
CHEMISTRY AND 
PHYSICS OF 
MECHANICAL 
HARDNESS

John J. Gilman

A JOHN WILEY & SONS, INC., PUBLICATION





Innodata
File Attachment
9780470446829.jpg





CHEMISTRY AND 
PHYSICS OF 
MECHANICAL 
HARDNESS





CHEMISTRY AND 
PHYSICS OF 
MECHANICAL 
HARDNESS

John J. Gilman

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in 
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or 
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright 
Act, without either the prior written permission of the Publisher, or authorization through 
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at 
www.copyright.com. Requests to the Publisher for permission should be addressed to the 
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, JN 07030, 
(201) 748-6011, fax (201) 748-6008, or online at http//www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best 
efforts in preparing this book, they make no representations or warranties with respect to the 
accuracy or completeness of the contents of this book and specifi cally disclaim any implied 
warranties of merchantability or fi tness for a particular purpose. No warranty may be created 
or extended by sales representatives or written sales materials. The advice and strategies 
contained herein may not be suitable for your situation. You should consult with a professional 
where appropriate. Neither the publisher nor author shall be liable for any loss of profi t or any 
other commercial damages, including but not limited to special, incidental, consequential, or 
other damages.

For general information on our other products and services or for technical support, please 
contact our Customer Care Department within the United States at (800) 762-2974, outside the 
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in 
print may not be available in electronic formats. For more information about Wiley products, 
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Gilman, John J. (John Joseph)
 Chemistry and physics of mechanical hardness / John J. Gilman.
   p. cm. – (Wiley series on processing of engineering materials)
 “A Wiley-Interscience publication.”
 Includes bibliographical references and index.
 ISBN 978-0-470-22652-0 (cloth)
 1. Hardness. 2. Strength of materials. I. Title.
 TA418.42.G55 2009
 620.1′126–dc22
 2008038594

Printed in the United States of America.
10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


TABLE OF CONTENTS

Preface xi

 1 Introduction 1

 1.1 Why Hardness Matters (A Short History) 1
 1.2 Purpose of This Book 5
 1.3 The Nature of Hardness 7
  References 10

 2 Indentation 11

 2.1 Introduction 11
 2.2 The Chin-Gilman Parameter 14
 2.3 What Does Indentation Hardness Measure? 14
 2.4 Indentation Size Effect 20
 2.5 Indentation Size (From Macro to Nano) 22
 2.6 Indentation vs. Scratch Hardness 23
 2.7 Blunt or Soft Indenters 24
 2.8 Anisotropy 24
 2.9 Indenter and Specimen Surfaces 25
  References 25

 3 Chemical Bonding 27

 3.1 Forms of Bonding 27
 3.2 Atoms 28
 3.3 State Symmetries 29
 3.4 Molecular Bonding (Hydrogen) 31
 3.5 Covalent Bonds 36
 3.6 Bonding in Solids 41

3.6.1 Ionic Bonding 41
3.6.2 Metallic Bonding 43
3.6.3 Covalent Crystals 44

 3.7 Electrodynamic Bonding 45
 3.8 Polarizability 47
  References 48

v



vi TABLE OF CONTENTS

 4 Plastic Deformation 51

 4.1 Introduction 51
 4.2 Dislocation Movement 52
 4.3 Importance of Symmetry 55
 4.4 Local Inelastic Shearing of Atoms 56
 4.5 Dislocation Multiplication 57
 4.6 Individual Dislocation Velocities 

(Microscopic Distances) 59
 4.7 Viscous Drag 60

4.7.1 Pure Metals 61
4.7.2 Covalent Crystals 62

 4.8 Deformation-Softening and Elastic Relaxation 62
 4.9 Macroscopic Plastic Deformation 63
  References 64

 5 Covalent Semiconductors 67

 5.1 Introduction 67
 5.2 Octahedral Shear Stiffness 69
 5.3 Chemical Bonds and Dislocation Mobility 71
 5.4 Behavior of Kinks 75
 5.5 Effect of Polarity 77
 5.6 Photoplasticity 79
 5.7 Surface Environments 80
 5.8 Effect of Temperature 80
 5.9 Doping Effects 80
  References 81

 6 Simple Metals and Alloys 83

 6.1 Intrinsic Behavior 83
 6.2 Extrinsic Sources of Plastic Resistance 85

6.2.1 Deformation-Hardening 85
6.2.2 Impurity Atoms (Alloying) 87
6.2.3 Precipitates (Clusters, Needles, and Platelets) 89
6.2.4 Grain-Boundaries 90
6.2.5 Surface Films (Such as Oxides) 94
6.2.6 Magnetic Domain Walls 95
6.2.7 Ferroelectric Domain-Walls 96
6.2.8 Twin Boundaries 96

  References 96

 7 Transition Metals 99

 7.1 Introduction 99
 7.2 Rare Earth Metals 101
  References 101



TABLE OF CONTENTS vii

 8 Intermetallic Compounds 103

 8.1 Introduction 103
 8.2 Crystal Structures 104

8.2.1 Sigma Phase 104
8.2.2 Laves Phases 105
8.2.3 Ni3Al 107

 8.3 Calculated Hardness of NiAl 112
 8.4 Superconducting Intermetallic Compounds 113
 8.5 Transition Metal Compounds 115
  References 116

 9 Ionic Crystals 119

 9.1 Alkali Halides 119
 9.2 Glide in the NaCl Structure 120
 9.3 Alkali Halide Alloys 123
 9.4 Glide in CsCl Structure 124
 9.5 Effect of Imputities 124
 9.6 Alkaline Earth Fluorides 126
 9.7 Alkaline Earth Sulfi des 128
 9.8 Photomechanical Effects 128
 9.9 Effects of Applied Electric Fields 129
9.10 Magneto-Plasticity 129
  References 129

10 Metal-Metalloids (Hard Metals) 131

10.1 Introduction 131
10.2 Carbides 132
10.3 Tungsten Carbide 134
10.4 Borides 136
10.5 Titanium Diboride 137
10.6 Rare Metal Diborides 138
10.7 Hexaborides 138
10.8 Boron Carbide (Carbon Quasi-Hexaboride) 140
10.9 Nitrides 141
  References 141

11 Oxides 143

11.1 Introduction 143
11.2 Silicates 143

11.2.1 Quartz 144
11.2.2 Hydrolytic Catalysis 146
11.2.3 Talc 146

11.3 Cubic Oxides 147
11.3.1 Alkaline Earth Oxides 147



viii TABLE OF CONTENTS

11.3.2 Perovskites 148
11.3.3 Garnets 150

11.3.3.1 (Y3Al5O12)—YAG 151
11.4 Hexagonal (Rhombohedral) Oxides 152

11.4.1 Aluminum Oxide (Sapphire) 152
11.4.2 Hexaboron Oxide 153

11.5 Comparison of Transition Metal Oxides with 
“Hard Metals” 155

  References 156

12 Molecular Crystals 157

12.1 Introduction 157
12.2 Anthracene 158
12.3 Sucrose 159
12.4 Amino Acids 159
12.5 Protein Crystals 160
12.6 Energetic Crystals (Explosives) 161
12.7 Commentary 161
  References 161

13 Polymers 163

13.1 Introduction 163
13.2 Thermosetting Resins (Phenolic and Epoxide) 164
13.3 Thermoplastic Polymers 165
13.4 Mechanisms of Inelastic Plasticity 166
13.5 “Natural” Polymers (Plants) 166
13.6 “Natural” Polymers (Animals) 168
  References 168

14 Glasses 171

14.1 Introduction 171
14.2 Inorganic Glasses 172
14.3 Metallic Glasses 176

14.3.1 Hardness—Shear Modulus Relationship 177
14.3.2 Stable Compositions 180

  References 180

15 Hot Hardness 183

15.1 Introduction 183
15.2 Nickel Aluminide versus Oxides 184
15.3 Other Hard Compounds 184
15.4 Metals 185



TABLE OF CONTENTS ix

15.5 Intermetallic Compounds 187
  References 187

16 Chemical Hardness 189

16.1 Introduction 189
16.2 Defi nition of Chemical Hardness 190
16.3 Physical (Mechanical) Hardness 192
16.4 Hardness and Electronic Stability 193
16.5 Chemical and Elastic Hardness (Stiffness) 194
16.6 Band Gap Density and Polarizability 194
16.7 Compression Induced Structure Changes 195
16.8 Summary 196
  References 196

17 “Superhard” Materials 197

17.1 Introduction 197
17.2 Principles for High Hardness 197
17.3 Friction at High Loads 198
17.4 Superhard Materials 199
  References 200

Index 203





 PREFACE     

xi

  For the structural applications of materials, there is no more useful measurable 
property than mechanical hardness. It quickly and conveniently probes the 
strengths of materials at various scales of aggregation. Firstly, it does this at 
the human scale (Brinell hardness — millimeters to centimeters). Secondly, 
it does so at a microscopic scale (Vickers microhardness — 1 to 100 microns). 
And thirdly, it does so at a  “ nanoscale ”  (nanoindentation — 10 to 1000 
nanometers). 

 For millenia, hardness has been used to characterize materials; for example, 
to describe various kinds of wood ranging from soft balsa wood to hard maple 
and ironwood. Mineralogists have used it to characterize differing rocks, and 
gemologists for the description of gems. Ceramists and metallurgists depend 
on it for classifying their multitude of products. 

 Hardness does not produce a complete characterization of the strengths 
of materials, but it does sort them in a general way, so it is very useful for 
 “ quality control ” ; for the development of new materials; and for developing 
prototypes of devices and processes. Furthermore, mechanical hardness is 
closely related to chemical hardness, which is a measure of chemical bond 
stability (reactivity). In the case of metals the connection is somewhat indirect, 
but nevertheless exists. 

 The principal intention of the present book is to connect mechanical 
hardness numbers with the physics of chemical bonds in simple, but defi nite 
(quantitative) ways. This has not been done very effectively in the past because 
the atomic processes involved had not been fully identifi ed. In some cases, 
where the atomic structures are complex, this is still true, but the author 
believes that the simpler prototype cases are now understood. However, the 
mechanisms change from one type of chemical bonding to another. Therefore, 
metals, covalent crystals, ionic crystals, and molecular crystals must be consid-
ered separately. There is no universal chemical mechanism that determines 
mechanical hardness. 

 There have been a number of past attempts to unify hardness measure-
ments but they have not succeeded. In several cases, hardness numbers have 
been compared with scalar properties; that is, with cohesive energies (Plendl 
and Gielisse,  1962 ) or bulk moduli (Cohen,  1988 ). But hardness is not 
based on scalar behavior, since it involves a change of shape and is anisotropic. 
Shape changes (shears) are vector quantities requiring a shear plane, and 
a shear direction for their defi nition. In this book, the fact that plastic 
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deformation is a shear process mediated by the motion of dislocations is the 
basis of the discussion. 

 In order to treat hardness quantitatively, it is essential to identify the entities 
(energies) that resist dislocation motion as well as the virtual forces (work) 
that drive the motion. These are the  “ ying and yang ”  of hardness. They are 
very different in pure metals as compared with pure covalent solids, and still 
different in salts and molecular crystals. 

 The author has struggled to develop an understanding of plastic deforma-
tion (and therefore hardness) for several decades. This has not been a straight-
forward task because the literature of the subject has been, and still is, confused 
in part (i.e., wrong). Only gradually has the author come to realize that text-
books are not necessarily correct in their interpretations of phenomena. 
Even experts sometimes accept misinterpretations of phenomena that, through 
repetition, have become gospel. 

 The subject of plastic deformation has suffered from attempts to interpret 
macroscopic behavior without adequate microscopic (and nanoscopic) 
information. This will always be the case to some extent, but it needs to be 
minimized. Also, since the size scale of dislocations is atomic, Heisenberg ’ s 
principle and its implications must be considered in order to understand plastic 
deformation and, therefore, hardness. 

  REFERENCES 

    M. L.   Cohen  ,  “  Theory of Bulk Moduli of Hard Solids , ”   Mater. Sci.  &  Eng. A ,  105 – 106 , 
 11  ( 1988 ).  

    J. N.   Plendl   and   P. J.   Gielisse  ,  “  Hardness of Nonmetallic Solids on an Atomic Basis , ”  
 Phys. Rev .,  125 ,  828  ( 1962 ).        
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Chemistry and Physics of Mechanical Hardness, by John J. Gilman
Copyright © 2009 John Wiley & Sons, Inc.

1

  1.1   WHY HARDNESS MATTERS (A SHORT HISTORY) 

 A most characteristic property of a solid is its hardness. This ranges from very 
soft (talc) to very hard (diamond). Although hardness is an important general 
characteristic of materials, it also has great utility. It determines the resistances 
of surfaces to wear. It determines the effectiveness of all sorts of tools used 
for cutting everything from textiles to hard rocks. A closely related function 
is the polishing of gems, mirrors, lenses, and the like. It is an index of the 
strengths of materials; particularly metals. Geologists fi nd it useful for identify-
ing minerals; and it plays a key role in geophysical phenomena such as meteor 
impacts. Unfortunately it can also be very destructive in military ordnance. 
A property of more ubiquitous importance is hard to fi nd. 

 The range of hardness numbers, measured in kilograms per square millime-
ter, is large. It runs from one for a soft material like KI to about ten thousand 
for the hardest material — diamond. In other words, it has a range of about 
four orders of magnitude. 

 As a result of its utility, mechanical hardness has been highly prized for 
millennia. It has often played a key role in the progression of civilization 
because it has enabled progressively more sophisticated devices and machines 
to be constructed. Initially the hardest available materials were rock, bone, 
and wood. Bone tools from 19,000 BCE have been found. The search for 
improved hardness extends back to char hardened wooden - spears as old as 
120,000 BCE (Bunch and Hellemans,  2004 ). The fi rst advanced material was 
probably fl int which fractures conchoidally, so controlled fracture can give it 
atomically sharp edges (Wikipedia,  2006   ). Flint was a considerable improve-
ment on obsidian (volcanic glass), starting in the Middle Paleolithic Age 
(≈ 300,000 to 30,000 years ago). Imagine the improvement that fl int arrowheads 
made, compared with hard wood. Hardness was not the only factor that deter-
mined technological progress, but was a key factor. Technology often waited 
for improved hardness to become available before new technology could be 
introduced. 

 For example, consider copper. Native copper could be worked into various 
shapes, but was too soft for making tools and swords. Copper smelted from 
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ore was also relatively soft. This changed when it was discovered that calamine 
ore (mixed carbonates and silicates of zinc), when smelted together with 
copper ore makes brass (a Cu - Zn alloy much harder than copper alone). 
Further improvement came when tin became available, and could be mixed 
with copper to make bronze. Syrians did this in about 3000 BCE, thereby 
ending the Stone Age and beginning the Bronze Age. 

 One of the most important inventions of the late Stone Age was the wheel. 
It reduced the force needed to move objects by a factor of at least 100. But 
the fi rst wheels were made of wood. An enormous advance came when wheels 
could be rimmed with bronze. 

 Since tin is much less volatile than zinc, bronzes are more versatile 
than brasses. The low volatility of tin allowed bronze alloys to be cast 
and forged into various shapes, including large bells. These formed the 
basis of the fi rst large scale communication systems. Every settlement had 
its own bell tower for communicating with its residents, and with other 
settlements. 

 Bronzes with a variety of hardnesses and other properties can be made 
depending on the tin content, and by adding other elements as well as tin. 
These have included arsenic, magnesium, calcium, phosphorous, and antimony. 
The resulting bronzes had (have) a large variety of applications. Because it 
forms a protective oxide, bronze is excellent for fi ttings on boats where it 
resists seawater corrosion. Its friction coeffi cient is small so it makes excellent 
bearings and gears. Alloyed with phosphous, it is useful for springs. Since 
it fi lls casting molds precisely, it is used extensively for statues and other 
art objects. 

 In parallel with the development of the art of smelting metallic ores, the art 
of heating various oxides and silicates to make artifi cial rocks (ceramics) was 
being slowly developed. The fi rst evidence of this development has been found 
in Moravia, dating from 28,000 BCE. Clay pottery was being manufactured 
in Egypt by about 5000 BCE, and glass glazes were applied to their surfaces 
from about 12,000 BCE. Glass shapes date from 7,000 BCE in Egypt. The 
availability of clay pottery revolutionized the transport of water, wine, and 
other liquids. 

 Special glass compositions have been invented, using a variety of oxides 
together with silica to obtain special characteristics. An early one was lead 
glass in England in 1624. For improving glass lenses, Zeiss, Inc. invented 
high boron glass in 1884, and Abbe - Schott developed high barium glass 
in 1888. A special boron glass (Pyrex) was developed at the Corning Glass 
Works in 1915. Precipitation - hardened glasses were developed at the 
same place during the mid - twentieth century. High purity, high strength glass 
fi bers for optical communication systems began to be made in the 1970 – 80 
period. 

 A dramatic change in the hardnesses of metallic materials occurred when 
the smelting of iron was invented in Egypt (4000 BCE). By 1550 BCE, it could 
be forged into wrought iron which considerably improved its properties. 
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By adding relatively large amounts of carbon (several weight per cent) to 
iron, it was found in China (500 BCE) that large and complex cast - iron shapes 
could be made readily. Through chill - casting, cast - iron becomes very hard 
(albeit brittle); this gives it considerable wear resistance. 

 Although pure iron is less hard than some bronzes, it was considerably 
hardened by converting it to pearlitic steel (iron   +   a small amount of carbon) 
(India, 500BCE). By adding more carbon (up to 1 wt.%), and other selected 
metals, plus heating, quenching, and tempering (reheating), iron alloys yielded 
very hard, tough martensitic steels. 

 Without these advances in hard, strong materials; based on abundant, and 
therefore low - cost iron ore, there could have been no industrial revolution in 
the nineteenth century. Long bridges, sky - scraper buildings, steamships, rail-
ways, and more, needed pearlitic steel (low carbon) for their construction. 
Effi cient steam engines, internal combustion engines, turbines, locomotives, 
various kinds of machine tools, and the like, became effective only when key 
components of them could be constructed of martensitic steels (medium 
carbon). 

 The civilian advances were accompanied, and often led, by advances in 
military ordnance. Iron and steel became the basis of swords, spears, arrows, 
guns, cannon, armor, tanks, warships, and more. In fact, the motivation for 
inventing and developing new hard materials was often the desire for improved 
military ordnance. This continues with searches for better body armor, and the 
inverse searches for more penetrating projectiles. 

 An important sub - division of the industrial revolution was the discovery 
by Moissan in 1906 that carbon forms exceedingly hard tungsten carbide 
(WC) crystals. In 1928, workers at Krupp, Germany found that WC crystals 
can be cemented with cobalt metal to make aggregates that were unparal-
leled tools for cutting steel (Riedel,  2000 , p. 481). Other hard compounds, 
such as silicon carbide (SiC) and aluminum oxide (Al 2 O 3 ) are also used 
for cutting other materials. The hardest crystals of all, diamond and 
cubic boron nitride (BN), are very useful for cutting rock as well as steel, in 
the case of BN. Diamond is not useful for cutting steel because, being carbon, 
it reacts with iron. It began being used as a tool as early as 300 BEC (Riedel, 
 2000 ). 

 With the advent of aeronautics, aluminum alloys allowed major advances 
such as the monocoupe design. The fi rst all metal airplane was the Junkers J - 1 
(1917). Pure aluminum is light in weight, but too soft for constructing aircraft, 
so it is hardened by adding to it copper, magnesium, and other metals. During 
heat treatments, these form precipitate particles that harden the alloy (e.g., 
particles of the compound, CuAl 2 ). This process is called age - hardening. It is 
the approach used for the alloy known as Duralumin which was invented by 
Alfred Wilm in Germany in about 1909, and has been a standard construction 
alloy for many years. 

 Aeronautics also stimulated the development of superalloys, largely 
based on nickel. They hold their strength (hardness) at very high 
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tempera tures. Effi cient aircraft - turbine engines could not be constructed 
without them. These engines have allowed mass commercial air transportation 
to develop. 

 The weakest parts of superalloys are the grain boundaries between the 
crystals. A desire to eliminate these boundaries led F. VerSnyder to fabricate 
turbine blades from very large individual crystals of nickel – aluminum alloys. 
This material consists mostly of the compound, Ni 3 Al, and because of its lack 
of grain boundaries, the monocrystalline form has remarkable creep resistance 
and high temperature fracture resistance. The durability of these monocrystal-
line turbine blades has substantially reduced the costs of operating large jet 
airplanes by extending the time between repair operations. They have also 
reduced fuel consumption by increasing the maximum allowable operating 
temperatures. 

 In addition to mechanical devices, optical devices have benefi ted from 
improvements in the hardnesses of materials. A familiar example is scratch -
 proof lenses for eye glasses. Scratch - resistant aircraft windscreens are also 
important. Less familiar, but more impressive, is the importance of hardness 
in solid - state lasers. Early in the history of solid - state lasers, it was discovered 
that the best host material for the active fl uorescent atoms is a very hard garnet 
(yttrium aluminum garnet — YAG). The standard fl uorescent centers are neo-
dynium atoms added to the garnet. YAG garnet is exceptionally rugged and 
hard at very high temperatures. Because of the intensity (energy/sec.cm 2 ) of 
the light beam in the lasing material, large electric fi elds tend to decompose 
it. Therefore, both its optical and mechanical properties contribute to desirable 
performance. 

 High pressure scientifi c research is an area of science that has benefi ted 
from high hardness. Here, individual diamonds are used as pressure vessels 
to contain specimens at ultra - high pressures (millions of times atmospheric 
pressure). 

 Because of the simplicity of doing scratch tests, hardness has been an impor-
tant diagnostic tool for mineralogists and prospectors by helping them to 
identify various rocks and minerals. 

 Since it measures the susceptibility of materials to plastic deformation (as 
contrasted with elastic deformation), hardness is very important for diagnos-
ing the mechanical state of a material, in particular toughness. Purely elastic 
materials are brittle. Plasticity, by blunting cracks and other defects, allows 
metals and, to some extent ceramics, to tolerate small fl aws and thereby 
become malleable and tough. 

