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Preface to the third edition

Our aim in this book is to explain how and why the detailed three-
dimensional architecture of molecules can be determined from the dif-
fraction patterns produced when X rays or neutrons are scattered by the
atoms in single crystals. The diffraction pattern can be analyzed (by the
methods described here in this book) to provide molecular structures of
the components of the crystal and information on their interactions with
each other. In the last 25 years, since the second edition was published,
the experimental procedures for achieving molecular structure in this
manner have greatly improved and computing facilities (expensive and
mostly confined to scientific laboratories in the 1970s and 1980s) are
now available to all. Larger and larger molecules can now be investi-
gated at higher and higher resolutions and methods for solving the
phase problem (which allow us to convert experimental diffraction data
into a map of the material that did the scattering) are now much more
efficient. Therefore we thought that it is time for an updated version of
this book. We have not changed the overall scheme of the book, merely
tried to bring it into the twenty-first century.

Sadly my coauthor, Ken Trueblood, died in May 1998—a big loss to
X-ray crystallography. This book was the last scientific item he worked
on. He strongly urged me to try hard not to increase the length of the
book, and I have tried to comply with this request. It has, however, not
been possible with this new edition to make full use of Ken’s wisdom
and insight. We have had a long history of collaboration since the early
days when I was a graduate student in Dorothy Hodgkin’s laboratory
in Oxford working on the crystal structure of a vitamin B12 derivative,
and Ken was at UCLA programming the massive computer, SWAC, for
crystallographic programs that tackled large structures. Several teach-
ing examples in this book came from this collaboration across the miles
between Los Angeles and Oxford.

This new edition has been improved by generous assistance from
Dr. Peter Müller at MIT and Dr. Virginia Pett at the College of Wooster,
Ohio. They both read the entire manuscript and made invaluable sug-
gestions for improving it. I also wish to extend sincere thanks to Pat
Bateman and Eileen Pytko for typing assistance and to Karen Albert,
Carol Brock, Sue Byram, Bud Carrell, Bryan Craven, Dick Dickerson,
Dave Duchamp, David Eisenberg, Debra Foster, Bob Hesse, Amy Katz,
Bill Stallings, and Karen Trush. The staff at Oxford University Press
have been most helpful, and my thanks go to Emma Lonie, April War-
man, and Sonke Adlung. The copy-editor Douglas Meekison and the
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Preface to the third edition vii

illustrators at SPi Publishing also deserve thanks. Finally the National
Institutes of Health (CA-10925 to JPG and CA-06927 to FCCC) provided
the support through the years which made this book possible.

There are numerous additional sources of information now available
for students of the subject (see the References and further reading sec-
tion). These include the IUCr texts and monographs on crystallography
listed at the beginning of the book, International Tables for Crystallography
and the World Wide Web. The latter contains many examples of crystal-
lography courses given at various universities and research organiza-
tions throughout the world. They often contain useful illustrations and
some are interactive; unfortunately the identifying URLs of the sites of
these teaching items do not seem to last with time so it is better for a
student to use a search engine and define the specific subject of interest.

Finally my thanks to all of you who have provided me through the
years with encouragement, counsel, and advice on the teaching of this
subject.

Jenny P. Glusker
Philadelphia, Pennsylvania
March 2010



Preface to the second
edition

In the thirteen years since the first edition of this book appeared there
have been numerous advances in the practice of structural crystallog-
raphy. Furthermore, many users of the first edition have suggested
ways in which the book might have been improved. In this revision,
we have endeavored to incorporate those suggestions and to describe
the most significant advances in practice. The major changes include
a considerable elaboration of the treatment of direct methods, a new
chapter on anomalous dispersion and absolute configuration, a more
detailed treatment of biological macromolecules, a reorganization and
expansion into a separate chapter of the discussion of microcrystalline
and non-crystalline materials, enlargement of the section on experimen-
tal methods to include discussion of area detectors and synchrotron
radiation, and a new appendix on molecular geometry. The bibliog-
raphy has been expanded by more than 50 percent, and the glossary
doubled in length.

Our aim is to explain how and why the detailed three-dimensional
architecture of molecules can be determined by an analysis of the dif-
fraction patterns produced when X rays (or neutrons) are scattered
by the atoms in single crystals. As with the first edition, the book is
intended primarily for those who want to understand the fundamental
concepts on which crystal structure determination is based without nec-
essarily themselves becoming specialists in crystallography—an audi-
ence that includes advanced undergraduates who have studied some
physics and chemistry, as well as graduate students and other research
workers.

This book is divided, as before, into three parts; each has been
expanded, the last two significantly. Part I, comprising the first four
chapters, deals with the nature of the crystalline state, certain relevant
facts about diffraction generally and diffraction by crystals in particular,
and the experimental procedures used. Part II, consisting of Chapters 5
through 10, examines the problem of converting the experimentally
obtained data (directions and intensities of diffracted beams) into a
model of the atomic arrangement that scattered these beams—in other
words, the problem of determining the approximate structure of this
scattering matter, a “trial structure” suitable for refinement. Part III
(Chapters 11 through 14) is concerned with techniques for refining this
approximate structure to the degree warranted by the experimental
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Preface to the second edition ix

data and with discussions of the structural parameters and other infor-
mation that can be derived from a careful structure determination. It
also includes a discussion of microcrystalline materials and glasses, and
an overall summary of the various stages in structure analysis.

We wish to thank those who have helped us in this endeavor,
particularly Bill Stallings and John Stezowski, who read through our
manuscript and made most helpful comments, and Jack Dunitz who
helped us with the glossary. We are also grateful to Margaret J.
Adams, Bob Bryan, Bud Carrell, Philip Coppens, Dick Dickerson, Jose
Donnay, David Eisenberg, Doris Evans, Setsuo Kashino, Henry Katz,
Lisa Keefe, Bill Parrish, Eileen Pytko, Miriam Rossi, Christopher Smart,
Verner Schomaker and David Zacharias for their help. One of us (J.P.G.)
acknowledges financial support from the National Institutes of Health,
U.S.P.H.S. (grant CA-10925).

Finally, we appreciate the help of all of you who have encouraged us
through the years with your comments and constructive criticisms.

Philadelphia J.P.G.
Los Angeles K.N.T.
April 1985



Preface to the first edition

This book, which developed from a talk to the California Association
of Chemistry Teachers at Asilomar in 1966, is designed to serve as an
introduction to the principles underlying structure analysis by X-ray
diffraction from single crystals. It is intended both for undergraduates
who have had some previous chemistry and physics and for graduate
students and other research workers who do not intend to become spe-
cialists in crystallography but who want to understand the fundamental
concepts on which this widely used method of structure determination
is based. We have included many illustrations, with legends that form
an important part of the text, a rather detailed glossary of common
terms, an extensive annotated bibliography, and a list of the symbols
used.

Our aim is to explain how and why the detailed three-dimensional
architecture of molecules can be determined by an analysis of the dif-
fraction patterns produced when X rays (or neutrons) are scattered by
the atoms in single crystals. Part I, consisting of the first four chap-
ters, deals with the nature of the crystalline state, certain relevant facts
about diffraction generally and diffraction by crystals in particular, and,
briefly the experimental procedures that are used. Part II comprises an
examination of the problem of converting the experimentally obtained
data (directions and intensities of diffracted beams) into a model of the
atomic arrangement that scattered these beams, that is, the problem of
determining the approximate structure of this scattering matter. Part III
is concerned with techniques for refining this approximate structure
to the degree warranted by the experimental data, and also includes
a brief discussion of some of the auxiliary information, beyond the
geometric details of the structure, that can be learned from modern
structure analysis. Most mathematical details have been relegated to
several Appendices.

We are indebted to D. Adzei Bekoe, Helen Berman, Herbert Bernstein,
Carol Ann Casciato, Anne Chomyn, Joyce Dargay, David Eisenberg,
Emily Maverick, Walter Orehowsky, Jr., Joel Sussman, and David E.
Zacharias for their help in suggesting revisions of earlier drafts, and
to all those writers on crystallography whose ideas and illustrations we
have included here.

One of us (J.P.G.) acknowledges financial support from the
National Institutes of Health, U.S.P.H.S. (grants CA-10925, CA-06927
and RR-05539), and an appropriation from the Commonwealth of
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Pennsylvania. This book is Contribution No. 2609 from the Department
of Chemistry, University of California, Los Angeles.

Finally, we want to express our gratitude to Miss Doris E. Emmott for
her patient, painstaking, and precise typing of the manuscript and to
Miss Leona Capeless of Oxford University Press for her help through
the stages of publication.

Philadelphia J.P.G.
Los Angeles K.N.T.
April 1971
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Symbols used in this book

A Amplitude of a wave.
A, B, A(hkl),

B(hkl), Aj B j

Values of |F | cos · and |F | sin ·, respectively; that is, the components of a structure
factor F = A + iB. The subscript j denotes the atom j .

A′, B ′, A′′, B ′′, Ad ,
Bd

Values of A and B taking into account f ′ (to give A′ and B ′), f ′ and f ′′ (to give A′′ and
B ′′), and the anomalously scattering atom (Ad and Bd ).

Abs Absorption factor.
a The width of each of a series of (or single) diffracting slits.
a , b, c Unit-cell axial lengths.
a, b, c Unit-cell vectors of the direct lattice.
a∗, b∗, c∗ Lengths of the unit-cell edges of the reciprocal lattice.
a∗, b∗, c∗ Unit-cell vectors in reciprocal space.
a , b, c, n, d, g Glide planes. The row parallel to the translation is designated; it is the side of the net (a ,

b, or c) or its diagonal (n in a primitive net, d in a centered net). In two dimensions, a
glide-reflection line is represented by g.

Biso, B Isotropic atomic displacement (or temperature or vibration) parameter.
b11, b22, b33, b12,

b23, b31, bi j , b11 j

Six anisotropic vibration parameters representing anisotropic temperature motion; a
third subscript j denotes the atom j .

ci , c1, c2, cr Wave amplitudes (see Chapter 5).
d The distance between two diffracting slits.
dhkl , d The spacing between the lattice planes (hkl) in the crystal.
dA–B Bond distance between atoms A and B.
E , Ehkl , EH Values of F corrected to remove thermal-motion and scattering-factor effects. These are

called “normalized structure factors.”
F Face-centered lattice.
F (hkl), F , F (000) The structure factor for the unit cell, for the reflection hkl. It is the ratio of the amplitude

of the wave scattered by the entire contents of the unit cell to that scattered by a single
electron. A phase angle for the scattered wave is also involved. F (000) is thus equal
to the total number of electrons in the unit cell.

|F (hkl)|, |F | The amplitude of the structure factor for hkl with no phase implied.
|Fo|, |Fc| Amplitudes of structure factors observed (|Fo|), that is, derived from measurements

of the intensity of the diffracted beam, and calculated (|Fc|) from a postulated trial
structure.

xix



xx Symbols used in this book

FP , FP H1, FP H2,
FH1, FH2, FM,
FM′ , FR, FT, FT′

Structure factors for a given value of hkl for a protein (P), two heavy-atom derivatives
(P H1 and P H2), the parts of F due to certain atoms (M, M′, H1 and H2) and the rest
of the molecule (R), and for the total structure (T and T′).

F Structure factor when represented as a vector.
Fnovib Value of F for a structure containing only nonvibrating atoms.
F+, F− Values of F (hkl) and F (h̄k̄l̄) when anomalous-dispersion effects are measurable.
f (hkl), f , f j Atomic scattering factor, also called atomic form factor, for the hkl reflection relative to

the scattering by a single electron. The subscript j denotes atom j .
f ′, f ′′ When an anomalous scatterer is present the value of f is replaced by ( f + f ′) + i f ′′.
G(r ) Radial distribution function.
G, H Values of A and B with the scattering factor contribution ( f + f ′ + f ′′) removed (see

Chapter 10).
H Reciprocal lattice vector.
H, K Indices of two Bragg reflections. H = h, k, l; K = h′, k ′, l ′.
hkl, −h, −k, −l,

h̄k̄l̄, hkil
Indices of the Bragg reflection from a set of parallel planes; also the coordinates of a

reciprocal lattice point. If h, k, or l are negative they are represented as −h, −k, −l or
h̄k̄l̄. In hexagonal systems a fourth index, i = −(h + k), may be used (see Appendix 2).

(hkl) Indices of a crystal face, or of a single plane, or of a set of parallel planes.
I Body-centered lattice.
I (hkl), I Intensity (on an arbitrary scale) for each reflection.
Icorr Value of I corrected for Lp and Abs.

i An “imaginary number,” i =
√−1

i , j Any integers.
Lp Lorentz and polarization factors. These are factors that are used to correct values of

I for the geometric conditions of their measurement
l The distance between two points in the unit cell (e.g., bond length).
l A direction cosine.
M Molecular weight of a compound.
M1, M2, M, M′ Atoms or groups of atoms that are interchanged during the preparation of an isomor-

phous pair of crystals. Heavy atoms substituted in a protein, P .
m Mirror planes.
N The number of X-ray reflections observed for a structure.
NAvog. Avogadro’s number. The number of molecules in the molecular weight in grams, 6.02 ×

1023.
n Any integer. Used for n-fold rotation axes. Also used as a general constant.
nr Screw axis designations, where n and r are integers (2, 3, 4, 6 and 1, . . . , (n − 1),

respectively).
P , P H1, P H2 Protein (P), also heavy-atom derivatives P H1 and P H2.
P(uvw), P ,

Ps(uvw)
The Patterson function, evaluated at points of u, v, w in the unit cell. The Ps(uvw)

function is used with anomalous-dispersion data (see Chapter 10).



Symbols used in this book xxi

P , A, B, C , F , I Lattice symbols. Primitive (P), centered on one set of faces (A, B, C), or all faces (F ) of
the unit cell, or body-centered (I ).

P+ Probability that a triple product is positive (see Eqns. 8.6 and 8.7).
p, q Path differences.
Q The quantity minimized in a least-squares calculation.

R Discrepancy index R =
∑ |(|Fo|−|Fc|)|

|Fo| . Also called R factor, R value, or residual.
R/S System of Cahn and Ingold for describing the absolute configuration of a chiral

molecule.
r The distance on a radial distribution function.
s(hkl) The sign of the reflection hkl for a centrosymmetric structure.
t Crystal thickness.
U11, Uii , Ui j Anisotropic vibration parameters.
〈u2〉 Mean square amplitude of atomic vibration.
u, v, w The coordinates of any one of a series of systematically spaced points, expressed as

fractions of a , b, and c, in the unit cell for a Patterson (or similar) function.
Vc, V, V∗ The unit-cell volume in direct and reciprocal space.

VM Matthews coefficient, volume on Å3 per dalton of protein.
w(hkl) The weight of an observation in a least-squares refinement.
X, Y, Z Cartesian coordinates for atomic positions.
x, y, z; xj , yj , z j ;

x, y, z, u
Atomic coordinates as fractions of a , b, and c. The subscript j denotes the atom under

consideration. If the system is hexagonal a fourth coordinate, u, may be added (see
Appendix 2).

x1, x2, xj , xr Displacements of a wave at a given point. The waves are each designated 1, 2, j ; r is
the resultant wave from the summation of several waves.

x, y, z Coordinates of any one of a series of systematically spaced points, expressed as frac-
tions of a , b, c filling the unit cell at regular intervals.

Z Number of molecules in a unit cell.
Zi , Zj The atomic number (total number of diffracting electrons) of atoms i and j .
·, ‚, „ Interaxial angles between b and c, a and c, and a and b, respectively (alpha, beta,

gamma).
·∗, ‚∗, „∗ Interaxial angles in reciprocal space.
·(hkl), ·, ·M, ·P,

·H

Phase angle of the structure factor for the reflection hkl. · = tan−1(B/A).

·1, ·2, · j , ·r Phases of waves 1, 2, j , and r , the resultant of the summation of waves, relative to an
arbitrary origin.

ƒ|F | The difference in the amplitudes of the observed and calculated structure factors, |Fo| −
|Fc| (delta |F |).

ƒÒ Difference electron density.
‰ Interbond angle.
‰i j An index that is 1 when i = j and 0 elsewhere; i and j are integers (delta).



xxii Symbols used in this book

ε Epsilon factor used in calculating normalized structure factors (see Glossary).
Ë, Ëhkl The glancing angle (complement of the angle of incidence) of the X-ray beam to the

“reflecting plane.” 2Ë is the deviation of the diffracted beam from the direct X-ray
beam (two theta).

Í A device for aligning the crystal and detector in a diffractometer that utilizes Í geomet-
ry (Figure 4.12) (kappa).

Î Wavelength, usually that of the radiation used in the diffraction experiment (lambda).
Ï/Ò Mass absorption coefficient. Ï, linear absorption coefficient; Ò, density.
Ò(xyz), Òobs, Òcalc Electron density, expressed as number of electrons per unit volume, at the point x, y, z

in the unit cell (rho).
� Summation sign (sigma).
�1, �2 Listing of triple products of normalized structure factors (see Chapter 8).
Ù Torsion angle.
ˆ An angular variable, proportional to the time, for a traveling wave. It is of the form

2πÌt, where Ì is a frequency and t is the time (phi).
ˆ Angle on spindle axis of goniometer head. See diffractometer (Figure 4.12).
ˆH The phase angle of the structure factor of the Bragg reflection H.
˜ Angle between ˆ axis and diffractometer axis (see Figure 4.12) (chi).
¯ Angle incident beam makes with lattice rows (see Appendix 4) (psi).
˘ Angle between diffraction vector and plane of ˜ circle on diffractometer (Figure 4.12)

(omega).
〈 〉 The mean value of a quantity.
1, 2, 3, 4, 6 Rotation axes.
1̄, 2̄, 3̄, 4̄, 6̄ Rotatory-inversion axes.
21, 41, 42, 43 Screw axes nr .
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Introduction 1
Much of our present knowledge of the architecture of molecules has
been obtained from studies of the diffraction of X rays or neutrons by
crystals. X rays* are scattered by the electrons of atoms and ions, and the

* “X ray” for a noun, “X-ray” for an adjec-
tive.interference between the X rays scattered by the different atoms or ions

in a crystal can result in a diffraction pattern. Similarly, neutrons are
scattered by the nuclei of atoms. Measurements on a crystal diffraction
pattern can lead to information on the arrangement of atoms or ions
within the crystal. This is the experimental technique to be described in
this book.

X-ray diffraction was first used to establish the three-dimensional
arrangement of atoms in a crystal by William Lawrence Bragg in 1913
(Bragg, 1913), shortly after Wilhelm Conrad Röntgen had discovered
X rays and Max von Laue had shown in 1912 that these X rays could
be diffracted by crystals (Röntgen, 1895; Friedrich et al., 1912). Later, in
1927 and 1936 respectively, it was also shown that electrons and neu-
trons could be diffracted by crystals (Davisson and Germer, 1927; von
Halban and Preiswerk, 1936; Mitchell and Powers, 1936). Bragg found
from X-ray diffraction studies that, in crystals of sodium chloride, each
sodium is surrounded by six equidistant chlorines and each chlorine by
six equidistant sodiums. No discrete molecules of NaCl were found and
therefore Bragg surmised that the crystal consisted of sodium ions and
chloride ions rather than individual (noncharged) atoms (Bragg, 1913);
this had been predicted earlier by William Barlow and William Jackson
Pope (Barlow and Pope, 1907), but had not, prior to the research of the
Braggs, been demonstrated experimentally. A decade and a half later, in
1928, Kathleen Lonsdale used X-ray diffraction methods to show that
the benzene ring is a flat regular hexagon in which all carbon–carbon
bonds are equal in length, rather than a ring structure that contains
alternating single and double bonds (Lonsdale, 1928). Her experimental
result, later confirmed by spectroscopic studies (Stoicheff, 1954), was of
great significance in chemistry. Since then X-ray and neutron diffraction
have served to establish detailed features of the molecular structure of
every kind of crystalline chemical species, from the simplest to those
containing many thousands of atoms.

We address ourselves here to those concerned with or interested in
structural aspects of chemistry and biology who wish to know how

3



4 Introduction

crystal diffraction methods can be made to reveal the underlying three-
dimensional structure within a crystal and how the results of such
structure determinations may be critically assessed. In order to explain
why molecular structure can be determined by single-crystal diffraction
of X rays or neutrons, we shall try to answer several questions: Why use
crystals and not liquids or gases? Why use X rays or neutrons and not
other types of radiation? What experimental measurements are needed?
What are the stages of a typical structure determination? How are the
structures of macromolecules such as proteins and viruses determined?
Why is the process of structure analysis sometimes lengthy and com-
plex? Why is it necessary to “refine” the approximate structure that is
first obtained? How can one assess the reliability of a crystal structure
analysis?

This book should be regarded not as an account of “how to do it” or of
practical procedural details, but rather as an effort to explain “why it is
possible to do it.” We aim to give an account of the underlying physical
principles and of the kinds of experiments and methods of handling
the experimental data that make this approach to molecular structure
determination such a powerful and fruitful one. Practitioners are urged
to look elsewhere for details.

The primary aim of a crystal structure analysis by X-ray or neutron
diffraction is to obtain a detailed three-dimensional picture of the con-
tents of the crystal at the atomic level, as if one had viewed it through
an extremely powerful microscope. Once this information is available,
and the positions of the individual atoms are therefore known precisely,
one can calculate interatomic distances, bond angles, and other features
of the molecular geometry that are of interest, such as the planarity of a
particular group of atoms, the angles between planes, and conformation
angles around bonds. Frequently the resulting three-dimensional repre-
sentation of the atomic contents of the crystal establishes a structural
formula and geometrical details hitherto completely unknown. Such
information is of great interest to chemists, biochemists, and molecular
biologists who are interested in the relation of structural features to
chemical and biological effects. Furthermore, precise molecular dimen-
sions (and information about molecular packing, molecular motion in
the crystal, and molecular charge distribution) may be obtained by this
method. These results expand our understanding of electronic struc-
ture, molecular strain, and the interactions between molecules.

Atoms and molecules are very small and therefore an extensive
magnification is required to visualize them. The usual way to view
a very small object is to use a lens, or, if even higher magnification
is required, an optical or electron microscope. Light scattered by the
object that we are viewing is recombined by the lens system of the
microscope to give an image of the scattering matter, appropriately
magnified, as shown in Figure 1.1a. This will be discussed and illus-
trated later, in Chapter 3. What is important is how the various scattered
light waves interact with each other, that is, the overall relationship
between the relative phases** of the various scattered waves (defined

** Relative phases (discussed in Chapter 3)
describe the relationships between the
various locations of peaks and troughs of
a series of sinusoidal wave motions. They
are described as “relative” phases because
they are measured with respect to a fixed
point in space, such as but not necessarily
the selected origin of the unit cell.
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Objective
lens

Eyepiece lens

Detector

Crystallographer

CrystalObject

Visible light

Enlarged image

(a) (b)

Electron-density map

MICROSCOPE X-RAY DIFFRACTION

Object

Molecule

X rays

Detection device
(electronic

film)

Computer

Fig. 1.1 Analogies between light microscopy and X-ray diffraction.Analogies between the two methods of using scattered radiation for
determining structure are shown here—optical microscopy on the left, X-ray diffraction on the right. The sample that is under study in
both instruments scatters some of the incident radiation and this gives a diffraction pattern.

(a) In the ordinary optical microscope there are two lenses. The lower objective lens gathers light that has been scattered by the
object under study and focuses and magnifies it. The eyepiece or ocular lens, which is the one we look through, increases this
magnification. There is no need to record a diffraction pattern because the light that is scattered by the object under examination
is focused by these lenses and gives a magnified image of that object. The closer the objective lens is to the object, the wider
the angle through which scattered radiation is caught by this lens and focused to form a high-resolution image. The rest of the
radiation is lost to the surroundings.

(b) With X rays the diffraction pattern has to be recorded electronically or photographically, because X rays cannot (at this time) be
focused by any known lens system. Therefore the recombination of the diffracted beams (which is done by an objective lens in
the optical microscope) must, when X rays are used, be done mathematically by a crystallographer with the aid of a computer. As
stressed later (Chapter 5), this recombination cannot be done directly, because the phase relations among the different diffracted
beams cannot usually be measured directly. However, once these phases have been derived, deduced, guessed, or measured
indirectly, an image can be constructed of the scattering matter that caused diffraction—the electron density in the crystal.

in Figure 1.2); this is because, when two scattered waves proceed in
the same direction, the intensity of the combined wave will depend on
the difference in the phases of the two scattered beams. If they are “in
phase” they will enhance each other and give an intense beam, but if
they are “out of phase” they will destroy each other and there will be no
apparent diffracted beam. Generally it is found that such enhancement
or destruction is only partial, so that the diffracted beams have some
intensity and the diffraction pattern that is obtained contains diffracted
beams that have differing intensities—some are weak and some are
intense.

In an optical microscope, that is, a microscope that uses light that
is visible to the human eye, the radiation scattered by the object is
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Origin

Phase of
relative to
or to the origin

0º 360º
Wavelength or 360º as unit

Amplitude
|F(hkl)|

720º

Fig. 1.2 A sinusoidal wave.

A sinusoidal wave, showing its amplitude, phase relative to the origin, and wavelength.
Sine and cosine functions are sinusoidal waves with different phases [cos x = sin(x + π/2)
when the distance traveled is measured in radians]. Shown is a cosine wave (black line),
which has a peak at the wave origin. This wave origin coincides with the origin in space
that has been selected by the crystallographer. A second wave (dashed line) has its peak in
a different location. The distance between these two peaks defines their “relative phase.”

recombined by the lens system (the objective lens) so that a magni-
fied image of the object under study is obtained (Figure 1.1a). Light
flows through and beyond the lens system of the microscope in such
a way that the relationships between the phases of the scattered waves
are maintained, even after these waves have been recombined by the
second lens (the eyepiece lens). In a similar way, X rays are scattered
by the electrons in atoms and ions (Figure 1.1b), but, in contrast to the
situation with visible light, these scattered X rays cannot be focused
by any presently known experimental techniques. This is because no
electric or magnetic field or material has yet been found that can refract
X rays sufficiently to give a practicable X-ray lens. Therefore an X-ray
microscope cannot yet be used to view atoms (which have dimensions
too small to permit them to be visible with an ordinary light micro-
scope). Much research on a possible X-ray lens is currently in progress
(see Shapiro et al., 2005; Sayre, 2008). The information obtained from
an X-ray diffraction experiment, however, is three-dimensional, and
therefore the great usefulness of this method will doubtless continue
after an X-ray lens can be made.

Since a lens system cannot be used to recombine scattered X rays to
obtain images at atomic resolution, some other technique must be used
if one wishes to view molecules. In practice, the diffracted (scattered)
X rays or neutrons are intercepted and measured by a detecting sys-
tem, but this means that the relationships between the phases of the
scattered waves are lost; only the intensities (not the relative phases)
of the diffracted waves can be measured. If the values of the phases
of the diffracted beams were known, it would be possible to combine
them with the experimental measurements of the diffraction pattern
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and simulate the recombination of the scattered radiation—just as if a lens
had done it—by an appropriate, though complicated, calculation (done
by a crystallographer and a computer in Figure 1.1b). Then we would
have an electron-density map, that is, an image of the material that
had scattered the X rays. This mathematical calculation, the Fourier
synthesis of the pattern of scattered or “diffracted” radiation (Fourier,
1822; Porter, 1906; Bragg, 1915), is a method for summing sinusoidal
waves in order to obtain a representation of the material that scat-
tered the radiation. Such a Fourier synthesis is a fundamental step in
crystal structure determination by diffraction methods and is a central
subject of our discussion (described in detail in Chapters 5, 6, 8, and
9). The difficult part of correctly summing these sinusoidal waves is
termed the “phase problem,” that is, finding where the peaks of each
sinusoidal wave should lie with respect to the others in the summa-
tion. Any of several methods (to be described) can be used to over-
come this difficulty and determine the phases of the various diffracted
beams with respect to each other. When the correct phases are known
(that is, derived, deduced, guessed, or measured indirectly), the three-
dimensional structure of the atomic contents of the crystal (and hence
of the molecules or ions that it contains) will be revealed as a result of a
Fourier synthesis.

Why make the effort to carry out a crystal structure analysis? The
reason is that when the method is successful, it is unique in provid-
ing an unambiguous and complete three-dimensional representation of
the atoms in the crystal. This three-dimensionality is incredibly useful
because chemical and biological reactions occur in three dimensions,
not two; surface and internal structures of molecules, plus informa-
tion on their interactions with other molecules, are revealed by this
powerful technology. Other experimental methods can also provide
structural information. For example, large molecules, such as those of
viruses, can also be visualized by use of an electron microscope, but
individual atoms deep inside each virus molecule cannot currently
be distinguished. Newer technologies such as field ion microscopy
and scanning tunneling microscopy (or atomic force microscopy) are
now providing views of molecules on the surfaces of materials, but
they also do not provide the detailed and precise information about
the internal structure of larger molecules that X-ray and neutron dif-
fraction studies do. Infrared and microwave spectroscopic techniques
give quantitative structural information for simple molecules. High-
field nuclear magnetic resonance (NMR), the main alternative method
currently used for structure determination, can also provide distances
between identified atoms and can be used to study fairly large mole-
cules. No other method can, however, give the entire detailed three-
dimensional picture that X-ray and neutron diffraction techniques can
produce.

Crystal diffraction methods do, however, have their limitations,
chiefly connected with obtaining samples with the highly regular long-
range three-dimensional order characteristic of the ideal crystalline
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state. The success of high-resolution diffraction analysis requires that
the sample be prepared as an ordered array (e.g., a crystal). Molecular
motion or static disorder within the regular array of molecules in a
crystal may result in a time-averaged or space-averaged representation
of the molecular structure. Freedom of molecular motion is, in general,
much more restricted in solids than it is in liquids or gases. Even in
solids, however, both overall and intramolecular motion can be appre-
ciable, and precise diffraction data may reveal enlightening information
about atomic and molecular motion.

When a crystal structure analysis by diffraction methods is com-
pleted, a wealth of information results. It reveals the shapes of mole-
cules and the way they interact, and gives geometrical data for each.
The method can be adapted to a wide range of temperatures, pres-
sures, and environments and has been successfully used to estab-
lish the molecular architecture and packing of an enormous diver-
sity of substances, from elementary hydrogen and simple salts to
molecules such as buckminsterfullerene and to proteins and nucleic
acids and their assemblages in viruses and other cellular structures.
X-ray diffraction methods have also contributed significantly to our
understanding of natural and synthetic partially crystalline materials
such as polyethylene and fibers of DNA. Although structure deter-
minations of organic and biochemically significant molecules have
received the most attention in recent years, the contributions of the
technique to inorganic chemistry have been equally profound, ini-
tially through the clarification of the chemistry of the silicates and of
other chemical mysteries of minerals and inorganic solids, and then
with applications to such diverse materials as the boron hydrides,
alloys, hydrates, compounds of the rare gases, and metal-cluster
compounds.

Throughout the book you may encounter symbols or terms that are
unfamiliar, such as d010 or d110 in Figure 2.5. We have included a list
of symbols at the start, and a glossary (to provide definitions of such
symbols and words) and a list of references at the end of the book. We
urge you to use all of these sections frequently as you work your way
through the book.



Crystals 2
The elegance and beauty of crystals have always been a source of
delight. What is a crystal? A crystal is defined as a solid that contains a very
high degree of long-range three-dimensional internal order of the component
atoms, molecules, or ions. This implies a repetitious internal organization,
at least ideally.* By contrast, the internal organization of atoms and ions

* Real crystals often exhibit a variety of
imperfections—for example, short-range
or long-range disorder, dislocations, irreg-
ular surfaces, twinning, and other kinds of
defects—but, for our present purposes, it
is a good approximation to consider that
in a specimen of a single crystal the order
is perfect and three-dimensional. We dis-
cuss very briefly in Chapter 13 the way
in which our discussion must be modi-
fied when some disorder is present—for
example, when the order is only one-
dimensional, as in many fibers.

within a noncrystalline material is totally random, and the material
is described as “amorphous.” Studies of crystal morphology, that is,
of the external features of crystals, have been made since early times,
particularly by those interested in minerals (for practical as well as
esthetic reasons) (Groth, 1906–1919; Burke, 1966; Schneer, 1977).

It was Max von Laue who realized in 1912 that this internal regularity
of crystals gave them a grating-like quality so that they should be
able to diffract electromagnetic radiation of an appropriate wavelength.
From Avogadro’s number (6.02 × 1023, the number of molecules in the
molecular weight in grams of a compound) and the volume that this
one “gram molecule” of material fills, von Laue was able to reason
that distances between atoms or ions in a crystal were of the order of
10−9 to 10−10 m (now described as 10 to 1 Å).** A big debate at that time

** Crystallographic interatomic distances
are usually listed in Å. 1 Å = 10−8 cm =
10−10 m.

was whether X rays were particles or waves. If X rays were found to
be wavelike (rather than particle-like), von Laue estimated they would
have wavelengths of this same order of magnitude, 10−9 to 10−10 m.
Therefore, since diffraction was viewed as a property of waves rather
than particles, von Laue urged Walther Friedrich and Paul Knipping
to test if X rays could be diffracted by crystals. Their resulting diffrac-
tion experiment was dramatically successful. The crystal, because of
its internal regularity, had indeed acted as a diffraction grating. This
experiment was therefore considered to have demonstrated that X rays
have wavelike properties (Friedrich et al., 1912). We now know that
particles, such as neutrons or electrons, can also be diffracted. The X-ray
diffraction experiment in 1912 was, in spite of this later finding, highly
significant because it led to an extremely useful technique for the study
of molecular structure. An analysis of the X-ray diffraction pattern of a
crystal, by the methods to be described in this book, will give precise
geometrical information on the molecules and ions that comprise the
crystal.

The most obvious external characteristic of a crystal is that it has
flat faces bounded by straight edges, but this property is not necessary

9



10 Crystals

or sufficient to define a crystal. Glass and plastic, neither of which is
crystalline, can be cut and polished so that they have faces that are flat
with straight edges. However, they have not been made crystalline by
the polishing, because their disordered internal structures have not
been made regular (even though the word “crystal” is often used for
some quality glassware). Therefore the presence of flat faces or straight
edges in a material does not necessarily indicate that it is crystalline.
It is the internal order, rather than external appearance, that defines a
crystal. One way to check whether or not this internal order is present
is to examine the diffraction pattern obtained when the material is
targeted by a beam of X rays; the extent of the crystallinity (that is,
the quality of its regular internal repetition) will be evident in any
diffraction pattern obtained.

The fact that crystals have an internal structure that is periodic
(regularly repeating) in three dimensions has long been known. It
was surmised by Johannes Kepler, who wrote about the six-cornered
snowflake, and by Robert Hooke, who published some of the earliest
pictures of crystals viewed under a microscope (Kepler, 1611; Hooke,
1665; Bentley, 1931). They both speculated that crystals are built up
from an ordered packing of roughly spheroidal particles. The Dan-
ish physician Nicolaus Steno (Niels Stensen) noted that although the
faces of a crystalline substance often varied greatly in shape and size
(depending on the conditions under which the crystals were formed),
the angles between certain pairs of faces were always the same (Steno,
1669). From this observation Steno and Jean Baptiste Louis Romé de
Lisle postulated the “Law of Constancy of Interfacial Angles” (Romé
de Lisle, 1772). Such angles between specific faces of a crystal can be
measured approximately with a protractor or more precisely with an
optical goniometer (Greek: gonia = angle), and a great many highly
precise measurements of the interfacial angles in crystals have been
recorded over the past three centuries. This constancy of the interfacial
angles for a given crystalline form of a substance is a result of its
internal regularity (its molecular or ionic packing) and has been used
with success as an aid in characterizing and identifying compounds in
the old science of “pharmacognosy.” Investigations of crystal form were
carried out further by Torbern Olof Bergman in 1773 and René Just
Haüy in 1782; they concluded independently, as a result of studies of
crystals that had cleaved into small pieces when accidentally dropped,
that crystals could be considered to be built up of building bricks of
specific sizes and shapes for the particular crystal. These ideas led to the
concept of the “unit cell,” the basic building block of crystals (Bergman,
1773; Haüy, 1784; Burke, 1966; Lima-de-Faria, 1990).

Obtaining and growing crystals

The growth of crystals is a fascinating experimental exercise that the
reader is urged to try (Holden and Singer, 1960; McPherson, 1982;
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Ducruix and Giegé, 1999; Bergfors, 2009). Considerable perseverance
and patience are necessary, but the better the quality of the crys-
tal the more precise the resulting crystal structure. Generally crys-
tals are grown from solution, but other methods that can be used
involve cooling molten material or sublimation of material onto a
surface.

In order to obtain crystals from solution it is necessary to dissolve
the required substance (the solute) in a suitable solvent until it is near
its saturation point, and then increase the concentration of the solute in
the solution by slowly evaporating or otherwise removing solvent. This
provides a saturated or supersaturated solution from which material
will separate, and the aim is to make this separation occur in the form
of crystals. During the growth process, solute molecules meet in solu-
tion and form small aggregates, a process referred to as “nucleation.”
Extraneous foreign particles (such as those from a person’s beard or
hair, or “seeds,” or dust) may serve as initiators of such nucleation.
More molecules are then laid down on the surface of this nucleus, and
eventually a crystal may separate from the solution. Crystal growth will
continue until the concentration of the material being crystallized falls
below the saturation point:

Saturated solution → Supersaturation → Nucleation→Crystal growth

The crystallization process is essentially a controlled precipitation
onto an appropriate nucleation site. If growth conditions are achieved
too quickly, many nucleation sites may form and crystals may be
smaller than those obtained under slower crystallization conditions.
If too few nucleation sites form, crystals may not grow. Crystal habit
(overall shape) may be modified by the addition of soluble foreign
materials to the crystallization solution. These added molecules may
bind to growing crystal faces and inhibit their growth. As a result,
different sets of crystal faces may become more prominent.

When a molecule or ion approaches a growing crystal, it will form
more interactions than otherwise if it can bind at a step in the for-
mation of layers of molecules in the crystal. Various irregularities
or defects (dislocations) in the internal order of stacking can facil-
itate the formation of steps and therefore aid in the crystallization
process. Most real crystals are not perfect; that is, the regularity of
packing of molecules may not be exact. In general, they tend to be
composed of small blocks of precisely aligned unit cells (domains)
that may each be slightly misaligned with respect to each other.
The extent to which this occurs is referred to as the “mosaicity”
of the crystal, and its measurement indicates the degree of long-
range crystalline order (regularity) in the crystal under study. Most
real crystals are described as “ideally imperfect” if they have a
mosaic structure composed of slightly misoriented very small crystal
domains.

Several of the methods that are now used to facilitate the growth
of crystals involve changing the experimental conditions so that
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Fig. 2.1 Crystals being grown by the vapor diffusion method.

(a) The sample (sodium citrate) to be crystallized is soluble in water but is not very
soluble in ethyl alcohol. A test tube containing sodium citrate dissolved in water
is sealed in a beaker containing ethyl alcohol. An equilibrium between the two
liquids is then approached. Vapor phase diffusion of the water molecules from the
test tube into the larger volume in the reservoir and of alcohol into the smaller
volume in the test tube takes place. The result is that crystals separate out in the
test tube as the solution in it becomes more concentrated and the alcohol helps the
citrate to separate out.

(b) Pure protein is usually available only in limited quantities and therefore the fol-
lowing scheme has been adopted to circumvent this problem. A drop of protein
solution is placed on a cover slip, which is sealed with grease over a container (a
beaker or one of the many small wells in a biological culture tray). In this sealed
system, the protein drop contains precipitant at a concentration below the point
at which protein precipitation would be expected; the sealed container (the well)
contains a much larger volume of precipitant at or slightly above the concentration
of the precipitation point of the protein. Water evaporates slowly from the protein-
containing drop into the container until the concentration of precipitant in the
hanging drop is the same as that in the well, and crystallization may occur. This
method works best for a protein if it is highly purified.

saturation of the solution will be exceeded, generally by a slow pre-
cipitation method (see Figure 2.1). In one method, a precipitant (that is,
a liquid or solution of a compound in which the substance is insoluble)
is layered on a solution of the material to be crystallized. For example,
alcohol, acting as a precipitant, when carefully layered on top of a sat-
urated aqueous solution of sodium citrate and left for a day or so, will
generally give good diffraction-quality crystals. Alternatively, some of
the solvent may be slowly removed from the solution by equilibration
through the vapor phase in a closed system, thereby increasing the
concentration of the material being crystallized. This can be done, as
shown in Figure 2.1a, with an aqueous solution of sodium citrate in a
test tube, placed in a covered beaker containing ethyl alcohol alone;
equilibration of the solvents in this sealed container will (hopefully)
then cause the formation of crystals. This vapor diffusion method is also
used for macromolecules. An aqueous solution of the protein, together
with a precipitant (a salt such as ammonium sulfate, or an alcohol such
as methylpentanediol) in the same solution but at a concentration below
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that which will cause precipitation, is put in a dish, or suspended as
a droplet on a microscope slide, in a sealed container. Then another,
more concentrated, precipitant solution is placed at the bottom of the
same sealed container (Figure 2.1b). Water will be transferred through
the vapor phase from the solution that is less concentrated in the pre-
cipitant (but containing protein) to that which is more concentrated
(but lacking protein). The result is a loss of water from the suspended
droplet containing protein. As the precipitation point of the protein
is reached in the course of this dehydration, factors such as pH, tem-
perature, ionic strength, and choice of buffer will control whether the
protein will separate from the solution as a crystal or as an amorphous
precipitate.

In summary, the main factors affecting the growth of good crystals are
an appropriate choice of solvent, suitable generation of nucleation sites,
control of the rate of crystal growth, and a lack of any disturbance of the
crystallization system (see Chayen, 2005). In practice the equipment for
doing this is now increasingly sophisticated, and often, for macromole-
cules, a robot setup is used that provides a wide variety of conditions
for crystallization (Snook et al., 2000). For example, it has been found
that protein crystallization may be more successful on space shuttles,
where gravity is reduced (DeLucas et al., 1999). The components do not
then separate as quickly and fluid flow at the site of crystallization is
reduced.

Crystals suitable for modern single-crystal diffraction need not be
large. For X-ray work, specimens with dimensions of 0.2 to 0.4 mm
or less on an edge are usually appropriate. Such a crystal normally
weighs only a small fraction of a milligram and, unless there is radi-
ation damage or crystal deterioration during X-ray exposure, can be
reclaimed intact at the end of the experiment. Larger crystals are needed
for neutron diffraction studies, although this requirement is becoming
less strict as better sources of neutrons become available.

Sometimes a crystal is difficult to prepare or is unstable under ordi-
nary conditions. It may react with oxygen or water vapor, or may efflo-
resce (that is, lose solvent of crystallization and form a noncrystalline
powder) or deliquesce (that is, take up water from the atmosphere
and eventually form a solution). Many crystals of biologically inter-
esting materials are unstable unless the relative humidity is extremely
high; since such crystals contain a high proportion of water, they are
fragile and crush easily. Special techniques, such as sealing the crystal
in a capillary tube in a suitable atmosphere, cooling the crystal, or
growing it at very low temperatures, can be used to surmount such
experimental difficulties. Sometimes a twinned crystal may be formed
as the result of an intergrowth of two separate crystals in a variety
of specific configurations. This may complicate optical and diffrac-
tion studies, but methods have been devised for working with them
because sometimes only twinned crystals, and no single crystals, can be
obtained.
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The unit cell of a crystal

Any crystal may be regarded as being built up by the continuing three-
dimensional translational repetition of some basic structural pattern, which
may consist of one or more atoms, a molecule or ion, or even a complex
assembly of molecules and ions; the simplest component of this three-
dimensional pattern is called the “unit cell.” It is analogous to a build-
ing brick. The word “translational” in the above definition of a crystal
implies that there is within it a repetition of an arrangement of atoms
in a specific direction at regular intervals; this repeat distance defines a
measure of the unit-cell dimension in that direction.
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Fig. 2.2 Unit-cell axes.

(a) A unit cell showing the axial lengths
a , b, and c and the interaxial angles (·
between b and c, ‚ between c and a , and
„ between a and b). The directions of axes
are given in a right-handed system, as
shown by the screw in (b) and the human
fist in (c). As x is moved to y, the screw
in (b) or the thumb in (c) moves in the z-
direction in a right-handed manner.

The basic building block of a crystal is an imaginary three-
dimensional parallelepiped,† the “unit cell,” that contains one unit of

† A parallelepiped is a three-dimensional
polyhedron with six faces, each a par-
allelogram that is parallel to a similarly
shaped opposite face. It does not have
any requirement that all or any angles at
the corners of the six faces be 90◦. Each
face, a parallelogram, is a four-sided two-
dimensional polygon with two pairs of par-
allel sides.

the translationally repeating pattern. It is defined by three noncoplanar
vectors (the crystal axes) a, b, and c, with magnitudes a , b, and c (Fig-
ure 2.2a). These vectors are arranged, for convenience, in the sequence a,
b, c, in a right-handed axial system (see Figures 2.2b and c). The angles
between these axial vectors are · between b and c, ‚ between a and
c, and „ between a and b (see Figure 2.2). Thus, the size and shape of
the unit cell are defined by the dimensions a , b, c, ·, ‚, „. As will be
described later, atomic positions along each of the unit-cell directions
are generally measured as fractions x, y, and z of the repeat lengths a ,
b, and c.

The unit cell is a complete representation of the contents of the
repeating unit of the crystal. As a building block, it must pack in three-
dimensional space without any gaps. The unit cells of most crystals
are, of course, extremely small, because they contain comparatively
few molecules or ions, and because normal interatomic distances are
of the order of a few Å. For example, a diamond is built up of a
three-dimensional network of tetrahedrally linked carbon atoms, 1.54 Å
apart. This atomic arrangement lies in a cubic unit cell, 3.6 Å on an
edge. A one-carat diamond, which has approximately the volume of

Fig. 2.3 An electron micrograph of a crystalline protein.

An electron micrograph of a crystalline protein, fumarase, molecular weight about
200,000. The individual molecules, in white, are visible as approximately spherical struc-
tures at low resolution. Note that several choices of unit cell are possible.
(Photograph courtesy of Dr. L. D. Simon)
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a cube a little less than 4 mm on a side, thus contains 1021 unit cells of
the diamond structure.‡ A typical crystal suitable for X-ray structure ‡ The unit cell of diamond is cubic. The

unit cell edges are 3.6 Å. Given that the
density is 3.5 g cm−3 we can calculate that
there are 8 atoms of C in the unit cell. 1
carat weighs 0.2 g.

analysis, a few tenths of a millimeter in average dimension, contains
1012 to 1018 unit cells, each with identical contents that can diffract X
rays in unison. Figure 2.3 shows an electron micrograph of a protein
crystal and the regularity of its molecular packing. The existence of unit
cells in this micrograph is evident.

The faces of a crystal

There is a need to be able to describe a specific face of a crystal, and
this is done with respect to the chosen unit cell. Finding three integers
that characterize a given crystal face or plane is known as “indexing.”
As shown in Figure 2.4, a crystal face or crystal plane is indexed with
three numbers, h, k, and l, with these indices relatively prime (not each
divisible by the same factor), when the crystal face or plane makes
intercepts a/h, b/k, c/ l with the edges of the unit cell (lengths a , b,
and c). This is derived from the “Law of Rational Indices,” which states
that each face of a crystal may be described by three whole (rational)
numbers; these three numbers describing a crystal face are enclosed
in parentheses as (hkl). This nomenclature was introduced by William
Whewell and William Hallowes Miller (see Haüy, 1784, 1801; Miller,
1839). If a crystal face is parallel to one crystal axis, its intercept on that
axis is at infinity, so that the corresponding “Miller index” is zero, as
shown in Figure 2.4a. If a crystal face intersects the unit-cell edge at
one-third its length, the value of the index is 3, as shown in Figure 2.4b.
When the crystal faces have been indexed and the angles between them
measured, it is possible to derive the ratio of the lengths of the unit

bb

c c

a a

100

001

(a) (b)

010

1.0
1.0

1.0

123

Origin

Fig. 2.4 Indexing faces of a crystal.

A crystal face or plane (hkl) makes intercepts a/h, b/k, c/l with the edges of the unit cell of lengths a , b, and c. (a) The (100), (010), and
(001) faces are shown. (b) The (123) face makes intercepts a/1, b/2, and c/3 with the unit-cell axes. A parallel crystal plane (unshaded)
is also indicated; it makes the same intercepts with the next unit cell nearer to the observer.
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Fig. 2.5 The determination of the probable shape of the unit cell from interfacial angles in the crystal.

(a) A cross section of a crystal viewed down the c-axis. For each face in this figure, l = 0. If the faces can be indexed and the angles
between these faces measured, it is possible to derive the ratio of the lengths of the unit cell edges (in this example b/a ). This will then
give the shape (but not the absolute dimensions) of the unit cell. (b) One unit cell, showing the indices of some faces and the interplanar
spacings dhkl (the spacing between crystal lattice planes (hkl) in the crystal).

cell edges and hence the shape (but not the absolute dimensions) of the
unit cell.

The relative lengths of some interplanar spacings, dhkl (the spacing
between the crystal lattice planes (hkl) in the crystal), are indicated
in both Figures 2.5a and b. An index (hkl) with a line above any of
these entries means that the value is negative. For example, (3 1 0)
means h = 3, k = −1, l = 0; the intercepts with the axes are a/3 and −b,
and the faces or planes lie parallel to c, since l = 0 (intercept infinity).
Sets of planes that are equivalent by symmetry (such as (100), (010),
(001), (100), (010), and (001) constitute a crystal form, represented (with
“squiggly” brackets) as

{
100

}
. Square brackets enclosing three integers

indicate a crystal lattice row; for example, [010] denotes the direction of
the b axis, that is, a line connecting the unit-cell origin to a point with
coordinates x = 0, y = 1, z = 0. Before the discovery of X-ray diffraction
in 1912, it was possible to deduce only the relative lengths of the unit-
cell axes and the values of the interaxial angles from measurements of
interfacial angles in crystalline specimens by means of a special instru-
ment (an optical goniometer), as shown in Figure 2.5a. As we shall see
shortly, however, X rays provide a tool for measuring the actual lengths
of these axes, and therefore the size, as well as the shape, of the unit
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cell of any crystal can be found. In addition, if the density of a crystal is
measured, one can calculate the weight (and hence, in most cases, the
atomic contents) of atoms in the unit cell. The method for doing this is
described in Appendix 1.

The crystal lattice

The crystal lattice highlights the repetition of the unit-cell contents
within the crystal. If, in a diagram of a crystal, each complete repeating
unit (unit cell) is replaced by a point, the result is the crystal lattice. It
is an infinite three-dimensional network of points that may be gen-
erated from a single starting point (at a chosen position in the unit
cell) by an extended repetition of a set of translations that are, in
most cases, the conventional unit-cell vectors just described. This high-
lights the regularly repeating internal structure of the crystal, as shown
in Figure 2.6.

The term “crystal lattice” is sometimes, misleadingly, used to refer
to the crystal structure itself. It is important to remember that a crystal
structure is an ordered array of objects (atoms, molecules, ions) that make
up a crystal, while a crystal lattice is merely an ordered array of imaginary
points. Although crystal lattice points are conventionally placed at the
corners of the unit cell, there is no reason why this need be done. The
crystal lattice may be imagined to be free to move in a straight line
(although not to rotate) in any direction relative to the structure. A
crystal lattice point may be positioned anywhere in the unit cell, but
exactly the same position in the next unit cell is chosen for the next
crystal lattice point. As a result every crystal lattice point in the unit
cell will have the same environment as every other crystal lattice point
in the crystal. The most general kind of crystal lattice, composed of
unit cells with three unequal edges and three unequal angles, is called
a triclinic crystal lattice. Once the crystal lattice is known, the entire
crystal structure may be described as a combination (convolution§)

§ A convolution (with axes u, v, w) is a
way of combining two functions A(x, y, z)
and B(x, y, z) (with axes x, y, z). It is
an integral that expresses the extent to
which one function overlaps another func-
tion as it is shifted over it. The convolu-
tion of these two functions A and B at a
point (u0, v0, w0) is found by multiply-
ing together the values A(x, y, z) and
B(x + u0, y + v0, z + w0) for all possible
values of x, y, and z and summing all
these products. This process must then be
repeated for each value of u, v, and w of
the convolution. A crystal structure, for
example, can be viewed as the convolu-
tion of a crystal lattice (function A) with
the contents of a single unit cell (function
B) (see Figure 2.6). This is a simple exam-
ple because the crystal lattice exists only at
discrete points and the rest of this function
A has zero values. This convolution con-
verts a specific unit of pattern into a series
of identical copies arranged on the crys-
tal lattice. All that is needed is informa-
tion on the geometry of the crystal lattice
and on the unit of pattern; the convolution
of these two functions gives the crystal
structure.

of the crystal lattice with the contents of one unit cell, as shown in
Figure 2.6.

The two-dimensional example of the regular translational repetition
of apples, illustrated in Figure 2.6, might serve as a pattern for wall-
paper (which generally has two-dimensional translational repetitions).
Several possible choices of unit cell, however, can be made from the
two-dimensional arrangement of apples in it. How, then, can we speak
of the unit cell for a given crystal? In general, we can’t. The conventional
choice of unit cell is made by examining the crystal lattice of the crys-
tal and choosing a unit cell whose shape displays the full symmetry
of the crystal lattice—rotational as well as translational—and that is
convenient. For example, the axial lengths may be the shortest possible
ones that can be chosen and the interaxial angles may be as near as
possible to 90◦. There may be several possibilities that fit these con-
ditions. It is usual to derive the Niggli reduced cell (Niggli, 1928; de
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CRYSTAL LATTICE

CRYSTAL STRUCTURE

STRUCTURAL MOTIF

Convolution

Fig. 2.6 The crystal lattice and choices of unit cells.

The generation of a two-dimensional “crystal structure” from a crystal lattice and a
structural motif (an apple in this example). The crystal lattice is obtained from the crystal
structure by replacing each complete repeating unit by a point. The replacement of
each point in the crystal lattice by an apple would lead to a two-dimensional crystal
structure. This crystal structure may be described alternatively as the convolution of an
apple and the crystal lattice. There are many ways in which unit cells may be chosen in the
repeating pattern of apples. Some possible alternative choices are shaded, each having
the same area despite varying shape. This can be verified by noting that the total content
of any chosen unit cell in this figure is one apple. Infinite repetition in two dimensions of
any one of these choices for unit cell will reproduce the entire pattern.

Wolff and Gruber, 1991), that is, to select the three shortest noncoplanar
vectors in the crystal lattice. This may help in establishing whether
two crystals with different unit-cell dimensions are really the same
or not.

It is a common misconception, perhaps arising from the abundance
of illustrations of the simplest elementary and ionic structures in text-
books, that an atom must lie at the corner (origin) of each unit cell.
It is possible to choose the origin arbitrarily and place it at the site
of an atom, but in most structures the choice of origin is dictated by
convenience, because of its relation to symmetry elements that may be
present (i.e., the appropriate space group), and in the great majority
of known structures no atom is present at the origin. Another miscon-
ception is that what a chemist finds convenient to regard as a single
molecule or formula unit must lie entirely within one unit cell. Portions
of a single bonded aggregate may lie in two or more adjacent unit



Crystal symmetry 19

cells. If this does happen, however, any single unit cell will necessarily
still contain all of the independent atoms in the molecule—the atoms
simply comprise portions of different molecules. This is illustrated in
Figure 2.6, which shows that a given unit cell may contain only one
apple or portions of two or more apples.

Crystal symmetry

Unit cells and crystal lattices are classified according to their rotational
symmetry. If an object is rotated 180◦ and then appears identical to the
starting structure, the object is said to have a two-fold rotation axis
(the axis about which the 180◦ rotation occurred). The presence of an
n-fold rotation axis, where n is any integer, means that when the unit
cell is rotated (360/n)◦ about this axis, the crystal lattice so obtained is
indistinguishable from original before rotation. If you closed your eyes,
rotated the crystal lattice, and opened your eyes again, nothing would
appear to have changed. The symmetry of an isolated crystal can be
found by examination, and it can give us some very useful information
about the internal atomic arrangement. If the crystal is set down on
a flat surface, it is possible to note if there is another face on top of
the crystal that is parallel to the lower face lying on the flat surface.
Then one can determine if there is a center of symmetry between these
upper and lower faces of the crystal. Similarly, one can examine the
crystal for two-, three-, four- and six-fold rotation axes. The result of
such examinations is the determination of the point group of the crystal,
that is, a group of symmetry operations, such as an n-fold rotation axis,
that leaves at least one point unchanged within the crystal.

It is shown in Appendix 2 that there are seven ways in which dif-
ferent types of applicable rotational symmetry (such as two-, three-,
four-, and six-fold rotation axes) lead to infinitely repeatable unit
cells. These seven are called the seven crystal systems—triclinic, mon-
oclinic, orthorhombic, tetragonal, trigonal/rhombohedral, hexagonal,
and cubic. They are distinguished by their different rotational symme-
tries. For example, in a triclinic crystal lattice there is no rotational (only
one-fold) symmetry; this defines the term “triclinic.” As a result, usually
(but not always) in a triclinic crystal lattice, all unit-cell lengths (a , b, and
c) are unequal, as are all interaxial angles (·, ‚, and „). A monoclinic
crystal lattice (· = „ = 90◦) has a two-fold rotation axis parallel to the
b axis (where b is chosen, by convention for this crystal system, to be
unique). This means that a rotation of the crystal lattice by 180◦ about
the b axis gives a crystal lattice indistinguishable from the original.
In an orthorhombic crystal lattice, with three mutually perpendicular
rotation axes, all interaxial angles (·, ‚, and „) are 90◦. A cubic crystal is
defined by three-fold axes along the cube diagonals, not by its four-fold
axes. It must be stressed that it is the symmetry of the crystal lattice
that is important in defining the crystal system, not the magnitude of
the interaxial angles. Some monoclinic crystals have been found with
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‚ = 90◦, and some triclinic crystals with all interaxial angles very close
to 90◦; this is why symmetry rather than unit cell dimensions are used
to define which is the correct crystal system for the material under
study. In the diagrams of these seven crystal systems in Appendix 2
all crystal lattice points (designated by small circles) are equivalent by
translational symmetry. All crystal lattices except the triclinic crystal
lattice display more than one-fold rotational symmetry (see Chapter 7
for details).

It is customary when choosing a unit cell to take advantage of the
highest symmetry of the crystal lattice. If a unit cell includes only one
crystal lattice point (obtained from the fractions at each corner), it is
said to be primitive and the crystal lattice is designated P . Sometimes
it is more convenient to choose a unit cell that contains more than one
crystal lattice point (a “nonprimitive” unit cell). Nonprimitive unit cells
are chosen because they display the full symmetry of the crystal lattice,
or are more convenient for calculation; any given crystal lattice may
always be described in terms of either primitive or nonprimitive unit
cells. The latter type of crystal lattices have lattice points not only at the
corners of the conventional unit cell, but also at the center of this unit
cell (I for the German innenzentrierte), at the center of one pair of oppo-
site faces (A, B, or C), or at the center of all three pairs of opposite faces
(F ) (see Appendix 2). More than one crystal lattice point is then associ-
ated with a unit cell so chosen, but the requirement that every crystal
lattice point must have identical surroundings is still fulfilled. That
there are 14, and only 14, distinct types of crystal lattices was deduced
by Moritz Ludwig Frankenheim and Auguste Bravais in the nineteenth
century, and these crystal lattices are named after Bravais (Bravais,
1850). The Bravais crystal lattices are obtained from a combination of
the seven crystal systems (triclinic, monoclinic, orthorhombic, tetrago-
nal, trigonal/rhombohedral, hexagonal, and cubic) with the four crystal
lattice types (P , Aor B or C , F , and I ) after the elimination of any equiv-
alencies. The unit cells of these 14 Bravais crystal lattices are shown in
Appendix 2.

Space groups

Since the atomic contents in each unit cell are identical (or nearly so),
the symmetry of the arrangement of atoms in each unit cell must be
related by certain symmetry operations (in addition to translation) that
ensure identity from unit cell to unit cell. This means that the atomic
arrangement in one unit cell is related by defined symmetry operations
to the arrangement in all other unit cells. The smallest part of a crys-
tal structure from which the complete structure can be obtained by
space-group symmetry operations (including translations) is called the
asymmetric unit. The operation of the correct space-group symmetry
elements (other than crystal lattice translations) on the asymmetric unit
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will generate the entire contents of a primitive unit cell. When one
considers the possible combinations of symmetry elements (centers of
symmetry, mirror planes, glide planes, rotation axes, and screw axes)
that are consistent with the 14 Bravais crystal lattices, and thus the pos-
sible symmetry elements of the structures that can be arranged on the
crystal lattices, it is found that 230, and only 230, distinct combinations
of the possible symmetry elements exist for three-dimensional crystals
(and only 17 plane groups for two-dimensional wallpaper). Thus the
many different ways of arranging atoms or ions in structures to give a
regularly repeating three-dimensional arrangement in a crystal fall into
230, and only 230, different three-dimensional crystallographic space
groups. They are listed in International Tables for (X-ray) Crystallography
(referred to here as International Tables), and these Tables, listed at the
end of this book in the “References and further reading” section, are
constantly used by crystallographers. The important result is that if
the location of one atom in a crystal of known space group has been
found, then application of the space-group symmetry operations (listed
for convenience in International Tables) will give the locations of all other
such specific atoms in the unit cell. This can be repeated for each atom
in the ions or molecules that make up the crystal. Symmetry and space
groups are discussed further in Chapter 7.

Physical properties of crystals

Optical properties

The interaction of light with crystals is one of the reasons they are used
for ornamentation (as jewelry). It may also reveal information about
crystalline symmetry and, in certain cases, the internal structure of the
crystal (Hartshorne and Stuart, 1950; Wood, 1977; Wahlstrom, 1979).
Particularly useful information may be obtained from the refractive
index of the crystal. This gives a measure of the change in the velocity
of light when it enters the crystal. Refraction is evident when a straight
stick or rod is partially inserted in water; the rod appears to be bent at
the point of entry. The change in the velocity of light as it passes from
air to water is revealed by the angle to which the rod appears to be
bent; when this angle is measured it gives information on the ratio of
the two velocities (that is, the refractive index of water). The refractive
index of a crystal is generally measured by immersing it in liquids of
known refractive index, and determining when the crystal becomes
“invisible.” The crystal and the liquid surrounding it now have the
same refractive index.

Some crystals, such as cubic crystals, are optically isotropic: the
refractive index is independent of the direction from which the crystal
is viewed. Other crystals may be birefringent, with different refractive
indices in different directions. When a test tube containing birefringent
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crystals in their mother liquor is shaken, the crystals glisten (unlike the
situation for isotropic cubic crystals). Birefringence, or double refrac-
tion, is the decomposition of light into two rays, each polarized. One
ray, the “ordinary ray,” travels through the crystal with the same veloc-
ity in every direction. The other ray, the “extraordinary ray,” trav-
els with a velocity that depends on the direction of passage through
the crystal. The result of this can readily be seen for a calcite crystal
(Iceland spar) in Figure 2.7, in which two images are formed when light
passes through the crystal. If a birefringent crystal is colored, it may
show different colors when viewed in different directions. If the crystal
structure contains an approximately planar group, measurements of
refractive indices may permit deduction of the orientation of this planar
group within the chosen unit cell. This method, combined with unit-cell
measurements, was used to study steroid dimensions and packing long
before any complete structure determination was or could be initiated.
It led to a correct chemical formula for atoms in the steroid ring struc-
ture (Bernal, 1932).

Fig. 2.7 The birefringence of calcite (Ice-
land spar).

View through an Iceland spar crystal (cal-
cite) with the word “BIREFRINGENCE”
written on a strip of paper behind it. Light
is broken into two polarized beams as
it passes through the crystal. The word
is split into two images, hence the term
“birefringence.” As the crystal is rotated,
the image made by the extraordinary ray
moves around the image made by the
ordinary ray. Iceland spar crystals are
believed to have been used in the Arctic
regions for ages in navigation to deter-
mine the direction of the sun on a cloudy
day, and hence which direction to sail in.

There are many other interesting optical properties of crystals.
Second-harmonic generation (SHG, also called frequency doubling)
was first demonstrated when a ruby laser with a wavelength of 694 nm
was focused into a quartz crystal (Dougherty and Kurz, 1976). Analysis
with a spectrometer indicated that light was produced with a wave-
length of 347 nm (half the wavelength and twice the frequency of the
incident light). Only noncentrosymmetric crystal structures can double
the frequency, and therefore SHG provides a useful method for testing
the symmetry of a crystal. Green laser pointers combine a noncen-
trosymmetric (nonlinear) crystal with a red neodymium laser to pro-
duce green light.

Electrical properties

Certain crystals display piezoelectricity. This word is derived from a
Greek word meaning “to squeeze” or “press.” Piezoelectricity is the
creation of an electrical potential by a crystal in response to an applied
mechanical stress. This effect is reversible in that materials exhibiting
the direct piezoelectric effect also exhibit the converse piezoelectric
effect (the production of stress when an electric field is applied). The
piezoelectric effect was first reported by Pierre and Jacques Curie in
1880, who detected a voltage across the faces of a compressed Rochelle
salt crystal (Curie and Curie, 1880). The phenomenon has many indus-
trial uses. For example, when the button of a cigarette lighter or gas
burner is pressed, the high voltage produced by the compression of a
crystal causes an electric current to flow across a small spark gap, so that
the gas is ignited. Another example is in the airbag sensor of a car. The
intensity of the shock of a car crash to a crystal causes an electrical signal
that triggers expansion of the airbag. In the analogous phenomenon of
pyroelectricity, a crystal can generate an electrical potential in response
to a change in temperature.
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The significance of the unit cell

In this chapter we have described crystals and their representation by
a repeating component, the unit cell. Since a crystal is built up of an
extremely large number of regularly stacked cells, each of which has
identical contents, the problem of determining the structure of a crystal
is reduced to that of determining the spatial arrangement of the atoms
within a single unit cell, or within the smaller asymmetric unit if (as is usual)
the unit cell has some internal symmetry. If there is some static disorder
in the structure, the arrangements of atoms in different unit cells may
not be precisely identical, varying in an apparently random fashion.
There may also be dynamic disorder in a structure as various part of
the molecules move. Since the frequencies of atomic vibrations are of
the order of 1013 per second, and since sets of X-ray diffraction data are
measured over periods ranging from seconds to hours, time-averaging
of the atomic distribution is always involved. What one finds for the
arrangement of atoms in a crystal is the space-averaged structure of all
of its component unit cells.

Summary

A crystal is, by definition, a solid that has a regularly repeating internal
structure (arrangement of atoms). This internal periodicity was sur-
mised in the seventeenth century from the regularities of the shapes
of crystals, and was proved in 1912 when it was shown that a crystal
could act as a three-dimensional diffraction grating for X rays, since X
rays have wavelengths comparable to the distances between atoms in
crystals.

Crystals are generally grown by concentrating a solution of the mate-
rial of interest until material separates (hopefully in a crystalline state).
Experimental conditions should ensure a good choice of solvent, the
generation of a suitable number of nucleation sites, control of the rate
of growth, and a lack of disturbance of the setup.

The unit cell of a crystal is its basic building block and is described
by three axial lengths a , b, c and three interaxial angles ·, ‚, „. When
describing a crystal face or plane it is necessary to consider intercepts
on the three axes of the unit cell. The hkl face or plane makes intercepts
a/h, b/k, c/ l with the three axes. The internal regularity of a crystal
is expressed in the crystal lattice; this is a regular three-dimensional
array of points (each with identical environments) upon which the
contents of the unit cell (the motif ) are arranged by infinite repetition to
build up the crystal structure. There are seven ways in which rotational
symmetry can lead to infinitely repeatable unit cells. These are the
seven crystal systems—triclinic, monoclinic, orthorhombic, tetragonal,
trigonal/rhombohedral, hexagonal, and cubic (see Appendix 2). These
seven crystal lattices are combined with the four crystal lattice types
(primitive P , single-face-centered A or B or C , face-centered F , and
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body-centered I ) to give 14 Bravais lattices. Symmetry elements (center
of symmetry, mirror planes, glide planes, rotation axes, and screw axes)
combined with these 14 Bravais lattices give the 230 different combina-
tions of symmetry elements (the 230 space groups) that are possible for
arranging objects in a regularly repeating manner in three dimensions,
as in the crystalline state.
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A common approach to crystal structure analysis by X-ray diffraction
presented in texts that have been written for nonspecialists involves the
Bragg equation, and a discussion in terms of “reflection” of X rays from
crystal lattice planes (Bragg, 1913). While the Bragg equation, which
implies this “reflection,” has proved extremely useful, it does not really
help in understanding the process of X-ray diffraction. Therefore we
will proceed instead by way of an elementary consideration of diffrac-
tion phenomena generally, and then diffraction from periodic structures
(such as crystals), making use of optical analogies (Jenkins and White,
1957; Taylor and Lipson, 1964; Harburn et al., 1975).

Visualizing small objects

The eyes of most animals, including humans, comprise efficient optical
systems for forming images of objects by the recombination of visible
radiation scattered by these objects. Many things are, of course, too
small to be detected by the unaided human eye, but an enlarged image
of some of them can be formed with a microscope—using visible light
for objects with dimensions comparable to or larger than the wave-
length of this light (about 6 × 10−7 m), or using electrons of high energy
(and thus short wavelength) in an electron microscope. In order to
“see” the fine details of molecular structure (with dimensions 10−8 to
10−10 m), it is necessary to use radiation of a wavelength comparable to,
or smaller than, the dimensions of the distances between atoms. Such
radiation is readily available

(1) in the X rays produced by bombarding a target composed of an
element of intermediate atomic number (for example, between
Cr and Mo in the Periodic Table) with fast electrons, or from a
synchrotron source,*

* Synchrotron radiation is an intense and
versatile source of X rays that is emitted
by high-energy electrons, such as those
in an electron storage ring, when their
path is bent by a magnetic field. The
radiation is characterized by a continuous
spectral distribution (which can, however,
be “tuned” by appropriate selection), a
very high intensity (many times that of
conventional X-ray generators), a pulsed
time structure, and a high degree of
polarization.

(2) in neutrons from a nuclear reactor or spallation source, or
(3) in electrons with energies of 10–50 keV.

Each of these kinds of radiation is scattered by the atoms of the sam-
ple, just as is ordinary light, and if we could recombine this scat-
tered radiation, as a microscope can, we could form an image of the
scattering matter. This recombination of radiation scattered by atoms

25
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is, however, found to be more complicated than that necessary for
viewing through a microscope, and it is the major subject of this
book.

