows the
theoretical charge density c ¼ f =fm. (b) Magnification, symbols as in (a).

294j 6 Simulations and Theories of Single Polyelectrolyte Chains



predicts a first-order coil-globule transition for both, size and effective charge of
the polymer chain.

Approaching the phase transition the polyion chain starts to collect and bind its
counterions as the chain dimensions become successively smaller (Figure 6.22).
Eventually, the collapsed polyion chain preserves a few charges only, most probably
some surface charges known from colloids. This experimental observation is in
remarkable qualitative agreement with the results of explicit solvent simulations [40].
Interestingly, the polyion mobility is already significantly reduced well before the
unperturbed q-dimension is reached. The obvious strong charge reduction in a
regime where the Bjerrum length changes only by 5% questions the applicability of
theManning condensation concept [2, 41] to flexible polyelectrolyte chains at least for
poor solvent conditions.

The combination of conductivity and light scattering measurements is well
suited to investigate cooperative effects of counterion binding and chain collapse
mediated by solvent quality and electrostatic interaction. Because the dielectric
constant of the solvent remains virtually constant during the chain collapse, the
counterion binding is entirely caused by the reduction in the polyion chain
dimension. Remarkably, the counterion binding occurs already well above the
theta dimension of the polyion that was also reported for the Sr2þ -induced col-
lapse of sodium polyacrylate (NaPA) in aqueous sodium chloride solution [42].
The theory of uniform collapse induced by concomitant counterion binding agrees
quantitatively with the location of the phase boundary, but does not properly
reproduce the width of the transition as mentioned above. Besides, possible
anisotropic chain conformation-specific ion-solvation effects could also be the
origin of the observed discrepancy.

6.3.11
Bridging Effect: Divalent Salt

We now consider the bridging configuration of nonbonded monovalent monomers
mediated by divalent counterions. Let us assume that some of the adsorbed divalent
ions participate in bridging.When bridging is included, theminimization of the free

Figure 6.22 Schematic of the collapse of a polyelectrolyte chain in a poor solvent. The chain collects
all its counterions as it collapses.
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energy needs to be performed with respect to five variables. In our theory, we will
address the bridging interaction as an effective two-body interaction between
monomers with uncompensated charge. A pronounced shrinking of individual
polyelectrolyte coils (such as polyacrylate chains [34]) in the presence of divalent
ions has long been observed in light-scattering experiments and viscosity measure-
ments. The shrinkage has been interpreted as intramolecular coil collapse [34, 43–46]
induced by ion-bridging that has further been addressed [43, 47] as a hydrophobic
intramolecular interaction. In response to an increasing salt to polymer ratio, a
gradual shrinking of the polymer chains was observed [44] to be followed by a sharp
collapse to a compact spherical shape (Rg=Rh going down from 1.5 to 0.8). To
theoretically formulate this phenomenon, we note that a bridge formed by a divalent
counterion is tantamount to a cross-link junction of functionality four [22, 27], which
in turn can be treated as an attractive two-body interaction of local nature (like two-
body excluded volume interaction). Therefore, in the presence of the bridging effects
induced by divalent counterions, w in Eq. (6.37) is replaced by,

w0 ¼ wþ Ebr

kBT
a2b; ð6:45Þ

wherea2b is the ratio of the number of divalent ions that participate in bridging (M2b)
to the number of monomers (that means a2b ¼ M2b=N). Ebr is the attractive energy
associated with one bridge, and hence is negative. To calculate Ebr the relevant
dielectric constant should be the local one (el) since the divalent cation in the
monomer cation–monomer charge complex sits between and in the vicinity of both
monomers (Figure 6.9b). With the definition [1] d ¼ el=ed, we have

Ebr ¼ � 4e2

4peld
þ e2

4pel � 2d

¼ � 7
2
~lBdkBT :

ð6:46Þ

We must add the third virial term in the chain free energy (F5, Eq. (6.37)) to
maintain stability in the system in the case of a negative w0. Combining Eqs. (6.45)
and (6.46), therefore, the chain free energy takes the form,

F5

NkBT
¼ 3

2N
ð~l1�1�log~l1Þþ 4

3

�
3
2p

�3=2�
w� 7

2
~lBda2b

�
1ffiffiffiffi
N

p 1

~l1
3=2

þ 1
N
w3

~l1
3 þ 2

ffiffiffi
6
p

vuut f 2~lB
N1=2

~l1
1=2

H0ðaÞ;
ð6:47Þ

where w3 is the third-virial coefficient that is necessarily positive. Furthermore, we
note that if a fraction a2b of the condensed divalent counterions participates in
bridging, a fraction a2a ¼ a2�a2b does not. Therefore, the electrostatic energy
related to the formation of monomer-cation monocomplexes (F4, Eq. (6.31)) is
modified after the inclusion of the bridging interaction as,
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F4

NkBT
¼ �a1d~lB�2ða2a�a3Þd~lB�a3d2~lB; ð6:48Þ

where a3 � a2a. In addition, the entropic contribution to the free energy coming
from the number ofways the adsorbed ions can be distributed (F1, Eq. (6.19)) will also
be modified. Following the same arguments as in Section 6.3.1, we calculate the
number of ways to distribute M1 monovalent counterions (Naþ ),M2a�M3 divalent
counterions (Ba2þ ) (with no coion (Cl��) adsorption), M3 ion-triplets (�monomer-
Ba2þ -Cl��), and M2b pairs of ion-bridges among N monomers (ignoring the
permutations among the ion-bridges but taking into account of the double counting
of them) to be

Z1 ¼ N!

ðN�M1�M2a�2M2bÞ!M1!ðM2a�M3Þ!M3!ðM2b!Þ22M2b
; ð6:49Þ

where a2a � M2a=N and a2b � M2b=N. Therefore,

F1

NkBT
¼ a2b log 2þð1�a1�a2a�2a2bÞ logð1�a1�a2a�2a2bÞþ2a2b loga2b

þ a1 loga1þða2a�a3Þ logða2a�a3Þþa3 loga3:

ð6:50Þ
The other parts of the free energy depend only on the numbers and valencies of

different species of free ions and therefore remain unaltered. They are given as F2 in
Eq. (6.25) and F3 in Eq. (6.30). In all these cases, a2 ¼ a2a þa2b.

The total free energy F ¼PiFi is minimized now for a new set of five variational
variables, a1;a2a;a2b;a3, and~l1, and the polymer and counterions are free to explore
every possible degree of freedom. The representative result is given in Figure 6.23. The
parameters chosen are N ¼ 100; ~r ¼ 0:0008, ~lB ¼ 3:0; d ¼ 1:9, ~cs1 ¼ 0, w ¼ 2:0,
w3 ¼ 0:25. For very lowdivalent salt concentrations, the conformations are very similar
to the case in which bridging is absent. At modest temperatures (~lB ¼ 3:0 in water for
NaPSS) and for low salt (~cs2 < 0:00027), almost all added divalent counterions adsorb
on the chain backbone, but they formmonocomplexes (no bridging, Figure 6.23a). At a
particular ~c	s2, which depends on the prevalent physical conditions, all divalent ions
suddenly form dicomplexes (bridging) accompanied by a collapse of the chain
(Figure 6.23b, in which~l1  1 for ~cs2 > 0:00027) and a huge gain in the electrostatic
bridging free energy (Figure 6.23c). The Cl� ions adsorb onto the monomer-divalent
ion-pair, as they do in the no-bridging scenario, only if the divalent salt concentration is
lower than the collapse concentration ~c	s2. Above that, Cl

� ions become free as every
condensed divalent cation is attached to two monomers. The effect of the excluded
volumeparameterw is evident inEqs. (6.45) and (6.47) as they show that a higherwwill
require a higher Coulomb strength or divalent salt concentration to effect the bridging
collapse. Before the collapse, the distribution of the adsorbed counterions and the
polymer conformations are quite similar to those of the �no-bridging� cases (see
Figure 6.13 for example). This explains our choice of w ¼ 0 for the rest of the chapter
(except for this subsection). In the �no-bridging� scenario, different positive values of
w would only render minor quantitative changes to our results.
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Figure 6.23 Effect of bridging: the degree of
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The sharp collapse of polyelectrolyte chains in solutions from a coil to a compact
spherical globule with increasing number of divalent cations is strongly supported by
experiments [45]. Regardless of the nature of the intermediate phases (e.g., the pearl-
necklace phase that is beyond the scope of our theory limited to uniform spherical
expansion), the compact globular phase is found to be a certainty [45, 46] before the
system reaches the precipitation phase boundary at which the cation-polyelectrolyte
salt is formed. The value of the expansion factor we get (~l1 � 0:08) does agree
quite well to the experimental values of neutral polymers in the globule phase. We
notice that, in the collapsed state, the monovalent counterions adsorb on almost all
remaining monomers (Figure 6.23a) (also noticed in recent experiments [46]) and
the effective charge almost vanishes. This indicates that the polyelectrolyte in the
collapsed state virtually behaves as a neutral polymer in poor solvent. In this case,
the sign inversion of the excluded volume parameter (w) is effected by the attractive
bridging interaction (Eq. (6.45)).

We further notice that the salt concentration, ~c	s2, at which the polymer collapses,
decreases with increasing Coulomb strength (Figure 6.24a and b) further con-
firming that the first-order collapse induced by the ion-bridging by divalent (or
multivalent) cations is an electrostatic phenomenon. In addition, Figure 6.24c
shows that ~c	s2 varies approximately inversely with both forms of the Coulomb
strength, ~lB and d. We find ~lB~c

	
s2 ’ 0:0006 (for d ¼ 2:5) and d~c	s2 ’ 0:0005 (for

~lB ¼ 3:0).
In conclusion, our model predicts a coil-globule transition, mediated by bridging

due to divalent ions, which depends sensitively on temperature and the dielectric
heterogeneity, as well as on the availability of divalent counterions.

6.3.12
Role of Chain Stiffness: The Rodlike Chain Limit

The rod-like limit of the chain corresponds to ignoring F5 given in Eq. (6.37). The
consequence of the F5 term in f is given in Figure 6.25 for N ¼ 1000, ~r ¼ 0:0005,
d ¼ 3:5, ~cs1 ¼ 0 ¼ ~cs2, w ¼ 0, w1 ¼ 0, and w2 ¼ 0. The solid and dot-dashed curves
correspond, respectively, to the flexible and rod-like chains. In the calculation for the
rod-like chain, the orientational entropy of the chain has not been taken into account.
Our results in the rod-like limit are qualitatively similar to the results of [5] for finite
cylinders where equilibration of counterions is allowed as in the present case. It is
seen in Figure 6.25 that chain flexibility results in slightly higher counterion
adsorption with a lower effective polymer charge.

into account. Parameters are N ¼ 100,
~r ¼ 0:0008,~lB ¼ 3:0, d ¼ 1:9,~cs1 ¼ 0,w ¼ 2:0,
w3 ¼ 0:25. Bridging induces a first-order
collapse transition with a sudden gain in the
electrostatic ion-bridging energy. At the

transition salt concentration, all monomer-
divalent cation ion-pairs (�monocomplexes�)
give way to monomer cation–monomer ion
bridges (�dicomplexes�).

3
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Figure 6.24 Effect of Coulomb strength on
bridging collapse: the salt concentration ~c	s2, at
which the first-order collapse occurs, as
functions of~lB (a), and d (b). In (a),~lB ¼ 3:0. In
(b), d ¼ 2:5. All other parameters are the same

as in Figure 6.23 Lowering of ~c	s2 with the
Coulomb strength indicates that the collapse is
due to electrostatic interactions. ~lB and d play
similar roles, as expected. In (c),~lB~c

	
s2 ’ 0:0006

(for d ¼ 2:5) and d~c	s2 ’ 0:0005 (for ~lB ¼ 3:0).

300j 6 Simulations and Theories of Single Polyelectrolyte Chains



6.4
The Self-Consistent Field Theory

Owing to the enormous computational cost of simulating polyelectrolytes with full
intricate details, coarse-grained models provide an enticing computational frame-
work for understanding what to expect for a vast parameter space. One of the well-
developed coarse-grainedmodels for neutral polymers is knownas the self-consistent
field theory, which is based on the field theory first proposed by Edwards [48–50]. The
theory captures the essential thermodynamics and presents opportunities for
carrying out systematic studies on many complicated systems such as polyelectro-
lytes. A number of different extensions of the original field theory proposed by
Edwards for a single neutral chain have been carried out to study neutral poly-
mers [51–55]. Extensive use of the theory to get an insight into problems of different
kinds arises due to the general nature of the field theoretical formalism and a
reasonable computational demand of the theory in comparison with simulations.
Besides the general nature of the theory, it presents an avenue for a systematic study
to include or remove certain effects while analyzing the problems.

The theory has its foundation laid on the path integral representation [53, 56] of the
distribution function for realizing all possible conformations of a phantom chain
(a chain whose connected segments do not interact with each other), whose ends are
fixed in space. The distribution function is the sum over all the possible conforma-
tions for given locations of the ends and the ingenuity of Edwards was to write the
sum as a path integral over all the possible paths between two points representing
the ends. The limits and the integrand of the path integral represent the physical
positions of the ends of the chain and the probability distribution function for
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Figure 6.25 Effect of chain stiffness: rod-like (dot-dashed); flexible (solid).N ¼ 1000, ~r ¼ 0:0005,
d ¼ 3:5, ~cs1 ¼ 0 ¼ ~cs2, w ¼ 0, w1 ¼ 0 ¼ w2.
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realizing a particular path, respectively. For a phantom chain, all the paths are equally
probable and the probability distribution function for realizing a particular path turns
out to be the Wiener measure [50].

For computational purposes, the path integral representation of the distribution
function can bewritten in the formof a diffusion equation [50, 52–55]. Physically, this
means that the problem of describing the different conformations of the phantom
chain can be mapped on to a simple diffusion of a particle between the two points
representing the ends. Due to the Gaussian nature of the solution of the diffusion
equation, this particular description for the phantom chain is also known as the
�standard Gaussian model� in the polymer literature [57, 58]. The model has been
found to be quite amenable to study polymers, whose monomers interact with each
other by an arbitrary interaction potential. Originally, the effect of short range
excluded volume interactions on the conformations of a single neutral chain was
studied by Edwards in dilute [48] and concentrated regimes [49]. Later on, the model
was extended by Helfand [59] to study other multichain problems including
polymer blends, diblock copolymer melts, and so on. There are a number of review
articles [57, 58] describing this particularfield theoreticalmodel for neutral polymers,
and only an extension of themodel to describe polyelectrolyteswill be presented here.

In the presence of interactions between the connected segments of a single chain,
aforementioned simple diffusion or random walks get affected and the walks are no
more random. However, the intricate coupling of the different components such as
monomers, solvent, or small ions in the case of polyelectrolytes via the interaction
potentials complicates the theoretical analysis. In order to decouple different
components, the conformations of the chain can be envisioned as the walks in the
presence of fields, which arise solely due to the fact that there are interactions present
in the system.This physical argument is the basis of the use of certainfield theoretical
transformations such as Hubbard–Stratonovich [60] transformation, which is well
known in thefield theory. So, the conformational characteristics of a polymer chain in
the presence of different kinds of intrachain interactions can be described once
the fields are known. In general, an exact computation of these fields is almost
an impossible task. That is the reason theoretical developments resort to certain
approximations for computing these fields, which work well for most of the practical
purposes. Once these fields are known, the physical properties can be described in
terms of these fields. It was shown by Edwards [50] that the similar analysis can be
carried out for systems with many chains, where interchain interactions also affect
the properties in addition to intrachain interactions.

Recently, the field theory developed for neutral polymers has been extended
to describe various polyelectrolytic systems in the absence/presence of externally
added salt ions. The theory has been used to investigate the micro- and macrophase
separation in polyelectrolyte systems [61–63], adsorption of polyelectrolytes on
to the charged surfaces [64, 65], polyelectrolyte brushes [66, 67], confinement
effects [14], counterion adsorption [15], translocation of polyelectrolytes (R. Kumar
and M. Muthukumar, unpublished), and the assembly of single stranded RNA
viruses (J. Wang, R. Kumar, and M. Muthukumar, unpublished). In this chapter, we
review the general methodology behind the SCFT for polyelectrolytes.
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A general background on the field theoretical formalism for polyelectrolytes is
presented in Section 6.4.1. Details of the commonly used transformations in order to
switch from a particle to the field description are presented in Section 6.4.2. Different
kinds of charge distributions along the polyelectrolyte chain and the well-known
saddle-point approximation for computing the free energy are described in
Sections 6.4.3 and 6.4.4, respectively. Numerical techniques to solve the nonlinear
set of equations and one-loop expansions to go beyond the well-known saddle-point
approximation are presented in Sections 6.4.5 and 6.4.6, respectively.

6.4.1
Extension of Edward�s Formulation

Here, we present a general outline of the self-consistent field theory for polyelec-
trolyte solutions containing externally added salt ions. The theory is a generalization
of the field theoretical formalism developed by Edwards [48–50] for neutral polymers
to polyelectrolytes. We start from the path integral representation of a polymer chain
and readers interested in the derivation of the path integral representation are
referred to Ref. [56].

We consider computation of the free energy of solutions containing np mono-
disperse polyelectrolyte chains, each containing a total of N segments. In addition
to this, there are small ions due to the added salt (in total volume V) along with
the counterions coming from the polyelectrolyte chains so that the whole system is
globally electroneutral. Let Zj and nj be the valency and number of the jth charged
species. Subscripts p; s; c; þ , and � are used to represent monomers from the
polymer, solvent molecules, counterions from the polyelectrolyte, positive and
negative salt ions, respectively. Using the path integral formulation [48, 56], we
represent a polyelectrolyte chain as a continuous curve of length Nl, where l is the
Kuhn segment length [50]. For the treatment shown below, we assume that the
volume occupied by each monomer is the same (¼ l3 � 1=ro; ro being the bulk
density) and that the system is incompressible. We use an arc length variable tb to
represent any segment along the backbone of bth chain. Also, the position vector of a
particular segment (tb) on bth chain is represented by RbðtbÞ. For this system, the
partition function Z can be written after carrying out a straightforward extension of
the Edward�s Hamiltonian by

Z ¼ 1
np!

ð
dr
ð
dr0
ðr 0
r

Ynp
b¼1

D½RbðtbÞ

X
g
tb

n o
ðY

j

1
nj!

Ynj
l¼1

drl expð�H½RbðtbÞ; rl
Þ

Y
r

d
X
c

r̂cðrÞ�r0

 !
;

ð6:51Þ
where c ¼ p; s represents monomers and solvent molecules and j ¼ s; c; þ ;�
depicts all the small molecules, namely, solvent, counterions from polyelectrolytes,
and positive and negative salt ions, respectively.
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Inwriting the partition function, we have summedover all the possible locations of
the small molecules in the volume under investigation (represented by volume
integrals over rl) and the sum over all possible conformations of an individual chain
is represented by functional integrals over all the possible paths originating from one
end and ending at the other (written as functional integral over RbðtbÞ). Depending
on the problem of interest, the ends of the chains (r and r0 in Eq. (6.51)) can be fixed
(e.g., in the case of polymer brushes) or free to enjoy the translational degrees of
freedom. In the latter case, the integrals over the positions of the ends need to be
carried out to compute the partition function. In Eq. (6.51), it is assumed that the ends
can be anywhere in space and hence, the integrals over the possible locations of the
ends of chains have been carried out. Due to the fact that two molecules of same
species are indistinguishable fromeach other, the partition function has to be divided
by nj! and np! to avoid double counting in the configurational states of the system.

Polyelectrolytes can have different kinds of charge distributions along the chain
backbone depending on the chemistry, and the charge distribution may have
significant effect on the properties of polyelectrolyte solutions. For example, in the
case of polyacids or polybases, the effective charge on amonomer depends on the pH
of the solution, that is, the charge distribution along the chain backbone depends
on the pH. Different kinds of charge distributions have been considered in the
literature [68] to describe different situations. The simplest kind of charge distribu-
tion is called the �smeared� charge distribution, where total charge on a single chain
is distributed (or smeared) uniformly along the backbone. Other kinds of charge
distributions, which are used quite frequently, include �annealed� and �permuted�
charge distributions. In the former, charge on a segment along the chain is associated
with a probability of finding it. Latter kind of charge distribution represents the
situation, where counterions can move along the chain backbone.

In order to take into account the effect of different kinds of charge distributions
along the chain, a summation over charge parameter gtb, which represents the charge
distribution on the segment tb, have been carried out in Eq. (6.51). The sum over this
variable in Eq. (6.51) is defined by

X
g
tb

n o½ � � � 
 ¼
ðYnp
b¼1

dgtb ½ � � � 

Ynp
b¼1

PðgtbÞ; ð6:52Þ

wherePðgtbÞ is the probability distribution function for gtb and defines different kinds
of charge distributions on the chain. For example, PðgtbÞ ¼

Q
mdðgtb�aÞ and

PðgtbÞ ¼
Q

mfadðgtb�1Þþ ð1�aÞdðgtbÞg for the �smeared� and �annealed� charge
distributions [68] on all the chains, respectively, and m is the index for different
monomers along the chains. Also, a is the probability of finding a charge at themth
monomer along apolyelectrolyte chain. Physically, thismeans that in smeared charge
distribution, each monomer on the chain has a charge equal to Zpae, where e is the
electronic charge and in annealed charge distribution, charged and uncharged sites
on the chain are randomly distributedwith the probability of finding a charged site as
a and uncharged site as ð1�aÞ.
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In order to simplify the calculation, incompressibility condition (represented by
the delta function in the above equation) is used by assuming small ions to be point
charges. The effect of the finite size of the small ions can be included partially by
taking into account the volume fraction of small ions also while writing the
incompressibility condition (let us call it modified incompressibility condition).
However, in the case of monovalent ions, the results for the monomer densities
obtained after using the modified incompressibility condition are almost indistin-
guishable from that obtained aftermodeling them as point charges. The origin of this
agreement between the finite size and point-like ions lies in the fact that typical radii
of monovalent ions [69] are very small in comparison with the size of monomers
(in terms of Kuhn step length). On the other hand, the use of the modified
incompressibility condition becomes almost indispensable in the case ofmultivalent
ions. It should be noted that the effect of finite size of the ions [70] on the electrostatic
potential distribution is nontrivial and cannot be captured only through the use
of modified incompressibility condition. For the theoretical description presented
here, we consider the case of monovalent ions to demonstrate the methodology and
model them as point charges.

Hamiltonian, H, in Eq. (6.51) can be split into the connectivity and interaction
terms, so that

H½RbðtbÞ; rl
 ¼
Xnp
b¼1

H0½RbðtbÞ
 þ
Xnp
b¼1

Xnp
l¼1

Hpp½RbðtbÞ;RlðtlÞ


þ
X
j

Xnp
b¼1

Xnj
l¼1

Hpj½RbðtbÞ; rl
 þ
X
j

X
a

Xnj
b¼1

Xna
l¼1

Hja½rb; rl
;
ð6:53Þ

where j; a ¼ s; c; þ ;� and represent all the small molecular species in the system.
Also, H0½Rb
 is the chain connectivity part, which comes from the fact that in the
absence of interactions, the probability distribution function for the chains must
be a Wiener measure. In the continuum representation [50], this term is written
explicitly as

H0 RbðtbÞ
 � ¼ 3

2l

ðNl
0
dtb

qRbðtbÞ
qtb

� �2

: ð6:54Þ

We must stress here that the connectivity part represented by the functional
integrals over the possible paths in Eq. (6.51) is not properly normalized. This leads to
some unknown constants in the computation of absolute free energy of the system.
However, for most of the practical purposes, either the relative free energy or the
derivatives of the free energy such as osmotic pressure and so on are the required
quantities. So, the normalization factor can be taken care of by choosing an
appropriate reference system. In the polymeric problems, where one is interested
in studying the effect of different kinds of interactions, the reference system for
each chain can be taken as the chain of the same number of segments without
any interactions (that means a phantom chain of the same length) in free space
(or vacuum). For a single phantom chain in free space, the partition function, Z0,
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can be written as

Z0 ¼
ð
D½R
 exp½�H0½R

; ð6:55Þ

which is divergent.
Second term,Hpp½RbðtbÞ;RlðtlÞ
, in Eq. (6.53) is the polymer–polymer interaction

term, which includes both inter- and intrachain monomer–monomer interactions
arising from the excluded volume and electrostatic effects. To compute the poly-
mer–polymer interaction energy, we have to include the interactions among all
monomeric species. If the excluded volume interaction terms are written by using
delta functional form for the potential as used by Edwards [48, 50] for neutral
polymers, then

Hpp½RbðtbÞ;RlðtlÞ
 ¼ 1
2l2

ðNl
0
dtb

ðNl
0
dtl

�
wppd½RbðtbÞ�RlðtlÞ

�

þ Z2
pe

2gtbgtl
kBT

e�1 RbðtbÞ;RlðtlÞ
 �� 1

jRbðtbÞ�RlðtlÞj
��

;

ð6:56Þ
where dðxÞ represents the three-dimensional Dirac delta function and e is the charge
of an electron.

Some comments regarding the delta functional form for the excluded volume
interaction energy are in order here. In Eq. (6.56), wpp is a parameter to assess
the strength of monomer–monomer excluded volume interactions and has the
dimensions of volume. This form for the excluded volume term was suggested by
Edwards by realizing that for large length scales, properties of the system should not
depend upon the specific details of interactions, which may be due to steric effects,
van derWaals interactions [69], and so on. As far as the interaction term is written in
terms of a short-range function, the predictions of the theory should not change.
However, we must point out here that the delta functional form for the interaction
potential leads to divergences when RbðtbÞ ¼ RlðtlÞ. Although these short-range
divergences do not affect any physically measurable quantity, these divergences
cause the absolute free energy of the system to diverge. However, the free energy
differences, which are experimentally important, remain well behaved. Also, it
should be noted that Eq. (6.56) is written after splitting second virial coefficient
term into short- and long-range parts through the relation

VðrÞ ¼
�
1�exp

�
�VppðrÞþVccðrÞ

kBT

��

’
�
1�VccðrÞ

kBT

��
1�exp

�
�VppðrÞ

kBT

��
þ VccðrÞ

kBT

ð6:57Þ

� wppd r½ 
 þ VccðrÞ
kBT

; ð6:58Þ
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where VppðrÞ is the potential energy of interaction coming from van derWaals forces
between two monomers separated from each other by distance r ¼ jrj. VccðrÞ is the
electrostatic charge–charge interaction energy, given by Coulomb�s law. The second
equation is written after expanding the exponential in powers of Vcc and retaining
up to linear terms. Also, the second virial coefficient (B) is related to VðrÞ by
B ¼ Ð dr VðrÞ and an analogue of excluded volume parameter in the case of neutral
polymers [50] can be defined for polyelectrolytes by

wpp ¼
ð
dr 1�VccðrÞ

kBT

� �
1�exp �VppðrÞ

kBT

� �� �
: ð6:59Þ

The functional form for wpp reveals the complicated dependence of excluded
volume parameter on temperature and expansion of the exponential up to linear
terms in Vcc (cf. Eq. (6.57)) signifies the validity of the theory for weakly charged
polyelectrolytes so that Vcc is small. The rightmost term in Eq. (6.56) is the elec-
trostatic interaction energy (Vcc), which is written after describing the response of the
inhomogeneous systems to an applied electric field by a nonlocal response function
(also known as the inverse dielectric function [71–73]), e�1ðr; r0Þ) defined byð

dr0 e�1ðr; r0Þeðr0; r00Þ ¼ dðr�r00Þ; ð6:60Þ

where eðr; r0Þ is the dielectric function in real space. In principle, the inverse dielectric
function can be written in terms of molecular polarizabilities of the charged species.
Computations of the inverse dielectric function add another set of complexity in
assessing the effect of long-range electrostatic interactions. For the length scales
relevant to the coarse-grained models, the dielectric function is either taken to be
constant (¼ e) or local in nature so that eðr; r0Þ is replaced by eðrÞ and e�1ðr; r0Þ by
1=eðrÞ in Eq. (6.56). Also, note the similarity in divergences arising from this term
when RbðtbÞ ¼ RlðtlÞ and the divergences in excluded volume interaction terms.
Both of these divergences set the length scale belowwhich this coarse-grainedmodel
fails to properly describe the system.

Third term, Hpj½RbðtbÞ; rl
, in Eq. (6.53) is the monomer–small molecule inter-
action term, which depends on the small molecular species. For polymer–solvent
interactions, polarization effects are ignored and the interactions are modeled by
delta functional form for the excluded volume interactions so that

Hps RbðtbÞ; rl
 � ¼ wps

l

ðNl
0
dtbd RbðtbÞ�rl

 �
; ð6:61Þ

wps being the monomer–solvent excluded volume parameter. As the small ions
(counterions and coions) are taken to be point like in this study, so their interactions
with monomers are taken to be purely electrostatic in nature, written by

Hpj Rb; rl
 � ¼ 1

l

ðNl
0
dtb

ZpZje2gtb
kBT

e�1ðRbðtbÞ; rlÞ 1
jRbðtbÞ�rlj
� �� �

; ð6:62Þ

where j ¼ c; þ ;�.
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Last term on the right-hand side in Eq. (6.53) takes care of interactions among
small molecules. Similar to monomer–monomer excluded volume interactions, we
model solvent–solvent interaction energy as

Hss rb; rl
 � ¼ wss

2
dðrb�rlÞ; ð6:63Þ

wss being the solvent–solvent excluded volume parameter. Like monomer–solvent
electrostatic interactions, we ignore the solvent–ion electrostatic interactions so that
Hsj ¼ 0 for j ¼ c; þ ;� due to the point-like sizes of the ions, which exhibit zero
excluded volume. Also, taking ion–ion interactions to be purely electrostatic in
nature, we can write

Hja rb; rl
 � ¼ hja

ZjZae2

kBT
e�1ðrb; rlÞ 1

jrb�rlj
� �

; ð6:64Þ

where j; a ¼ c; þ ;�, and hja ¼ 1=2 for j ¼ a and 1 otherwise.
The complicated Hamiltonian as presented in Eq. (6.53) can be written in a

simplified form using microscopic densities for different species in the system,
defined as

r̂pðrÞ ¼
1
l

Xnp
b¼1

ðNl
0
dtbdðr�RbðtbÞÞ ð6:65Þ

and

r̂jðrÞ ¼
Xnj
b¼1

dðr�rbÞ ð6:66Þ

for monomers and small molecular species, respectively. Using these definitions of
number densities and using identity

dðR�R0Þ ¼
ð
drdðr�RÞdðr�R0Þ: ð6:67Þ

Eq. (6.53) can be written as

H½RbðtbÞ; rl
 ¼
Xnp
b¼1

H0½RbðtbÞ
 þHw þHe; ð6:68Þ

where Hw and He are the contributions coming from the excluded volume and the
electrostatic interactions among different components, respectively. Explicitly,

Hw ¼ xpsl
3
ð
drr̂pðrÞr̂sðrÞþ

r0
2

X
c¼p;s

wccnc ð6:69Þ

and

He ¼ 1
2

ð
dr
ð
dr0

r̂eðrÞe�1ðr; r0Þ
kBT

r̂eðr0Þ
jr�r0j
� �

: ð6:70Þ
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In these equations, xps is the dimensionless Flory�s chi parameter [74]
defined as

wpp þwss

2
�wps ¼ �xpsl

3 ð6:71Þ

and r̂eðrÞ is the microscopic charge density at r defined as

r̂eðrÞ ¼ e
Zp

l

Xnp
b¼1

ðNl
0
dtbgtbdðr�RbðtbÞÞþ

X
j¼c;þ ;�

Zjr̂jðrÞ
2
4

3
5: ð6:72Þ

6.4.2
Transformation from Particles to Fields

So far, the partition function is written in terms of themicroscopic density variables
starting from a microscopic description of the interactions among different
components in the system. However, the level of the complexity of the problem
is still the same due to intricate coupling of these densities. In order to carry out
further calculations, these couplings need to be decoupled. This can be done
using two different transformation schemes, both of which give the same results
within normalization constants. The first scheme is based on some functional
integral identities [52, 55] and the second scheme is based on a well-known identity
for Gaussian functional integrals known as Hubbard–Stratonovich [60] trans-
formation. Here, we present the details of these two methods for the sake of
completeness.

6.4.2.1 Transformation Using Functional Integral Identities
For any arbitrary functional, f, of microscopic variables r̂

f ½r̂
 ¼
ð
D½r
dðr�r̂Þf ½r
 ð6:73Þ

and

dðr�r̂Þ ¼ m

ð
D½w
 exp i

ð
drwðrÞðrðrÞ�r̂ðrÞÞ

� �
ð6:74Þ

Yf ½r̂
 ¼ m

ð
D½r


ð
D½w
 exp i

ð
drwðrÞðrðrÞ�r̂ðrÞÞ

� �
f ½r
; ð6:75Þ

where m is the appropriate normalization factor. Using this transformation, any func-
tional ofmicroscopic variable r̂ðrÞ can bewritten as functional integral over a collective
density variablerðrÞ and afield variablewðrÞ. By introducingadensity andfield variable
for the charge density variable, r̂eðrÞ, each microscopic number density variable
involved in the incompressibility constraint, r̂cðrÞ, and by replacing the incompres-
sibility constraint on themicroscopic densities using the functional integral identity for
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delta function as in Eq. (6.74), the partition function in Eq. (6.51) can be written as

Z ¼ L

ðY
c

D½rc

ð
D½wc


ð
D½g


ð
D½re


ð
D½y


X
gtb

n o exp½�H
; ð6:76Þ

where c ¼ p; s and gðrÞ is the field variable corresponding to the incompressibility
constraint. reðrÞ and yðrÞ are the collective charge density and field variables. In
this equation, L is the normalization factor and functional dependence of H on
rj; rc;wj;wc; g and gtb has been suppressed for notational convenience. Note here
that all the collective field and density variables are real. It should also be kept in
mind that the functional integrals over density variables (r�s) can be carried out
exactly for the two-body interaction model used in this work, and only functional
integrals over field variables need to be approximated by some appropriate
approximation scheme to make a progress. An alternative way is to introduce two
collective variables for each microscopic density variable along with collective
charge variables reðrÞ;yðrÞ, and gðrÞ. We do not follow that approach in this
chapter due to redundant collective variables used in the formulation.However, the
approach [63] is particularly useful in making connections with the density
functional theories [75–77] in the context of diblock copolymers.

6.4.2.2 Hubbard–Stratonovich Transformation
This transformation is a generalization of a result formultivariate Gaussian integrals
to functionals so that for any real, symmetric, positive-definite operator Aðr; r0Þ,

exp

�
� 1
2

ð
dr
ð
dr0JðrÞA�1ðr; r0ÞJðr0Þ

�

¼
Ð
D½ f 
 exp �ð1=2Þ Ð dr Ð dr0f ðrÞAðr; r0Þf ðr0Þ þ i

Ð
drJðrÞf ðrÞ �Ð

D½ f 
 exp �ð1=2Þ Ð dr Ð dr0f ðrÞAðr; r0Þf ðr0Þ � ;

ð6:77Þ

where JðrÞ and f ðrÞ are arbitrary functions and i ¼ ffiffiffiffiffiffiffi�1
p

. Similarly, another func-
tional integral identity can be written for exponents of Gaussian quantities with
positive sign as

exp

�
1
2

ð
dr
ð
dr0JðrÞA�1ðr; r0ÞJðr0Þ

�

¼
Ð
D½ f 
 exp �ð1=2Þ Ð dr Ð dr0f ðrÞAðr; r0Þf ðr0Þ þ Ð

drJðrÞf ðrÞ �Ð
D½ f 
 exp �ð1=2Þ Ð dr Ð dr0f ðrÞAðr; r0Þf ðr0Þ � :

ð6:78Þ

Note that both of these identities are also valid when positive sign in front of linear
JðrÞ term is replaced by a negative sign. This is a generalization of the fact that for
simple Gaussian integralsð1

�1
dx exp � ax2

2
� iJx

� �
¼

ffiffiffiffiffiffi
2p
a

r
exp � J2

2a

� �
: ð6:79Þ
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Furthermore, in these equations, inverse operatorA�1ðr; r0Þ is defined through the
relationð

dr0 A�1ðr; r0ÞAðr0; r00Þ ¼ dðr�r00Þ: ð6:80Þ

For simple operators such as Aðr; r0Þ ¼ 1=jr�r0j, it can be shown that inverse oper-
ator is A�1ðr; r0Þ ¼ �dðr�r0Þr2

r=4p using the property [78],r2
r

1
4pjr�r0 j
h i

¼ �dðr�r0Þ.
Similarly, taking into account the fact that the Poisson�s equation must be satisfied
even for position-dependent dielectric constant [78], it can be shown that inverse
operator for Aðr; r0Þ ¼ 1=eðrÞjr�r0j is A�1ðr; r0Þ ¼ �dðr�r0Þrr0eðr0Þrr 0=4p.

In order to use this transformation for the Hamiltonian as represented by
Eq. (6.68), microscopic density terms that are quadratic in nature need to be written
in the form given on the left-hand side in Eqs. (6.77) and (6.78). Electrostatic terms in
He are already in the appropriate form. It is only the terms in Hw that needs to be
rewritten. This can be achieved by rewriting Hw in terms of order parameters and
total density. For an n component system, all microscopic densities can be described
by n�1 independent order parameters (due to the incompressibility constraint
serving as the nth relation among the densities). There are many different ways of
defining these order parameters. One convenient definition, which makes mathe-
matics simple, is the deviation of densities of solutes from the solvent density, that is,
defining wjðrÞ ¼ r̂jðrÞ�r̂sðrÞ for j ¼ 1; 2; . . . ðn�1Þ, where j is the index for different
solutes (monomers, counterions, and the salt ions). Using the transformation for
each quadratic term in the Hamiltonian (cf. Eq. (6.68)), the partition function
becomes

Z ¼ 1
LgLy

Y
j
Lj

ðY
j

D½zj

ð
D½g


ð
D½y


X
gtb

n o exp½�H0
; ð6:81Þ

where zj is the field variable introduced for the quadratic term involving wjðrÞ and
Lj is the corresponding normalization factor. Similarly, y is the field variable
introduced for the quadratic electrostatic energy term and Ly is the normaliza-
tion factor arising as a result. As mentioned earlier, g is the field variable
introduced for the incompressibility constraint and Lg is the unknown normal-
ization constant.

Sometimes, it is advantageous to use this technique rather than the method
using functional integral identities as presented in previous section due to the fact
that the functional integrals over density variables do not appear in the formulation,
and one has to deal with only the functional integrals over the fields with
appropriate normalization factors. On the other hand, this technique is plagued
with twomain shortcomings. One is the fact that in general it is not easy to find the
inverse operator A�1 for any given A. Second, the technique can only be used for
quadratic terms inHamiltonian. In case, there are higher order terms such as in the
problems considering polymers in poor solvent conditions, the method presented
in the previous section should comehandy. For quadratic functionals, after carrying
out Gaussian integrals over collective density variables such as in Eq. (6.76), it can
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be shown that the method presented in the previous section is the same as the one
using Hubbard–Stratonovich transformation. An equivalence of the two techni-
ques for the transformation from particle to field description is demonstrated
recently for a single polyelectrolyte chain in spherical cavities [14]. For the
discussion in this chapter, let us use the transformation using functional integral
identities (cf. Eq. (6.76)).

6.4.3
Sum Over Charge Distributions

Explicitly, the sum over charge distributions in Eq. (6.76) is given by

S ¼
X
g
tb

n o exp

�
�
Xnp
b¼1

eZp

l

ðNl
0
dtbgtbyðRbÞ

�
: ð6:82Þ

For �smeared� charge distributions on all polyelectrolyte chains, the sum be-
comes [62, 68] (using Eq. (6.52))

S ¼ exp

�
�
Xnp
b¼1

eZpa

l

ðNl
0
dtb yðRbÞ

�
ð6:83Þ

and for the �annealed� distribution [62, 68]

S ¼ exp

�
ln

�
a exp

�
�
Xnp
b¼1

eZp

l

ðNl
0
dtb yðRbÞ

�
þð1�aÞ

��
: ð6:84Þ

6.4.4
Saddle-Point Approximation

For the sake of discussion, let us consider the �smeared� charge distribution so that
Eq. (6.76) can be written as

Z ¼ L

ðY
c

D½rc

ð
D½wc


ð
D½g


ð
D½re


ð
D½y
exp½�f 
; ð6:85Þ

where f is given by

expð�f Þ ¼
Q

np
p Q ns

s
Y
j
Q

nj
j

np!ns!
Y
j
nj!

exp

�
� r0

2

X
c

wccnc�xpsl
3
ð
drrpðrÞrsðrÞ

� 1
2

ð
dr
ð
dr0

reðrÞ
kBT

e�1ðr; r0Þ
�
reðr0Þ
jr�r0j

�
þ i
ð
drreðrÞyðrÞ

þ i
ð
dr
X
c

wcðrÞrcðrÞþ i
ð
dr gðrÞ

�X
c

rcðrÞ�r0

��
:

ð6:86Þ
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In Eq. (6.86), theQ �s are the partition functions of individual components in the
presence of a field. Explicitly, for the polyelectrolyte chain with smeared charge
distribution along the backbone, single chain partition function is given by

Q p ¼
ð
D R½ 
exp

�
� 3
2l

ðNl
0
dt

qR
qt

� �2

� i
l

ðNl
0
dt feZpayðRÞþwpðRÞg

�
: ð6:87Þ

Similarly, the partition function for a solvent molecule is written as

Q s ¼
ð
dr exp½�iwsðrÞ
 ð6:88Þ

and the partition function for the small ions of type j ¼ c; þ ;� is given by

Q j ¼
ð
dr exp½�ieZjyðrÞ
: ð6:89Þ

Asmentioned earlier, all the functional integrals over collective variables cannot be
carried out exactly. One of the approximations used extensively in the literature to
evaluate these functional integrals is called the saddle-point approximation [52, 55,
57, 58]. In this approximation, functional integrals over collective variables are
approximated by the value of the integrand at the saddle point, that is, free energy
is approximated to be

F
kBT

¼ �lnZ ’ f r	c;w
	
c ; g

	; r	e ;y
	

n o
; ð6:90Þ

where r	c;w
	
c; g

	; r	e , and y	 are to be obtained by solving the set of equations

df
drcjrc¼r	c

¼ 0;
df
dwcjwc¼w	c

¼ 0;
df
dgjg¼g	

¼ 0;
df
dre jre¼r	e

¼ 0;
df
dyjy¼y	

¼ 0:

ð6:91Þ

Details of carrying out the functional derivatives [79] are presented else-
where [53, 55]. The equations obtained after taking functional derivatives are pres-
ented here in the order presented in Eq. (73).

iw	
pðrÞ ¼ xpsl

3r	sðrÞþ ig	ðrÞ; ð6:92Þ

iw	
s ðrÞ ¼ xpsl

3r	pðrÞþ ig	ðrÞ; ð6:93Þ

r	sðrÞ ¼
ns exp½�iw	

s ðrÞ
Ð
dr exp½�iw	

s ðrÞ

; ð6:94Þ

r	pðrÞ ¼
np
ÐN
0 dtqðr; tÞq	ðr;N�tÞÐ

drqðr;NÞ ; ð6:95Þ
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r	pðrÞþ r	sðrÞ ¼ r0; ð6:96Þ

iy	ðrÞ ¼ 1
kBT

ð
dr0e�1ðr; r0Þr

	
e ðr0Þ

jr�r0j ; ð6:97Þ

r	e ðrÞ ¼ e Zpar
	
pðrÞþ

X
j¼þ ;�;c

njZj exp½�ieZjy
	ðrÞ
Ð

dr exp½�ieZjy	ðrÞ


" #
: ð6:98Þ

In these equations, qðr; tÞ satisfies the modified diffusion equation [50, 52, 53, 55]

qqðr; tÞ
qt

¼ l2

6
r2

r�i eZpay
	ðrÞþw	

pðrÞ
n o� �

qðr; tÞ ð6:99Þ

for t 2 0;N½ 
 with the initial condition qðr; 0Þ ¼ 1. Similarly, q	ðr;N�tÞ satisfies

qq	ðr;N�tÞ
qt

¼ � l2

6
r2

r�i eZpay
	ðrÞþw	

pðrÞ
n o� �

q	ðr;N�tÞ ð6:100Þ

with initial condition q	ðr; 0Þ ¼ 1. Also, note that on approximating the nonlocal
dielectric function by a local function so that eðr; r0Þ! eðrÞ, Eq. (6.97) can be written
in the differential form as

rreðrÞrriey
	ðrÞ ¼ � 4pe2

kBT
Zpar

	
pðrÞþ

X
j¼þ ;�;c

njZj exp½�ieZjy
	ðrÞ
Ð

dr exp½�ieZjy	ðrÞ


" #
;

ð6:101Þ

which is the familiar Poisson–Boltzmann equation for inhomogeneous dielectric
media and has been used to incorporate the effect of inhomogeneous dielectric
constant using SCFT [62]. Different numerical techniques, which are useful for
solving the nonlinear set of equations, are presented in the next section.

6.4.5
Numerical Techniques

To compute the free energy within saddle-point approximation, the coupled
nonlinear equations, which include second-degree partial differential equations
such as the modified diffusion and Poisson–Boltzmann equations are to be
solved. General strategy to solve these equations is to start from an initial guesses
for the fields and compute the densities. Using the computed densities and the
old guesses for the fields, compute the new guesses for the fields. The guessing
process is iterated till the converged solutions for the densities and fields are
obtained. Different numerical techniques are used for computing the new
guesses using the old guesses and the recently computed densities. An excellent
reference to look into the currently available techniques for the guessing process
is Ref. [55].
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In order to compute the densities for a given guess for the fields, the modified
diffusion and the Poisson–Boltzmann equations need to be solved. A number of
numerical techniques for solving the modified diffusion equation in the context of
neutral polymers already exist in the literature [55, 80]. Similar techniques can be used
for solving themodifieddiffusion equation encountered in the case of polyelectrolytes.
Furthermore, these techniques can be readily generalized to solve the Poisson–Boltz-
mann equation.

In general, these numerical techniques can be classified into three classes: finite
difference, spectral and pseudospectral methods. Finite difference methods [81]
are straightforward to implement after approximating partial derivatives by finite
difference approximation schemes. However, depending on the problem at hand,
the accuracy and convergence attained using these methods may not be what is
desired for computations. In certain problems, accuracy is the main issue,
sometimes even at the cost of memory. That is the reason more accurate (but
difficult to implement) numerical techniques such as spectral and pseudospectral
methods have been developed. These techniques provide higher accuracy and
better convergence. However, these techniques have a common drawback that they
are very specialized and work for problems with specific boundary conditions. The
choice of a numerical technique for a certain problem depends on the accuracy,
convergence, and memory issues, which appear during the implementation of
different schemes. Here, we present only a brief description of the relevant details
of these techniques for solving Poisson–Boltzmann equation along with the
modified diffusion equation.

Consider a general Poisson–Boltzmann equation (cf. Eq. (6.101)) of the form

rreðrÞrrieyðrÞ ¼ �f fyðrÞg; ð6:102Þ

when f fyðrÞg is known. Also, consider another equation of the form

qhðr; tÞ
qt

¼ l2

6
r2

r�wðrÞ
� �

hðr; tÞ; ð6:103Þ

where wðrÞ is known a priori along with the initial condition hðr; 0Þ. This equation
corresponds to the time-dependent modified diffusion equation. Three types of
commonly used numerical techniques to solve these two equations are presented in
the next section.

6.4.5.1 Finite Difference Methods
Traditional finite difference methods [55, 81] for solving time-dependent second-
degree partial differential equations (such as modified diffusion equation)
include forward time-centered space (FTCS), Crank–Nicholson, and so on. For
time-independent second-degree partial differential equations such as Poisson–
Boltzmann equation, finite difference equations can be written after discretizing
the space and approximating derivatives by their finite difference approximations.
For space-independent dielectric constant, that is, eðrÞ ¼ e, a tridiagonal matrix
inversion needs to be carried out in order to obtain a solution for y for a given f .
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As matrix inversion is computationally very costly, so this particular technique is
limited to one-dimensional problems. Also, the generalization of Eq. (6.102) to space-
dependent dielectric constant creates extra numerical difficulties while solving
Poisson–Boltzmann equation.

In order to deal with the case of space-dependent dielectric constant in multi-
dimensional space, alternating direction implicit techniques [82] are developed after
rewriting Eq. (6.102) as

eðrÞ qyðrÞ
qt

¼ rreðrÞrrieyðrÞþ f yðrÞf g; ð6:104Þ

and the steady-state solution of Eq. (6.104) corresponds to the solution of
Eq. (6.102).

6.4.5.2 Spectral Method: Method of Basis Functions
This particular technique was introduced to the polymer literature by Matsen and
Schick [83] in the context of diblock copolymer morphologies. The technique is
based on the series expansion of any unknown function in terms of suitable
basis functions and the numerical work is carried out to compute the coefficients
of different terms in the series. For example, to solve Eq. (6.103), let us
approximate space-dependent quantities such as hðr; tÞ and wðrÞ by a finite series
in terms of orthonormal basis functions, that is, hðr; tÞ ’Pn

j¼1 hjðtÞgjðrÞ and
wðrÞ ’Pn

j¼1 wjgjðrÞ, where gjðrÞ represents the appropriate basis function of
order j and n is the number of such basis functions required to correctly
represent the functions hðr; tÞ and wðrÞ. The choice of n depends on the desired
accuracy for computations. In order to solve Eq. (6.103), the basis functions must
have the following properties:

(a) Basis functions, gjðrÞ, must be the eigenfunctions of the Laplacian operator,
that is,

r2
r gjðrÞ ¼ � lj

L2
gjðrÞ; ð6:105Þ

where j ¼ 2; 3; . . . ; n, and L is the length scale describing the volume of the
system, and lj�s are the eigenvalues of the Laplacian. The first basis function,
gjðrÞ, is chosen to be a constant and normally unity, that is, g1ðrÞ ¼ 1.

(b) These basis functions must be the orthonormal basis set, that is, for a given
volume of the system (¼ V � L3), they must satisfy 1

V

Ð
drgjðrÞgkðrÞ ¼ djk.

(c) These basis functions must satisfy the boundary conditions.

In this technique, the basis functions are ordered starting with g1ðrÞ ¼ 1 such
that lj is a nondecreasing series. Also, the constraints on the fields and densities
are taken care of by fixing the first term in the series, which is independent of r.
Now, the goal is to compute the coefficients hjðtÞ in the finite series expansion for
hðr; tÞ using the initial values of these coefficients hjð0Þ (which comes from the
known initial condition) and the known values for wj�s (due to the known values
for wðrÞ). Using the finite series expansion and orthonormal property of the basis
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functions, Eq. (6.103) can be transformed into a set of equations for coefficients
hjðtÞ as shown below.

qhkðtÞ
qt

¼
Xn
j¼1

AkjhjðtÞ; ð6:106Þ

where

Akj ¼ �lkl2

6L2
dkj�

Xn
i¼1

wiCijk; ð6:107Þ

where the function Cijk is defined as Cijk ¼ 1
V

Ð
drgiðrÞgjðrÞgkðrÞ. Now, the equations

for hkðtÞ in the matrix form become

qhðtÞ
qt

¼ AhðtÞ; ð6:108Þ

where hðtÞ is a column vector and A is a square matrix given by

hðtÞ ¼

h1ðtÞ
h2ðtÞ
h3ðtÞ
..
.

hnðtÞ

2
66666664

3
77777775
; A ¼

A11 A12 . . . A1n

A21 A22 . . . A2n

A31 A32 . . . A3n

..

. ..
. ..

. ..
.

An1 An2 . . . Ann

2
6666664

3
7777775

Formal solution of Eq. (6.108) is given by hðtÞ ¼ eAthð0Þ, where hð0Þ is given by
the initial condition for hðr; tÞ. eAt is the exponential of the matrix At and can be
calculated by diagonalizing the matrix At. Note here that t is a scalar.

Computation of exponential of a matrix is a numerically intensive job and very
difficult in general. However, for real, symmetric square matrices such as A here, it
can be calculated by diagonalizing the matrix after computing its eigenvalues and
eigenvectors. An approach to calculate the exponential of a matrix is to compute
the exponential of a matrix times a scalar, we need to solve the matrix problem
dXðtÞ
dt ¼ AXðtÞ for a given Xð0Þ, when the matrix A is diagonalizable into a diag-

onalmatrix d. Owing to the fact thatA can be diagonalized, there exists a nonsingular
matrix P such that P�1AP ¼ d. Now, to solve the matrix equation for X, we change
variables as

XðtÞ ¼ PYðtÞ; ð6:109Þ

Y
dXðtÞ
dt

¼ AXðtÞY dYðtÞ
dt

¼ dYðtÞ; Yð0Þ ¼ P�1Xð0Þ; ð6:110Þ

YXðtÞ ¼ P diag ed1t; ed2t; . . . ; ednt
 �

P�1Xð0Þ; ð6:111Þ

where diag stands for a diagonal matrix. If thematrix P is made up of eigenvectors of
matrix A as its columns, then for symmetric, real matrices it is orthogonal, that is,

6.4 The Self-Consistent Field Theory j317



PT ¼ P�1, where superscripts T and �1 represent the transpose and inverse of the
matrix, respectively. This means, for real symmetric square matrices such as A here,
exponential of the matrix At is given by

eAt ¼ P diag ed1t; ed2t; . . . ; ednt
 �

PT; ð6:112Þ

where dj is the jth eigenvalue of matrix A and P is a matrix whose columns are made
up of the eigenvectors of the matrix A.

The computation of exponential of matrix is in fact the most expensive part in the
numerical solution of modified diffusion equations. Also, as we can see that as
the order of the matrix (n) increases, which in turn determines the accuracy of the
method, the computational cost substantially increases. That is the reason this
method should be used in problems where low values of n meet the accuracy
requirements. Fromour experience, problems requiring n � 30 can be readily solved
using this technique. The second issue with this technique is the availability of an
appropriate basis set. There are only a few known orthonormal basis sets and that
too depends on certain specialized geometries and specific boundary conditions.
These issues make this technique very specialized.

Using this technique, the solutionofPoisson–Boltzmannequationas inEq. (6.102)
for the case eðrÞ ¼ e becomes trivial. The solution is given by yj ¼ L2fj=lj for j > 1,
where fj �s are computed from the given values of f fyðrÞg. Thefirst component,y1, is
generally set to zero, which also fixes the unknown constant in y by assuring thatÐ
dryðrÞ ¼ 0 in these computations. Spectral method has recently been used to

study microphase separation in charged-neutral diblock copolymer melts [63]. The
Poisson–Boltzmann for the inhomogeneous dielectric media has not been solved
using the spectral method so far.

6.4.5.3 Pseudospectral Method
With the increase in the desired number of basis functions in the finite series
expansion, the spectral method demands a lot of memory and becomes extremely
expensive. The sets of problems, where the required number of basis functions
are large can be solved by pseudospectral method [84], which optimize both speed
and accuracy.

This method is based on the use of operators in solving Eq. (6.103). Within the
operator formalism employed by the technique, formal solution of Eq. (6.103) is
given by

hðr; tþ dtÞ ¼ exp dt
l2

6
r2

r�wðrÞ
� �� �

hðr; tÞ: ð6:113Þ

In Eq. (6.113), three-dimensional Laplacian andwðrÞ are treated as operators. Now,
the goal is to approximate the exponential of the operator on the right-hand side in
Eq. (6.113) by some technique. Approximation schememust respect the fact that for
any two operators A and B, eAþB 6¼ eAeB unless they commute. The approximation
scheme employed by the pseudospectral method uses the fact that if the operator on
the right-hand side in Eq. (6.113) can be split into two parts, then it is relatively easy to
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implement numerically. A powerful approximation scheme for computing the
exponential of an operator by splitting into a sum of noncommuting operators uses
thewell-knownBaker–Campbell–Hausdorff [85] formula. According to this formula,
if eAeB ¼ eC , then

C ¼ AþBþ 1
2
A;B½ 
 þ 1

12
A;B½ 
; ðB�AÞ½ 
 þ 1

24
B;A2;B
 �þ � � � ; ð6:114Þ

where ½x; y
 ¼ xy�yx is the commutator, ½x; y2
 ¼ ½½x; y
; y
 and ½x; y2; x
 ¼ ½½x; y2
; x
.
Splitting of the operators can be quite tricky. In the case of Eq. (6.113), the splitting

is motivated by the observation that it is easy to implement expð�wðrÞÞ in real space
(at all points on the mesh), but it is difficult to take double derivatives at all points on
themesh. This difficulty can be overcome by using the fact that the derivatives can be
implemented trivially in Fourier space. So, if somehow the Laplacian part could be
split from wðrÞ part, then the progress can be made. This is the motivation for
splitting the operator in Eq. (6.113) into derivative and nonderivative parts by
Baker–Campbell–Hausdorff formula. For most practical purposes, a symmetric
decomposition is carried out so that within an error of the order dt3

exp dt
l2

6
r2

r�wðrÞ
� �� �

’ exp � dt
2
wðrÞ

� �
exp dt

l2

6
r2

r

� �
exp � dt

2
wðrÞ

� �
:

ð6:115Þ
So, solution of Eq. (6.103) can be approximated by

hðr; tþ dtÞ ’ exp � dt
2
wðrÞ

� �
exp dt

l2

6
r2

r

� �
exp � dt

2
wðrÞ

� �
hðr; tÞ; ð6:116Þ

which is correct within an error of dt3.
Numerical implementation of Eq. (6.116) uses the fact that the rightmost operator

in the exponential can be implemented as it is in real space. Let us say gðr; tÞ is the
outcome of this operation, which is a function of position (r) at some t, that is,

gðr; tÞ ¼ exp � dt
2
wðrÞ

� �
hðr; tÞ: ð6:117Þ

For implementing the exponential of the Laplacian operator for systems with
periodic boundary conditions

exp dt
l2

6
r2

r

� �
gðr; tÞ ¼ FT�1 exp �dt

k2l2

6

� �
FT gðr; tÞf g

� �
; ð6:118Þ

where FT stands for Fourier transform and FT�1 stands for inverse Fourier trans-
form, which can be carried out quite efficiently using fast Fourier transforms (FFTs).
Hence, the numerical solution of Eq. (6.103) can be obtained by using

hðr; tþdtÞ ’ exp �dt
2
wðrÞ

� �
FT�1 exp �dt

k2l2

6

� �
FT exp �dt

2
wðrÞ

� �
hðr; tÞ

� �� �
:

ð6:119Þ
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So, in pseudospectral method, one has to switch between real space and Fourier
space back and forth. Symmetric decomposition leads to the implementation of half
time step in real space and the other half in Fourier space. That is the reason this
method is also known as split-step method in the literature [84].

Owing to the use of Fourier Transform in the implementation of the exponential
of the Laplacian operator, the technique is mainly useful for systems with periodic
boundary conditions. Also, note that the technique cannot be used to solve
Poisson–Boltzmann equation due to time-independent nature of the equation.
However, the Poisson–Boltzmann equation can be solved using finite difference
techniques or by a combination of fast Fourier transforms and the finite difference
techniques [68, 81].

6.4.6
Fluctuations Around the Saddle Point

A number of attempts have been made to incorporate the effect of composition
fluctuations [86–88] in theories involving neutral polymers. Here, we present
systematic one-loop expansion to go beyond the saddle-point approximation de-
scribed in the previous section. In order to carry out the loop expansion, it is
advantageous to use Hubbard–Stratonovich transformation to get rid of redundant
functional integrals over collective density variables (r in Eq. (6.85)) anduse Eq. (6.81)
as the starting point for the partition function with the explicitly known normali-
zation constants except Lg. Saddle-point approximation within this formalism now
requires taking functional derivatives with respect to fields only.

Let us say after summing over charge distributions, the partition function becomes
(cf. Eq. (6.81))

Z ¼ 1
LgLy

Y
j
Lj

ðY
j

D½zj

ð
D½g


ð
D½y
 exp �f 0½ 
: ð6:120Þ

Within saddle-point approximation, the partition function is approximated by
Z ’ f 0 z	j ; g

	;y	
n o

, where saddle-point values for the fields are to be obtained by
extremizing f 0 with respect to thefields. Forn component system, there arenþ 1field
variables designated by zj; g, and y, for j ¼ 1; 2; . . . ; ðn�1Þ. For notational conve-
nience, let us write them as zj, where j ¼ 1; 2; . . . ðnþ 1Þ and j ¼ n; nþ 1 represent g
and y, respectively. To go beyond the saddle-point approximation, we use the
functional Taylor expansion [79] of the integrand and neglect all the terms beyond
quadratic terms, that is, we write

f 0 zj

n o
¼ f 0 z	j

n o
þ 1
2

ð
dr
ð
dr0
X
jk

Kjkðr;r0ÞðzjðrÞ�z	j ðrÞÞðzkðr0Þ�z	kðr0ÞÞ; ð6:121Þ

where the linear terms in zj do not appear due to the saddle-point conditions and

Kjkðr;r0Þ ¼
d2f 0fzjg

dzjðrÞdzkðr0Þ
jzj¼z	j

; ð6:122Þ
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for j;k¼ 1;2; . . . ;ðnþ1Þ. Plugging the functional Taylor expansion for f 0 in Eq. (6.120),
the functional integrals to be carried out are Gaussian in nature and can be carried
out. Formally, the result is the one-loop approximation [14, 53] for the free energy in
terms of a ratio of determinants of continuous block matrices, that is,

F
kBT

’ f 0 z	j
n o

þ 1
2
ln

detK
detK0

; ð6:123Þ

where K is the square block matrix of order nþ1 with its block elements
represented by Kjk and K0 is the diagonal square block matrix of order nþ1 (which
appear because of the normalization factors and unknown normalization constant
Lg has been used to define K0). It turns out that the individual determinants
appearing in Eq. (6.123) are divergent due to the presence of divergent terms on the
principal diagonal, which in turn highlights the fact that the model is ill defined at
very small length scales. This is similar to the familiar ultraviolet divergences
appearing in one-loop calculations in field theory. The unknown Lg can be
estimated by identifying the divergent terms in detK , which should cancel out
exactly at one-loop level.

Similar attempts to include fluctuations beyond one-loop in SCFT have also
been exercised in the context of neutral polymers using field theoretical simula-
tions [55, 90] or by bridging SCFTwith Monte Carlo techniques [91]. However, these
techniques have not been applied for the case of polyelectrolytes with counterions
and added salt ions due to very high computational cost.

In the next section, we compare the results of the degree of ionization of a flexible
polyelectrolyte chain obtained from the self-consistent field theory within saddle-
point approximation and compare with the previously developed variational
theory [21] by considering the chain in a spherical cavity in the presence of a
monovalent salt. Physically, such a situation is realized in extremely dilute
polyelectrolyte solutions, where interchain interactions can be ignored safely and
a finite volume can be carved out for each chain, and in pores confining polyelec-
trolyte chains, depending on the ratio of the cavity size to the radius of gyration of
the polymer. We use the self-consistent field theory to compute the equilibrium
degree of counterion adsorption after taking a �permuted� charge distribution
on the chain so that the �adsorbed� counterions are allowed to move along the
backbone. SCFT computes the free energy of the system by summing over all
possible conformations of the chain, and hence, provides a more accurate descrip-
tion of the system (in fact, it provides the exact free energy at the mean field level)
compared to the variational formalism. Also, as the electrostatics in SCFT is treated
at full, nonlinear Poisson–Boltzmann level, we can assess the validity of the
Debye–H€uckel potential to describe the electrostatic energy in the variational
formalism. Although SCFT provides an accurate and clear picture, it is computa-
tionally expensive to calculate the degree of ionization due to a vast parameter space
in the case of polyelectrolytes. On the other hand, the variational theory put forward
by Muthukumar [1] is transparent, analytically tractable (to some extent), and very
inexpensive in terms of the computational needs. The aim of the comparison
presented in the next section is to provide a simple, accurate, and easy-to-use
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method to compute the degree of ionization and assess the approximations used in
the variational formalism.

