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Preface 

In 1912, when M. Laue suggested to W. Friedrich and P. Knipping the 
irradiation of a crystal with an X-ray beam in order to see if the interaction between 
this beam and the internal atomic arrangement of the crystal could lead to 
interferences, it was mainly meant to prove the undulatory character of this X-ray 
discovered by W.C. Röntgen 17 years earlier. The experiment was a success, and in 
1914 M. Laue received the Nobel Prize for Physics for the discovery of X-ray 
diffraction by crystals. In 1916, this phenomenon was used for the first time to study 
the structure of polycrystalline samples. Throughout the 20th century, X-ray 
diffraction was, on the one hand, studied as a physical phenomenon and explained 
in its kinematic approximation or in the more general context of the dynamic theory, 
and on the other, implemented to study material that is mainly solid. 

Obviously, the theoretical studies were initially conducted on single crystal 
diffraction, but the needs for investigation methods from physicists, chemists, 
material scientists and more recently from biologists have led to the development of 
numerous works on X-ray diffraction with polycrystalline samples. Most of the 
actual crystallized solid objects that we encounter every day are in fact 
polycrystalline; each crystal is the size of a few microns or even just a few 
nanometers. Polycrystalline diffraction sampling, which we will address here, is 
actually one of the most widely used techniques to characterize the state of the 
“hard” condensed matter, inorganic material, or “soft”, organic material, and 
sometimes biological material. Polycrystalline samples can take different forms. 
They can be single-phased or made up of the assembling of crystals of different 
crystalline phases. The orientation of these crystals can be random or highly 
textured, and can even be unique, in the case for example of epitactic layers. The 
crystals can be almost perfect or on the contrary can contain a large number of 
defects. X-ray diffraction on polycrystalline samples enables us to comprehend and 
even to quantify these characteristics. However, the methods of measure must be 
adapted. The quality of the quantitative result obtained greatly depends on the care 



xii     X-ray Diffraction by Polycrystalline Materials 

taken over this measure and in particular on the right choice of equipment and of the 
data processing methods used. 

This book is designed for graduate students, as well as engineers or active 
researchers studying or working in a sector related to material sciences and who are 
concerned with mastering the implementation of X-ray diffraction for the study of 
polycrystalline materials. 

The introduction recounts the history of the emphasis on X-ray diffraction by 
crystals since the discovery of X-rays. The book is then divided into two parts. The 
first part focuses on the description of the basic theoretical concepts, the 
instrumentation and the presentation of traditional methods for data processing and 
the interpretation of the results. The second part is devoted to a more specific 
domain which is the quantitative study of the microstructure by X-ray diffraction. 

The first part of the book is divided into four chapters. Chapter 1 focuses on the 
description of the theoretical aspects of X-ray diffraction mainly presented as a 
phenomenon of interference of scattered waves. The intensity diffracted by a crystal 
is measured in the approximations of the kinematic theory. The result obtained is 
then extended to polycrystalline samples. Chapter 2 is entirely dedicated to the 
instrumental considerations. Several types of diffractometers are presently available; 
they generally come from the imagined concepts from the first half of the 20th 
century and are explained in different ways based on the development of the 
sources, the detectors and the different optical elements such as for example the 
monochromators. This chapter is particularly detailed; it takes the latest studies into 
account, such as the current development of large dimension plan detectors. Modern 
operation of the diffraction signal is done by a large use of calculation methods 
relying on the computer development. In Chapter 3, we will present the different 
methods of extracting from the signal the characteristic strength of the diffraction 
peaks including the position of these peaks, their integrated intensity and the shape 
or the width of the distribution of intensity. The traditional applications of X-ray 
diffraction over polycrystalline samples are described in Chapter 4. The study of the 
nature of the phases as well as the determination of the rate of each phase present in 
the multiphased samples are presented in the first sections of this chapter. The 
structural analysis is then addressed in a relatively condensed way as this technique 
is explained in several other international books. 

The second part of the book focuses on the quantitative study of the 
microstructure. Although the studies in this area are very old, this quantitative 
analysis method of microstructure by X-ray diffraction has continued to develop in 
an important way during the last 20 years. The methods used depend on the form of 
the sample. We will distinguish the study of polycrystalline samples as pulverulent 
or massive for thin layers and in particular the thin epitactic layers. Chapter 5 is 
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dedicated to the theoretical description of the influence of structural flaws over the 
diffusion and diffraction signal. The actual crystals contain a density of varying 
punctual, linear, plan or three-dimensional defects. The presence of these defects 
modifies the diffraction line form in particular and the distribution of the diffused or 
diffracted intensity in general. The influence of these defects  is explained in the 
kinematic theory. These theoretical considerations are then applied in Chapter 6 to 
the study of the microstructure of polycrystalline pulverulent or massive samples. 
The different methods based on the analysis of the integral breadth of the lines or of 
the  Fourier series decomposition of the line profile are described in detail. Finally, 
Chapter 7 focuses on the study of thin layers. Following the presentation of methods 
of measuring the diffraction signal in random or textured polycrystalline layers, a 
large part is dedicated to the study of the microstructure of epitactic layers. These 
studies are based on bidimensional and sometimes three-dimensional, reciprocal 
space mapping. This consists of measuring the distribution of the diffracted intensity 
within the reciprocal lattice node that corresponds to the family of plans studied. 
The links between this intensity distribution and the microstructure of epitactic 
layers are presented in detail. The methods for measuring and treating data are then 
explained 

The book contains a large number of figures and results taken from international 
literature. The most recent developments in the views discussed are presented. More 
than 400 references will enable the interested reader to find out more about the 
domains that concern them. 
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An Historical Introduction: The Discovery  
of X-rays and the First Studies  

in X-ray Diffraction  

X-rays and “cathode rays”: a very close pair 

On November 8th, 1895, Röntgen discovered by accident a new kind of 
radiation. While he was using a Crookes tube, he noticed a glow on a plate, covered 
with barium platinocyanide, and rather far away from the tube. Röntgen, who was 
working at the time on the cathode rays produced by Crookes tubes, immediately 
understood that the glow he was observing could not be caused by this radiation. 
Realizing the importance of his discovery, and before making it known to the 
scientific community, he tried for seven weeks to determine the nature of this new 
kind of radiation, which he named himself X-Strahlen. On December 28th, 1895, 
Röntgen presented his observations before the Würzburg Royal Academy of Physics 
and Medicine [RON 95]. His discovery was illustrated by the photographic 
observation of the bones in his wife’s hand (see Figure 1). Röntgen inferred from 
his experiments that the Crookes tube produced beams that propagated in straight 
lines and could pass through solid matter [RON 95, RON 96a, RON 96b, RON 
96c]. Very quickly, these “Röntgen rays” were used in the medical world to produce 
radiographies [SWI 96]. 

Immediately after this discovery, a large number of studies were launched to 
find out the nature of this radiation. Röntgen tried to find analogies between this 
kind of radiation and visible light, which lead him to conduct unsuccessful 
experiments that consisted of reflecting X-rays on quartz, or lime. He believed he 
was observing this reflection on platinum, lead and zinc [RON 95, RON 96b]. He 
noticed that X-rays, unlike electronic radiation, are not affected by magnetic fields. 
Röntgen even tried, to no avail, to produce interference effects in X-rays by making 
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the X-ray beam pass through holes [RON 95]. The analogy between X-rays and 
visible light prompted researchers to study how X-rays behave with regard to the 
well-known laws of optics. Thus, Thomson [THO 96], Imbert and Bertin-Sans [IMB 
96], as well as Battelli and Garbasso [BAT 96], showed in 1896 that specular 
reflection was not possible with X-rays, hence confirming the studies of Röntgen. 
They also found, in agreement with the works of Sagnac [SAG 97a], that the 
deviation of X-rays by refraction is either non-existent or extremely small. 

 

Figure 1. The first radiographic observation 

In November 1896, Stokes gave a short presentation before the Cambridge 
Philosophical Society, explaining some of the fundamental properties of X-rays 
[STO 96]. He claimed that X-rays, like γ-rays, are polarizable. This comment, made 
in November, did not take into account several studies, even though they had been 
published in February of the same year by Thompson [THO 96a], who established 
the absence of polarization in X-rays by having them pass through oriented crystal 
plates. The polarizable nature of X-rays was conclusively demonstrated in 1905 by 
Barkla [BAR 05, BAR 06a]. Based on the absence of refraction for X-rays, Stokes 
described this radiation as vibrations propagating through solid material between the 
molecules of this material. Finally, by analyzing the absence of interference effects 
for this radiation, he concluded that either the wavelength of this propagation was 
too small or the phenomenon was not periodical. The author, who mistakenly 
believed that the latter hypothesis was the right one, assumed that each “charged 



An Historical Introduction      xix 

molecule1” that hit the anode emitted a radiation, the pulsation of which was 
independent of the pulsations of the radiations emitted by the other molecules. 

Having demonstrated that X-rays are a secondary radiation caused by what was 
referred to at the time as “cathode rays”, Röntgen showed that the study of the 
nature of X-rays had close ties with the determination of the nature of electronic 
radiation. After the discovery by Crookes of the existence of a radiation emitted by 
the cathode and attracted by the anode, the question of the nature of these cathode 
rays was the subject of intense activity. When X-rays were discovered, the two 
theories clashed. Some considered that this cathode rays was caused by a process of 
vibration taking place in the rarefied gas inside the tube (the “ether”) [LEN 94, LEN 
95], while others thought that this current was the result of the propagation of 
charged particles emitted by the cathode [PER 95, THO 97a]. 

In 1895, Perrin proved experimentally that the cathode rays carried an electric 
charge and that this charge was negative [PER 95]. This view was the one supported 
by Thomson [THO 97a, THO 97b], who published an article in 1897, considered to 
be the major step in the discovery of the electron [THO 97b]. He noticed that these 
cathode rays could be diverted by an electrical field. This observation led him to 
demonstrate experimentally that this radiation was caused by the motion of charged 
particles, for which he estimated the charge to mass ratio. He found that this ratio 
e/m is independent of the nature of the gas inside the tube and established the 
existence of “charged particles”, which are the basic building blocks of atoms [THO 
97b]. 

This is how Thomson became interested in X-rays while studying electronic 
radiation. In January 1896, he presented an analysis that could be described as the 
“theoretical discovery of X-rays”. He used the Maxwell equations and included the 
contribution from a convection current caused by the motion of charged particles. 
He demonstrated analytically that these particles suddenly slowing down led to an 
electromagnetic wave that propagated through the medium with an extremely low 
wavelength [THO 96b]. The author himself noted that the properties of the radiation 
discovered by Röntgen were not sufficiently well known to be able to say that the 
electromagnetic waves he had found evidence of were, in fact, Röntgen radiation. 
Two years later [THO 98a], Thomson was more assertive and concluded that the 
radiation related to the sudden slowing down of charged particles – later referred to 
as braking radiation – was a kind of X-ray radiation. 

By analogy with the characteristics of electron radiation, many authors imagined 
that X-rays also corresponded to the propagation of particles. This debate over the 
particle or wave-like nature of electromagnetic radiation only comes to a close with 

                                   
1 The concept of electron was only definitively accepted the following year. 
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the advent of quantum physics. This is why, after the studies of Thomson, several 
authors compared the respective properties of X-rays and electrons [LEN 97, RIT 
98, WAL 98]. Lenard [LEN 97] showed, on the one hand, that irradiating 
photographic plates with X-rays caused a much weaker effect than what was 
observed when the same plates were irradiated with an electron beam. On the other 
hand, he showed that the two kinds of radiation had significantly different electric 
properties. Ritter von Geitler [RIT 98] irradiated flat metal screens with X-rays in 
order to find evidence of a possible charge carried by these particles. He did not 
observe an electrical signal, but nonetheless he did not conclude that the particles 
were not charged. In the same issue of the Annalen der Physik und Chemie, Walter 
[WAL 98] was more assertive and considered that the particles associated with X-
rays have no electric charge. Furthermore, given the high penetrating ability of X-
rays, he refuted a theory, acknowledged at the time, according to which X-rays 
could consist of the incident electrons that had lost their charge after hitting the 
anode [VOS 97]. 

Thus, before the beginning of the 20th century, it was accepted as fact that X-
rays were very different from the electronic radiation that created them. Scientists 
also knew that they consist of particles that are not charged, since they are not 
diverted in a magnetic field [STR 00]. The theoretical works of Thomson describe 
the propagation of X-rays as that of a wave with a very small wavelength. 
Furthermore, these X-rays do not seem to be reflected of refracted under conditions 
that would generally be used to observe these effects with visible light. While some 
authors were trying to discover the nature of X-rays, other authors were studying the 
effects of having X-rays travel through gases. 

In 1896, Thomson and Rutherford [RUT 97, THO 96c] showed that irradiating a 
gas with an X-ray beam created an electrical current inside this gas. They showed 
that the intensity of this current depends, on the one hand, on the voltage applied to 
the two terminals of the chamber containing a gas, and on the other hand, on the 
nature of this gas. Rutherford [RUT 97] also observed that the decrease in the X-ray 
beam’s intensity due to the absorption by the gas follows an exponential law which 
depends on a coefficient specific to each gas. From these findings, Rutherford 
measured the linear absorption coefficient of several gases and found a correlation 
between this coefficient and the intensity of the electrical current, produced by the 
interaction between this gas and the X-rays. In a commentary on Rutherford’s 
article, Thomson [THO 97c] observed that his colleague’s findings were evidence of 
a strong analogy between X-rays and visible light, and that they were likely to be 
electromagnetic waves or pulses. He also attributed the decrease in the intensity of 
the X-ray beam, observed by Rutherford, to the production of ions from the gas 
molecules, with each ionization leading to a small decrease in the beam’s intensity. 
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Based on these first accomplishments, the ionization of gases was used to study 
the nature of the particles created from the interaction between the X-rays and the 
gas. By using a cloud chamber designed in 1897 by Wilson [WIL 97], Thomson 
[THO 98b] used the ionization of gases by X-rays to measure the electric charge of 
the electrons2 created by the X-rays traveling through the gas. By measuring the 
electrical current produced by the ionization of various polyatomic gases, the same 
author showed that the electrons correspond to a modification of the atoms 
themselves, rather than to the simple dissociation of gas molecules [THO 98c]. This 
result was confirmed by Rutherford and McClung [RUT 00], who measured, in 
1900, the energy required for the ionization of certain gases. This is how they 
showed that an electron accounts for a very small part of the mass in an atom.  

We mentioned above that, at the dawn of the 20th century, the nature of X-rays 
was already well known. Evidence of gas ionization by X-rays quickly led to the 
creation of devices designed to quantitatively measure the intensity of X-ray beams. 
This enabled researchers at the beginning of the last century to study in detail the 
interaction between X-rays and solid matter, leading, naturally, to the observation 
and quantitative analysis of scattering, and then diffraction, of X-rays. 

Scattering, fluorescence and the early days of X-ray diffraction 

Scattering and fluorescence 

In 1897, Sagnac [SAG 97a, SAG 97b] observed that, by irradiating a metal 
mirror with an X-ray beam, the mirror would produce a radiation of the same nature 
as the incident beam, but much less intense. This radiation propagates in every 
direction and therefore cannot involve specular reflection. Sagnac noted that the 
intensity of this scattered radiation depends on the nature of the material irradiated 
with the primary X-ray beam [SAG 97b, SAG 99]. These experiments were 
confirmed by Townsend [TOW 99], who quantitatively measured the intensity of 
the scattered beams by using an ionization detector. Townsend observed that if the 
scattered beams, before reaching the detector, pass through a sheet of aluminum, 
then the residual intensity significantly depends on the nature of the scattering 
material. Unfortunately, he did not specify the chemical nature of the anticathode he 
was using to produce the primary X-rays, thus making it difficult to make the 
connection between this observation and a selective absorption effect. 

                                   
2 In the paper in question, Thomson and other authors use the word “ion”, but are actually 
writing about electrons created by the X-ray-induced ionization. In this case, the word ion is 
merely the present participle of the Greek verb ienai. Therefore, ion means going, and refers 
to particles in motion. 
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As we have mentioned already, Thomson showed that when a charged particle 
slows down, it causes the emission of electromagnetic radiation [THO 96b, THO 
98a]. Based on these considerations, the same author found a simple explanation to 
the scattering effect observed by Sagnac. By assuming that the atoms contain 
charged particles, irradiating these atoms with an electromagnetic wave (the X-rays) 
would disturb the trajectory of these particles and modify their speed. This 
explained the subsequent emission of secondary X-rays [THO 98d]. Starting with 
this simple demonstration, Thomson calculated the intensity of the beam scattered 
during the interaction between an electron and an X-ray beam. This calculation led 
him to the now famous Thomson formula, which gives the scattering power of an 
electron. Once these preliminary results had been achieved, several authors, between 
1900 and 1912, characterized in detail this secondary emission phenomenon, which 
would later come to be called scattering. 

In 1906, Thomson [THO 06a, THO 06b] showed that the intensity of the 
scattered beam increases with the atomic mass of the scattering elements. He 
measured the intensity of the scattered beams by using a crude ionization detector, 
in which the ionized gas is the air located between the surface of the sample, 
consisting of a flat plate or a powder, and a metal grating placed a few millimeters 
away from that surface. He managed, nevertheless, to establish a direct link between 
the atomic mass of over 30 elements of the periodic table and the intensity scattered 
by these elements [THO 06b]. Also, he noticed that the scattered intensity increases 
with the atomic number, but this relation is not strictly linear: there are gaps in the 
intensity (see Figure 2). Thomson noted that the position and the amplitude of these 
intensity gaps directly depend on the nature (hard or soft) of the X-rays used. 

These discontinuities in the emitted intensity were studied from a more general 
perspective by Barkla and Sadler [BAR 06b, BAR 08a, BAR 08b, BAR 08c, SAD 
09]. These two authors presented a combined analysis of secondary emission and 
absorption of X-rays by solid matter. The characteristics of the scattered radiation 
were investigated by measuring their intensities after absorption by a sheet of 
aluminum with a known thickness. Barkla showed by this way that there are sharp 
discontinuities in the graphs showing the emitted intensity or the absorption 
coefficient plotted according to the atomic number of the irradiated material, located 
in the same places [BAR 08c]. The positions of these discontinuities do not depend 
on the intensity of the primary beam, but only on its “hardness3” [BAR 08a]. This 
author makes a distinction between two effects involving the secondary beams 
emitted by the irradiated substances: he observes, as Thomson did, the presence of a 
diffuse signal with characteristics similar to the incident beam, and also a more 
intense signal with characteristics specific to the nature of the irradiated element. 
Barkla adds that this emission of X radiation involves the ejection of electrons from 

                                   
3 The words energy and wavelength were not yet used at the time. 
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the atoms irradiated by the primary beam. This ejection disturbs the atoms and 
results in the emission of an electromagnetic wave specific to the atom in question 
[BAR 08b]. The works of Barkla, which were quickly confirmed by the results of 
other authors [CHA 11, GLA 10, WHI 11], constituted the first evidence of X-ray 
fluorescence, whose developments in elementary analysis are still known today. 

 

Figure 2. Evolution of the scattered intensity according to the atomic masses  
of the scattering atoms (Thomson, 1906 [THO 06b]) 

All of these studies led by Thomson, Barkla and Sadler, involving the secondary 
radiation emitted by solids irradiated with X-ray beams, were consistent with the 
results of Thomson described above, and tend to show that this secondary emission 
is the result of an interaction between the electrons of the atoms and the 
electromagnetic wave, associated by Thomson and Barkla with the X-rays. This 
wave description was disputed by Bragg [BRA 07, BRA 11], who considered that, 
if X-rays are “energy bundles” concentrated in extremely small volumes, as 
Thomson claimed, then they should be diverted when they travel through the atoms. 
The concept developed by Thomson leads to the assumption that the radiation 
scattered by the irradiated atoms is isotropic and, in particular, independent of the 
incident beam’s direction of propagation. This is why Bragg focused on 
experimentally proving that the intensity distribution of secondary X-rays is not 
isotropic [BRA 07, BRA 09]. Barkla refuted Bragg’s arguments in favor of a 
particle-based description of X-rays, by showing that it would be very difficult 
otherwise to account for the polarizable nature of X-rays [BRA 08a]. He added that 
wave theory can account for a certain anisotropy in the distribution of the scattered 
intensity, since the intensity would be higher in the incident beam’s direction of 
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propagation than it would in the perpendicular direction. This argument did not 
convince Bragg and Glasson, who showed that the intensity of radiation that has 
traveled through a thin plate of scattering material is greater than that measured on 
the side of the incident beam [BRA 09]. 

Crowther presented a series of articles on how to experimentally determine the 
shape of the intensity distributions for the secondary X-rays emitted by thin plates 
irradiated with primary X-rays [CRO 10, CRO 11a, CRO 11b, CRO 12a, CRO 12b]. 
This way, and in agreement with Bragg, he showed that the intensity of the 
secondary radiation is much greater on the side opposite to the surface irradiated by 
the incident beam. Crowther notes [CRO 12a], however, that this is not enough to 
settle on the nature of X-rays with regard to the wave theory or the particle theory. 
This led him to think that a second phenomenon occurs on top of classical 
scattering, corresponding, for example, to the emission of X-rays, associated with 
the emission of electrons inside the materials irradiated by the primary X-ray beam. 
This interpretation was in perfect agreement with the works of Barkla and Sadler 
[BAR 08b] who, as we have mentioned before, were the first to observe X-ray 
fluorescence. Therefore, in the end, the anisotropic shape of the secondary X 
radiation’s intensity distribution was interpreted as the result of a combination of 
two different types of emission: scattering and fluorescence [BAR 11]. 

X-ray diffraction by a slit 

While some were studying the nature of secondary X-ray emission, other 
authors, Germans mostly, conducted experiments in order to observe X-ray 
diffraction by very thin slits. Given the fact that X-rays are similar to visible light, 
and due to their high penetrating ability, which means that their wavelengths must 
be very small, these authors surmised that they would be able to observe Fresnel 
diffraction by placing a slit as thin as possible on the path of an X-ray beam as 
punctual as possible. There were two goals to these studies, which were initiated by 
Fomm [FOM 96]. They consisted, on the one hand, of demonstrating that X-rays are 
waves and, on the other hand, of measuring their wavelength. 

Wind and Haga [HAG 99, HAG 03, WIN 99, WIN 01] thus presented their first 
observations of Fresnel fringes obtained with X-rays. By measuring the space 
between these fringes, they were able to quantitatively estimate the wavelength of 
X-rays. The value they found was in the range of one angström. The results of these 
studies were disputed by Walter and Pohl [WAL 02, WAL 08, WAL 09]. They 
examined the works of their colleagues and conducted new experiments, by using 
slits a few micrometers wide placed, roughly one meter away from the photographic 
plate. They did not observe any fringes in the photographs they obtained and 
concluded that the diffraction effect did not occur. By considering, however, that the 
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propagation of X-rays is the same as for waves, they inferred that the associated 
wavelength had to be extremely small and suggested the value of 0.1 angström. 
Furthermore, Walter and Pohl considered that the photographs taken by Wind and 
Haga simply corresponded to an increase in width of the direct beam, and that the 
fringes obtained could be caused, for example, by an effect related to overexposure. 

Convinced that X-rays are waves, Sommerfeld suggested a mathematical 
analysis of X-ray diffraction in several articles [SOM 00a, SOM 00b, SOM 01]. 
Based on these works, he was able to use the images observed by Haga and Wind to 
confirm that X-rays have a very small wavelength. In March 1912, shortly before 
Friedrich, Knipping and Laue’s breakthrough experiment (see below), he published 
[SOM 12] which is a combined analysis of the works of Wind and Haga on the one 
hand, and of Walter and Pohl on the other hand. This study was based on a 
quantitative measurement of the darkening of the photographs taken by various 
authors. This measurement was performed by Koch [KOC 12], who was Röntgen’s 
assistant at the time. Koch concluded, in contradiction with Walter and Pohl, that 
their photographs could display regular fluctuations in the way they darkened. From 
this analysis and by calculating the intensity profiles of fringe patterns according to 
the wavelength, the opening of the slit and the slit-photographic plate distance, 
Sommerfeld established the existence of a diffraction effect and approximately 
confirmed the wavelength announced by Haga and Wind. 

This debate over X-ray diffraction by slits was temporarily interrupted, probably 
because of the discovery of X-ray diffraction by crystals and also because of World 
War I. In 1924, Walter resumed his work. After having shown as early 1909 [WAL 
09] that the slit’s opening had to be extremely small, he used a V-shaped slit with an 
opening 40 µm wide at the top and with a length of 18 mm. Walter irradiated this 
slit with X-ray radiation produced by a copper anticathode and actually observed 
interference fringes [WAL 24a, WAL 24b] which made it possible to find values for 
the Kα and Kβ wavelengths of this compound that were in agreement with those 
obtained with diffraction by crystals. Immediately, these studies were independently 
confirmed by Rabinov [RAB 25], who conducted the same kind of experiment with 
a V-shaped slit. This author placed, between the molybdenum X-ray source and the 
slit, a crystal that made it possible to select a single wavelength by diffraction and 
therefore to improve the quality of the interference images. 

The first studies of diffraction by crystals 

In 1910, Ewald began his thesis in Munich under the supervision of 
Sommerfeld, the director of the theoretical physics laboratory, and defended it on 
February 16th, 1912 [EWA 12]. The subject, suggested by Sommerfeld, consisted of 
studying the interaction between an incident electromagnetic wave and a periodic 
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lattice of dipoles. Laue, who had been a member of the same laboratory since 1909, 
worked on wave physics at the time. By considering, according to the works of 
Barlow [BAR 97], that crystals were likely to be a periodic three-dimensional 
packing of atoms, he discussed with Ewald the consequences of his results on the 
interactions between these crystals and X-rays, which were known at the time to 
have a very small wavelength [HAG 99, HAG 03, KOC 12, SOM 00a, SOM 00b, 
SOM 01, SOM 12, WAL 02, WAL 08, WAL 09, WIN 99, WIN 01], probably in the 
same range as the interatomic distances inside crystals. 

Laue suggested to Friedrich, who was Sommerfeld’s assistant, and to Knipping, 
who was Röntgen’s assistant, to conduct experiments that would consist of observing 
the interference of X-rays scattered by atoms in a single crystal. In order to do this, 
Friedrich and Knipping constructed a device comprised of an X-ray source (a Crookes 
tube), a sample holder making it possible to place the single crystal on the trajectory 
defined by this tube and a slit and, finally, a photographic film located behind the 
single crystal (see Figure 3). The crucial experiment was conducted on April 21st, 
1912. Laue and his colleagues irradiated a sphalerite crystal with a polychromatic X-
ray beam and observed on the photographic plate the first ever X-ray diffraction 
pattern with crystals [FRI 12] (see Figure 4). This discovery led to a new field in 
experimental physics: radiocrystallography. Two new applications appeared: on the 
one hand, measuring the wavelength of X-rays and, on the other hand, determining the 
structure of crystals. Shortly thereafter, Laue published several articles [FRI 12, LAU 
13a, LAU 13b] in which he laid out the “Laue relations” and showed that the 
diffraction spots are distributed along conic curves. 

 

Figure 3. Friedrich, Knipping and Laue’s diffractometer 
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Very quickly, the importance of these findings was given proper recognition 
[BRA 12a, LOD 12, TUT 12]. Bragg immediately understood that these results and 
their interpretations made by Laue were perfectly consistent with the wave approach 
to X-rays and would be difficult to explain by describing X-rays as particles, which 
was the theory he stood by. This led Bragg, in October 1912, to publish a short 
commentary on the results obtained by Laue and his colleagues [BRA 12a]. He 
suggested that the spots observed on Laue’s photographs could be the result of 
beams traveling through “paths” laid out between the “molecules” that comprise the 
crystal. This idea was disputed by Tutton [TUT 12] who, while staying in Munich, 
produced several additional photographs with a sphalerite crystal by varying the 
angle between the direction of the incident beam and the sides of the crystal sample. 
He observed that a slight angular shift simply caused the spots on the film to move, 
thus resulting in a pattern that was no longer symmetrical with respect to the trace of 
the direct beam. Tutton inferred from this result that the crystal lattice was, in fact, 
responsible for the observed patterns. Two weeks later, Bragg [BRA 12b] answered 
Tutton. He admitted that the phenomenon of X-ray diffraction by crystals tends to 
show that X-rays, like light, are waves, but he noted that certain properties of X-rays 
and light can be explained by considering them as particles. Thus, Bragg concluded 
by pointing out that what matters is not to determine whether light and X-rays are 
particles or waves, but instead to find a theory that could combine the two 
representations. 

 

Figure 4. Diffraction photography of a zinc sulfate single crystal. 
Courtesy of Friedrich and Knipping [FRI 12] 
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In November 1912, W.L. Bragg, the son of W.H. Bragg, gave before the 
Cambridge Philosophical Society a detailed analysis of Laue’s results. He showed 
that Laue’s photographs can only be explained by assuming that the incident beams 
has a continuous wavelength spectrum. He noted that, if the crystal is considered a 
stacking of families of planes comprised of atoms, then, since each family is a series 
of planes parallel with each other and a distance d apart, the interference 
phenomenon observed by Laue can be interpreted as caused by the reflection of X-
ray beams with a given wavelength on the crystal planes. The reflected waves can 
only interfere if the wavelength and the angle between the incident beam and the 
normal to the family of planes in question are such that λ = 2d cos θ4. Bragg 
established the second fundamental law of X-ray diffraction, following the 
conditions laid out by Laue. The concept of reflections5 on crystal planes, which 
was theoretical at first, led W.L. Bragg to design a diffractometer [BRA 12d] that 
was different from Laue’s. Following the advice of Wilson, he created a device, in 
order to prove his theory, where the incident X-ray beam hits a cleaved crystal at an 
incidence angle equal to what will quickly come to be named as the “Bragg angle”. 
A photographic plate, replaced shortly by an ionization detector [BRA 13a], made it 
possible to measure the intensity of beams that are “reflected” at an angle equal to 
the incidence angle. This configuration, referred to as the Bragg configuration, 
enabled the user to measure the diffracted beams on the side of the sample where the 
source is located, whereas in the Laue configuration, the measurement was made 
after the transmission of the X-ray beam though the crystal.  

                                   
4 The expression λ = 2d cos θ, where θ is the angle between the normal to the diffracting 
planes and the incident beam, was gradually replaced with λ = 2d sin θ, where θ is the angle 
between the incident beam and the diffracting angles.  
5 The use of the word “reflection” has been, and is still, a source of confusion between X-ray 
diffraction and reflection as described the Snell-Descartes laws. 
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Figure 5. W.H. and W.L. Bragg’s diffractometer 

A photograph of this system is shown in Figure 5. In December 1912, only eight 
months after Friedrich, Knipping and Laue’s discovery, W.L. Bragg conducted 
another X-ray diffraction experiment [BRA 12d]. He irradiated the surface of a 
cleaved mica crystal with a thin X-ray beam and observed intense spots on a 
photographic film. The author noticed that when the incidence angle is modified, the 
diffraction angle also changes. He hastily concluded from this that the effect he was 
observing follows the same reflection law as visible light. W.L. Bragg mentioned 
specular reflection because the experiments were always being conducted in such a 
way that the incidence angle was equal to the diffraction angle. In a short time, 
many authors [BAR 13, BRO 13, HUP 13, KEE 13, TER 13] conducted 
experiments using the same method as W.H. and W.L. Bragg. They concluded, in 
agreement with the Braggs and from experiments conducted with sodium chloride 
[BRO 13, HUP 13, TER 13], mica [HUP 13, KEE 13] and fluorite  [BRO 13, TER 
13], that the spots observed on film or on a fluorescent screen [BRO 13] were 
caused by the reflection on crystal planes that contained many atoms. 

In April 1913, W.H. and W.L. Bragg [BRA 13b] went before the Royal Society 
of London to present the first quantitative measurements of diffraction by a single 
crystal. These measurements were achieved with the diffractometer shown in Figure 
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5. A cleaved crystal was placed on a rotating platform so as to have the rotation axis 
inside the cleavage plane. The beam’s incidence angle on the cleavage plane was 
maintained constant, whereas the diffracted intensity was measured by using the 
ionization chamber rotating around the same axis. The authors noted that an 
intensity maximum is observed when the angle that gives the detector’s position is 
equal to twice the incidence angle. Based on this observation, they produced 
diffractograms by simultaneously rotating the crystal and the ionization chamber, so 
that the angle between the transmitted beam and the detector would always be equal 
to twice the incidence angle of the beam with the cleavage plane. This will come to 
be referred to as the Bragg-Brentano configuration. Such a diffractogram is shown 
in Figure 6.  

 

Figure 6. Diffractograms produced by W.H. and W.L. Bragg with sodium chloride crystals. I: 
diffractogram obtained with a crystal cleaved along the (100) planes, II: diffractogram 

obtained with a crystal cleaved along the (111) planes 

This is how the authors observed the first two orders of reflection for the (h00) 
planes in example I and for the (hhh) planes in example II. They found three 
maxima for each reflection. Since the presence of these three peaks has nothing to 
do with the choice of the crystal, but is related to the nature of the anticathode, the 
Braggs concluded that these three peaks were related to the presence of three 
different radiations, each one of them having a specific wavelength. Therefore, the 
experimental method they suggested made it possible to determine the wavelength 
of these radiations by measuring the diffraction angles for several families of planes 
(h00), (hhh), etc. [BRA 13c]. 
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These results were used by Moseley and Darwin [MOS 13], who studied the 
intensity reflected by various cleaved crystals. These authors, by using a 
diffractometer similar to that used by the Braggs, measured the reflected intensity 
according to the incidence angle. The studies were always conducted in symmetrical 
reflection conditions. When the incidence angle is relatively small, a significant 
intensity is measured continuously, whereas for higher incidence angles, in addition 
to this first signal, intensity peaks located at specific angles are obtained. Moseley 
and Darwin inferred from this result that the X-ray beam emitted by the tube 
contains two types of radiation: a continuous wavelength spectrum combined with 
peaks at specific wavelengths. 

At the same time, it quickly became clear that X-ray diffraction by crystals 
should make it possible to explore the internal structure of crystals [TUT 13a, TUT 
13b]. Studies of crystals that were made before the discovery of X-ray diffraction, 
which served as the basis for Laue’s breakthrough experiment, attributed the 
presence of very flat surfaces and the existence of well defined cleavage planes, to a 
very regular arrangement of elementary units that comprise the crystals. It was 
known that crystals were the result of the infinite repetition in three dimensions of 
an elementary cell, containing one or more molecules of the substance in question. 
The works of Fedorov [FED 12], among others, had led to the definition of 230 
space groups with which any crystal could be described. X-ray diffraction by 
crystals became an experimental method for studying crystal symmetry, but also the 
internal structure of the crystal cell, which was still uncharted territory at the time. 

Measurements of the diffraction angles with the Bragg diffractometer, as well as 
the interpretation of Laue’s photographs by using stereographic projections [BRA 
13d] led to determining the Bravais lattice and the dimensions of the crystal cell. 
The study of relative values of diffracted intensity made it possible to suggest a 
structural arrangement [BAR 14, BRA 13d, BRA 13, BRA 14a, BRA 14b]. These 
studies were spearheaded by W.H. and W.L. Bragg who very early on, in 1913, 
discovered the structure of potassium chloride, potassium bromide, sphalerite, 
cooking salt, fluorite, calcite, pyrite [BRA 13d] and diamond [BRA 13e]. Note that 
these studies are largely based on the interpretation of Laue’s photographs. In 
November 1912 [BRA 12c], W.L. Bragg had already shown that the geometric 
shapes shown in those photographs could easily be interpreted by assuming that the 
incident X-ray beam was polychromatic. The Braggs simultaneously used 
photographs from Laue that were obtained with a polychromatic beam (the braking 
radiation) and diagrams obtained in reflection with their diffractometer by using a 
radiation as monochromatic as possible, produced by an anticathode made out of 
platinum or rhodium. By comparing the intensities diffracted by crystals of 
potassium bromide or chloride on the one hand, and diamond and sphalerite on the 
other, Bragg showed that the diffracted intensity was strongly dependent on the 
mass of the atoms comprising the crystals [BRA 14a]. 
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In 1915, Bragg spoke before the London Philosophical society [BRA 15] 
outlining his concepts. He showed that the crystal planes “reflecting” the X-rays are 
in fact a simplified way of representing the crystal’s actual structure, which can be 
described as a continuous medium in which the electron density varies periodically. 
Based on this idea, Bragg showed, in agreement with his experiments, that the 
diffracted intensity decreases like the square of the order of reflection. Additionally, 
he noted that X-ray diffraction, in this regard, must make it possible to determine 
the electron density associated with each atom. 

These experimental results and their interpretations clearly showed that the study 
of the diffracted intensity makes it possible to accurately determine the nature and 
the positions of the atoms inside the crystal cell. Nevertheless, the link between 
structural arrangement and the value of the total diffracted intensity was not proven. 
This aspect will be studied in detail by Darwin, who showed in two famous articles 
[DAR 14a, DAR 14b] that, on the one hand, the intensity is not concentrated in one 
point (defined by the Laue relations), but that there is a certain intensity distribution 
around this maximum (referred to as the Darwin width) and, on the other hand, that 
real crystals show a certain mosaicity that can account for the values of the 
diffracted intensity measured experimentally. These considerations were based on a 
description similar to that used for visible light in optics and constituted a preamble 
to the dynamic theory of X-ray diffraction, the core ideas of which were later 
established by Ewald [EWA 16a, EWA 16b]. 

While these experimental and theoretical studies of X-ray diffraction by single 
crystals were being developed, other authors thought about studying diffraction 
figures obtained when the analyzed sample is comprised of a large number of small 
crystals. Debye and Scherrer [DEB 16] in 1916, in Germany, followed by Hull 
[HUL 17a, HUL 17b] in 1917, in the USA, irradiated a cylindrical polycrystalline 
sample with an X-ray beam, and observed diffraction arcs on a cylindrical film 
placed around the sample. By measuring the angular position of these arcs, they 
were able to estimate, by using the Bragg relation, the characteristic interplanar 
distances of the diffracting planes, whereas the intensities were measured from the 
darkening of the film. These studies significantly widened the range of studies for 
X-ray diffraction, since this technique could be used on samples that were much 
more common than single crystals. 



PART 1 

Basic Theoretical Elements, Instrumentation 
and Classical Interpretations of the Results 
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Chapter 1 

Kinematic and Geometric Theories  
of X-Ray Diffraction 

When matter is irradiated with a beam of X photons, it emits an X-ray beam with 
a wavelength equal or very close to that of the incident beam, which is an effect 
referred to as scattering. The scattered energy is very small, but in the case where 
scattering occurs without a modification of the wavelength (coherent scattering) and 
when the scattering centers are located at non-random distances from one another, 
we will see how the scattered waves interfere to give rise to diffracted waves with 
higher intensities. The analysis of the diffraction figure, that is, the analysis of the 
distribution in space of the diffracted intensity, makes it possible to characterize the 
structure of the material being studied. This constitutes the core elements of X-ray 
diffraction. Before we discuss diffraction itself, we will first describe the elementary 
scattering phenomenon. 

1.1. Scattering by an atom 

1.1.1. Scattering by a free electron 

1.1.1.1. Coherent scattering: the Thomson formula 

The scattering of X-radiation by matter was first observed by Sagnac [SAG 97b] 
in 1897. The basic relation expressing the intensity scattered by an electron was laid 
down the following year by Thomson [THO 98d].  
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Consider a free electron located inside a parallel X-ray beam with intensity I0. 
This beam constitutes a plane wave traveling along the x-axis, encountering a free 
electron located in O. The electron, subjected to the acceleration: 

m
eE0=γ  [1.1] 

starts vibrating and emits an electromagnetic wave whose electrical field vector is 
written, in P, as: 

r
sin

e
mr

E e ϕγ=
  [1.2] 

where e is the charge of the electron, m is the mass of the electron, re is the radius of 
the electron, ϕ is the angle between γ and PO , and r is the distance between O and P. 

e
x

y

z

P

2θO

r

E

E

E

0E

E 0

E0

 

Figure 1.1. Coherent scattering by a free electron 

Therefore, we obtain a wave traveling through P with the same frequency as the 
incident wave and with amplitude: 

r
sinrEE e0

ϕ=  [1.3] 
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The vector 0E  can be decomposed in two independent vectors ⊥
0E  and //

0E . 
The expression for the amplitude of vector ⊥E  is: 

r
r

EE e
0=⊥  [1.4] 

⊥I , which is the corresponding intensity in P, is defined as the flow of energy 
traveling through a unit surface located in P over 1 second. The ratio of the incident 
and scattered waves in P is equal to the squared ratio of the amplitudes of the 
electrical fields; therefore we have:  

2

2
e

0
r

r
II =⊥  [1.5] 

The unit surface located in P is observed from O with a solid angle equal to 1/r2. 
Therefore, the intensity in question, with respect to the unit of solid angle is 

2
e0rII =⊥ . Likewise, the intensity along the Oy-axis is given by θ= 2cosrII 22

e0
// . 

Any incident beam will be scattered with the proportions x and (1 – x) along the 
directions Oz and Oy and thus the total intensity in P can be written as: 

I = I0re2 [x + (1 – x) cos2 2θ] 

If the beam is not polarized, then x = 0.5 and therefore: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ θ+=
2

2cos1rII
2

2
e0  [1.6] 

From now on, we will refer to this intensity as Ie and therefore we have: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ θ+=
2

2cos1rII
2

2
e0e  [1.7] 

This relation is called the Thomson formula [THO 98d]. It has a specific use: the 
scattering power of a given object can be defined as the number of free and 
independent electrons this object would have to be replaced with, in order to obtain 
the same scattered intensity. 
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1.1.1.2. Incoherent scattering: Compton scattering [COM 23] 

In addition to the coherent scattering just discussed, X photons can scattered 
incoherently, that is, with a change in wavelength. This effect can be described with 
classical mechanics by considering the incident photons and the electrons as 
particles and by describing their interactions as collisions, as shown in Figure 1.2. 

0S  and S  are the unit vectors of the incident and scattered beams, 2θ being the 
scattering angle, m the mass of the electron and V the electron’s recoil velocity once 
it is struck by the photon. If the vibration frequencies of the incident photon and the 
scattered photon are denoted by ν and ν’, respectively, the energy conservation 
principle leads to the relation: 

2mV
2
1'hh +ν=ν  [1.8] 

By applying the momentum conservation principle, we get: 

VmS
c

'hS
c

h
0 +ν=ν  [1.9] 

S

2θ

V

eS0

α

 

Figure 1.2. Incoherent scattering by a free electron 

Calculation of the difference in wavelength between the incident wave and the 
scattered wave 

By using the two principles just applied, we will be able to calculate this 
difference δλ, since we have:  
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because S is a unit vector.  
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δλ
λ

≈
λ

θ
⇒ 2

2
2

2
2

m
hc2msinh4  

and finally: 

θ≈θ≈δλ 22 sin048,0sin
mc

h2  [1.10] 

Therefore, the variation in wavelength is independent of the initial wavelength 
and increases with θ. 

In the case of a free electron, nothing prevents it from moving, since it is 
subjected to no outside force. Hence, the predominant effect is Compton scattering. 
However, it can be shown that the intensity of this scattering effect is accurately 
described by Thomson’s relation. When considering a set of free electrons, the 
different waves scattered by these electrons have different wavelengths and 
therefore do not lead to interference effects. What we observe is merely the sum of 
the scattered intensities. 

1.1.2. Scattering by a bound electron 

In an atom, an electron can assume different energy states. If, during the 
interaction with the X photon, the state of the electron does not change, then the 
photon emitted by the atom has the same energy as the incident photon. Hence, the 
resulting scattering is coherent (Thomson scattering). On the other hand, if the 
electron’s energy level changes, the scattered photon has a different energy and 
therefore a different wavelength from those of the incident photon: this is incoherent 
scattering. It means that by irradiating an atom with an X-ray beam whose energy is 
insufficient to cause electronic transitions, what we will observe is, for the most 
part, coherent scattering. Throughout this book, we will assume that this is the case. 

 
Generally speaking, it can be shown that the total intensity scattered by a bound 

electron is equal to the coherent intensity scattered by a free electron, as given by 
the Thomson formula. This result can be expressed by the relation: 

Total Coherent incoherent
bound electron bound electron bound electroneI I I I= = +  [1.11] 
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Calculating the intensity of coherent scattering 

Each electron moves about in an orbital and, if ( )rρ  denotes the charge density 
of the bound electron in any elementary volume dV of this orbital, vector r  being 
the one shown in Figure 1.3, then ( )rρ  is expressed as ( ) ( ) 2rr Ψ=ρ , where ( )rΨ  
is a wave function which is a solution to the Schrödinger equation. 

Since the volume dV contains the charge ρdV, it scatters an amplitude equal to 
the one scattered by one electron multiplied by ρdV. If we consider coherent 
scattering, the waves scattered by each elementary volume dV interfere, because 
they have the same wavelength. The coherent amplitude scattered by the bound 
electron is therefore given by the sum of the amplitudes scattered by each volume 
element dV and hence: 

( )Coherent Free electron
bound electronA A r e dVφρ= ∫∫∫  [1.12] 

 

Figure 1.3. Diagram showing the scattering electron cloud 
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O
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S0

 

Figure 1.4. Sum of the waves scattered by the entire electron cloud 

The path length between point O and the volume element dV is equal to 
0.( )r S Sδ = −  and the phase difference φ is expressed as: 

2 iπ δφ = −
λ

 [1.13] 

We have already mentioned that the vector ( )0S S− λ  is the scattering vector s  
and that s 2sin= θ λ ; hence: 

( )Coherent Free electron 2 is.r
bound electronA A r e dV− π= ρ∫∫∫  [1.14] 

The following term is referred to as the electron cloud’s scattering factor: 

( ) 2 is.rf r e dV− π= ρ∫∫∫  [1.15] 

The scattered coherent intensity is equal to the product of the amplitude and the 
conjugate of the amplitude; therefore: 

2Coherent
bound electron eI f I=  [1.16] 
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We know that the total intensity scattered by the bound electron is equal to the 
coherent intensity scattered by the free electron, therefore the incoherent intensity is 
given by the following relation: 

( )2Incoherent
bound electron eI 1 f I= −  [1.17] 

The scattering factor f depends on the vector s  and, hence, on sin θ λ , 
therefore, a variation in wavelength causes a variation in the scattering angle. 

The scattering factor reaches its maximum for θ = 0 and decreases with 
θ, meaning that the contributions to the total scattering from coherent scattering and 
Compton scattering behave as shown in Figure 1.5. 

 

Figure 1.5. Simplified representation of the coherent and incoherent  
intensities as a function of  the scattering vector 

1.1.3. Scattering by a multi-electron atom 

An atom with the atomic number Z contains Z electrons. The waves scattered by 
these Z electrons will contribute in different ways to the overall scattering by the 
atom, depending on which orbital they belong to. 
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The waves scattered coherently by each of the electrons all have the same 
wavelength. Therefore, they will interfere. Hence, the total scattered amplitude is 
the sum of the amplitudes scattered by each electron. The electron scattering factor, 
which is the amplitude scattered by an electron, was denoted earlier by f. For a 
given electron it depends on how far its orbital extends (see equation [1.15]). 
Therefore, the coherent intensity can be written as: 

2Z
Coherent
atom j e

1

I f I
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑  [1.18] 

and the atom’s scattering factor is defined as: 

∑=
Z

1
jff  [1.19] 

By knowing the radial distribution of the electronic densities for the different 
shells of a given atom, it becomes possible to calculate the corresponding scattering 
factors, the total scattering factor being equal to the sum of all of these terms. 
Generally speaking, the outer shells correspond to a very broad distribution of the 
electronic density, but since coherent scattering is low when the scattering angle is 
high, these shells contribute only slightly to the coherent scattering of the atom. The 
electrons most involved in coherent scattering are the electrons in the inner shells. 
This important aspect is illustrated in Figure 1.6. Figure 1.6a shows a centered 
cross-section of various orbitals for the potassium ion K+. Note, of course, that the 
electron density functions for the orbitals 1s, 2s and 2p have a maximum located at 
small distances from the center of the ion, unlike orbitals 3p and 3s, which are 
further away from the nucleus. Figure 1.6b shows the electron scattering factors 
associated with each of these orbitals. The evolution of these factors is plotted 
according to the norm of the scattering vector s . Note that, as soon as the values of 
s  increase, the contributions to the overall scattering factor from orbitals 3p and 

3s rapidly drop. On the other hand, the contribution from orbital 1s decreases very 
slowly with the value of s , to the point that the contributions from the surface 
orbitals become negligible. These results tell us that the scattering effect is not much 
affected by the degree of ionization of the atoms in question. 
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(a) radial distribution of the electron density in a potassium ion  

 
(b) scattering factors associated with each orbital 

Figure 1.6. Evolution of the scattering factors associated with each  
atomic orbital according to that orbital’s electron density 
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The values of the scattering factors for the various atoms are compiled in the 
International Tables for Crystallography. 

In the case of incoherent radiation, which would then indicate inelastic scattering 
or also Compton scattering, the wavelengths of the radiations emitted by the various 
electrons are different, depending on what orbital is considered. Therefore, there is 
no interference. The intensity scattered by the entire atom is the sum of the 
intensities scattered by each of the electrons and it is written: 

( )
Z

incohorent 2
atom j e

1

I 1 f I
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠
∑  [1.20] 

1.2. Diffraction by an ideal crystal  

1.2.1. A few elements of crystallography1 

1.2.1.1. Direct lattice 

A crystal is a given atomic pattern repeated in three dimensions. The unit cell is 
defined as constituting a basis for the crystal lattice. This basis, which generally is 
not orthonormal, is defined by the triplet ( )c,b,a  and the angles between these 

different vectors are: ( )c,b=α ; ( )c,a=β ; ( )b,a=γ . Inside this cell, the position of 
each atom in the crystal pattern is specified by the vector r . The position of each 
cell is specified by the vector cwbvauR ++= . The crystal is completely 
described by the translations along the cell’s three vectors ( )c,b,a . 

The lattice points can be arranged in atomic rows. If we go from the point 
(u,v,w) to the origin of the lattice, the line we draw will go through the points 
(0,0,0), (u,v,w), (2u,2v,2w), (3u,3v,3w), etc. For each lattice point there is another 
line, parallel to the first, and containing the same number of points. Thus, the lattice 
is decomposed in a series of regularly arranged, parallel rows. They are referred to 
as rows with indices [u,v,w]. 

                              
1 The intent in this section is not to discuss crystallography extensively, but instead to simply 
point out in a few lines the elements that are essential to understanding the diffraction effect. 
It goes without saying that knowledge of crystallography is a prerequisite to understand X-ray 
diffraction. Many books give a detailed presentation of crystallography (see, for example, 
[GIA 96], published with support from the International Union of Crystallography). 
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Likewise, it is possible to define crystal planes where the lattice points are now 
arranged in parallel planes at equal distances from one another, forming a family of 
planes characterized by an interplanar distance. These families of planes are 
characterized by three integers (h,k,l), referred to as the Miller indices. If we 
consider the plane that passes through the origin of the lattice for a given family 
(h,k,l), then, by definition, the next plane intersects the axis a  of the crystal cell in 

ha , the axis b  in kb  and the axis c  in lc  (to make this simpler, we will denote 
a  by “a”, here and throughout this book, and likewise for “b” and “c”). The plane 

with indices (3,2,1) is shown in Figure 2.8. When one of the Miller indices is equal 
to zero, the intersection of this plane with the axis is pushed back to infinity and 
therefore the plane is parallel to this axis. 
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Figure 1.7. Representation of an arbitrary crystal 
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Figure 1.8. The concept of the Miller indices 
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1.2.1.2. Reciprocal lattice 

The reciprocal lattice, which from a mathematical standpoint is equivalent to the 
dual space of the direct space, is very often used in X-ray diffraction, since it makes 
it possible to associate each family of planes with its normal.  

The triplet * * *(a , b , c )  constitutes a basis of this space if the vectors in question 
are such that they verify the following relations: 

= = =

= = =

= = =

* * *

* * *

* * *

a .a 1 b .a 0 c .a 0

a .b 0 b .b 1 c .b 0

a .c 0 b .c 0 c .c 1

 [1.21] 

The volume V of the direct lattice’s primitive cell is given by V a.(b c)= ∧ , and 
likewise V* a *.(b* c*)= ∧ . These relations can be used to express the vectors of 
the reciprocal lattice according to those of the direct lattice, resulting in the 
following equations: 

( ) ( ) ( )1 1 1 1a* b c b* c a c* a b V*
V V V V

= ∧ = ∧ = ∧ =  [1.22] 

Consider any vector of the reciprocal lattice r* ha * kb* lc *= + +  where h, k and 
l are any  integers. Note in Figure 1.8 that the vectors b)k1(a)h1(=p −  
and  q=(1 h)a (1 l)c−  belong to the plane of the direct lattice with (h,k,l) as its 
Miller indices. The product r *.p  is written: 

( ) ( )r *.p ha * kb* lc * . ((1 h)a (1 k)b= + + −  

and is therefore based on the vector relations above, 011p.*r =−= . Likewise, 
0q.*r = . Vector *r , with coordinates (h,k,l) in the reciprocal lattice is therefore 

normal to the plane in the direct lattice with indices (h,k,l). 

Moreover, if d(hkl) is the interplanar distance between two planes of the (h,k,l) 
family, then it can be shown that:  

hkl *
hkl

1d
r

=  [1.23] 

The interplanar distance is equal to the inverse of the norm of the corresponding  
vector in the reciprocal lattice. 
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1.2.2. Kinematic theory of diffraction 

We know that each atom scatters the incident radiation and that the amplitude of 
the scattered wave, called the atomic scattering factor, depends on the number of 
electrons in the atom in question. We are now going to make two assumptions: 

– the amplitude of the incident wave is constant; 

– a wave scattered by an atom is not scattered again: there is no multiple 
scattering. 

These two approximations are what characterizes the kinematic approach to 
diffraction and make it possible to describe the effect in a relatively simple way. The 
dynamic theory [AUT 05] takes both of these effects into account. The 
implementation of this dynamic theory is necessary when studying diffraction by 
very high quality single crystals, or also in the field of homoepitxial thin film 
characterization. These two subjects are beyond the scope of this book and therefore 
from here on, we will apply the kinematic theory of X-ray diffraction.  

1.2.2.1. Diffracted amplitude: structure factor and form factor  

First of all, consider a crystal cell, the origin of which is located at an arbitrary 
point M of the crystal lattice. Inside this cell, an arbitrary point N can be defined by 
the vector NMr =  and we have czbyaxr ++= , where a,b and c  are the basic 
vectors of the crystal cell. 

 

Figure 1.9. Amplitude diffracted by one cell and by the entire crystal 
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If this cell is irradiated with a parallel beam of X-rays traveling along the 
direction of the vector 0S , then by applying the same process as before, it is 
possible to calculate the amplitude scattered by this cell. This amplitude is written:  

( ) ( ) 2 is.r

cell

F S f r e dV− π= ∫∫∫  [1.24] 

The factor F, which is called the structure factor, depends only on the nature of 
the atoms in the cell (scattering factor fj) and on the relative positions ( )s.r  of these 
atoms, the vector s  being defined as before. 