X rays are scattered by the electrons in an atom,** neutrons are scat-
** When X rays hit an atom, its electrons
are set into oscillation about their nuclei
as a result of perturbation by the rapidly
oscillating electric field of the X rays. The
frequency of this oscillation is equal to
that of the incident X rays. The oscillat-
ing dipole so formed acts, in accord with
electromagnetic theory, as a source of radi-
ation with the same frequency as that of
the incident beam. This is referred to as
“elastic scattering” and is the type of scat-
tering discussed in this book. When there
is energy loss, resulting in a wavelength
change on scattering, the phenomenon is
described as “inelastic scattering.” This
effect is generally ignored by crystallogra-
phers interested in structure and will not
be discussed in this book.

tered by the nuclei and also, by virtue of their spin, by any unpaired
electrons in the atom, and electrons are scattered by the electric field of
the atom, which is of course a consequence of the combined effects of
both its nuclear charge and its extranuclear electrons. However, neither
X rays nor neutrons of the required wavelengths can be focused by
any known lens system, and high-energy electrons cannot (at least
at present) be focused sufficiently well to show individually resolved
atoms. Thus, the formation of an atomic-resolution image of the object
under scrutiny, which is the self-evident aim of any method of crystal
structure determination—and is a process that we take for granted
when we use our eyes or any kind of microscope—is not directly possi-
ble when X rays, neutrons, or high-energy electrons are used as a probe.
Unfortunately, the atoms that we wish to see are too small to be seen
without these short-wavelength radiation sources.

When, however, X rays or neutrons are diffracted by crystalline mate-
rials, a measurable pattern of diffracted beams is obtained and these
results can be analyzed to give a three-dimensional map of the atomic
arrangement within the crystal and hence the molecular structures
involved. In order for the reader to understand the process involved
it is necessary to consider diffraction in general, and easier to start with
the effects of visible light on masks that are readily visible. Scattering
of light by slits will serve as a preliminary model for the scattering
of X rays by atoms. When the dimensions of both the slits and the
wavelength of visible light are reduced by several orders of magnitude,
analogous results can be obtained for atoms and X rays.

Diffraction of visible light by single slits

The pattern of radiation scattered by any object is called the diffraction
pattern of that object. Diffraction occurs whenever the wavefront of a
light beam is obstructed in some way. We are accustomed to think of
light as traveling in straight lines and thus casting sharply defined shad-
ows, but that is only because the dimensions of the objects normally
illuminated in our experience are much larger than the wavelength of
visible light. When light from a point source passes through a narrow
slit or a very fine pinhole, the light is found to spread into the region
that normally would be expected to be in shadow. In explanation of
this effect, each point on the wavefront within the slit or pinhole is
considered to act as a secondary source, radiating in all directions.
The secondary wavelets so generated interfere with each other, either
reinforcing or partially destroying each other, as originally described
by Francesco Maria Grimaldi, Christiaan Huygens, Thomas Young, and
Augustin Jean Fresnel (Grimaldi, 1665; Huygens, 1690; Young, 1807;
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de Sénarmont et al., 1866). As these waves combine, the extent of
interference will depend on their relative phases and amplitudes. It is
assumed that any phase change on scattering is the same for each atom
and therefore this change is generally ignored.† There are, however, † The reader will remember that an electro-

magnetic wave has a constant velocity in
vacuo (the speed of light) and consists of
successive crests and troughs. Two crests
are a wavelength apart, and this distance,
which is inversely proportional to the fre-
quency of the radiation, defines the prop-
erties of the electromagnetic wave (such
as color red or blue, X ray or infrared,
etc.). The wave has an amplitude (the
maximum value measured from its mean
value), which is related to the square root
of the intensity of the beam. It also has
a “relative phase,” which is the distance
of the crest of the wave measured from a
chosen origin of the wave or with respect
to the crest of another wave (see Figure
1.2). It was shown by John Joseph Thom-
son that when radiation is scattered by an
electron, there is a phase change of 180◦
in the sense that the electric field in the
scattered wave at a given point is opposed
to that of the direct (incident) wave at
that same point (Thomson, 1906). This is
discussed in detail by Reginald William
James (1965).

exceptions to this assumption, for example when the wavelength of the
radiation can cause changes in the atom (see Chapter 10).

The phenomenon of diffraction by a regular two-dimensional pattern
may be illustrated by holding a woven fabric handkerchief taut between
your eyes and a distant point source of light, such as a street light.
Instead of just one spot of light, as expected, a cluster of lights will
be seen. The same phenomenon can also be demonstrated with a fine
sieve (see the cover of this book). The narrowly and regularly spaced
threads of the fabric or wires of the sieve are considered to produce this
diffraction effect. The larger the spacing between the wires of the sieve,
the closer diffraction spots are found around the central spot.

Keeping in mind that we are interested in scattering (diffraction)
by atoms, we begin with a discussion of diffraction by slits because
these involve visible light and therefore help with the description of
the various principles of diffraction. Two examples of the diffraction of
light when it passes through a single slit are given in Figure 3.1; in one,

(a)

(b)

Fig. 3.1 Diffraction patterns of single narrow slits.

The diffraction patterns of two single slits of different width, both illuminated with light
of the same single wavelength.

(a) The diffraction pattern of a narrow slit.
(b) The diffraction pattern of a slit 2.2 times wider than that used in (a). The diffraction

pattern is now narrower by a factor of 2.2.

Note that the wider slit gives the narrower diffraction pattern.

From Fundamentals of Optics by Francis A. Jenkins and Harvey E. White, 3rd edition
(1957) (Figure 16A). Copyright © 1957, McGraw-Hill Book Company. Used with permis-
sion of McGraw-Hill Book Company.
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IN PHASE, HIGH INTENSITY

PARTIALLY OUT OF PHASE, LOWER INTENSITY

OUT OF PHASE, NO INTENSITY

A=1.4, I=2.0.

l/4=phase difference

1.4

A=2.0, I=4.0 in phase

0=phase difference

(a)

(b)

(c)

Resultant wave

2.0

A=0.0, I=0.0 out of phase

l/2=phase difference

λ

Amplitude=1.0

0.0

Fig. 3.2 Interference of two waves. Summation of waves.

Three examples are shown of what happens when two parallel waves of the same wavelength and equal amplitude add. In each
example, the two separate waves are shown on the left and their sum or resultant wave on the right. The different examples are
characterized by varying phase differences. The relative phase of a wave is the position of a crest relative to some arbitrary point (see
Figure 1.2). This position (relative phase) is usually expressed as a fraction of the wavelength, and often this fraction is multiplied by
360◦ or 2π radians, so that the phase will be given as an angle. Thus a phase difference of Î/4 may be given as 1/4, 90◦, or 2/π radians.
The resultant wave has the same wavelength, Î, as the original two waves. The intensity, I , of the resultant wave is proportional to the
square of its amplitude, A, obtained on wave summation.
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Figure 3.1a, the slit is narrow and the diffraction pattern is wide, while
in the other, Figure 3.1b, the slit has a greater width but the diffrac-
tion pattern is narrower. This implies that there is a reciprocal relation
between the angular spread of the scattering or diffraction pattern in
a particular direction and the corresponding dimension of the object
causing the scattering. The smaller the object, the larger the angular
spread of the diffraction pattern. What is actually involved is the ratio of
Î (the wavelength of the radiation used) to the minimum dimension, a ,
of the scattering object (for example, the width of the slit); the larger
the value of Î/a (wavelength divided by slit width), the greater the
spread of the pattern. Therefore Figure 3.1b might equally well be a
view of the same slit as in Figure 3.1a, illuminated with radiation of
wavelength about 2.2 times shorter than that used in Figure 3.1a. It
is, in fact, possible to produce this change of scale by any change in
a and Î whose combined effect is to decrease the value of Î/a by a
factor of 2.2.

The phenomenon of interference between two waves traveling in
the same direction and the importance of phase differences between
these two parallel waves are illustrated in Figure 3.2. The amplitude
of the wave resulting from the interaction of two separate waves trav-
eling in the same direction with the same wavelength, and a con-
stant phase difference, depends markedly on the size of this phase
difference. Figure 3.2 shows how such waves may be summed‡ for ‡ The displacements from the mean (zero),

parallel to the vertical axis (the ordinates),
are directly summed at many points along
the horizontal axis (the abscissae) to give
the resultant wave.

three examples of different phase differences (zero, a quarter, and
half a wavelength). The intensity of the resulting beam is propor-
tional to the square of the amplitude of the summed waves in each
case.

The variations in intensity seen in Figure 3.1 arise from the inter-
ference of the secondary wavelets generated within the slit, as shown
in Figure 3.3. In the direction of the direct beam, the waves scattered
by the slit are totally in phase and reinforce one another to give max-
imum intensity. However, at other scattering angles, as illustrated in
Figure 3.3, the relative phases of the waves cause interference between
waves traveling in the same direction so that the intensity falls off as a
function of scattering angle; this leads to an overall intensity contour
of the diffraction peak, and we term this “the envelope.” At most
scattering angles the different scattered waves are neither completely in
phase nor completely out of phase, so that there is partial reinforcement
and thus an intermediate intensity of the diffracted beam. The result is
illustrated in the single-slit diffraction pattern (the envelope) shown on
the right of Figure 3.3.

(a) Phase difference zero. In this case there is total reinforcement, and the waves are said to be “in phase” or to show “constructive
interference”. If the original waves are of unit amplitude, the resultant wave has amplitude 2, intensity 4.

(b) Phase difference Î/4. Partial reinforcement occurs in this case to give a resultant wave of amplitude 1.4, intensity 2.
(c) Phase difference Î/2. The waves are now completely “out of phase” and there is destructive interference, which gives no resultant

wave (that is, a wave with amplitude 0, intensity 0).
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Direct beam
resultant (A)

Resultant (B)
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DIFFRACTION BEAM PROFILE
(THE ENVELOPE)

Fig. 3.3 Diffraction by a single slit.

Diffraction from a single slit is diagrammed by the superposition of waves generated within the area of the slit. The variation in
intensity with increasing angle is shown by the different amplitudes of the resultant waves (A, B, and C) at different angles. Left-hand
side: diffraction by a single slit; right-hand side: diffracted beam profile (the envelope), showing the location of A, B, and C on this
envelope.

Diffraction of light by regular arrays of slits

In order to consider what happens when a crystal that has a periodic
internal structure diffracts radiation, we now describe diffraction by
a series of equidistantly aligned slits. Reinforcement of the diffracted
beam occurs at angles at which the path difference between two par-
allel waves is an integral number of wavelengths; for example, when
the two waves are out of phase by three wavelengths (n = 3), there
will be reinforcement at a specific scattering angle and the wave will
be described as the “third order of diffraction” (see Figure 3.4). As
shown in Figure 3.5, the diffraction pattern of a single slit is modified
by interference effects when increasing numbers of slits are placed
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Third order 300
(Three wavelengths
path difference)

Direct beam
(Zero path difference)

First order 100
(One wavelength
path difference)

Second order 200
(Two wavelengths
path difference)

000

100

300

200

Fig. 3.4 Orders of diffraction.

First, second, third, and higher orders of diffraction are obtained as scattered waves differ by one, two, three, and more wavelengths.
Readers should satisfy themselves that with a smaller spacing a between scattering objects, the angle at which a given order of
diffraction occurs is proportionally increased.

side by side in a regular manner to form a one-dimensional grating.
Sometimes rays proceeding in a specific direction after scattering are
in phase and sometimes they are not. The important point to note is
that the diffraction pattern from a grating of slits is a sampling of the single-
slit pattern in narrow regions that are representative of the spacings between
the slits (see Figure 3.5). With even as few as 20 slits in the “grating”
(see Figure 3.6), the small subsidiary maxima vanish almost completely
and the lines in the diffraction pattern are sharp. The overall diffraction
pattern of a series of slits is thus composed of an “envelope” and a series
of “sampling regions” within the envelope. This envelope represents
the diffraction pattern of a single slit (see Figure 3.3). The “sampling
regions” result from interference of waves scattered from equivalent
points in different slits; the spacing of these sampling regions in the
diffraction pattern (see Figure 3.6) is inversely related to the spacing of
the slits.
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Fig. 3.5 Diffraction by two slits.
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Figure 3.7 shows schematically how a two-dimensional regular
arrangement of simple scattering objects, in this case holes in an opaque
sheet (drawn as black spots on the left), produces a two-dimensional
diffraction pattern (drawn as lines or spots on the right). Each of the
one-dimensional gratings in Figures 3.7a and b produces (in two dimen-
sions) a pattern of scattered light (the diffraction pattern) consisting of
lines (representing the maxima of light, as seen on the right). These
lines are perpendicular to the direction of the original grating because
interference effects between light scattered from adjacent holes reduce
the scattered light intensity effectively to zero in all directions except
that perpendicular to the repeat direction of the original grating. Hence
lines of diffracted light are formed. In Figure 3.7c, a combination of
both kinds of one-dimensional gratings that were shown in (a) and (b)
are present at once. This gives a regular two-dimensional grating. The
lattice of the diffraction pattern in Figure 3.7c is necessarily, then, the
“reciprocal” of the lattice of the original scattering objects (the crystal
lattice) shown on its left; see Figure 3.7d. This will now be described.

The reciprocal lattice

In addition to the lattice of the crystal structure in real or crys-
tal space (discussed earlier), there is a second lattice, related to the
first, that is of importance in diffraction experiments and in many
other aspects of solid state physics. This is the reciprocal lattice, intro-
duced by Josiah Willard Gibbs in 1884, long before X-ray diffraction
was known (Gibbs, 1901; Ewald, 1921). Its definition in terms of the
crystal lattice vectors is shown in Appendix 3. In the reciprocal lat-
tice a point, (hkl), is drawn at a distance 1/dhkl from the origin (the
direct beam, (000)), and in the direction of the perpendicular distance
between the (hkl) crystal lattice planes (Figure 3.7d). The relation-
ship between these two important lattices (the crystal and reciprocal
lattices) is a particularly simple one if the fundamental translations
of the crystal lattice are all perpendicular to one another; then the

(a) An overview of the envelope profile (equivalent to diffraction by a single slit or
an atomic arrangement) and the sampling regions (equivalent to the diffraction
of a series of equidistant slits or a crystal lattice). The envelope is accessed at the
sampling regions only.

(b) When diffraction occurs from two slits, there are two effects to consider:

(1) The variation in intensity with angle as a result of interference of the waves
generated within each slit separately. Interference between D1 and E1 and
between D2 and E2 gives the “envelope,” as obtained for a single slit (see also
Figure 3.3). This is the equivalent of diffraction by a single slit.

(2) The interference of scattered waves at a given angle with those at the same
angle from the adjacent slit (D1 with D2 from the next slit, E1 with E2 from the
next slit, etc.). At angles of constructive interference, when the two resultant
waves are in phase, “sampling” of the “envelope” occurs, as shown in part (a).
At certain other angles, no diffraction is observed. This sampling is the result
of the distance between the two slits.
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Diffraction pattern of two slits

Photometer
trace

Envelope

Photometer
trace

Sampling regions

Sampling
region

Sampling regions

Wide spacing (6a) between slits (each width a). Narrow spacing between sampling regions.

d = 2a

d = 2a

d = 6a

d = 6a

PhotographSlits

Slits Photograph

Narrow spacing (2a) between slits (each width a). Wide spacing between sampling regions

(a)

Varying numbers of slits

1 slit

(b)

5 slits

20 slits2 slits

Fig. 3.6 Diffraction patterns from equidistant parallel slits.

(a) The effect of varying the distance, d, between two slits of constant width, a , is shown. On the left is a diagram of the slits with
spacings of 2a and 6a , respectively, between them. In the center is shown a photograph of the diffraction pattern. On the right,
a photometer tracing of the diffraction pattern for the combination of the two slits is drawn as a solid line, and the diffraction
pattern for a single slit, referred to in the text as the “envelope,” is drawn as a dashed line. The envelope in both cases has the
same shape because it represents the diffraction pattern of a single slit of the same width. The regions of the “envelope” that are
sampled are indicated by short vertical lines at the lower edge of the drawings on the right. When there is a relatively narrow
spacing between the slits (d = 2a ), the distance between sampling regions is relatively large, as shown in the upper diagram.
When there is a relatively wide spacing between the slits (d = 6a ), the distance between sampling regions has decreased; that is,
there is an inverse relationship of the spacing of the sampling regions to the spacing of the slits.
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fundamental translations of the reciprocal lattice are parallel to those of
the crystal lattice, and the lengths of these translations are inversely
proportional to the lengths of the corresponding translations of the
crystal lattice. With nonorthogonal axes, the relationships between
the crystal lattice and the reciprocal lattice are not hard to visualize geo-
metrically; a two-dimensional example is given in Figure 3.7d. As we
shall see shortly, the fundamental importance of the reciprocal lattice in
crystal diffraction arises from the fact that if a structure is arranged on a
given lattice, then its diffraction pattern is necessarily arranged on the lattice
that is reciprocal to the first.§ § This may be stated alternatively as fol-

lows. The diffraction pattern of a molecu-
lar crystal is the product of the diffraction
pattern of the molecule (also called the
molecular transform) with the diffraction
pattern of the crystal lattice (which is also
a lattice, the reciprocal lattice, described
above). The result is a sampling of the
molecular transform at each of the recipro-
cal lattice points. The diffraction pattern of
a single molecule is too weak to be observ-
able. However, when it is reinforced in a
crystal (containing many billions of mole-
cules in a regular array) it can be readily
observed, but only at the reciprocal lattice
points.

Diffraction of X rays by atoms in crystals

It is a principle of optics that the diffraction pattern of a mask with
very small holes in it is approximately equivalent to the diffraction
pattern of the “negative” of the mask—that is, an array of small dots
at the positions of the holes, each dot surrounded by empty space. This
equivalence is discussed lucidly by Richard Feynman (Feynman et al.,
1963). In a crystal, the electrons in the atoms act, by scattering, as sources
of X rays, just as the wavefront in the slits in a grating may be regarded
as sources of visible light. There is thus an analogy between atoms in a
crystal, arranged in a regular array, and slits in a grating, arranged in
a regular array. In diffraction of X rays by crystals, as of visible light
by slits in a grating, the intensities of the diffraction maxima show a
variation in different directions and also vary significantly with angle
of scattering.

Most unit cells contain a complex assembly of atoms, and each atom
is comparable in linear dimensions to the wavelength of the X rays
or neutrons used. Figure 3.8a shows a typical X-ray diffraction photo-
graph, taken by the “precession method,” which records the reciprocal
lattice without distortion. Considerable variation in intensity of the
individual diffracted beams is evident; this is a result of the arrange-
ment of atoms (and their accompanying electron density) in the struc-
ture. The analogy with Figures 3.3, 3.5, and 3.6 holds; that is, the X-
ray photograph is merely a scaled-up sampling of the diffraction pattern of
the contents of a single unit cell. The “envelope,” which is shown by the

(b) Diffraction patterns are shown for gratings containing 1, 2, 5, and 20 equidistant slits, illuminated by parallel radiation of the
same wavelength. The diffraction pattern for a grating composed of 20 (or more) slits consists only of sharp lines, the intervening
minor maxima having disappeared; similarly, the diffraction pattern for a crystal composed of many unit cells contains sharp
diffraction maxima.

Summary of key points:

(1) The size and shape of the envelope are determined by the diffraction pattern of a single slit.

(2) The positions of the regions in which the envelope is sampled are determined by the spacing between the slits.

From Fundamentals of Optics by Francis A. Jenkins and Harvey E. White, 3rd edition (1957) (Figures 16E and 17A). Copyright © 1957,
McGraw-Hill Book Company. Used with permission of McGraw-Hill Book Company.
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Fig. 3.7 Diagrams of diffraction patterns from one- and two-dimensional arrays. Relation
between the crystal lattice and reciprocal lattice.
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(b)(a)

Fig. 3.8 X-ray diffraction photographs taken by the precession method.

(a) The precession method gives an undistorted representation of one layer of the reciprocal lattice. An X-ray precession photograph
of a crystal of myoglobin is shown here. The direct X-ray beam, which might otherwise “fog” the film, has been intercepted, hence
the white hole in the middle of the photograph. The radial streaks, found for very intense Bragg reflections, occur because the X
rays are not truly monochromatic (one wavelength) but contain background radiation of varying wavelength but lower intensity.
As a result the spot appears somewhat smeared out (that is, for each Bragg reflection, sin Ë/Î is constant but since Î varies for
the background “white radiation,” sin Ë must also vary, giving rise to a streak rather than a spot on the film). Note the regularity
of the positions of spots in this photograph but the wide variation in intensity (from a very black spot to one that is almost or
apparently absent). The positions of the spots (diffracted beams) give information on unit cell dimensions; the intensities of the
spots give information on the arrangement of atoms in that unit cell.

Photograph courtesy Dr. J. C. Kendrew.
(b) A comparison of diagrams of the diffraction patterns of myoglobin (large unit cell, monoclinic, a = 64.5 Å, b = 30.9 Å not shown,

c = 34.7 Å, β = 106.0◦) on the left and potassium chloride (small unit cell, cubic, a = 6.29 Å) on the right. The larger the unit cell,
the nearer together the diffraction spots if the wavelength of the radiation is the same for both. Variations in Bragg reflection
intensities are not shown in these diagrams. Note that many Bragg reflections are measured when the unit cell is large.

variation in intensities of the individual diffracted-beam spots, is the
diffraction pattern of the scattering matter (the electrons of the atoms)
in a single unit cell. The “sampling regions,” which are the positions of
the diffracted-beam spots, are arranged on a lattice that is “reciprocal”
to the crystal lattice. Measurements of the distances between these will
lead to the dimensions of the unit cell, and they sample the diffraction

(a, b, c) On the left is shown the grating used and, on the right, the corresponding
diffraction pattern (such as might be obtained by holding the original grating in front of a
point source of light). a and b are direct lattice vectors in the crystal or grating, and a∗ and
b∗ are vectors in the diffraction pattern (a and b are the spacings of the original gratings,
and a∗ and b∗ are spacings in the diffraction pattern). The reciprocal relationships of a and
b to the spacings of certain rows in the diffraction pattern are shown. These are diagrams,
and no intensity variation is indicated. The black dots on the left-hand side represent
holes that cause diffraction, giving the pattern on the right-hand side, in which black
lines or spots represent appreciable intensity for diffracted light.

Adapted from H. Lipson and W. Cochran. The Crystalline State. Volume III. The Determi-
nation of Crystal Structures. Cornell University Press: Ithaca, New York; G. Bell and Sons:
London (1966) (Lipson and Cochran, 1966).

(d) The relationships of a and b in the crystal lattice to a∗ and b∗ in the corresponding
reciprocal lattice are shown.
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pattern of a single unit cell. A comparison of the reciprocal lattices of the
protein myoglobin (Figure 3.8a) with that of potassium chloride (with a
much smaller unit cell) is shown in Figure 3.8b.

Some diffraction patterns of individual and assembled molecules are
illustrated in Figures 3.9 and 3.10, which have been prepared using
a special optical device that permits photographs to be made of the
diffraction patterns of arrays of holes cut in an opaque sheet. By an
appropriate choice of the optical components, the effective ratio of the
wavelength of the light used to the sizes of these holes can be made
similar to the ratio of X-ray wavelengths to the sizes of atoms. One
can, then, simulate X-ray diffraction photographs of crystals by making
patterns of holes in opaque sheets that are similar, except for scale, to
the patterns of arrangement of the atoms in the crystals.

The relationship between the diffraction pattern of a single “mole-
cule” and various “samplings” that can be produced by regular
arrangements of such molecules are shown in Figure 3.9. The left-
hand side of each part of the figure shows different arrangements of
molecules and the right-hand side shows the corresponding diffraction
patterns. This figure also shows, from the dimensions of the unit cell,
that the lattice of the diffraction pattern is reciprocal to that of the
“crystal”. Figure 3.9b shows the diffraction pattern of two “molecules”
side by side (horizontally in the orientation shown here) and illustrates
the interference arising from the interaction of the scattering by the two
molecules, exactly analogous to the interference caused by the presence
of two adjacent slits that gives rise to Figure 3.6a. Figure 3.9c shows
the pattern arising from four “molecules” arranged in a parallelogram;
now there is interference parallel to each of the two axes of the incipient
crystal lattice. Figure 3.9d shows the diffraction pattern of an extended
regularly spaced row of the molecules—that is, from a one-dimensional
crystal; there is sharpening of the diffraction effects parallel to the
direction of ordering, but no interference at all in other directions.
Figure 3.9e shows the pattern obtained by placing two lengthy rows

(c) Four molecules arranged in a parallelogram.
(d) Many molecules horizontally side by side (a one-dimensional crystal). Only part

of the row is shown.
(e) Two rows of molecules arranged on an oblique lattice. Only parts of the rows are

shown.

In comparing (e) with (d), note again the analogy with the relation of the one-slit and
two-slit patterns of Figures 3.1 and 3.6.

(f) Two-dimensional crystal of molecules. Only part of the crystal and part of the
diffraction pattern are shown. Compare this with Figure 3.8a.

From C. A. Taylor and H. Lipson. Optical Transforms. Their Preparation and Application
to X-ray Diffraction Problems. Plate 26. G. Bell and Sons, London (1964). Published with
permission.
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Fig. 3.9 The effect of different lattice samplings on the diffraction pattern.

This shows the relationship between the diffraction pattern of a “molecule” and various
regular arrangements of such molecules. The optical mask is on the left (black points as
holes) and its diffraction pattern is on the right.

(a) A single molecule.
(b) Two molecules horizontally side by side.

In comparing (b) with (a), note the analogy with the one-slit and two-slit patterns of
Figures 3.1 and 3.6.
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Fig. 3.10 The optical diffraction pattern of an array of templates resembling the skeleton
of a phthalocyanine molecule.
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side by side and, finally, Figure 3.9f shows the pattern obtained from
a two-dimensional crystal of these “molecules.” The resemblance to
the precession photograph in Figure 3.8a is good. Figure 3.9a is being
sampled at reciprocal lattice points to give Figure 3.9f.

In Figure 3.10a arrays of holes, each of which has the shape of the
skeleton of a phthalocyanine molecule, are shown, together with the
optical diffraction pattern obtained (with visible light) from these arrays
(Figure 3.10b). Note that the intensity variation in the optical diffraction
pattern (shown as intensities in Figure 3.10b) parallels that found in the
corresponding pattern obtained by the diffraction of X rays (listed in
Figure 3.10c).

Diffraction and the Bragg equation: Two ways
of analyzing the same phenomenon

Von Laue, who, with Friedrich and Knipping, discovered the diffraction
of X rays by crystals in 1912, interpreted the observed X-ray diffraction

(c) Relative intensities for the phthalocyanine crystal

h → 0 1 2 3 4 5 6 7

7 6 0 2 7 0 6 0 0
6 25 52 45 11 4 0 3 0
5 36 1 0 58 0 1 2 0
4 3 17 0 14 0 38 0 9
3 15 1 2 14 4 4 2 1
2 72 85 21 16 0 8 27 1
1 61 0 64 30 2 2 1 3
0 94 72 10 0 2 17 1

−1 61 29 55 0 2 7 10 5
−2 72 46 23 3 0 0 18 14
−3 15 37 14 10 2 21 2 0
−4 3 13 0 10 18 2 1 0
−5 36 0 18 3 19 0 0 0
−6 25 5 35 5 2 0 1 0
−7 6 0 2 0 14 2 0 0
l ↑

From C. W. Bunn. Chemical Crystallography: An Introduction to Optical and X-ray
Methods. 2nd edition. Plate XIV. Oxford at the Clarendon Press: Oxford (1961).

(a) The array used to obtain the optical diffraction pattern. This models a crystal
structure of phthalocyanine.

(b) The optical diffraction pattern obtained from (a).
(c) Relative h0l intensities measured from the X-ray diffraction pattern of a phthalo-

cyanine crystal. Qualitative comparison of these values with the intensities of the
corresponding spots in the optical diffraction pattern shown in (b) indicates that
the model used is a surprisingly good one. Note: Intensities for h0l and −h0 − l
(not listed below) are equal.
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Fig. 3.11 Diagram of “reflection” of X rays by imaginary planes through points in the
crystal lattice.
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patterns of crystals in terms of a theory analogous to that used to treat
optical diffraction by gratings, extended to three dimensions. On the
other hand, William Lawrence Bragg, who worked out the first crystal
structures with his father, William Henry Bragg, during the summer of
1913, showed that the angular distribution of scattered radiation could
be understood by considering that the diffracted X-ray beams behaved
as if they were reflected from planes passing through points of the crystal
lattice (Bragg, 1913). This “reflection” is analogous to that from a mirror,
for which the angle of incidence of radiation is equal to the angle of
reflection, as shown in Figure 3.11a. Waves scattered from adjacent
crystal lattice planes will be just in phase (i.e., the difference in the paths
traveled by these waves will be an integral multiple of the wavelength,
nÎ) only for certain angles of scattering, as shown in Figure 3.11. From
such considerations Bragg derived the famous equation that now bears
his name:

nÎ = 2d sin Ë The Bragg equation (3.1)

In this equation Î is the wavelength of the radiation used, n is an integer
(analogous to the order of diffraction from a grating, so that nÎ is the
total path difference between waves scattered from adjacent crystal
lattice planes with equivalent indices), d is the perpendicular spacing
between the lattice planes in the crystal, and Ë is the complement
(90◦ − Ë) of the angle of incidence of the X-ray beam (and thus also the
complement of the angle of scattering or “reflection”). Since it appears
as if reflection has occurred from these crystal lattice planes, so that
the direct beam is deviated by the angle 2Ë from its original direction,
diffracted beams are commonly referred to as “reflections.” Because
the Bragg equation is easily visualized, it is commonly presented in
elementary discussions in diagrams such as those in Figures 3.11a and
b; in Appendix 4 we show how it can be related to diffraction by a
crystal lattice (as described above).

The Bragg equation can be derived by considering the path dif-
ference between waves scattered from adjacent parallel crystal lattice
planes; the path difference must be an integral number of wavelengths

(a) Constructive and destructive interference as waves are “reflected” from imaginary
planes, spacing d, in a crystal. Constructive interference of planes A and B (the
unit-cell repeat distance d apart), and partial destructive interference of plane C
with A and B.

(b) Diffraction geometry. Since the path difference of waves scattered by two adjacent
planes is 2d sin Ë, this must equal nÎ for total reinforcement to occur to give a
diffracted beam (as illustrated in Figures 3.3, 3.4, and 3.5).

(c) Planes (2 0 1) in a crystal that has many atoms in its structure (see Figure 9.3d); the
planes lie perpendicular to the plane of the paper. Note that the planes intersect the
unit-cell edges once in the c direction and twice in the a direction. The 201 Bragg
reflection is intense in this structure.
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if constructive interference (reinforcement) is to occur. The equation is
satisfied, and thus diffraction maxima occur, when and only when the
relation of wavelength, interplanar spacing, and angle of incidence is
appropriate. If a nearly monochromatic beam of X rays is used with a
single-crystal specimen, diffraction maxima will be observed only for
special values of the angle of incidence of the beam of X rays, and
not necessarily for other arbitrary angles. If the crystal is rotated in
the beam, it may be in a position (at certain rotation angles) to form
additional diffracted beams. Therefore rotation of the crystal increases
the number of observed Bragg reflections available for measurement.
We use the term “Bragg reflections” for the diffracted beams to remind
the reader that they will only occur when the angle of incidence of the
X-ray beam is such as to satisfy Eqn. (3.1) for some set of crystal lattice
spacings present in the crystal. This means that Î, d , and Ë must all be
such that the Bragg equation holds. The chance of this happening for a
perfect crystal is low. However, real crystals have a mosaic spread (as
if composed of minute blocks of unit cells, each block being misaligned
by a few tenths of a degree with respect to its neighbors), and the X rays
used are never truly monochromatic, so that, in practice, a Bragg reflec-
tion can be observed over a small range of Ë and therefore some Bragg
reflections are observed in almost any orientation of a single crystal.
With a powdered crystalline specimen many different orientations of
tiny crystallites are present simultaneously, and for any set of crystal
planes, Eqn. (3.1) will be satisfied in some of the crystallites so that
the complete diffraction pattern will be observed for any orientation
of the specimen with respect to the X-ray beam. It is also possible to
get a diffraction pattern from a stationary single crystal by the use of a
wide range of wavelengths simultaneously. This was, in fact, the way in
which von Laue, Friedrich, and Knipping did their original experiment;
the technique is known as the Laue method, and is now currently used
for studies of biological macromolecules with high-energy X rays (see
Moffat et al., 1984).

The Bragg equation says nothing about the intensities of the dif-
fraction maxima that will be observed when it is satisfied. If, how-
ever, a particular set of crystal lattice planes happens to coincide,
in orientation and position, with some densely populated planar or
nearly planar arrays of atoms in a crystal, and if there are no inter-
vening densely populated planes, the corresponding diffraction max-
imum will be an intense one because the scattering from all atoms
is approximately in phase. In an example cited in Chapter 9 (Fig-
ure 9.3d) involving a planar organic molecule, the “reflection” with
indices h = 2, k = 0, l = 1 (written 2 0 1, i.e., second order in h,
direct for k, and first order for l) is very intense because the mole-
cules lie nearly parallel to the crystal lattice plane with indices (2
0 1) and are separated by a spacing very nearly the same as the
interplanar spacing of this crystal lattice plane. This is shown in
Figure 3.11c.
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Summary

To explain what happens when a crystal diffracts X rays, we first
examined optical analogies with slits and then with templates resem-
bling two-dimensional crystals. The pattern of radiation scattered by
any object is called the diffraction pattern of the object. For diffraction
from a slit, the wider the slit the narrower the diffraction pattern for a
given wavelength of radiation. The diffraction pattern of many parallel
and equidistant slits consists of a sampling of the single-slit pattern in
regions that are representative of the spacings between the slits.

For a series of several slits, the diffraction of light of a given wave-
length leads to the information that:

(1) The size and shape of the “envelope” of the intensity variation
is determined by the characteristic diffraction pattern of a single
slit. This intensity variation tells us the shape and size of the
diffracting object.

(2) The spacings between the “sampling regions” in this “envelope”
are inversely related to the spacings between the slits. Thus the dif-
ferences between diffracting objects are revealed by the distances
between diffraction maxima.

These principles may be extended to three dimensions and to crys-
tals, in which the electrons in the atoms act as scatterers for X rays, just
as the areas within the slits behave as if they were scatterers for visible
light. The diffraction pattern of a crystal is arranged on a lattice that
is reciprocal to the lattice of the crystal. The analogy with the optical
example holds; the X-ray photograph is merely a scaled-up “sampling
region” of the diffraction pattern of a single unit cell, with the “enve-
lope” being the diffraction pattern produced by scattering from the elec-
trons in the atoms of the unit cell, and the “sampling regions” arranged
on the lattice reciprocal to the crystal lattice. In an analogous manner,
diffraction of X rays of a given wavelength by a series of unit cells in
a crystal gives an envelope, related to the arrangement of atoms in the
unit cell, and sampling regions, related to the unit-cell dimensions.

This phenomenon of X-ray diffraction by crystals can be considered
in terms of a theory analogous to that of diffraction by gratings and
extended to three dimensions (von Laue) or be considered in terms
of reflection from planes through points in the crystal lattice (Bragg).
While these two treatments are equivalent, we have chosen to empha-
size the first approach because it provides more insight into the process
of structure analysis by diffraction methods.



Experimental
measurements4
The analysis of a crystal structure by X-ray or neutron diffraction con-
sists of three stages:

(1) Data collection. This involves experimental measurement of the
directions of scatter of the diffracted beams so that a unit cell
can be selected and its dimensions measured. The intensities of as
many as possible of the diffracted beams (Bragg reflections) from
that same crystal are then recorded. These intensities depend on
the nature of the atoms present in the crystal and their relative
positions within the unit cell.

(2) Finding a “trial structure.” This is the deduction by some method
(such as one of those described in Chapters 8 and 9) of a sug-
gested atomic arrangement (a “trial structure”). This is listed as
atomic coordinates that have been measured with respect to the
unit-cell axes. The intensity of each Bragg reflection correspond-
ing to this trial structure can then be calculated (see Chapter 5)
and its value then compared with the corresponding experimen-
tally measured intensity in order to determine whether the trial
structure is “good,” meaning that it is essentially correct.

(3) Refinement of the trial structure. This involves modification (refine-
ment) of a good trial structure until the calculated and measured
intensities agree with each other within the limits of any errors in
the observations (see Chapter 11). This is usually done by a least-
squares refinement, although difference electron-density maps
may also prove useful. The result of the refinement is information
on the three-dimensional atomic coordinates in this particular
crystal, together with atomic displacement parameters.

This chapter is concerned with the first of these stages, the exper-
imental measurements. This is a rapidly changing area of science as
more powerful and precise equipment and detection devices become
available. The experimental data that may be derived from measurements
of an X-ray or neutron diffraction pattern include:

(1) The overall appearance of the Bragg reflections at the detec-
tion system. Ideally these diffraction maxima should be sharp,
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well-resolved peaks. Blurred, double spots or arcs may indicate
disorder or poor crystal quality.

(2) The angles or directions of scattering (including 2Ë, the angular
deviation from the direct beam).* These can be used to determine * See Figure 3.11 for a diagrammatic defin-

ition of Ë.the order, hkl, of each Bragg reflection and lead to a selection of a
unit cell and a measurement of its size and shape.

(3) The intensities, I (hkl), of the diffracted beams, which may be ana-
lyzed to give the positions of the atoms within the unit cell.

The result is a set of values—2Ë, h, k, l, I (hkl)—and some measure of
the precision, Û(I ), for each Bragg reflection. The diffraction pattern
is uniquely characteristic of the atomic identities and arrangement in
the particular crystal under study, and will only be the same for other
crystals of the same material grown under the same conditions and
having the same unit-cell dimensions and atomic composition. This
means that a diffraction pattern can serve as a “fingerprint,” and can
be used for identifying material.

The experimental setup

The apparatus that is used to measure an X-ray diffraction pattern
has the same configuration as that used in the very first diffraction
experiment in 1912. The overall setup, illustrated in Figure 4.1, consists
of:

(1) The crystal that has been selected for study. It is checked to ensure
that it is a single crystal and is mounted in the measurement
apparatus so that the incident radiation can pass through it and
be diffracted by it.

(2) An incident beam of radiation. This is a fine pencil-like beam of
X rays or a larger beam of neutrons directed at the crystal. The
source of such radiation may be an X-ray tube, a synchrotron
source, or neutrons from a nuclear reactor or spallation source.
The beam may be monochromatic (one wavelength) or polychro-
matic (many wavelengths, known as “white radiation”).

(3) A system to detect the diffraction pattern. This is usually an image
plate or a charge-coupled device that can detect, measure, and
electronically record the directions and intensities of Bragg reflec-
tions. Measurements may be serial (one Bragg reflection at a
time) or may involve as much as possible of the entire diffraction
pattern. The apparatus that aligns the incident beam, crystal, and
detector, ready for measurement, is a diffractometer.

There have been many improvements to these components of the
setup through the years and they are now significantly more effi-
cient and “user-friendly.” Advances in their design have now made
it possible to study the crystal structures of extremely large biological
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Fig. 4.1 The diffraction experiment.

The experimental setup used by von Laue, Friedrich, and Knipping to measure X-ray
diffraction intensities in 1912. The important components of the experimental equipment
consist of an X-ray source that provides a finely collimated beam of radiation, a crystal
that can scatter this radiation, and a detection device that can detect the diffraction pattern
and measure the directions and intensities of the diffracted beams. Currently this same
arrangement of equipment is used by X-ray crystallographers, but each component is
now much more sophisticated.

macromolecules (Blundell and Johnson, 1976; Helliwell, 1992; McRee,
1993; Drenth, 1999).

Selection of a suitable crystal

A crystal whose structure is to be determined should be a single crystal,
not cracked or a conglomerate. This may be checked by examining it
under a microscope, with polarized light, since most crystals are bire-
fringent** (Blundell and Johnson, 1976; Wahlstrom, 1979; Hartshorne

** One crystal form of the enzyme citrate
synthase is cubic (Rubin et al., 1983) and
shows no birefringence when a test tube
containing crystals is shaken.

and Stuart, 1950). In the polarizing microscope two Nicol prisms each
transmit only plane-polarized light, that is, light vibrating in a specific
direction. One prism, the polarizer, produces plane-polarized light and
the other prism, the analyzer, is only able to transmit light if the two
prisms are in the same orientation. They are set perpendicular to each
other so that no light can pass through. An optically isotropic crystal
placed between the prisms will not change this, but if the crystal is
birefringent and is rotated on the stage, it will show sharp extinction of
light at four rotation positions 90◦ apart. These extinctions occur when
the vibration directions of the Nicol prisms are the same as those of the
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Fig. 4.2 Mounting a crystal.

Methods for mounting crystals. (a) A crystal mounted on a glass fiber, as used for a small-molecule crystal that does not decompose
on exposure to air. (b) A crystal that does not diffract if it dries out is mounted in a sealed capillary tube with its mother liquor. (c) A
protein crystal frozen on a thin film of solvent in a loop.

crystal under examination. Generally, if multiple crystals are present,
only one part of the crystal will extinguish, and others will extinguish
on further rotation of the crystal (Bunn, 1961). In this way one can check
that a crystal is single.

If the crystal is too large, and therefore will not be fully bathed by
the incident X-ray beam, it may be possible to cut it safely with a
razor blade or with a solvent-coated fiber. Ideally one can try to find
a crystal that can be shaped, often by grinding, until it is approximately
spherical so that corrections for absorption of X rays are simplified.
Some crystals, however, are too soft, fragile, or sensitive even for a
delicate cutting and must be used as they have grown. For example,
crystals of macromolecules contain 30–70% water, sometimes more, and
they break very readily because the forces between such large molecules
are weak in view of the macromolecular size; therefore attempts to cut
the crystals may destroy them (Bernal and Crowfoot, 1934; McPherson,
1982; Bergfors, 2009).

The ultimate test of how good a crystal is comes from an inspection
of the diffraction pattern obtained. Crystals are mounted on an aligning
device (such as a goniometer head, see Figures 4.2 and 4.3), so that they
can be positioned in the direct X-ray or neutron beam, ready for diffrac-
tion. The centering of the crystal in the beam is checked by rotating and
viewing it through a microscope to make sure the center of the crystal
is fixed in space during the rotation, and therefore does not move out
of the incident beam during data collection.

A crystal to be studied is generally attached to a glass fiber with glue
or some similar material. If the crystal is unstable, it is put into a thin-
walled glass capillary tube (generally by gentle suction or simple capil-
lary action) and the capillary is then sealed. An appropriate atmosphere
is then maintained in the capillary to ensure stability of the crystal;
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Fig. 4.3 Centering a crystal.

A goniometer head is used for orienting and centering a crystal in the incident X-ray
beam. The goniometer arcs and lateral adjustments provide the means for the crystallog-
rapher to orient the crystal so that, in spite of reorientations of the centering device during
data collection, the crystal is always centered in the incident X-ray beam. The angle ˆ and
the position z define the orientation and height of the crystal.

for example, protein crystals require a small amount of mother liquor
to prevent drying out and disordering or collapse of the crystalline
structure. The fiber or capillary is fixed onto a brass pin by shellac or
glue and this pin is then attached to the diffraction equipment, as shown
in Figure 4.2. For biological macromolecules, such as enzymes, it is cur-
rently more usual to capture the crystal in a tiny loop (made of rayon,
nylon, or plastic and attached to a tiny rod). The crystal is mounted
or positioned for cryocrystallography in the thin film that forms when
the small loop is immersed in real or synthetic mother liquor, as shown
in Figure 4.2c; the crystal in the loop is then flash-cooled in liquid
nitrogen. The aim of this cooling is to reduce radiation damage caused
by the X rays, but it can sometimes cause the crystal to crack or form
ice on its surface; therefore it may be necessary to soak the crystal in a
cryoprotectant solution, such as glycerol, prior to cooling. Cooling will
also increase the maximum resolution of the diffraction data and the
value of I (hkl)/Û(I ). The crystals are then kept at a low temperature (just
above the boiling point of nitrogen) for data measurement. If its quality
is still poor the crystal can be annealed by warming the crystal, and then
flash-cooling it for a second time (Harp et al., 1998). Newer methods
of crystal mounting continue to be designed and reported on in the
literature.

Radiation damage usually occurs as a result of free-radical formation
and heating effects; it will continue after X-ray exposure has stopped. It
is generally believed that such radiation damage can be reduced by the
use of incident monochromatic X rays, or by lowering the temperature
with appropriate attention to the solvent. If a small group of Bragg
reflections is measured at regular intervals throughout a sequential
measurement process, it will be possible to determine the amount of
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crystal decay as a function of time. In practice, each Bragg reflection
is affected in a unique manner, depending on the nature of the atomic
movement during damage, but an average fall-off in intensity will give
some (but not precise) information that is suitable for use in correcting
intensities for radiation damage. A neutron beam generally does not
cause any radiation damage to the crystal.

Unit-cell dimensions and density

The dimensions of the unit cell (a , b, c, ·, ‚, „) can be found from the
angles, 2Ë, of the deviation of given diffracted beams from the direction
of the incident beam, because each value of 2Ë at which a diffraction
maximum is observed is a function only of the cell dimensions and
of the known wavelength of the radiation used, see Appendix 1. The
spatial orientation of these diffracted beams allows indexing so that
the determination of cell dimensions is simplified; however, it is also
possible to determine unit-cell dimensions from powder photographs.

The density of the crystal can be measured by flotation, but generally
the value is now assumed to be the same as that of crystals with a
similar composition. Most crystals of organic compounds have a den-
sity near 1.3 g cm−3, otherwise described as 18 Å3 per atom, excluding
hydrogen atoms. For macromolecular crystals, which may have a high
water content, the Matthews coefficient (VM, volume per dalton of pro-
tein), calculated as the unit-cell volume, V, divided by the molecular
weight, MW, times the number of asymmetric units in the unit cell,
Z, should lie in the range 1.7 to 3.5 Å3 per dalton (average near 2.3)
(Matthews, 1968; Kantardjieff and Rupp, 2003):

Matthews coefficient VM = V/{Z times MW} cubic Å per dalton (4.1)

If the nature of the atomic contents of the crystal is uncertain, it still
may be necessary to measure its density. Experimentally, this is done
by mixing two miscible liquids in which the crystal is insoluble (one
more dense, one less dense than the crystal) in such proportion that the
crystal remains suspended in the mixture (it neither sinks nor rises to
the surface of the resulting mixture). The density of the liquid mixture
(with the same density as that of the crystal) is then found by weighing
a known volume in a “specific gravity bottle” or “pycnometer.” For
macromolecules, a “density gradient column” is prepared by layering
an organic liquid (in which the protein is insoluble) on another that is
miscible with the first. This column can be calibrated by measuring the
equilibrium positions along the column of drops of aqueous solutions
of known density. Some protein crystals are then added to the column
and their equilibrium positions read; these positions can be directly
converted to densities using the previously prepared chart. As seen
in Appendix 1, the density of the crystal, combined with its unit-cell
dimensions, will give the weight of the contents of the unit cell. If the
elemental analysis of the crystal is known, then the number of each type
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of atom in each unit cell can be determined. Then a decision can be
made whether or not to proceed with a structure analysis.

The Bragg reflections to be measured

The Bragg equation (Eqn. 3.1) is only satisfied for a few diffracted
beams if the crystal is stationary. Therefore it is usual to oscillate the
crystal in order to obtain more diffraction data. The maximum number
of Bragg reflections that can be accessed, N, will depend on appropriate
oscillation of the crystal, the wavelength Î of the radiation, the volume
V of the unit cell, and the number n of crystal lattice points in the unit
cell, according to the formula

N = (4π/3)(8V/nÎ3) (4.2)

How do we tell which Bragg reflections can be measured with a
selected arrangement of the diffraction-measuring apparatus? There is
a geometric construction that does exactly this. It is the Ewald sphere,
named after Paul Ewald, who was involved in discussions with von
Laue that led to the first crystal diffraction experiments in 1912 (Ewald,
1913). For the crystal under consideration, the Ewald sphere is a sphere
of radius 1/Î (for a reciprocal lattice with dimensions d∗ = 1/d), drawn
with its diameter along the incident beam direction. This is shown in the
diagrams of its construction in Figure 4.4. The origin of the reciprocal
lattice is positioned at the point at which the incident beam emerges
from the Ewald sphere. The reciprocal lattice is then rotated about its
origin (in the same manner as that planned for data measurement).
Whenever a reciprocal lattice point P touches the surface of the Ewald
sphere, the conditions for a diffracted beam are satisfied. A Bragg reflec-
tion, with the hkl indices of that reciprocal lattice point P, will result.
Thus, for a particular orientation of the crystal relative to the incident
beam, it is possible to predict which reciprocal lattice points and thus
which Bragg reflections will be observed. If radiation of a different
wavelength is used, the radius 1/Î, drawn in the Ewald sphere, can
be adjusted accordingly, and the angles through which the crystal is
rotated can be accounted for.

The incident radiation: X rays or neutrons

X rays are produced, as mentioned in Chapter 3, when a high voltage
is applied between a cathode and an anode in an evacuated glass bulb;
this voltage causes the cathode to emit fast-moving electrons,† and they

† The type of diffraction discussed in this
book is referred to as “kinematical dif-
fraction” and assumes that the incident
beam is diffracted and leaves the crys-
tal. In “dynamical diffraction,” which is
particularly evident in electron diffrac-
tion, the diffracted beams interact with
the crystal and each other (Ewald, 1969).
This repeated scattering makes analysis of
the diffraction pattern much more compli-
cated.

are directed at the anode (a metal target), and are suddenly decelerated
when they hit it. As a result of this impact, X rays are emitted. The
intensity of this initial source of X rays is controlled by the applied
voltage and amperage. A diagram of an X-ray tube is provided in
Figure 4.5. X ray-tubes have a relatively low flux and the background
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Fig. 4.4 The Ewald sphere (sphere of reflection).

(a) A sphere of radius 1/Î is drawn. (b) The origin of the reciprocal lattice, drawn on the
same scale, is placed with its origin on the surface of the sphere, at O. When a reciprocal
lattice point hits the surface of the Ewald sphere, a Bragg reflection will occur. To increase
the likelihood of this happening the crystal is rotated in the diffractometer, an event that
is represented in the Ewald construction by a similar rotation of the reciprocal lattice. If
white radiation is used, it will be necessary to draw spheres at the two limits of radiation.

radiation is appreciable, unless filters or a monochromator are used.
The greater the intensity of radiation from an X-ray tube, the more
extensive the diffraction pattern (since weak Bragg reflections are made
visible) and the better the signal-to-noise ratio. Since diffracted beams
are much weaker in intensity than the direct (undiffracted) beam, it is
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Diagram of the structure of an X-ray tube. Electrons are emitted from the tungsten
filament (cathode) and are attracted to the target in the anode. On hitting the target (Cu,
Mo, Cr, for example), X rays are emitted and exit the tube through beryllium windows.

necessary to intercept the direct beam by means of a small metal cup (a
“beam stop”) so that the detection system is not overloaded by the high
intensity of the direct incident beam of X rays.

Two types of X rays are produced in the X-ray tube (see Figure 4.6a).
The first has the label “Bremsstrahlung,” which means “braking radi-
ation” (in German), and is produced when accelerated electrons are
suddenly decelerated by a collision with the electrical field of an atom in
the metal target of an X-ray tube. This radiation, which generally serves
as background, has a continuous spectrum. The kinetic energy of the
fast electrons has been converted into radiation, including X rays. The
second type of radiation, called “characteristic radiation,” is produced
when the fast electrons cause a change in the atom that they hit; this
change is the ejection of an electron from an inner shell of an atom
in the metal target anode. When another electron from an outer shell
of the same atom moves to fill the void left by the ejected electron,
an X ray photon will be emitted with a wavelength representative of
the difference between the energy levels of the ejected electron and
of the electron that takes its place. The X-ray spectrum obtained is
therefore characteristic of the metal in the target anode. It is approxi-
mately monochromatic, and all but one narrow wavelength band can
be selected and used for diffraction studies. Characteristic X rays from
copper and molybdenum target anodes (wavelengths 1.54 Å and 0.71 Å,
respectively) are most commonly used in X-ray diffraction experiments,
but many other targets are available for use when necessary. The X
rays are labeled by the shell of the ejected electron (K, L, M, etc.) and
the number of shells that the replacement electron has passed through
(α for one shell, β for two, etc.) (see Figure 4.6b). For example, Kα

radiation corresponds to a transition from n = 2 to n = 1 (the innermost,
highest-energy atomic level, where n is the principal quantum number
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Fig. 4.6 Energy levels and X rays.

(a) The characteristic X-ray spectrum of copper radiation, produced with a copper target
in the X-ray tube. (b) X rays are labeled by the shell of the ejected electron (K, L, M, etc.)
and the number of shells the replacement electron has passed through (α for one shell, β
for two, etc.).

of a shell). This means that when a K-shell vacancy is formed, it is filled
by an electron from the adjacent L shell, and Kα radiation is emitted.
Kβ radiation corresponds to a transition from n = 3 to n = 1; that is, a
K-shell vacancy is filled by an M-shell electron, and so forth.

A monochromator, which transmits only a mechanically selectable
small range of wavelengths (its bandpass) from a larger range, is used
to tune X rays to a required wavelength. One type of monochromator
selects (by slits) a single Bragg reflection from an appropriate crystal,
such as one of graphite, silicon, germanium or copper, and this selected
Bragg reflection becomes the new incident beam for diffraction studies.
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Another type employs optical methods, that is, a combination of a
collimating mirror, a diffraction grating, and a focusing mirror, to give
the required spectral range; X rays can be focused by mirrors if the
angle of incidence is extremely small (less than 0.1◦). Sometimes two
monochromators are used, acting in tandem.

A major problem when X rays are produced in a sealed tube (as just
described) is that considerable heat is generated and must be elimi-
nated, for example by cooling the tube with flowing water. It has been
found that if the anode is rotated at high speed and the fast-electron
beam is directed at its outer edge, this heat can be dissipated, and, as a
result, it becomes possible to generate more intense X rays. This is the
principle of the rotating-anode generator, and, because of the high flux of
the X rays produced, it is possible to measure extensive diffraction data
for crystalline biological macromolecules.

Synchrotron radiation, however, currently provides the most intense
X rays suitable for diffraction studies. The emission of radiation is
a property of accelerated charged particles. Electromagnetic radiation
(which includes X rays) is emitted when accelerating electrons, travel-
ing at near the speed of light, are forced, by a magnetic field, to travel
in a circular orbit, as in an electron storage ring. The wavelength of this
radiation will depend on the strength of the magnetic field, the speed
of the electrons, and the size of the storage ring. These factors can be
appropriately chosen and combined to give a good source of X rays.
Synchrotron radiation has very high intensity (and therefore is good
for single-crystal diffraction studies), and low divergence (so that there
is good intrinsic collimation, a large signal-to-noise ratio, and a high
resolution). It is also highly polarized (which is useful for distinguish-
ing electronic from magnetic scattering) and is emitted in short pulses
(which facilitates fast time-resolved studies). It is multiwavelength
(white) radiation and, if a single wavelength is required, selection
(tuning) with a monochromator is essential. Its range of wavelengths
is wide, so that selection can be made of radiation near the absorp-
tion edge of an atom contained in the crystal; therefore anomalous-
dispersion experiments, as described in Chapter 10, can be done.

Another type of radiation used in crystal diffraction studies consists
of neutrons (Bacon, 1975; Dianoux and Lander, 2003; Willis and Carlile,
2009). Neutron diffraction can provide information that complements
that from X-ray diffraction. Neutrons are uncharged particles, highly
penetrating, but their beams are relatively weak, and, when not in
nuclei, they decay with a mean lifetime of about 15 minutes. They were
discovered by James Chadwick in 1932, and were subsequently shown
to be diffracted by crystals (even though they are particles) (Chadwick,
1932; von Halban and Preiswerk, 1936; Mitchell and Powers, 1936).‡‡ This was long after von Laue studied dif-

fraction of X rays by crystals in 1912 and
therefore decided that X rays are waves
(Friedrich et al., 1912).

This dual identity of neutrons is in line with the postulate of Louis
Victor de Broglie in 1923 that particles and waves should have
both particle-like and wavelike properties (de Broglie, 1923). Their
wavelength can be calculated from his equation Î = h/mv, where Î

is the wavelength, m is the mass of a neutron (1.67 × 10−24 g), v is its
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velocity, and h is Planck’s constant (6.626 × 10−34 kg m2 s−1) (Planck,
1901). The faster the neutron, the shorter its apparent wavelength.

X-ray diffraction probes the electron-density arrangement in the crys-
tal, while neutron diffraction probes the positions of atomic nuclei in
the crystal. Therefore, when the results of X-ray and neutron diffraction
by a crystal are compared, a large amount of structural and chemical
information, for example, on the asymmetry of the electron distribution
around a particular atomic nucleus, is obtained. This will be described
later in Chapter 12. Neutrons also have a spin of 1/2 and therefore can
also be used to probe the magnetic structure of a material.

Neutrons are generally produced at nuclear reactors, so that it is
necessary to visit a national atomic energy center for neutron diffrac-
tion studies. A large number of neutrons are produced in a reactor
by nuclear fission. They may also be produced at spallation sources.
The word “spallation” describes the ejection of material on impact.
Neutrons are obtained at a spallation source when short bursts of
high-energy protons bombard a target of heavy atomic nuclei (such
as mercury, lead, or uranium); each proton produces several high-
energy neutrons in a pulsed manner. Slow neutrons with wavelengths
of 1 to 2 Å are required for diffraction studies. Therefore fast neutrons
produced by either of these two processes must be slowed down by
moderators (such as heavy water) that reduce their kinetic energy and
provide neutrons with wavelengths that are approximately the same as
those used for X-ray diffraction studies. For further information on the
practical aspects of neutron diffraction, there are several excellent texts
(Bacon, 1975; Wilson, 2000; Willis and Carlile, 2009).

Equipment for diffraction studies

When X rays are used for crystal diffraction studies, it is found to
be necessary, in order to get a large number of Bragg reflections, to
oscillate or rotate the crystal, or to use polychromatic radiation (the
Laue method). The general geometry of the detection system is shown
in Figure 4.7. The relationship between the diffraction pattern and the
crystal orientation is diagrammed in Figure 4.8. While the crystal lat-
tice defines the crystal, the reciprocal lattice (Figure 4.9) represents the
diffraction pattern, and this information is useful when interpreting the
diffraction pattern in terms of Bragg reflections.

We first briefly describe the old film methods, as they are part of the
literature on the subject and they illustrate some of the principles that
the reader needs to know. Then we proceed to the more modern meth-
ods. The old methods mostly involve photographic film; this is a good
X-ray detector, but has now been superseded by more efficient elec-
tronic devices. To take an oscillation or rotation diffraction photograph,
a crystal, mounted on a goniometer head, is either rotated continuously
in one direction (to give a rotation photograph) or oscillated back and
forth through a small angle (to give an oscillation photograph). The
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Diagram of the relative arrangement of the X-ray source, the detector, and the crystal and
their relationship to the diffraction vector. All are in the same plane.

resulting diffraction pattern is recorded on photographic film placed
around the crystal. If the axis of rotation or oscillation is perpendicular
to the X-ray beam, the resulting photograph contains lines (layers) of
Bragg reflections (see Figure 4.10). As can be seen in this figure, many
of the Bragg reflections overlap each other, so that indexing them may
difficult. Therefore the Weissenberg camera was invented, in which
the camera is moved as the crystal is rotated or oscillated. Only one
layer from an oscillation photograph is selected, by the positioning
of a metal screen with a slit in it, between the film and the X-ray
source (Weissenberg, 1924). The crystal is oscillated back and forth,
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Fig. 4.8 The relation between the crystal
orientation and the diffraction pattern.

The relative orientation of the reciprocal
lattice of a crystal (expressed here as a∗
and b∗), and its indexed X-ray diffraction
pattern (expressed here as h and k). Note
the relationship of a∗ to h and b∗ to k. From
the positions of diffracted beams on the
detection device it is possible to deduce
the dimensions of the reciprocal lattice
and hence of the crystal lattice; hence the
indices h, k, and l of each Bragg reflection.

while the slit ensures that only one layer of Bragg reflections (for
example, a specific value for the h index) is recorded on the film. At
the same time the camera moves in a direction parallel to the axis of
crystal oscillation. The most important feature is that the motion of
the camera is coupled to the oscillation of the crystal, which helps in
interpreting the photograph. Bragg reflections on a Weissenberg pho-
tograph can therefore be more readily indexed than on an oscillation
photograph.

An even more useful type of X-ray diffraction photograph is pro-
duced by a precession camera (Figures 3.8a and 4.11) (Buerger, 1964).
It gives an undistorted view of one selected plane of the recipro-
cal lattice. This makes it particularly useful for measuring unit-cell
dimensions and assigning a space group to the crystal. Here the cam-
era motion is more complicated in order that the recorded image
of the diffraction pattern may be simple. In fact, direct measure-
ment of all reciprocal lattice parameters is possible from a series of
precession photographs, with an appropriate scale factor taken into
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An X-ray diffraction photograph is
obtained from a crystal mounted with
the reciprocal lattice axis, c∗, vertical. On
oscillation about this vertical axis the
diffraction pattern shows layer lines, each
with a constant value for the index l along
them.

reciprocal lattice plane is inclined by an angle Ï (typically 30◦) to the
direct incident X-ray beam, and this then precesses (like the motion
of a toy spinning top) about the incident X-ray beam. The flat film
holder, which has an annular screen that isolates a single plane of
the reciprocal lattice, follows the precession motion, ensuring that
the film is always parallel to the selected reciprocal lattice plane
of the crystal being photographed. It does this in such a way that the
direct beam always hits the center of the film. The photograph that
results from this complicated set of motions is simple to interpret.
This method is very useful for triclinic crystals and for macromolecular
crystals.

Generally, crystal symmetry, crystal lattice constants, and diffraction
data are currently measured with a diffractometer (Figure 4.12). The
incident radiation may be X rays from a sealed tube, a rotating anode,
or a synchrotron source, or it may be a neutron beam. A diffractometer
requires a collimated incident beam and a beamstop to collect that part
of the direct beam that has passed undeflected through the crystal. The
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The indexing of Bragg reflections on a precession photograph. Note the systematic
absences—0k0 with k odd and 00l with l odd. By convention the positive direction of
a is toward the X-ray source.

detection system is an image plate or a charge-coupled device, rarely
photographic film. Many modern diffractometers do not require any
orientation of the crystal, only centering of the crystal, so that no matter
how the instrument is oriented the crystal is always centered in the
incident beam. A goniometer head can, however, be used to align the
crystal, if required. Protein crystals, mounted with mother liquor in a
capillary, are also put in a centering device. While both imaging with
film and digital signaling are employed for the detection of diffracted
radiation, they operate in different ways. A film records light as the
result of a series of chemical reactions, while charge-coupled devices
convert light (caused when X-ray photons hit a phosphor) directly into
a digital signal.
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(a) A four-circle diffractometer. The crystal is mounted on a goniometer head, for which the spindle axis is ˆ. The goniometer head is
attached to the ˜ circle. The angle ˜ is the angle between the ˆ axis of the goniometer head and the base of the diffractometer. The ˜

circle can be rotated about the ˘ axis, where ˘ is the angle between the diffraction vector and the plane of the ˜ circle. The detector is
moved on the 2Ë circle, where 2Ë is the angle between the incident and diffracted X-ray beams. The detection device can be an image
plate or a charge-coupled device. The setup for serial measurement is shown here. (b) A diffractometer with kappa (Í) geometry. The
omega block rotates about the base plate while the kappa block rotates about the omega block as shown. This simulates the chi circle
motions in the instrument in (a) but avoids clashes.
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There are several types of diffractometers. Some move a detector to
measure each Bragg reflection sequentially, and some employ a flat
detection device, an “area detector,” that measures a large number of
Bragg reflections at one time. The source of radiation is usually fixed
in space and, in a sequentially measuring diffractometer, the required
angular settings for the crystal and detector with respect to the incident
beam are calculated in advance once a few Bragg reflections have been
located and identified. This type of diffractometer is composed of sev-
eral mechanical circles that rotate the crystal or the detection system
with respect to the X-ray beam, as shown in Figure 4.12a. In this “four-
circle diffractometer” the crystal can be rotated around three axes (˜, ˆ,
and ˘) independently, and the detector can be rotated about a fourth
angle (2Ë, concentric with, but independent of, ˘), in the equatorial
plane parallel to the base of the instrument. The crystal is mounted on
a goniometer head and can be rotated about the vertical ˆ axis (phi)
of this mounting (see Figure 4.12a). The goniometer head is mounted
on the ˜ circle, which tilts the crystal about the horizontal ˜ axis (chi).
The 2Ë circle is attached to the detector device. This is concentric with
the ˘ circle that rotates the sample. The ˜ circle is mounted on top of the
˘ circle, and the ˆ circle is mounted on top of the ˜ circle. Usually the
entire instrument is controlled by a computer and the data collection
is then done automatically. There are also diffractometers that utilize
the kappa (Í) geometry (Figure 4.12b). This type of diffractometer was
designed specifically to reduce mechanical clashes during data collec-
tion. The ˘, ˆ, and 2Ë circles remain, but the ˜ circle is replaced by a
Í block that sits on the ˘ block (which replaces the ˘ circle) and this
controls the orientation of the crystal and its goniometer head.

If the measurement is to be sequential, the intensity of a Bragg
reflection is measured with the detector and recorded, together with
measurements of the background intensity near the Bragg reflection,
and then a new set of angles is calculated and another intensity mea-
surement made. One normally advances incrementally through the
Miller indices, hkl. In this way a systematic scan of all desired Bragg
reflections is done completely automatically. Alternatively, if the crystal
is stationary and white radiation is used, an image plate or charge-
coupled device will be positioned to receive and record as many as
possible of the diffracted beams. For this Laue diffraction, the inci-
dent radiation is white radiation with a range of wavelengths. It has
proved useful for studies of enzyme reactions (Hajdu et al., 1987).
For example, a crystal of the enzyme glycogen phosphorylase b was
mounted in a flow cell and substrate solution was passed over it. Laue
photographs (stationary crystal, white radiation) were taken with syn-
chrotron white radiation (over 10,000 Bragg reflections per second) at
a series of times after initiation of the biochemical reaction. A com-
parison of electron-density maps from the various data sets showed
the course of the reaction as a substrate was converted to product (by
phosphorylation).
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Detection systems

The intensities of the diffracted beams are measured by intercepting
the beams with a detecting material or device that is sensitive to X
rays. The intensity at the peak of the diffraction spot is measured, or,
better, the peak profile is scanned. Measurements of background counts
are also made, or calculated from the profile of the peak, and used to
correct the recorded intensities. Measurements may be done electroni-
cally or photographically and may concentrate on one diffracted beam
at a time (as is often done with a diffractometer) or on many diffracted
beams at the same instant (as with electronic analogues of photographic
film).

The simplest detection device for X rays is photographic film. This
contains silver halide in an emulsion on its surface. When the film
is developed, black metallic silver is deposited at the positions at
which the diffracted beams hit the photographic film. The darkness
of each spot so formed is a measure of the intensity of the dif-
fracted beam. These intensities can be measured with a film scan-
ner. Film is not used much nowadays, because of the development
of electronic detection devices (with superior detection capabilities)
and current problems in obtaining photographic film suitable for X-ray
studies.

Electronic detectors of X rays that have an appreciable area for detec-
tion of the diffraction pattern, and offer the possibility of resolving
and individually measuring the intensities of diffraction maxima at
different points across this area, are now preferred. They consist of scin-
tillation counters, television-enhanced scanning devices, image plates,
and charge-coupled devices, and are the equivalent of electronic film.
Position-sensitive detectors can measure the position at which a Bragg
reflection hits the detection device. These various devices represent the
development of improved ways of recording a diffraction pattern elec-
tronically in a computer-readable manner, and image plates and charge-
coupled devices are the current instruments of choice for this. Whereas
photographic film records photons through a series of chemical reac-
tions, charge-coupled devices convert light directly into a digital signal.
Scintillation counters make use of the ability of certain substances to
emit visible light by fluorescence when X rays hit them. The intensity
of the emitted light is measured by a photomultiplier tube. Similarly,
television area detectors contain a phosphor that produces visible light
when hit by X rays. The photon signal is intensified and then detected
by a television photocathode. These methods of detection are now less
used than image plates and charge-coupled devices. Neutrons, which
lack any charge, and readily penetrate materials, are detected by gas or
scintillator detectors; these are similar to the X ray detectors described
above (Wilson, 2000).

An image plate is a storage phosphor on which a latent image is
formed when X rays hit it. It contains plastic sheets with powdered
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phosphor crystals, doped with divalent europium ions, on their
surfaces. When X rays hit these sheets, the divalent europium ions
are converted to metastable trivalent ions and the electrons that are
liberated are stored ready for release when scanned by a laser beam
of visible light. When trivalent europium ions are encountered, blue
light (wavelength 3900 Å) is emitted that can be scanned and converted
to a digital image. This latent image has to be read; it is exposed to
laser light, which causes the emission of light of a different wavelength,
which is then detected. The image plate can then be erased, ready for
the next use, while the data from the scanning of the latent image, which
are in a computer-readable form, are then ready for use in structure
determination. The location of the direct beam is evident on the image,
and from the positions of diffracted beams it is possible to determine
the direction, as well as the intensity, of each Bragg reflection. Neutrons
can only be detected if they have undergone some reaction that results
in the emission of energetic charged particles; this means that a con-
verter must be used. Neutron image plates contain elements such as
gadolinium (which has a very high neutron, but not proton, capture
cross-section, or stopping power) that absorb neutrons and act as a
converter to enable the neutrons to emit electromagnetic radiation (such
as gamma rays), which can be detected like the X rays in the description
above.

Charge-coupled devices are used widely in X-ray diffraction equip-
ment. They are two-dimensional grids of radiation-sensitive semi-
conductor capacitors that have the capability of transferring charge
between their neighbors. They acquire a charge when hit by a photon,
and electron–hole pairs are generated by the photoelectric effect. The
total charge that is built up is a measure of the number of photons that
have been detected (the radiation intensity), and it is collected in an
array of electrodes. The charge and position of each pixel are transferred
as a result of a differential voltage across the electrodes, and the data
are read and digitized by a computer (see Ladd and Palmer, 2003). This
gives an immediate computer listing of the intensity and position on the
detection device, and therefore this device is closer to a direct detector
than is an image plate.