6.5
Comparison of Theories: SCFT and Variational Formalism

To carry out the field theoretical study for a single chain, the chain is represented as a
continuous curve of lengthNl,N being the number of Kuhn segments, each of length
l. Arc length variable t is used to represent any segment along the backbone so that
t 2 ½0;Nl
. Also, we assume that the chain (negatively charged) is surrounded by nc
monovalent counterions (positively charged) released by the chain along with nc ions
of species cð¼ þ ;�Þ coming from added salt so that the whole system is globally
electroneutral. Keeping the notation the same as in the previous section, that is, Zj

being the valency (with sign) of the charged species of type j, and ns being the number
of solvent molecules (satisfying the incompressibility constraint after assuming the
monovalent small ions to be point-like), we assume that the volume of a solvent
molecule (vs) is equal to the volume of the monomer (that means vs � l3 ¼ 1=r0; r0
being the total number density of the system). Also, subscripts p; s; c; þ , and � are
used to represent monomer, solvent, counterion from polyelectrolyte, and positive
and negative salt ions, respectively.

In order to study counterion adsorption using the two theoretical frameworks, we
use the so-called �two-state� model for the counterions so that there are two
populations of counterions in the system. One population of the counterions is free
to enjoy the available volume (called the �free� counterions) and the other population
is �adsorbed� on the backbone. However, the adsorbed counterions are allowed to
enjoy translational degrees of freedom along the backbone, maintaining a total
charge of efNZp on the chain, where e is the electronic charge and f is the degree of
ionization of the chain (thatmeans there are�ð1�f ÞNZp=Zc �adsorbed� counterions
on the chain). In the literature, this kind of charge distribution has been referred to as
a �permuted� charge distribution [68].

For a particular set of parameters, we compute the free energy of the system
comprising the single chain, its counterions, the salt ions, and the solvent as a
function of the degree of ionization ( f ) using two different computational
frameworks: SCFT [14, 55] and the variational [1, 21, 92] formalism. In both the
formalisms, we ignore the electrostatic interactions between the solvent mole-
cules and the small ions, and model the dielectric constant (e) of the medium to be
independent of temperature (T ) to extract energy and entropy of the system. Also,
for comparison purposes, we divide the free energy into a mean field part and
an additional part, which goes beyond the mean field theory. Mean field part is
further divided into the contributions coming from the �adsorbed� counterions
(F	

a ) and the �free� ions, and from the chain entropy, and so on (F	
f ). All

contributions are properly identified (or subdivided into) as enthalpic or/and
entropic parts. In all of what follows, the superscript 	 represents the mean field
part. A brief description of the derivation for the two formalisms is presented
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in Sections 6.5.1 and 6.5.2, and the original references [1, 14] may be consulted
for details.

6.5.1
Self-Consistent Field Theory for Single Chain

The theoretical description presented above for multichain polyelectrolyte solutions
can be easily adapted to study a single flexible polyelectrolyte chain confined in a
spherical cavity of volume V ¼ 4pR3=3. For a single flexible polyelectrolyte chain
with a fixed degree of ionization (¼ f ) in the presence of salt ions and solvent
molecules, the Hamiltonian can be written as

exp

�
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kBT
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¼ exp �Ea=kBT½ 
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ð6:124Þ

where RðtÞ represents the position vector for the t th segment and subscripts
j¼ s;c;þ ;�. In Eq. (6.124), kBT is the Boltzmann constant times absolute temper-
ature. In writing the interaction energies between the polyelectrolyte segments and
the small ions, we have taken the small ions to be point charges so that they have zero
excluded volume, and hence, interactions are purely electrostatic in nature. As we
consider the �permuted� charge distribution, the partition function has an additional
sumover all possible locations of the �adsorbed� ions on the backbone,which appears
as an average over the parameter y in Eq. (6.124). We define the average over y as
½ � � � 
y ¼

Ð
dy½ � � � 
gðyÞ, where gðyÞ¼ f dðyðtÞ�1Þþð1�f ÞdðyðtÞÞ. For a detailed descrip-

tion of the different terms in Eq. (6.124), see Section 6.4.1. Also, r̂pðrÞ; r̂jðrÞ and r̂eðrÞ
stand for themonomers, small molecules (both ions and solvent molecules), and the
local charge density, respectively. These are defined by Eqs. (6.65), (6.66) and (6.72),
respectively, after putting np ¼ 1.

The additional delta function involving y is a constraint that for all the charge
distributions to be considered for one particular value of f , the net charge on the chain
must be a constant (¼ f Ne). Taking different charge distributions of the chain for the
same net charge (¼ f Ne) and a particular chain conformation to be degenerate, the
partition function is divided by the number of ways (m) the �adsorbed� counterions
can be distributed along the chain. If M out of total N sites on the backbone are
occupied at any particular instance, then m is given by m ¼ N!=ðM!ðN�MÞ!Þ so that
1�f ¼ M=N.

Defining the dimensionless Flory parameter for chemical mismatch, xps by
Eq. (6.71) after using wpp;wss, and wps as the excluded volume parameters charac-
terizing the short-range excluded volume interactions of type monomer–monomer,
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solvent–solvent, and monomer–solvent pairs, respectively, the self-energy (F0) and
ion-pair energy (Ea) contributions are given by

F0

kBT
¼ Nwpp þ nswss; ð6:125Þ

Ea

kBT
¼ �ð1�f ÞNdlB=l; ð6:126Þ

where d ¼ el=eld, el, and d being the local dielectric constant and the dipole length,
respectively, are used to characterize the formation of an ion-pair on the backbone
due to �adsorbed� counterion.

Now, using the methods of collective variables (cf. Section 6.4.2.1) for decoupling
all the interactions except the electrostatics and the Hubbard–Stratonovich trans-
formation [14, 55] (cf. Section 6.4.2.2) for the electrostatic part in Eq. (6.124), the
partition function can be written as integrals over the collective densities and
corresponding fields so that Eq. (6.124) becomes

exp � F�F0

kBT

� �
¼
ð
D wp
 �

D rp

h i
D y½ 
D g½ 
duD ws½ 
D rs½ 
 exp �Hscf

kBT

� �� �
y
:

ð6:127Þ
Here, wp;ws are the collective fields experienced by the monomers and solvent,

respectively, and rp; rs represent their respective collective densities. All charged
species (excluding the ion-pairs formed due to adsorption of counterions) experience
a field y (which is equivalent to the electrostatic potential). g and u are Lagrange�s
multipliers corresponding to, respectively, the incompressibility and net charge
constraints in the partition function.

Invoking the saddle-point approximation, extremization of the integrand leads to a
number of nonlinear equations for the fields and the densities. The saddle-point
approximation with respect to u gives equations similar to a �smeared� charge
distribution, where every monomer has a charge (¼ fe). The extremization with
respect to y;wp; rp; g;ws, and rs leads to the saddle point specified by equations
similar to Eqs. (6.92)–(6.101). Using these saddle-point equations and employing the
Stirling approximation for ln n!, we obtain the approximated free energy, that is,
F�F0 ’ H	

scf after taking kBT ¼ 1. The superscript 	 represents the saddle-point
estimate of the free energy.

After solving these equations for fields (and, in turn, for densities), the free energy
at the saddle point, FSCFT ¼ F0 þF	

a þF	
f , is divided into enthalpic and entropic

contributions due to different components. To start with, we note that the contribu-
tions coming from �adsorbed� counterions can be divided as

F	
a ¼ Ea�TSa; ð6:128Þ

Ea ¼ �ð1�f ÞNdlB=l; ð6:129Þ

�TSa ¼ N½f log f þð1�f Þ log ð1�f Þ
; ð6:130Þ
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so that Ea is the electrostatic binding energy of the ion-pairs formed on the polymer
backbone due to the adsorption of ions and Sa is the translational entropy of the
�adsorbed� counterions along the backbone.

Similarly, F	
f is divided into enthalpic and entropic contributions due to the

excluded volume and electrostatic interactions and into entropic contributions
because of small ions, solvent molecules, and the polyelectrolyte chain. Denoting
these contributions by Ew;Ee; Si; Ss, and Sp, respectively, F	

f is given by

F	
f ¼ Ew þ Ee�TðSi þ Ss þ SpÞ; ð6:131Þ

Explicit expressions for different constituents of F	
f are presented in Table 6.2 in

terms of densities and fields at the saddle point.
In order to compare the free energies obtained from SCFT and the variational

formalism for a given N and R, a single Gaussian chain of contour length Nl
in the volume V is chosen as the reference frame, whose free energy is taken to
be zero. This reference free energy of confinement for a single Gaussian chain
has been subtracted from the polymer conformational entropy in Table 6.2. The
free energy of confining a single Gaussian chain with N Kuhn segments of
length l each in a spherical cavity of radius R can be computed exactly and is
given by [93]

FGaussian ¼ �ln
ð
drq0ðr;NÞ

� �
¼ �ln

6V
p2

X1
k¼1

1
k2

exp � k2p2Nl2

6R2

� �" #
: ð6:132Þ

6.5.2
Variational Formalism

For the sake of completeness, we present the procedure to obtain the variational free
energy as presented inRef. [1] in the absence of ion-pair correlations. InRef. [1], it has
been assumed that the counterions from the polyelectrolyte are indistinguishable
from the counterions from the salt. So, we start from a partition function similar to
Eq. (6.124) with the solvent, counterions (from the polyelectrolyte and the salt),

Table 6.2 Comparison of contributions to F	f in SCFT and variational formalism.

Term SCFT Variational formalism
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coions and the chain as distinguishable species. After using the method of collective
variables (cf. Section 6.4.2.1), the partition function can be written as

exp � F�F0

kBT

� �
¼
ð
D½wp
D½rp
D½g


Y
j

D rj

h i
D wj
 �

exp � h
kBT

� �
; ð6:133Þ

where j ¼ s; c;�, and where the integral over u has already been evaluated by the
saddle-point method so that the functional h corresponds to a single chain with a
�smeared� charge distribution. Also, note that we have introduced collective fields
and densities for small ions instead of using the Hubbard–Stratonovich transfor-
mation for the electrostatic part. This is the analogue of Eq. (6.127) in SCFT. Now,
evaluating the path integrals over wj by the saddle-point method, Eq. (6.133) can be
written in terms of the densities rj. Functional integrals over g and rs can be carried
out in a trivial way. To carry out functional integrals over small ion densities, that is,
the rj log rj terms, which emerge after integrations over fieldswj, are expanded up to
the quadratic terms after writing rjðrÞ ¼ nj=Vþ drjðrÞ so that

Ð
drdrjðrÞ ¼ 0, and

the resulting integrals are Gaussian. This procedure also gives one-loop corrections
to the free energy coming from the small ions density fluctuations (DF=kBT). Now,
expanding the ð1�rpÞ logð1�rpÞ termup to the quadratic terms inrp, the problemof
carrying out the functional integrals over wp and rp is equivalent to a single chain
problem whose monomers interact with each other via a renormalized excluded
volume parameter and an electrostatic potential. The renormalized excluded volume
parameter comes out to be w ¼ 1�2xps and the electrostatic potential comes out to
be the Debye–H€uckel potential, where the inverse Debye length (k) depends on the
�free� ions only. Eventually, Eq. (6.133) becomes

exp � F�F0�dF
kBT

� �
¼ 1

m
exp �Ea�TSi

kBT

� �ð
D wp
 �

D rp

h i
exp �Hvar

kBT

� �
;

ð6:134Þ
where �TSi is the translational entropy of the �free� ions as presented in Table 6.2
for the variational theory. Now, writing the Hamiltonian of a single polyelectrolyte
chain using an effective excluded parameter (w) and the Debye–H€uckel potential [1],
the functional integrals over wp and rp can be computed using the variational
technique developed by Muthukumar [21]. Taking kBT ¼ 1, the variational ansatz of
the total free energy (Fvariational) is given by Fvariational ¼ F0 þ F	

a þ F	
f þDF.

Although F	
a in the variational theory is the same as in SCFT (cf. Eq. (6.128)), other

contributions involving the �free � ions, the chain entropy, and so on (that means F	
f )

differ significantly in terms of computational details. In SCFT, F	
f is computed after

solving for fields experienced by different components in the system,which arise as a
result of interactions of a particular component with the others. On the other hand, in
variational calculations [1], a single polyelectrolyte chain, whose monomers interact
with the excluded volume and the electrostatic interactions in the presence of the
small ions is approximated by an effective Gaussian chain, whose conformational
statistics depend on the different kinds of interactions in the system. To compute
the equilibrium free energy, its variational ansatz is minimized with respect to the
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variational parameter l1, which is related to the radius of gyration (Rg) of the chain by
R2
g ¼ Nll1=6. Physically, this corresponds to the minimization of the free energy of

the single chain system with respect to the size of the chain. For the computation of
the equilibrium degree of ionization, an additional minimization of the free energy
with respect to the degree of ionization has to be carried out. However, due to the
intricate coupling between the size of the chain and the degree of ionization, the
minimizations have to be carried out self-consistently.

TheF	
f part of the variational ansatz [1] is tabulated in Table 6.2. The functionH0ðaÞ

in Table 6.2 is a crossover function given by [1, 21]

H0ðaÞ ¼
ffiffiffi
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p
2

2
a5=2

� 1
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expðaÞ erfc ffiffiffi

a
p� �þ 1
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þ 2
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p
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�
ffiffiffi
p

p
2a3=2

;

ð6:135Þ
where a � k2Nll1=6, and kl is the dimensionless inverse Debye length. Furthermore,
~l1 ¼ l1=l;~lB ¼ lB=l. The number of salt ions (nþ ; n�) are related to the salt concen-
tration (cs) by the relation Zþ nþ ¼ �Z�n� ¼ 0:6023csV, where cs is in units of
moles per liter (molarity). Also, all the terms in the free energies are in units of kBT .

In this work, we have ignored one-loop corrections to the free energy within SCFT.
However, one-loop corrections to the free energy coming from the density fluctua-
tions of small ions, within the variational formalism, is given by

DF ¼ �Vk3

12p
; ð6:136Þ

where k2 ¼ 4plBð f Nþ nþ þ n�Þ=V and k is the inverse Debye length.

6.5.3
Numerical Techniques

We solve SCFT equations for the single polyelectrolyte chain within spherical
symmetry (that means r! r ¼ jrj), using the Dirichlet boundary conditions for
qðr; tÞ and all thefields exceptgðrÞ. Also, due to theuse of spherical symmetry in these
calculations, we use

qyðrÞ
qr

jr¼0 ¼
qqðr; tÞ
qr

jr¼0 ¼ 0; for all t: ð6:137Þ

Starting from an initial guess for fields, new fields and densities are computed
after solving the modified diffusion and Poisson–Boltzmann equation by finite
difference methods [81]. Broyden�s method [81] has been used to solve the set of
nonlinear equations. The equilibrium value of the degree of ionization ( f 	) is
obtained after minimizing the free energy with respect to f. We carry out the
numerical minimization of free energy over f using Brent�s method [81]. The results
presented in this paper were obtained by using a grid spacing of Dr ¼ 0:1 and
contour steps of Dt ¼ 0:01.

On the other hand, the self-consistent minimization of the free energy in the
variational method has been carried out by assuming a uniform expansion of the
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chain within spherical symmetry. In this formalism, the free energy is minimized
simultaneously with respect to f and l1, and both these quantities at equilibrium
( f 	; l	1) are computed self-consistently. The radius of gyration of the chain (which is
confined to a finite volume,V ¼ 4pR3=3) is obtained from the equilibrium value of
the expansion factor l	1. For these calculations, the upper bound for the radius of
gyration of the chain is specified to be the radius of the confining volume (thatmeans
Rg � R) to mimic the confinement effects. Also, the Kuhn step length l is taken to be
unity in both variational and SCFT calculations.

6.5.4
Degree of Ionization

We have carried out an exhaustive comparison between the SCFT and variational
formalisms by calculating the equilibrium degree of ionization ( f 	) of a negatively
charged single flexible polyelectrolyte chain (that means Zp ¼ �1;Zc ¼ 1) in the
presence of a monovalent salt. The equilibrium degree of ionization is determined
as a function of the strength of the electrostatic interaction (or Coulomb strength)
that is proportional to the Bjerrum length lB for a given solvent. For both cases, the
effective charge expectedly decreases (Figure 6.26) with higher Coulomb strengths
that help a progressively larger degree of adsorption of counterions on the chain
backbone. However, f 	 obtained from the variational procedure is systematically
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Figure 6.26 Comparison of SCFT and the variational formalism (with one-loop corrections) to
illustrate the effect of correlations among small ions on the effective degree of ionization ( f 	).
Zp ¼ �Zc ¼ �1;R=l ¼ 10;N ¼ 100; cs ¼ 0:1M; xps ¼ 0:45, and d ¼ 3.
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higher than that from SCFT. It is to be noted that the degree of ionization is
essentially zero in SCFT for experimentally relevant values of lB=l (around 3 for
aqueous solutions), whereas f 	 is reasonable in the variational theory. Although
both theories use different approximations and computational procedures, there is
onemajor conceptual input that distinguishes these theories. While the variational
formalism of Ref. [1] includes the density fluctuations of small ions as one-loop
corrections to the free energy, the SCFTdoes not address these fluctuations. In an
effort to quantify the consequences of small ion density fluctuations and then
compare the consequences of the rest of the terms in the variational theory against
SCFT (which does not contain small ion density fluctuations by construction),
we subtract DF from Fvariational and then compute f 	. The results are given in
Figures 6.27, and 6.29 and 6.30.

Remarkably, in different conditions corresponding to widely varying degrees of
confinement, the f 	 obtained by the minimization of SCFT free energies is indis-
tinguishable from that obtained using variational free energies without one-loop
corrections (thatmeansFvariational�DF).Wedemonstrate this in Figure 6.27wherewe
have plotted f 	 as a function of lB=l for different spherical volumes (that means
different R). Thus, we arrive at two conclusions: (a) density fluctuations of small
ions included in the full variational formalism significantly contribute in deter-
mining the equilibrium degree of ionization and lead to better values of f 	 than

Figure 6.27 Comparison of f 	 computed
using SCFT and the variational formalism
(without one-loop correction) for different
values of R and lB=l. Zp ¼ �Zc ¼ �1,N ¼ 100,

cs ¼ 0:1M, xps ¼ 0:45, and d ¼ 3. Plot for
SCFT when R=l ¼ 10 is the same as in
Figure 6.26.
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SCFT; (b) the value of f 	 is remarkably indistinguishable between the SCFTand the
variational formalismwith deliberate suppression of small ion densityfluctuations.
The first conclusion can be readily rationalized as follows by considering the two
curves in Figure 6.26.

The increase in f 	 with the inclusion of DF can be understood by the fact that the
densityfluctuations of the small ions lower the free energy, and its contribution to the
total free energy increases with the increase in the number of �free� ions (goes
like�n3=2 in salt-free case, where n is the number of �free� ions – cf. Eq. (6.136)). For
higher values of lB=l (above 4), all counterions are adsorbed on the chain so that the
degree of ionization of the chain is zero irrespective of the density fluctuations. In
contrast, for lower values of lB=l (below 0.5), the chain is fully ionized and the effect of
the density fluctuations of the small ions on the effective degree of ionization is
minimal. However, for the intermediate values of lB=l, the density fluctuations of
the small ions significantly affect the degree of ionization, and nonmonotonic devia-
tions from the SCFT results as a function of lB=l are observed in this regime. Also,
term-by-term comparison of the free energy components reveals that the discrepancy
arises solely due to the termaccounting for densityfluctuations of the small ions. This
disagreement highlights the fact that the effect of density fluctuations of the small
ions is not included in SCFT within the saddle-point approximation.

The above second conclusion requires further scrutiny. The remarkable agree-
ment between the two formalisms is surprising since these theories use different
approximations and different computational procedures. In the variational formal-
ism of Ref. [1], which is used in this chapter, the chain swelling due to electrostatic
interaction is assumed to be spherically uniform at all length scales and at the level of
Debye–H€uckel potential between the segments. However, this scheme is more
tractable analytically with different contributing factors (Table 6.2) having explicit
physical interpretation. On the other hand, in SCFT, the electrostatic interaction is at
the nonlinear Poisson–Boltzmann level, and the chain expansion is addressed at all
local length scales through fields generated by intersegment potentials. Although the
chain conformations are not readily accessible in the standard version of SCFTused
here, the free energy of the system can be calculated and its resolution into entropic
and enthalpic parts is possible. In view of such apparently divergent approaches in
SCFTand the variational formalisms, we now proceed to make quantitative compar-
isons between the two in terms of the various contributing factors.

6.5.5
Term-by-Term Comparison of Free Energy: SCFT and Variational Formalism

To assess the approximations used in the variational theory and tofind out the origin of
the remarkable agreement in terms of the equilibrium effective charge ( f 	) obtained
from SCFTand variational theory (with deliberate suppression of one-loop corrections
for small ion density fluctuations), we have compared individual contributions to the
free energies in these two formalisms.Before presenting thenumerical results, the role
of different contributions in driving the counterion adsorption can be understood
qualitatively by considering the following physical picture.
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The driving forces for the counterion adsorption are the formation of ion-pairs due
to the presence of strong attractive interactions in the process (self-energy of the
dipoles) and the decrease in intramolecular electrostatic repulsions (comparedwith a
fully ionized chain, where these repulsions are the strongest). However, an extensive
counterion adsorption on the chain backbone is unfavorable due to the loss in
translational degrees of freedom of the �free� counterions. Another factor, which
plays a role in this competition of the energy and entropy, is the translational entropy
of the �adsorbed� counterions. This entropic feature alone favors a state where half
the charges on the chain backbone are free and the other half adsorbing the
counterions. With an increase in the electrostatic interaction strength (that means
Bjerrum length), the driving forces for the counterion adsorption increase and drive
more and more counterions to the backbone. On the other hand, an extensive
counterion adsorption leads to the chain contraction due to lower intramolecular
electrostatic repulsions (a result of the lower number of bare charged sites) even
when the electrostatic interaction strength is high. However, we show that the
counterion adsorption leading to the lowering of the effective charge (that decreases
the electrostatic energy due to the formation of ion-pairs) has a bigger effect than
the chain contraction (which affects the chain conformational entropy and
polymer–solvent entropy) or the increase in intramolecular electrostatic repulsions
among the unadsorbed segments as we gradually increase the Bjerrum length.
Of course, in addition, correlations of small ion density fluctuations also contribute
to f 	, in the full variational calculation. Numerical results on the relative importance
of the various contributions to the total free energy along with their role in driving
the counterion adsorption are presented below.

To start with, in Figure 6.28, we have plotted the total free energy calculated in both
methods for the following set of parameters:
Zp ¼ �Zc ¼ �1, R=l ¼ 10;N ¼ 100, cs ¼ 0:1M; d ¼ 3, and xps ¼ 0:45. It is clear
that the total free energies obtained from SCFT and the variational theory are in
quantitative agreement with each other.

To analyze this striking agreement between the two methods, we focus on the
individual components of the free energy as listed in Table 6.2. In Figures 6.29
and 6.30, we have compared these different constituents of the free energy obtained
from both SCFT and the variational formalisms for low monomer densities. It is
evident that both theories predict that the major contributions to the free energy are
from the ion-pair energy (Figure 6.29a), the �adsorbed� counterion translational
entropy (Figure 6.29b), the polymer–solvent interaction energy and the solvent
entropy (Figure 6.29c), and the �free� ions translational entropy (Figure 6.29d).
Contributions due to the chain conformational entropy (Figure 6.30a) and the
electrostatic energy (Figure 6.30b) are almost negligible (less than 0:1% in the total
free energy) compared to others. For low monomer densities (monomer volume
fractions lower than 0.1), the dominant contributions to the total free energies
come from the polymer–solvent interaction energy and the solvent entropy. For the
particular single chain dilute system investigated here, these contributions account
for more than 50% of the total free energy. Although large, these contributions are
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found to be almost insensitive to f. For example, polymer–solvent interaction energy
changes only by less than 0:5kBT when lB=l is varied from 0.2 to 5.0. On the other
hand, f 	 changes from 1 to 0 in the same range of lB=l. In fact, the f-dependent terms
contributing significantly to the total free energy are the ion-pair energy and the �free�
ions translational entropy. At lower electrostatic interaction strengths (that means
low lB=l), the translational entropy of the �free� ions dominates, and at higher
electrostatic strengths, the ion-pair energy term contributes significantly to the free
energy. Together, these two contributions account for as high as 99% of the
f-dependent part in the total free energy (cf. Figures 6.28 and 6.29a and d). Relatively
very small contributions (� 1%) to the free energies come from the translational
entropy of the �adsorbed� ions. We will see below, however, that the relative
importance of a particular contribution in determining the equilibrium degree of
ionization is not necessarily related to its actual contribution to the total free energy.

We now discuss the various trends seen in Figures 6.29 and 6.30, based on
conceptual arguments aided by the different terms in Table 6.2. Intuitively, stronger
ion-pair energy should promote counterion adsorption. As lB=l is increased, the
energy due to counterion adsorption should decrease monotonically, as seen in
Figure 6.29a. From Eq. (6.129), it is clear that the ion-pair energy (note the negative
contribution) favors counterion adsorption with a linear dependence on f and the
Coulomb strength lB, hence a progressive gain in adsorption energy with increasing
Coulomb strength (Figure 6.29a). On the other hand, the counterion adsorption is
opposed by the translational entropy of the �free� ions (see the expression for TSi in
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Figure 6.28 Comparison of total free energies (at equilibrium, for f ¼ f 	) obtained fromSCFT and
the variational calculations (without one-loop correction). Zp ¼ �Zc ¼ �1;R=l ¼ 10;N ¼ 100;
cs ¼ 0:1M; xps ¼ 0:45, and d ¼ 3.
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Table 6.2), and hence a progressive loss of the part of the free energy related to the
translational entropy (Figure 6.29d). The plateau in Figure 6.29d arises due to the
completion of the adsorption of all counterions that limits the loss in the number of
free counterions (which is the number of salt ions) with increasingCoulomb strength.
However, there is no plateau in Figure 6.29a because even after all counterions are
adsorbed, the ion-pair energy continually decreases due to an increasing Coulomb
strength. In addition, the translational entropy of the �adsorbed� counterions (�TSa)
drives the adsorption toward f 	 ¼ 0:5 to optimize this part of the entropy (cf.
Eq. (6.130)). Physically, it can beunderstood from the fact that the complete adsorption
of the counterions leads to the lowering of the translational entropy of the �adsorbed�
counterions due to the unavailability of sites. Similarly, a complete desorption of the
counterions also leads to the lowering of translational entropy of the �adsorbed�
counterions due to the unavailability of the �adsorbed� counterions on the chain
backbone. For a given N, the translational entropy of the �adsorbed� counterions is
optimum at f 	 ¼ 0:5. We note, however, that the other two contributions might
overwhelm �TSa so that at equilibrium it is not necessarily at its minimum
(Figure 6.29b). With varying Coulomb strength, �TSa is minimum at around
lB=l ¼ 0:8 at which f ’ 0:5, which is prevalently determined by the first two compo-
nents mentioned above. The role of other contributions, that is, the polymer–solvent
interaction energies and the solvent entropy (that means Ew�TSs), the electrostatic
energy involving the �free� ions and the monomers (Ee) and the conformational
entropy of the chain (�TSp) is minuscule in driving the counterion adsorption in a
particular direction.However, these three contributions dictate the effective size of the
chain (through l1) at the equilibrium (note the dependence of these terms on l1 in
Table 6.2). Further, the equilibrium counterion distribution specified by the first three
contributions stipulates the actual contributions of the last three parts of the free
energy at equilibrium.We have noticed before that with increasing Coulomb strength
(lB=l) the number of free counterions (and, therefore, the effective charge of the chain)
decreases. Owing to a decreasing electrostatic repulsion between the monomers, the
polymer chainprogressively contractsuntil it reaches itsGaussian size at zero effective
charge. Consequently, there is less mixing between the polymer and the solvent at
higher Coulomb strengths leading to a gradual loss of polymer–solvent interaction
energy (Figure 6.29c) that reaches a plateau when all counterions adsorb, the physical
condition that creates plateaus in all these curves. Also accompanying the decreasing
size of the chain, there is a gain in conformational entropy (which is maximum at the
Gaussian size) observed inFigure 6.30a. In addition, a gradual decrease in the effective
charge of the chain progressively reduces the electrostatic energy penalty observed in
Figure 6.30b. However, this effect is very small compared to the lowering of
electrostatic energy due to the formation of ion-pairs as mentioned earlier.

The quantitative agreement between thefirst three contributions to the free energy
in two formalisms explains the observed agreement in the results obtained for f 	

(Figure 6.27). Despite Ee having a negligible contribution to the total free energy (less
than 0:1%), the comparison reveals that the Debye–H€uckel estimate for the elec-
trostatic energy (Ee) used in the variational formalism is an overestimation (as large as
five times the full, nonlinear Poisson–Boltzmann at low lB=l). In other words, the
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Debye–H€uckel approximation underestimates the degree of screening, which is in
agreement with other theoretical [94] and simulation results [95]. Note that the
electrostatic energy in Figure 6.30b includes all the charged species in the system
except the ion-pairs formed on the chain by the adsorbing counterions. Nevertheless,
contributions due to the electrostatic energy to total free energy are almost negligible
and hence do not affect f 	 significantly.

We have also carried out the same comparison between the two formalisms at
highermonomer densities (abovemonomer volume fractions of 0.1). It is found that
the discrepancy in the polymer–solvent interaction energy and the solvent entropy
between the two schemes is significant (see Figure 6.31). All other contributing
factors are essentially the same between the two theories. The origin of this
discrepancy lies in the expansion of the ð1�rpÞ log ð1�rpÞ term, which is carried
up to only terms quadratic in polymer density in the variational calculations . The
higher order terms in the expansion are ignored in the variational calculations to
carry out the analysis analytically, which limits the applicability of the variational
theory to sufficiently low monomer concentrations. The discrepancy clearly high-
lights the breakdown of the variational procedure at high densities and questions the
use of an effective excluded volume parameter in variational calculations. However,
we have not attempted to compute the boundary of the disagreement between the
theories because the main focus of this chapter is on f 	 that is insensitive to this
discrepancy. Also, the variational formalismpredicts the polymer–solvent interaction
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interaction energy and solvent entropy contributions arise at high monomer densities.
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energy and the solvent entropy to be completely independent of the electrostatic
interaction strength lB=l in the high-density regime, in contrast to SCFTpredictions
of a weak dependence on lB=l (see Figure 6.31). This is a result of the constraint
Rg � R used in variational calculations for mimicking the confinement effects and
shows the inability of the constraint to capture the confinement effects in an
appropriate fashion. While the radius of gyration Rg of the chain follows readily
from l1 in the variational formalism, it is nontrivial to compute this quantity in SCFT.
In view of this, we have not addressed Rg in the present paper.

Finally, we remark on the experimental relevance of the radius parameterR for the
confining cavity. The variational calculation readily givesRg without any confinement
for fixed values of monomer density and other parameters such as lB; xps; and cs.
Knowing this result, we have investigated the role played by the cavity radius R in the
above analysis. If R is larger than Rg, then the above conclusions are relevant to
unconfined dilute polyelectrolyte solutions. On the other hand, if R is less than Rg,
then confinement effect is manifest and now our results are relevant to a polyelec-
trolyte chain inside a spherical pore. As an example, for N ¼ 100; cs ¼ 0:1M,
xps ¼ 0:45, and d ¼ 3, the calculated value of Rg=l from the variational procedure
depends on lB and attains a maximum value of 7.29, whereas R=l ¼ 10:0 in
Figures 6.28–6.30. Therefore, the conclusions drawn above based on these figures
are generally valid for dilute polyelectrolyte solutions. On the other hand, R=l ¼ 4:0
in Figure 6.31, whereas the maximum value of Rg would have been 5.92 if
confinement were to be absent. Under these conditions, the conclusions regarding
the discrepancy between SCFTand variational theory is pertinent to a polyelectrolyte
chain confined inside a spherical cavity.

In summary, we have computed the effective charge of a single flexible polyelec-
trolyte chain using SCFTand compared it with the results obtained from a variational
theory. It is found that for all sets of parameters, the effective degree of ionization ( f 	)
computed from SCFTand the variational theory is in quantitative agreement if one-
loopfluctuation corrections are deliberately suppressed in the latter. The origin of this
agreement lies in the fact that f 	 is determined as an interplay of the ion-pair energy
and the translational entropy of the �adsorbed� counterions as well as of all �free�
ions. The conformational entropy of the chain, the electrostatic energy involving the
�free� ions and the chain, the polymer–solvent interaction energy and the solvent
entropy do not play significant roles in affecting f 	.

The comparison of different components in free energy reveals that the
Debye–H€uckel approximation underestimates screening effects as compared to the
Poisson–Boltzmann theory. Despite the fact that there are small discrepancies in
the different contributing factors to the total free energy, the effective degree of
ionization ( f 	) comes out to be the same inSCFTand the truncated variational theory.
Furthermore, the densityfluctuations of the �free� ions, which are included in the full
variational theory, are predicted to increase the equilibrium degree of ionization.
As this latter effect is not captured by SCFT calculations within the saddle-point
approximation and due to the close agreement between SCFT and the variational
theory for all other contributing factors, the variational theory appears to be a very
useful tool for a quick, easy, and transparent estimation of f 	.
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6.6
Conclusions

We have given an overview of the present status of theoretical treatments for isolated
flexible polyelectrolyte chains in polar solvents under experimentally relevant con-
ditions. The importance of nonuniversal nature of the polymer backbone, ionic radii
of counterions and coions, and the dielectric mismatch around the chain backbone
are addressed in addition to the entropic effects of chain connectivity and long-ranged
electrostatic interactions. By comparingwith the Langevin dynamics simulations and
numerically solved self-consistent field theories, we find the variational theory to
provide an adequate and reliable insight into the charge and size of flexible
polyelectrolyte chains. In addition to the usual Flory–Huggins parameter for the
immiscibility of a hydrophobic polymer in a polar solvent, a new dielectricmismatch
parameter has been introduced to collect most of the nonuniversal aspects of
electrostatic interactions between chain segments and solvated ions. Further com-
parisonwith experimental data on a variety of systemswill help establish the utility of
computational schemes reviewed in this chapter.

Acknowledgments

Financial support for this work was provided by the NIHGrant No. 5R01HG002776,
National Science Foundation (NSF) Grant No. 0605833, and the MRSEC at the
University of the Massachusetts, Amherst.

References

1 Muthukumar, M. (2004) J. Chem. Phys.,
120, 9343.

2 Manning, G.S. (1969) J. Chem. Phys., 51,
924.

3 Gonzalez-Mozuelos, P. and
Olvera de la Cruz, M. (1995) J. Chem.
Phys., 103, 3145.

4 Olvera de la Cruz, M., Belloni, L.,
Delsanti, M., Dalbiez, J.P., Spalla, O., and
Drifford, M. (1995) J. Chem. Phys., 103,
5781.

5 Kuhn, P.S., Levin, Y., and Barbosa, M.C.
(1998) Macromolecules, 31, 8347.

6 Solis, F.J. andOlvera de la Cruz,M. (2000)
J. Chem. Phys., 112, 2030.

7 Solis, F.J. (2002) J. Chem. Phys., 117, 9009.
8 Winkler, R.G., Gold, M., and Reineker, P.

(1998) Phys. Rev. Lett., 80, 3731.
9 Liu, S. and Muthukumar, M. (2002) J.

Chem. Phys., 116, 9975.

10 Mehler, E.L. and Eichele, G. (1984)
Biochemistry, 23, 3887.

11 Lamm, G. and Pack, G.R. (1997) J. Phys.
Chem. B, 101, 959.

12 Rouzina, I. and Bloomfield, V.A. (1998)
Biophys. J., 74, 3152.

13 Kundagrami, A. and Muthukumar, M.
(2008) J. Chem. Phys., 128, 244901.

14 Kumar, R. and Muthukumar, M. (2008)
J. Chem. Phys., 128, 184902.

15 Kumar, R., Kundagrami, A., and
Muthukumar, M. (2009) Macromolecules,
42, 1370.

16 Ewald, P. (1921) Ann. Phys., 64, 253.
17 Fincham, D. (1994) Mol. Simul., 13, 1.
18 Zhang, Y.B., Douglas, J.F., Ermi, B.D., and

Amis, E.J. (2001) J. Chem. Phys., 114, 3299.
19 Prabhu, V.M., Muthukumar, M., Wignall,

G.D., and Melnichenko, Y.B. (2001)
Polymer, 42, 8935.

References j339



20 Bordi, F., Cametti, C., Tan, J.S., Boris,
D.C., Krause,W.E., Plucktaveesak, N., and
Colby, R.H. (2002) Macromolecules, 35,
7031.

21 Muthukumar,M. (1987) J. Chem.Phys., 86,
7230.

22 Muthukumar, M. (1989)Molecular Basis of
Polymer Networks (eds A. Baumg€artner
and C.E. Picot), Springer Proceedings in
Physics, vol. 42, Springer, NewYork, p. 28.

23 Muthukumar, M. (1996) J. Chem. Phys.,
105, 5183.

24 Wittmer, J., Johner, A., and Joanny, J.F.
(1995) J. Phys. II France, 5, 635.

25 Beer, M., Schmidt, M., and Muthukumar,
M. (1997) Macromolecules, 30, 8375.

26 Muthukumar, M. and Nickel, B.G. (1987)
J. Chem. Phys., 86, 460.

27 Liu, S., Ghosh, K., and Muthukumar, M.
(2003) J. Chem. Phys., 119, 1813.

28 Rouzina, I. and Bloomfield, V.A. (1996)
J. Phys. Chem., 100, 9977.

29 Ha, B.-Y. and Liu, A.J. (1997) Phys. Rev.
Lett., 79, 1289.

30 Golestanian, R., Kardar, M., and
Liverpool, T. (1999) Phys. Rev. Lett., 82,
4456.

31 Grosberg, A.Yu., Nguyen, T.T., and
Shklovskii, B.I. (2002) Rev. Mod. Phys., 74,
329.

32 Micka, U. and Kremer, K. (2000) Europhys.
Lett., 49, 189.

33 Hsiao, P.-Y. and Luijten, E. (2006) Phys.
Rev. Lett., 97, 148301.

34 Huber, K. (1993) J. Phys. Chem., 97, 9825.
35 Zhang, Y., Douglas, J.F., Ermi, B.D., and

Amis, E.J. (2001) J. Chem. Phys., 115, 4367.
36 Murayama, Y., Sakamaki, Y., and Sano, M.

(2003) Phys. Rev. Lett., 90, 018102.
37 Besteman, K., Van Eijk, K., and Lemay,

S.G. (2007) Nat. Phys., 3, 641.
38 Prabhu,V.M.,Amis, E.J., Bossev,D.P., and

Rosov, N. (2004) J. Chem. Phys., 115, 4367.
39 Loh, P., Deen, G.R., Vollmer, D., Fischer,

K., Schmidt, M., Kundagrami, A., and
Muthukumar, M. (2008) Macromolecules,
41, 9352.

40 Reddy, G. and Yethiraj, A. (2006)
Macromolecules, 39, 8536.

41 Manning, G.S. (1981) J. Phys. Chem., 85,
1506.

42 Goerigk, G., Huber, K., and Schweins, R.
(2007) J. Chem. Phys., 127, 154908.

43 Ikeda, Y., Beer, M., Schmidt, M., and
Huber, K. (1998) Macromolecules, 31, 728.

44 Schweins, R. and Huber, K. (2001) Eur.
Phys. J. E, 5, 117.

45 Goerigk, G., Schweins, R., Huber, K.,
and Ballauff, M. (2004) Europhys. Lett., 66,
331.

46 Schweins, R., Goerigk, G., and Huber, K.
(2006) Eur. Phys. J. E, 21, 99.

47 Narh, K.A. and Keller, A. (1993) J. Polym.
Sci., Part B: Polym. Phys., 31, 231.

48 Edwards, S.F. (1965) Proc. Phys. Soc.
London, 85, 613.

49 Edwards, S.F. (1975) J. Phys. A: Math.
Gen., 8, 1670.

50 Doi, M. and Edwards, S.F. (1986) The
Theory of Polymer Dynamics, Clarendon
Press, Oxford.

51 Fleer, G.J., Cohen Stuart, M.A.,
Scheutjens, J.M.H.M., Cosgrove, T., and
Vincent, B. (1993) Polymers at Interfaces,
Chapman & Hall, London.

52 Helfand, E. (1975) J. Chem. Phys., 62, 999.
53 Freed, K.F. (1987) Renormalization Group

Theory of Macromolecules, John Wiley &
Sons, Inc., New York.

54 de Gennes, P.G. (1979) Scaling Concepts in
Polymer Physics, Cornell University Press,
Ithaca and London.

55 Fredrickson, G.H. (2006) The Equilibrium
Theory of Inhomogeneous Polymers, Oxford
University Press, New York.

56 Freed, K.F. (1972) Adv. Chem. Phys., 22, 1.
57 Schmid, F. (1998) J. Phys.: Condens.Matter,

10, 8105.
58 Matsen, M.W. (2002) J. Phys.: Condens.

Matter, 14, R21.
59 Helfand, E. (1975)Macromolecules, 8, 552;

Helfand, E. (1976)Macromolecules, 9, 879;
Helfand, E. (1978) Macromolecules, 11,
960;Helfand, E. (1980)Macromolecules, 13,
994.

60 Hubbard, J. (1959) Phys. Rev. Lett., 3, 77.
61 Shi, A. and Noolandi, J. (1999) Macromol.

Theory Simul., 8, 214.
62 Wang, Q., Taniguchi, T., and

Fredrickson, G.H. (2004) J. Phys. Chem. B,
108, 6733;Wang, Q., Taniguchi, T., and
Fredrickson, G.H. (2005) J. Phys. Chem. B,
109, 9855.

63 Kumar, R. and Muthukumar, M. (2007)
J. Chem. Phys., 126, 214902.

64 Wang, Q. (2005)Macromolecules, 38, 8911.

340j 6 Simulations and Theories of Single Polyelectrolyte Chains



65 Wang, Q. (2006) J. Phys. Chem. B, 110,
5825.

66 Witte, K.N. and Won, Y.Y. (2006)
Macromolecules, 39, 7757.

67 Seki, H., Suzuki, Y.Y., and Orland, H.
(2007) J. Phys. Soc. Jpn., 76, 104601.

68 Borukhov, I., Andelman, D., and Orland,
H. (1998) Eur Phys. J. B, 5, 869.

69 Israelachvili, J.N. (1991) Intermolecular
and Surface Forces, Academic Press,
London.

70 McQuarie, D.A. (2000) Statistical
Mechanics, University Science Books,
Sausalito, CA.

71 Falk, D.S. (1960) Phys. Rev., 118, 105.
72 Mahan, G.D. (2000)Many-Particle Physics,

3rd edn, Springer.
73 B€ottcher, C.J.F. (1973) Theory of Electric

Polarization, Elsevier, Amsterdam.
74 Flory, P.J. (1953) Principles of Polymer

Chemistry, Cornell University Press,
New York.

75 Leibler, L. (1980)Macromolecules, 13, 1602.
76 Ohta, T. and Kawasaki, K. (1986)

Macromolecules, 19, 2621; Ohta, T. and
Kawasaki, K. (1988) Macromolecules, 21,
2972; Ohta, T. and Kawasaki, K. (1990)
Macromolecules, 23, 2413.

77 Marko, J.F. and Rabin, Y. (1991)
Macromolecules, 24, 2134; Marko, J.F.
and Rabin, Y. (1992) Macromolecules, 25,
1503.

78 Jackson, J.D. (1962) Classical
Electrodynamics, John Wiley & Sons, Inc.,
New York.

79 Hansen, J.P. and McDonald, I.R. (1996)
Theory of Simple Liquids, Elsevier
Academic Press, San Diego, CA.

80 Ceniceros, H.D. and Fredrickson, G.H.
(2004) Multiscale Model. Simul., 2, 452.

81 Press, W.H., Teukolsky, S.A., Vetterling,
W.T., and Flannery, B.P. (1992) Numerical
Recipes in C, Cambridge University Press,
New York.

82 Sayyed-Ahmad, A., Tuncay, K., and
Ortoleva, P.J. (2004) J. Comp. Chem., 25,
1068.

83 Matsen, M.W. and Schick, M. (1994) Phys.
Rev. Lett., 72, 2660; Matsen, M.W. and
Bates, F.S. (1996) Macromolecules, 29,
1091.

84 Hermann, M.R. and Fleck, J.A. (1988)
Phys. Rev. A, 38, 6000; Tzeremes, G.,
Rasmussen, K.O., Lookman, T., and
Saxena, A. (2002) Phys. Rev. E, 65, 041806.

85 Weiss, G.H. and Maradudin, A.A. (1962)
J. Math. Phys., 3, 771.

86 Fredrickson, G.H. and Helfand, E. (1987)
J. Chem. Phys., 87, 697.

87 Olvera de la Cruz, M. (1991) Phys. Rev.
Lett., 67, 85.

88 Muthukumar, M. (1993) Macromolecules,
26, 5259.

89 Shi, A.C., Noolandi, J., and Desai, R.C.
(1996) Macromolecules, 29, 6487; Laradji,
M., Shi, A.C., Noolandi, J., andDesai, R.C.
(1997) Phys. Rev. Lett., 78, 2577; Laradji,
M., Shi, A.C., Noolandi, J., andDesai, R.C.
(1997) Macromolecules, 30, 3242.

90 Fredrickson, G.H., Ganesan, V., and
Drolet, F. (2002) Macromolecules, 35, 16.

91 Muller, M. and Schmid, F. (2005) Adv.
Polym. Sci., 185, 1.

92 Muthukumar, M. and Edwards, S.F.
(1982) J. Chem. Phys., 76, 2720.

93 Muthukumar, M. (2003) J. Chem. Phys.,
118, 5174.

94 Stigter, D. (1995) Biophys. J., 69, 380.
95 Stevens, M.J. and Kremer, K. (1996)

J. Phys. II, 6, 1607.

References j341





7
Multiscale Modeling and Coarse Graining of Polymer
Dynamics: Simulations Guided by Statistical
Beyond-Equilibrium Thermodynamics
Patrick Ilg, Vlasis Mavrantzas, and Hans Christian Öttinger

7.1
Polymer Dynamics and Flow Properties We Want to Understand:
Motivation and Goals

7.1.1
Challenges in Polymer Dynamics Under Flow

Polymer molecules differ from simple fluids in several aspects: they are extremely
diverse in structure (they can have a linear, branched, ring-like, or block copolymer
structure), they can be characterized by amolecular weight distribution, and they are
capable of exhibiting a huge number of configurations implying that a large number
of degrees of freedom should be accounted for in anymolecular modeling approach.
As a result, polymers exhibit properties that are totally distinct from those of the
simpler Newtonian liquids. The drag reduction phenomenon (the substantial
reduction in pressure drop during the turbulent flow of a Newtonian liquid when
a very small amount of a flexible polymer is added), their unique rheological
properties (shear thinning and normal stress differences in simple shear, strain
hardening in elongation, complex viscosity, anisotropy in thermal conductivity and
diffusivity), and a plethora of other phenomena associatedwith their elastic character
are only a few manifestations of the departure of their behavior from the Newtonian
one [1, 2].Of particular importance fromamechanical orfluid dynamics point of view
is their viscoelasticity quantifying the irreversible conversion of the work needed for
their deformation to heat loss but also their capability to store part of this work as
elastic energy. It is a property closely related to the multiplicity of time- and length
scales characterizing the dynamics and structure in these fluids. Thus, even in the
viscous regime (Wi � 1, whereWi is the Weissenberg number empirically defined
asWi ¼ tp _cwith tp being the longest relaxation time and _c theflow rate), theflow can
still be strong enough for several degrees of freedom not to be close to equilibrium
giving rise to interesting rheological properties also there [2], especially for high
molecular weight polymers.

Understanding relaxation processes and structure development occurring over
these multiple scales is a prerequisite for deriving reliable constitutive equations
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connecting the stresses developing in these materials in terms of the imposed flow
kinematics and certain molecular parameters or functions, and for computing
polymer flows [3–10]. It is only through a comprehensive understanding across
scales that one can hope to build the relationship between polymer molecular
structure, conformation and architecture and macroscopic rheological response. In
addition to experiments and theories, molecular simulations can play a significant
role by providing high-resolution calculations especially on the crossover from small
to intermediate scales. This chapter is devoted to a brief discussion of some of the
emerging multiscale simulation approaches in the recent research literature on
nonequilibrium systems, with emphasis on those based on well-founded theoretical
frameworks. Our goal is to demonstrate that with the help of and guidance from
recent advances in the field of nonequilibrium statistical mechanics and thermo-
dynamics, this highly demanding endeavor (modeling across scales) can lead to
simulation methodologies that have been elevated from simple, brute-force compu-
tational experiments to systematic tools for extracting complete, redundancy-free,
and consistent coarse-grained information for the flow dynamics of polymeric
systems [11].

7.1.2
Modeling Polymer Dynamics Beyond Equilibrium

Describing macromolecular configurations under nonequilibrium conditions is an
extremely difficult problem, which usually requires simplified models for analytical
or numerical studies [2]; such simple models have contributed enormously to our
understanding of polymer rheology and mechanics. For a review on proposed
models, see, for example, [12–16], while for a review on available simulation tools
addressing different time- and length scales, see Refs [17–23]. Figure 7.1 shows a
schematic of the pertinentmodels for polymer solutions andmelts depending on the
length- and timescale of interest.

In general, examples of macroscopic constitutive equations employed to calculate
polymer flow behavior include typically conformation tensor models such as the
Giesekus, Maxwell, and FENE models as well as the more recently proposed pom-
pom, CCR, and Rolie-Poly models [15, 16, 24–27]. For an overview, see Refs [3, 4] as
well as the contributions by A.N. Beris and E.Mitsoulis in this volume.Most of these
constitutive equations have been derived (or inspired) by simple mechanical models
of polymer motion. They are mesoscale, kinetic theory models (based, for example,
on the dumbbell, FENE, bead-spring chain, and bead-rod chain analogues) capable of
accounting for some important aspects of polymer dynamics, such as chain stretch-
ing, nonaffine deformation, diffusion, and hydrodynamic drag forces, either sepa-
rately or altogether [28]. In polymer solutions, in particular, one should account for
the solvent-mediated effect between beads (known as hydrodynamic interaction),
which is usually modeled with the hydrodynamic resistance matrix [2, 29]. Recently,
an efficient simulation of solvent dynamics with the help of either the lattice
Boltzmann [30, 31] or the stochastic rotation dynamics [32, 33] methods has been
proposed with a suitable coupling of the bead dynamics. Besides their efficiency,
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these combined methods also incorporate nonuniformities and fluctuations in
internal flow fields.

Usually, the mesoscopic, kinetic models are considered to be well suited for
predicting dynamic properties of polymer solutions onmacroscopic scales. Details of
the fast solvent dynamics are in most cases irrelevant for macroscopic properties.
Exceptions are polyelectrolytes, where the motion of counterions in the solvent can
have a major influence on polymer conformation. Therefore, more microscopic
models of polyelectrolytes with explicit counterions are sometimes employed [34]
(see also the contribution by M. Muthukumar in this volume). Another exception is
the dynamics of individual biopolymers, for example, protein folding, which is
modeled with an all atomistic model including an explicit treatment of the (water)
solvent molecules [35].

For typical polymer melts, dumbbell models are inappropriate since they fail to
account for the essential role of entanglements on the long-time dynamics. Suc-
cessful mesoscopic, mean field descriptions of entangled melts are offered by
reptationmodels [14]. Severalmodifications of the original Doi–Edwards–deGennes
reptation theory have been proposed over the years in order to improve comparison to
experiments in the linear and nonlinear flow regimes [36–43]. Recently, slip-link
models have also been proposed [44–50], providing a slightly more detailed descrip-
tion of entanglements, and which agree well with available experimental results.

At the microscopic level, polymer melts are modeled as multichain systems, see
Refs [2, 12, 13, 51]. For example, all-atom or united-atom force fields, accounting
explicitly for bond angle bending and torsion angle contributions (in addition to bond
stretching and intermolecular interactions) [52, 53], are available. Different united-
atom force fields are reviewed and compared, for example, in Refs [51, 54, 55]. From
such detailed atomisticmolecular dynamics (MD) simulations, the linear viscoelastic

Figure 7.1 Differentmodels of polymer dynamics are schematically shown for solutions andmelts.
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properties can be computed by Green–Kubo relationships [56–58]. Also, less detailed
bead-springmodels are available; a prototypicalmodel is that ofKremer andGrest [59]
(or variants thereof [60]), which neglects chemical details and instead focuses on the
interplay between chain connectivity and excluded volume effects. The nonlinear
regime can be studied by nonequilibriummolecular dynamics (NEMD) simulations,
which directly address flow effects on polymer structure and conformation, both in
shear and planar elongation (see, for example, [12, 60–67] and references therein).
They are based on flow-adapted boundary conditions, such as those proposed by Lees
and Edwards for planar shear [68] and by Kraynik and Reinelt for planar
elongation [69].

7.1.3
Challenges in Standard Simulations of Polymers in Flow

Despite the enormous advances in the field of molecular simulations [4, 18, 21, 22,
70–73], predicting the macroscopic flow properties of polymers from their under-
lying microstructure presents still major challenges [74]. Available MD and NEMD
algorithms can address timescales only on the order of a few microseconds at most,
implying that only moderately entangled polymers can be studied in full atomistic
detail in a brute-force manner. Extending the simulations to longer, truly entangled
polymers is afirst big task. Extending theseflows tomixedor inhomogeneousflows is
another big challenge. Among others, such a development would help understand
the origin of interfacial slip and its mode (localized slip versus global slip) in the flow
past a solid substrate. On the other hand, with the introduction of the revolutionary
set of chain connectivity altering moves, extremely powerful Monte Carlo (MC)
algorithms have been developed that have helped overcome the issue of the thermal
equilibration of long polymers even at beyond-equilibrium conditions [75–79]. With
the help of the end-bridging and double bridging moves, for example, truly long
polyethylene (PE) (linear and branched) and polybutadiene systems have been
equilibrated over the years, which also opened the way to their topological analysis
for the identification of entanglements [80–86].

Arguably the biggest challenge in polymer simulation under nonequilibrium
conditions is to build well-founded multiscale tools that can bridge the gap between
microscopic information and macroscopically manifested viscoelastic properties,
preferably through a constitutive equation founded on the microscopic model [11,
70]. Simulations of metals face the same problem where again the objective is
concurrent length scale simulations [87, 88]; to some extent, it is also relevant to
simple fluids [89]. For polymers, additional motivation stems from the increased
interest in polymer mixtures and interfaces [90] resulting in morphology develop-
ment at nanoscale.

Here, we aim to briefly review some recent coarse-graining and multiscale
methods (see [23, 58, 79, 91–95] and also [96–99] for recent reviews of such methods
for polymers and in a more general context, respectively), and also put forward some
new ideas for addressing such issues, which could eventually allow to model the
macroscale quantities of interest by a suitable coarse-graining procedure.Wewill see
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that, if one is guided by nonequilibrium statistical mechanics and thermodynamics,
it is possible to design well-founded multiscale modeling tools that can link
microscopic models with macroscopic constitutive equations. Such multiscale
modeling tools benefit from recently proposed approaches for static coarse graining
that are mainly built on potentials of mean force [79, 100, 101]. For dynamic
properties, however, coarse-grained models need to account for dissipative effects
that arise due to fast degrees of freedom that are eliminated (e.g., via projection
operators) in favor of the remaining slowly varying ones [56, 58, 102, 103]. In a flow
situation, these slow dynamic variables depart from their values in the quiescent
fluid, while all other (faster) degrees of freedom track the evolution of the structural
parameters; that is, they are assumed to be in local equilibrium subject to the
constraints imposed by the values of the structural parameters at all times. A proper
definition of the set of state variables, effectively representing the nonequilibrium
states, is the key to the success of such an approach. Linking the microscopic model
with amacroscopicmodel built on these slowly relaxing variables is the second key; as
we will discuss in the next sections of this chapter, this is best addressed by getting
guidance from a nonequilibrium statistical thermodynamic framework proposing a
fundamental evolution equation for the macroscopic model in terms of the chosen
structural (dynamic) variables.

7.2
Coarse-Grained Variables and Models

We start with amicroscopic polymermodel, whose state is specified by a point in 6N-
dimensional phase space, z 2 C with z ¼ ðr1; . . . ; rN ; p1; . . . ; pNÞ, a short notation
for the positions and momenta of all N particles. The model is described by the
microscopic Hamiltonian HðzÞ with inter- and intramolecular interactions. The
coarse-grainedmodel eliminates some of the (huge number of) microscopic degrees
of freedom. The level of detail that is retained is specified by the choice of coarse-
grained variables x ¼ ðx1; . . . ; xnCGÞ with

xk ¼ hPki �
ð
C

dzPkðzÞrðzÞ; k ¼ 1; . . . ; nCG; ð7:1Þ

where rðzÞ denotes the probability distribution on C and the phase space
functions PkðzÞ are the instantaneous values of the coarse-grained variables in the
microstate z.

Instead of the full, microscopic distribution rðzÞ, the coarse-grained model
is already specified by the reduced probability distribution pðxÞ � hdðx�PðzÞÞi.
Knowledge of pðxÞ allows to calculate averages of quantities aðPðzÞÞ via
haðPÞi ¼ Ð

CdzaðPðzÞÞrðzÞ ¼ Ð
dxaðxÞpðxÞ. Instead of pðxÞ, coarse-grained models

are often described by the so-called potentials of mean forceUmf ðxÞ � �kBT ln pðxÞ
that formally replace the Hamiltonian in the calculation of equilibrium, canonical
averages. However,Umf is an effective free energy difference and therefore depends
on the thermodynamic state of the system. It contains in general effectivemany-body
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interactions that arise by partially integrating out microscopic degrees of freedom.
For recent reviews, see Refs [91, 100, 104, 105].

Different sets of coarse-grained variables have been suggested in the literature
and are briefly reviewed here. Usually, one is interested in a drastic reduction
of microscopic complexity, so nCG � 6N. However, sometimes, for equilibrating
atomistic systems, a coarse-grained model with a modest reduction (nCG only a
factor 5–10 smaller than 6N) might be useful. We emphasize that both the
mapping (7.1) and the corresponding probability pðxÞ is not restricted to equilibrium
situations. We proceed with a short review of coarse-grained variables and models
that capture different levels of detail and briefly discuss their static and dynamic
properties.

7.2.1
Beads and Superatoms

Coarse graining to the level of superatoms [106–120] is a method followed when one
wishes to reduce chemical complexity in a polymer chainwithout losing the chemical
identity of themolecule. According to this, a certain number of atoms or repeat units
along the chain are grouped together into �superatoms� connected by effective bonds
and governed by softer or smoother effective nonbonded interactions. The resulting
(usually linear) chain sequence is simpler and amenable to fast thermal equilibration
through application of the state-of-the-art Monte Carlo algorithms slightly modified
to account for the presence of the few different species along the chain. The method
has beenwidely applied to reduce complexity and permit themolecular simulation of
a number of polymers. Typical examples include polystyrene, poly(ethylene tereptha-
late), polycarbonates, polyphenylene dendrimers, even DNA. It involves computing
the effective intra- and intermolecular potentials among superatoms such that the
coarse-grained model reproduces as faithfully as possible the structural, configu-
rational, and thermodynamic properties of the original atomistic polymermodel. For
vinyl chains presenting sequences of methylene (CH2) and pseudoasymmetric
methyne (�CHR) groups along their backbone, the method should also account
for the isotactic, syndiotactric, or atactic stereochemistry of the polymer, based on the
succession of meso (m) and racemo (r) dyads (see Figure 7.2).

According to Zwicker and Lovett [121], if all interactions with potentials
V ðnÞðr1; r2; . . . ; rNÞ, with ri denoting the position vector of the ith particle, in an
N-atommolecular system consist of n-body and lower terms, then the system can be
completely described by knowing all n-order correlation functions gðnÞðr1; r2; . . . ; rNÞ
and lower. Since, in practice, complete determination of the n-point correlation
functions is a huge task for N > 2 and n > 4, calculations are usually limited to
correlation functions that depend only on a single coordinate. For polymers where
potential functions are usually separated into intra- and intermolecular ones,
examples of such correlation functions include typically the radial distribution
function, the distribution of bond lengths, the distribution of bending angles, and
the distribution of dihedral angles. The coarse-grained potential then should be
chosen such that it matches the distributions of all possible bond lengths, bond
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angles, and torsional angles, and of all intermolecular pair distribution functions, as
extracted from simulations with the corresponding atomistic model.

For a distribution function that depends on a single coordinate, the corresponding
effective potential can be computed through the iterative Boltzmann inversion
method [106, 108, 110, 122], aimed at matching the distribution of the relevant
degrees of freedom (called target distribution) between the chosen coarse-grained
model and the initial atomistic model for the polymer; the latter is usually extracted
from accurate, brute-force MD simulations on short homologues. The method uses
the differences in the potentials of mean force between the distribution function
generated from a guessed potential and the true distribution function to improve the
effective potential iteratively. Qualitative arguments for the conditions under which
convergence should be expected have been discussed by Soper [122].

The naive use of the coarse-grained potentials in standard molecular dynamics
simulations leads to wrong predictions of diffusion and relaxation processes [104,
123, 124]. A simple, empirical method for relating the dynamics of superatoms at the
coarse-grained level with the dynamics of true atomistic units at the atomic level uses
a time rescaling factor [125, 126].Within this method, effective potentials are used in
reversible equations ofmotion of classical mechanics to perform standardmolecular
dynamics simulations and then the mean square displacements of the relevant
structural units in the atomistic and coarse-grained models are matched, both in
amplitude and slope. Noid et al. [127, 128] formulate consistency criteria that should
be obeyed when using coarse-grained potentials in equilibrium dynamic
simulations.

Coarse graining to the level of superatoms has drawn a lot of attention over the
years mainly because of the capability to account for the correct stereochemical
sequence of the repeat units. Despite the success of effective pair potentials in

Figure 7.2 (a) Polystyrene m and r dyads in
transplanar conformation (for clarity, hydrogen
atoms on phenyl rings have been omitted).
(b) Illustration of a mapping scheme from the

atomistic to a coarse-grained structure for PS
wherein onebead corresponds to anmor rdyad.
(Reproduced with permission from [113].)
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reproducingmanyof the structural properties of the corresponding atomistic system,
their use in actual simulations is accompanied by a number of thermodynamic
inconsistencies:

(a) They performwell for the particular physical properties theywere developed for.
For example, the value of pressure as computed by using the virial theorem from
the effective potentials optimizedwith the iterative Boltzmannmethod is higher
than what is observed in the atomistic system, unless an attractive perturbation
potential is added (ramp correction to the pressure) and the potential is
reoptimized.Given that in integral equationmethods themechanical properties
of a system (such as pressure, energy, and compressibility) are fixed by the
singlet and pair number densities along with proper closures [121, 129, 130],
such a pressure inconsistency should be related to the degree of sensitivity of the
site–site pair correlation function to the effective pair potential [122]. This is in
line with the simulations of Jain et al. [131] who showed that although there is a
one-to-one correspondence between the structure of a liquid (i.e., the pair
correlation function) and its pairwise additive intermolecular potential
(Henderson�s theorem [129]), the convergence of potentials obtained by stan-
dard inversion procedures is extremely slow: although the repulsive part of the
potential converges rapidly, its attractive part (to which, for example, the internal
energy and pressure are primarily sensitive) converges slowly.

(b) Effective potentials are in general not transferable; they are state-point depen-
dent (e.g., temperature and pressure). In same cases, it has been noticed that
temperature changes at about the same density do not drastically affect their
parameterization [132, 133]. A newly developed effective force coarse-graining
seems to improve transferability to other state points [134].Developing fully self-
consistent and transferable potentials at any arbitrary level of coarse graining
remains still a challenge.

