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Preface

In this book we attempt to trace the connection between chemical reactions
and the physical forces of interaction manifested in critical phenomena.
The physical and chemical descriptions of matter are intimately related. In
fact, the division of forces into “physical” and “chemical” is arbitrary. It
is convenient [1] to distinguish between strong attractive (chemical) forces
leading to the formation of chemical species, and weak attractive (physical)
forces, called van der Waals forces. It should be remembered, therefore,
when one considers the “ideal” ternary mixture A, B and A,, By, that the
strong chemical bonding interaction between A and B atoms has already
been taken into account via the formation of the chemical complex A,, By,
and the term “ideal” only means that there are no “physical” forces present.
The growth of clusters in a metastable state is an example of the fuzzy
distinction between physical and chemical forces. In numerical simulations
a rather arbitrary decision has to be made whether a given particle belongs
to a “chemical” cluster.

The usefulness of a “chemical” approach to physical problems can be
seen from the mean-field theory of the phase transition on an Ising lattice
of non-stoichiometric AB alloys [2]. The temperature dependence of the
long-range and short-range order parameters is found from the “law of mass
action” for the appropriately chosen “chemical reaction.” The latter is the
exchange of position of an atom A from one sublattice and an atom B
from the second sublattice. The change of the interaction energy for such a
transition when both atoms are or are not nearest neighbors determines the
“constant of chemical reaction.” Such an approach allows one to avoid the
calculation of entropy provided that one is interested only in the value of
the critical temperature, rather than in the behavior of all thermodynamic
quantities, which are determined by the same classical critical indices in
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all versions of mean-field theory. The latter example is, in fact, a special
case of chapter 15 in [3], where the typical “physical” process of diffusion
is considered as a “chemical reaction” in which some amount of substance
A passes from volume element a to b while a different amount of B passes
from b to a.

The “chemical” method, in which a given atom with all its neighbors is
considered as the basic group, gives better results than the Bragg-Williams
or Bethe-Peierls method. In the Bragg-Williams method, each atom is
exposed to the (self-consistent) average influence of all other atoms, whereas
in the Bethe-Peierls method, a pair of adjacent atoms is considered as the
basic group.

Even though the border between chemical and physical forces is arbi-
trary, one usually considers first the “physical” forces in the equation of
state, and then the “chemical” forces in the law of mass action based on
the non-ideal equation of state. I shall follow this approach.

One can also trace the common features of phase transitions and chem-
ical reactions by analyzing the time evolution of the state variables ¢ de-
scribed by the equation

dip/dt = F [, ], (0.1)

where A is the set of internal and external parameters, and F' is a nonlinear
functional in . In the case of a phase transition, Eq. (0.1) may be the
Landau-Ginzburg equation for the order parameter, while in the case of
a chemical reaction — the equation for the rate of reaction. The steady
state of the system is described by ° (A) which is the solution of equation
F [¢°,A] = 0. For nonlinear F, more than one steady state solution is pos-
sible, and for some values of A, at the so-called transition point, bifurcation
may occur, when a system goes from the original steady state to the new
steady state. Such a transition might be of first or second order in the case
of a phase transition, and, analogously, the hard or soft transition for a
chemical reaction.

I have kept this book as simple as possible, so that it will be useful
for a wide range of researchers, both physicists and chemists, as well as
teachers and students. No preliminary knowledge is assumed, other than
undergraduate courses in general physics and chemistry. In line with this
approach, I have favored a phenomenological presentation, thus avoiding
the details of both microscopic and numerical approaches. There are a
tremendous number of published articles devoted to this subject, and it
proved impossible to include many of them in this book of small size. I ask
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the forgiveness of the authors whose publications were beyond the scope of
this book.

The organization of the book is as follows.

After the Introduction, Chapter 1 contains a short review of phase tran-
sitions and chemical reactions and their interconnection, which is needed
to understand the ensuing material. Chapter 2 is devoted to the specific
changes in a chemical reaction occurring near the critical point. The effect
of pressure and phase transformation on the equilibrium constant and rate
of reaction is the subject of Secs. 2.1-2.2. The hallmark of critical phenom-
ena — the slowing down of all processes — leads also to the slowing-down of
the rates of chemical reactions. This phenomenon is described in Sec. 2.3,
while the opposite peculiar phenomenon of speeding-up of a chemical re-
action near the critical point provides the subject matter for Sec. 2.4. It
is shown that all three types of behavior (slowing-down, speeding-up and
unchanged) are possible depending on the given experiment. In Sec. 2.5,
we consider another influence of criticality — the anomalies in chemical
equilibria including supercritical extraction. The appropriate experiments
are described in Sec. 2.6.