When white radiation is incident on a crystal, as in the Laue method,
it is necessary to know the wavelength of the radiation that causes
a particular Bragg reflection. The time-of-flight neutron diffraction
technique depends on the fact that neutrons with different energies
(wavelengths) travel at different speeds. Therefore a measurement of
the time of flight will reveal the wavelength of the diffracted beam
(generally selected from a multiwavelength incident beam). The instant
at which the diffracted beam hits the crystal and then impacts on the
detection system is measured and recorded. This, with the known dis-
tance traveled, gives the velocity of the neutron and hence its wave-
length. Therefore the wavelength of each diffracted neutron can be
measured.
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Preparing measured I(hkl) for subsequent
analysis

Since the intensity I (hkl) of any radiation propagated as a wave is
proportional to the square of its amplitude, |F (hkl)| the intensity of
the diffracted beam corresponding to the diffraction maximum for each
set of planes hkl is proportional to |F (hkl)|2. Modifications to I (hkl) are
necessary in order to correct for the geometry of measurement. Weak
Bragg reflections are measured carefully, rather than being ignored. Of
the various correction factors that are used, the Lorentz factor takes
into account the time that it takes for a Bragg reflection, represented
as a reciprocal lattice point with a finite size, to cross the surface of the
sphere of reflection; the longer the time, the higher the intensity. The
Lorentz factor equalizes the time taken to measure each Bragg reflec-
tion. The polarization factor depends on the state of polarization of the
incident X-ray beam; X rays are polarized on scattering, with reduction
of the intensity of the Bragg reflection. Corrections for absorption of
X rays by the crystal are also made; ideally, the path lengths through
the crystal of many component waves of each diffracted beam are com-
puted, and the diminution in intensity resulting from absorption can
then be determined. Semiempirical absorption corrections, based on the
intensity variation as certain intense Bragg reflections are scanned while
the crystal is rotated, are more generally used. If a crystal is strongly
absorbing for the radiation used, it may be shaped (with a scalpel
or razor blade) until it is approximately spherical so that absorption
corrections may be more uniform. Generally it is better to avoid using
a crystal larger than the primary beam, although this may be necessary
for protein crystals that are damaged by the X-ray beam, so that one can
move the crystal to an undamaged area during data collection. The aim
is to keep the amount of matter exposed to radiation independent of the
crystal orientation.

It is then possible to determine the absolute value (without phase) of
the structure factor F (hkl) from these measurements, as follows:

I (hkl) = k1{Î3VcLp Abs/˘V2}|F (hkl)|2 = K{Lp Abs}|F (hkl)|2

= k2|F (hkl)|2 (4.3)

where k1, k2, and K are constants, Vc is the volume of the crystal that
is bathed in the incident beam, V is the volume of the unit cell, Lp
consists of the Lorentz and polarization factors, Abs is an absorption
correction, and ˘ is the angular velocity of the crystal. Thus, values of
k2|F (hkl)|2 and hence of k2

1/2|F (hkl)| are immediately available once
intensity measurements have been made. The values of Lp and Abs
contain only known quantities and therefore can readily be computed
for each Bragg reflection.
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A Wilson plot of sin2 Ë/Î2 versus the logarithm of a function of the measured structure
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If the value of I (hkl), corrected for Lp and Abs, is called Icorr, we can
say

Icorr = I (hkl)/{Lp Abs} = K|F (hkl)|2 = K|Fnovib|2 exp(−2Biso sin2 Ë/Î2)

(4.4)

where |Fnovib| is the value of |F (hkl)| for a structure composed of non-
vibrating point atoms. The application of the Lp correction involves no
knowledge of the structure. An estimation of Abs can be made from a
knowledge of the shape, orientation, and composition of the crystal.
The value of |F (hkl)| so derived contains information on the atomic
displacement factors, B. Thus F = |Fnovib| exp(−Biso sin2 Ë/Î2) (see True-
blood et al., 1996). It is possible to derive Biso and K in Eqn. (4.4) from
the experimental data by a “Wilson plot” (Wilson, 1942). It is assumed
that, to a first approximation, the average intensity of Bragg reflections
at a certain value of 2Ë depends only on the atoms present in the cell, not
on their positions—that is, that the arrangement of atoms in the crystal
structure is random. By comparison of the averages of the observed
intensities in ranges (shells) of sin2 Ë/Î2 with the theoretical values for
a unit cell with the same atomic contents, approximate values for K
and Biso can be found from the Wilson plot (Figure 4.13). Values of the
resulting scale factor K can then be used for preparation of a full list
of values of |F (hkl)| on an approximately absolute scale (relative to the
scattering by one electron) for all Bragg reflections measured. The value
of Biso obtained from this graph will indicate the extent of disorder from
unit cell to unit cell in the crystal structure.
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The reader should note that the intensity, I (hkl), is a simple function
of the structure amplitude |F |. However, an inspection of Eqn. (4.4)
shows that each value of |F (hkl)|, and hence of the intensity, I (hkl), of the
diffracted beams contains, with few exceptions, a contribution from every
atom in the unit cell. The unraveling of these contributions makes the
structure solution complicated.

Summary

The diffraction of a crystal by X rays results from the constructive and
destructive interference of the X rays that have been scattered by each
individual atom in the structure. Three types of experimental diffrac-
tion data may be obtained:

(1) The angle of scattering (2Ë, the angular deviation from the direct
undeviated beam), which is used to measure the spacings of the
reciprocal lattice and hence the spacings of the crystal lattice.
These spacings can be used to derive the size and shape of the
unit cell.

(2) The orders of diffraction (hkl) of each diffracted beam.

(3) The intensities of the diffracted beams, I (hkl), which may be
analyzed to give the positions of the atoms within the unit cell.
These atomic positions are usually expressed as fractions of the
unit-cell edges.
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The diffraction pattern
obtained 5
In this chapter we will describe those factors that control the intensities
of Bragg reflections and how to express them mathematically so that
we can calculate an electron-density map. The Bragg reflections have
intensities that depend on the arrangement of atoms in the unit cell
and how X rays scattered by these atoms interfere with each other.
Therefore the diffraction pattern has a wide variety of intensities in it
(see Figure 3.8a). Measured X-ray diffraction data consist of a list of
the relative intensity I (hkl), its indices (h, k, and l), and the scattering
angle 2Ë (see Chapter 4), for each Bragg reflection. All the values of
the intensity I (hkl) are on the same relative scale, and this entire data
set describes the “diffraction pattern.” It is used as part of the input
necessary to determine the crystal structure.

As already indicated from a study of the diffraction patterns from
slits and from various arrangements of molecules (Figures 3.1 and 3.9
especially), the angular positions (2Ë) at which scattered radiation is
observed depend only on the dimensions of the crystal lattice and the
wavelength of the radiation used, while the intensities I (hkl) of the dif-
ferent diffracted beams depend mainly on the nature and arrangement
of the atoms within each unit cell. It is these two items, the unit-cell
dimensions of the crystal and its atomic arrangement, that comprise
what we mean by “the crystal structure.” Their determination is the
primary object of the analysis described here.

Representation of the superposition of waves

As illustrated in Figure 1.1b and the accompanying discussion, and
mentioned again at the start of Chapter 3, X rays scattered by the elec-
trons in the atoms of a crystal cannot be recombined by any known lens.
Consequently, to obtain an image of the scattering matter in a crystal,
the “structure” of that crystal, we need to simulate this recombination,
which means that we must find a way to superimpose the scattered waves,
with the proper phase relations between them, to give an image of the material
that did the scattering, that is, the electrons in the atoms. We call this image
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72 The diffraction pattern obtained

an “electron-density map.” It shows approximately zero values at sites
in the unit cell where there are no atoms, and positive values at sites
of atoms. The electron-density values are higher for heavier atoms than
for lighter atoms (an effect expressing the number of electrons in each
atomic nucleus) so that this electron-density map may permit discrimi-
nation between atoms that have different atomic numbers.

How then can the superposition of waves be represented? There are
several ways. Electromagnetic waves, such as X rays, may be regarded
as composed of many individual waves. When this radiation is scat-
tered with preservation of the phase relationships among the scattered
waves, the amplitude of the resultant beam in any direction may be
determined by summing the individual waves scattered in that direc-
tion, taking into account their relative phases (see Figure 3.2). We
use a cosine wave (or a sine wave, which differs from it by a phase
change of π/2 radians or 90◦). The phase for this cosine wave may
be calculated by noting the position of some point on it, such as a
maximum. This is measured relative to an arbitrarily chosen origin (see
Figures 1.2 and 5.1a).

There are several ways of representing electromagnetic waves so that
they can be summed to give information on the nature of the combined
wave.

Graphical representation

The usual way to represent electromagnetic waves graphically is by
means of a sinusoidal function. Unfortunately, graphical superposition
of waves of the type illustrated in Figure 3.2 is not convenient with a
digital computer. Therefore, for speed and convenience in computing,
other representations are preferred.

Algebraic representation

When we represent a wave by a trigonometric (cosine) function, we use
the following algebraic expressions for the vertical displacements (x1 or
x2) of two waves at a particular moment in time:

x1 = c1 cos(ˆ + ·1) (5.1)

x2 = c2 cos(ˆ + ·2) (5.2)

Here c1 and c2 are the amplitudes of the two waves (their maximum ver-
tical displacements). The value of ˆ is, at a given instant, proportional
to the time (or distance) for the traveling wave and is the same for all
waves under consideration; ·1 and ·2 are the phases, expressed relative
to an arbitrary origin. We will assume here that the wavelengths of
the scattered waves are identical, inasmuch as the X rays used in
structure analyses are generally monochromatic (only one wavelength).
Because the wavelengths are the same, the phase difference between
the two scattered waves (·1 − ·2), remains constant (assuming that no
change in the phase of either wave has taken place during scattering).
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Fig. 5.1 The representation of sinusoidal waves.

(a) Graphical representation of a sinusoidal cosine wave, amplitude F (hkl) represented by the radius of the circle, and phase ·hkl
represented by the counterclockwise angle measured at the center of the circle. (b) Four examples of a phase angle, represented as
shown in (a), and the cosine wave it represents. Note the relationship of the phase angle in the circular representation to the location of
the peak of the cosine wave.

When the waves are superimposed, the resulting displacement, xr , is,
at any time, simply the sum of the individual displacements, as shown
earlier in a graphical manner in Figure 3.2:

xr = x1 + x2 = c1 cos(ˆ + ·1) + c2 cos(ˆ + ·2) (5.3)

which, since cos (A + B) = cos Acos B − sin Asin B, may be rewritten as

xr = c1 cos ˆ cos ·1 − c1 sin ˆ sin ·1 + c2 cos ˆ cos ·2 − c2 sin ˆ sin ·2

(5.4)
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or

xr = (c1 cos ·1 + c2 cos ·2) cos ˆ − (c1 sin ·1 + c2 sin ·2) sin ˆ (5.5)

If we define the amplitude, cr , and phase, ·r , of the resulting wave such
that

cr cos ·r = c1 cos ·1 + c2 cos ·2 =
∑

j

c j cos · j (5.6)

and

cr sin ·r = c1 sin ·1 + c2 sin ·2 =
∑

j

c j sin · j (5.7)

then we can rewrite Eqn. (5.5) as

xr = cr cos ·r cos ˆ − cr sin ·r sin ˆ = cr cos(ˆ + ·r ) (5.8)

Thus the resultant of adding two waves of equal wavelength is a wave
of the same frequency, with a phase ·r (relative to the same origin)
given by Eqns. (5.6) and (5.7) or, more compactly, by the following
equation:

tan ·r =
cr sin ·r

cr cos ·r
=

∑
j

c j sin · j∑
j

c j cos · j
(5.9)

The amplitude of the resultant wave, cr , is given by

cr = [(cr cos ·r )2 + (cr sin ·r )2]1/2

=
[(∑

j

c j cos · j

)2
+

(∑
j

c j sin · j

)2]1/2
(5.10)

Vectorial representation

These relationships can all be expressed alternatively in terms of two-
dimensional vectors, as illustrated in Figures 5.1a and b. You will
remember that a vector has a magnitude (measure), direction (angle
from the horizontal), and sense (where it starts and ends) (see Glossary).
The length of the j th vector is its amplitude, c j , and the angle that it
makes with the arbitrary zero of angle (usually taken as the direction of
the horizontal axis pointing to the right, with positive angles measured
counterclockwise) is the phase angle · j . This is shown in Figures 5.1a
and 5.2a, where c j is represented as F (hkl), the structure factor. The
components of the vectors along orthogonal axes are just A = c j cos · j

and B = c j sin · j and the components of the vector resulting from addi-
tion of two (or more) vectors are just the sums of the components
of the individual vectors making up the sum, a result expressed in
Eqns. (5.6) and (5.7). The relationship of the vector representation of a
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Fig. 5.2 Vector representation of structure factors.

(a) The relation of the vector F to A and B.
(b) The vector addition of the contribution of each atom to give a resultant F.
(c) If a “heavy” atom (M) has a much higher atomic number, and hence a much longer vector in a diagram (like that in Figure 5.2b)

than any of the other atoms present, then the effect on the vector diagram for F is normally as if a short-stepped random walk
had been made from the end of FM. Since the steps or f -values for the lighter atoms are relatively small, there is a reasonable
probability that the angle between F and FM will be small and an even higher probability that · (for the entire structure) will lie
in the same quadrant as ·M (for the heavy atom alone). Thus the heavy-atom phase, ·M, may be used as a first approximation to
the true phase, ·.

wave to its sinusoidal appearance and phase angle is shown in Fig-
ure 5.1b. When there are several atoms in the unit cell, the various com-
ponent scattering vectors can be added, as shown in Figures 5.2b and c.

Exponential representation (complex numbers)

For computational convenience, vector algebra is an improvement over
graphical representation, but an even simpler notation is that involving
so-called “complex” numbers, often represented as exponentials. The
exponential representation is particularly simple because multiplication of
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exponentials involves merely addition of the exponents. Equations (5.6)
and (5.7) express the components of the resulting wave; Eqn. (5.10)
expresses the amplitude of the resulting wave as the square root of the
sum of the squares of its components, which we will now abbreviate as
A and B. Equations (5.6), (5.7), and (5.10) may be rewritten as

A = cr cos ·r =
∑

j

c j cos · j (5.11)

B = cr sin ·r =
∑

j

c j sin · j (5.12)

and
cr = (A2 + B2)1/2 (5.13)

We will, as is conventional, let i represent
√ −1, an “imaginary” num-

ber. A complex number, C , is defined as the sum of a “real” number, x,
and an “imaginary” number, iy (where y is real),

C = x + iy (5.14)

The magnitude of C , written as |C |, is defined as the square root of the
product of C with its complex conjugate C∗ (which is defined as x − iy)
so that

|C | ≡ [CC∗]1/2 = [(x + iy)(x − iy)]1/2 = [x2 − i2 y2]1/2 = [x2 + y2]1/2

(5.15)

Comparison of Eqns. (5.14) and (5.15) with Eqns. (5.10)–(5.13) shows
that the vector representations of a wave and the complex number represen-
tations are parallel, provided that we identify the vector itself as A + iB.
The result is that cr of Eqn. (5.13) is identified with |C | of Eqn. (5.15),
and hence the vector components A and B are identified with x and
y, respectively. A and B [as given by Eqns. (5.11) and (5.12)] represent
components along two mutually orthogonal axes (called, with enor-
mous semantic confusion, the “real” and “imaginary” axes, although
both are perfectly real). The magnitude of the vector is given, as is usual,
by the square root of the sum of the squares of its components along
orthogonal axes, (A2 + B2)1/2, as in Eqns. (5.13) and (5.15).

One advantage of the complex representation follows from the
identity

ei· ≡ cos · + i sin · (5.16)

(which can easily be proved using the power-series expansions for these
functions). We then have our expression for the total scattering as

A + iB = cr cos ·r + icr sin ·r ≡ cr ei·r (5.17)

Note that the amplitude of this scattered wave is cr and its phase angle
is ·r , as before, with ·r = tan−1(B/A), as in Eqn. (5.9).

Thus Eqn. (5.17) provides a mathematical means that is computer-
usable for summing values of A and iB. It is often said, when this rep-
resentation of the result of the superposition of scattered waves is used,
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that A is the “real” component and B the “imaginary” component, a ter-
minology that causes considerable uneasiness among those who prefer
their science firmly founded and not flirting with the unreal or imag-
inary. It cannot be stressed too firmly that the complex representation is
merely a convenient way of representing two orthogonal vector components in
one equation, with a notation designed to keep algebraic manipulations
of the components in different directions separate from one another.
Each component is entirely real, as is evident from Figures 5.1 and 5.2.

Scattering by an individual atom

Electrons are the only components of the atom that scatter X rays signif-
icantly, and they are distributed over atomic volumes with dimensions
comparable to the wavelengths of X rays used in structure analysis.
The amplitude of scattering for an atom is known as the “atomic scat-
tering factor” or “atomic form factor”, and is symbolized as f . It is
the scattering power of an atom measured relative to the scattering
by a single electron under similar conditions. If the electron density is
known for computed atomic orbitals (see Hartree, 1928; James, (1965);
Stewart et al., 1965; Pople, 1999), then atomic scattering factors can
be calculated from this electron density as shown in Figure 5.3. The
electron densities of the atomic orbitals form the basis of the scattering
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Fig. 5.3 Atomic scattering factors.

(a) Radial electron density distribution in atomic orbitals from theoretical calculations
and (b) the scattering factors derived from them. The scattering curves in Figure 5.4 are
similar to the uppermost curve (marked “Sum”) in (b) here.
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Fig. 5.4 Atomic-scattering-factor curves.

(a) Some atomic-scattering-factor curves for atoms, given as a function of sin Ë/Î so that they will be independent of wavelength.
(Remember that 2Ë is the deviation of the diffracted beam from the direct X-ray beam, wavelength Î.) The scattering factor
for an atom is the ratio of the amplitude of the wave scattered by the atom to that of the wave scattered by a single electron.
At sin Ë/Î = 0 the value of the scattering factor of a neutral atom is equal to its atomic number, since all electrons then scatter in
phase. Note that calcium (Ca++) and chloride (Cl−) are isoelectronic; that is, they have the same number of extranuclear electrons.
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factors as a function of sin Ë/Î; they are published and available in
International Tables. Some values are given in Appendix 5.

For most purposes in structure analysis it is adequate to assume that
atoms themselves are spherically symmetrical, but, with some of the
best data now available, small departures from spherical symmetry
(attributable to covalent bonding, lone pairs of electrons, and nonspher-
ical orbitals, for example) are detectable. However, in our discussions,
unless stated otherwise, we will assume spherical symmetry of atoms.
This means that the scattering by an assemblage of atoms—that is,
by the structure—can be very closely approximated by summing the
contributions to each scattered wave from each atom independently,
taking appropriate account of differences in the phase angles of each
wave. Some atomic scattering factors, plotted as a function of sin Ë/Î,
are shown in Figure 5.4a. Since the diffraction pattern is the sum of the
scattering from all unit cells, and this can be represented by the average
contents of a single one of these unit cells, vibrations or disorder may
be considered the equivalent of the smearing out of the electron density,
so that there is a greater fall-off in the intensity of the diffraction pattern
at a higher sin Ë/Î values (cf. the optical analogy in Figure 3.1: the wider
the slit, the narrower the diffraction pattern). This modification of the
fall-off by atomic vibration, motion or disorder, which results in a larger
apparent atomic size as shown in Figure 5.4b, increases the falloff in
scattering power as a function of scattering angle (Figure 5.4c). This fall-
off may be isotropic (equal in all directions) or anisotropic (greater in
certain directions in the unit cell than in others). Information obtained
from an analysis of such atomic motion or disorder is discussed in
Chapter 12. It leads, in nearly all crystal structures, to a model with
anisotropic displacement parameters representing an inexact register
of atomic positions from unit cell to unit cell. By contrast to X-ray scat-
tering, neutrons are scattered by atomic nuclei, rather than by electrons
around a nucleus, and hence, since the nucleus is so small (equivalent
to a “point atom”), the neutron scattering for a nonvibrating nucleus is
almost independent of scattering angle.

The positively charged calcium ion pulls electrons closer to the nucleus than does the chloride ion, which is negatively charged
and has a lower atomic number. The resulting “narrower atom” for Ca++ will, for reasons shown in Figure 3.1, give a broader
diffraction pattern. This is shown at high values of sin Ë/Î by higher values of f for Ca++ than for Cl−.

(b) When radiation is scattered by particles that are very small relative to the wavelength of the radiation, such as neutrons, the
scattered radiation has approximately the same intensity in all directions. When it is scattered by larger particles, the radiation
scattered from different regions of the particle will still be in phase in the forward direction, but at higher scattering angles there
is interference between radiation scattered from various parts of the particle. The intensity of radiation scattered at higher angles
is thus less than for that scattered in the forward direction. This effect is greater the larger the size of the particle relative to the
wavelength of the radiation used.

(c) The effects of isotropic vibration on the scattering by a carbon atom. Values are shown for a stationary carbon atom (Biso of

0.0 Å
2
) and for one with a room temperature isotropic displacement factor (Biso of 3.5 Å

2
) that corresponds to a root-mean-

square amplitude of vibration of 0.21 Å. Vibration and disorder result in an apparently relatively greater size for the atoms (since
we are considering an average of millions of unit cells), and consequently a decrease in scattering intensity with increasing
scattering angle. If Biso is large, no Bragg reflections may be detectable at high values of 2Ë; that is, a narrower diffraction pattern
is obtained from the “smeared-out” electron cloud of a vibrating atom (cf. Figure 3.1).
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Scattering by a group of atoms (a structure)

The X radiation scattered by one unit cell of a structure in any direction
in which there is a diffraction maximum has a particular combination of
amplitude and relative phase, known as the structure factor and symbol-
ized by F or F (hkl) (Sommerfeld, 1921). It is the ratio of the amplitude
of the radiation scattered in a particular direction by the contents of one
unit cell to that scattered by a single electron at the origin of the unit
cell under the same conditions. The intensity of the scattered radiation
is proportional to the square of the amplitude, |F (hkl)|2. In the manner
just discussed [see Eqn. (5.17)], the structure factor can be represented
either exponentially or as an ordinary complex number:

F (hkl) = |F (hkl)|ei·(hkl) = A(hkl) + iB(hkl) (5.18)

with |F | or |F (hkl)| representing the amplitude of the scattered wave,
and ·(hkl) its phase relative to the chosen origin of the unit cell.* As

* The structure factor F may be repre-
sented as a vector, but it is not conven-
tionally written in bold face, so we, as is
common, will use F for the vector and |F |
for its amplitude.

before (Figure 5.1), · = tan−1(B/A) and cr = |F (hkl)| = (A2 + B2)1/2. The
quantities A and B, representing the components of the wave in its
vector representation (see Figure 5.2), can be calculated, if one knows
the structure, merely by summing the corresponding components of the
scattering from each atom separately. These components are [by Eqns.
(5.6) and (5.7)] the products of the individual atomic-scattering-factor
amplitudes, f j , and the cosines and sines of the phase angles, · j , of the
waves scattered from the individual atoms:

A(hkl) =
∑

j

f j cos · j (5.19)

and

B(hkl) =
∑

j

f j sin · j (5.20)

But how do we calculate · j for each atom?
If an atom lies at the origin of the unit cell and if other atoms lie one or

several unit-cell translations (a ) from it, then this grating of atoms will
give a series of Bragg reflections h00 on diffraction. If there is another
atom between two of them, at a distance xa from the origin (where x is
less than 1), radiation scattered by this atom will interfere with the other
resultant Bragg reflection by an amount that depends on the value of x.
This can be generalized so that, for each h00 Bragg reflection, the phase
difference (interference) will depend on the value of hx as illustrated
in Figures 5.5 and 5.6. We show in Appendix 6 that the phase of the
wave scattered in the direction of a reciprocal lattice point (hkl) by an
atom situated at a position x, y, z in the unit cell (where x, y, and z are
expressed as fractions of the unit-cell lengths a , b, and c, respectively) is
just 2π(hx + ky + lz) radians, relative to the phase of the wave scattered
in the same direction by an atom at the origin. This is important because
it defines the effect of the location of an atom in the unit cell. The “rela-
tive phase angle” for an atom at x,y, z, where these numbers are defined
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phase of a wave scattered by an atom (shown as a black circle within the unit cell) and
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If a one-dimensional structure with a repeat distance a has an atom at 0.0 (and this is
repeated from unit cell to unit cell by other atoms at 1.0, 2.0, etc.) and an atom at x/a , the
phase difference between the atom at 0.0 and the atom at x/a is 2πhx radians. Suppose
that the atom at 0.0 is at the chosen origin of the system. Its phase angle for a cosine
function is 0◦. The phase angle of the atom at x is 2πhx radians. This is the difference of
its phase with that of the atom at the origin, and hence the radiation scattered by the atom
at x is considered to have a relative phase of 2πhx radians.
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with respect to a chosen origin at 0, 0, 0, is 2π(hx + ky + lz) radians. If
the location of the chosen origin is changed, the relative phase will also
be changed. Each structure factor is the sum of the scattering from all
atoms j in the unit cell. Thus Eqns. (5.19) and (5.20) (for all atoms j) can
be rewritten as

A(hkl) =
∑

j

f j cos 2π(hxj + kyj + lz j ) (5.21)

B(hkl) =
∑

j

f j sin 2π(hxj + kyj + lz j ) (5.22)

where the value of f j chosen is that corresponding to the value of
sin Ë/Î for the Bragg reflection in question, modified to take into account
any thermal vibration of the atom. A comparison with Eqns. (5.19) and
(5.20) shows that we now know the phase · j . The magnitude of |F (hkl)|
depends only on the relative positions of the atoms in the unit cell,
except to the extent that f j is a function of the scattering angle. The size
and shape of the unit cell do not appear as such in the expressions for
A and B. In Figure 5.2, F is represented as a vector. Note that a shift in
the chosen origin of the unit cell will add a constant to the phase angle
of each atom [see Eqns. (5.21) and (5.22)]; that is, it will rotate the phase
diagrams in Figure 5.2 relative to the coordinate axes, but will leave the
length of |F (hkl)|, and hence the values of |F (hkl)|2 and the intensity,
unchanged.

Effects of atomic vibration and displacements
on atomic scattering

Atomic vibrations in a crystal, that is, displacements from equilibrium
positions, have a frequency of the order of 1013 per second. This is
much slower than the frequencies of X rays used to study crystals; these
are of the order of 1018 per second. Therefore a vibrating atom will
appear stationary to X rays but displaced in a random manner within
the vibration amplitude. Atoms in other unit cells will also exhibit this
random deviation from their equilibrium positions, different for each
such atom in the various unit cells throughout the crystal. Because
minor static displacements of atoms appear similar to displacements
caused by atomic vibrations, it is usual to use the term “atomic dis-
placement parameter” rather than “atomic temperature factor” for the
correction factor. When 2Ë = 0, all electrons in the atom scatter in phase,
and the scattering power of an atom at this angle, expressed relative to
the scattering power of a free electron, is just equal to the number of
electrons present (the atomic number for neutral atoms).

However, an atom has size (relative to the wavelength of the X rays
used), with the result that X rays scattered from one part of an atom
interfere with those scattered from another part of the same atom at
all angles of scattering greater than 0◦. This causes the scattering to
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fall off with increasing scattering angle or, more precisely, increasing
values of sin Ë/Î, as indicated in Figure 5.4b. The fall-off in intensity
with higher scattering angle (Figure 5.4c) increases as the vibrations of
atoms become greater, and these vibrations in turn increase in extent
with rising temperature. Atoms are in motion in the crystalline state,
however, even when the temperature is reduced to near absolute zero.
This vibration, coupled with displacements of some atoms, leads to
a significant reduction in intensity that can be approximated by an
exponential function that has a large effect at high 2Ë values (illustrated
in Figure 5.4c); this indicates, as noted by Peter J. W. Debye and Ivar
Waller, that atomic motion endows a larger “apparent size” to atoms
(Debye, 1914: Waller, 1923). Effectively, since atoms are displaced
different amounts from unit cell to unit cell at the given instant in time
that measurement occurs, atoms appear to have become smeared in the
average of all the unit cells in the crystal. If the displacement amplitude
is sufficiently high, essentially no diffracted intensity will be observed
beyond some limiting value of the scattering angle; that is, the “slit” is
effectively widened by the vibration and so the “envelope” is narrow
(Figure 3.5a). If the displacements are nearly isotropic—that is, do not
differ greatly in different directions—the exponential factor can be
written as exp(−2Biso sin2 Ë/Î2), with Biso called the atomic displacement
factor.** Biso is equal to 8π2 <u2>, where <u2> is the mean square

** Many crystallographers omit the sub-
script “iso,” relying on the context to
avoid confusion with the quantity B
defined in F = A + iB.

amplitude of displacement of the atom from its equilibrium position.
The type of disorder found in a crystal may be static, with the atom
in one site in one unit cell and a different site in another unit cell.
Alternatively, it may be dynamic, which implies that the atom moves
from one site to another. The overall effect in both cases is a reduction
in the scattering factors of the atoms involved as sin Ë/Î increases
(see Willis and Pryor, 1975).

If the motion or disorder is anisotropic, it is necessary to replace Biso
by six terms. This is usually necessary for all atoms except hydrogen
atoms; these have only weak scattering power. Atoms in crystals rarely
have isotropic environments. The six parameters define the orientations
of the principal axes of the ellipsoid that represents the anisotropic
displacements and the magnitudes of the displacements along these
axes. The results are often displayed in an ORTEP† diagram, in which † ORTEP = Oak Ridge Thermal Ellipsoid

Plot (Johnson, 1965).the atomic displacement factors are drawn as ellipsoids (Johnson, 1965).
If the anisotropy is severe, the ellipsoid representing the displacement
probability and its direction may be abnormally extended in shape and
may be better represented as disorder in two positions.

Macromolecules, such as proteins, show interesting thermal and dis-
placement effects. While their structures are generally, but not always,
measured at a lower resolution than for small molecules, anisotropic
displacement parameters are rarely determined, but isotropic displace-
ments give information on the motion and flexibility of various portions
in the molecule. One domain of the molecule may appear to move
in a hingelike manner with respect to another part of the same mole-
cule. Also, side chains at the surface of the macromolecule may have
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alternate atomic positions from unit cell to unit cell as they interact
with the various water molecules that fill nearly half of the crystal
volume.

Calculating a structure factor

With a method for expressing a structure factor by means of an equation
(Eqn. 5.18), and information on the components of this equation, it is
possible to obtain a calculated value for the structure factor. This can be
compared with the experimental value derived from I (hkl). The data
needed in order to calculate a structure factor include the values of x,
y, and z for each atom; h, k, l, and sin Ë/Î for the Bragg reflection under
consideration; and the scattering factor f j for each atom at that value of
sin Ë/Î, modified by atomic displacement factors. Then it is necessary to
calculate 2π(hxj + kyj + lz j ) and its sine and cosine for each atom and
the Bragg reflection for which F (hkl) is being calculated. This gives all
the information necessary to sum the results for each atom and obtain
A(hkl) and B(hkl) according to Eqns. (5.21) and (5.22). These lead to
F (hkl), that is, (A2 + B2)1/2, and the relative phase angle ·(hkl), that is,
tan−1(B/A), for the Bragg reflection with indices h, k, and l when all the
atomic coordinates are known. This process has to be repeated for all of
the other Bragg reflections. It demonstrates how important computers
are to the X-ray crystallographer.

Information on the electron-density map will have to wait until
we know the phase of the structure factor (so that we can deter-
mine the atomic positions x, y, and z). All we have so far are the
experimentally measured structure amplitudes, |F (hkl)|, but we can
calculate F (hkl) = A(hkl) + iB(hkl) (including its relative phase angle
· = tan−1(B(hkl)/A(hkl)), see Eqns. 5.21 and 5.22) if we have x, y, and
z for a model in a unit cell of known dimensions and space group.

Summary

When X rays are diffracted by a crystal, the intensity of X-ray scattering
at any angle is the result of the combination of the waves scattered
from different atoms and the manner in which they modify this inten-
sity by various degrees of constructive and destructive interference.
A structure determination involves a matching of the observed inten-
sity pattern to that calculated from a postulated model, and it is thus
imperative to understand how this intensity pattern can be calculated
for any desired model. The combination of the scattered waves can be
represented in various ways:

(1) The waves may be drawn graphically and the displacements (ordi-
nates, vertical axis) at a given position (abscissae, horizontal axis)
summed.
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(2) A wave may be represented algebraically as

xj = c j cos(ˆ + · j ) (for the j th wave)

and the displacements, xj , of several such waves summed to give
a resultant wave.

(3) The waves may be expressed as two-dimensional vectors in an
orthogonal coordinate system, amplitude c j , with the relative
phase angle · j measured in a counterclockwise direction from the
horizontal axis. This is the equivalent of representing one com-
plete wavelength as 360◦, so that the periodicity of the wave is
expressed. The phase relative to some origin is given as a fraction
of a revolution. The vectors may then be summed by vectorial
addition of their components.

(4) The waves may be represented in complex notation

Aj + iB j = c j ei· j

which is merely a convenient way of representing two orthogonal
vector components (at 0◦ and 90◦) in one equation. By convention
A is the component at 0◦ and B the component at 90◦.

X rays are scattered by electrons. The extent of scattering depends
on the atomic number of the atom and the angle of scattering, 2Ë, and
is represented by an atomic scattering factor f . For a group of atoms,
the amplitude (relative to the scattering by a single electron) and the
relative phase of the X rays scattered by one unit cell are represented by
the structure factor F (hkl) = A(hkl) + iB(hkl) for each Bragg reflection.
For a known structure with atoms j at positions xj , yj , z j , this may be
calculated from

A(hkl) =
∑

j

f j cos 2π(hxj + kyj + lz j )

and

B(hkl) =
∑

j

f j sin 2π(hxj + kyj + lz j )

where the summation is over all atoms in the unit cell. The relative
phase angle ·(hkl) is tan−1(B/A) and the structure factor amplitude
|F (hkl)| is {(A(hkl)2 + B(hkl)2}1/2. The value of F (hkl) may be reduced as
a result of thermal vibration and atomic displacement so that if Fnovib is
the value for a structure containing stationary atoms, the experimental
values will correspond to F (hkl) = Fnovib exp(−Biso sin2 Ë/Î2), where
Biso, the atomic displacement parameter, is a measure of the amount
of vibration and/or displacement (Biso = 8π2 <u2>, where <u2> is the
mean square amplitude of displacement). With precise experimental
data, it is possible to measure the anisotropy of vibration and displace-
ment.



The phase problem and
electron-density maps6
In order to obtain an image of the material that has scattered X rays
and given a diffraction pattern, which is the aim of these studies, one
must perform a three-dimensional Fourier summation. The theorem of
Jean Baptiste Joseph Fourier, a French mathematician and physicist,
states that a continuous, periodic function can be represented by the
summation of cosine and sine terms (Fourier, 1822). Such a set of terms,
described as a Fourier series, can be used in diffraction analysis because
the electron density in a crystal is a periodic distribution of scattering
matter formed by the regular packing of approximately identical unit
cells. The Fourier series that is used provides an equation that describes
the electron density in the crystal under study. Each atom contains
electrons; the higher its atomic number the greater the number of elec-
trons in its nucleus, and therefore the higher its peak in an electron-
density map. We showed in Chapter 5 how a structure factor amplitude,
|F (hkl)|, the measurable quantity in the X-ray diffraction pattern, can
be determined if the arrangement of atoms in the crystal structure is
known (Sommerfeld, 1921). Now we will show how we can calculate
the electron density in a crystal structure if data on the structure factors,
including their relative phase angles, are available.

Calculating an electron-density map

The Fourier series is described as a “synthesis” when it involves struc-
ture amplitudes and relative phases and builds up a picture of the elec-
tron density in the crystal. By contrast, a “Fourier analysis” leads to the
components that make up this series. The term “relative” is used here
because the phase of a Bragg reflection is described relative to that of an
imaginary wave diffracted in the same direction at a chosen origin of
the unit cell (see Figure 6.1). The number of electrons per unit volume,
that is, the electron density at any point x, y, z, represented by Ò(xyz),
is given by the following expression (for an electron-density map,

86
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a Fourier synthesis):

Ò(xyz) =
1
Vc

∑∑
all hkl

∑
F (hkl) exp[−2πi(hx + ky + lz)] (6.1)

Here Vc is the volume of the unit cell, and F (hkl) is the structure factor
for the Bragg reflection with indices h, k, and l. The triple summa-
tion is over all values of the indices h, k, and l. This summation, first
calculated in 1925, represents a mathematical analogy to the process
effected physically in the microscope (Duane, 1925; Havighurst, 1925;
Waser, 1968). As described in Chapter 4, the amplitude of F (hkl), that
is, |F (hkl)|, is easily derived [Eqn. (4.3)] from the intensity of the Bragg
reflection. The phase of that same Bragg reflection ·(hkl), however,
is not.

We will simplify the following equations by putting

ˆ = 2π(hx + ky + lz) (6.2)

We then abbreviate A(hkl) and B(hkl) to A and B, respectively,* and
* Note that the exponential terms in the
expressions for F (the structure factor)
and Ò (the electron density) are opposite in
sign; F = ” f eiˆ and Ò = (1/V)”F e−iˆ. This
is because these are Fourier transforms
of each other (Glasser, 1987a,b; Carslaw,
1930).

F (hkl) = |F (hkl)|eiˆ to F = A + iB. This leads to Eqn. (6.3) (from Eqns.
(5.16) to (5.18) for |F (hkl)| = F (hkl)e−iˆ. In this equation, e−iˆ = cos ˆ −
i sin ˆ and i2 = −1:

F e−iˆ = (A + iB)(cos ˆ − i sin ˆ) = Acos ˆ + B sin ˆ − i(Asin ˆ − B cos ˆ)

(6.3)

Because the summation in Eqn. (6.1) is over all values of the indices
h, k, and l, it includes, in addition to every Bragg reflection hkl, the
corresponding one with all indices having the opposite signs, −h, −k,
−l (also denoted h, k, l). The magnitude of each term (A(hkl), B(hkl),
cos ˆ, and sin ˆ) is normally the same** for a Bragg reflection with

** This implies that “Friedel’s Law”
|F (hkl)|2 = |F (h̄k̄l̄)|2 is obeyed (Friedel,
1913); deviations from this law are
considered in Chapter 10.

indices hkl as for that with indices −h, −k, −l. The sign of the term
will change for these pairs of Bragg reflections if the term involves
sine functions [since sin(−x) = − sin x], but will remain unchanged if
it involves cosine functions [since cos(−x) = cos x]. Both A(hkl) [the
sum of cosines, by Eqn. (5.19)] and cos ˆ have the same sign for hkl as
for −h, −k, −l, whereas B(hkl) [the sum of sines, by Eqn. (5.20)] and
sin ˆ have opposite signs for this pair of Bragg reflections. Therefore,
when Eqn. (6.3) is substituted in Eqn. (6.1) and the summation is made,
the i(Asin ˆ − B cos ˆ) terms cancel for each pair of Bragg reflections
hkl and hkl and vanish completely. The remaining terms, A cos ˆ and
B sin ˆ, need be summed over only half of the Bragg reflections. All
those with any one index (for example, h) negative are omitted and a
factor of 2 is introduced to account for this. Therefore we may write, by
Eqns. (6.1) and (6.3),

Ò(xyz) =
1
Vc

{∣∣F (000)
∣∣ + 2

∑ ∞∑
h≥0, all k, l

excluding F (000)

∑
(Acos ˆ + B sin ˆ)

}
(6.4)
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Since A = |F | cos · and B = |F | sin · [by Eqn. (5.17), where · is the
relative phase angle of F (hkl), and cos X cos Y + sin X sin Y = cos(X −
Y), the above expression for the electron density (Eqn. (6.4)) may be
rewritten†

† A schematic example of the calculation
of the function described in Eqn. (6.5) is
shown in Figure 6.2. Ò(xyz) =

∣∣F (000)
∣∣

Vc
+

2
Vc

∑ ∞∑
h≥0, all k, l

excluding F (000)

∑
(|F | cos(ˆ − ·))

(6.5)

This may be alternatively expressed as

Ò(xyz) =∣∣F (000)
∣∣

Vc
+

2
Vc

∑ ∞∑
h≥0, all k, l

excluding F (000)

∑ ∣∣F (hkl)
∣∣ cos[2π(hx + ky + lz) − ·(hkl)]

Remembering that ˆ = 2π(hx + ky + lz), an inspection of Eqn. (6.5)
shows that we need both the magnitudes |F (hkl)| and the relative
phases ·(hkl) of the radiation that has been diffracted in different direc-
tions. These are necessary for us to be able to form an image of the
scattering matter, Ò(xyz). If we knew |F (hkl)| and ·(hkl), we could then
calculate the Fourier summation in Eqn. (6.5) and plot the values of Ò(xyz),
thereby obtaining a three-dimensional electron-density map. By assuming
that atoms lie at the centers of peaks in this map, we would then know
the atomic structure of the crystal.

However, as we have already stressed many times, we can normally
obtain only the structure factor amplitudes |F (hkl)| and not the relative
phase angles ·(hkl)‡ directly from the experimental measurements. We‡ Under certain conditions, when two-

beam diffraction occurs, some phase infor-
mation may be derived from experimental
measurements (see Chapter 10).

must derive ·(hkl), either from values of A(hkl) and B(hkl) that are
computed from structures we have deduced in various ways (“trial
structures”), or by purely analytical methods. The problem of getting
estimates of the phase angles so that an image of the scattering matter
can be calculated is called the phase problem and is the central one in X-
ray crystallography. Chapters 8 and 9 are devoted to methods used to
solve the phase problem, either by deriving a trial structure and then
calculating approximate values of ·(hkl) for each Bragg reflection, or
by trying to find values of ·(hkl) directly. Recall that, for the third-
order Bragg reflection, the path difference between waves scattered one
repeat unit (a ) apart (that is, by equivalent atoms in adjacent unit cells)
is three wavelengths. The important fact for the reader to understand
is that each resultant wave should be traced back and its phase com-
pared with that of an imaginary wave being scattered at the origin
of the repeat unit (with a relative phase angle of 0◦); that is why we
call it a “relative phase,” the origin being in a position chosen by the
investigator (see Nyburg, 1961).

How do we derive the relative phases of the density waves, that
is, their phases relative to a chosen origin? We attempt to show, in
Figure 6.1, how the X rays scattered from different atoms are summed to
give the resultant X ray beams of various amplitudes (and hence inten-
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Fig. 6.1 Scattered waves and their relative phases.

A one-dimensional crystal with two atoms in the unit cell, one at x = 1/3 and the other at
x = 2/3. Shown are the Bragg reflections (a) 100, (b) 200, and (c) 300 and their relationships
to an imaginary wave scattered at the chosen origin of the unit cell (which leads to
the “relative phase angle”). Note that the most intense of these three is the 300 Bragg
reflection.

sities). A unit cell containing two atoms, one at x = 1/3 and the other at
x = 2/3, is used to illustrate how relative phases are derived. Compared
with an imaginary atom at the origin, the atom at x = 1/3 scatters for
a third order reflection with a path difference of one wavelength and
the atom at x = 2/3 scatters with a path difference of two wavelengths.
Thus both scatter in phase with the wave scattered at x = 0. However,
for the second order, the atom at x = 1/3 scatters X rays with a path
difference of 0.67 wavelengths from that scattered by the imaginary
atom at the origin, and the atom at x = 2/3 scatters with a path difference
of 1.33 wavelengths from the wave scattered at the origin. The resultant
wave is then (0.33 + 0.67)/2 = 0.50 wavelengths out of phase with the
wave scattered by the imaginary atom at the origin. Thus, in summing
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Fig. 6.2 Fourier synthesis of the Bragg reflections from Figure 6.1.

The Fourier summation of density waves to give an electron-density map with peaks
at x = ±1/3. At any point x, y, z in the unit cell, volume Vc, the electron density Ò(xyz)
may be calculated by use of Eqn. (6.5). The following data have been used for this one-
dimensional example:
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density waves, as shown in Figure 6.2, the 300 wave has a relative phase
angle of 0◦ and the 200 density wave has a relative phase angle of 180◦.

Fourier transforms

We have shown that the electron density Ò(xyz) (Eqn. 6.1) can be
expressed in an equation that involves the structure factors F (hkl) as
coefficients,

Ò = (1/V)� F e−iˆ (6.6)

It is also possible to express the structure factors in terms of the electron
density:

F = � f eiˆ (6.7)

The relationship between these two is referred to as a Fourier trans-
form or Fourier inversion. These equations show that the structure
factor is the Fourier transform of the scattering density (electrons
in the molecule) sampled at the reciprocal lattice point hkl, while
the electron density is the Fourier transform of the structure fac-
tors (which contain their relative phases). The intensity at a par-
ticular point of the diffraction pattern of an object (a set of rela-
tive |F (hkl)|2 values) is proportional to the square of the Fourier
transform of the object (with the distribution of matter in the object
described by Ò(x, y, z)). Examples of Fourier transforms are shown in
Figure 6.3, with electron density and density waves on the left and
structure factors, with their relative phases, shown on the right as
positive or negative (· = 0◦ or 180◦). Equation (6.6) or (6.7) (whichever

h −3 −2 −1 0 1 2 3

|F (hkl)| 2 1 1 2 1 1 2
·(hkl)(◦) 0 180 180 0 180 180 0
cos[2π(hx − ·)] + cos 6πx − cos 4πx − cos 2πx +1 − cos 2πx − cos 4πx + cos 6πx

Therefore Ò(x) = |F (000)|/Vc + (4 cos 6πx − 2 cos 4πx − 2 cos 2πx + 2)/Vc.
When h = 0, the function does not depend on x and so is a straight line (but drawn

with half its amplitude to conform to the electron-density map equation with positive
and negative values of h). The phase angle of this is necessarily 0◦. The function for
h = 1 is − cos 2πx, the negative sign resulting from the relative phase angle of 180◦, and
so forth. These functions are summed for each value of x to give the result shown by
the heavy solid line. It has peaks at x = ±1/3. Clearly, unless the phases were known,
it would not be possible to sum the waves correctly. This kind of calculation must be
made, with thousands of Bragg reflections, at each of many thousands of points to give a
complete electron-density map in three dimensions. Therefore high-speed computers are
essential. For a three-dimensional electron-density map it is not possible to plot heights
of peaks (because we have no fourth spatial dimension), and therefore contours of equal
electron density (or height) are drawn on sections through the three-dimensional map.
Atomic centers appear at the centers of areas of high electron density, which look like
circular mountains on a topographical map. The larger values of F dominate the Fourier
summation.
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Fig. 6.3 Summing Fourier transforms.

Density waves for the 200, 300, and 500 Bragg reflections and their Fourier transforms.
When the columns are summed, the density waves (on the left) give the electron density
map, while their Fourier transforms (on the right) give the phases of the individual
density waves. When intensities are measured, the phase information is lost. Note: This
is a different structure from that in Figures 6.1 and 6.2.

is most appropriate) is used for the transformations. As will be seen
later, it is convenient to be able to move readily between real (electron
density) and reciprocal (structure factor) space, and this is how it is
done. For example, one may want to modify an electron-density map
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and calculate a new data set of structure factors for comparison with
experimental values or may calculate the theoretical electron density for
an atom or ion and then examine the atomic scattering factors relevant
to this density (as mentioned in Chapter 5). Alternatively, one may want
to change some (or all) of the structure factors and investigate the effect
of this on the electron-density map. The Fourier transform equations
make this possible.

Summing density waves to obtain an
electron-density map

We have emphasized the analogy between the action of a lens in col-
lecting and refocusing radiation to give an image of the scattering
matter, and the process of Fourier summation, a mathematical tech-
nique for forming an image by use of information about the ampli-
tudes and relative phases of the scattered waves. Fourier summation
techniques can be applied even when the waves cannot be refocused,
as in the X-ray experiment. With a lens the light waves are (ideally)
brought together with the same phases that they had when they left
the object; in the X-ray diffraction experiment these phases are usu-
ally not measurable, although if they can be found in some way,
then it is possible to calculate an electron-density map as shown in
Figures 6.3 and 6.4.

The individual waves in Eqn. (6.5) that are summed to give the
electron-density map are referred to, for convenience in this book, as
“density waves” (see Bijvoet et al., 1948). In other words, each term
|F (hkl)| cos[(2π(hx + ky + lz) − ·(hkl)], calculated as a function of x, y,
and z, is a density wave, as illustrated in Figure 6.4. In effect, Eqn.
(6.5) could be rewritten to say that the electron density Ò(x, y, z) at a
point in space x, y, z is equal to the sum of these density waves. Thus each
Bragg reflection with its relative phase can be considered to produce a
density wave in the crystal, with an amplitude that can be derived from
the intensity of the Bragg reflection; the superposition of these density
waves, once their phases are known, produces the electron-density map
for the crystal:

Ò(xyz) =
1
Vc

{ ∣∣F (000)
∣∣

+2
∑ ∞∑

all density waves

∑ ∣∣F (hkl)
∣∣ cos[2π(hx + ky + lz) − ·(hkl)]

}
(6.8)

The determination of the phases of these density waves is the subject
of much of the rest of this book. But what is the wavelength of a
density wave and how is it related to the order (h, k, l) of the diffracted
beam? Their wavelengths depend on h, k, and l, not the wavelength
of the X rays that caused each Bragg reflection. A close examination
of Eqn. (6.5) shows that |F (hkl)| is modified by a cosine function
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Fig. 6.4 Overview of X-ray diffraction.

Summary of the diffraction experiment, showing (i) the atomic structure (one-dimensional in this case); (ii) diffraction of X rays by the
crystal structure; (iii) density waves; (iv) summation of the density waves to give the electron-density map; and the result is an image
of the actual structure (v), which is the same as (i).

of (2π(hx + ky + lz) − ·(hkl)); thus it becomes a periodic function of h,
k, and l. In the simple case (Figure 6.2) where k and l are both zero,
cos 2π(hx) is at a maximum value when x = 1/h; that is, this cosine term
has an apparent wavelength of a/h (where a is the unit-cell length in the
x direction and x is expressed as a fraction of this dimension a ).

In summary, the wavelengths of the density waves are dhkl = Î/2 sin Ë,
their amplitudes are |F (hkl)|, and their phases are ·(hkl). For example,
the wavelength of the 1 0 0 density wave is the repeat distance a (= d100)
(see Figure 6.2), the wavelength of the 2 0 0 density wave is a/2 because
the second order of diffraction occurs at a sin Ë value twice that of the
first order, and so forth. For the 1 0 0 reflection, phase π, Eqn. 6.8 gives
the function cos [2πx + π] which is maximal at x = 1/2 (see Figure 6.4).
These are the density waves that are summed to give the electron-
density map shown in Figure 6.2. “High resolution” implies a high
value of sin Ë and thus a small value for the effective wavelength of
the density wave; as we shall see later, high-resolution Bragg reflec-
tions (short wavelength density waves) are needed to provide high-
resolution images of molecules.

The density waves, derived by arguments such as these, are summed
as shown in Figures 6.2 and 6.4 to give the electron density of the
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Fig. 6.5 Comparison of electron-density maps when the phases are correct and when they are incorrect and random.

In the computation of all maps shown here, the same |F (hkl)| values but different phases were used. The upper left electron-density
map (a) is the correct result; the other three maps ((b) to (d)) have incorrect relative phases, and provide an incorrect electron-density
map. The phases of these three “random phase” maps were found by a computer program for random number generation. Since the
structure is noncentrosymmetric, the phase for each Bragg reflection could have any value between 0◦ and 360◦. In each case, the
molecular skeleton is shown by solid lines in the correct position, but it is clear that only the first map (top left) correctly represents
the true structure.

Courtesy H. L. Carrell.

structure, and the peaks in such a map correspond to the centers of
atoms. The importance of the phases in determining a structure is illus-
trated in Figure 6.5. Each of the four electron-density maps in this figure
has the same values of |F |, but differs in the phases used in the calcula-
tion. For clarity, the true crystal structure is indicated by a line diagram.
As can be seen, only the first map correctly gives peaks at atomic posi-
tions. An electron-density map with correct phases much more nearly
approximates the correct structure than does an electron-density map
with incorrect phases, even if each has the correct magnitudes for the
|F (hkl)| values. The analysis of electron-density and Patterson maps has
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benefited greatly from the improvements in computer graphics so that
now it is possible to view the three-dimensional map on a computer
screen and rotate and move it at will in order to obtain structural
information. However, automatic fitting of a three-dimensional model
structure to the electron-density map is now possible by computer
without any need for display (Lamzin et al. 2001; Oldfield, 2003).

An initial trial structure

At the start of a structure determination one does not know the
positions of all the atoms in the structure (for if one did, the structure
would probably not need to be investigated), but one can often deduce
an approximation to the correct structure. The calculated phases for
this initial (approximate) trial structure will provide a starting point for
structure determination. This trial structure may be one that completely
fills the unit cell or else it may be only a partial structure (even, for
example, one heavy atom). It is possible to calculate an approximation
to the true electron density by a three-dimensional Fourier summation
of the observed structure factor amplitudes, |Fo|, with phases calculated
from an initial trial structure which may be only partially complete.
It has been found that the general features of an electron-density map
depend much more on the phase angles than on the structure factor
amplitudes. Therefore a map calculated with only approximately
correct phases will be an imperfect representation of the structure.
However, it is biased toward the correct structure because the observed
structure amplitudes |Fo| were used in the calculation. By comparison
with a similar synthesis using the calculated amplitudes |Fc|, or even
more simply by computing the difference (|Fo| − |Fc|) to obtain a “dif-
ference synthesis”, one can deduce the changes in the model needed to
give better agreement with observation. The positions of some hitherto
unrecognized atoms may be indicated, and shifts in the positions of
some atoms already included will normally be suggested as well.

Correctness of the trial structure

Once the approximate positions and identities of all the atoms in the
asymmetric unit are known (that is, when the true crystal structure is
known), the amplitudes and phases of the structure factors can readily
be calculated (see Chapter 5). These calculated amplitudes, |F (hkl)c|,
may be compared with the observed amplitudes, |F (hkl)o|. If the struc-
tural model is a correct one and the experimentally observed data are
reasonably precise, the agreement should be good. The situation is
different for phases. The phases calculated for a trial structure cannot
be compared with observed phases, because normally phases are not
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observed; they depend on where the origin of the unit cell was chosen
to be.

One measure of the correctness of a structure is the so-called
discrepancy index (or reliability index or conventional residual), R,
defined as

R =
∑∣∣(|Fo| − |Fc|)

∣∣∑
(|Fo|) (6.9)

It is a measure of how closely the experimentally observed structure
factor amplitudes are matched by the values calculated for a proposed
trial structure. At present, R values in the range of 0.02 to 0.06 (alter-
natively described as 2 percent to 6 percent) are being quoted for the
most reliably determined structures of small molecules. An R value of
0.83 corresponds to a random centrosymmetric structure; that is, with
proper scaling a randomly incorrect structure with a center of symme-
try would give an R value of about 0.83 (0.59 for a noncentrosymmetric
crystal structure) (Wilson, 1950). A refinable trial structure may have an
R value between 0.25 and 0.35, or even somewhat higher. This value
will (hopefully) be decreased by methods described in Chapter 11 to a
much lower value. If one atom of high atomic number is present, the
initial trial value of R may be much lower because the position of this
atom can usually be determined reasonably well even at an early stage,
and a heavy atom normally dominates the scattering, as illustrated in
the atomic scattering factors in Figure 5.4a. If the trial structure is a
reasonable approximation to the correct structure, the R value goes
down appreciably as refinement proceeds.

The discrepancy index R is, however, only one measure of the pre-
cision (but not necessarily the accuracy) of the derived structure. It
denotes how well the calculated model fits the observed data. Many
complications can cause errors in the observed or calculated struc-
ture factors or both—for example, absorption of the X-radiation by
the crystal, or atomic scattering factors and temperature factors that
do not adequately describe the experimental situation. The fit of the
calculated structure factors to the observed ones may then be good,
but if the observations are systematically in error, the accuracy of the
derived structure may be low, despite an apparently high precision.
Hence care must be taken in interpreting R values. In general, the
lower the R value the better the structure determination, but if one or
more very heavy atoms are present, they may dominate the structure
factor calculation to such an extent that the contributions from light
atoms may not have noticeable effects on R, especially if the structure
has not been refined extensively. The positions of the light atoms may
then be significantly in error. Also the resolution of the data (i.e., the
maximum value of sin Ë/Î) must be taken into account in assessing the
meaning of an R value. A few grossly incorrect trial structures have
been refined to R values as low as 0.10. Fortunately this situation is not
common.
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Resolution of a crystal structure

The variation of resolving power with scattering angle in structural dif-
fraction studies has a direct analogy with the resolution of an ordinary
microscope image (Abbé, 1873; Porter, 1906). If some of the radiation
scattered by an object under examination with a microscope escapes
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Fig. 6.6 Different stages of resolution for a given crystal structure.

The electron-density maps shown were calculated after eliminating all observed |F (hkl)|
measured beyond a given 2Ë value. The “resolution” obtained is usually expressed in
terms of the interplanar spacings d = Î/(2 sin Ë) corresponding to the maximum observed
2Ë values (Î = 1.54 Å for copper radiation in this example).
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rather than being recombined to form an image (as shown in Figure 1.1),
the image that is formed will be, to some degree, an imperfect rep-
resentation of the scattering object. More particularly, fine detail will
remain unresolved. Similarly, with X rays, if the diffraction pattern
for the customary wavelengths is observed only out to a relatively
small scattering angle, the resolution of the corresponding image recon-
structed from it will be low. Furthermore, the resolution will be limited
by the wavelength chosen even if the entire pattern is observed. Some
examples of electron-density maps calculated with data out to a listed
resolution are shown in Figure 6.6. As can be seen, lower numbers, indi-
cating higher resolution, give more detailed pictures of the molecule.
As in any process of image formation by recombination of scattered
radiation, detail significantly smaller than the wavelength used cannot
be distinguished by any scheme. On the other hand, the positions of
well-resolved objects of known shape can be measured with high preci-
sion, and fortunately all interatomic distances are well resolved in three
dimensions with the X rays we generally use. Hence, the positions of the
resolved atoms can be measured and the details of molecular geometry
calculated quite precisely.

The basic data in X-ray crystal studies

It is important to stress here which are the experimental data in an X-
ray or neutron diffraction experiment. The experimental results are the
intensities of the diffracted beams (combined with their indices hkl) and
their conversion to |F (hkl)| values. The relative phases are generally not
measured, but are derived by the methods described in Chapters 8 and
9; isomorphous replacement and Renninger reflection measurements
may, however, give some initial phase information. The electron-density
maps that follow are generally not primary experimental data but are the

d(Å) Maximum 2Ë(◦) Relative number of Bragg reflections
included in each calculation

(1) 5.5 16 7
(2) 2.5 36 27
(3) 1.5 62 71
(4) 0.8 162 264

In each of the maps, the skeleton of the actual structure from which the data were taken
has been superimposed. The first stage (1) (upper left) is typical of those encountered
early in the determination of a protein structure. For protein structures, a degree of
resolution between (2) and (3) is generally as much as is possible. The detail shown in (4)
is characteristic of a structure determination with good crystals of low-molecular-weight
compounds with radiation from an X-ray tube with a copper target. These electron-
density maps may be compared to views of an object through a microscope, each corre-
sponding to a different aperture (from Glusker et al., 1968). Note the lower peak heights of
the carbon atoms compared with the nitrogen atoms. Also note that in the high-resolution
structure, hydrogen atom locations are indicated.
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results of estimated phase angles and, as shown in Figure 6.5, may or
may not be correct. Therefore, if the final structure is not as expected,
rereview the methods used to obtain the phases and to refine the pro-
posed trial structure.

Summary

The electron density at a point x, y, z in a unit cell of volume Vc is

Ò(xyz) =
1
Vc

∑ ∑
all hkl

∑∣∣F (hkl)
∣∣ cos[2π(hx + ky + lz) − ·(hkl)]

[see Eqn. (6.5)]. Therefore, if we knew |F (hkl)| and ·(hkl) (for each h,
k, l) we could compute Ò(x, y, z) for all values of x, y, and z and plot
the values obtained to give a three-dimensional electron-density map.
Then, assuming atomic nuclei to be at the centers of peaks, we would
know the entire structure. However, we can usually obtain only the
structure factor amplitudes |F (hkl)| and not the relative phase angles
·(hkl) directly from experimental measurements. This is the phase prob-
lem. We must usually derive values of ·(hkl) either from values of A(hkl)
and B(hkl) computed from suitable “trial” structures or by the use
of purely analytical methods. In practice, approximations to electron-
density maps can be calculated with experimentally observed values
of |F (hkl)| and calculated values of ·(hkl). If the trial structure is not
too grossly in error, the map will be a reasonable representation of the
correct electron-density map, and the structure can be refined to give
a better fit of observed and calculated |F (hkl)| values. The discrepancy
index R is one measure of the correctness of a structure determination.
However, it is at best a measure of the precision of the fit of the model
used to the experimental data obtained, not a measure of the accuracy.
Some structures with low R values have been shown to be incorrect.



Symmetry and space
groups 7
A certain degree of symmetry is apparent in much of the natural world,
as well as in many of our creations in art, architecture, and technology.
Objects with high symmetry are generally regarded with pleasure. Sym-
metry is perhaps the most fundamental property of the crystalline state
and is a reason that gemstones have been so appreciated throughout
the ages. This chapter introduces some of the fundamental concepts of
symmetry—symmetry operations, symmetry elements, and the combi-
nations of these characteristics of finite objects (point symmetry) and
infinite objects (space symmetry)—as well as the way these concepts
are applied in the study of crystals.

An object is said to be symmetrical if after some movement, real or
imagined, it is or would be indistinguishable (in appearance and other
discernible properties) from the way it was initially. The movement,
which might be, for example, a rotation about some fixed axis or a
mirror-like reflection through some plane or a translation of the entire
object in a given direction, is called a symmetry operation. The geomet-
rical entity with respect to which the symmetry operation is performed,
an axis or a plane in the examples cited, is called a symmetry element.
Symmetry operations are actions that can be carried out, while symmetry
elements are descriptions of possible symmetry operations. The difference
between these two symmetry terms is important.

It is possible not only to determine the crystal system of a given crys-
talline specimen by analysis of the intensities of the Bragg reflections
in the diffraction pattern of the crystal, but also to learn much more
about its symmetry, including its Bravais lattice and the probable space
group. As indicated in Chapter 2, the 230 space groups represent the
distinct ways of arranging identical objects on one of the 14 Bravais
lattices by the use of certain symmetry operations to be described below.
The determination of the space group of a crystal is important because
it may reveal some symmetry within the contents of the unit cell. Space
group determination also vastly simplifies the analysis of the diffrac-
tion pattern because different regions of this pattern (and hence of the
atomic arrangement in the crystal) may then be known to be identical.
Furthermore, symmetry greatly reduces the number of required calcu-
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lations because only the contents of the asymmetric portion of the unit
cell (the asymmetric unit) need to be considered in detail. In summary,
the concept of the unit cell reduces the amount of structural information
that needs to be determined for a crystal. It is not necessary to deter-
mine the locations of millions of molecules in a crystal experimentally,
only the locations of those in one unit cell. The concept of the space
group further reduces the information required to the “asymmetric
unit,” which is a portion of the unit cell that is defined by the space
group of the crystal structure. Once the locations of atoms in the asym-
metric unit are known, it is possible to calculate the positions of all
other atoms in the unit cell and also of all those in the entire crystal by
application of the space-group symmetry operations. These have been
meticulously tabulated and are readily available in International Tables
(Hahn, 2005).

Scrutiny of diffraction patterns of crystals reveals that there are
often systematically related positions where diffraction maxima might
occur but where, in fact, the observed intensity is zero. For exam-
ple, if molecules pack in a crystal so that there is a two-fold screw
axis parallel to the a axis, this means that each atom is moved a
distance a/2 and then rotated 180◦ about the screw axis (from x, y,
z to 1/2 + x,−y, 1/2 − z). A result is that for every atom at position x
there is another at 1/2 + x. As far as h 0 0 Bragg reflections are con-
cerned, the unit-cell size has been halved (to a/2) and the reciprocal
lattice spacing has doubled (to 2a∗). Bragg reflections will then only be
observed for even values of h. This situation is made evident by sum-
ming in Eqns. (5.21) and (5.22) for atoms at x and 1/2 + x when k and l
are zero:** cos x + cos y

= 2 cos [(x + y)/2] cos [(x − y)/2]

sin x + sin y
= 2 sin [(x + y)/2] cos [(x − y)/2]

cos 0 and cos 2π = 1, cos π = −1

cos π
2 and cos 3π

2 = 0

A(h00) = f cos 2π(hx) + f cos 2π(hx + h/4)

= 2 f cos 2π(hx + h/4) cos 2π(h/4) (7.1)

B(h00) = f sin 2π(hx) + f sin 2π(hx + h/4)

= 2 f sin 2π(hx + h/4) cos 2π(h/4) (7.2)

A(h00) and B(h00) are both zero if h is odd, and therefore no Bragg
reflection is observed. By contrast, if h is even, values may be found for
A(h00) and B(h00).

Most, but not all, combinations of symmetry elements give rise to
systematic relationships among the indices of some of the systemat-
ically “absent reflections.” The word “systematically” implies some
numerical relationship between the indices hkl of the Bragg reflections.
For example, the only h k 0 Bragg reflections with a measurable intensity
may be those for which (h + k) is even. Such systematic relationships
imply certain symmetry relations in the packing in the structure. Before
continuing with an account of methods of deriving trial structures, we
present a short account of symmetry and, particularly, its relation to the
possible ways of packing molecules or ions in a crystal.
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Symmetry groups

Any isolated object, such as a crystal, can possess “point symme-
try”. This term means that any symmetry operation, such as a rota-
tion of, say, 180◦, when applied to the object, must leave at least one
point within the object fixed (unmoved). “Space symmetry” is different,
because it includes translational symmetry (which is not permitted in
a point group because this requires one point to be fixed in space).
A translation operation is a space-symmetry operation; it leaves no
point unchanged, since it moves all points equal distances in parallel
directions. For example, an infinite array of points, such as a crystal
lattice (or an ideal unbounded crystal structure), has translational sym-
metry, since unit translation (motion in a straight line, without rotation)
along any unit crystal lattice vector moves the crystal lattice into self-
coincidence. Because most macroscopic crystals consist of 1012 or more
unit cells, it is a fair approximation to regard the arrangement of atoms
throughout most (if not all) of a real crystal as possessing translational
symmetry.

Symmetry elements (defined above as descriptions of possible sym-
metry operations) can be classified into groups (Cotton, 1971). A group,
in the mathematical sense, is a set of elements, one of which must be the
identity element, and the product of any two elements must also be an
element in that same group. In addition, the order in which symmetry
elements are combined must not affect the resulting element, and, for
every element in the group, there must be another that is its inverse
so that when the two are multiplied together the identity element is
obtained. Studies of crystal symmetry involve point groups (one point
unmoved when symmetry operations are applied) that are used in
descriptions of crystals, and space groups (which also allow transla-
tional symmetry) that are used in descriptions of atomic arrangements
within crystals.

Point symmetry and point groups

The operations of rotation, mirror reflection, and inversion through a
point are point-symmetry operations, since each will leave at least one
point of the object in a fixed position. The geometrical requirements of
crystal lattices restrict the number of possible types of point-symmetry
elements that a crystal can have to these three:

(1) n-fold rotation axes. A rotation of (360/n)◦ leaves the object or
structure apparently unchanged (self-coincident). The order of
the axis is said to be n, where n is an integer. When n = 1 (that
is, a rotation of 360◦), the operation is equivalent to no rotation
at all (0◦), and is said to be the “identity operation.” A four-fold
rotation axis, 90◦ rotation at each step, is shown in Figure 7.1, and
is denoted by the number 4. It may be proved that only axes of



104 Symmetry and space groups

y, –x, z
y

–x

–x –x, –y, z

–y

x

x

y

x,y,z

–y
–y, x, z

a a

b

b

four-fold rotation axis along c view down four-fold c axis

x, y, z

c

y, –x, z

Fig. 7.1 A four-fold rotation axis.

In the figures in this chapter, in order to make the distinction of left and right hands clearer, a ring and watch have been indicated on
the left hand but not on the right (even after reflection from the left hand). A four-fold rotation axis, parallel to c and through the origin
of a tetragonal unit cell (a = b), moves a point at x, y, z to a point at (y,−x, z) by a rotation of 90◦ about the axis. The sketch on the right
shows all four equivalent points resulting from successive rotations; only two of these are illustrated in the left-hand sketch.

order 1, 2, 3, 4, and 6 are compatible with structures built on three-
dimensional (or even two-dimensional) crystal lattices. Isolated
molecules can have symmetry axes of other orders (5, 7, 8, or 17,
for example), but when crystals are formed from a molecule with,
for example, a five-fold axis of symmetry, this five-fold axis cannot
be a symmetry axis of the crystal, although it can be a symmetry
axis of the molecule. The molecule may still retain its five-fold
symmetry in the crystal, but it can never occur at a position such
that this symmetry is a necessary consequence of five-fold sym-
metry in the crystalline environment. In other words, five-fold
symmetry is local and not crystallographic—that is, not required
by any space group. This results from the requirement that there
be no empty spaces in the packing in a crystal. Pentagonal tiles
will not cover a floor without leaving untiled spaces.

(2) n-fold rotatory-inversion axes. The inversion operation, with the
origin of coordinates as the “center of inversion,” implies that
every point x, y, z is moved to −x, −y, −z. From a point at x,
y, z one could consider an imaginary straight line to proceed
through the center of symmetry (at 0, 0, 0) and, further, an equal
distance to −x, −y, −z. This inversion can also be augmented by
a rotation to give an n-fold rotatory-inversion axis. This involves
a rotation of (360/n)◦ (where n is 1, 2, 3, 4, or 6) followed by
inversion through some point on the axis so that no apparent
change in the object or structure occurs. The one-fold case, 1̄, is
the inversion operation itself and is often merely called a center
of symmetry. A two-fold rotatory-inversion axis, denoted 2̄, is
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Fig. 7.2 A mirror plane.

The operation 2̄, a two-fold rotatory-inversion axis parallel to b and through the origin, converts a point at x, y, z to a point at x, −y, z.
One way of analyzing this change is to consider it as the overall result of first a two-fold rotation about an axis through the origin and
parallel to b (x, y, z to −x, y,−z) and then an inversion about the origin (−x, y, −z to x, −y, z). This is the same as the effect of a mirror
plane perpendicular to the b axis. Note that a left hand has been converted to a right hand. The hand illustrated by broken lines is an
imaginary intermediate for the symmetry operation 2̄.

shown in Figure 7.2. In general, these axes are symbolized as n̄.
The rotatory-inversion operations differ from the pure rotations
in an important respect; they convert an object into its mirror
image. Thus a pure rotation can convert a left hand only into a
left hand. By contrast, a rotatory-inversion axis will, on successive
operations, convert a left hand into a right hand, then that right
hand back into a left hand, and so on. Chiral objects that cannot be
superimposed on their mirror images cannot possess any element
of rotatory-inversion symmetry.