(c) The coarse-grained system is considerably more compressible than the corre-
sponding atomistic one.

(d) Despite recent efforts, the proper use of coarse-grained potentials for dynamic
simulations remains unclear. In particular, the emergence of dissipation due to
the coarse-graining step is mostly ignored or, at best, included phenomeno-
logically via some stochastic thermostat as done, for example, in Refs [123, 135].
For some notable exceptions, see Ref. [58]. Considerable work is definitely
needed in order to arrive at a thermodynamically consistent description of a
model system at the two levels of analysis (atomistic and coarse-grained), which
will eliminate all these undesired symptoms and errors.

7.2.2
Uncrossable Chains of Blobs

Briels and collaborators [136–139] proposed a coarse-graining scheme wherein
chains are subdivided into a number of subchains of equal length; the center-of-
mass of each subchain is taken as the position of a correspondingmesoscopic particle

350j 7 Multiscale Modeling and Coarse Graining of Polymer Dynamics



called the blob. The blobs are connected by springs so that chain connectivity is
preserved. Similar to the coarse-graining procedure at the level of superatoms, the
method uses a potential of mean force Umf ¼ VðRðnÞÞ for the position vectors of n
blobs, which ensures that blob distributions in atomistic and coarse-grained systems
are the same.

In order to describe shear flow effects in a velocity field of the from vxðrÞ ¼ _cry,
Kindt and Briels [136] proposed the use of the SLLOD algorithm [140]. Startingwith a
Langevin equation, such a method results in the following expression for the blob
dynamics:

Mi
d2Ri

dt2
¼ FSi �zeff

�
dRi

dt
� _cPiy êx

�
þFRi

zeff ¼ zþ P
iðFSi �Pi� _cPixPiyÞ

� �
;P

i P
2
i

ð7:2Þ

where êx denotes the unit vector along the flow (x) direction,Mi is themass of the ith
blob particle,Ri its position vector, FS

i ¼ �qV=qRi the systematic force on particle i, z
the friction coefficient, and FR

i the random force on particle i. Since the coarse-
grained bonded and nonbonded interactions are so soft that unphysical crossing of
two bonds would not be prohibited, Eq. (7.2) is supplemented with an uncrossability
constraint of the blob chains. Padding andBriels [137, 141] realized this constraint by
amethod that explicitly detects entanglements and prevents chain crossings through
a geometric procedure. The procedure detects possible chain crossings and defines
an entanglement point X at the prospective crossing site. Padding and Briels [136,
137] also proposed somenontrivial order-alteringmoves that lead to creation-removal
of entanglements; these are important for the best possible realistic treatment of
uncrossability constraints in simulations with the blob model. The Langevin equa-
tion of motion (7.2) contains the blob friction coefficient z, whose calculation is not a
straightforward issue even under equilibrium conditions. Despite this and its
simplicity, the blob method has been found to correctly capture the viscoelastic
properties of polymer melts with molecular length several times their entanglement
length. From a numerical point of view, the method suffers from large requirements
in CPU time, associated with the minimization algorithm for the location of
entanglements that eventually limits simulations to chains made up of a finite
number of blobs.

7.2.3
Primitive Paths

Amethod to project atomistically detailed chains to smoother paths was proposed by
Kr€oger et al. [84] through a projection operation that maps a set frig, i ¼ 1; 2; . . . ;N,
of N atomistic coordinates of a linear discrete chain to a new set fRig of N coarse-
grained ones defining a smoother path for the chain that avoids the kinks of
the original chain but preserves somewhat its topology (the main chain contour).
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The projection involves only a single parameter, j, whose value was obtained by
Öttinger [142] by mapping the Porod–Kratky model (an atomistic model for a
polymer chain) to a smoother chain with a Kuhn length equal to the entanglement
length. In the limit of infinitely long chains, such a mapping suggests that the Kuhn
length of the coarse-grained chain (the length of a segment between two entangle-
ments) is equal to twice the tube diameter. The j-based method maps a particular
chain onto a smoother path; however, the reduction of an ensemble of atomistic
polymer chains to a mesh of primitive paths (PPs) as defined by the Doi–Edwards
theory [14] requires that the projection satisfy not only chain continuity but also chain
uncrossability. This subtle problem has been addressed only very recently through
the seminal works of Everaers et al. [82], Kr€oger [80], and Tzoumanekas and
Theodorou [143]. Nevertheless, the simple j-based mapping has been very helpful
in many respects; for example, it has allowed [85, 144] to successfully calculate the
zero shear rate viscosity of model polymermelts in the crossover regime fromRouse
to entangled.

The topological analysis of Everaers et al. [82] is based on the idea that PPs can be
simultaneously identified for all polymer molecules in a bulk system by keeping
chain ends fixed in space, disabling intrachain excluded volume interactions and
retaining the interchain ones, and minimizing the energy of the system by slowly
cooling down toward the zero Kelvin temperature. This causes bond springs to
reduce their length to zero, pulls chains taut, and results in a mesh of PPs consisting
of straight segments of stronglyfluctuating length andmore or less sharp turns at the
entanglement points. The method can be modified [81, 145, 146] to preserve self-
entanglements or to distinguish between local self-knots and entanglements between
different sections of the same chain.

Kr€oger [80] also presented an algorithm that returns a shortest path and the related
number of entanglements for a given configuration of a polymeric system in 2D and
3D space, based on geometric operations designed tominimize the contour length of
the multiple disconnected path (i.e., the contour length summed over all individual
PPs) simultaneously for all chains in the simulation cell. The number of entangle-
ments is simply obtained from the shortest path, as the number of interior kinks, or
from the average length of a line segment. Application of the algorithm to united
atom models of linear polyethylene [147] allowed the calculation of a number of
important statistical properties characterizing its PP network at equilibrium and
helped make the connection with an analytic expression for the PP length of
entangled polymers by Khaliullin and Schieber [148] following earlier works [149,
150]. A representative snapshot of the entanglement network computed for a linear
trans-1,4-PB polymer (40 chains of C500 at T¼ 450K and P¼ 1 atm) with Kr€oger�s
method is shown in Figure 7.3.

The thirdmethodology for reducing chains to shortest paths has been presented by
Tzoumanekas and Theodorou [143] where topological (chain uncrossability) con-
straints are defined as the nodes of an entanglement network. Through their contour
reduction topological analysis (CReTA) algorithm, an atomistic configuration of a
model polymer sample is reduced to a network of corresponding PPs defined by a set
of rectilinear segments (entanglement strands) coming together at nodal points
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(entanglements) by implementing random aligning string moves to polymer chains
and hard-core interactions. In addition to obtaining topological measures for a
number of entangled polymers, Tzoumanekas and Theodorou [143] found that data
for the normalized distribution of the reduced number of monomers (united atoms
or beads) in an entanglement strand arewell described by amaster curve suggesting a
universal character for linear polymers. As analyzed by Tzoumanekas and Theodor-
ou [143], themaster curve is also obtainable in terms of a renewal process generating
entanglement events stochastically along the chain.

Apart from some algorithmic details, these three methods lead to practically
similar conclusions as far as the topological state of many entangled linear polymer
melts (PE, PB, PET, and PS) is concerned. A significant result of all of them (see
Ref. [143]) is that the ensemble average of the number of monomers per entangle-
ment strand �NES, as computed directly from the topological analysis, is significantly
smaller than the corresponding quantity Ne measured indirectly through
Ne ¼ NhR2i=hLi2 by assuming that PP conformations are random walks. This is
due to directional correlations between entanglement strands along the same PP,
which decay exponentially with entanglement strand separation. Therefore, PPs are
not random walks at the length scale of the network mesh size.

7.2.4
Other Single-Chain Simulation Approaches to Polymer Melts: Slip-Link
and Dual Slip-Link Models

Doi and Edwards [151] andDoi and Takimoto [152] have proposed a description of an
entangled polymer in terms of a slip-link model that can cumulatively account for
chain confinement and constraint release in a consistent way. Slip-links do not
represent an entanglement junction in real space; they are rather virtual links

Figure 7.3 (a) A snapshot of a fully equilibrated atomistic configuration of a 40-chainC500trans-1,4-
PB melt at 500 K and 1 atm. (b) The corresponding entanglement network mesh computed with
Kr€oger�s method [80].
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representing effective constraints whose statistical character is determined by other
polymers. In the dual slip-link version of the model, the slip-link confines a pair of
chains (and not a single chain). Masubuchi and collaborators [49, 50, 153, 154]
generalized the idea by regarding a slip-link as an actual link in real space. In their
formulation, each polymer chain is represented as a linear sequence of entanglement
strands considered as segments (phantom entropic springs) joining consecutive
entanglement points (the beads) along the chain. These Rouse-like chains are all
interconnected by slip-links at the entanglement points to form a 3D primitive chain
network. The system is described by the number Z of segments in each chain, the
numbern ofmonomers in each chain segment, and the position vectorsRi of the slip-
links or entanglement points. These state variables are postulated to obey certain
Langevin-type governing equations in which the single relevant parameter of the
primitive chain network is the average value hZi of entanglements per chain.
Defining the model functions and parameters on the basis of the results obtained
from one of the three topological analysis methods discussed above leads to
rheological predictions that follow quite satisfactorily experimental data for many
polymer melts in shear, but deviations are observed when the model is used to
describe the elongational rheology of these systems. A generalization of the slip-link
idea by Schieber and collaborators [44, 46] to a full-chain slip-linkmodel with amean
field implementation of constraint release and constant chain friction (as opposed to
constant entanglement friction) has been shown to provide accurate predictions of
the G0 and G

00
spectra for many polymer melts (such as PS, PB, and PIB).

7.2.5
Entire Molecules

In dilute polymer solutions, coarse graining a polymer coil or star polymers to a
system of interacting soft particles has been explored in Refs [155–157]. Kindt and
Briels [141, 158] proposed such a type of coarse graining also for polymermeltswhere
an entire chain is represented as a single particle. To account for the presence of
entanglements that are considered to be responsible for the distinct viscoelastic
properties exhibited by polymers, Kindt and Briels [141, 158] introduced a second set
of variables, the number nij of entanglements between chains i and j. This governs
the degree of interpenetration or overlapping of two chains whose centers of mass
are fixed at a given distance. The state of the system is thus fully determined by
the position vectors Ri of the centers of mass of the Nch chains and the
Nen ¼ NchðNch�1Þ=2 entanglement numbers nij. The equilibrium density distribu-
tion function Y for such a system is of the following form:

YðRðNchÞ; nðNenÞÞ � exp � 1
kBT

Umf ðRðNchÞÞ þ
X
i;j

1
2
aðnij�n0ðrijÞÞ2

2
4

3
5

8<
:

9=
;;

ð7:3Þ
where kB is Boltzmann�s constant, T the temperature, Umf the potential of mean
force, the double summation is over all interacting particle pairs, and a is a constant
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determining the strength of the fluctuations around a mean number n0ðrijÞ of
entanglements between chains i and j. n0ðrijÞ is like an order parameter governing
the �friction� felt by each chain and generating restoring elastic forces. According to
Eq. (7.3), integration over nij results in a Boltzmann distribution for the Nch

coordinates Ri, thus the equilibrium statistics of the system is not altered by the
introduction of entanglements. Typical expressions for Umf have been discussed by
Padding and Briels [136, 137] and also by Pagonabarraga and Frenkel [159, 160] in
their derivation of the �multiparticle dissipative particle dynamics� method. The
method is capable of providing structural information only about the radial distri-
bution function gðrÞ of the centers of mass of the chains. Representative results for a
number of linear PEmelts revealed a small correlation hole effect at the level of entire
chains, which is consistent with data reported by Mavrantzas and Theodorou [161]
through atomistic Monte Carlo simulations. No other signals of local structure could
be discerned. Clearly, accounting for entanglements, which is necessary in order to
produce the correct viscoelastic properties, seems to have a negligible effect on the
structural properties at the level of entire chains.

The single-particle model has been proposed to describe systems where memory
effects are dominant. This is the case, for example, of complex fluids involving
colloidal particles floating in a solvent in which a small amount of polymer is also
dissolved. In thismodel, dynamics is described [158, 162] by generating (according to
standard expressions for Smoluchowski-type equations) at every time step dtnot only
a displacement dRi in the position of each particle i but also a change dnij in the
number of entanglements. Memory effects are taken into account through transient
forces: when two particles come together such that temporarilynij < n0, their coronas
are pushed apart causing a repulsion between the two particles. On the other hand, if
the coronas are separated enough such that temporarily nij > n0, the particles
experience attractive forces. These phenomena cannot be studied by traditional
Brownian dynamics simulations where delta-correlated random displacements are
assumed. Figure 7.4 shows the viscosity obtained from such a method referring to a
typical resin with particles having a hard-core diameter of 100 nm. The very same
model has also been successful in describing shear banding and the chaining of
dissolved colloids in viscoelastic systems [163].

7.2.6
Conformation Tensor

Based on the idea that in a flow situation certain structural variables depart from their
values in the quiescent fluid while all other (faster) degrees of freedom are at
equilibrium subject to the constraints imposed by the values of the slow variables at
all times, coarse-grained models have also been developed where chains are de-
scribed at the level of the conformation tensor c [2, 12, 15, 164, 165]. The latter might
be defined via the average gyration tensor or via the tensorial product of the end-to-
end vectors. The choice of c among the structural parameters marks a description in
terms of a tensorial variable. In addition to a single conformation tensor one can
envision a description in terms of many (higher mode) conformation tensors,
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corresponding to the Rouse or bead-spring chainmodel. In general [164], from anN-
mer chain,NðN�1Þ=2 different conformation tensors cij, i; j ¼ 1; 2; . . . ;N�1 can be
constructed, each one being identified as a properly dimensionalized average dyadic
hQiQji with Qi denoting the connector vector between mers iþ 1 and i along the
chain [2].

For entangled polymer chain systems, the reptation theory suggests the distribu-
tion function of primitive path orientations as a structural variable, see previous
section. If chains contain long-chain branches that can significantly affect the
rheological response of the system, their contribution to overall system dynamics
should also be accounted. This is the case, for example, with H-shaped polymers
for which a model built on two structural parameters, the tube orientation tensor S
from one branch to the other branch along the chain, and a scalar quantity L

describing the length of the tube divided by the backbone tube length at equilibrium,
has been proposed [24, 166]. This marks a description at the level of a tensorial and a
scalar.

The description in terms of a few, well-defined structural parameters (such as the
conformation tensor, the configurational probability function, and the orientation
tensor and a scalar) is very appealing because of the existence of well-foundedmodels
developed under the GENERIC framework of nonequilibrium thermodynam-
ics [167]. In Section 7.4, we will see, among other things, that this allows to build

Figure 7.4 Viscosity versus shear rate for a
typical resin, as obtained from the particle
model of Kindt and Briels [158] and van der
Noort et al. [162]. The solid line represents
experimental data while the crosses are
simulation results including all forces in the
stress tensor. The squares represent viscosities

based on the conservative forces only. The circle
at the vertical axis gives the zero shear viscosity
according to the Green–Kubo formula. In the
inset, we show the overshoot in the
instantaneous value of the viscosity at
_c ¼ 1 s�1. (Reproduced with permission
from [162].)
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thermodynamically guided multiscale approaches by expanding the equilibrium
statistical ensemble to incorporate terms involving conjugate variable(s) driving the
corresponding structural parameters away from equilibrium. The GENERIC for-
malism here is an extremely useful tool since it can guide us in linking the conjugate
variable(s) to the applied flow field. It is not surprising, therefore, that this class of
coarse-graining procedures constitutes one of themost understood and best-founded
today.

7.2.7
Mesoscopic Fluid Volumes

For the numerical simulation of flowing polymers, several mesoscopic models have
been proposed in the last few years that describe polymer (hydro-)dynamics on a
mesoscopic scale of several micrometers, typically. Among thesemethods, we like to
mention dissipative particle dynamics (DPD) [168], stochastic rotation dynamics
(sometimes also called multiparticle collision dynamics) [33], and lattice Boltzmann
algorithms [30]. Hybrid simulation schemes for polymer solutions have been
developed recently, combining these methods for solvent dynamics with standard
particle simulations of polymer beads (see Refs [32, 169, 170]). Extending the
mesoscopic fluid models to nonideal fluids including polymer melts is currently
in progress [30, 159, 160, 171].

7.3
Systematic and Thermodynamically Consistent Approach to Coarse Graining:
General Formulation

7.3.1
The Need for and Benefits of Consistent Coarse-Graining Schemes

Under equilibrium conditions, statistical thermodynamics forms a bridge between
thermodynamics (whose goal is to understand and predictmacroscopic phenomena)
andmolecular physics (which focuses on intermolecular interactions between atoms
making up the system). It provides therefore an interpretation of thermodynamic
quantities from a molecular point of view. For a number of complex fluids (such as
colloids, liquid crystals, and polymers), information at a mesoscopic level of de-
scription (intermediate tomolecular andmacroscopic ones) is often extremely useful
in understanding and predicting material behavior (see Section 7.2 and Ref. [12]). At
equilibrium, statistical thermodynamics also provides the framework for under-
standing system properties at these intermediate scales. For example, as mentioned
in Section 7.2.1, effective potentials describing interactions between coarse-grained
(pseudo-)particles can systematically be derived by integrating out irrelevant degrees
of freedom.

Although extensions to capture dynamics at amesoscopic level are in progress (see
Section 7.2), most descriptions in terms of coarse-grained particles are so far largely
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restricted to equilibrium situations. For example, the recently proposed time
rescaling approach (see [114, 126]) for coarse-grained models does not seem
appropriate to fully account for the increase in dissipation inherent in any mean-
ingful coarse graining technique.Wemention the case of hydrodynamic interactions
in polymer solution that necessitate a description not in terms of a scalar frictional
variable but in terms of a tensorial friction matrix.

Dissipation and friction aremore properly accounted for in Refs [58, 136, 138, 139,
172]. These authors, however, arrive at a daunting assessment: �We therefore
conclude that coarse-grained models lack thermodynamic consistency� [138].
As we will demonstrate below, for appropriately defined coarse-grained models,
there is a way to restore thermodynamic consistency. So, contrary to the authors
of [138], we believe that the recently introduced GENERIC formalism of nonequi-
librium thermodynamics offers a framework for the development of true and
complete coarse-graining strategies [11], in the sense that (a) the resulting model
is well-behaved and thermodynamically consistent, (b) it can be parameterized on the
basis of the information provided by a lower resolution model, and (c) it can be
improved with microscopic simulations targeted to address the relevant structural
variables and their dynamic evolution. Of course, a word of caution is in place here:
coarse-grained models based on the GENERIC framework will rely on a number of
strong assumptions (inherent to most projection operator-based methods) implying
a description in terms of a set of carefully chosen, slowly evolving state variables. The
underlying assumption behind such a description is that of the existence of a clear
timescale separation between the evolution of these (slow) variables and that of the
(eliminated) fast or irrelevant ones. The coarse-grained model of Ref. [138], for
example, involves lumping 10 beads along a chain into 1 or 2 blobs, for which the
timescale separation argument is questionable. Their negative conclusion about the
thermodynamic consistency of the model is therefore not surprising.

7.3.2
Different Levels of Description and the Choice of Relevant Variables

Coarse-graining connects (at least) two descriptions of the same system at two
different levels of detail: a low-resolution level and a high-resolution level. We focus
attention here to the case where the high-resolution level is the atomistic one,
although this is not necessary [173].

We consider a point in phase space z 2 C, where z ¼ ðr1; . . . ; rN ; p1; . . . ; pNÞ is a
shorthand notation for the positions ri and momenta pi of all N particles, at the
microscopic level; this, for example, could be an all-atom or a united atom model or
even the simpler and computationally more convenient FENE bead-spring model
[12]. All these three models are classified here as microscopic models due to the
absence of dissipation and irreversibility. Dynamics at the microscopic model is
governed by Hamilton�s equation of motion

_z ¼ J � qH
qz

; ð7:4Þ
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where HðzÞ is the microscopic Hamiltonian and J the symplectic matrix. Equiva-
lently, Hamilton dynamics can be formulated by _A ¼ fA;Hg, where fA;Bg denotes
the microscopic Poisson bracket between arbitrary functions AðzÞ and BðzÞ. We
recall that the basic properties of Poisson brackets are their antisymmetry
fA;Bg ¼ �fB;Ag, the Leibniz rule fAB;Cg ¼ AfB;Cgþ fA;CgB, and the Jacobi
identity, fA; fB;Cggþ fB; fC;AggþfC; fA;Bgg ¼ 0 [167].
Owing to their very long relaxation times, there is a clear gap between the

timescales that can be addressed in microscopic simulations of polymer melts and
the relevant timescales in experimental studies. Although this prevents the direct
applicability of brute-force microscopic simulations, it renders them ideal systems
for a comprehensive understanding over multiple time- and length scales by
embodying the concept of multiscale modeling. The first and more important step
in this context is the proper choice of relevant variables at the coarser level. For simple
fluids, densities of conserved quantities (mass, momentum, and energy) are the
proper variables to consider if one is interested in hydrodynamic properties. For
systems with broken symmetries, the corresponding order parameters constitute
additional candidates for slow variables [174]. In the case of complex fluids, however,
no general rules are available how the appropriate relevant variables should be
chosen, and this emphasizes the importance of physical intuition [56, 103] for the
choice of variables beyond equilibrium.

For polymers, one can be guided by available theoretical models. For example,
orientational ordering in liquid crystals and liquid crystalline polymers can be
described by the alignment tensor within the Landau–de Gennes theory [14].
Birefringence and viscous properties in the case of unentangled polymer melts can
be addressed by models based on the concept of a conformation tensor, see
Section 7.2.6. For branched polymers, a scalar variable is added to the conformation
tensor in order to capture additional contributions to the stress tensor [24] due to long
arm relaxations. For entangled polymer melts, the reptation theory provides a
description in terms of a probability distribution function for the orientation of
segments along the primitive path [2, 14].

These theories are examples of mesoscopic or macroscopic models that lead to
closed-form constitutive equations. Furthermore, they can all be described in the
context of the single-generator bracket [175] or the GENERIC [167] formalisms of
nonequilibrium thermodynamics,

_x ¼ L � dE
dx

þM � dS
dx

: ð7:5Þ

In Eq. (7.5), EðxÞ and SðxÞ are the coarse-grained energy and entropy functions,
respectively. The antisymmetric operator L defines a generalized Poisson bracket
A;Bf g ¼ dA

dx � L � dB
dx that possesses the same properties as the classical Poisson

bracket described above. The last term in Eq. (7.5) is new compared to Hamiltonian
dynamics (7.4) and describes dissipative, irreversible phenomena. The friction
matrix M is symmetric1) and positive, semidefinite. Together with the degeneracy

1) Amore detailed discussion of theOnsager–Casimir symmetry is given in Section 7.3.2.1 of Ref. [167].
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requirements L � ðdS=dxÞ ¼ M � ðdE=dxÞ ¼ 0, these properties ensure that the total
energy E is preserved and S is not decreasing in time [167].

The mesoscopic and macroscopic models come with a number of parameters, for
example,meanfield potentials, friction coefficients, effective relaxation times, and so
on, whose connection with molecular terms is not straightforward. It is the purpose
of thermodynamically guided, systematic coarse-graining methods to address this
issue.

7.3.3
GENERIC Framework of Coarse Graining

Coarse graining implies a description in terms of a few, carefully chosen variables
after the elimination of all irrelevant degrees of freedom. Inevitably, this comes
together with entropy generation (irreversibility) and dissipation. In the GENERIC
formalism [167, 173], the emphasis is then shifted from the fundamental time
evolution equation itself to the individual building blocks of that theory (7.5), and
paves the way for the development of consistent coarse-graining strategies. The
interested reader may refer to Ref. [11]. More details on the statistical mechanics of
coarse graining can be found in Refs [56, 167, 176]; for coarse graining of simple
fluids within the GENERIC framework, see Refs [177, 178].

7.3.3.1 Mapping to Relevant Variables and Reversible Dynamics
For everymicrostate z of the system, the instantaneous values of the relevant variables
are defined by a set of phase space functions PðzÞ. The functions PðzÞ cannot
generally be identified with x; they are rather connected with x through x ¼ hPðzÞi,
that is, as averages based on a suitable probability density rxðzÞ at the microscopic
phase space C. Thus, the coarse-grained energy EðxÞ is obtained from the micro-
scopic Hamiltonian HðzÞ by straightforward averaging,

EðxÞ ¼ hHðzÞix; ð7:6Þ
and, similarly, the coarse-grained Poisson bracket is obtained from the average of the
classical Poisson bracket,

A;Bf g ¼ dA
dxk

� Lkl � dB
dxl

; LklðxÞ ¼ hfPk;Plgix: ð7:7Þ

Equations (7.6) and (7.7) define the reversible part of GENERIC (7.5) in terms of a
coarse-grained Poisson bracket [174, 179]. The additional terms related to dissipation
and increase in entropy have to be accounted for by the irreversible contribution to
GENERIC (7.5) and are described in the following section.

7.3.3.2 Irreversibility and Dissipation Through Coarse Graining
The fact that we do not account explicitly for the irrelevant variables at the level of the
GENERIC framework leads to entropy increase and additional dissipation at the
coarser level of description [11].
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To illustrate this, let us consider the simple example of a freely jointed chain,
shown schematically in Figure 7.5a. We can describe such a chain by the set of all
connector vectors Qj � rjþ 1�rj, j ¼ 1; . . . ;N. All admissible configurations with
jQjj ¼ b have equal probability. If we decide to choose the end-to-end vectorRee as the
only relevant variable, then there are in general many configurations fQjg that are
compatible with Ree. The coarse-grained entropy SðReeÞ is a measure of the number
of these configurations. One finds that the probability of Ree is Gaussian around
Ree ¼ 0, which implies that there are many more coiled configurations compared to
stretched ones. The associated entropy SðReeÞ ¼ Sð0Þ�3R2

ee=2Nb
2 decreases for

chains undergoing stretching and leads to a restoring force that is known as �entropic
spring� in coarse-grained polymer models [2]. This illustrates the emergence of
(additional) entropy through coarse graining.

We turn now to the discussion of the probability distribution rxðzÞ. In sharp
contrast to equilibrium statistical mechanics, there are unfortunately no general
results for the probability distribution of nonequilibrium states. Even for nonequi-
librium stationary states there are at present only a few results for very special model
systems available (see Ref. [180]). Systems, however, where the timescale separation
assumption holds arewell describedwithin the quasiequilibrium approximation that
treats the nonequilibrium system as an equilibrium one for the present values of
relevant variables [181–183]. In the generalized microcanonical ensemble, all micro-
states z compatible with the given values of relevant variables PðzÞ have equal
probability. The corresponding entropy is a measure of the number of such micro-
states z that are compatible with a given coarse-grained state. For practical calcula-
tions, it is more convenient to pass to the generalized canonical distribution. In an
analogy to equilibrium statistical mechanics, the average values xk ¼ hPkðzÞix are
constrained to prescribed values with the help of Lagrange multipliers Lk. The
generalized canonical distribution can then be obtained from themaximum entropy
principle and reads

rxðzÞ ¼
e�
P

k
LkPkðzÞÐ

Cdz e
�
P

l
LlPlðzÞ

; ð7:8Þ

Figure 7.5 (a) Schematic illustration of freely jointed chain with end-to-end vector Ree.
(b) Fluctuations of polymer chain in shear flow around stationary state. Ellipses indicate the
eigenvalues and orientation of eigenvector of hReeReei. (Figure courtesy ofM. Kr€oger, ETH Z€urich.)
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where the Lk have to be chosen so as to satisfy xk ¼
Ð
dzPkðzÞrxðzÞ. The quasi-

equilibrium entropy associated with Eq. (7.8) is

SðxÞ ¼ kB
X
k

Lkxk þ kB ln
ð
C

dz e�
P

l
LlPlðzÞ: ð7:9Þ

The coarse-grained entropy plays the role of an effective potential for the relevant
variables. Determining the functional form of SðxÞ from (7.9) presents a challenge
since the explicit expression for the Lagrange multipliers LkðxÞ is in general
unknown. A successful method for extracting at least partial information on SðxÞ
has been explored in Ref. [164] from atomistic simulations of a polymer melt in
elongational flow. We discuss this issue further in Sections 7.4.2 and 7.4.3.

After specifying the nonequilibrium ensemble and coarse-grained entropy, we
finally like to discuss the increase of dissipation through coarse graining in more
general terms. We have seen above that many microstates (values of connector
vectors) are in general compatible with a given coarse-grained state (defined by the
value of the end-to-end vector in the above example). Conversely, this implies that a
coarse-grained state does not uniquely determine the microstate. The dynamics on
the coarse-grained level has necessarily a stochastic character known as fluctuations
(see Figure 7.5b). If these fluctuations are correlated in time, they have to be
accompanied by dissipation, as required by the fluctuation-dissipation theorem [56].
These qualitative observations are put into a solid theoretical framework by the
projection operator formalism [103]. It should be emphasized that projection
operators provide exact relations for any set of variables in terms of complicated
integro-differential equations. Simpler, closed form equations without a memory
integral, however, result only in cases when the timescale of the chosen variables is
well separated from those of the irrelevant ones [103, 184]. A prominent example
where this assumption seems not to be met is the dynamics of glassy polymers,
where usually mode-coupling approximations for the memory kernel are employed
[185, 186]. We here insist on the timescale separation, which severely restricts
possible choices of relevant variables where such a separation can hold. For glassy
polymers or glasses, in general, an appropriate set of relevant variables is not known
at present, although some promising first steps have recently been taken [187, 188].
These restrictions are the price to pay for a proper coarse-grained description with a
well-defined entropy and without accounting for memory effects. In this case, the
dissipation matrix M as derived from the projection operator formalism reads

Mkl ¼ 1
kB

ðts
0

dt h _Pf
kðtÞ _P

f
l ð0Þi; ð7:10Þ

where _P
f
k is the fast part of the time derivative of themacroscopic variables [167, 173,

182]. The separating timescale ts should be chosen large enough to comprise all the
fast fluctuations that are not captured on the coarse-grained level [167]. Thus, the
friction matrix M arises due to fast fluctuations that are not resolved at the coarser
level. The numerical evaluation of the dissipation matrix (7.10) for a polymer melt is
described in Section 7.4.3.
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7.4
Thermodynamically Guided Coarse-Grained Polymer Simulations Beyond
Equilibrium

7.4.1
GENERIC Coarse-Graining Applied to Unentangled Melts: Foundations

Unentangled polymer melts are usually described in terms of the conformation
tensor that provides an overall picture of the entire polymer chain. From the point of
view of the GENERIC formalism, this implies a description where, in addition to the
hydrodynamic fields mass r, momentum g, and energy density e, the conformation
tensor c is also included in the vector of state variables,

x ¼ ðr; g; e; cÞ: ð7:11Þ

Let z ¼ ðr1; . . . ; rN ; p1; . . . ; pNÞ denote the microstate defined by the positions
and momenta of all particles. The chosen macroscopic variables x ¼ hPðzÞi are
defined as follows. The mass density is defined by

rðr; tÞ ¼
X
j

mjdðr�rjðtÞÞ
* +

� hPri; ð7:12Þ

wheremj denotes themass of particle j. Similarly, themomentumdensity is obtained
by

gðr; tÞ ¼
X
j

pjdðr�rjðtÞÞ
* +

� hPgi: ð7:13Þ

Fromr and g, themacroscopic velocityfield vðrÞ is definedby vðrÞ ¼ gðrÞ=rðrÞ. The
total energy density can be expressed as

eðr; tÞ ¼
X
j

êjdðr�rjðtÞÞ
* +

� hPei; ð7:14Þ

where êj ¼ ð1=2Þmju2
j þWj with uj ¼ pj=mj�vðrjÞ the peculiar velocity of particle j

andWj the potential energy of particle j. Finally, the additional, internal variable c is a
symmetric, second-rank tensor that is defined by

cðr; tÞ ¼ 1
Nch

XNch

a¼1

hP̂a
dðr�racðtÞÞi � hPci; ð7:15Þ

where Nch is the number of chains in the system and Na ¼
P

j2Ia the number of
particles in chain a. The center of mass of polymer a is denoted by rac ¼ N�1

a

P
j2Iarj.

The tensor P̂
a
is a conformation tensor of a single chain and quantifies the

instantaneous, internal structure of polymer a. Examples are the gyration tensor
P̂

a ¼ N�1
a

P
j2Iaðrj�racÞðrj�racÞ or the tensor product formed either by the end-to-end

vector or by the first Rouse mode.
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The macroscopic energy E is obtained by straightforward averaging of the
microscopic Hamiltonian, see Eq. (7.6).

The resulting expression for the distribution function of the generalized canonical
ensemble reads

rxðzÞ ¼ Z�1 exp �bpV�bW�l : Pc½ �; ð7:16Þ

where b ¼ ðkBTÞ�1, V the volume occupied by the N particles, W the total potential
energy, Z the normalization integral and p the pressure (see Refs [164, 189] and
Section 8.2.3 in Ref. [167] where Eq. (7.16) is used in nonequilibrium situations). The
macroscopic entropy associated with the generalized canonical distribution is given
by Eq. (7.9), which here reads

SðxÞ ¼ S0ðT ;V ;NÞþ kB ln
Z
VN

� �
þ bpV þ bhWix þ l : c

� �
; ð7:17Þ

where V ¼ hVix is the average volume and S0 the entropy of an ideal gas of N
particles. In addition to the usual Lagrange multipliers b and bp that are associated
with total energy and volume (for homogeneous density), respectively, the additional
Lagrange multiplier l is identified as

l ¼ k�1
B

qS
qc

: ð7:18Þ

For a numerical calculation of the Lagrangemultiplier l for amodel polymermelt,
see Sections 7.4.2 and 7.4.3.

The matrix L defining the coarse-grained Poisson bracket (7.7) is obtained by
inserting the definitions (7.12)–(7.15) of the coarse-grained variables into Eq. (7.7).
Details of the straightforward calculations are presented in Ref. [190].

From the degeneracy requirement on the Poisson bracket fS;Eg ¼ 0 mentioned
in Section 7.3.2, one finds that the entropic part of the macroscopic stress tensor has
to be of the form

s ¼ �peff 1�2Tc � qs
qc

; ð7:19Þ

where peff is the effective scalar pressure and s the local entropy density. The same
form (7.19) has been previously found in Refs [167, 191].

As far as the dissipative bracket and the associated frictionmatrixM are concerned,
a direct calculation of the fast time evolution _P

f
appearing in Eq. (7.10) shows that

_P
f
r ¼ 0, _P

f
g ¼ r � ŝtot, where ŝtot is the instantaneous value of the total stress tensor.

The expression for _P
f
e containing the heat flux and viscous heating can be found in

Ref. [190]. The integral of the time correlation function of these fast fluctuations that
appears in Eq. (7.10) can in most cases be determined only numerically. How these
quantities can be extracted from molecular dynamics simulations for a model
polymer melt is described in Section 7.4.3.

The resultingGENERICequations (7.5) for the present choice of relevant variables
are [167, 190, 191]
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q
qt
r ¼ �rbðvbrÞ

q
qt
ga ¼ �rbðvbgaÞþrbs

tot
ba

cab;½1� ¼ � 1
T
Mcabcmn

qe
qcmn

�T
qs
qcmn

2
4

3
5;

ð7:20Þ

where c½1� denotes the upper convected derivative of c, c½1� � qtcþ v � c�c � kT�k � c,
k ¼ ðrvÞT the transpose of the velocity gradient, and e and s the energy and entropy
density, respectively. Since we consider in the following only isothermal conditions,
the readermay refer to Refs [190, 191] for the rather lengthy expression of the internal
energy balance. Furthermore, additional second-order dissipative processes appear-
ing in Eq. (7.20) are discussed in Ref. [190].

The macroscopic stress tensor appearing in the momentum balance Eq. (7.20)
is given by

stot ¼ �peff 1þ 2c � qe
qc

�T
qs
qc

� �
� 1
T
CðssÞ : k; ð7:21Þ

where CðssÞ ¼ Ð ts
0 dthsf ðtÞsf ð0Þix is a Green–Kubo formula for the viscosity contri-

bution of fast (on timescale shorter than ts) stress fluctuations. This finding is in
agreement with previous simulation studies on bead-spring chain polymer melts
that found it necessary to include a simple fluid background viscosity in their
analysis [57, 192].

7.4.2
Thermodynamically Guided Atomistic Monte Carlo Methodology
for Generating Realistic Shear Flows

In this section, we discuss how one, guided by the principles of nonequilibrium
thermodynamics, can use the Monte Carlo technique to drive an ensemble of
systemconfigurations to sample statistically appropriate steady-state nonequilibrium
phase-space points corresponding to an imposed external field [161, 164, 193–195].
For simplicity, we limit our discussion to the case of an unentangled polymer melt.
The starting point is the probability density function rx of the generalized canonical
GENERICensemble (7.16) for the same set of slow variables (7.11) as in Section 7.4.1.
Then, following Mavrantzas and Theodorou [161], we extend the Helmholtz free
energy, A, of equilibrium systems to nonequilibrium systems as

d
A
V

� �
¼ � S

V
dT þ m d

Nch

V

� �
�kBTl : dc; ð7:22Þ

where m is the chemical potential. The last term accommodates the effect of the
external field (e.g., a flow) for which l represents a nonequilibrium force variable
conjugate to c. According to Eqs. (7.16) and (7.22), one can carry out Monte Carlo
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simulations in the expanded NchNPTlf g ensemble exactly as in the corresponding
NchNPTf g equilibrium ensemble (withN denoting the total number of atoms in the
system) by assigning nonzero values to the field l. This is the key point of the new
method opening up the way toward sampling steady-state nonequilibrium phase
points of the system corresponding to a given flow field withMonte Carlo simulation
by suitably choosing the components of l. For the case of a simple shear flow, for
example, from the symmetry property of c, we recognize that l is to have only four
independent nonzero components: lxx; lxy; lyy, and lzz. In order to specify their
numerical values for a given shear rate _c (these are needed to be used as input in the
GENERIC MC simulations), one can resort to the fundamental GENERIC evolution
law for the set of state variables x. Based on this and Eq. (7.16) for the definition of l,
we see that we can, indeed, assign a kinematic interpretation to the Lagrange
multiplier l since for a nonequilibrium system that has reached a steady state,
Eq. (7.5) simplifies to

l ¼ � 1
kB

M�1 � LðxÞ � dEðxÞ
dx

: ð7:23Þ

For example, for all known conformation tensor viscoelastic models, the corre-
sponding evolution equation for the conformation tensor reads

ĉab;½1� ¼ �Labce
dAðcÞ
dcce

¼ �nkBTLabceace; aab ¼ 1
nkBT

dAðcÞ
dcab

; ð7:24Þ

where (for simplicity) wehave replaced the tensor lwith the tensoradefined through
l ¼ �ðNch=VÞa. In Eq. (7.24), ĉab denotes the upper convected derivative of cab and n
the chain number density, and the Einstein summation convention has been
employed for repeated indices. Note also that in the case considered here, the
elementM44 of theMmatrix in Eq. (7.23) has the form of TLabce (see Refs [164, 193]
for details) where the fourth-order relaxation matrixL for most single-conformation
tensor models can be cast into the following general form:

LabceðcÞ ¼ f1ðI1Þðcacdbe þ caedbc þ cbcdae þ cbedacÞþ 2f2ðI1Þðcaccbe þ caecbcÞ;
ð7:25Þ

where I1 is the first invariant of c (i.e., the trace of c), d the unit tensor, and f1 and f2
arbitrary functions of I1. With the help of Eqs. (7.24) and (7.25), for the case of a
steady-state flow described by the kinematics

rv ¼
0 0 0
_c 0 0
0 0 0

0
@

1
A ð7:26Þ

we find that the form of a that generates shear is

a ¼
axx axy 0
axy ayy 0
0 0 0

0
@

1
A: ð7:27Þ
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Although nonequilibrium thermodynamics has helped us define the functional
formofa, the exact relationship between its three nonzero components (axx;axy, and
ayy) on the applied shear rate _c remains still undetermined. One way to come around
this problem is to explicitly use specific expressions for the matrix M proposed by
GENERIC for a viscoelastic model. In such a case, however, the results will be model
dependent and not representative of the true structure developing in the system in
response to the applied shear rate _c. Baig andMavrantzas [193] proposed overcoming
this by computing a iteratively so that, for a given value of _c, the resulting average
conformation of the simulated melt is the same as that predicted by a brute-force
application of the NEMD method.

Baig and Mavrantzas [193] demonstrated the applicability of such a hybrid
GENERIC MC-NEMD approach for a relatively short unentangled PE system,
C50H102, for different nonequilibrium states corresponding to different values of
the Werssenberg number (Wi). Wi is defined as the product of the imposed shear
rate _c and the longest relaxation (Rouse) time of the system, tR, at simulation
temperature and pressure. If x is the flow direction and y and z the velocity gradient
and neutral directions, respectively, then the three nonzero components of a can be
computed iteratively so that the values of the conformation tensor c for the system (at
the given value of Wi) from the GENERIC MC and the NEMD methods coincide.
Representative results are shown in Figures 7.6 and 7.7. Figure 7.6 presents the
values of the nonzero components of a that were found to accurately reproduce the
corresponding nonequilibrium state for the simulated C50H102 system as a function
of the imposed Wi. Figure 7.7, on the other hand, presents comparisons of the
conformation tensor between the GENERIC MC simulations (corresponding to the
a-values shown in Figure 7.6) and the direct NEMD simulations, confirming that
cxx; cxy, and cyy from the GENERIC MC and the NEMD simulations, respectively,
superimpose. It is only for the czz component of the conformation tensor that

Figure 7.6 Plot of the thermodynamic force field, a, versus Wi number for the C50H102 PE melt
(T ¼ 450K, P¼ 1 atm). (Reproduced with permission from Ref. [193].)

7.4 Thermodynamically Guided Coarse-Grained Polymer Simulations Beyond Equilibrium j367



Figure 7.7 reveals an inconsistency between the twomethods. As argued by Baig and
Mavrantzas [193], this is related to the selection of a zero value for theazz component
of a, as suggested by the general expression, Eq. (7.25). Also, to exactly reproduce the
zz-component of c, a nonzero azz component should be incorporated in the
GENERIC MC simulations. This is a significant accomplishment of the new
methodology since it suggests that the rather general form of the friction matrix,
Eq. (7.25), for this conformation tensor family of models is not complete. As
demonstrated by Baig and Mavrantzas in a recent publication [196], this can be
achieved by including in the relaxation matrix a terms beyond the symmetries
implied by Eq. (7.25), without violating the Onsager–Casimir reciprocity relation-
ships or the second law of thermodynamics.

The information provided by the GENERICMC simulations is important inmany
aspects:

. The dependence of the components of the tensor a on Wi is directly related to
the (nonequilibrium) free energy of the system – see Eq. (7.22). Therefore, with
the proposed methodology one can accurately calculate the free energy of the
simulated system by requiring a series of simulations, according to the thermo-
dynamic state points, by varying one component of a and fixing the rest and then
using thermodynamic integration. This can serve as a starting point for devel-
oping more accurate viscoelastic models.

Figure 7.7 Comparison of the conformation tensor c components between NEMD and GENERIC
MC simulations, as a function of Wi number: (a) cxx , (b) cxy , (c) cyy, and (d) czz. The error bars
are smaller than the size of the symbols. (Reproduced with permission from Ref. [193].)
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. The new thermodynamically guided method can help overcome the problem of
long relaxation times (and of statistical noise in the Newtonian plateau) faced in
brute-force NEMD simulations by providing the initial configuration at the
relevant nonequilibrium state for a given Wi.

. The new method can also be combined with recently proposed coarse-graining
simulation strategies for long polymer melts to enable the simulation of the
viscoelastic properties of high molecular weight polymers, comparable to those
encountered in practical polymer processing.

7.4.3
Systematic Timescale Bridging Molecular Dynamics for Flowing Polymer Melts

We consider again a description of the polymermelt coarse-grained to the level of the
conformation tensor. The corresponding Poisson bracket is known analytically, see
Section 7.4.1. Same as in Section 7.4.2, we investigate the nonequilibrium stationary
state of the polymer melt in a given flow situation, and therefore face the same
problem of solving the stationary GENERIC equation(7.23) self-consistently. Here,
we complete the studies reported in Section 7.4.2 and consistently determine the
frictionmatrixM frommicroscopic fluctuations according to general formula (7.10).
Our presentation mainly follows Ref. [197].

7.4.3.1 Systematic Timescale Bridging Algorithm
The coarse-grained energy and entropy, as well as the Poisson bracket, require only
static information and can therefore be determined very efficiently by Monte Carlo
simulation methods, see Section 7.4.2 and Refs [18, 198]. Only the friction matrixM
depends on dynamic properties, thus its numerical evaluation requires dynamical
simulation, in our case molecular dynamics. The GENERIC coarse-graining
approach therefore suggests to combine the strengths of MC and MD simulations
in a well-defined way to break the timescale gap between microscopic and macro-
scopic scales. In order to implement these ideas consistently, we propose a hybrid
algorithm [197] schematically illustrated in Figure 7.8 as a general strategy for
timescale bridging simulations based on GENERIC. For the special case of flowing,
unentangled polymermelts, the algorithmwas implemented and tested in Ref. [197].

Figure 7.8 Schematic illustration of systematic timescale bridging algorithm that consistently
combines Monte Carlo and molecular dynamics simulations.
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For simplicity and speed of calculations, the classical FENE bead-spring model
introduced in Ref. [60] was used in these studies, although using an atomistic model
does not pose any extra difficulty.

For thismodel system subject to a stationary flowwith fixed velocity gradient k, the
algorithm illustrated in Figure 7.8 can be implemented as follows:

1) Start with an equilibrium system with k ¼ l ¼ 0.
2) Use a Monte Carlo scheme in order to generate an ensemble of ns (typically

ns ¼ 500) independent configurations that are distributed according to the
generalized canonical distribution (7.16) with the current value of l. Calculate
the value of the relevant variables in this ensemble, x ¼ hPix . In order to
efficiently generate an ensemble of such ns configurations, a slight modification
of theMonte Carlo algorithmproposed in [199] was used in [197]. The numerical
values of the coarse-grained variables x ¼ hPix can then be estimated as the
ensemble average x ¼ ð1=nsÞ

Pns
k¼1 PðzkÞ of the ns configurations fzkg. In the

last step,Maxwellian distributed velocities are assigned to the particles, realizing
equilibrium in momentum space for the present choice of (velocity-indepen-
dent) relevant variables.

3) The Monte Carlo generated ensemble is used as an initial condition for MD
simulations of Hamilton�s microscopic dynamics. We use a standard velocity-
Verlet algorithm that preserves the symplectic structure to simulate trajectories
zkðtÞ, k ¼ 1; . . . ; ns, during a �short� time interval 0 � t � ts. The separating
timescale ts is short enough, such that the relevant variables x do not change
significantly during the MD simulation. For this reason, the MD part of the
simulation does not need any constraints such as thermo- or barostats or flow-
adapted boundary conditions. Performing short time, unconstrained, micro-
canonical molecular dynamics simulations is one of the great benefits of the
present approach as it makes the scheme both highly efficient and applicable to
arbitrary flow situations that – due to the lack of corresponding boundary
conditions – could not be simulated so far.

4) From the particle trajectories zkðtÞ, we evaluate the friction matrix M from
Eq. (7.10). We make use of time-translational invariance to equivalently rewrite
Eq. (7.10) as

M ¼ hMðzÞix; MðzÞ ¼ 1
2kBts

DtsPðzÞDtsPðzÞ; ð7:28Þ

where DtsPðzÞ � PðzðtsÞÞ�Pðzð0ÞÞ denotes fast fluctuations of P (on the
timescale ts). Equation (7.28) is more convenient for numerical evaluation
than (7.10).

5) Updated values of the Lagrange multiplier l are calculated from the stationary
GENERIC equation(7.23) by inverting the symmetric, positive semidefinite
matrix M.

6) The procedure is now repeated until consistent values x;M; l for given k are
obtained. Alternatively, one may use an efficient reweighting scheme if k is
changed only slightly and l is already close to the true value l! lþdl. Then, the
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explicit form of the generalized canonical distribution can be exploited to solve
the nonlinear system of equations

0 ¼
Xns
k¼1

Rk þ kBMðzkÞ : dl½ �wk; wk � e�dl:PðzkÞP
k0e

�dl:Pðzk0 Þ ð7:29Þ

for dl. This first-order scheme solves the stationary GENERIC equation(7.23),
where Rk � k �PðzkÞþPðzkÞ � kT þ kBMðzkÞ : l is the error in the previous
value of l. In a shearflow, for example, Eq. (7.29) represents six equations and six
unknowns. The solution dl of (7.29) allows one to calculate the reweighted slow
variables and friction matrix, x ¼ P

kwkPðzkÞ, M ¼ P
kwk MðzkÞ, as well as

updated Lagrange multipliers, l! lþdl. Finally, the flow rate k is increased,
and the procedure is started again, until the control parameter space has been
swept through.

With such a scheme, we establish the coarse-grained model along one-dimen-
sional paths in the parameter space. Choosing, for example, viscometric flows of
varying strength k is analogous to the situation encountered in experiments.

7.4.3.2 Fluctuations, Separating Timescale, and Friction Matrix
Wehave already emphasized several times that �fast� but correlated fluctuations give
rise to dissipation on the coarse-grained level of description, which is described here
by the frictionmatrixM, Eq. (7.10) or (7.28). The notion �fast� is definedhere by times
t smaller than the timescale ts, which separates the evolution of the relevant variables
x from rapid dynamics of the remaining degrees of freedom. The existence of such a
timescale (which is equivalent to the crucial assumption of timescale separation
discussed in Section 7.3) is not obvious. Here, we observe that the correlation
functions CklðtÞ ¼ h _Pf

kðtÞ _P
f
l ð0Þix decay monotonically over a few molecular (Len-

nard-Jones) time units t. This shows that those fast fluctuations are indeed correlated
only over short times compared to typical polymer relaxation times (which are huge
relative to t). Therefore, we find that the friction matrix, which is proportional to the
integral overCðtÞ, rapidly converges toward a value that is approximately independent
of ts in a broad range 5 � t=ts � 50 (see Figure 7.9).

7.4.3.3 Results
Before discussing the results obtained with the proposed timescale bridging algo-
rithm, we like to mention several consistency checks that can be performed in order
to test the range of applicability of the coarse-grained model. First, we compare two
expressions for the macroscopic stress tensor. One is the standard virial expression
s ¼ �V�1hrFix, where r and F are the relative position and forces between particles.
The kinetic contribution is found to be negligible in dense systems such as polymer
melts as long as the flow rates are not too high [12]. Evaluating the expression for the
stress tensor s in the generalized canonical ensemble leads to the expression
sp ¼ �2V�1kBTx � l for the (entropic part of the) polymer contribution to s, see
Eq. (7.19). From Section 7.4.1, we know that s and sp differ by a simple fluid
contribution. Accounting for this contribution via the nonbonded short-range
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repulsive interactions, we have verified that the two expressions for the stress tensor
agree with each other for the flow rates studied. Next, by its definition and the
symmetry ofP, the matrixM possesses some basic symmetries that can be used to
test the statistical accuracy of the ensemble averages. Finally, for the case of simple
shear, k ¼ _cexey, we have used the identity ðx11�x22Þx�1

12 ¼ ðl11�l22Þl�1
12 , which can

be derived from the stationary GENERIC equations [193], in order to check the
consistency of our results. In our studies, this identity holds within errormargins for
the flow rates considered. We observed that the breakdown of this relation at high
flow rates signaled problems with the coarse-grained model as it can no longer
capture the relevant dynamic processes at these elevated rates.

For the case of simple shear flow, we validated the algorithm by reproducing the
chain-length dependence of the zero shear rate viscosity and of thefirst normal stress
coefficient,whichareknown in the literature [60] (seeFigure7.10).Also, the shear rate
dependence of the viscosity obtained with the timescale bridging algorithm is in very
good agreement with standard NEMD results [60, 200, 201], as shown in Figure 7.10.
More results can be found in Ref. [197]. As mentioned above, the flexibility of our
timescale bridging simulations allows us to study arbitrary flow fields. We therefore
could perform the first steady-state equibiaxial simulation for polymermelts. Results
for this and other elongational flows can also be found in Ref. [197].

7.5
Conclusions and Perspectives

The tremendous multiplicity of length- and timescales in polymeric systems clearly
calls for systematic, multiscale modeling approaches in which a higher resolution
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Figure 7.9 The friction matrix calculated from (a): Eq. (7.10) compared to (b): the values obtained
from Eq. (7.28), as a function of the separating timescale ts. (Reprinted with permission from
Ref. [197].)
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model is consistently coupled with a lower resolution one. In particular, if one is
interested in describing relaxation processes and structure development under
nonequilibrium conditions, most present-day coarse-graining strategies based on
the use of effective potentials are of limited use since they do not account for the
additional dissipation and irreversibility accompanying inevitably the elimination of
fast degrees of freedom in favor of a smaller set of slowly-relaxing structural variables.
Therefore, thermodynamically guided simulations are very important and useful, since
one takes full advantage of the underlying principles of nonequilibrium thermody-
namics and statistical mechanics. There, the emphasis is shifted from the time
evolution equations (which respect important physical laws such as the Onsager
reciprocity relationships for the transport coefficients and the second law of ther-
modynamics) to its four building blocks, the energy E, the entropy S, the Poisson
matrix L, and the friction matrix M, describing the reversible and dissipative
contributions to the dynamics.

We have outlined such a methodology for the case of unentangled polymer melts
for which, guided by network theory approaches to polymer elasticity, the appropriate
coarse-grained variable x is the conformation tensor. The underlying, microscopic
model is simulated by thenonequilibriummolecular dynamicsmethod. The relevant
nonequilibrium state is assumed to be given by a generalized canonical distribution
incorporating a conjugate variable (the Lagrange multiplier) l to the conformation
tensor. Monte Carlo simulations in this ensemble can then be employed in order to
calculate the values of the slow variables x and the static building blocksE and L. For a
given value of imposed flow rates, the Lagrange multiplier can be determined
iteratively so that the solutions of themicro- andmacrosolvers for the coarse-grained
structural variables coincide. Through this one can compute model-independent
values of the Lagrange multiplier, which for a wide range of strain rates (covering
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both the linear and the nonlinear viscoelastic regimes) bring results for the overall
polymer conformation from the two models (microscale and macroscale) on top of
each other. We presented two approaches with which one can obtain the missing
blocks of the macroscopic model. In Section 7.4.2, the computed values of the
Lagrange multiplier were compared with those corresponding to specific choices of
the friction or relaxation matrixM in the macroscopic GENERIC model (addressing
the chosen structural variable; here the conformation tensor); based on this, one can
identify shortcomings and suggest improvements. And this is the biggest advantage
of the new framework since the multiscale model proceeds without a priori
knowledge of the exact form of themacroscopicmodel. Being built on the GENERIC
framework of nonequilibrium thermodynamics, what is only needed is just to rely on
the nature of the chosen structural variables at the coarse level. This, further,
emphasizes the significance of the choice of variables in the method. In the second
approach, Section 7.4.3,we introduced anovel, low-noise, timescale bridging strategy
for the same system (low molecular weight, unentangled polymers) subjected to
homogeneous flow fields. Through an alternating Monte Carlo-molecular dynamics
iteration scheme, we were able to obtain the model equations for the slow variables.
For a chosen flow (including elongational ones), the method predicts both structural
and material functions beyond the regime of linear response. The method is simple
to implement and allows the calculation of time-dependent behavior through
quantities readily available from the nonequilibrium steady states. In the end, it is
only when all three different methodologies (macromodel, micromodel, and the
macroscopic viscoelastic GENERIC equation bridging them) come together to
complement each other that the entire multiscale strategy can be considered as
successful. Then, simulation techniques are elevated frombrute-force computational
tools to sophisticated techniques capable of mapping the detailed description of the
system to a handful of carefully chosen variables whose dynamics (time evolution) is
also faithfully described by an accurate analytical model.

Future efforts will address other systems such as entangled (linear and branched)
polymers where, inspired by the corresponding GENERIC formalism, one should
resort to a description in terms of the orientational distribution function of an
entanglement segment along the primitive path of the chain.
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8
Computational Mechanics of Rubber and Tires
Michael J. Poldneff and Martin W. Heinstein

8.1
Introduction

Computational modeling of rubber involves issues that have been traditionally
difficult in computational mechanics. Rubber exhibits relatively low stiffness for
loads that are typically applied. This leads to large displacements and high strains
implying nonlinearities in strain–displacement relationships. In addition, when the
strains are high, the constitutive relationships become nonlinear, too. As a result, the
discrete equations of the finite element method that incorporate both geometric and
constitutive nonlinearities are highly nonlinear and require a large number of
iterations in order to follow the loading path.

Some other complications in the course of numerical simulation of rubber and
tires are rubber near-incompressibility and reinforcement in tires. The rubber near-
incompressibility makes the system of finite element equations ill conditioned since
in this case the volumetric stiffness greatly exceeds the shear stiffness. The near-
incompressibility and incompressibility conditions are essentially constraints
imposed on the solution, and depending on the ratio of the number of discrete
equations and discrete number of constraints solution may or may not exist.
Therefore, the design of specific finite elements to satisfy these conditions becomes
very important.

Contact conditions add even more difficulty and complexity to an already very
complex and difficult analysis of rubber products and tires. Contact conditions are
unilateral and need to be constantly checked during the incremental nonlinear
analysis. In addition, they are not smooth, thus degrading the performance of
nonlinear solvers. A number of numerical regularization parameters need to be
introduced to prevent chattering and ensure robustness of a finite element analysis
(FEA) with frictional contact.

In this chapter, we will both discuss the above issues and deal with special topics of
the finite element analysis of tires.
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8.2
Nonlinear Finite Element Analysis

As we have mentioned in the introduction, rubber parts typically experience large
displacements and strains during their deformation history and, therefore, linear-
ization based on the theory infinitesimal strains and small displacements that is
traditionally employed for steel, reinforced concrete, and so on will produce inac-
curate results. In order to retain the accuracy and realistic description of the
deformation process in rubber, a fully nonlinear description of the deformation
process should be considered. In the following discussion, we will obtain discretized
finite element equations and outline their solution methods.

To outline a finite element analysis approach, we will formulate a boundary value
problem, transform it into a weak or variational form, and obtain discretized finite
element equations.We beginwith the equations of equilibrium that arewritten in the
deformed configuration [1]:

sij;j þ rfi ¼ 0; ð8:1Þ

wheresij are the components of theCauchy stress tensor, fi are the components of the
body force vector, and r is the density. All the above quantities are defined in the
deformed configuration.

We add to these set of equations the constitutive equations that relate stresses to
strains. One form of constitutive equations for isotropic highly deformablematerials
is of the generalized Mooney–Rivlin type [2] in which the strain energy densityW is
expressed in terms of the strain invariants:

W ¼ WðI1; I2; I3Þ; ð8:2Þ

where Ij are the strain invariants of the right Cauchy–Green deformation tensor Cji

that is expressed through the deformation gradient tensor Fjk as follows:

Cij ¼ FkiFkj: ð8:3Þ

InEq. (8.3),Fij ¼ qxi=qXj and xi,Xj are respectively the coordinates in the deformed
and the undeformed configurations. The stress–strain relationships are derived
from (8.2) by differentiation of the strain energy density with respect to the strain
measures obtaining as results the conjugate measure of strain. For incompressible
materials such as tire rubber, the incompressibility condition at every point of
continuum is expressed as J ¼ det F ¼ 1 and has to be enforced separately in
addition to the stress–strain equations. This constraint presents difficulties in the
course of the analysis and will be addressed later.

Finally, the addition of boundary conditions (BCs) are needed for a unique solution
of (8.1). Dirichlet or displacement BCs are prescribed on the part of the boundary
where displacements are known:

Cu : ui ¼ uib ð8:1aÞ
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and Neumann or traction BCs on the part of the boundary where tractions are
known:

Ct : sijni ¼ tj: ð8:1bÞ

This completes the set of equations in the boundary value problemexpressed in the
so-called strong form.

In order to develop equations suitable for a finite element discretization, we cast
Eq. (8.1) in aweak formby selecting test functionswi and integrate over the deformed
configuration v:

ð
v

ðsij;j þ rfiÞwi ¼ 0; ð8:4Þ

where the test functions are continuous in the deformed configuration v and vanish
on the boundary C. Green�s theorem is used to transform the volume integral into a
surface integral to obtainð

v

sijwi;j dvþ
ð
Ct

tiwi dvþ
ð
v

rfiwi dv ¼ 0: ð8:5Þ

Thus, we have arrived at an alternative form of equilibrium equations where
differentiability requirements are relaxed for the stress. Therefore, the stresses canbe
related through the constitutive and strain–displacement relationships to the pri-
mary variable, displacements, in the discretized equations.

To simplify Eq. (8.5) further, we take advantage of the symmetry of the stress tensor
by splitting wi;j into the sum of symmetric and skew symmetric parts, that is,
ð1=2Þðwi;j þwj;iÞ and keep only the symmetric part of the product sijwi;j. Thus,
Eq. (8.5) becomes the equation of virtual work (also called virtual power) that can be
found in textbooks on continuum mechanics, for example [1]:ð

v

1
2
sijðwi;j þwj;iÞ dvþ

ð
Ct

tiwi dvþ
ð
v

rfiwi dv ¼ 0: ð8:6Þ

Equation (8.6) is now suitable to obtain a set of discrete finite element equations.
Specifically, the undeformed domain is discretized by subdividing it into a collection
of nodes and elements, and after making an assumption of how nodal variables vary
locally within each element, Eq. (8.6) represents a set of discrete equations consisting
of a set of primary unknown nodal velocities.

Using the standardGalerkinfinite elementmethod, within any element the spatial
distributions of the undeformed coordinates, velocities, and test functions are
approximated using the same shape functions and nodal values as follows:

Xi ¼ NKðXÞXKi; uiðXÞ ¼ NK ðXÞuKi; wiðXÞ ¼ NKðXÞwKi; ð8:7Þ
where NK are the local shape functions within the element and they are equal to 1 at
node K and 0 at all other nodes of an element. In the above equations, XKi;uKi;wKi
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are the nodal values of the undeformed coordinates, velocity, and test functions,
respectively, at node K. The second subscript i denotes the coordinate direction.

In order to meet the continuity requirements imposed by the weak form of the
equilibrium Eq. (8.6), the shape functions need to be continuous across the element
boundaries. Physically, this also means that strains or strain rates that are first
derivatives of the velocities could be discontinuous, but they must remain finite.

Substituting discretizations (8.7) in (8.6), we obtain the following equations with
the nodal variables wiK :

wiK

ð
v

sijNK ;j dvþ
ð
Ct

tiNK dvþ
ð
v

rfiNK dv

0
B@

1
CA ¼ 0: ð8:8Þ

Since the nodal test functions wiK are arbitrary, we obtain a set of nonlinear finite
element equations:

ð
v

sijNK ;j dvþ
ð
Ct

tiNK dvþ
ð
v

rfiNK dv ¼ 0: ð8:9Þ

The number of equations in (8.9) is equal to the number of nodes times the
number of degrees of freedom (dof) at a node. We note that the number of elements
and nodes can be of the order of millions to achieve an accurate solution for tire
problems. All material and geometric nonlinearities in (8.9) are in the first term
where the stress sij is a nonlinear function of the velocities through the constitutive
Eq. (8.2) and the strain displacement Eq. (8.3).