The reverse process — influence of chemistry on critical phenomena —
forms the content of Chapter 3, including the change in the critical param-
eters (Sec. 3.1), critical indices (Sec. 3.2), transport coefficients (Sec. 3.5)
and degree of dissociation (Sec. 3.3). Section 3.4 is devoted to the isotope
exchange reaction in near-critical systems.

Chapter 4 deals with the problem of the phase separation in reactive
systems. The occurrence of multiple solutions of the law of mass action
is described in Sec. 4.1. The mechanism of phase separation depends on
whether it starts from a metastable or a non-stable state. The former case,
where phase separation takes place through nucleation, and the spinodal
decomposition for the latter case are considered in Secs. 4.2 and 4.3, respec-
tively. Section 4.4 is devoted to the special case of a dissociation reaction
in a ternary mixture.

Chapter 5 contains a description of chemical reactions near some specific
regions of the phase diagram. An account of the supercritical fluids is given
in Sec. 5.1, while the vicinities of the azeotrope, melting and double critical
points are considered in Secs. 5.2, 5.3 and 5.4, respectively. The main ex-
perimental methods of analysis of near-critical fluids — sound propagation
and light scattering — are considered in Chapter 6. Finally, in Chapter 7
we present our conclusions.



Preface

Contents

1. Criticality and Chemistry

1.1
1.2
1.3

Critical phenomena . . . . . . .. ... ... L.
Chemical reactions . . . . . . ... .. ... ... ... .
Analogy between critical phenomena and the instability of
chemical reactions . . . . .. ... ... L.

2. Effect of Criticality on Chemical Reaction

2.1

2.2
2.3
24

2.5
2.6

The effect of pressure on the equilibrium constant and rate
ofreaction . . . . . ...
Effect of phase transformations on chemistry . . ... ..
Critical slowing-down of chemical reactions . . . . .. ..
Hydrodynamic equations of reactive binary mixture:
pistoneffect . . . ... ..o
2.4.1 Heterogeneous reactions in near-critical systems
2.4.2  Dynamics of chemical reactions . . .. ... ...
2.4.3 Relaxation time of reactions . . . ... .. .. ..
2.4.4  Hydrodynamic equations of a reactive binary
mixtures . . . ...
2.4.5 Hydrodynamic equations with statistically
independent variables . . . . .. ... ... ...
Critical anomalies of chemical equilibria. . . . . . . . . ..
Experiment . . . .. ... oo oo

3. Effect of Chemistry on Critical Phenomena

12

15

15
17
19

25
26
27
29

32
38
46
48

53



Chemistry versus Physics: Chemical Reactions near Critical Points

3.1  Change of critical parameters due to a chemical reaction .
3.2 Modification of the critical indices . . .. ... ... ...

53
55

3.3 Singularity in the degree of dissociation near a critical point 60

3.4 Isotope exchange reaction in near-critical systems . . . . .
3.5 Singularities of transport coefficients in reactive systems .
3.5.1 Mode-coupling analysis . . . . ... ... .....
3.5.2  Renormalization group methods . . . . . ... ..

Phase Separation in Reactive Systems

4.1  Multiple solutions of the law of mass action . . . . . . ..
4.2 Phase equilibrium in reactive binary mixtures quenched
into a metastable state . . . . . ... ..o
4.2.1 Thermodynamic analysis of reactive binary
mixtures . . . .. ...
4.2.2  Thermodynamic analysis of reactive ternary
mixtures . . . .. ...
4.2.3 Kinetics of phase separation . . . ... ... ...
4.3  Phase equilibrium in reactive mixtures quenched into an
unstable state . . . . . .. .. oL
4.4  Thermodynamics of a three-component plasma with a
dissociative chemical reaction . . . . . . . ... ... ...