The amplitude diffracted by all of the crystal’s cells is the sum of all the 
amplitudes scattered by each cell and, furthermore, each cell scatters the same 
amplitude. If we denote by R XA YB ZC= + +  the vector indicating the relative 
position of each cell, then we can write that the amplitude diffracted by the entire 
crystal is given by the following relation: 

( ) ( ) 2 is.R

X Y Z

A S F S e− π= ∑∑∑  [1.25] 

The structure factor )S(F  is taken out of the sum since it is the same, regardless 
of the cell. The form factor is defined as the term: 

( ) 2 is.R

X Y Z

L S e− π=∑∑∑  [1.26] 

1.2.2.2. Diffracted intensity 

The intensity, which is the flow of energy that travels through a unit surface over 
one second is, as we have already seen, equal to the product of the amplitude with 
its conjugate (denoted by A*). Hence, we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
e eI S I F S F * S L S L * S I F S L S= =  [1.27] 

The calculation of the product of the form factor with its conjugate calls for a 
few additional comments. We will now consider a prismatic crystal, the faces of 
which are parallel to the axes of the primitive cell. In that case, the dimensions of 
the crystal are N1a, N2b and N3c if a, b and c are its cell parameters. The vectors 
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A,B and C  defined above then become multiples of the crystal cell’s basic vectors 
and the vectors R  can be expressed as a linear combination of these basic vectors. 
If we define cwbvauR ++= , then we can write: 

( )
31 2 N 1N 1 N 1

2 is.ua 2 is.vb 2 is.wc

u 0 v 0 w 0

L S e e e
−− −

− π − π − π

= = =

= ∑ ∑ ∑  [1.28] 

These different terms are the sums of geometric series  with common ratio ρ, 
with ρ such that: 

a.si2e π−=ρ  

If we consider a geometric series with t as its first term, q as its last and ρ as its 
common ratio, then the sum of this series is given by: 

1
tqq...ttt 2

−ρ
−ρ=++ρ+ρ+=σ  

therefore: 

1 1
N 1 2 is.N a

2 is.ua
2 is.a

u 0

e 1e
e 1

− − π
− π

− π
=

−=
−∑  

If we multiply this term with its conjugate and if we define a.s 2x π= , we get 
the products of the form: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−

−

1e
1e

1e
1e

ix

iNx

ix

iNx
 

(e–ix – 1)(eix – 1) = e–ix + ix – (e–ix + eix) + 1  

and additionally: 

ix ix ix ixe e e esin x  and cosx
2i 2

− −− += =  
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hence: 

(e-ix – 1)(eix – 1) = 1 – 2cosx + 1 = 
2
xsin4 2  

and therefore: 

2
x2

2
x2

ix

iNx

ix

iNx

sin

Nsin

1e
1e

1e
1e =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−

−
 

In the end, the diffracted intensity can be expressed: 

( ) ( )
22 22 31 2

e 2 2 2
sin s.N csin s.N a sin s.N b

I S I F S
sin s.a sin s.b sin s.c

ππ π
=

π π π
 [1.29] 

The behavior of the form factor’s square modulus is shown in Figure 1.10, for a 
direction in space parallel to one of the cell’s axes. As the number of cells taken into 
account increases, the intensity distribution becomes thinner and we obtain maxima 
when the product a.s  is an integer. 

Expression [1.29], first established for X-ray diffraction by Laue [FRI 12], is not 
specific to this filed of application. It represents the intensity distribution of any 
basic wave interference effect. However, in the diffraction of X-rays, in most cases, 
the number of atoms or of crystal cells can be considered to be infinite. The 
diffraction signal then corresponds to a series of Dirac peaks (a result described as a 
“Dirac comb”). 

In order to illustrate this fundamental result of X-ray diffraction, which gives for 
any crystal the expression of the diffracted intensity, we have calculated the 
intensity diffracted by an imaginary crystal with a cubic symmetry and a cell 
parameter equal to 5 Å. The atoms that comprise it, which are all of the same kind, 
are located at the vertices of the crystal cell. The wavelength of the incident beam 
was chosen equal to the wavelength of copper’s Kα1 radiation (1.540598 Å). The 
evolution of the diffracted intensity according to the scattering vector’s norm is 
shown in Figure 1.10a for a crystal comprised 50 crystal cells. We note that the 
diffracted intensity shows up as a series of peaks with decreasing intensities when 
s  increases. This decrease is directly related to the decrease of the scattering 
factor’s value when s  increases. 

Figure 1.10b shows the intensity distribution’s behavior depending on the 
number of cells contained in the crystal. We see that when this number N decreases 
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the intensity distribution grows wider. Thus, when the diffracting crystal or crystals 
are nanometric in size, the corresponding diffraction signal shows a certain 
distribution about the Bragg angle. We will show later on that the width of this 
distribution is directly related to the size of the diffracting crystals. This observation, 
first made by Scherrer [SCH 18] in 1918, is at the core of microstructural analysis 
by X-ray diffraction, which constitutes the theme of Part 2 of this book. 

  
(a) distribution of the intensity diffracted by a crystal containing 50 cells 

  
(b) influence of the number of cells on the intensity distribution 

Figure 1.10. Influence of the number of scattering cells on the intensity distribution 
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1.2.2.3. Laue conditions [FRI 12] 

We saw that the form factor’s square modulus, and therefore the diffracted 
intensity, reach their maxima when s.a = integer (the same goes for axes b and c ). If 
we consider three integers (h,k,l) and if we assume that we are dealing with an 
infinite crystal, we can write that the diffracted intensity is not equal to zero if: 

⎪
⎩

⎪
⎨

⎧

=
=
=

lc.s
kb.s
ha.s

 [1.30] 

These three equations are the Laue conditions, which can be expressed in the 
reciprocal lattice. Consider an arbitrary vector *r  in the reciprocal lattice with 
coordinates (h,k,l). The dot product r *.a ha *.a kb*.a lc *.a= + +  is equal to h. The 
same relation can be written for each of the vectors b and c , and therefore the Laue 
conditions impose that the scattering vector s  must be a vector of the reciprocal 
lattice .  

With this result, we can express the structure factor, which was previously 
defined differently. The vector s  is now written s ha * kb* lc *= + +  and therefore 

( ) ( )s.r ha * kb* lc * . xa yb zc s.r hx ky lz= + + + + ⇒ = + + .  

We have seen that each family of planes with indices (hkl) is defined by its 
normal vector, the coordinates of which are the triplet (h,k,l) in the reciprocal lattice. 
Hence, it is possible to associate each of the families of planes with a structure 
factor which is expressed as:  

( )2 i hx ky lz
hkl xyz

cell

F f e dVπ + += ∫∫∫  [1.31] 

where the factor f(xyz) is the scattering factor of the atom located at the 
crystallographic site with coordinates (x,y,z). Note that, according to the expression 
we have just given, the structure factor is the scattering factor’s Fourier transform 
and therefore by the inverse Fourier transform: 

( )2 i hx ky lz
xyz hkl

h k l

f F e− π + +=∑ ∑ ∑  [1.32] 
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Determining all of the structure factors of a given crystal makes it possible to 
determine a priori the value taken by the diffusion factor in any point of the crystal 
cell and therefore it is possible by comparison to determine the nature of the 
scattering atoms. 

However, this type of study, commonly referred to as structural analysis, poses 
two problems: 

– the intensity diffracted by the family of plane with indices (hkl) is proportional 
to the square modulus of the structure factor; 

– only a certain number of reflections (hkl) can be measured and therefore the 
Fourier series is limited. 

We will see in detail in the last chapter of this first part how it is possible, 
nonetheless, to determine the average structure of the diffracting crystals from the 
integrated intensity measurements. 

1.2.3. Geometric theory of diffraction 

1.2.3.1. Laue conditions 

This section will enable us to return to the Laue conditions which we showed 
with the help of the kinematic theory of diffraction. These conditions express the 
fact that the waves scattered by each of the points on a row have to be in phase. 

The crystal lattice can be defined entirely based on the three rows [100], [010] 
and [001], which means that if the waves scattered by the points of each of these 
rows are in phase, then all of the lattice points scatter in phase. 

Figure 1.11 shows a schematic representation of the scattering by the row [100] 
of a crystal lattice with cell parameters a, b and c. The incident X-ray beam is 
characterized by vector 0S  and wavelength  λ. This beam is scattered in the 

direction defined by vector S . 
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Figure 1.11. Geometrical evidence of the Laue conditions  

As we have already seen, the diffraction condition states that the path difference 
between the waves scattered by each of the lattice points is a multiple of the 
wavelength. Let δ be this path difference: 

'AHHA +=δ  

hence: 

δ = a(cos α0 + cos α) or s.aS.aS.a 0 λ=+−=δ  

s  being defined as it was previously. In addition to this, we know that δ must be 
equal to hλ for diffraction to occur; therefore, s.ah λ=λ  and in the end, we again 
find ha.s = . 

1.2.3.2. Bragg’s law [BRA 13b, BRA 15] 

We are going to show this fundamental relation of X-ray diffraction using the 
schema shown in Figure 1.12, drawn in the direct lattice. 
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Consider an arbitrary family of planes (hkl) characterized by the interplanar 
distance dhkl and irradiated at an angle θ with a monochromatic beam of X-rays. If 
the crystal is relatively small, each atom of this crystal is placed inside a beam with 
constant intensity and coherently scatters a wave, whose amplitude and intensity 
were calculated above. If all of these scattered waves are in phase on a wave plane π 
perpendicular to the scattering direction, they interfere and give rise to a scattered 
wave with a strong intensity in that direction. If we consider the wave plane π0 of 
the incident wave, the necessary condition to diffraction is therefore to have the path 
difference between the planes π0 and π equal to a multiple of the wavelength. 

First of all, consider an atomic plane. The paths between the two wave planes π’ 
and π of the waves scattered by the atoms located in A and A1 are equal if the angle 
between the atomic plane and the incident beam is equal to the angle between this 
plane and the scattered beam. 

dhkl

dhkl

θ

S0

S
θA

A1

A'

π' ππ0

H K

 

Figure 1.12. Interference of waves scattered by atoms inside the crystal. 
Geometrical illustration of Bragg’s law  

In addition to this first condition, the waves scattered by each plane of the 
considered family have to be in phase. As we have just seen, the waves scattered by 
each of the planes have the phase of the wave scattered by an arbitrary atom in these 
planes. The path difference between the wave scattered by the atom located in A’ 
and the wave scattered by the atom located in A is written K'A'HA +=δ . If d is 
the interplanar distance that characterizes this family of planes, then δ = 2d sin θ, 
but this path difference has to be a multiple of the wavelength, hence: 

nλ = 2dhkl sin θ [1.33] 
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This relation is called Bragg’s law and it constitutes, along with the equation that 
leads to the scattered intensity, the core of radiocrystallography. It shows how the 
interplanar distances in a given crystal can be calculated from the measurements of 
the diffraction angles. Note that if we consider a family of plane with indices (hkl), 
for a given  wavelength λ, the diffraction angle (Bragg angle) is given  and therefore 
we will observe a wave diffracted by this family of planes if and only if the angle 
between this family and the incident wave is equal to the one given by Bragg’s law. 

In order for diffraction to occur with an X-ray beam with a given wavelength λ, 
Bragg’s law has to be verified and therefore we must have: 

2
d1

d2
n λ≥⇒≤λ

 [1.34] 

For a given interplanar distance, this relation gives us the maximum useable 
wavelength and therefore limits the families of planes that can be characterized by 
using a beam with a given wavelength. Likewise, note that if the wavelength were 
very small compared to the interplanar distances, the ratio d2λ  would be very 
small and therefore, the value of the diffraction angle θ would also be very small 
and difficult to observe. These two conditions show that the beam’s wavelength 
should be in the same range as the values of the interplanar distances. 

1.2.3.3. The Ewald sphere 

Ewald [EWA 17] suggested a geometric representation in the reciprocal lattice 
of the results we have just shown. The Ewald sphere is defined as a sphere centered 
in O, the origin of the direct and diffracted wave vectors, and with radius 1/λ. 
Vectors 0k  and k  are co-linear to vectors 0S  and S , respectively.  
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Figure 1.13. The Ewald sphere 

Ewald’s condition can be expressed as follows: in order for nth order diffraction 
to occur on a family of planes with index (hkl), the nth node of the reciprocal 
lattice’s row [hkl]* has to be on the Ewald sphere, the corresponding diffracted 
beam then passes through that point. 

When the crystal is in a random position, the point of the reciprocal lattice that 
corresponds to a given family of planes is not on the Ewald sphere, and additionally, 
it is generally possible that no point is on that sphere, in which case there is no 
diffracted beam. In order for a given family of planes to be able to diffract, the 
corresponding point has to be inside a sphere with radius 2/λ, centered in C, the tip of 
the vector 0k . This sphere is called the resolution sphere. This can also be written: 

2s ≤
λ

 [1.35] 

We know that: 

1s
d

=  [1.36] 



28     X-ray Diffraction by Polycrystalline Materials   

and therefore we find the same condition as the one established before: 

2
d λ≥  [1.37] 

1.3. Diffraction by an ideally imperfect crystal 

We showed in section 1.2.2.2 that the intensity diffracted by a crystal is 
expressed as: 

2
hkl

2
hkle LFII =  

However, this relation is not exactly true. The crystals are not comprised of 
perfect crystal planes: they show domains slightly misoriented with respect to one 
another. These crystal domains usually extend over a few tens of cells and their 
misorientation are characteristic of the crystal in question, something referred to as 
the crystal’s mosaicity. A qualitative illustration of this mosaicity is shown in Figure 
1.14. 

Figure 1.15 shows the evolution of the intensity diffracted by the (110) planes of 
an aluminum oxide single crystal according to the beam’s angle of incidence on 
these planes. The X-ray beam used is almost parallel (the equatorial divergence is 
equal to 12 arcseconds) and monochromatic (∆λ/λ = 1.4x10-4) [MAR 00].  

 

Figure 1.14. Mosaicity of a real crystal 

A certain diffracted intensity is observed when the angle of incidence is close to 
the Bragg angle of the chosen family of planes. The angular range for which this 
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intensity is significant is small, but not null, and clearly greater than the beam’s 
divergence. For each angle of incidence, a certain diffracted intensity is observed, 
corresponding to the integral of the measured peak. If the evolution of this 
integrated intensity is plotted according to the difference between the Bragg angle 
and the angle of incidence of the beam on the crystal planes in question, the width 
of the resulting graph is a direct measurement of the crystal’s mosaicity. This type 
of graph is called a rocking curve and the widths of these curves are typically of a 
few thousandths of a degree for single crystals free of any particular defects. 

 
Figure 1.15. Measurement of the mosaicity of an aluminum oxide single crystal 

These are very general considerations and they show that the total intensity 
diffracted by a crystal is the sum of the elementary contributions, each one of them 
obtained for a given angle of incidence. The domains diffract independently from 
one another. The total intensity will therefore be obtained by adding the elementary 
intensities diffracted for each value of the angle of incidence. This result was 
discovered in the first studies involving X-ray diffraction conducted by Bragg [BRA 
13b], who suggested a method, discussed in detail by Warren [WAR 69], that makes 
it possible to calculate the actual intensity diffracted by a single crystal, which we 
will refer to as the integrated intensity, denoted by Phkl. 
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Figure 1.16. Diffracting power of an ideal crystal 

Consider a beam with intensity I0 irradiating a small single crystal in the Bragg 
position. This crystal is rotating at a constant angular speed ω around an axis 
parallel to the planes (hkl) and perpendicular to the incident beam, so as to have the 
angle of incidence vary from θ – α to θ + α. A detector is placed on a sphere with 
unit radius with the objective of measuring the overall energy diffracted during the 
crystal’s rotation. Let E be that energy. The total intensity diffracted by this crystal 
is given by the relation: 

0
hkl I

EP ω=  [1.38] 

The total energy E going through the detector’s surface is obtained by 
integrating the intensity Ihkl over the receiving surface, given by the product 
dβ.dγ, and over the time t: 

 ∫∫∫ γβ= ddtdIE hkl  [1.39] 

we can write: 

dt
dα=ω  [1.40] 
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and if we substitute the value of Ihkl, E can be expressed as: 

∫∫∫ γβα
ω

= dddL
F

IE 2
hkl

2
hkl

e  [1.41] 

In this section, the scattering vector is assumed to have coordinates (h1,h2,h3) 
which are variables of the reciprocal lattice. In fact, the crystal’s orientation for 
which a diffraction signal is observed varies in the vicinity of the Bragg angle (see 
Figure 1.15). Therefore, vector s , which is normal to the diffracting planes, varies. 

1 2 3s h a * h b* h c *= + +  [1.42] 

The triplet (hkl) corresponds to particular values of these variables. The 
variations of vector SS0 −  are described by vector S∆  such that: 

( )1 2 3S a * b* c *∆ = λ ε +ε +ε  [1.43] 

The volume generated by these variations is the mixed product of the vectors 

( ) ( ) ( )d S , d S  and d S ;
α β γ

∆ ∆ ∆  therefore: 

( ) ( ) ( )( )dV d S . d S d S
β α γ

= ∆ ∆ ∧ ∆  

or also: 

dV sin 2 d( S) d( S) d( S)β α γ= θ ∆ ∆ ∆  

Additionally: 

( ) ( ) ( )d S d  ; d S d  ; d S d
α β γ

∆ = α ∆ = β ∆ = γ  

since vectors 0S and S  are unit vectors, hence: 

dV = sin 2θ dα dβ dγ 
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Therefore, we can write: 

∫∫∫θω
= dVL

2sin
1F

IE 2
hkl

2
hkl

e  [1.44] 

dV can be expressed using the coordinates of vector S∆ . We then get: 
( )*cd*bd.*addV 321 ελ∧ελελ=  or also ( )*c*b.*addddV 321

3 ∧εεελ= , and 
therefore: 

3

1 2 3
c

dV d d d
V
λ= ε ε ε  [1.45] 

where Vc is the cell volume. Hence: 

2 3
2hkl

e hkl 1 2 3
c

F 1E I L d d d
sin 2 V

λ= ε ε ε
ω θ ∫∫∫  [1.46] 

The expression of 2
hklL is a product of terms of the form: 

a.ssin
aN.ssin

2
1

2

π
π   

In this case, s  has to be replaced with 
λ

∆+ Ss . Now: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

λ
∆+π=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

λ
∆+π aN.ShNsinaN.Sssin 1

1
2

1
2  

and hN1 is an integer. Therefore the expression becomes: 

⎟
⎠
⎞

⎜
⎝
⎛ ∆

λ
π aN.Ssin 1

2  

and in the end: 

sin2 (πN1ε1) 
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therefore: 

3
2

33
2

2
2

22
2

1
2

11
2

2
hkl

sin
Nsin

sin
Nsin

sin
NsinL

πε
επ

πε
επ

πε
επ=  [1.47] 

Hence, we get: 

∫ ∫ ∫ ε
πε

επ
ε

πε

επ
ε

πε

επλ
θω

= 3
3

2
33

2

2
2

2
22

2

1
1

2
11

2

c

32
hkl

e d
sin

Nsin
d

sin

Nsin
d

sin

Nsin
V2sin

1F
IE [1.48] 

By noting that the values of ε1, ε2 and ε3 are very small, we can say that  
sin πε1 ≈ πε1 and thus show that the three integrals are equal to N1, N2 and N3, 
respectively, the product of these three terms being equal to N, which is the total 
number of cells in the crystal. The expression of E then becomes: 

N
V2sin

1F
IE

c

32
hkl

e
λ

θω
=  [1.49] 

The number N is equal to the ratio of the crystal’s volume δV to the volume of a 
cell Vc. If we replace Ie by its value we get the final expression of E: 

V
2sin

1
V

F
2

2cos1rIE 2
c

2
hkl

32
2
e

0 δ
θ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ λ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ θ+
ω

=  [1.50] 

We showed that the intensity diffracted by a crystal, denoted by Phkl, was given 
by the relation 0hkl IEP ω= and therefore we can write: 

V
2sin

1
V

F
2

2cos1rP 2
c

2
hkl

32
2
ehkl δ

θ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ λ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ θ+=  [1.51] 

1.4. Diffraction by a polycrystalline sample 

The general principles of X-ray diffraction were established in the case of a 
single crystal. This situation led to a great number of studies that made it possible in 
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particular to describe the structure of crystals. However, other studies, which 
constitute the focus of this book, are conducted on polycrystalline samples. 

The sizes of the elementary crystals are very small, of the order of micrometers 
and cannot be singled out to be characterized in the same way as single crystals. We 
will see how, nonetheless, they can be studied, using certain experimental 
techniques. In other works, these techniques are often called “powder techniques”, 
the word powder simply referring to polycrystals in this case. The microcrystals in 
question should not be confused with the more general term grain of powder, since 
a grain of powder can be either poly- or monocrystalline. 

Consider a polycrystalline sample irradiated by a monochromatic X-ray beam. 
This sample contains a very high number of grains and if these crystals are 
randomly oriented, then for each family of planes (hkl) a large number of grains are 
in the Bragg position and therefore diffract. As we have seen, the diffracted beams 
are at an angle equal to 2θ with the direction of the incident beam. 

Therefore, the locus of all the beams diffracted by the entire set of crystals in the 
Bragg position is a cone with a half opening angle 2θ. If we take into account 
diffraction by several families of planes, the result is a series of diffraction cones 
sharing the same apex (see Figure 1.17). 

 

Figure 1.17. Diffraction cones of a polycrystalline sample  
irradiated with a monochromatic beam 
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Let M be the number of elementary crystals contained in the sample and let δV 
be the average elementary volume of each of these crystals. We are going to 
calculate the expression of the intensity diffracted by m crystals in the Bragg 
position for a given family of planes (hkl). 

These m crystals have to be oriented in such a way that the family of planes (hkl) 
creates an angle contained between θ + α and θ + α + dα with the direction of the 
incident beam. 

θ+α

dα

S0

r

 

Figure 1.18. Calculation of the number of grains in the  
Bragg position for a given family of planes 

In a crystal, there are several families of planes with different orientations but 
with the same interplanar distance and the same structure factor modulus. In the 
case of a polycrystalline sample, these different families will diffract simultaneously 
and, will therefore contribute to the overall intensity of the peak in question. nhkl 
denotes the number of equivalent families of planes for a given triplet (hkl) and n is 
the multiplicity factor of the diffraction peak being studied. If we wish to calculate 
the number of families of planes (hkl) in the Bragg position, we will have to 
multiply the resulting value by nhkl. 

The normals to each family of planes for each of the crystals in the sample are 
defined by the vector hklr *  of the reciprocal lattice. In the case of a polycrystalline 
sample, the total number of these vectors is Mnhkl. The tips of these vectors form 
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the entire surface of the sphere with radius hklr * . On the other hand, the tips of the 
vectors hklr *  associated with the diffracting planes inside the crystals that are in the 
Bragg position form a portion of the sphere, shown in Figure 1.18. The number of 
crystals in the Bragg position is therefore given by the ratio between the surface of 
this portion of sphere and the surface of the sphere. So, in the end, the number of 
crystals in the Bragg position is equal to: 

( ) αα+θπ
π

= dcosr2
r4

Mnm 2
2

hkl  [1.52] 

αθ=⇒ dcos
2

Mnm hkl  [1.53] 

The intensity of a peak (hkl) is equal to the number of crystals in the Bragg 
position multiplied by the intensity diffracted by an elementary crystal. If the total 
volume of the sample is equal to dV, then dV = MδV and the total volume of the 
crystals in the Bragg position is equal to the number of grains multiplied by the 
volume of each grain. Hence the volume is expressed as follows: 
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2
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If I(α) is the intensity diffracted by the family of planes (hkl) with the incidence 
α, the total intensity diffracted by the sample with volume dV, for the cone that 
corresponds to the family of planes (hkl), is given by: 

ααθ=Φ ∫ d)(Icos
2
dVnhkl  [1.55] 

This intensity corresponds to the intensity diffracted by a single crystal with 
volume: θcos2

dVnhkl  and therefore is given by the value of Phkl for a crystal of that 

volume. 
 
However, this intensity is distributed over a cone with a half opening angle 2θ. If 

a detector is placed at a distance R from the crystal, the intensity we measure will be 
the diffracted intensity expressed with the circle’s perimeter 2πR sin 2θ as the unit 
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of length. Hence, the measured intensity will be described by the following 
expression: 
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therefore: 
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where the term 
2

2cos1 2 θ+
 is called the polarization factor. 

The relation given here is only valid in the case of an unpolarized incident beam. 
In practice, the beam used to irradiate the sample is sometimes diffracted 
beforehand by a single crystal acting as a monochromator, in which case the 
polarization factor’s expression is more complex and depends in particular on the 
diffraction angle of the monochromator single crystal. 

 
The term θλ 2sin3  is referred to as the Lorentz factor; the Lorentz-polarization 

factor, which is the product of the two previous expressions, is also commonly used. 

The expression of the intensity that was transferred in [1.57] does not account 
for two effects that we have neglected throughout this chapter.  

First, a polycrystalline sample usually has a size that ranges in millimeters and 
the beam irradiating this sample is partially absorbed. This means that a crystal 
located in a given area of the sample sees an incident intensity I that is different 
from the initial beam’s intensity I0. Furthermore, the diffracted beams are also 
partially absorbed. As a result, the actual intensity that is measured is attenuated by 
an absorption factor which we will denote by A. The form of this factor depends on 
the geometric characteristics of the diffractometer used for the experiment. This 
point will be detailed later on, in particular when describing the diffractometers 
designed for the study of thin films. 

The second effect involves thermal agitation. It is well known that atoms, 
although located in atomic sites inside the crystal, are subjected to a certain agitation 
that increases with the temperature. When we calculated the expression of the 
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structure factor, we assumed that the atoms had a certain position defined by the 
vector r . We now see that the positions of these atoms are constantly changing. As 
a result, the diffracted amplitude is modified. This modification depends in theory 
on what family of planes considered because each atom is moving inside a potential 
well with an anisotropic shape, since it depends on the crystallographic direction. 
The complete description of this effect will not be given here. We will simply point 
out that the diffracted intensity is attenuated by a factor, called the Debye or Debye-
Waller factor, smaller than 1, and whose value usually depends on which family of 
planes is being considered. This factor will be denoted by D. Finally, the intensity 
diffracted by a polycrystalline sample is therefore written:  
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Chapter 2 

Instrumentation used for X-ray Diffraction 

2.1. The different elements of a diffractometer 

2.1.1. X-ray sources 

Aside from synchrotron radiation sources, which will be mentioned later on, 
whatever the type of source used, the process of X-ray production results from 
bombarding a metallic target with electrons. The electrons, accelerated by an 
electrical field, are suddenly slowed down when they come into contact with the 
target and lose some of their energy which is dispersed in the form of radiation, a 
process called braking radiation (or Bremsstrahlung). The resulting X-rays do not 
have a specific wavelength, the emission spectrum is continuous and its intensity 
increases with the electron acceleration voltage (see Figure 2.1a). 
 

The electron bombardment generates a second type of emission. The electrons 
transmit their energy to the atoms of the target and cause electronic transitions, 
meaning that the atoms reach an excited state. They return to a more stable energy 
level through a series of electronic transitions and the emission of X photons with 
non-random energies E = hν, equivalent to the energy gaps between the different 
electron shells of the atom in question. Therefore, this radiation is comprised of 
several wavelengths, but the emission spectrum is totally discontinuous. Figure 2.1b 
shows an illustration of this type of emission. Note that, in this case, the emission 
spectrum still includes a contribution from the braking radiation which causes the 
continuous background emission. 
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(b) Characteristic radiation 

Figure 2.1. Emission spectrum of a molybdenum anode bombarded with an electron beam 
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Table 2.1 lists the emission wavelengths of a few materials commonly used in 
X-ray diffraction. Only the K radiations, which are the ones used, are shown. 

Wavelength (Å) 
Element

Kα1 Kα2 Kβ 
Excitation threshold (Kev) 

Ag 0.55941 0.5638 0.49707 25.52 

Mo 0.7093 0.71359 0.63229 20 

Cu 1.540598 1.54439 1.39222 8.98 

Ni 1.65791 1.66175 1.50014 8.33 

Co 1.78897 1.79285 1.62079 7.71 

Fe 1.93604 1.93998 1.75661 7.11 

Cr 2.2897 2.29361 2.08487 5.99 

Table 2.1. Emission wavelength and excitation threshold of a few elements 

2.1.1.1. Crookes tubes 

This type of tube was the one used by Röntgen, who discovered the existence of 
X-rays in 1895. 

It consists of a tube, connected to a pumping unit, which contains a gas at a very 
low pressure (0.01 Torr). An electrical discharge is applied between the two 
electrodes placed inside the tube. The impact of the positive ions against the cathode 
causes it to emit electrons. These electrons then bombard the anode (also called the 
anticathode) which itself emits de-excitation X-rays. A schematic view of this 
device is shown in Figure 2.2. 
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Figure 2.2. Schematic view of a Crookes tube 

The intensity of the discharge current in a tube of this kind is highly dependent 
on the gas pressure, hence the need to be able to control it precisely and maintain it 
a constant level. This feature constitutes the main weakness of this kind of tube. The 
anticathode’s lifetime is short (roughly 100 hours) but, on the other hand, its surface 
is not polluted, unlike in Coolidge tubes, and therefore the X-rays emitted are pure. 
Currently these tubes are in practice no longer used. 

2.1.1.2. Coolidge tubes 

In 1913, Coolidge [COO 13] imagined another kind of X-ray source. The 
cathode is comprised of a tungsten filament heated by the Joule effect. According to 
the Edison effect, this filament emits electrons that are accelerated by an electrical 
field and bombard the anticathode which then emits X-rays. The entire device is 
placed in a sealed tube inside which the pressure must be as low as possible. A 
schematic view of such a tube is shown in Figure 2.3. 
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Figure 2.3. Schematic view of a Coolidge tube  

2.1.1.2.1. Energy efficiency – intensity of the emitted X-rays 

The intensity of an X-ray beam emitted by the anticathode is directly 
proportional to the current inside the tube and to the square of the applied voltage. 
However, the efficiency of the emission process is very low, and even in the best 
conditions, with a voltage of 100 kV, only 2% of the energy provided is transmitted 
to the X-rays. 

Roughly 98% of the electron beam’s energy is consumed by the Joule effect and 
heats up the anticathode, which is why it is important to set up a system to evacuate 
heat. A cooling system by water circulation is used. 

Despite this cooling system, the heat evacuation is limited by the anticathode’s 
thermal conduction and partial melting of the target is sometimes observed. The 
target’s surface gradually gets rougher, something which is called “craterization” of 
the target. This roughness causes local variations in intensity for the emitted X-rays. 
The intensity distribution in the beam’s right section becomes irregular and the tube 
can no longer be used. This effect is one of the normal causes for wear in Coolidge 
tubes. The typical lifetime of these tubes ranges from 8,000 to 10,000 hours. 

2.1.1.2.2. Focusing of the electron beam: use of a Wehnelt or electromagnetic lenses 

The “Wehnelt” is a piece of metal that surrounds the cathode and to which a 
voltage is applied, negative with respect to the filament. This part is therefore 
repulsive for electrons. This device, which makes it possible to focus the beam, is 
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commonly implemented in Coolidge tubes. In the most common tubes, the shape of 
this part is designed in order to obtain an almost rectangular electron beam. 

 
The method that would seem the most efficient for producing an electron beam 

with a specific shape and with an electron flow per unit of surface as high as 
possible consists of focusing this electron beam by using an electromagnetic lens 
similar to that found in electron microscopes. Although this approach, described by 
Guinier [GUI 64], is rather old [COS 53], it was only rarely used during the second 
half of the 20th century. In the past few years, this type of tube has found renewed 
interest. Several companies have recently designed new X-ray tubes based on this 
method [ARN 98]. The X-ray beams produced this way have square or circular 
sections a few tenths of a micrometer wide. In order to limit the effects of 
craterization, which were described above, the anode is set into motion either as an 
alternative translation in the plane of its surface if it is flat or as a rotation if it is 
cylindrical. This last case of the rotating anode will be discussed in greater detail in 
the next section. 

2.1.1.2.3. Shape and size of the focal spot 

Typically, a rectangular electron beam is used, with a size of 1 mm by 10 mm. 
This rectangular beam hits the anticathode, which, as a result, emits another beam of 
X-rays. The surface of the anode irradiated by the electron beam constitutes the 
actual focal spot, also referred to as the thermal focal spot, not to be confused with 
the apparent focal spot, which depends in which we see the angle of the X-ray 
beam. The diagram in Figure 2.4 makes it possible to visualize this effect. 

e-

 ~ 6°

10mm

0.1 mm

1 mm

1 mm

1 mm

10 mm

Anticathode

 

Figure 2.4. Shapes and sizes of the X focal spots in a Coolidge tube 
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The resulting dimensions for the apparent focal spot are as follows: 

– linear focal spot: 10 × 0.1 mm; 

– punctual focal spot: 1 × 1 mm. 

Tubes sold on the market are built with four windows at 90° angles, thus 
allowing the user to choose between linear1 or punctual X-ray beams. 

2.1.1.2.4. Absorption by the windows 

The X-ray beam produced exits the tube through the windows which must, on 
the one hand, be able to resist the difference in pressure between the inside of the 
tube and the atmosphere, and, on the other hand, be as transparent as possible to X-
rays. 

The ability to let X-rays pass through is related to the absorption factor, which 
increases with the atomic number. This is why the windows are manufactured using 
elements with a low atomic number. They were at first made out of glass, 
particularly “Lindemann glass”, which is composed of boron oxide or lithium oxide. 
However, this glass still absorbs a large portion of X-rays and it is unstable in a 
humid atmosphere. 

Very thin mica windows (≈ 10µm) were later designed. Since these strips of 
mica are sensitive to electron bombardment, they are protected with sheets of 
beryllium. The tubes used today are equipped with beryllium windows. Figure 3.5 
shows the absorption curves according to the wavelength for these different 
windows. 

                                   
1 Beams are often described as being linear because, as shown in the diagram in Figure 2.4, 
the beam’s length can be roughly 100 times greater than its width. 
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Figure 2.5. Absorption graphs of different materials used for making windows  

2.1.1.2.5. Target contamination and aging 

The heating of the tungsten filament, though necessary to produce electrons, 
causes the emission of metal vapors that can condense, particularly on the anode or 
on the walls of the tube, forming a thin layer of tungsten. The tungsten deposit on 
the anode leads, on the one hand, to the absorption of some of the emitted X-rays 
(up to 50% of the beam’s intensity for a deposit of 2 µm thick), and second, to the 
presence of parasitic X-ray peaks. 

The walls of the traditional X-ray tubes are made of glass. The deposit on these 
tube’s glass walls causes the glass to gradually recrystallize, leading to the 
formation of tiny cracks that render the tube unusable. These effects, caused by the 
very principle of X-ray production, cannot be completely eliminated, but they can 
be minimized, for example, by increasing the cathode-anode distance. Most 
manufacturers have been selling tubes with ceramic walls for a few years. This 
problem is then solved. The lifetime of these “ceramic tubes” would therefore seem 
to be longer; however, this aspect is not clearly established. 

Modern tubes used in practice take into account all of these details and can be 
described by the diagram in Figure 2.6. 
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Figure 2.6. Diagram of a Coolidge tube  

2.1.1.3. High intensity tubes 

Conventional sealed tubes are used at powers of about a few hundred Watts per 
square millimeter. In such conditions, the necessary exposure times, although highly 
dependent on the type of detector used and on the geometric configuration of the 
system, are commonly from a few tens of minutes up to several hours long 
(sometimes several days). It is important to reduce these exposure times, particularly 
when the samples are not stable or when conducting kinetic studies of structural 
evolution. It then becomes necessary to use a source of high intensity X-ray beams. 

The method commonly used consists of using a rotating anode tube. This 
rotation, which is done at high speeds (2,000 to 6,000 rpm), makes it possible to 
work at powers of several thousand Watts per square millimeter. 

We can show that the performances of such a tube are proportional to bva , 
where a and b are the dimensions of the electron spot and v is the anode’s surface 
speed. The increase in power therefore implies an increase either of the diameter or 
of the anticathode’s rotation speed. 

Most of the time, the rotating anode tubes are open tubes and can be described 
by the diagram shown in Figure 2.7. 

The anode is a hollow cylinder, typically about 10 cm in diameter, rotating at 
several thousand revolutions per minute in a vacuum of roughly 10-7 Torr with a 
steady circulation of water at a typical flow rate of 20 liters per minute. Usually, a 
turbomolecular pump is used for maintaining the very low pressure inside the tube. 
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Figure 2.7. Diagram of a rotating anode tube 

As the diagram in Figure 2.7 shows, the electron beam strikes the generatrixes of 
the cylinder that constitutes the anode. Therefore, the position of these generatrixes 
must not change so as not to cause the X-ray beam to move. This condition is 
particularly severe, since it means that, despite the high flow of water, the anode’s 
rotation must remain stable. 

Technically achieving this type of rotating anode open tube is still quite difficult. 
These tubes first appeared in the 1960s; however, up to now, only two companies in 
the world sell X-ray generators equipped with a rotating anode open tube. Note, 
however, that there are rotating anode sealed tubes. These tubes are simple to 
produce, but they were not designed to be used in X-ray scattering or diffraction 
experiments. Their field of application is the X-ray based medical imaging by 
radiography. Their description goes beyond the scope of this book. 
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2.1.1.4. Synchrotron radiation2 

The X-ray sources we have just described in the previous sections emit X 
photons by de-excitation of atoms that underwent electronic transitions. The origin 
of synchrotron radiation is different. 

As we have already mentioned, a charged particle in motion with a decreasing 
speed emits an electromagnetic radiation called braking radiation. On the contrary, 
when a charged particle is accelerated, the electromagnetic radiation that is emitted 
is called synchrotron radiation [SCH 49]. 

The power radiated by a particle moving along a circular trajectory with radius ρ 
is given by the relation: 

ρ
γβ= 2

442 ce
3
2P  [2.1] 

with: 

– e: electric charge of the particle; 

– c: speed of light; β = v/c, v being the speed of the particle; 

– γ: acceleration; 

– 
22

1

1
c m

E

β−
==γ  where E is the energy of the particle; 

– 
eB

cmγ=ρ . 

 
This general relation enables us to emphasize two essential features of 

synchrotron radiation: 

– the lighter a particle is, the more radiation it emits. Therefore, we will be using 
electrons or positrons rather than protons; 

– only particles moving at relativistic speeds (β ≈ 1; γ >> 1) radiate with 
significant power. 

                                   
2 Synchrotron radiation has been used in X-ray diffraction for over 50 years [HEL 98]. Over 
the past 20 years, the use of this type of source has become more and more widespread. 
However, the apparatus created for synchrotron radiation sources are specific prototypes. We 
will not go into the details of these instrumental developments in this book. This section on 
synchrotron radiation is intentionally brief and those readers interested in knowing more can 
refer to specialized works (see, for example, [WIE 03]). 
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Figure 2.8. Shape of the X-ray beam emitted by a particle  
in motion according to the speed of that particle 

The shape of the beams emitted by a particle is represented in Figure 2.8. When 
the particle is moving at a small speed, the emission is equivalent in every direction 
of space. On the contrary, if its speed is close to the speed of light, most of the 
emitted radiation is located in a cone characterized by a vertical opening Ψ = 1/γ. 
This very small divergence is characteristic of synchrotron radiation. 

The main advantage of synchrotron radiation sources lies in the very high 
intensity of the X-ray beams they produce [FIN 89, HAS 84]. Synchrotron radiation 
sources can be divided into three different generations. The second and third 
generation sources were designed explicitly to provide very intense X-ray beams, 
whereas first generation sources were machines created to study the behavior of 
accelerated charges. There are currently 50 2nd and 3rd generation machines 
worldwide. Figure 2.9 shows the evolution of the brightness of X-ray sources over 
the course of the 20th century. Brightness is defined as the number of photons 
emitted per second by square millimeter and by unit of solid angle for a wavelength 
in bandwidth ∆λ/λ = 0.01. The synchrotron sources located in France are 
mentioned. This diagram shows that the beams produced by third generation 
synchrotrons are roughly 1012 times brighter than the ones emitted by rotating 
anode generators. 
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Figure 2.9. Brightness of the different X-ray sources 

 Also, as we have already mentioned, the beams produced by synchrotrons are 
only slightly divergent. This divergence, characterized by angle Ψ, is usually in the 
range of 0.1 to 1 mrad. 

Finally, one of the essential characteristics of synchrotrons is that they emit in a 
wide range of wavelengths, which is why the beams are described as “white”. 
Therefore, with the appropriate equipment, the user can choose the wavelength he 
wishes to use. This feature of synchrotron radiation is used more and more to 
conduct studies where the wavelength varies, particularly in order to choose a 
wavelength close to a characteristic absorption threshold of a given chemical 
element, which is referred to as anomalous scattering or diffraction [ISH 99, 
IWA 99, SCH 97]. This approach makes it possible to exacerbate the intensity of the 
signal scattered by an atom. Hence, these experiments in anomalous scattering or 
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diffraction are performed in order to distinguish the contribution from cations 
corresponding to neighboring atomic numbers.  

2.1.2. Filters and monochromator crystals 

Generally speaking, X-ray beams produced with a tube are polychromatic, in 
other words, they contain characteristic emission peaks in addition to a continuous 
spectrum over a wide range of wavelengths. In order to characterize the material to 
be studied, it is important to have a monochromatic beam which makes it possible to 
associate a single diffraction peak with each family of crystal planes. Therefore, it is 
necessary to select one peak among all of those emitted by the tube. Naturally, the 
most intense one is chosen. 

There are two common techniques used to solve this problem: 

– the filter: this consists of a thin sheet of a material that absorbs all of the 
radiations emitted with wavelengths below the one we wish to select; 

– the monochromator crystal (or monochromator): this consists of a single 
crystal cut with respect to a specific family of planes. This single crystal is oriented 
so as to have the chosen family of planes in the Bragg position for the wavelength 
we wish to select, which means that only the X photons with that wavelength are 
diffracted. The result is a monochromatic beam. 

2.1.2.1. Filters 

The idea behind filters functioning lies in the absorption characteristics of the 
materials used. The absorption varies as e-µρx, where µ is the linear absorption 
coefficient, ρ is the density and x is the length traveled. Naturally, the absorption 
coefficient varies with the wavelength. 

Filters have to meet two conditions: first, to absorb as much as possible of the 
unwanted peaks, and so be thick enough, and second, to be as transparent as 
possible to the wavelength we wish to select (the Kα peak in practice), and so be 
thin enough. 
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Figure 2.10. Choosing a material for a filter which  
makes it possible to select the Kα radiation of molybdenum  

Therefore, it is important to choose a material whose absorption spectrum 
according to the wavelength shows a sharp decrease at a value very close to the 
wavelength of the anode’s Kα peak. In practice, the appropriate material is an 
element very close in Mendeleyev’s table to the one used in the anode. Figure 2.10 
shows the example of a zirconium filter used for a molybdenum anode. 

Based on information on the linear absorption coefficients (found in the 
International Tables for Crystallography), the optimal thickness of the filter can be 
calculated. Table 2.2 shows this data in the case of a molybdenum anode and a 
zirconium filter. 

 Wavelength (Å) µ/ρ ρ µ = (µ/ρ)ρ 

Kβ 0.63 79 6.4 506 

Kα 0.71 15.9 6.4 1,021 

Table 2.2. Absorption by a zirconium filter of the radiation emitted by a molybdenum source 
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The result, for a thickness of 5µm, are the following transmissions: 

– for the Kβ radiation: 

(506 0.005) 2.53

0

I 0.08 8%e e
I

− × −= = = =  

– for the Kα radiation  

(102 0.005) 0.51

0

I 0.60 60%e e
I

− × −= = = =  

In the absence of filters, the intensity ratio of Kβ/Kα is 18.5/100; hence we 
obtain a ratio of about 2.5/100 with this zirconium filter. This data is listed in Table 
2.3 for a few commonly used anticathodes. 

Anticathode λ of Kα Filte
r Thickness (mm) Absorption of Kβ (%) 

Ag 0.561 Pd 0.0461 96 

  Rh 0.48 96.4 

Mo 0.711 Nb 0.0481 96.5 

  Zr 0.0678 96.8 

Cu 1.542 Ni 0.017 98.4 

Ni 1.659 Co 0.0158 98.7 

Co 1.79 Fe 0.0166 98.9 

Fe 1.937 Mn 0.0168 99.2 

Cr 2.291 V 0.0169 99.4 

Table 2.3. Absorption factors obtained with filters adapted to  
the radiation emitted by a few commonly used sources 
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The complete description of the different radiations that comprise the Kα 
emission is complex. In the case of copper, for example, at least 6 different peaks 
are observed [DEU 95; DEU 96; DIA 00]. However, the Kα emission spectrum can 
be considered in a first approximation to be comprised of 2 main peaks, Kα1 and 
Kα2. These two contributions cannot be separated by an absorption filter, which is 
why the resulting beam remains bichromatic. The two peaks can only be separated 
with the use of a monochromator crystal, under certain conditions. 

2.1.2.2. Monochromator crystals 

As we have already mentioned, the underlying idea of such an instrument lies in 
the selective diffraction of a polychromatic beam by a single crystal. It can be 
described by the diagram in Figure 2.11a. 

θλ θλ

(hkl)

Polychromatic
beam

Monochromatic
beam

θλ θλ

(hkl)(hkl)

Polychromatic
beam

Monochromatic
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(a) Selective diffraction by a single crystal of a polychromatic X-ray beam 
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(b) Detail of figure (a) 

Figure 2.11. Diagram showing how a plane crystal monochromator works 



56     X-ray Diffraction by Polycrystalline Materials  

The polychromatic beam produced by the X-ray source irradiates a plane crystal 
cut parallel to a family of crystal planes. This single crystal is oriented around a 
rotation axis parallel to the reference family of planes. For the chosen wavelength λ, 
when the incidence angle of the X-ray beam is equal to the Bragg angle θλ, a 
diffracted beam with wavelength λ is observed. 

It is clear that the wavelength selectivity of this method directly depends on the 
angular range inside which the crystal diffracts, for a given wavelength. We saw in 
the previous chapter that all crystals show a certain mosaicity. The selectivity of a 
monochromator single crystal increases when its mosaicity decreases. However, if 
we imagine a single crystal with an infinitely small mosaicity, then for a given 
position of the crystal only the photons arriving exactly at the Bragg angle θλ would 
be diffracted. We know that the traditional X-ray sources produce divergent beams, 
so the intensity of the beam originating from the monochromator should be very 
small. In practice, the objective is to achieve a compromise and to produce crystals 
with such a mosaicity that the diffracted beam is as monochromatic as possible, 
while still remaining relatively intense. 

The diagram in Figure 2.11a does not explicitly take into account the divergence 
of the X-ray beam originating from the source. The situation is described in greater 
detail in Figure 2.11b. Consider a divergent beam irradiating a plane single crystal. 
Let us assume that the photons arrive at a point M1 of the crystal at an incidence 
α1 = θλ. They arrive at M2 at an angle 21 α≠α . If diffraction occurs, the diffracted 
beam has a wavelength λ + ∆λ and the diffraction angle is θλ + ∆λ. We can see that 
the two beams diffracted in M1 and M2 are divergent. Wavelength λ is selected by 
adding a slit F on the path of the diffracted beams, in order to let the diffracted beam 
at the angle θλ pass and to stop the one at the angle θλ + ∆λ. The intensity of the beam 
originating from this kind of plane monochromator associated with a divergent 
source is, in fact, after the considerations we have just made, small. This constitutes 
the main drawback of this kind of monochromator. 

In order to avoid this problem, it is possible to create curved crystal 
monochromators. The diagram showed in Figure 2.12 shows how a Johann 
monochromator [JOH 31] works. 
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(a) Geometric construction 
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(b) Path of the X-ray beams 

Figure 2.12. Diagram showing how a curved crystal monochromator works 

The single crystal is a strip cut parallel to a family of crystal planes. This strip is 
then curved with a radius 2R. The divergent X-ray source is placed at point S, which 
is on the circle with radius R, tangent to the previous circle, and defined so as to 
have the angle (SOC) equal to π − 2θ. The X-rays with wavelength λ are at a 
constant angle θ−π 2  with the normals to the reticular planes and hence at an 
angle θλ with the crystal planes. The diffracted beams form a beam that converges to 
the focal point F. Note that the crystal planes do not exactly fit the circle with radius 
R and therefore the convergence of the diffracted beams is only approximate. 
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Other experimenters, such as Johansson [JOH 33], designed monochromators 
with a rigorous focusing. The technique consists of cutting a cylinder with radius 2R 
inside a plane single crystal strip with its faces parallel to a family of planes. The 
strip is then curved on a circle with radius R which is the focusing circle. A diagram 
of such a monochromator is shown in Figure 2.13. 

In any point of the crystal tangent to the circle with center C, the normal to the 
curved crystal planes passes through O, which is the center of curvature of these 
planes. Let S be a point of the circle such that the angle (SCO) = π − 2θλ with θλ as 
the corresponding Bragg angle. For any point M of the single crystal, we then have: 

(SMO) = (SCO)/2 = π/2 – θλ 

Finally, if S represents a punctual X-ray source, all of the beams originating 
from this source and with a wavelength Kλ will be at an angle θλ with the (hkl) 
planes of the single crystal (since they are at an angle π/2 – θ with the normal to 
these planes) and therefore will be diffracted by these planes. The diffracted beams 
will all converge to a point F called the focusing point. If the source is linear and 
perfectly parallel to the generatrixes of the cylinder defined by the monochromator, 
the diffracted beam will be focused on a line that passes through F. If the source S is 
thin enough, and if the single crystal’s orientation is perfectly controlled, it is 
possible, in the case of copper for example, to single out the Kα1 radiation, leading 
to a  monochromatic beam. 

S F
C

O
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Figure 2.13. Diagram showing how a Johansson curved crystal monochromator works  
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The Johansson monochromator is symmetric, since the distances SM and MF are 
identical. It is often an advantage from an experimental point of view to have the 
length MF greater than the length SM. Guinier [GUI 37] created an asymmetric 
monochromator by tilting the diffracting crystal planes at an angle α in relation to 
the single crystal’s surface (see Figure 2.14). 
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Figure 2.14. Diagram showing how a Guinier crystal monochromator works  

2.1.2.3. Multi-layered monochromators or mirrors 

In the early 1990s, a new type of monochromator elements appeared. These 
devices were made of stacks of alternate metal layers a few nanometers thick. The 
first layer is the same as the third, the fifth, the seventh, etc., whereas the even layers 
are different from the odd layers but all identical [ARN 90, SCH 88]. The resulting 
multi-layered object can be considered an artificial crystal with an interplanar 
distance equal to the distance between two layers of the same kind. The intensity 
diffracted by these artificial crystals will be all the greater if the deposited layers 
show a strong electronic contrast. The most common elements are made of an 
alternate stacking of tungsten and silicon layers [SCH 95]. More recently, some 
authors have designed similar multi-layered monochromators out of refractory 
materials. Stacks of aluminum oxide and tungsten layers were produced to create 
monochromators that could withstand high temperatures [MOR 96]. 

These artificial crystals are designed so as to have the thickness of the layers 
vary continuously from one end of the substrate to the other (see Figure 2.15a). Two 
types of configuration have been imagined. In the first case, the substrate has a 
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parabolic curve and the thickness of the layers varies along the substrate’s length 
according to the same parabolic law. When a divergent incident beam originating 
from a source placed in the parabola’s focus is diffracted by this type of layering, 
the beam originating from the monochromator is parallel (see Figure 2.15b). In the 
second case, the substrate is elliptical and the beam diffracted by the 
monochromator is then convergent (see Figure 2.15c). 

d1
d2

 
(a) Structure diagram 

 
(b) Path of the X-ray beams for a parabolic element 

 
(c) Path of the X-ray beams for an elliptical element 

Figure 2.15. Multi-layered monochromator 
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Therefore, these monochromators make it possible, depending on the substrate’s 
initial curvature, to produce parallel or converging beams. The intensity of the 
beams diffracted by these elements is much higher than the output of traditional 
monochromators based on quartz or germanium crystal. This is because the 
curvature of these “artificial crystals” ensures that all of the incident beams are 
diffracted, and since their characteristic interplanar distances are typically ten times 
greater than those of natural crystals, their selectivity is much smaller. 

Therefore, the diffracted beams are more intense, but the wavelength selectivity 
is not as good. Generally speaking, these artificial monochromators are unable to 
separate the Kα1 and Kα2 wavelengths [TOR 00]. 

 
(a) Hybrid monochromator. The result is a wide and intense monochromatic beam 

 
(b) Production of punctual monochromatic beams.  
Use of two crossed elliptical “artificial crystals” 

Figure 2.16. Association of several types of monochromators 
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For some specific applications, they can be associated with traditional 
monochromators. An illustration of a typical configuration of this kind is shown in 
Figure 2.16a. A parabolic artificial crystal is irradiated by a divergent source, and 
the beam diffracted by this element is then diffracted by a monochromator 
comprised of two or four plane crystals [SCH 95]. The beam resulting from this 
system, sometimes referred to as a hybrid monochromator, is perfectly 
monochromatic and much more intense than in the absence of a parabolic artificial 
crystal. Note, however, that this beam is much wider than the initial beam produced 
by the source. Therefore, this monochromator is only used for particular types of 
configurations and these hybrid monochromators are essentially used for certain 
studies of epitaxial thin films [STO 97]. 

Another typical configuration based on these artificial crystals is shown in 
Figure 2.16b [ARN 98]. It consists of the association of two elliptical crystals. A 
punctual beam originating from a traditional source irradiates the first elliptical 
crystal and then the resulting beam converges to a plane defined by the position of 
this first crystal. A second crystal is placed in a plane normal to the first and the 
beam produced by this system then converges to one point. 

2.1.3. Detectors 

2.1.3.1. Photographic film 

X-rays reduce silver halides the same way light does and therefore can produce 
images on photographic film. These films were the first X-ray detectors, first used 
by Röntgen to show the existence of X radiation [RON 95].  

 
The darkening of the film is related to the intensity of the X-ray beam and, 

additionally, there is no illumination threshold. Therefore, even very low intensities 
can be detected, simply by lengthening the exposure time. The plotted curve in 
Figure 2.17 shows the evolution the film’s optical density according to the radiation 
intensity and the exposure time. 

In the linear area of this graph, it is possible to measure the intensity of the 
various peaks that left an image on the film. For this purpose, an optical 
microdensitometer is used, in order to convert into an electrical signal the intensity 
of a light beam passing through the film. This technique enables the user to make a 
semi-quantitative measurement of the diffracted intensity. 
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Figure 2.17. Darkening of film according to the intensity of the beam that irradiates it 

Throughout the 20th century, film was an important element in the design of 
diffraction apparatus. However, the resulting signal is not directly digital and therefore 
requires a transformation in order to be analyzed quantitatively. This intrinsic 
characteristic is the cause for the gradual disappearance of the use of photographic 
film. There are currently no manufacturers selling film-based diffractometers. 

2.1.3.2. Gas detectors 

2.1.3.2.1. Mechanism 

The way these detectors work relies on the measurement of electrical currents 
produced by the ionization of the atoms in a gas irradiated by an X-ray beam. This 
effect was observed by Thomson shortly after X-rays were discovered [THO 98b], 
so these detectors were used in the earliest studies of X-ray scattering and 
diffraction; in fact, the diffractometer built by the Braggs was equipped with a gas 
detector [BRA 13a] (see Figure 5 in the introduction of this book). 
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Figure 2.18. How a gas detector works 
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Here is how the measurement is done: the X photons, with energy E = hν, ionize 
the atoms of a gas placed inside a chamber and the current resulting from this 
ionization process is measured. The X-rays reach the chamber filled with gas through 
the window. Voltage is applied between the chamber, which constitutes the cathode, 
and a wire, working as the anode, located in the center of the chamber. The electrons 
are attracted towards the anode and the resulting electrical current is measured. A 
diagram explaining how this type of detector works is shown in Figure 2.18. 

The detection threshold is set by the first ionization energy W1. An incident 
photon, with energy E0, gradually loses its energy and therefore ionizes n0 = E0/W1 
atoms. However, some atoms are ionized several times and an average of 
nm = E0/Wm electrons is obtained, where Wm is the average detection threshold. As 
an example, argon, which has the atomic number Z = 18, has an average ionization 
energy Wm = 26.4 eV, the X photons of copper’s Kα peak, which have an energy 
E0 = 8,040 eV, can produce nm = E0/Wm = 304 ion-electron pairs. 