(3) Mirror planes. We are all familiar with mirrors. They convert a
left-handed molecule into a right-handed molecule. As shown in
Figure 7.2, a mirror plane is equivalent to a two-fold rotatory-
inversion axis, 2̄, with the axis oriented perpendicular to the
plane. The symbol m is more common for this symmetry element.

The point symmetry operations listed above (1, 2, 3, 4, 6, 1̄, 2̄ or m, 3̄,
4̄, and 6̄) can be combined together in just 32 ways in three dimensions
to form the 32 three-dimensional crystallographic point groups (Phillips,
1963). There are, of course, other point groups, appropriate to isolated
molecules and other figures, containing, for example, five-fold axes, but
objects with such symmetry will have problems packing without gaps
in three-dimensional space. The 32 crystallographic point groups or
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symmetry classes may be applied to the shapes of crystals or other finite
objects (Groth, 1906–1919); the point group of a crystal may sometimes
be deduced by an examination of any symmetry in the development
of faces. For example, a study of crystals of beryl shows that each has
a six-fold axis perpendicular to a plane of symmetry (6/m), with two
more symmetry planes parallel to the six-fold axis and at 30◦ to each
other (mm). The corresponding point group is designated 6/mmm. This
external symmetry is a manifestation of the symmetry in the internal
structure of the crystal. Frequently, however, the environment of a crys-
tal during growth is sufficiently perturbed that the external form or
morphology of the crystal does not reflect, to the extent that it might, the
internal symmetry. Diffraction studies then help to establish the point
group as well as the space group.

Space symmetry

A combination of the point-symmetry operations with translations
gives rise to various kinds of space-symmetry operations, in addition
to the pure translations.

(1) n-fold screw axes. A two-fold screw axis, 21, is shown in Figure 7.3.
Screw axes result from the combination of translation (by dis-
tances such as 1/r of the repeat axis) and pure rotation (by an
n-fold axis) and are symbolized by nr . They involve a rotation
of (360/n◦) (where n = 1, 2, 3, 4 or 6) and a translation parallel
to the axis by the fraction r/n of the identity period along that
axis (where r is less than n and both are integers). If we consider
a quantity p = n − r , then the axes nr and np (such as 41 and 43
screw axes) are enantiomorphous; that is, they are mirror images
of one another, like left and right hands. It is important, however,
to note that it is only the screw axes that are enantiomorphous;
structures built on them will not be enantiomorphous unless the
objects in the structure are themselves enantiomorphous. Thus a
left hand operated on by a 41 will give an arrangement that is the
mirror image of that produced by the operation of a 43 on a right
hand, but not, of course, the mirror image of that produced by the
operation of a 43 on another left hand, as shown in Figure 7.4 (far
left and far right).

(2) Glide planes. These symmetry elements result from the combina-
tion of translation with a mirror operation (or its equivalent, 2̄,
normal to the plane), as illustrated in Figure 7.5. The glide must
be parallel to some crystal lattice vector, and, because the mirror
operation is two-fold, a point equivalent by a simple translational
symmetry operation (a crystal lattice vector) must be reached
after two glide translations. Thus these translations may be half of
the repeat distance along a unit-cell edge, in which case the glide
plane is referred to as an a -glide, b-glide, or c-glide, depending
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Two-fold screw axis through the origin
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Fig. 7.3 A two-fold screw axis.

A two-fold screw axis, 21, parallel to b and through the origin, which combines both a two-fold rotation (x, y, z to −x, y,−z) and a
translation of b/2 (−x, y,−z to −x, 1/2 + y, −z). A second screw operation will convert the point −x, 1/2 + y,−z to x, 1 + y, z, which is the
equivalent of x, y, z in the next unit cell along b. Note that the left hand is never converted to a right hand by this screw axis.
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Fig. 7.4 A four-fold screw axis.

Some crystallographic four-fold screw axes showing two identity periods for each. Note that the effect of 41 on a left hand is the mirror
image of the effect of 43 on a right hand.

b-glide plane through the origin and normal to c

x, y, z x, 1+ y, z x, 2+ y, z

c

a

b
1 2

x, ½ + y, –z x, 1½ + y, –z

Fig. 7.5 A glide plane.

A b-glide plane normal to c and through the origin involves a translation of b/2 and a reflection in a plane normal to c. It converts a
point at x, y, z to one at x, 1/2 + y, −z. Note that left hands are converted to right hands, and vice versa.
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on the edge parallel to the translation. Alternatively, the glide
may be parallel to a face diagonal. No glide operation involves
fractional translational components other than 1/2 or 1/4, and the
latter occurs only for glide directions parallel to a face diagonal
or a body diagonal in certain nonprimitive space groups.

Space groups

We showed in Chapter 2 how an investigation of the symmetries of
crystal lattices led to the seven crystal systems (triclinic, monoclinic,
orthorhombic, tetragonal, hexagonal, rhombohedral, and cubic). These,
when combined with unit-cell centering (face- or body-centering), gave
the 14 Bravais lattices (see Appendix 2). If the 14 Bravais lattices are

Fig. 7.6 Part of a page from International Tables for X-Ray Crystallography.

Information on the space group P212121. The crystal is orthorhombic and there are three sets of mutually perpendicular nonintersecting
screw axes. P denotes a primitive crystal lattice (that is, one lattice point per cell with no face- or body-centering) and 21 denotes a two-
fold screw axis. The origin of the cell, chosen so that it lies halfway between these three pairs of nonintersecting screw axes, lies in the
upper left-hand corner with the x direction down and the y direction across to the right; x is parallel to a and y is parallel to b. The
symbol ( ) refers to a two-fold screw axis perpendicular to the plane of the paper. The symbol (¬) refers to a two-fold screw axis in a
plane parallel to the plane of the paper; the fractional height of this plane above the plane z = 0 is shown (unless the screw axis is in the
plane z = 0). The operations of the space group on the point (x, y, z) give three additional equivalent positions, whose coordinates are
listed. Thus the screw axis parallel to c at x = 1/4, y = 0 converts an atom at x, y, z to one at 1/2 − x,−y, 1/2 + z. Similar transformations
are effected by the other two sets of screw axes (parallel to a and b, respectively). The diffraction patterns of crystals with this space
group show systematic absences only for h 0 0 when h is odd, 0 k 0 when k is odd, and 0 0 l when l is odd. Such crystals contain only
molecules of one handedness (chirality). This diagram is from Volume 1 of International Tables. The current Volume A of International
Tables contains the same information and more. Reproduced with permission of the International Union of Crystallography.
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Fig. 7.7 A structure that crystallizes in the space group P212121.

Contents of the unit cell of potassium dihydrogen isocitrate (van der Helm et al., 1968). The space group (see Figure 7.6) requires that, for
each atom at x, y, z, there should be equivalent atoms at 1/2 − x,−y, 1/2 + z; 1/2 + x, 1/2 − y, −z; and −x, 1/2 + y, 1/2 − z. These are indicated
on the diagram (oxygen stippled, potassium dark, hydrogen small). Interactions via hydrogen bonding and metal coordination are
indicated by broken lines. This figure illustrates how anions cluster around a cation (dark spheres, K+) and how this clustering, together
with hydrogen bonding, is a major determinant of the structure.

combined with the symmetry elements of the 32 crystallographic point
groups (involving reflection, rotation, and rotation-inversion symme-
try), plus, in addition, the translational symmetry elements of glide
planes and screw axes, the result is just 230 arrangements. These 230
space groups are compatible with the geometrical requirements of
three-dimensional crystal lattices, that is, that the space-group symme-
try should generate exactly the same arrangement of objects from unit
cell to unit cell. There are thus 230 three-dimensional space groups,
ranging from that with no symmetry other than the identity operation
(symbolized by P1, the P implying primitive) to those with the highest
symmetry, such as F m3m, a face-centered cubic space group. These 230
space groups represent the 230 distinct ways in which objects (such as
molecules) can be packed in three dimensions so that the contents of
one unit cell are arranged in the same way as the contents of every other
unit cell.

It is interesting to note that these 230 unique three-dimensional
combinations of the possible crystallographic symmetry elements were
derived independently in the last two decades of the nineteenth century
by Evgraf Stepanovich Fedorov in Russia, Artur Moritz Schönflies in
Germany, and William Barlow in England (Schoenflies, 1891; Fedorov,
1891; Barlow, 1894). It was not until several decades later that anything
was known of the actual atomic structure of even the simplest crys-
talline solid. Since the introduction of diffraction methods for studying
the structure of crystals, the space groups of many thousands of crystals
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have been determined. It has been found that about 60% of the organic
compounds studied crystallize in one of six space groups.**

** The centrosymmetric space groups
P21/c, P1, C2/c, and Pbca and non-
centrosymmetric space groups P212121
and P21.

All 230 space groups, and the systematically absent Bragg reflections
found for them in the diffraction pattern, are listed in International
Tables, Volume 1 or A, which is in constant use by X-ray crystallogra-
phers (Wyckoff, 1922; Astbury and Yardley, 1924; Hahn, 2005). Part of
a specimen page from Volume 1 is shown in Figure 7.6. The symmetry
operations in a space group must ensure that the next unit cell has the
same contents as the original, and that it packs against the original unit
cell with no gaps or spaces. Once the space group is determined from
the systematically absent Bragg reflections in the X-ray diffraction pat-
tern and by other means, if needed, only the structure of the contents of the
asymmetric unit, not the entire unit cell, need be determined. The contents
of the rest of the cell (and of the entire structure) are then known by
application of the symmetry operations of the space group. An example
is shown in Figure 7.7. An excellent way to obtain an introduction to
space groups is to work one’s way through the 17 plane groups listed
just before the space groups in International Tables for Crystallography,
Volume A, Space-group Symmetry (Hahn, 2005).

Space group ambiguities

The principal method used to determine the space group of a crystal is
that of determining which Bragg reflections are systematically absent
in the space group. These are listed in International Tables, Volume A.
As shown in an example at the beginning of this chapter, these sys-
tematic absences depend on the translational symmetry of the space
group (screw axes, glide planes, face- or body-centering); that is, a
two-fold screw axis resulted in systematic absences for h00 when h is
odd. Therefore, space groups with the same translational symmetry
elements (for example, P21 and P21/m)† will have the same systematic † Equivalent positions for P21 are x, y, z

and −x, 1/2 + y,−z. Equivalent positions
for P21/m are x, y, z; −x, −y,−z;
−x, 1/2 + y,−z; and x, 1/2 − y, z.

absences in their diffraction patterns, giving rise to an ambiguity in the
determination of the space group.

However, there are ways of overcoming this problem. If the crystal
contains only one enantiomorph of an asymmetric molecule, then the
space group cannot contain a mirror or glide plane or a center of
symmetry, since these symmetry elements convert one enantiomorph
into the other. As a result, if the ambiguity involves a pair of space
groups, one centrosymmetric and the other noncentrosymmetric (such
as P1 and P1 or P21 and P21/m), then a distinction can be made if the
crystal contains molecules of only one chirality, since the crystal cannot
then be centrosymmetric. In other cases the distinction can usually be
made, as described in more detail in Chapter 8, by a consideration
of the distribution of intensities in the diffraction pattern, since cen-
trosymmetric structures have a higher proportion of Bragg reflections
of very low intensity than do noncentrosymmetric structures. Other
diagnostic methods involve tests of physical properties, including the
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piezoelectric and pyroelectric effects (see Chapter 2). These effects are
found only for noncentrosymmetric crystals. Still another method of
distinguishing between space groups is to analyze the vectors in the
Patterson map, described in Chapter 9. Finally, a consideration of the
chemical identity of the contents of the unit cell may help resolve any
space group ambiguity.

The following example of such an ambiguity may be of interest. The
protein xylose isomerase, consisting of four identical subunits bound
in a tetramer, crystallizes in the space group I 222 or I 212121 with two
molecules (eight subunits) in the unit cell. The systematic absences in
Bragg reflections are, unfortunately, the same for both space groups, so
here is an example of a space group ambiguity. This follows because
the space-group absences for a body-centered unit cell are such that
h + k + l must be even, while the three screw axes require h00 with h
even, k00 with k even, and l00 with l even; these last three require-
ments are included in the first condition, so that it does not make
any difference to the systematic absences whether or not the screw
axes are there. However, each unit cell for either space group contains
eight asymmetric units, and therefore one subunit (one quarter of the
molecule) must be the asymmetric unit (together with solvent, not
considered here). If the space group were I 212121 the protein would be
an infinite polymer, because of the requirements of the two-fold screw
axes, contrary to physical evidence. Therefore the space group is I 222,
so that the subunits are related to each other by two-fold rotation axes
rather than two-fold screw axes.

Chirality

Chirality is the handedness of a structure (Greek: cheir = hand); that
is, if a structure cannot be superimposed on its mirror image it is said
to be chiral or enantiomorphous. We are most familiar with this in
the example of the asymmetric carbon atom—that is, a carbon atom
connected to four different chemical groups so that two types of mole-
cules, related to each other by a mirror plane, are found. This chirality,
however, can also extend to the crystal structure itself. For example,
silica crystallizes in a helical arrangement that has a handedness shown
in the external shape of the crystal—small hemihedral‡ faces appear‡ Called “hemihedral” because only half

the number of faces expected for a cen-
trosymmetric structure is observed.

in such a way as to give crystals that are mirror images of each other.
The observation of such hemihedry was used by Louis Pasteur in 1848
to separate sodium ammonium tartrate into its left- and right-handed
enantiomers (Pasteur, 1848; Patterson and Buchanan, 1945). Solutions
of these pure enantiomers rotate the plane of polarization of light in
opposite directions. When such resolution§ occurs the space group must

§ The term “resolution” is used in a dif-
ferent sense from that in the caption to
Figure 6.6. Here it is used to mean the
separation of enantiomers. The term is
also used to describe the process of dis-
tinguishing individual parts of an object,
as when viewing them through a micro-
scope.

contain no mirror planes, glide planes, or centers of inversion (i.e.,
any symmetry operation that would convert a left-handed structure
into a right-handed structure). Such crystals also exhibit pyroelectric
and piezoelectric properties as a result of their asymmetry. Pasteur’s
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resolution of sodium ammonium tartrate was possible because the
space group was one for a noncentrosymmetric structure, so the two
crystal forms looked different. If an asymmetric molecule crystallizes
in a centrosymmetric space group, then there are equal numbers of
left- and right-handed molecules in the crystal structure. This will be
discussed further in Chapter 10.

Space groups of chiral objects

Chiral molecules, such as proteins and nucleic acids, cannot crystal-
lize in space groups with centers of symmetry, mirror planes, or glide
planes, because otherwise molecules with the opposite chirality would
also be required. There are 65 space groups that are suitable for such
chiral molecules (see Appendix 7). In all, there are three types of space
groups. 90 space groups are centrosymmetric and contain equal num-
bers of both enantiomers (left-handed and right-handed species) in the
crystal. There are, however, 75 other space groups that are neither cen-
trosymmetric nor chiral; that is, while the space group is noncentrosym-
metric, the unit cell still contains equal numbers of both enantiomers
(see Appendix 7). Some space groups among those for chiral molecules
are designated as “polar space groups.” They do not have a defined
origin, for example, because, as in the space group P21, there is only
one screw axis and it moves an atom at x, y, z to −x, 1/2 + y, −z (by
convention along the b axis). So y can have any value for the first
atom in a list of atomic coordinates; its value then defines the origin
that has been selected (but this is not defined by the space group), so
that all other atoms are correctly related in space to the first atom. The
polar space groups are indicated in Appendix 7. This polar property
of the crystal must be remembered when atomic coordinates are being
refined, as described later in Chapter 11. It also implies that opposite
crystal faces perpendicular to the b axis may have different physical
characteristics, as will be described in Chapter 10.

Summary

Symmetry in the contents of the unit cell is revealed to some extent
by the symmetry of the diffraction pattern and by the systematically
absent Bragg reflections (see Appendix 2). The probable space group
of the crystal can be deduced from this information about the dif-
fraction pattern. Knowledge of the space group may also give infor-
mation on molecular packing, even before the structure has been
determined.

(1) There are 14 distinct three-dimensional lattices (the Bravais lat-
tices), corresponding to seven different crystal systems.

(2) Point-symmetry operations leave at least one point within an
object fixed in space. Those characteristic of crystals consist of:
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(a) n-fold rotation axes (1, 2, 3, 4, 6) and
(b) n-fold rotatory-inversion axes (1̄, 2̄ or m, 3̄, 4̄, or 6̄).

(3) These point-symmetry operations can be combined in 32 and only
32 distinct ways to give the three-dimensional crystallographic
point groups.

(4) Combination of point-symmetry operations with translations
gives space-symmetry operations by way of:
(a) n-fold screw axes, nr , and
(b) glide planes.

(5) All these operations may act on a given motif in the asymmetric
portion of the structure. They can be combined in just 230 distinct
ways, giving the space groups which can be used to describe crys-
tal structures composed of multiple unit cells, each with identical
structural components within them.



The derivation of trial
structures. I. Analytical
methods for direct phase
determination

8

As indicated at the start of Chapter 4, after the diffraction pattern
has been recorded and measured, the next stage in a crystal structure
determination is solving the structure—that is, finding a suitable “trial
structure” that contains approximate positions for most of the atoms
in the unit cell of known dimensions and space group. The term “trial
structure” implies that the structure that has been found is only an
approximation to the correct or “true” structure, while “suitable”
implies that the trial structure is close enough to the true structure that
it can be smoothly refined to give a good fit to the experimental data.
Methods for finding suitable trial structures form the subject of this
chapter and the next. In the early days of structure determination, trial
and error methods were, of necessity, almost the only available way of
solving structures. Structure factors for the suggested “trial structure”
were calculated and compared with those that had been observed.
When more productive methods for obtaining trial structures—the
“Patterson function” and “direct methods”—were introduced, the
manner of solving a crystal structure changed dramatically for
the better.

We begin with a discussion of so-called “direct methods.” These
are analytical techniques for deriving an approximate set of phases
from which a first approximation to the electron-density map can be
calculated. Interpretation of this map may then give a suitable trial
structure. Previous to direct methods, all phases were calculated (as
described in Chapter 5) from a proposed trial structure. The search for
other methods that did not require a trial structure led to these phase-
probability methods, that is, direct methods. A direct solution to the
phase problem by algebraic methods began in the 1920s (Ott, 1927;
Banerjee, 1933; Avrami, 1938) and progressed with work on inequalities
by David Harker and John Kasper (Harker and Kasper, 1948). The latter
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authors used inequality relationships put forward by Augustin Louis
Cauchy and Karl Hermann Amandus Schwarz that led to relations
between the magnitudes of some structure factors (see Glossary). These
proved very useful, enabling them to derive relationships between the
relative phases of different structure factors, and therefore to determine
the crystal structure of decaborane (Kasper et al., 1950). This provided
a previously unthought-of chemical structure for this molecule and
greatly augmented our understanding of the structure and chemistry
of the boron hydrides. Many scientists and mathematicians worked
on the derivation of phase relationships in direct methods from this
time on.* David Sayre provided an important equation that led to his

* There have been many involved in the
development of direct methods, in the
programming of methods to use them,
and in teaching people how to do it. These
include (in alphabetical order), in the
earlier stages, William Cochran, Joseph
Gillis, David Harker, Herbert Hauptman,
Isabella Karle, Jerome Karle, John S.
Kasper, Peter Main, David Sayre, George
Sheldrick, Michael Woolfson, and William
H. Zachariasen. Many others also merit
our appreciation of the ease with which
crystal structures can generally be deter-
mined.

demonstration of the structure of hydroxyproline (Sayre, 1952), while
Herbert Hauptman and Jerome Karle worked on the probabilistic basis
of direct methods (Karle and Hauptman, 1950; Hauptman and Karle,
1953). These, and the studies of many others, led to the equations of
direct methods that are used today, and to the production of computer
programs to do the analysis (Germain et al., 1971, for example) together
with initially much-needed teaching on how to interpret the results of
their use correctly.

“Direct methods” make use of two important facts: (1) that the inten-
sities of Bragg reflections contain the structural information that peaks
(representing atoms) are well resolved from each other (the principle of
atomicity), and (2) that the background is fairly flat, and that this back-
ground should not be negative, because this would imply a negative
electron density (the principle of positivity). These two conditions are
true for X-ray diffraction, where atoms generally scatter by an amount
that depends on their atomic number. The basic assumption that atoms
are resolved from each other results in a requirement of high resolu-
tion, usually 1.1 Å or better, for direct methods. In the case of neutron
diffraction, the electron-density map may have negative peaks because
atoms, such as hydrogen, with a negative scattering factor for neutrons,
are present. In spite of this, direct methods appear to work for neu-
tron structures as well (Verbist et al., 1972). Centrosymmetric structures
(with the positional coordinates of each atom at x, y, z, matched by
those of an equivalent atom at −x, −y, −z) are considered first here,
because the problems presented by noncentrosymmetric structures are
more formidable. Techniques other than “direct methods” for deriving
trial structures and the principles upon which they are based are dis-
cussed in Chapter 9.

It is possible to derive relations among the phases of different Bragg
reflections. The basic assumption of direct methods is that the intensi-
ties in the X-ray diffraction pattern contain phase information (because
the phases are constrained to give atomic peaks and positive electron
density and this limits their values). It means that direct methods can
be viewed as a mathematical problem—the control of the phase angles
of density waves because of the principles of atomicity and positivity.
How can the many density waves be aligned (as required by their
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individual phases) so that the resultant electron-density map shows
peaks or a flat background with no negative areas? What must their
phases be to satisfy these conditions?

In crystal structures with a center of symmetry at the origin and no
appreciable anomalous-dispersion effects, each structure factor has a
phase angle of 0◦ or 180◦, so that cos · is just +1 or −1 and sin · = 0.
Therefore, in a centrosymmetric structure, F = |F | cos · = +|F | or −|F |,
and one often speaks of the sign of a structure factor; when the phase
angle · is 0◦ we write “+” and when it is 180◦ we write “−”. If N
Bragg reflections have been observed for the structure, 2N electron-
density maps would need to be calculated, representing all possible
combinations of signs for all N independent structure factors. One of
these 2N maps must represent the true electron density, but how could
one tell which one it is? For even as few as twenty Bragg reflections,
more than one million different maps would need to be calculated
(220 = 1,048,576), and most structures of interest have of the order of
103–106 unique Bragg reflections. Since the contributions from Bragg
reflections with high values for the structure factor amplitude will tend
to dominate any electron-density map calculated, only the most intense
Bragg reflections need be considered initially when one is trying to
obtain an approximation to the correct map. However, even with as
few as ten terms, the number of possible maps is 1024, much too high a
number to make any simple trial-and-error method practicable. With a
noncentrosymmetric crystal structure, a phase angle may be anywhere
between 0◦ and 360◦ and one would have to calculate an impossibly
large number of maps to ensure having at least approximately correct
phase angles for even ten Bragg reflections.

Relationships can be found among the signs of the structure factors,
and these relationships involve the magnitudes of the larger structure
factors normalized (that is, modified) in a certain way, as will be
described in this chapter. If you want to know what a given structure
factor of known relative phase contributes to the overall electron
density in a unit cell (its density wave), it is easy to plot this. Suppose
that F (1 0 0) for a centrosymmetric structure is large (see Figure 8.1).
If this Bragg reflection has a positive sign (phase angle of 0◦), then
the computed electron-density map has a peak near the origin at x = 0
and a hole at x = 1/2. By contrast, if this Bragg reflection has a negative
sign, there is a peak at x = 1/2 and a hole at x = 0. Therefore the fact that
this Bragg reflection is intense in a centrosymmetric structure implies
that there must be a peak in the electron-density map near either x = 0
or x = 1/2, whatever the sign (phase) to be associated with F (1 0 0). If
F (2 0 0) is considered, it can be seen in Figure 8.1 that a peak at either
0 or 1/2 implies a positive sign for F (2 0 0). Consequently, if F (1 0 0)
and F (2 0 0) are intense, F (2 0 0) is probably positive no matter whether
the sign of F (1 0 0) is positive or negative. Figure 8.1 shows also that
when only these terms are summed, a positive sign for F (2 0 0) results
in an “electron density” that has a shallower negative trough than does
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Fig. 8.1 Summing density waves.

In centrosymmetric structures, the phase angle of any structure factor F (hkl) is either 0◦ or
180◦. “Electron-density maps” based on one structure factor (“density wave”) are shown
for F (1 0 0) and F (2 0 0). In general, for centrosymmetric structures, if F (hkl) is large,
whatever its sign, and F (2h2k2l) is also large, then the latter is probably positive (a phase
of 0◦). (1) Possible situations for F (1 0 0): solid line—F positive, phase 0◦; dotted line—F
negative, phase 180◦. (2) Possible situations for F (2 0 0); solid line—F positive, phase 0◦;
dotted line—F negative, phase 180◦. (3) Summations for the four combinations of possible
situations in (1) and (2), showing the deep negative areas obtained when F (2 0 0) is given
a phase of 180◦ (C, D). The F (0 0 0) term, which has been omitted, is always positive and
therefore when it is included the sum is always more positive at each given point (see
Figure 6.2).

Areas of negative electron density are shaded. The inferences on the position of an atom
(at x) from these electron-density maps are: 3A, x = 0; 3B, x = 1/2; 3C, 3D, x = 1/4, 3/4. The
last two have more negative troughs and so are excluded. Therefore we conclude 200 is +
(phase angle 0◦) and x is 0 and/or 1/2.

the electron density that results when a negative sign is assigned to
F (2 0 0) (regardless of the sign of F (1 0 0)). Thus the phase of F (2 0 0)
is probably +.

The principle of positivity of electron density may be extended to
three dimensions. For example, David Sayre noted that the functions
Ò(r ) and Ò2(r ) in a crystal composed of identical atoms are similar
in appearance. From analyses of the relationship between these two
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functions and of their Fourier transforms, he showed that∑ ∑
K

∑
F (K )F (H − K ) = VsF (H) (8.1)

F(200) –, phase 180º F(200) –, phase 180º

F(300) +, phase 0º

F(500) –, phase 180º

Sum

(i)

(ii)

(iii)

(iv)

Sum

F(500) +, phase 0º

F(300) +, phase 0º

Fig. 8.2 Aiming for nonnegative electron
density.

If |F (2 0 0)|, |F (3 0 0)|, and |F (5 0 0)| are all
large they must contribute significantly to
the final electron-density map (via “den-
sity waves”). Suppose that it is found that
F (2 0 0) has a negative sign and F (3 0 0)
has a positive sign; the areas in which
each then contributes in a positive man-
ner to the electron-density map are shaded
in (i) and (ii) on the left. The regions in
which these areas overlap, near x = ±0.3,
correspond to regions to which F (5 0 0)
contributes positively only if the sign of
the term F (5 0 0) is negative, that is, a
phase of 180◦, as indicated in (iii). On sum-
mation of these terms with the indicated
signs the background is reduced, as in (iv);
if F (5 0 0) has a positive sign, that is, a
phase of 0◦, the map is far less satisfactory.
The relation among these signs may then
be written (where s means “the sign of”)

s(5 0 0) ≈ s(2 0 0)s(3 0 0)

which is a special case of Eqn. (8.2). This
follows from the discussion in the text
since deep negative troughs (areas of neg-
ative electron density) are not satisfactory
or physically meaningful. With proper
phasing, the background is reduced to a
value closer to zero. Thus in (iv) on the
left the most negative value of the elec-
tron density is −4 e/Å, while for (iv) on
the right, which has a less satisfactory set
of phases, the most negative value of the
electron density is −9 e/Å. The addition
of data for F (000) will probably result in
an almost nonnegative map if F (500) has
a phase of 180◦.

This is the equation that bears his name (Sayre, 1952; see also Viterbo,
1992; Shmueli, 2007). In this equation H = h, k, l and K = h′, k ′, l ′; V is
the unit cell volume; s is the sign of the hkl Bragg reflection; and the
summations are over all values of K .

If one considers probabilities (denoted ≈), rather than certainties
(denoted =), it can be shown that, for a centrosymmetric structure, one
obtains a triple product

sF (H) sF (K ) ≈ sF (H + K ) (8.2)

where sF means the “sign of F ” and F (H), F (K ), and F (H + K ) are all
intense Bragg reflections. The symbol ≈ means “is probably equal to.”
It should be noted that a special case of Eqn. (8.2) is

s(2h 0 0) ≈ [s(h 0 0)]2 ≈ + (8.3)

because whatever the sign of F (h00), its square is positive. This is in
agreement with our qualitative argument for F (2 0 0) and F (1 0 0) above
and in Figure 8.1. In Figure 8.2 it is shown that if F (3 0 0) is known
to be positive and F (2 0 0) is known to be negative, then, if all three
are strong Bragg reflections, F (5 0 0) is probably (but not definitely)
negative. Again, this is shown to be consistent with the principle of
positivity of electron density. Two types of sets of triple products of
phases (see Eqn. 8.2) merit attention at this point. A “structure invari-
ant” is a linear combination of the phases that is totally independent of
the choice of origin; even if the origin is changed, the invariant remains
unchanged. The same is true for “structure seminvariants” except that
the origin change must be one that is allowed by space-group symmetry
constraints. The identification of structure invariants and seminvariants
helps to fix an origin and enantiomorph for the structure under study.

In practice, these analytical methods of phase determination are car-
ried out on “normalized structure factors”—that is, values of the struc-
ture factor |F (hkl)| modified to remove the fall-off in the individual
scattering factors f with increasing scattering angle 2Ë (see Figures 5.4
and 8.3). A normalized structure factor, E(hkl), represents the ratio of
a structure factor F (hkl) to (� f j )1/2, where the sum is taken over all
atoms in the unit cell at the value of sin Ë/λ appropriate to the values
of h, k, and l for the Bragg reflection and includes an overall vibration
factor. This sum, (� f j )1/2, represents the root-mean-square value that all
|F (hkl)|2 measurements would have (at that value of sin Ë/Î) if the struc-
ture were a random one, composed of equal atoms (see the discussion
of the Wilson plot at the end of Chapter 4):

∣∣E(hkl)
∣∣ =

∣∣F (hkl)
∣∣(

ε
∑

f j
)1/2 (8.4)
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Fig. 8.3 X-ray scattering by point atoms and normal atoms.

Theoretical point atoms have no width and no vibrational amplitude. As a result there
is no fall-off in value as sin Ë/Î increases. By contrast, real normal atoms have width and
vibrational amplitude and their atomic scattering factors fall off at high sin Ë/Î.

where ε is a constant (an epsilon factor)**, 1, 2, or 4, depending on the
** Contained in the expression for E(hkl) is
a factor, ε, that corrects for the fact that
Bragg reflections in certain reciprocal lat-
tice zones or rows (for example, 0 k 0, h k 0,
etc.) have higher average intensities in cer-
tain space groups than do general Bragg
reflections (hkl). It is an integer, 1, 2, or 4,
depending on the crystallographic point
group and the type of Bragg reflection (h,
k, and/or l = 0).

crystal class, and the summation is from j = 1 to N. This use of E(hkl)
values is approximately equivalent to considering each atom to be a
point atom (an extremely sharp peak occupying a very small volume
in the electron-density map). As a result, high-order Bragg reflections
(high sin Ë/Î), which normally are weaker because of the intensity fall-
off of atomic scattering factors f with sin Ë values, may have large |E |
values that would play an appropriate role in the structure determina-
tion (rather than being ignored because of their low values when |F | is
used).

Information on significant features of the structure is contained in
the very intense and very weak Bragg reflections; these have different
distributions when the structure is centrosymmetric and when it is non-
centrosymmetric (Wilson, 1949). The centrosymmetric distribution has
a higher proportion of Bragg reflections with very low intensities. An
analysis of the E(hkl) values in the diffraction pattern (the “distribution
of E(hkl) values”) shows that they contain (as, of course, do the F (hkl)
values as well) information on whether the structure is centrosymmetric
or noncentrosymmetric. For example, the mean value of E(hkl) is 0.798
for a centrosymmetric structure and 0.886 for a noncentrosymmetric
structure. The value that the crystallographer more commonly uses for
this test is |E2 − 1|, which is theoretically 0.968 for a centrosymmetric
structure and 0.736 for a noncentrosymmetric structure. These values
are calculated from the diffraction data that have just been measured,
and they probably will indicate which symmetry the crystal has.

Once a table of |E(hkl)| values has been prepared, it is usual to rank
these E(hkl) values in decreasing order of magnitude. Usually one
works with the strongest 10 percent of them. Then one looks for groups
of three Bragg reflections that satisfy the condition that their indices
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are numerically related in the manner described in Eqn. (8.2); this
selection of “triple products” [E(hkl), E(h′, k ′, l ′), E(h + h′, k + k ′, l + l ′)]
is generally made by computer. If each of the three Bragg reflections
in a triple product has a high E(hkl) value, the product of their three
signs is probably positive. This listing is called the “�2” or “sigma 2”
listing (see Eqn. (8.2) and Figure 8.2). The summation symbol � is used
in this naming because, in the probability formula, summations are
involved. The “�1” relations (see Eqn. (8.3) and Figure 8.1) are simpler
because they involve only pairs of intense Bragg reflections related by
E(hkl) and E(2h, 2k, 2l) and contain the implication that the sign of
E(2h, 2k, 2l) is probably positive in a centrosymmetric structure (see
Figure 8.1 and Eqn. (8.3)). The general equation used is

s[E(hkl)] ≈
[ ∑

h′,k ′,l ′
E(h′, k ′, l ′)E(h − h′, k − k ′, l − l ′)

]
(8.5)

The probability aspects of these sign relationships are very impor-
tant. If we replace h, k, l by H and h′, k ′, l ′ by K , the probability
that a triple product is positive in a centrosymmetric structure (that is,
sH ≈ sK sH−K ) is†

† tanh, the hyperbolic tangent of x, is
{(ex − e−x)/(ex + e−x)}.

P+ =
1
2

+
1
2

tanh
(

EH EK EH−K

N1/2

)
(8.6)

(where N is the number of equal atoms in the unit cell‡). Furthermore, ‡ We advance from Eqn. (8.5) to Eqn. (8.6)
by incorporating a commonly used abbre-
viation that has developed in the litera-
ture of direct methods: H ≡ (h, k, l), K ≡
(h′, k′, l ′), and hence H + K ≡ (h + h′, k +
k′, l + l ′). Note that, since −K and K have
the same E ’s (in sign and magnitude) in a
centrosymmetric structure, then a relation
between H and K and a relation between
H and −K are equivalent.

the probability that E(hkl) ≡ EH is positive is

P+ =
1
2

+
1
2

tanh

(
|EH |

∑
K

EK EH−K

N1/2

)
(8.7)

where the summation � is over all values of K = (h′, k ′, l ′), and P+ = 1
indicates a sign of +1, while P+ = 0 indicates that it is 0.§ These probabil-

§ For unequal atoms, (1/N1/2) in Eqns.
(8.6) and (8.7) is replaced by Û3Û

−3/2
2 ,

where Ûn = �Zn
j , the summation being

from 1 to N, and N is the number of atoms
with atomic number Zj for the j th atom.

ity aspects of direct methods result in a requirement for a large amount
of diffraction data.

Solving the structure of a centrosymmetric
structure

We will now describe the steps in the determination of a centrosym-
metric structure by direct methods. When the list of “triple prod-
ucts” [E(hkl), E(h′k ′l ′), and E(h + h′, k + k ′, l + l ′)] has been prepared,
the derivations of their signs requires some initial choices of signs.
Initially, in three dimensions, one has a choice of the signs of three
Bragg reflections for many centrosymmetric space groups; these choices
determine which of the possible positions is used for the origin of the
unit cell. The choice does not alter the structure, it just defines where
the unit-cell origin is. In selecting three origin-fixing Bragg reflections,
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An illustration of the successive application of Eqn. (8.2) to derive the signs of some
of the strongest Bragg reflections for a structure. Values of |E | are derived from those
for |F |, chiefly to eliminate the effects of thermal vibration and to treat each atom as
if all its electrons were concentrated at a point. Values of |E | are used in deriving sign
relationships because their magnitudes depend only on the arrangement and relative
atomic numbers of the atoms.

Monoclinic example:
|F (hkl)| = |F (h̄ kl)|

k + l even s(hkl) = s(hk̄l) = s(h̄kl̄) = s(h̄k̄l̄)

s(h̄ kl) = s(h̄k̄l) = s(hkl̄) = s(hk̄l̄)

k + l odd s(hkl) = s(h̄k̄l̄) = −s(hk̄l) = −s(h̄kl̄)

s(h̄kl) = s(hk̄l̄) = −s(hkl̄) = −s(h̄k̄l)

The compound studied is 2-keto-3-ethoxybutyraldehyde-bis (thiosemicarbazone),
space group P21/c. The above sign relationships for this space group are to be found
in International Tables, Volume A.

Relation to be used [Eqn. (8.2)]:

s(h + h′, k + k′, l + l ′) ≈ s(h, k, l) s(h′, k′, l ′)

h k l E Signs chosen arbitrarily fixing the origin. (If
one or all of these signs had been negative

another allowable origin would have resulted.)

3 3 1 3.74 +
9̄ 6 7 3.25 +

13 1 4 2.92 +

h k l E Relationships used Sign found (Notes)
12 0 0 4.35 ( 6 0 0)( 6 0 0) + (+)(+) = (−)(−) = +
6 0 0 2.80 ?

25 1 4 3.49 (12 0 0)(13 1 4) + ++ = +
22 4 5 2.22 ( 3 3 1)(25 1 4) + ++ = +
6 4 2 2.86 a An additional undetermined sign

is chosen and is temporarily
designated a

18 4 2 2.92 (12 0 0)( 6 4 2) a +a = a
9 7 3 2.07 ( 3 3 1)( 6 4 2) a +a = a

22 6 1 2.30 (13 1 4)( 9 7 3) −a −(+a) = −a
19 3 2 2.84 ( 3 3 1)(22 6 1) −a +(−a) = −a

(13 1 4)( 6 4 2) −(+a) = −a
7 3 2 2.14 (12 0 0)(19 3 2) −a +(−a) = −a
25 1 0 2.03 (18 4 2)( 7 3 2) − {

a(−a) = −
( 6 4 2)(19 3 2) a(−a) = −

Eventually the sign of some Bragg reflection could be found both in terms of a and
independently of it; this established the fact that the sign of a was probably +. If this
had not happened it would have been necessary to calculate two maps, one with the
sign of a positive and one with the sign of a negative.

Fig. 8.4 Numerical use of Eqn. (8.2) to derive phases of a crystal structure.
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it is essential for them to be different with respect to the evenness or
oddness of their individual indices, and h, k, and l must not all be even.
In the numerical example in Figure 8.4, arbitrary signs were chosen for
F (3 3 1) (odd, odd, odd), F (9 6 7) (odd, even, odd), and F (13 1 4) (odd,
odd, even) at the start.

The reader may ask where negative signs for phases come from. The
relationships of signs of Bragg reflections with negative values of h, k,
and/or l to that of a Bragg reflection with all indices positive are listed
for each space group in International Tables, Volume A. For example, in
the space group P21/c, if k + l is odd, then F (hkl) = −F (hk l) = −F (h kl).
Negative signs are introduced into the sign relationships in this way. It
is essential to have some negative terms in the calculation of the E-
map, because an E-map with all signs positive will give a high peak
at the origin, a rarely observed feature in complex structures; in fact
this E-map with all signs positive resembles a Patterson function (to be
described in the next chapter), but cannot be interpreted as an electron-
density map.

From the list of “triple products” it should be possible to derive,
for the set of E(hkl) values, a set of signs that have been determined
with acceptable probabilities (see the example in Figures 8.4 and 8.5). If
difficulties occur, it may be necessary to choose another set of origin-
fixing Bragg reflections. It may also be necessary to assign symbolic
signs (“a”, “b”, etc.) to certain Bragg reflections and generate the signs
of other Bragg reflections in terms of these symbols with the hope that
eventually the actual signs of these symbols may become clear. This
process is referred to as “symbolic addition” (Zachariasen, 1952; Karle
and Karle, 1966). For example, in Figure 8.4 it is deduced that the sign
of symbol “a” is positive. If n symbols have been used but their signs
cannot be determined in this way, it will be necessary to compute 2n E-
maps.

The derivation of signs for a monoclinic centrosymmetric structure
is shown in Figure 8.4. Some sign relationships could be immediately
deduced from a knowledge of the monoclinic space group relationships
among F (hkl) appropriate for this structure. Others were then deduced
from these new signs and some arbitrarily chosen signs. This process
was continued until the signs of 836 out of the 872 strongest terms
were found with no sign ambiguity (although it is usually not necessary
to work with this many terms). Part of the resulting Fourier synthesis
computed using E(hkl) values (an E-map) is shown in Figure 8.5.

The crystal structure of hexamethylbenzene was reported by Kath-
leen Lonsdale in 1928 and showed that the benzene ring is planar and
has six-fold symmetry (Lonsdale, 1928). The arrangement of atoms in
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Fig. 8.5 An excerpt from an E-map.

(a) A three-dimensional map calculated with phases derived as in Figure 8.4 and |E |
values rather than values of |F | as amplitudes (see Gabe et al., 1969). This is a composite
map; each peak has been drawn as it appears in the section in which it has the highest
value. It is a simple matter to pick out the entire molecule, 2-keto-3-ethoxybutyraldehyde-
bis(thiosemicarbazone), from this map. The molecular skeleton and the presumed iden-
tity of each atom have been added to the peaks. (b) A ball-and-stick drawing of the
molecule. (c) The chemical formula of the molecule.
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Fig. 8.6 A triple product in diffraction by hexamethylbenzene.

Shown is the crystal structure of hexamethylbenzene (Phase II) (Lonsdale, 1928). Maxima
of the density waves of three intense Bragg reflections, 340, 7 3 0, and 4 7 0, are dia-
grammed with the molecular structure superimposed. Note that all of the carbon atoms
lie at the intersection of maxima of the density waves of these three Bragg reflections.
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the unit cell is shown in Figure 8.6. Three strong Bragg reflections, 340,
7 3 0 and 4 7 0, form a triple product (inspect the indices) and, although
direct methods were not used in 1928, they illustrate the principle. The
maxima of the density waves of these three Bragg reflections are shown
in this figure. Note how the carbon atoms each lie on the intersections
of three density-wave maxima.

The final stage is the calculation of an E-map. This is an electron-
density map calculated with E(hkl) values rather than F (hkl) values
(so that atoms are sharper, corresponding to point atoms) (see Fig-
ure 8.5a). If all has gone well, the structure will be clear in this map.
Sometimes only part of the structure is revealed in an interpretable way
and the rest may be found from successive electron-density maps or
different electron-density maps. Sometimes the general orientation and
connectivity of the molecule are found, but the positioning in the unit
cell is wrong because some subsets of signs are in error. This problem
is usually recognizable when distances between atoms are calculated
and some nonbonded atoms are too close to others. In this case, the
development of signs must be done again, this time following some
new path, such as selecting origin-fixing Bragg reflections or assigning
symbols to a different set of Bragg reflections.

Solving the structure of a noncentrosymmetric
crystal

The derivation of phases for noncentrosymmetric structures is more
complicated because the values for the phases are not simply 0◦ or 180◦.
For noncentrosymmetric crystal structures, an additional formula may
be used to derive approximate values for the phase angle ˆH :

ˆH ≈
∑

K

(ˆH−K + ˆK ) (8.8)

where, as before, H ≡ h, k, l; K ≡ h′, k ′, l ′; ˆ is the phase angle of the
structure factor; and the brackets refer to an average over all values of
K , where H = (K ) + (H − K ). The so-called “tangent formula,”

tan ˆH =

∑
K

(|EK | |EH−K | sin(ˆK + ˆH−K ))∑
K

(|EK | |EH−K | cos(ˆK + ˆH−K ))
= tangent formula (8.9)

is used extensively to calculate and also to refine phases for
noncentrosymmetric structures. The probability function for
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noncentrosymmetric structures is more complicated than that
given in Eqns. (8.6) and (8.7). It is:

P(ˆH) =
exp[−4x cos(ˆH − ˆK − ˆH−K )]

2π∫
0

exp(4x cos „) d„

(8.10)

where x = |EH EK EH−K |/N1/2 and „ is a dummy variable. Higher-order
structure invariants and seminvariants (quartets, quintets, for example)
are also used in structure determination by direct methods. These are
sets of more than three Bragg reflections with indices that have a zero
sum. A so-called “negative quartet,”

ˆH + ˆK + ˆL + ˆ−H−K−L = π (8.11)

has a phase sum that is probably near 180◦ rather than 0◦ (Haupt-
man, 1974). It is useful not only in phase determination, but also
for finding the correct solution if there are several possibilities. Some
important computer programs currently in use for determining crystal
structures include SHELXS and SHELXD (Sheldrick, 2008), Shake-and-
Bake (Miller et al., 1993; Miller et al., 1994), SIR (Burla et al., 2005),
and SUPERFLIP (Palatinus and Chapuis, 2007), but there are many
more. The reader is advised to consult the World Wide Web for the
most suitable program for use for a current problem. In addition, much
useful information is provided in the various volumes of International
Tables (see the reference list).

Dual-space algorithms, which involve iterative cycles of Fourier
transforms between real and reciprocal space with changes at each
step, have proved very useful in the determination of the structures
of macromolecules. Some important methods of phase improvement
for proteins involve “density modification.” If the boundaries between
solvent and protein have been determined in the electron-density
map, the relative phases can be improved by “flattening” the solvent
area (“solvent flattening”). Improved phases are then obtained by a
Fourier transform (Hoppe and Gassmann, 1968; Wang, 1985; Leslie,
1987). Another example is provided by “real-space averaging” or “non-
crystallographic symmetry averaging,” in which electron densities (in
real space) of two units are averaged. “Histogram matching” can also
be applied to protein structures; in this, the initial electron densities
are modified to conform to an expected distribution. The Shake-and-
Bake (SnB) program is a phase-determining procedure for solving crys-
tal structures by direct methods, and it has been incorporated into
SHELXD (Schneider and Sheldrick, 2002). It alternates phase refinement
in reciprocal space by use of the minimal principle (the shake) with
real-space constraints through some form of electron-density modifi-
cation (the bake) (Miller et al., 1993; Miller et al., 1994). The minimal
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principle involves a residual described as a “minimum-variance, phase
invariant.” All phases are initially determined by computation from
a random atomic arrangement and are refined by minimizing this
residual. They are then Fourier transformed, and peaks are selected
from the resulting electron-density map and used for a new trial struc-
ture for the next cycle of the method. While used successfully for
small structures, the SnB program has also provided ab initio solutions
(meaning no preliminary experimentally determined phase informa-
tion but good resolution of 1.1 Å or higher) for protein structures
involving as many as 1000 independent nonhydrogen atoms. Another
dual-space structure determination method is the charge-flipping algo-
rithm, which is an iterative process that requires a complete set of
diffraction intensities to atomic resolution, but does not require any
information on the symmetry or chemical composition of the crystal
structure (Oszlányi and Süto, 2005; Palatinus and Chapuis, 2007). A
random set of phases is assigned to the measured structure factors
and their Fourier transform is calculated. All electron densities that
fall below a selected positive value (to be selected by the user) are
inverted (the charge-flipping step). The modified electron-density map
is then Fourier transformed and the new phases from the charge-
flipped map are combined with the original observed data, the structure
amplitudes |F (hkl)|. Then follows a new iteration cycle. The process
is repeated until a satisfactory structure is obtained. Results can be
checked, for example, by “random omit maps,” in which a selected
proportion, say one third, of the highest peaks in an electron-density
map are deleted, and the remaining atoms are used to calculate new
phases and start a new cycle (Bhat and Cohen, 1984; Bhat, 1988). Then
one can check if the deleted atoms appear in the new electron-density
map.

In an attempt to improve the resolution of a measured data set, the
“free lunch algorithm” (also called “nonmeasured reflection extrapo-
lation”) was introduced by Eleanor Dodson, developed by Carmelo
Giacovazzo, and named by George Sheldrick “since one is apparently
getting something for nothing” (Caliandro et al., 2005; Yao et al., 2005).
It extends the resolution of the measured data significantly by simply
inventing the missing data. This is done by Fourier transformation of
the existing experimental Fo map using the Wilson plot to obtain the
overall scale factor for the made-up data. Unexpectedly, it was found
that the introduction of unmeasured structure amplitudes produced
phases that improved the resulting electron-density map and led, in
many cases, to a structure solution (Usón et al., 2007). For some reason
random structure amplitudes are better than zero structure amplitudes
for those high-resolution data that cannot be measured experimentally
(Caliandro et al., 2007; Dodson and Woolfson, 2009).
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Overview

Direct methods for both centrosymmetric and noncentrosymmetric
structures have been programmed for many high-speed computers.
Since the equations involve probabilistic rather than exact relations,
uses of direct methods are most successful when care is taken initially
in the choice of the origin-fixing and symbolically assigned phases.
These are used to determine the phases of a good number of intense
Bragg reflections. In many structure analyses a reasonable approximate
(“trial”) structure has been recognizable from an E-map calculated with
only 5 or 10 percent of the observed Bragg reflections, although often
larger fractions are used, as in the example illustrated in Figures 8.4
and 8.5. Generally these “direct methods” result in a structure that
can be refined (Chapter 11), and so the structure may be considered
to be determined. A variety of excellent computer programs generally
ensure a correct structure. For several reasons, however, such success
may be elusive with some structures. There are many possible prob-
lems that can arise in using these methods, such as a poor choice of
origin-fixing Bragg reflections, the derivation of too few triple prod-
ucts so that some signs are generated with lower probabilities than
one would like, and a preponderance of positive signs for the derived
signs so that the resulting E-map has a huge peak at the origin even
though there is no heavy atom in the structure. However, with care
and experience these problems can usually, although not always, be
overcome.

Summary

There are limits to the possible phase angles for individual Bragg
reflections in both centrosymmetric and noncentrosymmetric struc-
tures. This follows from the constraints on the electron density; it must
be nonnegative throughout the unit cell and it must contain discrete,
approximately spherical peaks (atoms). For three intense related Bragg
reflections in a centrosymmetric structure, the signs are related by

sF (H) ≈ sF (K )sF (H + K )

where s means “sign of”; H ≡ h, k, l; K ≡ h′, k ′, l ′; H + K ≡ h + h′, k +
k ′, l + l ′; and F is a structure factor or E value. From such relationships
it is often possible to derive phases for almost all strong Bragg reflec-
tions and so to determine an approximation to the structure (a “trial”
structure) from the resulting electron-density map. Similar methods are
available for noncentrosymmetric structures.
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The steps in the determination of a structure by “direct methods”
consist of:

(1) Making a list of E values in decreasing order of magnitude and
working with the highest 10 percent or so.

(2) Analysis of the statistical distribution of E values to determine if
the structure is centrosymmetric or noncentrosymmetric. This is
important if there is an ambiguity in the space group determined
from systematically absent Bragg reflections.

(3) Derivation of triple products among the high E values.

(4) Selection of origin-fixing Bragg reflections.

(5) Development of signs or phases for as many E values as possible
using triple products and probability formulae.

(6) Calculation of E-maps and the selection of the structure from the
peaks in the map.

All of these steps are now incorporated into computer programs in wide
use.
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The two methods to be described here, the Patterson method* and the
* In the three decades from the mid 1930s
to the mid 1960s, the most powerful
method of analysis of the diffraction pat-
tern of a crystal was the Patterson method.
It revolutionized structure determination
because no longer was it necessary to pro-
pose a correct trial structure before analy-
sis. For the first time it provided a means
for solving most structures if good diffrac-
tion data were available.

isomorphous replacement method, have made it possible to determine
the three-dimensional structures of large biological molecules such as
proteins and nucleic acids. In addition, the Patterson function is still
useful for small-molecule studies if problems are encountered during
the structure analysis. If a crystal structure determination proves to
be difficult, the Patterson map should be determined to see if it is
consistent with the proposed trial structure.

The Patterson method involves a Fourier series in which only the
indices (h, k, l) and the |F (hkl)|2 value of each diffracted beam are
required (Patterson, 1934, 1935). These quantities can be obtained
directly by experimental measurements of the directions and intensities
of the Bragg reflections. The Patterson function, P(uvw), is defined in
Eqn. (9.1). It is evaluated at each point u, v, w in a three-dimensional
grid with axes u, v, and w that are coincident with the unit-cell axes
x, y, z; the grid fills a space that is the size and shape of the unit cell:

P(uvw) =
1
Vc

∑ ∑
all h,k,l

∑∣∣F (hkl)
∣∣2 cos 2π(hu + kv + lw) (9.1)

No phase information is required for this map, because |F (hkl)|2, unlike
F (hkl), is independent of phase. There is only one Patterson function for a
given crystal structure. For reasons that we explain shortly, a plot of this
function is often called a vector map. Appendix 8 gives some useful
background information and further details.

The Patterson function at a point u, v, w may be thought of as the
convolution**of the electron density with itself in the following manner:** See the Glossary.

130
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Fig. 9.1 Peaks in a Patterson (vector) map.

A Patterson map represents all interatomic vectors in a crystal structure, positioned with one end of the vector at the origin of the
Patterson map. (a) Atoms in a crystal structure showing one interatomic vector, which will appear as shown in (b) in the Patterson map.
(c) Two atoms related by a center of symmetry in a crystal structure. (d) The corresponding Patterson map showing vector coordinates.

P(uvw) = Vc

∫ ∫ ∫
whole cell

Ò(x, y, z)Ò(x + u, y + v, z + w) dx dy dz (9.2)

Equation 9.2 is obtained by multiplying the electron density at all points
x, y, z in the unit cell (that is, Ò(x, y, z)) with the electron density at
points x + u, y + v, and z + w (that is, Ò(x + u, y + v, z + w)). This Patter-
son function, P(u, v, w), can be thought of as the sum of the appearances
of the structure when one views it from each atom in turn, a procedure
illustrated in Figure 9.1. It is as if an atomic-scale elf sat on an atom, took
a snapshot of his surroundings, then moved to the next atom and super-
imposed his second snapshot on the first, and so forth.† Essentially the

† H. F. Judson, in The Eighth Day of Cre-
ation (Judson, 1996), uses the analogy of a
cocktail party in describing the Patterson
function. If there are one hundred guests
at a party, there must have been one hun-
dred invitations. The host would have to
make almost five thousand introductions
if he wanted to be sure everyone met each
other, and this would involve ten thou-
sand attempts to remember a new name.
If the shoes of the guests are nailed to
the floor, their handshakes must involve
different lengths and directions of arms
and different strengths of grip. This anal-
ogy may help some readers understand
the meaning of the vectors in a Patterson
map; they are interatomic vectors of dif-
ferent lengths and directions, with heights
proportional to the product of the atomic
numbers of the atoms at each end of
the vector. If each partygoer could then
recount every handshake and the direc-
tion, distance, and strength of it, then the
location of every guest in the room would
be known. Of course one would only use
this very complicated method (five thou-
sand vectors to locate one hundred peo-
ple) if it were absolutely necessary.

Patterson map samples the crystal structure at all sites separated by a
vector u0, v0, w0 and notes if there is electron density at both ends of this
vector; if this is so an interatomic vector has been localized. Therefore,
if any two atoms in the unit cell are separated by a vector u0, v0, w0 in
the three-dimensional structure (or electron-density map), there will be
peak in the Patterson map at the site u0, v0, w0.

The Patterson map [Eqns. (9.1) and (9.2)] is flat, near zero, except for
peaks that represent the orientation and length of every interatomic
vector in the structure. The vector between any two atoms is the dis-
tance between them and the direction in space that a line connecting
them would take. The heights of the peaks in the Patterson map are



132 The derivation of trial structures. II. Patterson, heavy-atom, and isomorphous replacement methods

proportional to the values of Zi Zj , where Zi is the atomic number of the
atom, i , at one end of the vector and Zi is that of the atom, j , at the other
end. The high peak that occurs at the origin of the Patterson function
represents the sum of all the vectors between an individual atom and
itself. It is important to note that a Patterson map is centrosymmetric
whether or not the structure itself is centrosymmetric.‡ This is because‡ This center of symmetry is evident in

Figure 9.1c. a vector from atom B to atom A has the opposite direction but the
same magnitude as a vector from atom A to atom B, so that these
two vectors, A → B and B → A, are related by a center of symmetry.
The symmetry of a Patterson map is generally not the same as that
of the electron-density map for the same crystal structure, but is like
the Laue symmetry. Symmetry elements containing translations (glide
planes and screw axes) are replaced by mirror planes or simple rota-
tion axes, respectively, and there is always the center of symmetry just
described.

If there is a peak in the Patterson map at a position related to
the origin of the map by a certain vector (with components u, v, w,
corresponding to a certain distance and direction from the origin),
then at least one position of that particular vector in the corresponding
crystal structure has both ends on atomic positions. (Remember that a
vector is characterized by a certain length and direction, but its ori-
gin may be anywhere). If there are many pairs of atomic positions
related by a particular vector, or if there are only a few but the atoms
involved have high atomic numbers, then the Patterson function will
have a high peak at that particular position u, v, w. If the value of
the Patterson function at a given position is very low, there is no
interatomic vector in the structure that has that particular length and
direction.

The Patterson map for a one-dimensional structure with identical
atoms at x = ±1/3 is shown in Figure 9.2. The values of the function
given by Eqn. (9.1) are designated P(u), and positions in the one-
dimensional map by u. An interesting feature of this map is that the
same result would be obtained from a structure in which the atoms
were at x = ±1/6. As shown in Figure 9.2, these two structures differ
only in that the location of the origin of the unit cell has been changed;
the relative positions of the atoms are the same in both solutions of
the map.

Thermal motion and disorder of atoms will cause a broadening of the
vector peaks and a lowering of their heights in the Patterson map. This
broadening can be reduced by “sharpening” the peaks. One method of
doing this is an artificial conversion of the atoms to point scatterers by
dividing each |F (hkl)| by the average scattering factor for the value of
sin Ë/Î at which it was measured. Normalized structure factors |E(hkl)|
fit this criterion and are commonly used with unity subtracted from
their square so that the origin Patterson peak will be removed. This
means that the coefficients used to compute the map are modified from
|F (hkl)2| to |E(hkl)2| − 1. The resulting origin-removed, sharpened
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Patterson map is

P(uvw) =
1
Vc

∑∑
all h,k,l

∑ ∣∣E(hkl)2 − 1
∣∣ cos 2π(hu + kv + lw) (9.3)

There are areas in a Patterson map, called “Harker sections” or
“Harker lines,” where symmetry operators involving translational com-
ponents (such as screw axes or glide planes) lead to useful information,
especially if a heavy atom is present (Harker, 1936). Therefore if the
space group lists atoms at x, y, z and 1/2 − x, −y, 1/2 + z, there will
be peaks at w = 1/2 in the Patterson map and they represent vectors

0

(a)

(b)

1/3

0

(2)

(1)
1 2

Vector
u = 1/3

x = ± 1/3

x = ± 1/6

Vector
u = 1/3Origin of

(1) in (2)

3

P(u)

u
2/3 1

x

Fig. 9.2 The calculation of a Patterson map for a one-dimensional structure.

(a) The equation of the Patterson function in one dimension is

P(u) =
1
a

∑
all h

|F |2 cos 2π(hu)

The function plotted is P(u) computed for a one-dimensional structure from the
following hypothetical “experimental” data:

h −3 −2 −1 0 1 2 3

|F |2 4 1 1 4 1 1 4

(b) There are two structures consistent with this map, one with atoms at x = ±1/3 and
one with atoms at x = ±1/6. As shown, these two structures are related simply by a
change of origin.
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between symmetry-related atoms at z and at z + 1/2. Therefore a perusal
of the Patterson map at w = 1/2 for a structure with this particular
space group may help solve the structure, especially if a heavy atom
is present.

A problem with Patterson maps is that there are N2 interatomic-
vector peaks within a unit cell that contains N independent atoms. N of
these peaks lie at the origin and, since the Patterson map has a center of
symmetry, there are (N2 − N)/2 independent vectors in the map. When
N becomes at all large (even as small as 20), the (N2 − N)/2 vector peaks
in the Patterson map necessarily overlap one another, since they have
about the same width as atomic peaks and occupy a volume equal
to that occupied by the N atoms of the structure. For example, when
N = 20 there are 20 × 19/2 = 190 Patterson peaks in the same volume
that the 20 atomic peaks occupy in the electron-density map. With crys-
tals of very large molecules, such as proteins, the overlap may become
hopeless to resolve, except for the peaks arising from the interactions
between atoms of very high atomic number, since a Patterson peak has
a height proportional to the product of the atomic numbers of the two
atoms involved in the vector it represents.

The structure shown in Figure 6.6, for which the Patterson map is
shown in Figure 9.3, contains only 12 nonhydrogen (O, N, or C) atoms
in the asymmetric unit. The great complexity of the Patterson map
compared with the electron-density map is obvious. In this example,
similar orientations of the six-membered rings in space-group-related
molecules give rise to very similar sets of six interatomic vectors, the
vectors in each set having nearly the same magnitude and direction,
thereby giving a high peak in the Patterson map (see peaks B, C, and
D in Figures 9.3a and b). Similarly oriented five-membered rings also
lead to high peaks (peaks A and E). The slope of the ring system is
clear in Figures 9.3c and d. This figure demonstrates the large amount
of structural information available in a Patterson map. However, since
all nonhydrogen atoms in the structure are similar in atomic number,
and the chemical formula was unknown until the structure was deter-
mined, the Patterson map was too complicated to analyze when first
obtained. Some Patterson maps that were much easier to interpret will
be described later in this chapter.

Until the advent of computer-assisted direct methods in the late
1960s, analysis of Patterson maps was the most important method for
getting at least a partial trial structure, especially for crystals contain-
ing one or a few atoms of atomic number much higher than those
of the other atoms present. In principle, for all but the largest struc-
tures, a correct trial structure can always be found from the Patter-
son distribution, but it is often very difficult to unravel the map,
especially when the chemical formula of the compound being stud-
ied is not known. Some people, however, find it a fascinating mental
exercise to try to deduce at least part of a crystal structure from a
Patterson map.
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Fig. 9.3 The analysis of a Patterson map.

(a) A two-dimensional Patterson map, P(u, v), a projection down the w axis, of an azidopurine is shown. The peaks in the P(u, v)
map that correspond to the multiple superposition of vectors from ring to ring are lettered A to E and are shown in both (a) and
(b).

(b) The interpretation of the map shown in (a).
(c) The P(u, w) map, a projection down the v axis, for the same structure, indicating the slope of the ring. The contour interval is

arbitrary.
(d) One molecule shown for comparison with the Patterson map in (c).

Data from Glusker et al. (1968).
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Fig. 9.4 The vector superposition method.
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Patterson superposition methods

There are several methods, and many are quite powerful, for finding
the structure corresponding to a Patterson map by transcribing P(uvw)
upon itself with different relative origins. One of the simplest methods
for analyzing the Patterson map of a compound that contains an atom
in a known position (such as a heavy atom that has been located in the
Patterson map) is to calculate, graphically or by computer, a “vector
superposition map.” The origin of the Patterson map is put, in turn,
always in the same orientation, at each of the symmetry-related posi-
tions of the known heavy atom, and the values of P(uvw) are noted
at all points in the unit cell. The lowest value of P(uvw) in the different
superposed Patterson maps is recorded for each point; the resulting vector
superposition map is therefore also known as a minimum function. The
principle underlying this approach is that it isolates the vectors arising
from the interaction of the known heavy atom with all other atoms
in the structure. A schematic example is illustrated in Figure 9.4. In
some of the maps there will be other peaks at this same position, cor-
responding to other vectors in the structure, but the possible ambiguity
that such peaks might introduce is minimized by recording the lowest
value of P(uvw) in any of the superposed maps. This method can be
used even if no atomic positions are known, simply by moving each
Patterson peak in turn onto the origin, as in the schematic example
illustrated in Figure 9.4.

Rotation and translation functions

Sometimes a structure contains a complex molecule, with (necessar-
ily) a multitude of vectors, but may include a group for which all
the vectors are known (relative to one another) rather precisely—for
example, a benzene ring in a phenyl derivative. The vector map of this
grouping can then be calculated and the resulting vector arrangement
can be compared with the arrangement of peaks around the origin of
the Patterson map. There will be many more peaks in this region
of the Patterson map than those arising from the known structural
features alone, but, in at least one relative orientation of the two maps,
all peaks in the vector map of the phenyl group will fall in positive areas

(a) Crystal structure.
(b) Patterson map of the structure shown in (a).
(c) Vector superposition. A search for the position of a third atom when the positions of the first two (#1 and #2, filled circles)

are known. The Patterson map illustrated in (b) has been placed (i) with the origin on the position of atom #1 (to give open
circles) and then, by superposition of peaks, (ii) with the origin on the position of atom #2 (to give crosses). Four unit cells are
shown. It can be seen that there are four positions within each unit cell where overlap of Patterson peaks occurs (a circle and
cross superposed). Two of these are, necessarily, at the positions of atom #1 (the origin) and atom #2; the other two are possible
positions for atom #3; that is, there are two solutions to the vector map at this stage. In practice, this ambiguity is not found
when many atoms are present, and the method will often show the structure clearly. Note that the two solutions to the structure
problem are mirror images of each other.
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of the Patterson map (although they will not necessarily all lie at max-
ima if the Patterson peaks are composite, as they usually are). This
method, which involves rotation of the Patterson map, is illustrated
in Figure 9.5. The fit of the calculated and observed Patterson maps
can be optimized with a computer by making a “rotational search” to
examine all possible orientations of one map with respect to the other
and to assess the degree of overlap of vectors as a function of the angles
through which the Patterson map has been rotated. The maximum over-
lap normally occurs (except for experimental errors) at or near the cor-
rect values of these rotation angles, thus giving the approximate orien-
tation of the group. Then the Patterson map can be searched for vectors
between groups in symmetry-related positions, and the exact position
of the group in the unit cell can be found and used as part of a trial
structure.

This method has been adapted to aid in the search for information
on the relationship between molecules if there are more than one in
the asymmetric unit. Sometimes, in crystalline proteins or other macro-
molecules, there is what is referred to as “noncrystallographic sym-
metry”; for example, a dimer of two identical subunits may be con-
tained in one asymmetric unit. Thus, there are two identical structures
with different positions and orientations within the asymmetric unit.
If, however, one copy of the Patterson map of this dimer is rotated on
another copy of the map, there will be an orientation of the first relative
to the second that gives a high degree of peak overlap (McRee, 1993;
Drenth, 2007; Sawaya, 2007). This is called a “self-rotation function.”
The results can be plotted in three dimensions in a map that describes
the rotation angles that achieved superposition of the two maps. A large
peak is expected at the rotation angles at which one subunit (or mole-
cule) becomes aligned upon another. For example, the relative orienta-
tions of two subunits in the same asymmetric unit may be determined
because the rotations required for superposition are directly related to
the orientation of the noncrystallographic (local) symmetry element of
the dimer, usually a two-fold axis (Rossmann and Blow, 1962). Thus a
rotation function, plotted as a contour map, provides information on
the results (as peaks) of the overlap of one Patterson function with the
rotated version of another Patterson function. In a similar way, it may
be possible to find the translational components of the noncrystallo-
graphic symmetry elements, but this is often considerably more difficult
(Crowther and Blow, 1967).

This concept of a probe and the finding of its location in the unit
cell by examination of the Patterson map is known as “molecular
replacement,” (Rossmann, 1972). For protein studies the probe may
be structural data from a similar protein such as a mutant of the
same protein. The method involves positioning the probe within the
unit cell of the target crystal so that the calculated diffraction pattern
matches that observed experimentally. The search is broken into two
parts, as described above—rotation then translation, each providing
three parameters. This method is very useful if atomic coordinates for
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Fig. 9.5 A Patterson search by rotation.

This is a schematic example. If the dimensions of a molecule or part of a molecule in a
crystal structure are known, but its orientation (and position) in the unit cell is unknown,
the orientation may often be found by a comparison of calculated and observed vector
maps around the origin. The position of the molecule will have to be found in some other
way. A comparison of vector maps calculated from trial structures in various orientations
with the Patterson map calculated from experimental data indicates that model (a) (above,
left) has the trial structure in its correct orientation. The orientations in (b) to (d) are
incorrect.
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a similar structure, such as a similar protein from a different biological
source, have already been reported.

The heavy-atom method

In the heavy-atom method, one or a few atoms in the structure have an
atomic number Zi considerably greater than those of the other atoms
present. Figure 5.2c showed that if one atom has a much larger atomic
scattering factor than the others, then the phase angle for the whole
structure will seldom be far from that of the single heavy atom alone,
unless, of course, many of the other atoms happen to be in phase
with one another, a most improbable circumstance. Heavy atoms thus
dominate the scattering of a structure, as illustrated in Figure 5.2c. If the
molecule of interest does not contain such an atom, then a derivative,
containing, for example, bromide or iodide, can often be prepared, with
the hope that the molecular structural features of interest will not be
modified in the process (Dauter et al., 2000). Heavy atoms can usually
be located by analysis of a Patterson map, although this depends on
how many are present and how heavy they are relative to the other
atoms present. In Appendix 9 some data relevant to the Patterson func-
tion are given for an organic compound containing cobalt, a derivative
of vitamin B12 with formula C45H57O14N5CoCl · C3H6O · 3H2O; cobalt
has an atomic number of 27 versus 6 for carbon, 7 for nitrogen, and
8 for oxygen. Therefore the scattering of cobalt, that is, |F (hkl)|2, is
12–20 times greater than that of any of the three lighter atoms. The
appearances of two Patterson projections for this substance are shown
in Figure 9.6. In spite of the presence of many other peaks, the cobalt–
cobalt peaks are heavier than most of those due to the other vectors and
dominate the map. The position of the cobalt atom in the unit cell was
thus found from these two Patterson projections (P(uv) and P(uw)). In
a similar way, the location of a heavy atom in a protein structure can
be found. In Figure 9.7, the heavy-atom position in a protein crystal
structure is found from the three Harker sections.

Once the heavy atom has been located, the assumption is then made
that it dominates the diffraction pattern, and the relative phase angle for
each diffracted beam for the whole structure is approximated by that
for a structure containing just the heavy atom. Figure 9.8 illustrates the
application of the heavy-atom method to the structure of the vitamin
B12 derivative just mentioned, which contained one cobalt atom, one
chlorine atom, and about seventy carbon, nitrogen, and oxygen atoms
(the structure used for the Patterson map illustrated in Figure 9.6).
The first approximation to the electron density was phased with the
cobalt atom alone. Peaks in it near the metal atom that were most
compatible with known features of molecular geometry were used,
together with the metal atom, in a calculation of phase angles for a
second approximate electron-density map. This process was contin-
ued until the entire structure had been found. The combined use of
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Fig. 9.6 Patterson projections for a cobalt compound in the space group P212121.