Comments on the Geometry of the Phase Diagram of a
Reaction Mixture

5.1  Solubility in supercritical fluids . . . . .. ... ... ...
5.2 Azeotropic points in reactive many-component systems . .
5.3  Melting point of reactive binary mixtures . . ... .. ..
5.4  Double critical point . . . . . ... ..o

Sound Propagation and Light Scattering in Chemically
Reactive Systems

6.1  Ultrasound attenuation in near-critical reactive mixtures .
6.2  Hydrodynamic analysis of the dispersion relation for sound

WAVES  « + o v vt e e e e e e e e e e e
6.3  Light scattering from reactive systems . . . . . .. .. ..
6.4 Inhomogeneous structure of near-critical reactive systems

Conclusions

62

100
101
105

111
111

113
118
121

125



Contents xi

Bibliography 127
Index 135



Chapter 1

Criticality and Chemistry

1.1 Critical phenomena

Phase transitions occur in Nature in a great variety of systems and un-
der a very wide range of conditions. For instance, the paramagnetic-
ferromagnetic transition occurs in iron at around 1000 K, the superfluid
transition occurs in liquid helium at 2.2 K, and Bose-Einstein condensa-
tion occurs at 10~7 K. In addition to this enormous temperature range,
phase transitions occur in a wide variety of substances, including solids,
classical fluids and quantum fluids. Therefore, phase transitions are a very
general phenomenon, associated with the basic properties of many-body
systems. The thermodynamic functions become singular at the phase tran-
sition points, and these mathematical singularities lead to many unusual
properties of the system which are called “critical phenomena.” We first
consider the different types of the phase transition points (“critical points”)
and then we introduce a qualitative method for describing the behavior of
various parameters of the system in the vicinity of critical points.

The liquid-gas critical point of an one-component fluid is determined by

the condition [4]
2
@@ w
op)r op? ) 1

where p is the pressure, p is the density, and T is the temperature. Similarly,
the liquid-gas critical points of binary mixtures are characterized by the
vanishing of the first and second derivatives of the chemical potential p
with respect to the concentration z,

2
<@) - (8—‘2‘> = 0. (1.2)
Or T Ox Tp
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Here p = py/mi1 — pg/ma, where py, pe and mi, meo are the chemical
potentials and masses of the two components.

The close relation between (1.1) and (1.2) is evident from the equivalent
form of Eq. (1.2), which can be rewritten as

2
(@> - (a_;;) = 0. (1.3)
dp T dp T

The critical conditions for a binary mixture (1.3) are the same as those
for a pure system (1.1) when the chemical potential is kept constant. Anal-
ogously, the critical points for an n-component mixture are determined by

the conditions
2
(?) - (%) ~0 (1.4)
p Topeq s sy 1 P Topeq s sl 1

where n — 1 chemical potentials are held constant.

In addition to the above-mentioned thermodynamic peculiarities, relax-
ation processes slow down near the critical points resulting in singularities
in the kinetic coefficients. An example is the slowing-down of diffusion near
the critical points of a binary mixture. Nothing happens to the motion of
the separate molecules when one approaches the critical point. It is the rate
of equalization of the concentration gradients by diffusion which is reduced
near the critical points. In fact, the excess concentration dx in some part
of a system does not produce diffusion by itself. Usually a system has no
difficulty in “translating” the change in concentration into a change in the
chemical potential dp ~ (Ou/0x) dx, which is the driving force for diffusion.
However, near the critical point, according to (1.2), Ou/Ox is very small,
and the system becomes indifferent to changes in concentration. This is
the simple physical explanation of the slowing-down of diffusion near the
critical point.

Since the states of a one-component system and a binary mixture are de-
fined by the equations of state p = p (T, u) and p = u (T, p, x) , respectively,
Egs. (1.1) and (1.2) define the isolated critical point for an one-component
system, and the line of critical points for a binary mixture. Another dis-
tinction between one-component systems and binary mixtures is that there
are two types of critical points in the latter: the above considered liquid-gas
critical points and liquid-liquid critical points, whereas two coexisting lig-
uid phases are distinguished by different concentrations of the components.
Both critical lines are defined by Eq. (1.2).

Different binary liquid mixtures show either concave-down or concave-
up coexistence curves in a temperature-concentration phase diagram (at
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fixed pressure) or in a pressure-concentration phase diagram (at fixed tem-
perature). The consolute point is an extremum in the phase diagram where
the homogeneous liquid mixture first begins to separate into two immiscible
liquid layers. For the concave-down diagram, as for a methanol-heplan mix-
ture, the minimum temperature above which the two liquids are miscible
in all proportions is called the upper critical solution temperature (UCST).
By contrast, for a concave-up diagram, such as the water-triethylamine so-
lution, the maximum temperature below which the liquids are miscible in
all proportions is called the lower critical solution temperature (LCST).
Under the assumption of analyticity of the thermodynamic functions at
the critical points, one can obtain the general thermodynamic criterion
for the existence of UCST and LCST [3]. We will discuss this calculation
in the next section when examinating the influence of chemical reactions
on UCST and LCST. Here we will consider chemical reactions occurring
between solutes near the critical points of the solvent.