The electrical behavior of this type of detector depends on what voltage is 
applied. Several operating areas related to the applied voltage can be defined. The 
difference between these areas is the amplification coefficient, which expresses the 
behavior of electrons produced during the ionization (Figure 2.19). 

 
Figure 2.19. The different operating conditions of gas detectors  

In the first area, when the voltage is low, the ion-electron pairs recombine to 
form atoms again; this is the “recombination area”. 
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In the next area, the voltage applied is just enough to ensure that the electrons 
are collected without recombination; this is the “saturation area”. 

Beyond a threshold value of a few hundred volts, the electrons produced by the 
ionization induced by the X-rays have an energy high enough to ionize other atoms, 
producing new electrons that also lead to more ionizations, causing an avalanche 
process. However, the applied voltage is relatively small and the electrons only 
acquire enough energy to trigger the avalanche in the vicinity of the anode. Also, the 
ions move much more slowly than the electrons, forming a positively charged zone 
with the same center as the anode. The electrons produced by the X-rays are held 
back by this charge, damping the avalanche effect. In the end, each X photon only 
produces one avalanche. The number of electrons produced is proportional to the 
intensity of the X radiation received. This is the “proportionality area”. 

When the voltage is increased some more, a single photon is enough to trigger 
an avalanche process that becomes widespread. The intensity of the produced 
current is no longer proportional to the intensity of the X-ray beam. This is the 
“Geiger-Müller counter area”. 

For higher voltages, a spontaneous and permanent discharge is observed. This is 
the discharge area.  

Based on these various operating conditions, three types of detectors are 
traditionally defined. 

2.1.3.2.2. The different types of gas detectors 

Ionization chambers 

The use of the phrase “ionization chamber” is cause for some confusion since, 
literally speaking, all gas detectors are ionization chambers. However, this 
terminology is the one used to refer to gas detectors designed to work at voltages 
that place them in the saturation area.  

 
The saturation voltage depends on the intensity of the radiation we wish to 

measure; if this intensity is relatively low, a voltage of a few hundred volts is 
enough, whereas for more intense beams, the saturation voltage can go up to 800 
volts. 

The chamber’s sensitivity increases with the fraction of absorbed radiation, so a 
heavy gas is generally used. Argon at atmospheric pressure absorbs the X photons 
of copper’s Kα peak almost completely. The sensitivity depends on the wavelength 
and therefore the intensities of two beams with different wavelengths can be 
compared. 
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Geiger-Müller counters 

As we have said, these systems only need one photon to trigger an avalanche 
process, which makes them highly sensitive. Since each photon causes a discharge, 
an electronic device is used to count the number of discharges, leading to the 
number of photons absorbed over a given period of time. 

This system is relatively simple and is used as a mobile detector. However, it has 
a high dead time (≈ 200 µS), hence a low maximum counting rate3. This type of 
device cannot be used for quantitative intensity measurements. 

Proportional counters 

This last type of gas detector is currently the most used in X-ray diffraction. It 
has several advantages compared to the Geiger-Müller counter: 

– the dead time is very short (≈ 1 µS) so the counting rate is high (up to  
107 count/s), while maintaining a linear response; 

– the amplitude of the signal is proportional to the energy of the photons, which 
enables an energy discrimination, and therefore wavelength discrimination as well. 
If the bandwidth is centered in the energy EKα, only the diffracted peaks with that 
wavelength are selected, thus significantly reducing the continuous background by 
limiting the contribution of fluorescence radiation; 

– due to the absence of a discharge, the lifetime of these detectors is much longer 
than that of Geiger-Müller counters. 

2.1.3.2.3. Position sensitive gas detectors 

This type of detector enables the user to measure the number of X photons and 
also to know where the ionization center of the gas molecules is along the anode 
[CHA 70]. This makes it a one-dimensional (or two-dimensional) detector [GAB 78, 
SUL 94] that can measure the function I = f(x) (or I = f (x,y)), where x is the 
position. The position is determined by measuring the time difference for the signal 
to travel along the anode between the impact point and one of its ends. A multi-
channel analyzer memorizes the number of hits per channel. 

Two different kinds of one-dimensional detectors like these are currently sold. 
On the one hand, there are linear detectors with windows that have an opening of a 
few centimeters [GAB 77]. And on the other hand, curved detectors shaped like a 
part of torus with a 120° opening [WOL 83]. We will see later on how both of these 
detectors can be used. Note, however, that they provide a considerable time gain, 
since the acquisition is made simultaneously over an entire angular area. 
                                   
3 The maximum counting rate is defined as the maximum number of photons that can be 
counted per second. 
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The position sensitivity of this type of detector is set by the minimum distance 
between the impact points of two photons below which the system considers that 
they hit the detector in the same spot. This sensitivity is equal to roughly 150 µm for 
current models. 

 
(a) Traditional punctual detector 

 
(b) Linear position sensitive detector 

 
(c) Curved position sensitive detector 

Figure 2.20. One-dimensional position sensitive detector  
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2.1.3.3. Solid detectors 

2.1.3.3.1. Detectors that use fluorescence in the visible spectrum 

Luminescence is the emission of visible (or infrared or ultraviolet) 
electromagnetic radiation with an origin that is not thermal. Some bodies can emit 
light radiation when they are irradiated with X-rays or electrons. The word 
fluorescence is used to refer to an emission that occurs immediately after the 
irradiation, while phosphorescence refers to an emission that persists for a certain 
time after the excitation. Generally speaking, the emission process takes place as 
follows: a radiation bombarding the atoms induces electronic transitions in these 
atoms. The subsequent return of the electrons to more stable energy levels induces 
an emission of energy in the form of photons. The details of this process will not be 
described here, however we can point out that for a crystal to be luminescent, it 
must have intermediate energy levels between the valence band and the conduction 
band. These intermediate levels are caused by the presence of crystal defects 
(vacancies, interstitial atoms, etc.) which are voluntarily created by adding dopants. 

In the case of X radiation induced luminescence (referred to as 
radioluminescence), the process is a little more complicated. The X-ray irradiation 
induces the production of electrons with a high energy, which bombard the 
neighboring atoms, causing electronic transitions and the emission of visible 
photons by excitation. This physical phenomenon has been known for a long time 
and is used in several types of X-ray detectors. 

Direct observation of light photons 

i) Fluorescent screens 

With this type of detector, fluorescence is observed directly. Barium 
platinocianide, willemite and zinc sulfur are examples of materials used. It is 
possible to produce screens coated with these products. Zinc sulfur is currently the 
most used. 

In X-ray diffraction, such screens are not used to detect diffracted beams, since 
their intensity is much too small to yield visible spots. These screens are used to 
visualize the primary beam while geometric adjustments are made to diffraction 
apparatus. 

ii) Detectors that use CCD cameras 

A new application of the fluorescence effect in the visible spectrum has 
appeared in the past few years. It consists of recording on a digital camera the image 
created by the light photons emitted by a fluorescent screen. These are CCD (charge 
coupled device) cameras. The principle of such detectors will not be described in 
detail in this book. 
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These cameras have been known for some time, but their use in X-ray diffraction 
is recent [STA 92]. They are used to create plane detectors, the main problem being 
the uniformity in space of the intensity measurement. 

Detectors with a functional surface of over 10 cm in diameter are currently 
available on the market. Since the end of the 1990s, they are custom-made on 
diffractometers designed for structural studies of single crystals. This maximum 
size, a technical feat for the manufacturers that justifies a very high price, is a 
significant limitation to the use of these detectors for diffraction on polycrystalline 
samples. As we will see later on, prototypes of diffractometers designed for the 
study of polycrystalline samples and equipped with this type of detector have 
recently been produced. 

  

Figure 2.21. Diagram of a CCD detector 

Scintillation detectors [ARN 66] 

In these detectors, as for the previous ones, the X photons are transformed into 
light photons. However, the measurement is then achieved by transforming these 
light photons into electrons and into an electrical signal by way of a photocathode. 
A diagram explaining how such a device works is shown in Figure 2.22. 
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Figure 2.22. Diagram of a scintillation detector 

The scintillator that transforms X photons into light photons is made of crystals, 
most often NaI doped with thallium, CsI doped with thallium, CaI2 doped with 
europium and ZnS doped with silver. 

 
Due to the photoelectric effect, light photons, when in contact with the cathode, 

create electrons that are accelerated toward the dynode, themselves creating 
secondary electrons that are accelerated toward another dynode, the process 
repeating itself about ten times, after which the electrons are collected by an anode. 
This constitutes a photomultiplier with an amplification factor of about 106 to 108, 
whose exact value depends on the voltage applied to the dynodes. After 
amplification, the current that was created is measured. 

This type of detector is one of the oldest and most often used in X-ray 
diffraction. Its response time is extremely low (≈ 0.2 µS). This feature is its main 
advantage compared to proportional gas detectors. It is sensitive to the energy of X-
rays but has a poor energy resolution. Its efficiency is almost 100%. Compared to 
proportional gas counters, the background noise is more significant and scintillating 
crystals deteriorate in a humid atmosphere. 

Indirect method: the imaging plate 

Measurements made by using those solid detectors are conducted in three 
distinct phases: recording, reading and erasing. This separation in different 
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sequences gives these devices, which first appeared in the early 1990s, their own 
category. The different steps are shown in Figure 2.23. The active part of the 
detector is comprised of a film made of phosphorescent material: BaBrF doped with 
europium. Irradiating this film induces electronic transitions and a certain number of 
electrons end up at high energy levels. Together, these excited sites form a latent 
image, read by a controlled scanning of the impressed film with a lazer beam. The 
lazer radiation induces the atoms to return to lower energy levels and the emission 
of photons in the visible spectrum. These light photons are detected in the same way 
as in a scintillation detector. A two-dimensional image is thus created point by 
point. After this reading sequence, the measurement is erased by using a sodium 
lamp which irradiates all the atoms on the detection film back to a state of 
equilibrium. 

 

Figure 2.23. Diagram of how an imaging plate detector works 

This mechanism was used to produce plane detectors in large sizes (up to 25 cm 
in diameter) and with a resolution of up to 100 µm2. Because of their size, these 
detectors are used for diffraction by polycrystalline samples in order to directly 
measure all of the diffraction rings. They have been implemented for this purpose 
since the early 1990s, for example, on synchrotron radiation sources [GUA 96, 
NOB 97]. The main drawback is a certain remanence of the image after it has been 
erased. 

2.1.3.3.2. Semiconductor detectors 

X-rays are absorbed by a diode made from a semiconductor single crystal of 
silicon or germanium doped with lithium. The X photons produce electrons that 
induce electronic transitions in the valence and conduction bands of the silicon 
atoms. 
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A voltage applied between the two faces of the semiconductor enables the user 
to measure the electric charge, which is proportional to the energy of the incident X 
photons. A diagram of such a device is shown in Figure 2.24. 

The main advantage of this type of detector is its energy resolution. This 
resolution is set by the energy required for creating an electron-hole pair and, in this 
case, is close to 3.5 eV. Therefore, it is used for studies in energy dispersion which 
are rarely applied in diffraction and that will not be described here. We will simply 
point out that this type of detector is showing interesting developments in the field 
of X-ray diffraction, but these are still nothing more than prospects [HON 92, OTT 
97]. 

 

Figure 2.24. Diagram of how a semiconductor detector works 

2.2. Diffractometers designed for the study of powdered or bulk polycrystalline 
samples  

Nowadays, most diffractometers are modern versions of devices designed during 
the first quarter of the 20th century. We saw in the introduction of this book that the 
first diffraction measurements on polycrystalline samples were conducted in 1916, 
only four years after the discovery of diffraction by single crystals. The first three 
devices which we will describe in this part of the book were designed between 1916 
and 1920, whereas the other two date back to only 10 years ago for the first and two 
or three years for the second. 

 



Instrumentation used for X-ray Diffraction     73 

Aside from their field of application, the essential difference between these 
diffractometers is their geometric layout [GUI 05]. In particular, the relative 
positions of the source, of the sample-holder and of the detector are different. 
Therefore, the description of these devices will rely essentially on geometric 
considerations. One of the most significant consequences of choosing a particular 
geometric configuration is the angular resolution of the device. Therefore, the 
description of these devices will be illustrated by measurements which make it 
possible to evaluate this essential feature. 

 
Generally speaking, the objective of the following detailed descriptions is to 

enable researchers or engineers who are implementing X-ray diffraction for the 
characterization of polycrystalline samples to choose the device best adapted to their 
needs. It goes without saying that no device is able to make every type of 
measurement, hence the need to know their advantages and drawbacks.  

2.2.1. The Debye-Scherrer and Hull diffractometer  

This was the device used in 1916 by Debye and Scherrer [DEB 16] in Germany, 
and later in 1917 by Hull [HUL 17a, HUL 17b] in the USA, to conduct the first 
diffraction experiments on polycrystalline samples. A schematic view of the 
geometrical arrangement of this device is shown in Figure 2.25. The sample is 
irradiated with an X-ray beam produced by a Coolidge tube. The diffracted beams 
are collected by using a cylindrical detector placed so as to have the sample on its 
axis. 

2θ
X-rays

 

Figure 2.25. Geometric arrangement  of the Debye-Scherrer and Hull diffractometer  
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2.2.1.1. The traditional Debye-Scherrer and Hull diffractometer  

The X-rays emitted by the Coolidge tube penetrate the cylindrical chamber on 
the axis of which is placed the sample. An imprint of the diffracted beams is 
produced using a film placed on the inside of the chamber. The intersection of the 
diffraction cones and the cylinder gives diffraction arcs with a curvature that 
depends on the angle. These arcs become lines when 2θ = 180° and their curvature 
is reversed beyond that. 

In order to obtain a relatively fine beam, to limit the width of the arcs, a 
collimator is added to define the beam’s geometry. However, the beam has to 
remain wide enough to ensure a high enough intensity. After going through the 
sample, the transmitted (non-diffracted) beam is still very intense and widely 
scattered by the air present inside the chamber. This effect significantly darkens the 
film in the vicinity of the direct beam and can prevent certain arcs with low 
diffraction angles from being seen. This effect can be virtually eliminated by adding 
a beam stop as close as possible to the sample, which absorbs most of the 
transmitted beam immediately after it exits the sample, thus significantly containing 
the effects of this scattering. 

Two sample holders can be considered, but they must always be made of glass 
so as not to diffract the X-rays. 

Fiberglass 

In this case, the sample holder is made of fiberglass, which is as thin as possible, on 
which the powder we wish to study is deposited and glued using a thin layer of grease. 

This method, while relatively simple, has a drawback. The powder located on 
the edges of the fiber cannot be placed in exactly the center of the device, which 
widens the diffraction arcs. 

Capillary 

This time, the powder sample is placed inside a glass tube with very thin sides. 
The major problem of this sample holder is absorption, since the X-ray beam must 
go through the tube’s walls and therefore be partially absorbed. Therefore, the 
capillary is made out of low absorbing material, in practice Lindemann glass or 
silica. 

Regardless of whether the sample holder is a fiber or a capillary, it has to be 
placed in the center of the chamber. Therefore, the stand made for the sample holder 
is built on a moving axis that can be adjusted using a system of screws and springs. 
This adjustment must imperatively be made before each experiment. 
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In both cases, the quantity of material used is very small, since the analysis is 
transmission-based, making it important to limit the absorption by the sample. In 
order to prevent effects caused by too small a number of grains, the stand for the 
sample holder can rotate, so that each grain can be, in turn, placed in the Bragg 
position for different families of planes. 

The beam originating from the X-ray tube is polychromatic. In order to select the 
appropriate wavelength, the Debye-Scherrer and Hull devices are usually equipped 
with filters. The use of monochromators is a possibility, but the intensity of the 
diffracted beams would be too low and the exposure times too long. The Kα1-Kα2 
doublet cannot be separated with filters, which constitutes one of the limitations of 
this type of device. A schematic view of a traditional Debye-Scherrer and Hull 
diffractometer is shown in Figure 2.26.  

Tube Filter

Collimator Beam stop

Sample

Rotating sample holder

Film

 

Figure 2.26. Traditional Debye-Scherrer and Hull diffractometer   

Figure 2.27 shows a film obtained for a sample of magnesium oxide. 

Each of the arcs corresponds to a family of crystal planes with an interplanar 
distance that can be inferred from Bragg’s law and a measurement of the diffraction 
angle. In order to make the interpretation simpler, the radius of the chamber is such 
that a length of 180 mm on the film is equivalent to an angle of 180° (the radius has 
to be equal to 57.3 mm). 

 

Figure 2.27. Film recorded in a Debye-Scherer and Hull  
diffractometer with a sample of zinc oxide 
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Each diffraction cone leads to two arcs with symmetric positions with respect to 
the center of the film, which is defined by the direct beam. We saw that the half 
opening angles of the cones is equal to 2θ and, since the distance between two arcs 
corresponds to a single cone, a direct reading gives the angle 4θ. 

These traditional Debye-Scherrer diffractometers are no longer used today. Their 
geometry is such that the beams diffracted by the sample are divergent, or at least do 
not converge on the detector film. This intrinsic situation causes the diffraction arcs 
that are detected to widen, hence causing a poor angular resolution. We will see later 
on that other configurations make it possible to detect diffracted beams where they 
converge, thus increasing the angular resolution. Furthermore, the detection of 
diffracted beams in these systems was achieved with photographic film. This makes it 
more difficult to process the data with a computer. These two elements caused these 
systems to gradually disappear. However, at the beginning of the 1980s, the arrival of 
position sensitive gas detectors led to a renewed interest in this type of system. New 
devices were designed and even though they are distant relatives of the ones used in 
the early 20th century by Debye, Scherrer and Hull, they are of the same kind in the 
sense that the sample is in the center of the detection circle [SHI 86]. 

2.2.1.2. The modern Debye-Scherrer and Hill diffractometer: use of position 
sensitive detectors 

Strictly speaking, photographic film is a position sensitive detector but, as we 
have already mentioned, the resulting signal is not directly digital. This is why 
modern Debye-Scherrer and Hull diffractometers combine a beam originating from 
a plane or curved monochromator with a one-dimensional position sensitive 
detector, giving the user a direct reading of the diffraction signal and with the 
sample placed in its center. In the first part of this chapter, we described the 
different types of detectors, and saw that, today, there are position sensitive gas or 
solid detectors that use an imaging plate. The latter are of much more recent design 
than the former, so the modern Debye-Scherrer and Hull systems were developed by 
implementing the concept of curved position sensitive gas detectors. Additionally, 
this type of gas detector requires the sample to be placed in the center of the 
detector4, since the beams diffracted by the sample have to travel the same distance 
inside the detector regardless of what diffraction angle is considered. Variations of 
this distance would modify the measurements of the diffracted intensity. Hence the 
use of curved position sensitive gas detector requires a Debye-Scherrer and Hull 
geometry. As we have already said, the use of one-dimensional imaging plate 

                                   
4 Some authors [ORT 78; WOL 81; WOL 83] thought of placing the sample on the detection 
circle, i.e. on the circle defined by the curved detector. This configuration was tested with a 
detector with a small radius; however, the intensity measurements were not accurate and it 
would be necessary to include corrections in this case. It would seem that no one until now 
has suggested a satisfactory method. 
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detectors is much more recent. We will give a few details about this at the end of 
this section. 

 
2.2.1.2.1. The traditional modern Debye-Scherrer and Hull diffractometer: 
cylindrical sample 

Figure 2.28 shows a schematic drawing of a Debye-Scherrer device equipped 
with a curved position sensitive detector. 

Curved position
sensitive detector

Monochromator X-ray tube

Sample

Beam stop  

Figure 2.28. Debye-Scherrer diffractometer equipped with a position sensitive detector 

The sample is irradiated with an incident monochromatic beam originating from 
a Guinier type, curved crystal monochromator. Due to the crystal’s curvature being 
set, the front and rear focal distances are fixed and the beam’s section is defined by 
the slit located between the tube and the monochromator. The two slits placed 
beyond the monochromator are oriented in the direction defined by the 
monochromator’s diffraction angle, making it possible to actually select the source’s 
Kα1 radiation. This matter will be discussed in great detail later on when we discuss 
the Bragg-Brentano diffractometers. 

The sample is a fine cylinder usually comprised of a capillary filled with the 
powder we wish to study. It can also be made of a thin wire, particularly when the 
material we wish to study is a metal. In any case, this sample is placed in the center 
of a curved, position sensitive gas detector used to simultaneously detect all of the 
diffracted beams. We saw before that when these gas detectors are irradiated with X 
photons, the gas is ionized and a local avalanche effect takes place which leads to 
the ionization of the neighboring atoms. The size of this ionized zone depends on 
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the operating conditions of the detector. Some detectors operate in proportional 
conditions, others in intermediate conditions between the proportional conditions 
and the Geiger-Müller and they are referred to as the “streamer conditions” [ALE 
80; ATA 82; BAL 83]. At any rate, the linear dimension of the ionized zone can be 
considered to be in the order of 150 µm. The detector’s5 angular resolution is 
directly related to its radius and can therefore be estimated from this value of 150 
µm. It would seem that the radius must be as large as possible. However, we should 
point out that this increases the length of the delay line, and thus significantly 
complicates the design of such a detector. The detectors currently available have 
radii between 250 and 500 mm. Due to the absorption by the air surrounding the 
sample, the increase in the sample-detector distance causes a significant decrease in 
the measured intensity. We could of course consider designing systems where the 
sample is placed in the center of a chamber with a crude vacuum, but this 
considerably complicates the design of the equipment and increases its cost.  

 
Figure 2.29. Diffraction pattern obtained using a Debye-Scherrer and Hull  

device equipped with a curved position sensitive gas detector 

 

                                   
5 A diffractometer’s angular resolution is one of its essential features. However, it depends 
not only on the resolution of each of the elements that comprise it, but also on the device’s 
general configuration, in particular on the relative positions of its various elements. What we 
are discussing here is the detector’s resolution, not to be confused with the device’s global 
resolution. For example, it is quite odd to say [PEC 03] that the angular resolution of those 
diffractometers including such position sensitive detectors is not good since that resolution 
depends on the configuration. We will show later on that high resolution devices can be 
produced with this type of detector, for example by optimizing the incident beam’s geometry.  
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The detected signal is then plotted in a diagram showing the evolution of the 
diffracted intensity according to the diffraction angle (see Figure 2.29). The main 
advantage of this type of system is very clear. All of the diffracted beams are 
collected simultaneously. We will see other systems later on, in particular the 
Bragg-Brentano diffractometer, where the detection must be intrinsically punctual. 
The acquisition time of a diagram is in that case longer. In practice, these Debye-
Scherrer and Hull diffractometers make it possible to produce diffraction patterns in 
a few minutes or sometimes a few seconds [YAM 92]. 

 
The arrival on the market of these curved position sensitive gas detectors stirred 

new enthusiasm for this configuration. Several laboratories, among them the Nantes 
Institute for Materials [DEN 93, EVA 93], have dedicated their research to study the 
characteristics and the quality of diffraction patterns produced using this kind of 
device. With these diffractometers designed for fine cylindrical samples 
(capillaries), the equipment’s angular resolution directly depends on the diameter of 
the sample, since that is the dimension that determines the incident beam’s useful 
part. In the conventional configuration, which is the one studied by Evain [EVA 
93], the detector’s radius is 250 mm. In this case, if we use a capillary that is 0.5 mm 
in diameter, the peak widths vary between 0.08° and 0.16° when the diffraction 
angle changes from 10° to 120°. This study shows that the angular resolution of 
these devices is high, but not as good as the one obtained with a Bragg-Brentano 
device in its high resolution configuration, which will be described later on. 

These position sensitive gas detectors are divided into different channels and 
each intensity is specified with its channel number. Therefore, the pattern obtained 
after the acquisition gives the diffracted intensity according to the channel number. 
The relation between the channel number and the angle is not strictly linear, straying 
from the straight line by about a tenth of a degree (see Figure 2.30). These 
significant differences constitute one of the major weaknesses of these detectors. 
We will see, however, that angular calibration can help solve this problem. 
However, we should point out that the quality of this calibration, which is obtained 
experimentally, determines the accuracy of the diffraction angle measurements. 
Since the early 1980s, three methods have been found to perform the angular 
calibration on these systems. 

The first method consists of placing in front of the detector window a sheet of 
metal pierced at regular intervals with very thin holes. The detector is then irradiated 
using an isotropic radiation source (a radioactive source, or fluorescent radiation). In 
each point corresponding to the holes, a peak is observed. Since the holes are 
regularly spaced out, it is possible to draw the link between the channel and angle 
numbers [STA 92]. This method assumes that the sheet is perfectly cylindrical and 
that it has the same center as the detector, a condition that is difficult to meet. 
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The second method consists of recording a diffraction diagram for a perfectly 
well-known sample [EVA 93, MAS 96a]. The positions of the diffraction peaks, 
along with the corresponding channels, are matched with the values of the 
diffraction angles associated with the characteristic interplanar distances of the 
control sample. The result is the relation between the channel and the angle number. 

 
(a) Illustration of the straying from linearity. The dots correspond to the measurements 

conducted on a sample of Na2Ca3Al2F14 [COU 88] 

 

 

 (b) Comparison of several calibration methods [MAS 05]. The black dots correspond  
to measurements conducted on a standard sample of Na2Ca3Al2F14. The full line is  

obtained by calibrating the detector with a rotation in front of the direct beam,  
with measurements conducted every 0.5° 

Figure 2.30. Angular calibration of a curved position sensitive detector  
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A third method consists of turning the detector step by step in front of the direct 
beam by recording the direct beam at each step [STA 94, MAS 98a , MAS 05]. 
Since the increment is known, the angular calibration is directly obtained. As Figure 
2.30b shows, this last method is the most effective, but it requires to be able to turn 
the detector with an accuracy in the range of a thousandth of a degree. The system 
can be equipped with a motorized rotation, and the calibration according to this 
method can then be performed automatically. 

 
Generally speaking, the most commonly used method is the second one. When 

this calibration is properly done, it enables the user to perform measurements of 
diffraction diagrams with a high angular accuracy [DEN 93, MAS 96a]. 

 
As we have already said, systems equipped with position sensitive gas detectors 

can produce diagrams with very short acquisition times. In addition to this, the 
measurement of the diffracted intensity is achieved in every point of the diagram 
simultaneously and therefore if the sample changes due to the effect of an outside 
solicitation, the entire diagram is modified. This characteristic feature of systems 
using position sensitive detectors makes Debye-Scherre and Hull systems very good 
candidates to follow the in situ evolution of materials according to one or several 
outside constraints. 

 

 

Figure 2.31. Study of the crystallization of cerium oxide using a thermodiffraction system 
equipped with a curved position sensitive detector [BEN 96] 
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This characteristic was used, for example, to produce diffractometers designed to 
track the evolution of a sample according to the temperature. Louër and his 
colleagues studied the structural transformations of oxide precursors using a system 
equipped with an oven in which the sample was placed [AUF 90, BEN 93, GUI 95, 
BEN 96]. An example of this type of study is shown in Figure 2.31 where the 
evolution of a cerium oxide precursor can be observed, showing in particular the 
presence of an intermediate phase. The same approach was used by other authors to 
study, for example, the dehydration of zeolites [STA 92, STA 94] or also to 
simultaneously measure, according to the temperature, the evolution of X absorption 
spectra (EXAFS) and of diffraction patterns [SAN 93, DEN 95]. 

The maximum number of photons that a gas detector can measure per unit of 
time depends on the operating conditions of this detector, but is nonetheless 
relatively limited compared with the possibilities offered by solid detectors. This 
limitation can be bothersome when the incident intensity is very high, such as when 
using a synchrotron radiation source or when it is important to precisely measure the 
diffracted intensity over a large number of orders of magnitude6. In the past few 
years, several authors have suggested creating Debye-Scherrer and Hull 
diffractometers which use one-dimensional “image plate” detectors [SAB 95, BAR 
92, O’CO 97, NIS 01, TAK 02, KNA 04]. These systems were designed to be used 
with synchrotron sources and there are currently no manufacturers selling this type 
of equipment to laboratories. We will see later on that this type of detector can be 
used to create Seemann-Bohlin systems, where the sample is placed on the detection 
circle. This configuration, which uses a convergent X-ray beam, makes it possible to 
obtain patterns with a high angular resolution. Therefore, it would seem more 
favorable for laboratory experiments than the Debye-Scherrer and Hull 
configuration. Naturally, this question does not come into consideration for 
synchrotron radiation sources, since in that case the incident beam is parallel. 

The use of a sample holder requires the sample to be reduced to a fine powder. 
This condition is not a problem when determining, for example, the structure of a 
new phase that has just been synthesized and this type of equipment is used for that 
purpose by solid state chemists. However, it is sometimes necessary to directly 
study bulk samples for which grinding could cause phase transitions. In those cases, 
the sample is a plane object that can be studied with the same diffractometer. 
Different configurations are then possible, with different paths for diffracted beams 
and different angular resolutions depending on the relative positions of the various 
elements included in the apparatus. 

                                   
6 This last case occurs, for example, when studying epitaxial thin films. This matter will be 
discussed in Part 2 of this book. 
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2.2.1.2.2. Use of plane samples: configuration of the device and angular resolution 

Figure 2.32 shows a schematic drawing of a Debye-Scherrer and Hull device 
devoted to the study of flat plate samples.  

Curved position
sentive detector

Sample

Monochromator X-ray tube

Focusing
circle

 

Figure 2.32. Debye-Scherrer diffractometer with a flat  
plate sample. Study in reflection 

Each diffraction peak that is observed in the direction 2θ results from all of the 
X photons diffracted by all of the grains in the Bragg position, for the family of 
reticular planes corresponding to the distance d, such that λ = 2d sin θ. These X 
photons are diffracted by all of the grains along the angle θ with respect to the 
family of planes in question, but the X-ray beam originating from the curved 
monochromator is convergent (and non-parallel). Therefore, the diffracted X-ray 
beams are not parallel; in the situation shown in Figure 2.32, the beams that reach 
the detector are divergent (see Figure 2.33). The locus of convergence of these 
beams is virtual in this case, since it is located behind the sample. It consists of a 
circle (the focusing circle) that is tangent to the sample and that passes through the 
convergence point of the beam originating from the monochromator (see Figure 
2.32). 
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Figure 2.33. In the configuration shown in Figure 3.31, the beams diffracted 
for a same angle by different crystals inside the sample are divergent 

Therefore, the configuration shown in Figure 2.32 seems to be unfavorable, 
since the diffraction peaks are in that case relatively wide. On the other hand, if the 
convergence point is located in front of the sample, the diffracted beams converge 
toward the detector (see Figure 2.34). 
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Figure 2.34. Debye-Scherrer diffractometer with a flat plate sample. Study in reflection with 
the convergence point of the incident beam in front of the sample 
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The reverse situation is observed when the sample is studied in transmission: the 
diffracted beams are convergent if the focusing point of the direct beam is placed in 
front of the sample (see Figure 2.35) and otherwise divergent. 
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Figure 2.35. Debye-Scherrer diffractometer with a flat plate sample. Study in transmission  
with the convergence point of the incident beam behind the sample 

Regardless of which configuration is chosen, the curved position sensitive gas 
detector cannot be placed on the focusing circle, since in that case, as we mentioned 
above, the detector’s attack angle would vary and therefore the distance traveled by 
the photons in the gas would depend on the Bragg peak is considered; the intensity 
measurements would then be inaccurate. The diffracted beams could possibly be 
convergent, but the observed peaks would remain relatively wide, since the detector 
is not placed on the focusing circle. Note, however, that if we increase the focal 
distance behind the monochromator, the beam becomes more and more parallel, 
which causes the diameter of the focusing circle to increase. Thus, if this focal 
distance is high enough, the influence of this defocusing effect is small. In practice, 
these devices are equipped with a monochromator comprising of a quartz or 
germanium crystal that is curved, so that the back focal distance is close to 1 meter, 
making the influence of the defocusing effect rather small. Another approach 
enabling the user to modify the diameter of the focusing circle consists of modifying 
the incidence angle of the X-ray beam on the sample. We may choose a situation 
where the incidence angle is equal to the Bragg angle of certain diffraction peaks 
deemed interesting; this is referred to as diffraction by symmetric reflection, 
something we will discuss in greater detail later on. The focusing circle is then 
tangential to the detection circle and as a result, locally, and for a certain angular 
range, we obtain a high resolution. 
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The optimum use of a curved detector with a plane sample probably requires a 
thin parallel incident beam in order to prevent any convergence or divergence 
effects. Such a beam could be obtained with a plane monochromator comprised of 
several reflections. This led Dumont [DUM 37], followed by Bartels [BAR 83], to 
design a monochromator with four reflections on single crystals of germanium. The 
beam originating from this monochromator is strictly monochromatic and shows an 
extremely low divergence. We can mention, as an example, the values obtained for 
a monochromator using four reflections on the planes (220) of the germanium 
crystal. The resulting spectral dispersion is ∆λ/λ = 1.4 ×  10-4 and the divergence is 
∆θ = 12 arcseconds. The diagram of a system including such a monochromator 
associated with a curved detector is shown in Figure 2.36 [GUI 96, MAS 98a, BOU 
02a]. Naturally, this type of monochromator greatly reduces the intensity of the 
beam hitting the sample, but causes a very high increase in resolution. 

 

Figure 2.36. Diffractometer associating a position sensitive detector  
with a flat plate sample and a parallel beam  

In order to illustrate this result, we realized two diffraction patterns using a 
sample with a low crystal symmetry, hence the large number of peaks. One of the 
patterns was recorded with a diffractometer using a convergent beam and 
corresponding to the setup described in Figure 2.32. The other pattern was obtained 
using the diffractometer shown in Figure 2.36. The sample that was chosen is a 
monoclinic zirconia powder used in an international structure refinement test [HIL 
94] performed under the authority of the International Union of Crystallography. 
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The results of these measurements are shown in Figure 2.37. Note how the use 
of a strictly parallel beam can greatly improve the diffractometer’s angular 
resolution. As we will see later on, the resolution of this diffractometer is equivalent 
to that obtained with Bragg-Brentano diffractometers in the high resolution 
configuration. 

 
Figure 2.37. Influence of the diffractometer’s geometry on the angular resolution,  

illustrated by diffraction patterns of monoclinic zirconia 

2.2.2. Focusing diffractometers: Seeman and Bohlin diffractometers 

2.2.2.1. Principle  

A few years after the first experiments led by Debye, Scherrer and Hull, 
Seemann [SEE 19] and Bohlin [BOH 20] thought of an X-ray diffraction apparatus 
for polycrystalline samples that would detect where they converge the beams 
diffracted by the crystals in the Bragg position. The corresponding configuration is 
shown in Figure 2.38. 

The X-rays produced by the source, placed in S, are divergent. They hit a curved 
sample and, for given family of planes corresponding to a certain diffraction angle, 
all of the beams diffracted by the crystals for which that family of planes is in the 
Bragg position converge to a point F, located on the circle that passes through S and 
to which the sample is tangent. 
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Figure 2.38. Geometric arrangement of a Seemann-Bohlin diffractometer  

This description corresponds to a plane projection of the apparatus. In a three-
dimensional perspective, all of the diffracted beams converge to F if and only if the 
sample is placed on a section of the torus generated by the rotation of the arc AC 
around the line SF and, of course, if the source is punctual. 

In practice, this condition is not met, that is, the source is linear and is equivalent 
to a line segment perpendicular to the projection, essentially so as to have a strong 
enough intensity. The sample is then comprised of a portion of a cylinder and the 
focusing locus is a line segment parallel to the source. 

2.2.2.2. The different configurations 

2.2.2.2.1. Use of a curved monochromator (Guinier chamber) [GUI 37, GUI 39, 
WOL 48] 

Following the works of Seemann and Bohlin, these systems were improved by 
several authors [GUI 37, GUI 39, WOL 48, HAG 69], the first among them being 
Guinier, who suggested including a curved monochromator crystal [GUI 37]. The 
beam’s optical path then corresponds to the one shown in Figure 2.39. This is 
sometimes referred to as the “Guinier chamber” (or also Guinier-de Wolf or 
Guinier-Hägg). The word “chamber”, i.e. to describe a diffractometer, comes from 
the fact that the detector used was a piece of photographic film. Of course, this 
feature is not specific to the geometric configuration in question. We will see in the 
following sections that there are Seemann-Bohlin diffractometers which use other 
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kinds of detectors. Therefore, we will be using the word “diffractometer” rather than 
“chamber”. 

 

Figure 2.39. The Guinier diffractometer  

A Guinier monochromator can separate the Kα1-Kα2 doublet. However, there 
are two possible configurations. Consider a beam with a certain wavelength 
dispersion headed for the monochromator. In order for a beam with wavelength λ 
arriving toward the monochromator to be diffracted, it has to be at an angle θλ with 
crystal planes parallel to which the monochromator is cut. If we consider photons 
with wavelength λ + ∆λ, they will be diffracted by the monochromator only if they 
reach it at an angle θλ + ∆λ. Therefore, it is necessary that they originate from a 
slightly different area of the source (see Figure 2.40a). On this condition, these 
photons with wavelength λ + ∆λ are diffracted in a direction defined by the angle 
θλ + ∆λ. This means that the diffracted photons with wavelengths λ or λ + ∆λ will 
take different directions. The sample has the same effect as the monochromator and 
a given family of planes will diffract these two beams in slightly different 
directions. The two possible configurations are shown in Figure 2.40. 

S configuration (subtraction) 

The two effects are subtracted and the diffraction on the sample tends to bring 
the two beams closer together. 
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Figure 2.40a. S configuration of a Seemann-Bohlin diffractometer 

O configuration (addition) 

The beams diffracted by the sample are more separated than they were before 
the diffraction. 

 

Figure 2.40b. O configuration of Seemann-Bohlin diffractometer 

Current Seemann-Bohlin diffractometers can be used in either configuration. 
The S configuration has a better angular resolution. 

2.2.2.2.2. Transmission, reflection; symmetric, dissymmetric 

These diffractometers can be used in various configurations. All of the 
possibilities are shown in Figure 2.41. 
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 Symmetric transmission 

 Dissymmetric transmission 

 Dissymmetric reflection 

 Symmetric reflection 

Figure 2.41. Use in transmission or in reflection 
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Note, however, that the choice of one configuration or another imposes an 
angular area on the measurement. Generally speaking, the use of the system in 
reflection makes it impossible to measure peaks at low angles, the angle θ must be 
higher than 37°. Due to this very restrictive condition, Seemann-Bohlin 
diffractometers are used in transmission most of the time. The reflection 
configuration is only used when the measurements involve peaks with high angles. 
This can occur for very precise measurements of cell parameters for purposes of 
evaluating the rate of homogenous strains.  

Hofmann and Jagodzinski [HOF 55] designed a double chamber system, one 
used in transmission and the other in reflection. The angular range covered by this 
design is of 0 to 45° for the first chamber and 45 to 90° for the second. The two 
combined enable the user to make measurements from 0 to 90°. This configuration, 
however, is rarely used. 

 

Figure 2.42. Double Guinier chamber  

2.2.2.2.3. Simultaneous observation of several samples 

Some devices [WOL 48] enable the user to study several samples 
simultaneously. The different powders are placed on top of each other and diffract 
different portions of the beam. The resulting film looks like the one shown in Figure 
2.43 [KLU 74]. 
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Figure 2.43. Film obtained from the simultaneous study of several samples 

Guinier devices are diffractometers with a very good angular resolution. 
However, the use of photographic films as detectors greatly lessens their appeal, 
since most modern studies require a digital signal that can directly be processed by a 
computer. There are two different methods for solving this problem. 

2.2.2.2.4. Use of an imaging plate detector 

Guinier chambers with imaging plate detectors started appearing in the late 
1990s [STA 00]. The active material is deposited on a flexible polymer holder, 
producing a detector, which is simply placed where the photographic film would 
have been. The signal can be read very quickly because of a lazer source 
integrated in the diffractometer. This type of device, sold by the Huber company, 
is still very recent. It seems quite efficient and can produce diffractograms which 
have a good angular resolution with very short exposure times (a few minutes). 
However, as we have mentioned before, these detectors show a certain remanence 
that lessens their appeal. 

2.2.2.2.5. Use of a punctual detector: goniometric setup  

For many years, another method has been used to directly produce a digital 
signal using a Seemann-Bohlin diffractometer. Traditional film is replaced with a 
punctual detector moving along the focusing circle [WAS 53]. Usually, scintillation 
detectors or proportional gas detectors are used. The detector’s movement can be 
either continuous or incremental. 
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Figure 2.44. Seemann-Bohlin device equipped with a punctual detector 

These diffractometers were described in detail by Parrish and Mack [PAR 67, 
MAC 67], and even though they have been available on the market for 40 years, 
they are only rarely used. They show a high angular resolution but are particularly 
difficult to adjust. The value of the diffraction angle 2θ is directly given by the 
detector’s position on the focusing circle. Therefore, precisely determining this 
angle requires the focusing point of the incident beam originating from the 
monochromator to exactly coincide with the angular zero. In addition, other authors 
[MAC 67, SPE 95] have noted that any movement of the sample along the radius 
has a strong influence on the measured position of the diffraction peaks. Hence, it is 
important that the sample is exactly tangent to the focusing circle. 

2.2.3. Bragg-Brentano diffractometers  

2.2.3.1. Principle 

Seemann-Bohlin devices which have already been described (see Figure 2.38) 
are such that the diffracted beams converge to the focusing circle, the diameter of 
which is constant, thus causing the sample-detector distance to vary with the 
diffraction angle. 
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Figure 2.45. Schematic drawing of the principle of the Bragg-Brentano diffractometer  

Bragg-Brentano diffractometers [BRA 21, BRE 17a, BRE 17b, BRE 46] are 
approximate focusing systems for which the sample-detector distance is constant for 
any angle θ. This condition means that the locus of the focusing points is a circle 
with its center on the sample and passing through S, but it implies that the diameter 
of the focusing circle changes for each θ. The focusing circles pass through the 
point S and are always tangent to the sample, which must therefore turn around its 
center so as to maintain an angle θ with the X-ray beam. Figure 2.45 displays this 
configuration. 

Two types of devices can function this way. 

2.2.3.1.1. θ-2θ diffractometers 

With this type of device the source does not move, the sample rotates around its 
axis at a speed ω, whereas the detector is moving at a speed 2ω along the circle, 
centered on the sample, and referred to as the goniometric circle. The detector, 
placed in 2θ, measures at every instant the diffraction peaks corresponding to the 
angle θ. 
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Figure 2.46. θ-2θ Bragg-Brentano diffractometers  

This is the most common system. However, it has a major drawback: since the 
sample is rotating, it can sometimes fall, if it is in powder form, when the angle of 
rotation is too high. The use of this kind of device with a heating sample holder is 
difficult for the same reason.  

It is possible to create a diffractometer based on the same idea, but with a sample 
that does not move. 

2.2.3.1.2. θ-θ diffractometers 

With this type of device, the sample does not move. The source and the detector 
simultaneously move in opposite directions along the goniometric circle at a speed 
ω. 
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Figure 2.47. θ-θ Bragg-Brentano diffractometer  

These diffractometers are generally more expensive than the previous ones, 
since it is difficult to achieve a perfectly controlled movement of the X-ray tube, 
which is quite heavy. 

For both of these two systems, the movements of the different elements can be 
either continuous or incremental. 

2.2.3.2. Description of the diffractometer; path of the X-ray beams 

A diagram of the X-ray beam’s path and of the different elements of the device 
is shown in Figure 2.47. 

 

Figure 2.48. Path of the X-ray beams in a Bragg-Brentano diffractometer  



98     X-ray Diffraction by Polycrystalline Materials  

The focal line emits a divergent X-ray beam. A first slit, F1, makes it possible to 
limit the incident beam’s opening, since it is important, at any diffraction angle, for 
the area irradiated by the incident beam to be smaller than the sample. Otherwise, 
the irradiated volume would vary with the angle θ and the relative intensity values 
would not be specific to the material used. Aside from this particular case, which 
must be avoided, the volume studied in this type of system is constant for any θ. 
Note, finally, that the irradiated surface increases when θ decreases. Therefore, 
when conducting experiments at low diffraction angles, the width of the slit can be 
decreased. Some devices are equipped with a slit that automatically varies in width 
with the angle θ. This configuration has its advantages, but the irradiated volume is 
then no longer constant. 

 

Figure 2.49. Illustration of how the slits work 

The slits located after the sample (F2 and F3) enable the user to select what the 
detector picks up. As we have already mentioned, in this type of device, the detector 
is moving along the goniometric circle on which the source is placed and in the 
center of which the sample is placed. Therefore, the source-sample and sample-
detector distances are set and equal to the radius of the circle. This means that the 
solid angle seen by the detector is entirely determined by the slit F1, and slits F2 and 
F3 are not necessary in defining the width of the beam as seen by the detector. 
However, as we have already mentioned, in the case of diffraction by a 
polycrystalline sample, the incident beam has to be monochromatic. Including a 
filter or a monochromator associated with slits F2 and F3 ensures that only the 
beams with the chosen wavelength are seen by the detector. The role of these slits is 
explained in Figure 2.49. In order to make the diagram simpler, the incident beam 
was assumed to be parallel. In reality it is divergent in Bragg-Brentano systems, but 
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this does not change the concept. Consider a chosen beam originating from the 
source and characterized by a wavelength λ + ∆λ different from the wavelength λ 
and a family of planes (hkl) associated with an interplanar distance dhkl. When the 
sample is irradiated at an angle θλ, the crystals for which the family of planes (hkl) 
is parallel to the surface diffract in a direction defined by the angle θλ and the 
resulting beams hit the detector. The radiation with wavelength λ + ∆λ is not 
diffracted by these crystals, but is diffracted by crystals for which the family of 
planes (hkl) is slightly disoriented with respect to the sample’s surface. The 
diffraction direction is given by the angle θλ + ∆λ. If slits F2 and F3 are positioned in 
the direction defined by the angle θλ, the beams diffracted at an angle θλ + ∆λ are 
stopped and not picked up by the detector. 

The vertical divergence is limited by two series of slits placed before and after 
the sample. These slits, referred to as Soller slits [SOL 24], are comprised of parallel 
plates, regularly spaced out, that divide the beam into several, very slightly 
divergent beams. 

Generally speaking, whatever type of slit is used, they must be made out of 
highly absorbing materials, and hence of heavy chemical elements. Most of the 
time, tantalum or molybdenum slits are used. 

We have seen that combining different slits can limit the spectral dispersion of 
the beams picked up by the detector. However, this is only efficient if the incident 
beams are somewhat monochromatic. Bragg-Brentano systems can be equipped 
with filters or monochromator crystals. The measurements conducted with the 
diffractometers are, by nature, sequential, meaning that the acquisition times are 
directly related to the angular range that is explored, but these times are always 
longer than those corresponding to overall measurements of the diffraction signal. 
This characteristic implies that the incident beam that hits the sample has to be as 
intense as possible. This is why many Bragg-Brentano diffractometers are equipped 
with filters that make it possible to maintain a significant incident intensity. Figure 
2.50 shows a diffraction diagram produced with this type of system equipped with a 
copper anode source and a nickel filter.  

As we have already mentioned, copper’s Kα1 peak cannot be selected with a 
filter. Each peak is actually split in two and the angular gap between two peaks 
corresponding to the same family of planes increases as a function of  the diffraction 
angle. 

Adding a monochromator between the source and the sample makes it possible 
to avoid this problem. However, since the incident intensity is then smaller, the total 
acquisition time will be longer, often a few days or even up to a week for high 
resolution patterns. 
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Figure 2.50. Diffraction pattern of a sample of cerium oxide powder obtained with a Bragg-
Brentano diffractometer equipped with a copper anode source and a nickel filter [BAL 04] 

The monochromators must make it possible to irradiate the sample with a 
divergent beam, which is why, most of the time, curved Guinier monochromators 
are used. They are made out of quartz or, out of germanium. A diagram of the 
corresponding set-up is shown in Figure 2.51. The pattern obtained with this device  
using the same sample as in Figure 2.50 is shown in Figure 2.52. 

 

Figure 2.51. Path of the X-ray beams in a Bragg-Brentano diffractometer  
equipped with a front monochromator 
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Another possibility consists of placing the monochromator on the path of the 
beams diffracted by the sample, a configuration referred to as a back 
monochromator. It helps prevent parasite radiation, such as that caused by the 
sample’s fluorescence hitting the detector. 

 

Figure 2.52. Diffraction pattern  of a sample of cerium oxide powder obtained by 
using a Bragg-Brentano diffractometer equipped with a copper  

anode and front quartz monochromator [BAL 04] 

In Brentano’s original configuration, the direct beam directly irradiates the 
sample, as shown in Figure 2.48. We saw that these set-ups systematically produce 
diagrams with peaks split in two due to the presence of the Kα1-Kα2 doublet. We 
also mentioned that the main advantage of Bragg-Brentano diffractometers is the 
possibility to have a high angular resolution, because the diffracted beams are 
detected where they converge. The angular resolution functions of these systems are 
sometimes determined by only taking into account the width of the diffraction 
peaks’ Kα1 components but, as discussed by Langford and Louër [LAN 96], this 
approach is not entirely correct. The presence of the component due to the Kα2 
radiation causes a significant increase in the partial overlap of the peaks, which 
complicates the processing of the diffraction diagrams a great deal. The usual 
approach [RAC 48] for processing the results of diagrams comprising split peaks is 
to set the intensity ratio between the peak caused by the Kα1 radiation and the peak 
caused by the Kα2 radiation. We have already mentioned in the first part of this 
chapter [DEU 95, DEU 96, DIA 00] that a description of the Kα radiation’s actual 
form is much more complex. Therefore, this approach is just an approximation, and 
it is particularly difficult to find a precise model to predict the shapes of the 
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diffraction peaks obtained with devices not equipped with a monochromator. This 
does not constitute an actual problem if the purpose of processing the pattern is to 
determine the integrated intensities, but it makes the analysis of the peak profiles 
very difficult. Therefore, even though the use of a monochromatic beam is always 
the better option [OET 99], structural studies that are led from the measurements of 
the integrated intensities can be conducted based on the pattern obtained using 
diffractometers equipped with absorption filters [LOU 88, HIL 92, HIL 94, CUS 
99]. On the other hand, in the case of microstructural studies, the information sought 
is related to the shape of the diffraction peaks, requiring an analysis of the peak 
profiles, which means that in those cases, a system equipped with a front 
monochromator is necessary [LAN 96, SYN 99]. 

As we have shown, the Bragg-Brentano diffractometer imposes, by definition, the 
use of a punctual detector. Under these conditions, and aside from improving the 
efficiency of detectors, reducing the acquisition time can only be done by increasing 
the intensity of the incident beam, that is, either by using a high intensity source 
(rotating anode generator or synchrotron source), or by increasing the ratio between 
the intensity of the beam originating from the monochromator and that of the beam 
produced by the source. The increase of this ratio can be achieved by increasing the 
mosaicity of the monochromator crystal. Note, however, that this increase in mosaicity 
causes at the same time a decrease in wavelength selectivity. Thus, the use of an 
elliptical artificial crystal causes a significant increase in the flow of X-rays irradiating 
the sample, but at the same time causes a strong decrease in the device’s angular 
resolution, since these monochromators are unable to separate the Kα1-Kα2 doublet. 

A few authors have suggested replacing the punctual detector by a position 
sensitive linear detector [GOB 79]. This reduces the acquisition time, meaning that 
these systems can be used to study the in situ structural transformations associated, for 
example, with temperature variations. However, the diffracted beams are detected 
outside of their focusing points, thus greatly deteriorating the angular resolution [STO 
01, CHE 04]. Most of the time, position sensitive detectors are linear gas detectors 
placed so that they are tangent to the goniometric circle and present an angular opening 
of several degrees. Generally speaking, this configuration results in a poor angular 
resolution, with acquisition times that remain longer than those obtained with Debye-
Scherrer and Hull systems, which use curved position sensitive detectors. An 
interesting compromise between acquisition speed and angular resolution was recently 
suggested [REI 02]. This author used a real-time multiple strip, solid, position sensitive 
detector which makes it possible to choose an angular opening adapted to the beam’s 
imperfections. We know that the focusing in a Bragg-Brentano system is approximate 
(the sample is tangent to the focusing circle and also, the size of the source is not 
infinitely small), which led to the idea of choosing an angular opening that generally 
corresponds to the actual size of the diffracted beam when it reaches the detection 
circle (goniometric circle). When the Bragg-Brentano diffractometer is used in low 
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resolution configurations, in other words, with an absorption filter and relatively open 
windows, the detector’s entrance slits can have a size of 2°, thus reducing the 
acquisition time by a factor of up to 100! [REI 02]. In the high resolution mode, this 
opening has to be significantly reduced. Nonetheless, by choosing an opening in the 
range of a quarter of a degree, the resolution function’s quality is not diminished, 
whereas the acquisition time is reduced by a factor 10. 

2.2.3.3. Depth and irradiated volume 

We will determine later on, when describing systems designed for the study of 
thin layers, the general expressions of the irradiated volume and of the penetration 
depth according to the incidence angle and the diffraction angle. However, it is 
rather easy to note in the case of Bragg-Brentano diffractometers, for which the 
incidence angle is always equal to the Bragg angle, that the irradiated volume is 
unaffected by variations of θ. However, as the diagram in Figure 2.53 shows, the 
penetration depth varies with the angle θ. These two characteristics of the 
acquisition conditions for patterns produced using these systems has a considerable 
effect on how they are used. Since the irradiated volume is constant for any 
diffraction angle, the intensities diffracted for the different peaks can be directly 
compared. On the other hand, because the depth of the analysis varies with the 
diffraction angle, the sample has to be perfectly homogenous with respect to its 
thickness. If this condition is not met, the resulting pattern is difficult to use, 
because the various peaks do not correspond to identical areas in the sample. In 
practice, this happens fairly often, particularly with bulky samples that have 
undergone a thermal process. This characteristic prohibits the use of these systems 
in cases where the sample is a layer thin enough for the X-ray beam to go through it 
(≈ µm). 

 

Figure 2.53. Variations of the irradiated depth and surface with the Bragg angle  
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2.2.4. Parallel geometry diffractometers 

The three types of diffractometers we have just described use divergent X-ray 
sources. As we have seen, this leads to the problem of detecting the beams 
diffracted by the sample as close as possible to where they converge. These 
diffractometers were designed in the first part of the 20th century, at a time when all 
of the available X-ray sources provided divergent beams. The advent of synchrotron 
radiation sources, which produce practically parallel beams, led to the design of 
diffractometers based on these sources, created for the study of polycrystalline 
samples with parallel beams [FIT 95, HAS 84]. Since the beginning of the 1990s, 
experimental laboratory set-ups based on this geometry have started to appear. 

We will not describe here in detail the diffractometers installed on synchrotron 
sources, since they almost always consist of prototypes adapted to a particular type 
of study and measurement. We can point out, however, that since the source directly 
produces a parallel beam, the diffracted beams will be non-divergent regardless of 
the sample’s shape (capillary, plane, transmission, reflection, etc.). 

Generally speaking, in these systems, the beam originating from the storage ring 
is diffracted by a double crystal, often made out of silicon. This beam then irradiates 
the sample (plane or capillary) and the beams diffracted by the sample are again 
diffracted by a plane crystal7, before being picked up by the detector (see Figure 
2.54a). This analyzer crystal can be replaced with a set of slits comprised of 
relatively long, parallel plates. The spaces between these plates and their lengths 
define the angular opening and therefore the diffractometer’s angular resolution (see 
Figure 2.54b). 