 An illustration of the impact that improved hardness has had on technology 
is presented in Figure  1.1 . This shows the dramatic increase in performance of 
machine cutting tools (lathes, milling machines, saws, drills, and the like) as the 
tools became harder. It also shows how very fast cutting speeds have become. 
The top cutting speed ( ≈ 5000   m/sec) is about 16% of the speed of sound in 
air!    



  1.2   PURPOSE OF THIS BOOK 

 Crystals of high purity metals are very soft, while high purity diamond crystals 
are very hard. Why are they different? What features of the atomic (molecular) 
structures of materials determine how hard any particular crystal, or aggregate 
of crystals, is? Not only are crystals of the chemical elements to be considered, 
but also compounds and alloys. Glasses can also be quite hard. Is it for similar 
reasons? What about polymeric materials? 

 Many decades ago, with the advent of convincing atomic theory, it was 
thought that a universal model for hardness could be found. This is not 
the case given the present state of solid - state physics. Much of physics, 
and therefore chemistry, is based on interactions between pairs of 
particles. This is adequate for understanding changes of sizes of objects, 
but hardness involves changes of shape, and this requires more complex 
interactions. 

 However, It has been found that in many cases, simple models of the prop-
erties of atomic aggregates (monocrystals, polycrystals, and glasses) can account 
quantitatively for hardnesses. These models need not contain disposable 
parameters, but they must be tailored to take into account particular types of 
chemical bonding. That is, metals differ from covalent crystals which differ 
from ionic crystals which differ from molecular crystals, including polymers. 
Elaborate numerical computations are not necessary. 

 The presentation here attempts to provide — for materials scientists, 
metallurgists, ceramists, chemists, and physicists — knowledge of how hardness 

    Figure 1.1     Improvement in cutting speeds with tool hardness. During two centuries 
of development machine tool performance increased by a factor of about 5000.  Adapted 
from Riedel,  2000 , p. 550.   
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is related to other properties, and to the building blocks of everyday matter —
 atoms and electrons; that is, what information is contained in hardness mea-
surements. The emphasis is on physical concepts so the general picture may 
be grasped and appreciated by most readers. Various materials types are dis-
cussed in individual chapters. Some chapters on general principles integrate 
the whole. 

 This is, by no means, the fi rst attempt to relate hardness to other more 
precisely defi ned properties. As mentioned in the Preface, Plendl and 
Gielisse  (1962)  studied correlations between hardness and cohesive energies 
per atomic volume. Both quantities have the same units (energy/volume). 
These correlations are successful, but not completely. The shortcoming is 
that cohesive energy is a measure of the energy needed to separate  atoms, 
but hardness is not a measure of this. Hardness is a measure of the energy 
needed to shear  pairs of atoms; that is, to break chemical bonds by shearing 
them. 

 Other authors have studied other correlations. Two are Povarennykh 
( 1964 ), and Goble and Scott ( 1985 ). The latter emphasized compressibility 
(inverse bulk modulus) as did Beckmann ( 1971 ). The bulk modulus is 
not a reliable measure for the same reason as the cohesive energy. It is 
volume dependent rather than shear dependent. Still another attempt to 
correlate hardness and compressibility was that of Yang et al.  (1987) . This 
was followed by a proposal by Liu and Cohen ( 1990 )   that hardness and 
bulk moduli are related. This proposal was refuted by Teter ( 1998 ) who 
showed that hardness values correlate better with shear moduli than with 
bulk moduli. 

 A measure of shear strength is the shear modulus. For covalent crystals this 
correlates quite well with hardness (Gilman,  1973 ). It also correlates with the 
hardnesses of metals (Pugh,  1954 ), as well as with ionic crystals (Chin,  1975 ). 
Chin has pointed out that the proportionality number (VHN/C 44 ) depends on 
the bonding type. This parameter has become known as the Chin - Gilman 
parameter. 

 The variation of the Chin - Gilman parameter with bonding type means that 
the mechanism underlying hardness numbers varies. As a result, this author 
has found that it is necessary to consider the work done by an applied shear 
stress during the shearing of a bond. This depends on the crystal structure, the 
direction of shear, and the chemical bond type. At constant crystal structure, 
it depends on the atomic (molecular volume). In the case of glasses, it depends 
on the average size of the disorder mesh. 

 There are at least four types of chemical bonding. Some crystals have 
open atomic structures, while others are close - packed. Also, many crystals are 
anisotropic. Therefore, although making hardness measurements is relatively 
simple, understanding the measured values is not simple at all. 

 Attempts to understand hardness from fi rst principles have resulted in 
empirical equations that represent good curve fi tting, but yield relatively little 
understanding (Gao,  2006   ).  



  1.3   THE NATURE OF HARDNESS 

 Hardness is a measure of the ease with which solids can be plastically 
deformed. This depends on the mobilities of dislocations, their multiplication, 
and their interactions. Dislocation speeds vary from Angstroms per second to 
1013     Å /sec. Their concentrations vary from zero to about 10 12  lines/cm 2  and the 
interaction possibilities number at least the squares of their concentrations. 
Fortunately, there are some limiting cases in which a few factors dominate 
the behavior. 

 The mobilities of dislocations are determined by interactions between the 
atoms (molecules) within the cores of the dislocations. In pure simple metals, 
the interactions between groups of adjacent atoms depend very weakly on the 
confi guration of the group, since the cohesive forces depend almost entirely 
on the local electron density, and are of long range. 

 In covalently bonded crystals, the forces needed to shear atoms are local-
ized and are large compared with metals. Therefore, dislocation motion is 
intrinsically constrained in them. 

 Ionically bonded crystals contain both long - range and short - range bonding 
forces because like ions repel each other, while unlike ones attract. 

 Thus, in simple metals, interactions between dislocations rather than inter-
actions between atoms, are most important. The hardnesses of metals depend 
on deformation hardening (dislocation interactions) rather than individual 
mobilities. The elastic resistance to shear plays a dominant role because it is 
directly involved with dislocation mobility. 

 Since hardness and the shear modulus are usually proportional, the factors 
that determine the shear moduli need to be understood. The shear moduli are 
functions of the local polarizability and this depends on the valence electron 
density, as well as the energy needed to promote a valence electron to its fi rst 
excited state. The latter depends on the strength of the chemical bond between 
two atoms. This will be discussed in more detail in Chapter  3 . 

 Hardness is a somewhat ambiguous property. A dictionary defi nition is that 
it is:  “ a property of something that is not easily penetrated, spread, or scratched. ”  
These behaviors involve very different physical mechanisms. The fi rst relates 
to elastic stiffness, the second to plastic deformation, and the third to fractur-
ing. But, for many substances, the mechanisms of these are closely related 
because they all involve the strength of chemical bonding (cohesion). Thus 
discussion of the mechanism for one case may provide some understanding of 
all three. 

 The four rather distinct forms of chemical bonding between atoms are: 
metallic, ionic, covalent, and dispersive (Van der Waals). All of them are sub-
topics of quantum electrodynamics. That is, they are all mediated by electronic 
and electromagnetic forces. There are also mixed cases, as in carbides and 
other compounds, where both metallic and covalent bonding occur. 

 The principal type of hardness to be discussed here is indentation hardness 
in which a diamond of a standard shape is impressed into a specimen surface. 

THE NATURE OF HARDNESS 7
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The shape is usually either: a sphere (Brinell, and Rockwell B or C); a square 
pyramid with apex angle   =   135    °  (Vickers); a trigonal pyramid (Berkovich); or 
an elongated four - sided pyramid (Knoop). (See Figure  1.2 ). For quality control 
in manufacturing operations, semi - automatic Rockwell machines, and their 
various indenters, are also useful.   

 A fi xed force is applied to the axis of the indenter which makes an irrevers-
ible indentation into the specimen ’ s surface. The projected length, or area, of 
this indentation is measured, and the ratio of the applied load to this projec-
tion is formed to obtain the hardness number which has the dimensions of 
stress (also expressable as energy/volume). The sizes of the indentations vary, 
depending on the indenter ’ s shape and the amount of load applied to it. The 
size range is from macro -  (millimeters), through micro -  (microns), to nano -  
(nanometers). 

 There are other, less commonly used, methods for measuring hardness. One 
is an impact method in which an indenter is dropped from a known height 
onto a specimen, and either the size of the indentation, or the coeffi cient of 
restitution, is measured. Another is the pendulum method in which a rocking 
pendulum is applied to a specimen surface. The damping of the pendulum ’ s 
oscillations is a measure of the hardness. Still another is Moh ’ s scratch 
method in which the ability of one specimen to scratch another is observed. 
These methods are described in various books (McColm,  1990 ), but only the 

    Figure 1.2     Shapes of various hardness indenters  (adapted from Shaw,  1973 ) .  
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Vickers indentation method will be pursued here (in both its micro -  and nano -  
manifestations). 

 However, to develop some intuitive sense of hardness it is useful to 
consider the Moh scratch hardness scale. This is a rank - fi le scale consisting of 
ten levels. Each level has been assigned to a particular mineral such that the 
mineral at level n is capable of scratching the one at level (n  −  1). The mineral 
at the lowest level (designated 1) is talc, and the highest (designated 10) is 
diamond. 

 Figure  1.3  compares the Moh scratch scale with the more quantitative 
Vickers scale (Gilman,  1973 ). Clearly the two scales are not linearly related. 
Each has its own realm of application. For brittle minerals, and similar materi-
als, the Moh scale is most useful. For ductile materials like metals the Vickers 
indentation scale can detect small differences more readily. Note that the 
range on the Vickers scale is large; about 1000, while range of the Mohs scale 
is about 10.    

    Figure 1.3     Correlation between the Moh scratch hardness and Vickers indentation 
hardness scales.  
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  2.1   INTRODUCTION 

 The deformation of a specimen during indentation consists of two parts, elastic 
strain and plastic deformation, the former being temporary and the latter 
permanent. The elastic part is approximately the same as the strain produced 
by pressing a solid sphere against the surface of the specimen. This is described 
in detail by the Hertz theory of elastic contact (Timoshenko and Goodier, 
 1970 ). 

 At the instant of contact between a sphere and a fl at specimen there is no 
strain in the specimen, but the sphere then becomes fl attened by the surface 
tractions which creates forces of reaction which produce strain in the specimen 
as well as the sphere. The strain consists of both hydrostatic compression and 
shear. The maximum shear strain is at a point along the axis of contact, lying 
a distance equal to about half of the radius of the area of contact (both solids 
having the same elastic properties with Poisson ’ s ratio   =   1/3). When this 
maximum shear strain reaches a critical value, plastic fl ow begins, or twinning 
occurs, or a phase transformation begins. Note that the critical value may 
be very small (e.g., in pure simple metals it is zero); or it may be quite large 
(e.g., in diamond). 

 The inelastic response (fl ow, twinning, or phase change) continues under a 
given applied force on the sphere until the increasing indentation area causes 
the maximum shear stress to drop below a critical value which is typically 
determined by the amount of deformation - hardening that occurs during the 
plastic indentation. The idea that is still found in the literature of the subject 
(including text books) is that the plastic indentation process can be described 
adequately by means of the continuum theory of plasticity, that is, in terms of 
slip - line fi elds and  “ yield ”  stresses. This leads to the idea of the hardness 
number, H    ≈    3Y where Y is the yield stress of a material (Tabor,  1951 ). 
Although this equation has been empirically shown to be approximately 
true for metals including steel (Figure  2.1 ), it is wrong by an order of magni-
tude for non - metals (Westbrook,  1958 ) where the numerical coeffi cient is 
approximately 35 instead of 3.   

 In addition to the discrepancy between observed and postulated ratios 
of hardness numbers and yield stresses, the observed plastic deformation 
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patterns under indenters do not agree (in general) with the slip - line fi elds 
given by continuum theory as discussed in some detail by Hill  (1950) . The 
discrepancy was fi rst emphasized by Shaw ( 1973 ) and has been carefully 
studied by Chaudhri ( 2004 ). 

 The plastic deformation patterns can be revealed by etch - pit and/or X - ray 
scattering studies of indentations in crystals. These show that the deformation 
around indentations (in crystals) consists of heterogeneous rosettes which are 
qualitatively different from the homogeneous deformation fi elds expected 
from the deformation of a continuum (Chaudhri,  2004 ). This is, of course, 
because plastic deformation itself is: (a) an atomically heterogeneous process 
mediated by the motion of dislocations and (b) mesoscopically heterogeneous 
because dislocation motion occurs in bands of plastic shear (Figure  2.2 ). In 
other words, plastic deformation is discontinuous at not one, but two, levels of 
the states of aggregation in solids. It is by no means continuous. And, it is by 
no means time independent; it is a fl ow process.   

 Plastic deformation is mediated at the atomic level by the motion of dis-
locations. These are not particles. They are lines. As they move, they lengthen 
(i.e., they are not conserved). Therefore their total length increases exponen-
tially. This leads to heterogeneous shear bands and shear instability. 

 In retrospect, it should not be surprising that a time independent theory 
modeled after elasticity theory does not apply to a plastic fl ow process. Elastic 
deformation is conservative with the work done on the material stored as 
elastic strain energy. Plastic deformation is non - conservative with the work 
done on the material dissipated as heat, or converted into internal defects 

    Figure 2.1     Data of Tabor  (1951)    comparing hardness numbers and  “ yield ”  stresses of 
some typical metals. The correlation is excellent and the slope is approximately three.  
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(dislocations, vacancies, interstitials, changes in internal ordering, etc.) Plastic 
fl ow is more akin to viscous fl uid fl ow than to elastic deformation. It is, in fact, 
quite time dependent. This, plus the fact that it is non - conservative, means 
that the constitutive equations that describe it must be kept separate from 
those that describe elastic deformations. Apples should not be mixed with 
oranges! 

 In this book, elastic strain and plastic deformation will be differentiated 
by both words and symbols. Elastic strain is given the usual symbols:  ε  and 
 γ  for extensional and shear elastic strains, respectively. For plastic shear 
deformation.  δ  will be used.  ε  and  δ  are physically different entities.  ε  and  γ  
are conservative quantities which store internal energy.  δ  is not conservative. 
The work done to create it is dissipated as heat and structural defects. 

 The three inelastic processes (fl ow, twinning, and phase changes) all require 
the shearing of atomic neighbors, so they all tend to occur at the same critical 
elastic strain (at low temperatures; i.e., temperatures below the Debye tem-
perature of the specimen material). As they occur, they interfere with one 
another, thereby increasing the stress needed for further deformation. 

 As an indenter creates an indentation it causes at least three types of fi nite 
deformation. It punches material downwards creating approximately circular 
prismatic dislocation loops. At the surface of the material it pushes material 
sideways. It causes shear on the planes of maximum shear stress under itself. 
Therefore, the overall pattern of deformation is very complex, and is refl ected 

    Figure 2.2     Schematic shear bands (rosette) and diagonal cracks at an indentation in 
MgO (after Armstrong and Wu,  1978 ).  
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in a complicated tangle of dislocation lines, and/or twins, and/or phase trans-
formations. Considerable deformation hardening is associated with moving 
subsequent dislocations through this tangle. 

 The dislocations in a tangle can lower their potential energy by aligning 
themselves to form dipoles and higher multipoles. The stress needed to 
push subsequent dislocations through a tangle (dipoles and multipoles) is 
proportional to the elastic shear modulus so it may be expected that the 
hardnesses of simple metals are proportional to their shear moduli. Figure  2.7  
confi rms this.  

  2.2   THE CHIN - GILMAN PARAMETER 

 For interpreting indentation behavior, a useful parameter is the ratio of the 
hardness number, H to the shear modulus. For cubic crystals the latter is the 
elastic constant, C 44 . This ratio was used by Gilman ( 1973 ) and was used more 
generally by Chin ( 1975 ) who showed that it varies systematically with the 
type of chemical bonding in crystals. It has become known as the Chin - Gilman 
parameter (H/C 44 ). Some average values for the three main classes of cubic 
crystals are given in Table  2.1 .   

 C 44  measures the shear strengths of chemical bonds and the Chin - Gilman 
parameter indicates how directly they interact with dislocation motions which 
depends on how localized the bonding is. Thus it is relatively large for covalent 
bonding which is localized to pairs of atoms (electron pair bonding).  

 It is quite small for metals where the bonding is spread out over large 
numbers of atoms; and it has intermediate values for ionic crystals where the 
overall bonding is delocalized, but local pairs of ions interact strongly. These 
relationships are discussed in some detail in later chapters. 

 The difference of the Chin - Gilman parameter for differing types of chemi-
cal bonding accounts for the Tabor constant not being three for non - metals.  

  2.3   WHAT DOES INDENTATION HARDNESS MEASURE? 

 If slip - line fi elds do not control plastic indentation, what does? The answer is: 
not the beginning of the plastic deformation, but the end of it. The end means 
after deformation hardening has occurred. That is, it is not the initial yield 
stress, Y 0 , that controls indentation, but the limiting yield stress, Y * . This is 

TABLE 2.1       

  Bond Type    Chin-Gilman Parameter 

  Metallic    0.0056  
  Ionic    0.013  
  Covalent    0.12  
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reached after substantial plastic deformation has occurred during each 
incremental advance of the indenter. The fact that the deformation hardening 
rate is often small has led to confusion about this point in the past. 

 A rough analog of plastic indentation is plastic compression. Consider 
the most simple case; compression of a right cylinder between two platens 
(Figure  2.3 A). There are two limiting cases depending on whether the friction 
coeffi cient,  α    =   0 (freely slipping platen/specimen interfaces) or  α    =   1 (no slip-
ping at platen/specimen interfaces). The compressive deformation that occurs 
in the fi rst case (Figure  2.3 B) simply consists of a decrease of the length of the 
cylinder, and an increase in its diameter. On the other hand, in the second case 
(Figure  2.3 C), the diameters at the platens cannot increase so barreling occurs. 
Thus friction at the loading interface is important. Also, it is clear that com-
pression of the cylinder continues until the specimen has been hardened 
enough to stop further plastic deformation.   

 The case of constrained indentation is more complicated than simple com-
pression of a cylinder, but the two phenomena are related. Let the compression 
cylinder be constrained by surrounding material. This is the case of a fl at punch 
indenting a specimen (Figure  2.4 A). Now when the cylinder decreases in 
length, its diameter is constrained from increasing by the surrounding material. 
Since volume is conserved during plastic deformation material must fl ow 
toward the free surface of the specimen. An amount equal to the volume of 
the indent (minus the elastic volume change) must mound up on the surface. 

    Figure 2.3     Plastic compression of a cylinder. A — Initial confi guration. B — compressed 
cylinder with no frication ( α    =   0) at platen interfaces. C — compressed cylinder with full 
friction ( α    =   1) at platen interfaces.  
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The confi guration of the mounding depends on whether  α    =   0, or 1. This is 
illustrated schematically by Figures  2.4 B and  2.4 C. In practice the mounding 
is less sharply defi ned than in these schematic sketches.   

 The fl ow toward the surface is caused by the pressure under the indenter. 
It is analogous to the upward fl ow around a sphere dropped into a liquid. It 
is also analogous to inverse extrusion. A model of the fl ow has been proposed 
by Brown ( 2007 ) in terms of rotational slip. This model reproduces some of 
the observed behavior, but it is a continuum model and does not defi ne the 
mechanism of rotational slip. 

 Next consider a case that is closer to the indenters used for measuring hard-
ness, but is still highly simplifi ed. Figure  2.5  illustrates the incremental penetra-
tion of a conical indenter (the conical shape simplifi es the practical geometries) 
into a plastic material. The incremental work done by the load, F on the 
indenter, is Fdx. The incremental plastic deformation,  δ  averages about 
x/L   =   tan    θ , and the deformed volume is  π L 2  cos    θ    dx/4, so with  θ    =   22.5 the 
incremental plastic work is: 0.45YL 2 dx where Y is the stress required for plastic 
deformation.   

 During the initial part of the penetration process, the increment of applied 
work is too large to be balanced by the energy dissipated by the plastic defor-
mation increment. However, the latter continually increases as x increases 
because of deformation hardening. During each increment, the  “ yield ”  stress, 
Y, starts at the initial yield stress, Y 0 , and increases until deformation - 
hardening increases it up to Y *  (the  “ saturation ”  value). Thus the work applied 
to the indenter during each increment increases until it equals the energy dis-
sipated by the plastic deformation increment. Then no further penetration 

    Figure 2.4     Schematic Indentation by cylinder. A — Initial confi guration. B —
 Indentation with zero friction between indenter and specimen. C — Indentation with 
full friction between indenter and specimen.  
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occurs. Since the indentation area is  π L 2 /4, the hardness number is 4F/ π L 2 . The 
contact area of the indenter cone is ( π L 2 /2)[(L/2) 2    +   x 2 ] with x 2    =   [(L/2)tan    θ ] 2 , 
so the contact area is 1.7L 2 , and the incremental deformed volume is 1.7L 2 dx. 
Therefore, the dissipated plastic energy is:  ∼ 1.7Y * L 2 dx. Equating the applied 
work, Fdx, and the dissipated energy yields: F   =   1.7Y * L 2 . Dividing this by the 
indentation area gives the hardness number: H   =   2.2   Y * . Note that the energy 
is dissipated both by heat generation and by defect storage. 

 This model is not precise, but does identify some of the factors that are 
important to indentation. Like the model, the hardness measurement process 
is not precise. At the micro - hardness level, the projected areas of indentations 
are measured, but this can only be done with about 10% accuracy. At the 
nano - indentation level, relative values can determined accurately, but absolute 
values are probably only about 10% accurate. 

 Consider the schematic stress - deformation curve of Figure  2.6 . Here elastic 
strain  ε  dominates until the stress reaches Y O ; then, plastic deformation  δ  
dominates. Note that plastic fl ow begins as soon as a small stress is applied, 

    Figure 2.5     Schematic incremental indentation by a conical indenter. See text for 
explanation of symbols.  
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but it remains relatively small until Y O  is reached. Also, note that plastic 
deformation is a physically different entity from elastic deformation. Thus, this 
schematic diagram is very approximate, but it illustrates a general point that 
must be adjusted when real cases are considered.   