The properties of near-critical fluids range between those of gases and
liquids (see Table 1). Near-critical fluids combine properties of gases and
liquids. Their densities are lower than those of liquids, but much higher
than the densities of gases, which makes the near-critical fluids excellent
solvents for a variety of substances.

Table 1. Comparison of some physical properties of gases, liquids
and near-critical fluids.
| Physical Properties | Gas | Near-critical fluid | Liquid |

Density (kg/m?) 0.6-2 200-500 6001000

Kinematic viscosity | 5-500 0.02-0.1 0.1-5
(107%m? /sec)

Diffusion coefficient | 10-40 0.07 2 x 107 %~
(1075 m?/ sec) 2x 1078

In Table 2 we list the critical parameters of the solvents in most com-
mon use. Water is the most abundant, cheap, safe and environmentally
pure solvent. In spite of its high critical parameters which limits its ap-
plication, in addition to the traditional uses, modern applications include
the important problems of solving the environmental pollution problem
and the fabrication of nanocrystalline materials with predictable properties
[5]. Properties of near-critical water, such as the full mixing with oxygen
and organic compounds, high diffusion and mass transfer coefficients, make
water appropriate for efficient treatment of industrial wastes. The use of
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near-critical water for detoxification of organic waste using the catalytic
oxidation of pyridine was found [6] to be cheaper than other methods and
also more effective, having almost no limitation on the concentration of the
pyridine-containing solutions. The efficiency of hydrothermal detoxifica-
tion of pyridine waste is substantially increased by the addition of a small
amount of heterogeneous catalyst. For instance, the addition of 0.5% of
PtAl;O3 increases the oxidation of pyridine to 99% [7]. Other methods in-
clude dechlorination of chlorinate organic compounds, cleaning of polymers
and plastic wastes, hydrolysis of cellulose, and the release of bromine for
polymers and plastics.

Table 2. Critical parameters of fluids which are commonly used
as solvents for chemical reactions.

| Solvent | Ter (C) | per (atm) [ p,, (g/mL) |
Water (1120) 373.9 220.6 0.322
Carbon dioxide (CO3) 30.9 72.9 0.47
Sulfur hexafluoride (SFs) 45.5 36.7 0.73
Ammonia (NHs) 132.3 113.5 0.235
Methanol (CH3OI) 2394 80.9 0.272
Propane (C3Hs) 96.6 41.9 0.22
Ethane (CzHg) 32.2 182 0.20
Pyridine (C5H5N) 347 55.6 0.31
Benzene (CeHs) 289 48.3 0.30

Nanocrystallines (particles whose size is a few interatomic distances)
are new generation materials widely used as sensors, fuel cells, high-density
ceramics, and semiconductors, among others. Hydrothermal synthesis in
near-critical water is used to obtain nanocrystalline oxide powders with
specified particle sizes and phase composition. Many references can be
found [5] dealing with both nanotechnology and environmental problems.

Like water, carbon dioxide (CO;3) has the advantage of being non-
flammable, nontoxic and environment compatible. At the same time, CO4
has critical parameters more convenient than water, and is, therefore, the
first choice for use as a near-critical solvent. Another advantage of COq
lies in the fact that it does not attack enzymes and is therefore suitable
for enzyme-catalyzed reactions. Some new applications include the use of
two-phase reaction mixtures with high pressure carbon dioxide which are
known as “COg — expanded fluids”. In fact, near-critical carbon dioxide
is more frequently used in the laboratory and in technology than any other
solvent. Hundreds of examples can be found in recent reviews [8], [9].
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The infinite increase of the compressibility p~! (9p/dp), or (0z/0p) 1,
as the critical point is approached, leads to a number of peculiarities in the
behavior of a substance near its critical point. The specific heat at constant
pressure C,, and the expansion coefficient 3 = —p~1 (9p/ dT),, also increase
near the critical point of a one-component system, as follows from Eq. (1.1)
and the appropriate thermodynamic relations.

A sharp increase in the mean square fluctuations of the density (or
concentration) and of the integral of the correlation function g,, follows
from the well-known thermodynamic relations

(o (") — 7P ~ (g—;)T oo [ o~ (g_z)T e (1)

The large increase of the correlations between the positions of different
particles is given by the second expression in (1.5), which is closely con-
nected with the first expression. In other words, widely separated particles
have to be strongly correlated to cause great changes in density.