Peaks identified as arising from cobalt–cobalt interactions are indicated by arrows. See Appendix 9 for an analysis of these maps.

(a) P(u, v) Patterson projection down the c-axis. Co–Co peaks appear at 0.00, 0.00; 0.20, 0.32; 0.50, 0.18; 0.30, 0.50.
(b) P(u, w) Patterson projection down the b-axis. Co–Co peaks appear at 0.00, 0.00; 0.30, 0.30; 0.50, 0.20; 0.20, 0.50.

Note that these particular Patterson maps are projections, not Harker sections, but that Harker peaks at half each unit-cell direction
(u and v = 0.50 in (a) and u and w = 0.50 in (b)) helped solve the location of the cobalt atom.

From Proceedings of the Royal Society (Hodgkin et al. (1959), p. 312, Figure 3). Published with permission.

Patterson maps and heavy-atom methods made it possible for struc-
tures of moderate complexity to be solved in the 1950s and 1960s and,
for a while, was the most powerful tool in the analysis of structures
of moderate complexity (molecules with, say, 30 to 100 atoms). Direct
methods are now more commonly used to solve such structures (small
and moderate-sized), because these methods have become much more
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powerful with the greatly increased availability of high-speed, high-w = 0.50

w = 0.16

v = 0.30

v = 0.5
0

u = 0.28

u = 0.50

Fig. 9.7 The heavy-atom method. A dif-
ference Patterson map.

The macromolecule crystallizes in the
space group I 222. Atomic positions are
(0, 0, 0 or 1/2, 1/2, 1/2) + (x, y, z; −x, −y, z;
x, −y, −z; −x, y, −z). Three Harker sec-
tions have peaks at u = 2x, v = 2y, w = 0, at
u = 2x, v = 0, w = 2z, and at u = 0, v = 2y,
w = 2z. The heavy atom is therefore found
to lie at x = 0.14,y = 0.35, and z = 0.42.

capacity computers. One minor drawback of the heavy-atom method
is that when the heavy atom has an atomic number sufficiently high
to dominate the vector distribution, it will necessarily also contribute
strongly to the X-ray scattering. If it is desirable to know the structure
very precisely, it may be better to work on the structure of a compound
that does not contain a heavy atom as a derivative. However, now, with
precise low-temperature measurements and high-resolution data, it is
generally possible to locate hydrogen atoms in small structures, even if
a very heavy atom, such as tungsten or mercury, is present. In addition,
Patterson maps can permit a search for vectors of a specific length, such
as the S–S distance of a disulfide bridge or the vector between two metal
ions that share a particular functional group.

The isomorphous replacement method

Isomorphous crystals are similar in shape, unit-cell dimensions, and
structure. They have similar (but not identical) chemical compositions
(for example, when one atom has a different atomic number in the two
structures) (Mitscherlich, 1822). Ideally, the substances are so closely
similar that they can generally form a continuous series of solid solu-
tions, so that, for example, a colorless crystal of potash alum will con-
tinue crystal growth on a crystal of chrome alum. When the term “iso-
morphous” is used for a crystal of a biological macromolecule, it implies
that the crystal, with and without a heavy-atom compound soaked into
the water channels of the protein or else genetically engineered into
the structure, has the same unit-cell dimensions and space group. As a
result it is assumed that the macromolecules are in the same positions
and orientations in the two crystals.

The high scattering power of heavy atoms has been used to help solve
the structures of biological macromolecules. The isomorphous replace-
ment method that will be discussed next has been used in large number
of protein structure determinations. The Patterson map of a protein is
too complex, with too many overlaps of peaks, for direct interpretation,
but the location of a heavy atom, if it can be introduced into a protein
crystal, can be found. Data for both the protein and its “heavy-atom
derivative” are used to determine perturbations to intensities caused by
the addition of heavy atoms. With multiple isomorphous replacement,
the aim is to make some alteration in the crystal and examine how this
change perturbs the structure factors. From the measured intensities,
plus the changes on the introduction of different heavy atoms, it may
be possible to obtain phases for each Bragg reflection (Bokhoven et al.,
1949; Harker, 1956). For example, if a protein has a molecular weight
of 24,000, it contains approximately 2000 carbon, nitrogen, and oxygen
atoms. Then, at sin Ë = 0◦, the mean value of

< |FP |2>=
2000∑
j=1

f 2
c
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73 atoms

Co 26 atoms

Fig. 9.8 The heavy-atom method.

One section through a three-dimensional electron-density map for a structure with 73 atoms (including various solvent molecules, but
not hydrogen atoms) in the asymmetric unit is shown at three different stages of the structure analysis. In the calculation of the first
map, only a cobalt atom was used to determine phases. For the second map, 26 atoms were used (one Co, 25 C and N), chosen from
peaks in the first map. The third map was phased with the positions of all 73 atoms. Most of the features of the map phased with 73
atoms can be found, at least weakly, in the map phased with the heavy atom alone, although in the latter map there are many extra
peaks that do not correspond to any real atoms. Note the general reduction in the background density as the correct relative phase
angles are approached. Since these are sections of a three-dimensional map, some atoms that lie near but not in the plane of the section
are indicated by lower peaks than would represent them if the section passed through their centers. Other atoms implied by the skeletal
formula lie so far from this section that no peaks corresponding to them occur here.

From Proceedings of the Royal Society (Hodgkin et al. (1959), p. 328, Figure 14). Published with permission.

is about 98,000. If one uranium atom, atomic number 92, is added, this
value of <|FP |2> is increased to approximately 106,000, an 8 percent
change in average intensity. Differences in intensities of the native pro-
tein and the heavy-atom derivative can be measured, many of which
will significantly exceed the average. Therefore the position of the ura-
nium atom should be obtainable from the intensity differences.

If a protein crystal is soaked in a solution of a heavy-atom compound
(such as a uranyl salt), the heavy-atom compound will be distributed
throughout the solvent channels in the crystal by diffusion. In some
cases the heavy atom will bind to a specific group on the macromole-
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cule, and this binding may occur in an ordered arrangement within the
macromolecular crystal. The difference between the diffracted inten-
sities of the “heavy-atom derivative” of the protein crystal (structure
factors FP H) and the diffracted intensities of the “native protein” with-
out any added heavy atom (structure factors FP ) can be used to reveal
the position of the heavy atom by a “difference Patterson map.” This
is done with a Patterson map that uses ||FP H|2 − |FP |2| as coefficients.
In other cases, however, with this method of soaking heavy atoms into
the native protein, nonspecific binding of the heavy atom may occur,
since there are many binding groups on the surface of a protein. If this
does happen, that particular heavy-atom derivative can probably not be
used for structure determination because of the disorder of its position.
To prevent random binding it is necessary to stop the soaking after
an appropriate time, determined experimentally, in the hope that only
specific binding will occur; the concentration of the heavy-atom salt is
often critical for this. An alternative method, which involves attempting
to crystallize proteins from solutions containing heavy-atom salts, has
not proved very satisfactory, because the crystals so obtained are often
not isomorphous with the native crystal. Crystals must be isomorphous
for the use of the isomorphous replacement method that will now be
described. When a pair or series of isomorphous crystals can be found,
isomorphous replacement is a powerful method for the determination
of phase angles, especially for complex structures for which purely ana-
lytical methods (see Chapter 8) are inadequate. It has provided the
basis for the solution of many of the macromolecular crystal structures
determined to date.

Isomorphous crystals are crystals with essentially identical cell
dimensions and atomic arrangements but with a variation in the
nature of one or more of the atoms present. The alums constitute
probably the best-known example of a series of isomorphous crystals.
“Potash alum,” KAl(SO4)2 · 12H2O, grows as colorless octahedra, while
“chrome alum,” KCr(SO4)2 · 12H2O, forms dark lavender crystals of the
same shape and structure. The Cr(III) atom in chrome alum is in the
same position in the unit cell as the Al(III) atom in potash alum. A
common experiment in isomorphism is to grow a crystal of chrome
alum suspended from a thread and then to continue to grow it in a
solution of potash alum. The result is an octahedral crystal with a dark
center surrounded by colorless material (Holden and Singer, 1960). In
general, however, isomorphous pairs (involving isomorphous replace-
ment of one atom by another) are difficult to find for crystals with small
unit cells, because variations of atomic size usually cause significant
structural changes when substitution is tried. Even with large unit cells,
patience and ingenuity are usually needed to find an isomorphous
pair for a compound being studied. The rewards from this method
are enormous—the entire three-dimensional molecular architecture of
a protein molecule, found with minimal chemical assumptions.§ Max

§ Usually information about the sequence
of the amino acids in the protein chain is
needed to interpret the electron-density
maps, especially in poorly resolved
regions of the structure. Perutz searched for years for ways to solve the structure of hemoglobin,

and succeeded when he devised this isomorphous replacement method
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(Green et al., 1954). The existence of isomorphism between a protein
and a heavy-atom derivative may be demonstrated by the determina-
tion that their unit-cell dimensions do not differ by more than about 0.5
percent, and that there are differences in the diffraction intensity pat-
terns. It is hoped that there is only a change in the site of isomorphous
replacement and that most of the crystal structure of the native and the
heavy-atom-substituted protein is the same.

After a Patterson map has been calculated and the position of the
heavy atom has been found for each derivative, it is possible to cal-
culate the relative phases of the Bragg reflections directly by a proper
consideration of the changes in intensity from one crystal to another.

The method for calculating phase angles by the isomorphous replace-
ment method is illustrated in Appendix 8 in a numerical example
involving a centrosymmetric crystal. The atoms or groups of atoms (M
and M′) that are interchanged during preparation of the isomorphous
pair must be located, usually from a Patterson map, as described earlier.
This allows calculation of their contributions, FM and FM′ . If FM and
FM′ are positive (they necessarily have the same sign, since their only
difference is in the amount of scattering power in the atom or group of
atoms), then the overall F values (FT) must differ in the same way that
FM and FM′ differ. Since the absolute magnitudes of these measured
values of F are known and the difference equivalent to the change in M
can be computed, it is possible to find signs for FT and FT′ . The solutions
to the equations are in practice inexact, because of experimental errors
and also because the remainder of the structure, R, may move slightly
during the replacement of one ion group by another. In an interesting
variation to the isomorphous replacement method, it has been found
that the relationship between structures in a crystal before and after
radiation damage can be used to determine phases. For the “radiation-
damage-induced phasing” (RIP) method, two data sets of the same
crystal are measured. Between the two data collections the crystal is
exposed to a very, very large dose of X-rays. The structural changes as a
result of radiation damage (by analogy with heavy-atom insertion) are
enough to make it possible to determine the phasing, especially if a few
somewhat heavier atoms, such as sulfur, are present in the structure
(Ravelli et al., 2003).

With noncentrosymmetric structures, the situation is greatly compli-
cated by the fact that the phase angle may have any value from 0 to
360◦. This is the case for biological macromolecules. If the heavy-atom
position can be found from the Patterson map, then FH and the relative
phase angle ·H can be computed for a given diffracted beam for each
derivative. The construction for graphical determination of the phase
angle for the protein (P) is shown in Figure 9.9. For each heavy-atom
derivative (P H1 and P H2), two possible values¶ for the phase angle

¶ With reference to Figure 9.9a, the law of
cosines also illustrates the two-fold ambi-
guity in the phase angle determined from
just one heavy-atom derivative:

·P = ·H

+ cos−1 {(FP H
2−FP

2−FH
2)/2FP FH}

= ·H ± ·′

Thus two values of ·P , that is, ·H + ·′ and
·H − ·′, are possible and it is necessary
to study several heavy-atom derivatives
with substituted heavy atoms in different
positions in the unit cell; the value of ·P
that is common to these different studies
is determined in this way.

for the protein are found; in the example in Figure 9.9, these are near
53◦ and 322◦ for P H1 (Figure 9.9a) and near 56◦ and 155◦ for P H2
(Figure 9.9b). The phase angle for the free protein for this particular dif-
fracted beam must therefore be near 54◦. This process of estimating the
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Fig. 9.9 Isomorphous replacement for a noncentrosymmetric structure.

Graphical evaluation of the relative phase, ·P , of a Bragg reflection, indices hkl, diffracted with a structure factor |FP | from a
protein crystal. The diagrams illustrate the following equation: FP = FP H − FH , where P = “native protein,” H = heavy atom, P H =
protein heavy-atom derivative.

(a) One heavy-atom derivative is available, with a structure factor |FP H1| for the Bragg reflection hkl. A circle with radius |FP | is drawn
about the origin. From the position of the heavy atom, determined from a difference Patterson map, it is possible to calculate both
the structure amplitude and the phase of the heavy-atom contribution (|FH1|, phase angle ·H1). A line of length |FH1| and phase
angle −·H1 (i.e., ·H1 + 180◦ to give −FH1) is drawn. With the end of this vector as center, a circle with radius |FP H1| is drawn. It
intersects the circle with radius |FP | at two points, corresponding to two possible phase angles, ·P(1) and ·P(2), for the native protein.

(b) When two or more heavy-atom derivatives are available, then the process described in (a) is repeated and, in favorable
circumstances, only one value of phase angle for the native protein is obtained. Thus, a second derivative is needed to remove
the two-fold ambiguity of case (a). This method, of course, depends on accurate measurements of |FP |, |FP H1|, and |FP H2|
and involves the assumption that no other perturbation than the addition of a heavy atom to the native protein has occurred.
Additional derivatives are sometimes needed to improve the accuracy of the phase angles.
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phase angle must be repeated for each diffracted beam in the diffraction
pattern; usually more than two heavy-atom derivatives (in addition to
the free protein) are studied, so that the phases can be more accurately
determined. A measure of the error in phasing is provided by a figure
of merit, m. This is the mean cosine of the error in the phase angle; it is
near unity if the circles used in deriving phases (Figure 9.9) intersect in
approximately the same positions. For example, if the figure of merit is
0.8, the phases are in error, on the average, by ±40◦, if it is 0.9, the mean
error is ±26◦.

∗Areas of high electron density are stored
in the computer as three-dimensional
information and are represented by cage-
like structures on a video screen. Any
desired view can be generated. The back-
bone of the molecule is represented as
a series of vectors, each 3.8 Å in length
(the distance between α-carbon atoms in
a polypeptide chain). Each vector is posi-
tioned with one end on an α-carbon atom;
the other end of the vector is rotated
until it lies in an appropriate area of high
electron density. Then coordinates of both
ends of the vector are stored in the com-
puter, the process is repeated, and the
most likely location of the next α-carbon
atom is sought. Such vectors are repre-
sented in this figure, a stereopair∗∗ pho-
tographed from a video screen, as heavy
solid lines. In this way the “backbone,”
that is, the positions of the carbon atoms
of the polypeptide backbone of the protein
(excluding side chains), may be found.

(Photograph courtesy Dr. H. L. Car-
rell.)

∗∗ Such stereodiagrams can be viewed
with stereoglasses, or readers can focus on
the two images until an image between
them begins to form, and then allow
their eyes to relax until the central image
becomes three-dimensional. This process
requires practice and usually takes 10 sec-
onds or more.

Thus the stages in the determination of the structure of a protein
involve the crystallization of the protein, the preparation of heavy-atom
derivatives, the measurement of the diffraction patterns of the native
protein and its heavy-atom derivatives, the determination of the heavy-
atom positions, the computation of phase angles (Figure 9.9), and the
computation of an electron-density map using native-protein data and
the phase angles so derived from isomorphous replacement. The map
is then interpreted in terms of the known geometry of polypeptide
chains so that initially this backbone of the protein is traced through
the electron-density map. This was formerly done by model building
(using a half-silvered mirror in a “Richards box” so that a ball-and-stick
model and the electron-density map were superimposed and therefore
could be visually compared). Nowadays it is more common for this
interpretation of the electron-density map to be done with the help of
computer graphics (as shown in Figure 9.10).

The isomorphous replacement method was one of the most used
methods for determining macromolecular structure, is now being
replaced by experimental methods that involve anomalous dispersion
(“MAD” and “SAD” phasing). They will be described in Chapter 10,
where their advantages will be described.

Fig. 9.10 Protein backbone fitting by computer-based interactive graphics.∗
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Multiple Bragg reflection

A very different but important approach to phase measurement
involves “double reflection.” This is a physical effect that occurs when
the crystal is oriented so that two reciprocal lattice points, h1, k1, l1
and h2, k2, l2, lie simultaneously in the diffracting position; that is,
both lie on the surface of the sphere of reflection (the Ewald sphere)
at the same instant. The result is two beams that are diffracted in the
direction normally expected for h1, k1, l1, and which interfere with each
other. One is the normally expected h1k1l1 Bragg reflection (the primary
beam), and the other, also in the h1k1l1 direction, results from the h2k2l2
Bragg reflection (the secondary beam) acting as the incident beam for
the h1 − h2, k1 − k2, l1 − l2 Bragg reflection (the coupling beam). The
amplitude of the resultant Bragg reflection gives information on the
phase difference of these two waves. This effect is variously described
as the Renninger effect (Renninger, 1937), the Umweganregung effect (if
I (h1k1l1) is increased at the expense of I (h2k2l2)), or the Aufhellung effect
(if I (h1k1l1) is decreased). When a ¯-scan of the peak (through a very
small angle) is done it is found that there is an asymmetry, shown in
Figure 9.11, that depends on the value of the phase invariant. Therefore
a direct reading of ·sum is obtained:

·sum = ·(−h1,−k1,−l1) + ·(h2, k2, l2) + ·(h1 − h2, k1 − k2, l1 − l2) (9.4)

primary beam secondary beam coupling beam

–0.05 –0.00 +0.05

–0.05 –0.00 +0.05 –0.05 –0.00 +0.05

–0.05 –0.00 +0.05

asum = −90�

asum = +90�

asum = 180�

asum = 0�

I

I I

I

Y scan

Y scan Y scan

Y scan

(a)

(c) (d)

(b)

Fig. 9.11 Multiple Bragg reflections.

Some idealized ¯-scans and values of
·sum(hkl) derived from peak profiles. If the
crystal is noncentrosymmetric, intermedi-
ate phase sum values will be found.
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This is like a triplet phase relationship but is an equality rather than
a probability. A highly precise (six-circle) diffractometer is needed for
this experiment but, when available, such an instrument has provided
experimental data that have been used with good success (Hümmer
and Billy, 1986; Shen, 1998). Thus an experimental way of measuring
origin-independent structure invariants is provided.

Summary

The Patterson map

The map computed with amplitudes |F (hkl)|2, but no phase informa-
tion, will give a vectorial representation of the atomic contents of the
unit cell. The Patterson function, P(uvw), is expressed in the coordinate
system u, v, w in a cell of the same size and shape as that of the crystal.
It is calculated by

P(uvw) =
1
V

∑ ∑
all h,k,l

∑ ∣∣F (hkl)
∣∣2 cos 2π(hu + kv + lw)

The peaks in this map occur at points whose distances from the origin
correspond in magnitude and direction with distances between atoms
in the crystal, because

P(uvw) = V
∫ ∫ ∫

Ò(x, y, z) Ò(x + u, y + v, z + w) dx dy dz

Ideally this map can be interpreted in terms of an atomic arrangement.
In practice, however, this is only possible if there are comparatively
few atoms in the structure or if some are very heavy. The map may
also be “sharpened” and the high origin peak removes if values of
{|E(hkl)2| − 1} rather than |F (hkl)|2 are used. A rotation of a Patterson
map can be used to identify the angle between two identical molecules
when noncrystallographic symmetry is present.

The heavy-atom method

If one or a few atoms of high atomic number are present, they will
dominate the scattering. These atoms can generally be located from a
Patterson map and the phases of the entire structure approximated by
the phases of the heavy atom(s). In the resulting electron-density map,
portions or all of the remainder of the structure will usually be revealed,
leading to improved phases and successively better approximations to
the structure.

Isomorphous replacement method

For very large structures, such as those of proteins, the isomorphous
replacement method is a good method for the experimental determi-
nation of phase angles. Two crystals are isomorphous if their space
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groups are the same and their unit cells and atomic arrangements are
essentially identical. Since protein crystals contain solvent channels,
if heavy atoms (in solution) are soaked into them and the resulting
crystals are isomorphous with the unsubstituted (“native”) crystal, a
comparison of the two diffraction patterns will give relative-phase
information. If the positions of these added or replaced atoms can be
found from Patterson maps, their contributions to the phase angle of
each Bragg reflection can be calculated, and if the atoms are sufficiently
heavy, differences in intensities for the two isomorphs can be used to
determine the approximate phase angle for each Bragg reflection. At
least two heavy-atom derivatives are necessary for noncentrosymmetric
structures.

Multiple Bragg reflection

If the crystal is oriented so that two reciprocal lattice points lie simulta-
neously in the diffracting position, that is, both lie on the surface of the
sphere of reflection at the same instant, the resulting diffracted beam
contains information on a structure invariant involving three Bragg
reflections—the primary beam, the secondary beam, and the coupling
beam. This method requires specialized equipment.



Anomalous scattering
and absolute
configuration
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The concept of the carbon atom with four bonds extending in a
tetrahedral fashion was put forward by van’t Hoff and Le Bel in
1874. It coincided with the realization that such an arrangement could
be asymmetric if the four substituents were different, as shown in
Figure 10.1a (van’t Hoff, 1874; Le Bel, 1874). Thus, for any compound
containing one such asymmetric carbon atom, there are two isomers of
opposite chirality (individually called enantiomers), for which three-
dimensional representations of their structural formulas are related
by a mirror plane. Aqueous solutions of these enantiomers rotate
the plane of polarized light in opposite directions. As discussed in
Chapter 7, Pasteur showed that crystals of sodium ammonium tartrate
had small asymmetrically located faces and that crystals with these
so-called “hemihedral faces” rotated the plane of polarization of light
clockwise, while crystals with similar faces in mirror-image positions
rotated this plane of polarization counterclockwise. Thus the external
form (that is, the morphology) of the crystals illustrated in Figure 10.1b
was used to separate enantiomers (see Patterson and Buchanan, 1945).
Pure enantiomers can only crystallize in noncentrosymmetric space
groups unless both isomers are present.

But even if the chemical formula and the three-dimensional structure
of a molecule such as tartaric acid have been determined by standard
X-ray diffraction methods, there is an ambiguity about the absolute
configuration. Information about the absolute configuration is not con-
tained in the diffraction pattern of the crystal as it is normally measured.
Thus, although the substituents on the asymmetric carbon atoms have
been identified, and even the detailed three-dimensional geometry of
the molecule has been determined, it is not known which of the two
enantiomers (mirror-image forms, analogous to those shown in Fig-
ure 10.1a) represents the three-dimensional structure of a particular
individual molecule that has some distinguishing chiral property, such
as the ability to rotate the plane of polarized light to the right. In other
words, what is the absolute structure of the dextrorotatory form of the
compound under study?

151
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A

(a)

(b)

B

Mirror

C
D

A

D
C

B

Dextrorotatory sodium
ammonium tartrate

Levorotatory sodium
ammonium tartrate

Fig. 10.1 Absolute configurations.

(a) The asymmetric carbon atom. If A, B, C, and D attached to the tetrahedral carbon
atom are all different, there are two chiral isomers related to each other by a mirror
plane. In a similar way, the entire structure of a crystal may be chiral.

(b) Hemihedral faces (shaded) on sodium ammonium tartrate crystals (used by Pas-
teur to differentiate dextrorotatory from levorotatory forms).

A means of determining the absolute configurations of molecules
was, however, provided by X-ray crystallographic studies. It was made
possible by the observation that the absorption coefficient of an atom
for X-rays shows discontinuities when plotted as a function of the
wavelength of the incident X-radiation. These discontinuities, shown
in Figure 10.2, are graphically described as “absorption edges.” At
wavelengths at the absorption edge of an atom, the energy (inversely
proportional to wavelength) of the incident X rays is sufficient either to
excite an electron in the strongly absorbing atom to a higher quantum
state or to eject the electron completely from the atom. This has an effect
on the phase change of the X rays on scattering. The scattering factor for
the atom becomes “complex,” and the factor f is replaced by

f = fi + f ′
i + i f ′′

i (10.1)

where f ′ and f ′′ vary with the wavelength of the incident radiation.
While f ′ causes no change in phase (it remains at 180◦), f ′′ causes a
phase change of 90◦, which is the reason that the Friedel-pair symmetry
breaks down. The value of f ′′ is largest when the wavelength is near
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Wavelength of radiation (Å)
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Fig. 10.2 Absorption of X rays of various wavelengths by a cobalt atom.

The mass absorption coefficient for cobalt as a function of wavelength. Note the discon-
tinuity near the absorption edge (1.608 Å); beyond it, there is a gradual increase in the
coefficient as the wavelength of the radiation increases.

the absorption edge (as for cobalt in a structure studied with copper Kα

radiation; see Figure 10.2).
When visible light passes through transparent matter, such as a glass

prism or a colorless crystal, its speed is decreased from the value it had
in a vacuum. This decreased speed depends on the wavelength of the
light. The refractive index of a material is the ratio of the velocity of
light in vacuo to its velocity when it passes through this medium. Since
white light consists of rays with a variety of wavelengths (from red
to violet), rays with different wavelengths will be refracted at slightly
different angles when they enter a material at an angle. This separation
of light so that the individual colors of the component waves become
visible is called “dispersion.” The violet and blue rays (of shorter wave-
lengths) are slowed more and therefore are bent to a greater extent
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than are the red and orange rays, with longer wavelengths; rays with
shorter wavelengths have a larger refractive index. The result of such
dispersion is a beautiful rainbow-like display of colors, such as that seen
when sunlight passes through and exits a glass prism. This dispersion
becomes “anomalous” when an energy absorption band is encountered
and a discontinuity occurs; the dispersion is normal on either side of the
absorption band, but at the absorption edge the refractive index is larger
for longer wavelengths, rather than shorter as is normal. In this area
near an absorption edge this plot of wavelength versus refractive index
shows an increase of refractive index with wavelength (so that blue
light is less refracted than red), the opposite of normal expectation. This
is called “anomalous dispersion” or “anomalous scattering,” meaning
that one is studying the area of a spectrum near an absorption edge.

All atoms scatter anomalously to some extent, but at wavelengths
near the absorption edge of a scattering atom, anomalous scattering
will be especially noticeable. If an atom in the structure absorbs, at least
moderately, the X rays being used, then this absorption will result in a
phase change for the X rays scattered by that atom, relative to the phase of the X
rays scattered by the other atoms of the structure, the equivalent of advanc-
ing or delaying the radiation for a short time as shown in Figure 10.3
[that is, equivalent to a hesitation (“gulp”) at the time of scattering].

Normal scattering

Anomalous scattering

Atom

Atom

Diffracted beam

Diffracted beam

Direct beam

Direct beam

(a)

(b)

Fig. 10.3 Phase change on anomalous scattering.

(a) Normal scattering with a phase change of 180◦. (b) Anomalous scattering with a different phase change.
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This implies that in order to demonstrate anomalous scattering, the
crystal must contain at least two different types of atoms. The phase
change caused by f ′′ changes the path length of the scattered radiation,
as illustrated schematically in Figure 10.3, and the result is an effect on
the intensities of the diffracted beams. When there is none of this so-
called “anomalous scattering,” the intensities of the Bragg reflections
with indices h, k, l and h̄, k̄, l̄ are the same (Friedel’s Law). When there is
anomalous scattering, the intensities of these two Bragg reflections may
be different because of changes in effective path differences between
scattered waves arising from the phase change on absorption by the
anomalously scattering atom.

The difference in intensities may alternatively be thought of as a
result of the complex nature of the scattering factor, fi [see Eqn.
(10.1)], so that the absolute value of F (hkl) is different from that of
F (−h,−k,−l), as illustrated in Figure 10.4. We showed in Eqn. (10.1)
that if there is an anomalous scatterer in the crystal, f is replaced by
f + f ′ + i f ′′. Let A′ = G( f + f ′) + A and B ′ = H( f + f ′) + B, where A
and B refer to the rest of the structure and G and H to the anomalous
scatterer. Remember that f and f ′ scatter with a phase change of 180◦,
while f ′′ scatters with a phase change of 90◦. As a result, since

F (hkl) = (A′ + iG f ′′) + i(B ′ + iH f ′′) = (A′ − H f ′′) + i(B ′ + G f ′′) (10.2)

|F (hkl)|2 = (A′ − H f ′′)2 + (B ′ + G f ′′)2 (10.3)

and similarly

F (h̄k̄l̄) = (A′ + iG f ′′) − i(B ′ + iH f ′′) = (A′ + H f ′′) − i(B ′ − G f ′′) (10.4)

|F (h̄k̄l̄)|2 = (A′ + H f ′′)2 + (B ′ − G f ′′)2 (10.5)

it then follows that

|F (hkl)|2 − |F (h̄k̄l̄)|2 = 4 f ′′(B ′G − A′ H) (10.6)

Thus, when the incident X-radiation is of a wavelength near that of the
absorption edge of an atom in a noncentrasymmetric structure, |F (hkl)|
does not equal |F (h̄k̄l̄)|. Under normal conditions the wavelength of the
X-radiation used for a diffraction experiment is far from any absorp-
tion edge and these two quantities, |F (hkl)| and |F (h̄k̄l̄)|, are equal. If
anomalous scattering occurs, the magnitude of the difference between
|F (hkl)|2 and |F (h̄k̄l̄)|2 for the two Bragg reflections (called “Friedel
pairs” or “Bijvoet pairs”) is a function of f ′′ (which depends on how
near the incident radiation is to the absorption edge) and the positional
parameters of both the anomalous scatterer and the rest of the structure.

It is possible from Eqn. (10.6) to calculate the expected differences
between |F (hkl)|2 and |F (h̄k̄l̄)|2 for a given enantiomorph (with a spe-
cific absolute configuration). In practice, the indices of the Bragg reflec-
tions are assigned so that h, k, and l are in a right-handed system.
Therefore the axes of x, y, z (that is, a, b, and c) must also be in a
right-handed system. Values of |F |2 for pairs of Bragg reflections hkl
and h̄k̄l̄ are measured and the magnitude and sign of their difference are
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Black atom instantaneously advances the wave + q causing Ihkl≠ Ihkl  (different path differences on diffraction)

Ihkl= Ihkl  (same path differences on diffraction)
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Fig. 10.4 Path differences on anomalous scattering in a noncentrosymmetric structure.

Effect of anomalous scattering on the path lengths of diffracted X-ray beams. Suppose that for a particular reflection the anomalous
scatterer (black circles) causes in effect a path difference, q , in addition to the usual difference of 2p between the radiation scattered by
a normal scatterer at this position and by a normal scatterer at some other position (open circles). As shown, the path difference for the
hkl reflection with anomalous scattering is 2p + q and that for the h̄k̄l̄ reflection is 2p − q . If no anomalous scattering had occurred, these
would be the same—namely, 2p. Since the intensity of a diffracted beam depends on the path differences between waves scattered
by the various atoms in the unit cell, the result of anomalous scattering is an intensity difference between hkl and h̄k̄l̄. It is possible to
compute values of |F (hkl)| and |F (h̄k̄l̄)| and see which should be the larger. If for many reflections the relations of the calculated values
to the experimentally measured values are the same as those calculated for the model, then the model has the correct handedness
(configuration); if not, the configuration of the model must be changed. That is, if |Fo(hkl)| > |Fo(h̄k̄l̄)|, then we must necessarily have
|Fc(hkl)| > |Fc(h̄k̄l̄)|. See Appendix 11.
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compared with the calculated value of 4 f ′′(B ′G − A′ H) [see Eqn. (10.6)].
G and A′ are cosine terms and do not change sign if the “handedness”
of the system in which the model is calculated is changed. However, B ′

and H are sine terms, and if the signs of x, y, and z for all the atoms
in the model are reversed, then B ′ and H change sign. Therefore, if
(|F (hkl)|2 − |F (h̄k̄l̄)|2 and (B ′G − A′ H) have opposite signs, the values
of x, y, and z in the model must be replaced by −x,−y,−z to give
the correct model. An example is given in Appendix 11. The result of
maintaining the same handedness for the axes in real and reciprocal space
is a three-dimensional representation of the molecule from which the
absolute configuration can be seen directly.

In order to establish the absolute configuration of a crystal structure
it is necessary (if anomalous scattering has taken place) to compare
I (hkl) and I (h̄k̄l̄), note which is larger, and compare this information
with the result of a structure factor calculation done with a model
of the structure. If there is not agreement between the signs of these
observed and calculated intensity differences, the handedness of the
model should be reversed. The signs of the differences should be correct
in all cases where they are large (keeping in mind the standard uncer-
tainties of their measurements). Alternatively, a Flack parameter, x, can
be calculated. This is obtained by the equation

I (hkl) = (1 − x)|F (hkl)|2 + x|F (h̄k̄l̄)|2 (10.7)

and is often part of the least-squares refinement (Flack, 1983). The value
found for x for all data generally lies between 0 and 1. If x is near 0
with a small standard uncertainty, the absolute structure that has been
obtained is probably correct. If x is near 1, then the signs of all x, y, and
z in the structure must be reversed. If x is near 0.5, the crystal may be
racemic or twinned, and further investigation is necessary.

In 1930 Coster, Knol, and Prins were able to determine the absolute
configuration of a zinc blende (ZnS) crystal (Coster et al., 1930).* This

* Zinc blende, ZnS, crystallizes in a cubic
unit cell, a = 5.42 Å, space group F 4̄ 3m.
The structure contains Zn at (0,0,0), (0, 1/2,
1/2), (1/2, 0, 1/2), and (1/2, 1/2, 0) and sulfur at
(1/4, 1/4, 1/4), (1/4, 3/4, 3/4), (3/4, 1/4, 3/4), and (3/4,
3/4, 1/4). The shiny, well-developed faces
have sulfur atoms on their surfaces, while
the rougher, matte faces have zinc on their
surfaces. When pressure is applied per-
pendicular to the 111 face, the shiny faces
become, by the piezoelectric effect, posi-
tively charged and the matte faces become
negatively charged.

contains, in one direction (a polar axis) through the crystal (the one
perpendicular to the 111 face), pairs of layers of zinc and sulfur atoms
separated by a quarter of the spacing in that direction and then another
pair one cell translation away, and so on (Figure 10.5). The sense or
polarity of that arrangement was determined by the use of radiation
(gold, AuLα1, Î = 1.276 Å, AuLα2, Î = 1.288 Å) near the K-absorption
edge of zinc (1.283 Å). The AuLα1 radiation caused anomalous scatter-
ing by the zinc atoms, but the AuLα2 radiation did not. As a result it
was shown that the shiny (1̄1̄1̄) faces have layers of sulfur atoms on
their surfaces and the dull (111) faces have layers of zinc atoms on their
surfaces (see Figure 10.5).

This method was extended, as described above and in Appendix 11,
by Bijvoet, Peerdeman, and van Bommel in 1951 to establish the abso-
lute configuration of (+)-tartaric acid in crystals of its sodium rubidium
double salt using zirconium radiation, which is scattered anomalously
by rubidium atoms and ions (Bijvoet et al., 1951). The result is shown in
Figure 10.6a. The absolute configuration was unknown until that time;
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Fig. 10.5 Polarity sense of zinc blende.

(a) The structure of zinc blende, showing the arrangement of zinc and sulfur atoms.
Two views are shown, one down an axis and the other to show the planes of atoms
in the [111] direction. Zinc blende is often called sphalerite. Zn black, S stippled.

(b) Reflections from the two faces of zinc blende (dull and shiny) will have different
relative path differences for the zinc and the sulfur atoms (compare with Fig-
ure 10.4). If the radiation is near the absorption edge of zinc, the two types of
reflections will have different intensities, allowing one to determine (as did Coster,
Knol, and Prins in 1930) that the dull face has zinc atoms on the surface and the
shiny face has sulfur atoms on the surface.
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Fig. 10.6 Absolute configurations of biological molecules.

(a) Absolute configuration of (+)-tartaric acid (dextrorotatory tartaric acid). Note that
in the actual structure (right) the chain of four carbon atoms has effectively a planar
zigzag arrangement. In the formula on the left, and by convention in all “Fischer
formulas,” vertical carbon chains are represented as planar but with successive
bonds always directed into the page. Thus, in the formulas in the center and left
here, the lower half of the molecule has been rotated 180◦ relative to the upper
half as compared with the actual structure. This affects the conformation but
not the absolute configuration of the molecule. The conformation of tartaric acid
illustrated on the left is a possible one for this molecule, but it is of higher energy
(because bonds are eclipsed) than that shown on the right, the conformation
observed in the crystals studied by Bijvoet et al. (1951). Still other conformers may
exist in solution or in other crystals.

(b) Absolute configuration of the potassium salt of (+)-isocitric acid (isolated
from the plant Bryophyllum calycinum). Fischer and Newman formulas are
shown. The correct designation of this enantiomer is 1R:2S-1-hydroxy-1,2,3-
propanetricarboxylate. The torsion angles are shown in Figure 12.5.

From Acta Crystallographica B24 (1968), p. 585, Figure 4.
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fortunately that which was found was the one arbitrarily chosen from
the two possibilities half a century earlier by Fischer (Fischer, 1890,
1894), so the current organic chemistry textbooks did not have to be
changed. The absolute configurations of many other molecules have
been determined either by X-ray crystallographic methods or by chem-
ical correlation with those compounds for which the absolute configu-
ration had already been established (see Figure 10.6b). Values of anom-
alous scattering factors, especially those near the absorption edge, have
been measured in detail with synchrotron radiation (see, for example,
Templeton et al., 1980).

But how can absolute configuration be represented? The R/S sys-
tem of doing this involved assigning a priority number to the atoms
around an asymmetric (carbon) atom so that atoms with greater atomic
number have the higher priority (Cahn et al., 1966). If two atoms have
the same priority, their substituents are considered until differentia-
tion of priorities can be established (otherwise, of course, the central
atom is not asymmetric). Then the structure is viewed with the atom
of lowest priority directly behind the central (carbon) atom and the
other substituents are examined. Then if the order of the substituents
going from highest to lowest priority is clockwise, the central atom
is designated R (Latin rectus, right). If it is anticlockwise, the central
atom is designated S (Latin sinister, left). As a result, once the absolute
configuration is established and each asymmetric tetrahedral atom has
an R or S designation, sufficient information is provided from these
designations to make it possible to build a model with this correct
absolute configuration.

The effect of anomalous scattering was used to solve the structure
of a small protein, crambin, containing 45 amino acid residues (and
which crystallized with 72 water and 4 ethanol molecules per protein
molecule) (Hendrickson and Teeter, 1981). The nearest absorption edge
of sulfur is at 5.02 Å, but for CuKα radiation, wavelength 1.5418 Å, the
values of f ′ and f ′′ are 0.3 and 0.557, respectively, for sulfur. Pairs
of reflections [|F (hkl)| and |F (h̄k̄l̄)|] were measured to 1.5 Å resolution
(the crystals scatter to 0.88 Å resolution); sulfur atom positions were
calculated from Patterson maps with |ƒF |2. While it was necessary to
take into account possible errors in such measurements of the differ-
ences of two large numbers, it was, in fact, possible to determine the
positions of the three disulfide links (six sulfur atoms). The structure
was then determined from an analysis of the Fourier map calculated on
the heavy-atom parameters of the sulfur atoms together with a partial
knowledge of the amino acid sequence.

SAD and MAD phasing

The use of anomalous scattering in structural work has increased
recently since the advent of “tunable” synchrotron radiation—that is,
X rays whose wavelength may, within certain limits, be selected at



SAD and MAD phasing 161

Fhkl

Fhkl

Fhkl

Overall Ahkl

Overall Ahkl

Overall Bhkl

Overall Bhkl

H∆f”

H∆f”

G∆f”

B

B

B

No anomalous scattering

Anomalous scattering

A

A

Fhkl

Fig. 10.7 Effects of anomalous scattering on F values.

The top diagram shows the structure factor vectors for F(hkl) and F(−h, −k, −l) in the
absence of anomalous scattering and the lower diagram shows the effect of anom-
alous scattering on such a diagram. When there is anomalous scattering, A(hkl) =
A(−h, −k, −l). The same occurs for B values, as shown (see Chapter 5 and especially
Figure 5.1 for the fundamentals of such diagrams).

will. As a result it is possible to measure the diffraction pattern of a
macromolecular crystal with X-radiation of wavelengths near and also
far from the absorption edges of any anomalous scatterers present. Two
data sets can be measured, one near and one far from any absorption
edge of atoms in the crystal. The integrity of the crystal during so much
radiation exposure is maintained by flash freezing. For example, the
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Fig. 10.8 Isomorphous replacement plus anomalous scattering (noncentrosymmetric).

The effect of anomalous scattering by an atom M, introduced to replace another atom,
may be used to resolve the ambiguity in phase-angle determination by the isomorphous
replacement method. The effect of anomalous scattering (Appendix 11) is to introduce
a phase shift, which means in effect, to change the atomic scattering factor of atom M
from a “real” quantity, f , to a “complex” one, ( f + f ′) + i f ′′. Suppose A and B refer to
that part of the structure that does not scatter anomalously, and A′ and B ′ to the total
structure without any f ′′ component; then A′ = G( f + f ′) + A and B ′ = H( f + f ′) + B,
where G and H refer to geometric components for the anomalous scatterer, M. A′′ and
B ′′ are components of the structure when anomalous scattering is present, and A′′

M and
B ′′

M are components for the anomalous scatterer M alone. Then

A′′
M = G( f + f ′ + i f ′′) = AM + G f ′ + iG f ′′

B ′′
M = H( f + f ′ + i f ′′) = BM + H f ′ + iH f ′′

Then, for the entire structure, including anomalous-scattering effects, we have

A′′ = A + G f + G f ′ + iG f ′′ = A′ + iG f ′′

B ′′ = B + H f + H f ′ + iH f ′′ = B ′ + iH f ′′

As shown in Appendix 11, we have for the entire structure with anomalous scattering (by
separating and squaring the “real” and “imaginary” components)∣∣F (hkl)

∣∣ =
√

(A′ − H f ′′)2 + (B ′ + G f ′′)2

∣∣F (h̄k̄l̄)
∣∣ =

√
(A′ + H f ′′)2 + (B ′ − G f ′′)2

(see Figure 10.4). Therefore, |F (hkl)| and |F (h̄k̄l̄)| are different; the intensity of each
reflection is measured to see which is the greater, as shown in Appendix 11.

A diagram to illustrate the determination of a phase angle for a macromolecule (that is,
·P ) by the combination of isomorphous replacement and anomalous scattering is shown.
This diagram is constructed in a similar way to Figure 9.9. Circles of radii |FP H(+)| and
|FP H(−)| (for reflections of the heavy-atom derivative with indices h, k, l and −h, −k,
−l, respectively) are drawn with centers at −(FH′ + FH′′ ) and −(FH′ − FH′′ ), respectively.
There are now three circles, radii |FP |, |FP H(+)|, and |FP H(−)|, and these intersect at a
phase angle of ·P (83◦). This is probably the phase angle of this reflection, h, k, l, for the
native protein.
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method of anomalous scattering may be combined with isomorphous
replacement in protein structure determination. Three data sets are
needed for this. One involves the protein crystal, and one a heavy-atom
derivative of this protein. A third data set is measured with X rays of a
wavelength that will cause maximal anomalous scattering by the heavy
atom. The heavy-atom position is located from the first two data sets,
and phase information is aided by the nonequivalent Friedel pairs of
Bragg reflections; these remove ambiguities in phase determination (see
Figures 10.7 and 10.8). This makes it possible to obtain approximate
phases from just one heavy-atom derivative.

The multiwavelength anomalous dispersion (MAD) method, sug-
gested by Wayne Hendrickson, is now a method of choice for phase
determination (Hendrickson, 1991). Generally proteins that are used
have been biologically expressed in a medium that contains only
selenomethionine. As a result the protein contains selenomethionine in
its sequence where methionine would normally be expected. Therefore
the strong anomalous signal of selenium can be used to derive phases.
X-ray diffraction data are measured near the absorption edge (where
f ′′ has a maximum value, 1.15 electrons), and also at one or two wave-
lengths remote from any absorption edge. Only one crystal is needed,
and the data are generally measured at a synchrotron source.

In the single-wavelength anomalous dispersion (SAD) method, dif-
fraction data for one wavelength of radiation are measured on a heavy-
atom-containing protein, not necessarily near an absorption edge. Since
when heavy atoms are soaked into a crystal they may attach to various
side chains in a disordered manner, the strategy has been to generate a
protein with a heavy atom, such as that in iodophenylalanine, chemi-
cally incorporated into one amino acid (Dauter, 2004). The value of f ′′

for iodine is 6.91 electrons for CuKα radiation. Alternatively, chromium
Kα radiation (Î = 2.2909 Å) may be used to locate sulfur, which has
an anomalous signal ( f ′′) of 1.14 electrons for CrKα radiation, twice
that for CuKα radiation (Yang et al., 2003). This means that naturally
occurring protein side chains such as those of methionine or cysteine are
sufficient to provide phasing with CrKα radiation. Also, the data collec-
tion can be done in a laboratory and no tuning of radiation wavelength
is needed; a simple X-ray tube can be used. The phase ambiguity that
comes from measuring just one data set can be aided by direct methods
or by density modification. Obviously crystallographers are now exper-
imenting with different wavelengths of radiation and different possible
anomalous scatterers, and the trend is to study a crystal that contains
only the molecule under study (and not variations such as heavy-atom
derivatives).

Sine-Patterson map

A modified Patterson map can be used to determine the absolute con-
figuration of a structure provided Bijvoet pairs of reflections have been
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measured and correctly indexed. The map is calculated with a func-
tion with {|F (hkl)|2 + |F (h̄k̄l̄)|2} as coefficients and a cosine term; this
gives peaks corresponding to Eqn. (9.1), that is, vectors between atoms.
Another function, with {|F (hkl)|2 − |F (h̄k̄l̄)|2} as coefficients and a sine
term, known as the sine-Patterson map,

Ps(u, v, w) =
1
Vc

∑∑
all hkl

∑{∣∣F (hkl)
∣∣2 − ∣∣F (h̄k̄l̄)

∣∣2
}

sin 2π(hu + kv + lw)

(10.8)

will have only vectors between anomalously and nonanomalously scat-
tering atoms, and these peaks are positive if the vector is from an anom-
alously scattering atom to a normal atom, and negative if the vector
is in the other direction. This map is asymmetric. Thus the absolute
configuration of the structure may be determined from such a map
(Okaya et al., 1955).

What effect does anomalous scattering have on the calculated elec-
tron density, since a term in the scattering factor now has an “imag-
inary” component? The answer is that the calculated electron den-
sity must be real, and, to obtain this, any effect of anomalous scat-
tering (which involves a complex scattering factor) must be removed
(as described in Appendix 11) (Patterson, 1963). This, of course, also
removes any means of distinguishing one enantiomorph from the other;
such information is contained only in the anomalous-scattering data.

Summary

If an atom in the crystal appreciably absorbs the X rays used, there will
be a phase change for the X rays scattered by that atom relative to the
phase of the X rays scattered by a nonabsorbing atom at the same site.
This phase change on absorption leads to anomalous scattering and,
for a noncentrosymmetric structure, results in differences in values of
|F (hkl)|2 and |F (h̄k̄l̄)|2 that are not found in the absence of anomalous
scattering. If the structure contains only one enantiomorph of a mole-
cule, its absolute configuration may be determined by a comparison of
the signs of the observed and calculated values of (|F (hkl)|2 − |F (h̄k̄l̄)|2).
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Refinement of the trial
structure 11
When approximate positions have been determined for most, if not
all, of the atoms, it is time to begin the refinement of the structure.
In this process the atomic parameters are varied systematically so as
to give the best possible agreement of the observed structure factor
amplitudes (the experimental data) with those calculated for the pro-
posed trial structure. Common refinement techniques involve Fourier
syntheses and processes involving least-squares or maximum likeli-
hood methods. Although they have been shown formally to be nearly
equivalent—differing chiefly in the weighting attached to the experi-
mental observations—they differ considerably in manipulative details;
we shall discuss them separately here.

Many successive refinement cycles are usually needed before a struc-
ture converges to the stage at which the shifts from cycle to cycle
in the parameters being refined are negligible with respect to their
estimated errors. When least-squares refinement is used, the equations
are, as pointed out below, nonlinear in the parameters being refined,
which means that the shifts calculated for these parameters are only
approximate, as long as the structure is significantly different from the
“correct” one. With Fourier refinement methods, the adjustments in
the parameters are at best only approximate anyway; final parameter
adjustments are now almost always made by least squares, at least for
structures not involving macromolecules.

Fourier methods

As indicated earlier (Chapters 8 and 9, especially Figure 9.8 and the
accompanying discussion), Fourier methods are commonly used to
locate a portion of the structure after some of the atoms have been
found—that is, after at least a partial trial structure has been identified.
Initially, only one or a few atoms may have been found, or maybe an
appreciable fraction of the structure is now known. Once approximate
positions for at least some of the atoms in the structure are known, the
phase angles can be calculated. Then an approximate electron-density
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map calculated with observed structure amplitudes and computed phase
angles will contain a blend of the true structure (from the structure
amplitudes) with the trial structure (from the calculated phases). If
the trial structure contains most of the atoms of the true structure,
at or near their correct positions, the resulting electron-density map
will contain peaks representing the trial structure, but, additionally, at
other sites, peaks representing atoms that were omitted from the trial
structure but that are really present. Conversely, if an atom in the trial
structure has been incorrectly chosen, the corresponding peak in the
electron-density map will usually be significantly lower than normal,
so that its location will be questionable. Finally, if an atom was put
into the calculation near, but not at, its correct position, the resulting
peak in the electron-density map will usually have moved a slight
amount from the input position towards (but not usually as far as) the
correct position. Examples of these effects for a noncentrosymmetric
structure are shown in Figure 11.1. In centrosymmetric structures, the
phase angles are either 0◦ or 180◦ and a slight error in the structure
may not have a large effect on most phase angles. Therefore, a map
computed with observed |F (hkl)| values and computed phase angles
may be almost correct even if the model used was slightly in error.
However, with noncentrosymmetric structures, for which the phase
angles may have any value from 0◦ to 360◦, there will be at least small
errors in most of the phases, and consequently the calculated electron-
density map will be weighted more in the direction of the trial structure
used to calculate the phases than it would be if the structure were
centrosymmetric.

It is usual, when most or all of the trial structure is known, to compute
difference maps rather than normal electron-density maps. For difference
maps, the coefficients for the calculation are (|Fo| − |Fc|) and the phase

(a) The effect of an atom in the wrong position. This example is from a noncentrosymmet-
ric structure. In (1), one atom, B, was inadvertently included (an input typographi-
cal error) at the wrong position (marked by an A) in the structure factor calculation.
The electron-density map phased with this incorrect structure contains a peak at
the wrong position, but this peak is lower in electron density than the others near
it. A small peak occurs in the correct position, B, shown in (2), although none was
introduced there in the phasing. Corresponding sections of a correctly phased map
are shown in (3) and (4); the spurious “atom” at A above has disappeared and the
correct peak, B, is now a pronounced one.

(b) The effect of an atom near but not at the correct position. The appearance of a partic-
ular section in successive electron-density maps is shown as the structure used
for phasing becomes more nearly correct. The map (1) was computed from the
positions of two heavy atoms (positions not shown) and from this the location of
atom X was correctly (as it turned out) deduced. But in (2) an atom was incorrectly
placed at P; it can be seen that the peak for this atom is elongated in the direction
of the correct position, Q. In (3) only atom X (of P, Q, and X) was included in the
phasing and peak Q now is more clearly revealed. In (4) the peak at Q is now
established as correct. A total of 2, 62, 54, and 68 atoms out of 73 were used in the
phasing of maps (1), (2), (3), and (4), respectively.
From Hodgkin et al., 1959, p. 320, Figures 8 and 9.
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angles are those computed for the trial structure. The difference map
is thus the difference of an “observed” and a “calculated” map (both
with “calculated” phases). In this map a positive region implies that
not enough electrons were put in that area in the trial structure, while
a negative region suggests that too many electrons were included in
that region in the trial structure. For example, if an atom is included in
the trial structure with too high an atomic number, a trough appears
at the corresponding position; if it is included (at the correct position)
with too low an atomic number or omitted entirely, a peak appears.
Hydrogen atoms can be located from difference maps calculated from
a trial structure that includes all the heavier atoms present (see Fig-
ure 11.2), although often hydrogen atoms are put at geometrically cal-
culated positions and then refined. Another use of difference maps is in
macromolecular structure determination, to locate the binding sites of
inhibitors, substrates, or products.

Figure 11.3 shows some examples of further uses of difference maps
for refinement of parameters. If an atom has been included near but
not at the correct position, the location at which it was input will lie
in a negative region, with a positive region in the direction of the
correct position. The amount of the shift needed to move the atom to
the correct position is indicated by the slope of the contours between the
negative and positive regions. If an atom is left out of the trial structure
(as in “omit maps”) it will appear in the correct position as a peak, pro-
vided, of course, that the phase angles used in computing the electron-
density map are approximately correct. If an atomic displacement factor
is too small in the calculated trial structure, a trough will appear at the
atomic position because the electrons in that atom have been assumed
in the trial structure to be confined to a smaller volume than in fact they
are, and hence to have too high a total electron density. Similarly, if the
atomic displacement factor is too large in the trial structure, a peak will
appear in the difference map. If the atom vibrates anisotropically, that
is, different amounts in different directions, but has been assumed to be
isotropic, peaks will occur in directions of greater motion and troughs
in directions of lesser motion. In summary, if there is a positive area in a
difference map, consider adding more electron density at that position;
a negative area indicates too much electron density at that location in
the trial structure.

The process of Fourier refinement can be adapted for automatic
operation with a high-speed computer. Instead of evaluating the elec-
tron density at the points of a fixed lattice, we calculate it, together
with its first and second derivatives, at the positions assumed for
the atomic centers at this stage. The shifts in the atomic posi-
tions* and temperature-factor parameters can then be derived from

* The shift required in x is

ƒx =
−∂ƒÒ

∂x
/

∂2Ò

∂x2

=
−(gradient of difference Fourier at x0)

(curvature of electron density at x0)

where x0 is the input position.

the slopes and the curvatures in different directions. When this
differential-synthesis method is used, it is normally applied to the
difference density. In fact, however, the method is used much less
extensively than least-squares refinement, for the latter is somewhat
more convenient for computer application and has the advantage
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Fig. 11.2 Hydrogen atoms found from a difference map.

This is a composite map of sections of a difference map for a monoclinic structure, anhydrous citric acid, viewed down b. Eight sections
containing hydrogen atoms are shown here. The contour interval is 0.1 electrons per cubic Å; the zero contour is omitted. Solid circles
show the final positions of the heavier atoms that were used in the phase-angle calculation. Peaks occur in the map at positions in which
not enough electron density has been included in the structure factor calculation, and thus at the positions of hydrogen atoms omitted
from the phase-angle calculation. The molecular formula is shown below the map, on the same scale and in the same orientation.

From Glusker et al., 1969, Acta Crystallographica B25, p. 1066, Figure 1.

of a statistically sounder weighting scheme for the experimental
observations.

One of the best criteria of a good structure determination is a flat
difference map at the end of the refinement (because now the values
of the observed and calculated structure amplitudes are approximately
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Fig. 11.3 Refinement by difference maps.

A difference map (the difference between the observed and calculated electron density, Òobs − Òcalc) may be used to refine atomic
positions and temperature factors. In a difference map a peak (a region of positive electron density) implies that not enough electron
density was included in the model at that position, and a trough (a region of negative electron density) implies the opposite.

(a) An error in the position of an atom. The peak in Òcalc shows the approximate position used in the calculation of structure factors.
The peak in Òobs is nearer to the correct position. Therefore, the assumed atomic position should be moved (to the right) in the
direction of the positive peak in the difference map.

(b) Incorrect atomic displacement parameter. If the displacement parameter exponent is too high in the model used to phase the map, the
atom is vibrating through too large a volume. A peak surrounded by a region of negative density occurs at the atomic position,
indicating that the exponent should be decreased to give a higher and narrower peak (and thus B should be decreased).

equal). It is possible to have a good average agreement of |Fo| and |Fc|,
and thus a low discrepancy index, R, and yet to have many (|Fo| − |Fc|)
values contributing to a peak or trough in a given area of the map,
indicating some error in the structure. Therefore, at the end of every
structure determination, a difference map should be calculated and
scanned for any peaks.

One question that always arises in discussions of Fourier refinement
is: How good must the trial structure be, or how nearly correct must
the phases be, for the process to converge? This question cannot be
answered precisely. For an ordinary small-molecule structure analysis,
if most of the atoms included are within about 0.3 Å (approximately
half their radius) of their correct sites, then a few that are farther away
and even one or two that may be wholly spurious can be tolerated.
When the initial phases are poor, the first approximations to the electron
density will contain much false detail (as illustrated in Figures 9.8 and
11.1b), together with peaks at or near the correct atomic positions. The
sorting of the real from the spurious is difficult, especially with noncen-
trosymmetric structures; experience, chemical information, and a sound
knowledge of the principles of structural chemistry are all desirable,
and a good deal of caution is essential. A very astute or fortunate crys-
tallographer may be able to recognize portions of a molecule of known



The method of least squares 173

structure in a map produced from an extremely poor trial structure, but
such perspicacity is uncommon.

Most investigators currently view electron-density and difference
maps on a computer screen. There are several mouse-driven three-
dimensional interactive programs such as O (Jones et al., 1991) and
COOT (Emsley and Cowtan, 2004) that show electron densities as three-
dimensional wire-frame entities. These can be rotated by the user to
better view them, and a diagram of a three-dimensional trial structure
can be overlaid on them. Some refinement can even take place at the
computer screen as the trial structure diagram is moved to best fit the
map. When the user is satisfied with the fit, the program will then
generate the atomic coordinates of the new and better position of the
model and these coordinates can be further refined.

The method of least squares

The method of least squares, first used by Legendre (1805), is a common
technique for finding the best fit of a particular assumed model to a set of
experimental data when there are more experimental observations than
parameters to be determined. Parameters for the assumed model are
improved by this method by minimizing the sum of the squares of the
deviations between the experimental quantities and the values of the
same quantities calculated with the derived parameters of the model.
The method of least squares is often used to calculate the best straight
line through a series of points, when it is known that there is an experi-
mental error (assumed random) in the measurement of each point. The
equation for a line may be calculated such that the sum of the squares
of the deviations from the line is a minimum. Of course, if the points,
which were assumed to lie on a straight line, actually lie on a curve
(described very well by a nonlinear equation), the method will not tell
what this curve is, but will approximate it by a straight line as best it
may. It is possible to “weight” the points; that is, if one measurement
is believed to be more precise than the others, then this measurement
may, and indeed should, be given higher weight than the others. The
weight w(hkl) assigned to each measurement is inversely proportional
to its precision, that is, the square of the standard uncertainty (formerly
known as the estimated standard deviation).

The least-squares method has been extended to the problem of fitting
the observed diffraction intensities to calculated ones (Hughes, 1946),
and has been for more than six decades by far the most commonly
used method of structure refinement, although this practice has not
been without serious criticism.** Just as in a least-squares fit of data to a

** These criticisms are based in part on the
fact that the theory of the least-squares
method is founded on the assumption
that the experimental errors in the data
are normally distributed (that is, follow a
Gaussian error curve), or at least that the
data are from a population with finite sec-
ond moments. This assumption is largely
untested with most data sets. Weighting
of the observations may help to alleviate
the problem, but it depends on a knowl-
edge of their variance, which is usually
assumed rather than experimentally mea-
sured. For a discussion of some of these
points, see Dunitz’s discussion of least-
squares methods (Dunitz, 1996).

straight line (a two-parameter problem), the observed data are fitted to
those calculated for a particular assumed model. If we let ƒ|F (hkl)| be
the difference in the amplitudes of the observed and calculated struc-
ture factors, |Fo| − |Fc|, and let the standard uncertainty of the experi-
mental value of Fo(hkl)2 be [1/w(hkl)], then, according to the theory of
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errors, the best parameters of the model assumed for the structure are
those corresponding to the minimum value of the quantity†

† The equations can be formulated with
|F 2| rather than |F |, so that the equation
parallel to Eqn. (11.1) then becomes

Q = �w(hkl)[ƒ|F 2(hkl)|]2

Most crystallographers prefer refinement
that involves F 2 for a variety of reasons,
including ease of refining twinned struc-
tures, calculating weights for the least-
squares refinement, and dealing with
weak Bragg reflections (which may have
negative values of F 2 from the nature of
the measurement process).

Q = �w(hkl)[ƒ|F (hkl)2|]2 (11.1)

in which the sum is taken over all unique diffraction maxima. In an
analysis of the equations that define Fc, the effects of small changes
in the atomic parameters are considered, and changes are found that
will difference between Fo and Fc [and thus the sum in Eqn. (11.1)].
Since even the problem of fitting data to a two-parameter straight line
involves much calculation, this method requires a high-speed, large-
memory computer.

The variable parameters that are used in the minimization of Q in
Eqn. (11.1) normally include an overall scale factor for the experimental
observations; the atomic position parameters x, y, and z for each atom,
j ; and the atomic displacement parameters for each atom, which may
number as many as six.‡ Occasionally, when disorder is present, occu-‡ These six vibration parameters, different

for each atom j , are symbolized in vari-
ous ways (see Chapter 12). Here we rep-
resent them as b11, b22, b33, b12, b23, and
b31, with sometimes an additional sub-
script to denote the atom j . As mentioned
later, more parameters may be needed to
describe the atomic motion in extreme cir-
cumstances.

pancy factors (varying from 0 to 1, and perhaps correlated with those
of other atoms) may be refined for selected atoms. Thus in a general case
there may be as many as (9N + 1) or even a few more parameters to be
refined for a structure with N independent atoms.

If the total number of parameters to be refined is p, then the mini-
mization of Eqn. (11.1) involves setting the derivatives of Q with respect
to each of these parameters equal to zero. This gives p independent
simultaneous equations. The derivatives of Q are readily evaluated.
Clearly, at least p experimental observations are needed to define the p
parameters, but, in fact, since the observations usually have significant
experimental uncertainty, it is desirable that the number of observa-
tions, m, exceeds the number of variables by an appreciable factor. In
most practical cases with three-dimensional X-ray data, m/p is of the
order of 5 to 10, so that the equations derived from Eqn. (11.1) are
greatly overdetermined.

Unfortunately, the equations derived from Eqn. (11.1) are by no
means linear in the parameters, since they involve trigonometric and
exponential functions, whereas the straightforward application of the
method of least squares requires a set of linear equations. If a rea-
sonable trial structure is available, then it is possible to derive a set
of linear equations in which the variables are the shifts from the trial
parameters, rather than the parameters themselves. This is done by
expanding in a Taylor series about the trial parameters, retaining only
the first-derivative terms on the assumption that the shifts needed are
sufficiently small that the terms involving second- and higher-order derivatives
are negligible:

ƒ |Fc| =
∂ |Fc|
∂x1

ƒx1 +
∂ |Fc|
∂y1

ƒy1 + · · · +
∂ |Fc|
∂b33,n

ƒb33,n (11.2)

The validity of this assumption depends on the closeness of the trial
structure to the correct structure. If conditions are unfavorable, and
Eqn. (11.2) is too imprecise, the process may sometimes converge to
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a false minimum rather than to the minimum corresponding to the
correct solution or may not converge at all. Thus this method of refine-
ment also depends for its success on the availability at the start of a
reasonably good set of phases—that is, a good trial structure. Since the
linearization of the least-squares equations makes them only approx-
imate, several cycles of refinement are needed before convergence is
achieved. However, the linear approximation becomes better as the
solution is approached because the neglected higher-derivative terms,
which involve high powers of the discrepancies between the approx-
imate and true structures, become negligible as these discrepancies
become small.

It is often desirable in a least-squares refinement to introduce various
constraints or restraints on the atomic parameters to make them satisfy
some specific criteria, usually geometrical. Constraints are limits on
the values that parameters in a least-squares refinement may take. For
example, they may relate two or more parameters, or may assign fixed
values to certain parameters. As a result they reduce the number of
independent parameters to be refined and are mathematically rigid
with no standard uncertainty. For example, suppose that the structure is
disordered in some way, or that the available diffraction data are of lim-
ited resolution. The individual atomic positions obtained by the usual
least-squares process for some of the atoms will then have relatively
high standard uncertainties and the geometrical parameters derived
from these positions may not be of high significance. If geometrical
constraints are introduced—for example, constraining a phenyl ring to
be a regular hexagon of certain dimensions, or merely fixing certain
bond lengths or bond angles or torsion angles within a particular range
of values—the number of parameters to be refined will be significantly
reduced and the refinement process accelerated. By contrast, restraints
are assumptions that are treated like additional data that need to be
refined against. For example, a phenyl group would be described as an
“approximately regular hexagon” with a standard uncertainty within
which it is supposed to be refined. Constraints remove parameters and
restraints add data.

If the trial model used in a least-squares refinement is incorrect or
partially incorrect, there are almost always indications that this is so.
The discrepancy index R may not drop to an acceptable value, and
the parameters may show certain anomalies. For example, if a false
atom has inadvertently been included in the initial trial structure, it
may move to a chemically unreasonable position, perhaps too close to
another atom, and its temperature factor will increase strikingly to a
value far higher than that normally encountered for any real atom. This
corresponds physically to a very high vibration amplitude—that is, a
smearing of the atom throughout the unit cell, an almost infallible sign
that there is no atom in the actual structure at the position assumed in
the trial structure.

At the conclusion of any least-squares refinement process, it is always
wise to calculate a difference Fourier synthesis. If it is zero everywhere,
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within experimental error, then the least-squares procedure is a reason-
able one. If it is not, and the peaks in it are not attributable to light
atoms that have been left out of the structure factor calculations or to
some other understandable defect of the model, then it is distinctly
possible that the least-squares procedure may have converged to a false
minimum because the initial approximation (the trial structure) was not
sufficiently good. Another plausible trial structure must be sought and
refinement tried again.

The maximum likelihood method

Maximum likelihood estimation is an increasingly commonly
employed statistical method that is used to refine a statistical model
to experimental data, and thereby provide improved estimates of the
parameters of this model (Murshudov et al., 1997; Terwilliger, 2000).
It deals in conditional probability distributions, that is, probabilities
that are conditional upon additional variables, and aims to maximize
their likelihoods. For example, if we know that the probability of data
A is dependent upon model B, we can find the likelihood of model
B given the data A. Stephen Stigler compares maximum likelihood
to the choice that prehistoric men made of “where and how to hunt
and gather,” that is, experience and acute observation which indicates
how best to do something (Stigler, 2007). The likelihood function
for macromolecular structures is proportional to the conditional
distribution of experimental data when the parameters are known.
The conditional probability distributions for each Bragg reflection are
multiplied together and the result is the joint conditional probability
distribution. This includes the experimental data plus any phase
information and any experimental standard uncertainties that may
be available. The aim of the method is to find those values of the
parameters that make the observed data most likely. The necessary
equations are contained in the program REFMAC (Vagin et al., 2004),
which will minimize atomic parameters to satisfy either a maximum
likelihood or a least-squares residual. The method has been used
with great success, and, if the data have been measured to very high
resolution, approaches least squares as a good refinement method.

The correctness of a structure

What assurance is there that the changes suggested by difference maps,
least-squares methods, or maximum likelihood estimations are correct?
Are the suggested changes really improvements that will make the
trial structure more nearly resemble the actual distribution of scatter-
ing matter in the crystal? In fact, if the experimenter is injudicious
or unfortunate, some changes may actually make the model worse,
since an image formed with incorrect phases will always contain false
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detail—for example, peaks that may seem to suggest atoms but that
really arise from errors in the phases. If the model is altered in a
grossly incorrect way (or if it was inadequate in the first place), the
“refinement” process may converge to a quite incorrect solution. What
then are the criteria for assessing the likely correctness of a structure
that has been determined by the refinement of approximate phases?
There are no certain tests, but the most helpful general criteria are
the following. (A number of erroneous structures have been reported
because of inadequate attention to these criteria.)

(1) The agreement of the individual observed structure factor ampli-
tudes |Fo| with those calculated for the refined model should be
comparable to the estimated precision of the experimental mea-
surements of the |Fo|. As stressed in Chapter 6, the discrepancy
index, R [Eqn. (6.9)], is a useful but by no means definitive index
of the reliability of a structure analysis.

(2) A difference map phased with the final parameters of the refined
structure should reveal no fluctuations in electron density greater
than those expected on the basis of the estimated precision of the
electron density.

(3) Any anomalies in the molecular geometry and packing, or other
derived quantities—for example, abnormal bond distances and
angles, unusually short nonbonded intramolecular or intermolec-
ular distances, and the like—should be scrutinized with the great-
est care and regarded with some skepticism. They may be quite
genuine, but if so they should be interpretable in terms of some
unusual properties of the crystal or the molecules and ions in it.

If writers of crystallographic papers have done their work properly,
the information needed for a reader to assess the precision and accuracy
of the reported results will be given. The precision of an experimen-
tal result, usually expressed in terms of its standard uncertainty, is
a measure of the reproducibility of the observed value if the exper-
iment were to be repeated. Accuracy, on the other hand, gives the
deviation of a measurement from the value accepted as true (if that is
known). The standard uncertainties of the various observed results—
distances, angles, and so on—can be estimated by statistical methods,
using as a basis the estimated errors of the prime experimental quan-
tities, the intensities and directions of the diffracted radiation and the
instrumental parameters of the equipment used. The basic assumption
involved in the estimation of standard uncertainties is that fluctuations
in observed quantities are due solely to random errors, which implies
that the fluctuations are about an average value that agrees with the
“true value.” However, it is very important to recognize that there
may be systematic errors, too, arising from failure to correct for various
effects, which may be either known—for example, the effect of absorp-
tion on the intensities—or unknown—for example, inadequacies of the
model because of lack of knowledge of the way in which molecular
motion occurs in the crystal. Uncorrected systematic errors can cause
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the reported values to differ from the “true” values by considerably
more than would be estimated on the basis of the precision; that is, the
accuracy may be low even if the precision is high. As in any experiment,
it is far harder to assess the accuracy than the precision, because many
systematic errors are unsuspected; the best way to detect systematic
errors is to compare many distinct measurements of the quantity of
interest, under different experimental conditions and by different meth-
ods if possible.§§ A classic example of this approach led

to the discovery of the noble gases by
Rayleigh and Ramsey through a compari-
son of highly precise measurements of the
density of nitrogen prepared from vari-
ous pure nitrogen-containing compounds
with that of a sample obtained by fraction-
ation of liquid air.