 The fl ow stress in Figure  2.6  is given approximately by Y   =   Y O    +   h δ  where 
h is the deformation - hardening coeffi cient. It is assumed that the elastic strain 
is fully recovered in a hardness measurement, so it need not be considered 
further in this approximate treatment. Then H   =   2.2h δ , and since  δ    =   2x/L   =   
tan  θ    =   0.414; then H   =   0.89   h. Hence H    �    h. That is, the indentation hardness 
number approximately equals the deformation - hardening coeffi cient. 

 This analysis is consistent with the conclusion of Gerk ( 1977 ) that the 
behavior that determines hardness is deformation - hardening; not the  “ yield ”  
stress. He was one of the fi rst authors to point this out. For other types of 
materials, it is the maximum stress that the material can bear after deformation 
(plastic, or that associated with phase transitions in cluding twinning). Hard-
ness is not directly related to the elastic limit, although there is an indirect 
connection with the offset plastic deformation of metals as demonstrated 
by Tabor  (1951) . 

 Deformation - hardening in the 5 – 50% deformation range is known to be 
proportional to either the Young ’ s modulus, Y, or the shear modulus, G, in 
metals. The Young ’ s modulus depends strongly on the shear modulus since 
Y   =   2(1+ ν ) G where  ν    =   Poisson ’ s ratio. For both fcc and bcc pure metals data 

    Figure 2.6     Schematic stress - deformation curve with linear deformation - hardening. 
The elastic,  ε  and plastic deformations,  δ  are distinguished.  
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show this dependence, Figures  2.7  and  2.8 . The correlation for the fcc metals 
is clearly much better than that for the bcc metals perhaps because the bcc 
metals were not suffi ciently pure.   

 Gerk ( 1977 ) extended the presentation of Figures  2.7  and  2.8  to a variety 
of materials. He concluded that the slopes, h of the true stress  versus  true 
deformation curves equal:

    h G= β     (2.1)  

where G   =   shear modulus and  β    =   constant. Thus the data are consistent 
with the idea that the deformation - hardening coeffi cient is the dominant 
parameter. 

 A complication is that the deformation fi eld under an indenter is not homo -
 geneous. It is characterized by local glide bands that form the rosette patterns 
mentioned earlier (Figure  2.2 ). This makes the process exceedingly diffi cult to 
accurately model using either analytic, or numerical computations. 

 Gerk showed that Equation  (2.1)  is followed not only for metals, but also 
for ionic and covalent crystals if two adjustments are made. For covalent crys-
tals, the temperature must be raised to a level where dislocations glide readily, 
but below the level where they climb readily. For ionic crystals, G (an average 
shear modulus) must be adjusted for elastic anisotropy. Thus it becomes:

    Figure 2.7     Plastic fl ow stresses of from Brinell spherical indentation - hardnesses 
 versus  elastic shear moduli. Nominally pure fcc metals at 200   K  (Gilman,  1960 ). 
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    G G A* = +1     (2.2)  

where A   =   anisotropy factor   =   2C 44 /(C 11     −    C 12 ) where the C iij    =   elastic 
constants.  

  2.4   INDENTATION SIZE EFFECT 

 It is observed that indentations made with low loads on an indenter are smaller 
than expected from the sizes made with high loads. Thus the apparent hardness 
of a specimen increases as the indentation size decreases. This is known as the 
 indentation size effect  (ISE). It has been given a variety of interpretations, but 
the most simple is that it is associated with friction at the interface between 
the indenter and the specimen (Li et al.,  1993 ). 

 The indentation process is driven by the applied load, and resisted by two 
principal factors: the resistance of the specimen to plastic deformation (and 
elastic deformation); plus the frictional resistance at the indenter/specimen 
interface. The ratio of these resistances changes with the size of the indentation 
because the plastic resistance is proportional to the volume of the indenta-
tion, while the frictional resistance is proportional to the surface area of the 
indentation. Therefore, the ratio varies as the reciprocal indentation size. 
This interpretation has been tested and found to be valid by Bystrzycki and 
Varin ( 1993 ). 

    Figure 2.8     Same as Figure  2.6  for bcc metals.  
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 An approximate model of the ISE can be developed with the aid of 
Figure  2.9 . This fi gure shows a schematic cylindrical indenter with a conical tip 
being pushed into a specimen. The plastic zone is approximated by a segment 
of a sphere, and the diameter of the indent is 2r. The yield stress is Y, and the 
friction coeffi cient is  α .   

 The friction coeffi cient is expected to depend on: the normal pressure 
which is quite high (of order hundreds of kilobars); surface roughness; surface 
homogeneity; and humidity (or other environmental factors). As a result,  α  is 
not known, so a quantitative model is not possible, but the expected qualitative 
behavior is clear. 

 The interfacial area is:  π r(r 2    +   x 2 ) 1/2    =   3.36r 2 . The radius of the plastic zone 
is r/ cos    θ    =   1.08r   =   R, so its volume is: [(4/3) π R 3     –    ( π /3)r 2 x]   =   4.88r 3 . 

 Neglecting the elastic forces, lumping the geometric factors into a constant, 
b, and assuming the plastic shear deformation is x/r, yields the plastic resistive 
force:

    F bYrP ≈ 2     (2.3)   

    Figure 2.9     Schematic indentation. Similar to Figure  2.5 , but emphasizes the plastic 
zone.  
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 Similarly, for the frictional resistive force, F F , lumping the geometry factors 
into a constant, c, and letting  α    =   friction coeffi cient:

    F c rF ≈ α     (2.4)   

 Balancing these forces with the driving force, F yields:

    F F F bYr c rP F≈ + ≈ +2 α     (2.5)   

 But the hardness number H   =   F/ π r 2 , so if new constants, B and C are sub-
stituted for b and c:

    H Y B C r≈ +( )α     (2.6)  

or:

    H H CY rO≈ + α     (2.7)  

which is the observed behavior. 
 For large indentations, H   =   BY; and for small indentations, H    ∼    1/r. This 

equation is not expected to be exact because both Y and  α  may depend on r, 
but its general form matches the observations. 

 Also, it should be noted that  α  can be very large for some interfaces. For 
example, if some grit gets lodged between the indenter and the specimen,  α  
can be large compared with unity, leading to anomalous hardness values. 

 Another source of size effects is that dislocations do not behave near sur-
faces in the same way they do in the interiors of crystals. Perhaps the most 
fundamental of these is the behavior of screw dislocations emerging from 
surfaces. Since the maximum shear stress is usually on planes making angles 
of 45    °  with surfaces, screw dislocations do not emerge perpendicularly from 
surfaces. Therefore, there are forces on them tending to shorten them by 
crossgliding (Gilman,  1961 ). This causes local deformation - hardening causing 
the stresses needed to make small indentations larger than those for larger 
indentations. This mechanism has been verifi ed by Minari and Pichaud  (1980)    
using X - ray topography.  

  2.5   INDENTATION SIZE (FROM MACRO TO NANO) 

 If materials were homogeneous, the sizes of indenters and indentations would 
not matter. However, they are not homogeneous. They are heterogeneous 
aggregates of various objects and confi gurations. These include grains, 
precipitates, interfaces, and ordered arrays of atoms and molecules; as well as 
dislocation llnes, and distributions of dislocations lines. Therefore, the sizes 



of indentations relative to the sizes of the heterogeneities affects hardness 
measurements. In some cases this means that relative hardness values are 
more reliable than absolute values.  

  2.6   INDENTATION  VS . SCRATCH HARDNESS 

 Gerk ( 1976 ) has shown that indentation and scratch hardnesses are equivalent 
if the time of indentation and the velocity of scratching are taken into account. 
Figure  2.10  shows the numerical relationship between the two types of mea-
surement indicating that they are essentially the same.   

 Correlations between differing measures of hardness are discussed by Mott 
 (1957) . A correlation diagram for Mohs scratch hardness and indentation 
hardness in the case of minerals is given in Figure  2.11 .    

    Figure 2.10     Comparison of scratch and indentation hardnesses (after Gerk,  1976 ).  
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  2.7   BLUNT OR SOFT INDENTERS 

 Standard indenters have sharp points to ensure that indentations always get 
started in hard materials. However, blunt indenters will usually make indenta-
tions providing the load applied to them is greater than some critical value. 
Furthermore, they need not be harder than the material being indented. This 
has been demonstrated by Brookes and his colleagues in a series of papers. 
A good example is their paper on the indentation of MgO (Shaw and Brookes, 
Mott  1989 ).  

  2.8   ANISOTROPY 

 Since the surfaces of crystals have specifi c symmetries (usually triangular, 
square, or tetragonal) and indenters have cylindrical, triangular, square, or 
tetragonal symmetries, the symmetries rarely match, or are rotationally mis-
aligned. Therefore, the indentations are often anisotropic. Also, the surface 
symmetries of crystals vary with their orientations relative to the crystallo-
graphic axes. A result is that crystals cannot be fully characterized by single 
hardness numbers. 

    Figure 2.11     Correlation of Mohs (M) and Vickers indentation hardnesses (VHN). 
Data from Mott  (1957)   . The dependence is roughly exponential. That is: VHN    ∼    exp 
(M). Similar to Figure  1.3 , but coordinates are linear.  
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 Knoop indenters are particularly useful for studies of the anisotropies of 
indentations on surfaces because of their elongated shape which gives an 
indenter two - fold symmetry. For studies of minerals this is quite useful and 
has been discussed in some detail by Winchell ( 1945 ). 

 Hardness also depends on which face of a non - cubic crystal is being indented. 
The difference may be large. For a crystal with tetragonal symmetry the face 
that is normal to the c - axis can be expected to be different from those that 
are normal to the a - axes. Similarly the basal faces of hexagonal crystals are 
different from the prism faces. One extreme case is graphite where the resis -
 tance to indentation on the basal plane is very different than the resistance on 
the prism planes. 

 Furthermore, crystals whose structures are not centrosymmetric have 
different hardnesses on opposite sides of a given crystal even though the 
Miller indices of the surface planes are the same. For example, the hardness 
of the (0001) plane of ZnS (zinc blende structure) is not the same as that of 
the (000 - 1) plane.  

  2.9   INDENTER AND SPECIMEN SURFACES 

 Both the indenter and the specimen surfaces should be smooth and homo-
geneous in order to minimize friction. If the indenter is not smooth, under 
pressure that is suffi cient to cause plastic fl ow. The specimen will become 
 “ embossed ”  by the indenter, tending to lock the surfaces. This will induce a 
large effective friction coeffi cient. 

 Irregularities of a specimen ’ s surface will result in local deformation with 
accompanying deformation hardening. This may lead to erroneous hardness 
numbers, although such errors may be small. 

 More serious errors may result when the grain - size of a specimen is small 
compared with the size of an indentation. Then, since all crystals are elastically 
anisotropic a rigid indenter will produce differing amounts of elastic strain in 
the grains depending on their orientations. This will create an effective rough-
ening of the surface and increase the friction coeffi cient. This may result in 
overestimates of hardnesses. For example, this may underlie reports of nano-
crystalline materials being harder than diamond.  
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  3.1   FORMS OF BONDING 

 Chemical bonding consists of electrostatic and electrodynamic interactions 
between valence electrons and positive ions. However, there is more than one 
category. In small groups of atoms (molecules), pairs of electrons may reside 
between pairs of ions and electrostatically attract the ions to form bonds 
(covalent bonding). 

 Or, electrons from atoms of one type, say A, transfer to atoms of another 
type, say B, to form two kinds of ions; a positive kind and a negative kind. 
These,  via  Coulomb ’ s Law of electrostatic attraction, become bonded (ionic 
bonding). 

 For larger atomic aggregates, another possibility is that a stable and dense 
plasma forms, consisting of a swarm of relatively free electrons moving in 
a background of an equal number of positively charged ions (metallic 
bonding). 

 A fourth possibility is electrodynamic bonding. This arises because atoms 
and molecules are not static, but are dynamically polarizable into dipoles. 
Each dipole oscillates, sending out an electromagnetic fi eld which interacts 
with other nearby dipoles causing them to oscillate. As the dipoles exchange 
electro - magnetic energy (photons), they attract one another (London,  1937 ). 

 Hardness is a measure of the resistance of a material to permanent indenta-
tion, or scratching. This resistance is determined by the diffi culty of shearing 
one part of the material over another part, and this comes down to the 
shearing of atoms over one another. To shear one atom relative to others 
requires the chemical bonds across the shear plane to be rearranged. If the 
bonding is localized, as it is in the case of electron - pair bonding, individual 
bonds must actually be broken and then reformed during shearing. If the 
bonding is not localized as in ionic crystals, and metals, shearing will still 
disturb it, creating resistance to the shear. The disturbance may consist of 
changing the local atomic density, or by juxtaposing ions of the same sign to 
create local electrostatic repulsions. Thus hardness is intimately related to 
chemical bonding. 

 The discussion of chemical bonding here is elementary, and is only intended 
as an outline of the subject. The full subject is very complex (Atkins and 
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Friedman,  1997 ), deserving at least a devoted book. However, some knowledge 
of it is needed to make the atomic basis of hardness comprehensible. The dis-
cussion begins with the electronic structures of atoms, then simple molecules, 
and fi nally solids. For readers wishing more of the details, an excellent text is 
that of Oxtoby, Gillis, and Campion  (2008) .  

  3.2   ATOMS 

 Schematically, atoms consist of a positively charged nucleus with a diameter 
of roughly 10  − 13    cm., surrounded by a cloud of electrons that is roughly 10  − 8    cm. 
in diameter. Thus the electron cloud is about 10 5  times as large as the nucleus 
so the latter can be considered to be a positive point - charge. Also, the mass of 
the nucleus is much larger than that of the electrons, so for most purposes it 
can be considered to be stationary while the electrons move at high speed 
around it. For example, take the case of aluminum. The average mass of its 
nucleus is 27.93   amu. (one atomic mass unit   =   1.66    ×    10  − 24  gram). Its atomic 
number is 13, so there are 13 electrons surrounding its nucleus each weighing 
9.11    ×    10  − 28  gram   =   5.5    ×    10  − 4    amu. Thus all 13 electrons weigh only about 
2.6    ×    10  − 4  as much as the nucleus. 

 In the lowest energy state (called the ground state) of Al, the electrons 
occupy various quantum states; written: 1s 2  2s 2  2p 6  3s 2  3p 1 . Here the precursor 
numbers (called the principal quantum numbers) give the total energy of the 
state; the letters describe the nature of the state; and the superscripts give 
the number of electrons in each state (the sum of the superscripts   =   13). 
The energy levels of the electrons in Al are:
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 Thus there are three shells: (1s), (2s   +   2p), and (3s   +   3p) containing 2, 8, and 3 
electrons, respectively. The fi rst two shells are saturated. The third is not, and 
is the valence shell. 

 Since Al is only the thirteenth out of more than one hundred elements, it 
should not be surprising that so far the discussion has only begun to consider 
the full complexity of the scheme. 

 In addition to the s and p type states there are d, f, g,  …  , states and each 
of these is subdivided into states having various amounts of angular momen-
tum designated by quantum numbers, l, where:
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 The quantum number, l, represents the mechanical angular momentum of an 
electron as it moves around the positive ion core of states with more energy. 
This angular current generates a magnetic fi eld so the electron has an orbital 
magnetic moment in addition to its mechanical moment. It has been found 
experimentally that the angular position of this magnetic moment is spatially 
quantized. That is, for each value of l, the angular position of the angular 
momentum vector relative to an external magnetic fi eld vector is quantized. 
The position of the magnetic vector relative to the mecvhanical angular 
momentum vector is described by a quantum number, m. 

 Whatever the other aspects of its state are, an electron itself also has a 
spin vector. That is, it has a self - state with a quantum number of either +1/2, 
or  − 1/2. 

 In spectroscopic studies all of the above quantum numbers play a role, but 
for the discussion of hardness only the principal quantum numbers, n; and the 
angular momentum numbers, l, are usually of importance.  

  3.3   STATE SYMMETRIES 

 The s - states have spherical symmetry. The wave functions (probability ampli-
tudes) associated with them depend only on the distance, r from the origin 
(center of the nucleus). They have no angular dependence. Functionally, they 
consist of a normalization coeffi cient, N i  times a radial distribution function. 
The normalization coeffi cient ensures that the integral of the probability 
amplitude from 0 to  ∞  equals unity so the probability that the electron of 
interest is somewhere in the vicinity of the nucleus is unity. 

 The probability density of an electron with amplitude (wave function)  ψ  is 
 ψ  2 . The s - type (spherical) wave functions,  ψ  for the fi rst few principal quantum 
numbers (n   =   1, 2, 3  … ) are:
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 Note that these functions decay exponentially overall but also have nodes at 
particular values of r. 
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 The p - states have the symmetry of  “ dumbbells ”  (Figure  3.1 ). The axes of 
the dumbells can have three orientations: p x , p y , p z  each directed along one 
of the Cartesian axes. Consider p z , for example. Let M   =   normalization 
coeffi cient; then the form is:

    ψ θ2p M( ) = cos     (3.2)  

where  θ  is the angle between r and the z - axis. If all three of the p - states are 
occupied by electrons, the overall symmetry is spherical. Since the electron 
density is proportional to the square of the amplitude, or  ψ  2 , the electron 
density is proportional to cos 2  θ  for the p - states.   

 The d - state probability amplitudes (in two dimensions) are shaped like 
cloverleafs. For the principal quantum numbers, n   =   1 and n   =   2, they lie too 
close to the nuclei of atoms to interact when the atoms are spaced by s - type 
wave functions. Only for n   =   3 and greater, do they extend far enough from 

    Figure 3.1     Dumbell shape of a p x  - type wave function, say:  ψ  x (r,  θ )   =   M cos    θ , where 
M   =   const. (top), and its corresponding charge distribution  ∼ cos 2  θ  (bottom).  
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their nuclei to cause strong interactions between atoms. Then they play an 
important role. This is the case in the transition metals and their compounds.  

  3.4   MOLECULAR BONDING (HYDROGEN) 

 A hydrogen molecule consists of two atoms with overlapping electron distri-
butions forming an electron - pair bond in the overlap region (Figure  3.2 ).   

 A simplifi ed theory based on Heisenberg ’ s Principle and Coulomb ’ s Law 
will be given here to illustrate the nature of chemical bonding. This approach 
allows the essence of a bond to be described approximately without solving 
Schroedinger ’ s equation. The latter can only be solved approximately for the 
H 2  molecule. The simple theory is possible because much of the content of 
the Schroedinger equation is contained in Heisenberg ’ s Principle. By combin-
ing the latter with general chemical knowledge, and Coulomb ’ s Law of elec-
trostatics, an adequate model can be derived. It is an adaptation of Kimball ’ s 
method (1950). 

 In the Heisenberg model the molecule ’ s structure is further simplifi ed. It is 
envisioned to consist of two overlapping spherical  “ clouds ”  of charge with 
radii, R and volumes, 4 π R 3 /3. Letting q   =   electron charge, the charge density, 
 ρ  in each cloud is 3q/4 π R 3 . In addition, there are two positive protons spaced 
2r (the bond length) apart. The confi guration is shown in Figure  3.3 .   

 Just as the fi rst term in the Schroedinger equation describes the kinetic 
energy of an electron system, and the second term deals with the potential 
energy, so are these the two parts of any simple model. Electrostatic forces 
provide attraction between the atoms, while kinetic energy keeps the system 
from collapsing by exerting a quantum mechanical  “ Schroedinger pressure. ”  

 Let us start with the kinetic energy, T   =   mv 2 /2   =   p 2 /2m, where p   =   
momentum   =   mv (m   =   electron mass, v   =   velocity). In its exact form, Heisen-
berg ’ s Principle states that (Born,  1969 ):

    Figure 3.2     Overlap of atomic 1s - wavefunctions of H - atoms to form an H 2  molecule 
with an electron - pair bond.  
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    Δ Δp x hx = 4π     (3.3)  

where h   =   Planck ’ s constant, and  Δ p x  and  Δ x are the standard deviations of 
the x - component of momentum and the x - position. These parameters are 
described by Gaussian envelopes of carrier waves. The envelopes are centered 
at the average values of the parameters. The standard deviations describe their 
spreads. 

 The radius, R, of each electron cloud is taken to be the root mean square 
distance of the electron from the center of the cloud. The equation of a sphere 
of radius, r, is: x 2    +   y 2    +   z 2    =   r 2 , so on average:

   < > + < > + < > =x y z R2 2 2 2  

but the coordinates are equal, so:

   < > + < > + < > =x y z R2 2 2 2 3  

also, from the symmetry:

   < > = < > = < > =x y2 2 2 0z   

 The standard deviation of x is given by:

   < > = < > − < >Δx x x2 2 2  

    Figure 3.3     Schematic model of a hydrogen molecule with two positive nuclei 
(separated by distance, r) embedded in a uniform charge cloud with spherical 
radius, R.  
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so:

   Δ Δ Δx y z R= = = 3  

or, from Heisenberg ’ s Principle:

   Δ Δ Δp p p h Rx y z= = = ( )( )4 3π  

since the (+) and ( − ) components of momentum are equal, the averages of the 
x, y, and z components   =   0; so:

   < > = < > = < > = ( )( )p p p h Rx y z
2 2 2 34 3π   

 Therefore, the kinetic energy is:

    

T m p p p

h mR
x y z= ( ) < > + < > + < >[ ]

=
1 2

9 32

2 2 2

2 2 2π     (3.4)   

 In atomic units (distance   =   Bohr radius, a 0    =   (1/m)(h/2 π q); electron charge   =   1, 
and energy   =   2m( π q/h) 2 ) this is:

    T R= ( )3 2 2     (3.5)  

which indicates that as a cloud gets smaller, the kinetic energy rapidly 
increases. 