The correlation radius £, which characterizes the distance over which
correlations are significant, increases sharply near the critical temperature
Te,

fT—»TC — O0. (1.6)

According to estimates from scattering experiments, ¢ reaches 10~4 —107°

cm near the critical point. Thus, the specific nature of the critical region
consists of the appearance of a new characteristic distance &, satisfying the
condition

a<<E{<<R (1.7)

where a is the average distance between particles and R is a characteristic
macroscopic length.

As an illustration of the crucial importance of the new characteristic
length &, let us consider the singular part of the transport coefficients near
the critical point for a model fluid consisting of spheres with a characteristic
radius €. Particles inside such spheres are strongly correlated, and we can
assume that under the influence of an external force, they move together
with a mean velocity v and a mean free path £&. One finds the following
results [10]:

1. Diffusion coeflicient [11]. When an external force F is applied, the
spheres move according to Stoke’s law, F' ~ név, where 7 is the viscosity,
i.e., the mobility b = v/F ~ (n{)fl. Using the Einstein relation D = kT,
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where D is the diffusion coefficient and kp is the Boltzmann constant, we
have D ~ (nf)_1 or Dn ~ &1, a result confirmed by the more rigorous
theory and by experiment.

2. Heat conductivity. The usual arguments of molecular-kinetic
theory give the heat flux ¢ passing through unit area per unit time,
g ~ vn(e; —e2). Here, n is the total number of spheres, and €1 — € is
the difference in their energies on two sides of a selected area, arising from
the temperature difference T7 — Ty ~ VT : € —ea ~ VCREVT, where V is
the total volume of the spheres, so that nV = 1. Thus, ¢ ~ vC,E{VT.
One can find the velocity v from the estimate for the diffusion coeffi-
cient given above: v ~ D/¢ ~ 1/&%*. Finally, the heat conductivity
A~ q/VT ~ vCp§ ~ Cp/né. This result is supported by more rigorous
theory and also by experiment.

The qualitative description of the singularity of the quantity a at
the critical point is given by the non-integer critical index x, where
a~ |T—Te|*. If ¢ # 0, this critical index is given by = In(a)/In |T —T¢/,
whereas if x = 0, there are two possibilities. In one case, a becomes constant
at the critical point, with the possibility of different values of this constant
on the two sides of the transition, which is called a jump singularity. In the
other case, a exhibits a logarithmic singularity, a ~ In|T — T¢|.

Although there are general properties which define the values of the crit-
ical indices (dimension d of space, symmetry and the presence of long-range
interactions), according to the universality principle, these values are de-
fined by the general statistical properties of the many-body system, rather
than by the details of the microscopic interactions. This implies that dif-
ferent isomorphic systems will have the same indices for the appropriate
parameters. Using the language of fluids, the commonly accepted sym-
bols «, 3,7, d,n, and v describe, respectively, the asymptotic behavior near
the one-component liquid-gas critical point of the specific heat at constant
volume, order parameter (deviation of the density from its critical value),
compressibility, pressure-density relation at the critical isotherm, the cor-
relation function at the critical temperature, and the correlation length.
Of these indices, one () is determined only below the critical temperature
and two (d,7n) exist only at the critical temperature. The remaining three
indices can be defined for temperatures above critical («,y,v) as well as
below (¢/,v',v'). According to scaling theory [12], a = o/,v =+, v =1/
and the following relations exist between critical indices: a + 28 4+ v = 2,
dv=2—a,(2-nv=~,and S(6 —1) =~.
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The values of the critical indices depend on the proximity to the critical
point. In the approach to the critical point, the indices have their “classical”
mean-field values, obtained by assuming the analyticity of thermodynamic
functions at the critical points which allows the expansion of these functions
in a power series in the deviation from the critical parameters. However,
the singularity in the critical points makes the series expansion inapplicable
very close to the critical point, leading to “non-classical” values of the crit-
ical indices (non-integer powers, logarithmic dependence, etc.). Since the
difference between the results of mean-field theory and the exact theory is
due to fluctuations of the order parameter, we expect that the mean-field
approximation will be accurate when these fluctuations are small. Ginzburg
proposed [13] that the mean field theory is applicable when the fluctuations
are small compared to the thermodynamic values. The Ginzburg criterion
divides the region near the critical point into two parts, giving the crossover
from classical to non-classical behavior. An interesting idea has been pro-
posed recently [14] of the existence of the second crossover in the immediate
vicinity of the critical point, where the non-classical critical indices regain
their classical values. Indeed, according to Eq. (1.5), the development of
large-scale fluctuations is accompanied by a continuous increase of the sus-