                                   
7 This crystal makes it possible to select a specific wavelength bandwidth. By analogy with 
spectroscopic methods, it is referred to as an analyzer crystal. 
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(a) Use of an analyzer crystal  

 

(b) Use of back collimator slits 

Figure 2.54. Geometrical arrangement of diffractometers for polycrystalline  
samples using a synchrotron source 

Since the middle of the 1990s, some authors [SCH 96, FUG 99, GRO 98a] have 
suggested creating parallel geometry devices in laboratories designed by using the 
same idea as diffractometers installed on synchrotron sources. Naturally, the main 
problem in this case is the intensity of the incident beam. This is why, in most cases, 
the multi-reflection, front monochromator is replaced with a parabolic multi-layer 
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monochromator. The beam produced by the source is diffracted by the multi-layer 
monochromator and then by the sample. The divergence of the beam originating 
from this type of monochromator is typically in the range of a few hundredths of a 
degree8 [JIA 02]. Usually, collimator slits are placed in the back (see Figure 2.55). 
This configuration makes it possible to obtain diffraction patterns with very short 
exposure times. The main advantage of these diffractometers is that, because of the 
analyzer crystal (or of the back collimator slits), the position of the sample has little 
influence on the measurements [SCH 96], thus making it possible to produce 
diffraction patterns with samples that have irregular surfaces. However, as we have 
already mentioned, these multi-layer monochromators cannot select the Kα1 peak, 
resulting in split peaks. The use of an analyzer crystal instead of collimator slits can 
sometimes help solve this problem. 

 

Figure 2.55. Parallel geometry configuration in the laboratory 

We saw that the parallel beam originating from the parabolic, multi-layered 
monochromator is wider than the initial X-ray focusing spot. Therefore, the 
resulting diffraction peaks should be wider. The device’s actual resolution 
increases when the space between the plates comprising the collimator slits 
decreases. The decrease of this opening, however, will of course cause the 
intensity to decrease. Shown in Figure 2.56 are three diffraction patterns produced 
by using a standard sample of lanthanum hexaboride provided by National Institute 
of Standards and Technology. The first was obtained on a device equipped with a 
                                   
8 The divergence of a beam originating from a Bartels four-reflection monochromator is 
typically 12 arcseconds, or 2.7 thousandths of a degree. Note that, in the case of parabolic 
multi-layer monochromator, the divergence is 10 times that. 
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parabolic, multi-layered monochromator and collimator slits, and the second was 
produced with an analyzer crystal and a front hybrid monochromator, comprised of 
a multi-layered parabolic monochromator and two plane germanium crystals. The 
third, finally, was obtained with a Bragg-Brentano device equipped with a front 
monochromator made out of quartz. 

Quite clearly, the Bragg-Brentano diffractometer leads to the best angular 
resolution. The peaks which are split in two, specific to the Kα1 and Kα2 emission 
peaks, are plainly visible in the first pattern . The peaks in the second pattern are not 
split, but they are clearly wider than those obtained with the Bragg-Brentano 
diffractometer. 

These laboratory parallel geometry configurations lead to average angular 
resolutions, but have the advantage of requiring limited acquisition times. Therefore, 
they are used for applications where the acquisition speed is a key factor. From this 
point of view, they constitute an alternative to the Debye-Scherrer and Hull systems 
with a curved position sensitive detector, for example, when conducting 
thermodiffraction measurements. 

 

(a) X-ray diffraction pattern of an LaB6 sample obtained by using a parallel geometry device  
with a parabolic multi-layered monochromator and collimator slits 
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(b) X-ray diffraction pattern of an LaB6 sample obtained by using a parallel geometry device  

with a hybrid monochromator and an analyzer crystal  

 
(c) X-ray diffraction pattern of an LaB6 sample obtained by using a Bragg-Brentano device  

with a front monochromator made out of quartz 

Figure 2.56. Comparison of patterns obtained with laboratory systems working  
in parallel geometry or in the Bragg-Brentano configuration. These patterns  

were realized by Vermulen from the PANAlytical company 
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2.2.5. Diffractometers equipped with plane detectors 

It is a well-known fact that the diffraction figure of a monochromatic X-ray 
beam with a polycrystalline sample comprised of crystals with random orientations 
is a set of diffraction cones that all have the same apices. The intersection of these 
cones with a plane orthogonal to their axis corresponds to the Debye-Scherrer rings. 
In all of the diffractometers we have described in this book, the diffracted intensity 
is measured for a specific radius of these rings, meaning that most of this diffracted 
intensity is lost. In the case of samples that have a certain texture, the rings are 
discontinuous and this information does not appear, or appears only indirectly when 
the measurements are performed with the devices we have just described. The use of 
plane detectors can simultaneously solve these two problems, and usually leads in 
particular to excellent measurement statistics. Strictly speaking, traditional 
photographic plates are plane detectors, but the information obtained is not directly 
digital. It is only very recently, with the arrival of plane gas or solid detectors (CCD 
or imaging plate detectors), that two-dimensional diffraction measurements on 
polycrystalline samples have started to appear. The main problem remains the 
detector’s size since, for a given wavelength, the device’s angular resolution 
increases proportionally to the distance between the detector and the sample, but the 
detector’s size quickly becomes very large. In practice, this is certainly the feature 
that limits the most the development of this type of device. 

The first studies led with these systems used synchrotron radiation [GUA 96, 
NOR 97]. These authors used a plane, imaging plate detector and showed that the 
patterns produced by integrating the intensity along the Debye-Scherrer rings can 
lead to data with a quality suitable for structural analysis. One of the problems is 
that the distance between the sample and different points of the detector is variable; 
in other words, a parallax effect is observed. This effect has to be corrected 
digitally. A slightly different approach consists of using curved two-dimensional 
detectors. The optimal situation would consist of designing spherical detectors. It 
would seem that such detectors are not currently technologically feasible. However, 
other authors have suggested using cylindrical imaging plate detectors [ROB 98, 
TAK 98]. 

Recently, these studies have led to the production of laboratory diffractometers. 
Stachs and his collaborators [STA 00], for example, built a device equipped with a 
rotating anode generator and a cylindrical two-dimensional imaging plate detector. 
The maximum size of these detectors, currently the largest on the market, is close to 
30 cm in diameter. Despite this size, the measurement of diffraction peaks 
corresponding to relatively small interplanar distances can only be achieved, with 
this type of device, if the incident beam’s wavelength is small. These authors used 
the Kα radiation of a silver anode tube. However, this choice leads to a significant 
overlap of the peaks. Other authors performed the same type of measurements with 
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a two-dimensional gas detector [HE 02, DIC 02]. Since the size of these detectors is 
limited to about 10 cm, they are unable to completely measure Debye-Scherrer 
rings. Today, this type of device is essentially used for texture measurements. One 
of the big advantages of these diffraction systems with two-dimensional detection is 
that they do not require any movement on the part of the detector. This feature can 
prove to be crucial in extreme conditions. Such a diffractometer was built, for 
example, with a plane CCD detector in order to perform measurements on Mars 
[SAR 05a, SAR 05b]. 

These studies, which have been led since the beginning of this new century, 
show that it is now possible to obtain two-dimensional measurements of the 
intensity diffracted by a polycrystalline sample. However, several questions 
involving the optics and the angular resolution remain unanswered. For example, 
the angular resolution of such devices is directly related to the size of the beam, 
which usually has a square or circular cross-section and has to be as small as 
possible. The development of micro-sources could help to meet this condition [STA 
00], but the number of crystals in the Bragg position is then quite low, resulting in 
poor measurement statistics. A possible solution would be to have the sample 
continuously oscillate during the measurement [SAR 05a]. The main problem 
remains the limited size of the detectors. This aspect could be gradually solved and 
these devices might see important developments in the years to come. 

We have described in detail the features of the different types of diffractometers 
used for diffraction on polycrystalline samples. The analyzed samples take various 
forms, can be powdery or bulky, and can be analyzed in transmission or in 
reflection. Virtually all existing diffractometers can be described based one or the 
other of these typical configurations. We should point out, however, that samples in 
the form of thin films are a different matter and diffractometers designed for the 
study of these samples have to be adapted. We will detail in the following sections 
the characteristics of these diffraction systems. 

2.3. Diffractometers designed for the study of thin films 

2.3.1. Fundamental problem 

2.3.1.1. Introduction 

The energy of the X-ray beams used in radiocrystallography, while rather high, 
is small enough for the penetration depth of this radiation to be no greater than a few 
micrometers. If the devices used are adapted accordingly, X-ray diffraction should 
then make it possible to characterize thin films. For about 20 years, researchers in 
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radiocrystallography have been working on developing instruments and 
experimental and theoretical tools which would enable them to study these films. 

We will assume that a film is an object thin enough for an X-ray beam with a 
normal incidence to pass through it. In this regard, a deposit of several hundreds or 
many tens of micrometers of ceramic or metallic materials is not a film. On the other 
hand, a film is not necessarily a deposit. It can simply be a structural modification 
caused by any process that alters the superficial area of the object over a thickness 
of 10 or 20 nanometers with respect to the core. Generally speaking, we can say that 
the methods described here all involve films with a thickness between 10 
micrometers and a few nanometers. 

2.3.1.2. Penetration depth and diffracted intensity 

2.3.1.2.1. Penetration depth 

Let us consider a sample irradiated at an incidence angle α and for which we 
measure the beams diffracted at variable angles 2θ. The sample’s useful thickness is 
determined by its absorption properties. If I0 is the incident intensity and I is the 
intensity after absorption, ratio I/I0 can be written: 

l
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I µρ−=  [2.2] 

with: 

– l: length traveled inside the sample; 
– ρ: density; 
– µ: mass absorption coefficient. 

 

Figure 2.57. Penetration depth and irradiated volume in asymmetric geometry 
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The irradiated depth can easily be inferred from Figure 2.57; we then get: 
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For traditional inorganic materials, the factor µρ (linear absorption coefficient) 
varies from a few hundred to a few thousand cm-1. Of course, from a theoretical 
point of view, the irradiated depth is always infinitely long, but it is common to 
assume that when the intensity is equal to a tenth of the incident intensity, it 
becomes negligible. From such a hypothesis, it is possible to plot the penetration 
depth according to the incidence angle. This type of curve, obtained for a dense 
sample of zirconia (ZrO2), is shown in Figure 2.58. We can clearly see that the 
penetration depth increases when the incidence angle changes from a few tenths of a 
degree to a few degrees9. Therefore, when studying a film of zirconia  roughly 100 
nanometers thick, the incidence angle should be in the range of 0.5°. We can also 
point out that at a high incidence, the irradiated depth is no greater than a few 
micrometers. 
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Figure 2.58. Evolution of the X-ray penetration depth plotted according  
to the diffraction angle for several incidence angles of the beam 

                                   
9 When the incidence angle becomes very small, typically a few tenths of a degree, the X-ray 
beam is reflected by the film’s surface and refracted toward the inside. Throughout this 
section, this effect is neglected. 
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Therefore, when producing a diffraction pattern for a film, the beam’s incidence 
angle is set and, of course, the diffraction angle is variable. Naturally, this means 
that for a given diffraction diagram, the irradiated area will not be the same at the 
beginning and at the end of the pattern. 

Figure 2.59 shows the evolution of the irradiated depth for a zirconia sample 
according to the diffraction angle 2θ, for several values of the incidence angle α. 
The resulting curves clearly show that if the incidence angle is significantly smaller 
than the angle 2θ, then the irradiated depth shows little variation with θ. This 
important result shows that all of the crystals that diffract during the acquisition of a 
diagram produced at a set incidence are located in the same area in the sample. 
Thus, if the sample is heterogenous with respect to its thickness, this heterogenity 
can be characterized by producing several patterns at different incidence angles, and 
each pattern will be specific to a layer of the sample.  

 

Figure 2.59. Evolution of the X-ray penetration depth according to  
the beam’s incidence angle with a film of zirconia  

2.3.1.2.2. Irradiated volume and diffracted intensity 

The diffracted intensity is directly related to the irradiated volume10. When a 
bulky sample is studied in reflection, its thickness is infinite with respect to X-ray 
penetration and, as we have already mentioned, if the study is conducted in 
symmetric diffraction (Bragg-Brentano configuration), then the volume remains the 

                                   
10 Throughout this section, we will be dealing with a polycrystalline film comprised of 
randomly oriented crystals. 
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same regardless of the diffraction angle. When studying a film, we saw that the 
sample had to be irradiated at a constant incidence, causing the irradiated volume to 
take on a more complex expression and to become dependent on the diffraction 
angle. Based on Figure 2.57, the following equation can be laid out: 
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with: 
– S: area of the beam’s cross-section; 
– p: penetration depth; 
– α: incidence angle. 

Hence, the expression of volume V is: 
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However, this expression of the irradiated volume does not apply if the 
irradiated depth, p, remains smaller than the overall thickness, e, of the film. If the 
penetration depth reaches the value of the film’s thickness, then the irradiated 
volume is written: 
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If we consider a film with a specific thickness, the relative diffracted intensity 
measured for each characteristic peak is equal to the one found in the JCPDS file, 
multiplied by the ratio between the actual diffracting volume and the volume that 
would have been irradiated had the sample been infinite. If the beam passes through 
the film, this ratio is given by the ratio between the last two equations. With these 
relations, the actual values of the measured intensities can be established; in the case 
where the film is studied in symmetric diffraction, the corresponding relation is 
obtained by considering that α = θ.  

Figure 2.60 shows the compared intensities for a film of zirconia studied in 
symmetric and asymmetric diffractions. The resulting histograms clearly show the 
advantage of asymmetric diffraction since, when the film is 100 nanometers thick, the 
intensity measured in the symmetric configuration is about 100 times smaller than in 
asymmetric geometry. Naturally, this effect is not as strong if the film is 1 µm thick. 
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Figure 2.60. Measured intensities diffracted in asymmetric and symmetric geometries 

We continued this analysis, this time by comparing, in Figure 2.61, the relative 
intensities with those provided by the JCPDS file for the phase in question. In both 
cases, symmetric diffraction and asymmetric diffraction, at an incidence angle of 
0.1°, are compared for a film of zirconia which is 100 nm thick. In asymmetric 
diffraction, the resulting relative intensities, although not exactly the same, are close 
to the ones given in the file. On the other hand, in the case of symmetric diffraction, 
very significant discrepancies are observed. 

 

Figure 2.61. Comparison of the relative intensities measured in asymmetric diffraction and in 
symmetric diffraction. The example chosen is a 100 nm thick film of zirconia  
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2.3.2. Conventional diffractometers  designed for the study of polycrystalline films 

One of the main problems with X-ray diffraction on film is collecting in a 
reasonable amount of time, a significant number of diffracted photons for each peak. 
The minimum number of hits needed for a quantitative study of a pattern is in the 
range of several thousands for the intense peaks. For the study of peak profiles, tens 
or even hundreds of thousands of hits are need. 

This requirement led researchers to think of a system with an intense, hence only 
slightly collimated, incident beam. A general diagram of such a device is shown in 
Figure 2.62 [ACK 94, HUA 90]. 

 

Figure 2.62. Geometric arrangement of a low incidence diffraction device  

The X-ray source is usually a conventional sealed tube, with or without a curved 
monochromator, or a parabolic multi-layer monochromator. The source-sample 
distance is relatively high in order for the incident beam, whose opening is limited 
by two slits (F1 and F2), to be considered parallel. An additional slit is placed 
directly above the sample, which is irradiated at a low incidence angle. This slit, F3, 
limits the angular opening seen at each moment by the detector, which is either a gas 
or a scintillation detector. It is also common to find analyzer slits placed on the path 
of the diffracted beams. By limiting the divergence, these slits make it possible 
reduce the peak widths. 
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With this system, diagrams can be produced in a few hours if the film has a 
reasonable thickness. However, the peak profile usually turns out to be 
dissymmetric.  

Seemann-Bohlin diffractometers  

As we saw previously, the system designed at the beginning of the century by 
Seemann and Bohlin to study powdery samples is one of the three traditional 
diffraction systems for polycrystalline samples. We saw in section 2.2.2.2 that this 
diffractometer enables the user to study the sample either in transmission or in 
reflection. When the sample is analyzed in reflection, it is possible to arrange the 
elements of the system in a way, so as to have a low incidence angle between the 
beam and the sample. In this case, the system will make it possible to characterize 
thin films [HAA 85, VAL 90, FIS 96, LIG 94]. This configuration is shown in 
Figure 2.63.  

 

Figure 2.63. Seemann-Bohlin diffractometer designed for the study of thin layers 

The diameter of the focusing circle is defined, on the one hand, by the distance 
between the convergence point of the incident beam and the sample, and on the 
other hand, by the incidence angle. The lower this incidence angle, the greater the 
diameter of the focusing circle. In practice, very low incidence angles cannot be 
used, meaning that this method is limited to films a few micrometers thick. 

The main drawback of this geometry is that the incidence angle cannot be 
adjusted, since it is necessarily set for a given configuration, to the extent that it 
determines the diameter of the focusing circle. 
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2.3.3. Systems designed for the study of textured layers 

Determining the orientation density function requires a large number of 
measurements conducted by varying the orientation of the sample. The machines 
used today are automatic diffractometers that can perform incremental 
measurements in reasonable amounts of time. Texture systems were initially 
developed to characterize bulky samples with generally high thickness. Both 
transmission and reflection configurations were designed, but in the case of films, 
studies clearly have to be done in reflection and, if possible, at low incidence angles. 
Figure 2.64 explains how these systems work.  
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Figure 2.64. Experimental configuration of a texture diffractometer 

The sample is mounted on a support that can move around three rotation axes: 
an axis ω makes it possible to choose the incidence angle α of the beam with the 
film, an axis φ, normal to the irradiated surface, makes it possible to rotate the 
sample in its plane, and finally an axis χ, normal to the two others and belonging to 
the sample’s plane, makes it possible to tilt the sample. The diffracted beams are 
measured in the π plane, since the detector can rotate around the axis ω shared by 
the sample and the part holding the detector. The incidence angle α can either be 
coupled or not to the detector’s position; if these two rotations are coupled, the 
measurement is performed in the Bragg-Brentano conditions, which should make it 
possible to have a constant irradiated volume if the sample is assumed to be infinite. 
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For the characterization of the layers, it is better to conduct the study at a set 
incidence angle, but quantitative studies will then be needed to correct the intensity 
measurements performed by the actual irradiated volume [TIZ 96]. 

The measurement of the diffracted intensities, which is necessary for a complete 
study of a film’s texture, is done by recording the variations of the intensity 
diffracted at the angle 2θ that corresponds to this family of planes during the 
rotation of axes φ and χ. Therefore, most of the time, a grid along φ and χ is defined, 
and the intensity distribution is measured incrementally, with each increment equal 
to a fraction of a degree. 

Despite the fact that these systems are automated, completely determining the 
orientation density function requires a long measurement time. One method can 
significantly reduce it [HEI 86], by using the same principle of the diagram shown 
in Figure 2.64, but replacing the punctual detector with a curved position sensitive 
detector. This method enables the user to simultaneously measure several diffraction 
peaks; however, it requires to precisely take into account the irradiated volume for 
each of the considered peaks. The corresponding scheme is shown in Figure 2.65.  
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Figure 2.65. Texture diffractometer equipped with a curved position sensitive detector 
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2.3.4. High resolution diffractometers designed for the study of epitaxial films 

The study by X-ray diffraction of epitaxial films is a field of its own. Because 
they are comprised of a set of crystals all of which have practically the same 
crystallographic orientation, epitaxial thin films are close to being single crystals. 
However, they are polycrystalline samples, so they deserve their own section in this 
book. Note, however, that the development of instruments designed for the study of 
these films owe a lot to the diffractometers intended for single crystals, and 
particularly those that focus on the study of defects in single crystals. 

The production of epitaxial thin films was developed particularly by the 
microelectronics industry, based on semi-conductor materials [FEW 01]. The 
continuous decrease in the thickness of films, combined with the miniaturization of 
the systems, has led to the development of epitaxial films which are sometimes only 
a few nanometers thick. Furthermore, the development of new devices with 
magnetic, optical or electronic properties has encouraged the introduction of oxide 
crystals in active components. The structure of these oxides and the microstructures 
of the films produced are often complex, and improving the properties requires 
adequate characterization capabilities. X-ray diffraction, probably along with 
electronic or scanning probe microscopes, is one of the key techniques in the study 
and constant improvement of the characteristics of epitaxial films. 

In this context, diffractometers designed for the study of epitaxial films first 
became available on the market about 20 years ago. The enthusiasm for 
nanotechnologies has led to very significant developments in this field. Several 
books specific to X-ray diffraction on epitaxial films have been published over the 
past few years [BOW 98, PIE 04]. In the second part of this book, we will describe 
in detail the methods for quantitative analysis of the microstructure of epitaxial 
films. The objective in the following sections is to give a description of the basic 
systems that make it possible, beyond the simple determination of the 
crystallographic orientation, to achieve this type of analysis. 

Generally speaking, diffractometers designed for the study of epitaxial thin films 
need to present two essential features. First, the incident beam on the sample and the 
beams detected after diffraction by the sample have to be as parallel and as 
monochromatic as possible. Second, it has to be possible to orient the sample very 
precisely with respect to the incident beam, meaning that the diffractometer has to 
be equipped with a multi-axis sample holder able to move with an angular precision 
in the range of a thousandth of a degree. 

We have already said that traditional sources produce divergent beams. 
Therefore, the production of parallel beams requires the use of adequate optical 
elements which will simultaneously modify the trajectory of the X photons and 
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reduce the beam’s spectral dispersion. Even though synchrotron radiation is an 
obvious way of directly producing an almost parallel beam, diffractometers for 
epitaxial films were also developed from traditional sealed tube sources [BAR 78, 
FEW 01, BOW 98, PIE 04] or rotating anode generators [GUI 99, BOU 02]. 

A typical system of this type is shown in Figure 2.66. 
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Figure 2.66. Schematic drawing of a diffractometer designed  
for the study of epitaxial thin films 

A four-reflection monochromator comprised of plane single crystals is placed 
between the source and the sample (see Figure 2.36). The beam irradiates the 
sample, which is placed on a three axes sample holder. The sample holder makes it 
possible to orient the normal to any family of crystal planes in the diffraction plane 
defined by the axis of the incident beam and the directions of the diffracted beams. 
Since the beam is strictly parallel, it is not necessary to include a slit between the 
sample and the monochromator. The intensity of the diffracted beams is measured 
by using a detector which moves along a circle, centered on the sample or with a 
curved position sensitive detector. This last feature makes this system a distant 
relative of the Debye-Scherrer diffractometers, for which the sample is, by 
definition, the center of the detection circle. 

 
In some cases, when attempting to improve the monochromaticity of the 

diffracted beams, a plane back monochromator is included on which the beams 
diffracted by the film are diffracted once more [FEW 91]. These analyzer crystals 
are usually made out of silicon or germanium. A back monochromator like this is 
comprised of one, two or three crystals. For a specific position of the sample, 
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defined by the rotation ω, only the beams diffracted by the sample that arrive at 
precisely the Bragg angle of this analyzer device will be diffracted and therefore 
picked up by the detector. This is referred to as the parallel configuration or 
“geometry”. Of course, this configuration should significantly reduce the intensity 
of the beams picked up by the detector. However, the presence of analyzer crystals 
makes it possible to increase the width of the incident beam since, for each position 
θ, the angular opening seen by the detector is set by the mosaicity of the analyzer 
crystals (and not by the beam’s width), which is typically in the range of a few 
thousandths of a degree. It is therefore very common for this type of diffractometer 
to use a hybrid monochromator comprised of a parabolic artificial crystal and four 
plane crystals. The beam’s width is typically ten times greater than in the absence of 
the parabolic artificial crystal. It is then necessary for the sample to be homogenous 
over the entire irradiated surface, which can be in the range of a square centimeter. 
This means that the measured diffracted intensity is higher, without any decrease in 
the angular resolution. Note, however, that the presence of analyzer crystals 
prohibits the use of a position sensitive detector and therefore the measurements will 
be conducted point by point. The models of this type that are available to the public 
are equipped with punctual detectors, most of the time, or linear detectors. The 
choice of one or the other configuration depends on what movements are allowed by 
the sample holder. If we want to be able to rotate the sample around the rotation axis 
χ, a punctual beam is a priori necessary. Figure 2.67 shows a diagram of this type 
of system in a very high resolution configuration. 
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Figure 2.67. Schematic drawing of a diffractometer that uses a parallel 
incident beam associated with analyzer crystals 
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2.3.5. Sample holder 

Every system designed for the study of thin films includes a sample holder 
which makes it possible to precisely orient the sample with respect to the incident 
beam. If the film is polycrystalline, the user should be able to choose the value of 
the angle between the incident beam and the surface of the sample. Most of the time, 
the sample has to rotate around the axis φ during the diagram acquisition. Therefore, 
the normal to the surface has to be parallel to the axis φ. If the film is textured or 
epitaxial, it is likewise necessary to be able to completely specify the position of a 
given family of planes with respect to a fixed, three-dimensional frame of reference. 
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Figure 2.68. Five-axis sample holder  

These conditions impose the use of a sample holder that includes four rotation 
axes and one translation axis [BOU 01a, GUI 99]. A rotation sets the beam’s 
incidence angle with the sample (ω rotation) and another one sets the orientation in 
the plane (φ rotation). The two others, which we have named χ1 and χ2, are there to 
orient the normal to a given family of planes, or the surface of the sample, until it is 
parallel to the axis of rotation φ. The translation, finally, is there to bring the surface 
of the sample to the intersection point of the axis of rotation ω with the incident 
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beam’s direction. A schematic view of such a sample holder is shown in Figure 
2.68. 

This sample holder corresponds to the ideal scenario, since any family of planes 
can be placed in the Bragg position11. In practice, sample holders often only include 
one of the two cradles χ1 and χ2. As a result, the adjustment of the orientation of the 
family of planes is approximate. 

As the scheme in Figure 2.68 and its explanation show, this sample holder, for a 
given position around the axis φ, makes it possible to measure the distribution of the 
diffracted intensity when the position of the sample is constant with respect to the 
axis ω, or when the sample is rotating around this axis. The two cradles χ1 and χ2 
are there to maintain the normal to the diffracting planes in the plane defined by the 
direction of the incident beam and the detector’s plane of movement during the 
rotation around ω. When studying polycrystalline films, the sample usually does not 
move (it can sometimes rotate around φ), but for studies involving the analysis of 
epitaxial films, it can be useful to measure the evolution of the diffracted intensity 
distribution when the sample rotates about ω. We will see in the second part of this 
book that this type of measurement, referred to as two-dimensional reciprocal space 
mapping, makes it possible to quantitatively evaluate the microstructural 
characteristics of the epitaxial films. The sample holder shown in Figure 2.68, as we 
have just said, makes it possible to produce a two-dimensional mapping using the 
variables ω and 2θ. Generally speaking, the distribution of the diffracted intensity is 
equivalent to a volume in the reciprocal space and therefore these two-dimensional 
mappings are particular sections of these reciprocal lattice nodes . It is also possible 
to produce complete three-dimensional measurements of these intensity 
distributions, which is called three-dimensional mapping. An additional axis of 
rotation is then needed, which most of the time is the axis χ shown12 in Figure 2.68. 
A schematic drawing of the corresponding sample holder is shown in Figure 2.69. 
The same type of sample holder is used for the analysis of textured films, although 
in this latter case, the two cradles χ1 and χ2 are not really necessary. 

                                   
11 We will see later on that there is, in fact, a geometric relation imposed between the Bragg 
angle of the family of planes and the angle between that family of planes and the sample’s 
surface. 
12 It is important not to confuse this rotation χ, which is a movement used during the 
measurement, with the axes we have called χ1 and χ2, which are used for adjusting the 
sample’s reference position. 
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 Figure 2.69. Schematic drawing  of a complete sample holder designed for the study  
of epitaxial films, which enables the user to make a three-dimensional  

measurement of the intensity distribution 

2.4. An introduction to surface diffractometry 

For most solids, the surface constitutes the main defect, equivalent to a sudden 
break in the periodic arrangement of atoms. From a structural point of view, the 
surface of a solid is the layer of atoms that ends this solid. Some authors have 
shown that it is possible, in specific conditions, to study the structure of these 
surfaces, that is, the nature of the atoms that comprise the solid’s limit and how they 
are arranged. The experimental techniques used rely on X-ray diffraction, but these 
methods are very specific and the structural study of surfaces, even though it started 
about 20 years ago, remains a field reserved to a few specialists. Most studies 
involve the surface of semiconductors or metals. We should point out, however, that 
over the past few years, the surface structure of a few simple oxides have been 
studied [REN 98]. 

The underlying idea behind these measurements is to irradiate the single crystal 
we wish to study at a very low angle, below the critical angle of total reflection. As 
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we have already mentioned, this is an angle of only a few tenths of a degree. The 
incident beam is totally reflected on the surface of the single crystal and therefore, 
the X photons do not penetrate the crystal. The resulting surface wave is diffracted 
by normal planes on the surface and at an angle with the incident beam equal to the 
Bragg angle. The diffraction signal is measured, usually with a position sensitive 
detector, in a plane perpendicular to the surface. The sudden break in atomic 
periodicity causes the diffraction spot to spread out along a direction perpendicular 
to the surface. The intensity of the diffraction signal is very small, which is why 
these diffractometers are used, most of the time, on synchrotron radiation sources. A 
diagram explaining how such a device works is shown in Figure 2.70. 
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Figure 2.70. Geometrical arrangement of a diffractometer designed  
for the study of surface structures 



Chapter 3 

Data Processing, Extracting Information 

Regardless of the diffractometer geometry and which type of detector is used, 
the diagrams obtained are necessarily discontinuous, that is, the space between two 
consecutive points is equivalent to the increment chosen for the measurement. This 
comment extends far beyond the field of X-ray diffraction, since it can be 
generalized to fit any physical measurement. The interpretation of these 
measurements is usually achieved by fitting1 the measured signal with a continuous 
function, the parameters of which are refined so as to have this function’s profile as 
close as possible to the experimental profile. More explicitly, the position of a 
diffracted peak, or the integrated intensity of that peak, are most often given, 
respectively, by the centroid and the integral of the continuous function that best fits 
the experimental peak. 

Figure 3.1 describes how the fitting of diffraction patterns works. Usually, in 
diffraction patterns produced with a polycrystalline sample, the peaks that 
correspond to the diffraction associated with different families of planes overlap. 
Therefore, the resulting experimental signal is the sum of the different contributions, 
in addition to a continuous background, caused, among other things, by the 

                                   
1 Many words can be found in literature to refer to this type of experimental data processing. 
“Fitting” and “modeling” are often used. These two terms are very close in meaning, but can 
have a slightly different connotation. Fitting is used when the line that passes through the 
experimental points has no particular meaning, physically speaking, but simply describes the 
observed reality correctly. On the other hand, modeling is used when the calculated line is 
obtained from the description of the influence of the device or the sample’s specific physical 
parameters. In any case, however, the experimental points and the calculated line are adjusted 
by varying either the parameters that mathematically define the calculated line, or the values 
of the physical parameters specific to the device and the sample. 
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scattering of the incident and diffracted beams by the air surrounding the sample. 
The characteristics (position, integrated intensity, profile) of each diffraction peak 
are determined by the adjustment of this curve to the experimental data. 

This process, which greatly relies on digital calculations and computing, has 
been going through very significant developments over the past years [BIS 89, JEN 
96, LAN 96]. Today, diffraction equipment is systematically sold with fitting 
software of various levels of quality and performance. Many programs, usually 
developed by researchers, are available at no cost on international networks. The 
objective in the following sections is not to review these softwares, but rather to 
explain the different possible methods of fitting diffraction patterns. Clearly, one of 
the essential parameters in any fitting is the adequacy between the experimental 
profile that was measured and the shape of the fitting function that was chosen. We 
will first discuss in detail the concept of peak profiles by describing in particular the 
main effects that modify these profiles. 

 

(a) Experimental patterns are discontinuous 
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(b) An example of simulation  

Figure 3.1. The basics of diffraction pattern  processing by peak fitting 

3.1. Peak profile: instrumental aberrations 

Regardless of the quality of the adjustments, the geometry of the diffractometer 
leads to a few aberrations, resulting in peaks that are not quite symmetrical, 
generally wide and shifted with respect to the expected diffraction angle. We will 
discuss each of the aberrations caused by the device’s various elements. The 
function obtained from the convolution of the different elementary functions 
associated with each aberration is called the instrumental function. 

The profile of diffraction peaks depends on two types of contributions: first, the 
instrumental function and, second, the structural defects that also lead to changes in 
the intensity distribution. This last comment is at the core of microstructural 
analysis, which will be the subject of the second part of this book and will not be 
discussed here. Peak profiles can be described by a function h(ε), where the ε 
variable corresponds in every point to the difference with respect to the theoretical 
diffraction angle. The function h(ε) can be expressed as the convolution product of 
f(ε), which represents the pure profile associated with the sample’s specific effects, 
and g(ε), which constitutes the instrumental function. The function h can then be 
expressed as: 

h( ) g( )f ( )d
+∞

−∞

ε = η η − ε η∫  [3.1] 
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The profile observed is actually more complex because the measurement noise 
δ(ε), on the one hand, and the continuous background b(ε), on the other hand, which 
have already been mentioned, must be taken into account. Hence, the expression of 
the peak profile: 

h( ) g( )f ( )d b( ) ( )
+∞

−∞

⎛ ⎞
⎜ ⎟ε = η η − ε η + ε + δ ε
⎜ ⎟
⎝ ⎠
∫  [3.2] 

Microstructural studies require the pure profile, meaning the function f, to be 
determined. Solving equation [3.2] is a complex problem, dealt with later on. In this 
chapter, we will simply describe the different components of the instrumental 
function. The expressions and the relative importance of the different functions gi(ε) 
depend on the device. Clearly, the complete description of a given diffractometer’s 
experimental profile requires taking into account all of its elements. We will now 
describe the main effects observed in virtually every case. 

3.1.1. X-ray source: g1(ε) 

Generally speaking, the profile of a beam produced by a tube approximately 
corresponds to a Gaussian function and therefore the function g1(ε) is expressed as: 

2
2H

1

1
1g ( ) e
H

− ε
ε =  [3.3] 

H being the Gaussian’s full width at half maximum.  

The importance of this effect greatly depends on the width of the tube’s focusing 
spot. 

3.1.2. Slit: g2(ε) 

Naturally, this function corresponds to a rectangular profile centered on the 
beam’s axis, the width of this rectangle being equal to the angle subtended between 
the slit and the goniometer’s center. We saw that diffractometers generally include 
several slits, placed before or after the sample.  

The presence of these slits causes the diffraction peaks to widen, and particularly 
their tails to spread out. This effect was studied in detail, for example, by Louër and 
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Weigel for the entrance slits of detectors [LOU 69b]. The increase in the slit’s width 
results in an increase in the widths of the peaks. 

The influence of the slits essentially depends on the respective sizes of the 
angular openings with respect to the size of the beam. If the slit’s opening is about 
the same size as the beam, its influence on the peak profile will be small. 

3.1.3. Spectral width: g3(ε) 

Regardless of the wavelength used, a peak always has a certain spectral width. 
When the beam is comprised of only one peak2, Kα1 for example, this function 
approximately corresponds to a Lorentzian  [JAU 22, COM 35], hence its 
expression: 

3 2 2
1g ( )

1 k
ε =

+ ε
 [3.4] 

Generally speaking, this contribution is very small compared to the ones 
described above. Recent studies [FRE 87, HAR 93] have established that the width 
of copper’s Kα1 peak is equal to 0.518 ×  10-3 Å. 

3.1.4. Axial divergence: g4(ε) 

Divergence referred to as axial is the divergence of beams in a plane normal to 
the diffraction plane, which is defined by the directions of the incident beam and of 
the diffracted beams. The diagram in Figure 3.2a shows the effects of axial and 
equatorial (in the diffraction plane) divergence on the path of the X photons. The 
parameters that characterize axial divergence are explained in Figure 3.2b. A 
complete description of this effect is complex, particularly since, as you can see, the 
influences of the axial and equatorial divergence are coupled [MAS 01]. Some 
authors [LAA 84, FIN 94] have suggested relatively simple expressions, but which 
only account for the divergence of the diffracted beams and not for the axial 
divergence of the incident beam. Recently, more complex descriptions have been 
suggested [CHE 98, CHE 04, MAS 01]. 

 

                                   
2 If the incident beam corresponds to several radiations with different mean wavelengths, the 
beam’s wavelength dispersion is then described as the sum of all the Lorentzian functions 
associated with each radiation. 
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(a) Three-dimensional representation of the path of the photons 

 

(b) Representation in the axial plane of the axial divergence  
before and after diffraction of the beam by the sample 

Figure 3.2. Description of the path of the X photons after taking into account the axial and 
equatorial divergences of the incident and diffracted beams [MAS 01] 

Although the dissymmetric function, g4(ε), is different depending on what 
configuration is used and particularly on whether or not it includes Soller slits, we 
should point out (see Figure 3.3) that, in any case, the deformation due to this effect 
is very significant for very low angles; then it decreases when θ increases and is 
practically non-existent for 90° < θ < 120°, before it starts increasing again. Below 
90°, the profile is deformed at low angles, and beyond that, the deformation caused 
by this effect occurs in the other direction. 
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(a) asymmetrical deformation caused by the axial divergence for a peak  
situated at a low diffraction angle (2θ = 10°) 

 

(b) asymmetrical deformation caused by the axial divergence for a peak  
situated at a relatively high diffraction angle (2θ = 50°) 

Figure 3.3. Shape of the intensity distribution resulting from an axial divergence of the beam. 
Influence of the value of the diffraction angle [CHE 04] 

3.1.5. Transparency of the sample: g5(ε) 

The X-rays penetrate the sample, whose absorption coefficient is not infinite, up 
to a certain depth. Therefore, the diffracted beams picked up by the detector 
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correspond, for each Bragg angle, to a sum of diffracted beams with variable depths, 
thus modifying the shape of the peaks. The function g5(ε) is written: 

g5(ε) = ekε [3.5] 

The expression of k depends on which configuration is chosen. The term µ 
mentioned in Figure 3.4 is the sample’s linear absorption coefficient, R is the radius 
of the goniometric circle and ε varies between 0 and –∞. 

In reflection, the influence of this dissymmetric function increases when the 
material’s absorption coefficient decreases. Figure 3.4 illustrates this contribution in 
the case of the dissymmetric reflection configuration [MAS 98b]. 
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Figure 3.4. Transparency effect 
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The lower the diffraction angle is, the greater the influence of axial divergence 
and transparency. In practice, these two effects are only noticeable for the peaks 
observed at the beginning of the diffraction pattern. Figure 3.5 is an experimental 
illustration of the asymmetrical deformation of the peak caused by these two effects. 
The sample is silver behenate (CH3(CH2)20COOAg), which shows a strong 
transparency to X-rays. The diffraction diagram was produced in asymmetrical 
diffraction at an incidence angle α = 4° [ΜAS 98b, MAS 01]. 

 
Figure 3.5. Diffraction pattern showing the influence of divergence and transparency.  

Study performed in asymmetrical diffraction on silver behenate 

3.2. Instrumental resolution function 

As we have just seen, the peak profile is the result of the convolution of a certain 
number of elementary contributions with various degrees of complexity. These 
functions usually depend on the diffraction angle, which means that the shape of the 
diffraction peaks varies with θ. With the exception of microstructural effects (see 
Part 2 of this book), the width of the peaks is directly determined by the various 
elements that comprise the diffractometer. The description of the evolution of this 
width according to the Bragg angle characterizes the device used. This is referred to 
as the instrumental resolution function. 

This function usually increases with the diffraction angle and can often be 
approximated by a second degree polynomial in tangent θ. This equation is known 
as the Caglioti polynomial [CAG 58] and is written:  

H2 = U tan2 θ + V tan θ + W [3.6] 
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The parameters U, V and W are specific to the diffractometer in question. This 
function was established almost 50 years ago on a neutron diffractometer. It actually 
has no theoretical background and its expression is essentially empirical, so for 
some diffractometers, the angular resolution function can stray significantly from 
this second degree polynomial. However, the expression established by Caglioti and 
his colleagues is still commonly used. 
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Figure 3.6. Instrumental resolution function of several  diffractometers 

With conventional laboratory diffractometers, the width of the peaks is 
commonly in the range of a tenth of a degree. It can go down to a few thousandths 
of a degree for high resolution diffractometers using a synchrotron radiation source 
[MAS 03]. With a laboratory Bragg-Brentano diffractometer, equipped with a front 
monochromator and thin slits, the resolution can go down to 0.05° or 0.06° at low 
angles. For high angles, the contribution from the spectral dispersion causes a 
significant widening and the peak widths will be in the range of 0.2° at around 
2θ = 150°. These values are obtained for conventional equipment of excellent 
quality and the actual resolution will often be poorer. Figure 3.6 shows the 
resolution functions of several diffractometers described in the previous chapter (see 
Figure 2.55). These graphs were experimentally plotted by measuring the diffraction 
pattern of a sample assumed to be perfect, which therefore does not widen the 
peaks. There is currently only one sample that serves at international level as 
reference for this type of study: it is a powder of lanthanum hexaboride (LaB6) 
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available from the National Institute of Standards (NIST) in the USA. Note in 
Figure 3.6 that the angular resolution of the Bragg-Brentano system used in high 
resolution is much better than that of parallel geometry diffractometers. 
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Figure 3.7. Calculation of the instrumental resolution function of a diffractometer equipped 
with a four-reflection monochromator and a curved position sensitive detector 

If all the elements of a diffractometer are known, it should be possible to 
completely calculate a priori the instrumental function by using successive 
convolutions, among other things. It is then possible to directly calculate the 
instrumental resolution function. However, this process is only applicable if the 
number of contributions to the widening of the peaks is small. Figure 3.7 shows the 
result of such a study achieved for the system shown in Figure 2.35. It works in an 
asymmetrical diffraction configuration and is equipped with a four-reflection 
monochromator and a curved position sensitive detector. The calculated width 
values were compared to the widths measured with the lanthanum hexaboride 
sample sold by the NIST. The good agreement between the two confirms the 
validity of the method used. 
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3.3. Fitting diffraction patterns  

3.3.1. Fitting functions 

3.3.1.1. Functions chosen a priori 

The first functions used were Gaussian. We have previously seen the various 
aberrations that can modify the shape of the diffraction peaks. It is understood that 
the resulting profile cannot be described by a Gaussian function. However, these 
functions were often used for neutron diffraction. Generally speaking, the resolution 
of neutron diffractometers is much smaller than the resolution of X-ray 
diffractometers and the shape of the peaks is accurately described by Gaussian 
functions. The users of neutron diffraction were the first to suggest, as early as the 
1950s, the fitting of diffraction peaks and therefore the Gaussian functions were the 
first tools used in X-ray diffraction [BIS 89]. 

These functions of the Bragg angle are expressed as follows: 
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H being the full width at half maximum. 

As we have already mentioned, the development of high resolution X-ray 
diffraction devices made it possible to show that Gaussians did not fit the 
experimental profiles well. Generally speaking, when instrumental aberrations lead 
to symmetrical increases in peak width, the peaks can usually be approximated as 
Gaussian or Lorentzian functions3. The latter are expressed as follows: 
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3 The terms Lorentzian function and Cauchy function refer to the same mathematical object. 
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Therefore, the resulting profiles are bounded by these two Gaussian and 
Lorentzian limits. They can be described by a Pearson VII function which is 
expressed as [ELD 69, HAL 77]: 
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m being a shape parameter that varies continuously. When m = 1, the function is 
equivalent to a Lorentzian and we get a function that tends to a Gaussian when m 
tends to infinity. When m is smaller than 1, the function is referred to as super-
Lorentzian. The evolution of the Pearson VII function’s shape according to m is 
shown in Figure 3.8. All the plots have the same area. 
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Figure 3.8. The Pearson VII function. Influence of the shape parameter’s value 

Radiocrystallographers thought many years ago describing peak profiles as 
convolution products of Gaussian and Lorentzian functions. These products are 
Voigt functions [VOI 12], the expression of which is given below. Note that the 
convolution product of several Voigt functions is a Voigt function and therefore the 
experimental profile can be accurately described by this type of function. 
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 [3.10] 

where: 

– Re: real part of a complex function; 

– erfc: complex error function; 

– βG and βL: integral breadths of the Gaussian and Lorentzian components. 

The Voigt function is known to be a very good description of the diffraction 
peaks, however, it is a difficult function to program and pseudo-Voigt functions are 
often used [WER 74]; these are linear combinations of Gaussian and Lorentzian 
functions: 

pV(2θ) = ηL(2θ,H) + (1 – η)G(2θ,H) [3.11] 

where L and G are the Gaussian and Lorentzian components and H is the full width 
at half maximum. 

 

Figure 3.9. Gaussian, Lorentzian and pseudo-Voigt functions 
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An illustration of the shapes of these different profiles is shown in Figure 3.9. 
When the parameter η of the pseudo-Voigt function varies, we change continuously 
from a Lorentzian function to a Gaussian function. The relative contributions from 
the various instrumental aberrations change with the diffraction angle, so the peak 
profiles change in a given diffraction diagram. They will often be strongly Gaussian 
at low angles and more Lorentzian at high angles. In practice, if the value of η 
varies depending on the value of θ, this evolution can be accounted for. This implies 
that they can also be accounted for with Voigt functions. 

Langford [LAN 78] introduced a parameter that described rather well the shape 
of the peaks. This parameter is the ratio between the full width at half maximum and 
the integral breadth or: 

β
=φ H  [3.12] 

When the experimental peaks are fitted with Voigt functions, the evolution of φ 
characterizes the shape of the peaks as more or less Gaussian (or Lorentzian). 

If the profile is completely Gaussian, we have: 

 φ = 2(log2/π)1/2 ≈ 0.9394 [3.13] 

If the profile is completely Lorentzian, we have: 

φ = 2/π ≈ 0.6366 [3.14] 

The case of dissymmetric functions 

Some of the peak deformations caused by the device correspond to dissymmetric 
profiles. Therefore, the diffraction peaks are theoretically always dissymmetric. 
Although this effect can sometimes be neglected, some authors have come up with 
fitting functions that have a dissymmetric shape. 

The method most commonly used consists of considering that each diffraction 
peak corresponds to two half-Pearson VIIs or two half pseudo-Voigts; each one 
defined on one of the two sides of the peak’s maximum. This is called a “split-
Pearson VII” or a “split pseudo-Voigt”. The parameters that characterize each of the 
parts of the profile are independent and the resulting overall function is 
dissymmetric. 
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Figure 3.10. Dissymmetric fitting profile, use of a split pseudo-Voigt 

Another possibility consists of truncating an initial function on both sides of its 
maximum and describing the profile in the two additional domains thus created by a 
function with another expression. An example of such a profile is shown in Figure 
3.11. A Gaussian function is truncated on the left and on the right of its center, with 
its extreme portions defined by exponential expressions. 

 
Figure 3.11. Dissymmetric fitting profile, use of a truncated Gaussian function 
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3.3.1.2. Functions calculated from the physical characteristics of the diffractometer 

A new approach to diffraction peak fitting appeared few years ago. It still 
consists of trying to make a calculated graph and an experimental peak coincide as 
best as possible but, this time, the calculated graph is defined according to the 
physical characteristics of the device used [CHE 92, CHE 04].  

If the diffractometer used is known, it is possible to generate the instrumental 
function by successive convolutions of the various elementary contributions. In that 
case, the parameters that can vary in the refinement are the device’s physical 
parameters (divergence, transparency, widths of the slits, width of the source, etc.). 
An illustration of this kind of process is shown in Figure 3.12. The fitted pattern can 
be found in Figure 3.5. The fitting was obtained by setting the divergence of the 
beam, the transparency of the sample and the size of the source to their known 
values [MAS 01]. 

This process is particularly efficient when conducting microstructural studies by 
X-ray diffraction (see Part 2 of this book), but is particularly difficult to implement 
and it requires a very good knowledge of the equipment used. Since the end of the 
1990s, some manufacturers have integrated it into their software. 
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Figure 3.12. Fitting of the pattern  produced with the silver behenate by using functions 
generated from the diffractometer’s physical parameters [MAS 01] 
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3.3.2. Quality standards 

Let us imagine that we have a diffraction diagram and that we have chosen the 
function that best describes the peak profiles. We still have to adjust the parameters 
that define this function in order to minimize the discrepancies between the 
measured peaks and the fitting functions. Generally speaking, this type of problem 
is most often solved by minimizing the sum of the square differences between the 
measured values and the calculated values, a process which is referred to as “least 
square refinement”. Clearly, for a given peak or group of peaks, there can be several 
solutions that give minimum values of this sum of square differences. Therefore, 
this approach does not yield one solution but several, among which the user will 
have to choose the most reasonable one, from a physical point of view. 

Refinements are performed by using successive calculations. It is important to be 
able to judge the quality of the refinement at every step of the process. There are 
various mathematical criteria which make it possible to evaluate this quality and its 
evolution. Two “reliability factors” can be used and they are expressed as follows: 
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The use of factor Rwp (weighted residual error) makes it possible to associate 
each intensity in a point 2θi with a weight that is inversely proportional to the 
number of counts measured at that point (w2θi = 1/I2θi). Therefore, this quality 
factor takes into account points that correspond to low intensity values as well as 
points that correspond to high values, which makes this parameter is a good 
indicator of the refinement quality for the peak tails. 

Naturally, the values of these factors tend to zero when the calculated pattern fits 
the measurements accurately. However, in practice, this zero value is never 
achieved and, usually, a coefficient Rwp between 2 and 10% indicates a good result. 
Note that R and Rwp directly depend on the intensity measured, and hence on the 
exposure time chosen for the study. 
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Factor Rexp (expected error), which is based on counting statistics, is an estimate 
of the minimum possible value of Rwp. 
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 [3.17]  

N being the number of observations and P the number of refined variables. The 
quality of the fitting can be estimated by comparing the values of factors Rwp and 
Rexp. 

We can also use another factor which accounts for the number of variables used 
during the refinement process. This factor, called GofF (Goodness of Fit), is given 
by the relation written below and it makes it possible to assess the influence of 
adding new variables to the refinement process. A change in the peak profile or the 
introduction of an additional peak in the fitting zone leads to a modification of the 
number of refined parameters. Therefore, this factor shows whether introducing new 
variables can decrease the residual error. 

GofF = Rwp/Rexp [3.18] 

3.3.3. Peak by peak fitting  

In this type of study, the peaks are fitted independently from one another, either 
one by one or in groups when they partially overlap. This is referred to as peak by 
peak fitting. This method is the most commonly used, since it is very flexible and 
can be used to deal with a large number of situations. 

The different steps of this process are illustrated in Figure 3.13. The preliminary 
step consists of defining, for each portion of the diagram, the number of diffraction 
peaks that it contains. Then, a fitting function is chosen, one that corresponds as best 
as possible to the shape of the peaks in question. A function is generated for each 
identified peak. The sum graph, which corresponds to all of the contributions from 
the peaks in the considered portion, is then calculated. It is the discrepancies 
between the points of this graph and the experimental points that are minimized by 
changing the values of the various parameters that define the graphs calculated for 
each peak. Once the fitting is over, the resulting calculated graph is extracted for 
each peak. 
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Figure 3.13a. Unprocessed diagram 

 
 
 
 

 

Figure 3.13b. Methodology of peak by peak fitting 
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Peak by peak analysis is widely used in X-ray diffraction and significant 
developments in digital calculations have made it possible to define very precisely 
the actual peak profiles. It sometimes happens, however, that the peaks overlap too 
much for it to be possible to separate their contributions. It then becomes necessary 
to provide additional information which makes it possible to correlate either the 
relative positions of the different peaks or their intensities. This is referred to as 
whole pattern fitting. 

3.3.4. Whole pattern fitting 

3.3.4.1. Fitting with cell constraints 

This approach consists of correlating the position of the peaks with each other. 
In this method, we consider a Bravais lattice and set approximate values for the cell 
parameters. The changes in peak positions are made by modifying these cell 
parameters. It is easy to understand, in this case, that the position of each peak 
strongly depends on the positions of the other peaks. 

The refinement method is the same as the one used in peak by peak fitting and 
the calculated profiles are chosen in the same way. Usually, the diagram is 
simultaneously refined over a large angular range, in order to significantly restrict 
variations in peak positions. Note that, with this approach, the values of the cell 
parameters can be directly determined.  

3.3.4.2. Structural simulation: the Rietveld method 

This comprehensive method to analyze the diffraction pattern consists of 
correlating the variations not only in peak positions, but also in their integrated 
intensities. We saw in Chapter 1 that the diffracted intensity is proportional to the 
square modulus of the structure factor. Therefore, this intensity is related to the 
positions and the nature of the atoms. We will describe this aspect in detail in 
Chapter 4, but we can already mention that if the chemical composition of the phase 
is known and if we wish to suggest a space group for this phase, it is possible to 
generate the value of the integrated intensity for each peak defined this way. Any 
variation in the position of an atom or a modification of the occupation rate of a site 
or of a thermal agitation coefficient causes variations in the integrated intensities of 
several peaks. In a Rietveld refinement, the integrated intensities of the diffraction 
peaks are refined by slightly varying the positions of the atoms, the occupation rates 
and the thermal agitation factors. 

Unlike in the peak by peak method, each point is considered as a point. This 
method, named after its creator, was first suggested in 1967 [RIE 67, RIE 69]. It has 
attracted significant attention and its implementation in the determination of crystal 
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structures by X-ray diffraction on polycrystalline samples among other fields has 
been described in several books [YOU 93, DAV 02]. 

As we have already mentioned, each point of the diagram is considered and the 
refinement method consists of minimizing the following expression: 
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2calc

i
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with: 

– obs
iy : intensity observed at point i; 

– calc
iy : intensity calculated at point i; 

– wi: coefficient that depends on the counting coefficient. 

Each value of yi can be caused by several Bragg peaks, so: 
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As we have already mentioned, experimental patterns include a continuous 
background resulting from the machine (electronic noise, scattering by the air, 
scattering by the slits, etc.) and the sample (incoherent scattering, fluorescence, 
amorphous phase, disorder, etc.). Therefore, the calculated intensity at point i of the 
pattern is described by the equation: 
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with: 

– b
iy : intensity of the continuous background; 

– Gik: function that describes the peak profiles; 

– k1, k2, …, kn: the reflections that contribute to the intensity in point i. 

There are several ways of accounting for the background noise. It can be 
described by linear interpolation between selected points located between diffraction 
peaks, or by polynomial interpolation over the entire pattern. An accurate 
determination of the continuous background is relatively important since it affects 
the simulation of the tails of the diffraction peaks. Since the early 1990s, some 
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authors [RIE 95a, RIE 95b, RIE 98] have suggested simulating the continuous 
background by using functions that express the incoherent scattering, the coherent 
scattering by the amorphous part of the sample and the scattering by the air. This 
particularly efficient method is useful, for example, when the sample is a 
combination of an amorphous phase and crystals [RIE 98]. 

The choice of a function to describe the peak profiles is, of course, a 
fundamental element of fitting. The Rietveld method was initially designed for the 
fitting of neutron diffraction diagrams. As we have already mentioned, in this case, 
the peaks are accurately described by Gaussians, which is why the first computer 
programs used these functions. However, as we have seen, they are not well suited 
for expressing the shapes of X-ray diffraction peaks, hence the introduction of more 
complex profiles for structural refinements. In most cases, pseudo-Voigts or Pearson 
VIIs are used. Voigt functions are also quite suitable; however, they require a 
significant amount of calculation time, even more so than for peak by peak fitting, 
which is why the functions were only recently added to these programs [AHT 84, 
WU 98].  

The shapes of the peaks change with the diffraction angle because, among other 
things, the deformation effects caused by the machine are functions of θ. Therefore, 
for this whole pattern refinement method it is necessary to use a peak profile 
describing function with a mathematical expression that varies with θ. This condition 
is met, for example, by the pseudo-Voigts if parameter η is a function of θ. 