If the distribution of errors is normal, statistical tables can be used
to assess the probability that one observation or derived quantity is
“significantly” different from another—that is, that the difference arises
not merely from random errors but rather is one that further sufficiently
precise measurements could verify. If two measurements differ from
one another by twice the standard uncertainty (s.u.) of either, the prob-
ability is about 5 percent that the difference between them represents
a random fluctuation; if they differ by 2.7 times the s.u., the proba-
bility is only about 1 percent that the difference represents a random
fluctuation—in other words, there is about 99 percent probability that
they represent two distinct values, which further precise measurements
would verify as being different. It is a matter of taste what one accepts
as being “significantly different”; some people accept the 2 s.u. (or “95
percent confidence”) level, while those who are more conservative may
choose the 2.7 s.u. (or “99 percent confidence”) level, or an even higher
one. Because systematic errors are so difficult to eliminate, the standard
uncertainties calculated on the assumption that only random errors
are present are usually quite optimistic as estimates of the accuracy of
the results, however valuable they may be as measures of precision.
Hence, in comparing results from different studies—for example, in
comparing two bond lengths, or in trying to decide whether a bond
angle is significantly different from that expected on the basis of some
theoretical model—it is usually sound not to regard the difference as
significant unless it is at least three or more times the s.u. For example,
if a bond length is measured to be 1.560 Å with an s.u. of 0.007 Å, it is
probably not significantly different from one measured to be 1.542 Å.

There are several known sources of systematic errors in even the
more precise crystal structure analyses published to date. Most of these
effects are under study in various laboratories and some of the most
careful recent studies take them into account. They include:

(1) Scattering factor curves (uncorrected for thermal motion) are nor-
mally assumed to be spherically symmetrical, which is clearly not
correct for bonded atoms. Extensive studies (both theoretical and
experimental) of this asymmetry, which is detectable only in the
most precise work, are now under way.

(2) The motions of some molecules in crystals are very complicated,
and the usual ellipsoidal approximation for the motion of each
atom may be a considerable oversimplification, especially if the
motion is appreciable. Furthermore, in some crystals the corre-
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lated motions of molecules in different unit cells—so-called “lat-
tice vibrations”—may give rise to appreciable “thermal diffuse
scattering” (e.g., streaks extending out from the usual Bragg dif-
fraction peaks). Correction must be made for such effects in the
most precise work.

(3) Many errors that can in principle be eliminated—for example,
those arising from absorption or instrumental effects—may not
have been properly taken into account.

(4) Sometimes the diffracted beam is rediffracted in the crystal when
two planes are in a position to “reflect” simultaneously. This can
give rise to significant errors in measurements of intensities.

Failure to correct for systematic errors may occur because the errors
are regarded as minor and the corrections too complicated to be worth-
while, because an appropriate method of correction is not known, or
because the source of error is overlooked. A critical reader will seek
to discover what the author has done about known sources of system-
atic errors. Of course, it takes experience to assess the likely effects of
having ignored some of them. Because of the ever-present possibility
of systematic errors in even the most careful work, it is usually unwise
to regard measured interatomic distances in crystals as more accurate
than to the nearest 0.01 Å, although the stated precision may be as low
as 0.001 Å. An exception is the now relatively unusual circumstance
that the distance involves no parameters at all other than the unit-
cell dimensions, for example, the Na+ to Cl− distance in NaCl or the
C-C distance in diamond, each of which can be measured accurately
to better than 0.001 Å at any given temperature. However, even when
an interatomic distance is known with high precision and apparent
accuracy, it must always be remembered that it represents only the
distance between the average positions of the atoms as they vibrate
in the crystal. For substances such as rock salt, the root-mean-square
amplitude of vibration of the atoms at room temperature is 0.08 Å, and
for organic molecules it is larger by a factor of two or three.

Summary

Since there are so many measured reflections (50 to 100 or more per
atom in precise structure determinations), the “trial structure” para-
meters, representing atomic positions and extents of vibration, may
be refined to obtain the best possible fit of observed and calculated
structure factors.

Difference Fourier methods

Either electron-density or difference electron-density maps may be cal-
culated, the latter being especially useful in the later stages of refine-
ment. A peak in a difference map indicates too little scattering matter
in the trial structure, a trough too much. For example, if a hydrogen



180 Refinement of the trial structure

atom is left out of a trial structure, a peak will show where the atom
must lie in the corrected trial structure. In general a model is adjusted
appropriately to give as flat a final difference map as possible; this
map should ideally be zero everywhere, but fluctuations will occur as a
result of experimental uncertainties or inadequacies of the model used.

Least-squares/maximum likelihood methods

In any crystal structure analysis there are many more observations than
parameters to be determined. The best parameters corresponding to
some assumed model of the structure are found by minimizing the
sum of the squares of the discrepancies between the observed values
of |F | (or |F |2) and those calculated for an appropriate trial structure
(or a partially refined version of it). Maximum likelihood methods are
now increasingly used for structure refinement. These two methods of
refinement have only been practicable for three-dimensional data since
the advent of high-speed computers.

The correctness of a structure

All the following criteria should be applied:

(1) The agreement of individual structure factor amplitudes with
those calculated for the refined model should be consistent with
the estimated precision of the experimental measurements of the
observations.

(2) A difference map, phased with final parameters for the refined
structure, should reveal no fluctuations in electron density greater
than those expected on the basis of the estimated precision of the
electron density.

(3) Any anomalies in molecular geometry or packing should be scru-
tinized with great care and regarded with some skepticism.
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The results of an X-ray structure analysis are coordinates of the indi-
vidual, chemically identified atoms in each unit cell, the space group
(which gives equivalent positions), and displacement parameters that
may be interpreted as indicative of molecular motion and/or disorder.
Such data obtained from crystal structure analyses may be incorporated
into a CIF or mmCIF (Crystallographic Information File or Macromolec-
ular Crystallographic Information File). These ensure that the results of
crystal structure analyses are usefully archived. There are many checks
that the crystallographer can make to ensure that the CIF or mmCIF
file is correctly informative. For example, the automated validation
program PLATON (Spek, 2003) checks that all data reported are up
to the standards required for publication by the International Union
of Crystallography. It does geometrical calculations on the structure,
illustrates the results, finds if any symmetry has been missed, inves-
tigates any twinning, and checks if the structure has already been
reported. We now review the ways in which these atomic parameters
can be used to obtain a three-dimensional vision of the entire crystal
structure.

Calculation of molecular geometry

When molecules crystallize in an orthorhombic, tetragonal, or cubic
unit cell it is reasonably easy to build a model using the unit-cell
dimensions and fractional coordinates, because all the interaxial angles
are 90◦. However, the situation is more complicated if the unit cell
contains oblique axes and it is often simpler to convert the fractional
crystal coordinates to orthogonal coordinates before calculating molec-
ular geometry. The equations for doing this for bond lengths, interbond
angles, and torsion angles are presented in Appendix 12. If the reader
wishes to compute interatomic distances directly, this is also possible if
one knows the cell dimensions (a , b, c, ·, ‚, „), the fractional atomic coor-
dinates (x, y, z for each atom), and the space group. For example, the
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square of the distance between two points (x1, y1, z1) and (x2, y2, z2) is

l2 = [(x1 − x2)a ]2 + [(y1 − y2)b]2 + [(z1 − z2)c]2

−[2ab cos „(x1 − x2)(y1 − y2)] − [2ac cos ‚(x1 − x2)(z1 − z2)]

−[2bc cos ·(y1 − y2)(z1 − z2)]

= [�x a ]2 + [�y b]2 + [ƒz c]2 − [2ab cos „�x �y]

−[2ac cos ‚�x �z] − [2bc cos ·�y �z] (12.1)

where �x = x1 − x2, and so forth. This provides an equation for
calculating a bond length or other type of interatomic interaction. If
the three distances between atoms A, B, and C, where AB = l1, AC = l2,
BC = l3, are known, then the angle B–A–C = ‰ may be calculated with
the law of cosines,

cos ‰ =
l2
1 + l2

2 + l2
3

2l1l2
(12.2)

These two equations [Eqns. (12.1) and (12.2)] are used for most
of the preliminary information necessary for analyzing a crystal
structure.

Some illustrations of results from some very simple crystal structure
studies are shown in Figures 12.1–12.3. For example, sodium chloride,
NaCl (Figure 12.1), crystallizes at room temperature in the space group
F m3m, a face-centered cubic space group, and the unit-cell dimension
is a = 5.6402(2) Å; the 2 in parentheses is a measure of the standard
uncertainty in the last place quoted, so that it could be read as a =
5.6402 ± 0.0002 Å. Since this crystal structure involves a sodium ion
at the origin (x = y = z = 0.0) and a chloride ion at 1/2, 0, 0, each ion is
surrounded by six of the opposite type so that there is no significant
buildup of charge (positive or negative) in the crystal. It can be read-
ily calculated that the nearest distance between cations and anions is
2.82 Å. Integration of the experimental electron densities of Na and Cl,
assuming that the minimum of electron density between them defines
the edge of each atom or ion, shows that they are ions rather than
atoms (see Dunitz, 1996). Potassium chloride has a similar structure
in a unit cell with a = 6.2931(2) Å and therefore a K+. . .Cl− distance of
3.15 Å. On the other hand, cesium chloride has a cubic unit cell with a
cesium ion at the origin and a chloride ion in the center of the cell at
x = y = z = 1/2 to give a primitive unit cell (not a body-centered unit cell,
because the atoms at the origin and the center of the unit cell are different),
so that the space group is primitive, Pm3m. Since the unit-cell edge is
a = 4.120(2) Å, the Cs+. . .Cl− distance is 4.120 × (

√
3)/2 = 3.57 Å. Iron

pyrite, FeS2 (Figure 12.2), also crystallizes in a cubic unit cell, space
group Pa3, a = 5.4175(5) Å, with an iron atom at the origin and a sulfur
atom at x, x, x, where x = 0.39. Iron atoms are shown in black in this
figure, with Fe–S distances of 3.05 Å. Sulfur atoms are speckled, and
S–S bonds that are about 2.06 Å in length are illustrated in this figure
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Fig. 12.1 Crystal structure of sodium chloride.

Sodium chloride (Na+ black, Cl− stippled circles) (Bragg, 1913).
4Na+ at 0, 0, 0; 0, 1/2, 1/2; 1/2, 0, 1/2; 1/2, 1/2, 0 and 4Cl− at 1/2, 0, 0; 0, 1/2, 0; 0, 0, 1/2; 1/2, 1/2, 1/2.

with black bonds. Diamond, shown in Figure 12.3, crystallizes in a cubic
unit cell, a = 3.5597 Å, space group Fd3m, with eight carbon atoms per
unit cell (Bragg and Bragg, 1913). The crystal structure clearly show
the tetrahedral surroundings of each carbon atom and the result is the
hardest mineral known. The nearest neighbor to an atom at the origin is
the atom at x = y = z = 1/4, so that the C–C distance is 3.5597 × (

√
3)/4 =

1.541 Å, the C–C–C bond angle is 109.5◦, and the C–C–C–C torsion
angles are 60◦ or 180◦ depending on which carbon atom is chosen as the
fourth (see equations in Appendix 12). Approximate atomic and ionic
radii for many common ions in crystals have been derived from data
such as these. There is always an element of arbitrariness in assigning
radii, and no set is completely consistent, because ions are not “hard
spheres,” their effective radii varying somewhat with environment.
Some typical values, however, are: Na+, 0.95–1.17 Å; K+, 1.33–1.49 Å;
Cl−, 1.64–1.81 Å; F−, 1.16–1.36 Å (Frausto da Silva and Williams, 2001;
Brown, 2006). A general analysis of ionic crystals was written by Linus
Pauling in 1929, in which he showed how charged groups congregate
in a crystal and aim to stay distant from hydrophobic groups (Pauling,
1929).

Fig. 12.2 Crystal structure of iron pyrite.

Iron pyrite (fool’s gold), FeS2 (Fe black,
S stippled). Space group Pa3, unit-cell
dimensions a = 5.417 Å (Bragg, 1913).

4Fe at 0, 0, 0; 0, 1/2, 1/2; 1/2, 0,
1/2; 1/2, 1/2, 0 (as Na+ in NaCl); 8S
at ±(x, x, x; 1/2 + x, 1/2 − x, −x; −x, 1/2 + x,
1/2 − x; 1/2 − x, −x, 1/2 + x; where x = 0.39).

Of course, much more complicated structures than those illustrated
in Figures 12.1–12.3 are now being studied, and the amount of infor-
mation on bond lengths and the environments of various chemical
groupings is escalating. Examples of historical interest include the
phthalocyanines (Robertson, 1936), the boron hydrides (Lipscomb,
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1954), vitamin B12 (Hodgkin et al., 1957), myoglobin (Kendrew et al.,
1960), hemoglobin (Perutz et al., 1968; Perutz, 1976), lysozyme (Phillips,
1966), and tobacco mosaic virus (Stubbs et al., 1977). Data on the results
of X-ray and neutron diffraction studies on crystal structures of small
and medium-sized molecules containing at least one carbon atom are
available on the Cambridge Structural Database (CSD). This database
is maintained by the Cambridge Crystallographic Data Centre in Cam-
bridge, England, founded by Olga Kennard (Allen, 2002). Data files are
also available on other types of crystal structures, including inorganic
structures (the Inorganic Crystal Structure Database, ICSD) (Bergerhoff
and Brown, 1987) and proteins (the RCSB Protein Data Bank) (Bernstein
et al., 1977; Berman et al., 2003). A search of the World Wide Web will
show the reader that there are many other crystallographic databases
available and many computer-based methods of extracting structural
information from them.

Fig. 12.3 Crystal structure of diamond.

The crystal structure of diamond, show-
ing three-dimensional bonding through-
out the crystal (Bragg and Bragg, 1913).
This three-dimensional structure accounts
for its hardness.

C at 0, 0, 0; 0, 1/2, 1/2; 1/2, 0, 1/2; 1/2, 1/2, 0;
1/4, 1/4, 1/4; 1/4, 3/4, 3/4; 3/4, 1/4, 3/4; 3/4, 3/4, 1/4.

Molecular conformations

The torsion angles in a molecular structure are frequently of interest
(see Appendix 12). These are a measure of the amount of twist about
a bond and are defined, for a bonded series of four atoms (A–B–C–
D), as the angle of rotation about a bond B–C needed to make the
projection of the line B–A coincide with the projection of the line C–
D, when viewed along the B–C direction. The positive sense is clock-
wise for this rotation. Thus the torsion angle is a representation of the
structure viewed so that the atom C is completely obscured by atom
B, as shown in Figure 12.4. A chain of methylene (–CH2–) groups will
generally have a staggered conformation so that torsion angles are 180◦

for C–C–C–C and 60◦ for C–C–C–H or H–C–C–H. The torsion angle
is actually independent of the direction of view; that is, the A–B–C–D
torsion angle equals the D–C–B–A torsion angle. However, for a pair
of enantiomers (mirror images) the torsion angles of equivalent sets of

A

Clockwise Counterclockwise

A

+q

q

-q

A

B,C B,C

B C

D

D
D

Fig. 12.4 Torsion angles.

Torsion angles measure the amount of twist about a chemical bond. For four bonded
atoms A–B–C–D, the torsion angle about the central B–C bond is the extent to which the
A–B bond has to be rotated clockwise so that it will eclipse the C–C bond.
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Fig. 12.5 Torsion angles in the isocitrate ion.

The isocitrate ion (see Figure 10.6b), showing some relevant torsion angles.

atoms have opposite signs (Figure 12.4, compare the two diagrams on
the right of this Figure). An example of torsion angles in a structure
is shown in Figure 12.5. Many studies of molecular structures involve
lists of torsion angles because these angles can indicate similarities (or
significant variations) in conformation (for example in sugars and in
steroids). Another very useful calculation is that of the least-squares plane
through a group of atoms in a molecule. Such planes can be used points
of reference in describing the rest of the molecule, particularly when the
shapes of molecules are being compared.

Intermolecular interactions

If one wishes to determine intermolecular distances (that is, distances
between atoms in different molecules), then space-group symmetry
information aids the calculations. The results are particularly useful
for investigating the presence of hydrogen bonds and also for checking
whether two molecules are unusually close to each other (an indication
either of an unexpected intermolecular interaction or of an incorrect
structure). For example, if the compound crystallizes in the space group
P212121, then, by use of Eqn. (12.1) and the information in Figure 7.6,
the distance may be calculated, for example, between one atom at x1,
y1, z1 and another at 1/2 − x2, 1 − y2, 1/2 + z2 (where x1, y1, z1 and x2,
y2, z2 are the coordinates of two atoms in one molecule). Systematic
calculations of distances and angles are now done almost entirely by
computer programs, which search for all distances (intramolecular and
intermolecular) within a selected range (in Å) around each atom in a
chosen molecule. Analysis of intermolecular packing has, in several
instances, led to an improved understanding of molecular interactions
(see, for example, Bürgi et al., 1973; Kitaigorodsky, 1973; Rosenfield,
1977; Brown, 1988).
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Benzene, for example, has been studied in the crystalline state at
−3◦ C and by neutron diffraction at −55◦ C, −135◦ C, −150◦C, and
−258◦C (because it is a liquid at room temperature) (Cox and Smith,
1954; Bacon et al., 1964; Jeffrey et al., 1987). The last two neutron studies
were done on deuterobenzene, C6D6. The structure is illustrated in
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Fig. 12.6 Crystal structure of benzene.

Benzene, space group Pbca, a = 7.44, b =
9.55, c = 6.92 Å. Atoms at ±{x, y, z; 1/2 + x,
1/2 − y, −z; −x, 1/2 + y, 1/2 − z; 1/2 − x, −y,
1/2 + z}

Atom x y z

C(1) −0.0569 0.1387 −0.0054
C(2) −0.1335 0.0460 0.1264
C(3) −0.0774 −0.0925 0.1295
H(1) −0.0976 0.2447 −0.0177
H(2) −0.2409 0.0794 0.2218
H(3) −0.1371 −0.1631 0.2312

The asymmetric unit is indicated by black
atoms (Cox and Smith, 1954; Bacon et al.,
1964).

Figure 12.6. The crystals are orthorhombic, space group Pbca, with cell
dimensions a = 7.44, b = 9.55, and c = 6.92 Å, and with half of a mole-
cule (in black) in the asymmetric unit. Atomic coordinates are listed
in the caption to this figure, which shows the molecular packing. The
average C–C bond is 1.390 Å and the average C–H bonds are 1.07 Å in
length. As shown in the figure, one hydrogen atom of one molecule
points toward the π-electron system of the aromatic ring of a neighbor-
ing molecule. This kind of C–H. . . π-electron interaction occurs in many
crystal structures of aromatic compounds.

Precision

All the quantities listed in a structure analysis (bond lengths, inter-
bond angles, torsion angles, and least-squares planes) have errors that
result from experimental errors in the diffraction measurements (see
Chapter 4). Furthermore, the atomic scattering model used is not an
exact representation of the electron density, merely the sum of ellip-
soidal electron densities around each atomic nucleus. Estimates of
errors, including those of unit-cell dimensions, may be made from least-
squares refinements of the appropriate data, and their values can be
used to assess the standard uncertainties in bond lengths, bond angles,
and torsion angles. Unsuspected systematic errors may also be present.

As pointed out in Chapter 11, it is always necessary to quote a
standard uncertainty with any computed geometrical quantity.* The

* Dunitz (1996) has an extensive discus-
sion of calculations of standard uncertain-
ties of derived quantities, including the
need for taking correlations between dif-
ferent parameters into account.

standard uncertainty of a bond length is a function both of the precision
in measurement of |F (hkl)| values (expressed in the R value) and of
the relative atomic numbers of the various atoms in the structure. For
example, the standard uncertainty of a C–C bond in a structure contain-
ing only carbon and hydrogen atoms may be 0.002 Å for an R value of
0.05, but can increase to 0.02 Å or more for a structure with R = 0.05 that
contains a heavy atom.

Atomic and molecular motion and disorder

The extent of atomic motion from vibration and/or disorder of each
atom in a structure can also be measured.** However, before deriving

** The name “temperature factor” has per-
sisted to denote the constants in the expo-
nential factors in Eqns. (12.3) and (12.4),
despite the fact that it has long been recog-
nized that vibrations persist at low tem-
peratures, and that a static disorder may
simulate a dynamic one if studies are
made only at a single temperature. We use
“displacement factor” here in recognition
of this problem, that is, that the factor may
represent thermal motion and/or disor-
der of the atom involved (Trueblood et al.,
1996).

their values it is important that absorption and other factors that affect
the intensity distribution be taken into account; otherwise the parame-
ters will not be a true representation of atomic motion or disorder.

The effect of the vibration of atoms in crystals on the scattering
of X rays by these atoms has been discussed in Figure 5.4 and the
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accompanying text. The simplest assumption that can be made is that
the motion of each atom is the same in all directions; that is, that the
motion is isotropic. The decrease of scattering intensity that results
from this motion then depends only on the scattering angle and not
on the particular orientation of the crystal with respect to the incident
X-ray beam. As indicated in Figure 5.4c, such isotropic motion causes
an exponential decrease of the effective atomic scattering factors as the
scattering angle, 2Ë, increases. The scattering factor for an atom at rest,
f , is replaced by

f e−Biso[(sin2 Ë)/Î2] (12.3)

Biso is related to the average of the square of the amplitude of vibra-
tion, <u2>, by Biso = 8π2 <u2>∼= 79 <u2>. For a typical B value of
around 4 Å

2
(for an atom in an organic molecule at room temperature),

this means that <u2> is about 0.05 Å
2
, and the root-mean-square vibra-

tion amplitude, <u2>1/2, is then around 0.22 Å. At liquid nitrogen tem-
peratures (near 100 K), B values are typically reduced by a factor of 2 or
3 from those at room temperature, and the root-mean-square amplitude
will then be of the order of 0.15 Å. Atomic displacement parameters
can be used to establish atomic type if the chemical formula of the
compound under study is not known. This was true for the azidopurine
that was used to demonstrate resolution in Figure 6.6 (Glusker et al.,
1968). When the structure was refined with all atoms as carbon atoms
it was found that the atomic displacement factors were lower for the
nitrogen atoms, so that the chemical formula was thereby established.

However, it is clear that the approximation of isotropic motion is
a poor one for atoms in most crystals, because the environments of
these atoms are far from isotropic. The increasing availability of high-
speed computers during the last three decades has made it worth-
while to attempt to collect precise intensity data and to analyze these
data for relatively subtle effects, such as more complicated patterns of
atomic and molecular motion. The next simplest approximation after
isotropic motion is to assume that the motion is ellipsoidal—that is,
that it can be described by the six parameters of a general ellipsoid
rather than the single parameter characteristic of a sphere. These six
parameters define the lengths of three mutually perpendicular axes
describing the amount of motion in these directions, and the orientation
of these ellipsoidal axes relative to the crystal axes. Figure 12.7 illus-
trates this representation of atomic motion in a portion of the structure
of sodium dihydrogen citrate. This diagram was drawn with the com-
puter program ORTEP (Johnson, 1965), which automatically generates
stereoscopic images of molecules and represents the molecular motion
by ellipsoids. These “thermal ellipsoids,” calculated from the atomic
displacement factors, show the amount that an atom is displaced in a
given direction (indicated by the shape of the ellipsoid, a cigar shape
indicating much motion or displacement). The ellipsoid also indicates
the direction of maximum motion. The plot of ellipsoids is made at a
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Fig. 12.7 Anisotropic molecular motion.

The anisotropic motion of atoms is usually described by “thermal ellipsoids,” as in this example, taken from a study of the structure
of sodium dihydrogen citrate and drawn with the program ORTEP (Johnson, 1965). Two complete dihydrogen citrate ions and two
sodium ions are shown, grouped around a center of symmetry in the middle of the figure. Two atoms [O(5) and O(2)] of each of two
other dihydrogen citrate ions are also shown. In order to simplify the figure, hydrogen atoms are not drawn, but their positions are
labeled and the bonds to them are displayed. The thick lines represent covalent bonds; the thin ones denote coordination interactions
of oxygen atoms with the sodium ion. The “thermal motion ellipsoids,” calculated from the displacement factors, are drawn at 67%
of the probability density function for each atom. The three numbers near each of the ellipsoids in the right half of the drawing
indicate the root-mean-square displacements (Å) along the three principal axes of that ellipsoid. The anisotropy of the motion is very
evident for some of the atoms, especially for those at the ends of the ion; for these peripheral atoms, the motion is always greatest in
directions perpendicular to the bonding direction. This result is just what one would expect, and thus is evidence for the reality of this
interpretation of the diffraction data. (From Glusker et al. (1965), p. 564, Figure 2.)

selected percentage of the probability density function for the electron
density of each atom, that is, the probability of finding an electron in
a defined volume of the crystal. It is noteworthy that both the degree
of anisotropy and the extent of atomic motion itself vary in different
parts of the citrate ion, being greatest for some of the peripheral atoms,
such as O(2).

The usual way of taking this kind of ellipsoidal motion into account
in the structure factor equations is by means of an anisotropic exponen-
tial factor analogous to that in Eqn. (12.3), with six anisotropic vibration
parameters, bi j (with superscripts in their labels), as multipliers of the
indices for each reflection hkl in the exponent, thus:

e−(b11h2+b22k2+b33l2+b12hk+b23kl+b31hl) (12.4)

Increasingly, anisotropic vibration parameters are reported as compo-
nents of a symmetric tensor, U, rather than as b values, because the
latter are dimensionless and their magnitudes cannot be related to
vibration amplitudes without taking the cell dimensions into account.
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The relation between the Ui j and bi j values is simple:

Uii = bii/2π2a∗2
i , Ui j = bi j/4π2a∗

i a∗
j (i = j) (12.5)

The mean square vibration amplitude in any direction, specified by
the cosines l of the angles this direction makes with reciprocal axes, is
given by

〈u2〉 = U11l2
1 + U22l2

2 + U33l2
3 + 2U12l1l2 + 2U23l2l3 + 2U31l3l1 (12.6)

The anisotropic vibration parameters bi j or Ui j differ from atom to atom
in a structure. The effect of temperature is illustrated in the ellipsoids in
Figure 12.8. At the lower temperature, the atoms fill less space.

92 k

239 k

Fig. 12.8 Root-mean-square displacemen-
ts at two different temperatures.

Two views of napththalene, measured
with X rays at 92 K (upper diagram) and
239 K (lower diagram). Note the smaller
root-mean-square displacements of the
atoms at the lower temperature.

(From Brock and Dunitz (1982). Pho-
tograph courtesy C. P. Brock and J. D.
Dunitz).

This ellipsoidal description of atomic motion is a convenient one for
computation, unlike more complex models that may be more realistic
physically, and it has proved adequate for most structure analyses to
date. It is, however, clear that the motions of atoms in crystals may fre-
quently be more complicated; for example, the atoms may move along
arcs rather than straight lines, or under the influence of an anharmonic
potential function that is steeper on one side of the equilibrium position
than on the other. Analysis of such motion requires the best possible
data and more complete equations describing the motion (Johnson,
1969). One needs to beware of possible problems; for example, appre-
ciable uncorrected absorption errors in a crystal of irregular shape may
be compensated for by spurious anisotropy of motion of some atoms
in the structure. However, by suitable choice of radiation and crystal
size and shape, such absorption errors can be minimized or corrected
for, and the reality of derived anisotropies of atomic motion in many
structures has been firmly established.

Rigid-body motion

Some molecules may be regarded as nearly rigid bodies, which implies
that when they move the relative positions of all atoms (and conse-
quently all interatomic distances) remain constant. The motion may
thus be considered to be motion of the molecule as a whole. This
is clearly only an approximation, because there are always “inter-
nal” vibrations—motion of an atom in the molecule relative to its
neighbors—but in many crystals the overall motion of the molecules (or
ions) is far greater than the internal vibrations. Analysis of the individ-
ual anisotropic thermal parameters of molecules in crystals sometimes
reveals striking patterns of molecular motion, which can frequently
be correlated with the shape of the molecule and the nature of its
surroundings in the crystal. The molecular motion may, in general,
be described in terms of three components: a translational motion
(vibration along a straight-line path), a librational motion (vibration
along an arc), and a combination of translation and libration that may
be regarded as vibration along a helical path (Schomaker and True-
blood, 1968; Dunitz et al., 1988). Libration is shown in Figure 12.9.
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Fig. 12.9 Libration.

Libration causes apparent but not real bond shortening. The movement of the librating
atom takes the form of an arc. This is, however, introduced into the structure as an
ellipsoid with the result that the bond appears to be shorter, as shown.

Some molecules that are not completely rigid may be composed of
segments that are themselves rigid, coupled together in a nonrigid
way—for example, molecules such as biphenyl and its derivatives, with
appreciable torsional oscillation about the inter-ring bond, or torsional
oscillation of the methyl groups in durene (1,2,4,5-tetramethylbenzene).
Methods have been developed for analysis of internal torsional motion
and similar motions in many molecules, and it has been possible to
obtain, from diffraction data, rough estimates of force constants for and
barriers to such motions. Since bond-stretching vibrations are small,
it was noted by Fred Hirshfeld that a bond length should not change
much even if the two atoms composing it are vibrating. This means
that the two atoms should move in synchrony along the direction of
the bond, but not necessarily in other directions (Hirshfeld, 1976); the
anisotropic displacement factors should reflect this condition. This is
shown (especially at the higher temperature) in Figure 12.8.

One important consequence of librational motion is that intra mole-
cular distances appear to be somewhat foreshortened, especially for
distances that are perpendicular to axes about which there is appre-
ciable librational motion. This is shown in Figure 12.9. Approximate
corrections to intramolecular distances are not hard to make if the
pattern of motion is known, but with molecules that are not rigid,
the corrections are not themselves precise, and consequently the cor-
rected distances cannot be. This is an example of a systematic error
that can make the accuracy of a derived result considerably poorer than
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would be implied by a statistical analysis based on the assumption that
only random errors were present. Only wide limits can usually be put
on intermolecular distances if there is appreciable molecular motion,
because the correlation (if any) of the motion of one molecule with that
of its neighbors is unknown.

Neutron diffraction

In many ways neutron and X-ray diffraction complement each other,
since they involve different phenomena. Neutrons are scattered by
nuclei (or any unpaired electrons present, the magnetic moment of
the electron interacting with that of the neutron). Although there have
been a few studies of the distribution of unpaired electrons (e.g., in
certain orbitals of selected transition metal ions), such applications have
been rare, and in most crystal diffraction studies with neutrons, all
electrons are paired and the scattering of the neutrons is essentially
by the nuclei present. X rays, on the other hand, are scattered almost
entirely by the electrons in atoms. Hence, if the center of gravity of the
electron distribution in an atom does not coincide with the position
of the nucleus, atomic positions determined by the two methods will
differ. Such differences are particularly noticeable for the positions of
hydrogen atoms, unless X-ray data have been collected to an usually
high angle corresponding to a sin Ë/Î of near 1.2, nearly twice as great
as usual (and thus corresponding to nearly eight times as many data, if
all reflections are collected). One disadvantage of neutron diffraction is
that larger crystals are needed than for X-ray structure analysis in order
to get sufficient diffraction intensity with the neutron flux available
from the present reactors. In order to collect data on myoglobin, a
crystal with minimum dimensions of 2 mm was needed. One advantage
of neutrons is that they do not cause as much radiation damage as
do X rays.

The amount of scattering by nuclei does not vary much (or in any
regular way) with atomic number. This fact may be used to clear up
some ambiguities in an X-ray study. Typical scattering-factor data for
X rays and neutrons are listed in Appendix 5. Hydrogen has a neg-
ative† scattering factor for neutrons (as shown in Figure 12.10 and † If a nucleus has a negative scattering fac-

tor, the radiation scattered by that nucleus
differs in phase by 180◦(cos 180◦ = −1)
from the radiation that would be scattered
from a nucleus that has a positive scat-
tering factor and is situated at the same
position.

Appendix 5) while deuterium has a positive one, both quite high, so
that these two isotopes may readily be distinguished; as far as X rays
are concerned, they are identical (Peterson and Levy, 1952). Neutron
diffraction can thus be useful in studying the structures of reaction
products that have been labeled with deuterium. It is also possible
with neutrons to distinguish atoms with nearly the same atomic num-
ber that cannot readily be distinguished with X rays (for example,
Fe, Co, and Ni), because their scattering power for neutrons may be
very different. Atomic positions for hydrogen or deuterium may be
determined as accurately as those for uranium and many other heavy
atoms. This is a particularly important advantage of neutron diffraction
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Fig. 12.10 Projection of the neutron scattering density for crystalline benzene.

Positive density (mainly at carbon atom positions) is indicated by full lines; negative density (mainly at hydrogen atom positions) by
broken lines. The unlabeled hydrogen atoms are parts of other benzene molecules. The ring plane is not perpendicular to the direction
of the projection; thus the ring does not appear as a regular hexagon. The deeper trough at H1 and H′

1 results from the fact that there
are two hydrogen atoms superimposed on each other at these positions in this projection.

(Figure courtesy of Dr. G. E. Bacon.)

studies. There may also be anomalous scattering with neutrons, as with
X rays. Since nuclei are extremely small relative to the usual neutron
wavelengths, which are about 1 Å, the intensity of neutrons scattered
from a stationary nucleus would not decrease markedly at high angles,
as it would for X rays. Atomic vibrations, even at low temperature,
will, however, cause a decrease of intensity at high angles, as with
X rays (Figure 5.4).

The combined use of neutron and X-ray diffraction to solve a bio-
chemical problem is illustrated by the analysis of the structure of
lithium glycolate (Johnson et al., 1965). Deuterated glycolic acid, HO–
CHD–COOH, was prepared biochemically and the structure of the
lithium salt determined by X-ray diffraction methods. Since hydrogen
and deuterium have the same atomic number they were each located
but could not be distinguished by this X-ray method. Crystals of the
lithium salt were prepared using lithium hydroxide enriched with
the isotope of atomic weight 6. It was then possible to determine
the absolute configuration of the lithium salt by neutron diffrac-
tion because the scattering amplitude of 6Li is anomalous to neu-
trons (0.18 + 0.025i × 10−12 cm) and the scattering amplitudes of hydro-
gen and deuterium (−0.378 and +0.65 × 10−12 cm, respectively) are so
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different. This then identified which hydrogen in the molecule was
H and which was D and also established the absolute configuration
of this glycolate stereoisomer that is acted on by the enzyme lactate
dehydrogenase.

Studies of proteins can yield a wealth of structural information
because deuterium and hydrogen can be distinguished, and therefore
the ionization state of the functional groups in a protein can be found.
If the conditions, such as the pH of the crystallization medium, are
changed, then the effect of the change on these ionization states will
be helpful in understanding how an enzyme accommodates to sub-
strate or inhibitor binding and how hydrogen atoms move throughout
the active site. For example, a lysine group may have two or three
hydrogen atoms attached to its terminal nitrogen atom; both situations
have been seen in neutron studies of the enzyme xylose isomerase
(Katz et al., 2006).

Deformation density and difference
density studies

The disposition of the electron density in a molecule is of particu-
lar interest to chemists since it provides information on what keeps
the atoms together in a molecule. The valence-electron scattering of
X rays is mainly concentrated in Bragg reflections with low sin Ë/Î

values. In order to view the valence-electron density by means of
difference electron-density maps, it is necessary to obtain precise and
unbiased positional and temperature parameters; this requires high-
order data, for which the spherical-atom approximation is more closely
valid. When diffraction data are measured to the maximum scattering
angles for shorter-wavelength X rays, such as MoKα radiation (Î =
0.7107 Å) or, even better, AgKα radiation (Î = 0.5609 Å), and especially
when measurements are made at low temperatures, a large number
of experimental data result and the structure perceived in the X-ray
experiment—that is, the electron density—is seen at much higher reso-
lution; atoms are therefore located with very high precision.

Some information on the detailed electron distribution in molecules
may be obtained by high-resolution X-ray diffraction studies, partic-
ularly if the results are combined with neutron diffraction studies. It
is possible to look at bonding effects that occur when atoms combine
to form molecules. For example, a “deformation density” map may
be obtained by calculating the difference electron density between the
experimental map and that calculated from the “promolecule” electron
density obtained from a model consisting of spherical atoms. This and
the other maps described here are affected by the precision of the
data used to obtain them and the correctness of the proposed struc-
tures. Superpositions that involve computing either an “X − X” map
(a difference map using atomic positions from an analysis of only the
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high-order X-ray diffraction data) or an “X − N” map (a difference map
using atomic positions from a neutron diffraction analysis, and hence
atomic nuclear positions) are used to examine the differences between
the map from experimental data and that from the promolecule. There
are some differences in results from X-ray and neutron studies, and
therefore the same displacement parameters (generally from the neu-
tron structure) are used with both the X-ray and neutron atomic coor-
dinates. It has already been pointed out that X-ray diffraction studies
give information on the electron density throughout the crystal while
neutron diffraction studies give information on atomic nuclei. Therefore
the difference between the two maps obtained will contain peaks in
positions expected for bonding electrons and for lone pairs of electrons.
For several molecules that have been studied (e.g., oxalic acid), quite
good agreement exists between the experimental deformation density
and a theoretical one, provided the latter model is sufficiently sophis-
ticated [i.e., an extended basis set is used in the theoretical calcula-
tion (Pople, 1999)]. For example, the centroid of the electron density
of a hydrogen atom is displaced from the nucleus (defined by neu-
tron data) toward the atom it is linked to, as expected for chemical
bonding. The future of this area of analysis is bright (Coppens, 1997;
Dittrich et al., 2007).

Summary

Molecular geometry

This may be computed from the unit-cell dimensions and symmetry
and the values of x, y, and z for each atom that have been derived
from electron-density maps or by least-squares methods. Bond lengths,
interbond angles, torsion angles, least-squares planes through groups
of atoms, and the angles between such planes give much useful chem-
ical information. It is common for crystal structures to be displayed in
publications as stereopairs.‡‡ Such stereodiagrams can be viewed with

stereoglasses or the reader can focus on
the two images until an image between
them begins to form. The reader should
allow his/her eyes to relax until the
central image becomes three-dimensional.
This process requires patience and may
take 10 seconds or more.

Atomic and molecular motion and disorder

The fall-off in intensity with increasing scattering angle becomes more
pronounced with increasing vibrations of atoms. Atomic vibration
itself becomes greater as the temperature of the specimen rises. For
spherically symmetrical motion, the reduction in intensity is simply
represented by an exponential, e−2Biso[(sin2 Ë)/Î2]. Thermal motion is fre-
quently represented by more sophisticated models, such as an ellip-
soid. Atomic disorder can also provide intensity fall-off. With both
atomic vibration and disorder the effective size of the atom, which is
an average of all such atoms in the crystal, appears to be increased
in volume while keeping the same number of electrons within that
volume.
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Neutron diffraction

Neutrons are scattered by atomic nuclei or by unpaired electrons; X
rays are scattered significantly only by the electrons in atoms. Scattering
factors for neutrons do not vary systematically with atomic number or
atomic weight. Neutron diffraction studies can often clear up ambigui-
ties in X-ray work, and, when the two methods are compared, may give
information on the electron distribution that is due to chemical bonding
in the molecule. Neutron diffraction is used in protein structural stud-
ies, often after an enzyme has been soaked in D2O in order to insert
deuterium in the place of labile hydrogen atoms. The deuterium atoms
can be located in the protein electron-density map and therefore it is
possible to determine how many (and the percentage of each) H or D
atoms are on the oxygen, nitrogen, or sulfur atoms of side chains; this
means that neutron crystallography provides a probe of the location of
an H or D atom in a hydrogen bond and hence the local pH in a protein
(for example, distinguishing –NH2 from –NH3

+).



Micro- and noncrystalline
materials13
The crystalline state is characterized by a high degree of internal order.
There are two types of order that we will discuss here. One is chem-
ical order, which consists of the connectivity (bond lengths and bond
angles) and stoichiometry in organic and many inorganic molecules,
or just stoichiometry in minerals, metals, and other such materials.
Some degree of chemical ordering exists for any molecule consisting of
more than one atom, and the molecular structure of chemically simple
gas molecules can be determined by gaseous electron diffraction or
by high-resolution infrared spectroscopy. The second type of order to
be discussed is geometrical order, which is the regular arrangement of
entities in space such as in cubes, cylinders, coiled coils, and many
other arrangements. For a compound to be crystalline it is necessary
for the geometrical order of the individual entities (which must each
have the same overall conformation) to extend indefinitely (that is,
apparently infinitely) in three dimensions such that a three-dimensional
repeat unit can be defined from diffraction data. Single crystals of
quartz, diamond, silicon, or potassium dihydrogen phosphate can be
grown to be as large as six or more inches across. Imagine how many
atoms or ions must be identically arranged to create such macroscopic
perfection!

Sometimes, however, this geometrical order does not extend very far,
and microarrays of molecules or ions, while themselves ordered, are
disordered with respect to each other on a macroscopic scale. In such a
case the three-dimensional order does not extend far enough to give a
sharp diffraction pattern. The crystal quality is then described as “poor”
or the crystal is considered to be microcrystalline, as in the naturally
occurring clay minerals.

On the other hand, in certain solid materials the spatial extent of
geometrical order may be less than three-dimensional, and this reduced
order gives rise to interesting properties. For example, the geometrical
order may exist only in two dimensions; this is the case for mica and
graphite, which consist of planar structures with much weaker forces
between the layers so that cleavage and slippage are readily observed.
In a similar way, certain biological structures such as membranes and

196
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micelles have less than three-dimensional order. Sometimes, however,
geometrical order can be increased by external forces. For example,
“liquid crystals” can be temporarily aligned in three dimensions by
externally applied electric or magnetic fields (hence their use in liq-
uid crystal displays in watches, computers, and other instruments).
Even less geometrical order is shown by fibers such as silk, hair, and
some long-chain polymers that have essentially only one-dimensional
order.

Many times there is no evident geometric order beyond the imme-
diate near-neighbor environment of the fundamental building unit.
This is characteristic of liquids, glasses, and rubbers, whose spheri-
cally symmetrical diffraction patterns indicate that in no direction in
space is there geometric order extensive enough to define a period.
Such materials are described as amorphous and the only regulari-
ties seen in the diffraction pattern are those due to recurring bond
distances. Thus diffraction patterns from amorphous materials pro-
vide information about interatomic distances only when a particu-
lar distance stands out from the average of all—usually because it is
heavily weighted either by frequent occurrence or by involvement of
atoms with scattering factors that are large relative to those of the
other atoms present, but occasionally simply because it is unique,
with no other distances of comparable magnitude occurring in the
sample.

Liquid diffraction

Careful diffraction studies of liquids have provided much valuable
structural information on time-averaged interatomic distances; these
are spherically symmetrical in space and therefore are generally rep-
resented by radial distribution functions, that is, radially averaged
electron-density maps. Examples, calculated from the diffraction pat-
terns of water at various temperatures, are shown in Figure 13.1. These
show the expected interatomic distances (O–H, O. . . O, and H. . . O) and
the effects of neighboring molecules, which change as the temperature
is raised.

Glass diffraction

Traditional glass, used throughout history to construct containers, win-
dows, and ornaments, is made by fusion of a mixture of lime, silica,
and soda and subsequent blowing or pressing of the product into
the desired shape. Such glass is, of course, solid at ordinary temper-
atures. Glass stemware made from it is often referred to as “crystal”
in spite of the fact that it is not crystalline. Its diffraction pattern has
a halo-like appearance, resembling the diffraction pattern of a liquid;
this demonstrates clearly that it is not crystalline and that there is
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Fig. 13.1 Radial distribution functions.

Radial distribution curves obtained by X-ray diffraction studies on liquid water at tem-
peratures from 4◦ C to 200◦ C are shown. Sample pressures were atmospheric up to 100◦ C;
above 100◦ C, the pressure was equal to the vapor pressure. The vertical coordinate,
G(r ), for the curves represents a normalized radial distribution function; that is, it gives
information on the number of neighbor atoms or molecules at a distance r from an
average atom or molecule in the system compared with that expected for a liquid without
distinct structure.
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no well-defined geometrical order within it. The best model to date
of such glass consists of random chains, nets, and three-dimensional
arrays of SiO4 tetrahedra, linked together through oxygen atoms, with
appropriately situated cations. Many attempts have been made to fit
models with different kinds of short-range order to the observed dif-
fraction patterns and to other quantitative physical and chemical data
available on various glasses. This is done in an effort to define more pre-
cisely what might be meant by “the structure of glass” (Warren, 1940;
Tanaka et al., 1985).

In contrast to the traditional glasses that are the products of fusion
and can be “thawed” and reworked without crystallizing, there are
now known to be many other glass-forming composition systems and,
as a result, there are several ways of generating glasses and other
amorphous materials. Each of these gives rise to properties that are
useful. For example, amorphous metal films can be made by “splat
cooling”—that is, a jet of liquid metal is directed onto a cold surface and
therefore is cooled to a solid so rapidly from the melt that it has been
deprived of the time required for crystal organization. Another indus-
trial example is provided by the use of a chemical reaction in the gas
phase to generate an extremely fluffy amorphous “soot” that may be
sintered and compressed to three-dimensional solidity without crystal-
lizing. Optical-waveguide–laser communication technology depends in
large measure on the purity, composition control, and perfection of
such processes, achievable by starting with pure gases, such as silicon
tetrafluoride and oxygen, and reacting them to form a condensed phase
of pure silica “soot” where, presumably, the surface is both highly
energetic and unique such that particles “join” under pressure without
melting (sintering) to form a continuum; such sintering without melt-
ing precludes the possibility of any crystallization. A third example is
provided by glass-ceramics, which, although noncrystalline as formed,
cannot be heated to the softening point because they undergo crys-
tallization from the solid state; this crystallization must be controlled
carefully in order to obtain a glass-ceramic with the desired physical
properties.

The peak near 1 Å represents the intramolecular O–H interaction and that at 2.9 Å
represents hydrogen-bonding interactions between oxygen atoms of neighboring water
molecules. A sequence of broad peaks follows, notably those near 4.5 Å and 7 Å, and they
may be attributed to preferred distances of separation for second and higher coordination
shells. At distances large compared with atomic dimensions, and also with increasing
temperature, the values of G(r ) merge to unity—that is, to the value for a structureless
liquid.

In liquid water the average coordination in the first shell represents about 4.4 mole-
cules (independent of temperature), compared with exactly 4 molecules in ice, in support
of the idea that the increase in density when ice melts is due to a small increase in
the average coordination number in the first coordination shell. Other details in the
distribution curves are compatible with an approximately tetrahedral coordination of
molecules, as found in ice.

The curves were kindly provided by Dr. A. H. Narten from Oak Ridge National
Laboratory Report 4378, June 1970.
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Fig. 13.2 Some diffraction patterns of DNA and polynucleotides.

Diffraction patterns of DNA and of a synthetic polynucleotide. Each diffraction photograph has been taken with the fiber axis vertical.
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Fiber diffraction

Fibers have disordered strands aligned within them along the fiber
axis (the meridian). If the fiber is rotated about this axis the diffraction
pattern does not change much. The diffraction patterns in Figure 3.9
show the effect on the diffraction pattern of partial but incomplete
internal order. Figure 3.9d displays quite effectively the result of one-
dimensional internal order (characteristic of certain fibers), with elon-
gated streaks instead of spots on the photograph. Many fibers are com-
posed of units with helical structures, with some order along the axis of
the helix, but often little order in the packing of adjacent helical units.
DNA, certain fibrous proteins, and many other natural and synthetic
materials have such structures. An X-ray photograph of DNA is shown
in Figure 13.2a; note that the fiber axis is vertical in Figure 13.2, but
horizontal in Figure 3.9d.

The coordinates of the atoms in a helical structure are best described
by cylindrical polar coordinates, and the scattering factor of a cylindri-
cal system is most appropriately represented in terms of Bessel func-
tions. A zeroth-order Bessel function is high near the origin and then
dies away like a ripple in a pond, while higher-order Bessel functions
are zero at the origin and then rise to a peak at a distance proportional to
their order and then die away, again like a ripple. These Bessel functions
are used in calculating the Fourier transform of a helix, which describes
the scattering pattern of the helix. The “cross” that is so striking in Fig-
ure 13.2a is characteristic of helical diffraction patterns. The diffraction
pattern is analyzed in Figure 13.2b and its relationship to DNA struc-
ture is shown in Figure 13.2c. Because the helix is periodic along the
axial direction, layer lines are formed. Two chief pieces of information
may be derived from such a photograph as that in Figure 13.2a. These
are the distance between “equivalent” units of the helical structure

(a) B-DNA, the diffraction of which is illustrated, is a form of DNA in which the individual molecules are packed together less
regularly. This fibrous noncrystalline form is that for which Watson and Crick first proposed their famous DNA helical structure.
The fibers are randomly oriented around the fiber axes, and a helical diffraction pattern with a characteristic cross is obtained.
Remember that short spacings in reciprocal space (the diffraction photograph) represent large spacings in real space. The peaks
at the top and bottom of the photograph represent the stacked DNA bases, 3.5 Å apart. The “cross” represents spacings between
the turns of the helix. (Photograph courtesy of Dr. R. Langridge.) (Langridge et al., 1957.)

(b) Analysis of the diffraction pattern of DNA shown in Figure 13.2a.
(c) DNA structure showing the stacked bases and the phosphodiester backbone. Periodicities in the structures of both of these are

seen in the diffraction photograph.
(d) Precession photograph of a crystalline decameric polynucleotide CGAQTCGATCGn (Grzeskowiak et al., 1991). This photograph

is a sampling of the fiber diffraction pattern in (a). Therefore it is clear which is the direction of stacked bases (vertical).
(Photograph courtesy of Dr. Richard E. Dickerson.)
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(for example, the base pairs in DNA) and the distance along the helix
needed for one complete turn. From these two data the pitch of the helix
can be deduced (see Watson and Crick, 1953; Franklin and Gosling,
1953; Wilson, 1966; Holmes and Blow, 1965; Squire, 2000).

The diffraction pattern of a crystalline dodecameric fragment of DNA
is shown in Figure 13.2d (Dickerson et al., 1985; Grzeskowiak et al.,
1991). Note that Figure 13.2d represents a sampling of the diffraction
pattern in Figure 13.2a, so that one immediately knows the orientation
of the molecules in the crystal (for example, the fiber direction). High-
resolution studies of polynucleotides have provided much information
on nucleic acid structure and function.

Small-angle scattering

Structural features that are large compared with the wavelength of
the radiation being used cause significant scattering only at small
angles (Figures 3.1 and 5.4). “Small-angle scattering” at angles 2Ë no
larger than a few degrees is thus used to measure long-range struc-
ture. For example, for a biological macromolecule it may be used to
measure the radius of gyration and to study the hydration of the
macromolecule. It has been widely applied to the study of liquids,
polymers, liquid crystals, and biological membranes. The radiation
used may be X rays (small-angle X-ray scattering, SAXS) or neutrons
(small-angle neutron scattering, SANS). The method is very useful
because it can provide information on partially or totally disordered
systems. Therefore particles can be studied under physiological condi-
tions (Guinier and Fournet, 1955; Brumberger, 1994; Koch et al., 2003;
Kasai and Kakudo, 2005).

Powder diffraction

The diffraction pattern of a powder (packed in a capillary tube) may
be considered that of a single crystal but with the pattern of the crystal
in all possible orientations (as are the crystallites in the capillary tube).
Powder diffraction is an extremely powerful tool for the identification
of crystalline phases and for the qualitative and quantitative analyses
of mixtures (Cullity, 1978). It is used for analysis of unit-cell parameters
as a function of temperature and pressure and to determine phase
diagrams (diagrams showing the stable phases present as a function
of temperature, pressure, and composition). A very useful compilation
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of common powder diffraction patterns, the Powder Diffraction File
(PDF), is maintained by the International Centre for Diffraction Data
(ICDD). This file contains d-spacings (related to angle of diffraction)
and relative intensities of observable diffraction peaks. A comparison of
a powder diffraction pattern obtained experimentally with the highest
diffracted intensities of some powder diffraction patterns in the file, a
search that can be done by computer, will often reveal the chemical
composition of a powder. Thus, the method is of great importance
industrially and forensically. For example, the composition of particles
in an industrial smokestack may be determined by analysis of the
diffraction pattern. Other useful information can also come from pow-
der diffraction studies. For example, an analysis of profile broadening
(Figure 13.3) can lead to an estimate of average crystallite sizes in the
specimen.

Powder methods may even be used for simple structural studies.
There are now sophisticated methods, originally introduced by Hugo
Rietveld in 1967, for the adjustment of parameters to give the best
fit with an experimental powder diffraction pattern (Rietveld, 1969;
Young, 1993; Jenkins and Snyder, 1996). The technique is now used
for the structure determination of simple structures and can provide
precise unit-cell dimensions, atomic coordinates, and temperature fac-
tors in the same way that crystal diffraction studies do. The Rietveld
method is, of course, of great value when suitably large crystals can-
not be grown. It uses a least-squares approach to obtain agreement
between a theoretical line profile and the measured diffraction pro-
file. The introduction of this technique was a significant step for-
ward in the diffraction analysis of powder samples as, unlike other
techniques at that time, it was able to deal reliably with strongly
overlapping reflections. Larger and larger structures are now being
tackled.

Summary

Studies of structures that are not fully crystalline

The diffraction patterns of liquids and glasses are spherically sym-
metrical and only radial information can be obtained. However, from
substances exhibiting partial order, more information may be derived.
For example, for a helical structure, the pitch of the helix and the repeat
distance along it can be deduced.

Powder diffraction

The diffraction pattern of a powder also gives only radial informa-
tion, since the powder contains crystallites in all possible orientations.
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Fig. 13.3 Powder diffraction.

(a) Comparison of an 11.46 cm diameter powder camera film (upper photograph) with a scanned diffractometer pattern of quartz
(with copper Kα radiation).

(b) Profile fitting of a portion of the diffraction pattern of quartz. The dots are experimental points from step-scanning and the
dashed lines are the individual results for each reflection. The sum is represented by a solid line. In this figure the peak
identifications “12.2,” “20.3,” and “30.1” represent, respectively, the 122, 203, and 301 Bragg reflections for this crystal. Note
the separation of the α1 and α2 wavelengths of the radiation (wavelengths 1.5405 Å and 1.5443 Å, respectively).

(Photographs and diagram courtesy of Dr. William Parrish.)
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Powder diffraction is used for the identification of crystalline phases
and for the qualitative and quantitative analysis of mixtures. When suit-
able crystals are not available, the Rietveld method has made evident
the power of powder diffraction to determine three-dimensional crystal
structures that otherwise could not have been studied.



Outline of a crystal
structure determination14
Small-molecule crystals

The stages in a crystal structure analysis by diffraction methods are
summarized in Figure 14.1 for a substance with fewer than about 1000
atoms. The principal steps are:

(1) First it is necessary to obtain or grow suitable single crystals; this
is sometimes a tedious and difficult process. The ideal crystal for
X-ray diffraction studies is 0.2–0.3 mm in diameter. Somewhat
larger specimens are generally needed for neutron diffraction
work. Various solvents, and perhaps several different derivatives
of the compound under study, may have to be tried before suit-
able specimens are obtained.

(2) Next it is necessary to check the crystal quality. This is usually
done by finding out if the crystal diffracts X rays (or neutrons)
and how well it does this.

(3) If the crystal is considered suitable for investigation, its unit-
cell dimensions are determined. This can usually be done in
20 minutes, barring complications. The unit-cell dimensions are
obtained by measurements of the locations of the diffracted
beams (the reciprocal lattice) on the detecting device, these spac-
ings being reciprocally related to the dimensions of the crystal
lattice. The space group is deduced from the symmetry of, and
the systematic absences in, the diffraction pattern.

(4) The density of the crystal may be measured if the crystals are
not sensitive to air, moisture, or temperature and can survive
the process. Otherwise an estimated value (about 1.3 g cm−3 if no
heavy atoms are present) can be used. This will give the formula
weight of the contents of the unit cell. From this it can be deter-
mined if the crystal contains the compound chosen for study, and
how much solvent of crystallization is present.

(5) At this point it is necessary to decide whether or not to proceed
with a complete structure determination. The main question is,
of course, whether the unit-cell contents are those expected. One
must try to weigh properly the relevant factors, among which are:

206
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(i) Quite obviously, the intrinsic interest of the structure.
(ii) Whether the diffraction pattern gives evidence of twinning,

disorder, or other difficulties that will make the analysis, even
if possible, at best of limited value. This will depend in part
on the type of information sought.

If the answer to (ii) is unfavorable, another crystal specimen or
polymorph (with a different crystalline form) may be sought.
However, under happy circumstances, one can proceed.

(6) Once a decision has been made to proceed, the next stage is
to record, usually with a diffractometer equipped with an area
detector (e.g., CCD or imaging plate), the locations and intensities
of the accessible diffraction maxima. The intensities must then
be appropriately correlated, averaged, and multiplied by various
geometrical factors to convert them to relative values of |F |. For
a typical molecular structure, there may be between 103 and 104

unique diffraction maxima to be measured, or even more with
a very large molecule. The normal time involved in the collec-
tion and estimation of these intensity data is from a few hours
to several days, the exact amount depending on the equipment
available and the experience and other concurrent obligations of
the experimenter. The data processing is done with a computer as
are all subsequent steps, appreciably reducing the necessary time
involved in the analysis.

(7) Next it is necessary to attempt to get a “trial structure” or approx-
imate relative phases. Generally, direct methods and Patterson
methods are carried out with a computer-based “black box,”
indicated by shading in the flow chart. The excellent software
now available will make most of the necessary structure solution
decisions that the user requires. However, if problems arise, an
understanding of the entire process will be necessary (hence this
book). If all goes well, the normal procedure is to try some of
the direct-methods programs, or to calculate a three-dimensional
Patterson map with the aim of finding any heavy atom(s), or
some recognizable portion of the molecule that may be present.
Meanwhile, measurement of diffraction data on other related
compounds whose crystal structures may prove easier to solve (if
this one is unusually stubborn) should be considered; every lab-
oratory has its collection of unsolved structures, some of which
yield to new and improved methods or brighter minds that
come along, and a few of which persist indomitably against all
challengers.

(8) Hydrogen atoms, which are weak diffractors of X rays, are often
visible in a difference electron-density map. Alternatively, their
positions can often be calculated. Refinement (usually by a least-
squares method) may then be carried out. One way to ensure that
hydrogen atoms are correctly placed is to do a neutron diffraction
study on a deuterated specimen.
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Flow diagram for determination of small structures (102 or fewer atoms per asymmetric unit).
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(9) A satisfactory trial structure is one that is chemically plausi-
ble and for which there is good agreement between observed
and calculated structure factors. It must then be refined, as dis-
cussed earlier. The resulting structure should have an R index
[Eqn. (6.9)] consistent with the precision of the data that were
collected, and should meet the criteria discussed earlier under
the heading “The correctness of a structure” in Chapter 11
(see Müller, 2009).

(10) When the refinement is complete, the molecular geometry can be
calculated and analyzed.

(11) One by-product of a complete and successful structure analysis of
an optically active material can be a determination of its absolute
configuration, provided that it contains an atom that absorbs suf-
ficiently the X rays being used. This technique has been applied to
many organic natural products and was discussed and illustrated
in Chapter 10.

Macromolecular crystals

When a macromolecule is crystallized, somewhat different techniques
are used to determine its structure (Figure 14.2). The principal steps
are:

(1) The material is obtained either by extraction from a biological or
chemical specimen, or, if it is a protein, by cloning its gene into a
high-expression system. The material so produced needs to have
been carefully purified; mass spectrometry and electrophoretic
techniques help here. Suitable single crystals are then (hopefully)
grown by vapor diffusion of solvent or related methods (Chap-
ter 2 and Figure 2.1). If a suitable crystal is obtained, it is mounted,
ready for diffraction studies.

(2) The unit-cell dimensions, space group, and density are deter-
mined. These will indicate if the analysis is feasible or not. Some-
times a subunit of an enzyme or other large macromolecule is
the asymmetric unit. This should make the structure analysis
feasible. On the other hand, it sometimes happens that several
molecules comprise the asymmetric unit. This is not always
unfortunate, because the resulting additional symmetry in the
Patterson function may provide valuable help in solving the
structure.

(3) Then it is necessary to assess the degree of order in the crystal
under study. This is determined by the measurable Bragg reflec-
tions at the highest sin Ë/Î values (which indicate the expected
resolution of the measured structure). It must then be decided
whether the ultimate resolution will be sufficient to provide
information about the detailed structure. If the resolution is
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poor, one must try to grow better crystals or look for another
source of the biological macromolecule (e.g., a different animal or
bacterium).

(4) The next question is whether there is a homologous structure
already reported in the crystallographic literature. The structure
being sought (the homologous structure) probably has approx-
imately the same amino acid sequence and similar enzymatic
activity to the protein investigated (the protein under study). To
find out if there is such a homologous structure in the crystal-
lographic literature, it is necessary to search the Protein Data
Bank; this is available on the World Wide Web. If such a homol-
ogous protein can be found, it is assumed that the foldings of
both proteins (the homologous protein and the protein under
study) are similar. Therefore diffraction data for the protein
under study are measured. An attempt is then made, usually
by Patterson methods, to determine the location of the homol-
ogous protein molecule in the unit cell of the protein crystal
under study. If this works out, the phases for the crystal under
study can be calculated and refined and an electron-density map
produced.

(5) If no homologous structure is available, there might be an oppor-
tunity for sulfur-SAD phasing if sulfur is present in the molecule.
This method is currently used frequently and it does not require
any heavy metals or homologous structures, only good data to
2.5 Å resolution. Single-wavelength anomalously scattered X-ray
data plus direct methods (to locate the sulfur atoms) will give
phases for an electron-density map.

(6) In the absence of sulfur or a strong anomalous scatterer, it
will be necessary to make conventional heavy-atom derivatives,
measure the diffraction data for the native crystal and each of
its heavy-atom derivatives that have been successfully crystal-
lized, and then determine the phases by isomorphous replace-
ment. For some proteins, side chains containing heavy atoms,
such as selenium, iodine, or bromine, may be genetically engi-
neered into them. The best heavy atoms are those that scat-
ter anomalously with X rays from either a laboratory X-ray
tube or a synchrotron source (with the possibility of X-ray
wavelength tuning to required values). The heavy-atom para-
meters are then refined by least-squares methods. Improved
phases are then derived, and an electron-density map is
computed.

(7) If an atom with a strong anomalous signal can be introduced into
the crystal, the measurement of anomalous data is probably the
best way to go (that is, by MAD or SAD phasing). If anomalous
data [i.e., I (hkl) and I (hkl)] are an option it is necessary to deter-
mine if the crystal will survive many data collections, since X
rays damage protein crystals. The single-wavelength anomalous
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dispersion (SAD) method (mentioned above for sulfur-containing
proteins) is used if the crystals are fragile or if it is more conve-
nient to study them in the investigator’s laboratory with stan-
dard X-ray tubes. Sturdier crystals can be studied by the mul-
tiwavelength anomalous dispersion (MAD) method, in which
several data sets at different wavelengths near and far from the
absorption edge of the anomalously scattering atom are mea-
sured. Selenomethione is often introduced in place of methionine
in proteins and acts as the anomalous scatterer. The advantage of
MAD phasing is that only one crystal is needed, but it is generally
necessary to go to a synchrotron source to obtain the required X-
ray wavelengths.

(8) In each of these methods, the result is an electron-density map.
This is probably a good place to stress that this map does not
constitute “data,” and to remind the reader that the primary
experimental data are the Bragg reflections. The map is totally
dependent on the phases that have been input into the calcu-
lation. These phases may be improved by density modification,
which includes solvent flattening for crystal structures with large
areas occupied by solvent and real-space averaging for structures
with noncrystallographic symmetry.

(9) If a protein crystal structure is under study, it is usual first to
“trace the chain” of the polypeptide backbone. The determina-
tion of side-chain coordinates for the protein follows from a
knowledge of the amino acid sequence of the protein and the
fitting of a model of each amino acid to the electron density on
a computer screen. Without sequence information, the analysis
of the electron-density map is difficult unless phasing is good to
atomic resolution (as is the case with increasingly many investi-
gations). If the macromolecule under study is a nucleic acid, the
phosphate groups and the bases are sought from the electron-
density map as a preliminary to phasing the electron-density
map.

(10) For an enzyme, the question of the location of the active site
of the catalytic process then arises. This may often be found
by soaking into native crystals either inhibitors, poor substrates
(if the substrate is too good, reaction may readily occur), or
cofactors. Then diffraction data are measured and a difference
electron-density map is calculated using phases from both the
native protein and the liganded complex. In this way the site of
attachment of a substrate may be evident, suggesting that this is
the active site of the enzyme. At this stage, neutron diffraction
studies on deuterated proteins and/or their ligands can yield
powerful information on the protonation state of each functional
group under the particular experimental conditions at which the
crystals formed. Therefore a combination of X-ray and neutron
diffraction investigations is encouraged.
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Concluding remarks

We have attempted to present enough about the details of structure
determination so that an attentive reader can appreciate how the
method works. As mentioned earlier, a glossary and list of references
(including a short bibliography) have been included so that those inter-
ested may delve further into the subject. Do not forget to use search
engines in the World Wide Web, as there are many useful articles and
reprints available for study. We will now summarize by answering our
initial questions.

Why use crystals and not liquids or gases?

A crystal has a precise internal order and gives a diffraction pattern
that can be analyzed in terms of the shape and contents of one repeat-
ing unit, the unit cell. This internal order is lacking in liquids and
gases and for these only radial information may be derived. Such
information may be of use in distinguishing between possible struc-
tures, but, for detailed results in terms of molecular structure and
intermolecular interactions, the analysis of crystals (or powders) is
necessary.

Why use X rays or neutrons and not other
radiation?

These radiations are scattered by the components of atoms and have
wavelengths that are of the same order of magnitude as the distances
between atoms in a crystal (approximately 10−10 m). Hence they lead to
diffraction effects on a scale convenient for observation and measure-
ment.

What experimental measurements are needed?

The unit-cell dimensions and the density of the crystal, and the indices
and intensities of all observable Bragg reflections.

What are the stages in a typical structure
determination?

These stages have been described above in detail for both small mole-
cules and macromolecules, and further information may be obtained
from the World Wide Web. The stages involve the preparation of a
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crystal, the indexing and measurement of intensities in the diffraction
pattern, the determination of a “trial structure,” and the refinement of
this structure.

Why is the process of structure analysis often
lengthy and complex?

Because 50 to 100 distinct intensity measurements are needed per atom
in the asymmetric unit for a resolution of 0.75 Å, because the deter-
mination of a trial structure may be difficult, because the refinement
requires much computation, and because in the end so much structural
information is obtained that analysis of it takes time. Many structures
are readily or even automatically solved, while others, tackled by the
same competent crystallographer, may take months or years to solve. It
is hard for the noncrystallographer, who may have been led to believe
that the determination of structure is now almost automatic, to compre-
hend this “never-never land” in which crystallographers occasionally
find themselves while trying to arrive at a trial structure for certain
crystals.

Why is it necessary to “refine” the
approximate structure that is first obtained?

Because the initially estimated phases may give a poor image of the
scattering matter. Since the least-squares equations are not linear, many
cycles of refinement are usually necessary. By refinement, one can tell
whether the approximate structure is correct and obtain the best pos-
sible atomic positions consistent with the experimental data and the
assumed structural model.

How can one assess the reliability of a
structure analysis?

By checking the standard uncertainties of the derived results, by con-
sidering measures of the agreement of the values of the observed |Fo|
with the values of the calculated |Fc|, by the absence of any unexplained
peaks in a final difference map, and by the chemical reasonableness of
the resulting structure.

We hope we have made it possible for you to read accounts of X-
ray structure analyses with some appreciation of the scope and the
limitations of the work described. Perhaps you are even interested
enough to want to try the techniques yourself. If so, trust that this
introduction serves as a useful background and reference. But also
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we hope that you realize that there is more to the crystallographer’s
discipline than just diffraction methods. When the crystal structure
is known, it is a first step in the interpretation of physical proper-
ties, chemical reactivity, or biological function in terms of the three-
dimensional structures and conformations of the component molecules
or ions.
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Appendix 1: The determination
of unit-cell constants and their
use in ascertaining the contents
of the unit cell

Unit-cell dimensions
Unit-cell dimensions may be determined, with X rays of a known wavelength,
from values of 2Ë for Bragg reflections of known indices; 2Ë is the deviation of
the diffracted beam from the direct beam. The Bragg equation is then used, i.e.,
nÎ = 2d sin Ë; dhkl = spacing between crystal planes (hkl).

Example
Monoclinic cell, a = 23.033 Å, b = 7.670 Å, c = 9.928 Å, · = „ = 90◦, ‚ = 100.12◦,
sin ‚ = 0.98445, Î = 1.5418 Å [a sin ‚ = 22.675 = d100, c sin ‚ = 9.774 = d001].

Experimental measurements

a

c b

d100

d001

O

Fig. A1.1 Unit cell with b perpendicular
to the plane of the paper.

h k l 2Ë(◦) Ë(◦) sin Ë nÎ/2 sin Ë(Å)

20 0 0 85.68 42.84 0.67995 22.675
}

d100

}
a sin ‚

22 0 0 96.82 48.41 0.74791 22.676
0 4 0 47.41 23.705 0.40203 7.670 d010 b
0 0 10 104.14 52.07 0.78876 9.774 d001 c sin ‚

Conclusion: a = 23.033 Å, b = 7.670 Å, c = 9.828 Å, ‚ = 100.12◦.

Unit-cell contents
Let W = weight in grams of one gram-formula weight of the contents of the unit
cell.
V = the unit-cell volume in cm3 of this weight of the crystal.
NAvog. = Avogadro’s number = number of molecules in a gram molecule =
6.02 × 1023.
Unit-cell volume = 1726 Å

3
= 1726 × 10−24 cm3.

Observed density (by flotation) = 1.34 g/cm3.

216
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If the density of a crystal is known (or guessed), it is possible to determine
what is in the crystal. NAvog. unit cells occupy 1726 × 10−24 × 6.02 × 1023 cm3 =
V = 1039 cm3.
Crystal density = W/V = W/1039 g/cm3 = 1.34 g/cm3.
Therefore W = 1392.
But W also equals (ZM + zm),
where Z is the number of molecules of the compound (molecular weight M)
per unit cell, and z is the number of molecules of solvent of crystallization
(molecular weight m) per unit cell. In this example, M is known to be 340 and
m = 18 (for water).

(Z × 340) + (z × 18) = 1392.

The monoclinic symmetry of the unit cell suggests that Z is 4, or a multiple of 4,
leading to the conclusion that Z = 4 and z = 2 (W = 1396) is the correct solution,
and that the solution Z = 3 and z = 20 (W = 1380), which is equally probable
from the calculated weight alone, is much less likely, because of the monoclinic
symmetry.