v

120_ VCOE v v
v
i o SF, g ee
v

1.10F v

B v
1.00 v *

I v v. . ®

Lt rnnl Ll Lt rnl Ll 1

]
10~ 1072 10~ 10~ 102 1

Fig. 1.1 Variation of critical exponent for the isothermal compressibility in the imme-
diate vicinity of the critical point for CO2 and SFg. The experimental points are taken
from [16], [17]. Reproduced from Ref. [14] with permission, copyright (2002), Springer.
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ceptibilities of the critical system, in particular, the susceptibility to varies
external perturbations (gravitational and Coulomb fields, surface forces,
shear stresses, turbulence, presence of boundaries). As a consequence, clas-
sical mean-field behavior must be restored. This transition occurs in the
direction opposite to the Ginzburg criterion direction and defines the sec-
ond crossover. Such behavior was found experimentally as early as 1974
[15] by taking p — V — T measurements of very pure SFg in the immediate
vicinity (7 = T;CTC) of the critical point with 2 x 107*K, 4-0.01%, and
+0.02% accuracy, respectively in the temperature, dimensionless pressure
and density.

As an example, we show [14] in Fig. 1.1 the crossover to the classical
value of the critical index of the isothermal compressibility in the immedi-
ate vicinity of the critical point for CO5 and SFg. The author of [14] states
his belief that the analogous second crossover has been seen in other ex-
periments under the influence of gravity, impurities, and shear flows. This
problem certainly deserves further investigation.

1.2 Chemical reactions

The equilibrium numbers of particles of the different substances taking part
in a chemical reaction are connected by the law of mass action. This law
results from a relation between the chemical potentials p,; of the various
components [3]. Thus, for the reaction > v;A; = 0 , where A; are the
chemical symbols of the reagents and v; are positive or negative integers,
the equation for chemical equilibrium has the form ) v;u;, = 0. For the
simplest case of the isomerization reaction, the reaction equation and the
law of mass action have the form A; — As = 0 and p; = p,, respectively.

Thus, binary mixtures undergoing a chemical reaction are characterized
by their concentration, as in a non-reactive mixture. However, according
to the law of mass action, this concentration is a function of other ther-
modynamic variables. Therefore, the number of thermodynamic degrees of
freedom of a binary system undergoing a chemical reaction is the same as
for a non-reactive, one-component system.

Chemical reactions influence all properties of many-component systems.
As an example, we shall show that the existence of the chemical reaction
may lead to the replacement of UCST by LCST and vice versa [18]. More-
over, the Clapeyron-Clausius equation for a binary mixture is determined
by the chemical reaction, in addition to the latent heat and the volume
difference between the two phases.
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Consider a mole of a binary mixture which separates into two phases,
B’ and B”. The system can be described by four parameters, p, T, x5, and
x4, which satisfy the following conditions:

1y (Top,xs) = p (Typ,a5) 5y (T, py ) = sy (T, p, ) - (1.8)
One can differentiate the equilibrium conditions (1.8) along the equilib-

rium surface between B’ and B”. Using simple thermodynamic relations,
one obtains [3]

Avidp — AhidT /T + xhgh, dath, — xb gy, dxy = 0,
Avgdp — AhodT )T + (1 — 2) g5 da) — (1 — ab) ghdath, =0 (1.9)

where v; and h; are the partial molar volume and enthalpy,

82gl 829//
A’Ui = ’U;’ — ’U;; Ahi = h;/ _ h;, géa: = <87/22 T’p; ggw = 6x—’2’2 . .

(1.10)

The partial derivatives of the intensive variables are given by Eq. (1.9)

at constant pressure (temperature) and at constant concentration [3]. How-

ever, there is no need to consider these special sections of the coexis-

tence surface when we deal with a reactive system. Indeed, for a reaction

v1A; 2 voA,y, an additional restriction to (1.9) exists in the form of the
law of mass action

vipy + vaph = 0. (1.11)
Differentiating the latter equation along the equilibrium surface, yields
(110 + vovh) dp — (v1h) + vahb) dT/T

Combining Egs. (1.9) and (1.12) yields the slope of the equilibrium line of
a two-phase reactive binary mixture,