The integration in (8.9) is over the deformed domainwhile the shape functions are
expressed in terms of the undeformed coordinates. However, since the body is
subdivided into a collection of finite elements, all the integrals in (8.9) become a sum
of element integrals. The element shape functions are written in terms of the
reference coordinates where an element is mapped into a standard unit element
and both the deformed and the undeformed coordinates are expressed in terms of
the reference coordinates g : Xi ¼ NKðgÞXKi, xi ¼ NKðgÞxKi. Then, the integrals in
Eq. (8.9) are calculated over the reference domain with the appropriate domain and
boundary Jacobians J and JC:X

e

ð
VR

JsijNK;jdvþ
X
Ce

ð
CtR

JCtiNKdvþ
X

e

ð
VR

JrfiNK dv ¼ 0: ð8:10Þ

The summation in (8.10) is over all elements and element boundaries. In addition,
the integrals over elements in (8.10) in practice are calculated using the Gauss
numerical integration that means the integrands are calculated at a number of well-
chosen integration points in the reference configuration. Even though the integration
in (8.10) isover the referenceconfiguration, thegradientsof the shape functions are still
with respect to the deformed coordinates. However, they can be easily calculated at the
Gauss integration points using the chain rule qNk

qxi
¼ qNk

qgj

qgj
qxi
, and thematrix

qgj
qxi

(3� 3 for
3D computations) is obtained by inversion of the matrix qxj

qgi
, which is readily available.
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The method of obtaining the nonlinear finite element Eqs. (8.9) and (8.10) using
the deformed configuration is called the Updated Lagrangian approach. Equations
can also be derived by considering equilibrium equations in the undeformed
configuration utilizing the Second Piola–Kirchoff stress and the Green–Lagrange
strain in the methods that is called Total Lagrangian. Then, the integrals in (8.9) will
be over the undeformed configuration, but the discretized equations are equivalent.

As wasmentioned, the integrations in the first and last terms in (8.10) are over the
whole collection offinite elements. Therefore,when it comes to obtaining anonlinear
equation at a specific degree of freedom of a specific node, only the integrals from the
elements adjacent to this node contribute to the equation. The process of accounting
for contributions from adjacent elements is called assembly and is one of the basic
procedures in the finite element method. The same is true for the second term
in (8.10) with the only difference that the element integrals are computed over the
boundary, but the process is the same. The above-mentioned treatment can be found
in a number of references, for example [3–5].

8.3
Incompressibility Conditions

We now turn our attention to an important aspect of rubber materials in tires, which
is its nearly incompressible response. Incompressibility conditions may cause
considerable complications in computational mechanics if they are not treated
correctly. Initially, people who used the displacement-based finite element methods
tried to approximate incompressible solutions in linear elasticity by using thePoisson
ratio close to 0.5. Clearly, this is not a viable approach because some stiffness terms
approach infinity. The next step was to introducemixed finite elementmethods [6] in
which the incompressibility conditionswere treated as constraints thatwere enforced
by Lagrange multipliers. The Lagrange multipliers are introduced as additional
variables and have their own interpolation shape functions that for performance
reasons are different from those used for displacements. Near-incompressibility
constraints can be handled by penaltymethods where the bulkmodulus is assigned a
very large, perhaps even realistic value. For example, in case of rubber compounds the
bulk modulus can be thousands of times larger than the shear modulus. The penalty
approach, however, causes problems since the problem becomes ill conditioned
unless the numerical integration is carried out differently for the shear and the bulk
modes of deformation. The incompressibility problems reveal themselves in a more
or less the same fashion in both linear and nonlinear problems, and, therefore, for
simplicity we will deal with the incompressibility for linear problems.

To develop equations in a weak form for incompressible problems, we start with
the same equations of equilibrium (8.1) and boundary conditions (8.1a) and (8.1b).
But we split the stresses and strains into the bulk and the deviatoric parts:

sij ¼ �pdij þ 2meij; eij ¼ 1
2
ðui;j þ uj;iÞ: ð8:11Þ
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And also add the incompressibility constraint,

eii ¼ 0: ð8:12Þ
Essentially, we have divided the Hook�s law into two parts and introduced a new

variable, the hydrostatic pressure. We have also eliminated the bulk modulus that
becomes infinite in our case.

Augmenting the weak form Eq. (8.6) with a product of a Lagrange multiplier l
and the constraint (8.12) yieldsð

v

1
2
sijðwi;j þwj;iÞ dvþ

ð
v

lui;i dvþ
ð
Ct

tiwi dvþ
ð
v

rfiwi dv ¼ 0; ð8:13Þ

where the second term in (8.13) is the weak form of the incompressibility condition.
This term, as we will see, has important implications for the element formulation
used.

The discretization follows the same route as before with the only exception that the
pressure p and Lagrange multiplier l are an extra unknown and test function in
additions to u and w.

We also use shape functions for p and l: p ¼ MNðgÞpN and l ¼ MNðgÞlN .
Substituting the approximations together with the displacement approximations
in (8.13), we obtain linear equations in matrix form:

K C
CT 0

� �
U
P

� �
¼ F

0

� �
; ð8:14Þ

where K is the standard linear elasticity stiffness, but its elasticity matrix does not
have the volumetric terms, and

C ¼
ð
v

MKNJ;1 dv
ð
v

MKNJ;2 dv
ð
v

MKNJ;3 dv
" #

: ð8:15Þ

In Eq. (8.14), F denotes the nodal forces derived from the body forces and surface
tractions as before, and U and P are the nodal displacements and pressures.

The pressure nodes and approximating functions are different from those used for
the displacements, and not every combination of the displacement and pressure
shape functions will perform numerically well. For many combinations of the shape
functions such incompressible elements will display a phenomenon that is called
locking. This means that regardless of the applied loads and BC, the only displace-
ments that can be calculated are zero. This is related to the number of kinematic
degrees of freedom in the model and the number of constraints.

Let us consider the 2Dmesh of Figure 8.1 that comprises triangular elements and
assume that nodes 1, 2, 3, 4, and 7 are fixed. The elements are incompressible andwe
have one incompressibility constraint per element that means the element area
remains constant during the deformation process.

Considering element 1, we see that nodes 1 and 2 are fixed, and, since the area
must remain constant, node 5 can move only horizontally. However, when we
consider element 2, we can conclude that node 5 canmove only vertically. Therefore,
node 5 cannotmove at all. That is, the only possible displacements at the end for node
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5 are zero. Then, we continue with elements 3 and 4 and also conclude that node 6
cannot move at all. Continuing with the same kind of reasoning, the only possible
displacement for all the nodes is zero, meaning that the nodes of the mesh cannot
move – they are locked.

It can be easily seen from this simple example that the problem is that the number
of displacement boundary constraints (or BCs) and incompressibility constraints is
equal to the number of kinematic dof, and therefore, the system cannot be solved for
any deformation mode. The mathematical theory behind this phenomenon is based
on the Babuska–Brezzi condition [7] that numerically is related to the solvability of
Eq. (8.14).

Different designs of elements can be evaluated on the basis of the number of
kinematic dof and constraints [8]. For that, the element is fixed along two sides (three
faces in 3D) and the ratio of dof to constraints is calculated. The rule of thumb is that
this ratio should mimic the continuum situation where we have three PDEs for
displacements and one for incompressibility. The optimal ratio, therefore, is 3. It is 2
in 2D case. Some examples of �good� elements are given in Figure 8.2.

321 
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Figure 8.1 Simplified 2D mesh of incompressible triangular elements.

Displacement dof Pressure 

Ratio = 2 Ratio = 2 

Figure 8.2 Elements with reasonable incompressible behavior.
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In Figure 8.3, examples of �not so good� elements are shown. These elements are
overconstrained and display poor numerical performance. The first element in
Figure 8.3 is the same one that was used in Figure 8.1, and, as we have seen, it locks.

If the medium is slightly compressible that is typically the case for real materials,
onemight be tempted to employ the penalty method. In such a situation, the value of
the bulk modulus is considerably higher than that of the shear modulus – exactly the
case for rubber as was noted in the introduction. Then, the actual value of the bulk
modulus is specified in the Hook�s law. However, such displacement methods
display the same problems as the improperly designed mixed finite element
methods, and the problem comes down again to the improper ratio of the dof and
the constraints.

When the bulk modulus is sufficiently high, that implies imposing a constraint
similar to one with the Lagrange multiplier method since the dilatation is close to
zero. This constraint is enforced at the element integration points because the
elements are numerically integrated. Therefore, the number of integration points
defines the number of the incompressibility constraints provided the constraints
possess enough independent parameters. For example, the incompressibility con-
straint for the triangular element we have used in Figure 8.1 has only one indepen-
dent parameter because displacements are linearly approximated in the element, and
ui;i is constant. Thus, no matter how many integration points are used for incom-
pressibility in such an element, there is still going to be only one constraint per
element.

It is clear that the situation in the penalty method is very similar to the one based
on the Lagrange multiplier method. The technique to reduce the number of
constraints in the penalty formulation is to split the constitutive equations into
the deviatoric and the dilatational parts, and then use a lower order integration
scheme for the dilatational part (thus reducing the number of the incompressibility
constraints) while keeping the normal order of numerical integration for the
deviatoric part.

Then, the Hook�s law becomes

svolij ¼ Bekkdij; ð8:16aÞ

Displacement dof Pressure 

Ratio = 1 Ratio = 2/3 

Figure 8.3 Elements with poor incompressible response.
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sdevij ¼ 2medevij ; ð8:16bÞ

B � m; ð8:16cÞ
where B is the bulk modulus.

Correspondingly, the stiffness matrix is split into parts, the volumetric Kvol and
deviatoric Kdev parts. To reduce the number of the incompressibility constraints, a
lower order of integration is used for the Kvol part of the stiffness matrix. Such a
numerical integration procedure is called selectively reduced integration and is very
effective for near-incompressible problems. One can see a definite analogy between
the Lagrange multiplier methods and the penalty methods with the selectively
reduced integration. In fact, for elements shown in Figures 8.2 and 8.3, one can
use the same reduced integration schemes as for Lagrange multiplier nodes and
arrive at similar conclusions [8].

In the large strain situation, we can split the deviatoric and volumetric terms [9]
by redefining the deformation gradient tensor as �F ¼ J1=3F. Then, the right Cauchy–
Green deformation tensor invariants become

�I1 ¼ J�
2
3I1; ð8:17aÞ

�I2 ¼ J�
4
3I2: ð8:17bÞ

By doing so, �I1,�I2 define a volume preserving deformationmode. Then, the strain
energy function can be written as follows:

W ¼ Wð�I1;�I2Þþ 1
2
KðJ�1Þ2 ð8:18Þ

with the term 1
2KðJ�1Þ2 representing the volumetric part of the strain energy. The

same procedure of selectively reduced integration can be applied.

8.4
Solution Strategy

Equation (8.10) can be expressed in a compact matrix vector form suitable for
programming. The first term in (8.10) is often called the vector of internal forces, Fint

because it is derived from the internal stresses arising in the body. This vector
contains the left-hand side of the equations with unknown velocities v. The second
term and third term together are called the right-hand side, or vector forces external
forces, Fext, with contributions from the surface tractions applied to the deformed
body from the body forces distributed in the domain. In addition, to solve Eq. (8.10),
the displacement boundary conditions have to be imposed at the boundary nodes.

Equation (8.10) is a nonlinear algebraic equation and is difficult to solve in general.
Depending on the load magnitude and the stiffness of the structure, the nonlinea-
rities may be too significant for any iterative solutionmethod. That is why the load or
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external excitations like applied displacements are usually applied in steps.When the
solution is obtained, say, in the first step thatmay contain only a certain percentage of
the external load, then the load is incremented, and the solution is obtained in the
second step, and so on. This way, nonlinearities of the problem are dealt with
incrementally, and there is a better chance of arriving at the solution.

Within a load step, equations are most commonly solved by the Newton method.
There is a plethora of modern iterative methods for solution of algebraic equations,
but the Newton method is so far the most robust and popular and the modern
nonlinear finite element software [3–5]. Let us write (8.10) in the following matrix
form:

r ¼ Fextðdðt�DtÞþDdðtÞÞ�Fintðdðt�DtÞþDdðtÞÞ ¼ 0; ð8:19Þ
where ris called the residual of (8.10). The internal force vector, Fint, depends on the
primary displacement variables in a nonlinear manner. The velocities vðtÞ at time t
have been written to reflect the load stepping scheme, that is, dðt�DtÞ denotes the
known (solved) displacements at the beginning of the load step and DdðtÞ ¼ DtvðtÞ
denotes the unknown (to be solved) displacement increments at time (t).

In order to applyNewton�smethod to solve the nonlinear Eq. (8.19), they need to be
linearized via the �tangent� or matrix of derivatives:

K ¼ ½Fint
i;j �: ð8:20Þ

The derivatives here are of the vector of internal forceswith respect to the unknown
displacements, d. Iterations are performed by solving the system of linear equations
to get displacement increments: K Ddk ¼ Fext�Fint. Then, the vector of displace-
ments, d, are updated: dk ¼ dk�1 þDdk and are used to calculate the new residual
r ¼ Fext�Fint, and the iterations continue.

We note that while the Newtonmethod is themost robust andmost widely used in
nonlinear finite element software, it is also computationally expensive primarily due
to the necessity to solve a system of linear equations. It also imposes considerable
computer memory requirements since a global system matrix is used. This method
also is not as easily parallelized as some other iterative methods. In order to achieve
the optimal performance of the Newton method, it is crucial to calculate the tangent
stiffness matrix that is indeed �tangent� or, in other words, is the derivative with
respect to unknowns that are calculated very accurately.

8.5
Treatment of Contact Constraints

We now turn our attention to an important aspect of solving tire problems – the
treatment of contact constraints. The contact problem to be solved is one of the two
bodies contacting across their respective surfaces. The impenetrability of the two
bodies (normal contact) will manifest itself as a set of unilateral constraints

gN � 0; ð8:21aÞ
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tN � 0; ð8:21bÞ
tNgN ¼ 0; ð8:21cÞ
tN _gN ¼ 0; ð8:21dÞ

where gN is the normal gap between the two bodies and tN the normal traction,
tN ¼ n � t.

The frictional behavior of the two contacting bodies (we consider Coulomb friction
here) is represented by the tangential contact constraints:

W :¼ jtTjj�mtN � 0;j ð8:22aÞ

LvgT�z
tT

jtTjj ¼ 0;j ð8:22bÞ

z � 0; ð8:22cÞ
Wz ¼ 0; ð8:22dÞ

where gT is the relative slip vector between two bodies, z is the (scalar) slip rate in the
direction of the tangential traction given by the projection of the traction, t, onto the
slip surface, tT ¼ �ðI�n	 nÞ � t. Note that the form of tangential constraint set is
similar to the normal constraint set in that it represents a discontinuous behavior
between sticking z ¼ 0 and sliding z > 0.

Discretization of the contact problem posed leads the definition of the constraint
operator, G. Referring to Figure 8.4, we define the constraint operator at slave node,
s as

Gjs ¼ . . . 1 . . .�Nm1�Nm2�Nm3�Nm4b c: ð8:23Þ

Thus, the discrete representation of the contact constraints expressed in Eqs. (21d)
and (22d) are

gN ¼ GN � dðtÞ ¼ 0; ð8:24aÞ
gT ¼ GT � dðtÞ ¼ 0; ð8:24bÞ

1m
2m

3m
4m

s

)t(ˆ dG smN ng =

mn̂

Figure 8.4 Definition of the constraint operator at a surface slave node s against a master
surface m via a closest point projection along the surface normal n̂m.
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where a projection of the nodal displacement onto the constraint normal and its
tangent plane is used to construct the normal and tangential constraint operator GN

and GT, respectively. It is a common practice to use, and we do so here, the so-called
�master–slave� algorithmwhere one side of the interface is the slave surface onwhich
the constraints are defined and enforced and the other side of the interface is the
master surface that defines the interface geometry. In that way, the interface is
unambiguously defined. For tire problems, this is the preferred approach anyway
since the tire is in contact with a comparably rigid rim and road.

Focusing now on the enforcement of these constraints, we consider the similarity
of the discrete contact constraint Eqs. (24a) and (24b) and the incompressibility
constraint (8.12).

When considering the usual approaches for constraint enforcement, that is,
penalty, Lagrange multiplier, or Augmented Lagrangian, we consider the class of
problems being solved. Tires by nature of their design are not intended to slip
significantly relative to the rim or the road. Thus, an approach that strongly enforces
the no-slip condition is favored. In addition, there is an observed strong coupling
between the enforcement of the contact stick-slip condition and the near incompres-
sibility of the material response. For these reasons, we choose to enforce the contact
rate constraints during the Newton iterations – that is, slave nodes are assumed to be
either in contact and sticking or not in contact at all.

With this choice, two important omissions in the contact treatment are evident.
First, our choice to enforce rate conditions rather than impenetrability and frictional
stick-slip constraints during the solution of the Newton iteration leaves us vulnerable
to inaccurate choices of active constraint sets, over which the rate constraint is
enforced. Second, our argument for linearity of the constraint enforcement scheme
significantly depends on the matricesGN andGT being invariant during the Newton
iterations, so that both the set of active constraints and the geometrical variations on
the surfaces should be independent of the deformation. Of course, this invariance
will not hold in general unless we enforce it algorithmically.

So, we introduce a second iteration loop outside the Newton iterations, where the
normal gaps are kinematically removed and some amount of frictional slip is allowed
if required. Also in this loop, which we will take to be indexed by k, the contact
kinematic matrices GN and GT are recomputed based on current geometry that are
then fixed during the subsequent Newton iteration loop. The proposed algorithm is
therefore somewhat similar in spirit to some recent proposed augmented Lagrangian
treatments of contact problems, in which Uzawa�s method for multiplier updates is
applied (see Ref. [10]). Both the proposed algorithm and the augmented Lagrangian
treatments require nested iteration strategies, where the inner iteration loop is
primarily concerned with equilibrium iterations and where the outer loop iterates on
the quality of constraint satisfaction. As is the case with augmented Lagrangian
strategies, it should also be noted that the convergence rate associated with this outer
loop is expected to be linear only.

Associating an index k with this outer constraint loop, an incremental kinematic
prescription of the gap removal is utilized via

Ddkþ 1 ¼ Ddk þðDdj
Þk þ bNG
T
Nk
GNkðdðt�DtÞþDdk þðDdj
ÞkÞ ð8:25Þ

396j 8 Computational Mechanics of Rubber and Tires



for the normal gap constraints. In Eq. (8.25), Ddk is the accumulated displacement
increment of the kth intermediate solution, ðDdj
Þk is the displacement increment for
the current (k) intermediate solution, andbN is a pushback factor, that is, 0 < bN � 1
on the normal gap. Equation (8.25), in the case where bN ¼ 1, simply gives the
displacement incrementDdkþ 1 necessary to remove violations of the impenetrability
constraint, as would occur, for example, if a new node came into contact so that a
change in the active constraint setwas necessitated. In practice,bN is generally set to a
value less than 1, as too large a value will excessively upset the global equilibrium of
the system and require needless extra Newton iterations to restore it.

The tangential gap constraints are treated in a similar manner, resulting in the
following displacement update for the frictional case:

Ddkþ 1 ¼ Ddk þðDdj
Þk þaM�1ðGs
TÞTðbTrtank Þ

þ bNG
T
Nk
GNkðdðt�DtÞþDdk þðDdj
ÞkÞ;

ð8:26Þ

wherea is the line search parameter, bT is an allowable slip factor, that is, 0 < bT � 1,
and rtank is the residual tangential force unbalance, that is,

rtank ¼ min½0; ðGs
T�mGs

NÞðFext�ðFint
j
 ÞkÞ�: ð8:27Þ

As with the case for the impenetrability constraint, the tangential (stick-slip)
constraints are also gradually enforced. The frictional slip is determined from a line
search along the steepest descent direction M�1ðGs

TÞTðbTrtank Þ, and the rate con-
straints are active during the Newton iterations while assuming sticking conditions,
that is,

tTj ¼ ðtTj Þstick ¼ Gs
TðFext�ðFintj Þ: ð8:28Þ

Thus, although the stick-slip decision could be built into the Newton iteration
strategy, our experience shows that the approach where complete stick is assumed
during the Newton iterations is more robust and cost-effective for tire applications.

8.6
Tire Modeling

Tires are complex structural systems that present significant challenges to finite
element analysis. In order to simulate tire performance, FE modeling must account
for both geometrical and material nonlinearities; it must deal effectively with soft
composites and with rubber near-incompressibility; and it must accommodate the
complicated contact conditions existing at the tire/rim and tire/road interfaces. In
addition, a large number of degrees of freedom (on the order ofmillions) are required
to accurately model the structural details of a realistic tread design. Moreover, an FE
rolling analysis of such a design is extremely CPU intensive. For all these reasons,
numerical modeling of tires is extremely difficult, and in addition to numerical
treatment described in previous sections, parallel computing is highly desirable and
is becoming a key component in the tire FEA.
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Tires consist of many components that include rubber compounds as well as steel
and synthetic reinforcement, as shown in Figure 8.5. Reinforcement components
such as belts, plies, beads, and overlays shown in the figure are considerably stiffer
than the rubber compounds surrounding them.

Therefore, in addition to difficulties arising from nonlinearities due to large
deformations, incompressibility, and contact conditions, a tire is a structure with
components possessing a wide variation in stiffness, which makes the overall
assembled stiffness matrix ill conditioned. This ultimately can affect the accuracy
of the analysis without careful consideration of the overall solution strategy. Finally,
we note that owing to a large number of components and their elaborate shapes, for
example, the tread withmany grooves and sipes, a tiremodel requires a considerable
number of degrees of freedom to satisfy the accuracy requirements.

A realistic tire analysis involves several stages: inflation and rim seating, deflection
or loading with a vertical force, and rolling. During the inflation and rim seating
stage, a tire is considered to be loaded with a uniformly distributed pressure P on the
inner surface of the liner and contacting the rim, Figure 8.6. The pressure remains
normal to the inner surface of the liner during the formation. This has to be
accounted for in both the pressure direction change and in what is called the
load-stiffness matrix [11] since the pressure in effect depends on displacements
and, therefore, a derivative of the external load – the pressure – with respect to the
primary unknowns – the displacements – does not vanish. The most numerical
difficulties in tire modeling during the inflation and rim seating stage occurs due
to the contact of the tire with the rim and the frictional sliding of the chafer rubber
over the rim curved surface (Figure 8.5). This involves severe deformations of
the chafer and many contact iterations in both the normal and the tangential
directions.

After a tiremodel has been inflated, it is loaded with a vertical force to simulate the
weight of the vehicle, Figure 8.7. In this stage, another contact condition takes effect –
contact of the tire treadwith the road. The inflation P is still normal to the surface and
the contact with the rim continues to be engaged.

Figure 8.5 Schematic of a pneumatic radial tire.
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Next, the tire model is rolled on the road (Figure 8.8), where the tire model first
cambered, that is, tilted about the X-axis and then rotated about the Y-axis. The road
meanwhile can move freely in the direction that is in the X–Y plane but at an angle
with respect to the X-axis. Thus, we can model tires rolling with a slip angle or
simulate turning of the vehicle.

Model generation for this analysis is also amultistage process. Since the tire cross-
section geometry (without tread) is symmetric about the centerline, one half of the
cross section is meshed using 2D tools. The mesh is reflected to create a full cross-
section mesh and is then swept about the tire axis of symmetry to produce an
axisymmetric 360�, 3D mesh.

Figure 8.6 Tire inflation.

Figure 8.7 Vertical loading on a tire.
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A realistic tread design is meshed in a separate process and is snapped onto the
carcassmesh. Because of the complexity of the tread geometry, it is difficult to achieve
mesh contiguity between carcass and tread. Mesh incompatibility is handled by
imposing multipoint constraints (MPCs) between contacting surfaces.

8.6.1
Example: Bump Envelopment [12]

Abumpenvelopment analysis is a similar sequence of FE stages inwhich a tiremodel
ismounted against a rigid rim, inflated, deflected against a rigid road, and then rolled
at constant road deflection over an imperfection in the road. Although such an
analysis is used for tire comfort andharshness assessment it can answer several other
important questions:

1) What loads will the axle see?
2) What is the nature of the carcass deformations?
3) How severe is the loss of contact at the tread/road interface?
4) Will the tire dismount from the rim?

This sort of analysis run on a highly refined, realistically treaded model demands
parallel execution to obtain timely results. Table 8.1 shows relevant data for the FE
model.

Figure 8.8 Definition of camber and slip angle and rolling direction in the global coordinate
system.

Table 8.1 Model data for bump impact analysis.

Total elements Total nodes Degrees of freedom Circumferential sectors in mesh

938,843 910,468 3,670,247 180
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Figure 8.9 shows the fully treaded FE mesh and Figure 8.10 shows the tire as it
envelops the road bump after approximately 60� of quasistatic rolling.

Figure 8.11 shows footprint contact pressures after mounting, inflation, and
application of the nominal vertical axle load of 6230N. All pressures are in MPa.

Figure 8.9 Treaded tire model.

Figure 8.10 Tire running over an obstacle.
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Figure 8.12 shows this footprint as the tire envelops the bump. Note the band of high
contact stresses that coincides with the leading edge of the bump. There are many
other quantities of interest that were calculated but are not presented here: for
example, global forces and moments, slip distributions in the tread material, heat
build-up, and so on. For a model of the size and complexity presented here, parallel
computing was the only viable means for obtaining these quantities.

In conclusion, a very elaborate analysis system that includes a robust and parallel
aware finite element code capable of effectively handling nonlinearities, incompres-
sibility, contact and a wide range of stiffness variations must be in place in order to

Figure 8.11 Tire-road pressure distribution.

Figure 8.12 Tire-bump pressure distribution.
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handle tire stress analysis applications. In addition, for practical applications, the
code should be equipped with both an effective meshing preprocessor and a finite
element variable (such as stresses, strains, etc.) visualizer.
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9
Modeling the Hydrodynamics of Elastic Filaments
and its Application to a Biomimetic Flagellum
Holger Stark

9.1
Introduction

In nature, microorganisms employ beating elastic filaments called flagella or cilia to
propel themselves forward in their highly viscous environment [1–3]. In addition, the
cilia are used to transport fluid. This strategy can be viewed as nature�s answer to the
fact that on the micron scale water is highly viscous and thus in the regime of low
Reynolds numbers, where inertia does not play any role. Since microorganisms
cannot rely on drifting by inertia, as we do when we swim in water, they immediately
come to a halt when they stop their beating motion. The chapter gives a condensed
overview of how one can model an elastic filament moving in a viscous fluid. It then
introduces a superparamagnetic elasticfilament thatmimics aflagellumand thatwas
used to create an artificial swimmer [4]. Finally, we demonstrate how this filament is
capable of transporting fluid. The latter is especially attractive for the field of
microfluidics [5], where fluids have to be transported along microchannels or
thoroughly mixed without having turbulent flow fields available.

9.1.1
Lessons from Nature

In 1977, Purcell pointed out in his famous article �Life at LowReynoldsNumber� that
microorganisms have to perform a nonreciprocal periodic motion to be able to move
forward [6] (see also [7]). Nonreciprocal means that the time-reversed motion is not
the same as the original one (e.g., see Refs [8–13]). The reason lies in the Stokes
equations [14] governing thefluidflow aroundmicroorganisms for negligible inertia:
they allow for a time-inverted flow pattern when all the external and pressure forces
are inverted. Especially, a scallop that just opens and closes its two shells would fail to
proceed in the microscopic world [6]. At least two hinges are necessary to perform a
nonreciprocal motion as realized in the Purcell swimmer [6, 10, 15].

Bacteria such as Escherichia coli and Salmonella typhimurium employ marvelous
rotary motors to crank a bundle of relatively stiff filaments of helical shape [16, 17].
The rotating helices create a thrust on the bacterium since each local piece of one
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helix has an anisotropic friction coefficient. This means that the two friction
coefficients for moving, respectively, along or perpendicular to the local axis are
different. Sperm cells as one example for eukaryotic cells propel themselves by
creating planar bending waves that move along their elastic flagella from the head to
the tail [2, 18–20]. These waves are generated by the collective motion of internal
molecular motors and the action of frictional forces from the surrounding fluid [21,
22]. Some unicellular microorganisms, such as the protozoan paramecium or
opalina, are covered by a carpet of shorter flagella called cilia. Each cilium performs
a characteristic three-dimensional stroke that is coordinated with the strokes of
neighboring cilia. As a result, the so-calledmetachronal waves run along the surfaces
of the protozoans and propel them. Hydrodynamic interactions between the beating
cilia are discussed as the major source of their synchronization [23–32] (J. Elgeti and
G. Gompper, in preparation).

Nature also uses arrays of collectively beating cilia to transport mucus in the
respiratory tract or fluid in the brain [33]. During the early stage of a developing
embryo, arrays of cilia that rotate about their anchoring points and thereby produce a
vortex in the surrounding fluid are responsible for establishing the left-right
asymmetry in the placement of organs [34]. Genetic defects that produce defective
cilia then lead to theso-called situs invertuswhereorgansareplacedonthewrongsideof
theanimalorhumanbody.Finally,fluid transport andmixingon themicroscopic level
is a fascinating problem that is at the center of a successful lab-on-chip technology
[5, 35]. Therefore, experimental efforts have been initiated to copy nature�s
successful concept by developing biomimetic or artificial cilia that are actuated
by external fields [4, 35, 36] or to move fluid with the help of bacterial carpets [37].

9.1.2
A Historical Overview

For modeling a beating flagellum correctly, one important ingredient is the correct
description of its hydrodynamic friction with the surrounding fluid. An account of
this problem is given by Brennen andWinet in Ref. [1]. We first consider a long thin
rod of length L andwith circular cross section of diameter 2a. It has two characteristic
friction coefficients per unit length, ck and c?, for moving, respectively, along and
perpendicular to its axis in a fluid with shear viscosity g [38]:

ck ¼
2pg

lnðL=aÞþC1
and c? ¼ 4pg

lnðL=aÞþC2
; ð9:1Þ

where C1 ¼ �3=2þ ln 2 ¼ �0:807 and C2 ¼ C1 þ 1 ¼ 0:193. In general, these
constants depend on the axial variation of the cross-sectional radius [38]. For finite
values L=a corrections of the order ½lnðL=aÞ��3 occur and for L=a!¥ one obtains
c?=ck ¼ 2. In what is called resistive force theory [1], one tries to apply these friction
coefficients to a long slender body that is allowed to bend as, for example, a beating
flagellum. However, in such cases the meaning of L is not obvious. Clearly, resistive
force theory is only an approximation since it does not appropriately treat the
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hydrodynamic interactions between different parts of a filament. Interactions are
mediated by flow fields that are initiated when these parts move. In slender body
theory [39, 40], a more accurate treatment of the problem is achieved. The boundary
value problem for a longfilament is solved by distributing the so-called stokeslets and
their spatial derivatives (Stokes doublet, quadrupole, stresslet, etc.) along the
filament�s centerline. A stokeslet gives the velocity field initiated by a point force
and is therefore proportional to the Green function of the Stokes equations, called
Oseen tensor. On the basis of such concepts, Gray andHancock [19] suggested to use
L ¼ 2l in the local friction coefficients per unit length of Eq. (9.1), where l is the
wavelength of the wave traveling along a flagellum, whereas Lighthill suggested for a
�suboptimal representation� L ¼ 0:18l using a careful analysis of slender body
theory [40]. However, in general, this theory is somehow cumbersome.

In the physics community, the growing interest in the topic developed a decade
ago. Motivated by Purcells work on swimmers and by experiments on driven
microfilaments such as actin [41, 42], Wiggins and Goldstein explored the elastohy-
drodynamics of long elastic filaments. They combined the bending elasticity of an
elastic rod with the resistive force theory to arrive at a hyperdiffusion equation for a
filament in the limit of small bending [43] (see also Section 9.2.2). In this limit, only
c? is relevant. Going beyond pure planar undulations, rotating filaments were also
considered, where twist deformations besides bending become important [44, 45]. In
parallel, Camalet, J€ulicher, and Prost studied the self-organized beating of a flagel-
lum, for instance, of a sperm cell, based on elastohydrodynamics and a modeling of
the collective motion of internal motors that drive the flagellum [21, 22]. More recent
work contains a detailed investigation of swimming with actuated filaments [46, 47].
Finally, elastohydrodynamics has been extended to viscoelastic fluids [48] and its
implications for propulsion are addressed in Ref. [48] also using an elastic sheet
instead of a filament [49].

In parallel to the works just reported that use the continuum description of an
elastic filament, an alternative approach was developed. It approximates the filament
by rigidly connected spheres and writes down dynamic equations for the spheres by
balancing the bending force derived from a discrete version of the bending free
energy with the anisotropic friction force from resistive force theory [50–52]. The
authors investigated the dynamics of driven filaments. They compared it with the
shape of a sperm cell�s flagellum [52] and also determined the velocity and efficiency
of a one-armed swimmer [51]. The authors extended their approach by including
hydroynamic interactions between the spheres using the Oseen tensor and studied
the shapes of single and hydrodynamically interacting filaments during sedimen-
tation [53, 54]. An experimental realization with electrophoretically driven micro-
tubules has appeared recently [55].

Amodifiedandextendedapproachusesabead-springmodelwithbendingelasticity
and takes into accounthydrodynamic interactions viaRotne–Pragermobilities for the
spheres [56–58]. Configurations of a rotating nanorod were investigated [59], later
confirmed by experiments [60, 61], and then beating grafted filaments for pumping
fluids were simulated [24]. Implementing the full elasticity theory for a rotating rod
including twist deformations revealed a discontinuous shape transition [62]. The
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elasticity theory of a helical rod was used for studying kink-pair propagation in the
propulsionof theSpiroplasmabacterium[63]andfor investigatingstretching induced
transitions between polymorphs of a bacterial flagellum [64].

Finally, wemention a new development in treating the hydrodynamic properties of
elasticfilaments.A recently introducedparticle-basedmesoscopic simulationmethod,
called multiparticle collision dynamics [65, 66], was used to study the hydrodynamic
interaction and cooperation of sperm cells embedded in a two-dimensional fluid [67].

9.1.3
A Biomimetic Flagellum

In an effort tomimic nature�s successful strategies for propulsion and fluid transport,
an artificial cilium or flagellum actuated by an external magnetic field has been
constructed recentlyon thebasisof a superparamagnetic elasticfilament.Thefilament
is made of superparamagnetic colloidal particles of micron size. A static external
magnetic field induces dipoles in the colloids so that they form a chain. In the gaps
between the charged colloids, chemical linkers such as double-stranded DNA are
attached to the particles and an elastic filament resisting bending and stretching is
formed [68–70] (for similar systems, see Refs [71, 72]). Dreyfus et al. attached the
superparamagneticfilament toa redbloodcell andthereby introduced thefirstartificial
microswimmer[4].Whilethebendingwavesmovingalongtheflagellumofaspermcell
are generated by the collective motion of internal molecular motors, an oscillating
external magnetic field induces a nonreciprocal beatingmotion of the superparamag-
netic filament. It is therefore able to move the attached red blood cell forward.

The modeling of the dynamics of the superparamagnetic filament followed two
strategies. On the one hand, the elastohydrodynamics of an elastic rod was used
supplemented by a continuum version for the interaction of the magnetic field-
induced dipoles [4, 73, 74] or a simpler description for the interaction with the
magnetic field [75–78]. The authors are able to describe the dynamics of
the filament [73, 75–78] and the velocity curve of the artificial swimmer [4]. On the
other hand, an alternative modeling based on the bead-spring configuration with
bending elasticity was employed [57]. It fully takes into account the hydrodynamic
and dipole–dipole interactions. A detailed investigation of the artificial swimmer was
performed [57], and recent studies explore how the artificial cilium can be employed
for fluid transport by attaching it to a surface [79, 92]. We will summarize the results
of these studies in Section 9.3.

9.2
Elastohydrodynamics of a Filament

9.2.1
Theory of Elasticity of an Elastic Rod

The theory of elasticity of an elastic rod [80] also called worm-like chain model [81]
introduces a bending free energy for an elastic filament, which is described by the
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space curve rðsÞ. The arc length s ranges from zero to the filament length L. From the
tangent vector t̂ ¼ drðsÞ=dswith ĵtj ¼ 1, one derives the local curvature 1=R ¼ jd̂t=dsj
of the space curve. Its inverse R denotes the curvature radius. The bending free
energy of an elastic filament in harmonic approximation then reads

HB ¼ 1
2
kBTlp

ðL
0

d̂t
ds

� �2

ds: ð9:2Þ

The bending constant kBTlp contains the thermal energy kBT and the so-called
persistence length lp meaning that thermal energy is able to bend the filament with a
curvature radius R ¼ lp. In addition, in thermal equilibrium, correlations of the
tangent vectors along the filament decay exponentially

ĥtð0Þ � t̂ðsÞi ¼ e�s=lp ; ð9:3Þ
where ��� denotes the scalar product. If L � lp, the tangent vectors are all parallel to
each other. Therefore, the filament hardly bends and is rigid. On the other hand, in
the case of L � lp correlations between the tangent vectors are lost beyond a distance
of the order of the persistence length. So, thefilament isflexible. Finally, for L � lp the
filament is considered semiflexible.

Bending forces within the filament are derived from the variation dFB of the free
energy that occurs when the space curve rðsÞ is varied by small displacements drðsÞ
along the filament. With the help of two partial integration, one arrives at

dHB ¼ kBTlp

ðL
0

d4r
ds4

� dr dsþ kBTlp
d2r
ds2

� d
ds

dr� d3r
ds3

� dr
� �����

L

0

: ð9:4Þ

The first integrand on the right-hand side is the functional derivative ofHB and its
negative is interpreted as bending force:

FBðsÞ ¼ � dHB

drðsÞ ¼ �kBTlp
d4rðsÞ
ds4

: ð9:5Þ

The �surface term� will be used in Section 9.2.2.
Normally, the filament is considered as inextensible. So, during the temporal

evolution of the filament described by the space curve rðs; tÞ, one always has to fulfill
jdr=dsj ¼ 1. Here, s always indicates the same material point of the filament and
always ranges from zero to L. This corresponds to the Lagrangian formulation of the
elasticity theory for solid bodies. The constraint jdr=dsj ¼ 1 is formally included into
the variation of the free energy by adding the term

HC ¼ 1
2

ðL
0
lðsÞ dr

ds

� �2

ds ð9:6Þ

to the bending free energy, where lðsÞ is the local Lagrange parameter. This term can
be interpreted as a stretching free energy that describes the stress

tðsÞ ¼ lðsÞ dr
ds

ð9:7Þ

necessary to guarantee the constraint jdr=dsj ¼ 1. The variation of HC gives
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dHC ¼ �
ðL
0

d
ds

lðsÞ dr
ds

� �
� dr dsþ lðsÞ dr

ds
� dr
����
L

0

; ð9:8Þ

from which we read the functional derivative or stretching force

FCðsÞ ¼ � dHS

drðsÞ ¼
d
ds

tðsÞ; ð9:9Þ

where tðsÞ is defined in Eq. (9.7).
In numerical simulations, one needs a discretized version of the free energy. We

describe the space curve of thefilament byNþ 1 space points ri (i ¼ 0; . . . ;N)with an
equilibrium distance l0 and introduce the normalized tangent vectors via
t̂i ¼ ðri�ri�1Þ=li, where li ¼ jri�ri�1j is the momentary distance between the space
points. Instead of implementing the inextensibility constraint, we introduce a
concrete stretching free energy in harmonic approximation,

HS ¼ 1
2
k
XN
i¼1

ðli�l0Þ2; ð9:10Þ

where k is the spring constant of the springs connecting the space points. Further-
more, replacing d̂t=ds in Eq. (9.2) by ð̂tiþ 1�t̂iÞ=l0, one arrives at the discretized
version of the bending free energy:

HB ¼ kBTlp
l0

XN�1

i¼1

ð1�t̂iþ 1 � t̂iÞ: ð9:11Þ

Finally, bending and stretching forces on point ri of the filament follow from

FS
i ¼ �rriH

S and FB
i ¼ �rriH

B; ð9:12Þ
whererri is the nabla operator with respect to ri. Explicit expressions for FS

i and FB
i

are given in Ref. [57].

9.2.2
Hydrodynamic Friction of a Filament: Resistive Force Theory

Dynamic equations for the elastic filament need a proper account of the frictional
forces with the surrounding fluid.Within resistive force theory, they are proportional
to the local velocities of thefilaments. Furthermore, in the lowReynolds number limit
they have to balance the bending and stretching forces introduced in Eqs. (9.5)
and (9.9). Using the two friction coefficients per unit length, ck and c?, one thus
arrives at the highly nonlinear dynamic equations:

ck t̂� t̂þ c?ð1�t̂� t̂Þ
h i dr

dt
¼ � dHB

drðsÞ þ
d
ds

tðsÞ

¼ �kBTlp
d4rðsÞ
ds4

þ d
ds

�
lðsÞ dr

ds

�
:

ð9:13Þ
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The dyadic product t̂� t̂ projects the velocity dr=dt on its component parallel to t̂
[ð̂t� t̂Þa ¼ t̂̂t � a] and the projector 1�t̂� t̂ extracts the component perpendicular to t̂.
The dynamic Eqs. (9.13) have to be supplemented by the inextensibility constraint
jdr=dsj ¼ 1. Assuming free boundary conditions for the ends of the filament, which
means that in the �surface terms� of Eqs. (9.4) and (9.8) the variations dr and ddr=ds
are arbitrary, results in the conditions

�kBTlp
d3r
ds3

þ lðsÞ dr
ds

and
d2r
ds2

¼ 0: ð9:14Þ

The first and second conditions mean that the respective external forces and
torques at the free ends of the filament vanish.

A linearized version of Eq. (9.13) follows with the help of the Monge represen-
tation. The undistorted ground state of the filament is represented by r0ðxÞ ¼ xex,
where x ranges from zero to L and ex is a unit vector along the x-axis. For small
deviations from the straight filament, the inextensibility constraint is negligible and
the space curve of the filament can be described by rðx; tÞ ¼ xex þ yðx; tÞey. Inserting
this parameterization into Eq. (9.13) and linearizing in yðx; tÞ gives the so-called
hyperdiffusion equation:

dy
dt

¼ � kBTlp
c?

d4y
dx4

: ð9:15Þ

We solve it with the ansatz yðx; tÞ ¼ y0 exp ½iðkx�vtÞ� and the boundary conditions
yðx!¥; tÞ ¼ 0 and d2yð0; tÞ=dx2 ¼ 0; here the latter means vanishing torque. The
solution reads

yðx; tÞ ¼ y0
2

e�c2x=jeiðc1x=j�vtÞ þ e�c1x=je�iðc2x=jþvtÞ
h i

; ð9:16Þ

where we introduced the penetration length

j ¼ kBTlp
c?v

� �1=4

ð9:17Þ

and the constants c1 ¼ cosðp=8Þ and c2 ¼ sinðp=8Þ. Equation (9.16) is a superpo-
sition of two damped waves propagating, respectively, in positive and negative x-
direction and the point at x ¼ 0 oscillates in time, yð0; tÞ ¼ y0expð�ivtÞ. So,
solution (9.16) represents an infinitely long filament whose one end is oscillated
in time and the penetration length gives the distance along which this oscillation
penetrates into the filament.

To characterize the elastohydrodynamic properties of an elastic filament of length
L, we define the characteristic number

Sp ¼ L
j
¼ c?vL

4

kBTlp

� �1=4

; ð9:18Þ

also termed sperm number [51, 52]. It compares the frictional force acting on the
filament with the bending force. Introducing reduced spatial and temporal
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coordinates, �y ¼ y=L, �x ¼ x=L, and �t ¼ vt, the hyperdiffusion equation (9.15)
becomes

d�y
d�t

¼ �Sp�4 d
4�y

d�x4
: ð9:19Þ

The reduced version demonstrates that the sperm number Sp completely deter-
mines the behavior of an elasticfilament. ForSp � 1, for example, for sufficiently low
frequencies v, it behaves as a rigid rod meaning that frictional forces are not large
enough to bend the filament. For Sp � 1 hydrodynamic friction can bend the whole
filament and for Sp � 1 the forced oscillation is visible only along the length j.

9.2.3
Hydrodynamic Friction of a Filament: Method of Hydrodynamic Interaction

Here, the filament ismodeled by a bead-spring configuration that additionally resists
bending like a worm-like chain [81]. Thus, each bead in the filament experiences a
force caused by stretching and bending as described in Eq. (9.12). This offers an
approach to treat hydrodynamic friction of the filament with the surrounding fluid
beyond resistive force theory. Each bead moving under the influence of a force
initiates a flow field that influences the motion of other beads and vice versa, so a
complicatedmany-body problem arises. At lowReynolds number theflowfield uðr; tÞ
around the spheres is described by the Stokes equations and the incompressibility
condition:

0 ¼ �rpþ gr2u and div t ¼ 0; ð9:20Þ
where p is pressure. In addition, the no-slip boundary condition on bead surfaces is
assumed. The Stokes equations are linear in the flow field; hence, the velocities ti of
the beads are proportional to the forces Fj acting on them and the beads obey the
following equations of motion [14]:

ti ¼
X
j

mijFj; ð9:21Þ

where Fj ¼ FS
j þFB

j is the sum of stretching and bending forces introduced in
Eq. (9.12) for the discretized filament. The important quantities are themobilities mij.
In general, they depend on all the coordinates ri of the beads. If the mobilities are
known, Eq. (9.21) can numerically be integrated, for example, by the simple Euler
method.

The Green function of the Stokes equations in an unbounded fluid is the Oseen
tensor

OðrÞ ¼ 1
8pgr

1þ r� r

r2

� �
: ð9:22Þ

It provides the flow field uðrÞ ¼ Ð Oðr�r0Þbðr0Þ d3r0 for body forces bðr0Þ acting on
the fluid. In particular, the flow field of a point force F0 located at r0 isOðr�r0ÞF0. We
already introduced it as stokeslet in Section 9.1.2. It is realized in the far field of a
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spherical particle dragged through the fluid by the force F0. The complete flow field
initiated by the particle with radius a at position rp reads

uðrÞ ¼ 1þ 1
6
a2r2

p

� �
Oðr�rpÞF0; ð9:23Þ

where tp ¼ m0F0 is the particle velocity and m0 ¼ 1=ð6pgaÞ the Stokes mobility of an
isolated spherical particle. For large distances, the particles can be treated as point-
like. So, the force Fj acting on particle j initiates a stokeslet, the velocity of which at
space point ri is taken over by particle i, ti ¼ Oðri�rjÞFj. The cross-mobility for
pointlike particles therefore is mij ¼ Oðri�rjÞ. Taking into account the finite size of
the moving particles leads to corrections. First of all, the flow field of particle j
(see Eq. (9.23)) includes corrections from fulfilling the no-slip boundary condition at
its surface. Second, according to Fax�en�s theorem, particle i placed into the flow field
ujðrÞ of particle j possesses the velocity [14]

ti ¼ m0Fi þ 1þ 1
6
a2r2

i

� �
ujðriÞ: ð9:24Þ

Note that Fax�en�s theorem is valid for any flow field ujðrÞ satisfying the Stokes
equations. Using Eq. (9.23) in Eq. (9.24) and comparing with Eq. (9.21), one obtains
the Rotne–Prager mobilities as an expansion up to terms 1=r3ij ,

mii ¼ m01; m0 ¼ 1=ð6pgaÞ ð9:25Þ

mij ¼
�
1þ 1

6
a2r2

i

��
1þ 1

6
a2r2

j

�
Oðri�rjÞ

¼ m0

�
3
4
a
rij
ð1þ r̂ij � r̂ijÞþ 1

2

�
a
rij

�3

ð1�3r̂ij � r̂ijÞ
�
; i 6¼ j;

ð9:26Þ

where rij ¼ ri�rj and r̂ij ¼ rij=rij. Higher-order corrections to the Rotne–Prager
mobilities arise since the flow field initiated by particle i acts back on particle j. In
addition, many-body interactions due to the presence of additional particles have to
be taken into account. Themethod of induced forces provides a systematic expansion
of themobilities in 1=rij [82]. For particles in close contact, lubrication theory has to be
used for determining the mobilities [83, 84]. A program was developed that
incorporates all these effects and calculates mobilities for a given cluster of spherical
particles [85].We checked that the Rotne–Prager approximation is in good agreement
with the more exact values of the mobilities down to distances of 3a. Finally, we
mention that Eq. (9.26) is generalized to particles with different radii ai and aj when
m0a and a2 are replaced, respectively, by 1=ð6pgÞ and ða2i þ a2j Þ=2.

Close to a planar surface with no-slip boundary condition, the traditional Rotne–
Prager mobilities can no longer be employed. The velocity and pressure fields of a
point force for this boundary condition were first derived by Lorentz more than 100
years ago [86]. Blake put these results into amodern form replacing the Oseen tensor
by the appropriate Green function, now called Blake tensor [87]. The condition of a
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vanishing fluid velocity field on an infinitely extended plane is satisfied with the help
of appropriate mirror images, similar to the image charge approach used in
electrostatics. However, in contrast to electrostatics, where it suffices to simply
mirror the charge distribution, the hydrodynamic image system ismore complicated
due to the vectorial argument of the Stokes equations and the incompressibility
condition compared to the Poisson equation. Therefore, the so-called stresslet and
source-dipole contributions are needed in addition to the stokeslet of the mirrored
point disturbance (also called anti-stokeslet). This yields Blake�s tensor,

GBlakeðr; r0Þ ¼ Oðr�r0Þ þGimðr; �r0 Þ
¼ Oðr�r0Þ�Oðr��r0 Þ þ dGimðr; �r0 Þ ; ð9:27Þ

where �r0 is the position of the anti-stokeslet source, that is, the stokeslet source at r0

mirrored at the bounding plane, and dGimðr; �r0 Þ denotes the source-dipole and
stresslet contributions. Equation (9.23) for the flow field initiated by a spherical
particle close to the bounding plane remains approximately valid when the Oseen
tensor is replaced by the Blake tensorGBlake. A non-uniform contribution to the force
distribution on the particle surface is neglected. Fax�en�s theorem stated in Eq. (9.24)
also applies if the flow field initiated by the image systemGim of particle i is added to
ujðriÞ. Therefore, the cross mobilities mij in Rotne–Prager approximation are
calculated as in Eq. (9.26) but with Oðr�r0Þ replaced by GBlakeðr�r0Þ. A correction
of the standard form has to be added to the self-mobilities mii:

mii ¼ m01þ 1þ 1
6
a2r2

i

� �
1þ 1

6
a2r2

i

� �
Gimðri;�riÞ; ð9:28Þ

wherer�ci means gradient with respect to the image coordinate�ri. Concrete formulas
for the mobilities are given, for example, in Ref. [57].

9.3
A Biomimetic Flagellum and Cilium

In Section 9.1.3, we introduced a filament made of superparamagnetic colloidal
particles that are linked to each other by double-strandedDNA.Wehavemodeled this
filament as a bead-spring configuration with bending elasticity as described in
Section 9.2.3. In addition, we have to include now the forces on the beads due to
the dipole–dipole interaction induced by the external magnetic field. Ourmodel very
well describes the constructed artificial swimmer [4] and allows to explore the
filament�s capacity for transporting fluid.

9.3.1
Details of the Modeling

All superparamagnetic beads with radius a andmagnetic susceptibility x subject to a
homogeneous external magnetic field B develop a dipole moment with identical
orientation and strength,
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p ¼ 4pa3

3m0
xB; ð9:29Þ

wherem0 ¼ 4p	 10�7N=A2 is the permeability of free space. InEq. (9.29), weneglect
that the local magnetic field determining p differs from the applied field due to the
dipolar field from neighboring particles in the chain. The dipoles of the beads then
give rise to the total dipole–dipole interaction energy

HD ¼ 4pa6

9m0
ðxBÞ2

X
i<j

1�3ðp̂ � r̂ijÞ
r3ij

; ð9:30Þ

where rij ¼ jrj�rij and r̂ij ¼ ðrj�riÞ=rij. From this energy, a dipolar force acting on
bead i is calculated as in Eq. (9.12), FD

i ¼ �rriH
D, and the total force in the dynamic

Eq. (9.21) for particle velocity ti reads Fj ¼ FS
j þFB

j þFD
j .

The dynamic Eq. (9.21) for particle velocity ti can bewritten in reduced form [57]. It
shows that the dynamics of the superparamagnetic filament depends on three
characteristic numbers. One of them is the sperm number

Sp ¼ 6pg a
l0
vL4

kBTlp

 !1=4

; ð9:31Þ

already introduced in Eq. (9.18). Note, when hydrodynamic interactions are
neglected, the local friction coefficient per unit length of the bead-spring chain
reads c? ¼ 6pga=l0. A second characteristic number is the reduced magnetic field
strength,

Bs ¼ 2p1=2a3xN

3m1=20 l0ðkBTlpÞ1=2
B: ð9:32Þ

It determines the influence of the external magnetic field on the superparamag-
netic filament. The number B2

s compares dipolar to bending forces and it is
proportional to the magnetoelastic number introduced in Refs [4, 73, 74]. An
alternative dimensionless number for characterizing the influence of the magnetic
field is the Mason number introduced in the literature on magnetorheological
suspensions [75, 88],

Ma ¼ Sp4=B2
s : ð9:33Þ

It is the ratio of frictional to magnetic forces and determines the behavior of the
superparamagnetic filament when magnetic forces dominate over bending forces.
Finally, a reduced spring constant

ks ¼ N2l30
kBTlp

k ð9:34Þ

appears. The superparamagnetic filament is not strictly inextensible, so ks is another
material parameter. In our modeling, we only introduced it for numerical reasons
and always chose a sufficiently large ks to keep overall length fluctuations of the
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filament well below 10%. All simulation results presented in the following two
sections were obtained with realistic parameter values close to experiments [57, 79].

9.3.2
Microscopic Artificial Swimmer

In order tomodel themicroscopic artificial swimmer of Ref. [4], we attach a spherical
load particle of radius a0, typically several bead radii a large, to the bead-spring chain.
The load particle also experiences hydrodynamic interactions with the filament�s
beads. In our simulations, the filament is actuated with a magnetic field BðtÞ whose
strength is constant but whose direction oscillates about the z-axis with an angle
jðtÞ ¼ jmaxsinðvtÞ (see Figure 9.1). Note that this time protocol differs from the one
used in Ref. [4]). The swimmer moves with an average velocity �t along the z-axis.
However, in contrast to spermatozoa, where the head is pushed forward by damped
waves traveling from the head to the tail [2, 18–20], the superparamagnetic filament
drags the passive load behind itself by performing a sort of paddlemotionwith its free
end as indicated in Figure 9.1.

We discuss the performance of the swimmer by studying two quantities. First, we
determine its average speed�t by averaging the velocity t0 of the load particle over one
actuation cycle:

�t ¼ 1
T

ðtþT

t

t0ðtÞ dt; ð9:35Þ

where T ¼ 2p=v. Second, we introduce the efficiency of the swimmer in transport-
ing a load by comparing the energy dissipated by the load particle, when moved
uniformly with velocity �t, with the total energy dissipated by the swimmer:

l0

v

( )tB

ϕ( )t

a

z

y

Figure 9.1 To model the artificial swimmer, a
larger load particle is attached to the filament. It
is actuated by a magnetic field whose direction
oscillates about the z-axis with jðtÞ ¼
jmax sinðvtÞ. The two configurations of the

swimmer are schematic drawings for positive
and negative jðtÞ, respectively. (Reprinted with
permission from Ref. [57]. Copyright (2006) by
the American Physical Society.)

416j 9 Modeling the Hydrodynamics of Elastic Filaments and its Application to a Biomimetic Flagellum



j ¼ 6pga0�v2PN
i¼0 Fi ��ti

: ð9:36Þ

Here, the bar in the denominator means average over one actuation cycle. The
efficiency j indicates how much energy from the total energy used to actuate the
swimmer is employed to move the load particle forward with velocity �v ¼ j�tj.

Figure 9.2 demonstrates mean velocity �v ¼ j�tj and efficiency j as a function of the
sperm number Sp. The reduced velocity �v=ðLvÞ in Figure 9.2a exhibits the same
behavior as reported in Refs [51, 52], where the elastic filament is driven by an
oscillating torque acting on one of its ends. For small spermnumbers around Sp ¼ 3,
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Figure 9.2 Swimming velocity�v and efficiency
j in units of jmax ¼ 1:58 � 10�3 as a function of
sperm number Sp for reduced magnetic-field
strength Bs ¼ 5:76. (a) Reduced velocity
�v=ðLvÞ, (b) absolute velocity �v in units of
vmax ¼ 5:56 � 10�5m=s. The insets show several

snapshots of the filament�s configuration at
Sp ¼ 3; 6, and 12, respectively, indicated by the
dots. (Reprinted with permission from Ref. [57].
Copyright (2006) by the American Physical
Society.)
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the reduced velocity is small since the superparamagnetic filament behaves nearly
like a rigid rod, as illustrated by the snapshots of the filament on the lower left-hand
side of thefigure. The oscillatingmotion of a rigid rod is reciprocal and therefore does
not produce a directedmotion of the swimmer. Increasing the actuating frequencyv
increases the sperm number and speeds up the artificial swimmer to the maximum
value of �v=ðLvÞ at around Sp ¼ 6. Here, the enhanced friction with the surrounding
fluid is able to bend thewholefilament (see upper snapshots) and obviously promotes
a high swimming velocity. Further increase in Sp leads to a decrease in�v=ðLvÞ; due to
the strong friction with the fluid the whole filament cannot follow the magnetic field
and only a small wiggling of its free end remains as expected for a penetration depth
j � L (see Eq. (9.17)). The efficiency as a function of Sp exhibits a similar behavior as
�v=ðLvÞ: oscillating a rigid rod (small Sp) or fast wiggling of the filament (large Sp)
dissipates energy but does not produce an effective motion. So, one expects a
maximum of j close to the maximum of �v=ðLvÞ since j is determined by �v2. Note
that the swimmer possesses only a small absolute efficiency of around 10�3 since a
large amount of energy is dissipated by the motion of the filament. The shape of the
velocity curve changes when absolute velocities are plotted (see Figure 9.2b). At
Sp ¼ 3, the absolute velocity is nearly zero and the maximum is shifted to a larger
value around Sp ¼ 7:5. Interestingly, the absolute velocities of the oscillating fila-
ments at Sp ¼ 6 and 12 are similar in contrast to the rescaled velocities in Figure 9.2a.
One therefore concludes that the absolute swimming velocity is determined by two
factors: (1) the shape of the oscillating filament, where bending the whole filament
favors large velocities, and (2) the oscillation frequency. Owing to the influence of the
oscillation frequency, the absolute velocity�v only slowly decreaseswith increasing Sp.
A comparisonwith thenarrowmaximumofj, however, shows that at largeSpmost of
the energy is dissipated in the small wiggling motion of the filament. So, operating
the artificial swimmer at around Sp ¼ 7 between the two close maxima ensures
highest swimming velocitieswith very efficient energy consumption. Finally, we note
thatwith increasingBs themaxima of both the velocity and the efficiency curvesmove
to larger sperm numbers or frequencies. We understand this since larger magnetic
fields mean stronger alignment of the dipoles and, therefore, larger resistance to
bending.

We expect the swimming velocity�v to depend on the size or the radius a0 of the load
particle and therefore plot its absolute value as a function of sperm number Sp
and radius a0 for constant Bs (see Figure 9.3a). A pronounced maximum at Sp ¼ 8
and a0 � 3a exists, indicated by a filled circle. The velocity �v decreases for large a0
since the friction coefficient of the load particle increases and therefore resists
efficient transport by the oscillatingfilament. At a0 ¼ a, we expect zero velocity due to
symmetry. However, the load particle is not superparamagnetic and a small asym-
metry remains, as observed in Figure 9.3a. Figure 9.3b shows efficiency j as a
function of Sp and a0. The absolute maximum, indicated by an open circle, is at
Sp ¼ 6:6 and a0 � 5a. For comparison, the location of the maximum of the
swimming velocity is shown by the filled circle. So, to operate the swimmer one
has to choose a compromise between the largest swimming velocity and the best
efficiency. Clearly, our analysis shows that operating the swimmer optimally also
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needs the right choice of the size of the load particle, which we also expect to increase
with Bs.

The studies presented so far were performed for angular amplitudes jmax of the
oscillating field between 40
 and 60
. If this angle is increased further and for
sufficiently large Sp, a symmetry breaking transition occurs and the swimmer does
not move any longer along the z-axis [57].

We also applied the time protocol of Ref. [4] (i.e., a constant z-component and an
oscillating y-component of the magnetic field) to actuate the one-armed swimmer.
For one set of experimental data points of Ref. [4], a nearly quantitative agreement is
documented in Figure 9.4. To achieve this, we had to rescale the actuating magnetic
field by a numerical factor to account for the larger distance of the beads in our
modeling and therefore to compensate for the weaker dipole interaction compared to
the swimmer in Ref. [4]. Deviations between our simulations and the experimental
results might be due to the fact that we use a spherical load particle compared to the
oblate shape of the red blood cell in Ref. [4], that our modeling is performed in the
bulk whereas in experiments the swimmer moved close to a surface, and that we
neglect corrections to the actuating external field due to the induced dipole fields.
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Figure 9.3 Swimming velocity �v (in units of
vmax ¼ 7:31 � 10�5 m=s) and efficiency j (in
units of jmax ¼ 1:54 � 10�3 ) as a function of
sperm number Sp and load size a0 in units of a.
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the absolute maxima of �v and j. Bs ¼ 5:76.
(Reprinted with permission from Ref. [57].
Copyright (2006) by the American Physical
Society.)
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9.3.3
Fluid Transport

The superparamagnetic elastic filament when attached to a planar surface is an ideal
system for investigating strategies for generating fluid transport at low Reynolds
number. We have studied such strategies using either a two-dimensional [79] or a
three-dimensional beating pattern [92]. They consist of a transport stroke where fluid
is pumped and a recovery stroke where the filament is returned to its initial position
with the goal to keep the amount of fluidmoved opposite to the pumping direction as
small as possible. An ideal transport stroke keeps the filament away from the surface
and moves it perpendicular to its axis where friction with the surrounding fluid is
large and as a result the amount of pumped fluid. On the other hand, the recovery
stroke occurs preferentially close to the surface where fluid cannot be moved due to
the no-slip boundary condition and/or is performed along the filament axis where
hydrodynamic friction is smaller by an approximate factor of 2.

In order to compare different strategies with regard to their ability of pumping
fluid, we introduce a measure that we call pumping performance. In principle, it
integrates the time-averaged fluid flow (initiated by the beating filament) over a
whole plane parallel to the bounding surface and situated above the beating
filament. We assume that the bounding surface is defined by z ¼ 0 and study the
integrated fluid flow along the y-axis. It is determined by the laterally averaged
Blake tensor [89],
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�Gðz; z0Þ ¼
ð
dx dyGBlake

yy ðx; y; z; z0Þ ¼ minðz; z0Þ
g

: ð9:37Þ

Introducing the distance zi between the wall and bead i of the filament and the
force Fyi acting on it in y-direction, the integrated flowF generated by all the beads is
approximated by summing over all stokeslets:

F ¼ 1
g

X
i

ziFyi: ð9:38Þ

Here, we already considered the case z > zi for all beads so that �Gðz; ziÞ ¼ zi=g.
Contributions to F from the forces Fxi and Fzi vanish by symmetry. Note also that F
does not depend on the position z of the integrated flow. The filament is actuated
periodically in time and the time-averaged fluid flow amounts to

�F ¼ 1
T

ðtþT

t
Fdt0; ð9:39Þ

where T is the period of one actuation cycle. Finally, we introduce the pumping
performance as the unitless quantity

j ¼ �F=�F
ref
; ð9:40Þ

where �F
ref

is a reference value typical for a filament of length L. By dimensional
analysis one defines �F

ref ¼ L3=T . In Ref. [79], we have introduced an idealized stroke
pattern for which we expect optimum fluid transport with a filament of length L and
calculated an alternative value for �F

ref
. In the transport stroke, the filament is

oriented perpendicular to the bounding surface and it is dragged parallel to the
surface along a distance L. Now, thefilament is rotated by 90
 and then in the recovery
stroke it is dragged along its long axis to its original position keeping it always close to
the surface. Again, one finds �F

ref � L3=T . Finally, we note that F=p agrees with the
volume flow rate initiated by the filament through a plane perpendicular to the flow
direction [90, 91].