 Next, three major contributions to the net electrostatic energy need to be 
considered. They are the two proton - proton interactions; the four proton -
 cloud interactions; and the electron cloud - electyron cloud interaction. Start 
with the potential of a point charge with respect to a charge cloud of radius, 
R. Figure  3.4  illustrates the division of the electric fi eld into two parts, one 
when the point charge is outside the spherical cloud (x    >    R), and the other 
when it is inside the cloud (x    <    R). Outside the cloud the fi eld varies as 1/x 2 . 
Inside, it decreases linearly with x as less and less charge lies closer to the 
center than it does. These variations are in accordance with Gauss ’  Theorem.   

 The fi eld outside the cloud is (cgs. Units):

   E = >( )q x x R2  

whereas, inside it is:   E = ( )( ) <( )q x x R x R2 3

the corresponding potential energy is:

   P = −
∞∫ E dx
x
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and:

    P point-point q x x R( ) = >( )2     (3.6)  

    
P point-cloud q R R x R

q R x R x

( ) = ( ) −( ) ( )
= ( ) ( ) − ( )( )⎡⎣ ⎤⎦

2 2 2 2

2 2

3 2

3 2 1 2 <<( )R     (3.7)   

 To get the potential energy of two overlapping charge clouds, consider the 
interaction of small elements of each cloud and then form a double integral 
over each of them. Calling the clouds 1 and 2, and the volume elements within 
them dv 1  and dv 2 , each of which carries a charge equal to the charge density 
of each cloud times the element ’ s volume, the potential is:

   P cloud-cloud( ) = ( )( ){ }∫∫ ρ ρdv dv r1 2 12  

where the volume elements lie r 12  apart. First, this is integrated over the (2) 
coordinates giving the potential of cloud (1) in the presence of cloud (2):

   P2 1 2 12( ) = ( )∫ ρdv r   

 To get the total potential this is multiplied by the charge elements on cloud 
(1), and integrated:

   P cloud-cloud( ) = ( )∫P dv2 11 ρ   

 We already have an expression for  P  2  (Equation  3.7 ), and for the charge 
density, so:

    Figure 3.4     Electric fi eld for a positive charge and a sphere of uniform charge.  
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P cloud-cloud

q R

( ) = ( ) −( ){ }( )( )
= ( )( )
∫ q R x R q R x dx2 3 3 4 4

6 5

2 2 3 3 2

2

π π
    (3.8)   

 The next step is to determine the relationship between r and R. This is 
done by constructing a force balance. The two protons repulse one another 
with a force:

   Repulsion r atomic units= ( ) ( )1 2 2   

 And each proton is attracted to one of the electron clouds through 
the point - cloud potential (Equation  3.7 ). The attractive force is given by the 
gradient of the point - cloud potential:

   Attraction P r r Rp-c= ( ) =2 2 3∂ ∂   

 Equating the two forces yields r   =   R/2. 
 Putting the terms together to get the total energy, U:

   U kinetic proton-proton proton-electron electron-= ( ) + ( ) − ( ) +2 2 4 eelectron
R R R R R R

( )
= ( ) + ( ) − − ( )⎡⎣ ⎤⎦{ } +2 9 4 2 1 4 3 2 12 52 2 2 3

    
   (3.9)   

 Setting dU/dR   =   0, and solving for R, R 0    =   15/11   =   0.72 Angstroms, 
compared with the experimental value, 0.74 Angstroms. 

 Substituting R 0  back into Equation  (3.9)  gives the total energy, U   =  
  − 121/50   =   33   eV., compared with the experimental value of 32   eV., and the 
dissociation energy is D   =   5.7   eV., compared with the experimental 4.7   eV. 

 The results of this simple theory are remarkably close to the experimental 
values, showing that it contains most of the essential ideas in the bonding 
of the hydrogen molecule. However, the assumption of complete overlap of 
the electron clouds is not realistic, and it neglects electron spin - spin anti - 
correlation (i.e., it assumes that the electron spins are anti - parallel). It under-
estimates the kinetic energy and over - estimates the electrostatic energy. 
On the other hand, the origins of the terms in it are quite clear, unlike those 
in an approximate solution of the Schroedinger equation. 

 The theory just presented shows how the behavior of electrons leads to 
bonding in the ground state of a molecule. When dislocations move to produce 
plastic deformation and hardness indentations, they disrupt such bonds in 
covalently bonded crystals. Thus bonds become anti - bonds (excited states). 
This requires that the idea of a hierarchy of states that is observed for atoms 
be extended to molecules. 

 In the ground state of a covalent bond, the molecular orbital is occupied 
by at least one, usually two electrons with anti - parallel spins. This is said to be 
the HOMO level; that is, the  “ highest occupied molecular orbital. ”  If the bond 
is slightly sheared, the kinetic energies of its electrons is not affected, but the 
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electrostatic energies become increased, and a restoring force develops. If the 
bond is severely sheared, both energies increase and the electrons tend to 
delocalize in order to reduce their kinetic energy. Thus the electrons go into 
an anti - bonding state. This is said to be the LUMO level. That is, the  “ lowest 
unoccupied molecular orbital. ”  In an aggregate, the molecules become a 
plasma, or a metal, depending on the density (spacing) of the atoms. 

 In 1927 Heitler and London   showed how the behavior of probability ampli-
tudes (wave functions) leads naturally to bonding and anti - bonding states. 
Their theory is outlined next. It is approximate, but makes the point. The 
Schroedinger equation for chemical bonds cannot be solved exactly (the 
hydrogen molecular ion,   H2

+ , is the only exception). The same thing is true for 
atoms with more than one electron. The electronic structures of atoms with a 
few electrons can be determined numerically with good accuracy, but not 
exactly. Thus it cannot be expected that the more complex case will be highly 
accurate. Instead, as systems of electrons and atoms get complex, theories of 
them get more approximate. Claims in the literature of fi ve percent theoretical 
accuracy should be taken with a grain of salt. Therefore, simple, plausible 
theories tend to be more useful than complex calculations. 

 A simple argument regarding the nature of bonding comes from Heisenberg 
 (1930) . He discusses the resonant transfer of electrons from one atom to 
another. This is analogous with the transfer of kinetic energy between two equal 
pendulums coupled by a weak spring. The kinetic energy of one pendulum is 
gradually transferred to the other, and back again. There are two special points 
in the motion of the two penduli: one when they are both moving in phase, so 
the potential energy is at a minimum; and the other when they are moving com-
pletely out of phase, so the potential energy is at a maximum. The energy in the 
minimum case is lower than twice the energy of one of the penduli. 

 The two electrons in a covalent bond are not confi ned to the vicinity of 
either atom, so by moving back and forth between them, the region of their 
confi nement is larger (roughly twice as large). This lowers their kinetic ener-
gies according to Heisenberg ’ s Principle, and allows the atomic cores to lie 
more closely than the diameter of a free atom. Since they lie more closely to 
the positive ion cores, their electrostatic binding energy increases according 
to Coulomb ’ s law. On average the electron density is greater between the 
nuclei than at them. 

 This can be given a simple quantitative description by means of the 
Heitler - London molecular orbital theory, but this requires more details than 
is appropriate in this text. Appendix I provides some of the details for inter-
ested readers. Only an outline will be given here.  

  3.5   COVALENT BONDS 

 The form of the wave function and its square (the electron density) for the 1s 
state of a hydrogen atom is shown in Figure  3.5 . Consider two hydrogen atoms 



with wave functions,  φ  A  and  φ  B . Their electron densities are   φA
2  and   φB

2  as long 
as they are well separated so their wave functions do not signifi cantly overlap. 
However, as they become close together, their wave functions will overlap 
and molecular orbitals  ψ  a,b  will form. Approximately, these will be linear com-
binations of the atomic orbitals (LCAO ’ s):

   ψ φ φ= ±A B     

 If the individual wave functions are added (i.e., are in phase), the molecular 
orbital,  ψ  b , is bonding. If they are subtracted (i.e., are out - of - phase), the molec-
ular orbital,( ψ  a , is anti - bonding. 

 The bonding orbital,  ψ  b    =    φ  A    +    φ  B , must be squared to get the electron 
density of the bond:

    ψ φ φ φ φb A B A B
2 2 2= + +     (3.10)  

whereas, for the anti - bonding orbital:

    ψ φ φa A B
2 2 2= −     (3.11)   

 The last term in Equation  (3.10)  results from the overlap of the wave func-
tions, which results in an accumulation of charge between the atoms, forming 

    Figure 3.5     Wave function ( ψ    =   [ π   − 1/2 ]e  − 1/r ), and its square, for the 1s state of the 
hydrogen atom.  
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a covalent bond providing the spins of the two electrons that occupy the 
orbital are anti - parallel. Equation  3.11  indicates that no accumulation between 
the atoms occurs in the case of anti - bonding. 

 For the bonding case, Figure  3.6  (from Bader and Henneker,  1965 ) is a map 
of the electron difference density in the plane of the bond. It shows the density 
difference between the molecule and the two atoms. In the region of the center 
of the bond the density is increased by about 0.08 atomic units as a result of 
the overlap term in Equation  3.10 . Just outside the region of the molecule the 
difference is diminished from what it would be at the same distance from an 
isolated hydrogen atom by more than 0.004 units.   

 At the equilibrium bond length (0.74   Ang.), the energy of the H 2  system in 
the bond state is at a minimum of  − 4.7   eV relative to two separated H atoms. 

    Figure 3.6     Energy density map for the difference between a hydrogen molecule and 
two hydrogen atoms. The solid lines indicate increased density and are marked with 
labels indicating atomic units. The dashed lines indicate decreased density. Two dots 
indicate the positions of the hydrogen atoms in the molecule. They lie 0.74 Angstrom 
units apart.  After Bader and Henneker  (1965) .   
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The anti - bonding state lies about the same amount above the level of the 
separated atoms, or +4.7   eV. Thus the energies of the valence electrons on the 
H - atoms split into increased and deceased values in the H 2  molecule. This is 
shown schematically in Figure  3.7  and introduces the next topic, the variation 
of the energies with the separation distance.   

 Numerical solutions of the Heitler - London, or of density functional equa-
tions, show how energies depend on separation distance, but it is more instruc-
tive to consider semiempirical equations such as the Morse potential, or 
especially, the very simple Rydberg equation which has been shown to apply 

    Figure 3.7     Diagrams of the effect of overlapping of the atomic wavefunctions (elec-
tron clouds) on the energy levels in molecules. The increased electron density in the 
bond region decreases the electrostatic energy, while it increases the kinetic energies 
of the electrons, thereby limiting the closeness of approach of the protons. The fi gure 
shows three cases: (1) two identical atoms, A and A with their energy levels splitting 
into a lower bonding level (HOMO — highest occupied molecular orbital), and a higher 
anti - bonding level (LUMO — lowest unoccupied molecular orbital). The bonding 
energy, U cov  is the difference between the atomic levels and the HOMO level; (2) two 
atoms, B and C with moderately different energy levels; (3) two atoms, D and E with 
a large difference in their energy levels.  
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nearly universally to chemical bonds and solids (Universal Bond Energy Rela-
tion, Sutton,  1994 ). The Rydberg equation has the non - dimensional form:

    U b U b b b b( ) = − ( ) −( )0 0 0exp     (3.12)  

where b   =   bond length, b 0    =   equilibrium bond length, U 0  is the dissociation 
energy, and U(b) is the energy. This gives the bonding energy curve. The anti -
 bonding energy curve is obtained if [ − (b/b 0 )] is omitted. These curves are 
shown schematically in Figure  3.8 .   

 If the bonding wave functions have different energies, the bond energy is 
decreased. Figure  3.9  illustrates this. It compares the energy diagram for mol-
ecule formation when two identical atoms, A and A combine with the case for 
two different atoms, C and D. The covalent bond energy is less in the latter 
case. However, an ionic bond of signifi cant strength may form.   

 For strong covalent bonds, then, large wave - function overlaps are desirable 
(high valence - electron densities), and have similar valence - electron energies. 
Thus the C - C covalent bond is strong, whereas in LiF — with quite different 
valence - electron energy levels — the covalent bond is weak, but the ionic 
bonding is strong. Note that the LUMO - HOMO energy gap is larger when 
the atomic valence - electron energy levels are different. 

 However, the energy gap densities are in opposite rank. Using the bond 
energies, 83 for C - C molecules and 136   kcal/mole for LiF molecules, and the 

    Figure 3.8     Dependence of bonding and anti - bonding energies on bond length. 
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solid - state molecular volumes, 3.65 for C - C and 8.12    Å  3  for LiF, the bond energy 
densities are 23 and 17   kcal/mole - cu.Ang., respectively. Since elastic stiffness 
has the dimensions of energy - per - unit volume, this tends to connect the 
mechanical behavior of molecules with the electrostatic part of the mechanics 
of solids. The electrodynamic bonding forces must be dealt with separately.  

  3.6   BONDING IN SOLIDS 

  3.6.1   Ionic Bonding 

 Return to the case of LiF. Lithium ionizes readily, but has little affi nity for 
electrons (I   =   ionization energy   =   5.4   eV and   A electron affinity eV= ≅ 0 .). 
On the other hand, fl uorine is diffi cult to ionize, but has considerable electron 
affi nity (I   =   17.4   eV. and A   =    − 3.6   eV.). Thus, when Li and F atoms are close 
neighbors, electrons can transfer to make Li +  and F  −  . These then attract elec-
trostatically until compression of their ion - cores prevent them from contract-
ing further. In a solid crystal, there are both attractive +/ −  pairs, and repulsive 
(+/+ as well as  − / − ) pairs. However, for large arrays, there is a net attraction. 
This can be shown most simply by examining a linear chain of +q, and  − q 
charges (Kittel,  1966 ). 

 In a linear +/ −  chain with the charges separated by a distance, d picks a 
central charge. Then, the electrostatic energy of interaction of the central 

    Figure 3.9     C 44  elastic moduli  vs.  reciprocal polarizabilities for prototype alkali halide 
crystals.  
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charge with its nearest neighbor on the right is — letting q 2    =   1 —  − 1/d. The 
next - nearest neighbor and the central charge interact with an energy +1/2d, 
and the next - next - nearest neighbor  − 1/3d, and so on. The interactions of the 
nearest neighbors beyond the fi rst one are neglected because they nearly 
cancel. Multiplying by 2 because there is a left - hand side of the array, the total 
energy is a constant (M   =   Madelung ’ s constant) divided by d, or:

   M d d d d d= − + − +[2 1 1 2 1 3 1 4 . . . . . . .  

so: 

   M = − + − +[ ]2 1 1 2 1 3 1 4 . . . . . . .  

but: 

   ln . . . . . . .1 2 32 3 4+( ) = − + − +x x x x x  

fi nally: 

   M = =2 2 1 39ln .   

 The calculation of M for a three - dimensional array is much more compli-
cated, and depends on the structure of the array. For the particular case of the 
face - centered - cubic NaCl crystal structure, its value is M   =   1.747, whereas, for 
the body - centered - cubic CsCl structure, it is M   =   1.763. 

 In ionic crystals with d   =   nearest neighbor distance, the ions repulse each 
other strongly when d becomes smaller than the equilibrium value d 0 . This can 
be described by an inverse power function, +1/d n , where n is a power of order, 
9. As for the electrostatic attractions, these repulsions must be summed 
over the N molecules of the crystal structure, yielding another constant, D. 
The energy,  φ  per molecule (ion pair) is then:

   φ = − +Mq d D dn2  

forming the derivative of this:

   ∂ ∂φ d Mq d nD d when d dn= − = =+2 2 1
00  

which may be used to eliminate D from the previous equation, and obtain an 
expression for the equilibrium energy, U 0 :

    U N NMq d n0
2

0 1 1= = − − ( )[ ]φ     (3.13)   

 For sodium chloride, since there are eight molecules per unit cell, and the cell 
volume is   a0

3  where a 0  is the lattice parameter, the energy per unit volume 
becomes:



    u U V q d n= = − − ( )[ ]0
2

0
414 1 1     (3.14)   

 Note that with n    >>    1, the bonding energy is mostly electrostatic 
attraction.  

  3.6.2   Metallic Bonding 

 Metallic bonding is an enigma because there is no single characteristic that 
defi nes a metal. More than 80 percent of the chemical elements are metals as 
defi ned by their metallic conductivities. On the other hand, metals were origi-
nally valued for their strength, particularly their ductilitiy, rather than their 
conductivity. However, several metals, and particularly their compounds, are 
brittle; but good conductors. Also, the polymers that have metallic conductivity 
are clearly covalently, not metallically, bound. Furthermore, simple metallic 
bonding is spherically symmetric, but many metals are anisotropic such as, zinc. 
All this means that metallic bonding is not consistently simple. 

 Only the most simple form of metallic bonding will be considered here. In 
its simple form a metal is a dense plasma of nearly free electrons and positive 
ions. The ions are condensed into close - packed 3 - D face - centered arrays. 
Metallic bonding results from a balance between attractive potential energy 
and repulsive kinetic energy. 

 Since each atom in a f.c.c. array of purely metallic atoms is the same as 
every other atom (except at the surface), only a representative positive ion 
needs to be considered. Let it interact with a spherical portion (radius   =   R) of 
the electron gas which has a density of one electron per ion. This is called the 
 “ jellium ”  model. 

 The potential energy is the sum of Equation  3.7 , and because there is 
only one valence electron one - half of Equation  3.8 . That is ( − 3/2   +   3/5) 
q 2 /R   =    − 9/10q 2 /R. 

 The kinetic energy in this case is the Fermi energy   =   +(1/35.6)(h 2 /mR 2 ). So, 
the total energy of the equivalent atom has the form:

    U R R R( ) = − +α β 2     (3.15)  

where  α    =   9q 2 /10, and  β    =   (1/35.6)(h 2 /m). Differentiating Equation  3.15  with 
respect to R, and setting the derivative   =   0, the equilibrium value of R is found: 
R 0    =   2 β / α    =   1.3   Ang., and the equilibrium energy is: U 0    =    −  α  2 /4 β    =    − 5.03   eV. 
(Kittel,  1966 ). 

 Jellium theory has shortcomings as it stands as shown in Equation  3.15  for 
at least two reasons. First, because it has no shear stiffness. Second, because it 
is not stable. For R    <    2, its surface energy is negative, so the electron gas is 
expected to expand indefi nitely. Shore and Rose  (1991)  have proposed a 
method for stabilizing it, but their method does not give it shear stiffness. Both 
shortcomings can be solved by recalling that metals become dielectrics at very 
high frequencies (ultra - violet light frequencies). A simple theory of the critical 
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frequencies was given by Zener  (1933) . These frequencies are those of oscil-
lations in plasmas, and are now called plasmons. 

 Within a jellium atom, the electron frequency is of order 10 17 /sec. compared 
with the plasmon frequency for jellium (1.1    ×    10 16 /sec.) so an isolated jellium 
atom behaves as a dielectric. However, the valence electron screens any 
electric fi eld caused by polarization. The screening length (Thomas - Fermi) 
is 0.47   Ang., or 0.36 of the radius of the jellium atom. Thus the fi eld of the 
positive ion is reduced by about 30% at R. 

 Zero - point oscillations will cause fl uctuations of the positive and negative 
centers of charge in jellium atoms. Therefore, between two of them there will 
be dipole - dipole interactions with bonding energy given by London ’ s theory. 
Using an estimate for the interaction energy of one - pair of atoms from Kittel 
( 1966 , p. 84), and correcting for the Thomas - Fermi screening factor for each 
atom   =   0.64    ×    0.64   =   0.41:

   U R q R eVdd( ) ≅ − [ ] = −0 41 2 92. .  

which is ample stabilization and probably an overestimate. 
 This method of stabilizing jellium also generates a mechanism for providing 

shear stiffness. If a jellium atom is polarized, an included circular plane passing 
through its center becomes an ellipse. The same is true of a solid sphere that 
is sheared mechanically. If the shape changes are the same the forces must be 
the same. The electrical force is qE where q is the charge and E is the electric 
fi eld. This induces an electric dipole moment: qx where x is the separation 
distance of the positive, and negative, centers of charge; and equals  α E where 
 α  is the polarizability. The electrical force becomes: q 2  x/ α . The mechanical 
shear strain is x/R, so the strain energy is U m    =   (2 π /3) GRx 2  and the mechanical 
force is the gradient of this: dU m /dx   =   (4 π /3)GRx. Equating the forces, and 
solving for G yields (Gilman,  1997 ):

    G q R= ( )3 4 2π α     (3.16)   

 But  α  approximately equals an atomic volume, (4 π /3) R 3 , so 
  G q R≅ ( ) ( )3 4 12 4π . Note that Equation  3.16  shows that the shear stiffness is 
inversely proportional to the polarizability. This is confi rmed in Figure  3.8  and 
is an important aspect for understanding hardness.  

  3.6.3   Covalent Crystals 

 If electron - pair, or covalent, bonding is periodic in two or three dimensions, 
crystals result. The most important case is the carbon - carbon bond. If it is 
extended periodically in two - dimensions the result is graphite; in three - 
dimensions it is diamond. Other elements that form electron - pair bonds are 
Si, Ge, and  α  - Sn. Some binary compounds are AlP (isoelectronic with Si), 



GaAs (isoelectronic with Ge), InSb (isoelectronic with  α  - Sn), and other III - V 
as well as II - Vi compounds. 

 The gaps in the bonding energy spectra of the corresponding molecules 
(diatoms in the case of the elements) get carried over into the crystals where 
they are called band - gaps. They determine the stabilities of the bonds, and the 
crystals. As Chapter  5  discusses, they also determine hardnesses.   

  3.7   ELECTRODYNAMIC BONDING 

 The electrodynamic forces proposed for stabilizing jellium provide the princi-
pal type of bonding in molecular crystals such as solid methane, rare gas crys-
tals, solid anthracene, and the like. These forces also form the inter - chain 
bonding of long - chain molecules in polymeric materials (the intra - molecular 
bonding within the chains is usually covalent). 

 To obtain a clear understanding of electrodynamic bonding, start with the 
fi eld of a static electric dipole. Then, let the dipole oscillate so it emits electro-
magnetic waves (photons). Consider what happens when the emitted fi eld 
envelopes another dipole (London,  1937 ). Finally, determine the factors that 
convert neutral molecules into dipoles (that is, their polarizabilities). 