As we have already mentioned, one of the characteristic parameters of a peak’s 
profile is its full width at half maximum. We saw that this width generally increases  
with the angle and that this evolution can, most of the time, be accurately described 
by a second degree polynomial in tangent θ (the Caglioti polynomial). In a Rietveld 
refinement, the parameters U, V and W are refinable. Their values express both the 
instrumental resolution function and the microstructural characteristics of the 
sample. We will discuss this point further in Part 2 of this book. 

Implementation of a Rietveld refinement  

The coincidence between the experimental and calculated patterns is obtained in 
the same manner as when fitting one or several peaks, as described above. The 
quality of the refinement is likewise estimated by using the reliability factors we 
defined. 

The evolution of one or another of the parameters affects the entire calculated 
pattern. Therefore, the scope of variations in the values of the various refinement 
parameters is small and, most importantly, interdependent. The parameters are said 
to be constrained. During the refinement, the person conducting the experiment can 
include additional constraints, for example, imposing that the sum of two occupation 
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rates be equal to 1, etc. This situation, by greatly reducing the amplitude variations, 
is what makes it possible to determine a structure. 

Although this method is efficient, it cannot directly tell us whether the result 
actually corresponds to the crystal structure that is being studied, since the number 
of mathematical solutions that minimize the gaps between the experimental pattern 
and the calculated one is very large. In order to properly deal with this problem, it is 
important to work according to a carefully planned refinement strategy. 

These refinement strategies are the subject of wide debates [CUS 99], but some 
ideas should be kept in mind. During the first refinement cycle, only the scale factor 
and the continuous background are refined. The position of the peaks is then 
obtained by refining the cell parameters, since the atomic parameters are now set at 
constant values. The person conducting the experiment will then attempt to 
determine the right peak profile for describing the shapes of the experimental peaks, 
and determine one by one the parameters U, V and W that describe the behavior of 
the full width at half maximum according to the diffraction angle. Then, the actual 
structural refinement can finally begin. It consists of optimizing the position of each 
of the atoms, the occupation rates and the thermal agitation factors specific to each 
of the crystallographic sites. 

At each step of the fitting the calculated  and the experimental patterns  as well as 
the difference between the two, can be visualized, which helps to avoid mistakes and 
particularly to find out if the refinement is straying toward an incoherent suggestion. 

3.4. The resulting characteristic values 

The processing of diffraction diagrams makes it possible to extract three 
essential values from each peak:  

– the angular position; 

– the integrated intensity; 

– the intensity distribution. 

Precisely determining one or another of these values requires taking precautions 
specific to the machine used. We will see in Chapter 4 that, depending on the 
information sought, one or several of these parameters have to be determined. The 
experimental conditions associated with the production of diffraction patterns  are 
directly related to the information we wish to extract. In this section, we will give 
more details on the acquisition conditions and on the adequate processing methods 
for measuring each of these values. 
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3.4.1. Position 

Peak positions, which correspond to the values of the diffraction angles, are the 
most commonly used information in the interpretation of diffraction patterns , since 
they make it possible to determine the material’s specific interplanar distances with 
the use of Bragg’s law (nλ = 2d sin θ).  

Generally speaking, it can be shown that the accuracy of a diffractions peak’s 
position increases with the diffraction angle. In fact, Bragg’s law is written 
nλ = 2d sin θ and therefore: 

0 = 2 sin θ δd + 2d cos θ δθ θδθ−=⇒ δ gcotd
d  [3.22] 

For a given non-zero δθ, we have: 

 π+=θ⇔=δθθ⇔=δ k900 gcot0
d
d  [3.23] 

This means that a given error in the measurement of θ will lead to an error on d 
that decreases when θ gets closer to 90°. Likewise, if we consider a set distance d, 
but a wavelength that can vary slightly, we get: 

λ = 2d sin θ ⇒ 2d cos θ δθ = δλ [3.24] 

For a given non-zero δλ, δθ increases with 
θ

δλ
cosd2

. 

0cos =θ⇒  π+=θ⇒ k90  [3.25] 

Separating two peaks that correspond to the same family of planes but to 
different wavelengths will become easier as θ gets closer to 90° (Kα1-Kα2 
separation). 

Regardless of what type of device is used, when the desired accuracy for the 
interplanar distances is very high, a control sample with perfectly well known 
interplanar distances has to be incorporated into the sample studied. After taking 
note of this control sample’s characteristic peaks, the user simply has to correct 
accordingly the peak positions of the sample being studied with respect to those of 
the control sample. 
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3.4.2. Integrated intensity 

Quantitative energy measurements of the integrated intensities of the diffracted 
peaks rely essentially on the quality of the fitting. Particularly, the fitting function 
has to coincide as best as possible with the experimental profile. Figure 3.14 
illustrates this issue. The same diffraction peak was fitted with a Gaussian, a 
Lorentzian and a Voigt function. The best agreement was obtained for the Voigt 
function. The Lorentzian function fitting leads to an error of over 5% for the value 
of the integrated intensity. 

              

 

Figure 3.14. Influence of the fitting function choice on the value of the integrated intensity 
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Determining the integrated intensity becomes particularly difficult when the 
peaks partially overlap. A careful choice of fitting functions can somehow make it 
possible to properly deal with this issue and to separate the contributions of each 
peak. This is illustrated by Figure 3.15. 
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Figure 3.15. Extraction of the integrated intensity for two partially overlapped peaks 

3.4.3. Intensity distribution: peak profiles 

The study of the intensity distribution can be achieved by two methods: either by 
fitting this peak with a calculated function or by a direct analysis using the Fourier 
transform of that peak. The fitting requires prior knowledge of the profile, which, by 
definition, can never exactly correspond to the experimental profile, and the Fourier 
analysis can only be achieved if the peaks do not overlap. These aspects will be 
discussed further in Part 2 of this book, which deals with microstructural analysis. 

The analysis of peak profiles generally requires a very high signal-to-noise ratio, 
hence long acquisition times for the diagrams. The number of measured counts  is 
often in the range of hundreds of thousands for intense peaks and cannot be below 
tens of thousands for secondary peaks. 

The essential application of peak profile analysis involves the microstructural 
studies of the samples, which means that the machine’s contribution has to be as 
small as possible. Digital processing techniques make it possible to properly extract 
the pure profile, but the quality of the study is higher if the widening of the peaks is 
essentially due to the sample. In practice, for this type of study, high resolution 
diffractometers are chosen, since their instrumental function can be very accurately 
determined. 
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Chapter 4 

Interpreting the Results 

Along with optical and electron microscopy, X-ray diffraction is most certainly 
one of the most commonly used techniques for characterizing materials. So, clearly, 
the physical effect of diffraction can be put to use for many different types of 
studies, making it impossible to imagine a complete review of all the applications of 
X-ray diffraction or scattering. In this chapter, we will present the most common 
applications. We will start with methods for determining crystalline phases in an 
unknown sample, then we will discuss procedures for quantitative phase analysis. In 
a third part, we will deal with methods for identifying crystal systems and refining 
cell parameters. Finally, the fourth part deals with the basic elements of structural 
analysis. This final aspect has seen tremendous developments over the past 20 years. 
The goal here is only to describe the main ideas and to give references to readers 
who might want to look further into these questions. The quantitative 
microstructural study of imperfect materials constitutes a specific part of the X-ray 
diffraction applications. Understanding these methods requires a careful description 
of the diffraction signal. Microstructural analysis, in the same way as structural 
analysis, has become a technique of its own. The basics and the methods used for 
microstructural analysis through X-ray diffraction will be described in detail in  
Part 2 of this book. 

4.1. Phase identification 

We saw in Chapter 1 that the nature and the positions of the atoms have a direct 
effect on the intensity of the diffraction peaks. Likewise, the interplanar distances, 
and hence the positions of the diffraction peaks, are directly related to the values of 
the cell parameters. This shows that the list of relative intensities and interplanar 
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distances is a feature specific to each crystalline phase. The identification of the 
crystalline phase, or of the phases, present in the material is achieved by comparing 
the pairs (di,Ii), comprised of the interplanar distances and the relative intensities 
obtained for each peak from the experimental pattern with a file that contains this 
list for every phase that has been documented. 

The first studies that involved this type of quantitative analysis were conducted 
by Hanawalt and his colleagues [HAN 36, HAN 38]. A first file, containing the 
interplanar distances and the relative intensities for every known phase, was 
compiled by the American Society for Testing Materials (ASTM) as early as 1942 
and several modifications followed since. In 1969, the Joint Committee on Powder 
Diffraction Standards (JCPDS) was given the task of continuously updating this file. 
In 1977, this committee changed its name to the International Center for Diffraction 
Data (ICDD). This organization manages a file (the PDF, short for Powder 
Diffraction File) which currently contains over 70,000 entries. 

 
For each known phase, an entry is added, that constitutes some kind of ID for 

that phase. Such an entry is shown in Table 4.1 and it includes, for each 
characteristic peak, the values of the interplanar distances, the integrated intensities 
and the Miller indices. Also, the crystal system, the cell parameters and the space 
group are mentioned. Generally, bibliographical information is included to specify 
the reference to the publication the entry was based on. 

The comparison between the list of pairs (di, Ii) that were measured and the 
reference values is done with the help of adequate software. There are several 
methods1, which often consist of considering the most intense peaks and searching 
for phases that present these peaks in the decreasing order of intensity obtained. 
Generally, the user knows something of the material’s chemical nature, which 
makes it possible to restrict the scope of his investigation. The identification of the 
possible phases can be achieved from the three most intense peaks [HAN 38]. The 
list of peaks observed experimentally is then compared with the complete entries 
from the JCPDS. A definite conclusion can only be reached if all of the 
experimental peaks have been assigned and if the pattern produced contains every 
peak (except maybe for low intensity peaks) mentioned in the entries that 
correspond to the phases that were considered. 

 

 
                                   
1 The methods used to compare experimental results and the characteristics of known crystal 
phases have been described in detail in other books. Readers who wish to study this aspect 
further can refer in particular to Jenkins and Snyder [JEN 96] or to the more recent book by 
Pecharsky and Zavalij [PEC 03]. 
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27-997       JCPDS-ICDD Copyright 1988      Quality:  

d (Å) Int. h k l 

2.93 100 1 1 1 

ZrO2  

 

Zirconium oxide 

2.55 25 2 0 0 

1.801 50 2 2 0 

1.534 20 3 1 1 

1.471 5 2 2 2 

Rad: CuKα    Lambda: 1.5418  Filter: Ni     

Ref: Katz, J.Am.Ceram.Soc. 54, 531 (1971) 

1.270 5 4 0 0 

1.167 5 3 3 1 

1.135 5 4 2 0 

1.038 1 4 2 2 

0.9796 1 5 1 1 

0.8999 1 4 4 0 

Sys: Cubic        S.G.: Fm3m (225) 

a:5.05       b:        c: 

α:                    β:                γ:                Ζ:4 

 

 

Dx: 6.205 0.8604 1 5 3 1 

0.8048 1 6 2 0 Unit cell data: Cuver and Odell, J.Am.Ceram.Soc. 33, 274 (1950) 

Electron microscopy study of epitaxial grown thin film of ZrO2 
(R.A. Ploc, Proc. 7th Am. Meeting of Microscopy Soc. Canada 
Vol. VII, 34 (1980) give a = 5.135(5) CaF2 PSC: cF12. To 
replace 14-534 and 7-337 

Strong lines: 2.93/x 1.80/5  1.53/2 1.47/1 1.27/1 1.17/1 1.14/1   

 

Table 4.1. Example of a JCPDS entry 
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In the past few years, a new method was developed [CAU 88]. It consists of 
directly modeling the pattern without determining beforehand the interplanar 
distances and the relative intensities. A calculated pattern is generated by gradually 
adding the contributions of the different possible phases. By adjusting the calculated 
pattern with the experimental data, the validity of the suggested phase combinations 
can be tested. This method seems to be particularly efficient. 

 
There is an index published as a book every year which contains the list of all 

the substances, arranged with respect to their three most intense peaks and another 
list arranged in alphabetical order. This document can often be used to identify 
possible phases manually and it constitutes a good complement to computerized 
methods.  

4.2. Quantitative phase analysis 

When the nature of the material’s crystalline phases is known, the volume of 
each of the phases present can be determined. We saw in Chapter 1 that the 
integrated intensity of each peak in a given phase is directly proportional to the 
volume of the phase. Therefore, quantitative phase analysis is performed from the 
very precise measurement of these integrated intensities. Quantitative phase analysis 
should not be confused, of course, with the quantitative chemical analysis which is 
used to determine the amount of each element present in a sample. The first 
quantitative phase analysis by X-ray diffraction was conducted in 1925 on a ceramic 
material, in order to determine the amount of mullite in burned clays [NAV 25]. 
Despite the fact that this type of quantitative measurement has existed for 80 years, 
these analyses remain very difficult to conduct [BIS 89, TOR 99a, TOR 99b] and 
require experimental precautions which we will now discuss. However, we should 
point out that X-ray diffraction is virtually the only method available for 
quantitative phase analysis2. 

4.2.1. Experimental problems 

4.2.1.1. Number of diffracting grains and preferential orientation 

As we have said, the diffracted integrated intensity is proportional to the quantity 
per volume of the phase. However, in a polycrystalline sample irradiated with a 
                                   
2 This type of study can also be achieved with neutron diffraction. The method is the same as 
the one we will describe, but neutron diffraction studies are, of course, much more 
cumbersome to implement than those involving X-ray diffraction. Note that the volume 
studied in neutron diffraction is much larger than in X-ray diffraction, which is why it can be 
used to study the core of bulky samples. 
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monochromatic beam, only the crystals in the Bragg position diffract. We expressed 
the integrated intensity diffracted by a polycrystalline sample by considering that the 
tips of the normals to the families of diffracting planes form a spherical cap (see 
Chapter 1). This means we have to assume that, for every family of characteristic 
planes, a large number of grains diffract. It is therefore necessary that the sample is 
comprised of a very large number of crystals and, additionally, that these crystals 
have random orientations. This double condition is often difficult to meet and is the 
major source of errors in quantitative phase analyses [ELT 96]. 

This problem, which is common to all X-ray diffraction by polycrystalline 
samples, has been widely studied for over 50 years [ALE 48, WOL 59, ELT 96]. It 
can be illustrated in different ways. Figure 4.1 shows a study conducted on silicon 
powders that illustrates this problem [WOL 59, PAR 83]. Various samples of silicon 
powder, arranged in order of increasing crystal size, were produced. For each of the 
samples, the authors measured the integrated intensity of the (111) peak according 
to the sample’s rotation around its normal axis (φ rotation). 

When the size of the grains is smaller than 5 µm, the integrated intensity is 
constant over the course of the φ rotation. For crystals with diameters between 5 and 
10 µm, the intensity fluctuations are smaller than 10%. They become larger when 
the crystals are greater than 10 µm in size. Since the irradiated volume is set, the 
number of crystals decreases as their size increases. Therefore, Figure 4.1 is a direct 
illustration of the influence of the number of grains on the measurement of the 
integrated intensity. 

φ

< 5 µm

5-10 µm

10-20 µm 20-30 µm

> 30 µm

 

Figure 4.1. Evolution, for different grain sizes, of the intensity diffracted by the family of 
planes (111) of a silicon powder sample over the course of its rotation  

around the axis normal to its surface [PAR 83] 
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The irradiated volume is determined by the area of the beam’s cross-section, the 
beam’s incidence angle with the sample and the X-ray penetration depth in the 
sample. For most inorganic materials, this penetration depth is in the range of 
micrometers or tens of micrometers. The beam’s cross-section and the incidence 
angle depend on the equipment used. Generally speaking, it is possible, however, to 
consider that for most diffractometers, the number of grains will be high enough if 
their size does not exceed 10 µm. The experiment described in Figure 4.1 shows the 
variations of the integrated intensity according to the φ rotation. A commonly used 
method for increasing the number of diffracting crystals is to rotate the sample 
around the normal to its surface during the acquisition of the pattern. Modern 
diffractometers are often equipped with this type of continuous rotation. An 
alternative is to make the sample oscillate around the axis ω, in other words to 
alternatively vary the incidence angle. The variations are usually in the range of a 
degree [BER 55]. This approach was very recently used again [SAR 05a] to 
compensate for the small size of the irradiated zone with a system equipped with a 
microsource (see Chapter 2). 

 
(A) Quartz powder < 5 µm, motionless sample; (B) quartz powder  

15 µm-50 µm, motionless sample; (C) quartz powder 15 µm-50 µm,  
rotating sample; (D) NaCl powder (cubic) < 45 µm, rotating sample;  

(E) Feldspath powder (monoclinic) < 45 µm, rotating sample 

Figure 4.2. Observation of the influence of the number  
of grains on diffraction rings [KLU 74] 
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Figure 4.2 shows another illustration of the problems related to the number of 
diffracting grains [KLU 74]. Different samples were studied using a diffractometer 
equipped with a photographic film detector. For each sample, a series of diffraction 
arcs is observed. Sample A is comprised of a fine grain quartz powder and its arcs 
are continuous and well defined. The quartz crystals in sample B are larger, which 
means that there are fewer of them in the irradiated volume. The diffraction arcs are 
no longer continuous and they form pointed lines. If the study of this sample is 
conducted while continuously rotating the sample holder around the axis φ, which 
we have already defined, we observe in case C that the diffraction arcs are 
continuous again. This result illustrates the fact that the rotation around φ increases 
each crystal’s probability of being in the Bragg position and therefore increases the 
number of diffracting grains. 

 
The last two films illustrate the influence of the multiplicity factor on the 

diffraction arcs. For a highly symmetrical crystal (which is the case for NaCl), the 
multiplicity factor of each peak is high, meaning that the number of families of 
planes that contribute to a given peak is larger than when symmetry is low (which is 
the case for Feldspath crystals). 

In the previous sections, we discussed the influence of the number of crystals in 
the sample. The orientations of the crystals were assumed to be random, and 
obviously, this factor comes into play. Theoretically, quantitative analyses by X-ray 
diffraction are conducted on samples comprised of a very large number of 
micrometric crystals without any preferential orientation. This latter condition is 
sometimes difficult to meet, since it can be sometimes complicated to give the 
crystals in the sample a random orientation. This effect often occurs when crystals 
have an anisotropic shape. Clays are an extreme example of this behavior [BRI 80]. 
Their layered structure naturally causes a preferential orientation along the (00l) 
planes. Some authors [FLO 55, SMI 79, HIL 99] have used atomization methods to 
produce polycrystalline particles in which the clay crystals have a random 
orientation. Another approach consists of quantifying the preferential orientation 
and to take it into account when calculating the proportions of the phases in the 
sample. We will not be giving any details on this method, since it requires 
considerable skill in the production of pattern and data analysis. It is always better 
not to have a preferential orientation. 

4.2.1.2. Differential absorption 

The diffraction pattern of a phase which is obtained with a sample that contains 
several of them is not exactly what would be obtained if the sample contained only 
the phase in question. The intensity of the X-ray beam diffracted by the grains of the 
phase we are focusing on is modified by the absorption from the matrix surrounding 
these grains. Since the phases in the matrix have different absorption coefficients, 



162     X-ray Diffraction by Polycrystalline Materials 

this effect disrupts the measurements. The farther apart the absorption properties of 
the different phases are, and hence their atomic number, the greater the magnitude 
of this effect. The influence of this absorption difference on the measurement of the 
diffracted intensity depends on the microstructure and, in particular, on the size of 
the crystals and their positions inside the sample [BRI 45]. 

The most common solution to this problem consists of introducing in the sample 
we wish to analyze a known amount of a crystal phase which is not found in the 
initial sample. The intensities are then measured for the various characteristic peaks 
of the phases we want to quantitatively analyze. The intensities of the control 
sample’s diffraction peaks are affected by the absorption in the same way all the 
others are. The same study is then done on a control sample containing all of the 
crystalline phases found in the studied sample, but in known amounts and with the 
addition of the same amount of control powder. Let Ii be the intensity of a peak 
obtained in the unknown sample for a given phase i and Ii(T) the one obtained in the 
test sample; then, for any phase i, we have: 
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where the index e indicates the control powder. Therefore we have: 
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)T(XI=α   [4.3] 

We thus determine α and then all of the Xi values. 

4.2.2. Methods for extracting the integrated intensity 

4.2.2.1. Measurements based on peak by peak fitting 

We saw in Chapter 3 that the integrated intensity can be determined with peak 
by peak fitting of the diffraction peaks. In the case of quantitative phase analysis, 
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the fitting has to be done carefully, as illustrated by Figure 3.14, hence the necessity 
of properly choosing the fitting function used. 

The peak by peak fitting method is commonly used for this type of study 
because, since the fitting of each peak is completely independent and the calculated 
profiles can be adapted as best as possible, thus taking into account the possible 
differences in peak shapes between the various phases (microstructural effects). 

4.2.2.2. Measurements based on the whole fitting of the diagram 

When the pattern produced contains a large number of peaks, or when the peaks 
are wide, it becomes difficult to separate the contributions from each diffraction 
peak. Since the late 1980s, several authors have suggested using the Rietveld 
method to conduct quantitative phase analyses in these cases [BIS 88, BIS 93, HIL 
87, TAY 91]. 

Since the various crystalline phases found in the sample are known, it is possible 
to generate for each one of them a calculated pattern. The experimental pattern 
corresponds, naturally, to the sum of all the patterns associated with each phase. 
Therefore, this sum pattern is calculated, and the refinement between the calculated 
points and the experimental points is achieved without modifying the structure 
parameters of each phase. Thus, we obtain the proportions of the different phases 
directly. When the agreement between the experimental values and the calculated 
values is almost complete, it is possible to refine the cell parameters and the atomic 
positions. 

This method is particularly efficient [HIL 00] and has been widely implemented 
in the past few years. It is however necessary to have a good knowledge of the 
structures of the phases in the sample. Additionally, in this type of study, the 
number of refinement parameters can be very large, which means that the 
refinement strategy has to be carefully defined [CON 00]. 
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Figure 4.3a. Evolution of the diffraction patterns of zirconia  

depending on the temperature of the thermal treatment  

20 40 60 80 100

0

5,000

10,000

2θ

In
te

ns
ity

observed calculated

 

Figure 4.3b. Fitting of the whole pattern obtained with a sample fired at 800°C 
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Figure 4.3c. Relative amounts of tetragonal and monoclinic zirconium dioxide  
depending on the temperature of the thermal process 

A study of this type is shown in Figure 4.3a-c [GUI 96, SIL 96]. Zirconia 
samples were fired for an hour at different temperatures. The thermal treatment 
gradually transforms the zirconia  from tetragonal to monoclinic (see Figure 4.3a). 
We studied this evolution according to the temperature of the process and all the 
patterns were fitted using the Rietveld method. Figure 4.3b shows the resulting 
pattern for the sample fired at 800°C. The evolution of the relative amounts of 
tetragonal and monoclinic zirconium dioxide is shown in Figure 4.3c. For this type 
of material, the second phase results from the transformation of the first phase, 
which means that the peaks of the two phases will be very close, making peak by 
peak fitting particularly difficult. 

4.2.3. Quantitative analysis procedures 

Independently of the method used for evaluating the integrated intensity, the 
quantitative phase analysis of a given sample can be achieved through several methods. 

4.2.3.1. The direct method 

The diffracted intensity of an arbitrary (hkl) peak with an arbitrary phase i is 
written (see Chapter 1): 
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Knowing the crystalline structure of a phase makes it possible to calculate the 
structure factors and the cell volume of that phase. Based on this information, the 
phases we are trying to quantitatively analyze can be compared in pairs by 
calculating the ratios between the characteristic peak intensities of the various 
phases. 

Thus, we obtain: 
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The proportion of the different phases is given by the ratio:  

j

i
X
X  [4.6] 

4.2.3.2. External control samples 

This method consists of producing control samples that contain the same phases 
as the original sample, but in known amounts. An abacus is then drawn with the 
percentage of a phase as the x-coordinate and the intensity ratio of two peaks 
specific to each of the phases as the y-coordinate. In the same experimental 
conditions, the diffraction diagram of the sample we wish to study is then measured. 
The intensity ratio of the two peaks in question makes it possible to directly read, by 
using the abacus, the proportions of the different phases. 

This method is efficient, and does not require an extensive knowledge of the 
crystal structures of the phases. It is, however, imperative for each of the phases to 
be pure. This is sometimes difficult to achieve, particularly if one of the phases is 
metastable. In that case, the first method is used. 

4.2.3.3. Internal control samples 

When the study requires a high accuracy, a variation of the second method can 
be used. In each of the control samples, a known percentage of an internal control 
sample with well-defined absorption characteristics is added. This time, the intensity 
measurements for the peaks of the analyzed phases are brought to scale with the 
intensity of a peak of the control sample. 

As we saw above, this method makes it possible to take into account the 
absorption effects. Various samples are sold by the National Institute of Standard 
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and Technology (NIST) in the USA. The linear absorption coefficients of these 
samples range from a few hundred to a few thousand cm-1. For each study, a control 
sample adequate to the phases we want to quantitatively analyze will be chosen. It is 
possible to simultaneously use several control samples. 

 
Regardless of the calculation method the accuracy of quantitative phase analyses 

by X-ray diffraction strongly depends on the quality of the measurements. In 
particular, and as we have already seen, it is imperative to eliminate any preferential 
orientation effects. When the study is conducted under good conditions, the 
detection threshold is close to 1% and the accuracy of the analysis is in the range of 
a few percent. 

4.3. Identification of the crystal system and refinement of the cell parameters 

4.3.1. Identification of the crystal system: indexing 

When studying an unknown phase, determining the crystal system is an 
unavoidable first step, since it is necessary to know the shape of the crystal cell and 
its dimensions before being able to determine the positions of the atoms inside this 
cell. The cell is a basis of the Euclidean space3 in which the positions of the atoms 
are defined. We saw that we can associate this basis with a triplet of vectors 

( )a*,b*, c *  defined in the reciprocal lattice, where each family of direct lattice 

planes with Miller indices (hkl) is associated with a vector *r  that is normal to it, 
and has the triplet (hkl) as its coordinates in the reciprocal lattice. In the diffraction 
position, the point hkl is on the Ewald sphere and vector *r  is then equal to 
diffraction vector s . For diffraction by polycrystalline samples, the measurement is 
equivalent to a projection of this three-dimensional lattice onto an arbitrary line that 
passes through the origin of the reciprocal lattice. We start with a three-dimensional 
object and end up with a one-dimensional information. This projection effect is 
shown in Figure 4.4. As you can see, the norm of vector s can be measured, but we 
have lost information regarding its direction. This well-known problem makes it 
much more difficult, of course, to determine a crystal’s symmetry based on 
measurements made with polycrystalline samples than with studies conducted on 
single crystals. 

 
 

                                   
3 The discovery of quasicrystals has led to the generalization of this crystallographic concept 
of space from a three-dimensional space to a six-dimensional space, in which the symmetry 
of the quasicrystals is described [JAN 98]. This generalization does not make the concepts 
described here any less valid. 
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Each point of the reciprocal lattice represents, as we have said, a family of 
crystal planes. The different families of planes define the crystal system, which is 
therefore determined by assigning a triplet of Miller indices to each diffraction spot 
or in diffraction on a polycrystalline sample, to each diffraction peak. This is 
referred to as the indexing of the diffraction peaks. The interplanar distance 
associated with a family of planes with indices (hkl) is a function of these Miller 
indices and of the cell parameters. We can write: 

d(hkl) = f (h, k, l, a, b, c, α, β, γ) [4.7] 

As we have seen previously, the norm of the vector *r  with coordinates (hkl) in 
the reciprocal lattice is equal to 1/d. The term Q(hkl), referred to as the quadratic 
form, is given by: 

2
)hkl(

2*
)hkl()hkl(

d
1rQ ==  [4.8] 

In the general case, it corresponds to a triclinic system and Q is expressed as 
follows: 

Q(hkl) = h2a*2 + k2b*2 + l2c*2 + 2hka*b*cos γ* + 2hla*c*cos β* 
+ 2klb*c*cos α* [4.9] 

or also: 

Q(hkl) = h2A + k2B + l2C + hkD + hlE + klF [4.10] 
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*a

*b

*c

s
*a

*b

*c

s

 

(a) Three-dimensional representation of the reciprocal lattice. If the family of planes (hkl) is 
in the Bragg position, then point hkl is located on the Ewald sphere and the vector connecting 

this point with the origin of the reciprocal lattice is diffraction vector s  

*c

*bq*ap +

λ
θ== sin2

d
1s

*c

*bq*ap +

λ
θ== sin2

d
1s

 
(b) Two-dimensional representation of the diffraction signal’s projection  

onto an arbitrary line of the reciprocal space 

Figure 4.4. Representation of a reciprocal lattice line’s projection when  
producing a diffraction pattern with a polycrystalline sample  
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Determining the crystal lattice consists of finding the values of parameters A, B, 
C, D, E and F. We can see from Figure 4.4 that this is equivalent to finding the 
shape of a three-dimensional object based on its projection. Therefore, the problem 
we are trying to solve contains an indetermination and the methods used are based 
on a trial and error technique4. The crystal system is assumed to be cubic, for 
example, and if the series of peaks makes it possible, this crystal lattice is associated 
with the studied phase. The values of the quadratic forms are calculated from the 
interplanar distances. For the first values, we set possible values Miller indices, and 
a first estimate of the cell parameters is made. The quadratic forms for the other 
peaks are then calculated based on these cell parameters, in an attempt to find a 
calculated peak for each experimental peak. If the indexing fails, the hypothesis is 
changed by passing, for example to the next crystal system. 

These methods cannot be used to determine a lattice with certainty and the 
quality of the indexing is characterized by various factors or figures of merit. The 
most commonly used figures of merit are the following. 

The Wolff figure [WOL 68]: 

calc

N
n NQ2

QM
∆

=  [4.11] 

The Smith and Snyder figure [SMI 79]: 

calc
n N

N
2
1M

θ∆
=  [4.12] 

where QN is the value of Q for the Nth peak and Ncalc the number of different values 
of Q calculated up to QN. 

In the 1980s, many programs were developed to automatically perform this 
indexing process (for example [LOU 82, WER 85]). The calculations are usually 
quick, but leave the user “in the dark”, since he takes no part in the process. The 
success in lattice identification is essentially determined by the quality of the 
measurements. Most of the time, a measurement error which is smaller than a 
hundredth of a degree is required. This a severe condition and it calls for strong 
precautions when making the measurements. 

                                   
4 We will not give a comprehensive review of the calculations used. Readers who want to 
know more can refer to [DAV 02, PEC 03]. 
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4.3.2. Refinement of the cell parameters 

Once the crystal system of a given phase is known, each interplanar distance 
measured can be associated with a set of Miller indices. These indices express the 
relation between these distances and the cell parameters. 

From an approximate value for the cell parameter, the interplanar distances are 
calculated and associated with the distances measured. The discrepancy between the 
experimental and the calculated distances is then minimized by slightly varying the 
values of the cell parameters [MAS 96b, PAW 81]. The system is comprised of six 
unknowns at the most (the six cell parameters) and of as many equations as there are 
diffraction peaks for the phase in question. Thus, the parameter values are obtained 
by gradual refinement, usually from least square calculations. 

Once again, the essential point is the quality of the measurements. Additionally, 
the approximated values have to be as close as possible to the actual values. We saw 
in the previous chapter that, for a given error made on the measurement of the 
diffraction angle, the error made on the interplanar distance will decrease when the 
diffraction angle increases. Therefore, determining the cell parameters requires the 
peaks to be measured at high diffraction angles. However, the peaks located at low 
angles are those that correspond to the lowest Miller indices, which means that those 
are the peaks used to determine the crystal system. Furthermore, accurately 
determining the cell parameters clearly requires measuring the position of as many 
peaks as possible. Finally, this type of study imposes that the diffraction pattern 
should cover as wide an angular range as possible. 

Measuring the positions of the peaks can be done with peak by peak fitting, but 
also by fitting the whole diffraction pattern [PAW 81, TOR 94]. The advantage of 
the latter method is significant, of course, when the phase’s crystal symmetry is low, 
since the pattern  will then be comprised of many partially overlapping peaks. 

The accuracy obtained will depend on the extent of the measurement errors 
made on the peak positions and hence, naturally, on the system used. Generally 
speaking, parallel geometry systems can eliminate the error due to the position of 
the sample and therefore lead to very precise measurements of the cell parameters. 
However, a high angular resolution is needed in order to limit partial overlaps of the 
peaks, which can lead to mistakes when determining the crystal system. We saw in 
Chapter 2 that the resolution usually achieved with those laboratory equipments is 
average, poorer than the one obtained with focusing configurations. Aside from 
using configurations that associate a four-reflection monochromator with an 
analyzer crystal [FEW 95], the implementation of this type of system is difficult for 
this application if the crystal has a low symmetry. 
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Laboratory systems equipped with movements accurate to the ten-thousandth of 
a degree and that use parallel geometry can achieve an uncertainty in the range of  
10 ppm. Very high resolution systems associated with synchrotron sources can 
achieve an uncertainty close to 1 ppm [HAR 90]. We have to point out, however, 
that the tests conducted on a same sample by several laboratories generally lead to 
much greater errors. The differences between the measured values are often in the 
range of 100 ppm [PAR 60, MAS 96b].  

4.4. Introduction to structural analysis 

We saw in the historical introduction that the study of crystal structure, that is 
the determination of the nature and the positions of the atoms inside the crystal cell, 
quickly became an essential application of X-ray diffraction. W.H. and W.L. Bragg, 
for example, were awarded the Nobel Prize for their works on the determination of 
the crystal structure of several simple phases. Throughout the 20th century, the 
determination of crystal structure was one of the major driving forces in developing 
the study of condensed matter by X-ray diffraction with regard to both the 
improvements made to the instruments and the implementation of more efficient 
methods of data processing. 

We saw in Chapter 1 that the nature and the positions of the atoms are variables 
involved in the value of the structure factors. This aspect will be discussed further in 
the following sections but, clearly, it is measuring the diffracted intensities, which 
makes it possible to characterize the crystal structure. In the previous section, which 
dealt with the determination methods of crystal systems and cell parameters, we 
illustrated the fact that diffraction patterns of polycrystalline samples are equivalent 
to one-dimensional projections of the diffraction signal’s three-dimensional 
distribution. We are faced with the same problem here and the number of families of 
planes for which we will be able to estimate the diffracted integrated intensity is 
small compared to all of the measurements available with diffraction by single 
crystals. And yet, the structural analysis of polycrystalline samples began almost 60 
years ago. We can mention, in particular, the works of Zachariasen, who 
determined, in 1948, the structure of various uranium based compounds by 
interpreting the diffraction measurements made on polycrystalline samples [ZAC 
48a, ZAC 48b, ZAC 48c, ZAC48d, ZAC48e, ZAC48f]. We will see later on that 
whole pattern fitting methods for diffraction patterns, initiated by Rietveld in the 
late 1960s [RIE 67, RIE 69], led to a tremendous number of structures being solved 
by diffraction on polycrystalline samples. It remains very clear, however, that the 
determination of the crystal structure of a new compound will always be easier with 
a diffraction study on a single crystal. Structural analysis by diffraction on 
polycrystalline samples should only be implemented if no single crystal is available. 
This is why solid state chemists and experts in structural biology always make an 
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attempt at growing single crystals of new phases they have imagined and 
synthesized. It is very common in materials science, however, to be impossible to 
produce such single crystals, in which case the crystal structure of the compound in 
question has to be solved by a study on a polycrystalline sample. 

The objective in the following sections is not to describe in detail the ideas and 
methods that govern the structural analysis of polycrystalline samples. Several 
books have been written about this particular field of X-ray diffraction. We will 
give here the basic elements and a few examples. In the past 30 years, structural 
analysis of polycrystalline samples has seen considerable developments. A recent 
book, published under the authority of the International Union of Crystallography, 
gives an overview of these aspects [DAV 02]. Also, you can find many examples in 
[PEC 03]. 

4.4.1. General ideas and fundamental concepts 

4.4.1.1. Relation between the integrated intensity and the electron density 

Generally, a crystal structure is defined as the three-dimensional, periodic 
repetition, parallel to the directions a, b and c of a pattern comprised of one or 
several atoms located in a position with coordinates (x,y,z). This structure can be 
represented by an electron density function, ρ(x,y,z), a continuous function which is 
defined for any point (x,y,z) of the crystal and expressed in electrons per unit of 
volume. This function has maxima in the places where atoms are found. 
Determining a structure consists of finding, for every point (x,y,z) of the cell, the 
value of ρ(x,y,z). 

In any point (x,y,z) of the crystal, this triply periodic distribution can be written 
as a triple Fourier series of the general form: 

∑ ∑ ∑
+∞

−∞=

+∞

−∞=

++π−
+∞

−∞=
=ρ

 h  k

)lzkyhx(i2

l
hkleA)z,y,x(  [4.13] 

Note that, for each triplet (h,k,l), there is a Fourier plane wave, that is, a constant 
phase plane, which is defined by hx + ky + lz = constant and parallel to the planes 
with indices (hkl) of the crystal lattice. Therefore, we can consider that, for each 
family of planes, there is a corresponding Fourier plane wave with its wavefront 
parallel to these planes and with its wavelength equal to the interplanar distance. 
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Fourier coefficients Ahkl can be evaluated from equation [4.13]. If we multiply 
each side of the equality by the term e2πi(h’x + k’y + l’z), then: 
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if h ≠ h’: 
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h’ – h is an integer, hence sin 2π (h’ – h) a = 0 and cos 2π (h’ – h) a = 1 and 
therefore, if 'hh ≠ : 

a 2 i(h ' h)x

0
e dx 0π − =∫  [4.15] 
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Therefore, we can write:  

a b c 2 i(h 'x k 'y l 'z)
hkl

0 0 0
(x, y, z)e dxdydz abcAπ + +ρ =∫ ∫ ∫  [4.16] 

Let us consider the elementary volume dV with sides dx, dy, dz. dV = Ndxdydz 
where N is a constant that depends on the angles between directions x, y and z. 
Likewise, the volume of the crystal cell is written Vc = Nabc. Therefore, we get: 

hklc
)z'ly'kx'h(i2 AVdVe)z,y,x( =ρ∫ ++π  [4.17] 

The left side of this equation is the expression of the structure factor (see 
Chapter 1) and so, finally:  

c
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hence: 
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4.4.1.2. Structural analysis 

Relation [4.19] is one of the fundamental elements of structural analysis. This is 
because it shows that determining the various structure factors associated with each 
of the families of crystal planes makes it possible to calculate a priori the electron 
density distribution in each point of the crystal.  

However, the problem remains complex. First, note that this expression indicates 
that properly determining ρ(x,y,z) requires knowing all of the crystal’s structure 
factors. Experimentally, this condition will not be achieved. Instead, all we have is 
truncated Fourier series of various lengths. 

The second restriction of this type of study is the determination of the structure 
factor. This is because this term is a complex number, whose phase has a random 
value in the general case. The determination of these structure factors is achieved 
based on the measurements of the intensities diffracted by each of the families of 
planes, but, as we showed in Chapter 1, the diffracted intensity is proportional to the 
square modulus of the structure factor. Therefore, the measurements do not make it 
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possible to know a priori the phases of these structure factors, which means that the 
overall problem of structural determination cannot be solved from a mathematical 
point of view. A given set of values of the intensity diffracted by a crystal 
corresponds to an infinite number of possible electron densities. However, most of 
these possibilities make no physical sense and, with the help of a few practical 
considerations, we will see that it is possible to identify the right solution and that, 
in a great number of cases, the measurement of the diffracted intensities can be used 
to determine the structure of the crystal in question. 

As equation [4.19] shows, in general the electron density ρ(x,y,z) is a complex 
number, meaning that the phase of the scattered wave is different from that of the 
incident wave. If we assume that the scattering does not cause any phase shift, then 
ρ(x,y,z) becomes a real number in every point (x,y,z) of the crystal. Note that this 
implies that *

lkhhkl FF = , meaning that the structure factor obtained on one side of 
the family of planes (hkl) is equal to the conjugate of the structure factor obtained 
on the other side of this family of planes. 

Under these conditions, the series represented in equation [4.19] can be 
expressed as a sum of pairs: 

φφ− + i
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with φ = 2π(hx + ky + lz). 

Let us recall that: 
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therefore: 
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In the end: 
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The sum is made over all of Bragg reflections, by taking into account only one, 
however, of the two factors Fhkl or lkhF . 

Particular case of centrosymmetric structures  

When the structure includes a center of symmetry then, by definition, the 
electron density distribution is such that  ρ(x, y, z) = ρ(– x, – y, – z). If we expand 
the terms of the sum given in relation [4.22], we get: 

( )δφ+δφ=δ−φ sinsincoscosF)cos(F hklhkl  [4.24] 

The sign of cos φ = cos 2π (hx + ky + lz) does not change when x, y and z are 
replaced with –x, –y, and –z, whereas the sign of sin φ does change. Therefore, we 
can only have ρ(x,y,z) = ρ(– x, – y, – z) if sin δ = 0, hence δ = 0 or π. Therefore, 
cos (φ − δ) is equal either to cos φ or to – cos φ. Hence: 
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This means that it is theoretically possible to determine, in every point (x,y,z) of 
any crystal with a centrosymmetric structure, the value of the electron density 
function based on the intensity measurements for all of the Bragg reflections 
predicted by the crystal’s symmetry. 

4.4.1.3. The Patterson function 

As we saw earlier, the use of the electron density function in structural studies is 
not compatible with the fact that we are only measuring the square modulus of the 
structure factor, whereas it would actually be necessary to know the complex value 
of this factor. Patterson [PAT 34, PAT 35] thought of a method to obtain structural 
information based on the measured values of 2

hklF . The coefficients of the Fourier 
series used are proportional to the square moduli of the structure factors. 

Let us assume, as we did before, that the electron density in a point with 
coordinates (x,y,z) is denoted by ρ(x,y,z) and given by relation [4.19]. The values of 
this function ρ(x,y,z) are very small, except in certain points which correspond to 
the positions of the atoms. Now consider the function ρ(x + u, y + v, z + w), where 
u, v and w are constant parameters for any values of x, y and z. The values of the 
product ρ(x,y,z)×ρ(x + u, y + v, z + w) are small, except when the triplet (u,v,w) is 
comprised of the components of a vector that connects the positions of two atoms in 
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the structure, or, in other words, when both electron density distributions are at a 
maximum. 

The Patterson function is defined by the following relation: 

a b c

0 0 0
P(u, v, w) N (x, y, z) (x u, y v, z w)dxdydz= ρ ρ + + +∫ ∫ ∫  [4.26] 

 

Figure 4.5. Representation of a one-directional density function  
and of the associated Patterson function [JAM 67] 

This function is periodical with respect to the parameters a, b and c of the crystal 
cell and has maxima at the origin and at the points obtained from the translation of 
the basis vectors starting at the origin. Furthermore, this integral will reach its 
maximum values when the vector between the origin and the point with coordinates 
(u, v, w) is a vector connecting two atoms of the structure. Therefore, the Patterson 
function can be described as a correlation function that gives the position of each 
atom with respect to each of the other atoms in the structure (and not with respect to 
the origin of the lattice). The representation of a one-directional Patterson function 
is shown in Figure 4.5. 
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Let us now replace the two distributions with their expressions given in Relation 
4.19: 
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These integrals are equal to zero, except if h = – h’, k = – k’ and l = – l’. In this 
case, Fhkl = F*hkl and therefore: 
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If the structure is centrosymmetric: 
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Generally, the projections of the Patterson function are used, rather than its 
three-dimensional representation. 

If we denote by σ(x,y) the projection onto the plane (x,y) of the electron density 
ρ(x,y,z), the corresponding Patterson function will be written: 

a b

0 0

AP(u, v) (x, y) (x u, y v)dxdy
ab

= σ σ + +∫ ∫  [4.30] 
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A function of this type, as well as the projection of the corresponding structure, 
are shown in Figure 4.6 which represents the cubic structure FeS2 projected onto 
one of the cube’s faces.  

The advantage of these Patterson functions relies essentially on the fact that they 
only require values which can be measured and therefore can theoretically be 
completely determined by the diffracted intensity measurements. However, they are 
difficult to use and their interpretation is ambiguous. A detailed description of the 
use of these functions, based on data extracted from diffraction diagrams on 
polycrystalline samples, was recently suggested by Estermann and David [EST 02]. 

Fe S

       

Fe-Fe Fe-S S-SMain maxima

 
Projection of the FeS2 cell Projection of the corresponding  

Patterson function 

Figure 4.6. Example of a Patterson projection and its associated structure [JAM 67] 

4.4.1.4. Two-dimensional representations of the electron density distribution 

Generally, in order to apply the concepts we have just described, simplified 
representations are used for the triple Fourier series expressing the electron density 
at a given point of the crystal. 

4.4.1.4.1. Fourier sections 

Fourier sections are cross-sections of the distribution ρ(x,y,z), at a given altitude 
z. They are expressed as follows: 
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Although these Fourier maps are two-dimensional representations, calculating 
them requires for all of the structure factors to be known. 

4.4.1.4.2. Fourier projections 

Bragg [BRA 66] imagined a second two-dimensional representation of a 
crystal’s structure. This time, it consists of a projection, parallel to the vector c , 
onto the basis plane defined by the vectors a  and b , of the electron density in the 
cell defined by the triplet ( )c,b,a . 

Let σ(x,y) be this projection; we then have: 
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0
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If A is the area of side ab and, as we defined previously, if the cell’s volume is 
Vc = Nabc, then: 
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If ρ(x,y,z) is replaced with its expression given in [5.19], we get: 
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As we have already shown, if l = 0, then: 
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and if l ≠ 0 then: 
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so, in the end, all the terms are equal to zero, except those for which l = 0. 
Therefore: 
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Let us note that, in order to achieve this projection onto the basis plane ab, only 
the structure factors of the type F(hk0) are necessary. Naturally, this concept of 
projection can be extended to any axis or plane of the crystal lattice. An example of 
this type of projection is shown in Figure 4.7. 

 

Figure 4.7. Fourier projection of an electron density function [JAM 67] 
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4.4.2. Determining and refining structures based on diagrams produced with 
polycrystalline samples 

4.4.2.1. Introduction 

We have just described in broad strokes how measuring all of the intensities 
diffracted by a given crystal makes it possible to tackle the structural analysis of that 
crystal. This measurement makes it possible to access the modulus values of the 
various structure factors specific to the sample studied and, although the resulting 
information is incomplete, it is possible to properly describe the nature and the 
position of each of the atoms that comprise the crystal cell. Up to now, we have 
considered the diffraction by a single crystal by placing it, for example, on a device 
which enables it to rotate around every axis of the direct space [ASL 98]. The 
integrated intensities are then measured for each Bragg position encountered during 
these rotations. This technique has seen significant developments over the past 20 
years, particularly because new equipment has become available, which is 
practically automatic and controlled by a computer. It is common in this case for the 
acquisitions to be comprised of several thousand Bragg spots. The arrival on the 
market of two-dimensional detectors has made it possible to considerably reduce the 
duration of such measurements, which is now typically in the range of several hours 
to several days. 

As we have already said, these very efficient methods still present an intrinsic 
disadvantage: they need to be capable of synthesizing a single crystal of the phase 
we wish to study. For a long time, researchers have therefore been trying to 
transpose this type of study onto diffraction patterns  produced with polycrystalline 
samples. The structural analysis of polycrystalline samples remained, however, 
limited to very favorable examples until the early 1980s. The wider use of 
computers and the design of particularly efficient data processing methods have 
revived this type of study which is becoming more and more important. 

Determining the structure of a phase from diffraction measurements on a 
polycrystalline sample can be divided into five steps: 

(1) Measuring the positions of the peaks. 

(2) Determining the crystal system and the cell parameters. Searching for 
systematic extinctions and determining the possible space groups. 

(3) Measuring the integrated intensities. 

(4) Suggesting a possible structure: creating a structural model with approximate 
values for the positions of the atoms. 

(5) Refining the structure. This refinement is usually achieved using the Rietveld 
method. 
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The first two points of this list have already been discussed in other sections of 
this chapter. We will now describe how to deal with steps (3), (4) and (5). 

4.4.2.2. Measuring the integrated intensities and establishing a structural model 

4.4.2.2.1. Measuring the integrated intensities 

Naturally, determining the integrated intensities is at the core of structural 
analysis. Clearly, the quality of the values obtained determines the rest of the study, 
especially since the number of reflections that are analyzed is necessarily much 
smaller than for the diffraction on single crystals. However, due to the problem 
caused by overlapping peaks (and also by possible preferential orientation effects), 
estimating these integrated intensities correctly is particularly difficult. There are 
essentially two different approaches, based on works published in the 1980s, 
referred to as the Pawley method [PAW 81] and the LeBail method [LEB 88]. In 
both case, the integrated intensities are extracted by using whole pattern fitting of 
the diffraction pattern, without introducing a structural model. The peak positions 
are refined from the values of the cell parameters. The difference between the two 
methods lies in how the contributions of overlapping peaks are separated and, 
particularly, in how they prevent fitting from leading to negative values. In the 
Pawley method, constraints imposed on the intensity variations of the different 
peaks located in a given area prevent these intensities from having negative values. 
In the LeBail method, the integrated intensities of the peaks in a given cluster of 
peaks are arbitrarily assumed to be equal initially and are then refined step by step. 
These two approaches are often used and their respective advantages and drawbacks 
have been discussed by many authors. We can mention several recent reviews on 
the subject. The Pawley method was discussed in detail by Toraya [TOR 93]. A 
comparison of the two approaches was given by Giacovazzo [GIA 96] and more 
recently by LeBail [LEB 05].  

4.4.2.2.2. Establishing a structural model 

Constructing a reasonable structural model is done differently depending on 
whether or not likely structures are known. It is common in diffraction by 
polycrystalline samples to suggest a structural model by analogy with known 
structures that serve as references. In this case, a new structure is conceived by 
changing the atoms, which modifies the values of their integrated intensities. The 
structural model is established by taking into account considerations involving the 
nature and the length of the interatomic bonds, ionic radii, etc. The structure is then 
refined by using methods which we will describe later on. 

 
Another approach consists of starting directly with the results of the diffraction 

measurements and generating a structural model without any reference 
considerations; a method which is described as ab initio [GIA 96, PUT 99]. The 
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latter approach is similar to the one generally used for structural analysis whose 
measurements are made with single crystals. It requires a considerable amount of 
data, of course. The name of the method depends on how the structural model5 is 
built: it is referred to as the direct method [PES 02] when the model is directly 
established after estimating, for each peak, the modulus of the corresponding 
structure factor, and as the Patterson method [EST 02] if representations of the 
associated Patterson function are used. 

4.4.2.3. Structure refinement: the Rietveld method 

Refinement methods, whether applied to structural determination or 
implemented in order to acquire other information, generally rely on the same idea: 
they consist of minimizing, with the help of an algorithm, the gap between a 
theoretical and an experimental graph. These aspects were discussed in Chapter 3. 
When the refinement is performed with the objective of determining the structure of 
the diffracting crystals, the parameters that can be refined are these structural 
parameters (nature and positions of the atoms, thermal agitation and occupation 
rates). At the end of the 1960s, Rietveld [RIE 67, RIE 69] suggested a general 
method for conducting the whole pattern fitting of diffraction patterns. In Chapter 3, 
we described the method from a formal standpoint. We will now explain how it can 
be applied to structural analysis. 

The works of Rietveld led to significant progress in structural analysis from 
polycrystalline samples. A large number of inorganic materials [SMR 99] and, more 
recently organic materials [LOU 95], were thus solved. In 1993, a book edited by 
Young [YOU 93] was written entirely on the subject of this method. In the 1990s, the 
International Union of Crystallography Commission on Powder Diffraction organized 
two international tests on this method [HIL 92, HIL 94]. There are many programs 
available today designed for this type of study and even though this method is used by 
a growing number of researchers, it remains difficult to implement and requires a 
gradual approach toward the result. Before we go into the details of the issues that may 
arise, we will describe this method and illustrate it with a few actual examples6.  

4.4.2.3.1. Description of the method and illustration 
Since the Rietveld method is a refinement method, it requires a structure 

suggestion in order to begin the fitting. Therefore, the person conducting the 

                                   
5 Other, more recent approaches have been suggested, such as methods based on the entropy 
maximum [GIL 02]. These aspects will not be discussed here. 
6 The Rietveld fittings described here are simple illustrations of the method. As we have 
already said, the objective in this chapter is to give a few elements on this refinement process 
which is described in much greater detail in other books. Readers interested in knowing more 
will find a complete presentation of Rietveld refinements, with every step described in detail, 
in [PEC 03]. 
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experiment has to give, from the start, a crystal symmetry with the cell parameters, 
as well as a space group with the position and the nature of each of the atoms. As 
we have already said, this model was developed either by analogy with previously 
studied structures or directly from measurements of integrated intensities. All of this 
information is usually gathered into a control file where each parameter is assigned 
a code that defines its state. If a parameter is free, its value can change while the 
refinement is taking place; if it is set, it will remain constant during the refinement 
cycle in question. This goes for all of the refinement methods we described in 
Chapter 3, but in the case of the Rietveld refinement method there is a very large 
number of parameters, and choosing which of these parameters can vary often 
determines the success of the refinement process.  

4 6 8 10 12 14 16 18 20 22 24 26 28

-20,000

0

20,000

40,000

60,000

80,000

100,000

 
Figure 4.8. Rietveld fitting of an X-ray diffraction pattern obtained with a sample of cerium 

oxide. This pattern was produced by using a high resolution system with a synchrotron 
radiation source at the ESRF, with a wavelength equal to 0.39982 Å [BAL 04]  

In order to describe this method, we will illustrate it with a first example chosen 
to be very simple on purpose. We decided to perform the Rietveld refinement of a 
diffraction patterns obtained with a sample of cerium oxide. This sample, mentioned 
earlier, was produced in Rennes, France, and was used in the context of an 
international test on a powder used for determining the instrumental functions of 
diffractometers [BAL 04]. Cerium oxide has a fluorine type structure and all of the 
atoms are in a set position. The patterns were obtained on the high resolution 
diffraction line with polycrystalline samples from the ESRF. The refinement was 
performed by the program FullProf7, developed by Carvajal [ROD 92]. The 
experimental pattern and its fitting are shown in Figure 4.8. 
                                   