9.3.3.1 Two-Dimensional Stroke
The two-dimensional or planar stroke is initiated by a magnetic field of strength B,
whose direction oscillates in the yz plane about the normal of the bounding surface
that we identify with the z-axis,

BðtÞ ¼ ð0;B sin jðtÞ; B cos jðtÞÞ; ð9:41Þ
wherejðtÞ is the angle the field encloses with the z-axis. In ourmodeling, the angular
amplitude jmax was always 60


.
In order to accomplish net fluid transport along the y-direction, not only a

nonreversible motion of the filament is required [6] but also the motion of the
filament in positive and negative y-direction has to be asymmetric. We define the
transport stroke by slowly rotating the filament about its anchoring point. Owing
to the small frictional forces, the filament hardly bends. The beating cycle is

9.3 A Biomimetic Flagellum and Cilium j421



complemented by a fast recovery stroke in the reversed direction where the filament
bends due to increased hydrodynamic friction. Note that for real cilia in nature the
speeds are just reversed: the transport stroke is fast and the recovery stroke is slow.
For the magnetically actuated filament, the time protocol of the angle jðtÞ is
illustrated in Figure 9.5. To quantify the asymmetry in the actuation cycle and
therefore in the beating pattern of the filament, we define the asymmetry parameter

e ¼ tl�ts
ts þ tl

; ð9:42Þ

where tl and ts are the respective durations of the transport and recovery strokes
indicated in Figure 9.5. The asymmetry parameter is zero for ts ¼ tl and tends to one
in the limit of tl � ts.

Figure 9.6 illustrates the pumping performance j of a single filament as a function
of the Sperm number Sp and the asymmetry parameter e at a fixed magnetic field
strength. The most striking feature is the pronounced peak for e close to 1 and at
Sp � 3. It is similar to the peak of the swimming velocity of the artificial micro-
swimmer reported in Figure 9.2 [4, 57, 74]. The corresponding stroke pattern for
Sp � 3 is illustrated in themiddle picture of Figure 9.7a. In the slow transport stroke,
the filament rotates clockwise being nearly straight, whereas in the fast recovery
stroke the filament bends due to large hydrodynamic friction forces and then relaxes
back to the initial configuration. As the inset in Figure 9.6 demonstrates, fluid
transport is also noticeable in the recovery stroke (F < 0). So, the pumping
performance, even for the most efficient stroke pattern, is the result of a small
asymmetry in the amount of fluid transported to the right and left. In the example of
the inset, which is close to the optimum stroke pattern, only 4.3% of the total amount

Figure 9.5 The angle j enclosed by the magnetic field BðtÞ and the z-axis is shown as a
function of time. j has different velocities when decreasing and increasing. (Reprinted with
permission from Ref. [79]. Copyright (2009) by EDP Sciences.)
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(b)  fixed Sp = 3 

Sp = 3 Sp = 5

(a)  fixed Bs = 2.5

Sp = 1.5

Bs = 6Bs = 3Bs = 1

Figure 9.7 Stroboscopic snapshots of the
filament at different times during the beating
cycle for e ¼ 0:9. The trajectory of the top bead
during one beating cycle is also indicated. In the
slow transport stroke, the filament rotates
clockwise, the fast recovery stroke occurs to the

left, as indicated by the arrows. A pronounced
bending of the filament occurs only at
intermediate sperm number Sp and magnetic
field strength Bs. (Reprinted with permission
from Ref. [79]. Copyright (2009) by EDP
Sciences.)
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units as a function of time in units of T for the
parameters Sp ¼ 3, Bs ¼ 3, and e ¼ 0:9.
(Reprinted with permission from Ref. [79].
Copyright (2009) by EDP Sciences.)
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of moved fluid are effectively transported in positive y-direction. As a result, the
maximum pumping performance in Figure 9.6 is only 6% of the reference stroke
described above. As expected, the pumping performance vanishes for symmetric
beating (e ¼ 0) about the z-axis. The same is true for Sp! 0 where the filament
follows the actuating magnetic field instantaneously and therefore remains straight
leading to a reciprocal stroke as illustrated by the graph on the left-hand side of
Figure 9.7a. Even a reversal of the pumping direction (j < 0) is observed at Sp � 5:5,
albeit only with a rather weak performance. Finally, the pumping performance goes
to zero for increasing Sp or frequency since the filament can no longer follow the
actuating field as shown by the graph on the right-hand side of Figure 9.7a. Hence,
optimal pumping performance is achieved only for intermediate values of Sp.

The pumping performance j exhibits a pronounced dependence on the strength
Bs of the actuating magnetic field. Figure 9.8a clearly demonstrates this behavior for
different values of Sp. When the magnetic field increases from zero, the pumping
performance first remains close to zero and then, beyond a threshold value, it grows
until a maximum is reached. Finally, j decreases and even becomes negative. The
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snapshots in Figure 9.7b again help to clarify this behavior. Small field strengths Bs

are too small to overcome hydrodynamic friction forces. Therefore, themotion of the
filament is very limited.On the other hand, at large strengthsBs thefilament is always
straight and thus performs a reciprocal motion. So, the optimal stroke exists in an
intermediate regime for the strengthBs. Clearly, the optimal performance shifts with
increasing Sp to larger values of Bs since a larger field is needed tomove the filament
through thefluid. In otherwords, for largerBs thefilament is stiffer and the optimum
stroke is realized at higher frequencies v / Sp4. This means larger frictional forces
and therefore a larger pumping performance, which Figure 9.8a demonstrates.
When themagnetic forces on the filament exceed the bending forces, one expects the
dynamics of thefilament to be determinedby the ratio of the hydrodynamic friction to
magnetic forces, which we introduced in Eq. (9.33) as Mason number Ma. We
rescaled curves jðSpÞ for different Bs � 2 by their respective maximum values jm.
When plotted as a function of theMason numberMa, the data points indeed fall on a
master curve as illustrated in Figure 9.8b. Deviations occur for data points with Bs

close to 2.
We close with two remarks. First, we also investigated the influence of defects on

the lower part of the filament, where the bending stiffness kBTlp is strongly reduced,
and found that they significantly increase the pumping performance [92]. Second, we
studied the pumping performance of several filaments placed along the y-axis [79].
Each filament was actuated separately so that phase shifts between neighboring
beating filaments could be adjusted. Our studies revealed that the pumping perfor-
mance is very sensitive to the imposed phase lag, which means to the details of the
initiated metachronal wave. In particular, the pumping performance per filament
increases relative to a single filament within a range of nonzero phase lag when the
metachronal wave propagates opposite to the transport stroke. These waves are then
termed antiplectic [1]. Creating them for a field of superparamagnetic filaments is
certainly a challenge to experimenters. Nevertheless, due to our results we expect that
metachronal waves in real cilia systems also increase the pumping performance for
fluid transport.

9.3.3.2 Three-Dimensional Stroke
As reviewed in Section 9.1.1, in nature also three-dimensional stroke patterns exist,
for example, of cilia that cover the surfaces of the protozoan paramecium or opalina.
In the case of the superparamagnetic filament, the actuating magnetic field can be
used to initiate three-dimensional stroke patterns [92]. In the �cone stroke,� the
magnetic field vector follows the surface of a cone with opening angle w tilted at an
angle q to the surface normal (see Figure 9.9a). The idea is that through the tilt of the
cone toward the x-direction a clear asymmetry betweenfluid transport in positive and
negative y-direction is produced. This is also the stroke pattern of the cilia that
generate the nodalflow for establishing the left-right asymmetry inmammals already
discussed in Section 9.1.1 [91, 93]. The transport stroke in the alternative �hybrid
stroke� is induced by the field vector rotating in the yz plane followed by a rotation
around the z-axis again on the surface of a cone with opening angle w

(see Figure 9.9b). Both parts of the cone stroke are executed in equal time.
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When the filament is driven slowly, it will remain straight. In this case, approxima-
tions for the pumping performance can be calculated analytically by assuming that the
strengths of the forces in Eq. (9.38) driving the single beads are proportional to the
beads� velocities. For the cone stroke, for example, these velocities are determined by
the geometry and therefore one assumes that the fluid flow is produced by forces
whose strengths increase linearly along the length of the filament starting from the
anchoring point. Then from Eq. (9.38) one finds the pumping performance scales as
j / sin2ðwÞsin ðqÞ. In the parameter space of the cone stroke, qþw � p=2, where
the equal sign means that the filament just touches the surface at its lowest point,
the pumping performance is maximized for w ¼ arccos 1=

ffiffiffiffiffiffiffiffið3Þp
 � � 54
 and
q ¼ p=2�w.Wehave checked theapproximation forjby comparing itwithnumerical
results and found that the agreement is excellent [92].

Figure 9.10 illustrates the pumping performance of cone (a) and hybrid (b) stroke
for several opening anglesw as a function of Sp. It is immediately obvious that for the
largest w values the pumping performance is more than a factor 10 larger compared
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Figure 9.9 Kinematics of the actuating magnetic field for three-dimensional stroke patterns.
(a) Cone stroke and (b) hybrid stroke.
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Figure 9.10 Pumping performance j as a
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to the planar case in Figure 9.6. Therefore, the three-dimensional strokes are much
more efficient in pumping fluid. Increasing Sp or the frequency, the pumping
performance decreases since the filament starts to bend due to the increased
hydrodynamic friction. For example, in the cone stroke the cone defined by the
rotating bent filament is narrower than the magnetic-field cone and therefore fluid
transport is reduced [92].

9.4
Conclusions

In this chapter, we have thoroughly reviewed how the dynamics of an elastic filament
moving in a strongly viscous environment can bemodeled.We especially introduced
a bead-spring model with bending free energy whose constituent beads interact
via hydrodynamic interactions. This enabled us to model a recently introduced
superparamagnetic elastic filament. The appealing system was used to construct a
first artificial microswimmer whose properties we presented with regard to swim-
ming velocity and efficiency of energy consumption. The one-armed swimmer now
offers the interesting vision for propellingmicromachines that perform their work in
the microscopic world. One example would be a device that moves through blood
vessels [94].

We have also attached the filament to a surface and studied different stroke
patterns for transporting fluid that are realized by the actuating magnetic field. Our
studies clearly show that three-dimensional strokes are much more efficient for
pumping fluid. In addition, we briefly explained that in a line of beating artificial cilia
the pumping performance increases for an appropriate nonzero phase lag reminis-
cent of metachronal waves. Thus, the superparamagnetic elastic filament not only
helps elucidate biological features of beating flagella and cilia but also offers possible
exciting applications with regard to the transport and mixing of fluids in the field of
microfluidics.
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10
Energy Gap Model of Glass Formers: Lessons Learned from
Polymers
Puru D. Gujrati

10.1
Introduction

10.1.1
Equilibrium and Metastable States: Supercooled Liquids

Supercooled (SCL) and superheated states are ubiquitous in Nature and are usually
treated asmetastable states (MSs) such as those associatedwith the van derWaals loop
in the celebrated van derWaals equation. The states have higher free energies than the
corresponding equilibrium state (EQS) and violate the fundamental thermodynamic
property that the equilibrium free energy be minimized or the equilibrium partition
function (PF) be maximized. Therefore, they cannot be rigorously derived from
equilibrium statisticalmechanics [1].We need to go beyond it to explain their existence.
As a consequence, many standard results of equilibrium thermodynamics will not
hold for metastable states [2–4],1) even when they are manipulated to exist for an
abnormally long time, a situation that occurs for glasses, which is the subjectmatter of
this chapter [5–10]. Beingmetastable, glasses have higher energies compared to their
crystalline form at absolute zero. This difference in their energies is what we call the
energy gap. The idea of the energy gap is properly introduced in Section 10.1.5.1, and
the energy gapmodel of glass formers is introduced and elaborated in Section 10.2 by
carefully analyzing an establishedpolymermodel.Wedonot expect the reader to be an
expert in the field of glass transition and the general phenomenology of glass formers.
We, therefore, provide a brief introduction to glass phenomenology in Section 10.3,
localization and confinement of glasses in Section 10.4, and some current important
theories in Section 10.5.

In this section, we discuss general properties of MSs. Stable and abnormally long-
lastingMSs can be easily prepared in the laboratory; we only have to recall the stability

1) For example, the singularity in the equilibrium free energy at the melting transition may not occur
whenwe extend the liquid state into its supercooled state. This point is elaborated in Section 10.8. This
should be contrasted with how an essential singularity appears in the droplet model [2, 3], where one
does not restrict the microstates in the partition function. Limitations of the droplet model are
discussed by Domb (see Ref. [4], pp. 217–218).
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of medieval glasses. They also appear inmanymean field theories, including the van
der Walls equation such as the Bragg–Williams theory [11] after we abandon
minimizing the free energy. This has led to the argument that MSs are the results
of approximate calculations. This is not true, as they also emerge in exact calcula-
tions [12]; we report two such calculations in Sections 10.10 and 10.11. They emerge
solely because we abandon the free energy minimization principle in calculation. (In
experiments, they emerge by the very nature of preparing the system such as a fast
quench.) The violation of this principle can still lead to a stable solution, except that it
is metastable. The stability only requires the specific heat, compressibility, and so on
to be nonnegative (Section 10.7). Such mathematically stable solutions in theoretical
models imply that they will never decay. We therefore call them stationary metastable
states (SMSs) in this chapter to distinguish them from MSs that are encountered in
experiments and that usually change with time. The state associated with the stable
solution with the lowest free energy represents the equilibrium state such as the
equilibrium liquid (EL) and is time independent. All other states represent non-
equilibrium states (NESs), whether time dependent or not.

10.1.2
Common Folklore

The Bragg–Williams [11] approximation ormostmean field approximations are valid
in the limit of infinite lattice coordination number q (q!1) and vanishing
interaction strength indicated by J ( J! 0), keeping their product (q J) fixed and
finite; see Ref. [13] and references therin for a more recent discussion of this
approximation. The approximation is equivalent to solving the models in an
infinite-dimensional space with vanishing interaction. This has given rise to the
common folklore that SMSs occur only in an infinite-dimensional space. This is
incorrect as we demonstrate by an exact calculation in Section 10.10, where we deal
with a model of branched polymers. It is a nonmean field calculation carried out in a
one-dimensional model and captures SMS without any singularity.1) Themodel also
exhibits the famous entropy crisis in SMS, which was first discussed by Kauzmann [5]
in a very forceful and convincing manner. The crisis is elaborated in Sections 10.3.5
and 10.3.6. An alternative interpretation of the above approximations is to allow long-
range interactions. Thus, another folklore is that SMSs do not exist for short-range
models. Even frustration is considered in the folklore to be necessary for the glassy
behavior; see for example Ref. [14]. To overcome this folklore, we consider an Ising
model of a binary mixture with short-range interactions and no frustration in Sec-
tion 10.11, which shows a glass transition. The model is solved exactly on a special
recursive lattice, the Husimi lattice. From all the experience we have accumulated,
models on recursive lattices provide a much better description of the regular lattice
models than the conventional mean field approximation, as shown elsewhere [15].
Because of the exactness of both calculations, the thermodynamics is proper in that
all solutions are stable. We supplement the exact results by general proofs that are
based onour energy gapmodel described in Section 10.2. Themodel itself is based on
the experimentally supported observation (10.3) and the universally accepted second

434j 10 Energy Gap Model of Glass Formers: Lessons Learned from Polymers



law of thermodynamics encapsulated in (10.12) and Nernst–Planck postulate (the
third law) [16],2) so the results are general. Furthermore, our conclusions are not
limited to polymers alone, where the entropy crisis has been first discussed by
Gibbs [17] and later justified analytically byGibbs andDiMarzio [18]. They apply to all
systems that form glasses via supercooling. They are also consistent with the formal
random energy model [19] exhibiting a transition similar to a glass transition.

Our goal, and our hope, in this chapter is to convince the reader that it is the
presence of an energy gap that invariably leads to the experimental glass transition at
a nonzero temperature in most of the glass formers.

10.1.3
Systems Being Considered

Materials, natural or man-made, can be broadly classified into two classes [7, 8]:

(A) Crystallizable Materials: Their equilibrium stable state is crystalline at low
temperatures with certain symmetries. Examples are rock or quartz crystals,
various formsof ice,metals, and salt. TheMSs in these systems are definedwith
respect to the ordered crystalline phase, an EQS.

(B) Noncrystallizable Materials: They remain amorphous or noncrystalline even at
absolute zero due to their structural randomness. Examples are spin glasses
(not to be confused with ordinary glasses, which are the focus of this chapter),
materials with quenched or frozen impurities, atactic polymers, and so on.
Supercooling is not an issue for these materials.

Materials in class A can also be prepared in a state that is random and disordered,
very similar to their liquid state. We will refer to these states as random or amorphous
states (also called glassy states or glasses) to distinguish them from amorphous
materials in class B; the latter are always random (no regularity) even when they
are in equilibrium. The glassy states donot have their free energy at itsminimum.We
will use glass formers as a general term for materials in class A. It should also be
mentioned here that there exist materials known as quasi crystals, which are ordered
but not periodic. An example is a metallic solid (Al-14 at.%-Mn) with long-range
orientational order, but with icosahedral point group symmetry first discovered by
Shechtman and coworkers [20]. In this chapter, we are only interested inmaterials in
class A.

We will mostly consider the canonical ensemble with fixed number of particles N
and volumeVand its appropriate extension to describe time-independentmetastable
states (SMSs). Therefore, the temperature T will play an important role. We will
usually not showN explicitly unless clarity is needed. The central quantity of interest
will be the configurational multiplicity WðE;VÞ � 1; the number of configurations

2) We will assume that the entropy SðTÞ of stationary states (EQS�s or SMSs) satisfy TSðTÞ! 0 as the
temperature T ! 0. This is a much weaker condition than the conventional Nernst–Planck postulate
SðTÞ! 0 for EQS�s, but is consistent with all the consequences of the latter. Our version is also
applicable to SMSs, for which the entropy need not vanish at absolute zero (see Ref. [16], Section 64).
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or microstates of potential energy E in a volume V. In terms of the multiplicity, the
entropy (we define entropy as a dimensionless quantity) is defined by the Boltzmann
relation [16]:

SðE;VÞ � lnWðE;VÞ � 0; ð10:1Þ
which assumes that all microstates counted in WðE;VÞ are equally probable, which
happens only in equilibrium. Away from equilibrium, we use the Gibbs defini-
tion [16] for the entropy

SðE;V ; tÞ � �
X

piðE;V ; tÞ ln piðE;V ; tÞ � 0 ð10:2Þ

to obtain the time-dependent entropy, where piðE;V ; tÞ is the probability of the ith
microstate at time t. This entropy will, in time, increase and approach SðE;VÞ from
below as the system equilibrates (t!1). This is consistent with the second law of
thermodynamics: the entropy of a closed system at fixed E, and Vcannot decrease in
time. In equilibrium, piðE;V ; tÞ! 1=WðE;VÞ for each microstate as t!1;

and (10.2) reduces to (10.1). The entropy is a continuous and concave3) function of
its arguments E and V.

10.1.4
Long-Time Stability

There are usually two differentmechanisms operative inMSs. The �fast�mechanism
(timescale tf ) creates a metastable state in the system, followed by a �slow�
mechanism (timescale ts) for nucleation of the stable phase and the eventual decay
of themetastable state. For anMS to exist for a while, we need to require ts > tf . The
time-dependent NESs include not only states that will eventually turn into equilib-
rium states (such as crystals) but also states that will eventually turn into SMSs (such
as glasses) as we wait infinitely long (in principle), depending on how they are
prepared. To study glass dynamics, we need to compare the two timescales with the
longest feasible experimental observation time texp. From the experimental point of
view, the inequality ts � texp for supercooled liquids is almost equivalent to the long
time, that is, the stationary limit ts !1 of metastable states; we again appeal to the
stability of medieval glasses. Thus, to a first approximation, we can treat real glasses
and SCLs as SMSs, states that never decay. (According to Maxwell [21], this can, in
principle, be achieved by ensuring that the equilibrium state nuclei are absent in
MSs). This approximation is quite reasonable near the experimental glass transition
temperature Tg, the region of interest in this chapter. Thus, we will assume the
existence of these SMSs, as they will play a central role in our modeling and
understanding of glass formers.

Metastable states (SCLs and glasses) at low temperatures can remain thermody-
namically stable with no hint of any decay for a long period of times [5, 22, 23]

3) A concave function f ðxÞ is a function that always lies above the line connecting f ðx1Þ and f ðx2Þ over
any of its interval ½x1; x2�.
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comparable to the longest feasible experimental observation time texp due to the high
viscosity, so in this case ts > texp � tf . It is found that supercooled glycerol does not
readily crystallize over experimental timescales even if one disperses some glycerol
crystallites in it. The large viscosity in glycerol near freezing alsomakes crystallization
extremely slow, thereby enhancing the stability of the supercooled glycerol [24].
Supercooled viscous liquids also donot usually exhibit spinodals. Rather, they usually
undergo a so-called (experimental) glass transition at Tg, about two-thirds of their
melting temperature TM, provided the liquid is cooled in such a way that crystal-
lization does not intervene [5–9, 25]. Caremust be exercised to suppress the nuclei of
the stable equilibrium phase, the crystal phase (CR), from forming while cooling the
viscous liquid to form a glass. Glasses constitute nonequilibrium states that are not
unique; they depend on external controls such as the rate of cooling. They remain
disordered even at absolute zero [16]. It is usually much easier to accomplish
suppressing stable phase nuclei in SCLs than in supercooled vapors and superheated
liquids, presumably because of the low temperatures (and high viscosity) and the
stable phases (crystals) that have distinct symmetries from supercooled liquids4) in the
former case. This alsomakes the decay of themetastable state even less probable, and
strengthens the inequalities to ts � texp � tf : The idea enunciated above is con-
sistent with Maxwell�s idea [21] that to observe long-lasting metastable states, stable
phase nuclei must not be present.

10.1.5
High Barriers, Confinement, and the Cell Model

10.1.5.1 Cell Model
Another, and probably the most important, property of SCLs at low temperatures is
that glasses andCRs have very similar vibrational heat capacities belowTg, except that
glasses have higher potential energies than the corresponding CRs [5, 6, 16]. Let ENES

denote the lowest possible energy of a NES such as a glass and E0 the energy of the
ideal crystal at T ¼ 0. Then, we empirically have

ENES > E0: ð10:3Þ
The difference

DG � ENES�E0 > 0 ð10:4Þ
is called the energy gap. Otherwise, glasses and crystals are confined to execute quite
similar vibrations (not necessarily harmonic) within their potential wells or basins,
although their minima are at different energies, notwithstanding the clear evidence
to the contrary [23] and the presence of boson peaks observed inmany glasses; see, for
example, Refs [26–29]. All that is important is that both glasses and crystals exhibit
localized motion. This property has led to the enormous popularity of the potential

4) The two coexisting phases in liquid–gas transitions have identical symmetry in that they are simply
related by a symmetry operation like the up–down symmetry in the Ising model. No symmetry
operation can transform crystals into liquids, and vice versa.
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energy landscape picture, originally proposed by Goldstein [22], to investigate glass
transition. The potential energy EðfrgÞ as a function of the set frg of particles�
positions uniquely determines this landscape. A glass is confined to one of the
myriads of potential wells, while the crystal ismost commonly believed to be confined
to just one potential well (see Refs [30], in particular, Figure 5, and [31]). The number
of these basins determines the basin entropy,which can be derived either from (10.1)
or from (10.2) as the case may be. Goldstein identifies this entropy as the residual
entropy [23]; we will comment on this deep connection in Section 10.12.3.

A glass is SCL trapped in one of the many basins at Tg; and executes vibrations
within this potentialwell. The resulting glass canbe characterized by the properties of
this basin [5, 6], which determine the average configuration of the glass in that basin.
The high barriers of these potential wells also provide high stability to very slowly
cooled SCLs, at least near Tg, and are responsible for the strong inequality ts � texp:

This also implies that barriers to the formation of stable nucleimust also be extremely
high in SCLs. This was first argued by Goldstein in his seminal work on viscous
liquids [22]. In other words, the metastability of SCLs is controlled by the almost
complete absence of stable nuclei, and will be central in our analysis of the low-
temperature metastability of SCLs. The high-temperature metastability in the
liquid-gas transition, in which both phases have the same symmetry,4) has been
extensively studied by various workers [32, 33], to which we refer the reader for more
information. In our opinion, the supercooled metastability, where one is confronted
with the distinct symmetry of the stable phase and its absence in SCL,4)has not received
the same critical attention so far.

The above picture of slowly cooled SCLs allows considering the liquid cell model
of Lennard-Jones and Devonshire [34] (Figure 10.1) and its various elabora-
tions [35]. In the figure, we show a cell representation of a dense liquid in (a)
and of a crystal in (b). Each cell is occupied by a particle in which the particle
vibrates. A defect in the cell representation corresponds to some empty cells. The
regular lattice in (b) is in accordance with Einstein�s model of a crystal. In the
liquid state, this regularity is absent. We consider the configurational partition
functionZðT ;VÞ (Appendix 10.A),

ZðT ;VÞ � 1
vN0 N!

ð
e�bEdN rf g �

ð
WðE;VÞe�bEdE=e0; ð10:5Þ

in the canonical ensemble at temperature T (measured in the units of the Boltzmann
constant kB; this amounts to effectively setting kB ¼ 1); b � 1=T is the inverse
temperature and WðE;VÞdE=e0 represents the number of distinct configurations
with energy in the rangeE andEþ dE; v0 and e0 respectively represent the small-scale
constant volume, such as the cell volume, and the energy constant, such as the
average spacing between vibrational energy levels of a single particle in its cell in
Figure 10.1b at T ¼ 0. We set v0 ¼ 1 and e0 ¼ 1 in this chapter.

Fromnowon, wewillmake a distinction between a quantity and its configurational
counterpart by adding a subscript �T� to the quantity. For example, STðT ;VÞ will
denote the (total) entropy, while SðT ;VÞ the configurational part of STðT ;VÞ. Most
often we will simply use the name of the quantityQ such as the entropy to refer to its
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configurational part, but will always use total quantity to refer toQ TðT ;VÞ from now
on. The microcanonical configurational entropy is given by the Boltzmann rela-
tion (10.1), so SðE;VÞ � lnWðE;VÞdE ’ lnWðE;VÞ � 0.5) The average energy
�E ¼ EðT ;VÞ is used to give the canonical configurational entropy
SðT ;VÞ � S½EðT ;VÞ;V �: The slope of the entropy at �E is related to the inverse
temperature by the standard relation valid at equilibrium

ðqS=qEÞ�E ¼ b: ð10:6Þ

This entropy differs from the total entropySTðT ;VÞ, see (10.A7) and (10.A3), which
is the entropy associated with the total PF ZTðT ;VÞ in (10.A1) where the kinetic
energy (KE) is also included [36–39]. The entropy contribution SKEðTÞ in (10.A3) is
the same for all systems as it is independent of the interactions and volume.

Remark
In classical statistical mechanics conventionally used to analyze metastability, the
contribution SKEðTÞ to STðTÞ from translational degrees of freedom is the same for
all phases like SCL or CR at a given T , and is a function only of T .

For this reason, we do not have to include SKEðTÞ in any investigation of
metastability. We only consider configurational degrees of freedom from now on,
unless explicitly mentioned otherwise. For the same reason, there is also no need to
explicitly show the dependence on V , unless clarity demands otherwise.

The configurational part of the Helmholtz free energy is given by
FðT ;VÞ � �T lnZðT ;VÞ: The free energy per particle will be denoted by the lower

particle

(a) Disordered (b) Ordered

Figure 10.1 Cell representation of a small
region of disordered (a) and ordered (b)
configurations at full occupation: each cell
contains a particle. Each cell representation
uniquely defines a potential well or basin in the
potential energy landscape. Observe that while

each particle is surrounded by four particles in
the ordered configuration, this is not the case for
the disordered configuration. We have shown a
higher volume for the disordered configuration,
as found empirically.

5) For amacroscopic system, wewill always neglect terms that do not grow exponentially fast, as they are
not relevant in the thermodynamic limit N!1.
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case letter f ðT ;VÞ � FðT ;VÞ=N. The total Helmholtz free energy is obtained by
adding to it the contribution�TSKEðTÞ. If we consider a system at constant T , and P,
then we need to allow for fluctuating volumes. This requires an additional sum over
volumes with a weight expð�bPVÞ. This defines aNTP ensemble with the following
partition function:

YðT ;PÞ ¼
ð
ZðT ;VÞe�bPVdV=v0: ð10:7Þ

The introduction of the volume element v0ð� 1Þ is to ensure that YðT ;PÞ is
dimensionless. The extensive free energy corresponding to YðT ;PÞ is the config-
urational part of the Gibbs free energy GðT ;PÞ ¼ �T ln YðT ;PÞ. To obtain the total
Gibbs free energyGTðT ;PÞ, wemust add to it�TSKEðTÞ:Wewillmostly consider the
canonical ensemble. However, the arguments can be easily extended to the NTP
ensemble or other ensembles.

10.1.5.2 Communal Entropy, Free Energy, and Lattice Models
The communal entropy is defined as the difference between the configurational
entropy SðTÞ of the system and the entropy SbðTÞ when the particles are confined in
their cells [40], that is, the basin (we suppress showing the V dependence):

ScommðTÞ � SðTÞ�SbðTÞ � 0; ð10:8Þ

see Section 10.4.1 for a precise definition of the basin entropy SbðTÞ. The communal
part of the free energy is given by

FcommðTÞ � FðTÞþTSbðTÞ ¼ EðTÞ�TScommðTÞ: ð10:9Þ

The communal entropy is the entropy due to the deconfinement of the system from the basin.
Accordingly, it vanishes when the system is confined in a basin such as in
Figure 10.1a. Let TK > 0 denote the temperature when this happens for SCL:

SSCLcommðTKÞ � 0: ð10:10Þ

As noted in Section 10.1.5.1, it is a common assumption that CR is also confined to a
single basin such as the one shown in Figure 10.1b.We will verify this assumption in
this chapter. If the assumption holds, then the confinement will occur at some
TCR > 0:

SCRcommðTCRÞ � 0: ð10:11Þ

In confined or localized states, particles only occupy positions that are within
their individual cells. Let us focus on a SCL localized into one such basin; however,
the discussion is equally valid for a localized CR. Let the minimum of the basin
energy be EK. It corresponds to the average state in the basin in which each particle
has its average position. Any deviation from these positions will only raise the
potential energy. The relevant average state in the basin at T ¼ TK remains
unchanged below TK and continues to represent the average state of the system.
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In other words, the average state of the system remains frozen in this inert state
below TK and is called the ideal glass (IG). This localization and freezing of the
average state to IG is called the ideal glass transition (IGT). Thus, the vanishing of
ScommðTÞ in (10.10) is taken as the condition for the formation of an IG due to its
localization or confinement in a single basin, and the temperature TK at which this
occurs is called the ideal glass transition temperature, or the Kauzmann temper-
ature, to honor the pioneering contribution of Kauzmann in the field of supercooled
liquid, even though the term is commonly used to denote the temperature where
the CR and SCL have the same entropy. This issue has been discussed else-
where [37–39], to which we refer the reader for additional information. As the above
discussion is also applicable to a confined CR, there will be a similar localization
transition in CR.

Remark
In a lattice model, particles do not deviate from their fixed lattice positions.
Consequently, the total entropy in the lattice model is purely communal in nature.

Thus, a lattice model can be effectively used to analyze the average state of a glass
former in real continuum space. Accordingly, we do not feel guilty about using lattice
models here for which exact calculations can be carried out. There are other reasons
to use lattice models to investigate glass formers. This is further discussed in
Appendix 10.B.

Since the heat capacity is nonnegative, SðTÞ and EðTÞ are monotonic increasing
function of T , and must have their minimum values at absolute zero. Assuming CR
to be the stable phase at absolute zero, we conclude that itmust be in the statewith the
lowest possible energy E0ðVÞ. This follows from the Nernst–Planck postulate2)

TSCRðT ;VÞ! 0 as T ! 0, so FðT ¼ 0;VÞ ¼ E0ðVÞ: Thus, E0ðVÞsets the zero of the
temperature scale in the system. As long as the heat capacities of various phases, stable
or metastable, remain nonnegative, and we will see that this is true, these higher
energies will correspond to temperatures T > 0.

10.1.6
Fundamental Postulate: Stationary Limit

There are no general arguments [16, 41, 42] to show that thermodynamically stable
states must always be ordered, that is, periodic. The remarkable aperiodic Penrose
tilings of the plane, for example, by two differently but suitably shaped tiles are stable.
It is found empirically that the volume (or the energy or enthalpy) of a glass, or more
generally, a NES at absolute zero is higher than that of the corresponding crystal; see,
for example, Ref. [43] for a careful analysis of data.Here, wewill focus on the potential
energy for which the above observation is in accordance with (10.3) (Figure 10.2).
(There will be no energy gap if ENES ¼ E0). According to (10.3), there must be many
defects in the glass relative to the crystal even at absolute zero to account for this
difference in the energy (or enthalpy). The value of ENES depends on the rate of
cooling r. As r decreases, this energy falls and approaches a limiting value EK � ENES,
which is still higher than E0 (Sections 10.10 and 10.11). As CR is heated, its energy
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rises due to the defects, but their densities is much smaller in the crystal than in the
corresponding glass at the same temperature. As a consequence, one can treat a glass
as a highly defective crystal [44].

As we wait longer and longer, NES will approach its two possible limits: EQS or
SMS. In the process, the energyENES will continue to decrease. It will converge toE0 if
NES approaches CR and there will be no energy gap; otherwise, it will converge to
some higher energy EK with an energy gap, if NES converges to IG. The presence of
the gap will turn out to imply [45] a nonzero TK > 0. The assumptions leading to this
important result are reviewed in Section 10.9.

Since we can never wait infinitely long time (texp !1) to actually observe a SMS,
its existence can never be verified. This is no different from what is customary in
equilibrium statistical mechanics, where the existence of the equilibrium state is
taken for granted as a postulate. We quote Huang ([41], p. 127): �Statistical
mechanics, however, does not describe how a system approaches equilibrium, nor
does it determine whether a system can ever be found to be in equilibrium. It
merely states what the equilibrium situation is for a given system.� Ruelle ([42], p. 1)
notes that equilibrium states are defined operationally by assuming that the state of
an isolated system tends to an equilibrium state as time tends to þ1. Whether a
real system actually approaches this state cannot be answered. Therefore, we will
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Figure 10.2 Schematic form of generic (total,
cofigurational, or lattice communal) entropy
functions as continuous and concave functions3)

of E for a fixed volume V for various possible
states, and the resulting continuous and
concave Helmholtz free energies in the inset.
The communal entropy is defined in (10.8). At
present. we need notworry about the distinction
between the total and configurational entropies
except to note that both of these and the
communal entropy on a lattice have similar
features. Note the presence of an energy gap

(DG > 0) in the model. This form, which is
shown in an exaggerated fashion to highlight the
distinction, will be justified in this chapter. The
point O0 represents the point where the free
energyDO0CKOof the liquid in the inset is equal
to the free energy of the crystal at O (absolute
zero), as shown by the gap theorem (Theorem
10.1). The point A on DO0CKO in the inset is
slightly below the melting temperature TM

located at M, where it crosses the crystal free
energy OMB.
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also assume the existence of SMS as a fundamental postulate, so that the PF
formalism could be applied to study it. The actual dynamics that leads to such a
state will not be our focus here, even though it is important in its own right. The
hope is that the study of the long time limit of metastable states, which can be
carried out using the basic principles of statistical mechanical formalism, though
modified by imposing some restrictions as described in the chapter later, still has a
predictive value.

10.1.7
Thermodynamics of Metastability

To form a glass, crystallization must be avoided either by ensuring that the material
does not have time to become crystalline or by suppressing themechanism to form a
crystal. As glasses, or more generally NESs, are formed under some sort of con-
straints (crystallization is forbidden in the case of glasses), their (configurational)
multiplicityWNEðE;VÞ (whichmay be a function of time, but we do not show it)must
not be greater than WEQðE;VÞ of the corresponding equilibrium state, so that we
must always have

SNEðE;VÞ � SEQðE;VÞ; ð10:12Þ

see Figure 10.2 for fixedV . We use (10.1) for SEQðE;VÞ, and (10.2) for SNEðE;VÞ. The
curve OHH0D (with straight segment HH0) represents SEQðE;VÞ and the curve GF
represents SNEðE;VÞ: In time, the curve GF will move upward toward OHH0D: it
either converges to it if crystallization occurs, or to KCAD if it is forbidden. This is
consistent with the second law of thermodynamics: As the constraints are removed,
the entropy of a closed system (fixedE;V ) cannotdecrease in time; it can only increase
or remain constant.

The segmentH0Drepresents the entropy of the liquid, the disordered phase, and is
determined by the multiplicity WdisðEÞ of disordered configurations. The segment
OH represents the entropy of the crystal, the ordered phase, and is determined by the
multiplicityWordðEÞ of ordered configurations. Because of the straight segmentHH0,
the equilibrium entropy SEQðE;VÞ is a singular function, which is then reflected in a
singular equilibrium free energy at themelting temperature TM; the latter is given by
the inverse of the slope of HH0. Let ECR;M and EEL;M denote the energies of the
coexisting phases CR and EL at TM; see points H and H0 in Figure 10.2. It is hard to
imagine that the ordered anddisordered configurations terminate atECR;M andEEL;M,
respectively. Thus, we will assume that the curve KCAH0D represents the entropy
SdisðEÞ � lnWdisðEÞ of the disordered states in the system even below EEL;M.
Similarly, we will assume OHAB to represent the entropy SordðEÞ � lnWordðEÞ of
the ordered states in the system even above ECR;M. The entropy then has two different
branches KCAD and OHAB, rather than being a single function given by OHH0D.
We only require that the branches be continuous and concave. The existence of the
twobranches requires thatwe are able to distinguish betweendisordered and ordered
states. After all, the glassy state is formed by disordered states. So, making such a
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distinction is not merely an academic curiosity; it is a vital issue for our understand-
ing of how and why glasses are formed.

Assumption
The singularity of the single entropy functionOHH0D is absent fromeither of the two
branches or in SNEðE;VÞ.

At this moment, this is merely an assumption, which needs to be tested. We will
show later by exact calculations that it is valid in these calculations. This is also
the case in other exact calculations that have been carried out in our group [36, 37, 44,
46–48].

10.1.8
Scope of the Review

While there is no rigorous theory of such SMSs at present, there are some valuable
approaches available in the literature. One approach is to use the formalism of
Penrose and Lebowitz (PL) [1] using restricted ensemble method, which we modify
and adapt for our purpose. In particular, the decay of the metastable states will be
completely suppressed in order to make them stationary. This results in completely
banning the nucleation of the stable phase, which is consistent with Maxwell�s
idea [21] that to observemetastable states, wemust ensure that the stable phase is not
present. The properties of the SMS are what PL call the static or reversible
properties [1]. In their approach, only certain microstates, which we take to be
ordered or disordered, out of all are allowed to determine the partition functions.
Their multiplicitiesWordðEÞ andWdisðEÞ define the two separate restricted partition
functions for each kind of states (Section 10.8). The PFs will not contain any
singularity if multiplicities themselves are nonsingular. Despite this, a singularity
will appear as we switch over from one PF to another if we insist on only considering
equilibrium states; see Sections 10.8 and 10.12 for further details. The second
approach requires analytically continuing the eigenvalues of the transfer matrix as
presented in Ref. [49]. This accomplishes the same goal as the restricted ensemble
but in a somewhat direct fashion. An important issue in both approaches is to unravel
the condition or conditions under which extrapolation will represent SMSs that
might be observed in Nature.

To develop our approach, we borrow ideas from both approaches. We then derive
the consequences of our gapmodel schematically presented in Figure 10.2.We prove
that assuming the existence of the gap in (10.3) and the validity of (10.12), the IG
transition must occur at a positive temperature TK (see Section 10.9). This then
assures a rapid entropy drop near TK as a precursor of the impending entropy crisis,
which is discussed in Section 10.3.6.

In view of the Remark in Section 10.1.5.2, we find it convenient to consider the
communal entropy rather than the total or configurational entropy to study the
glass transition. The configurational entropy can be broken into a sum of three
terms (10.19), each of which must be independently nonnegative. As soon as one of
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them vanishes at some positive temperature, this component will induce an entropy
crisis by becoming negative if we attempt to extrapolate it to lower temperatures.
Indeed, we discover that it is the communal entropy in (10.8) and (10.20), whose
vanishing describes IG transition (10.10). The ideal glass transition then gives rise
to a singularity in the free energy, so the above extrapolation is of no significance.
This is established in Section 10.12. The use of the cell model (Section 10.1.5)
allows us to use lattice models to provide an unambiguous clue to the entropy crisis
(see Remark in Section 10.1.5.2). This gives rise to a tremendous simplification as
continuous models are hard to deal with, and also because continuum models
suffer from negative entropy (see Appendix 10.B). The negative entropy in a
continuummodel is unrelated to any glass transition. Therefore, a negative entropy
there cannot unambiguously decipher any IG transition.

The inequality (10.12) and the presence of a gap play a central role in our
modeling of metastability in terms of the entropy function SðEÞ with a gap. We are
primarily interested in the thermodynamic understanding of the nature of the
glass transition, and not in its dynamical aspect. This does not mean that the latter
is not important. However, we believe that without a thorough understanding of
any SMS, there is no hope to deeply understand its dynamic behavior. Accordingly,
we have used the above inequality (10.12) and the gap as the foundation to model
the possible form of the generic entropy for any glass former in Figure 10.2.
Our hope is that this chapter will make a modest progress in our understanding of
glasses, as glass transition (GT) even in a molecular liquid (for example, water and
silicate melts) remains a controversial long-standing problem even after many
decades of active investigation and presents one of the most challenging
problems in theoretical physics [5, 6, 9, 25]. We will justify the gap model on
theoretical and numerical grounds. Our approach, which is based on a funda-
mental principle of thermodynamics, should hopefully provide a solid basis of a
new understanding.

Our formulation and its consequences have been tested by us in exact calculations
of several lattice models [36, 37, 44, 46–48]. Metastability comes out of our
formalism because it allows us to abandon the global free energy minimization
principle, not because of any approximation. We discuss two such examples in this
chapter. One of them is a one-dimensional lattice model. This model has only
nearest-neighbor interactions, and is solved exactly by the use of the transfer matrix.
We find that the extrapolation can be carried out without any ambiguity to describe
SMSs in this case. Thus, SMS can exist even in nonmean field theories and without
long-range interactions, which is in itself an interesting result and disproves the
folklore. The other lattice model deals with an Ising model with only short-range
interactions and without any frustration. This model represents a binary mixture or
a pure component depending on the interpretation and captures SMSs. Both
examples show that the extrapolation, although thermodynamically stable to abso-
lute zero, does not represent any observable metastable state at low temperatures
because their entropy becomes negative there. The entropy crisis is avoided by the
ideal glass transition.
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10.2
Modeling Glass Formers by an Energy Gap

10.2.1
Distinct SMSs

It is clear from the presence of the high-energy barriers, at least near TK, that lend
justification to the cell model in Section 10.1.5 that viscous liquids and glasses are
metastable states in which equilibrium (stable) nuclei are almost forbidden to exist. Thus,
if the interest is to only locate TK and not the dynamics itself, there is no harm in
treating very slowly cooled metastable SCLs near TK and glasses in the mathe-
matical formalism to be developed here as originating from nearby metastable
states at higher temperatures in which stable nuclei are also forbidden to exist. In
the absence of these nuclei, MSs cannot decay to corresponding crystals, so their
long time limit remains distinct from corresponding crystals and represents a new
and unique state, identified here as SMSs. Long-time stability of medieval glasses is
a proof in itself about the existence of this new state over that extended long time.
We, therefore, accept the existence of this new state associated with SCLs. As SCLs
and glasses are random in nature as opposed to the ordered CR, this distinction
allows us to consider disordered and ordered microstates separately, so that they
will never mix. This will result in two distinct restricted PFs (Section 10.8). This is to
be contrasted with the study of high-temperature metastability in which stable
nuclei are allowed to be formed; their presence then gives rise to the decay of
metastable states [1]. This decay is signaled by the presence of a singularity [32, 33],
either an essential singularity or in the form of spinodals, so that they will never
mix.

10.2.2
Entropy Extension in the Gap

We consider the energy range over which there is only one transition, the melting
transition.We have a disordered phase (the equilibrium liquid EL) above themelting
temperature TM and an ordered phase CR below it. The two phases have distinct
symmetries,4) allowing us to classify microstates into two distinct sets containing
ordered or disordered microstates, as will be shown later. The corresponding
entropies SordðEÞ � 0 and SdisðEÞ � 0 are schematically shown in Figure 10.2, from
whichwe can obtain the communal and total entropies. The entropy as a function ofE
must be thought of as the entropy in the microcanonical ensemble [50], which must
be at itsmaximum in the equilibrium state [16], so these curves are given by (10.1). As
far as the communal entropy for disordered configurations is concerned, it vanishes at
K, because of the presence of the gap between E0 and EK. This entropy function
Scomm; disðEÞ can be extended to energies in the gap, though the extension will give
negative values and will be unphysical. Despite this, the extension will serve a very
useful purpose.
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Remark
All we require of the extension of Scomm;disðEÞ in the gap is that the resulting entropy
be continuous and concave.

In most computations, the analytic form of the communal entropy Scomm;disðEÞ
will be known over the range E � E0, so the extension is unique. Otherwise, the
extended portion of the entropy can be arbitrary provided it does maintain
continuity and concavity. This arbitrariness is irrelevant as its values over the range
½E0;EK� will not determine the physics of the system. This will become apparent in
Section 10.12.

Since SMS is not the equilibrium state EQS, its entropy cannot exceed the entropy
of the corresponding equilibrium state at the same E; we keep V fixed. At lower
energies, the ordered state must have the highest entropy, while at higher energies
the disordered state must have the highest entropy. On the other hand, if a time-
dependent metastable state is prepared under the constraint that the stable phase is
not allowed, then its entropy will be represented schematically by FG.6) The free
energies corresponding to the above entropy functions are shown in the inset in
Figure 10.2. The SMS free energyFdisðTÞcannot be lower than the free energyFordðTÞ
of CR at the same temperature T , and vice versa. This explains the form of the free
energy in the inset. The slope of the tangent line HH0 gives the inverse melting
temperature, while the slope of the tangent line OO0 gives the inverse temperature at
which the free energy DO0CK in the inset is equal to the free energy of the crystal
phase at absolute zero (T ¼ 0) (Theorem 10.1).

10.2.3
Gibbs–Di Marzio Theory

Making a distinction between ordered and disordered microstates has been a time-
honored practice in theoretical physics. In the context of polymers, this was carried
out by Flory [51] in his study of polymer melting, which was later followed by Gibbs
and Di Marzio [18] in their highly celebrated work on glass transition in polymers.
Flory considered a simplemodel of semiflexible polymers inwhich eachgauche bond
has a penalty e > 0 each over a trans bond for which the energy is zero. Let g denote
the density of gauche bonds, so the energy is simply E ¼ Nge, where N!1 is the
number of lattice sites. Let us consider a single polymer whose monomers cover all
the lattice sites of a square lattice. In the crystalline state, the polymer bonds are all
trans, so g ¼ 0. All bonds are parallel, which can be either in the horizontal or in the
vertical directions on a lattice, oriented so that its lattice bonds are either horizontal
or vertical. In the disordered state, there are equal number of bonds in both
orientations. Let nH and nV respectively denote the density of horizontal and vertical

6) We treat nonstationary metastable state as one of the partial equilibriums and follow Landau and
Lifshitz ([16], p. 27) to define its entropy according to (10.2). This entropywill continue to increasewith
time as different parts of the systemmove toward the same stationary state. This explains why FG lies
below DAK. Using the entropy function given by FG, we can also calculate the corresponding free
energy, which is shown in the inset by FG.
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polymer bonds. One can introduce r � nH�nV as the order parameter (see Sec-
tion 10.7.3 for more details), so it takes the value 0 in the disordered state. For the
crystalline state, r takes a nonzero value that reaches �1 at absolute zero when the
crystal is completely ordered. Flory assumed that the entropy of the crystalline phase
Sord ¼ 0.5) Thus, the entire curve OHAB reduces to a single point at the origin in
Figure 10.2. He also used the crude Flory–Huggins approximation to calculate
SdisðgÞ, which per site is shown schematically by the dashed curve (a) in Figure 10.3.
The entropy per site is given by

sFH;disðgÞ ¼ �ln 2�g ln ðg=2Þ�ð1�gÞ ln ð1�gÞ ð10:13Þ

in the Flory–Huggins approximation (see Ref. [52] for details). We show sFH;disðgÞ for
g � 0; this entropy is negative for g < gK [52]. The part sFH;disðgÞ � 0 of this curve is
shown in Figure 6 in Ref. [52b]. At g ¼ 0, the entropy takes a negative value

sFH;disðg ¼ 0Þ ¼ �ln 2: ð10:14Þ

We clearly see an energy gap at the lower end of the curve at K; gK > 0. For the square
lattice, we find that gK ’ 0:227 [52], where sFH;disðgÞ vanishes with a finite (nonzero)
slope, as was the case for the communal entropy in Figure 10.2, even though the
analytical form of sFH;disðgÞ derived by Flory is over the full entire range [0, 1] of g. This
entropy is also concave over the entire range, including the gap. As the point H in
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Figure 10.3 Entropy for the disordered (a) and
ordered (b) states for the Flory model of
semiflexible linear chain. Flory�s approximate
form for the disordered state gives a negative
entropy below gk, indicating the presence of an
energy gap in the energy for the disordered
configurations with respect to the crystal energy
at absolute zero.We are considering a chain that

covers all the N sites of the lattice. The exact
calculation by Gujrati and Goldstein provides a
lower bound for the ordered state shown by (b).
The approximate form of the entropy for the
disordered liquid state is given by the
Flory–Huggins approximation. Compare (a)
with KAD and (b) with OMB in Figure 10.2.
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Figure 10.2 has moved to the origin in the Flory calculation, the melting transition is
obtained by drawing a tangent to the curve (a) and passing through the origin at g ¼ 0.
The inverse of the slope of this tangent is themelting temperature TM(10.6). Note that
the point A (g ¼ gA) on the curve (a) corresponds to infinite temperatures, so the
portion of the curve on the right of A for g > gA is not relevant.

Gibbs andDiMarzio [18] used the above sFH;disðgÞ to demonstrate the entropy crisis
in polymers (see Ref. [52] for details). This calculation was the first one of its kind to
demonstrate the entropy crisis. Despite its limitation, to be discussed below, thework
by Gibbs and Di Marzio has played a pivotal role in elevating the Kauzmann entropy
crisis from a mere curious observation to probably the most important mechanism
behind the glass transition, even though the demonstration was only for long
molecules.

To provide a better description of the crystalline phase than given by Flory, Gujrati
and Goldstein [52] considered local excitations in the perfect crystal at T ¼ 0 and
obtained a lower bound �sðgÞ of the entropy, whose optimistic form is numerically
given as the solid curve (b) in Figure 10.3 for a square lattice. For small g, this
optimistic bound by Gujrati and Goldstein is given by

sðgÞ � �sðgÞ ¼ ðg=8Þ½2 ln ð4=g�3Þ�0:56827 . . .�:

Near g ¼ 0, this bound should describe the excitation in the perfect crystal quite well
so that the bound should be close enough to the exact sordðgÞ near g ¼ 0. For large g,
these and other excitations will disorder the configurations. So, for large g, the
configurations counted in the solid bound (b) should not be interpreted as ordered
configurations; they most probably represent disordered configurations. However,
this point is not relevant for our discussion here.

As sordðgÞ>	�sðgÞ in (b) near g ¼ 0, the original idea of Flory about the crystalline state
turns out to be incorrect. As this idea was also central in the calculation of Gibbs and
Di Marzio, their work was severely criticized by Gujrati and Goldstein [52]. Unfor-
tunately, the criticism by Gujrati and Goldstein has been incorrectly interpreted [53]
by taking their bounds to be also applicable to the metastable states (SCL) in
polymers. To overcome the bounds, Di Marzio and Yang have suggested to replace
the crisis conditionSSCL < 0 bySSCL < Sc0, whereSc0 is a small critical value.7)This is

7) Communal entropy being less than a positive
value, no matter how small, cannot be as
fundamental an entropy crisis as the require-
ment Scomm ¼ 0 to argue for an ideal glass
transition. For example, liquid helium shows
no glass transition when its entropy becomes
equal to such a small positive value. Thus, we
will adhere to Scomm ¼ 0 as the most funda-
mental requirement for the entropy crisis. This
also rules out using the excess entropyDSexðTÞ
in (10.16) used byKauzmann and various other
authors, to be used as a signal of an entropy
crisis when it vanishes at a positive tempera-
ture, since thermodynamics itself does not rule

out the possibility that the total CR entropy
ST;CRðTÞ can be greater than the total liquid
(SCL) entropy as seen recently [36, 46, 47] in
exact calculation. Liquid He also has the
property that its CR phase can have higher
entropy than the liquid phase at low tem-
peratures. Thus, DSexðTÞ < 0 under extrapo-
lation does not pose any thermodynamic
problem of stability or reality, and we will not
use it as the signal for any entropy crisis
although it is commonly done; rather, we will
consider the communal entropy and use its
negativity under extrapolation as the criterion
for the entropy crisis.
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not the correct interpretation of the Gujrati–Goldstein bounds. The bounds near
g ¼ 0 are only for the equilibrium states, since they are obtained by considering the
Gujrati–Goldstein excitations inCR; they are not applicable to SCL.More recently, we
have carried out an explicit exact calculation [36, 46, 47] for long semiflexible
polymers, which not only satisfies the rigorous Gujrati–Goldstein free energy upper
bound [52] for the equilibrium state but also yields a positive Kauzmann temperature
T ¼ TK.

7) These calculations thus provide a very strong support of a glass transition
as envisioned by Gibbs [17] and Gibbs and Di Marzio [18]; it has also been tested by
simulations [54]. Our results for a single chain covering all the sites of a square lattice
are presented in Figures 10.4 and 10.5. Apart from the bending penalty e between
gauche and trans conformations of a bond, there is another parameter a � e0=e
considered in the calculation, which generalizes the Florymodel of polymermelting.
Here, e0 is the energy of interaction between two parallel bonds in a square cell of the
lattice. For a ¼ 0, the new model reduces to the Flory model. We set e ¼ 1 for the
results shown in Figures 10.4 and 10.5. We show the free energy ~F � F�a and the
energy ~E � E�a as a function of T in Figure 10.4 and the entropy S and the specific
heat C in Figure 10.5. The model has the following phases. There is an equilibrium
liquid EL (dotted, dash–dot, and dash–dot–dot corresponding to different values of a)
above themelting temperatureTM. Below TM, we have a CR (dashed), which exists all
the way to T ¼ 0. At TM, EL turns into ametastable liquid SCL (dotted, dash–dot, and
dash–dot–dot corresponding to different values of a). There is an unusual feature of
the model worth noting. There is another state, called ML (continuous), which exists
at all temperatures but is quite unusual in its behavior. It ismetastable with respect to
EL/SCL at temperatures higher than some temperature TMC, where EL/SCL termi-
nates by turning into ML. Below TMC, ML is the onlymetastable state, whose entropy
vanishes at some positive Kauzmann temperature. The free energy of EL/SCL
depends on a, but that of ML and CR do not. Therefore, both TM and TMC depend

Figure 10.4 F~(T ) for different states and a¼ 0, 0.5, and 0.8, and (inset) for a¼ 0.5. ML
(continuous), CR (dashed, and EL/SCL (dotted, dash–dot, and dash–dot–dot).
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on a. The melting transition is discontinuous for a > 0, but turns into a continuous
transition for a ¼ 0 (Flory�smodel). Thus, themelting transition in theFlorymodel is
a critical end point shown by TCRE.We note that free energies of all states are concave
to ensure that they remain stable. The calculation gives the state ML over the energy
gap. Its entropy at absolute zero is identical to the entropy in (10.13) and is
independent of a (see Figure 10.5). These conclusions do not change if the polymers
are very long but finite and if we allow a small amount of free volume [36].

10.3
Glass Transition: A Brief Survey

10.3.1
Experimentally Observed Glassy State

Under suitable conditions, many substances can be cooled to a glassy amorphous
solid, even though it is not establishedwhether or not every substance can be put into
a glass form [55]. Operationally we identify a solid as a fluid whose shear viscosity g
exceeds some unusually large cutoff value such as gexp ¼ 1014–1015 poise, which
normally corresponds to a relaxation time t of a day or so. The corresponding cutoff
texp of the relaxation timescale ranges anywhere between 102–104 s, with texp ¼102

being the most common choice for experimentalists. This is obviously an arbitrary
definition, but will serve to fix our ideas of a solid. The viscosity of most common
liquids at room temperature is usually 10�2 poise, so by comparison, our cutoff value
of the solid viscosity seemsquite reasonable. It can be easily seen that such a valuewill
correspond to a deformation of 0.02mm in amaterial of size 1 cm3 over a period of 1
day under a force of 100N [8].

Figure 10.5 S(T ) and C(T ) for a¼ 0.5; see legend in Figure 10.4.
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10.3.2
Glass Phenomenology

We plot in Figure 10.6 the volume per particle v as a function of the temperature T ,
but the following discussion applies equally well to any density function like the
energy, enthalpy, or entropy per particle. The equilibrium liquid EL shown by the
thick solid curve at higher temperatures T � TM can be forced to bypass crystalli-
zation so that it continues as a metastable liquid SCL below TM, also shown by thick
solid curve. The SCL, which exists below TM, is an example of a NES and is disordered
with respect to its ordered crystalline phase CR, shownby the thin solid curve. There is
no abnormal behavior observed in the SCL volume v at TM; contrary to that, the CR
volume shows a discontinuity (see the vertical dashed line at TM) with respect to the
liquid volume at TM. Depending on the rate of cooling r, the apparent �glass
transition� occurs in SCL at temperature Tg (when g ¼ gexp, or t ¼ texp), which is
usually about two-thirds of the melting temperature TM for the liquid. There is a
discontinuity in the slope at Tg, as seen in Figure 10.6. The resulting glassy states are
represented by the dashed–dotted curves or the dashed curve. The value of Tg

depends on the pressure P at which the glass former is cooled. One can also obtain
a glass transition by fixing the temperature and varying the pressure. At the

T

v

TM

TG

Tg

Liquid

Glasses

Crystal

Glass
Transitions

10-12 s105 s1010 yrs

Figure 10.6 Schematic behavior of volume as
the liquid is cooled. The freezing transition
occurs at TM to the crystal, which becomes
perfectly ordered at absolute zero. If the
crystallization is bypassed, we obtain the
supercooled liquid, which turns into different
glasses at glass transition temperatures (Tg)
depending on the rate of cooling. As the cooling
rate becomes smaller, Tg of the glass transition

decreases (shown by arrows becoming larger),
until finally it converges to its limit TG under
infinitely slow cooling rate. This limit is called
the ideal glass transition temperature, and the
corresponding glass shown by the dashed curve
is called the ideal glass. A similar behavior in the
slopes of the densities is also when we increase
P at a fixed T; wemerely replace T in the figure by
1/P.
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corresponding glass transition pressurePgðTÞ, which depends on the temperature of
the glass former, one will find various densities to have a discontinuity in their slope,
this time with respect to P.

It should be emphasized that TgðPÞ has no unique value, as it depends on the
choice of gexp or texp. The relaxation time t and viscosity g increase by several orders
of magnitudes, typically within a range of a few decades of the temperature as it is
lowered, and eventually surpass experimental limits texp and gexp, respectively; see
the upper axis in Figure 10.6 for the relaxation time t. As it usually happens, t
monotonically increases with lowering the temperature. For EL, t < texp, so that the
system has enough time to come to equilibrium as we lower T. At TM; we need to
carefully ensure the constraint that crystal seeds are not allowed to form [21].
Consequently, we obtain a metastable SCL, which can still remain under
�constrained� equilibrium as long as t < texp. The SCL begins to fall out of this
constrained equilibriumwhen texp9t:This is shown by the dotted portion of the two
curves representing glasses in Figure 10.6. Eventually, at low enough temperature,
the systemwill appear to have nomobility when t becomes extremely long compared
to our experimental timescale texp (such as texp ¼ 102 or texp ’ 105 s’ one day). The
loss ofmobility results in �freezing� of the systemwithout any anomalous changes in
its thermodynamic densities like its specific volume or the entropy density at the
glass transition Tg for that particular choice of texp, which itself depends on the
cooling rate r. The two dashed–dotted curves representing two different experi-
mental glasses will not show any singularity at their respective glass transition
temperature Tg. They gradually connect with the thick solid curve describing the
liquid. Thus, the experimental glass transition should be thought of as a crossover
phenomenon in which the supercooled liquid gradually turns into a glass over a
temperature range.

10.3.3
Fragility

A quantity of interest is fragility [56, 57] m, which is expected to increase with
texp,

m � lim
T !T þ

g

d ln t

dðTg=TÞ :

For conventional values of texp, it takes values between m ’ 17 for �strong� glass
formers that show an Arrhenius behavior of g and m ’ 150 for �fragile� glass
formers. Empirically,m is found to be strongly correlated with the interaction in the
system. Strongly directional bonds such as covalent bonds give rise to �strong� glass
formers such as network glasses like silica (SiO2; m ¼ 20). In contrast, isotropic
interactions such as van der Walls usually give rise to �fragile� glass formers such as
O-terphenyl (m ¼ 80). Fragile glasses are those formed by molecular glass formers,
including polymers. It is known that the volume (to be precise, the free volume) plays
no important role in network glasses. Recent molecular dynamics investigations
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show that the form of the potential such as its anharmonicity strongly influence the
fragility [58].

Dynamics of SCL covers a very broad range from fast dynamics (known as the b
relaxation) due to cage effects and slow dynamics (known as the a relaxation) due to
structural relaxation that are separated by a plateau region [59]. At high T , SCL has
only one kind of relaxation involving the diffusion of particles. As T is lowered,
there comes a temperature TMC > Tg, where the above two different relaxation
processes emerge out of the diffusive motion. The peak of the low-frequency
response of the a process vanishes as Tg is approached, while the peak due to the b
process persists even below Tg. Johari and Goldstein [59] have emphasized that both
relaxations are characteristics of all glass transitions. The time when the a

relaxation emerges out of the plateau region increases with decreasing r so that
the plateau region gets broader and broader, thus suggesting that the plateau will
eventually diverge in width in the hypothetical case when r vanishes. Consequently,
any theory of dynamics (r > 0) must be able to explain the two separate relaxation
phenomena.

The transition at TMC is now known as themode coupling transition because it has
been justified by the mode coupling theory [60]. The relationship between TMC and
TG is not understood at present.Wehave attempted recently [36, 46, 47] to understand
it partially in connection with long polymers. It was discovered that the free volume
falls rapidly near TMC for long polymer fluids, with the nature of the drop becoming
singular in the limit of infinitely long polymers. Thus, even though the dynamics was
itself not considered in theseworks, the vanishing of free volume suggests somedeep
connectionwithwhat one expects nearTMC.However, the connection is not very clear
and remains speculative at best.

10.3.4
Ideal Glass Transition as r! 0

It is commonly believed that in the theoretical limit r! 0 (or texp !1), which can
never be accessed in an experimental setup, there will be a precise temperature, the
limit

TGð¼ TK Þ � lim Tg as r! 0 or texp !1; ð10:15Þ

where we will observe a singular behavior, as shown in Figure 10.6: There is a sharp
break at TG in the slope, but no discontinuity in the density itself is expected to occur
at TG as is the case at TM. As r! 0 gives us a SMS, the limiting transition at TG is the
same as the ideal glass transition at TK introduced in Section 10.1.5.2. This justifies
equating TG with TK. The glass below TG shown by the dashed curve in Figure 10.6
represents the ideal glass.