T (@) _ hby (Aws)” — (283 /1) (110 + vavh)
OT ) chem Vb, (Ax2)? — (2A12/1) (V1h] + v2hb)

(1.13)

( ar ) _ 2TghAwy + Tn'vh (Azs)? (110 + vovh) ™" ghs
075 ) chem My (Ax2)* = vy (Az2) (1h] + vahh) (V1] + V2U'2)(1 )
1.14
where n' = viah — va(l—xh) and B = (1—ah)h) + ahhl; o
(1 — z4) v +x4vl are the heat of reaction and the volume change of reaction
in phase B’.
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In the absence of a chemical reaction, all terms vanish, except the first
term in the denominators and numerators of Egs. (1.13) and (1.14 ), and
these terms reduce to the well-known form [3]

dp o
T (5_T)wf2 = é (1.15)

(8T> _ 2Tgy, Axo
P

—_— = . 1.16
O hb (Az2)° (116)

Equation (1.13) is the generalized form of the Clapeyron-Clausius equa-
tion (1.15) for a reactive mixture, while Eq. (1.14) determines the criterion
for UCST and LCST. The latter can be obtained in the same way as for a
nonreactive mixture [3].

The “classical” expansion near the critical points g5, ~ 1¢4, (Azy)?,
yields

p

833/2 4h2z,cr
If 2 > @300 > a5, then (0x5/0T), is positive if hog or = (8%h/0x?)
is negative. These signs define UCST. Analogously, LCST corresponds to
(0h/02%) > 0.
Performing a similar expansion near the single critical point of a reactive
binary mixture, one obtains from (1.13) and (1.14),

h cr h cr
p(00) et vsher (1.18)
or chem V1V1,cr + V2V2 cr

—1
oT Td / m Ulhl,cr + U2h2,cr
o ~ 1 gyg (x2 - x2) 2c,cr — V2xer —

L2/ chem V1U1,cr + V2V2, cr
Ulhl,cr + U2h2,cr

Tc (Ulvl,cr + UQ'UQ,CT)

—1
~ Tgéllw (x/2 - xlg/) h2w,cr (]— - ch/dp> .

(1.19)

Equation (1.15) was used in the last relation in (1.19). It follows from
(1.19) that the existence of a chemical reaction may change the type of
critical point (UCST to LCST and vice versa) if the last bracket in (1.19) is
negative. The ratio of the second derivatives vaz ¢r/h2g,cr can be replaced
by the ratio of excess volume Vg and excess enthalpy hp at the critical
point.
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Thus, a chemical reaction will change the nature of the critical point if
the following (equivalent) inequalities are satisfied:
V1hier + V2020 VE ~1or V1hier + V2h2,er 1 dIc o1 (1.20)
V1U1,er + V2V2.er hE V1VU1,er + V2V2,er T dp
One can find [19], [20] the form of the critical line near the critical point
dT¢ /dp as well as Vg and hg. Typical examples of positive Vg and hg are
shown in Fig. 1.2.

hg

X,=0 x,” =1

Fig. 1.2 Typical form of the excess enthalpy hg (or excess volume Vg) for a binary
mixture as a function of concentration. Points a and b correspond to the critical molar
enthalpy of pure substances. Reproduced from Ref. [18] with permission, copyright
(1990), Springer.

Using the definition of the partial molar quantity y1 = y —

z2 (0y/0x2)p ,, where y = (h, v), one can see that the points a,b in Fig. 1.2

give hi ¢, and hg o (or, analogously, vi ¢ and vg .-). For an isomerization
reaction, v; = —vg = 1, and Eq. ( 1.20) becomes

hl,cr - h?,cr VE

hE Ul,er — U2,cr

> 1. (1.21)

There is no physical reason why criterion (1.21) should not be satisfied
for some mixtures. Then, the presence of a chemical reaction will change
UCST to LCST and vice versa.
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1.3 Analogy between critical phenomena and the instability
of chemical reactions

Critical phenomena describe the behavior of closed thermodynamic systems
whereas chemical reactions occur in the systems open to matter transport
from the environment. The former are described by the well-known Gibbs
technique, but there is no universal approach to non-equilibrium chemical
reactions which are defined by the equation of the reaction rate. However,
as already mentioned in the Introduction, there is a close analogy between
these two phenomena (in fact, article [21] is entitled “Chemical instabilities
as critical phenomena”).