 Any given molecule has two centers of charge, one associated with the 
positive nuclei of the ion cores, the other associated with the negative valence 
electrons. For a spherically symmetric molecule (and others) these centers are 
coincident. When an electric fi eld is applied to such a molecule (or to a solid 
containing such molecules), the centers of charge separate by some distance, 
x forming an electric dipole with a moment,  μ    =   qx where q is the amount of 
charge associated with each center.  μ  and x are determined by the polariz-
ability which will be considered later. 

 The electric fi eld created by a dipole is found using the sketch of 
Figure  3.9  

 The electrostatic potential at a point P distant from a dipole of moment, 
 μ    =   qx is:

    P q x x q x x x x q x r r= − +( ) = ( ) +( )[ ] ≅ ( ) ≅− + − + − +1 1 2 2μ     (3.17)   

 The electric fi eld is the gradient of the potential, or:

    E r≅ −2 3μ     (3.18)   

 This simple derivation omits the angular dependence of the fi eld which varies 
as the cosine of the angle between the dipole axis (the moment vector) and 
the distance expressed as a vector,  r . Therefore, the fi eld is a maximum along 
the axis of the dipole. Equation  3.18  makes the point that the dipole fi eld 
decreases rapidly with distance. The units here are electrostatic (CGS) for 
simplicity. 

ELECTRODYNAMIC BONDING  45



46  CHEMICAL BONDING

 Now, if x oscillates, a dipole emits an electromagnetic wave (Kittel,  1971 ) 
(Figure  3.10 ). Or, if an electromagnetic wave impinges on a dipole, x will begin 
to oscillate. Furthermore, dipoles oscillate at all temperatures because of the 
zero - point energies of quantum oscillators. Therefore, pairs of atomic (or 
molecular oscillators) always exchange photons. If the exchanges are in phase, 
this lowers the energy of the pair so there is an attractive force between the 
two oscillators of the pair. Two identical oscillators will be considered next.   

 The interaction of two harmonic oscillators with spring constants   =   k, and 
masses   =   m, separated by a distance   =   r is to be considered. Each atomic 
(molecular) oscillator has a frequency,   ν π= ( ) ( )1 2 k m . Their orientations 
are assumed to be collinear (Figure  3.11 ).   

 The quantum mechanical energies, U of the oscillators are:

   U n h= +( )1 2 ν  

so their zero - point energies (n   =   0) are h ν /2. The energy of the system for very 
large separations is then: U( ∞ )   =   h ν . However, for intermediate distances, 
 circa.  r   =   c/ ν , where c   =   light speed, retardation effects become important, and 
theory initiated by Casimir must be applied. 

 For relatively small separations, Figure  3.10  indicates that there are four 
electrostatic interactions; two positive ones, and two negative ones, so the 
potential energy of the system is:

    q R R x R x2 1 1 2 2 1[ ]+ +( )[ ]− +( )[ ]{ }     (3.19)  

clearing the fractions, and neglecting small terms yields:

    2 22 3 2 3q R q R( ) =     (3.20)     

    Figure 3.10     Schematic electric dipole.  
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 This interaction splits the force constants, k of the individual oscillators into 
a larger one, k +    =   k   +   2q 2 /R 5 , and a smaller one, k  −     =   k    −    2q 2 /R 5 . The oscillators 
then have modifi ed frequencies:

    ν ν ν ν+ −= + ( ) ( )[ ] = − ( ) ( )[ ]1 2 1 22 5 2 5q kR and q kR:     (3.21)  

so the lowest energy is now the sum of the zero - point energies for the interact-
ing oscillators:

    U R h h q k R( ) = +( ) = − ( )[ ]+ −2 1 24 2 6v v ν     (3.22)  

and the difference between this and U( ∞ ) is the interaction energy:

    U R q h k R( ) = − ( ) ( )4 2 62ν     (3.23)   

 This can be put into more useful form by noting: 

  1.     polarizability   =    α    =   qx/E   =   q 2 /k  
  2.     h ν    =   2    ×    chemical hardness   =   2 η   
  3.     in 3D vs. 1D the constant, 1/2    ⇒     ¾     

 Then, Equation  3.23  becomes:

    U R R( ) = − ( )3 2 2 6ηα     (3.24)  

which is essentially the same as London ’ s equation, the chemical hardness,  η  
defi ned to be one - half the electronic excitation energy. That is half the LUMO -
 HMO gap of a molecule, or half the band gap of a covalent crystal. Note that 
the presence of h (Planck ’ s constant) in Equation  3.23  shows that this bonding 
is a quantum mechanical phenomenon. It results from the zero - point vibra-
tions of quantum oscillators.  

  3.8   POLARIZABILITY 

 Polymeric materials became increasingly important during the second two -
 thirds of the twentieth century. They consist of neutral molecules held together 

    Figure 3.11     Two interacting collinear dipoles.    
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by London forces. Equation  3.24  indicates that the most important factor 
(other than molecular size) is polarizability. Experimentally, this is determined 
from refractive index measurements. The factors that determine it are revealed 
by quantum mechanics since it involves distortions of atoms and molecules. 

 Consider a spherically symmetric molecule with superimposed centers of 
positive and negative charge, q. Apply an electric fi eld (perhaps from a light 
wave), E(x). This will tend to separate the charge centers by an amount, x; 
polarizing the molecule, and making it an electric dipole. The dipole moment 
will be qx   =    μ  which equals  α E where  α  is the polarizability. 

 From the viewpoint of quantum mechanics, the polarization process cannot 
be continuous, but must involve a quantized transition from one state to 
another. Also, the transition must involve a change in the shape of the initial 
spherical charge distribution to an elongated shape (ellipsoidal). Thus an s -
 type wave function must become a p - type (or higher order) function. This 
requires an excitation energy; call it  Δ . Straightforward perturbation theory, 
applied to the Schroedinger aquation, then yields a simple expression for the 
polarizability (Atkins and Friedman,  1997 ):

    α π π= ( )[ )2 2 2qh Δ     (3.25)   

 This equation indicates that polarizability is proportional to the inverse 
square of the excitation energy. Therefore, atoms, molecules, and solids with 
small values of  Δ  are easily polarized. That is, they are chemically and mechani-
cally soft. The gaps in their bonding energy spectra are small. Since they absorb 
light easily, they tend to be colored. If  Δ  lies in a narrow band as in a dye, the 
coloration is bright and saturated. If it lies in broad band as in adhesive poly-
mers, it may be a muddy brown. 

 In dielectric materials (oxides. semiconductors, halides, polymers, and he 
like), polarizability correlates with hardness. For metals, this is not the case. 
However, the frequencies of the collective polarizations known as  plasmons  
are related to mechanical hardness.  
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  4.1   INTRODUCTION 

 Hardness indentations are a result of plastic, rather than elastic, deformation, 
so some discussion of the mechanisms by which this occurs is in order, espe-
cially since the traditional literature of the subject is confused about its fun-
damental nature. This confusion seems to have arisen because it was considered 
to be a continuous process for a great many years, and because some metals 
behave plastically on the macroscopic scale in a nearly time - independent 
fashion. During the twentieth century, it became well established that plastic 
deformation is fundamentally discontinuous (quantized), and a time - 
dependent fl ow process. 

 Clarity requires that a distinction be made between elastic strain and plastic 
deformation. They both have units of length/length, but they are physically 
different entities. Elastic strain is recoverable (conservative); plastic deforma-
tion is not (non - conservative). At a dislocation core, where atoms exchange 
places via shear, the plastic displacement gradient is a maximum as it passes 
from zero some distance ahead of the core, up to the maximum, and then back 
to zero some distance back of the core. In crystals with distinct bonds, the 
gradient becomes indefi nite (infi nite) at the core center. 

 Plastic deformation is a transport process in which elements of displace-
ment are moved by a shear stress from one position to another. Unlike the 
case of elastic deformation, these displacements are irreversible. Therefore, 
they do not have potential energy (elastic strain energy) associated with them. 
Thus, although the deformation associated with them is often called  “ plastic 
strain, ”  it is a fundamentally different entity than an elastic strain. In this book, 
therefore, it will be called plastic  deformation , and the word  strain  will be 
reserved for elastic deformation. 

 Although elastic strain and plastic deformation are expressed as numbers 
and have the same units (length/length), since they are physically different 
entities, they cannot be mixed in arithmetic operations. That is, mixtures of 
them cannot be added, subtracted, multiplied, or divided. Therefore, separated 
equations should describe them. Constitutive equations that combine them 
into a single equation are physically meaningless. A consequence is that elastic 
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strain is conveniently described in quasi - static terms, whereas plastic deforma-
tion is conveniently described by integrating a rate equation. 

 Elastic strain results from a  “ concerted ”  process (at scales greater 
than atomic dimensions), whereas plastic deformation results from a 
 “ disconcerted ”  one. 

 In textbooks, plastic deformation is often described as a two - dimensional 
process. However, it is intrinsically three - dimensional, and cannot be ade-
quately described in terms of two - dimensions. Hardness indentation is a case 
in point. For many years this process was described in terms of two - 
dimensional slip - line fi elds (Tabor,  1951 ). This approach, developed by Hill 
 (1950)  and others, indicated that the hardness number should be about three 
times the yield stress. Various shortcomings of this theory were discussed by 
Shaw  (1973) . He showed that the experimental fl ow pattern under a spherical 
indenter bears little resemblance to the prediction of slip - line theory. He attri-
butes this discrepancy to the neglect of elastic strains in slip - line theory. 
However, the cause of the discrepancy has a different source as will be dis-
cussed here. Slip - lines arise from  deformation - softening  which is related to the 
principal mechanism of dislocation multiplication; a three - dimensional process. 
The plastic zone determined by Shaw, and his colleagues is determined by 
strain - hardening . This is a good example of the confusion that results from 
inadequate understanding of the physics of a process such as plasticity.  

  4.2   DISLOCATION MOVEMENT 

 Inelastic deformation rarely, if ever, occurs via homogeneous shear. Disloca-
tions form heterogeneously, and by moving, they transport displacement, 
thereby causing plastic deformation in proportion to their motion. The amount 
of displacement they carry in crystals is quantized and called the Burgers 
displacement. In non - crystalline materials (e.g., glasses) the displacement is 
somewhat variable, but the variations are small. In granular materials (e.g., 
sand) the displacement approximates the average size of a granule. 

 Figure  4.1  schematically shows the defi nition of a dislocation. Here, on a 
glide plane, a unit of shear has occurred locally over part of the area of the 
plane. The boundary of the local area is the dislocation line; in the fi gure it is 
one quarter of a circle that enters the crystal on the left front face and emerges 
on the right front face. The unit of glide (shear) is a translation vector of the 
crystal structure, called the Burgers vector. It can make any angle with the 
tangent vector of the line, but there are two special cases where the disloca-
tion ’ s properties are distinctly different.   

 When the two vectors are parallel, the crystal planes perpendicular to the 
line form a helix, and the dislocation is said to be of the screw type. In a nearly 
isotropic crystal structure, the dislocation is no longer associated with a distinct 
glide plane. It has nearly cylindrical symmetry, so in the case of the fi gure it 
can move either vertically or horizontally with equal ease. 



 When the line is perpendicular to the displacement (Burgers) vector, the 
confi guration on the right front face in the fi gure arises. It is characterized by 
the bold extra half - plane of atoms whose edge ends at the dislocation line; so 
it is said to be of the edge type. The symmetry at the dislocation line is low, 
and now gliding motion is limited to the glide plane. It can move off the glide 
plane (climb) only if atomic diffusion occurs. The material below the edge is 
extended, while that above is compressed. 

 Being the edge of a sheared area, a dislocation is a line, but does not, in 
general, lie on one plane, so its motion is usually three - dimensional. Since 
shear has two signs (plus and minus) so do dislocations; and dislocations of 
like signs repel, while those of opposite signs attract. In some structures, the 
Burgers vector is an axial vector, so plus shear differs from minus shear (like 
a ratchet). 

 A key feature of the motion of dislocation lines is that the motion is rarely 
concerted. One consequence is that the lines tend not to be straight, or smoothly 
curved. They contain perturbations ranging from small curvatures to cusps, 
and kinks. In covalent crystals where there are distinct bonds between the top 

    Figure 4.1     Schematic dislocation line a simple cubic crystal structure. The llne enters 
the crystal at the center of the left - front face. It emerges at the center of the right - front 
face. The shortest translation vector of the structure is the Burgers Vector,  b . The line 
bounds the glided area of the glide plane (100) from the unglided area.  

Screw

Edge

b
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and bottom of the glide plane, the lines contain sharp kinks that lie at the 
chemical bonds (Figure  4.2 ). As these kinks move along a line with some 
velocity, v k , the line moves perpendicular to itself at a velocity, v d    =   c k  v k  where 
c k  is the atomic concentration of kinks. Thus the dislocation velocity, v d  in this 
case, is determined by the kink velocity.   

 The energy needed to move a kink is approximately equal to the energy 
needed to form a pair of them. This activation energy is that of one of the 
electron pair bonds across the glide plane; since two electrons are involved, it 
is twice the magnitude of the energy band - gap (Figure  4.3 ). Note that there is 
little scatter of the points for the Group IV elements (Ge, Si, SiC, and C). 
There is some scatter for the isoelectronic III - V compound crystals (InSb, and 
GaSb). And, much scatter for the other III - V compound crystals (InAs,GaSb, 
InP, and GaP). The scatter may result from interactions with the environmental 
atmosphere. In spite of the scatter, the trend seems clear. Note that these 
activation energies are not directly related to indentation hardnesses 
because they have been measured at temperatures above the crystal Debye 
temperatures. The data of Figure  4.3  strongly indicate that bond energies 
control dislocation motion in covalent crystals.   

    Figure 4.2     Quasi - hexagonal dislocation loop lying on the (111) glide plane of the 
diamond crystal structure. The  < 110 >  Burgers vector is indicated. A segment, displaced 
by one atomic plane, with a pair of kinks, is shown a the right - hand screw orientation 
of the loop. As the kinks move apart along the screw dislocation, more of it moves to 
the right.  

(111) plane

b〈110〉

–k

+k



 When there are no distinct bonds crossing a glide plane, there are no distinct 
kinks. This is the case for pure simple metals, for pure ionic crystals, and for 
molecular crystals. However, the local region of a dislocation ’ s core still con-
trols the mobility in a pure material because this is where the deformation 
rate is greatest (Gilman,  1968 ).  

  4.3   IMPORTANCE OF SYMMETRY 

 If a dislocation line lies parallel to the x - axis of an xy - plane, and is kinked, the 
kink lies parallel to the y - axis. Therefore, if the line is of edge character, the 
kink is of screw character. If the line is of screw character, the kink is of edge 
character. In either case, the displacement gradient is indefi nite at the center 
of the kink. This means that whatever symmetry exists in the undislocated 
crystal, structure is destroyed at a kink. 

 A tenet of the quantum theory of the chemical bond is that wave functions 
on an atom (A) do not form bonds with the wave functions on another atom 
(B) unless they have the same symmetry (Coulson,  1952 ). This is because 
overlapping wave functions interfere destructively unless they have the same 

    Figure 4.3     Glide activation energies for various covalent crystals  versus  their minimum 
energy gaps. The correlation coeffi cient is 0.95. Without the point for GaP, it would be 
much higher.  
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symmetry. Therefore, at the center of a kink, where the symmetry is quite 
different from the normal crystal, chemical bonding becomes essentially 
non - existent. Thus kinks in covalent crystals lie in potential wells of depth 
equal to a bond energy. 

 The discussion just above does not hold for the other types of bonding. Thus, 
in metallic and ionic and crystals, as well as dispersive crystals, cohesion is not 
atomically localized, so there are no  “ bonds ”  of signifi cant strength. In simple 
metals, the difference in cohesive energy between the f.c.c. structure and the 
b.c.c. structure is of order milli - electron - volts, whereas the overall metallic 
cohesive energy is of order electron - volts. Thus, the local atomic arrangement 
has only a minute effect on the cohesion. In these cases other factors deter-
mine the resistance of the material to inelastic deformation. In metals, it is 
strain - hardening. In ionic crystals, it is the repulsion of ions having the same 
charge. In molecular crystals, it is polarizability. In some compounds, it is the 
heat of formation. And so on. Each type of material must be considered indi-
vidually. There is no way to generate a general theory because the bonding 
type varies from one material to another. Nevertheless a simple theory will be 
provided for each bonding type.  

  4.4   LOCAL INELASTIC SHEARING OF ATOMS 

 Inelastic shearing of atoms relative to one another is the mechanism that 
determines hardness. The shearing is localized at dislocation lines and at kinks 
along these lines. The kinks are very sharp in covalent crystals where they 
encompass only individual chemical bonds. On the other hand, in metal 
crystals they are often very extended. In metallic glasses they are localized in 
confi gurations that have a variety of shapes. In ionic crystals the kinks are 
localized in order to minimize the electrostatic energy. 

 A generic process of inelastic shearing determines hardness for most 
materials. Metals are an exception. Two factors play key roles. One is the 
applied work (energy) required for shearing, and the other is the energy 
barrier that resists the shearing. These lead to a generic parameter; (energy/
volume), called here the  “ bond modulus. ”  The barrier to shearing may be a 
chemical bond in covalent crystals, or the heat of formation of a compound, 
or the heat of mixing in a solid solution. In simple metals, it is other disloca-
tions (strain - hardening). 

 An antecedent of the bond modulus is the chemical hardness of Pearson 
 (1997)  which measures the stabilities of molecules. Also, bond moduli are 
proportional to the physical hardnesses of Yang, Parr, and Uytterhoeven 
 (1987)  which they proposed for minerals. 

 The bond modulus is a quite simple parameter. It is the ratio of an atomic 
(or molecular) energy, and an atomic (or molecular) volume. Essentially all of 
the volumes of interest are known from crystallography, and the energies are 



either known from physical chemistry, or can be estimated. There is no need 
for extensive numerical calculations in most cases.  

  4.5   DISLOCATION MULTIPLICATION 

 Dislocation lines can be nucleated as small loops either homogeneously or 
heterogeneously (at grain boundaries, particle - matrix interfaces, etc.). Also, 
they can grow in length. Suppose they were to grow in length while lying 
only on their original glide planes. Then, a steady - state could occur in which 
dislocations were created at nucleation source and moved until they exited 
(disappeared) at the free surface of a crystal. The crystal would simply shear 
into two pieces. There would be no strain - hardening, unless secondary events 
occurred. 

 Although this sometimes occurs through the operation of Frank - Read 
sources it is not generally observed. What does generally occur is similar, but 
more complex. The process is called multiple - cross - glide, and was proposed by 
Koehler  (1952) . Its importance was fi rst demonstrated experimentally by 
Johnston and Gilman  (1959) . In addition to its existence, they showed that 
the process produces copious dislocation dipoles which are responsible for 
deformation - hardening. 

 Koehler attributed the cross - gliding to thermal activation, but it was found 
experimentally that it increases with dislocation velocity, which is inconsistent 
with thermal activation, so Gilman  (1997)  proposed that it is associated with 
fl utter of screw dislocations caused by phonon buffeting. 

 The multiple - cross - glide process does not lead to steady - state dislocation 
multiplication. It does lead to a proportionality between the dislocation density 
at N, a given time and the rate of increase of dislocation density, dN/dt, that 
is, to fi rst order kinetics. Thus, the dislocation density grows exponentialy 
with time:

    N N e t= 0
α     (4.1)  

where  α  is a constant. This is one factor that leads to deformation - softening, 
if the mobile dislocation density becomes greater than the demand imposed 
by the applied deformation rate. 

 As mentioned above, multiple - cross - glide leads to dislocation dipole pro-
duction. and this leads to deformation - hardening. Figures  4.4  shows how this 
kind of dislocation multiplication occurs, and leads to dipole formation 
(Gilman,  1994 ). After they have been formed, dipoles interact with subsequent 
dislocations, impeding their motion and causing strain - hardening (Gilman, 
 1962 ; also Chen, Gilman and Head,  1964 ). This can be described in terms of a 
decrease in the fraction, f   =   e  −  β  ε   of mobile dislocations. Then, if the concentra-
tion of mobile dislocations is N m , Equation  4.1  becomes;

DISLOCATION MULTIPLICATION  57
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where  α  and  β  are constants, and  γ  is plastic deformation. According to this 
equation as the total dislocation concentration grows, the mobile fraction 
declines. Depending on the rate of decline this results in either deformation -
 hardening, or deformation - softening.   

 Note that the dipole structure in a crystal is stabilized by the applied stress. 
It becomes unstable when the stress is removed. Thus, the in situ structures of 



plastically deforming crystals may be quite different from their post - 
deformation structures. This has led to considerable confusion in the literature 
of the subject. It accounts, for ex - ample, for the the Bauschinger effect.  

  4.6   INDIVIDUAL DISLOCATION VELOCITIES 
(MICROSCOPIC DISTANCES) 

 At the microscopic length scale (circa, one micron) dislocations move intermit-
tently. They move rapidly between obstacles, and hesitate when confronted by 
an obstacle. The average velocities range from less than 10 − 7  to 10 +4    cm./sec., 
or eleven orders of magnitude. At the high end of this range where the applied 
stresses are large, the dislocations pass readily through obstacles so their 
velocities are limited by viscous drag. Granato  (1968)  has pointed out that the 
slope of the velocity - stress curve is then approximately equal to the drag coef-
fi cient measured at very small velocities through internal friction studies. 