Because of the experimental time limitation, no experiment can ever be done at
infinitely slow cooling rate. Hence, the limit TG ¼ TK can only be inferred by some
sort of extrapolation to infinitely slow cooling rate; it cannot be measured in any
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experiment or directly demonstrated in any simulation as neither can accomplish
infinitely slow cooling rate (r! 0) (see Ref. [12] for further details). It is only by
extrapolation that the latter two may predict an entropy crisis. The reliability of such
extrapolation is debatable, and has been used to argue against an entropy crisis
[61, 62]. By analyzing experimental data, they have argued onprocedural grounds that
an entropy crisis in any experiment must be absent, which is most certainly true.
However, such arguments based solely on experimental data or simulation without
extrapolation can never shed light on the issue of the entropy crisis, which is purely
hypothetical. To verify the existence or nonexistence of the crisis, one must resort to
theoretical arguments, including exact calculations. Several workers [14, 63] have
argued theoretically that it is not possible to have any entropy crisis, not withstanding
the explicit demonstration of it in long polymers in Section 10.2.3 and in the abstract
random energy model [19]. The argument of Stillinger andWeber [63], in particular,
is forceful though not rigorous [9]. While they concede that long polymers may very
well have an entropy crisis at TK, they argue for its absence in viscous liquids of small
molecules. From a purely mathematical point of view, it is hard to understand how
this scenario could be possible. Using the physical argument of continuity, we expect
TK to be a smooth function of the molecular weight. Thus, it does not seem possible
that such a function remains zero over a wide but finite range of the size of the
molecules, and abruptly becomes nonzero for very large sizes. A function like this
must be a singular function. However, no argument that we can imagine can support
a particular large molecular size to play the role of the location of such a singularity.
Thus, whether TK is nonzero or not can only be settled by an exact calculation of the
kind reported in Sections 10.10 and 10.11.

Glass formation has been studied numerically by several authors. Abraham [64]
carried out Monte Carlo simulation for a system of 108 spherical particles using the
Lennard-Jones 6–12 potential and clearly demonstrated the existence of glass
transition in simple fluids in a temperature quench or a pressure crush. The density
shows a discontinuity in its slope at a temperature that is identified as the glass
transition TG ¼ TK (see Figure 10.6). Recall that a discontinuity in slope can only
occur atTK, but not at an experimental glass transition atTg. A nice summary ofmore
recent simulations can be found in Ref. [10].

The uniqueness of SMSs makes investigating the singular behavior at TK more
appealing from a thermodynamic point than the crossover behavior around someTg.
It should be emphasized that the infinite time limit of SCL in (10.15) implies that it
can be treated as the �equilibrium� MS as opposed to a NES represented by
dashed–dotted curves in Figure 10.6. Because of their time independence, both
states can be studied using the (restricted) PF formalism. On the other hand, such a
formalism can only be a crude approximation to study nonequilibrium states, where
time dependence is present. It is also clear that in the limit r! 0 at TK, one will only
observe theb relaxation; thea relaxationwill never emerge because of the broadening
of the plateau. This follows immediately since the glass is trapped in a single potential
well for an infinitely long time. Therefore, it cannot make any excursion out of this
well to another well (see Section 10.1.5).
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10.3.5
Kauzmann Paradox and Thermodynamics

A distinctive feature of low-temperaturemetastability and supercooling is the almost
universal rapid drop in the excess entropy:

DSexðT ;VÞ � ST;SCLðT ;VÞ�ST;CRðT ;VÞ: ð10:16Þ

As discussed in Section 10.1.5, a glass is trapped in a basin or cell representation that
does not change with the temperature as it is lowered [5]. Just above Tg, SCL will
contain certain basin entropy due to the possible number of basins in which a glass
can be trapped. This entropy cannot be negative. As there is no way to uniquely
measure this entropy in SCL, Kauzmann [5, 6] proposed to use the excess entropy as a
measure of the entropy associated with different basins, the idea being that the
vibrational entropy of the glass in any basin or cell representation is almost identical
to that of the crystal. The drop inDSexðT ;VÞ tends toward zero rapidly near the lowest
possible experimental Tg. Indeed, if DSexðT ;VÞ is extrapolated to the limit of
infinitely slow cooling rate, one invariably finds it to go to zero at a nonzero
temperature, as first observed by Kauzmann [5, 6] from thermal data for various
systems capable to form a glass. The possibility that the excess entropy drops to zero
and becomes negative under extrapolation is known as the Kauzmann paradox as it
suggests that the number of basins becomes less than one, which is impossible. Just
before it could vanish at this temperature, the system undergoes an experimental
glass transition at Tg and the system avoids the entropy crisis. Again, whether the
excess entropy vanishes can only be answered by an exact calculation, and not by
experiments due to time constraints in the latter. This further emphasizes the need to
study the long time limit of supercooled states theoretically (see also Ref. [37]).

By a careful analysis, Goldstein [23] has shown that much of the excess entropy
arise from nonbasin contributions, such as vibrational differences between glassy
and crystalline phases, and is reflected most prominently in boson peaks. Thus, it is
obvious that one cannot take the excess entropy as a genuine measure of the basin
entropy or the entropy associated with the number of cell representations.

As there are no vibrations on a lattice, the entropy on a lattice is purely due to cell
representations. Its rapid drop with lowering T at low temperatures is a thermody-
namic requirement due to nonnegative specific heat, as can be seen from an isolated
Ising spin in a magnetic field, which is equivalent to noninteracting Ising spins in a
magnetic field. The energy of interaction of N mutually noninteracting Ising spins
si ¼ �1, each experiencing an external magnetic fieldH; is given by E ¼ �P

Hsi,
and the resulting entropy and the heat capacity are given by

S ¼ N½ln 2coshðH=TÞf g�ðH=TÞ tanhðH=TÞ�;
C ¼ N½ðH=TÞ=coshðH=TÞ�2:

Thetwoquantitiesperspinareplotted inFigure10.7; comparewithFigures1.11–1.13,
inRef. [65]. The entropy falls off very rapidly at low temperatureswith a resulting peak
mimicking a discontinuity in the specific heat, similar to what happens in SCLs [6].
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What distinguishes experimentally prepared SCL is that the drop in its extrapolated
basin entropy actually becomes negative below TK > 0 [5, 6, 9, 25].

10.3.6
Entropy Crisis and Ideal Glass Transition

For states to exist in Nature, WðE;VÞ � 1 in (10.1). For the entropy,

SðT ;VÞ � 0; ð10:17Þ
even in the restricted ensemble, whether it is obtained from (10.1) or (10.2). This
condition must also be satisfied whether SðT ;VÞ represents the total, configuration-
al, or communal entropy. Indeed, as it turns out, the entropy can be broken into
various parts (10.19). Each part itself must be nonnegative in this partition for the
state to occur in Nature.

It should be emphasized that there is no violation of thermodynamics just because
DSexðT ;VÞ has become negative.7) Although it is not very common, it is possible for
SCL entropy to be less than that of the crystal. On the other hand, a negative entropy
is impossible. Thus, it appears more natural to identify the Kauzmann paradox with
a component of the entropy becoming negative. Accordingly, as discussed in
Section 10.4.1, we interpret the Kauzmann paradox as the following entropy crisis:

Remark
Under extrapolation, a negative component of SðT ;VÞ; and not a negative SexðT ;VÞ,
signals the entropy crisis. Its implication is simply that such states cannot occur in
Nature, and the onset of the crisis is gradually the underlying thermodynamic driving
force for GT in molecules of all sizes.
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Figure 10.7 Behavior of the entropy S (solid) and the heat capacity C (dashed) for a single spin
(N¼ 1) in an external magnetic field H. The entropy rises rapidly around T/H¼ 1, which
corresponds to a peak in the heat capacity in the vicinity.
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It will be shown in Section 10.9 that the entropy crisis is a consequence of the
energy gap. Recent computer simulations have not been able to settle the issue
clearly [66–68] in simple fluids. Our previous investigation [37, 39] of a dimermodel,
which incorporates orientational degrees of freedom, clearly establishes the ideal
glass transition in molecular systems. This model calculation should be a reliable
representation of glassy plastic crystals that has been investigated by Johari [69]. It has
gradually become apparent that the short-ranged orientational order in supercooled
liquids plays an important role not only in the formation of glasses but also in giving
rise to a liquid–liquid phase transition [70, 71]. Tanaka [72] has proposed a general
view in terms of cooperativemedium-ranged bond ordering to describe liquid–liquid
transitions, based on the original work of Nelson [73].

There are two independent aspects of a proper thermodynamics. First, the
requirement of stability according to which thermodynamic quantities like the
heat capacity, the compressibility, and so on must never be negative. Second,
the reality condition (10.17) independent of the stability criteria, that ensures that
such states occur in Nature.8)Consider our gapmodel in Figure 10.2 in terms of the
communal entropy. The resulting communal free energies of the disordered and
ordered states are shown by OKCAD and OMB, respectively, in the inset. Note that
both free energies satisfy stability as they are both concave. However, over the
portion OK, we obtain a negative entropy, which means that this portion does not
represent observable states, even though the states are stable. In other words, the
extrapolation of the MS free energy to lower temperatures, while always satisfying
the stability criteria everywhere (T � 0), does not always satisfy the reality
condition (10.17).

The situationwill be different if we consider realmetastable states described by the
curve GF, either representing the communal entropy curve or the communal free
energy curve in the inset in Figure 10.2. If we consider the long time limit of the two
curves, it is clear that since the communal entropy of an experimentally observed
SMS can never be negative according to (10.17), its limiting value will also never be
negative. Hence, the free energy will also not come down as we lower the temper-
ature. One possible form of the limiting free energy is DACK along with the dotted
horizontal line passing through K, as shown in the inset in Figure 10.2; compare the
dotted horizontal line throughKwith dashed line showing the glass free energy FG in
the lower graph in Figure 10.11. This possibility does not match with the calculated
free energy DACKO below K. The contradiction is resolved by the result in
Section 10.12, where we show that because of the ideal glass transition, the correct
free energy will never correspond to any of its entropy component being negative.
Below the ideal glass transition, it must look like FG, and not the unphysical thin line
below K in the lower graph in Figure 10.11. The actual form of the unphysical
communal branch OK is irrelevant. This justifies our claim earlier in Section 10.2.2

8) The stability criteria such as a nonnegative heat capacity that immediately follow from the PF
formulation are independent of the nonnegative entropy requirement. Thus, it is possible for the
theoretically generated SMSs to have a negative entropy over some temperature range. These states
will not occur in Nature.
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that the arbitrary continuation of the entropy in the gap cannot affect the physics of
the glass transition.

As long as we describe the ideal glass transition in terms of thermodynamic
densities like the volume, energy, and entropy, the ideal glass transition will be
continuous (second order) and not discontinuous (first order). This says nothing
about the possibility that this transition may turn out to be discontinuous in terms
of some other order parameter, which couples to some abstract field unrelated to
T and P.

10.4
Localization in Glassy Materials

10.4.1
Communal Entropy, Confinement, and Ideal Glass

The spatial integration in (10.5) can be carried out in the cell model by assuming that
each particle is allowed to move about within its cell formed by its neighbors, as
shown in Figure 10.1 or in Figure 10.8. In both figures, a disordered inherent structure
(IS) is shown in (a), while (b) shows an ordered IS. We have explicitly shown voids in
Figure 10.8 to contrast with Figure 10.1 that had no voids. These voids represent cells
that particles do not visit during their vibration. The discussion below applies equally
well to each figure. For each cell representation, the potential energy will have its
(local) minimumwhen each particle has a certain particular position�r in its cell. The
set f�rg of these particular positions of all the particles determines a point in the
configuration space C; where the potential energy has a local minimum. This

void particle

(a) Disordered IS (b) Ordered IS 

Figure 10.8 Cell representation of a small
region of disordered (a) and ordered (b)
inherent structures at half occupation: half of
the cells contain a particle; other half are empty
and are said to contain a void. Observe that

while each particle is surrounded by four voids
in the ordered configuration, this is not the case
for the disordered configuration. We have
shown a higher volume for the disordered
configuration, as found empirically.
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particular point f�rg is commonly known as the inherent structure [9, 74]. In general,
there are many possible IS�s, which we index by j ¼ 1; 2; . . . : The potential energy
EðfrgÞ uniquely determines the potential energy landscape, introduced by Goldstein
to describe glasses [22]. Each jth IS uniquely determines a potential well or basin,
whichwe identify as the jth potential well or basin. Indeed, each cell representation in
Figure 10.1 represents a basin. The minimum of a basin is at its IS f�rg and its
boundary is formed by points (not necessarily having the same energy) beyondwhich
we can no longer go up in energy as we climb the well [38]. It is commonly believed
that at low enough temperatures, the motion of the particles in the system is
predominantly small harmonic motions about a single IS, whether the system is a
CR or a glass (see, for example, Refs [30], in particular, Figure 5 there, and [31] for a
recent discussion of the relevance of basins for a CR and SCL).

Confinement Hypothesis
At low enough temperatures, the communal entropy vanishes when SCL or CR is
confined to a single basin.

At present, it is merely a hypothesis, which needs to be verified [75]. We first
identify the communal entropy in a rigorousmanner.We introduce the canonical PF
Zð jÞðTÞ of the jth basin obtained by restricting the integration in (10.5) over points that
belong to the basin. Let FjðTÞ � �T ln Zð jÞðTÞ be the corresponding basin free
energy and Sj its entropy. We follow [38] and express ZðTÞ (we do not show V
dependence) as a sum over various disjoint basins:

ZðTÞ �
X
j

Zð jÞðTÞ ¼
X
l

ZlðTÞ: ð10:18Þ

The quantityZlðTÞ is defined as follows.We introduce IS classesBl, indexed by l:Bl

contains basins whose IS�s have the same energy el; otherwise, there is no other
restriction such as on their shapes and sizes. Accordingly, basins in each class may
have different free energies at a given T . The class PF ZlðTÞ is defined as

ZlðTÞ �
X
j2Bl

Zð jÞðTÞ:

Let NlðFb;TÞ denote the number of basins of free energy Fb (b: basin) in Bl and
SlðFb;TÞ � lnNlðFb;TÞ the corresponding IS class entropy. (Note that basins
with the same free energy need not all belong to the same basin class.) At a given
T , ZN;l is dominated by those basins in Bl for which the class free energy
FlðFb;TÞ � Fb�TSl is minimum as a function of Fb. The minimum occurs at
Fb ¼ �Fl; where

½qSl=qFb�Fb¼�Fl
¼ b;

compare this with (10.6). Let �SlðTÞ ¼ Slð�Fl;TÞ and �FlðTÞ ¼ �Fl�T�Sl denote the
class entropy and free energy, respectively, so ZlðTÞ ¼ exp½�b�FlðTÞ�:We now carry
out the summation over different classes in (10.18) as follows. LetF group denote the
set of different classes, each having the free energy F, and NðF ;TÞ the number of
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classes in this group with SðF ;TÞ � lnNðF ;TÞ the group entropy. The PF Z is
dominated by that group for which F � F�TS is minimum over F. Let the
minimum occur at F ¼ �F; where

½qS=qF�F¼�F ¼ b

[again, compare this with (10.6)] so that the corresponding group entropy becomes
�SðTÞ � Sð�F ;TÞ. The free energy of the system is F � �F�T �S. Finally, we find that
the configurational entropy is given by [38]

SðTÞ � �SðTÞþ �SbcðTÞþ SbðTÞ � 0; ð10:19Þ
where �SbcðTÞ represents the average basin class-entropy ðl ¼ bcÞ and SbðTÞ the
average basin entropy ðj ¼ bÞ. The first two terms in (10.19) represent the communal
entropy

ScommðTÞ � �SðTÞþ �SbcðTÞ � 0; ð10:20Þ
see (10.8). To get an estimate of the communal entropy, we consider an ideal gas ofN
particles in a volumeV , for which the configurational entropy is given in (10.A6). The
corresponding entropy in the cell model can be calculated by assuming that each cell
containing just one particle has a volumeV=N, so that the entropy of a particle in a cell
is exactly lnðV=NÞ: The entropy for the cell model isN lnðV=NÞ; and the communal
entropy is their difference:

SidealcommðTÞ ¼ N ln e � 0;

which satisfies the nonnegative constraint in (10.20).
At high temperatures, the communal entropy is large. As T is reduced, both

components in (10.20) begin to decrease. We first expect the number of (class-)
groups contributing to SðTÞ to decrease. Thus, at some temperature T ¼ TES, we
expect �SðTÞ to vanish, but �SbcðTÞ > 0: Thus,

ScommðTESÞ! �SbcðTESÞ > 0

at this temperature. The system is now confined to one single class (bc representing
the class index l). Within this class, the system explores only those basins that have
the same free energy �Fbc at TES. Based on general grounds, we cannot draw any
conclusion whether the system belongs to the same class or not at all lower
temperatures T1 < TES: It is possible that the basins belonging to a different class
are explored at T1 than the class at a higher temperature T2 < TES. Thus, TES cannot
be identified as the ideal glass transition. (As said earlier, we can speculate its
connection with TMC).

With further reduction of T , we expect the number of participating basins in this
class to also fall so that at T ¼ TK; we have

�SbcðTKÞ ¼ 0; ScommðTKÞ ¼ 0; ð10:21Þ
see (10.10). At TK, �SbcðTKÞ also vanishes, which ensures that ScommðTKÞ ¼ 0, and
the system is finally confined to a single basin corresponding to a certain cell
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representation in Figure 10.8a; we do not distinguish this case with the possibility of
nonextensive basins per comment.5) Let j ¼ jK be the particular localizing basin and
EðTKÞ the potential energy of the systematTK. Aswe lower the temperature belowTK,
the systemwill probemicrostates of lower energies E < EðTKÞ. Again, whether these
microstates belong to the same basin as the basin at TK cannot be answered based on
general arguments. Depending on their shapes and sizes, it is conceivable that some
other basin j0K has a lower free energy than jK at a lower temperature. This will suggest
that the system will jump to this basin at a lower temperature, thereby giving rise to
the a-relaxation. Then, TK cannot be identified as an ideal glass transition. However,
it is commonly believed that the system remains confined to the same single basin jK
for all temperatures below TK, and that no a-relaxation takes place. If this holds, then
the likely situation is that there are no other basins j 6¼ jK for energies E < EðTKÞwith
lower free energies. This then justifies calling the glass at TK an ideal glass, as its
average structure (described by the corresponding IS) remains frozen below TK.
Accordingly, the ideal glass transition is determined by the vanishing of the
communal entropy, and not the configurational entropy, which is consistent with
the confinement hypothesis above.

The vanishing of ScommðTKÞmay leave SðTÞ positive only if SbðTÞ is nonnegative.
When ScommðTKÞ vanishes, the energy of the system is still higher than that of its IS of
the confining basin. This means that the system will probe microstates of higher
energies that belong to this basin. The corresponding entropy SbðTÞ should be
nonnegative. Whether a computation actually give a positive SbðTÞ depends on the
nature of the calculation. Its sign, however, is irrelevant in locating the Kauzmann
temperatureTK;which can be identified by focusing on the communal entropy alone.
Accordingly, there is no loss of generality in using latticemodels to locateTK when the
confinement occurs; see the Confinement Hypothesis above.

The group-entropy �SðTÞ remains zero belowTES, whichwillmake �SðTÞ a singular
function of the temperature. Similarly, the class-entropy �SbcðTÞ ¼ 0 below TK, which
makes the class-entropy also singular at TK, the ideal glass transition temperature as
said above. It is interesting to investigate if TES has any relation to TMC. We will not
pursue this issue here.

The vanishing of the communal entropy at TK and the localization of the system
to a particular cell or a basin are related to the presence of high-energy barriers in
the potential energy landscape. The latter provides another good reason to study the
above long time limit of supercooled states under infinitely slow cooling rate. The
transition from supercooled liquid to a glass is conceptually a transition between a
state in which the system has high mobility and a state in which the mobility is
practically nonexistent. Thus, one can view the glass transition as a localization
delocalization (confinement$ deconfinement) transition [7]. A classic example of
such a transition is percolation in which an infinite cluster is formed at the
percolation threshold [7, 51, 76–80]. The onset of the infinite cluster is similar
to the sol–gel transition in systems that undergo gelation such as the formation
of silica gel [7, 51]. The formation of the gel can be considered as the formation of
a glass from the liquid phase. A gel is a frozen structure similar to a glass. In
this respect, the study of gel formation may provide some deep insight into the
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problem of glass transition. Zallen [7] provides an enlightening discussion of the
relevance of percolation for the localization in glass transition, which we highly
recommend.

The above discussion then allows us to conclude that (10.10) or (10.21) determines
the ideal glass transition. In a lattice model, which will be considered later in this
chapter, we bypass the complication due to SKEðTÞ and SbðTÞ all together. Hence, the
total entropy in the lattice model is purely configurational, and the condition for an
ideal GT reduces to

SðTÞ ¼ 0: ð10:22Þ
Let us now turn to the low-temperature behavior of CR. Being an equilibrium state,

CR is quite different from themetastable SCL. Therefore, there is no reason apriori to
expect the same behavior of the communal entropy in CR.However, according to the
above confinement hypothesis, a CR is also confined to a single basin at low enough
temperatures. If true, one will also expect TCR > 0 in (10.11). Whether an equilib-
rium state also represents a confined state will be answered only after the exact
calculations reported later.

10.4.2
Partitioning of ZT(T, V )

An important comment about the form of the potential energy E in (10.5) and the
partitioning in (10.52) is in order. We have implicitly assumed that the potential
energy contains all physical interactions, and that no interaction depends on
velocities. This restriction means that, for example, we do not consider magnetic
interactions. As a consequence, we only deal with conservative forces. This is not a
major limitation as it covers themajority of the cases of interest. The potential energy
of the systemmust certainly include the interaction energy that would be responsible
for strong chemical bonding, such as in a polymer, if they occur in the system (below
some temperature). This approach allows us to describe the vibrational modes
associated with chemical bonds also. However, the most important reason to use
this approach is to be able to treat all 3N Cartesian degrees of freedom (due to 3N
coordinates frig) as independent. If, however, we treat the chemical bonds as fixed in
length, this reduces the degrees of freedom due to these holonomic constraints that
do not depend on time and temperature. This does not create any complication, as
can be seen from the following argument. The theory of Lagrange multiplier allows
us to treat the 3N degrees of freedom as independent at the expense of adding forces
of constraints [81], which we take to be also conservative since the constraints
themselves arise from conservative forces. Thismodifies the potential energy E by an
additional potential energy that is independent of time and temperature, and the
partitioning in (10.52) continues to remains valid. The issue of constraints due to
chemical bonds is also studied by Di Marzio [82], but from a different point of view.
The potential energy he considers does not involve interactions responsible for bond
formation. Thus, his formulation is quite different from ours. Our approach allows
us to avoid the complications noted by Di Marzio.
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In case the potential energy depends on velocities, we can still factor out a PF
related to the center-of-mass kinetic energy; the remainder PFwill play the role of the
configurational PF; however, such a case has never been studied within the context of
SCL and glasses and will not be pursued anymore in this chapter.

10.5
Some Glass Transition Theories

We briefly review some important theories that have been used to explain glass
transitions. None of them at present are able to explain all observed features of glass
transition [9, 25, 30] even though somemajor progress has beenmade recently [36, 45–
47, 56, 83–86]. Thus, we are far from having a complete understanding of the
phenomenon of glass transition. It is fair to say that there yet exists no completely
satisfying theory of the glass transition. Theoretical investigations mainly utilize two
differentapproaches,whicharebasedeitheron thermodynamicoronkinetic ideas.The
two approaches provide an interesting duality inGT, neither of which seems complete.

10.5.1
Thermodynamic Theory of Adam and Gibbs

The most commonly used thermodynamic theory is due to Adam and Gibbs [87],
which attempts to provide a justification of the entropy crisis in SCL [5, 6, 9, 25]. The
central idea is that the sluggishness observed in a system is a manifestation of the
smallness of the entropy, that is, the smallness of the available configurations to the
system [88]. According to this theory, the viscosity gðTÞ above the glass transition
depends on a quantity that, though not rigorously defined, is also called the
configurational entropy. This entropy will be denoted by Sconf ðTÞ so as not to be
confused with our rigorous definition of configurational entropy SðTÞ. Another
reason touse a different notation is that their entropy seems to be closely related to the
communal entropy. Crudely speaking, Sconf ðTÞ represents the entropy of a
�rearranging� region containing Nre particles able to rearrange themselves collec-
tively in the sense that the entire region participates cooperatively in its rearrange-
ment. Since the rearranging region is a subsystem of the macroscopic system (the
latter being described in the canonical ensemble with fixed V andN), its volume will
not be fixed but fluctuating. Therefore, the proper description of the region will be
given by using the NTP ensemble encoded in (10.7). Let GreðT ;P;NreÞ denote the
(configurational) Gibbs free energy of theNre particles that are required to rearrange
cooperatively, and GðT ;P;NreÞ that of the Nre particles that need not rearrange
cooperatively, that is, of the Nre particles of the macroscopic system. The (config-
urational) Gibbs free energy of themacroscopic system isGðT ;P;NÞ. Assuming that
we can treat the cooperatively rearranging regions as independent, Adam and Gibbs
argue that the average transition probability is given by

�pðT ;PÞ ¼ p0expð�DG
=TÞ;
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where DG
 � DGðT ;P;N

reÞ ¼ GreðT ;P;N


reÞ�GðT ;P;N

reÞ / N


re; where N


re is the

smallest possible size of the region that can undergo rearrangement. Also, p0 is taken
to be almost a constant. We introduceDg � DG
=N


re and S


conf � Sconf ðT ;P;N


reÞ of
the average region by the relation

S
conf
N


re
¼ Sconf ðT ;V ;NÞ

N
;

in terms of which the average transition probability is given by

�pðT ;PÞ ¼ p0expð�S
confDg=Tsconf Þ;
where we have introduced entropy sconf ¼ Sconf ðT ;V ;NÞ=N per particle for the
macroscopic system. As N


re is of small size, S
conf is finite and can be taken to be
almost a constant. Neglecting also the variation ofDg with T and P, we conclude that
the numerator in the exponent is almost a constant. From this, we find that the
viscosity is given as follows:

ln gðTÞ ¼ AAG þBAG=Tsconf ; ð10:23Þ
where AAG and BAG are system-dependent constants. We refer the reader to Refs
[89, 90] for a recent discussion of this theory and its limitations.

An alternative thermodynamic theory for the impending entropy crisis based on
spin-glass ideas has also been developed in which proximity to an underlying first-
order transition is used to explain the glass transition [83].

10.5.2
Free Volume Theory

The other successful theory that attempts to describe both aspects with some
respectable success is based on the �free volume�model of Cohen and Turnbull [91].
The concept of free volume has been an intriguing one that pervades throughout
physics but its consequences and relevance are not well understood [92], at least in
our opinion, especially because there is no consensus on what various workersmean
by free volume.Nevertheless,GTin this theory occurswhen the free volumebecomes
sufficiently small to impede the mobility of the molecules [93]. The time dependence
of the free volume redistribution, determined by the energy barriers encountered
during redistribution, provides a kinetic view of the transition, and must be properly
accounted for. This approach is yet to be completed to satisfaction. Nevertheless,
assuming that the change in free volume is proportional to the difference in the
temperature T�TV near the temperature TV; even though there is no thermody-
namic requirement for the free volume to drop asT is lowered [36], it is found that the
viscosity gðTÞ diverges near TV according to the Vogel–Tammann–Fulcher equation:

ln gðTÞ ¼ AVTF þBVTF=ðT�TVÞ; ð10:24Þ
where AVTF and BVTF are system-dependent constants. This situation should be
contrasted with the fact that there are theoretical models [19, 46, 47] without any free
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volume inwhich the ideal glass transition occurs due to the entropy crisis at a positive
temperature. This occurs because in these models, the communal entropy changes
due to internal degrees of freedom (conformational changes) even in the absence of
any free volume. Hence, it appears likely that the free volume itself is not the
determining cause for the glass transition in all supercooled liquids. In some cases,
the entropy crisis persists even when free volume is incorporated. However, too
much free volume can destroy the transition [36].

Cohen and Grest [91] extended the free volume theory by introducing the concept
of percolation for particle diffusion in the liquid by focusing on the random
distribution of free volume. The singularity atTV in (10.24) represents the singularity
induced by the percolation threshold. The free volume regions do not percolate below
TV, so the particle diffusion is limited as expected in the glassy region. Above TV, the
percolated network of free volume allows the particle diffusion to occur over the
entire volume, which makes the system behave like a fluid.

Drawbacks of the free volume approach should be mentioned. While the decrease
of the free volume with temperature drop certainly explains the increase in the
viscosity, it is rather difficult to explain in this approach the pressure dependence of
the viscosity andnegative dTg=dP observed in someSCLs (see, for example, Ref. [94]).
Similarly, negative expansion coefficients are also untenable for the theory.

Assuming sconf in (10.23) to be the communal entropy defined in Section 10.1.5,
which is known to vanish in theoretical calculations, its rapid decrease to zero should
give rise to a diverging viscosity, thus providing a connection between the thermo-
dynamic view and the kinetic view. The suggestion that the rapid rise in the viscosity
is due to a sudden drop in ScommðTÞ seems very enticing, since both phenomena are
ubiquitous in glassy states. The experimental data indicate that TV and TK are, in fact,
very close [95], clearly pointing to a close relationship between the rapid rise in the
viscosity and the entropy crisis. This deep connection, if true, provides a very clean
reflection of the dual aspects of the glassy behavior mentioned above. Thus, we are
driven to the conclusion that we can treat the SCL glass transition within a
thermodynamics formalism by demonstrating the existence of the entropy crisis.

It should be noted that what one measures in experiments is the difference in the
entropy, and not the absolute entropy. Assuming that the entropy is zero at absolute
zero in accordancewith theNernst–Planck postulate, one can determine the absolute
entropy experimentally. However, it is well known that SCL is a metastable state, and
there is no reason for its entropy to vanish at absolute zero [16]. Indeed, it has been
demonstrated some time ago that the residual entropy at absolute zero obtained by
extrapolation is a nonzero fraction of the entropy ofmelting [43], which is not knowna
priori. Therefore, it is impossible to argue from experimental data that the entropy
indeed falls to zero, since such a demonstration will certainly require calculating
absolute entropy though efforts continue to date [61, 62].

10.5.3
Mode Coupling Theory

The mode coupling theory [60] is an example of theories based on kinetic ideas that
deals not with the glass transition but with the transition at TMC: Thus, it is not

466j 10 Energy Gap Model of Glass Formers: Lessons Learned from Polymers



directly relevant for our chapter. This theory may be regarded as a theory based on
first-principle approach, which starts from the static structure factor. In this theory,
the ergodicity is lost completely, and structural arrest occurs at a temperature TMC,
which lies well above the customary glass transition temperature TG. Consequently,
the correlation time and the viscosity diverge due to the caging effect. The diverging
viscosity can be related to the vanishing free volume [91, 93], which might suggest
that the MC transition is the same as the glass transition. This does not seem to be the
consensus at present. Thus, it is not clear if the free volume is crucial for the MC
transition. Some progress has been made in this direction recently [36], where it has
been shown for long polymers that the free volume vanishes at a temperature much
higher than the ideal glass transition. It has been speculated that the divergence at
TMC is due to the neglect of any activated process in this theory [96, 97]. This, however,
has been disputed in a recent study [98]. The mode coupling theory is also not well
understood, especially below the glass transition. More recently, it has been argued
that this andmean field theories based on an underlying first-order transitionmay be
incapable of explaining dynamic heterogeneities.

10.6
Progigine–Defay Ratio P and the Significance of Entropy

Let us consider an experimental glass obtained by a nonzero cooling rate such as in an
experiment or in a simulation. Because the densities (entropy, volume, etc.) are
continuous, but their derivatives such as the expansion coefficient, heat capacity, and
so on show a discontinuity at Tg, it appears that there is some similarity between the
glass transitionandacontinuous thermalphasetransition.Suchasimilarityshouldnot
be taken too seriously as Tg depends on the history of glass preparation: this temper-
ature can vary over a range of several tens of degrees. (The objection of course is not
applicable to the ideal glass transition.) This usually does not happen with thermody-
namic transitions such as a melting transition, whose temperature does not vary so
drastically solely due to kinetics. Considering the continuity of the entropy Sg and the
volumeVg for thetwostates (supercooled liquidandtheglass) alongtheglass transition
curve TgðPÞ in the T–P plane, we can easily derive the following relations [99–101]:

dTg

dP
¼ TgVg

DaT

DCP
;

dTg

dP
¼ DkT

DaT
; ð10:25Þ

where DQ represents the discontinuity in the quantity Q ; here, Q represents the
isothermal expansion coefficient aT , the compressibility kT, and the isobaric heat
capacity CP. The first equation follows from entropy continuity, while the second
equation from volume continuity. As discussed by Goldstein [101], the first equation
in (10.25) is found to be generally valid experimentally, but not the second equation. In
fact, it isusuallyfoundthat theright-handsideratio inthesecondequationis larger than
the slope dTg=dP. Consequently, the following Progigine–Defay ratio [99, 100]

P ¼ DCPDkT

TgVgðDaT Þ2
� 1 ð10:26Þ
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(see also Refs [101–103]). Due to the general validity of the first equation, Goldstein
concludes, though plausibly, that the GT is thermodynamic as hypothesized by
Kauzmann [5], and then further elaborated by Gibbs [88]. According to this
hypothesis, the GT is associated with the vanishing of the excess entropy or
excess enthalpy. For kinetic reasons, this requirement may turn into some fixed
value of the excess entropy. Goldstein also concludes that the vanishing of free
volume does not seem to be the determining factor in the GT. Di Marzio and
Yang [53] come to a similar conclusion about the dominant role of the entropy in
glass transitions.

Let us assume that the particles comprising the system have no internal structure.
Ideally, we are considering particles to be hard sphere (Figures 10.1 and 10.8). The
ability for the center-of-mass of each particle to move about most certainly depends
on the volume in the system and contributes to the configurational entropy S.
Consequently, S is a function of the volume V , a conventional thermodynamic
dependence. For hard spheres, one can equivalently use the volume Vf ; the excess
volume above the smallest possible volume at absolute zero, instead of V . Treating
Vf as the free volume, we must conclude that S and Vf are equivalent, and that Swill
vanish with Vf : In this case, the above conclusion cannot be justified. However, for
most glass formers, particles have internal structures that will also contribute to the
configurational entropy S. This will most certainly be the case with polymers as glass
formers. Accordingly, in this case, the configurational entropy will not vanish with
the free volume. Moreover, one can treat S and Vf as independent so that the
vanishing of the free volume does not necessarily imply absence of configurational
change. Thus, free volume does not seem to be the primary cause, though it may be
secondary, behind GTas shown recently [36]. This is also consistent with the known
fact that there is no thermodynamic requirement for the volume or the free volume
to decrease with the lowering of the temperature. Since it is the entropy that plays a
role in both cases, this provides some very strong justification for assuming that it is
the entropy that plays the central role in dictating the glass transition. At this point,
we should also mention an interesting work that provides another argument in
terms of temperature being the dominant controlling variable than the volume or
pressure [104].

It is found that the slope dTg=dP is nonzero and finite. This will presumably also
remain true even in the limit r! 0 at TK. None of the discontinuities DCP;DkT and
DaT can vanish at the transition if dTK=dP is to remain nonzero and finite. In other
words, any nonzero discontinuity in one quantity implies that all these quantities
must have nonzero discontinuities simultaneously. Thus, the actual value of the ideal
glass transition temperature TK does not depend onwhether we consider the volume
V , enthalpy H, or entropy S in Figure 10.6, as a singular behavior (nonzero
discontinuity) in any one of these quantities reflects a singular behavior in other
thermodynamic quantities. This can be seen directly from the following thermody-
namic identities:

T
qS
qT

� �
P
¼ qH

qT

� �
P
;

qS
qP

� �
T
¼ 1

T
qH
qP

� �
T
�V

� �
¼ � qV

qT

� �
P
:
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Any discontinuity in ðqH=qTÞP or ðqH=qPÞT is reflected in a discontinuity in
ðqS=qTÞP or ðqV=qTÞP, respectively. This is a very important property of the ideal
glass transition.

10.7
Equilibrium Formulation and Order Parameter

Before we introduce our restricted partition function formalism, we need to review
some salient aspects of the equilibrium statistical mechanics formalism. This will
also help with the clarity and continuity of presentation. We will restrict our
discussion to the canonical ensemble, but the extension to other ensembles is
straightforward and trivial.

10.7.1
Canonical Partition Function

While studying the latticemodels for exact calculations, we will use a discrete version
of the configurational partition function (10.5) in the canonical ensemble:

ZðTÞ �
X

WðEÞexpð�bEÞ; WðEÞ � 1; ð10:27Þ

where the summation is over all possible energies E � E0.
9) Since Z is a sum of

positive terms, the following two principles of equilibrium statistical mechanics
always hold:

. Minimization Principle: The free energy FðTÞ must be minimized as N!1.

. Stability Principle andConcavity: Theheat capacity, which is givenby the square of
fluctuations in the energy, is nonnegative, and FðTÞ and SðEÞ are concave
functions of their arguments.

It should be stressed that the nonnegativity of the heat capacity and the maximi-
zation principle only require WðEÞ � 0 and not WðEÞ � 1: Thus, both principles
remain valid even if the entropy becomes negative,8)which is most certainly the case
with the ideal gas. The principles refer to two independent aspects.9) What we will
see below is that it is the condition WðEÞ � 1 that tends to be violated by the low-
temperature SMSs, when extrapolated to T ¼ 0. There is no such violation for
low-temperature equilibrium states (CR). The latter is related to the absence of any
energy gap for equilibrium states.

9) It is well known that in classical statistical mechanics, the entropy in continuum space can become
negative. This is true of the ideal gas at low temperatures. From the exact solution of the classical Tonks
gas of rods in one dimension, one alsofinds that the entropy becomes negative at high coverage. Thus,
WðEÞ need not always represent the number of configurations, and care is needed to interpretWðEÞ
in all cases.
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10.7.2
Free Energy Branches

We focus on a system with a single transition, the melting transition at T ¼ TM: The
disordered equilibrium liquid EL at and above TM and the ordered crystal CR at and
below TM correspond to different free energy functions fELðTÞ and fCRðTÞ, respec-
tively, from which we can calculate the entropies, and energies per particle. In
equilibrium, each of these quantities have two different branches corresponding to
EL and CR:

f ðTÞ ¼ fELðTÞ; sðTÞ ¼ sELðTÞ; eðTÞ ¼ eELðTÞ; T � TM; ð10:28Þ

f ðTÞ ¼ fCRðTÞ; sðTÞ ¼ sCRðTÞ; eðTÞ ¼ eCRðTÞ; T � TM: ð10:29Þ
The equilibrium entropy or energy has a discontinuity, but the free energy is
continuous at TM : fELðTMÞ ¼ fCRðTMÞ.

10.7.3
Order Parameter and Classification of Microstates

The presence of a melting transition at TM (the inverse of the slope of HH0 in
Figure 10.2)means that EL aboveTM andCR belowTM correspond to different values
of the order parameter r, which is traditionally defined in such a way that r ¼ 0
represents the disordered phase and r 6¼ 0 the ordered phase. Therefore, the use of r
classifies each configuration or microstate into two disjoint classes, to be called
ordered and disordered classes. How this can be done in practice will be taken up in
Sections 10.10 and 10.11, where the classification is carried out explicitly. Here, we
wish to set the formalism for the required classification scheme.

The definition of r depends on the system. For semiflexible polymers, we had
identified it as r � nH�nV. Here, we consider a magnetic system for which the
microstates can be divided into the two disjoint classes corresponding to the value of
the spontaneousmagnetizationr ¼ 0 (ordered) andr 6¼ 0 (disordered).We illustrate
this by considering an Ising model in zero magnetic field for its simplicity. Let
si ¼ �1 be the Ising spin at the ith site of the lattice withN sites, and let the angular
brackets h i denote thermodynamic average with respect to the weight

VðEÞ � WðEÞ expð�bEÞ=Z � 0: ð10:30Þ

Weconsider amicrostate and introduce the average spin over all the sites of the lattice
�s � ð1=NÞPsi; which we use to identify the order parameter r:

r � �sh i ¼
XN
i¼1

sih i=N ¼
X
E

�sVðEÞ; ð10:31Þ

in the limitN!1. Being a density (an intensive quantity), r should be insensitive to
the size. Therefore, we can divide the lattice into several parts, each macroscopically
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large, so that the order parameter can be calculated for each part. For a macroscopic
system, we expect all the parts to have the same value of r.

For any finite N, no matter how large,VðEÞ > 0 for all all energies E < 1. Then,
the onlywayr ¼ 0 canoccur if �s � 0 for each configuration that contributes to (10.31)
not only for the system but also for its various macroscopic parts. This rules out the
possibility, for example, that �s ¼ 0 is due to amixture state of two states �s ¼ þ 1 and
�s ¼ �1 of equal sizes. The rest of the configurations with r ¼ 0 are classified as
ordered. All remaining configurations are classified as disordered. This prescription
allows us to classify configurations into ordered and disordered configurations in an
unambiguous manner.

10.8
Restricted Ensemble

10.8.1
Required Extension in the Energy Gap

We now describe the extension of the restricted ensemble formalism developed by
Penrose [1] to suit our goal. While WordðEÞ certainly exists for E � E0; there is no
guarantee that WdisðEÞ also exists for E � E0. This is abundantly clear from the
entropy for linear polymers in Figure 10.3.Most probably, there is an energy gap for
WdisðEÞ. Otherwise, the energy of the disordered phase at absolute zero would also
beE0 (we assume thatTSdis ! 0 asT ! 02)), the same as that of CR. Thiswouldmost
certainly imply that they would coexist at T ¼ 0. While there is no thermodynamic
argument against it, it does not seem to be the case normally. Usually, the most
stable state atT ¼ 0 is that of a crystal.Moreover, it is an experimental fact [5] that all
glasses have much higher energies compared to their crystalline forms at low
temperatures. Thus, we assume an energy gap (Figure 10.2). In other
words,WdisðEÞ � 1 for E � EK. We find it extremely useful to extendWdisðEÞ in the
gap. All we need to ensure is that the resulting entropy is continuous and concave
over the entire range E � E0. We denote this extended entropy function by S
disðEÞ
and the multiplicity by W


disðEÞ ¼ exp½S
disðEÞ�; E � E0: The function S
disðEÞ is
identical to SdisðEÞ over E � EK.

10.8.2
Restricted and Extended Restricted PF�s

We now introduce the following restricted ensemble PFs:

ZordðTÞ �
X
E�E0

WordðEÞexpð�bEÞ; Z

disðTÞ �

X
E�E0

W

disðEÞexpð�bEÞ;

ð10:32Þ
ZdisðTÞ �

X
E�EK

WdisðEÞexpð�bEÞ; ð10:33Þ

and the corresponding free energies per particle fordðTÞ; f 
disðTÞ; and fdisðTÞ;which are
defined for all temperatures T � 0.
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Remark
The following remark is important to understand the relationship between Z


disðTÞ
and ZdisðTÞ. For temperatures so that the average energies �E



disðTÞ and �EdisðTÞ are

greater than EK; both partition functions are determined by the microstates of
energies above EK; whereW


disðEÞ ¼ WdisðEÞ. Hence, for T � TK; f 
disðTÞ and fdisðTÞ
are the same. They differ only below TK. Thus,

fdisðTÞ ¼ f 
disðTÞ; T � TK: ð10:34Þ
As long as WdisðEÞ; W


disðEÞ; and WordðEÞ are nonnegative (�0), the restricted
PF�s are the sumof positive terms. Therefore, the corresponding free energies satisfy
the two principles in Section 10.7.1, so that there will never be any unstable state.

It is clear that the global free energy minimization for true equilibrium requires that

f ðTÞ ¼ fdisðTÞ ¼ f 
disðTÞ; T � TM; ð10:35Þ

f ðTÞ ¼ fordðTÞ; T � TM: ð10:36Þ
The switch over from fdisðTÞ to fordðTÞ at TM makes f ðTÞsingular. The singularity

signals the (melting) transition. But it is not present in fordðTÞ or fdisðTÞ at TM and
allows us to continue these free energies across TM.

10.8.3
Metastability Prescription

A prescription to describe metastability using the above formalism can now be
formulated.We are only interested in SCL and its extension. Accordingly, we abandon
the above global free energy minimization principle, and use fdisðTÞ and f 
disðTÞ to
give the SMS free energy below TM: From these free energies, we can obtain the
entropy and energy per particle for the supercooled liquid. As said above, SMSs
cannot be unstable in the restricted ensembles. Thus, either they terminate in a
singularity, or they extrapolate to T ¼ 0.

It is easy to calculate the order parameter r for T < TM for the �disordered phase�
by using the weights WdisðEÞ or W


disðEÞ in (10.30) to check if we have properly
identified the set of disordered microstates. If properly identified, the phases
represented by fdisðTÞ and f 
disðTÞ below TM will correspond to a disordered state
(r ¼ 0). This is our required description of SMSs to describe SCL below TM:We still
have to checkwhich one of fdisðTÞ and f 
disðTÞwill describe the correct physics of SCLs
and glasses.

10.9
Three Useful Theorems

We now prove some important theorems for our gap model [105, 106]; the proofs
themselves are quite general and do not require any detailed knowledge of the nature
of the system except that it should have a gap.
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Theorem 10.1
Due to the energy gap ðEK > E0Þ; the free energy FdisðTeqÞ at O0 equals the free energy
FordðT ¼ 0Þ ¼ E0 at O, where Teq > 0 is the inverse of the slope of the line OO0 touching
the entropy function SdisðEÞ; see point O0 in Figure 10.2 and the inset

The proof is very simple. The slope 1=Teq of OO0 is given by

1=Teq ¼ SdisðEO 0 Þ=ðEO0�E0Þ;

where EO0 is the energy at O0. Thus,

E0 ¼ EO0�TeqSdisðEO0 Þ:
Since the slope of SdisðEO0 Þ at EO0 from (10.6) is 1=Teq; the right side represents the
free energy FdisðTeqÞ of the SMS at O0 The left side represents the free energy of CR at
T ¼ 0: This proves the theorem.

It should be stressed that the proof does not use the vanishing ofSdisðEKÞ. Thus, the
equalityFdisðTeqÞ ¼ E0 is also valid if SdisðEKÞ > 0:The proof also does not depend on
the entropy slope at EK: From the concavity of SdisðEÞ; it should be obvious that slope
at EK is larger than 1=Teq.

Theorem 10.2
The free energy F


dis or Ford of all stable phases, mathematically continued or not, are equal
at T ¼ 0 in that F


dis=E0 ! 1 and Ford=E0 ! 1, provided they satisfy Nernst–Planck
condition TS
dis ! 0 or TSord ! 0 as T ! 0: Their entropies, however, may be different.

The proof will require considering finite N and then taking the thermodynamic
limit later. This allows us to treat the multiplicity of each microstate as bounded.
Let us assume for simplicity that WdisðEKÞ ¼ 1; which makes 0 < W


disðEÞ < 1.
We factor out the term corresponding to E ¼ E0 from the sum in Z


disðTÞ, and
express

Z

disðTÞ ¼ W


disðE0Þe�bE0 ½1þZ0
aðTÞ�; ð10:37Þ

where we have introduced a new quantity

Z0
disðTÞ �

X
E 6¼E0

½W

disðEÞ=W


disðE0Þ�e�bðE�E0Þ: ð10:38Þ

Since E�E0 > 0; we note that e�bðE�E0Þ ! 0 in each summand in Z0
disðTÞ as T ! 0:

For finite N, W

disðEÞ is a bounded quantity, and so is the ratio W


disðEÞ=W

disðE0Þ.

Hence, each term in the sum in (10.38) vanishes, and so does Z0
disðTÞ as T ! 0:We

finally have

Z

disðTÞ!W


disðE0Þe�bE0 as T ! 0;

so that F

disðTÞ!E0�TS
disðE0Þ as T ! 0; which follows from the boundedness of

W

disðE0Þ > 0. Hence,

F

dis=E0 ! 1 as T ! 0:
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As the derivation does not depend on the energy gap, it is just as valid for ZordðTÞ so
that

Ford=E0 ! 1 as T ! 0:

We can now take the limitN!1 in both caseswithout affecting the conclusion. The
possibility that the limit is different (indeed, higher) from 1 for F


dis=E0 is ruled out
because of the Nernst–Planck postulate.2) This proves the theorem.

In case S
disðEÞ has some singular behavior at E0 in the limit N!1; we can
limit the extension of W


disðEÞ to some energy E

0 > E0 to avoid the singularity, and

define Z

disðTÞ by restricting the sum in (10.32) to E � E


0 . In this case, the
temperature Teq in Theorem 10.1 will be defined by the slope of the tangent line
drawn not from E ¼ E0; point O, but from E ¼ E


0 : Also, following the same step
as above will show that

F

dis=E



0 ! 1 as T ! 0;

with a slight modification in the statement of the theorem. Indeed, one can extend
W


disðEÞ to any energy E

0 > E0 in the gap even if there is no singularity encountered

at T ¼ 0. This is because the actual form of the extension is not relevant as
Theorem (10.3) shows.

Theorem 10.3 (Energy Gap Theorem)
It follows from the energy gap that TK is positive.

The proof uses the above results and is quite simple. We apply the above theorems
to the communal free energy in (10.9). We will use the same notation as above so that
F

disðTeqÞ denotes the extended communal free energy and so on. This should cause

no confusion. From the concavity ofF

disðTÞ; seeOKCD in the inset in Figure 10.2, it is

obvious that since F

disðTeqÞ ¼ E0 ðor E


0Þ ¼ F

disð0Þ;F


disðTÞ must have a maximum
between T ¼ 0 and T ¼ Teq > 0: Consequently, the location of the maximummust
be at a positive temperature, where the communal entropy vanishes. This proves the
theorem.

It follows from this theorem that as the choice of E

0 in the gap can be arbitrary

(see the comments above), the actual form of the communal free energy F

disðTÞ

below TK is irrelevant. This then proves that the actual form of S
disðEÞ below EK is
irrelevant as long as it remains continuous and concave. But the extension allows
us to draw an important conclusion about the presence of a maximum in F


disðTÞ
at TK > 0. From (10.6), it follows that TK > 0 and finite is equivalent to saying that
the slope of S
disðEÞ at EK is finite and positive. Indeed, the possibility of the
extension of SdisðEÞ in the gap requires the slope at EK to be finite, which we
summarize below:

Remark
Possibility of extending SdisðEÞ in the gap is equivalent to having its slope at EK

finite.
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10.10
1D Polymer Model: Exact Calculation

10.10.1
Polymer Model and Classification of Configurations

We relate the high-temperature expansion of a one-dimensional m-component axis
spin model to a polymer problem, as has been discussed elsewhere by us [50, 107,
108]. Such a connection between polymers and magnetic systems was first estab-
lished by deGennes [80, 109], which also provides a motivation to treat m as a real
variable rather than an integer.Wewill be interested in 1 > m > 0, though at the end
we will also consider m ¼ 0. For m ¼ 1; the axis model reduces to an Ising model,
while form! 0, it reduces to themodel of linear chains with no loops [108, 109]. The
spinmodel containsm-component spins Si located at the site i ¼ 1; 2; . . . ;N of a one-
dimensional lattice of N sites, with periodic boundary condition (SNþ 1 same as S1
and i ¼ N þ 1 same as i ¼ N). We index the lattice bonds by k ¼ 1; 2; . . . ;N; here k
denotes the lattice bond between sites k and kþ 1. Each spin can point along or
against the axes (labeled 1 � a � m) of anm-dimensional spin space and is of lengthffiffiffiffi
m

p
: S ¼ ð0; 0; . . . ;� ffiffiffiffi

m
p

; 0; . . . ; 0Þ. The spins interact via a ferromagnetic nearest-
neighbor interaction energy (�J). The energy of interaction is given by

E ¼ �J
X

i¼1;:::;N

Si � Siþ 1:

We follow [50, 107, 108] and consider the high-temperature expansion of the PF

ZðK ;mÞ � ð1=2mÞN
X

expð�bEÞ ¼ ð1=2mÞN
XY

k

expðKxkÞ;

where K ¼ bJ and xk � Si � Siþ 1. The sum is over all ð2mÞN orientations of the N
spins. We use the expansion ey ¼ 1þ yþ y2=2!þ y3=3!þ � � � for each expðK xkÞ and
multiply them for all lattice bonds k. Each term in the product represents a branched
polymer diagram [50] whose contribution to the PF is obtained by summing over all
spin orientations. Lattice sites in a polymer represent monomers, and those not
covered by polymers represent solvent. The details for the model are found in
Refs [107, 108]. We quote the result. The following must hold for a diagram to
contribute to ZðK;mÞ. A bond originating from ym is between two neighboring sites
and represents a multiple bond of multiplicity m ¼ 1; 2; 3; . . . . Each bond of multi-
plicity m gives rise to m chemical bonds and contributes Km=m!. The power v of any
component Sa of a spin at a site, also called the valence of the site (the number of
chemical bonds attached to it), must be even (¼ 2; 4; 6; . . .) and contributemv=2 to the
PF. We set v ¼ 0 for a site occupied by a solvent. In the following, we only speak of
bonds (m � 1) between monomers, as there are no bonds attached to a solvent. If
there is no bond between two neighboring monomers, we treat them as discon-
nected. There are no interactions between the solvents, and between a solvent and a
monomer. As we will see, the model exhibits a first-order transition at T ¼ TM. We
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take the ordered phase at low temperatures to represent CR (even though there is no
real crystalline symmetry), and the disordered phase at high temperatures to
represent EL, since the two phases turn out to correspond to distinct symmetries.4)

Amicrostate is determined by a polymer diagram specified uniquely by the set of
multiplicity mkf g of the bonds. Each diagram can be decomposed into disjoint parts
Cr ; r ¼ 1; 2; . . ., in each ofwhich themonomers are sequentially connected. The spin
component a must be the same for all spins in a disjoint diagram. Therefore, each
disjoint diagramadditionally contributes 2m due to the sumovera. Let Cj j denote the
size of a component C; which is nothing but the number of monomers in it. If each
component has a size strictly less thanN, then themultiplicity mk of each of its bonds
must be even. On the other hand, if Cj j ¼ N; which represents a percolating
component, then the multiplicity of each bond in it must be either simultaneously
all even (¼ 2; 4; 6; . . .) or all odd (¼ 1; 3; 5; . . .).

A bond of multiplicity mk gives rise to loops, whose number is given by lk � mk�1:
Let vi denote the valence at a site. The number of chemical bondsB and the number of
loops L are given by

B �
X
k

mk ¼
X
i

ðvi=2Þ; L �
X
k

lk ¼ B�n; ð10:39Þ

where n represents the number of bonds. The PF is given by

ZðK ;mÞ ¼
X

microstates

KBmL=ð2n
Y
k

mk!Þ ¼
X
B;L

WðB; LÞKBmL: ð10:40Þ

We see that the activity of each loop ism; and the activity of each chemical bond is K .
ThemultiplicityWðB; LÞ determines the polymer system entropy. We can treat ð�BÞ
as analogous to the energy E so that we can consider the entropy as a function of
E ¼ �B.

The following will be established. At high temperatures, we have microstates in
which each component is finite in size; hence, the multiplicity of each bond is even.
This condition then uniquely defines disordered microstates. There are two distinct
percolating components ð Cj j ¼ NÞ:One of themhas all bondmultiplicities even.We
will treat this to represent a disordered microstate for the obvious reason. The other
percolating component has all bond multiplicities odd. This is obviously a compo-
nent with a different �symmetry,� andwewill see below that it represents the ordered
state. The possible odd multiplicities of its bonds uniquely determine ordered
microstates. The sets of disordered and ordered microstates are obviously disjoint,
which ensures that there will be no stable nuclei in themetastable state if it occurs, as
discussed in Section 10.1.6, and distinguishes our approach from the PL approach.
Because of distinct symmetries of the two phases, our model genuinely represents a
�melting transition,� and not a liquid–gas transition in which the symmetry remains
the same in both equilibrium phases.

One can also consider the above model with the free boundary condition. In this
case, we define the ordered microstates as the microstates associated with the
percolating component ( Cj j ¼ N), except that the valence of the monomers at each
of the two end sites of the lattice is odd, while all interior monomers have even
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valences. This ensures that each bond has an odd multiplicity, as above. The
disordered microstates have even bond multiplicities.

10.10.2
Exact Calculation

We exactly evaluate the PF using the transfer matrix method [110], a standard
technique for one-dimensional problems, and use the approach of Newman and
Schulman [49] to identify SMSs. In terms of the transfer matrix T̂ � expðKS � S0Þ
between two neighboring spins,

ZðK ;mÞ � ð1=2mÞNTr T̂N
: ð10:41Þ

The transfer matrix has the eigenvalues

ldis ¼ uþ 2ðm�1Þ; lord ¼ v; l ¼ u�2; ð10:42Þ
that are onefold,m-fold, and (m�1)-fold, respectively [110]. Here we have introduced

x � expðKmÞ; u � xþ 1=x; v � x�1=x:

The temperature T of the spin system does not represent the temperature (TP) in
the polymer problem but its inverse is related to the polymer activityK [108, 109]. We
will see below that small x or K corresponds to high (spin) temperatures where the
disordered phase is present, and large x orK corresponds to low (spin) temperatures
where the ordered and possible SMS phases are present. Thus, decreasing T
amounts to going toward the region where the ordered and metastable disordered
phases are present. Therefore, we will continue to use T of the spin system, even
though it is not the temperature TP of the polymer system. Because of this, we will
study v; the limiting value ð1=NÞ ln ZðK;mÞ as N!1, which does not require TP.

The eigenvalue ldis is dominant at high temperatures for allm � 0 and describes
the disordered phase. Its eigenvector is�

xdisj ¼
X
i

ij=
ffiffiffiffiffiffiffi
2m

p
;

D

where 2kjh (or 2kþ 1jh ) denotes the single spin state in which the spin points along
the positive (or negative) kth spin axis. It has the correct symmetry to give zero
magnetization (r ¼ 0). For m � 1;ldis remains the dominant eigenvalue at all
temperatures T � 0. For 0 � m < 1; the situation changes and lord becomes
dominant at temperatures T < Tc; or

x � xc ¼ 1=ð1�mÞ
where Tc is determined by the critical value xc � expð Jm=TcÞ; there is a phase
transition at Tc. The corresponding eigenvectors are given by the combinations�

x
ðkþ 1Þ
ord

���� ¼
�
2k

�����h2kþ 1

����
� �

=
ffiffiffi
2

p
; k ¼ 0; 2; ::;m�1;
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which are orthogonal to xdisjh , as can be easily checked. These eigenvectors have the
symmetry to ensure r 6¼ 0. The remaining eigenvalue l is ðm�1Þ-fold degenerate
with eigenvectors

xðkþ 1Þ
���� ¼

�
2k

����þ
�
2kþ 1

����� h2kþ 2

�����h2kþ 3

����
� �� �

=
ffiffiffi
4

p
; k ¼ 0; 2; . . . ;m�2:

�

Form > 0; this eigenvalue is never dominant. Form! 0; it becomes degeneratewith
ldis: Since the degeneracy plays no role in the thermodynamic limit, there is no need
to consider this eigenvalue separately for m � 0.

We now consider the limit N!1: In this limit, we only need to consider the
dominant eigenvalue for a given x: The eigenvalue of the transfer matrix can be
viewed as the contribution from a lattice bond. Let us first consider x < xc;where the
dominant eigenvalue is ldis: We rewrite it as follows:

ldis ¼ 1þ 1
m

X1
k¼1

ðmKÞ2k
ð2kÞ! :

In this form, it is immediately clear that the first term represents the absence of a
polymer bond, while the sum represents the possibility of the presence of a polymer
bond of even multiplicity (2; 4; 6; . . .). Expanding lNdis; it is clear that the disordered
microstates contain some empty sites, and the rest of the lattice bonds are covered by
polymer bonds, each of which must have only even multiplicity. On the other hand,
rewriting lord as

lord ¼ 1
m

X1
k¼0

ðmKÞ2kþ 1

ð2kþ 1Þ! ;

we immediately conclude that it is not possible to have any lattice bond empty. All
lattice bonds must be covered and that each polymer bond must have an odd
multiplicity (1; 3; 5; . . .). There are no solvent particles. This is consistent with the
earlier discussion. One must still have even valences at all other points connected by
polymerbonds, regardless ofwhetherwe consider disorderedor orderedmicrostates.

We again consider the limit N!1: The free energy per site of the high-
temperature equilibrium phase is f 
disðTÞ � �TP ln ðldis=2mÞ: It exists at all tem-
peratures down to T ¼ 0; even though the equilibrium osmotic pressure has a
singularity at xc: The singularity at xc appears only when we consider equilibrium
free energy, which requires a switch over from the disordered branch to the ordered
branch of the free energy, as discussed in Section 10.8. Similarly,
fordðTÞ � �TP ln ðlord=2mÞ related to the low-temperature equilibrium phase also
exists all the way down to T ¼ 0: To calculate the entropy density, we proceed as
follows. The adimensional free energy v represents the osmotic pressure of the
polymer system [36, 111]. The bond and loop densities are given by

wB � qv=q ln K ; wL � qv=q lnm; ð10:43Þ

which are needed to calculate the entropy per site of the polymer system
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sðPÞ ¼ v�wB ln K�wL lnm;

the superscript is to indicate that it is the polymer system entropy, and is different
from the spin system entropy sðSÞ ¼ qTv=qT.

In the following, we will be only interested in the polymer entropy. The proper
stability requirements for the polymer system are

ðqwB=q ln KÞ � 0; ðqwL=q lnmÞ � 0; ð10:44Þ
as can easily be seen from (10.41), and must be satisfied even for SMS. They replace
the positivity of the heat capacity of the spin system, which no longer represents a
physical spin system for 0 � m < 1 [107]. It is easy to see from the definition of sðPÞdis
that ðqsðPÞdis=qTÞm need not be positive, even if the conditions in (10.44) are satisfied.
We note from lord thatwB�wL ¼ 1; so the number densitywn � wB�wL; see (10.39),
is wn ¼ 1. This means that all lattice sites are covered by the percolating polymer in
the ordered state, as discussed above. Let us compute v as K!1ðT ! 0Þ for ldis
and lord. From (10.43), we see that wB !mK for both states as T ! 0: Thus, using
v ¼ sðPÞ þwB ln K þwL lnm; we have

vdisðTÞ=vordðTÞ! 1 as T ! 0: ð10:45Þ
This means that if the eigenvalue ldis is taken to represent the stationary metastable
phase above xc, its osmotic pressure must become equal to that of the equilibrium
phase (described by the eigenvalue lord) at absolute zero. This is in conformity with
Theorem 10.2 [105]. We take vdisðTÞ to represent the SMS osmotic pressure below
Tc: We have also checked that TsðSÞdis ! 0; as T ! 0.

We will considerm ¼ 0:7 and J ¼ 1 below for numerical results. With themelting
transition at TM ffi 0:581; the EL entropy sðPÞEL ffi 0:357 and the entropy discontinuity
DsðPÞ ffi 0:214: Thus, there is a latent heat at the transition at xc. Let us consider the
SMS osmotic pressure vdisðTÞ below TM: It is easily checked that the above stability
conditions in (10.44) are always satisfied in both phases; see, for example, the
behavior of wB;dis in Figure 10.9 for the disordered phase. We also show the number
density for the disordered phase. The SCL entropy sðPÞdis becomes negative below
TK ffi 0:385; a temperature below TM ffi 0:581: We can use the negative of the bond
density as ameasure of the energy. AtTK;wB;dis ’ 2:716;whilewB;ord !1 at absolute
zero. This establishes an energy gap. We have also plotted the excess entropy
DsðPÞex � sðPÞdis�sðPÞord in Figure 10.9. We note that it also becomes negative below
T ffi 0:338; close to the temperature where sðPÞdis becomes negative. It has a minimum
at a lower temperature, and eventually vanishes as T ! 0; and the entropies of both
phases become the same.