7 A large number of programs can perform this type of refinement. Many are available at no 
cost on the international networks. You can find a selection of these programs on a website 



Interpreting the Results    187 

Name of the diagram and 
comments 

 COMM CeO2 Size Strain Round Robin ESRF Data 
Files = > DAT-file: massonsh, PCR-file: CeO2 

Parameters defining the 
conditions under which the 
diagram is produced and the 
profiles used for the peak fitting 

 Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor 
  0  7    1   0   0   0    0   1   0  0  1   4   1  0   0   0   0 
sharp.prn  
Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 Syo Prf Ins Rpa Sym Hkl Fou Sho Ana 
 0   0  1   1   1   0   0  0   1   3  0   1   1   1   2   0   0 
 lambda1 Lambda2  Ratio  Bkpos  Wdt  Cthm   muR  AsyLim  Rpolarz 
 0.399820 0.399820 1.0000 50.0000 10.0000 0.0000 0.0000  29.00  0.0000 
NCY Eps R_at R_an R_pr R_gl   Thmin    Step    Thmax  PSD  Sent 
0.5   0.50 0.50 0.50 0.50 0.50    3.0000   0.0004   29.0000  0.000 0.000 

Number of refined parameters  8 Number of refined parameters 
 

Coefficients of the polynomial 
fitting the continuous 
background 

 
Values 
Codes 

Background coefficients/codes 
4.5655   0.75849   0.00000   0.00000   0.00000   0.00000   
21.000   31.000    00.000    0.000    0.000    0.000 

General data 

 Data for PHASE number:  1 
CeO2  
Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth   ATZ  Nvk Npr More 
 2  0  0    0.0 0.0 1.0  0  0   0  0   0     0.00   0   7    0 
F M 3 M         <--Space group symbol 

Positions of the atoms 

 
Values 
Codes 

Values 
Codes 

Atom Typ    X    Y    Z   Biso   Occ   In Fin N_t /Codes 
CE  CE + 4  0.00000 0.00000 0.00000 0.48555 0.50963  0  0  0 
             30.00   40.00   50.00   51.00   61.00 
O  O-2   0.25000 0.25000 0.25000 0.32603 1.06587  0  0  0 
            0.00    0.00    0.00   81.00   71.00 

Scale factor and parameters 
defining a general model for 
microstructural effects 

Name 
Values 
Codes 

Scale     Shape1   Bov    Str1    Str2    Str3  Strain-Model 
0.36564E-08  0.0000  0.0000  0.0000  0.0000  0.0000    0 
 11.00000    0.00     0.00   0.00    0.00    0.00 

Parameters defining the 
evolution of the peak widths  

Name 
Values 
Codes 

U       V      W      X        Y    GauSiz  LorSiz Size-Model 
0.00000  0.00000  0.00000  0.00010  0.00000  0.00000  0.00000  0 
  0.00     0.00     0.00   0.00     0.00      0.00   0.00 

Cell parameters 
Name 

Values 
Codes 

    a        b        c       alpha     beta      gamma 
5.410950  5.410950  5.410950 90.000000 90.000000 90.000000 
41.00000  41.00000  41.00000  0.00000  0.00000  0.00000 

Parameters defining the 
preferential orientation 

Name 
Values 
Codes 

  Pref1   Pref2  Asy1    Asy2  Asy3   Asy4 
 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
  0.00  0.00  0.00  0.00  0.00  0.00 

Table 4.2. Control file for the structural refinement of a pattern obtained  
with a sample of cerium oxide free of any structural defects 

The control file used for performing the refinement shown in Figure 4.8 is given 
in Table 4.2. The various parameters are written in the right column of this table. 
The first row contains a large number of parameters used, for a given refinement, to 
specify the conditions under which the pattern was produced. These programs are 
usually designed to be compatible with many measurement instruments 
corresponding to very different experimental conditions. Naturally, the pattern’s  
characteristics directly depend on the measurement conditions. 

In the second line, the number of refined parameters for a given cycle is 
specified and, regardless of the pattern’s quality, it is always comprised of a 
continuous scattering background in addition to the diffraction peaks. There are 

                                   
administered by the International Union of Crystallography at the following address: 
http://www.ccp14.ac.uk. 
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essentially two approaches to fit this continuous background. The first one consists 
of defining, point by point, an empirical curve that fits as best as possible. The other 
consists of describing this contribution with a previously defined curve, often a 
polynomial, which is adjusted by refinement. In the present case, the latter method 
was used and the polynomial’s coefficients are shown in the third row. General 
characteristics defining the phase, or phases, present in the sample are given in the 
fourth row. The positions of the atoms, the thermal agitation factors and the 
occupation rates are all defined in the fifth row. 

Naturally, the absolute intensity of the diffraction signal has no particular 
meaning. It depends on the acquisition conditions, the duration of the measurement, 
etc. Therefore, an additional parameter is introduced, referred to as the “scale 
factor”. The calculated pattern  is entirely adjusted with the observed pattern  by 
multiplying it by this coefficient. This factor is given in the sixth row, where other 
parameters are mentioned, involving the microstructure refinement, and which will 
be discussed in Part 2 of this book. Parameters U, V and W given in the seventh row 
characterize the Caglioti polynomial (see Chapter 3), which defines the evolution of 
the width of the instrumental function according to the diffraction angle. The cell 
parameters are given in the eighth row, whereas the ninth row contains coefficients 
which make it possible to take into account a possible referential orientation. 

This description clearly shows that structural refinement using the Rietveld 
method requires a specific refinement strategy. We have already discussed some of 
these aspects in Chapter 3 (see section 3.3.4). Obviously, when the objective, as in 
this case, is to accurately determine the structural parameters, this refinement 
process must be conducted with the utmost care.  

This first example enabled us to illustrate the use of a control file, but the 
structure we described is very simple, since all of the atoms are in a set position and 
since there are only two types of atoms in this structure. We will continue with a 
new example based on a phase with a more complex structure, which was solved by 
diffraction on a polycrystalline sample [CHA 95]. The chemical formula of the 
compound in question is NaBi2Sb3O11 and its crystal structure was solved based on 
the pattern shown in Figure 4.9a. This pattern  was produced by using a Bragg-
Brentano system equipped with a back monochromator made of graphite. Therefore, 
the incident beam is comprised of the two radiations Kα1 and Kα2 (see insert). 
Furthermore, the pattern was produced without Soller slits, which is why the beam’s 
divergence caused a certain peak dissymmetry at low angles. When the structure 
was refined, peaks at angles below 20° in 2θ were voluntarily omitted.  
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Figure 4.9. Diffraction patterns of the compound NaBi2Sb3O11. The pattern shown in 
(a) was produced by using a Bragg-Brentano diffractometer equipped with graphite back 

monochromator. The pattern  shown in (b) was produced with a Debye-Scherrer-Hull  
system equipped with a quartz front monochromator  

We then produced another diffraction pattern for the same sample with a system 
equipped with a front monochromator and a curved position sensitive detector 
[MAS 96a]. The pattern, produced in reflection on a flat plate sample (see Chapter 
3) is shown in Figure 4.9b. This time, the peaks are unique and the use of a position 
sensitive detector has made it possible to significantly reduce the acquisition time of 
the pattern. We note that the peak widths measured in this case are higher than those 
obtained with the Bragg-Brentano system. As we showed in Chapter 3, this effect is 
caused by the fact that the diffracted beams are not focused in Debye-Scherrer 
systems. Finally, this study enables us to compare the influence on the structural 
refinement under two different acquisition conditions [MAS 96a]: 

– focusing system: peaks split in two because of the presence of the Kα2 
radiation and dissymmetry caused by the divergence; 

– average resolution system: strictly monochromatic radiation, symmetrical 
peaks and significantly reduced acquisition time. 

The fittings performed on these two diagrams are shown in Figure 4.10. 
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(a) Rietveld fitting of the pattern  produced by using a Bragg-Brentano system 
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(b) Rietveld fitting of the pattern produced in asymmetrical diffraction  
with a front monochromator and a curved position sensitive detector 

Figure 4.10. Rietveld refinements of diffraction patterns  
obtained with a powder of NaBi2Sb3O11 
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The refinement results are shown in Table 4.3. 

Atoms Na Bi Sb O1 O2 O3 

Site 4(b) 8(e) 12(g) 24(h) 12(f) 8(e) 

XDS 0 0.37666 
(5) 

0.5885 
(1) 

0.5395 
(10) 

0.6140 
(9) 

0.1451 
(7) 

XBB 0 0.37648 
(6) 

0.5430 (1) 0.5430 
(11) 

0.6104 
(10) 

0.1444 (9) 

YDS 0 X 0.75 0.2495 
(6) 

0.25 X 

YBB 0 X 0.75 0.2537 
(8) 

0.25 X 

ZDS 0 X 0.25 0.5910 
(7) 

0.25 X 

ZBB 0 X 0.25 0.5881 
(9) 

0.25 X 

BDS 
(Å2) 

0.11 (15) 0.84 (17) 0.42 (20) 1.16 (20) 1.04 (20) 2.06 (30) 

BBB 
(Å2) 

0.21 (18) 0.59 (2) 0.23 (2) 0.81 (23) 0.78 (29) 1.44 (34) 

Table 4.3a. Comparison of the positions and thermal agitation factors of the atoms obtained 
from the refinements of the patterns  produced with a Debye-Scherrer system (DS)  

and with a Bragg-Brentano (BB) diffractometer 

 Rp (%) Rwp (%) Rexp (%) RBragg (%) Goodness of fit 

DS 7.88 8.4 4.73 2.14 1.8 

BB 6.88 9 2.71 2.49 3.32 

Table 4.3b. Comparison of the reliability factors for the refinements of the two patterns  
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The structural characteristics and the quality of the fittings are very close. The 
phase we studied has a cubic symmetry and therefore has a small number of peaks, 
which decreases the influence of the diffraction signal distortion caused by the Kα2 
radiation. This experimental study shows that solving the structures of relatively 
simple crystal phases does not require very high resolution diffractometers. Also, 
this comparison illustrates the fact that in this type of analysis peak shapes play a 
small role. This is why, even though the Bragg-Brentano system used is not 
optimized, which causes a number of significant aberrations in the shapes of the 
measured peaks, we were able to fit these peaks and the determination of the 
integrated intensities is relatively correct. Of course, the situation is different when 
studying a phase with a lower crystal symmetry, in which case it would be highly 
recommended to use a system with a monochromatic beam [CUS 99, HIL 87]. This 
aspect is even more important when the sample presents a certain density of 
structural defects that would modify the shape of the peaks. We will see in Part 2 of 
this book that whole pattern fitting can be used to quantify these defects. It is then 
necessary to define the instrumental function as best as possible.  

Beyond this illustration with examples, we will define different parameters that 
affect the quality of the structural determination when using the Rietveld method. 

4.4.2.3.2. Influence of the measurement increment and of the counting duration 

Hill and Madsen [HIL 84, HIL 86] have focused on defining the influence of the 
measurement increment and of the acquisition time per point on the resolution of the 
structure. Naturally, the number of points has to be high and the exposure time long 
enough. However, it is useless to greatly reduce the measurement increment, since 
the value has to be chosen with respect to the full width at half maximum of the 
measured peaks. A decrease in the increment for a constant full width at half 
maximum simply leads to an increase in the number of points defining each peak. 
The authors have shown that the optimal increment is between a fifth and a half of 
the full width at half maximum. 

 
Increasing the measurement duration per point improves the quality of the 

diagrams and in particular the definition of the peak profiles. Generally speaking, 
we can assume that the exposure time is long enough if the maximum intensity of 
the peaks reaches a few thousands for the average intensity peaks. Naturally, the 
peaks at high angles are less intense than those located at the beginning of the 
diagram, making it a good idea to divide the diagram into several sections, and to 
increase the acquisition time for the peaks located at high angles [CUS 99]. 

 
Note finally that the range of the study has to be as wide as possible. In 

particular, taking into account peaks diffracted at high angles improves the 
refinement of the cell parameters and of the thermal agitation factors. 
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4.4.2.3.3. Preferential orientation 

Likewise, for quantitative phase analyses, the quality of the structure 
determination is related to limits set on the modifications of the diffracted intensity, 
caused by preferential orientation effects. This problem which is specific to 
diffraction on polycrystalline samples generally constitutes one of the limitations of 
the studies on these types of samples and deserves attention particularly in the case 
of structural studies. 

The number of crystals comprising the sample has to be very large and their 
orientation has to be random (see section 4.2). It sometimes happens, however, that 
this condition is impossible to fulfill, resulting in discrepancies between the 
integrated intensities of the peaks in the pattern and the values strictly related to 
structural parameters. When the nature of this preferential orientation is known, it is 
possible to take it into account in the refinement. This led several authors [ALT 96, 
PES 95] to incorporate, into their Rietveld refinement programs, preferential 
orientation parameters based on the use of the March function which was first 
introduced by Dollase [DOL 86]. Nonetheless, it is still better to avoid any texture 
effects. 
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PART 2 

Microstructural Analysis 

In real crystals, the triply periodic and infinite arrangement of crystal cells that 
describes ideal crystals is distorted by a large number of defects. The real structure 
of crystals includes punctual defects (vacancies, interstitial atoms), linear defects 
(dislocations), plane defects (stacking faults) and volume defects (finite sizes of the 
crystals, microstrains, composition fluctuations). The presence of these crystal 
imperfections modifies the distribution of the diffracted intensity. If the defects are 
localized and if their positions are not correlated, the intensity is distributed over the 
whole pattern, something which is referred to as Laue scattering or diffuse 
scattering. When the defects extend over large areas, the intensity distribution 
around the Bragg peaks widens1 and is distorted either symmetrically or 
dissymmetrically. 

Some of these effects were observed shortly after the discovery of X-ray 
diffraction [SCH 18]. However, the precise description of their influence on the 
diffraction signal required considerable work, and the quantitative analysis of these 
defects by X-ray diffraction only became widespread a few decades ago. 
Improvements in the instrumentation and the calculation capabilities now make this 
type of analysis possible with measurements conducted on traditional 
diffractometers. This led to the creation of a new field for X-ray diffraction, referred 
to as microstructural analysis by X-ray diffraction [SYN 99]. In Chapters 6 and 7, 
we will describe the main methods used for the quantitative study of these various 

                              
1 Therefore, these defects lead to an increase in peak width. We can also consider that the 
peaks obtained correspond to the overlapping of the diffraction signal related to the perfect 
crystals to which is added another signal caused by the defects. This signal, located mostly 
around the Bragg peaks, is also called diffuse scattering [WEL 04].  
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defects, both in randomly oriented polycrystalline materials (Chapter 6) and in 
epitaxial films (Chapter 7). Chapter 5 describes the influence of defects on the 
intensity distribution. This approach will be explained in the context of the 
kinematic theory of X-ray diffraction. 



Chapter 5 

Scattering and Diffraction  
by Imperfect Crystals 

5.1. Punctual defects  

The amplitude diffracted by a crystal cell free of any defects is given by: 

∑ π=
i

r.si2
i ief)S(F  [5.1] 

If we consider all of the crystal cells, the diffracted intensity is obtained by 
adding for every cell the products J = FF*, which leads to: 

crystal

I(S) J(S)= ∑  [5.2] 

with: 

)rr.(si2

i j

*
ji

jieff)S(J −π∑∑=  [5.3] 
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5.1.1. Case of a crystal containing randomly placed vacancies causing no 
relaxation 

In order to make matters simpler, we will assume that the crystal is only 
comprised of one kind of atom. It contains N atomic sites, but n sites are vacant. The 
double sum defining the expression of the factor J can be divided into two parts: 

– for i = j, there are (N – n) vectors ir  for which the scattering factor is equal to 
f = fi = fj and n vectors for which the associated value of the scattering factor is 
zero. Therefore, this contribution is equal to (N – n)f2; 

– for all the other vectors ir ,  the probability of having an atom in the position 
defined by ri is equal to (N – n)/N. This probability is the same for any i (since the 
positions of the vacancies are random). Therefore, the contribution of this part is: 

)rr.(si22
2

jief
N

nN −π
⎟
⎠
⎞

⎜
⎝
⎛ −  [5.4] 

We obtain: 

∑∑
≠

−π
⎟
⎠
⎞

⎜
⎝
⎛ −+−=

ji

)rr.(si22
2

2 jief
N

nNf)nN()S(J  [5.5] 

This double sum can be extended to all values of i and j by adding and 
subtracting a term equal to zero: 

2
2

i j

)rr.(si22
2

2 f
N

)nN(ef
N

nNf)nN()S(J ji −−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+−= ∑∑ −π  [5.6] 

which leads to: 

i j

2 2
2 is.( r r )2 2

i j

N n (N n)J(S) f e f (N n)
N N

π −⎡ ⎤ ⎡ ⎤− −⎛ ⎞⎢ ⎥= + − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

∑∑  [5.7] 



Scattering and Diffraction by Imperfect Crystals     199 

hence: 
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⎤

⎢⎣
⎡ −+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞
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⎝
⎛ −= ∑∑ −π

N
)nN(nfef

N
nN)S(J 2

i j

)rr.(si22
2

ji  [5.8] 

The first term of this expression corresponds to the diffraction by a crystal free 
of any defects, but comprised of atoms with an average scattering factor equal to  
(1 – n/N)f. The second term leads to a continuous distribution of the scattered 
intensity. This intensity decreases as the square of the diffusion factor; its value is 
proportional to the number of vacancies and equal to the scattering by n independent 
atoms. 

We illustrated this effect in Figure 5.1 by considering an imaginary crystal with 
a cubic symmetry, a cell parameter of 5 Å and comprised of lithium atoms located 
on all of the cube’s vertices1. Lithium has three electrons, and if we assume that the 
two atomic orbitals K and L can be approximated by spheres with diameters 
aK = 0.2 Å and aL = 1.6 Å, respectively, then the scattering factor f of each electron 
is given by the equation: 

( )

(2r a)
2

e 3 22
0

e sin kr 1f 4 r dr
kra 1 2 a sin

∞ −
= π =

π ⎡ ⎤+ π θ λ⎣ ⎦
∫   [5.9] 

Therefore, the scattering factor of lithium is given by: 

( ) ( )
Li 2 22 2

K L

2 1f
1 2 a sin 1 2 a sin

= +
⎡ ⎤ ⎡ ⎤+ π θ λ + π θ λ⎣ ⎦ ⎣ ⎦

 [5.10] 

                              
1 This imaginary crystal was chosen out of a concern for simplicity and is only presented to 
illustrate, in a simple case, how to formalize the influence of the presence of vacancies on the 
diffraction signal. 
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(a) Evolution of the scattering factor of a lithium atom according to the scattering vector 
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(c) Combination of the diffraction signal and of the diffuse scattering signal 

Figure 5.1. Observation of diffuse scattering associated  
with the presence of randomly distributed vacancies 

The intensity of the diffuse scattering is obtained by multiplying the square of 
this diffusion factor with the term n(N – n)/N. Figure 5.1b shows several examples 
for different numbers of vacancies n.  

These first results call for a few general and simple comments. First of all, as 
you can see, the diffuse scattering signal is much flatter than the diffraction signal. 
Its maximum intensity is roughly 30 times smaller than the maximum diffracted 
intensity. The diffuse scattering, spread out as it is in this case over the entire 
reciprocal space, is difficult to measure and requires adequate equipment. Note that, 
on the other hand, the decrease in the diffracted intensity maxima is quite visible.  

5.1.2. Case of a crystal containing associated vacancies 

Vacancies in a crystal can be associated together and form clusters. Let us 
consider a crystal containing, as before, n vacancies which are, this time, associated 
in pairs. The probability of finding a vacancy is no longer uniform over the entire 
crystal. In fact, the probability of finding a vacancy at any distance from another 
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vacancy is equal to half the probability of finding that vacancy at a distance equal to 
zero. 

The number of vacancies is identical as that in the previous case, so the 
diffracted intensity is the same but, this time, the diffuse scattering is modulated 
with maxima located in the positions of the Bragg peaks. The intensity distribution 
associated with that scattering is expressed as: 

( )( )2 n(N n)f  1 cos 2 a.s
N
−⎡ ⎤ + π⎢ ⎥⎣ ⎦

 [5.11] 
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(a) Diffuse scattering due to the presence of vacancy clusters 
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(b) Combination of the diffraction pattern and the diffuse scattering 

Figure 5.2. Modulation of the diffuse scattering associated  
with the presence of vacancy clusters 
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If the number of vacancies contained in each cluster increases, then the 
contribution from diffuse scattering becomes more and more localized on the Bragg 
peaks and the associated distribution becomes more refined. 

This description presented in the case of presence of vacancies can be made in a 
similar way when the crystal contains atoms in interstitial positions. 

5.1.3. Effects of atom position relaxations 

We first showed the influence of vacancies or interstitial atoms on the diffracted 
and scattered signals by overlooking the effects of local cell deformations associated 
with the presence of these defects. 

When the crystal cell contains vacancies or atoms in interstitial positions, the 
positions of the neighboring atoms of this localized defect are affected and these 
atoms are no longer exactly in their reference position. This is called position 
relaxation. The farther away atoms are from the defect, the smaller the variations of 
their positions. Usually, only the first and second neighbors are assumed to be 
affected. 

In order to illustrate the influence of this effect on the diffracted intensity and on 
the diffuse scattering signal, we will consider the simple case where only the first 
two neighbors surrounding the interstitial atom are affected and we will assume that 
the atoms are moved by a distance of a/4. 

If we assume as we did before that the cell contains n vacancies, the probability 
of an atom’s presence on a site is (N – n)/N and the diffracted intensity of each peak 
will be decreased by a factor corresponding to this term. Furthermore, secondary 
peaks associated with the atomic displacements appear. The structure factor and 
hence the diffracted intensity are modulated (see Figure 5.3a). 
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(a) Modulation function of the diffracted intensity 
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(b) Associated diffuse scattering 

Figure 5.3. Effects of the atom position relaxation caused 
by the presence of vacancies or interstitial atoms 
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The structure factor is modulated by the term: 

(N n) n a.s2 cos  2
N N 4
− ⎛ ⎞+ π⎜ ⎟

⎝ ⎠
 [5.12] 

The diffracted intensity is then multiplied by the square of this expression, or: 

22

4
s.a2 cos

nN
n21

N
)nN(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ π

−
+⎟

⎠
⎞

⎜
⎝
⎛ −  [5.13] 

Therefore, the diffraction peaks that correspond to the product of the Laue 
function and of a function of the same form as the one shown in Figure 5.3a have 
secondary maxima, also called satellite peaks. 

The diffuse scattering distribution is expressed according to the equation: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ π−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ π−⎥⎦

⎤
⎢⎣
⎡ −

4
s.a52 cos1

4
s.a2 cos1

N
)nN(nf 2  [5.14] 

This function is equal to zero when s = 0, then increases as we get farther away 
from the origin of the reciprocal lattice. The positions of the maxima are related to 
the displacements with respect to the reference positions of the atomic sites. 

5.2. Linear defects, dislocations 

Figure 5.4a shows a representation of an edge dislocation. This type of defect is 
very common, particularly in metals, and corresponds to major local deformations 
of the atomic arrangement. The diffracted amplitude is affected by the 
displacements of the atoms with respect to their reference positions in the same 
crystal without defects. 

 
Let us consider a crystal containing a certain number of dislocations. In the 

vicinity of one of these dislocations, a given crystal cell undergoes a displacement 
δ  with respect to its reference position defined by the vector R  in the crystal 
without defects. The amplitude diffracted by a displaced cell n is expressed as:  

n n2 is.(R )
n nA F e π +δ=  [5.15] 
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Let Jn,m = An.Am
*. Note that the total intensity diffracted by the crystal is given 

by: 

∑=
m,n

m,nJI  

bbb

 

   (a)    (b) 

Figure 5.4. Simplified representation of an edge dislocation. (a) Drawing a path  
around the core of the dislocation helps visualize the Burger vector of that dislocation.  
(b) Representation of the displacement field of the atoms surrounding the dislocation 

The product Jn,m is written: 

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡= δ+π−δ+π )R.(si2*

m
)R.(si2

nm,n mmnn eFeFJ  [5.16] 

hence: 

).(si2)RR.(si2*
mnm,n mnmn eeFFJ δ−δπ−π=  [5.17] 
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and by noting that Fn = Fm = F, since all the cells are identical2, we get: 

∑ δ−δπ−π=
m,n

).(si2)RR.(si22 mnmn eeFI  [5.18] 

5.2.1. Comments on the displacement term 

Figure 5.4b shows the displacement field associated with the dislocation 
described in Figure 5.4a. The presence of a dislocation causes atomic displacements 
which are too significant to be overlooked, even for atoms located relatively far 
away. Thus, in a crystal containing a certain dislocation density, the positions of the 
atoms are altered by displacements δ  that correspond to the sum of elementary 
displacements u  associated with each of the dislocation. 

 
We have: 

∑=δ
t

n,ttn uc  [5.19] 

where n,tu  is the displacement caused by the dislocation found in tR  for the atom 
found in nR  and:  

t

t

c 1 if there is a defect in t  
c 0 if there is no defect in t

=⎧
⎨ =⎩

 

We obtain: 

∑
⎟
⎠
⎞

⎜
⎝
⎛ −π

−π ∑∑
=

m,n

ucuc.si2
)RR.(si22 t

m,tt
t

n,tt
mn eeFI  [5.20] 

hence 

( )
∑

−π−π ∑
=

m,n

uuc.si2)RR.(si22 m,tn,t
t

t
mn eeFI  [5.21] 

                              
2 We assume here that there are no variations in the chemical composition. 
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and 

( )∑ ∏ −π−π=
m,n t

cuu.si2)RR.(si22 tm,tn,tmn eeFI  [5.22] 

If we consider that the positions of the dislocations are random, the term in the 
product can be expressed by its mean value according to ct. We then assume that 
these variables are not correlated, in other words, that each dislocation is 
independent of the others. Let us assume that ct = 1 with a probability c which 
corresponds to the concentration of defects and a probability 1 – c to have ct = 0 
with a probability 1 – c. This leads to:  

( )t ,n t ,m t t ,n t ,m t ,n t ,m2 is.(u u )c 2 is.(u u ) 2 is.(u u )0e c e (1 c)eπ − π − π −= + −  [5.23] 

                               ⎟
⎠
⎞⎜

⎝
⎛ −+= −π 1ec1 )uu.(si2 m,tn,t  

Let ( )t ,n t ,m2 is.(u u )
tU c e 1π −= − . We then have: 

( )∏∏ +=−π

t
t

t

)cuu.(si2 U1e tm,tn,t  [5.24] 

By noting that ax = exlna, we get:  

( )∑ +−π =∏ t
ttm,tn,t

U1ln

t

)cuu.(si2 ee  [5.25] 

If we write the logarithm’s first order Taylor expansion about 0, we get:  

∑−π =∏ t
ttm,tn,t

U

t

)cuu.(si2 ee  [5.26] 

( )∑ −−−π
−π

=⇒∏ t

)m,tun,tu.(si2

tm,tn,t
e1c

t

)cuu.(si2 ee  [5.27] 
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T

t

)cuu.(si2 ee tm,tn,t −−π =⇒∏  [5.28] 

with  

∑ ⎟
⎠
⎞⎜

⎝
⎛ −= −π

t

)uu.(si2 m,tn,te1cT  [5.29] 

Finally: 

∑ −−π=
m,n

T)RR.(si22 eeFI mn  [5.30] 

This relation, established in 1963 by Krivoglaz [KRI 63, KRI 69], is the 
fundamental equation for describing the expression of the total intensity diffracted 
by a crystal containing a concentration c of dislocations. As you can see, this 
intensity corresponds to the one diffracted by a crystal free of any dislocations 
multiplied by a factor (e-T) smaller than 1 and that decreases when T increases, and 
hence when the dislocation density increases (see equation [5.29]). This generic 
form of the effect of dislocations on the diffracted intensity is similar to the one 
describing the effect of temperature, which actually corresponds to variations in 
atomic mobility and therefore to a certain form of atom displacements with respect 
to their reference position. 

 
Likewise, note that the intensity distribution’s form is related to the term T and 

therefore will depend on the displacement field u  surrounding each dislocation, 
which means that, in the end, it has to be studied separately for every type of 
dislocation. Krivoglaz began by analyzing the case of a cylindrical crystal 
containing screw dislocations with Burger vectors parallel to the cylinder’s axis. In 
this case, he showed that the intensity distribution is a Gaussian function. These 
studies were pursued and generalized and finally, we can consider to a first 
approximation3 that the intensity distribution is a Voigt function [LEV 97], the 
width of which is written: 

f (M) tanβ = ρχ θ   [5.31] 

                              
3 Other authors [MUG 86, GRO 88] have shown that the shape of the intensity distribution 
associated with the presence of dislocations is asymmetric. 
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where ρ is the dislocation density, χ is the contrast factor that depends on the dot 
product b.s , M is a dimensionless factor given by the relation cM r= ρ  and rc is 
the cut-off radius beyond which the dislocation is no longer noticeable. 

Many studies have focused on accurately determining term χ as well as function 
f(M). 

5.2.2. Comments on the contrast factor 

Before we give the expressions of the contrast factor and of its different 
components, we have to specify the relative orientations of the various vectors 
involved. These orientations are defined in Figure 5.5. Generally speaking, vector l  
which is parallel to the dislocation line and Burger vector b define the glide plane. 
The right-handed coordinate system (Ox,Oy,Oz) is defined so that the axes Oy and 
Oz are in the glide plane and, by convention, the Oz axis is parallel to l . The 
position of the diffraction vector s  with respect to the glide plane is arbitrary. The 
vectors l  and s  define a second plane. We will specify the direction of the 
diffraction vector with respect to the glide plane by using three angles. The angle 
between s  and l  is denoted by ψ3. The angle ψ1 is the angle between the 
projection of b  onto the Oy axis and s . Finally, ψ2 denotes the angle between the 
cross product l b∧  and s . 

 
Wilkens [WIL 70] followed by Klimanek and Kuzel [KLI 88] established the 

expression of the contrast factor based on diagrams similar to the one found in 
Figure 5.5. Generally, this factor χ is expressed as follows: 

2 2
v c icos sin sin cosχ = χ γ + χ γ + χ γ γ  [5.32] 

with: 

χv: contrast factor for screw dislocations; 

χc: contrast factor for edge dislocations; 

x– χi: contrast factor resulting from the interactions between the different kinds 
of dislocations. 
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Figure 5.5. Representation of the angles between the  
different vectors that characterize a dislocation 

As Figure 5.5 shows, γ is the angle between the dislocation line and the Burger 
vector. Note that γ = 0 or π for a screw dislocation and 2γ = ± π  for an edge 
dislocation. 

 
χv, χc and χi are given, respectively, by the following expressions [WIL 70, KLI 

88]: 

2 2
v 3 3cos sinχ = ψ ψ  [5.33] 

2 4 2 4 2 2 2
c 1 2 1 22

1 (5 2 6 4 )cos (1 2 2 4 )cos (3 8 8 )cos cos
4(1 )

⎡ ⎤χ = − ν + ν ψ + − ν + ν ψ + − ν + ν ψ ψ⎣ ⎦− ν

 [5.34] 

and 

2
2

i 1 3 3 2
6 14 8cos cos sin

4(1 )

⎛ ⎞− ν + νχ = ψ ψ ψ ⎜ ⎟⎜ ⎟− ν⎝ ⎠
 [5.35] 

where ν is the Poisson coefficient.  

Glide plane 
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5.2.3. Comments on the factor f(M) 

We saw that cM r= ρ , which means that when the dislocations are associated 
with long range deformation fields, M is much greater than 1. If the dislocations are 
evenly and almost regularly distributed, M is close to 1. Finally, if the dislocations 
cause short range deformations, M is much smaller than 1.  

Wilkens [WIL 76] showed that the influence of this parameter M was noticeable 
essentially in the shape of the intensity distribution. When M is much smaller than 
1, the profile is Lorentzian, whereas it is Gaussian when M is much greater than 1. 
Experimentally, this term M typically varies between 0.1 and 10. 

Based on these considerations, some authors [WU 98] have suggested more 
recently to digitally express an approximation of the function f(M). They laid out 
the following relation:  

f(M) = a ln(M + 1) + b ln2(M + 1) + c ln3(M + 1) + d ln4(M + 1) [5.36] 

with: a = –0.173; b = 7.797; c = –4.818 and d = 0.911. 

5.3.  Planar defects  

Ideal crystals can be defined as a series of evenly stacked atomic planes. Breaks 
in this stacking caused by the presence of two-dimensional defects modify the 
diffraction signal. Only the crystal cells located between two planar defects scatter 
in phase. From this perspective, the effect of planar defects is similar to the size 
effect, which is described later on. In other words, the number of crystal cells that 
lead to coherent scattering is limited, resulting in an increase in diffraction peak 
widths, as shown in Figure 1.10. However, in the case of planar defects, this effect 
is limited to the direction normal to these defects and therefore only certain peaks 
will be affected. Thus, in the diffractogram obtained with a polycrystalline sample, 
the increase in width of the peaks will strongly depend on the Miller indices. This 
dependence is related to the symmetry of the crystals in question [SYN 99]. We will 
only describe the general effect without describing the various cases in detail.  

 
Let us consider a crystal comprised of an arbitrary number of different layers. 

The electron density of the ith layer is )r(iρ  and these layers are evenly stacked 
along the direction of the translation vector iR . The presence of a stacking fault in 
the series of layers is equivalent to replacing a layer with electron density )r(iρ  
with a layer with density )r(jρ  associated with a translation vector jR . Locally, 
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this means an additional electron density )r(ij∆  and the replacement of the vector 
iR  with ijiR δ+ . The probability of such a fault is denoted by αij. 

The diffracted amplitude associated with a layer i with electron density )r(iρ  is 
equal to: 

( ) 2 is.r
i iF S (r)e drπ= ρ∫  [5.37] 

and the diffracted amplitude associated with the stacking fault is denoted by Gij, 
hence: 

( ) 2 is.r
ij ijG S (r)e drπ= ∆∫  [5.38] 

The total diffracted intensity can be expressed as a sum of terms In, each one 
associated with an inter-layer vector nR . For the vector with modulus equal to 0, 
the intensity is expressed: 

( ) ( ) ( ) ( ) ( )2 2
0 i i i ij i ij

i j

I S N g 1 A F S F S G S= − + α +∑ ∑  [5.39] 

N is the number of cells and the term Aij is defined by: 

ij ij
j

A = α∑  [5.40] 

where (1 – Aij) is the probability that i is not disturbed by the fault. Also, gi is the 
probability for a type i layer to be present in a given position in the stacking. 

 
Likewise, the term I1 is written: 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

i

i ij

2 is.R*
1 i i i i ij ij

i j

2 is. R* *
i ij i ij j jk ij

i j k

I S N g 1 A F S F S G S e

g F S G S . F S G S e

π

π +δ

⎡ ⎤⎡ ⎤⎛ ⎞
⎢ ⎥⎢ ⎥⎜ ⎟= − + α +

⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤⎛ ⎞
⎢ ⎥α + + α⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

∑ ∑

∑ ∑ ∑
 [5.41] 
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The first term corresponds to the contribution from the part free of any faults, 
and the second term is the diffraction associated with the presence of a fault 
between two neighboring layers. 

The term ( )iF ' S  can be defined as the mean amplitude diffracted by a layer that 

is modified or not by the fault. This amplitude is written: 

( ) ( ) ( )∑α+=
j

ijijii SGSFS'F  [5.42] 

Additionally, we define: 

( ) ( ) ( ) ( )∑ δπα+−=
j

.si2
iijiii

ijeS'FS'FA1SB   [5.43] 

The diffracted intensity associating layers with their second neighbors is written 
as follows: 

( ) ( ) ( )

( ) ( )( ) ( ) ( )

i

i j ij

2 is.2R*
2 i i i

i

2 is. R R* *
i ij i ij i

i j

I S N g F S  B S  e

g F S G S .B S  e

π

π + +δ

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥α +
⎢ ⎥⎣ ⎦

∑

∑ ∑
  [5.44] 

The contribution to the total diffracted intensity from the unaffected part is 
written: 

( ) ( )i i22 is.R 2 is.2R
i i1 1 A e 1 A e ...π π+ − + − +  [5.45] 

The sum of this series is equal to: 

( ) iR.si2
i

i
eA11

1X
π−−

=  [5.46] 
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By noticing that I – n = I*n we can give the complete expression of the 
distributed intensity: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) [ ]

( ) ( )( )

j ij k kji i

2 2
i i i i ij i ij

i i j

2 is. R 2 is. R2 is.R 2 is.R*
i i i i i i ij j j jk k k

i j k
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j i j
i j

F' S X e B ... etc... π +δ π⎡ ⎤⎡ ⎤+ + +⎣ ⎦⎢ ⎥⎣ ⎦∑ ∑
[5.47]

 

The terms contained in the first bracket correspond to the internal contribution 
from the layers. The next terms are associated with the presence of faults. When the 
probability of having faults is low, only a few terms have to be taken into 
consideration. 

This general expression of the distribution of the intensity diffracted by a crystal 
that contains stacking faults can be directly used to model the measured diffraction 
peaks [TRE 91]. This method was implemented, for example, for the study of 
graphite [TRE 91] and also for fitting the intensities diffracted by phyllosilicates 
[PLA 75, PLA 76]. 

However, when the crystals that are studied contain few faults, simplified 
expressions can be found. For example, when crystals contain only one type of layer 
and if the presence of faults does not modify the structure of these layers, the 
intensity distribution is written: 

( ) ( ) ( )
( )

( )
( )

( )

( )

* 2 is. R 2 is. R

2 is.R 2 is.R 2 is.R

2

F S e eI S N F S F S F S ...
1 (1 )e 1 (1 )e 1 (1 )e

  ...  F S

π +δ π +δ

π π π

⎡ ⎤⎡ ⎤α α⎢ ⎥⎢ ⎥⎡ ⎤= + + +⎣ ⎦⎢ ⎥⎢ ⎥− − α − − α − − α⎣ ⎦⎣ ⎦

+ −

 

[5.48] 
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The expression between brackets is a sum of geometric sequences and therefore 
we get: 

( ) ( ) ( )
( )

2

2

N F S (1 ) 1 cos 2 s.
I S

1 (1 )cos 2 s.R cos 2 s. R (1 )cos 2 s.

α − α − π δ
=

− α + α − − α π − α π + δ + α − α π δ
 

[5.49] 

The presence of stacking faults modifies the shape of the diffraction peaks and, 
furthermore, changes the positions of the maxima in this distribution. From the 
expression above, we can show that the maximum is displaced by a value ε given by 
the expression: 

( )
sin 2 s.

1 1 cos 2 s.
α π δε =

− α − π δ
 [5.50] 

Figure 5.6 illustrates this peak distortion effect with a simple example. The 
displacement vector δ , associated with the presence of faults, was chosen parallel 
to the scattering vector s . This simply means that we are considering the peaks of a 
given family of planes (hkl), characterized by an interplanar distance d given by the 
norm of the vector R  and that, sometimes, certain planes of this family are 
displaced by a value equal to the norm of δ  in the direction normal to these planes 
(see Figure 5.6a). 

When the stacking fault rate varies from 5 to 20%, a very clear shift is observed 
for the maximum of each peak, as well as an increase in width (see Figure 5.6b). 
The graphs shown in that figure were obtained directly from equation [5.47] by 
considering that the displacement associated with the stacking fault was equal to a 
tenth of the interplanar distance. 
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(b) Effect on the diffraction peaks 

Figure 5.6. Deformation of the peaks caused by stacking faults. The displacement  
associated with the faults was chosen according to the normal to the diffracting planes 

The patterns  shown in Figure 5.6 correspond to the distribution of the intensity 
diffracted by a single crystal. The generalization of this effect to polycrystalline 
samples was developed by Warren [WAR 69], among others, and more recently by 
Ustinov [UST 99, UST 04]. In a simplified approach, Wilson [WIL 62a] showed 
that, when the number of faults is not too high, the intensity distribution can be 
described by a Lorentzian function. However, as we have already mentioned, the 
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actual shapes of the peaks depend on the symmetry of the crystal in question. We 
will not describe here the various cases, which would require tedious mathematical 
developments. Readers who wish to know more can refer to the works cited above.  

5.4. Volume defects 

5.4.1. Size of the crystals  

The simplest three-dimensional effect imaginable is the one corresponding to the 
fact that crystals are never infinite, something referred to as the size effect. In the 
case of nanometric characteristic sizes4, the size and shape of the diffracting crystals 
can be determined. In a crystal free of any other defects, the position of each cell is 
described by the vector cwbvauR ++=  and the number of cells in each direction 
is limited. This situation is illustrated by Figure 5.7. 

R

 

Figure 5.7. Three-dimensional representation of a finite crystal  

In order to describe the influence of this defect on the diffraction signal, we will 
determine how size modifies the width of the intensity distribution. This method, 
which will also be applied to the description of the effects of microstrains, was 
developed by Stokes and Wilson [STO 42, STO 44] and reviewed by Warren [WAR 
69]. 

                              
4 In practice, the greater the size, the smaller the effect on the intensity distribution. So, 
clearly, the limit to what size can be measured depends on the instrument’s angular 
resolution. With traditional laboratory diffractometers, the limit size is commonly considered 
to be in the range of 100 nm. The most recent instruments developed for synchrotron 
radiation source achieve angular resolutions of up to a few thousandths of a degree [MAS 
03], in which case the limit size that can be measured is in the range of a few micrometers. 
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The width of a diffraction peak can be defined as the ratio between the integral 
of the peak and its maximum value, something called the integral breadth [LAU 26].  

Hence: 

 
)2(I

d)2(I

m θ

θθ
=β ∫  [5.51] 

We will determine the maximum value of the intensity distribution and, 
therefore, lay out first the relation that gives the expression of this intensity 
distribution. We showed in Chapter 1 that the integrated intensity of a diffraction 
peak for a polycrystalline sample, when taking into account all of the diffracting 
grains, is expressed as: 

∫∫∫
λ

θ
⎟
⎠
⎞

⎜
⎝
⎛

θπ
⎟
⎠
⎞

⎜
⎝
⎛ θ= dhdkdli

V2sin
1

2sinR2
1cos

2
MnI hkl

c

3
 [5.52] 

or also: 

∫∫∫∫
λ

θ
⎟
⎠
⎞

⎜
⎝
⎛

θπ
=θθ= dhdkdli

V2sin
1

sinR8
Mn)2(d)2(II hkl

c

3
 [5.53] 

I(2θ) being the distribution of the intensity diffracted about the Bragg position. 

From this relation, we will calculate the expression of this distribution. In order 
to simplify the calculations, we will consider a peak of the form (001). The tip of the 
scattering vector, in this case, describes a reciprocal lattice point with coordinates 
(h,k,l), the extent of which increases when the mean crystal size decreases. The 
diffracted intensity is different from zero only when the values of h and k are very 
small (see Figure 5.8) and the norm of the scattering vector can be expressed by the 
relation:  

s ha * kb* lc * l c *= + + ≈  [5.54] 
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Figure 5.8. Reciprocal lattice point associated with the diffraction 
 by (001) planes of nanometric crystals 

However: 

λ
θ= sin2s  [5.55] 

therefore, we can write: 

dl*cdcos2 =λ
θθ  [5.56] 

which means that: 

dlcos
*c

)2(d ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ

λ
=θ  [5.57] 

By using this expression in the equation that gives us the intensity, we get: 

3

hkl
c

c * Mn 1I(2 )dl i dhdkdl
cos 8 R sin sin 2 V

⎛ λ ⎞ λ⎛ ⎞θ =⎜ ⎟ ⎜ ⎟θ π θ θ⎝ ⎠⎝ ⎠ ∫ ∫∫∫  [5.58] 
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If we integrate with respect to l, we get: 

∫∫∫
λ

θ
⎟
⎠
⎞

⎜
⎝
⎛

θπ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

λ
θ=θ dhdki

V2sin
1

sinR8
Mn

*c
cos)2(I hkl

c

3
 [5.59] 

Finally, the intensity distribution is written: 

∫∫∫
λ

θπ
=θ dhdki

V*csinR16
Mn)2(I hkl

c

2

2
 [5.60] 

Let us assume that: 

c

2

V*cR16
MnK λ

π
=  [5.61] 

we obtain  

∫∫∫θ
=θ dhdki

sin
1K)2(I hkl2

 [5.62] 

As presented in Part 1 of this book, the expression of ihkl can be calculated by 
considering the crystal as a series of crystal cells, forming columns along each 
direction of the direct lattice (see Figure 5.7). Inside a column, the cells are arranged 
in pairs which are characterized by a distance between two cells equal to tn  (see 
Figure 5.9). Each of these cells diffracts the same amplitude5 given by: 

( )∑ ++π= lwkvhui2
ihkl efF  or ( )∑ ++π= 'lw'kv'hui2

ihkl efF  [5.63] 

 

 

                              
5 We are assuming here that the only defect found in the diffracting crystals is their limited 
size. 
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Figure 5.9. Representation of the crystal as a series of columns of cells arranged in pairs 

ihkl is obtained by adding products Jn = FF* over the entire column and over all 
of the crystal’s columns; therefore: 

( ) ( ) ( )2 2 i h u ' u k v ' v l w ' w
hkl e hkl

uvw u 'v 'w '

i I F e π − + − + −⎡ ⎤⎣ ⎦= ∑ ∑  [5.64] 

By using this equation in the expression of the intensity distribution, we get: 

( ) ( ) ( )2 2 i h u ' u k v' v l w ' w
e hkl 2

uvw u 'v 'w '

1I(2 ) I F K e dhdk
sin

π − + − + −⎡ ⎤⎣ ⎦
⎡ ⎤

θ = ⎢ ⎥
θ ⎢ ⎥⎣ ⎦

∑ ∑∫∫  [5.65] 

We can consider that the variation range of h and k is completely described if 
these terms vary between + 1/2 and – 1/2. However: 

( ) ( ) ( )
1 1 1

2 i h u ' u2 2 2
1 1 1
2 2 2

e dh cos 2 u ' u hdh i sin 2 u ' u hdhπ −⎡ ⎤⎣ ⎦

− − −
= π − + π −∫ ∫ ∫  

( )
( ) ( ) ( )

1 1 1
2 i h u ' u2 2 2

1 1 1
2 2 2

1e dh sin 2 u ' u i cos 2 u ' u
2 u ' u

π −⎡ ⎤⎣ ⎦

− − −

⎡ ⎤
⎢ ⎥⇒ = π − − π −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦π − ⎢ ⎥⎣ ⎦

∫  
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( ) ( )
( )

1
2 i h u ' u2

1
2

sin u ' u
e dh

u ' u
π −⎡ ⎤⎣ ⎦

−

π −
⇒ =

π −∫  

The terms 
( )

( )
sin u ' u

u ' u
π −

π −
 are equal to zero except if u’ = u, in which case they are 

equal to 1; therefore, the intensity distribution is written: 

( )∑∑∑∑ −π

θ
=θ

u v w 'w

lw'wi2
2

2
hkle e

sin
1KFI)2(I  [5.66] 

If N3(uv) is the number of cells along the direction given by c  in the (uv) 
column, then the sum with respect to w and w’ can be expressed as: 

∑∑
−

π−
−

π
1N

0

iwl2
1N

0

l'iw2
33

ee  [5.67] 

As we have show previously, this product is equal to: 

∑∑
−

π−
−

π

π
π

=
1N

0
2

3
2

iwl2
1N

0

l'iw2
33

lsin
lNsin

ee  [5.68] 

and therefore: 

∑∑ π
π

θ
=θ

u v
2

3
2

2
2

hkle
lsin

lNsin
sin

1KFI)2(I  [5.69] 

The maximum value of the ratio of sines is equal to N3(u,v), therefore the 
maximum of the diffraction peak is given by: 

∑∑θ
=θ

u v

2
32

2
hklem )v,u(N

sin
1KFI)2(I  [5.70] 
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The integrated intensity is given by the relation (see equation [1.57]): 

232
hkl hkl2

hkl 0 e 2
c

n F1 cos 2I I r dV
16 R sin sin 2 V

⎛ ⎞⎛ ⎞ λ+ θ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟π θ θ⎝ ⎠ ⎝ ⎠
 [5.71] 

or also: 

23
hkl hkl

hkl e 2
c

n F1I I dV
8 R sin sin 2 V

⎛ ⎞λ⎛ ⎞ ⎜ ⎟= ⎜ ⎟ ⎜ ⎟π θ θ⎝ ⎠ ⎝ ⎠
 [5.72] 

with dV = MδV and therefore: 

23
hkl hkl

e 2
c

2
2m 2hkl

e hkl 32
c u v

n F1I M V
I(2 )d 8 R sin sin 2 V

I (2 ) MnI F N (u, v)
c * V16 R sin

⎛ ⎞λ⎛ ⎞⎜ ⎟ δ⎜ ⎟⎜ ⎟θ θ π θ θ⎝ ⎠⎝ ⎠β = =
θ λ

π θ

∫
∑∑

 [5.73] 

or also: 

c
2
3

u v

1c * V
V

cos N (u, v)

⎛ ⎞
λ δ⎜ ⎟
⎝ ⎠β =

θ∑∑
 [5.74] 

By noting that for an orthorhombic lattice we have 
c
1*c = , the integral 

breadth can be written: 

2
c 3

u v

V
V c cos N (u, v)

λδβ =
θ∑∑

 [5.75] 
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Let T(uv) be the size in the direction defined by c  of the (uv) cell column. The 
double sum can then be replaced with an integral over the axes x and y of the direct 
space. We can write: 

2
2
3 2

u v

T (x, y) dxdyN (u, v)
a bc

=∑∑ ∫∫  [5.76] 

Since the crystals have an orthorhombic symmetry, the volume Vc of the crystal 
cells is equal to: 

cV a  b  c=  [5.77] 

The expression of the integral breadth becomes: 

∫∫θ

λδ=β
dxdy)y,x(Tcos

V
2

 [5.78] 

Note that T dz= ∫ , since T is the size of the crystal along the direction defined 

by c . Therefore: 

∫θ
λδ=β

TdVcos

V  [5.79] 

or: 

θ
λ=β

cosL
 [5.80] 

with: 

∫δ
= TdV

V
1L  [5.81] 

L is the mean size of the crystals in the direction defined by the normal to the 
diffracting planes, with respect to the volume of these crystals. 
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Equation [5.80], which directly relates the average size of the diffracting crystals 
to the integral breadth of the peaks, is similar to the one that was established in 1918 
by Scherrer [SCH 18]. Note that the mean size measured here is a dimension in a 
given crystallographic direction, which means that measuring the width of several 
peaks will make it possible to determine the shapes of the crystals. We will see an 
illustration of this type of study in the next chapter.  

5.4.2. Microstrains 

Generally speaking, microstrains6 correspond to atom displacements with respect 
to their position in crystals which are free of any defects. The presence of 
dislocations causes this type of displacement, but in this specific case, which we 
detailed previously, atomic displacements are local, and related to the presence of a 
linear defect. We will now discuss the general case of displacements that are 
completely independent of one another.  

 
In order to express the effect of this type of defect on the width of the peaks, we 

will assume that each crystal is an imperfect crystal lattice, which can be described 
as a three-dimensional repetition of identical cells that have undergone 
displacements with respect to their original position (see Figure 5.10). These cell 
displacements are one way of representing the atomic displacements occurring in 
the crystals in question. These local strains (microstrains) can be significant, even 
though the mean values of the cell parameters remain the same as those in crystals 
free of any defects. The typical example of this situation is provided by cold worked 
metal crystals, but it is also observed in other situations, often in nanocrystals for 
example, where it corresponds in particular to the fact that the interplanar distances 
vary between the core and the surface of these crystals. 

                              
6 These are sometimes improperly referred to as microstresses. Clearly, the diffraction signal 
can only be sensitive to displacements. The transposition from the determination of a 
displacement field to the evaluation of a state of stress  requires information on the elastic and 
plastic characteristics of the materials in question. This goes, of course, beyond the scope of 
this book.  
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Figure 5.10. Simplified representation of a crystal containing microstrains 

We will calculate the effect of these distortions on the width of the diffracted 
intensity distribution. The diffracted intensity is expressed as before (see equation 
[5.62]), but the expression of ihkl is different since the atomic displacement vectors 
have to be taken into account. 

Let us consider a cell with its initial position with respect to the origin of the 
lattice specified by the vector R , which has undergone a displacement characterized 
by the vector δ . Such a displacement is usually the result of a translation and a 
rotation. If we consider that the rotation is significant enough, then its effect on the 
scattered radiation’s phase is negligible and will not be taken into account when we 
calculate the diffracted amplitude. If we denote by Ap the amplitude diffracted by 
the displaced cell p, we can write: 

( )p p p p2 is. R (R ) 2 is.R 2 is. (R )
p hkl hklA F e F e eπ +δ π π δ= =  [5.82] 

If we consider a second cell q located at a distance n from the first one in the 
direction defined by the unit vector t , the amplitude diffracted by this cell is 
written: 

( ) )R(.si2R.si2
hkl

)R(R.si2
hklq

qqqq eeFeFA δππδ+π ==  [5.83] 

In this part, we will only focus on the effect of the microstrains. The terms in 
pR.si2e π  correspond to the contribution from the size effect, which has been already 

expressed. In order to make matters simpler, we will only keep the terms involving 
displacements.  
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If we consider that the displacements are non-periodical, then the products 
ApAq* are equal to zero for high values of n. For small values of n we can expand 
the expression of the displacement vector. By noting that q pR R nt= + , we obtain: 

q p p(R ) (R nt ) (R ) nt.δ = δ + = δ + ∇δ  [5.84] 

Let Jn be the mean value of the products of the form ApAq*, then we can write: 

( )2 is. (R) (R) nt2*
n p q hklJ A A F e π δ −δ − ∇δ= =  [5.85] 

which leads to: 

δ∇π−= tn.si22
hkln eFJ  [5.86] 

If we assume that the vector t  is perpendicular to the diffracting family of 
planes (hkl), then the scattering vector s  is written tss = . Also, we know that 

λ
θ= sin2s , hence: 

4 sin it .nt2
n hklJ F e

π θ− ∇δ
λ=  [5.87] 

The product δ∇t.t , or also 2t ∇δ , corresponds to the strain in the direction 
perpendicular to the family of planes (hkl); let εxy be this strain, which is a 

component of the strain tensor and let q 2 s= π , or 4 sinq π θ=
λ

. Out of concern 

for simplicity, we will write “q” instead of q . We obtain:  

xy2 iqn
n hklJ F e− ε=  [5.88] 
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Just like before, the diffracted intensity is obtained by summing all of the 
products Jn. It can be shown [JAM 67] in the same way that, for the size effect, the 
integral breadth of the peak is written:  

∫θ
λ

=θβ
dnJcos

F
)2(

n

2
hkl  [5.89] 

In order to calculate this integral, Stokes and Wilson [STO 42, STO 44] 
suggested assuming a Gaussian function as the strain distribution. 

Since we know that the distribution is Gaussian, we can write 2

x
ix

2

ee
−

≈  and 

therefore, xyiqn2
hkln eFJ ε−=  can be written: 

22
xy

2 nq
2
1

2
hkln eFJ

ε−
=  [5.90] 

hence: 

 dneFdnJ
22

xy
2 nq

2
1

2
hkln ∫∫

+∞

∞−

ε−
+∞

∞−

=  [5.91] 

( ) 2
1

2
xy

2
hkln 2

sin2
FdnJ

−
+∞

∞−

επ
θ

λ=⇒ ∫  [5.92] 

We then obtain: 

θ⎟
⎠
⎞⎜

⎝
⎛ επ=θβ

+
tan22)2( 2

1
2
xy  [5.93] 
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By defining: 

( )
1 1

2 22 2
xy xy2 2 5

+ +
η = π ε ≈ ε  [5.94] 

we obtain: 

β = ηtanθ [5.95] 

This result was achieved by assuming a Gaussian strain distribution. When this 
condition is not fulfilled, a similar expression can nonetheless be obtained, simply 
with a change in the meaning of η. For example, Stokes and Wilson [STO 42, STO 
44] suggested assuming that all the values of xyε  had equal probabilities. We then 

get β = ηtanθ with  

max
xy4ε=η  [5.96] 

We saw that the link between this microstrain amount η and the microstrains ε 
depends on the hypotheses involving the strain distribution. Furthermore, the 
physical meaning of η depends on what causes these microstrains to appear and, 
most of the time, their link with the actual atomic displacements requires the 
elaboration of a relevant microstructural model. However, the determination of this 
microstrain amount is often realized, particularly for characterizing powders and 
bulky samples. By comparing relations [5.80] and [5.95], we notice that the width 
has a dependence on size, on the one hand, and on the microstrains, on the other 
hand, in 1/cosθ and tanθ, respectively. We will see later on that this difference in 
behavior serves as the basis for methods designed to separate the size effect from 
effects due to microstrains in nanocrystals. 

 
Determining the mean size of the crystals and the microstrain amount, as we 

have just described it, relies on measurements of the integral breadths of the peaks. 
This type of analysis is used to obtain the mean values that characterize defects. We 
will see in Chapter 6 that the Fourier series analysis of the peak profiles makes it 
possible to access the distributions that characterize these defects. In the following 
section, we will give details on how to express the peak profile as a Fourier series 
with terms related to the size of the microstrains. 