Appendix 2: Some information
about crystal systems and crystal
lattices

There are seven crystal systems defined by the minimum symmetry of the
unit cell. It is conventional to label the edges of the unit cell a , b, c and
the angles between them ·, ‚, „, with · the angle between b and c, ‚ that
between a and c, and „ that between a and b. If the crystal lattice has six-
fold symmetry, sometimes four axes of reference are used. These are x, y, u,
z, where x, y, and u lie in one plane inclined at 120◦ to each other and with
z perpendicular to them. The indices of Bragg reflections are then hkil with
the necessary condition that i = −(h + k). We use the simpler cell here. For the
seven crystal systems, the minimum symmetry and the diffraction symmetry
are:

Minimum point group symmetry of a
crystal in this system

Diffraction symmetry
(Laue symmetry)

1. Triclinic None (one-fold rotation axis). 1
2. Monoclinic Two-fold rotation axis parallel to b. 2/m
3. Orthorhombic Three independent mutually

perpendicular two-fold rotation axes.
mmm

4. Trigonal/rhombohedral Three-fold rotation axis parallel to
(a + b + c)

3 or 3 m

5. Tetragonal Four-fold rotation axis parallel to c. 4/m or 4/mmm
6. Hexagonal Six-fold rotation axis parallel to c. 6/m or 6/mmm
7. Cubic Four intersecting three-fold rotation axes

along the cube diagonals.
m3 or m3m
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Here a number, 1, 2, 3, 4, or 6, implies a rotation axis. If there is a line over
it, such as 3, then it is an inversion axis. A mirror plane perpendicular to the
rotation axis is n/m, but if the mirror plane is parallel to the rotation axis it is
nm; see International Tables, Volume A (Hahn, 2005).

Diagrams of the unit cells are shown below, together with symmetry-
imposed restrictions on the unit-cell dimensions.

Diagrams of unit cells Crystal system Rotational symmetry elements
and cell-dimension restrictions

a

b

c

Triclinic No rotational symmetry. No restrictions on
axial ratios or angles.

a b

c

Monoclinic b chosen along the two-fold rotation axis.a

Angles made by b with a and by b with c
must be 90◦.

b

c

a

Orthorhombic Three mutually perpendicular two-fold
rotation axes chosen as a, b, c coordinate
axes. No restrictions on axial ratios. All
three angles must be 90◦.

b a

c

Tetragonal Four-fold rotation axis chosen as c. Two-fold
rotation axes perpendicular to c. Lengths
of a and b identical. All angles must be 90◦.

Hexagonalb c is chosen along the six-fold axis. Two-fold
rotation axes perpendicular to c. Angle
between a and b must be 120◦; other two
angles must be 90◦.
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x

a

c

a3

a2
a1

y

Reverse setting Obverse (conventional)
setting

Rhombohedral Three-fold rotation axis along one body
diagonal of unit cell. This makes all three
axial lengths necessarily the same and all
three interaxial angles also necessarily
equal. There is no restriction on the value
of the interaxial angle, ·.

a
b

c

Cubic Three-fold rotation axes along all four
body-diagonals of unit cell. Four-fold axes
parallel to each crystal axis. Two-fold axes
are also present. All axial lengths are
identical by symmetry. All angles must be
90◦.

Face-centered (F )
and
body-centered
(I )

Symmetry at each crystal lattice point is the
same as for simple cubic. F has four crystal
lattice points per cubic unit cell, the extra
three being at face centers. I has two
points per unit cell, the extra one being at
the center of the cell.

120˚

a This means that if the cell is rotated 360◦/2 = 180◦ about an axis parallel to b, the
cell so obtained is indistinguishable from the original.
b The six-fold axis present in hexagonal crystal lattices is perhaps not evident from
the shape of the unit cell, because the inclusion of the cell edges as solid lines in
the diagram obscures the symmetry. If only the crystal lattice points are shown
in a layer normal to the unique c-axis (one cell is outlined here on the right in
dashed lines), the six-fold symmetry is apparent (ignoring the dotted lines). There
is a six-fold rotation axis perpendicular to the plane of the paper at every crystal
lattice point; it is indicated by the dashed lines drawn from one crystal lattice
point.

There are five additional Bravais lattices that are obtained by adding face-
centering and body-centering to certain of the seven space lattices just listed.
Face-centering involves a crystal lattice point at the center of opposite pairs of
faces, and is designated F if all faces are centered and A, B, or C if only one pair
of faces is centered. In body-centered unit cells, there is a crystal lattice point at
the center of the unit cell; a body-centered cell is designated I . These centerings
cause additional systematic absences in the measured Bragg reflections (h, k, l)
as follows:

A (k + l), odd, absent.
B (l + h), odd, absent.
C (h + k), odd, absent.
F (h + k), (k + l), (l + h), all odd, absent.
I (h + k + l), odd, absent.
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The 14 Bravais lattices are:

Triclinic P
Monoclinic P C
Orthorhombic P C F I
Tetragonal P I
Hexagonal P
Rhombohedral P
Cubic P F I

(C in monoclinic can alternatively be Aor I ; C in orthorhombic can alternatively
be A or B. P in rhombohedral is often called R.)

Addition of symmetry elements to these Bravais lattices give the 230 space
groups. Some of these symmetry elements also cause systematic absences in
the diffraction pattern. For example, for a two-fold screw axis parallel to a,
h in the h 0 0 Bragg reflections is only even, and for a four-fold screw axis
parallel to a, h in the h 0 0 reflections is only a multiple of 4. For a glide
plane perpendicular to a with translation b/2 (which is a b glide), k in the
0kl reflections is only even. For more details, see International Tables, Volume
A (Hahn, 2005), or X-ray Crystallography by M. J. Buerger, Chapter 4, pp. 82–90
(Buerger, 1942).

Appendix 3: The reciprocal lattice

The relation between the crystal lattice (real space) and the reciprocal lattice
(reciprocal space) may be expressed most simply in terms of vectors. Some of
the relationships between these two lattices are illustrated in Figure 3.7d. The
point hkl in the reciprocal lattice is drawn at a distance 1/dhkl from the origin and
in the direction of the perpendicular between (hkl) lattice planes. If we denote
the fundamental translation vectors of the crystal lattice by a, b, and c, and the
volume of the unit cell by Vc, and then use the same symbols, starred, for the
corresponding quantities of the reciprocal lattice, the relation between the two
lattices is

a∗ =
b∗ × c∗

Vc
, b∗ =

c∗ × a∗

Vc
, c∗ =

a∗ × b∗

Vc
(A3.1)

with Vc = a · b × c = 1/V∗
c .

The vectors of the crystal lattice and the reciprocal lattice are thus oriented as
follows: any fundamental translation of one lattice is perpendicular to the other
two fundamental translations of the second lattice. Thus a∗ is perpendicular to
both b and c, b is perpendicular to both a∗ and c∗, and so on. The vectors of
the crystal lattice and the reciprocal lattice are therefore said to form an “adjoint
set” in the sense that this term is used in tensor calculus; they satisfy the condi-
tion that the scalar product of any two corresponding fundamental translation
vectors, one from each of the two lattices, is unity, and the scalar product of any
two noncorresponding vectors of the two lattices is zero, because, as mentioned
above, they are mutually perpendicular. This is expressed by

a∗
i · a j = ‰i j

{
= 1, if i = j
= 0, if i = j

(A3.2)
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That is,

a · a∗ = b · b∗ = c · c∗ = 1

and

b · a∗ = c · a∗ = c · b∗ = a · b∗ = a · c∗ = b · c∗ = 0

As stressed in Chapter 3, if a structure is arranged on a given lattice, its
diffraction pattern is necessarily arranged on a lattice reciprocal to the first.
The fact that any fundamental translation of the crystal lattice is perpendicular
to the other two fundamental translations of the reciprocal lattice, and the
converse, is an example of a quite general relation: every reciprocal lattice vector is
perpendicular to some plane in the crystal lattice and, conversely, every crystal lattice
vector is perpendicular to some plane in the reciprocal lattice. Furthermore, if the
indices of a crystal lattice plane are (hkl) (in the sense defined in the caption
of Figure 2.4), the reciprocal lattice vector H perpendicular to this plane is the
vector from the origin of the reciprocal lattice to the reciprocal lattice point with
indices hkl. It is expressed as

H = ha∗ + kb∗ + lc∗ (A3.3)

In a monoclinic unit cell,

d100 = a sin ‚ =
1
a ∗

We have the relation, for this Bragg reflection 100, where h = 1,

|H| = |ha∗| = h/d100 (A3.4)

or

|H100| = |a∗| = 1/d100

A comparison with the Bragg equation for 100 with the appropriate values
of d and Ë,

hÎ = 2d sin Ë or h/d =
2 sin Ë

Î
(A3.5)

Î = 2d100 sin Ë100 or 1/d100 = 2 sin Ë100/Î

indicates that in this case

|H| =
2 sin Ë

Î
(A3.6)

This relation holds quite generally.

|H100| = 2 sin Ë100/Î (A3.7)

|Hhkl | = 2 sin Ëhkl/Î

The equations relating the real and reciprocal unit-cell dimensions are given
in Buerger (1942) (Chapter 18, p. 360) and Stout and Jensen (1989) (p. 31). Some
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of these are listed below:

a∗ = bc sin ·/V, b∗ = ac sin ‚/V, c∗ = ab sin „/V

where

V = abc
√

1 − cos2 · − cos2 ‚ − cos2 „ + 2 cos · cos ‚ cos „

V∗ = 1/V

cos ·∗ = (cos ‚ cos „ − cos ·)/ sin ‚ sin „

cos ‚∗ = (cos · cos „ − cos ‚)/ sin · sin „

cos „∗ = (cos · cos ‚ − cos „)/ sin · sin ‚

Appendix 4: The equivalence of
diffraction by a crystal lattice and
the Bragg equation

For simplicity we will consider diffraction by a two-dimensional orthogonal
crystal lattice (a rectangular net), but the treatment can be generalized to three
dimensions and to the nonorthogonal case. Suppose the crystal lattice has sides
a and b for each unit cell and that X rays are incident upon the crystal lattice
from a direction such that the incident beams make an angle ¯ with the crystal
lattice rows in the a direction. Consider the scattering (the diffracted beam)
in the direction ¯′ with respect to the a direction. Because a and b are crystal
lattice translations, any atom in the structure will be repeated periodically with

DIFFRACTION BY A CRYSTAL
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spacings a and b. Thus atoms may be imagined to be present at the crystal
lattice points in Figure A4.1 (they will normally also be present at other points,
lying between these crystal lattice points, but spaced identically in each unit
cell). If scattering is to occur in the direction specified by ¯′, then the radiation
scattered in that direction from every crystal lattice point must be exactly in
phase with that from every other crystal lattice point. (If scattering from any
two crystal lattice points is somewhat out of phase, that from some other pair
of crystal lattice points will be out of phase by a different amount, and the
net sum over all crystal lattice points, considering the crystal to be essentially
infinite, will consist of equal positive and negative contributions and thus will
be zero.)

Consider waves 1 and 2, scattered by atoms separated by a (Figure A4.1). For
these waves to be just in phase after scattering, the path difference (PD1) must
be an integral number (h) of wavelengths (ray 1 travels a distance q , while ray
2 travels a distance p):

PD1 = p − q = a cos ¯ − a cos ¯′ = hÎ (A4.1)

Similarly, the path difference for waves 1 and 3, scattered by atoms separated
by b, must also be an integral number of wavelengths (ray 3 travels a distance
r + s more than ray 1):

PD2 = r + s = b sin ¯ + b sin ¯′ = kÎ (A4.2)

where k is some integer.
Both of these conditions must hold simultaneously. They are sufficient con-

ditions to ensure that the scattering from all atoms in this two-dimensional
net will be in phase in the direction ¯′. In three dimensions, another similar
equation, corresponding to the spacing in the third (noncoplanar) direction,
must be added. Each of these equations describes a cone. In three dimensions,
the three cones intersect in a line corresponding to the direction of the diffracted
beam, such that the conditions hÎ = PD1, kÎ = PD2, and lÎ = PD3 all are satisfied
simultaneously. This is why, when a three-dimensional crystal diffracts, there
are very few diffracted beams for any given orientation of the incident beam
with respect to the (stationary) crystal. The chance that all three conditions will
be satisfied at once is small.

Now let us see how this set of conditions can be related to the Bragg equation.
Consider several parallel planes, I, II, and III, each passing through a set of
crystal lattice points and making equal angles, Ë, with the incident and scattered
beams (Figure A4.2). The planes make an angle · with the a axis. The angles ¯

and ¯′ are defined as in Figure A4.1, and so

Ë = ¯ + · = ¯′ − · (A4.3)

Substituting for ¯ and ¯′ from Eqn. (A4.3) into Eqns. (A4.1) and (A4.2), we find

hÎ = 2a sin · sin Ë (A4.4)

kÎ = 2b cos · sin Ë (A4.5)
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or

2 sin Ë

Î
=

h
a sin ·

=
k

b cos ·
(A4.6)

Now a sin · is just the spacing between planes I and II, while b cos · is just the
spacing between planes I and III. If we let dhkl represent the spacing between
any two planes in a set of equidistant planes parallel to I, and let n be some
integer, we can write Eqn. (A4.6) generally as

2 sin Ë

Î
=

n
dhkl

(A4.7)

which is the Bragg equation, nÎ = 2d sin Ë, Eqn. (3.1).
The indices (H K ) of the “reflecting planes,” I, II and III, are determined, as

described in the caption to Figure 2.4, by measuring the intercepts on the axes
as fractions of the cell edges. From Figure A4.2 it can be seen that the intercepts
along b and a are in the ratio tan ·, whence

(b/K )/(a/H) = tan · (A4.8)

or

H/K = (a tan ·)/b (A4.9)

Equation (A4.6) then shows the relation of H and K to the indices of the Bragg
reflection (h k),

H
K

=
a sin ·

b cos ·
=

h
k

(A4.10)

That is, in conclusion, h and k, the indices of the Bragg reflection, are propor-
tional to H and K , the indices of the reflecting plane.
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Appendix 5: Some scattering data
for X rays and neutrons

Element Nuclide X rays Neutronsa Neutrons
normalized to
1H as − 1.00

sin Ë/Î = 0 sin Ë/Î = 0.5/Å b/10−12 cm

(relative to scattering
by one electron)

H 1H 1.0 0.07 −0.38 −1.00
2H = D 1.0 0.07 0.65 1.71

Li 6Li 3.0 1.0 0.18 + 0.025i 0.71 + 0.066i
7Li 3.0 1.0 −0.25 −0.66

C 12C 6.0 1.7 0.66 1.74
13C 6.0 1.7 0.60 1.58

O 16O 8.0 2.3 0.58 1.53
Na 23Na 11.0 4.3 0.35 0.92
Fe 54Fe 26.0 11.5 0.42 1.11

56Fe 26.0 11.5 1.01 2.66
57Fe 26.0 11.5 0.23 0.61

Co 59Co 27.0 12.2 0.25 0.66
Ni 58Ni 28.0 12.9 1.44 3.79

60Ni 28.0 12.9 0.30 0.79
62Ni 28.0 12.9 −0.87 −2.29

U 238U 92.0 53.0 0.85 2.24

a The quantity b is the neutron coherent scattering amplitude.

In the final column on the right of the table we have listed neutron scattering
amplitudes arbitrarily normalized to a value of −1.0 (for 1H) in order to illus-
trate more clearly the small range of amplitudes observed as compared with
that observed for X-ray scattering. For the nuclides considered here, the range
of scattering amplitudes for X rays is about 102 at Ë = 0◦ and nearly 103 at sin

Ë/Î = 0.05Å
−1

, whereas for neutrons it is near 6, independent of scattering angle.

Appendix 6: Proof that the phase
difference on diffraction is
2π(hx + ky + lz)
The phase difference for the h00 Bragg reflection for diffraction by two atoms
one unit cell apart is (360h◦ = 2πh radians. However, if the atoms are only the
fraction x of the cell length apart then the phase difference will be 2πhx radians.
This may be extended to three dimensions to give 2π(hx + ky + lz) as the phase
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Crystal lattice
plane (hkl)

(normal to crystal
lattice plane (hkl))

H = ha* + kb* + lc*
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difference for the hkl Bragg reflection for two atoms, one at 0, 0, 0 and the other
at x, y, z.

A proof is given below:
Let A1 and A2 be two scattering points (atoms) separated by a vector r

(Figure A6.1). An inspection of the angles in the region of A1 and A2 shows
that the phase difference for the beams scattered from these atoms at the angle
Ë is

2π
p − q

Î
radians

where

p = |r| cos
(π

2
− · − Ë

)
= |r| sin(· + Ë)

= |r| sin · cos Ë + |r| cos · sin Ë (A6.1)

q = |r| sin(· − Ë) = |r| sin · cos Ë − |r| cos · sin Ë (A6.2)

This leads to

p − q = 2|r| cos · sin Ë (A6.3)

Therefore, from Eqn. (A6.3),

2π(p − q )
Î

= 2π
2 sin Ë

Î
|r| cos · (A6.4)
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But the reciprocal lattice vector (see Eqn. A3.7) is

H = ha∗ + kb∗ = lc∗ (A6.5)

and is normal to the crystal lattice plane (hkl).

|H| =
2 sin Ë

Î
(A6.6)

Since · is the angle between H and r, where r = ax + by + cz, then, by Eqns.
(A6.4) and (A6.6),

2π(p − q )
Î

= 2π |H| |r| cos(angle between H and r)

Therefore, the phase difference on diffraction is

2π(p − q )
Î

= 2πH · r = 2π(hx + ky + lz)

since

a∗
i · a j = ‰i j

{
= 1, i = j
= 0, i = j

Appendix 7: The 230 space groups
Noncentrosymmetric space groups, chiral molecules (one hand only) in them.
These are the 65 space groups that proteins and nucleic acids, which are chiral,
crystallize in.

Triclinic (polar) P1
Monoclinic (polar) P2, P21, C2
Orthorhombic P222, P2221, P21212, P212121, C2221, C222, F 222,

I 222, I 212121
Tetragonal (polar) P4, P41, P42, P43, I 4, I 41
Tetragonal P422, P4212, P4122, P41212, P4222, P42212, P4322,

P43212, I 422, I 4122
Trigonal (polar) P3, P31, P32, R3
Trigonal P312, P321, P3112, P3121, P3212, P3221, R32
Hexagonal (polar) P6, P61, P65, P62, P64, P63
Hexagonal P622, P6122, P6522, P6222, P6422, P6322
Cubic P23, F 23, I 23, P213, I 213
Cubic P432, P4232, F 432, F 4132, I 432, P4332, P4132,

I 4132
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Noncentrosymmetric space groups, both enantiomers in them.

Monoclinic Pm, Pc, Cm, Cc
Orthorhombic Pmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2, Pmn21,

Pba2, Pna21, Pnn2, Cmm2, Cmc21, Ccc2, Amm2,
Abm2, Ama2, Aba2, F mm2, F dd2, I mm2, I ba2,
I ma2

Tetragonal P4, I 4
P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc,

P42bc, I 4mm, I 4cm, I 41md , I 41cd
P4 2m, P4 2c, P4 21m, P4 21c, P4 m2, P4 c2, P4 b2,

P4 n2, I 4m2, I 4 c2, I 4 2m, I 4 2d
Trigonal P3, R3

P3m1, P31m, P3c1, P31c, R3m, R3c
Hexagonal P6

P6mm, P6cc, P63cm, P63mc
P6 m2, P6 c2, P6 2m, P6 2c

Cubic P4 3m, F 4 3m, I 4 3m, P4 3n, F 4 3c, I 4 3d

Centrosymmetric space groups, both enantiomers in them.

Triclinic P1
Monoclinic P2/m, P21/m, C2/m, P2/c, P21/c, C2/c
Orthorhombic Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca,

Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma,
Cmcm, Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm,
Fddd, Immm, Ibam, Ibca, Imma

Tetragonal P4/m, P42/m, P4/n, P42/n, I 4/m, I 41/a
P4/mmn, P4/mcc, P4/nbm, P4/nnc, P4/mbm,

P4/mnc, P4/nmm
P4/ncc, P42/mmc, P42/mcm, P42/nbc, P42/nnm,

P42/mbc, P42/mnm, P42/nmc, P42/ncm, I 4/mmm,
I 4/mcm, I 41/amd , I 41/acd

Trigonal P 3 1m, P 3 1c, P 3 m1, P 3 c1, R 3 m, R3 c
Hexagonal P6/m, P63/m

P6/mmm, P6/mcc, P63/mcm, P63/mmc
Cubic Pm 3, Pn 3, F m 3, F d 3, I m 3, Pa 3, I a 3

Pm 3 m, Pn 3 n, Pm3 n, Pn 3 m, F m 3 m, F m 3 c,
F d 3 m, F d 3 c, I m 3 m, I a 3 d

The first letter shows the Bravais lattice type (P , A, B, C , R, I , F ). Then follow
the symmetry operation symbols. Monoclinic unit cells have b unique. The
obverse setting is used for rhombohedral R space groups (listed in trigonal).

Appendix 8: The Patterson
function
The Patterson function, deduced by A. L. Patterson in 1934, is a Fourier
series, analogous to Eqn. (6.1), in which the coefficients of |F | are replaced
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by |F |2:

P(uvw) =
1
V

∑ ∑
all h,k,l

∑
|F |2 exp[−2πi(hu + kv + lw)] (A8.1)

This function was an extension from the suggestion of Zernike and Prins
in 1927 that, because there may be local order in a liquid, there should be
diffraction effects. For example, in a monatomic liquid such as mercury, the
nearest neighbors of a given atom should never be at a distance less than two
atomic radii, and seldom much more. There is more disorder for second nearest
neighbors and, as the distance from the atom under consideration increases, the
arrangement becomes random. Zernike and Prins showed that measurements
of the diffraction pattern could be used to calculate the average radial distribution
of matter in a liquid or powdered crystal (Zernike and Prins, 1927). The term
“radial” is used because the distribution is averaged over all directions and
depends only on the distance from its origin. The term “average” implies that
the distribution function found represents the average of the distributions of
neighbors around each of the atoms in the sample whose diffraction pattern
has been used.

These ideas were extended to crystals by Patterson, who recognized the key
fact that, because of the high degree of order in the crystal, the averaging
over all directions could be eliminated and detailed information about both the
magnitudes and the directions of the interatomic vectors (that is, both radial and
angular information) could be obtained (Patterson, 1934, 1935).

It is easiest to consider first a one-dimensional case and then extend it to
three dimensions. A one-dimensional electron density distribution map, Ò(x),
for a regularly repeating cell, length a , can be expressed by Eqn. (A8.2) and is
illustrated in Figure A8.1:

Ò(x) =
1
a

∑
all h

F (h) exp(−2πihx) (A8.2)

u

x x+u

r (x)

0 1
x

Fig. A8.1
Consider the distribution of electron density about an arbitrary point, x, in
the unit cell. The electron density at a point +u from x is Ò(x + u). Patterson
defined the weighted distribution, WD, about the point x by allotting to the
distribution about x a weight that was equal to Ò(x) dx, the total amount of
scattering material in the interval between x and x + dx:

WD = Ò(x + u)Ò(x) dx (A8.3)

It can be seen that, for a given value of dx, the weighted distribution is large only
if both Ò(x) and Ò(x + u) are large, and is thus small if either or both are small.

Values of weighted distributions are summed by integrating over all values
of x in the cell, keeping u constant, so that the average weighted distribution of
density, P(u), is

P(U) = a

1∫
0

Ò(x)Ò(x + u) dx (A8.4)

=
1
a

1∫
0

[∑
all h

F (h) exp(−2πihx)

] [∑
all h′

F (h′) exp[−2πih′(x + u)]

]
dx (A8.5)
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The properties of the complex exponential are such that the integral in Eqn.
(A8.5) vanishes unless h = −h′; consequently, Eqn. (A8.5) leads to

P(u) =
1
a

∑
all h

F (h)F (−h) exp(2πihu)

=
1
a

∑
all h

∣∣F (h)
∣∣2 exp(2π ihu) (A8.6)

since ·(h) = −·(h) and, by Eqn. (5.18), F (h)F (−h) = |F |2ei·e−i· = |F |2.
This function, P(u), may be visualized by imagining a pair of calipers set

to measure a distance u. One point of the calipers is set on each point in the
cell in turn; since the unit cell is repeated periodically, the situation at x is
repeated at x − 1, x + 1, x + 2, . . . The sum of all the products of values of Ò(x)
at the two ends of the calipers then gives P(u). As the electron density is nearly
zero between atoms and is high near atomic centers, the positions of peaks
in P(u) correspond to vectors between atoms; in other words, large values of
Ò(x)Ò(x + u) give large contributions to P(u).

These equations may be extended to three dimensions, letting Vc = the vol-
ume of the unit cell, so that from the definition

P(u, v, w) = Vc

1∫
0

1∫
0

1∫
0

Ò(x, y, z)Ò(x + u, y + v, z + w) dx dy dz (A8.7)

after substitution of values for Ò and integration, most terms are zero, leaving

P(u, v, w) =
1
Vc

∑∑
all h,k,l

∑ ∣∣F (hkl)
∣∣2 exp[2πi(hu + kv + lw)] (A8.8)

This equation can easily be reduced to Eqn. (A8.9),

P(u, v, w) =
F 2(000)

Vc
+

2
Vc

∑ ∑
h≥0 all k,l

excluding F 2(000)

∑
|F |2 cos 2π(hu + kv + lw) (A8.9)

by noting that |F |2(hkl) = |F |2(h̄k̄l̄ and

eiˆ = cos ˆ + i sin ˆ (A8.10)

and then grouping Bragg reflections in pairs, hkl and h̄k̄l̄. For every such pair,
the value of ˆ for hkl is equal in magnitude and opposite in sign to that for h̄k̄l̄
for each point u, v, w and thus, since cos ˆ = cos(−ˆ) while sin ˆ = − sin(−ˆ),
the sine terms in the expansion of Eqn. (A8.8) cancel when summed over each
of these pairs of Bragg reflections.

To summarize, the importance of the Patterson function is that peaks
in it occur at points to which vectors from the origin correspond very
closely in direction and magnitude with vectors between atoms in the crys-
tal and that no preliminary assumptions are needed because |F |2 values
are independent of phase and can be derived directly from the measured
intensities.
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Appendix 9: Vectors in a
Patterson map
A certain derivative of vitamin B12 crystallizes in the space group P212121 and
contains Co, Cl, O, N, C, and H, with atomic numbers 27, 17, 8, 7, 6, and 1,
respectively.

(a) The expected approximate relative heights of typical peaks in the Pat-
terson map are

Co–Co 27 × 27 729
Co–Cl 27 × 17 459
Cl–Cl 17 × 17 289
Co–O 27 × 8 216
Co–C 27 × 6 162
O–O 8 × 8 64
H–H 1 × 1 1

(This map will then be dominated by Co–Co and Co–Cl vectors unless
there are accidental overlaps of other peaks.)

(b) Derivation of the coordinates of vectors between symmetry-related
positions of any atom (for example, Co) in terms of its atomic position
parameters:

(i) Atomic positions:
(1) x, y, z
(2) 1/2 − x, −y, 1/2 + z
(3) 1/2 + x, 1/2 − y, −z
(4) −x, 1/2 + y, 1/2 − z

(ii) Interatomic vectors between symmetry-related atoms are expected
at the following positions, corresponding to the differences in coor-
dinates of the various atomic positions:

u = 0 v = 0 w = 0 (position 1 to position 1)
u = 1/2 − 2x v = −2y w = 1/2 (position 2 to position 1)
u = 1/2 v = 1/2 − 2y w = −2z (position 3 to position 1)
u = −2x v = 1/2 w = 1/2 − 2z (position 4 to position 1)

(The vector between any other positions—for example, 2 to 4 or 4
to 3—either is identical to one of these, or is related by a two-fold
axis or by a center of symmetry at the origin. Every Patterson map is
centrosymmetric.)

(c) The actual Patterson map for this crystal shows peaks at, among other
positions:

u v w

0.00 0.00 0.00
±0.20 ±0.32 0.50
0.50 ±0.18 ±0.20
±0.30 0.50 ±0.30

(d) A comparison of these observed peak positions with the general expec-
tations in (b) above shows that a consistent set of coordinates for the Co
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atom is x = 0.15, y = 0.16, z = 0.10. (See Hodgkin et al. (1957), p. 228 and
Hodgkin et al. (1959), p. 306.)

Appendix 10: Isomorphous
replacement (centrosymmetric
structure)

FT = FM + FR

M = replaceable atom or group of atoms

R = the rest of the structure

If the position of M is known, then FM is known. If two isomorphous crystals
are studied, it is assumed that the position of the remainder of the structure is
the same in each. Then, for one crystal,

FT = FM + FR

while for the second one,

FT′ = FM′ + FR

The experimentally obtained data* consist of |FT| and |FT′ | derived from the
* See Glusker et al.(1963). measured intensities. FM and FM′ are computed from the positions of M and

M′, found by an analysis of the Patterson map. The signs of FT and FT′ may
then be obtained, as illustrated in the following table.

h k l |FT| |FT′ | FRb − FK

(calculated from
known metal
position)

Sign of
F for Rb
computed

Sign of
F for K
computed

Rb salt K salt

0 1 1 16 20 +33 + −
0 1 3 132 78 −59 − −
0 2 1 63 70 −11 + +
0 2 2 56 31 +29 + +
0 4 0 102 50 +61 + +
0 4 1 6 12 +17 + −
0 5 2 9 16 +21 + −
0 5 3 38 9 −50 − +

For example, for the 0 1 1 Bragg reflection it is known, from computed values of
FRb and FK, that the difference is approximately +33 between FT for the rubid-
ium salt (for which the experimental value is ±16) and FT for the potassium
salt (for which the experimental value is ±20). This is only possible if FRb is
+16 and FK is −20, an experimental difference (FRb − FK) of +36. For the 0 1 3
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Bragg reflection, the calculated value of (FRb − FK) is −59 and the experimental
values are ±132 for FRb and ±78 for FK. This difference of −59 indicates that FRb

is −132 and FK is −78, an experimental difference of −54. Some phases may be
ambiguous, in which case they must then be omitted.

Appendix 11: Diffraction data
showing anomalous scattering

The following values of |F | for five pairs of reflections hkl and h̄k̄l̄ from
a crystal of potassium dihydrogen isocitrate** (Figure 10.6b), measured with

** See van der Helm et al. (1968), p. 578.

h k l |Fo| |Fc|

1 3 1 19.0 19.2
−1 −3 −1 22.9 23.7

1 3 2 6.4 6.6
−1 −3 −2 11.7 11.7

1 3 3 26.3 25.7
−1 −3 −3 20.7 20.0

4 5 2 7.2 7.0
−4 −5 −2 2.5 2.7

7 1 2 9.2 9.0
−7 −1 −2 13.1 12.9

chromium radiation, show the effect of anomalous scattering as a result of the
presence of potassium ions in the structure. With these data the effect was
sufficiently large that the absolute configuration of the sample could easily
be determined. The |Fc| values given here were calculated for the absolute
configuration of the dihydrogen isocitrate ion given in Figure 10.6b; for the
enantiomorphous form, the corresponding values for hkl and h̄k̄l̄ would be
reversed.

The effect of anomalous scattering on the electron density calculation was
discussed by A. L. Patterson (Patterson, 1963). He showed how to correct the
value of F so that the effect is removed, and in so doing, demonstrated that to
use F (h̄k̄l̄) or F (hkl) to compute electron density is not correct when anomalous
scattering is appreciable:

|F±|2 = A2 + B2 + (‰2
1 + ‰2

2)(A2
d + B2

d )

+2‰1(AAd + B Bd ) − 2Û‰2(ABd − B Ad ) (A11.1)

where A and B are the components of the structure factors for the normally
scattering atoms and Ad and Bd are those for the anomalously scattering atoms.
Û has a value of +1 for F (hkl) and −1 for F (h̄k̄l̄). ‰1 = f ′

d/ fd and ‰2 = f ′′
d / fd . As a

result two quantities were defined:

S = 1/2{|F+|2 + |F−|2} = A2 + B2 + 2‰1(AAd + B Bd ) + (‰2
1 + ‰2

2)(A2
d + B2

d ) (A11.2)

D = 1/2{|F+|2 − |F−|2} = −2‰1(ABd − B Ad ) (A11.3)

Thus the average of the intensities of Bijvoet-related pairs of reflections (hkl and
h̄k̄l̄) may be computed by Eqn. (A11.2) and the differences may be computed by
Eqn. (A11.3), provided the structure is known. If the sign of D is wrong, then
the structure model has the wrong absolute configuration.

The term that should be used in computing an electron density map is

|F |0 = {S − 2‰1(AAd + B Bd ) − (‰2
1 + ‰2

2)(A2
d + B2

d )} (A11.4)

Thus it is best, if accurate electron density maps are required, to measure
diffraction data far from the absorption edge of any atom in the structure.
Data measured near an absorption edge can be used to establish the absolute
configuration.
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Appendix 12: Molecular
geometry

Transformation from fractional coordinates to
Cartesian coordinates
The fractional coordinates of atomic positions, x, y, z in a unit cell of dimensions
a , b, c, ·, ‚, „, may be expressed in Cartesian coordinates, X, Y, Z (in units of Å),
as follows:

X = xa + yb cos „ + zc cos ‚

Y = yb sin „ + z{c(cos · − cos ‚ cos „)/ sin „}
Z = zcW/ sin „

where

W =
√

1 − cos2 · − cos2 ‚ − cos2 „ + 2 cos · cos ‚ cos „

The orientation of the Cartesian axes relative to the crystallographic axes is:

A parallel to a;
B in the a, b plane perpendicular to a;
C perpendicular to A and B.

Interatomic distances
Distance A–B:

dA-B =
√

(XA − XB)2 + (YA − YB)2 + (ZA − ZB)2

=
√

ƒX2
A-B + ƒY2

A-B + ƒZ2
A-B

Interbond angles
Angle A–B–C = arctan(

√
1 − c2

A/cA)

where

cA = −(ƒXA-BƒXB-C + ƒYA-BƒYB-C + ƒZA-BƒZB-C)/dB-CdA-B

Torsion angles
Torsion angle A–B–C–D = arctan(sT/cT)
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where

sT = (ƒXABv1 + ƒYABv2 + ƒZABv3)/dAB

and

cT = u1v1 + u2v2 + u3v3

where

u1 = (ƒYABƒZBC − ƒZABƒYBC)/(dABdBC)

u2 = (ƒZABƒXBC − ƒXABƒZBC)/(dABdBC)

u3 = (ƒXABƒYBC − ƒYABƒXBC)/(dABdBC)

v1 = (ƒYBCƒZCD − ƒZBCƒYCD)/(dBCdCD)

v2 = (ƒZBCƒXCD − ƒXBCƒZCD)/(dBCdCD)

v3 = (ƒXBCƒYCD − ƒYBCƒXCD)/(dBCdCD)
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Absent Bragg reflections. (See Unobserved Bragg reflec-
tions.)

Absolute configuration. The structure of a crystal or
molecule expressed in an absolute frame of reference. The
configuration of a molecule or crystal is the relationship
in space of the atoms within it. It is generally defined by
atomic coordinates (see Atomic parameters) with respect
to three independent axes, each of which has direction-
ality; these axes provide an absolute frame of reference.
Absolute configuration describes a real-space relationship
and gives the actual three-dimensional structure as one
would see it if it were lifted out of the viewing screen;
we can immediately see it is “left handed” or “right
handed.” Bijvoet and co-workers, in 1951, used the dif-
ference between I (hkl) and I(h̄k̄l̄) for zirconium radiation
in crystals showing anomalous scattering by rubidium
ions to determine the absolute configuration of sodium
rubidium (+)-tartrate.

Absolute scale, scale factor. Structure amplitudes are
on an absolute scale when they are expressed rela-
tive to the amplitude of scattering by a single classi-
cal point electron under the same conditions. A scale
factor is required to convert measured structure ampli-
tudes (from experiment) to absolute values. This scale
factor is generally found from a Wilson plot (q.v.)
or by comparison with calculated values for a model
structure.

Absorption correction. (See Linear absorption coeffi-
cient.)

Absorption edge. At absorption edges the plot of absorp-
tion versus X-ray wavelength shows an abrupt drop
and then rises again. These sharp discontinuities, called
absorption edges, occur at energies at which the incident
X rays can excite a bound electron in a particular atom to
a higher vacant orbital or can eject it altogether. The inner-
shell vacancy left by this electron is then filled by another
electron falling from an outer shell. The energy (and hence
wavelength) of this process depends on the difference in
energy of the levels that this second electron has moved
between.

Accuracy. Deviation of a measurement from the value
accepted as true (cf. Precision).

Amorphous solid. A material without a real or apparent
crystalline nature; it contains no long-range ordering of
atoms. Many substances that appear superficially to be
amorphous may, in fact, be composed of many tiny crys-
tals.

Amplitude. The height of a wave measured from its mean
value. For a vertically symmetric wave (such as a sinu-
soidal wave), it is half the peak-to-valley (maximum to
minimum) displacement. The square of the amplitude
gives a measure of the intensity of the wave.

Angle of incidence. The angle that a ray of light that is
impacting on a surface makes with a line perpendicular to
(i.e., normal to) the surface at the point of incidence. The
Bragg angle, Ë, which is half the angle between the direct
beam and a diffracted beam, is the complement of this,
and the angle of incidence is (90◦ − Ë).

Angle of reflection. The angle between a ray that is
reflected by a surface and the normal to the surface at the
point of reflection. (See Angle of incidence.)

Ångström unit. The unit of length used in crystal
structure analyses, named after Anders J. Ångström,
a Swedish spectroscopist. 1 Å = 10−10 m = 10−8 cm =
10−7 mm = 10−4 µm = 0.1 nm = 100 pm.

Anisotropic. Exhibiting physical properties that are non-
spherical, that is, have different values when measured
along axes with different directions.

Anomalous dispersion. “Dispersion” is the passage of
light through a medium, such as glass in a prism or a
crystal, so that the light is separated into its component
parts, that is, beams of different (rainbow) colors. The
refractive index of a material is the ratio of the velocity
of light in vacuo to its velocity when it passes through
this medium. Blue light (which is shorter in wavelength
than red light and which has a larger refractive index than
does red light) is bent more than red light when it enters
a medium. This is “normal dispersion.” If, however, the

236
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wavelength of the light (or X rays) is near an absorption
edge (q.v.) of one type of atom in the structure, there will
be a large discontinuity in the curve of refractive index
against wavelength. In a plot of wavelength versus refrac-
tive index the refractive index increases with wavelength
and blue light is less refracted than red, the opposite
of normal expectation. This is called “anomalous disper-
sion.” All atoms scatter anomalously to some extent, but
when the wavelength is near the absorption edge of a
scattering atom, anomalous dispersion will be especially
strong. It will cause a phase change on scattering other
than the normal value of 180◦, and diffraction data will not
obey Friedel’s Law (q.v). In noncentrosymmetric crystals
intensities of pairs of Bragg reflections I (hkl) and I(h̄k̄l̄),
normally the same, will be different if a strong anomalous
scatterer is present. These intensity differences can be used
to determine the absolute configuration (q.v.) of the crystal
and its constituent molecules.

Anomalous scattering. An effect caused by high absorp-
tion at wavelengths near an absorption edge (q.v.). In
noncentrosymmetric crystals, Bragg reflections hkl and h̄k̄l̄
from opposite faces (that is, in directions at 180◦ to one
another) are caused to have different intensities, contrary
to the requirement of Friedel’s Law (q.v.). These differ-
ences in intensity (I (hkl) versus I(h̄k̄l̄) may be used to
determine the absolute configuration (q.v.) of chiral crys-
tals (see Anomalous dispersion).

Area detector. An electronic device, such as a charge-
coupled device (q.v.), for measuring the intensities of a
large number of Bragg reflections at one time. It gives
information on the intensity and direction of each Bragg
reflection and is equivalent to electronic film.

Asymmetric unit. The smallest portion of a crystal struc-
ture from which the entire structure can be generated from
the space-group symmetry operations (including transla-
tions). The asymmetric unit may consist of part of a mole-
cule, a whole molecule, or all or part of several molecules
not related by crystallographic symmetry.

Atomic displacement parameters, displacement parame-
ters. Displacements of atoms in the unit cell from their
equilibrium positions as a result of atomic vibration or
disorder. Because static displacements from one unit cell
to another will simulate vibrations of an atom, the term
“displacement parameters” is used unless it is clear that
the displacements are caused by temperature effects only,
and not by static disorder.

Atomic parameters or atomic coordinates. A set of num-
bers that specifies the position of an atom in a crystal
structure with respect to a selected coordinate system,

usually the crystal axes, and the extent of its vibration
and disorder from unit cell to unit cell. Atomic coor-
dinates are generally expressed as dimensionless quan-
tities x, y, z (fractions of unit-cell edges, measured in
directions parallel to these edges), but sometimes as
lengths (with dimensions), with respect to either the
axial directions of the crystal or an orthogonal Carte-
sian coordinate system (q.v.). Additional parameters
include thermal or displacement parameters (one para-
meter if isotropic, six if anisotropic), and, for disordered
structures, parameters that define the atomic occupancy
factors.

Atomic scattering factor, scattering factor, form factor.
The scattering power of an atom for X rays, fi , is defined
relative to the scattering of X rays by a single electron
under the same conditions. It depends on the number
of electrons in the atom (approximately the atomic num-
ber) and the angle of scattering 2Ë. This scattering power,
which is for an atom at rest, not vibrating, falls off as the
scattering angle increases. By contrast, for neutron scatter-
ing this reduction in scattering power at higher scattering
angles does not occur, because the scattering object, the
atomic nucleus, is so small. Atomic scattering factors can
be computed, usually as a function of the scattering angle,
from theoretical wave functions for free atoms (neutral
or charged). They are modified by anomalous scattering
(q.v.), which occurs to some extent at all wavelengths. The
value fi is replaced by fi + f ′

i + i f ′′
i (see Chapter 10). The

effect is largest if the incident-beam wavelength is near
an absorption edge of the scattering atom; at most other
wavelengths it is often ignored.

Automated diffractometer. A computer-controlled instru-
ment that automatically measures and records the intensi-
ties of the Bragg reflections. It may measure Bragg reflec-
tions sequentially or may have a detector that can mea-
sure large numbers of reflections at the same time. For
sequential measurement, the mutual orientations of the
crystal and of the detector with respect to the source
of radiation are assessed by computer from some ini-
tial diffraction data on some 20–30 selected Bragg reflec-
tions. The computer then provides an orientation matrix
that specifies the orientation of the crystal and detector
with respect to the X-ray beam. Electromechanical devices
under computer control then drive the gears that move
the crystal orienter and detector to the desired angu-
lar settings for each Bragg reflection in turn, and scan
and measure the intensity and scattering angle for each
I (hkl); they also open and close the X-ray shutter. The
newer technology now involves the use of area detectors
to record large numbers of Bragg reflections simultane-
ously through a continuum of angular rotations, while
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the data are evaluated during the collection of the data
or processed at a later time.

Avogadro’s number. Named after Amedeo Avogadro,
who, in 1811, proposed that equal volumes of all gases
at the same pressure and temperature contain the same
number of molecules. Avogadro’s number is the number
of molecules in a gram molecule of material (its molecular
weight in grams), 6.022 × 1023 per mol.

Axial lengths and angles. These are the unit-cell lengths
and angles, a , b, c, ·, ‚, „. They are generally reported in Å
and degrees.

Axial ratios. The ratios of the axial lengths, customar-
ily expressed with the value of b equal to unity. These
ratios may be deduced from measurements of the angles
between faces on a crystal, and are useful in identifying
the composition of crystals.

Axis of rotation or axis of symmetry, rotation axis. When
an object can be rotated by (360/n)◦ about an axis passing
through it, and, as a result, give an object indistinguish-
able from the first, then the original object is said to pos-
sess an n-fold axis of rotation.

Azimuthal scan. The azimuth of a line is the angle
between the vertical plane containing the line and the
plane of the meridian. If you stood at the center of the
earth, the north pole would be at an azimuthal angle of
0◦, and, measuring angles clockwise from the meridian
(longitude through Greenwich), east at 90◦, south at 180◦,
and west at 270◦. An azimuthal scan (also called a psi-scan
or ¯-scan) of diffraction data is measured as the crystal
rotates about the diffraction vector (q.v.). This scan is used
to make an empirical absorption correction (q.v.) and to
avoid possible errors due to double reflections (q.v.).

Bessel function. Bessel’s differential equation arises in
numerous problems, especially in polar and cylindrical
coordinates. The solutions of this equation are called
Bessel functions, named for Friedrich Bessel, a German
mathematician and astronomer. These functions, which
give graphs that look like damped cosine or sine waves,
are available in computer mathematics libraries. They
are used for structures that are best defined by polar
or cylindrical coordinates, such as nucleic acids. They
also appear in the probability theory that underlies direct
methods.

Best plane. The plane through a group of atoms that
satisfies the least-squares (see Method of least squares)
criterion of planarity.

Bijvoet differences. In 1951 Johannes Martin Bijvoet and
fellow crystallographers in the Netherlands demonstrated

that it is experimentally possible to determine the absolute
configuration of an optically active molecule in the crys-
talline state from the effects of anomalous dispersion.
They showed that this information is available in the dif-
ferences in intensity between Bragg reflections I (hkl) and
I(h̄k̄l̄) when the incident X rays have a wavelength near
the absorption edge (q.v.) of at least one (but not all) of the
atoms in the asymmetric unit of the crystal.

Birefringence. Double refraction, that is, the separation
of a ray of light on passing through a crystal into two
unequally refracted, plane-polarized rays of orthogonal
polarizations; these are called the “ordinary ray,” which
obeys the normal laws of refraction, and the “extraordi-
nary ray,” which does not. This effect occurs in crystals
in which the velocity of light is not the same in all direc-
tions; that is, the refractive index is anisotropic. Uniax-
ial crystals, such as calcite or quartz, have one direction
(the anisotropy axis or optic axis) along which double
refraction does not occur, and are characterized by two
refractive indices; biaxial crystals have two such axes of
anisotropy and three refractive indices.

Body-centered unit cell. A unit cell having a lattice point
at its center (x = y = z = 1/2) as well as at each corner (x =
y = z = 0 or 1).

Bragg. Father, William Henry Bragg, pioneered instru-
mental methods for measuring X-ray diffraction patterns.
Son, William Lawrence Bragg, developed methods for
analyzing the experimental data in terms of the atomic
structure of the crystal. They shared the Nobel Prize in
Physics in 1915 (W. L. Bragg then being only 25 years old).

Bragg reflection, reflection. Since diffraction by a crystal
may be considered as reflection from a set of lattice planes
(a view suggested by William Lawrence Bragg), the term
“Bragg reflection” has come to be used to denote a dif-
fracted beam. While this is correct, the term “reflection”
(without the “Bragg”) is also used. The more definitive
term “Bragg reflection” is used in this book.

Bragg’s Law or Bragg equation. Each diffracted beam is
considered as a “Bragg reflection” from a family of paral-
lel lattice planes, hkl. If the angle between the nth order of
diffraction of X rays, wavelength Î, and the normal (per-
pendicular) to a set of crystal lattice planes is (90◦ − Ëhkl ),
and the perpendicular spacing between successive lattice
planes is dhkl , then

nÎ = 2dhkl sin Ëhkl Bragg′s Law

When X rays strike a crystal they will be diffracted when,
and only when, this equation is satisfied. With this equation,
W. L. Bragg first identified the integers h, k, and l of the
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Laue equations with the Miller indices of the lattice planes
that cause that Bragg reflection.

Bravais lattice. One of the 14 possible arrays of points
repeated periodically in three-dimensional space such
that the arrangement of points surrounding any one of
the points is identical in every respect to that surrounding
any other point in the array. They are obtained by com-
bining the seven crystal systems (q.v.) with one of the lat-
tice centerings, that is, P = primitive, I = body-centered,
F = face-centered, and A, B, or C = single-face-centered,
and eliminating equivalent results (giving 14 rather than
42 Bravais lattices). They were studied by Auguste
Bravais.

Bremsstrahlung. X rays (specifically “braking radiation”)
that are produced when accelerated electrons are sud-
denly decelerated by a collision with the electrical field of
an atom in the metal target of an X-ray tube. This radiation
has a continuous spectrum with respect to wavelength,
and is generally considered background to characteristic
X rays (q.v.).

Calculated phase angle or calculated phase. The phase
angle, ·(hkl), relative to a chosen origin, computed from
the atomic positions (x, y, z) of a model structure. The
equations that lead to its value are as follows:

A(hkl) = � f cos 2π(hx + ky + lz) and

B(hkl) = � f sin 2π(hx + ky + lz)

F (hkl) = A(hkl) + iB(hkl) and

|F (hkl)|2 = [A(hkl)]2 + [B(hkl)]2

·(hkl) = tan−1[B(hkl)/A(hkl)]

where f includes the scattering factor and displacement
factor of the atom and each summation is over all atoms
in the unit cell.

Cartesian coordinate system. The three-dimensional
position of a point (x, y, and z) can be located by reference
to three orthogonal (mutually perpendicular) axes with
units of equal length (e.g., Å or cm) along these axes. The
location is defined by distances from an origin, measured
parallel to these axes. (Named after René Descartes, the
mathematician and philosopher.)

Cauchy–Schwarz inequality. The square of the sum of the
products of two variables (a and b here) for a particular
range of values is less than or equal to the product of the
sums of the squares of these two variables for the same
range of values:

|�ab|2 ≤ {|�a 2| |�b2|}

In this equation each sum � is over the same range,
e.g., from 1 to N. This equation, the result of stud-
ies by Augustin Louis Cauchy, Viktor Yakovlevich Bun-
yakovsky, and Karl Hermann Amandus Schwarz, is
used in direct methods of phase determination (see
Chapter 8).

Center of symmetry or center of inversion. A point
through which an inversion operation is performed, con-
verting an object at x, y, z into its enantiomorph at −x, −y,
−z if the center of inversion is at 0, 0, 0 (see Inversion).

Centrosymmetric crystal structure. A crystal structure for
which the space group, and therefore the arrangement of
atoms, contains a center of symmetry. When the unit-cell
origin is chosen at the center of symmetry, the phase angle
for each Bragg reflection is either 0◦ or 180◦.

Characteristic X rays. X rays of definite wavelength, char-
acteristic of the target (generally a metal) and produced
when that target is bombarded by fast electrons. Charac-
teristic X rays are emitted when an electron that has been
displaced from an inner shell of the atom being excited (an
atom in the target material) is replaced by another electron
that falls in from an outer shell. This gives radiation of a
wavelength corresponding to the difference in the ener-
gies of the two shells in the target atom.

Charge-coupled device area detector, position-sensitive
detector. A position-sensitive electronic device for mea-
suring the intensities of a large number of diffracted inten-
sities at one time. It gives information on the direction
(exact point of impact on the detector) and intensity of
each diffracted beam and behaves like electronic film. It
is a photoelectric radiation sensor that acts, when hit by
a photon, by generating electron–hole pairs. The electric
charges so formed, which are proportional to the radia-
tion intensity at that point in space, are collected in pixels
(picture elements) formed by an array of gates, and trans-
ferred by application of a differential voltage across the
gates.

Chiral. A chiral object or structure cannot be superim-
posed (with complete equivalence) upon its mirror image
(Greek: cheir = hand). Left and right hands provide excel-
lent examples of chiral objects.

Chi-square. The sum of the quotients obtained from the
square of the difference between the observed (xi ) and
mean or averaged (〈x〉) values of a quantity when divided
by the square of its standard uncertainty (s.u.), Û(xi ). The
relationship is ˜2 = {�(xi − 〈x〉)2}/Û(xi )2.

Chi-square test. A test for the mathematical fit of
the distribution of chi-square to a standard frequency
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distribution. This gives the likelihood that an observed
distribution arose from fluctuations of random sampling
rather than from systematic error. Tables of probability
values (likelihoods) are available.

Cleavage. The property of many crystals of splitting read-
ily (usually upon impact) in one or more definite direc-
tions to give smooth surfaces, always parallel to actual or
possible crystal faces.

Coherent scattering. Scattering in which the incoming
radiation interacts with all the scatterers in a coordinated
manner so that the scattered waves have definite relative
phases and can interfere with each other. The energy of
the scattered photon is the same as that of the incident
photon. (See also Incoherent scattering.)

Collimator. A device for producing a parallel beam of
radiation.

Complex number. An expression of the form a + ib, where
a and b are real numbers and i =

√−1. The word “com-
plex” here implies that the number is composed of two or
more separable parts, that is, a and ib.

Configuration. The configuration of a molecule consists of
the relationships in space of the atoms within it.

Conformation. One of the likely shapes of a molecule.
Generally applied to molecules for which there is a pos-
sibility for rotation about bonds. Different rotational posi-
tions about bonds are represented by torsion angles (q.v.).

Constraints. Constraints are limits on the values that
parameters in a least-squares refinement may take. They
reduce the number of parameters and are mathematically
rigid with no standard uncertainty. A common constraint
is a reduction in the number of parameters defining a
group of atoms that is being refined. This simplifies the
refinement. For example, a benzene ring may be con-
strained to six parameters, three defining position and
three defining orientation in the unit cell. Atoms in special
positions may also need to be constrained so that they do
not move during refinement. Constraints remove parame-
ters and restraints add data. (Think of a dog constrained
in a cage in which he fits tightly and is not able to move.)
(See Restraints.)

Contact goniometer. A device for measuring angles
between faces of a crystal by making direct contact with
the crystal faces with two straight edges and then measur-
ing the angle between these straight edges.

Contour map. In crystal structure analysis, this is a
map showing electron or nuclear density by means of
contour lines drawn at regular intervals. It resembles a

topographic map, with peaks representing areas of high
electron or nuclear density. The map is drawn with con-
tour lines at regular intervals of electron or nuclear den-
sity. (See Electron-density map.)

Convolution. One mathematical function folded with
another. To calculate the convolution of the plots of two
mathematical functions, we set the origin of the plot of
the first function in turn on every point of the plot of the
second function, multiply the value of the first function in
each position by the value of the second at that point, and
then the results are added together for all such possible
operations. For two functions A(x, y, z) and B(x, y, z), the
convolution of A and B at the point (u0, v0, w0) is

c(u0, v0, w0) =

∫ +∞∫
−∞

∫
A(x, y, z)B(x + u0, y + v0, z + w0) dx dy dz

Note that a crystal structure is the convolution of a crystal
lattice and the contents of one unit cell.

Correlation of parameters. The extent to which two
mathematical variables, such as atomic parameters, are
dependent on each other. For example, position para-
meters of an atom that has been refined by least
squares in an oblique coordinate system are correlated
to an extent that is dependent upon the cosine of
the interaxial angle. Parameters related by crystallo-
graphic symmetry are completely correlated. Displace-
ment occupancy factors are often highly correlated, and
this may be evident in the output of a least-squares
refinement.

Crystal. A solid that contains a very high degree of long-
range three-dimensional internal order of the component
atoms, molecules, or ions.

Crystal class. (See Crystallographic point group.)

Crystal lattice. Crystals are solids composed of groups of
atoms repeated at regular intervals in three dimensions
with the same orientation. If each such group of atoms is
replaced by a representative point, the collection of points
so formed provides the space lattice, or crystal lattice. The
meaning is specific for this arrangement of points, and
the term “lattice” should not be used to denote the entire
atomic arrangement.

Crystal morphology. (See Morphology.)

Crystal structure. The mutual arrangement of the atoms,
molecules, or ions that are packed together in a regular
way (on a crystal lattice) to form a crystal.
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Crystal system. There are seven crystal systems, best
classified in terms of their symmetry. They are: triclinic,
monoclinic, orthorhombic, tetragonal, cubic, trigonal, and
hexagonal. As a result of their symmetries they lead to the
seven fundamental shapes for unit cells consistent with
the 14 Bravais lattices (q.v.).

Crystallographic point group, crystal class. A point
group is a group of symmetry operations that leave at
least one point unmoved within an object when the sym-
metry operation is carried out. There are 32 crystallo-
graphic point groups (crystal classes) that contain rotation
and rotatory-inversion axes (n = 1, 2, 3, 4, 6). The crystal-
lographic point groups characterize the external symme-
try of well-formed crystals.

Cubic unit cell. A unit cell in which there are three-
fold rotation axes along all four body diagonals. All axial
lengths are therefore identical by symmetry, and all inter-
axial angles must be 90◦ (a = b = c, · = ‚ = „ = 90◦).

Data reduction. Conversion of measured intensities,
I (hkl), to structure amplitudes |F (hkl)| or to |F 2(hkl)|, by
application of various factors including Lorentz, polariza-
tion, and absorption corrections (q.v.).

Database. A collection of data on a particular subject, such
as atomic coordinates from crystal structure determina-
tions. These data are readily retrievable by computer.

Defect. A crystal lattice imperfection. This may be due to
impurities. A point defect is a vacancy or an interstitial
atom. A line defect is a dislocation in the crystal lattice.

Deformation density. The difference between the exper-
imental electron density in a molecule (with all its dis-
tortions as a result of chemical bonding) and the pro-
molecule density (q.v.) (a model of the molecule with a
spherical electron density around each isolated free atom).
The deformation-density map contains information on
chemical bonding, although this information is modified
by errors in the phases and the measured intensities of
the Bragg reflections and inadequacies in the calculated
scattering factors of free atoms.

Deliquescence. The property that some crystals have of
attracting and absorbing moisture from the surrounding
atmosphere and dissolving gradually, eventually becom-
ing a solution.

Density modification, solvent flattening. A computa-
tional method for improving phases, particularly when
a unit cell contains a high proportion of solvent as do
macromolecular crystals. When an electron-density map
is calculated with |F (hkl)| and an initial set of possible

relative phases, the map will probably be noisy if the
relative phases are not very good. However, the outline
of an “envelope,” the protein–solvent boundary, may be
evident. The overall density of atoms in aqueous areas
of the crystal (involving oxygen–oxygen distances near
2.7 Å) is lower than in the interior of the molecule (involv-
ing C–C, C–O, and C–N distances near 1.4 Å). An “enve-
lope” defining the approximate boundary of the molecule
is determined from the electron-density map. All of the
electron density outside this envelope, that is, the electron
density in the solvent area, is then set to a single low value
(the average for disordered water) and a new set of phases
is then determined by Fourier inversion of this “solvent-
flattened” map. The process is used to improve the phases
and may be repeated, if necessary.

Difference synthesis or difference map. A Fourier map
for which the input Fourier coefficients are the differences
between measured structure factors and those calculated
from a proposed structural model. Such a map will have
peaks at positions in which there is not enough electron
density in the trial structure, and troughs where too much
is included. It is an exceedingly valuable tool both for
locating missing atoms and for correcting the positions of
those already present in the trial structure.

Differential synthesis. A method of refining parameters
of an atom from a mathematical consideration of the slope
and curvature of the difference synthesis (q.v.) in the
region of each atom.

Diffraction. When radiation passes by the edges of an
opaque object or through a narrow slit, the waves appear
to be deflected and they produce fringes of parallel light
and dark bands. This effect may best be explained as the
interference of secondary waves generated in the area
of the slit or the opaque object. These secondary waves,
so generated, interfere with one another, and the inten-
sity of the beam in a given direction is determined by a
superposition of all the wavelets in that direction. When
light passes through a narrow slit all the waves will be
in phase in the forward direction. In any other direc-
tion, each secondary wave traveling in a given direction
will be slightly out of phase with its neighbors by an
amount that depends on the wavelength of the light and
the angle of deviation from the direct beam. The shorter
the wavelength, the more a wave is out of phase with its
neighbor. In X-ray crystallography, the radiation is X rays
and the slit is replaced by the electron clouds of atoms
in a crystal which scatter the X rays. Because the crystal
contains a regularly repeating atomic arrangement, the
beams diffracted from one unit cell may be in phase with
those from other unit cells and can reinforce each other to
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produce a strong diffracted beam. The scattering from the
arrangement of atoms within the unit cell will modify the
intensities of these beams.

Diffraction grating. A series of close, equidistant parallel
lines, usually ruled on a polished surface. Because of the
regularity of the ruled lines, this grating can be used to
produce diffraction spectra.

Diffraction pattern. The intensity pattern obtained when
radiation is diffracted by an object that has a regular spac-
ing with similar dimensions to that of the wavelength of
the radiation.

Diffraction plane. The plane containing the incident
beam, the location point of diffraction by the crystal, and
the diffracted beam.

Diffraction symmetry. Symmetry in the intensities of
Bragg reflections with indices (hkl) related by a change
of sign (e.g., −h, −k, −l) or permutation (k, l, h). The dif-
fraction symmetry must adhere exactly to one of the Laue
groups; a small difference from Laue group symmetry is
allowed when anomalous-dispersion effects are present.

Diffraction vector. A vector perpendicular to the lattice
planes hkl causing a Bragg reflection. This vector bisects
the directions of the incident and diffracted beams and lies
in their plane. (See Diffraction plane.)

Diffractometer. An instrument for measuring the direc-
tions and intensities of Bragg reflections in the dif-
fraction pattern of a crystal (see Automated diffrac-
tometer). For serial measurements, the required orien-
tations of the crystal and detector with respect to the
X-ray source are computed from initial data on some
Bragg reflections. The orientations necessary for the mea-
surement of all of the diffraction data are achieved
by computer-directed commands to electromechanical
devices that position the components of the instrument at
the required settings. Alternatively, an area detector may
be used that can measure many Bragg reflections at one
time.

Diffuse scattering. Halos or streaks that appear around or
between intense Bragg reflections and indicate the pres-
ence of disorder in the structure (static disorder), or high
thermal motion of atoms (dynamic disorder).

Dihedral angle. The dihedral angle between two planes is
the angle between the planes, often defined (with the same
result) as the angle between the normals (perpendiculars)
to these planes. If the planes, with an angle Ë between
them, have equations

a1x + b1 y + c1z + d1 = 0 and a2x + b2 y + c2z + d2 = 0

then

cos Ë =
a1a2 + b1b2 + c1c2√

(a 2
1 + b2

1 + c2
1)(a 2

2 + b2
2 + c2

2)

Direct methods or direct phase determination. A
method of deriving phases of Bragg reflections by con-
sideration of probability relationships among the phases
of the more prominent Bragg reflections. These relation-
ships come from the conditions that the structure is com-
posed of atoms (giving independent, isolated peaks in
the electron-density map) and that the electron density
must be positive or zero everywhere (not negative). Only
specific values for the relative phases of Bragg reflections
are consistent with these conditions.

Direct space. There are two types of lattices important in
crystallography: the crystal lattice, commonly called the
direct lattice, and the reciprocal lattice. Each of these two
lattices can be thought of as existing in a space defined by
its coordinate system. Direct space is the space where the
atoms of the crystal structure reside. Reciprocal space is
the space where the diffraction intensities reside.

Discrepancy index. (See R value.)

Dislocation. A discontinuity in the otherwise regularly
periodic three-dimensional structure of a crystal result-
ing in a defect, often an imperfect alignment between
lattice rows. There are two common varieties of dislo-
cations: edge and screw dislocations. Edge dislocations
form where only part of one plane of atoms or molecules
exists in the crystal and, because atoms or molecules are
missing, causes stress as a result of distortions of nearby
planes. These dislocations can move through the crystal
as a result of shear stress applied perpendicular to the dis-
location line. On the other hand, screw dislocations also
have a dislocation line, but a helical path is formed around
it. This dislocation involves a displacement of rows of
atoms or molecules along a plane.

Disordered crystal structure. Lack of regularity in the
internal arrangement within a crystalline material. For
example, there may not be an exact register of the contents
of one unit cell with those of all others. Such disorder
may be revealed by large displacement parameters in the
least-squares refinement or by the presence of diffuse scat-
tering, either as halos or streaks, around intense Bragg
reflections.

Dispersion. Variation, as a function of wavelength, in the
velocity of light in a material (such as a crystal) and hence
variation in the refractive index (q.v.) of the medium. For
example, the spreading of white radiation by a prism or



Glossary 243

grating into a colored (rainbow-type) beam is due to dis-
persion of light. The variation of velocity with wavelength
is usually smooth, but at strongly absorbed wavelengths
of the incident radiation the curve may be discontinuous,
leading to anomalous dispersion (q.v.).

Displacement parameters. (See Atomic displacement
parameters.)

Distribution of intensities, intensity distribution. The
number of intensities in selected ranges of the diffrac-
tion pattern and their overall variation. Intensities from
a noncentrosymmetric crystal tend to be clustered more
tightly around their mean value than do those from a
centrosymmetric one. This forms the basis for one test for
the presence or absence of a center of symmetry in the
crystal.

Domain. A small region of a crystal containing a com-
pletely oriented structure.

Double reflection. X rays that are diffracted by one set
of lattice planes may then be diffracted by another set of
planes that, by chance, are in exactly the right orientation
for this. The twice-reflected resultant beam emerges in
a direction that corresponds to a single Bragg reflection
from a third set of planes, whose Miller indices are the
sums of the indices of the two sets of planes producing the
Bragg reflection. This double reflection that is, by chance,
traveling in the same direction as an original singly dif-
fracted beam will enhance or weaken the intensity of the
latter. The effect may even cause an ambiguity in the space
group determination if a systematically absent Bragg
reflection gains intensity by it. It can generally be elimi-
nated by reorienting the crystal or by changing the wave-
length of the incident X rays. The effect is also called the
“Renninger effect” after its discoverer, Moritz Renninger.

Dynamical diffraction. Diffraction theory in which the
modification of the primary beam on passage through the
crystal is important. The mutual interactions of the inci-
dent and scattered beams are taken into account. This is
important for perfect crystals and for electron diffraction
by crystals.

E-map. A Fourier map (equivalent to an electron-density
map) with phases derived by “direct methods” and nor-
malized structure factors (q.v.) |E(hkl)|, replacing |F (hkl)|
in the Fourier summation. Since the |E(hkl)| values corre-
spond to sharpened atoms (with no fall-off as a function
of sin Ë/Î), the peaks on the resulting map are more easy to
identify than those in an electron-density map computed
with |F (hkl)| values.

E-values. (See Normalized structure factors.)

Efflorescence. A change in the surface of a crystal that
results in a powder as a result of loss of water (or some
other solvent) of crystallization on exposure to air.

Elastic scattering. When radiation is scattered elastically,
there is no exchange of energy or momentum between
the incoming radiation and the scatterer, so that there is
no change in wavelength between the incident (incoming)
and scattered (outgoing) radiation. This is the type of scat-
tering described in this book.

Electron density. The number of electrons per unit vol-
ume (usually per cubic Å).

Electron-density map. A representation of the electron
density at various points in a crystal structure. Electron
density is expressed as the concentration of electrons per
unit volume (in electrons per cubic Å) and is highest near
atomic centers. The map is calculated using a Fourier
synthesis—that is, a summation of waves of known ampli-
tude, frequency, and relative phase. The input consists
of |F (hkl)| and ·(hkl). The three-dimensional map can be
viewed and manipulated on a computer screen. Summa-
tion of the electron-density values (in electrons per cubic
Å) over the volume expected to be occupied by one atom
will give the atomic number (the total number of electrons
in that volume) of the peak; this calculation, however,
depends on good scaling and a near-perfect model.

Enantiomorph. A molecule or crystal that is not identical
to its mirror image when superimposed on it.

Epitaxy. The oriented overgrowth of one crystalline mate-
rial on the surface of another. Generally there is some
match of periodicity between the two.

Epsilon factor, ε. This is a factor used in computing nor-
malized structure factors (E-values, q.v.) that takes into
account the fact that, depending on which of the 230 space
groups the crystal belongs to, there may be certain groups
of Bragg reflections in areas of the reciprocal lattice that
will have an average intensity greater than that for the
general Bragg reflections. The ε factor is used to correct
for these differences.

Equivalent positions. The complete set of atomic posi-
tions produced by the operation of the symmetry ele-
ments of the space group upon any general position,
x, y, z, in the unit cell.

Equivalent reflections. There are eight measurements
for each h, k, l, of each Bragg reflection corresponding
to combinations of positive or negative values of each
h, k, l. Those that are equivalent by the symmetry of the
crystal have (within experimental error) identical intensi-
ties. For high-symmetry crystals, other Bragg reflections
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may also be equivalent, e.g., hkl, klh, and lhk for cubic
crystals. In the absence of anomalous dispersion (q.v.),
|F (hkl)| = |F (h̄k̄l̄)|.
Estimated standard deviation. (See Standard
uncertainty.)

Euler’s formula. eiË = cos Ë + i sin Ë.

Eulerian angles. The three successive angles of rotation
needed to transform one set of Cartesian coordinates into
another or describe the orientation of a rigid body in terms
of a defined set of axes. They are named after the Swiss
mathematician Leonhard Euler.

Ewald sphere, sphere of reflection. A geometric construc-
tion for considering conditions for diffraction by a crys-
tal in terms of its reciprocal lattice rather than its direct
(real) crystal lattice. It is a sphere, of radius 1/Î (for a
reciprocal lattice with dimensions d∗ = Î/d), drawn with
its diameter along the incident beam. The origin of the
reciprocal lattice is positioned at the point at which the
incident beam emerges from the Ewald sphere. The crystal
(and its reciprocal lattice) can then be rotated. Whenever a
reciprocal lattice point P touches the surface of the Ewald
sphere, the conditions for a diffracted beam are satisfied.
A Bragg reflection with the indices of that reciprocal lattice
point P will result. Thus, for any orientation of the crys-
tal relative to the incident beam, it is possible to predict
which reciprocal lattice points, and thus which planes in
the crystal, will be in a “reflecting position” (in the sense
used by Bragg).

Extinction. An effect that reduces the intensity of a Bragg
reflection to less than the expected value. This means
that the X-ray beam has been weakened as it passes
through the crystal. Extinction is evidenced by a ten-
dency for |Fo| to be systematically smaller than |Fc| for
very intense Bragg reflections. Primary extinction occurs
when the incident beam passes through a single block
of a perfect crystal. Part of the beam may be reflected
twice so that it returns to its original direction but is
out of phase with the main beam, thus reducing the
intensity of the latter. However, when a crystal has a
mosaic structure (q.v.), part of the incident beam will be
diffracted by one mosaic block and therefore may not
be available for diffraction by a following block. As a
result the second block contributes less than expected to
the diffracted beam. This is called secondary extinction.
Extinction of this kind can sometimes be reduced by dip-
ping the crystal in liquid nitrogen, thereby increasing its
mosaicity.

Face-centered unit cell. A unit cell with a lattice point at
the origin and at the center of a face. If all faces are cen-

tered, the designation is F ; if only faces perpendicular to
the a axis are centered, the description is A (in which case
the face-centered atom lies in the bc plane). Analogous
conditions pertain to B and C .

Faces of a crystal. The flat, smooth surfaces of a crystal
that intersect with other faces giving sharp edges. They
show symmetrical relationships that may reveal the point-
group symmetry (see Point group) of the internal struc-
ture of the crystal.