One distinguishes between phase transitions of first and second orders.
First-order transitions involve a discontinuity in the state of the system,
and, as a result, a discontinuity in the thermodynamic variables such as
entropy, volume, internal energy (first derivatives of the thermodynamic
potential). In second-order phase transitions, these variables change con-
tinuously while their derivatives, which are the second derivatives of the
thermodynamic potentials (specific heat, thermal expansion, compressibil-
ity), are discontinuous. Analogously, in the theory of instability of non-
linear differential equations, which describe the rate of chemical reactions,
one distinguishes between hard and soft transitions. These are similar in
nature to first-order and second-order phase transitions [22].

As an example, consider the following chemical reactions [23]

k k
A+ 2X = 3X; A= X. (1.22)
k}g k4

These rate equations describe the conversion of the initial reactant A into
X by two parallel processes: a simple monomolecular degradation or an
autocatalytic trimolecular reaction. Both these reactions are reversible with
reaction constants k;, i = 1,...,4. The system is open to interaction with
an external reservoir of reactant A, so that the concentration of A remains
constant. The macroscopic equation for the number of molecules X has the
following form
dX

== —ko X3+ k1 AX? — ky X + k3 A, (1.23)

The solution of Eq. (1.23) with the initial condition X (0) = Xy is
<X - X3 >’“’“ (X - X )’“’“3 <X — X >’“’“
X0+X1 X()—X2 XO_X3

= exp [—kg (Xl —XQ) (XQ —X3) (Xg —Xl)t] (124)



Criticality and Chemistry 13

where X1, X5 and X3 are the three roots of
koX? — ki AX? 4+ kg X — k3A =0 (1.25)
with X3 > X2 > X;. The steady state solutions X, of Eq. ( 1.24) are

X, = X for Xp < Xo;
XS = X2 for XQ = XQ; (126)
X = X3 for Xg > Xo.

Stability analysis shows that the solution X5 is unstable with respect to
small perturbations, whereas the solutions X; and X3 are stable. Moreover,
it follows from Eq. (1.26) that hysteresis may occur as X is varied [23]. The
last two results are typical of equilibrium phenomena which are described
near the liquid-gas critical point by the classical equation of state, say,
the van der Waals equation of the form (1.25). This establishes the link
between first-order phase transitions in equilibrium systems and so-called
hard transitions in reactive systems.

As an example of different behavior, consider the chemical reaction

A+C+X=A+2X; X->Y+B (1.27)

where the second reverse reaction is neglected. The rate equation for the
number of molecules X has the following form

C;—)t( =-AX*+(AC-1)X (1.28)
or, introducing 7 = At and A = (AC — 1) /A,
X x2iax (1.29)

dr

The solution of this equation has the typical features of second-order
phase transitions: the soft transition points X, (\) are continuous at the
transition point A = 0, but the derivatives are not.

The foregoing equations have to be generalized to include fluctuations
from the steady state. No first-principle microscopic theory exists for fluctu-
ations in reactive chemical systems. One usually uses a phenomenological
master equation based on the macroscopic rate equations or a Langevin
equation obtained by adding a stochastic term to the rate equations. The
details can be found in [22]. Here we bring a fascinating example of the
influence of noise on the chemical reaction [24], which is illustrated by
the so-called ecological model. In this model, one considers two biological
species with densities n; (t) and ng (t), which decrease with rates a; and
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az and compete with rates by and by for the same renewable food m. The
birth-death equations for these species have the following form
dnq dno
dt dt
The amount of food decreases both naturally (at a rate ¢), and according
to Eq. (1.30). Assume that the amount m of the food increases at rate ¢,
ie.,

= (bym — a1) ny; = (bom — ag) na. (1.30)

d
d_T =q—cm—din; —dans. (1.31)

Assume now that the species n; is strong and species ny is weak, which
occurs when the ratio a1 /by is smaller than both as/bs and ¢/c. Under these
conditions, the asymptotic ¢ — oo solutions of Eqgs. (1.30) and (1.31) are
ay qb1 — cay
b ng = 0; M=
which means that in the long run, the strong species survives and the weak
species becomes extinct. The question arises regarding which changes can
help the weak species to survive. One can easily see [24] that if one al-
lows the food growth rate g to fluctuate in time (replacing ¢ in Eq. (1.31)
by ¢ + f(¢t) with (f) = 0) or to allow the weak (but not the strong!)
species to be mobile (adding the diffusive term DV?ny term in the second
of Egs. (1.30)), the weak species will finally become extinct. This result
can be formulated as the “ecological theorem”: the long-term coexistence
of two species relying on the same renewable resources is impossible. How-
ever