Scattering and Diffraction by Imperfect Crystals     231 

5.4.3. Effects of the grain size and of the microstrains on the peak profiles: 
Fourier analysis of the diffracted intensity distribution 

We have just seen how measuring these breadths enables us to quantify the 
defects. This analysis method implies the fitting of the peaks and therefore requires 
us to define a priori the shape of the diffraction peaks. Bertaut [BER 49] followed 
by Warren and Averbach [WAR 50, WAR 55, WAR 69] showed that with the help 
of a Fourier series decomposition of the peak profiles, any material with volume 
structural defects can be analyzed without having to make hypotheses on the shape 
of the peaks. This analysis, which we will now describe, when it can be 
implemented, remains even today one of the most extensive ways to study 
microstructural effects based on the profiles of the diffraction peaks. 

 
We will use the same notations as in the last two sections and assume that the 

vector δ  which characterizes the displacement of any cell located in a position 
defined by the vector R  can be expressed as a linear combination of the cell’s basic 
vectors. We have ( )R Xa Yb Zcδ = + + . By using relation [5.65], we obtain:  

[ ]∑∑∑∑ −+−π

θ
=θ

u v w 'w

l)Z'Z(l)w'w(i2
2

2
hkle uve

sin
FKi

)2(I  [5.97] 

For the set values of u and v, the sums with respect to w and w’ correspond to 
the contributions from all of the cell pairs contained in the (uv) column. As for the 
sums with respect to u and v, they represent the contributions from all of the 
columns. 

 
Let us assume that n = w’ – w and Zn = Z’ – Z and, for a set value of n, let e

nN  

be the total number of cells with an nth neighbor in the same column. Let nilZ2e π  

be the mean value over all of these pairs of nth neighbors in the same column of the 
strain for the whole sample. The expression above can then be written in the form of 
a single sum with respect to n: 

∑
+∞=

−∞=

ππ

θ
=θ

n

n

inl2ilZ2e
n2

2
hkle eeN

sin

FKi
)2(I n  [5.98] 

We now define: 

– N: number of cells in the entire sample; 

– Ncol: number of columns in the sample; 
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– N3 = N/ Ncol: mean number of cells per column along the direction defined by c ; 

– col
e
nn NNN = : mean number of pairs per column. 

We can then write: 

∑
+∞=

−∞=

ππ

θ
=θ

n

n

inl2ilZ2

3

n
2

2
hkle ee

N
N

sin

NFKi
)2(I n  [5.99] 

By expanding this sum, we get: 

[ ][ ]∑
+∞=

−∞=

ππ+ππ+ππ−ππ
n

n
nnnn

3

n nl2coslZ2sinnl2sinlZ2cosinl2sinlZ2sinnl2coslZ2cos
N
N  

Note that Z–n = – Zn. If we separate the sum in two parts with respect to n = 0, 
we obtain, for the imaginary part, terms of the form: 

1 n nP cos 2 lZ sin 2 nl cos 2 l( Z ) sin 2 ( n)l= ⎡ π π + π − π − ⎤⎣ ⎦  [5.100] 

1 n nP cos2 lZ sin 2 nl cos2 lZ sin 2 nl⇒ = ⎡ π π − π π ⎤⎣ ⎦  [5.101] 

0P1 =⇒  [5.102] 

and likewise, we get the terms: 

2 n nP sin 2 lZ cos 2 nl sin 2 l( Z ) cos 2 ( n)l= ⎡ π π + π − π − ⎤⎣ ⎦  [5.103] 

2 n nP sin 2 lZ cos 2 nl sin 2 lZ cos 2 nl⇒ = ⎡ π π − π π ⎤⎣ ⎦  [5.104] 

0P2 =⇒  [5.105] 

Finally, we notice that the entire imaginary part of the sum is equal to zero. 
Hence, if we define: 

n
3

n
n lZ2cos

N
NA π=  and n

3

n
n lZ2sin

N
NB π−=  [5.106] 
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we can express the intensity distribution as a Fourier series: 

∑
+∞=

−∞=

π+π
θ

=θ
n

n
nn2

2
hkle nl2sinBnl2cosA

sin

FNKi
)2(I  [5.107] 

The variable in this series is the term l which is a function of the cell parameter 
in the crystallographic direction we are considering: 

λ
θ

=
λ

θ=
sinc2

*c
sin2l  [5.108] 

The harmonic of this series is given by the term n which is related to the distance 
L n t=  between the two cells in a pair in the column perpendicular to the (00l) 
planes. 

The cosine coefficient of this series, An, is a product of the two quantities 

3n NN  and nlZ2cos π . 3n NN  only depends on the length of the columns and 
therefore corresponds to a size. The other term depends on Zn, which means that it 
is related to the distortions of the lattice. It represents the contributions from the 
microstrains. This means that the cosine term is the product of the size and 
distortion coefficients. If we denote these two terms by AnT and AnD, respectively, 
we get: 

An = AnT AnD [5.109] 

This relation and equation [5.107] serve as the basis for the use of Fourier series 
analysis of diffraction peak profiles to quantitatively characterize structural defects 
found in crystals. We will see in the following chapter how this result can help us 
determine, in particular, the size and microstrain distribution functions. 



This page intentionally left blank 



Chapter 6 

Microstructural Study of Randomly  
Oriented Polycrystalline Samples 

In Chapter 5, we described in detail the effect on the diffracted intensity’s 
distribution of the discrepancies between a crystal’s mean structure and its actual 
structure. The quantitative study of these effects makes it possible to accurately 
determine the density of punctual defects, of dislocations or of stacking faults, the 
size of the grains, as well as the microstrain rate, etc. This type of analysis was 
developed in the second half of the 20th century and, due to the tremendous progress 
made by computers, became widespread in the late 1980s. In 1999, the International 
Union of Crystallography published a book describing most of the aspects of 
microstructural analysis by X-ray diffraction on polycrystalline samples [SYN 99]. 

 
In addition to the necessary mathematical details, in this chapter we will give 

actual experimental examples of the approaches used. From the very start, it is 
impossible to be comprehensive, which is why this chapter is limited to the study of 
volume defects and, more precisely, to estimating the sizes and shapes of 
nanocrystals as well as determining microstrain amount. Also, we will give an 
illustration of how the density of stacking faults is studied. Readers who want to 
know more will find, in particular, in [UNG 99] an in-depth presentation of the 
analysis of the influence of the dislocations on the peak profile. In Chapter 5, we 
described the influence of the presence of vacancies on the scattered and diffracted 
signal. The experimental explanation for this type of approach essentially involves 
the study of single crystals and remains a field for specialists. We will not give any 
examples of these works. 
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Three different methods have been designed to quantitatively study structural 
volume defects. The integral breadth method, based on the theoretical 
considerations we discussed in Chapter 5, was introduced in 1918 by Scherrer [SCH 
18] and generalized by Stokes and Wilson [STO 42], among others. Later on, 
Tournarie [TOU 56a, TOU 56b] followed by Wilson [WIL 62b, WIL 63] suggested 
a different analysis based on the variance of the intensity distribution. We described 
how Bertaut [BER 49] showed in 1949 that the Fourier series decomposition of the 
peak profile makes it possible to obtain the mean value and the distribution of the 
different effects that cause the increase in peak width. This method was further 
elaborated by Warren and Averbach [WAR 50, WAR 55, WAR 69]. 

Aside from a few authors [BER 93, GRO 98b, SAN 97] who still implement it, 
the variance method is hardly used anymore. This chapter will deal with the integral 
breadth method and the Fourier analysis. 

Regardless of which of the two methods is used, it is important to separate the 
microstructural effects from the instrumental contribution in the peak profiles. We 
saw, in the first part of this book, how the different elements that comprise the 
instrument can modify the shape of the diffraction peaks. Obviously, microstructural 
analysis is easier when the instrument’s contribution is small. However, this 
contribution has to be taken into account in order to extract the experimental profile, 
i.e. the “pure profile” which is induced by the microstructural defects. 

6.1. Extracting the pure profile 

In Chapter 3, we saw that the distribution of the measured intensity h(x) can be 
expressed as the convolution product of the pure profile f(x) and the instrumental 
function g(x). We can write: 

∫
+∞

∞−

−= dy)yx(g)y(f)x(h  [6.1] 

This relation was first suggested1 by Jones in 1938 [JON 38]. We have already 
noted, however, that this expression neglects not only the measurement noise, 
denoted by ε(x), but also the contribution from the continuous background, denoted 
by b(x). In fact, the profile of a diffraction peak looks more like:  

                                   
1 This relation and the next one have already been explained in Chapter 3 in references [3.1] 
and [3.2], respectively. They are shown here only to simplify the reading.  
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h(x) f (y)g(x y)dy (x) b(x)
+∞

−∞

⎛ ⎞
⎜ ⎟= − + ε +
⎜ ⎟
⎝ ⎠
∫  [6.2] 

The problem is therefore to determine the nature and the density of the structural 
defects from the measurement of the experimental profile h(x) which contains the 
contribution from the instrument. There are two ways to go about solving this 
problem. The first method consists of deconvoluting this equation by using, in 
particular, the properties of Fourier transforms and extracting the pure profile which 
induced only by the defects. The second approach is described as “convolutive”. 
This time, the structural defects are described without extracting the pure profile, 
but instead by taking into account the instrument’s contribution, which is assumed 
to be an analytical function, either known or directly calculated from the 
characteristics of the diffractometer. This instrumental function is then convoluted 
with the functions expressing the contributions from the various microstructural 
effects that are assumed to be present. 

Regardless of which approach is used, it is necessary, of course, to know the 
instrumental function. As we have previously recalled, one of the methods for 
determining the contribution from the instrument is to calculate it from the 
diffractometer’s physical characteristics [CHE 04]. This aspect has been the subject 
of research for about 20 years and was described in Chapter 3. However, the most 
commonly used method consists of producing a diffraction pattern with a sample 
assumed to be comprised of perfect crystals. In practice, several materials are used. 
Only one of them, lanthanum hexaboride which is sold by the NIST [NIST] is a 
standard acknowledged by the international community. 

If, one way or another, the instrument function is known, it is then possible to 
analyze the profile of the diffraction peaks for the sample that contains defects. The 
first methods that were suggested relied on solving equations [6.1] and [6.2] by 
deconvolution. 

6.1.1. Methods based on deconvolution 

The different approaches used to extract the pure profile by deconvolution were 
described and compared in particular by Louer and Weigel [LOU 69b], and more 
recently by Armstrong and Kalceft [ARM 99]. Cernansky [CER 99] gave a detailed 
description of the inherent mathematical aspects of this deconvolution process. 
Aside from Stokes’ historical method [STO 48], the various approaches will not be 
explained here, only the basic ideas will. 

 



238     X-ray Diffraction by Polycrystalline Materials  

6.1.1.1. Constraint free deconvolution method: Stokes’ method 

The oldest method used to extract the pure profile was suggested in 1948 by 
Stokes [STO 48]. It consists of neglecting the experimental noise and the 
contribution from the continuous background, and inverting the convolution product 
by a Fourier analysis of the peak profile. 

 
The different functions f, g and h can be written as Fourier series, with x varying 

in an interval – a/2, + a/2 outside which the intensity is considered to be zero. Thus, 
we get: 

∑
∞+

∞−

π−
= a

tiy2
e)t(F)y(f  ∑

∞+

∞−

π−
= a

'tiz2
e)'t(G)z(g    ∑
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∞−

π−
= a

''tix2
e)''t(H)x(h  
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1)t(F 2
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−

π
=  [6.3] 

hence: 

∑∑ ∫
+

−

−π−π−
=

t 't

2
a

2
a

a
't)yx(i2

a
tiy2

dyee)'t(G)t(F)x(h  [6.4] 

( )
∑∑ ∫

+

−

−π−π−
=⇒

t 't

2
a

2
a

a
t'tiy2

a
'tix2

dyee)'t(G)t(F)x(h  [6.5] 

but if t = t’, we have: 

( )
 adye2

a

2
a a

t'tiy2
=∫

+
−

−π−
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and if t ≠ t’, we have, on the other hand: 

( )t ' t
2 iy

a
a
2
a
2

e dy 0 
−

− π+

−
=∫  

Therefore, the double sum is reduced to only the terms such that t = t’; hence: 

∑
π−

=
t

a
tix2

e)t(G)t(Fa)x(h  [6.6] 

Note that H(t) = a F(t) G(t). This classic result is equivalent to saying that if h is 
the convolution product of f and g, then the Fourier transform of h is equal to the 
product of the Fourier transforms of f and g. 

Therefore, we can write: 

)t(aG
)t(H)t(F =  

hence: 

∑
π−

=
t

a
tiy2

e
)t(G
)t(Ha)y(f  

The Fourier coefficients are complex numbers that can be written:  

)t(iG)t(G
)t(iH)t(H)t(iF)t(F)t(F

ir

ir
ir +

+=+=  [6.7] 

By multiplying the numerator and the denominator by G*(t), and by making the 
real and imaginary parts equal, we obtain: 

r r i i i r r i
r i2 2 2 2

r i r i

H (t)G (t) H (t)G (t) H (t)G (t) H (t)G (t)
F (t)  and F (t)  

G (t) G (t) G (t) G (t)
+ −

= =
+ +

 [6.8] 



240     X-ray Diffraction by Polycrystalline Materials  

In the end, we have the following equation: 

∑ π+π=
t

ir a
ty2sin)t(F

a
ty2cos)t(F)y(f  [6.9] 

In order to illustrate this approach, we will use patterns produced as part of the 
international test organized by Balzar under the authority of the International Union 
of Crystallography, aimed at studying nanocrystal powders free of any microstrains 
[BAL 04]. Two diffraction patterns of cerium oxide were produced by Masson, by 
using the same diffractometer from beamline BM162 at the ESRF. One was obtained 
with a powder comprised of nanometric grains and the other with a sample free of 
any structural defects. A qualitative comparison of the two patterns is given in 
Figure 6.1. A diffraction peak from each of the patterns is shown in Figure 6.2a. The 
associated Fourier coefficients are given in Figure 6.2b. From these values, it is 
possible to determine the Fourier coefficients of the pure profile, and finally the 
pure profile itself (see Figure 6.2c). 

 

Figure 6.1. Diffraction patterns recorded with samples of cerium oxide at the ESRF 

                                   
2 This line is the high resolution station for diffraction by polycrystalline samples at the 
ESRF. In the time since this experiment was conducted, the diffractometer in question was 
transferred to an X-ray beamline with an even stronger intensity originating from an insertion 
device. This system is now on beamline ID31 of the ESRF.  
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Figure 6.2a. Initial patterns  
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(i) Fourier coefficients of the widened peak 
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(ii) Fourier coefficients of the instrumental function  

Figure 6.2b. Fourier analysis 
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Figure 6.2c. Determining the pure profile  

This method of extracting the pure profile by Fourier analysis has seen major 
developments and modern computational capabilities have made it rather easy to 
implement. However, the calculation of the Fourier coefficients imposes that there 
must be no peak overlaps. This condition considerably limits the application field of 
this method. Additionally, as we have already mentioned, the experimental noise is 
assumed to be zero. The presence of a non-zero noise causes oscillations in the 
resulting signal after deconvolution. This problem can be solved by using the 
methods described below. 

6.1.1.2. Deconvolution by iteration 

In 1968, Ergun [ERG 68] suggested extracting the pure profile of X-ray 
diffraction peaks by using an iterative method initially described by van Citter and 
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Burger [CIT 31, BUR 32]. In order to keep the notations simple, we will replace the 
expression of equation [6.2] with: 

h = f*g + ε + b [6.10] 

where the * symbol indicates a convolution product. 

We obtain: 

h – f*g = U [6.11] 

where U corresponds to the contribution from the experimental noise and the 
continuous background. Let fn be the function such that:  

fn + 1 = fn + Un  [6.12] 

with: 

h – fn*g = Un. [6.13] 

The initial function f1 is chosen equal to h. The functions fn are successive 
approximations of the function f we are looking for. Therefore, this method consists 
of iteratively calculating these functions fn. Based on the relations we have just 
given, we have: 

( ) ( )( )
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2 1 1

3 1 2 2 1

n 1 2 n 1 i i 1

f (x) h(x)

f (x) 2h(x) h (x) with h (x) h(y)g(x y)dy 

f (x) 3h(x) 3h (x)  h (x) with h (x) h (y)g(x y)dy

n n 1 n n 1 n 2
f (x) nh(x) h (x)  h (x)... h (x) with h (x) h (y)g(x y)dy
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⎪
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⎩

 [6.14] 

This process consists of obtaining the pure profile f, towards which tend the 
functions fn when n increases, by convoluting the measured function h with the 
instrumental function. One of the difficult aspects of this type of method is 
achieving the convergence of the iterative process toward the solution. This problem 
was studied by Ruland [RUL 71], who defined an efficient convergence criterion. 
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6.1.1.3. Stabilization methods 

This stabilization approach was introduced by Phillips [PHI 62] and Tikhonov 
[TIK 63, TIK 77], and is often referred to as the “Tikhonov stabilization”. It consists 
of a general approach to “ill-posed” problems, when the signal resulting from a 
convolution is used to try to determine the pure profile. The main idea is to limit the 
number of solutions to equation [6.2] by including additional information. This 
information, suggested by Tikhonov, is that the function is smooth or, in other 
words, that its second derivative is as close as possible to zero.  

Equation [6.2] is written again as follows: 

h = Af + ε [6.15]  

where A is a linear operator that depends on g. 

The objective is then to find f such that h Af−  is as small as possible. 
However, Tikhonov had the idea instead of minimizing the parameters: 

2 2Af h f− + α  [6.16] 

The parameter α is a positive number called the regularization parameter, which 
controls the smoothness of the solution. Minimizing this parameter is a stable and 
converging problem. 

This approach was first applied to the study of X-ray diffraction peaks by Louer 
and his collaborators [LOU 69a, LOU 69b, LOU 72]. These authors showed that 
this method can prevent the oscillations observed after the Stokes deconvolution. 

6.1.1.4. The maximum entropy or likelihood method, and the Bayesian method 

Other approaches, based on the probability analysis of the profile of the 
diffraction peaks, were developed over the past decade. Three methods should be 
mentioned: the maximum entropy method, the maximum likelihood method and the 
Bayesian techniques, based on Bayes’ theorem. 

We will not be discussing recent methods here. Readers interested in knowing 
more can refer to [CER 99] and [REE 99] for an overview of the mathematical 
considerations involved, and [KAL 95, GIL 96, ARM 98, ARM 04] for a detailed 
description, illustrated with examples, of the maximum entropy method. 
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6.1.1.5. Methods based on a priori assumptions on the profile 

In all the methods we have just described, no assumption is made beforehand on 
the shape of the peak profiles. Simple conditions are laid out, such as the fact that 
the second derivative has to be as small as possible (stabilization method). 

Naturally, it is also possible to set more stringent conditions. One common 
method consists of making an assumption a priori on the shape of the functions 
describing the contributions from the device and from structural defects. These 
functions can be defined either analytically or numerically. Usually, the relation 
between the measured profile h(x) and the pure profile is expressed as a simple 
relation involving the integral breadths or the full widths at half maximum. 

Thus, if we assume, for example, that the contributions from the device and from 
the sample are both described by Gaussian functions, then the measured profile h(x) 
is also a Gaussian function and: 

2 2 2
h f gβ = β + β  [6.17] 

Likewise, if we assume that f and g are Lorentzian functions, then: 

gfh β+β=β  [6.18] 

As we have already mentioned in Part 1 of this book, one of the most often used 
functions for simulating diffraction peaks is the Voigt function [VOI 12]. In this 
case, the pure integral breadth is obtained by decomposing the breadths of the 
different contributions depending on their Gaussian and a Lorentzian part. The total 
pure breadth is obtained from the following relation:  

( )kerf1
e

2k

fGf −
β=β

−
  [6.19] 

with  

fG

fLk
βπ

β
=  [6.20] 
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The pure Gaussian and Lorentzian breadths, respectively βfG and βfL, are 
obtained from relations [6.17] and [6.18]. Halder and Wagner [HAL 66] gave a 
simplified expression of relation [6.19]:  

2
fGffL

2
f β+ββ=β  [6.21] 

Of course, this method is easier to implement than those we mentioned 
previously. Its main limitation, however, is that the shape of the experimental 
profiles is not quite the same as the one that was assumed a priori. This major 
approximation can be a problem, depending on the cases. 

6.1.2. Convolutive methods 

The purpose of the process we explained in the previous sections is to extract 
from the experimental profile, h(x), the pure profile, f(x), which will then be used to 
determine the microstructural characteristics of the sample. 

An alternative approach consists of working directly with the measured profile 
h(x), by expressing it as a Fourier series that includes the various components 
associated with each of the effects that modify the experimental profile [SCA 02] 
(instrumental function, size effect, microstrains, etc.). The intensity distribution h(x) 
or I(2θ) is then expressed from equation [5.98] which was obtained in Chapter 5 by 
including in this equation the Fourier transform G(x) of the instrumental function, 
and finally: 

n

2 n
e hkl 2 ilZ 2 inln

2
3n

Ki F N N
I(2 ) G(n) e e

Nsin

=+∞
π π

=−∞

θ =
θ ∑   [6.22] 

We are considering here a sample comprised of nanocrystals with microstrains. 
When other microstructural effects are involved, we simply have to include the 
associated Fourier transforms in expression [6.22]. 
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The experimental profile is directly modeled3 from this expression. Determining 
the instrumental function’s Fourier transform requires knowing that function, of 
course. As we have already mentioned, two methods are used. The first method 
consists of estimating the instrumental function based on a diffraction diagram 
produced with a reference sample and fitted, for example, with Voigt functions. 
Then, the Fourier coefficients of this Voigt function are introduced in equation 
[6.22]. In the second method, the instrumental function is calculated by taking into 
account all the contributions [CHE 04]. In this case, the Fourier coefficients of each 
of the contributions are substituted into equation [6.22]. 

The use of this convolutive approach has grown in the past few years. Note that, 
in this case, each of the effects that modify the peak profile is dealt with the same 
way, whether it is an intrinsic microstructural feature of the sample or a contribution 
from the device. The effects are not separated a priori before the actual 
microstructural analysis. We will come back to this point at the end of this chapter.  

6.2. Microstructural study using the integral breadth method  

In Chapter 5, we showed that the integral breadth of the diffraction peaks can be 
linked to the apparent size of the crystals and to their microstrains. Likewise, we 
have seen that, when the crystals contain stacking faults, the modification of the 
diffraction peak profiles associated with the family of planes that contain these 
faults is similar to that caused by a size effect. 

In this section, we will deal with the separation of these different contributions 
based on the measurement of the integral breadths and the equations we have laid 
out. Throughout this section, we will assume that the experimental profiles have 
been corrected and that the suggested methods are applied to the pure profiles. 

Therefore, the integral breadth of the peaks diffracted by crystals with volume 
defects is written: 

θ
λ=β

cosL
 and β = η tan θ 

                                   
3 The word “modeling” is used in this context as opposed to the word “fitting”. Generally 
speaking, modeling indicates that the calculated function that is adjusted with the 
experimental signal is expressed based on the physical phenomena that lead to the observed 
intensity distribution. The word fitting is used when the measured signal is described by a 
function chosen without any particular physical considerations. 
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with regard to the effect due to the size (or due to stacking faults) and the widening 
induced by microstrains, respectively. 

When only one of these two effects occurs, plotting the integral breadth 
according to the diffraction angle has to make it possible to determine the cause of 
the increase in width. In most cases the two effects occur simultaneously, meaning 
that hypotheses have to be made on the peak profile in order to separate them. 

6.2.1. The Williamson-Hall method 

In 1953, Williamson and Hall [WIL 53] suggested a simple method for solving 
this problem. It works by considering that both the limited size of the crystals and 
the presence of crystallographic distortions lead to Lorentzian intensity 
distributions. 

This is a very simplistic assumption, of course, but it provides a simple way of 
dealing with the problem. As we have already said, the convolution product of two 
Lorentzian functions is a Lorentzian function and, additionally, the residual breadth 
is the sum of the elementary breadths caused by each of these effects. If we denote 
by βp the pure breadth and by βT and βD the breadths related to size and 
microstrains, respectively, then we obtain: 

βp =  βT + βD  [6.23] 

and therefore: 

θη+
θ

λ=β tan
cosL

 [6.24] 

or: 

λ
θη+=

λ
θβ sin

L
1cos  [6.25] 

If we plot (β cos θ)/λ according to (sin θ)/λ, we get a straight line with a y-
intercept equal to the inverse of the size and a slope equal to the value of the 
microstrains. This plot is known as the Williamson-Hall plot. 
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We notice that: 

2
d

d2
1

2
ssin *

===
λ

θ  [6.26] 

if we define β* = (βcosθ)/λ, equation [6.24] becomes: 

** d
2L

1 η+=β  [6.27] 

A plot of this kind is shown in Figure 6.3. It was obtained from the diffraction 
pattern of a cerium oxide sample comprised of nanometric grains and used for the 
international test organized by Balzar [BAL 04]. This pattern is shown in Figure 6.1.  

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.001

0.002

0.003

0.004

0.005

0.006

d*

β∗

 
Figure 6.3. Williamson-Hall plot obtained by using peak by peak fitting of the diffraction 

pattern produced by the ESRF with nanocrystallized cerium oxide 

The y-intercept enables us to determine a mean value of the size, which is in this 
case about 22 nm. The slope of this line is small, which shows that the sample 
contains a small amount of microstrains. The measured value is 0.13%. 

This approximated method makes it possible to obtain a qualitative mean value 
characterizing each of the effects that cause the increase in peak width. In particular, 
if the slope of the line is almost horizontal, it means that the crystals in question 
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contain a small amount of microstrains. Likewise, if the line passes through the 
origin, then the crystals are large enough not to increase the peak width. 

6.2.2. The modified Williamson-Hall method and Voigt function fitting 

Generally speaking, volume structural defects widen the peaks without leading 
to Lorentzian distributions. However, it is generally assumed that the peak profiles 
associated with these defects evolve between a Gaussian and a Lorentzian 
distribution, and therefore can be described by Voigt functions. Based on this 
hypothesis, Langford [LAN 78, LAN 92] suggested a method for separating the size 
contribution, which does not depend on the diffraction order of the microstrain 
contribution, which does. Each peak is fitted with a Voigt function and the Gaussian 
and Lorentzian parts of the intensity distribution’s width are determined for each of 
the peaks.  

When different types of defects modify the shape of the peaks and if it is 
assumed that each of these defects leads to a Voigtian intensity distribution, then the 
profile observed for each peak is a Voigt function obtained from the convolution of 
each of the elementary Voigt functions. We have seen that the width of the 
distribution corresponding to the convolution product of several Lorentzian 
functions is obtained by adding the widths of the elementary functions. As for 
Gaussian functions, we have to add the squared widths. Therefore, we can say that 
the resulting Gaussian and Lorentzian parts are written: 

( ) ( ) ( )2 2 22 T D F
G G G G

T D F
L L L L

...

β ...=

⎧β = β + β + β +⎪
⎨
⎪ β + β + β +⎩

 [6.28] 

with: 

– βGT: Gaussian contribution from size; 

– βGD: Gaussian contribution from lattice distortions; 

– βGF: Gaussian contribution from stacking faults; 

– βLT: Lorentzian contribution from size; 

– βLD: Lorentzian contribution from lattice distortions; 

– βLF: Lorentzian contribution from stacking faults. 

By analogy with the works of Williamson and Hall, Langord suggested plotting 
the evolution of the Lorentzian part of the breadth according to the sine of the 
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diffraction angle, while plotting the evolution of the square of the Gaussian part of 
the breadth according to the square of this sine. Determining the y-intercept and the 
slope of the resulting lines leads, respectively, to the Gaussian and Lorentzian 
contributions from size and microstrains. The breadths of the Voigt functions 
associated, on the one hand, with size and with microstrains, on the other hand, are 
obtained by recombination, using relations [6.19] and [6.20], which give the link 
between the breadth of a Voigt function and its different components.   

 
An example of this method is shown in Figure 6.4. The sample is still the cerium 

oxide used for the international test [BAL 04]. This time, the diffraction peaks were 
fitted with Voigt functions. The result confirms that the increase in peak width for 
this sample is essentially due to the size effect. 
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Figure 6.4. Williamson-Hall plots obtained by using the Langford method 
based on diffraction peak fitting of cerium oxide 
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Determining the mean crystal size and the microstrain rate from these 
Williamson-Hall plots (whether modified or not) of course requires to be able to 
measure several diffraction peaks and, in particular, several orders of the same 
reflections. It is sometimes difficult to measures several peaks with a high enough 
quality, especially without too much overlap. Therefore, an alternative method 
consists of trying to quantify the microstructural effects based on the measurement 
and the fitting of only one peak. This method which is often based on the use of the 
Voigt function is knowing as the “single line method”. It was described, in 
particular, by Delhez and his colleagues [DEL 82] [KEI 82]. It requires additional 
hypotheses. Generally speaking, it is necessary to associate each of the Gaussian 
and Lorentzian component of the peak profile, which is assumed to be Voigtian, 
with a specific microstructural contribution. Most of the time people using this 
method are considering that the Lorentzian component of the profile is due to size, 
whereas the Gaussian component is due to microstrains. This assumption relies 
mostly on considerations made by Schoening [SCH 65]. Other authors [NAN 78, 
HAL 66] have shown experimentally that this approach makes it possible to fit the 
measured peak properly. The actual shape of the profiles caused by the size of the 
crystals and their microstrains is, obviously, more complex and strongly depends on 
the shape of the distributions associated with each of these microstructural effects. 
This is why this simplified approach to the study of the microstructure, based on the 
measurement and the analysis of a single peak, remains a highly qualitative method. 

6.2.3. Study of size anisotropy 

The width of the cerium oxide diffraction peaks, studied in the previous sections, 
has values that vary regularly with the diffraction angle. Thus, for the graphs shown 
in Figures 6.3 and 6.4, all of the points are lined up on the regression line. This 
result means that the effects that cause the peaks to widen are isotropic. It is possible 
to imagine a situation where the increase in peak width would strongly depend on 
the Miller indices of the peaks. This situation can correspond to the fact that 
diffracting nanocrystals are non-spherical or that the microstrain tensor is 
anisotropic or that the crystals contain stacking faults4, an effect, which, by nature, 
is anisotropic.  

Louer and Langford [LAN 86, LAN 93, LAN 96] in particular studied this 
situation. These authors showed that it is possible, through a careful study of how 
the peak widths behave with respect to the Miller indices, to accurately determine 
the average shape of nanocrystals. This method can be illustrated by a study we 

                                   
4 This list is not comprehensive and other type of defects can lead to an anisotropic widening 
of the diffraction peaks. 
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conducted on anatase nanocrystals produced by a sol-gel method [MAS 96c, MAS 
98a, MAS 98b]. 
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Figure 6.5. Williamson-Hall plot obtained from the diffraction pattern  

of a non-annealed titanium oxide aerogel 

Figure 6.5 shows a Williamson-Hall plot obtained by fitting a diffraction pattern 
produced for a titanium oxide aerogel with Voigt functions. The widths, expressed 
in the reciprocal lattice, are very different, depending on whether we are focusing on 
the families of planes (h00) or (00l). The y-intercept of the line obtained for the 
(00l) planes is higher than for the (h00) planes. Furthermore, these lines are almost 
horizontal, thus indicating the absence of microstrains. These two results enable us 
to show that the crystals are significantly extended along the c  axis of the anatase 
crystal cell. 

Figure 6.6 shows the inverse value of the width, drawn in a polar set of 
coordinates. α is the angle between the considered direction and the [001] direction. 
All of the measured values fit lines that were plotted by assuming that the crystals 
had a prismatic shape with a square base. Finally, this study shows that the 
nanocrystals we are studying are prisms with a height of roughly 25 nm long and 
parallel to c , whereas the sides of the square base are about 15 nm long. 
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Figure 6.6. Polar plot illustrating the anisotropic shape of anatase crystals 

Figure 6.7 shows an image, obtained using a transmission electron microscope, 
of one aerogel anatase crystal. The extended shape along the c  axis is clearly 
visible. 

 

 

Figure 6.7. High resolution observation of an anatase crystal  
by using transmission electron microscopy 
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6.2.4. Measurement of stacking faults 

In Chapter 5, we described in detail the effects of stacking faults on the 
diffracted intensity. Stacking faults can significantly alter the peak profiles and 
modify the positions of the peaks (see Figure 5.6). However, when the mean fault 
density is not too high, it is possible to assume that the position change is small and 
that the distortion of the intensity distribution consists merely of an increase in peak 
width. In this section, we will make this restrictive assumption.  

We noted earlier that if the regular stacking of index planes (hkl) is interrupted 
by the presence of a fault, this break is similar to that caused by a size effect and, in 
both cases, the increase in width is independent of the reflection order. The main 
difference with the size effect is that the presence of stacking faults causes a 
strongly anisotropic effect. This is because, if the scattering vector s  associated 
with a given family of planes (hkl) is normal to the displacement vector δ , which 
corresponds to the fault, then the width of the peak with indices (hkl) will remain 
the same (see Chapter 5). It would appear from this observation that size effects can 
be distinguished from stacking faults. However, these studies are difficult and have 
only been conducted since the early 1990s [LAN 93]. 

We will illustrate this method for measuring the stacking fault density with the 
example of a study [BOU 01b, BOU 01c, BOU 02b] we recently conducted on a 
ferroelectric material with the chemical formula SbBi2Nb2O9. This compound 
crystallizes in the form of an Aurivillius phase that can be described as a stack of 
perovskite blocks with the composition [A(m– 1)BmO(3m + 1)]2-, separated by sheets 
of [Bi2O2]2+. The stacking of perovskite blocks often shows stacking faults [BOU 
01c, CHO 01, DIN 02], corresponding to local variations in the number of 
perovskite blocks that cause a displacement along the c  axis and a local 
modification in the electron density. Figure 6.8 shows a diffraction pattern obtained 
with a powdery sample of a material synthesized by using a sol-gel method. The 
widths of the diffraction peaks increases but, as the insert in Figure 6.8 shows, this 
increase varies significantly from one peak to the next. 

We fitted each peak in this pattern with a Voigt function and drew a Williamson-
Hall plot based on the recombined breadths using the method described above. 
Figure 6.8b clearly shows that the increase in width is strongly anisotropic. The 
straight line that passes through the points corresponding to the (200) and (400) 
peaks also passes through the origin, which shows that the size of the crystal along 
that direction is large and does not increase the width of the peak. Many peaks with 
indices (001) are visible and the straight line that passes through these points has a 
non-zero y-intersept. The value obtained corresponds to the mean distance between 
two faults along the (001) plane stacking direction [BOU 01b, BOU 02b]. 
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(a) Diffraction pattern of a powder of SbBi2Nb2O9 fired for 10 hours at 700°C 
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(b) Williamson-Hall plot obtained by fitting the pattern  

shown in Figure 6.8a with Voigt functions 

Figure 6.8. Study of the fault stacking density in a ferroelectric compound 

Regardless of why the integral breadth of the peaks is estimated, the peak fitting 
has to be done carefully in order to obtain truly significant widths, particularly when 
it comes to the peak tails. Generally speaking, microstructural studies require very 
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high quality patterns. However, this method shows an intrinsic difficulty: the 
increase in peak width causes them to overlap and it sometimes becomes difficult to 
distinguish each peak’s contribution inside a cluster. Whole pattern fitting of the 
diffraction patterns makes it possible to limit the effect of this intrinsic flaw. 

6.2.5. Measurements of integral breadths by whole pattern fitting  

Since the early 1980s, a new way of quantifying structural defects has appeared. 
It consists of applying the developments implemented in structural analysis to the 
increase in peak width [KEI 83, LUT 90, THO 87b, LEB 92, LEB 99]. This method, 
which relies on Rietveld’s structural analysis method, consists of a whole pattern 
fitting of the diffraction pattern. 

In Chapter 3, we saw that the evolution of the peaks widths according to the 
diffraction angle can be represented by a function known as the Caglioti polynomial 
[CAG 58]:  

H2 = U tan2 θ + V tan θ + W [6.29] 

We showed that the grain size depends on the inverse of the cosine of the Bragg 
angle, whereas the microstrains are a function of the tangent of that angle. The 
method that was suggested consists of including, in the expression of the Caglioti 
polynomial, terms that can be refined and that depend either on tan θ or on 1/cosθ. 

Naturally, the effects of size and microstrains are expressed as convolution 
products of the pure profile and the profiles resulting from each of these effects. 
Therefore, the modified expression of the Caglioti polynomial will depend on the 
hypotheses made on the shape of the profiles of each of the contributions. If we 
assume that the size effect leads to a Lorentzian profile, and microstrains to a 
Gaussian profile, we can write the following expressions: 

H2G = (U0 + D2) tan2 θ + V tan θ + W and HL = X tan θ + T/cos θ  [6.30] 

where HG and HL are the Gaussian and Lorentzian components of the full width at 
half maximum, respectively. The parameter D can then be used to obtain a value of 
the microstrains, whereas the size of the grains can be estimated from the value of T. 

From a more general point of view, we can assume that each of the effects 
related to the grain size or to microstrains leads to Gaussian and Lorentzian 
contributions to the peak profile [THO 87b]. Furthermore, we can consider the 
possibility that the shape of the grains and the microstrain tensor are anisotropic 
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[GRE 85, LEB 92, LEB 97, NUT 99]. This type of refinement is available in recent 
software. We then get the following relations: 

θ
++θ+θ+= 2

I
G22

G
2
G

cos
TWtanVtan)DU(H  [6.31] 

θ
++θ+=

cos
T

Ytan)DX(H LI
LL  [6.32] 

with: 

– DG: anisotropic Gaussian contribution from lattice distortions; 

– I
LD : isotropic Lorentzian contribution from lattice distortions; 

– I
GT : isotropic Gaussian contribution from grain size; 

– TL: anisotropic Lorentzian contribution from grain size; 

– Y: isotropic Lorentzian contribution from grain size. 

When using anisotropy parameters, it is common to suggest a model for the 
shape of the grains. Possible shapes include needles (infinite along one direction), 
plates (infinite in two directions) or ellipsoids. These models make it possible to 
bind together the values of the size or microstrain parameters along each 
crystallographic direction. These “constraints” limit the relative variation range of 
these parameters and therefore restrict the refinement. 

Regardless of whether this general description or the one described earlier is 
used, the study of size and microstrains will always require determining the 
instrument’s own contribution. As we showed in the equations above, this 
contribution is expressed through the values of the parameters U, V, W and X. 
Therefore, in this case, the instrumental function will be determined by refining 
these parameters based on a pattern obtained with a standard  sample that does not 
cause any increase in peak width. 

In any case, this type of approach is difficult, particularly because of the high 
number of parameters that can be refined, for which the approximate values of the 
structural parameters are needed beforehand. Most of the time, it is necessary to 
refine a sample that contains the same phases as in the one being studied, but with 
little or no microstructural effects. The parameters that define the structure are set 
and the effect of the microstructural defects will be included by assuming, in a first 
step, that this effect is isotropic.  
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Figure 6.9. X-ray diffraction pattern  of a zirconia aerogel fired for 1 hour at 350°C 

We will illustrate this method by studies led on powders of zirconia 
nanocrystals. The diffraction pattern shown in Figure 6.9 was obtained with a 
zirconia aerogel as the sample, produced by drying a precursor gel of zirconia in 
supercritical conditions [SIL 96, SIL 97, LEC 98]. A qualitative illustration of this 
material’s microstructure, obtained by transmission electron microscopy, is shown 
in Figure 6.10. 

200 nm200 nm200 nm200 nm200 nm200 nm
 

Figure 6.10. Micrographs of a zirconium dioxide aerogel burned for 1 hour  
at 350°C, obtained by using transmission electron microscopy 
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The analysis of the diffraction pattern in Figure 6.9 shows us that the sample is 
comprised of two phases, a combination of tetragonal and monoclinic zirconia. The 
peaks are very wide and overlap a great deal, which is why we conducted a whole 
pattern fitting by using the Fullprof software [ROD 92]. The resulting fit is shown in 
Figure 6.11. When the thermal treatment temperature increases, the crystals become 
larger and therefore the sample contains more and more monoclinic zirconia. 
Keeping track of this transformation is a complex task, since amounts of each phase  
varies simultaneously with the microstructural parameters. We managed, however, 
by whole pattern fitting, to determine, from the measurements of the peak widths, 
the evolution of the mean size of the crystals according to the thermal processing 
temperature. The sizes obtained for the tetragonal crystals of zirconia are shown in 
Table 6.1. Note that, for small thermal treatment temperatures, the sizes measured 
are extremely small (roughly 2 nm). 
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Figure 6.11. Whole pattern fitting of the diffraction pattern reported in Figure 6.9.  

The calculated curve is shown in grey 

Thermal treatment 
temperature 350°C 450°C 600°C 700°C 900°C 1,000°C 

Mean size (nm) 1.9 3.5 4.5 5.1 10.8 21.1 

Table 6.1. Mean size of the crystals in a zirconia aerogel  
depending on the thermal treatment  temperature 
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The next experimental illustration involves a zirconia xerogel. The samples and 
diffraction patterns used in this study have already been described in Part 1 of this 
book, when we discussed the quantitative phase analysis by whole pattern fitting of 
diffraction patterns (see section 4.2.2.2). In order to make the reading easier, we will 
show again the evolution of the diffraction patterns according to the temperature, as 
well as an example of whole pattern fitting. These two graphs correspond to Figures 
4.3a and 4.3b from Chapter 4. 
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(a) Evolution of the X-ray diffraction patterns of zirconia xerogels  
fired for 1 hour at different temperatures 
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(b) Whole pattern fitting of the diffraction pattern obtained with a sample fired at 800°C 
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(c) Evolution of the microstrains according to the size of the crystals in a zirconia 
xerogel fired for 1 hour at different temperatures 

Figure 6.12. Combined study of the evolution of the mean grain size and of the amount of 
microstrain rate, according to the temperature of the thermal treatment, in zirconia xerogels 

The experimental and fitted diffraction patterns obtained for the xerogel fired for 
one hour at 800°C are shown in Figure 6.12b. As we showed in Part 1 of this book, 
the increase of the thermal treatment temperature causes the transformation from 
tetragonal to monoclinic zirconia. This process is related to how the crystals grow. 
We tracked this phenomenon by studying the evolution of the mean crystal size and 
of the microstrain amount  inside the crystals according to the temperature. The 
result is shown, for tetragonal zirconia crystals, in Figure 6.12c. As you can see, the 
increase in mean size occurs alongside a significant decrease in the microstrain 
amount [SIL 96, GUI 96]. 

In the two examples we have just described, the diffraction peaks associated 
with the different phases of zirconia show a significant overlap. Only whole pattern 
fitting can lead to reliable results.  

6.3. Microstructural study by Fourier series analysis of the peak profiles 

6.3.1. Direct analysis: the Bertaut-Warren-Averbach method 

In Chapter 5, we showed that the diffracted intensity distribution can be written 
as a Fourier series with coefficients which are directly related to the microstrain 
amount. Thus, the peak profile is expressed as: 



Microstructural Study of Randomly Oriented Polycrystalline Samples     263 

2 n
e hkl

n n2
n

Ki N F
I(2 ) A cos 2 nl B sin 2 nl

sin

=+∞

=−∞

θ = π + π
θ ∑  [6.33] 

with: 

n
n n

3

N
A cos 2 lZ

N
= π  and n

n n
3

N
B sin 2 lZ

N
= − π  [6.34] 

and we can write that the cosine term is the product of the coefficients related to the 
size by the coefficients related to the microstrains. Thus: 

An = AnT AnD  [6.35] 

From these relations, Warren and Averbach suggested, in the 1950s, a method to 
separate the effects of size from the effects of microstrains. They observed that the 
size term which is written in the form AnT = Nn/N3 does not depend on the 
diffraction order l, whereas this order plays a role in the expression of the term 
related to the microstrains. 

The microstrains found inside the crystals correspond to small amplitudes 
displacements, which means that the value of Zn must be small. The cosine can thus 
be expanded closer to zero. We obtain: 

2 2 2
n ncos 2 lZ 1 2 l Zπ → − π  [6.36]  

and therefore: 

( )T T 2 2 2
n n n nA A A 2 l Z= − π  [6.37] 

Warren and Averbach suggested switching to the logarithm of this expression, 
leading to: 

( )2 2 2
n nln cos 2 lZ ln 1 2 l Zπ = − π  [6.38] 

For small values of l, we can expand the logarithm and write: 

2
n

22
n Zl2lZ2cosln π−=π  [6.39] 
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and finally: 

2
n

22T
nn Zl2AlnAln π−=  [6.40] 

If, for a given sample, we measured several reflection orders (001), (002), (003) 
etc., and if we extracted the cos An coefficients, we could plot the evolution of lnAn 
according to l2 for a set value of n. The y-intercepts give us the size coefficients 
AnT, whereas the coefficients related to the distortions are obtained from the slopes 
of these lines. 

The distance cnL =  represents the distance between the two cells before the 

distortion. The lattice deformation causes a variation nZcL =∆ . The ratio ∆L/L 
corresponds to the deformation along the direction defined by c . Let εL be this 
ratio. Note that εL = Zn/n and that the slopes of the lines shown in Figure 6.13 is 

written 2
n

22 Zl2π− . Therefore, the slopes of these lines lead us to a mean value of 

the square of the deformation along the direction in question. 

The graph shown in Figure 6.13 assumes that l is small. Note that if several 
reflection orders are taken into account, this is no longer true. We only get straight 
lines when l is small, but that it is precisely the situation in which the lines are 
extrapolated in order to find the values at points l = 0. 
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Figure 6.13. Evolution of the logarithm of the Fourier series cosine  
coefficient according to the square of the Miller index l 



Microstructural Study of Randomly Oriented Polycrystalline Samples     265 

However, an additional hypothesis makes it possible to solve this problem. If we 
assume that the deformation distribution is a Gaussian function, we can write: 
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Additionally: 
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Therefore, we get: 

2
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22 Zl2D
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=  [6.46] 

Thus, with a Gaussian deformation distribution, relation [6.40] is valid for any l 
and therefore the lines in Figure 6.13 are straight. This condition on the shape of the 
microstrain distribution is known as the Warren and Averbach hypothesis. 

Nevertheless, there is no reason to assume a priori that the microstrain 
distribution is in fact Gaussian. Delhez and his colleagues [DEL 76, DEL 80] 
suggested an alternative to the Warren and Averbach hypothesis. Based on equation 
[6.37], obtained after expanding the cosine, if we plot the evolution of An according 
to l2, the resulting line makes it possible to determine directly the size and the 
microstrain rate. 
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In order to interpret the values of the terms AnT related to the size of the crystal, 
and obtained from the graph in Figure 6.13, we will consider a new variable, 
denoted by p(i), which is the fraction of columns (with respect to all of the cell 
columns), that contains i cells. The values of the term Nn are written: 
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If we consider a continuous function p(i), the size term has the following 
expression: 

T
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In order to determine the mean length of a column, which is given by cN3 , we 
will assume that AnT continuously varies according to n and calculate the derivative 
of this function with respect to n. We get: 
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The limit of this derivative when n tends to 0 is written: 
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This result shows that the intersection of the tangent to the line AnT = f(n) at 
point n = 0 with the x-axis is equal to N3. Therefore, the graph of AnT = f(n) can be 
used to determine the value of cN3 , which is the mean crystal dimension in the 
direction perpendicular to the (001) planes. This result is illustrated qualitatively in 
Figure 6.14. 

An
T

n

1

N3  

Figure 6.14. Measurement of the mean crystal size in the direction  
perpendicular to the (001) planes based on the Fourier analysis 

If we go back to equation [6.52], we can calculate the second derivative with 
respect to n of the coefficients AnT. This derivative is written: 
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This relation, first laid out by Bertaut [BER 49], shows that the Fourier analysis 
of the peak profiles makes it possible to obtain the size distribution. Later on, we 
will give an experimental illustration of this method, which constitutes one of the 
main purposes of Fourier analysis. 

Methods based on the Fourier analysis of the peak profiles have an intrinsic 
flaw, since it is necessary for each studied peak to be clearly isolated. If several 
peaks partially overlap, the resulting experimental signal corresponds to the sum of 
the elementary contributions, in which case it is impossible to extract the Fourier 
coefficients of each peak. This is why, in practice, the method suggested by Bertaut, 
and then by Warren and Averbach was essentially applied to crystals with a cubic 
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symmetry. In the early 1990s, an indirect Fourier analysis method was suggested 
[BAL 93, BAL 99]. 

6.3.2. Indirect Fourier analysis 

Balzar suggested combining the fitting of functions that had been chosen a 
priori with Fourier analysis. This process applies both to peak by peak and whole 
pattern fitting. It consists of fitting the experimental peaks mostly with Voigt 
functions and calculating the Fourier coefficients of the obtained functions. 

Kielkopf [KIE 73] showed that the Fourier coefficients of a Voigt function are 
written as follows: 

( )2 2
L G2l l

nA (l) e
− β +π β

=  [6.55] 

where βL and βG are the breadths of the Lorentzian and Gaussian components of the 
Voigt functions. 

On the other hand, we will assume that the effects of both size and lattice 
distortions are described by a Voigt function, meaning that the resulting function 
will also be a Voigt function. We can then write: 

βL = βLT+βLT and βG2 = (βGT)2+(βGT)2  [ 6.56] 

hence: 

( )T 2 T 2
L G2l l ( )T

nA (l) e
− β +π β

=  and ( )D 2 D 2
L G2l l ( )D

nA (l) e
− β +π β

=  [6.57] 

From these relations and by applying equation [6.53], we get the mean crystal 
size: 

( ) ( )
⎥⎦
⎤

⎢⎣
⎡ βπ+β−

=
βπ+β−

→

2T
G

2T
L )(ll22T

G
T
L0l

e)(l22lim

1D  [6.58] 
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hence: 

T
L2

1D
β

=  [6.59] 

We showed that, if we assumed a Gaussian microstrain distribution, then the 
Fourier coefficients related to these microstrains can be written: 

2
n

22 Zl2D
n e)l(A

π−
=  [6.60] 

Let us recall that L n c= , nZn=ε  and l c d= . From this, we infer that the 
relation above can be written as: 

2
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=  [6.61] 

Therefore,  

( ) 2 2 2D 2 D 2 l2L G

12 L2L L ( )D d
nA (L) e e

− π ε− β +π β
= =  [6.62] 

and finally: 

D 2 D
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l 2

) 1d
2 L

⎛ ⎞β β
ε = +⎜ ⎟⎜ ⎟π π⎝ ⎠

 [6.63] 

This means that Voigt function fitting makes it possible to determine the size and 
the microstrain rate of each family of planes, along the direction perpendicular to 
this family of planes.  

We will illustrate this process by considering again the study of the sample, 
comprised of oxide cerium nanocrystals, that was used in the international test led 
by Balzar [BAL 04]. Each of the peaks was fitted with a Voigt function and the 
Fourier coefficients of these fitting functions were then determined. The size 
measurement is shown in Figure 6.15. 
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Figure 6.15. Mean size of oxide cerium crystals measured by  
Fourier analysis of the peaks fitted with Voigt functions 

Likewise, from this Fourier analysis, we determined the size distribution of these 
crystals as well as the microstrain distribution. The results are shown in Figure 6.16. 
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Figure 6.16. Size and microstrain distributions measured by  
Fourier analysis of peaks fitted with Voigt functions 

6.4. Microstructural study based on the modeling of the diffraction peak profiles 

The intensity distribution, as we have explained several times in this chapter, is 
the result of the convolution of a set of functions expressing, on the one hand, the 
contribution from the instruments and, on the other hand, various contributions 
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associated with each of the microstructural features specific to the sample. So far, 
the methods we have described for studying microstructures have consisted of a 
deconvolution, either directly by using the approach designed by Bertaut, Warren 
and Averbach or by reducing the profile problem to an integral breadth problem. In 
any case, the goal is always to extract microstructural parameters by decomposing 
the profile into different contributions. 

Over the past few years, an alternative method has appeared. This time, it 
consists of directly comparing the measured signal with the one that was calculated 
by the successive convolutions of functions expressing the different effects of the 
instrument and the microstructure. We already mentioned this “modeling approach” 
in the first part of this chapter. We will now explain how it is implemented in order 
to determine the size and the microstrains. 

Current developments of this approach often lead to modeling the entire diagram 
at the same time, with the benefit of better dealing with peaks that overlap. 
Naturally, the modeling can also be performed peak by peak. 

The general idea consists of expressing each microstructural effect by way of the 
Fourier coefficients associated with the intensity distribution it generates. As we 
have already said in section 6.1.2, the integrated intensity is then written according 
to the following equation: 

∑
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−∞=

π=θ
n

n

inl2D
n

T
n e...AA)n(GK)2(I  [6.64] 

where G(n) corresponds to the instrumental function’s Fourier coefficients, An
T to 

the size effect’s Fourier coefficients, An
D to those related to the microstrains, etc. As 

you can see, it is possible to generate a profile model that accounts for all of the 
sample’s microstructural characteristics. 

Several authors, and in particular the group led by Scardi [SCA 99, SCA 02, 
SCA 04a, LEO 04, SCA 06], applied this method to the combined study of grain 
size and microstrains, and even of stacking faults [SCA 99]. The same method is 
used to estimate the dislocation density [UNG 99a]. 
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Figure 6.17. Evolution of the size distribution in zirconia  
aerogels according to the thermal treatment temperature 

We will illustrate this method by going back to the study of zirconia aerogels 
that was presented in section 6.2.5. This study was led by Conchon as part of his 
final project as a student engineer [CON 04]. 

Several patterns, similar to that shown in Figure 6.9, were produced for different 
thermal treatment temperatures. These patterns were modeled according to the 
method we have just described, and we extracted, in particular, the size distribution 
functions of the tetragonal zirconia crystals. The resulting curves are shown in 
Figure 6.17. Clearly, increasing the thermal treatment temperature significantly 
widens the crystal size distribution. 

The mean sizes and standard deviations characterizing the distributions shown in 
Figure 6.17 are listed in Table 6.2. These values are compared with those given 
before in Table 6.1, which were obtained by using the integral breadth method. 
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Thermal processing 
temperature 350°C 450°C 600°C 700°C 900°C 1,000°C 

Mean sizes obtained by 
modeling (nm) 2.2 3.2 5.3 6.5 13 24.6 

Standard deviations 
obtained by modeling 0.8 1.1 1.5 1.8 4.7 9.5 

Mean sizes obtained by 
using the integral breadth 

method (nm) 
1.9 3.5 4.5 5.1 10.8 21.1 

Table 6.2. Mean values and standard deviations of crystal size in the zirconia aerogels 
according to the thermal annealing  temperature 

As you can see, the mean sizes obtained by modeling are slightly greater than 
those found from the integral breadth method. Naturally, the main advantage of the 
modeling method is that the distribution functions of the microstructural 
characteristics are known. 
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Chapter 7 

Microstructural Study of Thin Films 

Over the past 20 years, there have been many developments in the field of thin 
film analysis by X-ray diffraction, leading to the possibility, with the adequate 
equipment as we saw in Part 1, of studying films tens of nanometers or even a few 
nanometers in thickness [ACK 94]. 