 At high velocities (near the velocity of sound), the speed is limited by 
viscous drag. The conventional wisdom for many years was that the velocity 

Figure 4.4     Multiplication of dislocations through multiple - cross - glide, and the produc -
 tion of dislocation dipoles.  a)  Because of its cylindrical symmetry, a screw dislocation 
is not constrained to move on its original glide plane. It can move horizontally on a 
plane, A, then on to a cross - plane, B (gray) and fi nally, back to a plane parallel to A. 
The jogs,  αβ  and  δγ  lie perpendicular to the Burgers vector. Therefore, they are edge -
 type dislocations, and are constrained to glide only on their current planes (the cross -
 glide plane).  b) As the line segments,  αχ ,  βγ , and  δφ  of  4.4 a continue to move,  βγ
becomes a semi - circle and then a heart shaped confi guration until the two lobes of the 
heart meet, and part of the pair of impinging lines annihilate. At the same time, the 
segments αχ  and  δφ  swing forward on the original glide plane until they meet and 
partially annihilate one another. Note that the lines on the upper and lower planes 
must be able to pass over one another in order for the indicated events to occur. This 
requires that the separation of the planes, H be greater than an amount that depends 
on the magnitude of the applied stress.  c) The lines of  4.4 b continue to move. Segment 
βγ  has been restored on the top plane, and there is a new segment  αδ . On the bottom 
plane, the original line  χφ  is moving off to the right, and there are two segments of a 
new loop on the upper plane with one segment moving off to the right, and the other 
off to the left. Thus multiplica - tion has occurred with one line becoming three. The 
small loop in the center can now disappear through motion of the edge dislocations 
on the cross - glide plane.  d) Showing the motion of the lines of  4.4 a when the separation 
of the planes, h is too small for the lines to pass over one another under the given 
applied stress. Two edge dipoles are left behind as the segments  χα  and  δφ  move 
forward on the bottom plane. The segment  βγ  moves forward on the top plane. The 
applied stress tends to move the dipoles apart, but when it is removed they can move 
together and annihilate.  

INDIVIDUAL DISLOCATION VELOCITIES (MICROSCOPIC DISTANCES) 59
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is limited by inertia (the effective mass), but this is not the case (Gilman,  2000 ). 
One reason is that dislocations have zero rest mass. 

 An equation that describes the dependence of dislocation velocity, v on the 
applied shear stress,  τ  is:

    v v e D= −
0

τ     (4.3)  

where v 0  is the limiting velocity, and D is a coeffi cient. 
 it has been found experimentally that when dislocations move through a 

region that has already been deformed, so it contains dislocations and dipoles, 
the velocity - stress curve is simply shifted parallel to itself to higher stresses 
(Gilman and Johnston,  1960 ). Therefore, if  δ  is the plastic deformation, Equa-
tion  4.3  can be modifi ed to take this into account by changing the coeffi cient, 
D to D   +   H γ . Here, H is the deformation -  hardening coeffi cient. 

 For the case of LiF crystals, both the dislocation concentration and the 
incremental stress caused by plastic deformation are proportional to the 
amount of deformation. This indicates that the hardening is caused by impedi-
ments created by dislocations and dipoles to the motion of subsequent 
dislocations. 

 In metals, the incremental stress of deformation - hardening is often reported 
to be proportional to the square root of the dislocation density. However, In 
view of the mechanism of dislocation multiplication, and the subsequent defor-
mation hardening, this is highly unlikely, so this author believes that either the 
data are faulty, or they are being misinterpreted.  

  4.7   VISCOUS DRAG 

 Dislocation motion is non - conservative. It occurs only when stress is applied. 
There is no observable  “ over - shoot. ”  Thus, the applied work is converted into 
either heat, or additional dislocation lines (or other defects). Viscosity at the 
dislocation core along the glide plane determines the velocity both in the 
 “ stick ”  and the  “ slip ”  regimes described by Equation  (4.3) . This means there 
are at least two viscous mechanisms (Gilman,  1969 ): gas - like and liquid - like. 
In general, viscosity results from the transfer of momentum down a velocity 
gradient in a fl uid. This slows down the faster moving fl uid while speeding up 
the slower fl uid. In a gas, particles move down the gradient (from a region of 
higher, to a region of lower momentum). This is the Maxwellian mode. The 
viscosity coeffi cient in this case inceases with the gas temperature. 

 On the other hand, when a liquid is sheared between two planes, and there 
is bonding with the planes, the bonds transfer momentum from the faster 
plane to the slower one. This is the liquid - like mode. In this case, the viscosity 
coeffi cient decreases with increasing temperature. 

 In pure metals at low stresses and temperatures, the gas - like mode is impor-
tant, and the momentum carriers are electrons and phonons. For pure, simple 
metals there is essentially no shear bonding at the cores of dislocations, so the 



  TABLE 4.1    Directly Measured Damping Constants 

  Metal    Temperature (K)    Viscous Damping 
Constant

  Reference  

  300    4.2    (10 − 4    P)  

  K  ×       11      
×   37     (1)   

  Pb      ×   4.5     (2)   
×   1.5  *       (2)   

×       3.4     (2)   
  Al  ×       5.7     (3)   

×   4.8     (3)   
×       2.5     (4)   

  Zn  ×       7.8     (7)   
  Cu  ×       7.1     (5)   

×       1.4     (6)   
×       8.0     (10)   

  Fe  ×       820     (1)   
×   340     (1)   
×      ≈ 4     (8)   

  Sb  ×       0.9     (9)   

    * Superconducting state  
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liquid - like viscosity is negligible (Kuhlmann - Wilsdorf,  1960 ). In contrast, con-
siderable shear bonding occurs in covalently bonded crystals so the viscous 
drag is liquid - like. 

  4.7.1   Pure Metals 

 The viscosity coeffi cients at dislocation cores can be measured either from 
direct observations of dislocation motion, or from ultrasonic measurements of 
internal friction. Some directly measured viscosities for pure metals are given 
in Table  4.1 . Viscosities can also be measured indirectly from internal friction 
studies. There is consistency between the two types of measurement, and they 
are all quite small, being 1 – 10% of the viscosities of liquid metals at their 
melting points. It may be concluded that hardnesses (fl ow stresses) of pure 
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metals are not determined by intrinsic resistance of pure metals to dislocation 
motion. Extrinsic factors must be considered. These include: impurities (both 
substitutional and interstitial), grain boundaries, other dislocations, dislocation 
dipoles, surface coatings, domain walls, precipitates, twins, and more.   

 These data show clearly that that the intrinsic behavior in pure metals is 
visco - elastic with the velocity proportional to the applied stress (Newtonian 
viscosity). Although there is a large literature that speaks of a quasi - static 
 “ Peierls - Nabarro stress, ”  this is a fi ction, probably resulting from studying of 
insuffi ciently pure metals. 

 In impure metals, dislocation motion ocures in a  “ stick - slip ”  mode. Between 
impurities (or other point defects) slip occurs, that is, fast motion limited only 
by viscous drag. At impurities, which are usually bound internally and to the 
surrounding matrix by covalent bonds, dislocations get stuck. At low tempera-
tures, they can only become freed by a quantum mechanical tunneling process 
driven by stress. Thus this part of the process is mechanically, not thermally, 
driven. The description of the tunneling rate has the form of Equation  (4.3) . 
Overall, the motion has two parts: the viscous part and the tunneling part.  

  4.7.2   Covalent Crystals 

 Since covalent bonding is localized, and forms open crystal structures (diamond, 
zincblende, wurtzite, and the like) dislocation mobility is very different than 
in pure metals. In these crystals, discrete electron - pair bonds must be disrupted 
in order for dislocations to move. 

 In these crystals, dislocation motion is divided into two regimes, above and 
below their Debye temperatures. Above their Debye temperatures, dislocation 
motion is thermally activated. The activation energies are equal to twice the 
band energy gaps, consistent with breaking electron - pair bonds (Figure  4.3 ). 

 When the stress (compressive) rises to a value approaching G/10 near 
the Debye temperature, motion of gliding dislocations tends to be replaced 
by the formation of phase transformation dislocations. The crystal structure 
then transforms to a new one of greater density. This occurs when the com-
pressive stress (the hardness number) equals the energy band gap density 
(gap/molecular volume). 

 In tension, fracture occurs before the stress reaches G/10.   

  4.8   DEFORMATION - SOFTENING AND ELASTIC RELAXATION 

 In order to cause plastic deformation, stress must be created in a material by 
loading it elastically. This creates a complication by coupling elastic strains 
with plastic deformations, and thereby creating an interplay between elastic 
strain energy and the absorption of energy by plastic deformation. Situations 
can then exist in which elastic strain - energy drives plastic deformation without 
any change in the nominally applied stress. One way in which this manifests 



itself is as stress - deformation curves with negative slopes. Anther is as local-
ized plastic shear bands. The reverse cannot occur, of course, because plastic 
deformation is non - conservative. 

 Plastic deformation is heterogeneous at at least two different levels of 
aggregation. One is the atomic level of individual dislocations. Another is the 
micron level where shear bands consisting of many coupled dislocations are 
prevalent. During a compression test, stress is applied to the specimen through 
a stiff elastic spring (the testing machine being the equivalent of such a spring). 
Then, strain - softening is manifested by a drop in the applied force (discontinu-
ous yielding). This happens because the dislocations in the specimen are 
multiplying faster than is needed for the specimen ’ s deformation to keep up 
with the rate of force application by the machine. 

 During hardness indentation, however, decreases in the applied load cannot 
be observed with standard indentation machines because the volume of mate-
rial being plastically deformed is very small, so the amount of stored elastic 
energy is small. Furthermore, there is no dislocation nucleation problem at the 
beginning of indentation. When a sharp Vickers, or Berkovitch, indenter fi rst 
touches the surface of a specimen, the area of contact is negligibly small so 
the stress is arbitrary large. It can homogeneously nucleate dislocations. As the 
initial dislocations move, they multiply. This causes strain - hardening, which 
increases the amount of resistance to penetration that the indenter encounters. 
The process continues until the work needed to cause a further increment of 
plastic deformation equals the work done by the applied force moving through 
the next increment of penetration. This confi rms the idea that indentation is 
controlled by strain - hardening, and not by initial yielding. 

 In the unstrained material far from the center of an indentation, disloca-
tions can move freely at much lower stresses than in the material near the 
center where the stress (and the deformation) is much larger. Thus, local plastic 
shear bands can form at the edges of the indenter, and do (Chaudhri,  2004 ). 
The lengths of these shear bands are often several times the size of an indenta-
tion. The leading dislocations in these bands move in virgin (undeformed) 
material, so they can move at lower stresses than the dislocations in the 
strain - hardened material near the center of an indentation.. The patterns they 
form are called  “ rosettes. ”   

  4.9   MACROSCOPIC PLASTIC DEFORMATION 

 Microscopic mechanisms of plastic deformation are far too complex to be 
described in detail. Many attempts have been made, but they have all had a 
variety of shortcomings. Part of the problem is that several important deforma-
tion mechanisms involve atomic interactions which interact with one another, 
so not only must the interactions be described by means of quantum mechan-
ics, but also ordinary statistical mechanics cannot be applied. Therefore, a very 
rough statistical approach must suffi ce. 
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 In general terms, as has already been mentioned, plastic deformation is a 
transport process analogous with electrical and thermal conductivity. These 
involve an entity to be transported, a carrier that does the transporting, and a 
rate of transport. In the case of electrical conductivity, charge is the transport 
entity, electrons (or holes) are the carriers, and the electron net velocities 
determine the rate. In the case of plastic deformation, displacement, b (cm) is 
the transport entity, dislocations are the carriers, N (#/cm 2 ), and their velocities, 
v (cm/sec) determine the shear deformation rate, d δ /dt. In two dimensions, the 
latter is given by the Orowan Equation:

    d dt bNvδ =     (4.4)   

 In three dimensions, there may be more than one glide system, and the 
dislocation line need not be straight, and there may be more than one velocity, 
so this becomes:

    
d
dt

b v n dl
δ = ⋅( )∫

� �
�     (4.5)  

where the line integral refers to all of the lines in the material. 
 Using average values, the density of mobile dislocations, N which increases 

with the deformation, may be written:

    N Noδ αδ βδ( ) = +( ) −( )exp     (4.6)  

where N o    =   initial mobile density;  α  and  β    =   measured constants. Also, the 
average velocity may be written:

    v v D H= − +( )0 exp δ τ     (4.7)  

where v o    =   maximum velocity, D   =   drag constant for N   =   N o , H   =   deformation 
hardening constant, and  τ    =   applied shear stress. D and H are measured 
constants. H and  β  have similar, but somewhat different, effects in reising the 
fl ow stress. 

 These equations are all that is needed to describe a creep test at constant 
stress, but to describe tensile (or compression) tests, the machine being used 
must be taken into account because the elastic stiffness of the machine plays 
an important role. See Gilman and Johnston  (1962) .  
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  5.1   INTRODUCTION 

 In covalent crystals, the prototype bonds between the atoms are formed by 
pairs of electrons. Their spin vectors are anti - parallel, and their charge densites 
are concentrated along lines connecting the atom cores. The charge densities 
are not uniformly distributed along their connecting lines. In the homogeneous 
cases (C, Si, Ge, and Sn) the electrons tend to prefer the  ¼  and  ¾  positions in 
order to minimize their mutual repulsions. X - ray scattering studies have con-
fi rmed this. In heterogeneous cases (III - V, II - VI, and I - VII compounds) the 
distributions are assymmetric with the electrons tending to be near the anions 
(Spackman,  1991   ). 

 The orbitals containing the bonding electrons are hybrids formed by the 
addition of the wave functions of the s - , p - , d - , and f -  types (the additions are 
subject to the normalization and orthogonalization conditions). Formation of 
the hybrid orbitals occurs in selected symmetric directions and causes the 
hybrids to extend like arms on the otherwise spherical atoms. These  “ arms ”  
overlap with similar arms on other atoms. The greater the overlap, the stronger 
the bonds (Pauling,  1963   ). 

 The most common — and perhaps most important — hybrid orbitals are the 
tetrahdral ones formed by adding one s - , and three p -  type orbitals. These can 
be arranged to form various crystal structures: diamond, zincblende, and 
wurtzite. Combinations of the s - , p - , and d -  orbitals allow 48 possible symme-
tries (Kimball,  1940 ). 

 For inelastic shear in these crystals, the driving fi eld is the shear stress,  τ
which exerts a force τ b 2  on each atom (molecule) of the shear (glide) plane 
where b is the Burgers displacement (the shortest translation displacement). 
Covalent bonds lie perpendicular to this plane. Since they consist of pairs of 
electrons, breaking one requires that two electrons be promoted from the 
valence (bonding) to the conduction anti - bonding band. For each promotion, 
energy equal to the minimum band - gap energy, E g  is needed. 

 Figure  5.1  shows a schematic elevation through a kink on a screw disloca-
tion in the diamond crystal structure. The black circles lie in the plane of the 
fi gure. The white ones lie in a plane in front of the fi gure, and the gray ones 
in a plane behind the fi gure. The straight lines represent electron pair bonds 
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of length, d o . One of these is  “ broken ”  at the center of the kink (a correspond-
ing kink of the opposite sign lies elsewhere along the screw dislocation. The 
(111) plane lies perpendicular to the plane of the fi gure, and parallel to 
the horizontal  “ chains ”  of atoms. Movement of the kink by one Burgers 
displacement to the right requires that the bond to the right of the center be 
broken, and half of it to be combined with the initial central half - bond (Gilman, 
 1993 ). Note that all of this is highly schematic.   

 The shear work done for one atomic (molecular) displacement, b is 
the applied force times the displacement, or  τ b 3 . This work must equal the 
promotion energy 2E g . Therefore, letting b 3  equal the molecular volume, V m , 
the required shear stress is approximately 2E g /V m . The parameter [E g /V m ] is 
called the  “ bond modulus. ”  It has the dimensions of stress (energy per unit 
volume). The numerator is a measure of the resistance of a crystal to kink 
movement, while the denominator is proportional to the work done by the 
applied stress when a kink moves one unit distance. Overall, the bond modulus 
is a measure of the shear strengths of covalent bonds. 

 Since indentation hardness is determined by plastic deformation which is 
determined in turn by dislocation kink mobility, hardness is expected to be 
proportional to the bond modulus. Figure  5.2  shows that indeed it is for the 
Group IV elements, and the associated isoelectronic III - V compounds.   

 The discussion so far is for low temperatures; that is, temperatures below 
the Debye temperatures of each crystal type. There is little excitation of indi-
vidual atoms below the Debye temperature. Above the Debye temperature, 
the temperature is associated with thermal activation and plays a much more 
important role, as will be discussed later. 

 In covalent compounds with less symmetric structures than the diamond 
structure factors such as ionicity, in addition to the bond moduli, need to be 
considered (e.g., in GaP). Surface effects (e.g., friction) also play a role in polar 

    Figure 5.1     Schematic elevation view of the center of a kink on a screw disocation in 
the diamond crystal structure. D o  is the bond length, b is the Burgers displacement. The 
black circles are in the central plane of the fi gure. The white circles lie in a plane slightly 
in front of the central plane, while the gray circles lie in a plane slightly behind the 
central plane.  
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crystals such as those with the zincblende structure where the  α  - 111 surfaces 
on one side of a crystal are different from the  β  - 111 surfaces on the opposite 
side, and there is piezoelectric activity. However, the bond modulus always 
seems to be the major factor in resisting inelastic shear deformation. It is a 
convenient parameter but is not unique because it is proportional to various 
other quantities associated with cohesion, for example, polarizability, plasma 
frequency, atomic vibrational frequencies, and elastic shear moduli. 

 The next two fi gures show that crystal structure type and ionicity also play 
a role in determining dislocation mobility, and therefore hardness. First, if data 
for the III - N compounds are plotted on Figure  5.2  they do not fall on the 
regression line. The reason is that they have hexagonal rather than cubic 
crystal structures. However, when plotted by themselves as in Figure  5.3  their 
hardnesses are proportional to their bond moduli.   

 Second, although the cubic III - V compounds lie near the regression line in 
Figure  5.2  they form distinct groups if plotted separately as a function of ionic-
ity as in Figure  5.4 . This fi gure shows that the isoelectronic III - V compounds 
have the same ionicities (light dotted line). Thus ionicity is one cause of the 
scatter in Figure  5.2 .   

 Data for some II - VI compounds (chalcogenides) are shown in Figure  5.5 .    

  5.2   OCTAHEDRAL SHEAR STIFFNESS 

 The glide planes on which dislocations move in the diamond and zincblende 
crystals are the octahedral (111) planes. The covalent bonds lie perpendicular 
to these planes. Therefore, the elastic shear stiffnesses of the covalent bonds 

    Figure 5.2     Correlation of the hardnesses of the Group IV elements, and the associ-
ated isoelectronic III - V compounds, with their bond moduli. Room temperature data. 
For the elements, the  “ molecular volumes ”  refer to the diatoms: C - C, Si - Si, Ge - Ge, and 
Sn - Sn.  
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    Figure 5.3     Hardnesses of the III - N nitrides vs. their bond moduli.  
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    Figure 5.4     Effect of ionicity on hardnesses of cubic III - V compounds.  
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are given by the elastic shear constants on the (111) planes. The elastic 
constants do not necessarily measure the inelastic bond strengths, but they 
play an important role in determining them. They are given by a combination 
of the elastic constants: C 11 , C 12 , and C 44  of the cubic symmetry class:

    C C C C C C Coct = −( )[ ] + −( )[ ]3 344 11 12 44 11 12     (5.1)   

 A plot of them (Figure  5.6 ) shows that they are proportional to the bond 
moduli. Thus the bond moduli are fundamental physical parameters which 
measure shear stiffness, and  vice versa.  Also, it may be concluded that hardness 
(and dislocation mobility) depends on the octahedral shear stiffnesses of this 
class of crystals (see also Gilman,  1973 ).    

  5.3   CHEMICAL BONDS AND DISLOCATION MOBILITY 

 Crystal dislocations were invented ( circa. 1930 ) by Orowan, Prandtl, and 
Taylor to explain why pure metal crystals are soft compared with homoge-
neous shear strengths calculated from atomic theory. They do this very well. 
However, roughly 15 years later (circa 1945) it was found that pure semicon-
ductor crystals (e.g., Ge and Si) have hardnesses at room temperature compa-
rable with calculated homogeneous shear strengths. Furthermore, it was known 

    Figure 5.5     Hardnesses of some II - VI compounds (chalcogenides) versus their bond 
moduli.  
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that pure metal - metalloid crystals (e.g., TiC and WC) are very hard, although 
they conduct electricity like metals. How can these differences be explained? 

 The differences just outlined cannot be explained by means of a classical 
mechanical model. However, they can be explained by considering chemical 
bonding. In particular, hardness depends in covalent crystals on the fact that 
the valence (bonding) electrons are highly localized as shown by electron - 
diffraction studies which can provide maps of electron densities (bonds). 

 The fi rst attempt at forming a model of dislocation mobility was that of 
Orowan  (1965)  and (Peierls,  1940 ). Figure  5.6  illustrates the geometry of this 
model. It shows two halves of a crystal: T   =   top, and B   =   bottom. The bottom 
plane, a of T is joined to the top plane, b of B across a glide plane. Thus the 
presence of B produces displacements in T (horizontal displacements only; 
vertical displacements are assumed to be zero), and vice versa. Start with just 
T. It may be considered to be an elastic body with surface tractions along a. 
Equal, but opposite in sign, tractions are applied along b. Therefore, the model 
becomes a problem in elasticity theory with the singularity at c removed 
by judiciously choosing the interaction potential between a and b. Since it is 
essentially an elastic model, and therefore a continuum model, this model 
cannot connect with reality for several reasons. First, because the scale of the 
core of a dislocation is atomic, and its is discrete rather than continuous as 
required by elasticity theory. The core dimensions are of the order of the 
wavelength of an atomic electron. Therefore, an accurate description requires 
quantum mechanics. Even within the context of elasticity theory. the theory is 
not accurate as Peierls himself discussed, as well as Orowan. For example, an 

    Figure 5.6     Correlation of octahedral shear stiffnesses with bond moduli for Group 
IV crystals. The octahedral stiffnesses measure the elastic shear resistances of the 
covalent bonds across the (111) planes.  
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elastic modulus cannot be used to describe part of the interaction across the 
glide plane because the strains are too large for linear elasticity near the 
center. 