Wenowmake an important observation. Asm decreases (below 1), bothTK andTM

(TK < TMÞ move down toward zero simultaneously. As m! 0; the equilibrium
ordered phase corresponding to lord disappear completely, and the disordered phase
corresponding to ldis becomes the equilibrium phase. There is no transition to any
other state. Thus, there is no metastability anymore.

The above calculation for a model with short-range interactions clearly shows that
there is no singularity in ldis orvdisðTÞ atTM, even though there is a phase transition.
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Similarly, there is no singularity in lord or vordðTÞ at TM: Thus, the thermodynamic
singularity in the equilibrium free energy does not necessarily create a singularity in
vdisðTÞ or vordðTÞ at TM; as was discussed. The existence of a singularity at some
other temperature is a different issue with which we are not concerned here.

10.11
Glass Transition in a Binary Mixture

Let us turn to the cell representations in Figure 10.8, where the empty and filled
circles represent two kinds of particles A and B in a binary mixture. As we are only
interested in the communal entropy, the possibility of vibrations within each cell is
not relevant for our consideration. We are only interested in the average positions of
particles in each cell. The average position can be used to represent sites of a lattice.
Each site is occupied by a particle A or B. No cell is empty. Instead of considering a
random and a regular lattice to represent (a) and (b) in Figure 10.8, we further
simplify the situation and consider a regular lattice of a fixed coordination number.
Despite this, disordered states still occur and are obtained by random placements of
particles on the regular lattice. We now consider a simple lattice model of an
incompressible (no empty sites) binary mixture of A and B, to be represented by an
Ising spin S. The two spin states (þ 1 or up) and (�1 or down) represent A and B,
respectively. As we are not interested in their phase separation, but in the possibility
of a glass transition, we assume that their mutual interaction is attractive. In
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Figure 10.9 The bond, number, and entropy
densities for the disordered phase. The bond
density is a monotonic function of T, so that the
stability is not violated. The excess entropy
shows that the entropy of the disordered

metastable phase becomes less than that of the
ordered phase at low temperatures. The entropy
also becomes negative at low temperatures
before the excess entropy becomes negative.
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addition, we are interested in ordered and disordered phases to have distinct
symmetries to give rise to the conventional supercooling. We will, therefore, use
an antiferromagnetic (AF) Ising model in zero magnetic field with both two-spin
( J > 0) and three-spin interactions ( J0 6¼ 0) to make the model slightly more
complex and interesting. As the model cannot be solved exactly, we consider a
Husimi cactus made of squares, on which the model can be solved exactly [15]. We
consider the simplest cactus shown in Figure 10.10 in which only two squares meet
at a site; they cannot share a lattice bond. The method is easily extended to consider
more than two squares meeting at a site. The squares are connected so that there are
no closed loops except those formed by the squares. The cactus can be thought as an
approximation of a square lattice, so that the exact Husimi cactus solution can be
thought of as an approximate solution of the square lattice model. However, we can
also think of the solution as the exact solution on a lattice, although artificial. The
exactness ensures that stability will always be satisfied. There is a sublattice structure
at low temperatures caused by the antiferromagnetic interaction: particles of one
species are found on one of the two sublattices. We identify this ordered structure as
a crystal. The interaction energy is

E ¼ J
X

SS0 þ J0
X

SS0S00: ð10:46Þ

The first sum is over nearest-neighbor spin pairs and the second over neighboring
spin triplets within each square. In the absence of the three-spin coupling, the two-
spin coupling gives rise to an antiferromagnetic ordering at low temperatures. For
J0 > �J; the AF ordering remains the preferred ordering, while for J0 < �J; the
ferromagnetic ordering is preferred. Therefore, we only consider J0 > �J and set
J ¼ 1 to set the temperature scale.
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Figure 10.10 A small portion of a recursive Husimi cactus with two squares meeting at each sites.
The sites of the squares are labeled as shown, with the site index increasing as we move away from
the origin m ¼ 0.
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The model is solved recursively, as has been described elsewhere [15]. Sites are
labeled by an indexm, which increases sequentially outward fromm ¼ 0; as shown in
Figure 10.10. We introduce partial PFs Zmð"Þ and Zmð#Þ; depending on the states of
the spin at themth level. It represents the contribution of the part of the cactus above
that level to the total PF. We then introduce the ratio

xm � Zmð"Þ=½Zmð"ÞþZmð#Þ�; ð10:47Þ
which satisfies the recursion relation (RR):

xm � f ðxmþ 1; xmþ 2; vÞ=½f ðxmþ 1; xmþ 2; vÞþ f ðymþ 1; ymþ 2; 1=vÞ�; ð10:48Þ
where

f ðx; x0; vÞ � x2x0=u4v4 þ 2xx0yv2 þ x2yv2 þ u4x0y2 þ 2xyy0 þ y2y0=v2; ð10:49Þ
with

u � eb; v � ebJ
0
; y � 1�x; y0 � 1�x0:

There are two kinds of fix point solutions of the RR that describe the bulk
behavior [15]. In the 1-cycle solution, the fix point solution becomes independent
of the index m as we move toward the origin m ¼ 0 on an infinite cactus, and is
represented by x
: For the current problem, it is given by x
 ¼ 1=2, as can be checked
explicitlyby the aboveRR in (10.48). It is obvious that it exists at all temperatures. There
is no singularity in this fix point solution at any temperature. This solution corre-
sponds to thedisorderedparamagnetic phase at high temperatures and theSMSbelow
the melting transition to be discussed below. The other fix point solution is a 2-cycle
solution, which has been found and discussed earlier in the semiflexible polymer
problem [36, 37, 44, 46–48], the dimer model [37], and the star and dendrimer
solutions [48]. The fix point solution alternates between two values x
1 and x
2 on two
successive levels. At T ¼ 0; this solution is given either by x
1 ¼ 1 and x
2 ¼ 0; or by
x
1 ¼ 0 and x
2 ¼ 1: The system picks one of these as the solution. At and near T ¼ 0;
this solution corresponds to the low-temperature AFordered phase, which represents
the CR and its excitation at equal occupation, and can be obtained numerically. The
1-cycle free energy is calculated by the general method proposed in Ref. [15], and the
2-cycle free energy is calculated by the method given in Refs [36, 37, 44, 46–48].

We now discuss numerical results. We take J0 ¼ 0:01. The ground-state energy
(perfect crystal) per particle is given by e0 ¼ �2J: We shift all free energies and
energies by this value so that they have the same commonvalue (¼ 0) at absolute zero.
The free energy F1 ½¼ f 
disðTÞ�e0� and entropy S1 ½¼ s
disðTÞ� associated with the 1-
cycle FP solution are shown by the continuous and the long dash curves in
Figure 10.11. The free energy F2 ½¼ fordðTÞ�e0� and entropy S2 ½¼ sordðTÞ� associated
with the 2-cycle FP solution are shown by the dotted and the dash–dot curves. The
energy E1ðTÞ ¼ eðTÞ�e0 and E2ðTÞ ¼ eðTÞ�e0 as a function of T ; and the entropy
S1ðEÞ andS2ðEÞ as a function of the shifted energyE for the twofix point solutions are
shown in Figure 10.12. The shifted F and E represent the contributions of excitations
with respect to the ground-state energy e0, so that they vanish at T ¼ 0; as is clearly
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seen in Figures 10.11 and 10.12. The transition temperature is found to be
TM ffi 2:7706. Figure 10.11 shows that F1 crosses zero and becomes positive below
T ¼ Teq ’ 2:200 but again becomes zero (not shown here, but we have checked it) as
T ! 0:Thus,F1 possesses amaximumat an intermediate temperature (see point K in
Figure 10.11) at T ¼ TK ’ 1:1316; so that S1 vanishes there. Below TK, the contin-
uation of F1 and S1, shown by their thin portions in Figures 10.11 and 10.12, continue
to satisfy the stability condition (remaining concave). Despite this, they have to be
discarded as unphysical due to negative entropy. Below TK, we must extend the
metastable state (described by F1 and S1 between TK and TMÞ by a glassy phase of
a constant free energy F ¼ FIG ¼ EK�e0 ’ 0:301 of the ideal glass (EK denoting the
energy per particle at IGT in this section only), see the short dash horizontal line in
Figure 10.11, and S ¼ SG ¼ 0: The 1-cycle energy at K is E1K ¼ FIG due to the
presence of a large amount of excitations in the IG. The 2-cycle gives the equilibrium
crystal at T � TM;with a nonnegative entropy S2:As the CR entropy only vanishes at
absolute zero, it is never confined to a single basin except at absolute zero. The energy
E2K of theCR atTK is smaller thanE1K of the IG,which is consistent with the previous
discussion that the glass is a highly defective CR.

AtT ¼ 0, s
disðTÞ ’ �0:3466;while the CR entropy is zero, as expected. Thus, both
entropies satisfy Nernst–Planck postulate.2) We also observe that f 
disðTÞ and fordðTÞ
becomeidentical (¼ �2J) at absolute zero inaccordancewith theTheorem10.2.Thus,
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Figure 10.11 The free energies and entropies
from the two FP solutions. The entropy crisis
occurs at Tk, below which S
1 (dashed cyan)
becomes negative, but the corresponding free
energy F
1 (cyan) remains concave despite an
unphysical communal entropy. This explains
their labeling as unphysical in the figure. The

disordered state is indicated by cyan and
ordered state by red; continuous curves show
the free energies and the discontinuous curves
show the entropies. The ideal glass is
represented by the dashed green horizontal line,
which has a constant free energy FIG¼EK and
replaces F
1 below TK.
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the free energy diagram we obtain in this case is similar to that in the inset in
Figure 10.2.

10.12
Ideal Glass Singularity and the Order Parameter

10.12.1
Singular Free Energy

Wewill now show that the formof SdisðEÞ in the gap has no relevance to the physics of
the problem. Therefore, the entropy extension over the gap can be arbitrary as long as
S
dis (E) is continuous and concave.We consider quantities associatedwith communal
entropies in this section, but will not show �comm� for simplicity of notation. The
argument can be easily extended to configurational entropies. We compare ZdisðTÞ
and Z


disðTÞ: They only differ in terms containing E < EK: For E � EK; they use the
same function SdisðEÞ: Thus, for T � TK or (EdisðTÞ � EK), the two PFs are identical.
Consider T ¼ TK and write

ZdisðTKÞ ¼ WdisðEKÞe�bKEK 1þ
X
E>EK

WdisðEÞ
WdisðEKÞ e

�bKDE

" #
;

E2(T)

E1(T)

S1(E)

S2(E)

1: disordered
2: ordered
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Figure 10.12 S� E� T relationship for the two FP solutions. The excitations near T¼ 0 in themare
very different. The excitations in the 1-cycle state near Tk are strongly interacting as opposed to those
near T¼ 0.
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whereDE ¼ E�EK > 0; and bK ¼ 1=TK: In the thermodynamic limit, the right-hand
side approaches WdisðEKÞe�bEK ; so that

WdisðEÞ
WdisðEKÞ e

�bKDE ! 0 for E > EK: ð10:50Þ

We consider T < TKand

ZdisðTÞ ¼ WdisðEKÞe�bEK 1þ
X
E>EK

WdisðEÞ
WdisðEKÞ e

�bDE

" #
:

Expressing b ¼ bK þDb in e�bDE ; where Db > 0; we observe that the summand in
the above equation vanishes on account of (10.50). Thus, ZdisðTÞ reduces to the
prefactor in the above equation, and we finally have

FdisðTÞ � �T ln ZdisðTÞ ¼ �T lnWdisðEKÞe�bEK

¼ ðT=TKÞFdisðTKÞþ ð1�T=TKÞEK:

Using the fact that FdisðTKÞ ¼ EK�TKSdisðTKÞ ¼ EK; the above equation reduces to

FdisðTÞ � EK for T � TK: ð10:51Þ
This is the free energy of the ideal glass below TK shown by FIG in Fig. 10.11, which
makes FdisðTÞ singular at TK. On the other hand, F


disðTÞ behaves very differently
below TK, as the calculations show. However, the correct physics is described by
FdisðTÞ and not F


disðTÞ below TK.

10.12.2
Order Parameter

We now proceed to identify an order parameter for IGT. For this, we turn to the
melting of crystals into liquids is similar (but not identical) to the �melting� of
glasses into SCLs. According to the Lindemann criterion of melting [112], a crystal
melts when the mean square displacement �r2 becomes so large that the atoms start
to get into each other�s cells to the point that they begin to diffuse over a large
distance, and the melting initiates. If a denotes the interatomic distance in the
crystal, then the melting proceeds when �r2 ¼ cLa2; where cL is Lindemann�s
constant and is expected to be the same for crystals with similar structure. It
should, however, be pointed out that the criterion is expected to be valid only for
those systems that have simple crystalline structures. For particles obeying Lennard-
Jones potential, Jin et al. [113] have tested the validity of the criterion by considering
6912 Lennard-Jones particles. The value of cL is estimated to be ’ 0:12–0:13 at
equilibrium melting, as expected. As the temperature is raised toward the melting
temperature, clusters of correlated particles of various sizes are formed. If we now
treat a glass as a defective crystal [44] with a disordered cell representation, then it is
not hard to imagine that a similar criterion can be applied to the �melting� of a glass
into its SCL state. The relevance of �r2 for glass transition has been discussed in the
literature [114]. We will pursue this analogy a bit further below.
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The so-called melting of an ideal glass into a SCL is nothing but a localization–
delocalization transition, as we have discussed in Section 10.4. As the temperature is
raised, the IGbecomes deconfined and begins to probe other basins corresponding to
different cell representations, thereby giving rise to the a relaxation. We can make
this process somewhat quantitative by considering a particle at some average position
r0 within its cell. We average the square of its displacement. At low temperatures
where it is confined to its cell, the particle does not diffuse away from the original
point r0; it merely undergoes vibrations within its cell. Let us introduce a certain
length b characterizing the average size of the cell. Then, �r2 � cGb; with cG < 1 a
parameter that depends on the system under investigation, will characterize a �solid-
like� atom (S) in that the particles satisfying this constraint are only allowed to vibrate
about their equilibrium position r0 within their cells. This will be the situation in the
IG, inwhich the particles do not diffuse out of their cells. On the other hand, �r2 > cGb
will describe a �liquid-like� atom (L) in that the particles escape the neighborhood of
r0 by diffusion andwill give rise to a collectivemotion. Thus,we can classify the atoms
as L or S, thereby reducing the system to a binary mixture of L and S particles. This
scenario was conjectured by us in Ref. [43] as the possible origin of the b relaxation in
SCL. This is the only relaxation in IG in which there are no L-type particles, whereas
there are many L-type particles in the SCL state contributing to the a relaxation.
Hence, we can use the density nL of L-type particles as the order parameter r to
describe IGT: it is nonzero in SCL and gradually vanishes at TK as the temperature is
reduced; it remains zero in the IG state. We can use the proximity of two L-type
particles to determine if they are �connected� to form a cluster. These clusters can be
classified as liquid-like clusters (formed by L particles). (One can similarly define a
solid-like cluster). As the temperature is reduced, the liquid-like clusters not only
disappear but their sizes also become smaller until finally they completely disappear
at TK. At all higher temperatures, these clusters themselves will be continuously
changing in time, but their average densities will remain constant at fixed T ;P,
similar to what happens in physical gelation [7, 51, 80]. Above some higher
temperature, there will be a percolating L-type cluster. Therefore, we are dealing
with the phenomenon of percolation. A picture similar but not identical to this has
been developed byNovikov et al. [115]. Another picture involving two kinds of regions
very similar to the above has been proposed by deGennes [116].

10.12.3
Relevance for Experiments

So far, we havemainly focused on SMSs,which cannever be observed in experiments
or in simulation because both are conducted under a finite time limit, whereas SMSs
require an infinite time limit, at least near the glassy region. Therefore, it is important
to understand the experimental relevance of the above singularity and of the gap
model. As the singularity appears in SMSs, there is no way to observe it in any
experimental setup or in simulation. In particular, there will be no way to ensure that
the system is confined to a single cell representation or a potential energy basin.
Doing this will require t!1. Thus, in reality, the system will always probe many
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basins in any realistic setup.Accordingly, the communal entropywill never go to zero.
In fact, it is well known [43] that there is considerable communal contribution to the
entropy at Tg:A careful analysis of calorimetric data showed that, on an average, 70%
of the excess entropy at Tg survives at the lowest temperature (where data are
available). This fraction can be considered as communal in nature at Tg [43], and is
traditionally identified as the residual entropy in glasses [23]. The remaining 30% of
the excess entropy arises from vibrational and anharmonic differences between
glassy and crystalline phases. The implication of the communal entropy is that the
system is trapped or confined in a large number of basins at the experimental glass
transition temperature. This is because of the experimental time constraint texp,
which forces the glass to be arrested in one of many basins over this duration.
Consequently, this results in smoothing out of the IGT singularity at Tg, which is
borne out of our experience. The existence of this huge amount of communal entropy
at Tg also explains why no experiment will ever exhibit the Kauzmann entropy crisis.
To discover that, one must perform extrapolation of experimental data to lower
temperatures, as was done by Kauzmann.

Another important consequence of the experimental time constraint texp appears
in the form of the residual entropy in glasses [23]. This entropy is a measure of the
different forms of glasses that can be formed in an experimental glass transition. It is
assumed that each basin in which the glass may be trapped represents a different
glass form. Let Nf denote the number of different glass forms that can be formed in
an experiment conducted with some fixed texp: This number will evidently change
with texp: Then, the residual entropy will also depend on texp: It is given by

SR � lnNf ;

if each glass form is equally probable so that the probability of each glass form is
pf ¼ 1=Nf : The observation of the residual entropy is very common in Nature ([16],
Section 64). It is commonly identified as the amount of entropy that survives at
absolute zero, despite the assumption that the glass has been trapped in one of the
basins. Themere fact that the glass has been trapped in a single basin does not imply
that the communal entropy has vanished, as we are not sure which of the possible
basins the glass is trapped in. This ignorance gives rise to the residual entropy. To
understand this paradoxical claim, we need to carefully justify it. For this we proceed
as follows [16]. Imagine partitioning the system ofN particles into a large number of
subsystems of equal size withN 0 particles, eachmacroscopically large so that surface
effects can be neglected. Each subsystem will appear trapped in one of the many
possible basins (corresponding to a system ofN 0 particles) or represent a glass form.
Each basin j will appear with some probability pj; given by

pj ¼ A exp ð�bFjÞ;

where Fj is the basin free energy introduced in Section 10.4.1. As the basin free
energy will be a function of time, this probability will also depend on time.
Consequently, we need to apply (10.2) to determine the entropy by using the above
probability in (10.2). The sum is over Nf basins or glass forms and determines the

10.12 Ideal Glass Singularity and the Order Parameter j487



entropy associated with different forms of glasses; this was called the communal
entropy in Section 10.1.5. Alternatively, one must prepare several glasses under
identical conditions. Each glass will be trapped in one of the possible basins with
probability pj, so that the application of (10.2) will give the same communal entropy.
Let us consider the situation atTg. As SCL is a SMShere, all basins will have the same
free energy so that the probability pj is also the same for all basins and equals

pb ¼ 1=Nf :

This results in the residual entropy SR. As the system freezes in one of these basins
below Tg, the probaility for each basin remains unchanged and equal pb. This leaves
SR unchanged, so that the residual entropywill not disappear as the glass temperature
is reduced, keeping fixed texp; the latter only reduces the basin entropy SbðTÞ: Thus,
the communal entropy trapped at the glass transition persists all the way down to
absolute zero and results in, what is customarily called, the residual entropy.

At any temperature below Tg; the system will remain trapped in a particular basin
for the duration of texp. During this period, it will most probably not reach
equilibrium with the surroundings. However, it is usually the case that the choice
of texp is such that the systemhas enough time to come to internal equilibrium so that
we can define its temperature TðtÞ, which will be different from the temperature T of
the surroundings, and all other thermodynamic quantities such as its entropy,
energy, and so on, all of which are usually functions of time. During cooling, we
expect TðtÞ < T , so that if we wait long enough, TðtÞ will approach T . During this
relaxation, its energyEðtÞwill also approach the SMS energy E at temperatureT from
above. This relaxation is not allowed if we cool the systemandwait for only texp at each
step. In this case, the system will never relax past texp, and its properties will be
dramatically different from the behavior of SMSs that we have investigated in this
chapter. If we hold the temperature past texp, the systemwill then relax. Above TK;we
expect the relaxation of the glassy state towardSCL,while the relaxationwill be toward
the ideal glass below TK.

10.13
Conclusions

In summary, we have presented an energy gap model of glass formers in class A.
These are thematerials that form an equilibrium crystal CR at low temperatures. The
lowest allowed energy EK of a SCL is higher than the lowest energy E0 of the
correspondingCR.The difference then gives rise to a gap in SCL. The glass formation
occurs in the metastable SCL state after bypassing crystallization at the melting
temperature TM. We have mainly considered equilibrium properties in SCL and
glassy state. Accordingly, we have investigated long-time stationary limit of SCLs that
we have called stationarymetastable states. They andCRare investigated by the use of
restricted PF formalism, which we have used to obtain the communal entropy. The
configurational entropy can be expressed as a sum of the communal and
basin entropies (10.20). The communal entropy vanishes at a positive Kauzmann
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temperature TK due to the energy gap as follows from our energy gap theorem, and
results in the confinement of the system in a single potential energy basin whose
minimum is at EK. A basin gives rise to a particular cell representation. The cell
representation, which is a commonmode of description of low-temperature liquids,
is equally applicable to SCL and CR and leads quite naturally to the potential
landscape description at all temperatures, even though the landscape was originally
introduced by Goldstein as useful only at low temperatures. In addition, the cell
representation allows us to use lattice models to calculate the communal entropy
without any loss of generality.

We hope that we have convinced the reader that the use of the order parameter
allows us to classify microstates or configurations as ordered and disordered in a
unique manner, though it may be tedious to implement it in practice. The classi-
fication is needed for the gap model to make sense. In general, ordered microstates
exist for energies E � E0ðN;VÞ. According to the Nernst–Planck hypothesis, the
corresponding communal entropy Scomm;ordðE0Þ ¼ 0; its smallest possible value;
however, its slope at E0 is infinite. This implies that the communal entropy of a CR
vanishes only at absolute zero (b!1) so that it can be confined to a single basin only
atT ¼ 0. This then shows that the basin describing the presence of a defect in CRwill
be a different basin. However, the energy barrier between these basins must be very
small as it is very easy to create a f¼ defect in CR by raising its temperature slightly
above absolute zero. The situation for disordered microstates is quite different.
Because of the energy gap, disordered microstates exist for energies E � EK > E0:

The corresponding entropy Scomm;disðEKÞ ¼ 0, but its slope at EK is finite so that the
SCL gets confined to a single basin at T ¼ TK > 0, where it turns into an ideal glass,
which remains confined in this basin as the temperature is lowered to T ¼ 0. This
basin must be separated by other basins by very high energy barriers to account for
the stability of the glassy state.

As said above, E0 sets the zero of the temperature scale. The assumption that
SdisðEÞ is nonsingular at EK has allowed us to continue SdisðEÞ in the energy gap
E0;EK½ �; so that the same zero of the scale is common to both PFs in (10.32). (The fact
that both states have the same common temperature TM at the coexistence where
ZdisðTMÞ¼ ZordðTMÞ does not depend on this continuation, since ZdisðTÞ ¼ Z


disðTÞ
at TM:) The extension S
disðEÞ in the energy gap is arbitrary as long as it remains
concave and continuous, in consistence with the Remark in Section 10.2.2. In our
calculation, we do not need to carry out this extension as the calculation gives S
disðEÞ
over the range E � E0;which is found to be nonsingular at EK and its slope infinitely
large at E0: The latter result is very important in that it shows that SMS in any exact
calculation is not divorced from CR; their entropies extend from E � E0 and both
have a diverging slope (T ¼ 0) at the lower end E ¼ E0. In other words, the exact
calculations verify the properties of our gap model.

The model is analyzed by using SordðEÞ and SdisðEÞ or S
disðEÞ. These entropies
allow us to introduce three restricted PFs and restricted free energies per particle
fordðTÞ, fdisðTÞ, and f 
disðTÞ: These free energies are equal at the melting temperature
TM. The equilibrium free energy f ðTÞ has two branches as shown in (8.2). The switch
over from one branch to another gives rise to a singular equilibrium free energy f ðTÞ
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at TM, even though none of the three restricted free energies are singular at TM; the
latter property of the free energies basically verifies the Assumption made in
Section 10.1.7.

Each of the restricted free energies is a concave function ofT and describes a stable
state. Thus, we have a thermodynamically valid description of CR and SMS at low
temperatures. While fdisðTÞ and f 
disðTÞ are identical for T � TK; they are different
belowTK. The communal part of f 
disðTÞpossesses amaximumatTK and goes down to
E0 at T ¼ 0. The maximum corresponds to Scomm;disðEKÞ ¼ 0:Otherwise, f 
disðTÞ has
no singularity anywhere. The only use of f 
disðTÞ is to locate TK; below which f 
disðTÞ
has no physical significance. On the other hand, fdisðTÞ has a singularity at TK: its
communal part remains constant equal to fdisðTKÞ for any T � TK.

Appendix 10.A: Classical Statistical Mechanics

In classical statistical mechanics, the Hamiltonian Hðp; qÞ � KðpÞþEðrÞ of a
system of N particles in a fixed volume V is a sum of the kinetic energy KðpÞ and
the potential energy EðrÞ of the particles; here p and r represent the collective
momenta fpig and positions frig of the particles, respectively. The fact that the
potential energy is taken to be a function of coordinates only is not always true as
happens if we have charged particles in a magnetic field. These cases will not be
considered here. The dimensionless total canonical PF ZTðT ;VÞ of the system (we
revert back to exhibiting the dependence on V in this section) can be written as a
product of two independent integrals

ZTðT ;VÞ � ZKEðTÞZðT ;VÞ; ð10:A1Þ

where

ZKEðTÞ � vN0
ð2p�hÞ3N

ð
e�bKdN pf g; ð10:A2Þ

represent the kinetic partition function due to the translational degrees of freedomof
the particles, and the configurational partition functionZðT ;VÞ is given in (10.5).We
have kept the constant v0 (which we earlier set equal to 1) to make the two factors
in (10.A1) dimensionless.

The prefactor in terms of �h is used to explicitly show the correspondence ofZT with
the corresponding PF in the quantum statistical mechanics in the classical limit
�h! 0. Despite the classical limit requirement �h! 0, we are not allowed to set �h ¼ 0
in the final result, but keep its actual nonzero value. Accordingly, some problems
remain such as Wigner�s distribution function not being a classical probability
distribution, which we do not discuss any further but refer the reader to the
literature [117]. Keeping �h at its nonzero value avoids infinities as we will see below
but in no way implies that we are dealing with quantum effects. In particular, it does
not imply that the entropy is nonnegative, as we have discussed elsewhere [75]. We
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merely quote the results here. The contribution SKEðTÞ to the entropy due to the
kinetic energy is

SKEðTÞ ¼ N lnðv0=l3Þ; ð10:A3Þ
where l � h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmeT

p
; a quantity related to the de Broglie thermal wavelength, and

the average kinetic energy �KðTÞ is
�KðTÞ ¼ ð3=2ÞNT ; ð10:A4Þ

which should come as no surprise. For an ideal gas, the total entropy function STðTÞ
is given by

ST ðT ;VÞ ¼ N lnðVe=l3NÞ; ð10:A5Þ
which is independent of the choice of v0 but depends on the volume V ;while SKEðTÞ
depends on v0 but not on the volume. The configurational entropy for an ideal gas,
which no longer depends on T , is

SðVÞ ¼ N lnðVe=v0NÞ: ð10:A6Þ
If we set h ¼ 0; we encounter an infinity at all temperatures in (10.A3) and in

(10.A5). To avoid this, we keep h at its nonzero value.
The contribution SKEðTÞ is the same for all systems (that have the same v0Þ,

regardless of their potential energy of interaction and volume. It is most certainly the
same for all phases of any system such as SCL and CR at the same temperature, and
we do not have to specifically take it into account. Thus, in general, we can focus on
the configurational entropy without any loss of generality. It is obtained by subtract-
ing SKEðTÞ from STðTÞ [36]:

SðT ;VÞ � STðT ;VÞ�SKEðTÞ: ð10:A7Þ

Appendix 10.B: Negative Entropy

At absolute zero, or for V=v0N < 1=e, ST !�1; a well-known result of classical
statisticalmechanics.We also note that forV=v0N < 1=e, the configurational entropy
S in (10.A6) and, therefore, ST diverge to�1. The problem is due to the continuum
nature of the real space. This is easily seen from the exact solution of the 1D Tonks
gas, which is a simple model of noninteracting hard rods, each of length l. In one
dimension, we will take v0 to have the dimension of length. The configurational
entropy S corresponding to N rods in a line segment of length L is given by [118]

SL ¼ N ln½ðL�NlÞe=v0N� ð10:B1Þ

in the thermodynamic limit, while SKE is still given by (10.A3), where m now
represents themass of a rod. Comparisonwith (10.A6) shows that the only difference
is that the total volume V in (10.A6) is replaced by the free volume analogue L�Nl in
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one-dimensional Tonks gas (see (10.B1)). It is clear that the entropy becomes negative
as soon as L=v0N < 1=eþ l=v0 and eventually diverges to �1 in the fully packed
state. Similarly, the problem with SKEðTÞ!�1 as T ! 0 is due to the continuum
nature of the momentum space.

This problem disappears as soon as we invoke quantum statistical mechanics to
describe the total PF, whichno longer can bewritten as product of two ormorePF�s as
in (10.A1). Here, we consider the number of statesWTðET;VÞ � 1 as function of the
(total) energy eigenvalue ET: The energy eigenvalue ET can certainly be broken into
the kinetic energy part K and the potential energy part E, but such a partition is not
possible for the total entropy STðET;VÞ � lnWTðET;VÞ: Therefore, in general, the
notion of the configurational entropy does notmake sense in the quantumcase. Since
we are only concerned with classical statistical mechanics in this work, we will not
discuss this point further here, except to note that a negative entropy is impossible to
occur on a lattice. Therefore, if the communal entropy becomes negative in a lattice
model, it will directly refer to an entropy crisis and will point to an IGT.
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11
Liquid Crystalline Polymers: Theories, Experiments,
and Nematodynamic Simulations of Shearing Flows
Hongyan Chen and Arkady I. Leonov

11.1
Introduction and Review

11.1.1
Low Molecular Weight and Polymeric Liquid Crystals

Low molecular weight liquid crystals (LC) have found large applications in many
industries, especially in electronics. LCs display very specific properties characterized
by such solid-like effects as orientation of a large group molecules under physical or
stress fields coupled with flow [1–5]. Internal rotations, a specific Frank elasticity
caused by mutual rotations of molecules, and anisotropic flows are common effects
established for this type of liquids. Molecules in LC are arranged in an orderly
manner, and there are three different types of their ordered structure: nematic,
cholesteric, and smectic. The nematic structure where the molecules have a long-
range orientation order but only a short-range positional order can bemetmore often
because it has low ordered structure compared to other LC types. Remarkable,
continuum type theories are the most common for description of both elastic and
viscous LC properties. They are Frank theory for LC elasticity and Leslie–Ericksen–
Parody (LEP) for viscous properties of LCs.

The quest for lightweight materials with great strength and stiffness has led to the
synthesis of liquid crystalline polymers (LCPs) and occurrence of novel processes and
theories to predict and control the LCP structures in final products. In LCPs, liquid
crystalline properties are achieved either by insertion of rigid chemical fragments
into the main polymer chain (main-chain LCPs) or by creating side branches (side-
chain LCPs). To date, liquid crystalline polymers have found a variety of applications
such as high-strength plastic fibers, bullet-proof garments, front panels of compu-
ters, cellular phones, electronic diaries, portable televisions, printed circuit boards,
and so on [6]. Typically, LCPs possess outstanding mechanical properties at high
temperatures, excellent chemical resistance, inherent flame retardancy, heat aging
resistance, low viscosity, and good weather resistance. Such properties make LCPs
ideal candidate for high-performance applications [7].
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Similar to the lowmolecularweight LCs, specific polymers display LCproperties in
a certain intermediate state between the solids and the liquids, which is called
mesophase, with the combined properties of both crystalline and liquid states [5–7].
The molecular orientation order of chemical rigid fragments makes a polymeric
material anisotropic and �crystalline,� while the lack of strong positional order allows
the material to flow like ordinary fluids. LCPs whose phase transition to the liquid
crystalline phase occurs under change in temperature are called thermotropic, while a
variety of LCPs exhibiting phase transitions by changing the polymer concentration
in a solvent (as well as temperature) are called lyotropic liquid crystals. The unique
feature ofmesophase is that it is described by a positional order parameter because it
is geometrically anisotropic in space. At present, the polymer nematics include liquid
crystalline polymers and liquid crystalline elastomers (LCEs) [3]. Similar to LCs, the
action of external field or flow causes the orientation of mesogens of LCPs or LCEs,
which induces uniaxial anisotropy, with an additional degree of freedom – internal
rotations. In certain cases, LCPs or LCEs possess partial flexibility, which displays
macroscopically a common anisotropic molecular elasticity or viscoelasticity, and
thus is important for the dynamics of these systems.

11.1.2
Molecular and Continuum Theories of LCP

Theoretical and experimental studies of nematic materials have over so many years
produced an enormous amount of publications. Several excellent texts (e.g., see
Refs [1–5]) are now available, presenting in historical perspective a balanced view of
the most important experimental effects and their theoretical explanations, both of
continuum and molecular types.

Two types of theories, continuum and molecular, attacked the problem of
modeling nematodynamic properties of LCPs and LCEs. The continuum theories
try to establish a general framework with minimum assumptions of molecular
structures, involving, however, many material parameters related to both the basic
properties of symmetry and interactions described by state variables. On the
contrary, molecular approaches employ many particular assumptions and describe
LCP properties with few molecular parameters. de Gennes [8] was first to attempt to
extend the LEP theory to nonlinear case. Doi characterized this attempt as [9] �A way
of generalizing the Ericksen–Leslie theory to the nonlinear regimes was suggested
by de Gennes [8]. However, this phenomenological approach has not been pursued
very far since the number of unknown parameters increases as more complexity
is introduced. In this chapter, we describe a complementary approach, the molec-
ular theory. Since this approach is based on a specific modeling of a system, it is
less general, but it can give explicit results for rheological functions.� Hopefully,
the phenomenological and molecular theories will not be contradictory but
complementary.

de Gennes and Prost [2] first developed the concept of nematodynamics. It was
defined as a set of problems for deformation and flow of nematic systems under
stress and external (magnetic and/or electrical) fields that can be solved or analyzed
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using specific macroscopic field equations. Research on polymer nematics has
attracted long-standing academic and industrial interests for about three decades.
Yet only few LCPs have been in use, which is mostly due to the lack of knowledge of
the complicated behavior of these systems. Therefore, nematodynamic studies are
an imperative for stimulating the progress in processing polymer nematics and
predicting the properties of postprocessed products.

Larson and Mead [10] extended the Ericksen LC phenomenology to viscoelastic
case, using instead of Ericksen�s viscosities some linear viscoelastic memory func-
tionals. Because these functionals were unknown, Larson and Mead exemplified
their approach employing the linearized Doi theory [9, 11]. Using symmetry argu-
ments, Volkov and Kulichikhin [12] proposed a continuum but nonthermodynamic
approach to weak anisotropic viscoelasticity of Maxwell type with internal rotations.
Pleiner and Brand [13, 14] developed a thermodynamic theory for linear anisotropic
viscoelasticity of LCPs, using along with state variables their space gradients.
However, the experience accumulated from many applications of continuum non-
equilibrium thermodynamics clearly indicates that, except for very specific cases,
extending the set of state variableswith theuse of their time–space derivatives leads to
an awkward description, which typically involves a huge amount of material para-
meters without recommending how to fit them to experimental data. Rey [15, 16]
applied a very particular thermodynamic approach toweak viscoelasticity of LCPs but
obtained doubtful results of asymmetric stress. Terentjev and Warner [3, 17]
developed a thermodynamic theory of solid viscoelasticity for LC elastomers, based
on the Kelvin–Voigt type of nematic modeling (see also Ref. [18]). Leonov and
Volkov [19–21] initiated thermodynamic studies of nonlinear nematic viscoelasticity
for various polymer systems of different rigidity, such as LCPs, LCEs, and precursors
of polymer nanocomposites. These approaches have met mathematical difficulties
mentioned by Doi [9] and were overcome by creating a new mathematical tool,
algebra of nematic operators [22]. Based on this tool a newnematodynamic theory [23]
of LCP has been formulated.

A lot of effort was also undertaken to develop molecular theories that could model
the lyotropic LCPs, starting from Doi theory [9, 11]. Marrucci and Greco [24], Larson
and coauthors (see Ref. [5]), and Feng et al. [25] typically use and elaborate Doi�s long
rigid rod approach. Edwards et al. [26] applied a general Poisson bracket approach
to LCP (see also the book by Beris and Edwards [27]). This approach is reduced to the
Doi theory in homogeneous (monodomain) limit. The theories [24–27] employ the
same state variables as in case of low molecular mass LC, that is, the temperature T,
director n (or the respective second rank order tensor), and the director�s space
gradientrn. One should also mention the Rouse-like approaches to LCP developed
by Volkov and Kulichikhin [28] and Long andMorse [29], which take into account the
partial flexibility of LCP polymeric chains. Note that the approaches developed in
Refs [28, 29] did not derive the closed set of nematodynamic equations. They also
cannot be considered as purely molecular since they employed the phenomenology
of Ref. [10] for describing the linear viscoelasticity in LCPs.

Along with the above nonequilibriummolecular theories, a lot of effort was made
to develop equilibrium statistical mechanics of LCPs and LCEs. In particular, these
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theories present the scalar order parameter via molecular parameters of nematics.
Some recent results in this field could be found in Refs [3, 30, 31].

11.1.3
Soft Deformation Modes in LCP

Golubovich and Lubensky [32] first predicted the general possibility of occurrence
of deformation soft modes in anisotropic elastic solids. A remarkable feature of soft
modes is that they bear almost no resistance in particular direction(s) of deformed
anisotropic solids. Warner and coauthors found the soft/semisoft deformation
modes for their particular molecular theory for LCEs (e.g., see Ref. [3]). Yet they
were unaware whether the soft modes occurred in their theory by chance or because
of a more fundamental reason. An attempt to justify the occurrence of soft modes by
rotational invariance was made in Ref. [33]; however, it was not successful. The
general physical idea, underlying the occurrence of softmodes in nematic solids, was
proposed in Ref. [34]. According to this paper, large fluctuations typical of nematics
in equilibrium, drive these systems almost to the boundary of their thermodynamic
stability where the free energy is effectively minimized not only with respect to the
state variables but also with respect to nematic material parameters. Thus, establish-
ing the �marginal stability� conditions could be used as a theoretical tool for finding
the soft deformation modes. This approach has been first introduced in Ref. [35]
for nematic solids and in Ref. [36] for viscous nematic LC. In real situations, there
always exist small energetic barriers caused by different physical reasons that create
small deformation resistance in soft modes. These small barriers located near the
boundary of thermodynamic stability, stabilize the behavior of nematic systems
and constitute semisoft (close enough to the soft) behavior of nematics. Yet, really
new statistical mechanics, similar to the Goldstone theory for magnetics, should
be developed to justify the occurrence of the nematic soft modes for LCEs in
equilibrium.

Using the marginal stability approach, the possible shearing and elongational
soft/semisoft nematic modes were recently discovered for both weakly elastic and
viscous nematics [35, 36]. In these systems, the rotational invariance of the shearing
modes was found as a trivial consequence of marginal stability. Noticeable, the weak
Warner elastic potential does not predict the soft elongationmode in the linear limit.
Identical results ofmarginal stability analyses obtained for weakly elastic and viscous
nematic theories [35, 36] are explained by the fact that the well-known LEP
continuum theory of nematic LCs has a complete continual analogue for weakly
elastic LCEs proposedfirst by deGennes [37]. In this analogy, the Rayleigh dissipative
function in LEP theory is similar to the de Gennes monodomain elastic potential.
Since the minimum of free energy functional always exists for all elastic solids, this
analogy was additionally justified by demonstrating the principle of minimum of
dissipation functional for viscous nematics [38]. Note that in theories describing
possible soft nematic deformation modes, the number of material parameters is
highly reduced.
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Notably, large fluctuations are typical features for the nematic systems [34].
Therefore, using attractively few parametric mean field molecular approaches yields
poor predictions of experimental data for liquid crystals [2]. Consequently, nematic
studies usually resort to continuum approaches based on fundamental principles of
thermodynamics and symmetry.

Asmentioned, a lot of theoretical and experimental studies have beenperformed to
understand physics and rheological properties of lyotropic LCPs. The molecular Doi
approach with many improvements and experimental tests is well presented in the
literature (e.g., see Ref. [5]). But the thermotropic LCPs were poorly understood till
recently, in spite of many attempts to develop either nematodynamic or molecular
description of their flow properties. The beauty of continuum approach is that it can
be applied tomolecular nematics of both different types, as well as to the nonyielding
suspensions with shaped particles. Yet, general nematodynamic theories are multi-
parametric. For example, the general LEP continuum LC theory contains five
constitutive parameters [2]. Similarly, de Gennes potential proposed for the mono-
domain description of general weakly elastic behavior of LCE has also five para-
meters [37]. Because viscoelasticity is a combination of elastic and viscous effects, it is
expected that even in easy theoretical schemes, the continuum approach to visco-
elastic polymer nematodynamics should involve at least 10 constitutive parameters.
This gives rise to the above pessimistic view [9] that the continuum theories of these
systems are intractable.

Asmentioned, there exists neithermolecular nor continuum theory for describing
complicated properties of thermotropic LCPs, although many experimental data for
this type of LCPs have been accumulated. One of the objectives of the new
continuum theory of weakly nonlinear viscoelastic nematodynamics [22, 23] is to
interpret and simulate experimental data, and create models of processing for LPCs.
New mathematical techniques [22] revealed the structure of the theory and were
helpful in several derivations to present the theory in a simple form. The assumption
of small transient (elastic) strains and transient relative rotations, employed in the
theory, seems to be appropriate for most LCPs, which usually display a small
macromolecular flexibility. This assumption has been used in Ref. [23] to simplify
the theory to symmetric type of anisotropic fluid mechanical constitutive equations
for describing the molecular elasticity effects in flows of LCPs. Along with visco-
elastic and nematic kinematics, the theory nontrivially combines the de Gennes
general form of weakly elastic thermodynamic potential and LEP dissipative type of
constitutive equations for viscous nematic liquids, while ignoring inertia effects and
the Frank elasticity in liquid crystalline polymers. It should be mentioned that this
theory is suitable only for monodomainmolecular nematics. Nevertheless, effects of
Frank (orientation) elasticity could also be included in the viscoelastic nematody-
namic theory to describe themultidomain effects in flows of LCPs near equilibrium.
In the absence of external fields and neglecting the Frank elasticity, the simplified
theory can employ less parametric description of LCP flows. An additional decrease
in the number of parameters happens when viscoelastic soft/semisoft nematic
modes are present [22, 23].
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11.1.4
Specific Problems in LCP Theories

There are three additional specific problems that have to be addressed in any
molecular theory for polymer nematics. The first one is a possible effect of the
Frank elasticity in these systems. It was shown [3] that the Frank and molecular
polymer elasticity for LCEs have well-separated space scales, with their crossover, the
�characteristic scale� l� evaluated as l� ¼ ffiffiffiffiffiffiffiffiffiffi

K=G
p

[3]. Here, G >� 106 dyn/cm2 is a
typical rubber-like modulus and K � 10�7 dyn is a typical value of the Frank
modulus. This evaluation shows that l� <� 10�6 cm ¼ 10 nm, that is, in the com-
mon macroscopic scales always larger than l� , the effects of Frank elasticity on the
nematodynamics of elastomers could be ignored.

The second problem is that the multidomain �textures� existing at rest in many
nematic LCPs affect the slow (lowDeborah number) flows of LCPs [5], or weak elastic
deformations of LCEs [3]. Although the expression for l� could also be applied to the
molecular (or �instant�) elasticity of LCPs, the nonequilibrium effects arising in
textures do not allow to ignore the Frank elasticity effects for LCPs. It looks like the
monodomain equations valid for the flow of LCPs in relatively strong stress/external
fields acquire near the equilibrium some stochastic or periodic properties due to the
action of Frank elasticity, ignored in monodomain theories [38]. Conversely, the
polymer nematics usually forget their textures under action of higher stresses or
external fields, which results in the monodomain description. A rough method of
evaluating flow parameters based on mesoscale averaging of LEP equations over
several monodomains, involvingmesoscale averaged Frank elasticity terms has been
discussed in the Ref. [5]. Complementary to the expression for characteristic space
scale l� , the scaling evaluation of characteristic time of spontaneous disorientation
by forming a texture of characteristic domain size d is td ¼ d2g=K . Here, g is a
characteristic viscosity for LCP near the equilibrium. Using the value g � 104

dyn/cm2 and d � 10�4 cm for a characteristic size of domain in a typical multi-
domain texture, leads to the evaluation, td � 103 s, which seems to be realistic and
validates the importance of the Frank elasticity in describing the slow disorientation
process in some LCPs. Two timescales, one for fast stress monodomain relaxation
and the other for the consequent slow texture formation reported in Ref. [39], seem to
be very common for LCPs. The recent attempt to reveal the formation of texture based
on amodifiedDoi rigid rod approach and related references can be found inRef. [40].

The third problem is the possible effect of stress or external field on isotropic–
nematic phase transition. In equilibrium, this phase transition is usually described
by the well-known Landau phenomenology or more specifically (however, less
reliably because of large fluctuations) by the Maier–Saupe mean field theory [2] (see
also Refs [30, 31]). The assumption that the transition behavior of nematic elastomers
is independent of stress was roughly confirmed while testing the LCE theory [3],
where the parameters of anisotropy were assumed to be independent of stress. The
possible dependences of scalar/tensor order parameter on stress/external field have
been considered in molecular Doi theory [9, 11] or phenomenological approach by
Ericksen [41].
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Finally, the specific nematic kinematics caused both by the internal rotations and
the macroscopic relations for the moment of momentum balance in external fields
have beenwell understood and summarized inmanypublications (e.g., seeRefs [1–4]
and references therein). Inertial effects of internal rotations, commonly ignored in
most cases for molecular nematics, might be important for nematic nonyielding
suspensions and for such dynamic problems as propagation of sound in molecular
nematics. In these cases, many generally small kinetic effects, such as internal
spin [19] of nonnematic origin, could not be ignored too.

11.1.5
Experimental Effects in Flows of LCP

There are plenty of rheological experimental data,mostly obtained for liotropic LCPs,
such as PBG and HPC solutions in simple shearing. They include measurements
of shear viscosity and normal stress differences in steady shearing (including such
features unusual for isotropic polymers as negative first normal stress difference),
start-up transient simple shearing, and dynamic tests with small amplitude oscilla-
tions. These data, well presented in Ref. [5] demonstrated exciting success of the Doi
theory in describing phase transition and the basic rheological properties for liotropic
LCPs. It was, however, found that the above unusual rheological features predicted
by the Doi theory have been observed in PBG andHPC solutions only within a range
of medium concentrations: 10–25% for PBG and up to 50% for HPC. Surprisingly,
the Doi rigid rod statistical theory is incapable of describing the rheological behavior
of �rigid rod� polymers [42], such as PBZT [43, 44], PBO [45], and PPTA [46]. The
typical thermotropic LCP, such as thermotropic HPC and thermotropic copolyesters
do not demonstrate the above unusual rheological features found in the PBG and
HPC solutions and are not described by the Doi theory.

The common commercial thermotropic LCPs, such as Titan (Eastman) with
melting temperature Tm ¼ 330 �C and Zenite 6000 (Dupont) with Tm ¼ 345 �C,
are the randompolyesters with rigidmain-chainmesogenic groups. The degradation
of commercial LCPs is the main problem faced in their rheological studies.
Therefore, some LCPmodels were synthesized, introducing either (i)flexible spacers
in themain chain or (ii)mesogenic side groups. Since themelting temperature of the
model LCP are far below their degradation temperatures, the model nematic LCPs
are convenient for rheological measurements. For example, the LCPs of (i) type have
been widely used for rheological experiments [45–48].

Some specific experimental methods have also been recently elaborated and
new reliable results have been obtained in rheological studies [49] of commercial
thermotropic polymers, such as Titan and Zenith.

The whole sets of shearing rheological experiments for both model and commer-
cial thermotropic LCPs demonstrated a good consistency when preshearing or using
preliminary orienting magnetic field have been applied for eliminating the texture
and other long memory effects. Yet, it is unclear what orientation the director
acquires after preshearing. This uncertainty negatively affects the simulations of
start-up LCP flows with data obtained in standard rheometric devices. Imposing
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magnetic field in rheological experiments makes the initial orientation of director
reliable, although it requires the use of nonstandard rheological equipment.

LCPs exhibit in simple shear steady-flow several rheological effects, uncommon to
polymers with long flexible chains. The first is negative normal stresses observed in
some LCPs. The second is the effect of �three-region� viscosity shown schematically
in Figure 11.1.

This effect has mostly been observed for lyotropic LCPs, sometimes also for
thermotropic ones. The existence of region I in Figure 11.1 is explained by the
formation of �texture,� a domain structure observed in many, mostly lyotropic LCPs.
The texture occurs during relaxation when the stress levels are very low, that is, when
approaching the rest state. Such a three-region flow curve was first observed in
Ref. [50] and explained theoretically for lyotropic LCPs in Refs [51, 52] (see also
Refs [4, 5, 53]). These theoretical descriptions are typically complementary to the
more fundamentalmonodomain nematodynamic theories of both themolecular and
the continuous types.

Next section employs the theory [22, 23] for simulations of steady and nonsteady
shearing flows. The objective is to analytically and numerically simulate these basic
flows of polymer nematics with possible aligning tumbling effects and compare the
simulations with published experimental data. Hopefully, this approach will create a
reliableand fundamental continuumframework formoredetailedmolecular theories
for polymer nematics. It is also expected that the results of the present studies will
significantly contribute indeveloping robust and reliableflowmodels thatwill beused
toanalyzeprocessingandpostprocessingpropertiesofpolymernematic systems.The
current lack of such models prevents the progress in processing of LCPs and LCEs.

11.2
General Equations and Simulation Procedures

The simulations in this and following sections are based on the continuum theory of
weak viscoelastic nematodynamics [22, 23]. The closed set of constitutive equations

Figure 11.1 Schematics of three-region flow curve.
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includes the equation for the evolution of a unit vector n called director and
anisotropic constitutive equation for the evolution of extra stress tensor s. In general
3D case, the evolution equation for director is presented as follows:

q� n
�� þ n � n

���� ���2� �
þ n

� ¼ bðnÞ � leq
�e� þ lveÞ:

�
ð11:1Þ

Here,

ðbðnÞ � eÞi ¼ bijkðnÞekj ¼ ðdijnk�ninjnkÞekj;

and upper circles denote the Jaumann tensor time derivatives defined as

n
� � _n�n �v ; e

� � _e�e �v þv � e ; s
� � _s�s �v þv � s :

Equation (11.1) is coupled with anisotropic equation for the evolution of extra
stress tensor s:

q0s
� þ s þðr1�1Þ½nn � s þ s � nn�2nnðs : nnÞ	 þ 1:5ðr2�1Þðnn�d=3Þðs : nnÞ

¼ g0

n
e þa½nn � e þ e � nn�2nnðe : nnÞ	 þ ðb�3=2Þðnn�d=3Þðe : nnÞ

o
:

ð11:2Þ

In Eqs. (11.1) and (11.2), g0 is a characteristic nematic viscosity, q0 ¼ g0=G0 and
q�ð� q0Þ are relaxation times, le and lv are the elastic and viscous tumbling
parameters, respectively, a; b, and r1; r2 are parameters characterizing anisotropy,
n n is dyadic with components ninj, e and v are strain rate and vorticity tensors,

respectively, commonly related to the gradient velocity tensor. The constitutive
Eqs. (11.1) and (11.2) should be consistently used alongwith themomentum balance
equation to determine both the stress and the flow fields. In few cases, however, the
flow field is known. One of these flows, having many practical applications, is
simple shearing. In this flow, solution of constitutive equations for weakly nonlinear
viscoelastic nematodynamic can be simplified.

The shearing flows are commonly analyzed using a �standard� Cartesian coordi-
nate system fxg ¼ fx1; x2; x3g where x1 is directed along the flow and x2 along the
velocity gradient. In this coordinate system, the velocity vector v is v ¼ f _cðtÞx2; 0; 0g,
and the tensors of strain rate eðtÞ and vorticityvðtÞ for homogeneous shearing flows
have the matrix forms:

eðtÞ ¼ _cðtÞ
2

0 1 0

1 0 0

0 0 0

0
B@

1
CA; v ðtÞ ¼ _cðtÞ

2

0 �1 0

1 0 0

0 0 0

0
B@

1
CA: ð11:3Þ

Here, the shear rate _cðtÞ is a given function of time. We will use below a common
simplifying assumption that vector of director is located in shear plane, so the 2D
expression for director is n ¼ fn1; n2; 0g. Substituting this expression along
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with (11.3) into evolution equation(11.1) yields the evolution equation for the
longitudinal component n1 of director located in the {x1, x2} shear plane as

q� €n1 þ n1 _n
2
1

n22

� �
þ _n1�

_cn2
2

¼ q� €c leð1�2n21Þþ 1
� � n2

2
=2

þ leq
� _c2n1n22 þ

lv _cn2
2

ð1�2n21Þ:
ð11:4Þ

Here, n2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1�n21

p
.

In simple shearing flow, Eq. (11.2) is rewritten in component form as

q0
ds12
dt

þ q0 _c
s11�s22

2
þ s12 þðr1�1Þ s12 þ n1n2ðs11 þ s22Þ½ 	

þ ðs11n21 þ s22n22 þ 2s12n1n2Þ

n1n2
3
2
ðr2�1Þ�2ðr1�1Þ

2
4

3
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2
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2
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0
@

1
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Equations (11.5a)–(11.5c) describe the time-dependent evolution and steady

behavior of extra stress tensor in simple shearing.
In case of steady shearing analyzed in Ref. [23], the analytical expression for

horizontal component of director n1 was found as

n21 ¼
1
2

1þ lv
1þ Dl1=lvj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2l2e þ l2v�1

q
D2l2e þ l2v

0
@

1
A: ð11:6Þ
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Here, D ¼ q� _c. In this case, a very awkward analytical solution of Eqs. (11.4)
and (11.5a)–(11.5c) has also been obtained using Mathematica software. Formu-
la (11.6) shows that the director position weakly depends on elastic tumbling
parameterle and strongly depends on the value of viscous tumbling parameterlv.
The same aligning condition lvj j > 1 as in viscous case holds in viscoelastic
nematodynamics. As compared to the Ericksen theory, the new fact here is the
dependence position of director n on the flowDeborah numberDe. This dependence
delays the onset of the rest state tumbling and tends to orient the director along or
perpendicular flow lines when lv > 0 or when lv < 0, respectively. The dependence
n on De mostly contributes to the shear thinning effect where the sign of the first
normal stress difference N1 depends on the sign of lv, with N1j j growing with
increasing _c.

In case of relaxation, the expression for horizontal component of director n1ðtÞ
was explicitly obtained in Ref. [23] as the solution of (11.4) using presentation
n1ðtÞ ¼ cos jðtÞ:

jðtÞ ¼ j0 þDleð1�e�t=q� Þ cos 2j0: ð11:7Þ

Here, the value j0(D) is known from (11.6). In case of relaxation, the values of
stress components are found in this chapter by numerical solution of the set of
ODE (11.5a)–(11.5c), using formula (11.7).

In case of start-up flow from the rest state, a numerical solution of ODE set (11.4)
and (11.5a)–(11.5c) should be obtained using the following initial conditions:

s jt¼0 ¼ 0; n1jt¼0 ¼ n1r ; _n1jt¼0 ¼ n2r _c0
�
le
	
1�2n11r


þ 1
�
=2: ð11:8Þ

The first prerequisite in (11.8) is the natural (zero) initial condition for the stress
tensor in start-up shearing flow from the rest state. To resolve the problem of
choosing the initial condition n1r for director in start-up flow, we preliminarily fitted
the experimental data for stresses in steady shearing with following adjustment
of parameters to also describe the stress relaxation. In this case, parameters of the
evolution equation for director, along with its orientation in steady shearing, were
also established. Calculating then the orientation of director during stress relaxation,
we found its final orientation at the rest state, whichwas taken as initial director value
nr in the start-up flow. Thus the value of parameter n1r is established as the fully
relaxed value of director after relaxation. Using formula (11.7) in the limit t!1, the
value of n1r is found as

n1r ¼ cos jr ; jr ¼ j0 þD
�
le
	
1�2n21;0


þ 1
�
=2: ð11:9Þ

The second initial condition in (11.8) is derived from Eq. (11.4) using initial jump
(or delta) conditions.

In the following discussion, we compare the results of numerical simulations with
published shearing experimental data, generally presented as time-dependent plots
for shear stress s12, apparent viscosity g ¼ s12= _c, and the �first normal stress
difference� N1 ¼ s11�s22. The shearing flow simulations include the steady
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shearing, relaxation, and transient start-up flows. To analyze simple shearing flows
for aligning thermotropic LCPs, we will use in the following the monodomain
CEs (11.4) and (11.5a)–(11.5c) with above formulas (11.6)–(11.9) suitable for specific
problems.

The ultimate goal of simulations was to show a possibility to describe experimental
data along with determining constitutive parameters. These parameters established
for steady shearing are thenused for calculating the evolution of director, shear stress,
and first normal stress difference during relaxation and start-up flow.

To resolve the problem of choosing the initial conditions for director in start-up
flow,we preliminarilyfitted the experimental data for stresses in steady shearingwith
the following adjustment of parameters to also describe the stress relaxation. In this
case, parameters of the evolution equation for director, along with its orientation in
steady shearing, were also established. Calculating then the orientation of director
during stress relaxation, we found its final orientation at the rest state, which was
taken as initial director value in the start-up flow.

11.3
LCP and their Parameters Established in Simulations

Common commercial thermotropic LCPs are the random polyesters with rigid
main-chainmesogenic groups. These LCPs have very narrow time and temperature
intervals between the beginning of crystal melting and the onset of polymer
degradation, where the liquid crystalline phase exists. The existence of multi-
domains in these commercial thermotropic LCPs has not been reported, and it
seems improbable because of short time processing. The degradation of commer-
cial LCPs is the main problem for their rheological studies. Therefore, some
�model� LCPs have been synthesized in various laboratories. Themain objective of
the model LCP was to incorporate flexible spacers or pendent bulky group into the
main chain and then reduce the melting point Tm and the clearing temperature Tcl
of LCPs, which are far below their degradation temperature Td. Using these
techniques, it was possible to safely run the rheological measurements within the
temperature intervals below Td.

Our simulations of the above viscoelastic nematodynamics theory require the
reliable and representative rheological data for LCPs, obtained for steady and
transient shear flows and relaxation. We chose literature rheological data for two
commercial LCPs, Titan and Zenith 6000 [49], as well as for two model polymers,
a main-chain LCP, PSHQ9, and a side-chain LCP, PI-14-5CN [53].

According to Ref. [49] two commercial random copolyesters, Titan and Zenith
6000, were obtained from the Eastman and DuPont Chemical companies, respec-
tively. These LCP have very narrow time and temperature intervals between the
beginning of crystal melting and the onset of polymer degradation, where the liquid
crystalline phase exists. The existence of multidomains in these commercial ther-
motropic LCPs has not been reported, and because of short time processing, it seems
to be improbable.
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Titan is a random copolyester probably composed of two random units, ethylene-
terephthalate (PET) and hydroxybenzoic acid (HNA). Incorporating the PETunit in
themain chain reduces the rigidity of themolecule due to the twomethylene flexible
spacers and in turn decreases the melting temperature of the material. On the other
hand, Zenith 6000 is fully aromatic, where kinks were introduced by combining
phenol and biphenol molecules by random copolymerization. As measured by DSC,
the melting temperature Tm of Titan was between 325 and 335 �C, while for Zenith
6000, Tm was between 340 and 360 �C. TGA measurements indicated that the
degradation temperature Td of Titan is 450 �C, although it has been reported in
Ref. [49] that the noticeable degradation begins at considerably lower temperatures.

One typical example of model LCP is PSHQ9, poly[(phenylsulfonyl)-p-phenylene
nonanemethylene bis(4-oxybenzoate)] [54], whose chemical structure is depicted
in Figure 11.2. This is amain-chain LCP, which has a glass transition temperature Tg
of 84 �C, and a nematic-to-isotropic (N–I) transition temperature TNI of 162 �C. This
polymer has only nematic phase at temperatures between Tg and TNI.

Another typical model LCP is PI-14-5CN. It is a nematic side-chain liquid-
crystallinepolymer(SCLCP),withthechemicalstructure [54]presentedinFigure11.3.
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Figure 11.3 Chemical structure of PI-14-5CN [54].
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Figure 11.2 Chemical structure of PSHQ9 [54].
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A nearly monodisperse PI-14-5CN was synthesized using anionic polymerization
by grafting a liquid-crystalline monomer, 6-[(4-cyano-40-biphenyl)oxy]hexanoic acid
(5CN-COOH), onto a nearly monodisperse hydroxylated polyisoprene (PI). This
polymer undergoes glass transition at 45 �C and N–I transition at 102 �C.

It is significant that almost all the model SC LCPs reported in literature have been
synthesized by condensation polymerization, invariably giving rise to polydisperse
SCLCPs. Itwas impossible to precisely determine themolecularweight of PI-14-5CN
from the GPC because of a lack of information on its hydrodynamic volume. So the
molecular weight was approximately calculated to be 7.19
 104 g/mol using infor-
mation on the degree of hydroxylation. The polydispersity of PI-14-5CN found from
GPC was equal to 1.08.

Values of constitutive parameters for all tested LCPs, obtained with thementioned
intense fitting procedure are shown in Tables 11.1 and 11.2.

When comparing the values of constitutive parameters found for Titan and Zenith
600, one should recall that Titan is a random copolyester of ethylene-terephthalate
and hydroxybenzoic acidwith twomethyleneflexible spacers, whereas Zenith 6000 is
a fully aromatic copolyester with kinks. Therefore, Zenith 6000 is expected to be
much more rigid than Titan. Our simulations confirmed this. They demonstrate
that the values of viscoelastic parametersq0 andg0, parameter of viscous tumbling lv,
and anisotropy parameters a; r1, and r2 found for Titan are smaller than those of
Zenith 6000, while the values of elastic tumbling parameter le and the anisotropic
parameter b for Titan are greater than those for Zenith 6000.

It is also seen that all constitutive parameters for PSHQ9, except r2 and le, are
larger than those for PI-14-5CN. We remind that PSHQ9 is a main-chain LCP,
whereas PI-14-5CN is a side-chain one. The flexible main chain in PI-14-5CNmakes

Table 11.2 Viscoelastic parameters for industrial and model LCPs.

LCP Titan,
340 �C

Zenith 6000,
360 �C

PSHQ9
temperatures (�C)

PI-14-5CN
temperatures (�C)

70 80 90 130 140 150

Relaxation time, q0 (s) 0.3 2.5 1.5 0.8 0.28 3 2.8 2.2
Viscosity, g0 (kPa s) 0.34 1.55 200 9 2.9 220 70 10

Table 11.1 Parameters of anisotropy and tumbling for industrial and model LCPs.