There are two different ways to conduct this type of study. Many consist simply 
of optimizing the measurement conditions (incidence angle, etc.) and producing 
diffraction pattern diagrams of polycrystalline films, whether textured or not. The 
information is then interpreted as if the patterns had been produced with bulky 
samples. The study of epitaxial films constitutes another aspect of thin film 
diffraction. This time, the measurements are made in very specific conditions with 
the adequate equipment, which was described in Part 1 of this book. The 
information gathered this way, as well as how it is interpreted, is specific to this 
field of X-ray diffraction. In this regard, the study of epitaxial thin films deserves a 
chapter of its own in the field of X-ray diffraction [DUN 97, HOL 99, PIE 04]. The 
methods used often borrow from concepts developed in the context of single crystal 
studies and the instruments used are described as high resolution systems. When the 
crystals inside epitaxial films show a very small disorientation, typically smaller 
than a tenth of a degree, it is often necessary to rely on the dynamic theory of 
diffraction to process the data. We will not be dealing with this particular area, that 
is, all of the experimental illustrations described here will be explained in the 
context of the kinematic theory of diffraction. In this chapter, we will first present 
the study of polycrystalline films with or without texturation and in the second part, 
we will discuss the study of epitaxial films. 
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Regardless of what type of film is studied, the sample has to be positioned with 
great accuracy. In particular, it has to be possible, most of the time, to precisely 
define the X-ray beam’s incidence angle on the film. We will start this chapter by 
presenting a methodology for positioning the sample inside the diffractometer in the 
optimal way. In practice, when conducting actual measurements, the sample is not 
always positioned as accurately as in what we will describe, but this constitutes a 
priori a limitation for the study. In Part 1 of the book, we described sample holders 
that were adequate for studying films. As we have already mentioned, these sample 
holders were often designed based on equipment developed for studying single 
crystals. In the following section, we will present a typical sample holder and 
describe how it is adjusted. Actual sample holders are more or less close to this 
equipment, but the adjustments described have to be performed. 

7.1. Positioning and orienting the sample 

The sample has to be placed on a sample holder that enables the user to orient it 
so as to have the normal to its surface parallel to the rotation axis φ. That way, 
during the acquisition of the diagram, the sample can be rotated around φ without 
modifying the incidence angle. When the film is deposited on a single crystal 
substrate, the adjustments consist of using the crystallographic axes of this single 
crystal as the frame of reference. If the substrate is polycrystalline or amorphous, the 
sample’s frame of reference is then the surface of the substrate or of the film1. 

We will first describe how to orient the sample when the substrate is a single 
crystal, in which case this single crystal has to be in a fixed frame of reference 
attached to the diffractometer. The diagram of a complete sample holder that can be 
used to obtain a suitable orientation was shown in Figure 2.68 (Chapter 2) but is 
also shown in Figure 7.1, out of convenience for the reader. 

 

                                   
1 Usually, in this case, only two reference directions are available, which are those that define 
the surface, whereas, of course, if the substrate is a single crystal, the frame of reference is 
comprised of three directions. Note, however, that if the substrate is amorphous or 
polycrystalline, the film is rarely epitaxial and therefore knowing the orientation with respect 
to two directions is usually enough. 
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Figure 7.1. Kinematic diagram of a five-axis sample holder 

We will consider five different orthonormal sets of coordinates: 

1

X-ray beam
R Rotation axis  

translation axis of the entire sample holder

⎧
⎪= ω⎨
⎪
⎩

 

2

Rotation axis 
R Rotation axis  

normal to the axis 

ω⎧
⎪= φ⎨
⎪ φ⎩

 3 1

1

Rotation axis 
R Rotation axis  

normal to the axis 

φ⎧
⎪= χ⎨
⎪ χ⎩

 

1

4 2

2

Rotation axis 
R Rotation axis  

normal to the axis 

χ⎧
⎪= χ⎨
⎪ χ⎩

 2
5

Rotation axis 
R  

Diffracting plane
χ⎧

= ⎨
⎩
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The basic transformation matrices between these different sets of coordinates are 
written: 
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⎥
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54
cos0sin

010
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M  

Based on these matrices, we can lay out a simple relation between the Bragg 
angle of a given family of planes and the angles ω, φ, χ1 and χ2: 

sin θ = cos ω (cos φ sin χ2 + sin φ sin χ1cos χ2) + sin ω cos χ1 cos χ2 [7.1] 

The solution to this equation is: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
++−=ω 22

222

BA
CBAABC arcsin    [7.2] 

with: 
A = cos φ sin χ2 + sin φ sin χ1 cos χ2 
B = cos χ1 cos χ2     [7.3] 
C = sin θ   

Based on this relation, the positioning method goes as follows: the sample is 
placed on the sample holder with arbitrary values given to χ1 and χ2. For several 
values of φ along a semi-circle, the angle ω is adjusted so as to have the chosen 
family of planes diffract at a maximum intensity. From the pair (φ, ω), we can easily 
obtain the values of 0

1χ  and 0
2χ  by using least squares refinement. An example of 

such a refinement is shown in Figure 7.2. 

This method requires the film to be produced on a single crystal substrate. This is 
the best situation, since the X-ray diffraction selectivity on the single crystal makes it 
possible to orient the sample with an accuracy in the range of a thousandth of a 
degree [BOU 01a]. When the film is deposited on a polycrystalline or amorphous  
substrate, others methods exist, derived from the one we have just described. 
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Figure 7.2. Determining the values of χ1

0 χ2
0 and ω0  

by refining the evolution of ω according to φ 

The sample is placed the same way as before on the sample holder. For a given 
value of φ, the angle ω is changed by observing the evolution of the intensity of the 
direct beam. When ω increases, this intensity increases and then decreases beyond a 
certain value. When the value of the intensity is at its maximum, the surface of the 
sample is parallel to the direction of the incident beam and therefore the incidence 
angle is zero. As before, this measurement is made for several values of φ by taking 
note each time of the value obtained for ω. The pairs (φ, ω) are plotted in a refinement 
procedure, such as the one shown in Figure 7.2, and we thus infer the adjustment 
values for the cradles, as well as the value of ω, such that the incidence angle is zero 
for any φ. 

 
The same method can be chosen by using the X-ray beams reflected on the 

surface of the film. This method is more difficult to implement than the previous 
one, since it requires separating the contributions from the reflected beam and those 
from the direct beam. However, if the quality of the incident beam (parallelism and 
monochromaticity) is high enough to enable this separation, then the adjustment will 
be accurate. 

7.2. Study of disoriented or textured polycrystalline films 

7.2.1. Films comprised of randomly oriented crystals 

As we showed in Chapter 1, when a bulky sample, comprised of an infinite 
number of grains with perfectly random orientations, is irradiated with a 
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monochromatic X-ray beam, the locus of the beams diffracted by all of the crystals 
is a series of cones with half opening angles 2θ, where θ is the Bragg angle. When 
the polycrystalline sample is a thin film in which the crystals always have a random 
orientation, the phenomenon described above is still true. The problem is essentially 
experimental, but it is a difficult one. First, the X-ray beam has to hit enough matter 
to obtain a significant signal. Furthermore, even if the irradiated volume is 
sufficient, the number of grains must be  very high, which means that the size of the 
grains must be  much smaller than the thickness  of the film. When this latter 
condition is not met, the orientation can no longer be described as random, which is 
a case we will discuss later on. We saw in Chapter 2 how the sample has to be 
irradiated at a low incidence angle, in the range of a fraction of a degree. The 
corresponding configuration is shown in Figure 7.3. 

2θ

αIncident angle:
Film

 
Figure 7.3. Observation at a low incidence angle of a polycrystalline  

thin film in which the crystals are randomly oriented 

Once an estimate of the film thickness width is known, it is possible to choose 
the incidence angle that will lead to the highest possible irradiated volume. This 
angle is determined from the mass absorption coefficient and the density. We have 
seen in Chapter 2 that the adequate incidence angles for films which are a few tens 
of nanometers thick are in the range of a few tenths of a degree. 

However, we have to point out three limitations to this approach. First of all, it is 
easy to determine the absolute density of the material in question if the film’s 
chemical nature is known but, most of the time, the films produced have a 
significant residual porosity and, there is a chance that the path of the X-ray beams 
inside the material will be longer than estimated. Additionally, when a sample is 
irradiated at a very low angle, the beam is completely reflected and do not 
penetrates the film at all. Therefore, we have to work beyond the critical angle 
characteristic of this effect. The value of this angle, which depends on the density of 
the phase, is usually between 0.2 and 0.5°. Finally, it is important to choose an 
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incidence angle such that the irradiated surface is no larger than the sample’s actual 
surface.  

We will illustrate these considerations with the example of a study of a thin film of 
zirconia deposited on a single crystal of magnesia. The sample was produced by 
dipping the substrate in a precursor solution of zirconia. After the drying, a first 
thermal processing for one hour at 600°C led to the crystallization of the zirconia [GUI 
98, GUI 99]. A qualitative observation was made by electron microscopy on a cross-
section of the sample. A characteristic micrography is shown in Figure 7.4a. The 
thickness of the zirconia film is about 50 nm. This is very small for a randomly 
oriented polycrystalline film and obtaining a useable signal is the main problem. Very 
often, the only solution is to use a diffractometer with a synchrotron radiation source. 
We conducted this study in a laboratory by using the diffractometer shown in Figure 
2.36. The pattern, produced in these conditions with an incidence angle equal to 0.35° 
and an acquisition time of 12 hours, is shown in Figure 7.4b [GUI 98, GUI 99]. The 
diffraction peaks characteristic of tetragonal zirconia are clearly visible and the 
measured intensities are consistent with the JCPDS entry for that phase. 
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Zirconia

100 nm100 nm
 

(a) Transmission electron microscopy observation of a section of the sample 
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(b) X-ray diffraction pattern obtained at an incidence of 0.35° 

Figure 7.4. Study of a 50 nm thick, randomly oriented, polycrystalline film of zirconia 
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Figure 7.5 shows a series of patterns obtained for identical samples annealed at 
different temperatures. The increase in the processing temperature causes a clearly 
visible decrease in peak width. The complete process will not be explained here, but 
this phenomenon corresponds to the growth of zirconia grains, similar to what we 
described in Chapter 6 with the study of the microstructure of aerogels and xerogels. 
This result indicates that the study, beyond simply determining which phases are 
present, also makes it possible to track, at least qualitatively, the microstructural 
evolution of the film in question. Some authors have thus implemented methods 
which are specific to the microstructural analysis on patterns obtained with 
polycrystalline films [BIM 83, SCA 97, SUT 95]. This type of study is particularly 
difficult since, generally speaking, the beam’s incidence angle with the sample is 
small and the contribution from the instrument to the widths of the peak is 
significant. We note, however, that this effect will be limited if the diffractometer is 
equipped with long back analyzer slits, or if a synchrotron source is used. 
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Figure 7.5. Evolution of the diffraction pattern  
according to the sample annealing temperature 

The choice of the experimental illustration shown in Figures 7.4 and 7.5 was 
deliberate, based on the fact that a thickness of a few tens of nanometers for the film 
makes the measurement difficult. Note that when the thickness reaches a few 
hundred nanometers, the measurement quickly becomes much easier and the 
problem is close to the general case of studying randomly oriented polycrystalline 
samples. When the film is very thin, as it is here, one of the necessary conditions is 
to have a perfectly plane substrate. 
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 The design of functional systems often leads to the production of multi-layered 
objects in which each layer has a specific function which is different from the 
function of the layer that supports it. It is common to come across samples 
comprised of three or four different layers2. These systems are sometimes the result 
of superficial changes in the substrate (an oxidation, for example) or they are 
produced by creating consecutive deposits. In both cases, the nature and the relative 
rate of each phase is a key question. X-ray diffraction is one of the only non-
destructive techniques that can be used to determine these parameters. 

Consider a sample comprised of n films with given nanometric thicknesses e. If 
we irradiate this sample at a high incidence angle, the resulting pattern will contain 
the characteristic peaks of all the phases contained in each film. By decreasing the 
incidence angle, the outer films will be favored and for a low incidence angle, which 
can easily be determined if the thicknesses of the films are known, only the 
characteristic peaks of the phases contained in the last film of the sample will be 
visible (see Figure 7.6). 
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Figure 7.6. Study of a multi-layered sample comprised of randomly oriented crystals 

                                   
2 We are dealing here with polycrystalline layers comprised of randomly oriented crystals. 
Multi-layered objects comprised of epitaxial films often include dozens of layers (see, for 
example, [KID 03]) but this is beyond the scope of this section. 
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From a more general standpoint, if we consider a polyphase sample with a 
concentration gradient that extends over a depth of a few tens of micrometers, then 
X-ray diffraction at a fixed incidence can be used for producing concentration 
profiles based on measurements of diffracted intensities. Quantitatively determining 
concentrations requires accurately taking into account the irradiated volumes. 
Relations inferred from the equations given in section 2.3.1.2 have been laid out and 
are nowadays relatively often used [SCA 93]. 

An experimental illustration of the study of such objects, made of several 
polycrystalline films, is shown in Figure 7.7. We realized a sample comprised of a 
titanium oxide film placed on top of a zirconia film, all of this deposited on a 
sapphire substrate. The titanium oxide film is roughly 20 nm wide and the zirconia 
film about 50 nm wide. Two diffraction patterns obtained with the incidence angles 
0.25 and 0.5°, respectively, are shown in Figure 7.7. Each pattern contains, in the 
zone we are focusing on, the main peak for the anatase and that for the tetragonal 
zirconium dioxide. As you can see, however, the incidence angle significantly 
modifies the intensity ratio of these two peaks. When the incidence angle decreases, 
the diffraction signal corresponding to the titanium oxide increases.  

20 25 30 35 40
2θ

Anatase

Zirconium dioxide

ω = 0.5°

ω = 0.25°

 

Figure 7.7. Influence of the incident X-ray beam’s incidence angle on the  
diffraction pattern of a sample comprised of a titanium oxide film  

and a zirconia film, deposited on a sapphire substrate 
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7.2.2. Studying textured films 

A layer, by definition, is two-dimensional. This macroscopic situation often 
leads to a non-random orientation of the crystals that comprise the deposit. It is 
understandable that, inside a polycrystalline film growing on an oriented single 
crystal, the crystals tend to grow in non-random crystallographic directions. This is 
why the idea of studying the structure is often associated with the study of crystal 
orientation. In the previous section, we saw how to characterize randomly oriented 
polycrystalline films. In this section, we will describe the methods that make it 
possible to determine and study crystallographic orientations inside textured thin 
films. Generally speaking, the word texture is used when the crystals inside the 
sample have non-random orientations. The situation where all the crystals have the 
same orientation in the three directions of space is called epitaxy and it will be 
discussed later on. 

7.2.2.1. Determining the texture 

Let us go back to Figure 7.3 and imagine that the crystals inside the film no 
longer have random orientations. This situation can be described by Figure 7.8a. 
The diffraction cones are no longer continuous. For a given angle 2θ, some 
directions characterized by a given angle φ are favored. It is also possible to observe 
the absence of certain diffraction cones corresponding to families of planes specific 
to the phases in the film.  

Incidence angle: α
Film

φ3

φ1

φ2

2θ

 

(a) Diagram of the diffraction signal’s spatial distribution obtained with a textured film 
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(b) Demonstrating a texture by using a diffractometer equipped with a plane detector 

Figure 7.8. Observing a textured film 

Experimentally, the effect of texture on the resulting signal depends on the 
device used. If a large plane film is placed perpendicularly to the axis of the incident 
beam shown in Figure 7.8a, the resulting figure will correspond to the intersection 
of the diffraction cones with that plane. If the film is textured, the diffraction figure 
will be similar to the one shown in Figure 7.8b.  

We saw that studying thin films makes it necessary for the diffraction patterns to 
be produced at a fixed and controlled incidence. We will assume that we are 
conducting an experiment with this type of equipment and that we want to find out 
whether the film is textured or not. 

The first way of showing a texture effect directly corresponds to the diagram 
shown in Figure 7.8. If a plane detector is placed as shown in this figure, the texture 
effect is directly visible. The simplest plane detector is a photographic film, but 
texture systems based on plane photographic films hardly exist anymore. Lately, 
however, this geometry has sparked some interest since large plane solid detectors 
have become available (see Chapter 2). The use of these detectors, whether gas or 
solid, is constantly growing and they are beginning to be built on laboratory devices 
[HE 02, DIC 02], whereas only a few years ago, they were only used with 
synchrotron radiation. 

When producing a diffraction pattern in asymmetrical geometry with a punctual 
detector, the presence of a preferential orientation of the crystals comprising the film 
should, for a given phase, lead to discrepancies between the measured intensities 
and those found in the JCPDS entry for that phase. When the film is irradiated at a 
low angle, the value of this angle should have no particular relation with the angular 
positions of the diffracting planes. As a result, all we observe are intensity gaps 
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which would be unwise to interpret directly. Note, additionally, that even if no 
variation with respect to the JCPDS entry is observed, the film can still be partly 
oriented. For example, if the film contains a certain amount of grains for which the 
(hkl) planes are parallel to the substrate’s surface, they will not diffract when this 
film is irradiated at a low incidence angle and therefore will not affect the intensity 
measurements. However, by varying the incidence angle slightly at random, a 
textured film will show non-random intensity variations. 
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(b) Observation of a zirconia film in which the grains are oriented  
so as to have the (002) planes parallel to the surface of the sample.  

The incidence angle ω is equal to the Bragg angle θ(002) 

Figure 7.9. Illustration of a preferential orientation 
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When the film is suspected of being textured either from intuition or from 
preliminary observations similar to what was described above, finding evidence of 
these preferential orientations has to be done according to a rigorous method. By 
using an asymmetrical diffraction configuration, the sample is irradiated at an 
incidence angle α, such that the angle between certain planes of the oriented grains 
and the beam is equal to the Bragg angle θi of this family of planes (see Figure 
7.9a). In this situation, a high intensity should be observed, with only one peak3 in 
the pattern, the position of which should be equal to 2θi. This configuration is 
illustrated experimentally in Figure 7.9b [MAR 98]. 

If, for a given family of planes (hkl), the situation described above occurs, then 
knowing the angle between this family of planes and another with Miller indices 
(h’k’l’), we can determine the angle at which the sample should be irradiated in 
order for this family of planes (h’k’l’) to be in the Bragg position. This will enable 
us to confirm that the sample is, in fact, textured. From this standpoint, it is simple 
and better to irradiate the sample at an angle such that the family of planes (2h2k2l) 
is in the Bragg position. Note that this process implies irradiating the sample at 
angles that are not necessarily small. The volume and hence the number of 
diffracting grains are usually small. However, most of the time, the observed signal 
is significant because there is a large number of crystals precisely oriented in the 
position in question, which diffract a considerable intensity. 

Other methods for finding evidence of preferential orientations, slightly different 
from the one described above, are sometimes found in other works. The sample is 
studied by symmetrical diffraction (Bragg-Brentano system). In the case of textured 
films, the resulting pattern  is very peculiar and it is important not to misinterpret it. 
Thus, for a diffraction pattern produced with this type of system, the angle between 
the sample and the X-ray beam varied continuously while the measurement was 
taking place (see Chapter 2). If the film contains grains in which a family of planes 
is parallel to the surface of the substrate, when the beam’s incidence angle with the 
sample reaches the value of the Bragg angle for that family, a high intensity will be 
measured. We could then conclude to the existence of a preferential orientation but 
we would still have to characterize it. On the other hand, if no abnormally high 
intensity is measured when the incidence angle varies, there is no reason to conclude 
that there is no preferential orientation inside the film, since it is quite possible that 
the grains have a non-random orientation but they are not parallel to the surface of 
the substrate4. A Bragg-Brentano system, in some specific cases, makes it possible 

                                   
3 Other peaks can appear if the incidence angle is such that other planes are approximately in 
the Bragg position, or if part of a film is comprised of randomly oriented grains. 
4 Aside from this intrinsic aspect of the sample, Bragg-Brentano systems usually are not 
equipped with a support that makes it possible to orient the sample accurately with respect to 
the diffractometer’s frame of reference. Thus, an angular error in the positioning of the 
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to find evidence of preferential orientation rather quickly. However the 
interpretation of the observed signal is difficult [TIZ 96]. The concept of an 
orientation factor, which is sometimes found in other works and mentioned from 
patterns  realized in these conditions, has no physical meaning. 

We described in detail the method for illustrating a non-random orientation of 
grains in a film. We are now going to continue by describing the methods for 
quantifying this orientation. 

7.2.2.2. Quantification of the crystallographic orientation: studying texture 

Quantitative texture studies are conducted with the specific instruments we 
described in Part 1. Chapter 4 dealt with the traditional applications of diffraction on 
polycrystalline samples and not with quantitative texture study. It is clear, however, 
that this kind of measurement, which involves polycrystalline materials in general, 
whether in the form of films or not, is an important and very old application [KNI 
13] of X-ray diffraction. We have decided, however, not to deal with this particular 
field, since other books are available that discuss it in detail [BUN 82, BUN 99]. 

Regardless of what type of sample or instrument is used, the results of the 
measurements are usually given in the form of pole figures. Without going into 
detail, we will describe these figures and explain how they can be drawn.  

The concept of pole figures 

The pole of a crystal plane with indices (hkl) is the intersection of the normal 
with that plane that passes through the point C and a sphere, centered in C, and with 
an arbitrary diameter. 

Consider a polycrystalline sample placed at a point O. A crystal within this 
sample diffracts for a family of planes (hkl) if and only if the reciprocal lattice point 
associated with this family is on the Ewald sphere with radius 1/λ. By definition, the 
tip of the vector 00 S)1(k λ=  is the origin of the reciprocal lattice and the 
scattering vector S , which links point C with lattice point hkl*, has a norm equal to 
1/dhkl. For all the crystals contained in the sample which diffract for a given family 
of planes (hkl), we observe a set of lattice points hkl* located on a sphere with 
radius 1/dhkl, which is centered in C. By definition, the directions [hkl]* are normal 
to the (hkl) planes and therefore the distribution map of the hkl* lattice points on the 
surface of this sphere is the hkl pole figure. This configuration is shown in Figure 
7.10. 

                                   
sample can significantly modify the intensity diffracted by one peak or another, making the 
measurement highly qualitative. 
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Figure 7.10. Representation of the pole sphere  

The traditional representation of a pole figure is its stereographic projection, 
which associates each point on the surface of the sphere with a point located in that 
sphere’s equatorial plane. This projection is obtained as shown in Figure 7.11. For 
an arbitrary point P located on the northern hemisphere5, the line segment PS is 
drawn, linking that point with the sphere’s south pole. The intersection of this line 
with the equatorial plane is a point p, defined as the stereographic projection of P. 
We will not go into details about this projection, but we should point, however, that 
it leaves angles unchanged, which means that a stereographic projection can be used 
to measure the angles between different directions and, hence, between families of 
planes. 

P

p
O

S  

Figure 7.11. Stereographic projection 

                                   
5 Of course, the reverse situation is true for a point located on the southern hemisphere. 



Microstructural Study of Thin Films     291 

Therefore, an (hkl) pole figure is a disc on which are drawn the projections of 
the contour lines of the diffracted intensity measured on the pole sphere, each line 
corresponding to a given intensity value. An example of such a map is shown in 
Figure 7.12. Modern texture measuring systems are combined with software that can 
directly draw these figures based on the intensity measurements. 

 

Figure 7.12. Example of a pole figure 

Based on the experimental result, determining preferential crystallographic 
orientations observed for a pole figure is done by comparing this figure with the 
corresponding, theoretical stereographic projection for the phase in question. 
Complete texture studies can help determine the orientation density function, which 
is equal, for a given orientation, to the volume fraction of the sample with that 
orientation. General methods have been designed to directly draw such density 
functions based on the intensity measurements. 

As we have already mentioned, this description of quantitative texture 
measurements based on pole figures involves both bulky samples and thin films. 
The experimental conditions may differ in order to optimize the diffracting volumes, 
but this has already been discussed in Part 1 of this book. We will not go into any 
further detail on the study of textured films since, most of the time, it can all be 
reduced to the general case of quantitative texture analysis. 
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7.3. Studying epitaxial films  

When the crystals that comprise the films are all oriented the same way, the first 
study that should be conducted is, naturally, to determine this common orientation. 
The evaluation of the disorientation with respect to the normal to the film-substrate 
interface is performed with the use of rocking curves, whereas the orientation within 
the plane is determined by φ-scans, which consist of measuring the evolution of the 
intensity diffracted by planes that are not parallel to the interface, while the sample 
is rotating around the normal to this interface. These techniques have become 
common and most manufacturers sell diffractometers adapted to this kind of study. 

More recently, measurements have been developed based on the complete 
evaluation of the intensity distribution over the entire diffraction spot. 
This “reciprocal space mapping” [FEW 97] can be used to give an account of all the 
microstructural effects that have an influence on the diffraction signal. Thus, it is 
possible to obtain the distribution functions of orientation, size, morphology and the 
size distribution of the diffracting domains, as well as the microstrains. 

We will first describe the methods for accurately determining the orientation of 
the crystals and then, in a second step, we will explain in detail how reciprocal 
space mapping can be used to quantitatively analyze the microstructure of epitaxial 
films. 

7.3.1. Studying the crystallographic orientation and determining epitaxy relations 

If two crystals are placed side by side, it is possible to define vector relations that 
express the characteristic crystallographic directions of one of the crystals in a set of 
coordinates defined by the cell of the other crystal. These are referred to as epitaxy 
relations. By extrapolation, when the grains that comprise a polycrystalline film all 
have virtually the same orientation, it is possible to define crystallographic axes 
specific to this orientation and to find the relation between these axes and those, for 
example, of the single crystal on which the film is deposited. If the film and the 
substrate share the same crystal nature, we are dealing with homoepitaxy, otherwise, 
it is referred to as heteroepitaxy. Epitaxy relations are three-dimensional and 
therefore they are usually written as follows: 

substrate film

substrate film

(hkl) //(h'k'l')  
[uvw] //[u'v'w']  
⎧
⎨
⎩

 [7.4] 
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In the following sections, we will show how we can find these relations from X-
ray diffraction measurements. As we have just explained, in order for relations of 
this type to make sense, the crystals in the film must all be oriented the same way, 
which means that the film is a quasi-single crystal6. As a result, the relevant 
techniques and vocabulary are often taken from single crystal diffraction. 

7.3.1.1. Measuring the normal orientation: rocking curves 

Consider a heteroepitaxial film on a single crystal substrate. For a given family 
of planes (hkl), specific to the crystal phase that comprises the film, when the 
sample is irradiated at an incidence angle enabling these (hkl) planes to diffract, 
each crystal within the film diffracts and contributes to the intensity of a peak 
located at the angle 2θ given by the Bragg relation. 

However, the angular selectivity of this diffraction effect is very high. If we 
assume that the beam irradiating the crystal is strictly parallel and strictly 
monochromatic, then only the grains that are strictly in the Bragg position will 
diffract for a given value of the incidence angle. When this incidence angle is 
modified, over a certain angular range, other crystals, slightly disoriented compared 
to the previous ones, diffract. The width of this angular range for which a diffracted 
intensity is observed at the angle 2θ is a direct expression of the disorientation of the 
crystals that comprise the film. This process is similar to the one used for estimating 
the mosaicity of single crystals and makes it possible to determine the relative 
disorientation of the grains comprising an epitaxial film. 

An experimental illustration of this kind of measurement is shown in Figure 7.13 
[MAR 00]. The film in the example is comprised of zirconia crystals and has been 
deposited on a sapphire substrate cut parallel to the ( )0211  planes. 

The diffraction pattern shown in Figure 7.13a is similar to the one shown in 
Figure 7.9b. It shows that the zirconia crystals are oriented so as to have their family 
of planes (111) parallel to the substrate’s family of planes ( )0211 . A set of 
diffraction patterns similar to this one was produced by modifying the incidence 
angle inside an angular range of about a degree. As you can see in Figure 7.13b, the 
intensity of the (111) peak diffracted by the zirconia crystals increases and then 
decreases. The resulting rocking curve, obtained by digitally integrating each of the 
patterns, is shown in Figure 7.13c. If we consider that the film is comprised of 
crystals free of any defects, and with a mean size such that there is no widening of 
the diffraction signal, then each diffracting crystal can be associated with a 
                                   
6 We will see later on that we can determine the relative disorientation of the crystals in these 
films. It is often greater, by about a few tenths of a degree, than disorientations between the 
domains of a single crystal. Therefore, the phrase quasi-single crystal should be used with 
care. 
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reciprocal lattice point that is infinitely punctual. The signal spreading out can only 
be caused by the fact that the crystals are slightly disoriented with respect to one 
another7. Therefore, the rocking curve’s width gives a direct evaluation of the 
relative disorientation of the crystals around the normal defining the mean 
orientation. In the case of the illustration shown in Figure 7.13, the relative 
disorientation of the crystals is 0.2°. 
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(a) Diffraction pattern obtained at an incidence angle equal to the Bragg angle θ(111) 
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(b) Evolution of the diffracted intensity plotted according to the incidence angle 

                                   
7 The contribution from the instrument is neglected here. 
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(c) Evaluation of the relative disorientation of the zirconia  

crystals by measuring the width of the rocking curve 

Figure 7.13. Illustration of the normal orientation and evaluation of the relative 
disorientation of the zirconia crystals deposited on a sapphire substrate [MAR 00] 

7.3.1.2. Measuring the in-plane orientation: φ-scan 

Consider a film with a known normal orientation such that a given family of 
planes (hkl) is parallel to a family of planes in the single crystal substrate. There are 
two possibilities: either the crystallographic directions, in the (hkl) plane, of the 
crystals comprising the film have random orientations, or these directions are 
oriented the same way for all the crystals. We will study the latter case. 

If we wish to know the orientation of this (hkl) planes by X-ray diffraction, it is 
necessary, by definition, to conduct a complementary study by making another 
family of planes (h’k’l’) diffract; a family such that its intersection with the (hkl) 
planes is a characteristic crystallographic direction. By choosing as a reference the 
angular position of these (hkl) planes, and by knowing the angle between any 
(h’k’l’) angle of the phase in question and these (hkl) planes, it is possible to 
determine the incidence angle at which the film should be irradiated in order for the 
(h’k’l’) family to be in the Bragg position. Only the families of planes for which this 
incidence angle is positive can be characterized.  
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Figure 7.14. Relative positions of the (113) planes in a film comprised of cubic crystals 

Even if a film is irradiated at the adequate incidence angle, a diffraction signal 
will only be observed if the corresponding planes are in the Bragg position. If the 
in-plane orientation is random, diffraction will occur whatever the value of φ. On 
the contrary, if this orientation is precisely defined, then no signal is obtained, 
except for certain values of φ. The angular gaps between these values only depend 
on the crystal symmetry of the phase in question. Figure 7.14 shows that, when 
studying a film comprised of crystals with a cubic symmetry and a normal 
orientation such that the (h00) planes are parallel to the surface of the substrate, then 
for four different angles φ which are 90° apart, diffraction by the (113) planes 
should be observed. Therefore, evidence of an in-plane orientation can be found by 
conducting measurements incrementally, by varying the angle φ while maintaining 
the incidence angle at a value such that the family of planes that was chosen is 
always irradiated at its Bragg angle. This is called a φ-scan. There are various 
experimental methods for producing this kind of diagram. Most of the time, the 
sample is placed on a sample holder like the one shown in Figure 7.1 and irradiated 
with a parallel beam. A widely open punctual detector is then placed at the angle 2θ 
that was chosen. For each value of φ, the integrated intensity diffracted in the 
vicinity of the angle 2θ is measured. The evolution of this intensity is then plotted 
according to φ. Figure 7.15 shows such a diagram, in which you can see the four 
peaks located at 90° from each other. A diagram like this shows that the film is 
completely oriented in the plane. The four peaks then correspond to the four 
families of planes (113) for which the diffraction is observed. Naturally, the widths 
of the peaks measured during a φ-scan are not equal to zero. These widths are 
related in particular to the relative disorientation according to φ of the different 
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crystals that comprise the film, but also to the axial divergence of the incident and 
diffracted beams. Generally speaking, as we have seen in Chapter 2, these axial 
divergences are in the range of one degree for most systems, even those in high 
resolution configurations. This is why it is important to take this effect into account 
when estimating the in-plane disorientation. 
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Figure 7.15. Diagram of a φ-scan 

In order to experimentally illustrate this kind of measurement, we will describe a 
study conducted, once again, on zirconia films, deposited this time on a single 
crystal magnesia substrate which is cut parallel to its (001) planes. As we have 
described in section 7.2, these films are synthesized by dipping the substrate in a 
solution containing a zirconia precursor. A first thermal treatment leads to the 
formation of a randomly oriented polycrystalline film (see Figure 7.4 and the 
relevant comments). A second thermal treatment, conducted at a high temperature, 
causes the formation of small epitaxial islands  of zirconia on the magnesia substrate 
[GUI 98, GUI 99]. A qualitative illustration of the microstructure of these films is 
shown in Figure 7.16a. This micrographic obtained by plane-view transmission 
electron microscopy clearly shows that the zirconia islands are a fraction of a 
micrometer wide. A preliminary study showed that the zirconia’s (001) planes are 
parallel to the magnesia’s (001) planes. Therefore, we measured the in-plane 
orientation of these crystals by using a φ-scan performed on the zirconia’s (113) 
planes. The resulting graph is shown in Figure 7.16b. The angle φ = 0 corresponds 
to the angle for which the magnesia’s (113) planes diffract. This measurement 
clearly shows that the zirconia’s islands are oriented in the interface plane and, by 
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taking into account the normal orientations determined earlier, the epitaxy relations 
can be written: 

⎩
⎨
⎧

MgO2ZrO

MgO2ZrO

]100//[]100[
)l00//()l00(

 

This situation is often described as “cube-on-cube epitaxy”. 

 
(a) Transmission electron microscopy observation 
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(b) Determining the in-plane orientation of the zirconia crystals.  

Creation of a φ-scan on the zirconia (113) planes 

Figure 7.16. Study of an epitaxial zirconia film on a single  
crystal magnesia substrate [GUI 98, GUI 99] 
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This first case is relatively simple, since it consists of cube-on-cube epitaxy. 
Another, more complex, experimental study is shown in Figure 7.17 [LEG 99]. This 
time, the film is comprised of crystals of SrBi2Nb2O9 deposited on a single crystal 
substrate of SrTiO3 which is cut parallel to its (001) planes. We have already 
described a study of this compound, which crystallizes in an Aurivillius phase, in 
section 6.2.4. In this example, the family of planes (00l) of the SrBi2Nb2O9 phase 
are parallel to the (001) planes of SrTiO3. A φ-scan of the film was conducted by 
measuring the intensity diffracted by the (1115) family of planes in the crystals of 
the film. Knowing that the (00l) planes of these crystals are parallel to the surface of 
the substrate, the sample has to be irradiated at an angle equal to ω = 6.935° in order 
for the (1115) planes of the film’s crystals to diffract. The values of the angle φ were 
referenced with the use of a φ-scan of the single crystal conducted on the (113) 
planes of SrTiO3. Therefore, the angle φ = 0 corresponds to the [110] direction in 
the plane of the substrate-film interface. The graphs shown in Figure 7.17 clearly 
show that the crystals have a strong orientation in the plane, and the epitaxy 
relations are written: 

(00l)SrBi2Nb2O9 // (00l)SrTiO3  and [110] SrBi2Nb2O9 // [100] SrTiO3 
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Figure 7.17. Determining the in-plane orientation of  
a film of SrBi2Nb2O9 deposited on a single crystal of SrTiO3 
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Determining, on the one hand, whether a family of planes of the film is parallel 
to a family of planes of the single crystal substrate8, associated with the rocking 
curve of these planes on the film, and on the other hand, the orientation in the plane 
that was studied with the φ-scan, makes it possible to completely define the epitaxy 
relations between a film and its substrate. These relations are sometimes complex, 
but most of the time, they are laid out between dense planes (low Miller indices) of 
the phases in question. It also happens that the film contains several grain families, 
with some crystals having a given orientation and others being eptiaxial according 
to different crystallographic relations. 

7.3.2. Microstructural studies of epitaxial films 

Films, by definition, have a finite extension along the normal to the interface. 
We assumed at the beginning of this chapter that the word film referred to any 
object through which an X-ray beam could pass. This means that the usual 
thicknesses  are generally smaller than a micrometer. Therefore, the sizes along this 
direction of the coherent diffracting domains will be finite. This results, as we have 
seen in Chapter 5, in an extension of the reciprocal lattice point associated with the 
direction perpendicular to the film-substrate interface. The analysis of this intensity 
distribution should make it possible, in a similar way to what we showed with 
powdery or bulky samples, to determine the size along this direction of the coherent 
domains. If the quality of the film is good enough, that is, if it has few structural 
defects (stacking faults, dislocation pile-ups, grain boundaries, etc.), then the size 
that was measured from this width increase will be equal to the thickness  of the 
film. Likewise, the presence of microstrains will lead to a wider intensity 
distribution. Therefore, it will be possible, by measuring the intensity distribution 
corresponding to different orders of the same family of planes (hkl, 2h2k2l, 3h3k3l, 
etc.) to estimate the microstrain amount  and its evolution inside the film. 

Unlike what we described in Chapter 2, the sample, in this case, is comprised of 
crystals that practically all have the same orientation. Figure 7.18 shows the effect 
of the different microstructural characteristics on the diffracted intensity distribution 
with diagrams drawn in the reciprocal lattice. The diffraction vector q  is 
represented by its components xq , yq and zq . By convention, zq  is chosen as 

                                   
8 Specific synthesis conditions lead to films in which all of the crystals have the same 
orientation, even though these deposits are made on amorphous substrates. In this case, it is 
possible to study the disorientation between the crystals of the film. The methods used are 
similar to those described above, even though in this instance the substrate can no longer 
serve as a reference. 
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being normal to the film-substrate interface. Vector xq  is the incident X-ray beam’s 
projection onto the film’s plane, and vector yq  is orthogonal to the previous two. 

If we assume, first of all, that the film is a perfect crystal, then we can associate 
each family of planes with a reciprocal lattice node which is a point (see Figure 
7.18a). As we have already mentioned, the film’s thickness is finite, thus causing the 
intensity to spread out along zq , which corresponds, for every lattice point, to a 
Laue function (see Figure 7.18b). Note, however, that all the crystals do not have 
exactly the same size. Therefore, the intensity distribution is the sum of a set of 
Laue functions with maximum positions that can vary a little, and the interference 
patterns are somewhat damped (Figure 7.18c). These crystals may contain a certain 
amount of microstrains in the direction perpendicular to the interface. This results in 
additional length for the reciprocal lattice points, a length that increases 
proportionally to the Miller indices of the lattice point in question (Figure 7.18d).  

We have just described the effect of the intensity distribution on the structural 
defects in the direction perpendicular to the interface. Naturally, the size of the 
crystals can also have a finite dimension in the interface plane. This leads to wider 
lattice points in the direction defined by xq (Figure 7.18e). Likewise, the 
microstrains in the interface plane may lead to an increased width along xq . 

The crystals do not all have exactly the same orientation, which is why the 
measured signal is the sum of vertices that are slightly disoriented with respect to 
one another (Figure 7.18f). Note also that interfacial strains can lead to global 
variations of the cell parameters. This leads to displacements of the vertices with 
respect to their reference positions. 

This shows that decomposition of the diffracted intensity’s two-dimensional 
distribution9 should enable us to determine the microstructural characteristics of the 
film. It is initially necessary to measure these intensity distributions, which is 
something referred to as reciprocal space mapping. 

                                   
9 Obviously, the diffracted intensity is three-dimensional. We have neglected the spreading-
out along yq . Three-dimensional mapping would seem possible, but it has been tried only 
recently [GOL 04], particularly because of experimental problems, since the axial divergence 
of the X-ray beam is usually much larger than the equatorial divergence, which is why the 
instrumental contribution along yq  is often the most significant. 
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(b) Influence of the crystal size in the direction normal to the interface 
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(c) Influence of the crystal size distribution 



Microstructural Study of Thin Films     303 

0 x

z

0 x

z

0 x

z

 
(d) Influence of microstrains 
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(e) Influence of the crystal size in the interface plane 
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(f) Influence of the relative disorientation of the crystals 

Figure 7.18. Diagrams, drawn in the reciprocal lattice, showing the influence of the 
microstructural characteristics on the two-dimensional intensity distribution 
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7.3.2.1. Reciprocal space mapping and methodology 

As we have mentioned already, reciprocal space mapping for a given family of 
planes consists of measuring the entire intensity distribution inside the reciprocal 
lattice node associated with this family of planes. However, these measurements are 
only relevant if the intensity is relatively focused, that is, if the lattice node being 
explored is not too spread out. Generally speaking, this approach was initially 
implemented for the study of single crystals [NES 00], and later to characterize very 
high quality films. Most of the studies involve characterizing semiconductor 
materials [FEW 93a, FEW 93b, FEW 97, HOL 95, HOL 97, HOL 99]. These past 
few years, we have implemented this method for the characterization of oxide films. 
The examples given in these last sections are taken from studies of oxide films. 

qz

qx

Detector

2θ

ω

ω scan

Ewald sphere
∆ω

∆2θ

θ−2θ scan

A

B

 

Figure 7.19. Reciprocal lattice mapping. The intensity distribution is measured  
when the reciprocal lattice node associated with the family of diffracting  

planes passes through the Ewald sphere 

The method used for measuring these maps for a given lattice point is shown in 
Figure 7.19. The incident beam irradiates a given family of planes at an angle ω 
which is close to the Bragg angle associated with this family of planes. When angle 
ω varies, the vertex of the reciprocal lattice associated with this family of planes 
passes through the Ewald sphere. For each angle ω, the intensity distribution 
measured around diffraction angle 2θ is noted. This distribution is represented on a 
map I = f (ω, 2θ), which is then converted into units of the reciprocal lattice by 
drawing the intensity distributions along axes qz and qx. 
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qx

qz

qx

qz

 
θ – 2θ scan                          ω scan 

(a)                                             (b) 

Figure 7.20. Diagram of the different possible measurement  
modes on a system equipped with a punctual detector 

If the system is equipped with a punctual detector, it is necessary at each 
incidence angle to move the detector over a certain amplitude in 2θ. This gives rise 
to two different measurement modes. In the first case, the value of the incidence 
angle and that of the measurement angle vary simultaneously so as to ensure that the 
measurement angle is always equal to twice the incidence angle; this is referred to as 
θ − 2θ scan. This measurement consists of creating, along qz, a set of sections of the 
reciprocal lattice node (see Figure 7.20a). In the second case, a measurement 
according to 2θ is made for each value of the incidence angle ω and the mapping is 
comprised of a set of measurements for different values of ω. This is called ω scan. 
This time, the sections are drawn along qx (see Figure 7.20b).  

Whichever of these two modes is chosen, this type of incremental measurement 
necessarily implies long measurement times. An alternative to these methods 
consists of using a curved position sensitive detector. For each value of the 
incidence angle ω, a direct measurement of the intensity distribution according to 2θ 
is made [BOU 02a, BOU 02c, BOU 04]. This makes the mapping much quicker, 
between 10 and 100 times shorter more than with a punctual detector. We should 
point out, however, that this method prohibits the use of analyzer crystals.  

Figure 7.21 shows a mapping of the (111) lattice point in a silicon single crystal 
cut parallel to this family of planes. The evolution of the diffracted intensity 
according to the incidence angle of the X-ray beam on the crystal is shown in Figure 
7.21a. This evolution can also be drawn in two dimensions by using iso-intensity 
lines (see Figure 7.21b). The conversion of this diagram into units of the reciprocal 
lattice is shown in Figure 7.21c. 
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(b) Contour line representation                          (c) Mapping in the reciprocal space 

Figure 7.21. (a) Mapping of the (111) node of a silicon single crystal. 
The intensity is shown in a logarithmic scale in (b) and (c)  

From such a mapping, it is possible to extract the different kinds of one-
dimensional distributions of the diffracted intensity. Thus, the rocking curves are 
obtained by adding all of the intensity along the line AB for each ω (see Figure 
7.19). By measuring the diffracted intensity in 2θ, for each angle ω = θ, we get a  
θ – 2θ scan. This plot is equivalent to a section parallel to the qz axis. Sections along 
the qx axis are obtained by measuring the evolution of the diffracted intensity, for a 
set value of 2θ when the incidence angle ω varies. Finally, if for each angle 2θ, we 
add all of the intensity diffracted for each ω, we get a ω – 2θ scan, which is 
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equivalent to a projection of all the diffracted intensity onto qz, along a direction 
parallel to qx. The latter type of graph is sometimes called a “powder profile”, since 
it integrates the intensity diffracted while the crystal or the film is rotating in the 
vicinity of the Bragg angle. The various sections and projections obtained from the 
mapping of the silicon single crystal’s (111) node are shown in Figure 7.22. 
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Figure 7.22. Shapes and widths of the different one-dimensional intensity distributions, 
obtained from the mapping shown in Figure 7.21. The resulting plots were 

fitted with Voigt functions, with the Gaussian and Lorentzian widths  
of these Voigt functions denoted by βG and βL, respectively 

7.3.2.2. Quantitative microstructural study by fitting the intensity distributions with 
Voigt functions 

We will illustrate this quantitative characterization method of the microstructure 
with a study [BOU 03] conducted on a sample comprised of a lithium niobate film 
which is which is about 500 nm thick, deposited on a sapphire substrate cut parallel 
to the (0006) planes. This film was produced by laser ablation and is epitaxial so as 
to have the (0006) planes of LiNbO3 parallel to the interface and the in-plane 
orientation  is characterized by two variables. The epitaxy relations can be written: 

⎪⎩

⎪
⎨
⎧

 ]110//[]100[or  ]100//[]100[
)0006//()0006(

Sapphire3LiNbOSapphire3LiNbO

Sapphire3LiNbO  

Two maps  obtained in the vicinity of the lithium niobate’s reciprocal lattice 
nodes  (0006) and (00012) are shown in Figure 7.23. A qualitative observation of 
these maps  shows that the intensity distributions are rather spread out. We first 
studied the microstructure of this film along the direction normal to the interface. 
The section along qz, obtained at qx = 0 in the (0006) map, is shown in Figure 7.24. 
The observed profile is typical of an imperfect film: the intensity distribution is 
rather wide and the measured profile does not show interference fringes. The 
absence of fringe is due to the existence of a certain distribution in vertical crystals 
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size. We analyzed this profile by using methods initially designed for diffraction on 
randomly oriented polycrystalline samples (see Chapter 6). Thus, the qz sections 
obtained for the two (0006) and (00012) maps were fitted with Voigt functions. 
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Figure 7.23. Reciprocal lattice maps in the vicinity, respectively, of the lithium  
niobate’s lattice nodes (0006), (a) map, and (00012), (b) map 
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Figure 7.24. Section along qz, at qx=0, of the (a) map.  
The experimental data were fitted with a Voigt function 
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We then analyzed the widths we had obtained by using Williamson-Hall plots. 
These are shown in Figure 7.25. They clearly show the presence of a relatively high 
rate of microstrains, causing a purely Gaussian effect. The effect of size results in an 
essentially Lorentzian increase in width. The microstrain amount and the mean 
crystal size along the normal to the interface are given in Table 7.1. The mean size 
we obtained is 163 nm. Therefore, the crystals comprising the film have a vertical 
size equal to about a third of the film’s thickness. 
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Figure 7.25. Williamson-Hall plots produced for the qz  
cross-sections of the (0006) and (00012) maps  
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Figure 7.26. Vertical size distribution of the crystals comprising the film 

Likewise, from the fitting achieved with the Voigt functions and by using the 
approach developed by Balzar (see Chapter 6), we were able to extract the size 
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distribution along the normal to the interface. This distribution is shown in Figure 
7.26. Note that the distribution tends to zero near 500 nm, which corresponds to the 
film’s thickness. Furthermore, note that the size distribution is rather wide. This 
confirms the interpretation of the absence of fringes. 

 
The microstructural characteristics in the interface plane were determined based 

on sections, along qx, of the maps  shown in Figure 7.23. The two main 
contributions are the lateral crystal size and the relative disorientations of the 
crystals [MIC 95]. The qx section, obtained at qz = 0, of the (0006) map is shown in 
Figure 7.27. Again, we fitted these qx sections with Voigt functions. The respective 
contributions from size and disorientation were separated, the same way as before, 
based on Williamson-Hall plots. These are shown in Figure 7.28. The resulting 
numerical values are listed in Table 7.1. The crystal disorientation is equal to 1.2°, 
whereas their mean size in the interface plane is equal to 25 nm. 
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Figure 7.27. qx section, at qz = 0, of the lithium niobate’s (0006) reciprocal lattice node 
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Figure 7.28. Williamson-Hall plots produced from qx sections  
of the (0006) and (00012) maps  

The results listed in Table 7.1 can be summed up as follows: The film is 
comprised of columns with a mean radius of 25 nm and a mean height of 500 nm, 
and each column is made up of about 3 crystals. Overall, these crystals are 
disoriented by about 1.2° with respect to one another. 

 

Film width 500 nm 

Mean size of the crystals along the normal to the surface  163 nm 

Microstrain rate along the normal to the surface 0.17% 

Mean crystal size in the interface plane 25 nm 

Relative disorientation of the crystals, mosaicity 1.2° 

Table 7.1. Quantitative microstructural characteristics of the niobate lithium film 

This first experimental illustration shows how an analysis, based on methods 
developed for the study of randomly oriented crystals, can be transposed to epitaxial 
thin films. The use of this methodology is particularly relevant, since the film we are 
studying is imperfect (wide size distribution, rather high relative disorientation of 
the crystals, etc.). The assumptions made on the shape of the intensity profiles, 
however, are restrictive. In the following examples, we will see how more 
sophisticated models can lead to more accurate analyses, when the quality of the 
film is high enough. However, we should point out that the process suggested here 
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is particularly effective and rather simple to implement for the study of imperfect 
films. 

7.3.2.3. Quantitative microstructural study by modeling of one-dimensional intensity 
distributions 

In the example we have just described, the size of the crystals shows a rather 
wide distribution, which is why the diffraction profiles measured in the direction 
perpendicular to the interface or in the interface plane are bell curves, similar to 
those obtained for diffraction peaks measured with samples comprised of randomly 
oriented crystals. We will move on to a different case, in which virtually all of the 
crystals, or diffracting domains, are similar in size. 

 
The samples studied in this section are zirconia films deposited on sapphire 

substrates. These films are produced by using a sol-gel method based on a dipping 
process which we have already described. After drying the sample and firing it at a 
low-temperature, we get a polycrystalline film comprised of randomly oriented 
nanocrystals (see section 7.2.1). A high temperature process, in this case, lasting one 
hour at 1,500°C, would yield a set of epitaxial islands of zirconia (see sections 
7.3.1.1 and 7.3.1.2). In our example, and under certain conditions, the zirconia 
crystals grow in directions parallel to the interface [MAR 98]. This leads to 
somewhat interconnected islands with lateral dimensions of about one fraction of a 
micrometer and which are particularly flat. An example of such a microstructure is 
shown in Figure 7.29. These islands are oriented so as to have their (200) planes 
parallel to the film-substrate interface. 

Sapphire

Zirconia

100 nmSapphire

Zirconia

100 nm100 nm
 

Figure 7.29. Cross-sectional observation, by transmission electron microscopy,  
of flat islands of epitaxial zirconia on a sapphire substrate [MAR 98] 

Figure 7.30a shows reciprocal space maps obtained for the zirconia (200) and 
(400) lattice nodes. The sections along qz of these mappings clearly show the 
presence of fringes directly related to the finite dimension of the thicknesses of the 
islands. The section along qz of the (200) lattice node is shown in Figure 7.31a. 
Intensity modulations are clearly visible in this logarithmic plot. These variations 
are corresponding to equal thickness fringes. The resulting curve is similar to a Laue 
function (see Chapter 1). The width of this curve as well as the distance between 
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rings are proportional to the inverse of the size of the diffracting domains (in this 
case, the thickness of the film) [FEW 93a, HOL 99]. The presence of these fringes is 
evidence of a relatively low defect amount  in the zirconia crystals and also of the 
film’s planar form, or rather of the fact that all the islands have almost the same 
thickness. A variation in this thickness, as we explained above, would result in a 
smoother curve and eliminate these fluctuations.  

The intensity distribution obtained can be fitted based on the film’s 
microstructural characteristics. The fitting shown in Figure 7.31b was obtained by 
generating a curve calculated by successive convolutions and taking into account 
the mean thickness of the film, the thickness distribution, the strains and the 
variations of these strains along the thickness of the film. The instrumental 
contribution was included from the evaluation described above. This modeling made 
it possible to show that the film in question has a mean thickness of 62 nm, with a 
standard deviation equal to 6 nm, and mean strains inside the film of 0.2% [BOU 
02d]. 
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 Figure 7.30. Reciprocal lattice maps of the zirconia 
film’s (200) and (400) reciprocal lattice nodes  
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(a) Section along the qz axis of the (200) map shown in Figure 7.30 
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(b) Fitting the qz section shown in (a) 

Figure 7.31. Evaluation of the microstructural characteristics along the normal to the 
interface by fitting the qz sections of the diffracted intensity 

The ω scan of the (200) lattice node, obtained for the section along the qx axis at 
qz = 0, is shown in Figure 7.32. As we illustrated in the previous example dealing 
with the study of lithium niobate, the increase in peak width is a result, in particular, 
of the relative disorientations of the crystals. Therefore, the width of this distribution 
yields an estimate of this mosaicity. For this film, we obtained a relative 
disorientation of 0.2°. 
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Figure 7.32. Section parallel to the qx axis at qz = 0 of the (200) map 

However, an additional phenomenon is observed in the profile shown in Figure 
7.32, with the appearance of fringes with a small period. We produced another qx 
section, but this time, one that does not pass through the center of this reciprocal 
lattice node. This cross-section, obtained at qz = –5.10-3 Å-1, is shown in Figure 7.33. 
This time, the fringes are clearly visible. 
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Figure 7.33. Section of the (200) map, parallel to the qx axis, at qz = –5.10-3 Å-1 
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4 µm
 

Figure 7.34. Observation by in plane-view optical microscopy of the zirconia film 

An observation by in plane-view optical microscopy is shown in Figure 7.34. 
The dark areas correspond to the substrate and the lighter ones to the islands. At this 
scale, the film shows a very peculiar microstructure that indicates a non-random 
distribution of matter. In other words, the relative distances between the islands are 
not random, something which is described as an organized microstructure in the 
interface plane. The fringes shown by X-ray diffraction, in the profile from Figure 
7.33, have a period that is directly related to the correlation length that characterizes 
the distribution of matter observed by optical microscopy. We took this correlation 
length into account when we modeled [BOU 04] the experimental profile. The 
process we used is similar to the one implemented for fitting the qz section but, in 
this case, we included a parameter expressing the periodicity of the distribution of 
matter. The experimental and calculated profiles are shown in Figure 7.35. We 
obtained a correlation length of 410 nm. 
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Figure 7.35. Modeling the intensity profile from Figure 7.33. The fringes are the  
result of the correlation length between the diffracting domains  

This second part of the study shows that, beyond simply measuring the lateral 
size of the crystals, the profiles can be used to obtain dimensions that characterize 
the inter-particle arrangement [PIE 04]. In this regard, X-ray diffraction is an 
excellent way of characterizing organized structures, the use of which is growing, 
for example, in systems with applications in photonics. 

The intensity distribution along qx, in the case of this sample, is the result of two 
effects: first, the disorientations of the crystals, corresponding to a relatively wide 
signal, which could be described as diffuse scattering, and second, a very structured 
signal, with rings associated to the periodicity of the distribution of matter. The total 
intensity distribution corresponds to the sum of these two contributions. Depending 
on the altitude at which the sections are realized, one of the two effects dominates 
the measured signal.  

Generally speaking, the profiles often correspond to the combination of a rather 
wide, diffuse scattering signal, related to the disorder (relative disorientation of the 
crystals, deformation field, etc.), and a sharp signal corresponding to the diffraction 
by the coherent domains, the width of which essentially expresses the size of these 
domains. The most recent methods for processing these two-component profiles 
consist of modeling the experimental profile with a curve calculated from these two 
contributions [BOU 05a, BOU 05b]. 
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In everything we have just said, the determination of the film’s microstructural 
characteristics was achieved through the analysis of specific one-dimensional 
sections of the diffracted intensity’s two-dimensional distribution. An alternative 
approach would consist, of course, of directly modeling these two-dimensional 
distributions. This method has seen some developments in recent years [PIE 04, 
BOU 06] and is effective but it requires information beforehand on the nature of the 
defects responsible for the resulting intensity distribution, which is why this 
approach applies mainly to very high quality films with few defects. 
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