 A second major diffi culty with the Peierls model is that it is elastic and 
therefore conservative (of energy). However, dislocation motion is non -
 conservative. As dislocations move they dissipate energy. It has been known 
for centuries that plastic deformation dissipates plastic work, and more recently 
observations of individual dislocations has shown that they move in a viscous 
(dissipative) fashion. 

 A dislocation can move no faster than its core (the region within one to 
two atoms of position c in Figure  5.7 ) so the mobility is determined by what-
ever barrier is presented to the core. Since the core is very localized, so must 
be the barrier if it is to have a substantial effect. This is why  local  covalent 
bonding leads to low mobility while the  non - local  bonding in metals gives 
high mobility.   

 A critical point concerns symmetry. In Figure  5.7 , the atoms distant 
from the center have two 2 - fold axes of symmetry, but the atom at the center 
(designated c) has quasi - 5 - fold symmetry. Therefore, the symmetries of the 

    Figure 5.7     Schematic edge dislocation after Peierls. Top part of crystal, T and bottom 
part B, are joined between planes  α  and  β  across a glide plane with an extra half - plane 
of atoms ending at c. The displacement along the glide plane is b, and the glide plane 
spacing is a.  
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wavefunctions of the atomic electrons near the center do not match. It is a 
principle of quantum mechanics that wavefunctions whose symmetries do not 
match do not bond (Coulson,  1952 ). Therefore a rigorous calculation of the 
energy of a dislocation core is very diffi cult. Moreover, changes in the energy 
with the core ’ s position relative to a crystal ’ s structure are very small. There-
fore, an adequately accurate calculation of the energy is exceedingly diffi cult. 
A better approach is to apply general knowledge of chemical bonding. 

 Dislocation motion in covalent crystals is thermally activated at tempera-
tures above the Einstein (Debye) temperature. The activation energies are 
well - defi ned, and the velocities are approximately proportional to the applied 
stresses (Sumino,  1989 ). These facts indicate that the rate determining process 
is localized to atomic dimensions. Dislocation lines do not move concertedly. 
Instead, sharp kinks form along their lengths, and as these kinks move so do 
the lines. The kinks are localized at individual chemical bonds that cross the 
glide plane (Figure  5.8 ).   

 In the literature, it is commonly postulated that glide occurs between the 
planes A ′  and A ″  in Figure  5.8 , but this seems most unlikely because the bond 
density is three times as large there compared with the region between A and 
A′ . 

 In order for a dislocation to move along the glide region of Figure  5.8 , the 
bonding confi guration must become highly distorted and the local symmetry 
must change (Gilman,  1993 ). This can best be seen by observing a plan view 
of of the glide region of the diamond structure (Figure  5.9 ). In this fi gure, the 
larger open circles designate atoms in the plane of the paper, while the smaller 

Figure 5.8     Projection of the diamond structure so the (111) glide planes (AB) are 
perpendicular to the plane of the fi gure. Then the covalent bonds connecting the atoms 
in planes (AB) and (A ′ ) are perpendicular to the (111) planes. The glide plane spacing, 
a of the fi gure corresponds to the bond length AA ′ . The Burgers displacement, b cor-
responds to the atomic spacing along A or A ′ .  



circles with crosses designate atoms lying in the plane of the crystal structure 
that lies above the plane of the paper. At A, the two planes are undisturbed. 
At B, the top atoms in the upper right hand quadrant have sheared downward 
with the displacement b. This has created a screw dislocation with a kink in it 
that is indicated by the dashed line. The kink is centered on the mid - glide 
position where the displacement is b/2.    

  5.4   BEHAVIOR OF KINKS 

 A kink on a screw dislocation is a short segment of edge dislocation similar 
to the confi guration of Figure  5.7 . By symmetry, a kink on an edge dislocation 
is a short segment of screw dislocation. In both cases, the mid - glide position 
contains a maximum amount of distortion of the chemical bonding. This is 
indicated by the change in symmetry at the glide plane. In the normal structure, 
away from the kink, each circle with a cross has six nearest neighbors in the 
upper plane, one open circle below it, and six next - nearest neighbors in the 
plane below it. On the other hand, at the center of the kink (indicated by 
an  * ) the atom in the lower plane has no corresponding nearest neighbor in 
the upper plane. Thus the atom in the lower plane has a valence electron with 
no partner (a  “ broken ”  covalent bond). As the kink moves downward, the 
broken bond reforms. 

 The motion of a single kink is analogous with an embedded chemical reac-
tion of the simple exchange type (Gilman,  1993 ). A pair of atoms, above and 
below the glide plane exchange partners when a kink moves a unit b amount. 

    Figure 5.9     Plan view of the (111) plane of the diamond structure. A — Normal struc-
ture with open circles in the plane of the paper, and crossed circles in the plane above. 
Each pair is connected by a covalent bond. B — Partial shear of the upper plane over 
the lower one on the right - hand side; creating a screw dislocation line with a kink in it 
(dashed line). C — Upper plane sheared down - ward by the displacement, b.  
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This is analogous with the classic chemical reaction in which hydrogen and 
deuterium exchange during a collision:

    H D HDH H DH2 + ⇒ ⇒ +     (5.2)   

 This approach is useful because it allows quantitative analysis via Walsh cor-
relation diagrams to be made without extensive calculations. Figure  5.11  may 
clarify the approach. Initially the extra half - plane is at x   =   0 and atom C is 
covalently bonded to atom A. When the half plane moves to the mid - glide 
position, x   =   b/2, the activation complex, ACB forms (Figure  5.10 ). Finally, 
when the half - plane moves to x   =   b, the pair CB forms a new covalent bond. 
Symbolically:

    AC B ACB CB A+ ⇒ ⇒ +     (5.3)       

 Here the energies of the reactants AC and B are linked (correlated) with the 
products, CB and A across the reaction space (reaction coordinate). When 
x   =   b/2, the three atoms form a transition complex, ACB. 

 Chemical bonds are defi ned by their  “ frontier orbitals. ”  That is, by the 
highest molecular orbital that is occupied by electrons (HOMO), and the 
lowest unoccupied molecular orbital (LUMO). These are analogous with 
the top of the valence band and the bottom of the conduction band in electron 
band theory. However, since kinks are localized and non - periodic, band theory 
is not appropriate for this discussion. 

 The behavior of covalent semiconductors is quite different below and above 
the Debye temperature of a crystal. This was fi rst shown by Trefi lov and his 
colleagues (Gridneva, Mil ’ man and Trefi lov,  1972 ). Figure  5.12  illustrates the 

    Figure 5.10     Schematic dislocation core. Arrangement at kink on screw dislocation 
line.    
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behavior. It shows, for two representative cases (Ge and Si) that their hardness 
is independent of temperature at low temperatures, but strongly dependent 
on temperature at high temperatures.   

 A good indication of the importance of chemical bond strengths in 
determining hardness is the correlation between the heats of formation of 
compounds and their hardnesses. An example for III - V compounds is shown 
in Figure  5.13 . The heat of formation density is equivalent to the bond modulus. 
This provides further evidence of the importance of chemical bond strength 
in determining hardness.    

  5.5   EFFECT OF POLARITY 

 Crystals whose structures are not centrosymmetric are polar because their 
centers of positive charge are displaced slightly from their centers of negative 
charge. Examples are crystals with the wurtzite structure which have polar 
axes along their  〈 0001 〉  directions. Also, crystals with the zincblende structure 
are polar in their  〈 111 〉  directions. 

 The surfaces lying normal to the ends of the polar axes differ in their 
electronic structures because they have differing chemical species exposed. 

    Figure 5.11     Hardness vs. temperature for Ge and Si (after Gridneva, Mil ’ man, and 
Trefi lov,  1972 ). Showing the two regimes above and below the Debye temperatures.  
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    Figure 5.12     Glide activation energies from high temperature data vs. energy band 
gaps. Note that the data for the homopolar crystals (C, SiC, Si, and Ge) lie quite close 
to the correlation line, while the data for The heteropolar crystals show some scatter. 
The reason why GaP Is an exception is not known. Also, note that the slope of the 
correlation line is two.  
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    Figure 5.13     Dependence of hardness on the heat of formation density for the isoelec-
tronic III - V compounds.  
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As an example, ZnO has Zn exposed at one end of the  〈 0001 〉  axis and O at 
the other. Therefore, there are oppositely directed molecular dipole layers at 
the two ends: ZnO at one end, and OZn at the other. These differing double 
layers lead to differing hardnesses between the two surfaces (Cline and Kahn, 
 1963 ). The difference for BeO was 1300 vs. 1100   kg/mm 2 , or 18 percent, for 
indentations on the (0001) compared with the (000 - 1) face. In the case of ZnO 
the difference was 274 vs. 238   kg/mm 2 , or 15 percent. 

 Similar differences have been observed for crystals with the zincblende 
structure, such as GaAs, on the (111) vs. the ( - 1 - 1 - 1) surfaces (Le Bourhis 
et al.,  2004 ). However, in this case the effect is quite small; a difference of 
only 1.5 percent. 

 Structurally, the differences between the two surfaces associated with the 
asymmetry are localized to atomic monolayers. Therefore, the effect does not 
seem to involve the motion of dislocations at depths below the surfaces cor-
responding to the dimensions of the micro -  or nano - indentations. Thus the 
effects may be associated with local differences such as differences in the fric-
tion coeffi cients at the two indenter - specimen interfaces. These coeffi cients 
may well differ because of adsorption differences. The most common adsorped 
species is expected to be water molecules (Hanneman and Westbrook,  1968 ) 
although other liquids do have effects. For example, consider ZnO. On the 
surface terminated by Zn, chemisorption might be expected with a layer 
of ZnOH being formed. In contrast, on the surface terminated by O, only 
physisorption of H 2 O might be expected. Polarization effects were also 
observed for GaSb, GaAs, GaP, InSb, CdTe, CdSe, ZnS, ZnSe, and ZnTe by 
these authors; and by Smith, Newkirk, and Kahn  (1964)  for BeO. The hardness 
changes are typically 15 to 20 percent. These polarity difference effects are not 
observed on dry surfaces. 

 Water adsorped on surfaces is well known to substantially affect friction 
coeffi cients (Donnet et al.,  1996 ). Other absorbates also affect hardness 
values.  

  5.6   PHOTOPLASTICITY 

 The effect of light on the hardness of covalent crystals was fi rst reported by 
Kuczynski and Hochman  (1957)  for Si, Ge, and InSb. For Ge, softening of 
about 50 percent was observed for small loads (two grams) and the light from 
two 140 - watt spot lamps placed 1.5   cm. from the specimen. The effect dimin-
ished with increasing depth of indentation. This latter fact suggests that the 
light may have been affecting the friction coeffi cient of the indenter/specimen 
interface rather than the plasticities of the specimens, probably by affecting 
the adsorption of water. 

 Later studies of the effect of light on simple compression specimens are 
more reliable indicators of true photoplastic effects. For example, CdS crystals 
were studied in compression by Garosshen, Kim, and Galligan  (1990) . They 
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found that photo - plasticity required light with photon energy greater than the 
band gap of CdS, and the effect increased with the light intensity until a satu-
ration level was reached. Also, the effect increases with deformation - rate, and 
decreases with temperature. Furthermore, the hardness is increased by the 
light; not decreased as in the Ge case. Finally, the effect requires time to reach 
its steady - state. This set of facts suggests the light creates excitons which 
migrate to the dislocations and inhibit their motion. 

 Other semiconductor crystals for which photoplasticity has been observed 
during hardness measurements include III - V compounds (such as GaAs —
 Koubaiti et al.,  1997 ), and II - VI compounds (such as ZnS and ZnO — Klopfs-
tein et al.,  2003 ). However, since the effect declined in these studies with the 
depth of indentation, it is likely that the observations are artifacts associated 
with changes of the indenter/specimen friction coeffi cients. An extensive 
review of photoplastic effects in II - VI compounds is given by Osip ’ yan et al. 
 (1986) .  

  5.7   SURFACE ENVIRONMENTS 

 Hardness measurements of non - metallic solids are infl uenced by environmen-
tal factors. These have been studied extensively by Westwood (Westwood 
et al.,  1981 ) and others. However, the evidence is that most, if not all, of the 
observed effects result from changes in the indenter/specimen friction coeffi -
cient caused by adsorption. Under ambient conditions, water vapor is com-
monly adsorped (Hanneman and Westbrook,  1968 ). In the presence of various 
liquids both solvents and solutes are adsorped. Since the effects are not intrin-
sic to the specimens, they will not be discussed further here.  

  5.8   EFFECT OF TEMPERATURE 

 For covalent crystals temperature has little effect on hardness (except for the 
relatively small effect of decreasing the elastic shear stiffness) until the Debye 
temperature is reached (Gilman,  1995   ). Then the hardness begins to decrease 
exponentially (Figure  5.14 ). Since the Debye temperature is related to the 
shear stiffness (Ledbetter,  1982 ) this  “ softening temperature ”  is proportional 
to C 44  (Feltham and Banerjee,  1992 ).    

  5.9   DOPING EFFECTS 

 In the high temperature regime for covalent crystals where the hardness drops 
rapidly, its values are affected by impurities (dopants). Both hardening and 
softening occur depending on whether the dopant is is a donor, or an accepter 



(Patel et al.,  1974   ), but no effect is observed for neutral (Group IV) impurities 
in Ge or Si. Also, impurities that are electron - donors soften both Ge and Si 
at temperatures above about 450    ° C; whereas accepter type impurities soften 
Ge, but not Si. Another important point is that small impurity concentrations 
have little effect. The effects begin at concentrations of about 10 18 /cc. Since the 
atomic volume of Si is 20    Å  3 , the critical ratio of impurity to Si atom is about 
2    ×    10  − 5 . Therefore, the average lineal distance between impurity atoms is 
about one every 270    Å .  
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  6.1   INTRINSIC BEHAVIOR 

 As was described above, the cohesion in simple metals depends primarily on 
the electron density and is nearly independent of the geometric arrangements 
of the atoms. This is shown by the behavior of the bulk moduli of the simple 
metals, the bulk modulus being a measure of the cohesive strength. Figure  6.1  
shows that the bulk modulus depends primarily on the density of valence 
electrons. Therefore, although the energy of a dislocation line is high in pure 
simple metals (several eV), the energy is nearly independent of the position 
of the dislocation relative to the crystal structure. Thus, the energy needed 
to move a dislocation is negligible. That is, there is no  intrinsic resistance  to 
dislocation motion (Gilman,  2007 ).   

 The lack of intrinsic resistance comes from the small amount of energy 
needed to excite electrons. The bonding electrons are part of a sea of nearly 
free particles. The least energetic electrons in this sea are at the bottom of the 
conduction band. The most energetic are at the Fermi level. Of the many 
closely spaced quantum states within the conduction band, those below the 
Fermi level are occupied while those above the Fermi level are unoccupied 
(at  ° K). Thus only a minute fraction of an eV is needed to excite an electron 
from the Fermi level to an excited state. As a result, the energy of a dislocation 
core increases only a minute amount when it moves from one position to an 
adjacent one. This contrasts with the case of covalent bonding where there is 
a signifi cant difference between the energy at the top of the valence band and 
the energy at the bottom of the conduction band. 

 Early in the history of crystal dislocations, the lack of resistance to motion 
in pure metal - like crystals was provided by the Bragg bubble model, although 
it was not taken seriously. By adjusting the size of the bubbles in a raft, it was 
found that the elastic behavior of the raft could be made comparable with that 
of a selected metal such as copper (Bragg and Lomer,  1949 ). In such a raft, it 
was further found that, as expected, the force needed to form a dislocation is 
large. However, the force needed to move a bubble is too small to measure. 

 At roughly the same time, Peierls  (1940) , and Nabarro  (1947)  developed a 
two - dimensional model of a dislocation in a simple square crystal structure. 
This model indicated that a small, but fi nite, amount of energy is needed to 
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move a dislocation in the model crystal. Soon the conventional wisdom became 
that metal crystals exert a fi nite amount of resistance to dislocation motion. 
The resistance given by the Peierls - Nabarro model contains the crystal geom-
etry in the argument of an exponential function so it is very sensitive to details 
of the crystal structure. Therefore, it is susceptible to  “ adjustments ”  to obtain 
desired outcomes. Also, no real metal crystal structures are simple  “ squares. ”  
And, the Peierls model is essentially a linear elastic model. Thus, the wide-
spread acceptance of the model is surprising, especially since experimental 
evidence in the form of internal friction measurements made prior to its pre-
sentation cast considerable doubt on its validity. Even after direct observations 
of dislocation motions had been made, this model has persisted as a means to 
interpret a variety of experimental observations in metals. This has confused 
the understanding of plasticity phenomena for more than half a century. 

 As early as 1938, internal friction in vibrating zinc crystals was observed at 
strain amplitudes as small as 10  − 7 . The friction was attributed (with good cause) 
to dislocation motion (Read,  1938   ). This strongly indicated that the Peierls 
model could not be accepted as being quantitative. 

  Intrinsic  resistance to dislocation motion can be measured in either of two 
ways: direct measurements of individual dislocation velocities (Vreeland and 
Jassby,  1973 ); or by measurements of internal friction (Granato,  1968 ). In both 
cases, for pure simple metals there is little or no static barrier to motion. As a 
result of viscosity there is dynamic resistance, but the viscous drag coeffi cient 
is very small (10  − 4  to 10  − 5  Poise). This is only 0.1 to 1 percent of the viscosity 
of water (at STP); and about 1 percent of the viscosity of liquid metals at their 

    Figure 6.1     Bulk Modulus vs. Valence Electron Density (sp — bonded metals).  
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melting points. It is consistent with the softness of high purity metals. A review 
of measured drag coeffi cients for dislocation motion has been given by 
Parameswaran and Arsenault  (1996) . Selected data for simple metals is 
presented in Table  6.1 . The values given are for room temperature.   

 It is quite clear from these data that intrinsic resistance to dislocation 
motion in these metals does not determine their indentation hardnesses. 
Internal friction measurements have yielded similar results. Therefore, 
extrinsic  factors need to be considered. 

 The commentary above refers only to pure, simple metals. It is not intended 
to apply to metallic compounds or to some transition metals.  

  6.2   EXTRINSIC SOURCES OF PLASTIC RESISTANCE 

 The structural materials used by engineers are not soft, but only deform plasti-
cally at large applied stresses. These result from a variety of  extrinsic  barriers 
to dislocation motion. Thus dislocations move freely between the barriers, but 
then stop until enough stress is applied to overcome the barriers. 

 Some of the most common extrinsic barriers are: 

  1.    Deformation - hardening.  
  2.    Impurity atoms (alloying).  
  3.    Pprecipitates.  
  4.    Grain boundaries.  
  5.    Surface fi lms (such as oxides).  
  6.    Magnetic domain walls.  
  7.    Ferroelectric domain walls.  
  8.    Twin boundaries.    

 These will be briefl y discussed in turn. 

  6.2.1   Deformation - Hardening 

 As screw dislocations move, since they are nearly cylindrically symmetric in 
simple metals, they move readily from one glide plane to another, and back 

 TABLE 6.1    Drag Coeffi cients (10 − 4  Poise) 

  Metal    from internal friction    from velocity - stress curves  

  K    11     —   
  Al    10    2.5  
  Zn     —     7.8  
  Pb    3.7    3.4  
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again (multiple cross - gliding). This causes them to leave behind edge disloca-
tion dipoles. The dipoles create drag, slowing the screw ’ s motion, and making 
it rate determining (Johnston and Gilman,  1960 ). Also, the dipoles interfere 
with the motion of subsequent dislocations causing strain - hardening (ibid, 
1960). The dipoles act as traps for the subsequent dislocations, forming tripoles, 
quadrupoles, and higher order multipoles (Chen, Gilman, and Head,  1964 ). 

 For one screw dislocation to move past another parallel one, where the 
distance between them is h, requires a shear stress,  τ :

    τ π=Gb h2 8     (6.1)  

where G is the elastic shear modulus, and b is the Burgers displacement. It is 
convenient to express h as a multiple, n of b, so h   =   nb. Within a glide band, 
the saturation dislocation density is estimated to be 10 12  lines/cm 2  (Cottrell, 
 1953 ). Thus the lines (on average) are about 10  − 6    cm. apart, or about 40b apart. 
Since cross - gliding is a random process, the h ’ s are expected to be distributed 
exponentially, so the characteristic value of n might be 40/e    ≈    15 (e   =   2.72). 
A typical value for b is 2.5    ×    10  − 8    cm., so from Equation  6.1 ,  τ  d     ≈    G/370;  τ  d  being 
the stress for further deformation. This is approximately the observed value 
of the ratio:  τ  d /G. 

 Recall that an indentation hardness number does not measure an initial 
stress for deformation in metals. It measures the stress needed for further 
deformation after about 40 percent deformation has already occurred. 

 Figure  6.2  shows yield stress versus shear modulus data for face - centered 
cubic metals at about 78   K. The yield stresses were derived from Brinell 
Hardness Numbers (Gilman,  1960 ). The slope of the correlation line is 
 τ  B    =   G/333, in good agreement with the theoretical estimate of the previous 
paragraph.   

 The author believes that dipoles cause deformation hardening because 
this is consistent with direct observations of the behavior of dislocations in 
LiF crystals (Gilman and Johnston,  1960 ). However, most authors associate 
deformation hardening with checkerboard arrays of dislocations originally 
proposed by G. I. Taylor  (1934) , and which leads the fl ow stress being propor-
tional to the square root of the dislocation density instead of the linear pro-
portionality expected for the dipole theory and observed for LiF crystals. The 
experimental discrepancy may well derive from the relative instability of a 
deformed metal crystal compared with LiF. For example, the structure in Cu 
is not stable at room temperature. Since the measurements of dislocation 
densities for copper are not in situ measurements, they may not be representa-
tive of the state of a metal during deformation (Livingston,  1962 ). 

 It might be argued that if dislocations are extended that cross - gliding is 
inhibited. However, fast moving dislocations can decrease their kinetic energy 
by reducing (or eliminating) their extension (Gilman,  2001 ). 