LCP a b r1 r2 le lv

Titan, 340 �C 0.2 0.5 0.15 0.222 2.2 30
Zenith 6000, 360 �C 4 0.1 0.55 0.367 1.01 50
PSHQ9, 70, 80, 90 �C 0.7 1.3 0.5 0.9 2 12
PI-14-5CN, 130, 140, 150 �C 5 8 0.7 0.533 2 18
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it much easier to relax and decouple mesogens from themain chain. In contrast, the
main-chain LCP (PSHQ9) possesses mesogens in the main chain, which are tightly
packed together and in turn have relatively low mobility and capability of relaxation.

11.4
Results of Simulations

11.4.1
Simulations of Steady Shearing Flows

Figure 11.4 demonstrates the experimental data and fitting curves for effective
viscosity g, shear stress s12, and first normal stress differenceN1 versus shear rates _c
for Titan at 340 �C.

Here, the constitutive parameters were found by the curve fitting procedure. As
seen, there is a good agreement between simulations and experimental data.
However, the fitting curve for apparent viscosity g does not exhibit the general
three-region flow curve [8]. It is probably because only a narrow part of region II has
been presented in the experimental data. The region I should appear at very low shear
rates _c if there is a texture, which the current monodomain approach is incapable to
describe. It should also be noted that the first normal stress difference is positive in
the range of shear rates investigated.

Figure 11.5 demonstrates the flow curve for Zenith 6000 at 360 �C, presented as
the logarithmic plot of apparent shear viscosity g versus shear rate _c.

In Figure 11.5, the experimental results are shown by dots and the fitting curve by
dashed line.Unfortunately, the normal stress data for this polymerwere not reported.
It is unclear whether the experimental plot is related to the transition from the region
I to region II in the general three-region viscosity plot.

Figure 11.4 Experimental data for apparent viscosity g (.), shear stress s12 (~), and the first
normal stress differenceN1 (&) versus shear rate _c for Titan at 340 �C. Fitting curves are shown by
solid line for g, short dash line for s12, and by long dash line for N1.
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Figure 11.6 shows steady shearing experimental data for PSHQ9 at different
temperatures in the nematic region. Presented here are the logarithmic plots for
apparent viscosity g and the first normal stress differenceN1 versus shear rate _c. The
viscosities of both experimental data and fitting curves exhibit regions II and III, and
the Newtonian behavior becomes obvious as the temperature increases.

Figure 11.6 Experimental data for
dependences of apparent viscosity g (open
symbols) and first normal stress difference N1

(filled symbols) on shear rate _c for PSHQ9 in
steady flow at different temperatures in the
nematic region: (s, .) 130 �C; (~, ~) 140 �C;

(&, &) 150 �C. The fitting curves for plots of
log g versus log _c are shown as 130 �C (solid
line), 140 �C (long dashed line), and 150 �C
(short dash line). The fitting curves for log N1

versus log _c use the same curve symbols.

Figure 11.5 Experimental data (dots) and fitting curve (dashed line) for the logarithmic plot of
viscosity g versus shear rate _c for Zenith 6000 at 360 �C.
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Both experimental and simulated data for N1 are positive over the range of shear
rates investigated. The viscosity of PSHQ9exhibits a shear thinning at very low values
of _c, a Newtonian behavior at its intermediate values, and then, again, a strong shear
thinning behavior at higher values of _c. However, as the temperature increases from
130 to 140 �C, the region I in the g plot for PSHQ9 becomes very weak, and when the
temperature increases further to 150 �C, the region I disappears. Since PSHQ9 is a
polydisperse polymer, the low molecular fraction of PSHQ9 can transform into the
isotropic state, forming a biphasic state before reaching TNI (about 160 �C). Thus,
the nematic property of PSHQ9 becomes progressively weaker as the temperature
approaches TNI. In such situations, region I in the g plot for PSHQ9 may not be
observable.

Figure 11.7 shows the logarithmic plots of steady shearing experimental data (dots)
for g and N1 versus _c for PI-14-5CN at different temperatures. The corresponding
fitting curves are shown by lines. It is seen that the fitting curves for both g andN1 are
in excellent agreement with experimental data, being better than those for PSHQ9.
The viscosity of PI-14-5CN exhibits a Newtonian behavior at low _c values and then
shear thinning behavior, while the first normal stress difference N1 is positive over
the entire range of _c tested at three temperatures in the nematic region. The absence
of region I in the g plots might be due to the fact that PI-14-5CN is a side-chain LCP,
and its nematic behavior is not sufficiently strong. The above observation supports
the view [7] that region I in thegplots for various LCPs is associatedwith the existence
of domain structure.

Figure 11.7 Experimental data for
dependences of apparent viscosity g (open
symbols) and first normal stress difference N1

(filled symbols) on shear rate _c for PI-14-5CN in
steady flow at different temperatures in the
nematic: (s, .) 70 �C; (~, ~) 80 �C; (&, &)

90 �C. The fitting curves for plots of log g versus
log _c are shown as 70 �C (solid line), 80 �C (long
dash line), and 90 �C (short dash line). The
same curve symbols are used for fitting plots of
log N1 versus log _c at different temperatures.
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11.4.2
Simulations of Transient Start-Up Shear Flows

In the following discussion, we will use normalized stresses denoting by additional
þ symbol the time-dependent shear andnormal stresses. The absence of þ symbols
indicates the stresses in steady flow.

The appearance of multiple overshoots in the first normal stress difference in
transient shear flow can be qualitatively explained using molecular theory by
Marrucci andMaffettone [9]. This monodomain theory is based on the Maier–Saupe
potential, which is valid for low molecular weight thermotropic liquid crystals.
Therefore, it may not be suitable for semiflexible main-chain LCP exhibiting
flow-aligning behavior. On the other hand, the Larson–Doi mesoscopic model [10]
describes the evolution of texture based on some experimental observations of
decrease in domain size with increasing shear rate and growing domain size upon
cessation of flow. Although the Larson–Doi mesoscopic model [10] for LCPs
qualitatively predicts the experimental observations for the time evolution of shear
sþ ( _c,t) and normal N þ

1 ð _c; tÞ stresses in start-up flows, the predicted magnitude of
sþ ( _c,t) is lower than that of N þ

1 ð _c; tÞ=N1. This contradicts the experimental
observations [20]. Furthermore, the models [9, 10] predict a much shorter transient
time (strain) for sþ ( _c,t) and N þ

1 ð _c; tÞ variations compared to experimental data.
The inadequacy of the Larson–Doi model to accurately predict the time evolution of
N þ

1 ð _c; tÞ in transient shear flow can be explained by the presence of long flexible
spacers and bulky pendent side groups in LCPs. Both the longflexible spacers and the
bulky pendent side groups in LCP macromolecules might directly suppress molec-
ular rotations and perhaps, collective molecular rotations, or director tumbling.
Although the Larson–Doimesoscopicmodel is the only existingmodel that describes
polydomain texture and distortional elastic effects, the model is based on Leslie–
Ericksen equations, which is appropriate either for low molecular liquid crystals or
for lyotropic systems that have short relaxation times.

It seems that the majority of thermotropic LCPs exhibit flow-aligning behavior.
Thus, to describe the experimental observations for these polymers, the general
viscoelastic nematodynamic theory [16, 17] is used in our simulations with aligning
assumption.

Figures 11.8 and 11.9 demonstrate the start-up shear flow at _c ¼ 6 s�1 for Titan at
340 �C. Figure 11.8 shows the evolution of normalized shear stress sþ ( _c,t)/s with
strain ( _ct) and Figure 11.9 the normalizedfirst normal stress differenceN þ

1 ð _c; tÞ=N1.
Here, the experimental data are denoted by dots and simulated curves by dashed line.
As seen, both the shear stress and the first normal stress difference display large and
broad overshoots at _ct � 50. SinceTitanhas very rigidmacromolecules, the evolution
of texture is slow, and in turn the overshoot occurs at high value _ct.

Figure 11.10 demonstrates the evolution of shear stressswith strain ( _ct) forZenith
6000 at 360 �C in start-up shearflow at _c ¼ 2 s�1. The experimental data are shownby
dots and simulated curve by dashed line. The data for shear stress initially exhibit a
small overshoot at _ct � 4 and a large and broad overshoot at _ct � 76. In the simulated
curve, a small overshoot occurs at _ct � 16 and a large overshoot at _ct � 50.
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Figures 11.11 and 11.12 describe the evolution of normalized shear stress
sþ ( _c,t)/s and first normal stress difference N þ

1 ð _c; tÞ=N1 with strain _ct for PSHQ9
in start-up shear flow. The flow temperature was 130 �Cand shear rate was _c ¼ 1 s�1.
The experimental data are shown by dots and simulated curves by dashed line.
The simulated overshoots for shear and normal stresses are the same as those for
experimental data, but the overshoots in calculated curves occur at a relatively low
_ct and are very narrow. One can attribute such large values of sþ ( _c,t)/s ratios,
characteristic for liquid crystalline polymers, to the existence of a lot of polydomains
in the nematic state when the start-up flow initiated. Recall that the theory used for
simulation utilizes monodomain approach, whereas PSHQ9 exhibits polydomains
in nematic state in start-up flow. Thus, deviation of simulated results from exper-
imental data seems reasonable.
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Figure 11.9 The evolution of normalized first normal stress differenceNþ
1 ð _c; tÞ=N1 with strain ( _ct)

for Titan at 340 �C in start-up shear flow at _c ¼ 6 s�1; notations are the same as in Figure 11.8.
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Figure 11.8 The evolution of normalized shear stress sþ ( _c,t)/swith strain ( _ct) for Titan at 340 �C
in start-up shear flow at _c ¼ 6 s�1: experimental data are shown by dots and simulated curve by
dashed line.
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Figures 11.13 and 11.14 describe, respectively, the evolution of normalized shear
stress sþ ( _c,t)/s and first normal stress difference N þ

1 ð _c; tÞ=N1 with strain _ct for
PI-14-5CN at 70 �C in start-up shear flow at _c ¼ 1 s�1. In these figures, experimental
data are shown by dots and fitting curve by dashed line. The experimental data for
both the shear and normal stresses exhibit large overshoots and then decay to steady
values. The simulated evolution of normalized shear stress with strain is fitted well
enoughwith experimental data, whereas there is a relatively large difference between
the simulated curve for normal stress and experimental data. This once againmay be
attributed to simulating the polydomain LCP using monodomain theory.

Compared to Figures 11.11 and 11.12, in start-up shear flow the overshoot peak for
normal stress occursmuch sooner in PI-14-5CN than in PSHQ9, while the overshoot

Figure 11.11 The evolution of normalized shear stress sþ ( _c; t)/s with strain ( _ct) for PSHQ9 at
130 �C in start-up shear flow at _c ¼ 1s�1: notations are the same as in Figure 11.8.
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Figure 11.10 The evolution of shear stress (s) with strain ( _ct) for Zenite 6000 at 360 �C in start-up
shear flow at _c ¼ 2 s�1: notations are the same as in Figure 11.8.
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peak in shear stress occurs very quickly in both PI-14-5CN and PSHQ9. The
overshoot peak value of fitted normal stress for PSHQ9 is slightly larger than that
of PI-14-5CN, while the overshoot peak value of shear stress for PSHQ9 is about
three–four times greater than that of PI-14-5CN.Thus, the transient responses infirst
normal stress difference and shear stress for side-chain LCP, PI-14-5CN are quite
different from those for main-chain LCP, PSHQ9. In the latter case, 5CN-COOH
mesogens are grafted onto the coil-like PI forming a polymer backbone through five

Figure 11.13 The evolution of normalized shear stress sþ ( _c,t)/s with strain ( _ct) for PI-14-5CN at
70 �C in start-up shear flow at _c ¼ 1 s�1: notations are the same as in Figure 11.8.

Figure 11.12 The evolution of normalized first normal stress difference Nþ
1 ð _c; tÞ=N1 with

strain ( _c) for PSHQ9 at 130 �C in start-up shear flow at _c ¼ 1 s�1: notations are the same as in
Figure 11.8.
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methylene groups asflexible spacer. So, themotions of the polymer backbone and the
5CN-COOHmesogens in PI-14-5CN may be regarded as being partially decoupled,
making the 5CN-COOHmesogensmobile during shearflow [20]. Furthermore, each
mesogen grafted onto the backbone of PI-14-5CNmaymove or orient, upon start-up
of shear flow, slightly depending on other mesogens. On the other hand, the
mesogens in PSHQ9 are directly linked to the polymer backbone, making motions
of the mesogens and backbone of PSHQ9 strongly coupled during shear flow. Thus,
eachmesogen in PSHQ9 cannot act as independent, that is, all mesogens in PSHQ9
act in start-up of shear flow collectively or cooperatively.

11.4.3
Simulations of Relaxation after Cessation of Steady Flow

Figures 11.15 and 11.16 show the relaxation of shear stress s12 and first normal stress
differenceN1, respectfully, for Titan at 340 �Cafter cessation of steadyflowwith shear
rate _c ¼ 6 s�1. Here, experimental data are shown by dots and fitting curve by dashed
lines. The values of both s12 andN1 during relaxation drop abruptly and reach zero at
the time of around 4 s. The simulated relaxation curve for s12 has an excellent
agreement with the experimental data, but this is not the case for N1 when t> 4 s.
This disagreement is seemingly attributed to the experimental error because the final
value of N1 during relaxation should reach zero.

Figure 11.17 presents the relaxation of normalized (a) shear stress and (b) the first
normal stress difference upon cessation of steady shear flow at _c ¼ 0:5 s�1 for
PSHQ9 at 130 �C. Here, experimental data are shown by dots and fitting curve by
dashed line. The normalizing values s0 andN1;0 are the steady values of shear stress

Figure 11.14 The evolution of normalized first normal stress difference Nþ
1 ð _c; tÞ=N1 with strain

( _ct) for PI-14-5CN at 70 �C in start-up shear flow at _c ¼ 1 s�1: notations are the same as in
Figure 11.8.
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and the first normal stress difference, respectively, just prior to flow cessation.
As seen, the normalized shear stress approaches zero at tR > 7 s, whereas the normal
stress reaches zero when tR > 15 s.

As the shear rate increases from _c ¼ 0:5 to 1.0 s�1, as indicated in Figure 11.18, the
relaxation rate of shear stress and first normal stress difference is getting a little
slower.

Figure 11.19 demonstrates the relaxation of (a) normalized shear stress and (b) the
first normal stress difference upon cessation of steady shear flow at _c ¼ 0:5 s�1 for
PI-14-5CN at 70 �C. Experimental data are shown by dots and the fitting curves by

Figure 11.16 Relaxation of first normal stress difference N1 for Titan at 340 �C upon cessation of
steady flow at shear rate _c ¼ 6 s�1: notations are the same as in Figure 11.15.

Figure 11.15 Relaxation of shear stress s12 for Titan at 340 �C upon cessation of steady flow at
shear rate _c ¼ 6 s�1: experimental data are shown by dots and simulated curve by dashed line.
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dashed lines. Compared to Figure 11.15, the relaxation rates of shear stress and first
normal stress difference are much faster for PI-14-5CN than for PSHQ9. This
difference indicates how fast the recovery of the domain texture in side-chain LCP,
PI-14-5CN is, after cessation of shear flow, compared to that in main-chain LCP,
PSHQ9. The 5CN-COOH grafted on the coil-like backbone of PI, forming PI-14-
5CN, might be very mobile and thus would relax rather quickly upon cessation of
shear flow, compared tomesogens that are linked directly to the polymer backbone of
PSHQ9.

As expected and seen from Figure 11.20, the relaxation of shear and normal
stresses for PI-14-5CN are getting slower as _c increases from 0.5 to 1.0 s�1.

Figure 11.18 Relaxation of normalized (a) shear stress, s�ð _c; tÞ=s0, and (b) first normal stress
difference, N�

1 ð _c; tÞ=N1;0, upon cessation of steady shear flow at _c ¼ 1 s�1 for PSHQ9 at 130 �C:
notations are the same as in Figure 11.17.

Figure 11.17 Relaxation of normalized (a)
shear stress, s�ð _c; tÞ=s0, and (b) first normal
stress difference,N�

1 ð _c; tÞ=N1;0, upon cessation
of steady shear flow at _c ¼ 0:5 s�1 for PSHQ9
at 130 �C: experimental data are shown by

dots and simulated curves by dashed lines. s0
and N1;0 are the steady shear stress and first
normal stress difference just prior to flow
cessation.
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11.4.4
On the Time-Temperature Superposition in Weakly Viscoelastic Nematodynamics

During the simulation of PSHQ9 and PI-14-5CN, the constitutive parameters a, b,
r1, r2 characterizing the anisotropy of nematics, as well as the tumbling parameters
le, lv were assumed temperature independent. Thus, the only two parameters,
characteristic relaxation time q0 and viscosity g0, were assumed changing with
temperature. In this case, the general equations of weak viscoelastic nematody-
namics and their simple shearing specification (11.2) and (11.4) allow the scaling
transformation:

sij ! ŝij ¼ sijq0=g0; t! t̂ ¼ t=q0; _c! _̂c ¼ _cq0: ð11:10Þ

The transformation (11.10) demonstrates the time–temperature superposition
scaling. Indeed, when the nondimensional variables denoted in (11.10) by overcaps

Figure 11.20 Relaxation of normalized (a) shear stress, s�ð _c; tÞ=s, and (b) first normal stress
difference, N�

1 ð _c; tÞ=N1;0, upon cessation of steady shear flow at _c ¼ 1 s�1 for PI-14-5CN at 70 �C:
notations are the same as in Figure 11.17.

Figure 11.19 Relaxation of normalized (a) shear stress, s�ð _c; tÞ=s0, and (b) first normal stress
difference,N�

1 ð _c; tÞ=N1;0, upon cessation of steady shear flow at _c ¼ 0:5 s�1 for PI-14-5CN at 70 �C:
notations are the same as in Figure 11.17.
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are introduced in Eqs. (11.1) and (11.2) or in (11.4) and (11.5), these equations will
describe isothermal, generally nonsteady shearing for various constant temperatures
as temperature-independent curves. This is the time–temperature superposition
principle for weak viscoelastic nematodynamics. Because in our modeling the fitted
parameters of anisotropy were temperature independent, the time–temperature
superposition principle does not need to be specially checked. There are no
fundamental arguments, however, why it should be valid.

11.5
Conclusions and Discussions

The objective of this workwas to analytically and numerically describe the rheological
properties of thermotropic LCPs using recently developed thermodynamic mono-
domain theory of weakly viscoelastic nematodynamics [22, 23] and simulate the
steady and unsteady shearing data. The Leslie–Ericksen theory, developed for low
molecular weight liquid crystals, and the Doi theory for lyotropic LCPs are not
suitable for description of flow properties of thermotropic LCPs. Therefore, with the
use of these theories is difficult, if possible, to predict the rheological behaviors of
LCPs in general. In contrast, viscoelastic nematodynamics proposes a new general
approach to circumvent this problem. It should also be noted that in spite of a large
number of constitutive equations proposed for many years for LCPs, no attempt
for simulations of nonsteady shearing has been proposed for any type of LCPs.
Moreover, there has been no theory to date that could be able to describe the
complicated behavior of thermotropic LCPs.

In the absence of magnetic field, the theory exhibits viscoelastic transversally
anisotropic behavior with symmetric stress tensor and orientation of director caused
only by flow. Thus, this simplified approach has led to a closed set of two coupled
anisotropic viscoelastic equations of quasilinear type for evolution of director and
extra stress; the anisotropic properties in the set being described by viscoelastic
evolution equation for director. Although this theory has been developed for low
enough value of Deborah number, it is still possible to compare the simulations with
experimental data.

Eight parameters are involved in the theory. They are three viscosities, three elastic
module, and two tumbling (elastic and viscous) parameters. These constitutive
parameters established for steady shearing were used for calculating the evolution
of shear stress and first normal stress difference with corresponding evolution
of director, during relaxation and start-up flow. The problem with initial conditions
for director in start-up flow is resolved in the following way. We preliminarily fitted
the experimental data for stresses in steady shearing with following adjustment of
parameters for also describing the relaxation of stresses. In this case, parameters of
evolution equation for director, along with its orientation in steady shearing, were
also established. The orientation of director during stress relaxation was then easily
calculated and itsfinal orientation at the rest state was taken as initial value of director
for the start-up flow.
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The rheological shearing data for steady and transient shear flows, and relaxation
after cessation of shear flow, were chosen for two industrial LCPs, Titan and Zenite
6000, as well as for two model LCPs, a main-chain LCP (PSHQ9) and a side-chain
LCP (PI-14-5CN). This choice is justified by the most carefully made rheological
measurements and their completeness. Specifically, Titan is random copolyester of
ethylene-terephthalate and hydroxybenzoic acid with twomethylene flexible spacers,
whereas Zenite 6000 is a fully aromatic copolyester with kinks, Zenite 6000 is much
more rigid than Titan. The absence of region I in the apparent shear viscosity plots
might be due to the fact that PI-14-5CN is a side-chain LCP, and its nematic properties
might not be sufficiently strong. Mesogens in the main-chain LCP PSHQ9 are
directly linked to the polymer backbone, making motions of the mesogens and
backbone of PSHQ9 strongly coupled during shear flow.

The most egregious deviations of our simulations from experimental data are
observed for transitional start-up shearing flows. There might be several reasons
for that.

The first is the weak viscoelasticity approach employed in the theory. For common
polymers with long flexible chains, the weak viscoelasticity simply means the
smallness of the Deborah number, De ¼ q _c < 1 where q is the relaxation time
averaged over the relaxation spectrum. In case of anisotropic LCPs where at least two
relaxation times exist, the definition of Deborah number is not clear.

The second is how the fitting procedure was utilized in this chapter. We remind
that the eight parameters were fitted to describe well enough the steady shearing data
with adjustment for relaxations, for both shear and normal stresses and for each of
four LCPs of different types.We use forfitting an exhausted computerized procedure
of trials and attempts. Yet, we could not find the objective criterion for the quality of
this fitting procedure.

The third and perhaps the more physically feasible reason for deviations is the
inadequacy between the theory and the testedmaterials (or experimental procedures)
selected for simulations. Yet, we should state that thematerials and the experimental
data chosen present the best choice made from a big pool of data. Simply, the better
data do not exist.

The problemwith start-up simulations of industrial LCPs Titan and Zenith 6000 is
rather procedural. In order to obtain reliable data under relatively short operational
time constraint (totally about 15min) preventing the samples from chemical degra-
dation, a high-level preshearing procedure has been used [49]. Right after short
relaxation period, the rheological measurements started, which include transient
start-up flow, steady shearing and relaxation from the steady shearing level. To repeat
the experiments, a fresh sample should be used. Using this procedure, the data
showed to be reproducible. The problem with this procedure is that preshearing
steady flow with following relaxation was not properly recorded. So, our way of
establishing initial value n1r of director in start-up flow is questionable for those
materials.

Even worse, the complicated problem of polydomain behavior of model LCPs,
PSHQ9 and PI-14-5CN, used in Ref. [54], cannot make reliable our simulations.
Simply speaking, the monodomain theory we used is generally not suitable for the
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description of polydomain model LCPs. The polydomain effects are especially
pronounced at the initial stage of start-up flow when the texture existed at rest is
destroyed by the growing stresses. Because this initial stage may take a lot of time,
developing the steady flow might be much longer than for the monodomain case.
In addition, the procedure of finding initial value for director, established in our
simulations, has nomuch sense in the polydomain case.On the other hand, in strong
enough steady shearing flows and relaxation after their cessation, the polydomain
effects are mostly insignificant. That is perhaps why the steady shearing and main
relaxation processes (up to the beginning of the texture formation) have been well
simulated using our monodomain approach. It is difficult to evaluate these effects
without a good theory, which does not exist. So, the polydomain extension of the
theory has to be developed to properly describe these data. Another way to rectify this
problem is to prepare the monodomain samples. Although this is feasible, it needs
a lot of experimental effort.

Nevertheless, with all these shortcomings, the simulations have demonstrated that
these are at least in a semiquantitative agreement with the chosen experimental data.
Moreover, it has been found that simulations of various LCPs were in accord with
their different structural features.
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Index

a
ab initio method 62
active centers
– average lifetime 112
– concentration 102f.
– long-living 98
– short-living 108, 112
– transfer 101
Adams–Basforth formula 12
Adams–Moulton formula 13
adsorption theory 250, 266ff.
– competitive 279ff.
– equilibrium 284
– third-virial coefficient 296
advection equation 8
all-atom force-field 345
all-atomistic models 60f., 345
angle 63, 67, 345, 348f.
– bending 345, 348
– dihedral 348
– torsional 345, 349
Arrhenius model 146
atomic charges 63ff.
atomistic models 81f., 348f., 352
autocorrelation function 84

b
Babuska–Brezzi condition 391
Baker–Campbell–Hausdorff formula 319
basal plane spacing 70ff.
bead-rod chain 344
bead-spring model, see Lennard–Jones
bending
– constant 409
– force 409ff.
– stiffness 425
biomimetic flagellum 405, 408, 414ff.
Biot number 138, 140

Bjerrum length 248, 251, 271, 278, 284, 286,
287ff.

blob model 350f.
blow molding 176ff.
– injection-stretch 178
– thickness distribution 179, 181
Boltzmann
– constant 6, 47, 202, 204, 248, 251, 323, 438
– inversion method 198, 349
– probability distribution 52
– weight 214, 216f.
bond
– equilibrium length 63, 67, 252, 259
– gauche 447
– multiplicities 476ff.
– stretching 252, 345
bonded parameter 67
bond-fluctuating model (BFM) 43f., 202f.,

215, 221, 240
bone effect, see edge bead effect
Born model 64
bottom-up approach 43f.
boundary conditions (BCs) 128f., 134, 137ff.
– artificial 139
– computational 139
– Dirichlet 327, 386
– displacement 386, 393
– flow 139, 346
– free 476
– Jacobians 388
– Neumann 387
– no-slip 412f., 420
– periodic 252, 319, 475
– specific 315
– thermal 139
– traction 387
boundary element method (BEM) 129
Bragg–Williams theory 434
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Brent�s method 327
Brownian motion 74
Brownian dynamics 214, 216, 241, 253
Broyden�s method 327
bubble
– blow-up ratio 173
– dimension 174ff.
– draw ratio (DR) 173f.
– long-neck blown-film 177
– short-neck blown-film 177
buffer layer 25, 29
bulk modulus 392f.
bursting phenomena 4

c
caging effect 467
calendering 155ff.
capillary number 137, 158
Carreau model 131, 146, 150, 171
cation exchange-capacity (CEC) 61, 68ff.
Cayley–Hamilton 17
cell model 437ff.
channel wall
– boundary 26
– friction 25
– law-of-the- 4
– non-penetration condition 13
– scales 6f.
Chebyshev
– modes 12, 14
– orthogonal polynomials 11, 15
Cholesky decomposition 16
classical fluid dynamics approach 178
cluster
– binary integral 264
– crystals 226, 241
– infinte 462
– L-type 486
CNT (carbon nanotube) 79ff.
– functionalization 80
– single-walled (SWCNT) 85
coarse-grained models 39f., 198ff.
– soft 220ff.
coarse-grained
– parameters 198ff.
– sheet 44ff.
– variables 347ff.
coextrusion 150ff.
– multilayer simulations 153
– wire-coating 165ff.
coherent structures 4f., 23
computational
– cost 28, 39, 62
– domain size 4, 15f., 26, 28f.

– efficiency 17
– mechanics 385ff.
– polymer processing 127ff.
– rheology 131ff.
– scales 6f.
computational viscoelastic fluid

mechanics 1ff.
concentration profile calculations 15
condensation model 249
conductivity 83f., 84, 130
confinement hypothesis 460ff.
conformation tensor
– close-to-maximum 24
– decomposition 16
– eigenvalues 27
– models 344
– positive defniteness 15ff.
conservation equations 130, 136, 138
– energy 130
– mass 130, 140
– momentum 14, 130, 136, 140
consistency index 131
constitutive equations 7f., 130ff.
– anisotropic 505
– macroscopic 344, 347
– rheological 130f.
– viscoelastic 132f.
constitutive models
– differential 142f., 165
– integral 142f., 148, 151, 165, 171, 178, 187
contact constraints 394ff.
continuous stirred tank reactors, see reactor

continuum-based micromechanical
models 80

Coulomb
– energy 252, 269
– friction 395
– strength parameter 251, 259, 275ff.
counterions 248ff.
– adsorption 271, 274, 278, 299, 321ff.
– bridging, see ion-bridging
– cloud 254
– condensation 249f., 257, 269
– distribution 252f.
– divalent 249f., 254f.
– monovalent 251, 254ff.
– multivalent salt 249, 255
– trivalent 255f.
– valence 249, 259
– worm 254, 256ff.
coupling parameter 228
covalent bonding 42, 47, 64, 67f., 86
Crank–Nicholson equation 315
Cross model 131
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crossover function 237
crystal
– Einstein 227f.
– energy 448
– glassy plastic 458
– lattice position 227
– phase (CR) 437, 442, 450
crystallization 443, 452
– fluid of segments 226
– hard condensed matter 227, 229
– melt 175, 181
– slow 437
cut-off parameter 254

d
damping function, see strain-memory function
Deborah number 136, 502, 523
Debye–Hückel (DH)
– potential 321, 326, 330
– theory 247, 263, 271, 289, 337
Debye inverse length 326f.
Debye screening length 248, 250, 264, 273,

275, 289
defect
– charge 68
– crystal 442
– glass 441
– inorganic components 63
deformation mode 391, 393
density
– microscopic 205, 210, 220
– molecular 200
– polymer matrix 55, 58
– sheets 57, 59
– single-chain 208, 210, 214
density profile 51
– clay 54
– longitudinal 57f.
– platelets 53, 58
– solvents 53f.
– transverse 54
dielectric constant 248, 250ff.
– bulk 248, 274, 286
– inhomogeneous 314, 318
– local 286, 324
– position-dependent 311
– space-dependent 316
– space-independent 316
dielectric mismatch 248, 250, 271,

274f., 286
– parameter 280, 282f.
diffusion 5, 25, 43
– anomalous 45
– constant 45, 74

– modified diffusion equation 315
– self-diffusion coefficient 201
diffusivity
– artificial 5, 10, 16, 27f.
– low-order approximations 27
– numerical 8f., 16, 26, 28
dipole moments 65
Dirac d-function 94, 102
direct numerical simulations (DNS) 3ff.
– fractional step method 11
– fully implicit scheme 13f., 26f.
– influence matrix formulation 11ff.
– Newtonian 18ff.
– numerical methods 10ff.
– numerical parameters 26ff.
– semi-implicit/explicit scheme 11f., 26f.
– spectral methods 6, 10f., 27
discrete element method 144
discrete lattice approach 42f., 46
discretization
– chain 241
– integration path 233
– time 94
displacement approximations 390
dispersion 39
– homogeneous 61
– isotropic 56
– layered silicates 61
– platelets 40f., 50ff.
– probing 51f.
dissipation 25, 48
dissipative particle dynamics 241
Doi–Edwards–deGennes reptation

theory 345, 352, 499, 502f.
DPD model 225f.
drag reduction (DR)
– additive-induced 3, 21
– evaluation 17ff.
– maximum drag-reducing asymptote

3, 10
– polymer-induced 1f., 19
– surfactant solution 21
– thickening-driven 25
– turbulent 2f.
draw
– -down region 163
– ratio 163, 173f.
dumbbell model 344f.
dynamic density functional theory 235
dynamics
– intermediate modes 49
– long-time 45, 48f., 345
– multiscale 41, 49, 346f.
– postreptation 46
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– reptation 46, 49, 345, 352, 499, 502f.
– sheet 47ff.
– short-time 45f., 48f.

e
eddies 23ff.
edge bead effect 170, 173
Edward�s formulation 272, 303
effective medium approximation 52
eigenvalue 15, 27, 318, 477f.
eigenvector 9, 15, 317f., 477f.
Einstein
– crystal 227f.
– model 438
elasticity 128
– bending 407f.
– hyper- 181
– molecular 501
– spring strength 6
elasticity theory 407ff.
elastohydrodynamics 407ff.
electron
– affinities 64
– deformation density 64, 65
– valence electron density 64
electronic structure methods 62
elongation
– parameter 134
– planar 346
– shear 346
energy
– activation 132
– atomization 65
– attractive interaction 54
– cleavage 65f., 76f.
– cohesive 62
energy gap model 434f.
energy
– ground state 482f.
– interface 62
– ionization 65
– photon 76
– surface 76
energy state
– all-anti 70, 79f.
– all-trans 70
entropic
– constraints 55
– -induced layering 59
– trapping 56f.
entropy
– basin 438, 440, 486f.
– chain configurational 48, 249f., 262, 331,

335, 442, 444, 461f., 484

– class- 461f.
– communal 440f., 446, 448f., 458ff.
– crisis 434f., 445, 449, 457, 465, 483
– equilibrium 443
– excess 449, 456, 479f.
– extension 446
– function 444, 446f.
– group- 462
– microcanonical configurational 439
– negative 483, 491f.
– residual 438, 487
– spin system 479
– structural 57, 460
– time-dependent 436
– total 442, 446, 463
– translational 197, 250, 259, 262, 269, 278f.,

282, 284, 286, 291, 322f.
equilibrium liquid (EL) 434, 446, 450
equilibrium states (EQS) 433, 435f., 442
Ewald parameter 253
exfoliation 40, 50ff.
– long-time 40
– probing 51f.
expansion
– coefficient 466
– high-temperature 475
– one-loop 320f.
– Taylor 321
extensibility
– finite chain 9
– maximum 22f.
– parameter 4, 9, 22
– polymer chain 9
extension
– biaxial 169, 181
– planar 170
– uniaxial 170
external ordered field 229f., 235
external potential dynamics 235
extrudate
– distortion 153
– swell region 163
– swelling 128, 149f., 156
extruder
– die 146
– flow inside the extruder 143ff.
– flow outside the extruder 149f.
– output 144
– solids-conveying zone 144
– simulation 144ff.
– single-screw 144
– twin-screw 144ff.
– zones 144
extrusion 128, 143ff.
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– die design 153f.
– post- 154f., 186

f
Faxén�s theorem 413f.
fiber spinning 163ff.
field-theoretic model 201ff.
– self-constistent, see SCFT
film blowing 173ff.
film casting 169ff.
finite difference formulation
– high-order 16
– low-order 16
– MINMOD 10
– special upwind 10, 16, 137
finite difference method (FDM) 128, 315f.,

327
finite element method (FEM) 128f., 387f.
– 2D code 129, 140f., 153
– 3D code 129
– frictional contact 385
– mixed 392
– nonlinear 386ff.
– primitive variable approach 140
finite extensibility nonlinear elastic model

(FENE) 3, 344
– FENE-P (Peterlin approximation model) 3,

5, 9, 14f., 19, 21ff.
– FENEP-PB 22
finite volume method (FVM) 129
Flory expression 106, 112, 114, 448ff.
Flory–Huggins
– approximation 448
– parameter 200
Flory�s chi parameter 309, 323
flow
– 2D problem 141f.
– cessation of steady 518ff.
– coextrusion 150ff.
– contraction 146ff.
– creeping 136
– fountain 184
– inertialess 136
– inside the extruder 143ff.
– instabilities 128, 158, 161f.
– outside the extruder 149f.
– secondary 147
– simulations 146ff.
– steady-state 83, 138, 143
– three-region curve 504
– time-averaged fluid 421
– unsteady-state 143, 176ff.
flow patterns
– axisymmetric 141

– calendered rigid PVC 157f.
– coextrusion dies 154f.
– deformation rates 1
– injection filling 184
– planar 141
– pulsating 149
– radial 1
– time-inverted 405
fluctuation constraints 52
fluctuation–dissipation theorem 253
fluid
– compressible 210ff.
– incompressible 130, 305
– inelastic 158, 161
– inertia 147
– multimode 143
– Newtonian 4, 18f., 147, 149, 161f.,

165
– non-Newtonian 132, 147, 187
– of segments 210f.
– power-law 160
– quiescent 347
– structure-forming 241
force fields 62ff.
– AMBER 62f.
– CHARRM 62f.
– COMPASS 62f.
– current 67
– CVFF 62f., 68
– OPLS-AA 62f.
– parameters 63
– PCFF 62f., 68
– UFF 62f.
Fourier
– double series 11
– modes 11f., 15, 227
– space 320
Fourier transform 67, 226, 236, 319f.
– fast 319f.
– inverse 319
Frank
– elasticity 497, 501f.
– modulus 502
– theory 497
free energy
– communal 474
– Debye–Hückel electrostatic 270
– Gibbs 440, 464
– glass 458
– grain boundaries 238
– hard crystal 227
– Helmholtz 238, 439ff.
– homogeneous melt 227
– minimizing prinziple 434, 472
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– polyions 249
– profile 284ff.
– self-assembled systems 227ff.
– singular 484f.
– stretching 409f.
– T-junctions 238f.
– translational 249
free volume theory 465f.
Frenkel–Ladd method 228
friction
– coefficient 253
– factor 18
– force 411f.
– velocity 6
friction coefficient 351, 406f., 410, 415

g
Galerkin approximation 94, 387
gallery spacing 70
gauche conformations 70, 73
Gaussian
– functional integrals 309f., 321
– numerical integration 388
– size 278f., 290, 336
– statistics 279
Gaussian chain model 211f., 223, 325f.
– non-Gaussian architectures 213ff.
gelation 113, 122
Gibbs–Di Marzio theory 447ff.
Giesekusmodel 4f., 9f., 16, 22, 25, 133, 170f.,

344
Giesekus molecular extensibility

parameter 15
Ginzburg number 210, 223
glass
– fragility 453
– ideal glass singularity 484ff.
– inherent structure (IS) 460
– network 453
– phenomenology 452f.
glass formers 433, 435f.
– long-time stability 436f., 446
– modeling 446ff.
glass transition 433ff.
– binary mixture 480ff.
– ideal (IGT) 441, 445, 452f., 454, 457ff.
– order parameter 485f.
– temperature 180, 436, 452
governing conservation equations 6, 130
Graetz number 137
grafting density 81
Green–Kubo relation 84
Green�s function method 11, 13, 387, 407,

412f.

Gujrati–Goldstein
– bounds 450
– excitations 450
– free energy 450

h
Hadamard instability 15
Hamiltonian 8, 211, 305, 308, 311, 324
– Edwards 272, 303
– field-theoretic 211, 217
– microscopic 347
HDPE, see polymer melt
heat
– capacity 130, 437, 441, 456ff.
– current correlation functions 84
– flow 83
– loss 343
– transfer 137f.
Helmholtz equation 12
Hook�s law 390, 392
holonomic constraints 463
Hubbard–Stratonovich transformation 201,

302, 309ff.
hybrid approach 44
hydrodynamic
– drag force 344
– elastic filaments 405ff.
– friction 406, 410, 412ff.
– resistance matrix 344
hydrogen bond 68, 70
hyperdiffusion equation 407, 411f.

i
impurities 101f., 112, 435
incompressibility
– constraint 305, 309, 311, 324, 390ff.
– near- 385, 393
– rubber 385f.
– triangular elements 391
infrared (IR) spectroscopy 68, 73f.
inhibition 101
initiator
– concentration 95, 98
– electron transfer 102
– fragmentation 102
– monofunctional 97, 102ff.
– multifunctional 102ff.
– reinitiation 98ff.
injection molding 128, 143
inorganic components 62f.
interaction
– attractive 41f., 48, 51, 53ff.
– bonded 212f., 227
– capillary 137
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– center 198ff.
– chain filler 39
– charge–charge 307
– clay–polymer 51
– clay–solvent 51, 53f.
– Coulomb 76, 248, 251, 253, 273
– Debye–Hückel (DH) 263
– dipole–dipole 250, 269, 274, 408, 415
– dipole–monopole 274
– electron–electron 83
– electron–photon 83
– electrostatic 248ff.
– excluded volume 272, 274, 296, 307
– hydrodynamic 344, 406ff.
– hydrophobic 252, 272, 296
– ion–ion 308
– interchain 291f., 321
– interfacial 65
– intermolecular 345, 347
– intrachain 302
– intramolecular 202, 256, 296, 331, 347
– long-range 203f., 306, 434
– magnetic 463
– many-body 413
– microscopic 210
– monomer–monomer 306, 308, 323
– monomer–solvent 308, 324
– multibody 198
– nonbonded 62, 202, 211, 222, 227, 230, 348,

351
– pairwise 220ff.
– particle–particle 47f., 51
– particle–solvent 47, 53f.
– polymer chains–sheets 56
– polymer matrix–platelets 57
– polymer matrix–sheets 56
– polymer–nanoparticle 39
– polymer– polymer 51, 55, 306
– polymer–solvent 307, 331, 333, 336ff.
– potential energy 204, 210, 252, 307
– repulsive 41, 48, 51, 53, 55ff.
– thermal 203, 230
– segment–segment 263
– sheet–sheet 51, 53, 55
– sheets–solvent particles 41, 52
– short-range 250, 272, 274, 278, 290, 306,

323, 434, 479
– solvent–solvent 308, 324
– strength 53
– three-body 292
– two-body 296
– van der Waals 65, 68, 77, 84, 306f., 453
– viscoelasticity–turbulence 10, 28
– volume 204, 210, 238, 252, 262f., 269, 325

intercalation 40f., 51, 56, 58
– co- 76
– probability 59
interface
– hybrid 63
– inorganic–biological 63
– inorganic–organic 39, 62f., 69
– modeling 39
– strength 80
– surface 52
– tension 61, 197, 215
interfacial thermal properties 79ff.
interlayer density 71ff.
interlayer spacing 51f., 58, 73ff.
– molecular rotation 75
– thickness 52
interlayer structure 68
interstitial spacing 52, 56, 59f.
ion
– -bridging 249, 264ff.
– condesed redissolution 249, 290
– density fluctuations 329f.
– exchange 61, 68f.
– -free 322, 330ff.
– -pair effects 249, 271, 274, 290, 325, 333
– -triplets 269, 271, 273, 297
ionic
– amorphous solids 249
– bonding 64, 65
ionization
– potentials 64, 65
– rate 258
ionization degree 249f., 253ff.
– Coulomb strength 275ff.
– effective 329f.
– equilibrium 328f.
– polymer density 259ff.
– salt concentration 256ff.
Ising spins 456, 481f.
isoelectric point 276, 279f., 288
isomerization 75ff.
iterative solution technique 393ff.

k
Kauzmann
– entropy 449
– paradox 456f.
– temperature 441, 450, 462
Karhunen–Loéve (K–L) decomposition 4f.
K-BKZ model 133, 148, 151, 156, 171f., 174,

178
– multimode 178
– /PSM model 133, 135, 147, 165f., 171, 173
– modes 4
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Kelvin–Voigt 499
kinetic energy (KE) 439, 464
kinetic theory 9, 344f.
kinetics
– phase separation 197f.
– second-order 101
Kröger�s method 352
Kronecker d-symbol 95
Kuhn segment length 248, 263, 303, 305, 325,

328, 352

l
Lagrangian
– formulations 27
– local parameter 409
– multipliers 324, 390, 392
Landau phenomenology 502
Langevin
– dynamic simulations 208, 228, 253
– equation 351
Laplacian operator 316, 318, 320
Larson–Doi mesoscopic model 514
lattice
– -based fields 241
– constant 46, 52
– coordination number 434
– Husimi 434
– models 440f., 445
– recursive 434
– sites 52f.
– sizes 51
LDPE, see polymer melt
Lennard–Jones (LJ)
– bead-spring model 43, 219, 202, 221f., 235,

238, 240, 344, 408, 414
– chain 255f.
– parameters 63f, 66f.
– potential 202, 252, 255
– solid 227, 229
Leonov model 175
Leslie–Ericksen–Parody (LEP) theory 497f.,

501
linear response theory 83
liquid crystals
– Ericksen phenomenology 499, 501
– nematic 500
liquid crystalline elastomers (LCEs) 498ff.
– molecular theory 500
liquid crystalline polymers (LCPs) 497ff.
– commercial 508ff.
– main chain 497, 508f., 514, 517, 520, 523
– side chain (SCLCPs) 497, 508f., 517, 520,

523
– lyotropic 498f., 501, 504

– soft deformation mode 500f.
– thermotropic 498, 501, 503, 514
– two model 523
liquid-state theory 203
local density fields 198
lubrication approximation theory 153, 413

m
macromolecular 9, 15, 197
– deformation 25, 29
– engineering 187
macromolecule
– active 93
– length 101
– solvent fragments 97
– unentangled 232
magnetic field 415f., 419, 422ff.
magnetization 470
magnetoelastic number 415
magnetorheological suspensions 415
Maier–Saupe mean field theory 502, 514
Manning model 249, 251
– argument 275
– condensation concept 295
Mason number 415, 425
mapping 348
– exponential 15f.
– reversible 62
– spherical atomic bases 64
– x-based 352
marker 145f.
master-slave algorithm 396
matrix
– diagonal 317
– elasticity 390
– inversion 316
– square block 321
– stiffness 393, 398
– tridiagonal 315
Maxwell model 344
mean field approximation 41, 206ff.
– free energy 228
– single-chain-in-mean-field simulation

(SCMF) 217ff.
melting temperature 442, 447, 449
mesh
– 2D 399
– 3D 391, 399
– -generation methods 178
– incompatibility 400
– primitive paths (PPs) 352
– refinement 27f.
– sizes 26, 28
metastable states (MSs) 433ff.
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– long-lasting 437
– nonstationary 447
– time-dependent 447
Metropolis algorithm 47, 223, 233
microphase
– separated morphology 197f., 229f.
– separation in polyelectrolyte

systems 302
microscopic cutoff 212f.
microscopic models 346f.
mode coupling theory 454, 466f.
molecular dynamic (MD) methods 39ff.
– atomistic 345
– brute-force 93, 344, 349
– equilibrium (EMD) 84
– non-equilibrium (NEMD) 83, 346
– short trajectories 67
– stepwise separation 77
molecular weight distribution (MWD) 81,

93f., 96
– Gauss 94, 96
– living polymers 113ff.
– Poisson 94, 96, 112
– steady-state parameters 113
Monge representation 411
monodomain theory 500, 502, 514f., 523
– nematodynamic 504
monomer
– concentration 95, 101, 112, 282ff.
– consumption 105, 109
– conversion 94, 99f., 105, 111
– density 255
– intermonomer repulsion 248
Monte Carlo (MC) modeling 39, 42, 202,

232
– bond-fluctuating 41ff.
– canonical moves 232, 234
– coarse-grained 61
– expanded-ensemble 233, 235
– grid-based 217
– lattice 81
– non-lattice 81
– replica-exchange 232ff.
– – SCFT 321
– step (MCS) 47
– step time constant 51
montmorillonite 68ff.
Mooney–Rivlin strain-energy function 181,

386
multicomponent constraints (MPCs) 400
Muthukumar�s
– adsorption theory 250, 262
– double screening theory 263f.
– single screening theory 263ff.

n
Nahme number 138
nanoclay composite 40f.
nanocomposites 37ff.
– matrix 52, 55ff.
– platelets 52
– polymer–clay, see nanoclay composite
– polymer–CNT 81
Navier–Stokes equation 9, 130
neck-in effect 171f.
nematodynamics 501ff.
– weakly viscoelastic 501, 521f.
nematodynamic theory 498f.
Nernst–Planck postulate 435, 441, 466, 473f.,

483
network-based constitutive model 4
neural network computing approach 178
Newton model 130, 171f., 394, 396f.
Newton
– solvent 17
– turbulent flows 5, 19, 25
– turbulent pipe flow fields 5
– wall law 2
nonequilibrium states (NESs) 434, 436f., 442
– time-dependent 436
nonequilibrium structures 73
nonisothermal viscosity model 175
nonlocal response function 307
nonmean field calculation 434
normalization
– constant 311
– factor 309, 311
nuclear magnetic resonance (NMR)

spectroscopy 68, 74f.
nucleation 436f.
nuclei 437f.
numerical regularization parameters 385
Nusselt number 138

o
off-lattice bond fluctuation model 42f., 46f.,

202f., 225, 230
– soft coarse-grained 238ff.
Ogden model 181
Oldroyd-B model 9f., 16, 18, 133, 165
oligomerization 93, 101
on-lattice bond fluctuation model 42f., 46
osmotic coefficient 294

p
packing
– density 78f.
– effects 220
parison
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– extrusion 179
– thickness 178
particle
– -based density/charge distribution 219
– -based models 201, 206, 210ff.
– -in-cell techniques 219
– insertion method 238
– tracking 145
partition function (PF)
– canonical 469
– configurational 438, 469
– equilibrium 433
– extended 471f.
– restricted 471f.
passive scalar advection equation 27
Peclet number 137
penalty method 392
Penrose tilting 441
percolation 45, 462f., 466, 476, 479, 486
permittivity of vacuum 248, 251
Peterlin function, see finite extensibility

nonlinear elastic model
Phan-Thien/Tanner (PTT) model 133, 165f.,

175
phase
– boundary 227, 295, 299
– diagram 229
– disordered 228f., 439, 443f., 446ff.
– equilibria 238
– -field models 198
– intermediate 299
– lamellar 235, 240
– ordered 229, 236, 439, 444, 446ff.
phase space functions 347
phase transition 200, 216, 292
– coil–globule 295, 299
– first-order 293, 295, 299
– first-order collapse 299f.
– regime 292f.
platelets
– density profile 53f.
– dispersion 40f., 50ff.
– interstitial layer 53
Poisson–Boltzmann equation 247, 249,

314ff,
Poisson bracket approach 499
Poisson equation 12, 14, 311
polydispersity 81, 95
– index (PDI) 93f., 96, 100, 103, 108ff.
polyelectrolyte
– brushes 70, 302, 304
– chain collapse 250, 291f., 295,

297, 299
– chain contraction 273, 279

– chain expansion 256, 273, 276, 280f., 283,
293f., 298

– chain length 282ff.
– chain reswelling 278
– chain size 255, 259, 262ff.
– chain stiffness 299ff.
– chain swelling 272, 278f.
– charge density 249, 259, 309
– charge distribution 304, 312, 322ff.
– dilute solution 321
– flexible chains 248ff.
– overcharging 249
– rod-like chain limit 299
– shape 255f.
– single chains 247ff.
– structure 262ff.
polymer
– additives 1ff.
– agglomeration 61
– backbone length 74f., 107, 118
– backbone structure 248, 254, 517f.
– blending 197ff.
– block-copolymer 102, 221, 230, 237f.
– branched 106ff.
– charge 249ff.
– charge density 294
– charge inversion 249
– concentration problem 4
– configuration 39
– cross-linked 39, 127
– 3D system 241
– entanglements 57f., 202, 345f., 351ff.
– – fiber mixture 3
– kinetics 93ff.
– living 98ff.
– matrix nanocomposites, see

nanocomposites
– solidification 181, 183f.
– solution 1, 3f., 9, 17ff.
– spinning model 169
– synthesis 112f.
– synthetic 127f.
– thermoplastics 127f.
– thermosets 127
– uncrossable 350f.
– volume fraction 55ff.
polymer chain
– adsorption 58
– breaking reactions 102
– end-to-end distance 8f., 15, 199, 263,

272, 277
– direct 102
– growth 112, 121
– initiation 93
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– intercalations 56, 58
– interstitial 56, 58
– length 55f., 73, 78, 93ff.
– length distribution 114
– molecular weight 41, 43, 46, 55ff.
– primary 102
– propagation 93, 95, 97f., 101, 109f.,

113f.
– rule 389
– stretched 24f.
– termination 93, 98, 113
polymer chain transfer
– constants 98, 101
– intensity 111, 119
– monomer 94, 109f., 118ff.
– polymer 105f., 120ff.
– rate 101, 104, 109
– reactions 97ff.
– solvent 97f., 116ff.
– spontaneous 122
polymer melt 49, 128f., 131ff.
– bank 158ff.
– crystallization 175, 181
– flows 129
– HDPE (high-density polyethylene)

melt 147f., 150f.
– IUPAC–LDPE melt-A 134f., 149, 165
– LDPE (low-density polyethylene)

melt 131f., 147f., 162, 163ff.
– multicomponent 197ff.
– PET 168, 173, 178, 181
– polystyrene (PS) 165, 175
– overcharging 249ff.
– polyelectrolyte single chains, see

polyelectrolyte
polymer processing 127ff.
– industry 127
– mathematical modeling 130ff.
– software 128f.
polymer processing flows 143ff.
– steady-state 83, 138, 143
– unsteady-state 143, 176ff.
polymerization
– addition 106
– anionic 93, 97, 101, 107f., 510
– batch 95ff.
– batch/plug-flow 111
– cationic 93
– continuous 111ff.
– degree of (DP) 93, 95, 98, 103
– disproportionation 107ff.
– free radical (FR) 93, 100f., 105ff.
– homo- 97
– ideal living 95f., 113ff.

– living (LP) 105, 107f.
– non-terminating 94f., 97f., 101, 106f., 108,

112, 118
– one-state 104
– rate 96
– suspension 94
– theoretical degree of 96
polyreaction distribution 94
pom-pom model 133, 142, 344
Porod–Kratky model 352
positive difiniteness 15ff.
potential
– basin 437, 486f.
– chemical 238
– energy 252, 436, 440f.
– energy landscape 437ff.
– interparticle 241
– off-lattice 241
– well 51, 202, 437, 439
power-law
– index 131
– fluids 136
– model 136, 175
predictor-corrector scheme 13
pressure
– drop 2, 17f., 145, 166
– effective 11, 13
– hydrostatic 390
– osmotic 478f.
– scalar 130
– – velocity gradient 25
probability distribution function 3, 52, 304,

347f.
Progigine–Defay ratio 467
pseudeplastic, see shear-thinning
PSM model, see K-BKZ model
pumping performance 421ff.

q
quantum-mechanical methods 62
quasi crystals 435

r
radial distribution function 259f., 348
radius of gyration 48, 51, 59, 248, 250, 262,

264f., 268, 321, 327f.
random energy model 435
random phase approximation 236f.
reactor
– continuous stirred tank reactors

(CSTRs) 111ff.
– conversion 114ff.
– isothermal 114ff.
– nonstationary 114
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– stagnant zones 116
– stationary 114, 116
– temperature 114
– volume 121
recirculation 150, 156f.
reinitiation, see initiation
relaxation
– a 454f., 462, 486
– b 454f., 486
– drop 518
– effects 8
– moduli 133f., 140
– of free volume 59
– spectrum 134
– stress 128
– time 41, 46, 133, 136f., 343, 453
renormalization group theory of

polymers 198
residence time 111f.
– distribution 115
resistive force theory 406f., 410ff.
Reynolds number
– bulk 17f.
– friction 3f., 6, 8, 15, 20f., 24ff.
– limit 410
Reynolds stress 3, 25
rheological parameter 6, 9, 19ff.
rms (root mean square)
– displacement 43, 45, 47f., 51
– velocity 28
– velocity fluctuations 24
– vorticity 26f.
Rolie–Poly model 344
roll coating 157ff.
Rothe method 94
Rotne–Prager mobilities 407, 413f.
Rouse dynamics 43f., 232, 236, 352, 499
rubber
– computational mechanics 385ff.
– -incompressibility 385f.
– near-incompressibility 385

s
saddle point approximation
– fluctuations 320
– single polyelectrolyte chains 303, 312f.
salt
– bridging-effect 295ff.
– competutive adsorption 279ff.
– concentration 256ff.
– divalent 278f., 295ff.
– -free condition 250, 257, 284, 285, 287, 330
– monovalent 249, 321
– radius of gyration 264f.

salty condition with counterions 249ff.
SCFT (self-constistent field-theoretic model)
– Monte Carlo techniques 321
– multicomponent polymer melts 208, 211f.,

215f.
– numerical techniques 314ff.
– pseudospectral method 318f.
– single polyelectrolyte chains 301f., 323ff.
– spectral method 316f.
– variational theory 329ff.
segment–segment radial distribution

function 224
self-assembled monolayer (SAM) 68
self-assembled systems 227ff.
self-assembly 68ff.
self-avoiding walk (SAW) 248
self-constistent field theory, see SCFT
shape functions 387
shear flow
– cessation 518ff.
– homogeneous 505
– laminar steady model 7
– liquid crystalline polymers (LCPs) 505ff.
– start-up 507, 514ff.
– steady 508, 511ff.
– transient start-up flows 508f., 514
shear
– modulus 392
– planar 346
– stress 2, 6, 17, 147, 511, 513ff.
– -thinning 6, 18, 128, 131, 158, 161f., 165,

343, 507, 513
– viscosity 7, 21f., 137, 503
shear rate
– total zero shear rate viscosity of solution 6
– viscosity 131
– wall shear rate kinematic viscosity 17
– zero shear rate kinematic viscosity of

solution 6f.
– zero shear rate polymer viscosity 6
– zero shear rate wall scales 6
– zero shear rate friction Reynolds number

8, 15, 18
– zero shear rate friction Weissenberg

number 8, 15
sheet
– conformation 47ff.
– self-avoiding (SAS) 47, 51f.
simulation
– atomic 39, 80
– classical semi-empirical 62
– conditions 15
– cross-linking 81
– extruder 144ff.
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– hybrid micro–macro 16
– lattice-based 81
– MD/MM 81
– multisale 344
– non-isothermal 158f., 163ff.
– particle-based mesoscopic 408
– reliable 63
– viscoelastic coextrusion 150, 156
– viscoelastic flow 15, 146ff.
single-chain dynamics 202, 208ff.
single-chain-in-mean-field simulation

(SCMF) 217ff.
– quasi-instantaneous field

approximation 221ff.
single-chain partition functions 208f., 214ff.
– partial enumeration schemes 213f., 216
single-chain relaxation time 221, 236
singularity
– ideal glass 484ff.
– osmotic pressure 478
– single entropy function 444
– stationary metastable state (SMS)

434, 479
slender body theory 407
slip
– angle 400
– frictional 396
– interfacial 346
– -link model 345
– no-slip condition 13, 396, 412f., 420
– stick-slip condition 396
soft-core models 211
software programs
– CHEMKIN 94
– EXTRUCAD 143, 145
– FIDAP 129
– FLUENT 129
– MATLAB 94
– MOLDFLOW 140, 183, 185f.
– NEKTON 129
– PHOENIX 129
– POLYCAD 129
– POLYDYNAMICS 153
– POLYFLOW 129, 152f., 181
– PREDICI 94
– PROFILECAD 153
solvent
– -free models 235
– particles 52ff.
spectral coefficients 11, 14
spin model 475ff.
spring constant 228f,, 252
stationary limit 441ff.
stationary metastable states (SMSs) 434ff.

– high-temperature 438
– low-temperature 438
– time-independent 435
statistical mechanics
– classical 490ff.
– equilibrium 469
– nonequilibrium 344, 346
steady-state
– condition 83, 138, 316
– film casting 171
– quasi- 101
– temperature gradient 83
stiffness 393, 398, 402
– linear elasticity 390
– rubber 385
stochastic
– motion 45, 47, 51, 53
– rotation dynamics 344
Stokes equation 405, 412ff.
stokeslets 406, 413f., 421
– anti- 414
strain
– energy function 393
– -hardening 181
– -memory function 133f.
– rate 388, 505
– -thinning 147
strain–displacement relationship 385ff.
stress
– birefringence 147
– difference coefficient 137
– internal 393
– -let 414
stretching forces 410, 412
stroke
– cone 426
– 2D 421
– 3D 425f.
– fast recovery 422f.
– hybrid 425f.
– pattern 422
– reciprocal 424
– transport 421ff.
sublayer 2, 7, 25
successive umbrella sampling 234
supercooled liquids (SCLs) 433, 437f., 440f.
surface
– internal 52
– tension 65, 77f., 137
surfactant
– additives 3
– end-functionalized 62
– length 68
– self-diffusion 74
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– surface-grafted 62
– turbulent flow 5
superatoms 348ff.
superparamagnetic
– beads 414
– filament 415ff.

t
temperature profile
– fiber spinning 168, 170
– film casting 174
tensor
– Blake 413f., 420
– Cauchy–Green deformation 133, 386, 393
– conformation 8f., 12, 15ff.
– deformation gradient 386, 393
– extra stress 505f.
– Finger strain 133f.
– gradient velocity 505
– Jaumann 505
– logarithm 17
– Oseen 407, 412ff.
– rate-of-strain 130f.
– second-order 11
– stress 6f., 11f., 130, 507
thermodynamic
– equilibrium 62, 197
– integration 229f., 232ff.
– interaction-driven 57
– metastability 433f., 443f.
– nonequilibrium 7, 344ff.
– potential 78, 238, 241
– second law 436, 443
– singularity 231
thermodynamic theory 464f.
thermoforming 169, 178ff.
– filling-packing-cooling cycle 182
– multilayer 181
– thick wall 181
thin-shell approximation 173, 175
time integration 26
tires
– bump envelopment analysis 400ff.
– bump impact analysis 400
– computational mechanics 385ff.
– near-incompressibility 385
– reinforcement 385
– modeling 397ff.
– rubber 386
Tonks gas 469
top-down approach 44, 49
torsion
– barriers 67
– potentials 76

transfer matrix model 477
transferring momentum 24f.
transformation
– functional integral identities 309
– Hubbard–Stratonovich 201f., 302, 309ff.
– path 231f., 237f., 240
transition
– conformational 74
– discontinuous shape 407
– first-order 229, 459, 465, 475
– isotropic–nematic 502, 509
– liquid–gas 438, 476
– liquid–liquid 458
– melting 446, 451, 470, 472, 476, 479ff.
– localization–delocalization 462
– mode coupling 454
– order–disorder 78f., 241
– probability 464f.
– reinforcement 398
– second-order 459
– sol–gel 81, 462
– thermal-phase 62, 74, 78f.
transition-matrix technique 234
transmission electron microscopy (TEM) 68
Trouton ratio 21f.
turbulent
– models 5
– statistics 5f., 19
– transition regime 21
two-state model 322

u
ultraviolet divergency 229
ultraviolet/visible (UV/Vis) spectral data

75,
uncrossability constraints 351
upper convected Maxwell (UCM) model 133,

165f., 171ff.

v
variational theory 250, 266ff.
– one-loop corrections 326ff.
– – SCFT 329ff.
vector
– body force 386
– internal forces 393
– velocity 6, 130
velocity
– field 13f., 407
– fluctuations 3, 23f.
– gradient 130
– shearwise 11, 15, 23
– spanwise 11, 15, 23
– streamwise 11, 15, 18, 23
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velocity profile
– fiber spinning 168, 170
– flows 2
– log-law 19f.
– mean 19f.
velocityVerletfinite-differencing scheme 253
vibration
– constants 63
– modes 67
Virk�s maximum drag reduction

asymptote 19
viscoelastic flow
– boundary layer 3, 6f.
– channel 3f., 6
– constant 6
– coupled 4
– laminar 5, 16
– homogeneous 3, 6, 9, 16
– incompressible 6, 130
– inhomogeneous 3
– isothermal 6
– pressure-driven 6
– shear 5
– turbulent 1, 3ff.
viscoelastic
– fluids 131ff.
– linear 345
– loss moduli 133
– storage 133
– strength 150
viscoelasticity 128f., 187
– anisotropic 499
– drag-reducing fluids 1f.
– liquid crystalline elastomers (LCEs) 499
– liquid crystalline polymers (LCPs) 499
– models 128

viscoplastic–elastic model 175, 178
viscosity
– elongational 147
– extensional 1, 10, 21ff.
– factor 4
– maximum extensional 21ff.
– non-Newtonian 132
– solution 22
– solvent 22
– temperature-dependent 132
– three-region 504, 511
– wall 7
Vogel–Tammann–Fulcher equation 465
vortex 147f., 167
– activity 148
– formation 159
– growth 150
vorticity
– close-to-maximium 24f.
– components 26
– fluctuations 27
– isosurfaces 24f.
– streamwise 25

w
wall, see channel wall
Wang–Landau sampling 234
Weissenberg number 3f., 128, 137, 343
– friction 8, 19f.
– HWNP (high Weissenberg number

problem) 128
wire coating 162f.
worm-like chain model 213, 408

x
X-ray diffraction 68, 73f.
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