Figure of merit. A numerical quantity used for indicating
comparative effectiveness. In crystallographic studies it is
used to indicate an estimate of the average precision in
the selection of phase angles. It is particularly used in
protein crystallography where phase angles are derived
by isomorphous replacement methods.

Film scanner. A device for measuring the intensities
of spots on an X-ray diffraction photograph. This is
done by a light beam that is caused to scan the photo-
graph systematically. The intensity of the beam transmit-
ted through the film is recorded for each point on the
film.

Filter. A semitransparent material that absorbs some or all
of the radiation passing through it. It is possible to choose
appropriate filters with different wavelength absorptivi-
ties to select a narrow wavelength range.

Focusing mirror system. Two bent metal mirrors that
deflect the X-ray beam and produce a small, intense
beam with a narrow angular divergence, a uniform beam
profile, and a low background intensity. They are use-
ful for experiments involving crystals with large unit
cells.

Form factor. (See Atomic scattering factor.)

Fourier analysis. The breaking down of a periodic mathe-
matical function into its component cosine and sine waves
(harmonics), which have specific amplitudes and frequen-
cies. The procedure was initiated by Jean Baptiste Joseph
Fourier, a French mathematician and physicist.

Fourier map. A map computed for a periodic function by
addition of waves of known amplitude, frequency, and
relative phase. The term is generally used for an electron-
density or difference electron-density map.

Fourier synthesis or Fourier series. A method of sum-
ming waves (such as scattered X rays) to obtain a periodic
function (such as the representation of the electron density
in a crystal). It is a mathematical function f (t) that is
periodic with a period T (so that f (t + T) = f (t)), and is
represented by a sum of sine and cosine terms (an infinite
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series) of the form

f (t) = a0/2 + a1 cos 2π(t/T) + a2 cos 2π(2t/T)

+ . . . + b1 sin 2π(t/T) + b2 sin 2π(2t/T) + . . .

The Fourier theorem states that any periodic function
may be resolved into cosine and sine terms involving
known constants. Since a crystal has a periodically repeat-
ing internal structure, this can be represented, in a math-
ematically useful way, by a three-dimensional Fourier
series, to give a three-dimensional electron-density map.
In X-ray diffraction studies the magnitudes of the coeffi-
cients are derived from the intensities of the Bragg reflec-
tions; the periodicities of the terms are derived from
the Miller indices h, k, l of the Bragg reflections, but
the relative phases of the terms are rarely determined
experimentally.

Fourier transform. A mathematical procedure used in
crystallography to interrelate the electron density and the
structure factors. In X-ray diffraction the structure factor,
F , is related to the electron density, Ò, by

F =

∞∫
−∞

Òeiˆ dVc and, conversely, Ò = (1/Vc) � F e−iφ

summing for all Bragg reflections. In these equations, ˆ =
2π(hx + ky + lz), and Vc is the volume of the unit cell. Sum-
mation replaces integration in the latter equation because
the diffraction pattern of a crystal is observed only at
discrete points. F is the Fourier transform of Ò, and Ò

is the inverse Fourier transform (because of the negative
sign) of F . (Note that eix = cos x + i sin x). See Glusker et
al. (1994), p. 204, for a detailed worked-out example of a
Fourier transform. Most such calculations are now done
by computer.

Fractional coordinates. Coordinates of atoms expressed
as fractions of the unit-cell lengths a , b, and c (see Atomic
parameters).

Fraunhofer diffraction. Diffraction observed with parallel
incident radiation, as in the diffraction by slits described
in Chapter 3. Named after Joseph von Fraunhofer.

Friedel’s Law. This law, named after Georges Friedel,
states that |F (hkl)|2 values of centrosymmetrically related
Bragg reflections are equal (even for an acentric crys-
tal structure): |F (hkl)|2 = |F (h̄k̄l̄)|2. This law holds only
under conditions where anomalous scattering (q.v.) can be
ignored.

Gaussian distribution. In many kinds of experiments
repeated measurements follow a Gaussian or normal
error distribution, which is a probability density function,

named for Carl Friedrich Gauss, a German mathematician
and scientist. It is a symmetrical bell-shaped curve of the
form y = Aexp(−x2/B), where x is the deviation of a vari-
able from its mean value and Û2 = B/2 is its variance (the
square of its standard uncertainty, s.u.). 68% of values lie
within 1 s.u. of the mean, 95% lie within 2 s.u., and 99.7%
within 3 s.u.

Geiger counter. A discharge tube filled with inert gas that
can briefly conduct electricity if ions have been produced
in the gas by ionizing radiation. The conduction is ampli-
fied by the gas tube and the amplified effect can then be
detected electronically. This device, invented by Johannes
(Hans) Wilhelm Geiger and improved with assistance
from Walther Müller, can count radiation events but can-
not provide the identities of the types of radiation being
counted.

Glide plane. A glide plane involves reflection across the
plane combined with translation in a direction parallel to
the plane. It is designated by a , b, or c if the translation
is, respectively, a/2, b/2, or c/2, by n if the translation is
(a + b)/2, (a + c)/2, or (b + c)/2, i.e., halfway along one of
the face diagonals, and by d if the translation is (a + b)/4,
(b + c)/4, (c + a )/4, or (a + b + c)/4.

Goniometer. An instrument for measuring angles, such as
those between the faces of a crystal. (See Contact goniome-
ter and Reflecting goniometer.)

Goniometer head. A device for orienting (by movable
arcs) and aligning (by translational motion) a crystal
ready for diffraction studies. The crystal, mounted on the
goniometer head, is adjusted so that it is always in the
center of the collimated X-ray or neutron beam.

Group (mathematical). A collection or set of symmetry
elements that obeys the following conditions. One ele-
ment must be the identity element. The product of any
two elements must also be an element. For every symme-
try element in the group there must be another that is its
inverse, so that when the two are multiplied together the
identity element is obtained.

Habit of a crystal. The appearance of a crystal, as seen in
the relative development of different faces.

Harker–Kasper inequalities, inequality relationships.
Space-group-dependent inequalities among unitary struc-
ture factors (q.v.) that allow for the determination of the
phases of certain intense Bragg reflections in a centrosym-
metric crystal. These provided, in 1947, one of the ear-
liest successful methods for solving the phase problem
by direct methods. Named for David Harker and John
Kasper.
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Harker sections. Certain areas or projections of the Patter-
son map that contain many vectors between space-group-
equivalent atoms. For example, if there are atoms at both
x and x + 1/2 then the Patterson map will contain informa-
tion on them in the Harker section at u = 1/2.

Heavy-atom derivative of a protein. The product of soak-
ing a solution of a salt of a metal of high atomic number
into a crystal of a protein. Many protein crystals contain
aqueous channels that permit the interaction of a heavy-
atom compound with functional groups of the protein.
The heavy atom must be substituted in only one (or a
few) ordered position(s) per molecule of protein, and the
unmodified crystal and its heavy-atom derivative must be
isomorphous. Then the isomorphous replacement method
(q.v.) can be used to determine the phases of the Bragg
reflections.

Heavy-atom method. A method of deriving phase angles
in which the phases calculated from the position of a
heavy atom are used to compute the first approximate
electron-density map, from which further portions of the
structure are recognizable as additional peaks in this map.

Hexagonal unit cell. A unit cell containing a six-fold rota-
tion axis parallel to one axis (arbitrarily chosen as c) and
also two-fold rotation axes perpendicular to c. These sym-
metry relations dictate that the lengths of a and b should
be identical, that the angle between a and b is 120◦, and
that the other two angles are 90◦ (a = b, · = ‚ = 90◦, „ =
120◦).

Homometric structure. A crystal structure with a
uniquely different arrangement of atoms from another
crystal structure, but having the same sets of interatomic
vectors, and hence the same Patterson map (see Patterson
function).

Identity operation. A symmetry operation that leaves
apparently totally unchanged anything upon which it
operates.

Image plate. A detector surface that behaves like photo-
graphic film and can be used to store X-ray intensities
as latent images in the form of color centers. The stored
image is scanned by laser light to extract data. The image
plate is erasable and can be used many times. It is more
sensitive than photographic film and useful because inten-
sities can be retrieved electronically.

Imperfect crystal. An ideally imperfect crystal is com-
posed of small mosaic blocks that are small but are not
precisely aligned with each other. An imperfect crystal
ideally shows no primary and usually very little sec-
ondary extinction (see Extinction).

Improper symmetry operation, symmetry operation of
the second kind. Any symmetry operation (q.v.) that con-
verts a chiral object into its enantiomorph (that is, a right-
handed object into a left-handed object). Such operations
include mirror planes, glide planes, centers of symmetry,
and rotation-inversion axes.

Incoherent scattering. Scattering in which the incoming
radiation interacts independently with each scatterer. The
scattered waves have random, unrelated phases.

Indices. Indices are used to describe the faces of a crystal
and the orders of diffraction—that is, to refer to a specific
crystal face or Bragg reflection (using indices h, k, l) (see
Miller indices).

Inelastic scattering. With inelastic scattering of X rays by
electrons or of neutrons by nuclei, there is an exchange
of energy and momentum on impact, resulting in a small
wavelength (energy) change for the X rays or neutrons.

Inequality. A mathematical statement that the value of
one expression is not equal to the value of another expres-
sion. The expression that is greater is usually specified.

Inequality relationships. (See Harker–Kasper inequali-
ties.)

Integrated intensity. The total intensity measured at the
detector as a Bragg reflection is scanned. The intensity
may be scanned over one, two, or three dimensions.

Intensity distribution. (See Distribution of intensities.)

Interference. The mutual effect of two waves traveling in
the same direction on each other. If one wave is in phase
with another, the second wave enhances the intensity of
the first. The interference is then said to be “constructive.”
If they are partially or totally out of phase with each other,
the intensity will be decreased and the interference will be
described as “destructive.”

Inversion. Conversion of an object into its enantiomorph
by projecting it along a line through a center of symmetry
(also called a center of inversion) and extending it an equal
distance beyond this center. If the center of symmetry is at
the origin (0, 0, 0), every point x, y, z, after passing through
this center, becomes −x, −y, −z.

Isomorphism. Similarity of crystal shape, unit-cell dimen-
sions, and structure between two substances of similar
(but not identical) chemical composition (for example,
when one atom has a different atomic number in the two
structures). Ideally, the substances are so closely similar
that they can generally form a continuous series of solid
solutions.
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Isomorphous replacement method. A method for deriv-
ing phases by comparing the intensities of corresponding
Bragg reflections from two or more isomorphous crystals
(such as heavy-atom derivatives). If the locations in the
unit cell of those atoms that vary between each isomorph
have been found, for instance from a Patterson map, then
the phase of each Bragg reflection can be assessed if a
sufficient number of isomorphs is studied (at least two if
the structure is noncentrosymmetric).

Isotropic. Exhibiting properties that are the same in all
directions throughout a material of interest.

Isotropic displacement factor. An atomic displacement
parameter (q.v.) that represents an equal amplitude of
vibration or displacement in all directions through the
crystal. At the beginning of a least-squares refinement of
a structure, all atoms are considered to have isotropic dis-
placement parameters but in the later stages, anisotropic
displacement parameters are usually assigned to appro-
priate atoms.

Kinematical diffraction. Diffraction theory in which it is
assumed that the incident beam only undergoes simple
diffraction on its passage through the crystal. No further
diffraction occurs that would change the beam direction
after the first diffraction. This type of diffraction is consid-
ered in this book. (See Dynamical diffraction.)

Lagrange multiplier. An artificial variable used in least-
squares calculations that is introduced in order to find
the maximum or minimum of a function that is subject
to constraints. Named after Joseph Louis Lagrange.

Lattice planes. Planes through at least three non-colinear
crystal lattice points.

Laue class or Laue symmetry. Symmetry in the intensi-
ties of the diffraction pattern beyond that expected by
Friedel’s Law (q.v.), named for Max Theodor Felix von
Laue, a German physicist. The Laue symmetry of the dif-
fraction pattern of a crystal is the point-group symmetry
of the crystal plus a center of symmetry. There are the 11
Laue groups, obtained by adding a center of symmetry (if
absent) to the 32 crystallographic point groups (q.v.).

Laue equations. Equations that, like the Bragg equation,
express the conditions for diffraction in terms of the path
differences of the scattered waves. The path differences
must be an integral number of wavelengths for diffraction
(that is, reinforcement) to occur. This condition must be
true simultaneously in three dimensions.

Laue photograph. Diffraction photograph produced by
sending a beam of X rays that has a wide range of

wavelengths (“white” X rays) along a principal axis of
a stationary crystal. It demonstrates well the diffraction
symmetry.

Law of Constancy of Interfacial Angles. In all crystals of
a given type from a given compound, the angles between
corresponding faces have a constant value. This law, of
course, applies to only one particular form of a polymor-
phous crystalline material. Interfacial angles are measured
with a goniometer (contact or reflecting) (q.v.).

Law of Rational Indices. A rational number is an inte-
ger or the quotient of two integers. The Law of Rational
Indices, first proposed by Haüy in 1784, states that all of
the faces of a crystal may be described, with references
to three non-colinear axes, by three small whole numbers.
(See Miller indices.)

Layer line. When a crystal is rotated or oscillated about a
principal axis of a crystal, the diffraction spots on a cylin-
drical film surrounding the crystal are arranged in a series
of straight lines called layer lines. They are perpendicular
to the axis of rotation.

Least-squares method. (See Method of least squares.)

Libration. A form of rigid-body vibrational motion that
may be described as a vibration along an arc rather than
along a straight line.

Linear absorption coefficient, absorption correction. A
factor to correct for the reduction in intensity of X rays
as a result of absorption when the beam passes through a
crystal. It is the ratio of the intensities of X rays entering
and leaving a crystal of thickness t. This ratio is exp(Ït),
where Ï is the linear absorption coefficient of the crystal
(with units of cm−1); it is a function of the atomic compo-
sition of the crystal and the wavelength of the X rays.

Linear equation. An equation that uses only constants or
the product of a constant with the first power of a single
variable, for example y = ax + b or d = ax + by + cz.

Liquid crystal. A substance, such as para-azoxyanisole,
that has observable optical anisotropy, as does a crystal,
but behaves in other ways as a liquid. Thus the term refers
to a state of matter with structural order intermediate
between that of normal liquids and of crystalline solids.

Lorentz factor. A correction factor used in the reduction of
intensity diffraction data to |F (hkl)|2 values that takes into
account the time that it takes for a given Bragg reflection
(represented as a reciprocal lattice point with finite size)
to pass through the surface of the Ewald sphere (q.v.).
The value of this Lorentz factor depends on the scattering
angle and on the geometry of the measurement of the
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Bragg reflection. For a standard four-circle diffractometer
the Lorentz factor is (1/ sin 2Ë).

MAD phases. MAD = multiwavelength anomalous dis-
persion. A crystal containing highly anomalous scatter-
ers, such as heavy atoms in a protein, is used to collect
diffraction data at several carefully chosen X-ray wave-
lengths. The scattering factor for the heavy atom varies
for data measured near and far from its absorption edge.
As a result, sufficient information may be obtained from
these data sets to determine phases and solve the crystal
structure. The heavy atom may be a metal or metal com-
plex. This method works well when, for example, sulfur
is replaced by selenium in a protein structure.

Method of least squares, least-squares method. A statis-
tical method for obtaining the best fit of a large number of
observations to a given equation. This is done by minimiz-
ing the sum of the squares of the deviations of the exper-
imentally observed values from those values calculated
with the equation to be fitted. The individual terms in the
sum are usually weighted to take into account their rela-
tive precision. In crystal structure analyses, atomic coordi-
nates and other parameters are used to calculate values of
|F (hkl)|, and these calculated values may be fitted by the
least-squares method to the appropriate experimentally
measured structure factors (so that the sum of the squares
of their deviations is minimized). Ideally, there should be
at least ten experimental measurements for each parame-
ter to be determined. In a similar way, the least-squares
criterion can be applied to the computation of a plane
through a group of atoms and to many other geometrical
problems.

Miller–Bravais indices. In the hexagonal lattice (c
unique), there are three axes perpendicular to c inclined
at 120◦ to each other. Therefore four indices, hkil, rather
than the usual three Miller indices, hkl, are used in this
hexagonal case, where i = −(h + k).

Miller indices. A set of three integers (h, k, and l) that
identifies a face of a crystal, a set of lattice planes, or a par-
ticular order of Bragg reflection from these planes. They
are named for William Hallowes Miller, a British miner-
alogist. For sets of lattice planes with Miller indices h, k,
and l, the plane nearest the origin makes intercepts a/h,
b/k, and c/ l with the unit-cell axes a , b, and c. The “Law
of Rational Indices” (q.v.) states that the indices of the
faces of a crystal are usually small integers, seldom greater
than three. The importance of the Bragg equation is that it
identifies the integers h, k, l that specify the “order” of
diffraction in the Laue equations with the Miller indices
of the lattice planes causing the “Bragg reflection.”

Minimum function. A method of analyzing a Patterson
map that involves setting the origin of the Patterson map
in turn on the known positions of certain atoms, and then
recording the minimum value throughout the map for all
of these superpositions. The resulting three-dimensional
map, a minimum-function map, should contain an indica-
tion of additional atoms in the crystal structure.

Mirror plane. A mirror plane converts an object into its
mirror image. This image lies as far behind the mirror
plane as the original object lies in front of it. If the mirror
plane is perpendicular to b, it converts a chiral object at
x, y, z into its enantiomorph (q.v.) at x, −y, z.

Modulated structure. A regular structure that is modified
by a periodic or partially periodic perturbation. This is
revealed by additional halos or spots around Bragg reflec-
tions in the diffraction pattern.

Molecular replacement method. The use of rotation and
translation functions (q.v.), of noncrystallographic sym-
metry (q.v.), or of structural information from related
structures to determine a protein crystal structure. The
method is primarily used for macromolecules. It is used
when a new investigation involves a protein or other large
molecule that is similar to one for which the atomic coor-
dinates are already available. The Patterson function is
used to compare the relative orientations and positions of
the two molecules, giving a rotation matrix and a transla-
tion vector between them. From these, a model of the new
structure is available for refinement.

Monochromatic. Consisting of radiation of a single wave-
length.

Monochromator. An instrument used to select radiation
of a single wavelength. Some monochromators are crys-
tals, such as graphite crystals, and an intense Bragg reflec-
tion from the crystal is selected as the new incident beam
for diffraction studies. Gratings may also be used. Often
monochromator crystals are bent or even doubly bent (for
example, silicon crystals at a synchrotron source). The
beam exiting the monochromator is the incident beam for
diffraction studies.

Monoclinic unit cell. A unit cell in which there is a two-
fold rotation axis parallel to one unit-cell axis (usually
chosen as b); as a result there are no restrictions on the
axial ratios, but · = „ = 90◦.

Morphology, crystal morphology. The shape or form of
a material. With crystals, a description of the crystal
faces and the angles between them can often be used for
identification.
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Mosaic structure or mosaic spread. A measure of the
degree of orientational inhomogeneity in a particular crys-
tal. Bragg’s Law (q.v.) implies that X-ray diffraction occurs
only when the orientation of the crystal with respect to
the incident beam exactly satisfies the Bragg equation,
nÎ = 2d sin Ë. In practice, however, diffraction is apprecia-
ble over several tenths of a degree around the Bragg angle
because the crystal is composed of a mosaic of tiny blocks
of unit cells differing slightly in orientation. The misalign-
ment of these blocks of unit cells is small, of the order of
0.2◦ to 0.5◦ for most crystals. (See Extinction.)

Mother liquor. The solution in which the crystals under
study were grown. If the crystal is not stable in air, as for
a protein, it is maintained in a capillary in contact with
its mother liquor during data collection. An alternative to
capillary mounting is freezing. Most protein data sets are
now measured at 100 K. This reduces radiation damage
(q.v.) and keeps the mother liquor in place.

Multiple Bragg diffraction. Further diffraction of a Bragg
reflection by a second set of lattice planes. This occurs
when two reciprocal lattice planes lie simultaneously on the
surface of the Ewald sphere. It affects the intensity of the
Bragg reflection, and a detailed analysis of the effect can
lead to some phase information. (See Double reflection.)

Multiple isomorphous replacement. When heavy-metal
compounds are bound to a protein in a crystal they per-
turb the diffraction pattern. This gives information on pos-
sible values for the phase angle if at least two heavy-atom
derivatives have been studied.

Neutron diffraction. Neutrons of wavelengths near 1 Å
can be used for diffraction by crystals. Neutrons are scat-
tered by atomic nuclei, but their scattering factors are not
a regular function of the atomic number of the scattering
atom. Therefore their diffraction data give information
that complements that from X-ray diffraction. The loca-
tion of deuterium atoms (replacing some of the hydrogen
atoms in a structure) by neutron diffraction is much more
precise than for X-ray diffraction. This is because the neu-
tron scattering of deuterium is similar to that of carbon,
while, by contrast, the X-ray scattering of both hydrogen
and deuterium is very small. Larger crystals are required
currently for neutron diffraction than for X-ray diffraction
studies.

Noncentrosymmetric structure. A crystal structure with
no center of symmetry in its atomic arrangement. The
phase angle of most Bragg reflections may have any value
between 0◦ and 360◦ (0 and 2π radians). An electron-
density map calculated with relative phases of a trial
structure will generally show the features of the trial struc-
ture even if this structure is partially wrong. However,

some features of the correct structure may also appear in
the electron-density map.

Noncrystallographic symmetry. Local symmetry within
the asymmetric unit of a crystal structure that is not
accounted for by the space-group symmetry. For example,
the asymmetric unit of a crystalline protein may contain
a dimer whose two subunits may have identical molecu-
lar structures but, since they are not related by crystallo-
graphic symmetry, may have different environments. This
noncrystallographic symmetry in macromolecules can be
used as an aid in structure determination.

Nonlinear optics. In linear optics light, as it passes
through a material, may be deflected or delayed but its
wavelength remains unchanged. In nonlinear optics the
dielectric polarization does not correspond linearly to the
electric field of the light. Now that intense sources of light,
such as lasers, are available, these effects are of techno-
logical use. An interesting effect is second-harmonic gen-
eration, or frequency doubling, in which light with half
the wavelength is generated on passage through a non-
centrosymmetric crystal. It can be used to test for a center
of symmetry in the structure, in which case no frequency
doubling is observed.

Normal equations. Any set of simultaneous equations
involving experimental unknowns and derived from a
larger number of observational equations in the course of
a least-squares adjustment of observations. The number of
normal equations is equal to the number of parameters to
be determined.

Normalized structure factors, E-values. The ratio of the
value of the structure amplitude, |F (hkl)|, to its root-
mean-square expectation value. It is denoted by |E(hkl)| =
|F (hkl)|/(ε � f j )1/2, where (� f j )1/2 is the root mean square
scattering factor, corrected for thermal motion and disor-
der (see Epsilon factor for a definition of ε).

Nucleation of crystals. The action of a tiny seed crystal,
dust particle, or other “nucleus” in starting a crystalliza-
tion process. An example is provided in the seeding of a
cloud with crystalline material (silver iodide, which has
almost the same unit-cell dimensions as ice) so that ice
crystals will be formed that may act as rainmakers.

Observational equation. An equation expressing a mea-
sured value as some function of one or more unknown
quantities. Observational equations are reduced to nor-
mal equations during the course of a least-squares
refinement.

Occupancy factor. A parameter that defines the partial
occupancy of a given site by a particular atom. It is most
frequently used to describe disorder in a portion of a
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molecule, or for describing nonstoichiometric situations—
for example, when a solvent molecule is being lost to the
atmosphere.

Omit map. A difference map in which part of the structure
in a specific area of the unit cell is omitted from the phas-
ing calculation. The resulting electron-density map is then
examined to check if the proposed structure can still be
recognized in that area. This technique is generally used
for large macromolecules such as proteins.

Optic axis. The direction in a birefringent crystal along
which the ordinary and extraordinary rays travel at the
same speed. Uniaxial crystals have one such axis; biaxial
crystals have two.

Optical activity. The ability of a substance to rotate the
plane of polarization of plane-polarized light.

Order of diffraction. An integer associated with a given
interference fringe of a diffraction pattern. The diffraction
is first order if it arises as a result of a radiation path
difference of one wavelength. The nth order corresponds
to a path difference of n wavelengths.

Orientation matrix. A matrix that provides a connection
between the orientation of the diffractometer circles and
the production of a Bragg reflection so that the indices hkl
of the Bragg reflection can be related to the orientation of
the chosen unit cell of the crystal, and the intensity of the
Bragg reflection can then be measured.

Origin of a unit cell. The point in a unit cell (usually one
corner), chosen by the investigator, from which x, y, and z
axes originate. It is designated “0, 0, 0” for its values of x,
y, and z.

Orthogonal system. Reference axes that are mutually per-
pendicular.

Orthorhombic unit cell. A unit cell in a lattice in
which there are three mutually perpendicular two-fold
rotation axes (parallel to the three reference axes a , b,
and c); as a result, while there are no restrictions on
axial ratios, all interaxial angles are necessarily equal to
90◦ (· = ‚ = „ = 90◦).

Oscillation photograph. A photograph of the diffraction
pattern obtained by oscillating the crystal through a small
angular range.

Parallelepiped. A six-sided figure, each side of which is a
parallelogram, and opposite sides of which are parallel to
each other.

Parity group. A set of structure factors whose three Miller
indices (h, k, and l) are odd (o) or even (e) in an identical

way. There are eight parity groups for three indices (eee,
eeo, eoe, eoo, oee, oeo, ooe, and ooo).

Path difference. This term is used in diffraction to
describe the difference in distance that two beams travel
when “scattered” from different points. As a result of such
path differences, the two beams may or may not be in
phase with each other.

Patterson function. A Fourier summation that has the
squares of the structure factor amplitudes as coefficients
and all phases zero. Because these values of |F (hkl)|2 can
be obtained (after some geometric corrections) directly
from the diffraction intensities, the map can be computed
directly with no phase information required.

P(uvw) =
1
Vc

∑ ∑
all h,k,l

∑ ∣∣F (hkl)
∣∣2 cos 2π(hu + kv + lw)

Ideally, the positions of the maxima in the map represent
the end points of vectors between atoms, all referred to
a common origin. There is only one Patterson map for a
given crystal structure, but the input may be enhanced
to make the interpretation easier. If values of |F (hkl)|2
are modified by an exponential or similar function that
enhances those Bragg reflections with high values of sin
Ë/Î, the resulting interatomic vectors appear as sharper
peaks. The map is named for Arthur Lindo Patterson, a
physicist.

Perfect crystal. A crystal in which the unit cells and their
contents are in perfect register.

Phase. The phase is the point to which the crest of a given
wave has advanced in relation to a standard position, for
example the origin of the unit cell. It is usually expressed
as a fraction of the wavelength in angular measure, with
one cycle or period being 2π radians or 360◦; that is, if the
crests differ by ƒx for a wavelength Î, the phase differ-
ence is ƒx/Î or 2π ƒx/Î radians or 360 ƒx/Î degrees (see
also Calculated phase). If two waves of the same wave-
length travel in the same direction, their phase difference
is the difference between the positions of crests (peaks)
between the two. The relative phase of a structure factor is
expressed relative to the phase of a wave scattered at the
chosen origin of the unit cell (or some other defined posi-
tion) in the same direction: ·(hkl) = tan−1(B(hkl)/A(hkl)),
where A(hkl) and B(hkl) are components of the structure
factor F (hkl). If the crystal structure is centrosymmetric
and the origin is set at a center of symmetry, the phase
is 0◦ or 180◦ (0 or π radians) according to a positive or
negative sign of A(hkl); B(hkl) = 0. When we use “relative
phase” we remind the reader that its value depends on
the chosen location of the origin of the unit cell; that is,
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a structure factor does not usually have a fixed phase; its
relative phase depends on where the unit-cell origin has
been chosen to be.

Phase problem. The problem of determining the phase
angle (relative to a chosen origin) for each Bragg reflec-
tion, so that an electron-density map may be calculated
from a Fourier series with structure factors (including
both amplitude and relative phase) as coefficients. “Solv-
ing a structure” requires determining phases.

Photometry. Measurement of the ratio of the intensity of
a constant source of light to that of an equivalent beam
of light after it has passed through a selected position on
a piece of photographic film. In this way the intensity of
a Bragg reflection that has been recorded on film can be
measured.

Piezoelectric effect. The generation of a small potential
difference across certain crystals when they are subjected
to stress such as pressure (the direct effect), or the change
in the shape of a crystal that accompanies the applica-
tion of a potential difference across a crystal (the inverse
effect). The effect is found only for noncentrosymmetric
crystals; examples are provided by quartz and Rochelle
salt.

Planck constant. The Planck constant (h), named after
Max Planck, defines the size of a quantum of electromag-
netic radiation. It is the proportionality constant between
the energy of a photon (in joules) and the frequency (in
oscillations per second) of the wave that it represents.
h = 6.626 × 10−34 J s or kg m2 s−1.

Plane groups. The groups of symmetry elements that
lead to those symmetry operations that produce regularly
repeating patterns in two dimensions. There are 17 plane
groups (listed in International Tables), meaning that there
are 17 symmetry variations of wallpaper (if it has a two-
dimensional repeating pattern).

Plane polarization. Electromagnetic radiation, such as
visible light and X rays, contains electric vectors of its
waves and if the radiation is plane-polarized, all of these
are confined to a single plane.

Pleochroism. The property of certain crystals of appear-
ing to have different colors when viewed from differ-
ent directions under transmitted white light (dichroism if
only two colors).

Point group. A group of symmetry operations that leave
unmoved at least one point within the object to which
they apply. Symmetry elements include simple rotation
and rotatory-inversion axes; the latter include the center of

symmetry and the mirror plane. Since one point remains
invariant, all rotation axes must pass through this point
and all mirror planes must contain it. A point group is
used to describe isolated objects, such as single molecules
or real crystals. (See Group (mathematical).)

Poisson distribution. A distribution of measurements
applied to rare events in which the number of such events
occurring in a fixed period of time depends only on the
length of this time interval and is independent of previ-
ous events. The mean and variance of the distribution are
equal so that the standard uncertainty is proportional to
the square root of the measured value. The distribution
is named after the French mathematician Siméon Denis
Poisson.

Polar axis. An axis in a crystal that has different properties
at its two ends (meaning that it has directionality, like an
arrow). Such properties include crystal face development
and charge accumulation.

Polarization factor. A correction factor for intensity data
that takes into account the reduction in intensity of X-ray
scattering due to the state of polarization of the incident
beam. If the incident X rays are not polarized, the factor is
(1 + cos2 2Ë)/2. It will be further modified if a monochro-
mator was used to provide the incident radiation.

Polymorphism. Property of crystallizing in two or more
forms with distinct structures (dimorphism if only two
forms), generally depending on the conditions of crystal-
lization. Polymorphs have different unit cells and differ-
ent atomic arrangements within them.

Position-sensitive detector. (See Charge-coupled device
area detector.)

Powder diffraction. Diffraction by a powder consists of
lines or rings rather than separate diffraction spots. The
diffraction pattern obtained is like that expected for a set
of randomly oriented crystals. For diffraction studies the
powder is either glued to a glass fiber, placed on a flat
surface (e.g., a microscope slide), or, if it is unstable in air,
put in a sealed capillary tube.

Precession photograph. A photograph of the diffraction
pattern that is an undistorted magnified image of a given
layer of the reciprocal lattice. The necessary camera and
crystal motions involve the precession of one crystal axis
about the direction of the direct beam. The film is contin-
uously maintained in the plane perpendicular to this pre-
cessing axis. The photograph resulting from this compli-
cated set of motions is simple to interpret, and the indices
(h, k, l) of the diffraction spots may readily be found by
inspection.
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Precipitant. A chemical used to promote crystallization
but not denaturation of a protein. Examples are highly sol-
uble inorganic salts (ammonium sulfate or sodium chlo-
ride) and organic polyethers (polyethyleneglycols of a
selected molecular weight range.)

Precipitation. The act of separation of a solid mass from
solution. A precipitant (q.v.) will assist this.

Precision. A measure of the experimental uncertainty in a
measured quantity, an indication of its reproducibility (cf.
Accuracy).

Primitive unit cell. The unit cell of the smallest possi-
ble volume for a given space lattice. The term is used to
differentiate this unit cell from a centered cell or other
nonprimitive cells. When a primitive cell is chosen, the
symbol P is included in the space-group designation.

Principal axes of thermal ellipsoids. Three mutually per-
pendicular directions, along two of which the amplitudes
of vibration of an atom, represented by an ellipsoid, are at
a maximum and at a minimum. Each axis is characterized
by an amplitude and a direction.

Probability density function. The probability that a ran-
dom variable will take on a particular value in an infini-
tesimal time interval, divided by the length of the interval.

Probability relationships. In crystallographic use, this
term refers to equations that express the probability that
a phase angle will have a certain value. Such equations
are the basis of phase determination by direct methods.

Promolecule density. The electron density of spherically
symmetrical free atoms without effects from chemical
bonding or other factors that distort the electron density.

Proper symmetry operation. A symmetry operation that
maintains the handedness of an object. Such operations
include translations, rotation axes, and screw axes.

Proportional counter. A radiation detector that produces
a measurable amplified voltage pulse of height propor-
tional to the energy of photons hitting it; it gives a linear
response at high counting rate.

Pyroelectric effect. The development of a small potential
difference across certain crystals as the result of a temper-
ature change.

R value or R factor, discrepancy index, residual. An
index that gives a measure of the disagreement between
observed and calculated structure amplitudes and there-
fore a crude (and sometimes misleading) measure of the
correctness of a derived model for a crystal structure
and the quality of the experimental data. It is defined as

R = �|(|Fo| − |Fc|)|/�|Fo| and values of 0.02 to 0.06 are
considered good for present-day small-molecule structure
determinations. However, some partially incorrect struc-
tures have had R values below 0.10, and many basically
correct but imprecise structures have higher R values.

Racemic mixture. A mixture composed of equal amounts
of dextrorotatory and levorotatory forms (enantiomorphs)
of the same compound. It displays no optical rotatory
power.

Radiation damage. Damage caused by radiation. Since
a crystal is constantly irradiated by X rays during a dif-
fraction experiment, such damage can be an important
source of error. As a result of such damage, molecules
in the crystal may move, be ionized, form free radicals,
or interact with other species in the crystal. Sometimes
sets of three or more Bragg reflections are measured at
regular intervals during intensity data measurement by a
diffractometer in order to monitor any radiation damage.
However, with area detector data, radiation (and other)
damage is checked by average counts per image and any
drop thereof. Radiation damage by X rays is dramatically
reduced by low-temperature data collection. By contrast,
neutrons do not generally damage a crystal.

Raw data. Diffraction data when they are first measured,
before correction and other factors are applied to them.

Real space. (See Direct space.)

Real-space averaging. A computational method for
improvement of phases, when there are two or more iden-
tical chemical units in the crystallographic asymmetric
unit. In a trial electron-density map, the electron densities
of the two identical units are averaged. Then a new set of
phases is computed by Fourier transformation of the aver-
aged structure, and, with these, a new electron-density
map is synthesized with the observed |F (hkl)| values. By
iteration of this procedure, the electron-density map can
be improved. This method is commonly used in refining
large crystal structures.

Reciprocal lattice. The lattice defined by axes a∗, b∗
, c∗,

related to the crystal lattice or direct lattice (with axes a,
b, c) in a reciprocal manner such that a∗ is perpendicular
to b and c; b∗ is similarly perpendicular to a and c; and
c∗ is perpendicular to a and b. The repeat distance, d∗,
between points in a particular row of the reciprocal lat-
tice is inversely proportional to the interplanar spacing, d,
between the nets of the crystal lattice that are normal to
this row of points (d∗ = Î/d).

Refinement of a crystal structure. A process of improving
the parameters of an approximate (trial) structure until the
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best fit of calculated structure factor amplitudes to those
observed is obtained. This is usually done by the method
of least squares (q.v.). Since the dependence of the struc-
ture amplitudes on atomic parameters is not linear, the
process involves a series of iterations until convergence
is reached. To avoid falling into physically meaningless
minima, it is important to start with a good set of initial
parameters.

Reflecting goniometer. A device for measuring the angles
between crystal faces by measuring the angle through
which a crystal has to be rotated from a position at which
one face reflects a narrow beam of light into a stationary
detector to a position at which a second face reflects.

Reflection. (See Bragg reflection.)

Refraction. The change in direction that occurs when a
beam of radiant energy passes from one medium into
another in which its velocity is different. (See Refractive
index.)

Refractive index. The ratio of the velocity of light in vacuo
to its velocity as it passes through the material under
study. It is evident when a stick is placed in a tumbler
full of water. The stick appears bent at the surface of the
water. When a colorless, clear object (such as a crystal) is
immersed in a colorless medium of the same refractive
index, the object becomes invisible.

Residual. (See R value.)

Resolution. The ability to distinguish adjacent parts of
an object when examining it with radiation, that is, the
process of distinguishing two adjacent objects (high reso-
lution) as separate entities rather than as a single, blurred
object (low resolution). Most X-ray structures of small
molecules are determined to a “resolution” of 0.75–0.9 Å
or better. At this resolution each atom is fairly distinct.
The resolution improves with an increase in the maximum
value of sin Ë/Î at which Bragg reflections are measured.
Sometimes the quality of the crystal or the wavelength of
the radiation limits the resolution that may be obtained
experimentally.
A second use of this term is for the separation of enan-
tiomorphs.

Restraints. Limits on the possible values that parame-
ters may have. For example, additional observations, such
as known bond distances and angles, can be added to
the least-squares equations, and these must hold true
for the results of the least-squares refinement. Restraints
are used like data and one refines against them. They
come with a standard uncertainty or elasticity that should
be obeyed. Constraints remove parameters and restraints

add data. Constraints rigidly relate certain parameters or
assign specific values to them, while restraints give ranges
to target values for certain parameters. (Think of a dog
restrained by a flexible leash of a selected length.) (See
Constraints.)

Rhombohedral unit cell. A unit cell in which there is a
three-fold rotation axis along one body diagonal of the
unit cell. This symmetry requirement makes all three axial
lengths necessarily the same and all three interaxial angles
necessarily equal, although their values are not restricted
(a = b = c, · = ‚ = „). This is an alternative description of
unit cells in trigonal space groups that are centered if they
are drawn in the hexagonal representation. The difference
between the trigonal and hexagonal systems is the sym-
metry; a hexagonal unit cell has a six-fold rotation axis,
while a trigonal unit cell has only a three-fold axis. The
rhombohedral unit cell, denoted R, is a third of the vol-
ume of the hexagonal representation. The hexagonal set-
ting (a = b = c, · = ‚ = 90◦, „ = 120◦), which has obverse
and reverse settings (see Appendix 2), is, however, usually
preferred.

Right-handed coordinate system. A system of three axes,
x, y, and z, in which a rotation from x to y, coupled with a
translation along z, corresponds to the action of a right-
handed screw moving clockwise into a piece of wood
(with x to y as the clockwise motion and z the direction
into the wood). If the thumb, index finger, and middle
finger of the right hand are extended in mutually perpen-
dicular directions, then these digits point to the positive
directions of x, y, and z, respectively.

Rigid-body model. A model of vibration that assumes a
molecule (or a specific part of it) to be rigid, so that, during
vibration, all its interatomic distances are constant and all
atoms move in synchrony.

Rotating-anode generator. An X-ray tube in which an
electron beam hits a wheel of target material rotating
at high speed. The anode moves while the X-ray beam
remains fixed, so that the heat generated during X-ray
production is spread over a larger area than in a conven-
tional sealed X-ray tube. This provides a higher intensity
of X rays than obtained with a conventional sealed X-ray
tube.

Rotation axis. (See Axis of rotation.)

Rotation function. A function that describes a measure of
the degree of correspondence between (1) a set of inter-
atomic vectors that has been calculated for a known struc-
ture and (2) the Patterson function of that crystal. It is
expressed by a map of the rotation about the origin of
one of these functions with respect to the other. Peaks in
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this map define a likely orientation of the known fragment
of the structure. The orientation of a known part of a
structure may often be found through such comparison.
In a self-rotation function, the Patterson map is compared
with itself. Peaks in this function will indicate the relation-
ship between molecules if there is more than one in the
asymmetric unit.

Rotation photograph. A photograph of the diffraction
pattern obtained by rotating a crystal continuously about
a fixed axis, sometimes normal to some set of reciprocal
lattice planes.

Rotatory-inversion axis. Rotation by 360◦/n combined
with inversion through a center of symmetry (on that axis)
to give an enantiomorph of the original object.

SAD phases. SAD = single-wavelength anomalous dis-
persion. A single set of anomalous-dispersion data is mea-
sured with CuK· radiation for a crystal containing a heavy
atom such as iodine or bromine. Alternatively, a sulfur-
containing structure may be measured with CrK· radia-
tion. In both cases the data can be collected in a laboratory
(rather than at a synchrotron source), but the phase ambi-
guity persists (because only one data set was measured).
This ambiguity is generally resolved by direct methods,
such as by locating all the anomalously scattering atoms
in the structure.

Salting out. Precipitating, coagulating, or separating a
substance from a solution by the addition of a salt.

Saturated solution. A solution is saturated when the
solute and solution are at equilibrium. This occurs when
the maximum amount of solute has been dissolved in the
solvent, and is usually dependent on the temperature and
pressure.

Scale factor. (See Absolute scale.)

Scattering angle. The angle at which the scattered wave
deviates from the direct beam. Conventionally, in X-ray
diffraction, the direct X-ray beam is deviated by an angle
2Ëhkl .

Scattering factor. (See Atomic scattering factor.)

Scattering vector. The reciprocal lattice vector associated
with (and perpendicular to) a set of reflecting crystal-
lattice planes hkl,

H = ha∗ + kb∗ + lc∗

Its magnitude is given by H = 1/dhkl = 2 sin Ëhkl/Î, where
dhkl is the interplanar spacing. The order of diffraction,
n, is contained in the Miller indices hkl as a multiplying
factor.

Scintillation counter. A device for measuring the inten-
sity of an X-ray beam. It makes use of the fact that X rays
cause certain substances to emit visible light by fluores-
cence. The intensity of this visible light is proportional to
the intensity of the incident X-ray beam and is amplified
by a photomultiplier and then counted. The substance
generally used as the X-ray detector is a sodium iodide
crystal, activated by a small amount of thallous ion.

Screw axis. A screw axis, designated nr , is a symmetry
operation that involves rotation about the axis by 360◦/n =
2π/n coupled with a translation parallel to the axis by
r/n of the unit-cell length in that direction. A two-fold
screw axis through the origin of the unit cell and parallel
to b converts an object at x, y, z to one at −x, 1/2 + y,
−z. The translation component leads to the generation of
an infinitely repeating periodic pattern in the direction
of translation. The enantiomorphic identity remains the
same if a screw axis is used.

Series-termination error. An effect in a periodic function
that results from a truncation of the number of terms
in a Fourier series. Ideally, an infinite amount of data is
necessary for the calculation of a Fourier series. In prac-
tice, only a finite number of data are measured in a dif-
fraction pattern. This leads to a truncation of the Fourier
series so that peaks in the resulting Fourier syntheses
may be surrounded by series of ripples, which are espe-
cially noticeable around a heavy atom. The use of differ-
ence syntheses (q.v.) obviates most of the effects of series-
termination errors.

Sigma Two formula (�2). A formula used in direct meth-
ods. It relates the phases of three intense Bragg reflections
to each other.

Simulated annealing. Annealing is a method used to
make steel or glass more soft and less brittle, and involves
heating and then cooling. This process is simulated in
crystallographic refinements by adjusting the parameters
of a macromolecule to simulate “heating” of the molecule
(by increasing the displacements or vibrations), and then
“cooling” it so as to minimize the energy. In this way
a global minimum may be more readily obtained than
with other methods of refinement, such as least-squares
methods, where a local minimum, but not the deepest
minimum, may be the end point of a refinement.

Sinusoidal wave. A wave described by a function
y(t) = Asin(˘t + Ë), where A = amplitude, ˘ = angular fre-
quency, and Ë = phase. Sine and cosine functions are both
sinusoidal waves, with different phases [cos x = sin(x +
π/2)]. A sinusoidal wave retains its wave shape when
added to another sinusoidal wave (see Fourier synthesis).
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Small-angle scattering. The study of matter by analysis
of the diffraction of X rays with diffraction angles smaller
than a few degrees—that is, Ë less than 1◦, for copper radi-
ation. This scattering occurs when the sample is composed
of particles with dimensions of the order of several hun-
dred to several thousand Å. Measurement of the inten-
sity distribution gives information on the low-resolution
structure of the diffracting material; for example, it will
give the radius of gyration of the particles, which is a
measure of the size of the particle.

Solvent flattening. (See Density modification.)

Space group. A group of symmetry operations consis-
tent with an infinitely extended, regularly repeating three-
dimensional pattern. There are 230 such groups, which
can be identified (although sometimes with some ambi-
guity) from the systematic absences in the diffraction pat-
tern combined with the intensity data (see Distribution
of intensities) and the Laue symmetry (see Laue class).
A space group may be considered as the group of oper-
ations that converts one molecule or asymmetric unit into
an infinitely extending pattern of such units. The 230
space groups are listed in detail in International Tables for
Crystallography, Vol. A (Hahn, 2005).

Space group ambiguity. Sometimes more than one space
group fits a set of systematic absences in the intensities of
Bragg reflections for a given crystal. Other methods, such
as information on the crystal contents and their possible
symmetry or employing characteristics of the intensity
distribution, may have to be used to determine the correct
space group.

Spallation. Spallation is the ejection of material on impact.
It can involve high-energy incident particles that bombard
an atomic nucleus, ejecting particles such as neutrons.
Neutrons are obtained when short bursts of high-energy
pulsed protons are used to bombard a target of heavy
nuclei (such as mercury, lead, or uranium) several times
a second. Each proton produces several high-energy neu-
trons, which are slowed down by moderators to useful
energies for diffraction studies.

Sphere of reflection. (See Ewald sphere.)

Standard uncertainty (s.u.). A measure of the precision
of a quantity. If the distribution of errors is normal, then
there is a 99% chance that a given measurement will dif-
fer by less than 2.7 s.u.. from the mean. A bond length
1.542(7) Å (1.542 Å with an s.u. of 0.007 Å) is, by the usual
criteria, not considered significantly different from one
measured as 1.528(7) Å (2 s.u. away). This term is some-
times called an “estimated standard deviation” (e.s.d.).

Stoichiometry. The quantitative relationship of con-
stituents implied by a chemical formula or equation.

Structure factor. The structure factor F (hkl) is the value,
at a reciprocal lattice point, of the Fourier transform of
the electron density in the unit cell. The wave scattered
by the contents of the unit cell in the direction of the hkl
Bragg reflection is described in amplitude and phase by
the structure factor F (hkl). The structure factor has both a
magnitude (amplitude) and a phase (relative to the origin
of the unit cell). The magnitude of the structure factor,
|F (hkl)|, is the ratio of the amplitude of the radiation
scattered in a particular direction by the contents of one
unit cell to that scattered by a classical point electron at
the origin of the unit cell under the same conditions. The
structure factor depends on the chemical identities and
arrangement in the unit cell of the constituent atoms, and
on the direction of scattering with respect to the incident
X-ray beam. For the relationship between structure factors
and electron density, see Fourier transform.

Structure invariant. A linear combination of the phases of
a particular set of Bragg reflections that does not change
when the position of the origin of the unit cell is changed;
that is, this linear combination of phases is totally inde-
pendent of the choice of origin.

Structure seminvariant. Bragg reflections whose phases
remains unchanged (except by an integral multiple of
2π radians) when the location of the origin is changed
(provided this origin change is allowed by space-group
symmetry constraints).

Superposition methods. Analysis of a Patterson map by
setting the origin of the Patterson map in turn on the
positions of certain atoms whose positions may already
be known, and then recording those areas of the super-
posed maps in which peaks appear that are derived from
both maps. The resulting map is called a vector superpo-
sition map and may contain information that allows one
to derive the atomic arrangement.

Symbolic addition method. A direct-method procedure,
in which phases for a few Bragg reflections are repre-
sented by algebraic symbols (such as a, b, or c) when
needed during phase assignment. The meaning of the
symbolic phases, such as + and − for 0◦ and 180◦ for
a centrosymmetric structure, may then become evident
during the subsequent analysis (for example, if the phase
becomes a2 which must be positive). Otherwise, electron-
density maps with all possible values for the undeter-
mined symbols must be computed, and hopefully one of
these will be obvious as the correct structure.
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Symmetry element. A point, a line, or a plane on or about
which a particular symmetry operation is performed. The
actual operation is a “symmetry operation” (q.v.).

Symmetry operation. In crystal structures (assumed
infinite in extent), the possible symmetry operations
include axes of rotation and rotatory inversion, screw
axes, and glide planes, as well as lattice translations.
Symmetry operations convert an object into a replica
of itself. Translation and rotation are proper symmetry
operations, while reflection and inversion are improper
symmetry operations, which convert an object into the
mirror image of itself.

Symmetry operation of second kind. (See Improper sym-
metry operation.)

Synchrotron radiation. Radiation emitted by very high-
energy electrons, such as those in an electron storage ring,
when their path is bent by a magnetic field. This radia-
tion is characterized by a continuous spectral distribution
(which can, however, be “tuned” by appropriate selec-
tion), a very high intensity, a pulsed time structure, and
a high degree of polarization. Its high intensity makes it
useful for rapid data collection on macromolecular crys-
tals and its tunability makes it convenient for collecting
anomalous scattering data.

Systematically absent reflections. Bragg reflections that
are too weak to be observed by the method of measure-
ment used and for which h, k, and l values are systematic
in terms of evenness or oddness (for example, an absence
of all Bragg reflections for which h + k is odd, indicative
of C-face centering in the unit cell). Systematic absences
depend only upon symmetry in the atomic arrangement.
There are two types of systematic absences: (1) those aris-
ing from translational symmetry elements, i.e., screw axes
and glide planes, and (2) those that arise from a decision
to use a nonprimitive unit cell, and are an artifact of the
way we index Bragg reflections. Systematic absences are
of great use in deriving the space group of a crystal.

Tangent formula. A formula used in direct methods of
phase determination that allows the development of addi-
tional phases.

Taylor series. A power series that expresses a function as
an infinite sum of terms that can be calculated from values
of its derivatives at a single point. In this power series,
the coefficients are the corresponding derivatives divided
by the factorial of the order of the derivative. The higher
the power in a term, the smaller its value. The series is
named after Brook Taylor, an English mathematician, who
followed the earlier work of James Gregory.

Temperature factor. An exponential expression by which
the scattering of an atom is reduced as a consequence
of vibration (or a simulated vibration resulting from sta-
tic disorder). For isotropic motion the exponential fac-
tor is exp (−Biso sin2 Ë/Î2), with Biso called, loosely but
commonly, the “isotropic temperature factor.” Biso equals
8π2〈u2〉, where 〈u2〉 is the mean square displacement of
the atom from its equilibrium position. For anisotropic
motion the exponential expression contains six para-
meters, the anisotropic vibration or displacement para-
meters, which describe ellipsoidal rather than isotropic
(spherically symmetrical) motion or average static dis-
placements. (See Atomic displacement parameters.)

Tetragonal unit cell. A unit cell in which there is a four-
fold rotation axis parallel to one axis (arbitrarily chosen as
c); as a result, the lengths of a and b are identical and all
interaxial angles are 90◦ (a = b, · = ‚ = „ = 90◦).

Thermal diffuse scattering. Diffuse scattering results
from a departure from the regular periodic character of a
crystal lattice. It is evident as diffuse spots or blurs around
normal diffraction spots. If it is a temperature-dependent
effect, it is called thermal diffuse scattering. This can be
analyzed to give information on the elastic properties of
crystals and the force constants between their constituent
atoms.

Thermal-motion corrections. Adjustments to intramole-
cular dimensions from a crystal structure determination
for distortions arising from atomic vibrations, especially
libration (q.v.). The appropriate corrections depend on a
model for specifying the correlations between the motions
of the several atoms.

Time-of-flight neutrons. Neutrons from a reactor arrive
at a detector array at times determined by their energies.
They come in pulses (as a result of the action of mechan-
ical choppers) and their energies (and wavelengths) are
determined from the time it takes for them to travel to
and hit the detector. Their velocities v are related to the
wavelength by Î = h/mv = (h/m)(t/L), where h is Planck’s
constant, m is the mass of a neutron, and t is the time
of flight for a path length L . This equation gives essen-
tial information for analysis of a Laue-type diffraction
pattern. Time-of-flight detectors can record the different
wavelengths one after the other.

Torsion angle (sometimes called “conformational angle”).
The torsion angle (or angle of twist) about the bond B–C in
a series of bonded atoms A–B–C–D is defined as the angle
of rotation needed to make the projection of the line B–A
coincide with the projection of the line C–D, when viewed
along the B–C direction. The positive sense is clockwise.
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If the torsion angle is 0◦ or 180◦, the four atoms lie in
the same plane. Enantiomers have torsion angles of equal
absolute value but opposite sign.

Translation. The word “translation” has two different
meanings in crystallography. Generally it indicates the
symmetry element (of one unit cell length) that is typical
of lattices, or some fraction of that. It is also used when all
atoms of a molecule move the same distance in the same
direction along the same or parallel lines.

Translation function. A function that can be calculated in
order to determine (with respect to the unit-cell axes) how
a molecule, for which the orientation has been found (see
Rotation function), is positioned with respect to the origin
of the unit cell. This function is important in structure
analysis in macromolecular crystallography.

Trial-and-error method. A method that involves postulat-
ing a structure (that is, assuming locations of the atoms in
the unique part of the unit cell), calculating structure fac-
tors Fc, and comparing their magnitudes with the scaled
observed values |Fo|. Since the number of trial structures
that must be tested increases with the number of parame-
ters, such methods have generally been applied in solving
only the simplest structures.

Trial structure. A possible structure for a crystal (found by
one of several methods), which is tested by a comparison
of calculated and observed structure factors and by the
results of an attempted refinement of the structure.

Triclinic unit cell. A unit cell in which there are no rota-
tion axes or mirror planes. As a result there are no restric-
tions on axial ratios or interaxial angles.

Trigonal unit cell. (See Rhombohedral unit cell.)

Triple-product sign relationship. The sign relationship
s(h, k, l) s(h′, k ′, l ′) s(−h − h′, −k − k ′, −l − l ′) ≈ +1, where
≈ means “is probably equal to” and s means “the sign of.”

Twin. A composite crystal built from two or more crystal
specimens that have grown together in a specific relative
orientation.

Unit cell. The basic building block of a crystal, repeated
infinitely in three dimensions. It is characterized by three
vectors, a, b, and c, that form the edges of a parallelepiped.
The angles between these vectors are · (between b and c),
‚ (between a and c), and „ (between a and b).

Unit-cell dimensions. The unit-cell dimensions a , b, c, ·,
‚, „, of a crystal structure.

Unitary structure factor. The ratio of the structure ampli-
tude, |F (hkl)|, to its maximum possible value—that is,

the value it would have if all atoms scattered exactly in
phase. It is denoted by U. U(hkl) = |F (hkl)|/|� f j ], where
f j is the scattering factor of atom j at the sin Ë/Î value of
F (hkl).

Unobserved Bragg reflections, absent Bragg reflections.
Bragg reflections that are too weak to be measured by
the apparatus in use. The term is also used for Bragg
reflections for which the intensity I (hkl) is less than
nÛ(I ), where n is chosen (usually 2–3), and Û is the s.u.
of I (hkl).

Variance. The mean square deviation of a frequency dis-
tribution from its arithmetic mean. The variance is the
square of the standard uncertainty Û. For a random vari-
able x, the variance is �[(xi − xm)2/n], where xm is the
mean value of x, and n is the number of measurements.

Vector. A quantity that requires for its complete descrip-
tion a magnitude, direction, and sense. It is often rep-
resented by a line, the length of which specifies the
magnitude of the vector, and the orientation of which
specifies the direction of the vector. The sense of the vector
is then indicated by an arrowhead at one end of the line.
Two vectors may be added together by placing the second
vector with its origin on the end (arrowhead) of the first.
The resultant vector is the directed line from the origin of
the first vector to the end of the second. This process of
addition can be continued infinitely. The scalar product,
a · b, is |a ||b| cos „, where „ is the angle from a to b. The
vector product, a × b, is a vector with direction normal to
both a and b, and magnitude |a ||b| sin „.

Wavefront. All points reached at a given instant in time
by a series of waves as they move through any material.

Wavelength. The distance between two similar points on
a wave system, for example, the crests of a cosine wave.

Weight of a measurement. A number assigned to express
the relative precision of each measurement. In least-
squares refinement the weight should be proportional to
the reciprocal of the square of the standard uncertainty
of the measurement. Other weighting schemes frequently
are used.

Weissenberg camera. This is an oscillation camera in
which the camera is translated (moved) as the crystal
rotates so that Bragg reflections can be indexed more read-
ily than for a simple oscillation photograph that lacks this
simultaneous motion of camera and crystal. It is named
after Karl Weissenberg, an Austrian physicist.

White radiation. Any radiation, such as X rays or sun-
light, with a continuum of wavelengths.
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Wilson plot. A plot of the logarithm of the average ratio
of the observed Bragg intensities to the theoretical values
expected for a random arrangement of the same (station-
ary) atoms in the unit cell, in successive ranges (shells)
of sin2 Ë/Î2. Such a plot typically approaches a straight
line, whose intercept yields the factor needed to place the
observed intensities on an absolute scale (q.v.) and whose
slope yields an average isotropic displacement parameter
for the entire structure. The plot was designed by Arthur
James Cochran Wilson, a crystallographer.

X-ray camera. A device for holding film in an appropriate
manner to intercept and record an X-ray diffraction pat-
tern.

X-ray tube. The basic parts of an X-ray tube are a source of
electrons and a metal anode that emits the Xrays, enclosed

in a glass envelope under vacuum. Tubes may be classi-
fied according to the nature of these parts.

X rays. Electromagnetic radiation of wavelength 0.1–
100 Å, produced by bombarding a target (generally a
metal such as copper or molybdenum) with fast electrons.
It is found that X rays of definite wavelengths, characteris-
tic of the target element (characteristic X rays, q.v.), plus a
continuous background of X rays (bremsstrahlung, q.v.),
are produced. Characteristic X rays are produced when
electrons from the innermost shells (K or L) are ejected
from atoms in the target material. When an electron from
an outer shell falls back into the vacant shell, energy is
emitted in the form of X rays with a specific wavelength.
The spectrum of the emitted X rays has a maximum
intensity at a few wavelengths characteristic of the target
material.
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123, 126, 218, 220, 251, 255, 268, 269
interpreting diffraction data 71–85
inversion operation (through a

point) 103, 239, 246
iron pyrite 182, 183
isomorphous replacement method 99,

130, 142–147, 149, 150, 162, 211, 232,
246, 247

isotropic displacement factor 79, 187,
247, 256

kappa geometry (diffractometer) 61, 62
kinematical diffraction 52, 247

Lagrange multiplier 247
lattice, (crystal) 17–21, 23, 25, 35, 36, 39,

42–45, 109, 179, 217–220, 222–227, 240,
242, 247

Laue method 44, 57, 62, 64, 247, 256
Laue symmetry 132, 242, 247, 255
Law of Constancy of Interfacial

Angles 10, 247
Law of Rational Indices 15, 247, 248
layer line (diffraction) 59, 247
least-squares method of refinement

167, 173–176, 180, 203, 207, 211, 214, 248
least-squares plane (in a molecule) 185
lens 5, 6, 26
libration 189–191, 247
linear absorption coefficient, absorption

correction 247
liquid crystals 197, 247
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liquid diffraction 198, 203
lithium glycolate (absolute

configuration) 192–193
loop (crystal mounting) 49, 50
Lorentz and polarization factors 65, 247,

248, 251

macromolecules 49–51, 126, 142, 162, 163,
181, 202, 210–212, 249

MAD (multiple wavelength anomalous
dispersion) phasing 147, 160, 163, 211,
212, 248

Matthews coefficient 51
maximum likelihood methods 176, 180
mean-square amplitude of

displacement 85, 189
method of least squares, least-squares

method 238, 248
mica 196
microcrystalline materials 196
microscope 4, 5, 25, 48, 49
Miller indices (hkl) 15–17, 62, 243, 246,

247, 248, 254
Miller–Bravais indices (hkil) 248
minimum function 137, 248
minimum-variance phase invariant 127
mirror plane 21, 24, 103, 105, 106, 113,

132, 151, 248
Macromolecular Crystallographic

Information File (mmCIF) 181
modulated structure 248
molecular geometry and

packing 181–195, 234, 235
molecular motion 8, 178, 179, 186–191
molecular replacement method 138–140,

248
molecular transform 35
monochromators and monochromatic

radiation 50, 54–56, 248
monoclinic unit cell 19, 20, 23, 37, 122,

123, 171, 216, 217, 218, 220, 221, 227,
228, 241, 248

morphology (crystal) 9, 10, 15–17, 151,
152, 248

mosaic structure or mosaic spread 11,
246, 249

mother liquor 10–13, 49, 50, 249
multiple Bragg diffraction 148–150, 249
multiple isomorphous replacement 142,

249
myoglobin 37, 38, 184

naphthalene 189
negative quartet 126
negative scattering factor 116, 191
neutron scattering amplitudes 225
neutrons and neutron diffraction 3, 4, 7,

9, 13, 25, 26, 47, 51, 56, 57, 63, 64, 99,
191–193, 195, 202, 207, 212,
225, 249

Newman formula 159
Nicol prism 48
Niggli reduced cell 17, 18

noncentrosymmetric crystal structure 22,
95, 112, 125, 128, 145, 146, 156, 164, 169,
172, 228, 243, 249, 251

noncrystallographic symmetry 138, 249
noncrystallographic symmetry averaging

(real-space averaging) 126, 252
nonlinear optics 249
nonmeasured reflection extrapolation

method 127
normal equations (least squares) 249
normalized structure factors,

E-values 119, 132, 243, 249
nucleation of crystals 11–13, 249
nucleic acids and nucleotides 113,

200–202

observational equations (least
squares) 249

occupancy factor 174, 249
omega block (kappa diffractometer) 61
omit map 127, 170, 250
optic axis 250
optical activity 250
optical diffraction pattern 38–41
optical properties of crystals 21, 22
order of diffraction 30, 31, 94, 248, 250
orientation matrix 250
origin of a unit cell 81, 250
origin-fixing reflections 128, 129
ORTEP (Oak Ridge Thermal Ellipsoid

Plot) 83, 187, 188
orthogonal system 74, 76, 77, 237, 250
orthorhombic unit cell 19, 20, 23, 109,

181, 217, 218, 220, 227, 228, 241, 250
oscillation camera 250, 257
oscillation of crystal 52

parallelepiped 14, 250, 257
parity group (direct methods) 250
particle size 255
path difference (PD) 78, 88, 89, 156,

222–224, 250
Patterson map, Patterson function 115,

123, 130–147, 145, 149, 160, 207, 210,
211, 228–232, 246–248, 250, 253–255

Patterson superposition methods 137
peak heights in Patterson map 131
pentagonal tiles 104
pharmacognosy 10
phase 6, 28, 32, 72, 81, 84, 96, 250, 251,

254, 255
phase angle 72–74, 81, 86, 88, 91, 118,

126, 130, 144, 147, 244
phase angle ambiguity 145–147, 163
phase change 154
phase difference 29, 225–227, 250
phase problem 86–100, 251
phase sum 126
phenyl group geometry 137, 175
phi-scans 148
photographic film 63, 251
phthalocyanine molecule 40, 41, 184
piezoelectric effect 22, 112, 157, 251

Planck constant 57, 251, 256
plane groups 21, 111, 251
plane-polarized light 22, 151, 238, 250,

251
pleochroism 251
point groups and point symmetry 19, 20,

103, 114, 217–220, 251
Poisson distribution 251
polar space group 113
polarity sense 157, 158, 251
polarization factor 65, 251
polarized light 22, 48
polarized X rays 25, 56
polymorphism 207, 251
positivity (direct methods) 116, 117
potassium chloride 37, 38, 182
powder diffraction 202–205, 251
Powder Diffraction File (PDF) 203
precession camera and method 35, 37,

58–60, 201, 251
precipitant and precipitation (salting

out) 12, 13, 252, 254
precision 177, 178, 186, 252
primitive unit cell 20, 23, 24, 109, 182,

239, 252
principal axes of thermal ellipsoid 188,

252
probabilities 119, 121
probability density function 245, 252
probability distributions 176, 252
promolecule density 252
proper symmetry operations 252
protein crystals 8, 12, 14, 60, 83, 99, 113,

126, 138, 142–147, 150, 193, 195,
210–212, 246, 248, 250, 252

Protein Databank 184, 211
protein relative phases 145–147
pycnometer (density) 51
pyroelectric effect 22, 112, 252

quartets and quintets (direct
methods) 126

quartz 196, 204, 251

R value, R factor, R index, discrepancy
index 97, 100, 172, 175, 177, 186, 210,
252

R/S (rectus/sinister) system (absolute
configuration) 160

racemic mixture 252
radial distribution function 197, 198, 229
radiation damage 50, 51, 211, 249, 252
radiation-damage-induced phasing

(RIP) 145
radius of gyration 255
real-space averaging 126, 252
reciprocal lattice point (hkl) 80, 91, 206,

252
reciprocal space 29, 33–41, 52, 53, 59, 92,

120, 220–222, 225–227, 244, 249, 251, 252
refinement of a crystal structure 46,

167–180, 252, 253
reflection (symmetry operation) 110
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refraction and refractive index 21, 153,
154, 242, 253

relative phase angle 4, 6, 27, 28, 72, 80,
81, 86, 88, 91,100, 207

reliability of a structure analysis 176–179
Renninger effect 88, 99, 147–150, 243, 249
residual (R value) 97, 100, 172, 175, 177,

186, 210, 252
resolution (electron density) 94, 97, 98,

99, 253
resolution (separation of

enantiomers) 112, 253
restraints 175, 253
rhombohedral unit cell 19, 20, 23, 217,

219, 220, 228, 253
Richards box 147
Rietveld method 203, 205
right-handed coordinate system 253
rigid-body motion 189–191, 253
robot setup for crystallization 13
Rochelle salt 251
root-mean-square amplitude of

vibration 187
rotating-anode X-ray generator 56, 59,

253
rotation axis (symmetry operation) 19,

21, 24, 103–105, 110, 250, 256
rotation function or search 137, 138, 149,

253, 254
rotation photograph 254
rotational symmetry 217–220
rotatory-inversion axis 104, 105, 110, 241,

254, 256

SAD (single wavelength anomalous
dispersion) phasing 147, 160, 163, 211,
212, 254

sampling regions (diffraction
pattern) 31–41, 45

saturated solution 254
scattering angle 2Ë 71, 254
scattering factor, form factor 77–85, 152,

155, 178, 187, 237, 24,
scattering vector 254
scintillation counter 63, 254
screw axis 21, 24, 106–112, 132, 133, 254,

256
second-harmonic generation (SHG) 22,

249
selenomethionine 163, 212, 248
self-rotation function 138
series-termination error 254
sharpened Patterson function 132
shift in atomic parameter 170
sigma 2 formula (�2) 121, 254
sign of a structure factor 117
silica and silicates 197, 199

simulated annealing 254
sine-Patterson map 163
sinusoidal wave 6, 72, 73, 254
slit diffraction 26–35, 45, 83
small-angle scattering 202, 255
snowflake 10
sodium chloride 3, 179, 182, 183, 252
solvent flattening 126, 163, 241
space group 21, 24, 101, 109, 110, 113,

114, 122, 181, 206, 210, 227, 228, 239,
243, 255

space group ambiguities 111, 112, 255
space shuttle 13
space-group symmetry 20, 101, 103, 106,

109, 112, 237, 249
spallation (of neutrons) 57, 255
sphere of reflection, Ewald sphere 52, 53,

148, 244, 247, 249
standard uncertainty (s.u.) 177, 178,

255
stereopairs 147
stoichiometry 196, 255
structure factor amplitude 86, 87, 88, 96,

161, 167, 236
structure factor 65, 80, 82, 86, 87– 93, 118,

144, 157, 210, 251, 126, 255
structure invariant and structure

seminvariant 119, 126, 255
summing density waves 117–119
superposition method Patterson 255
superposition of waves 72–77, 93
symbolic addition procedure 123, 255
symmetry 101–114
symmetry element 101, 103, 251, 256
symmetry of crystal 19–21
symmetry operation 101, 133, 251, 255,

256
synchrotron radiation 25, 47, 56, 160–163,

212, 256
systematic errors 177, 179, 186
systematically absent reflections 102,

109, 111, 256

tangent formula 125, 256
tartaric acid, tartrate 112, 152, 157, 159,

236
Taylor series 174, 256
temperature effects 189, 198
tetragonal unit cell 19, 20, 23, 181,

217–220, 227, 228, 241, 256
theoretical calculations 194
thermal diffuse scattering 179, 256
thermal motion 132, 186–194, 256
time-of-flight neutrons 256
tobacco mosaic virus 184
torsion angle 184, 185, 190, 234, 235, 240,

256, 257

translation (lattice) 35, 254
translation (motion) 189
translation function 138, 257
translational symmetry 14, 103,

257
trial structure 46, 88, 96, 97, 100,

115, 167–180, 207, 210, 257
trial-and-error method 117, 257
triclinic unit cell 19, 20, 23, 217–220, 227,

228, 241, 257
trigonal unit cell 19, 20, 23, 217, 227, 228,

241, 253
triple-product sign (triplet phase)

relationship 119, 121, 123–125, 129,
149, 257

twinning 13, 174, 257

uniaxial crystals 250
unit cell 10, 14–19, 23, 35, 51, 181, 216,

217, 250, 251, 257
unit cell dimensions 51, 52, 59, 71, 94,

202, 210, 213, 216, 221, 238, 248, 257
unitary structure factor 257
unobserved Bragg reflections, absent

Bragg reflections 257
uranyl (heavy-atom) derivative 143

vapor diffusion method (crystal
growth) 12

vector 75, 132, 220, 242, 257
vector map 131, 139
vector superposition method 136, 137
vectorial representation of waves 74–77,

85
viewing stereodiagrams 147, 194
virus structures 8, 184
vitamin B12 140, 141, 143, 184, 231

water 198, 199
wavelengths 72, 99, 153, 160, 249
weight of a measurement 173–176,

257
Weissenberg camera 58, 257
white (polychromatic) radiation 56, 64,

257
Wilson plot 66, 127, 236, 258
World Wide Web 126, 184, 211, 269

X rays 3, 25, 26, 37, 47, 52–57, 216, 237,
258

X-ray diffraction 3–8, 37, 59, 99, 191, 206,
225–227, 244, 245, 249

X-ray tube 48, 52–56, 253, 258
X – X and X – N maps 193–194
xylose isomerase 112, 193

zinc blende (sphalerite) 157, 158
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