 Whatever mechanisms operate to cause deformation - hardening, it is 
phenomenologically the most general determinant of hardness for metals.  
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  6.2.2   Impurity Atoms (Alloying) 

 Most metals are used as alloys, and there are far too many of these for a com-
prehensive review here. A few examples will be considered, however, starting 
with one of the most simple of cases: Ag – Au (Gilman,  2005 ). 

 Silver and gold form a simple alloy system because they have nearly the 
same atomic diameters; 2.89 and 2.88 Angstroms, respectively. Both have f.c.c. 
crystal structures, and both come from the same column of the Periodic Table 
so they are isoelectronic. The two metals are mutually soluble with a heat of 
mixing,  Δ U m    =    − 48   meV/atom. The molecular volume, V m    =   8.5    ×    10  − 24    cm 3 , so 
the heat of mixing density,  Δ U m /V m  is 90.4    ×    10 8    ergs/cm 3 . 

 Measurements of the yield stresses of various alloys in this system were 
made by Sachs and Weerts  (1930) . These values can be converted into hardness 
numbers by multiplying by three, and to shear stresses by dividing by two. The 
general expression for the Au concentration is c (1    −    c), where c is the concen-
tration for each alloy. The stress needed to disrupt a Ag – Au pair is about 
 Δ U m /V m , and there is a maximum of these pairs when the concentration, c of 
Au is ½. At this maximum the hardness, H, becomes a maximum:

    VHN H U Vm m( ) = =max max 3Δ     (6.2)   

    Figure 6.2     Yield stresses derived from Brinell Hardness Numbers for pure f.c.c. metals 
versus their shear moduli. The measurements were made at the temperature of liquid 
nitrogen (after Gilman,  1960 ).  
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 The hardnesses of the pure metals are approximately equal, so their average 
is taken to be H 0 . Then an expression for the hardness of an alloy may be 
written:

    H H H H c c= + −( ) −( )[ ]0 04 1max     (6.3)   

 Figure  6.3  compares the measured and calculated hardnesses for the 
Ag – Au alloys. The agreement is excellent. Note that the theory contains no 
disposable parameters. The agreement is excellent, but this may be partly 
fortuitous.   

 When normal sites in a crystal structure are replaced by impurity atoms, 
or vacancies, or interstitial atoms, the local electronic structure is disturbed 
and local electronic states are introduced. Now when a dislocation kink 
moves into such a site, its energy changes, not by a minute amount but by 
some signifi cant amount. The resistance to further motion is best described 
as an increase in the local viscosity coeffi cient, remembering that plastic 
deformation is time dependent. A viscosity coeffi cient,  η  relates a rate d δ /dt 
with a stress,  τ :

    τ η δ= ( )d dt     (6.4)  

so it has the dimensions force - sec/cm 2 , that is, stress    ×    time. Hence, the 
amount of time needed to get around, over, or through, the disturbed 
site increases the effective viscosity coeffi cient. The net result is that the pres-
ence of point defects decreases the average dislocation velocity for a given 
applied stress, and increases the fl ow stress at a given applied deformation 
rate.  

    Figure 6.3     Ag – Au solid solution. Comparison of measured hardnesses and values 
calculated from heats of mixing.  Data from Sachs and Weerts  (1930) .   
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  6.2.3   Precipitates (Clusters, Needles, and Platelets) 

 When a moving dislocation line encounters a precipitate that is harder than 
the matrix in which it is moving, there two ways (in general) for it to get past 
the precipitate: Passing around it or shearing it (i.e., passing through it). 

 To simplify the fi rst case, consider a pair of precipitate particles having 
diameters, D, and being spaced L    >  >    D apart as in Figure  6.4 . The line, A in 
the fi gure, represents an edge dislocation moving from left to right with its 
glide plane parallel to the plane of the fi gure. At A in the fi gure, the line 
approaches the precipitates. Being harder than the matrix, the precipitates are 
elastically stiffer than the matrix, so they repel the approaching line. Then, at 
B, if the applied stress is large enough, the line moves around the precipitates 
enveloping them. Finally, at C, the line has wrapped itself around the precipi-
tates and has pinched off at the dotted line, leaving a loop of line around each 
precipitate, and begun moving onward (Orowan,  1954 ).   

 The loops around the precipitates act as stress concentrators. They exert 
shearing stresses in addition to the applied stress on the particles. When 
enough of them have accumulated, the precipitates will be plastically sheared 
as the loops disappear one by one. This is the basis of a theory of precipitation 
hardening in an aluminum - copper alloy by Fisher, Hart, and Pry  (1953) . The 
precipitate in this case is CuAl 2 , and the precipitates cause an increment 
of hardening added to the hardness of the solid - solution (Al – Cu) matrix. 
Quantitative agreement with experimental measurements is fair. 

 The line can only behave in this way by being fl exible. It has an energy per 
unit length (line tension). This energy per unit length has two parts: 

  1.     a core energy per unit length that depends on the atomic interactions 
within its core. The core acts roughly like a liquid so its energy is 
approximately an atomic cross - sectional area, 2b 2  times the heat of 
melting,  Δ H m  or about 0.22   eV/atom length in aluminum.  

  2.     The elastic strain energy of the material surrounding the core. This 
energy for a straight line in a large crystal is given approximately by 

    Figure 6.4     Orowan model of precipitation hardening. From Guy  (1962) .  
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U 0    =   Gb 3  where G   =   elastic shear modulus   =   26.2   GPa. for aluminum, so 
the elastic part of the line energy is about 2.5   eV/atom length, or roughly 
ten times the core energy.    

 If it is assumed that the line energy, U 0 , is constant (it is not, but depends 
on curvature of the line), and L   =   precipitate spacing, then there is a critical 
radius of curvature, r   =   L/2 for the dislocation line to be re s trained by the pair 
of precipitates (Orowan,  1954   ). The force on the line due to the applied stress, 
 τ  is:  τ b per unit length, while the force resisting the bowing out of the line 
between the particles is: U 0 /r * , Equating the forces for the critical condition, 
and solving for  τ  gives the yield stress:

    τy U br* Gb L= =0 2     (6.5)  

so the yield stress decreases with the time of aging in the overaging regime 
where the particles are relatively widely spaced. 

 Early in the age - hardening process, the precipitates are very small, and 
closely spaced. Initially, they are called Guinier - Preston zones, and are only an 
atomic monolayer of Cu lying parallel to the (100) planes of the Al matrix 
(Guinier,  1994 ). In this regime dislocation lines are too stiff to wrap around 
the platelet zones. They must pass through them. Then the lines experience 
both positive and negative internal stresses as they move through a fi eld of 
precipitates. Thus half of the time the motion of a dislocation line will be 
speeded up, and during the other half, it will be slowed down. Its net velocity 
will be decreased (Chen, Gilman, and Head,  1964 ). The decrease in velocity 
occurs because more time is lost when the local stress acts against the 
motion than when the local stress enhances the motion. For some values of 
the parameters, the incremental stress increases approximately parabolically 
with the aging time. 

 Overall, during age - hardening there are two regimes (as discussed by 
Orowan): an initial regime in which the yield stress rise rapidly with time (or 
precipitate size) before leveling off; and a second over - aging regime in which 
the yield stress declines to a relatively low value (as the precipitates become 
very large (Figure  6.5 ).   

 For extensive reviews of precipitation hardening see Brown and Ham 
 (1971)  and Ardell  (1994) .  

  6.2.4   Grain - Boundaries 

 Grain boundaries as barriers to dislocation motion are discussed in various 
text books (for example, Meyers and Chawla,  1998   ). The discussions either 
take the position that the dislocations form at the grain centers and become 
blocked by the dislocations of the boundaries, or that the dislocations originate 
at the boundaries and block one another within the grains. Here, a third view 
will be taken which seems more likely to this author. It is a more macroscopic 
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viewpoint based on plastic compatibility, and is based on experiments with 
zinc bicrystals (Gilman,  1953 ). 

 In a polycrystalline material, a few of the grain boundaries are symmetric 
and therefore  plastically compatible . Most are incompatible. What is meant 
hereby  “ compatibility ”  is that when one crystal within a polycrystal plastically 
deforms its boundaries must maintain continuity. Therefore, every small area 
of the deforming grain ’ s boundary must closely match the corresponding area 
of its neighboring grain. Any mismatch will cause elastic strain at that location 
on the mutual boundary. Both the sizes of the areas and the crystal structure 
angles must match. This is a stringent condition. It can only be precisely satis-
fi ed at boundaries that are symmetrically disposed between two crystals. 

 Figure  6.6  illustrates the compatibility condition. Note that this type of 
compatibility is quite different from  elastic compatibility.  In Figure  6.6 A, a 
symmetric bicrystal is shown. The dashed lines suggest the glide planes in each 
crystal. The two crystals of the bicrystal have thickness, t 0 . The boundary is 
indicated by a dotted line. The half - angle between the bicrystals is  θ  0 . The 
bicrystal is shown at Figure  6.6 B after some compression. Each crystal has 
been sheared to an angle,  θ  causing t 0  to become t on both sides of the grain 
boundary. Thus, there is compatibility at the boundary and no strain in the 
boundary.   

 Figure  6.6 C contrasts with  6.6 A and  6.6 B by being asymmetric. The bound-
ary no longer bisects the angle between the grains. The initial thickness remains 
the same at t 0 , but now, when the right hand crystal shears by the angle,  θ  its 
thickness, t no longer matches the thickness of the left - hand crystal, and 
t/t 0    =   cos    θ , so a tensile strain  ε    =   1    −    cos    θ  is produced in the boundary with 
the corresponding stress,  σ    =   Y (1    −    cos    θ ) where Y   =   Young ’ s modulus. The 
shear strain in the crystal is tan  θ  so for relatively small strains the boundary 
resists further shear of the right - hand crystal and may fracture. Only a small 
fraction of grain boundaries in poly crystals are symmetric. Most of them 

    Figure 6.5     Two regimes of precipitation hardening in an aluminum - copper alloy.  
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are asymmetric so this incompatibility mechanism is prevalent. Stress con-
centrations are needed to force deformations in glide systems other than the 
principal one. 

 Stresses can can be concentrated by various mechanisms. Perhaps the most 
simple of these is the one used by Zener  (1946)  to explain the grain size 
dependence of the yield stresses of polycrystals. This is the case of the shear 
crack which was studied by Inglis  (1913) . Consider a penny - shaped plane 
region in an elastic material of diameter, D, on which slip occurs freely and 
which has a radius of curvature,  ρ  at its edge. Then the shear stress concentra-
tion factor at its edge will be    ≅    (D/ ρ ) 1/2 . The shear stress needed to cause plastic 
shear is given by a proportionality constant,  α  times the elastic shear modulus, 

    Figure 6.6     Plastic incompatibility. Showing at A and B that symmetric boundaries are 
plastically compatible, whereas asymmetric ones at C and D are not.  
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G. Therefore, in a polycrystal, the macroscopic stress needed general plastic 
deformation is:

    σ σ β ρ ρy G D D= + ( ) >>( )0
1 2

    (6.6)  

where  β  is a constant, and  σ  0  is the yield stress of a monocrystal of the mate-
rial, and  ρ     ≈    b (an atomic diameter). Equation  6.6  is known as the Hall - Petch 
equation, but it was developed much earlier by Zener who found that it 
describes measurements of silicon - brass specimens very well (Figure  6.7 ).   

 A simple physical argument is that the shear strain energy density in a grain 
of a two - dimensional polycrystal with an applied stress,  τ  is  τ  2 /2G, so in plane 
strain (remembering that shear is a 2D - process) the energy U in an average 
grain of diameter, D, is U   =   ( τ  2 /2G)( π D 2 ). If a freely slipping shear band is now 
put into the grain of length, D, with a tip radius, b, the force per unit length is 
 ∂ U/ ∂ b   =    π D τ  2 /4G on the boundary of the band (Figure  6.8 ). The force resisting 
deformation in the surrounding material is the yield stress,  τ  y    =    α G times b. 
Equating the forces and solving for the applied stress, gives:

    τ β= ( )G b D 1 2     (6.7)  

which is essentially the same as Equation  (6.6) .   

    Figure 6.7     Comparison of Zener ’ s equation with measurements of silicon - brass speci-
mens  (Data of Wilkins and Bunn,  1943 ) .  
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 There is a large literature discussing the effects of grain boundaries on 
plastic deformation. The essential effects for  “ clean ”  boundaries have just been 
discussed, but there are many additional effects when the boundaries are 
contaminated with impurities and precipitates. All this will not be discussed 
further here. Books that have differing viewpoints on grain boundary effects 
are Baker  (1983) , and Meyers and Chawla  (1998) .  

  6.2.5   Surface Films (Such as Oxides) 

 All metal surfaces are reactive, including the noble ones. Therefore, under 
ambient conditions, they all have chemisorbed layers on their surfaces. These 
vary greatly from metal to metal in thickness, from atomic monolayers, to 
microns, or more. The oxide layer on gold is very thin, for example, whereas 
it is quite thick on copper or lead. 

 Oxygen is not the only surface contaminant, but it is the most prevalent. 
Other frequent ones are sulfur (tarnish) and phosphorus. Sometimes a com-
bination, such as chlorate (O   +   Cl), forms a layer. These effects are known 
collectively as the  “ Roscoe Effect ”  (Metzger and Read,  1958 ). 

 Surface layers interfere with the motion of dislocations near surfaces. 
Among other effects, this causes local strain - hardening, creating a harder 
surface region which thickens with further deformation, and eventually affects 
an entire specimen. A specifi c way in which this happens is through curving 

    Figure 6.8     Schematic shear band in a grain surrounded by other grains. Strong con-
centrations of shear stress reside at each end of the glide band which has a length D 
(the grain diameter). The radii of curvature at the ends of the band are taken to be 
atomic diameters.  
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of screw dislocations as they approach a free surface, or interface (Gilman, 
 1961 ). Figure  6.9  illustrates this. At Figure  6.9 A, a schematic screw dislocation 
AB (string of dots) is shown lying on a glide plane, CDEF, that makes an angle, 
 θ , with a free surface. It has moved into the crystal from FE to AB. It can 
shorten, thereby lowering its energy, by curving until its end becomes normal 
to the surface as in Figure  6.9 B. However, at the surface, the dislocation line 
no longer lies parallel to the Burgers vector, b. Thus, it can no longer glide in 
the original direction, and therefore creates drag on the motion of the disloca-
tion. Also note that as a screw dislocation breaks through a surface it creates 
a surface step. Therefore, it interacts strongly with the free surface and with 
any surface fi lm or other modifi cation of the surface.   

 By increasing the surface area, screw dislocations moving at or through 
increase the surface area, hence the surface energy. As a result, surface active 
agents that affect the surface energy have an effect on near - surface screw dis-
location motion (Likhtman, Rehbinder, and Karpenko,  1958 ). These effects 
are known collectively as  “ Rehbinder Effects. ”  See also see other papers, for 
example, Westwood  (1963) . 

 Cross - gliding of screw dislocations has an important effect on the overall 
plastic deformations of crystals because it is the primary cause of both 
multiplication, and strain - hardening as discussed above. 

 A factor that probably plays a signifi cant role in the surface cross - gliding 
mechanism is that the elastic shear energy of a screw dislocation is relaxed 
very near a free surface. Thus the line energy is relatively small, being deter-
mined only by the core energy. This results in high fl exibility of the line. The 
line energy is comparable with the energy of a surface step, so it is reasonable 
to expect that changes of surface energy will be important. This is in contrast 
with the case of edge dislocations where there is no step until the line emerges 
from a surface.  

  6.2.6   Magnetic Domain Walls 

 In their demagnetized states, ferromagnetic metals, such as iron, cobalt, and 
nickel, consist of randomly magnetized domains separated by well - defi ned 

    Figure 6.9     Curvature of a screw dislocation near a free surface: a. screw dislocation 
that has moved about halfway thru the specimen and is emerging from the surface. 
b. by becoming curved the screw dislocation reduces its length and hence its energy.  

δ

(a) (b)

A

B

D

C

E

þ

F



96 SIMPLE METALS AND ALLOYS

domain - walls. Across these walls, the direction of magnetization changes. 
For example, across what are called 180    °  walls, the magnetization vectors in 
the two domains point in opposite directions making the net magnetization 
equal zero. 

 Magnetic domain walls have relatively low energies; for iron, it is 1 – 2   ergs/
cm2 . (Kittel,  1956 ). This is miniscule compared with the free surface energy of 
iron, about 1800   ergs/cm 2 . Thus these walls per se have little effect on disloca-
tion motion, yielding, or hardness. However, magnetization also affects the 
dimensions of a crystal. This effect is known as magnetostriction. A result is that 
the elastic stiffnesses undergo small changes. In turn, these changes affect dis-
location motion near the domain walls.  

  6.2.7   Ferroelectric Domain - Walls 

 In dielectric materials there can be both permanent and induced polarization 
domains. The walls between these domains may also act as barriers to disloca-
tion motion. They tend to have larger energies than magnetic domain walls so 
they may have more effect on hardness (McColm,  1990 ).  

  6.2.8   Twin Boundaries 

 Twins are commonly found or formed in all types of crystals. Their boundaries 
are of two general types: coherent and incoherent. The coherent boundaries 
are usually also symmetric, so they offer little resistance to dislocation motion. 
However, the incoherent ones are not symmetric and may resist dislocation 
motion considerably.   
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  7.1   INTRODUCTION 

 The transition metals are the basis of many alloys used in structural engineer-
ing. Although their chemical behaviors form defi nite patterns in the Periodic 
Table, they can only be classifi ed partially in their solid forms, and the interac-
tions between them are complex. Even their crystal structures form only 
partial patterns. As Figure  7.1  shows, an early block of transition metals has 
hexagonal crystal structures. Adjacent to this is a block of bcc metals. Late in 
the total set is a block of fcc metals. In the middle of the total set, the elements 
have a variety of crystal structures. The differences in energy between these 
various structures are small (of order 10   meV, compared with cohesive 
energies of order 5   eV) so their chemical structures have subtle differences, 
but the differences in cohesion between the middle members of each series 
and the end members are large. The fi rst long series is made complex by the 
ferromagnetism of Cr, Mn, Fe, Co, and Ni.   

 The hardnesses of metals with the same crystal structure tend to correlate 
with their cohesion, and one measure of the latter is their shear moduli 
(units   =   energy per unit volume). Figure  7.2  shows this for the fcc set of poly-
crystalline transition metals, and Figure  7.3  shows it for the set of polycrystal-
line bcc metals near the beginning of each of the Long Periods. It should be 
remembered that these hardnesses are not related to the initial mobilities of 
individual dislocations (yielding). They are related to the fl ow stress after 
some deformation - hardening has occurred. In this regime, dislocation motion 
is resisted by collisions of moving dislocations with dislocation dipoles and 
other multipoles (Gilman,  1960 ).   

 The Chin - Gilman parameters (H/G) are given in the fi gure captions. Note 
that the value for the bcc metals (0.02) is about fi ve times greater than the 
value for the fcc metals (0.0044). Thus the bcc metals deformation harden 
much more rapidly than the fcc metals. 

 Steels and other structural transition - metal alloys are hardened by various 
extrinsic factors. The compositions and internal micro - structures of these 
materials are very complex. Therefore, simple descriptions and/or interpreta-
tions of their behaviors cannot be given, so they will not be discussed here. 
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Phenomenological discussion of them may be found in many other books 
and papers. 

 The most important of the extrinsic factors that affect the hardnesses of 
the transition metals are covalent chemical bonds scattered throughout their 
microstructures. These bonds are found between solute atoms and solvent 
atoms in alloys. Also, they lie within precipitates both internally and at pre-
cipitate interfaces with the matrix metal. In steel, for example, there are both 
carbon solutes and carbide precipitates. These effects are ubiquitous, but there 

    Figure 7.1     Diagram showing the crystal structure groups of the transition metals.  

Sc Ti NiV Cr Cu ZnCoMn Fe
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    Figure 7.2     Brinell Hardness Numbers (BHN) of the fcc transition metals as a function 
of their average shear moduli  (taken from Ledbetter,  2001 ) . The hardness numbers are 
low temperature values measured at  − 200    ° F. Note that this fi gure is similar to Figure 
 6.2  without Al and Pb. Chin - Gilman parameter   =   H/G   =   0.0044.  
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is no satisfactory general theory of them, so in this author ’ s opinion, they are 
best treated empirically.  

  7.2   RARE EARTH METALS 

 The rare earths have been studied extensively, but systematic trends are 
diffi cult to fi nd, especially because they are diffi cult to purify. Separating them 
one from another is diffi cult because of their chemical similarity. Also, they 
form stable oxides so it is diffi cult to remove traces of oxygen from them. Much 
information about their hardnesses has been summarized by Scott  (1978)  and 
may be found in the handbook of Gschneidner and Eyring.  
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    Figure 7.3     Hardness of the set of bcc transition metals as a function of their average 
shear moduli  (taken from Ledbetter,  2001 ) . Chin - Gilman parameter   =   H/G   =   0.02.  
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  8.1   INTRODUCTION 

 The hardnesses of intermetallic compounds are important not only for their 
own sake, but also because they are the most important hardening agents in 
structural alloys. They cause age - hardening. They produce wear resistance 
in metals for bearings. They create creep resistance at high temperatures. 
They make tool steels hard. They make cutlery take strong and sharp edges. 
And the list goes on. 

 Intermetallic compounds derive their great usefulness by blending metallic 
and covalent bonds. The former generate toughness, while the latter provide 
strength and hardness. In many of them dislocations move with great 
diffi culty. 

 The vast array of intermetallic compounds seems limitless, although it is 
fi nite. The number of binary compounds alone is in the thousands, and the 
number of ternary compounds is much larger. Still larger is the number of qua-
ternaries, quinternaries, and so on, ad infi nitum. Not all of them are useful, of 
course, and there are many compounds having the same hardnesses as others. 
These overlapping cases are usually separated when other properties — such as 
corrosion resistance, toughness, or cost — are taken into account. 

 Only a few classes of compounds can be considered here. For a more com-
prehensive discussion the reader is referred to Intermetallic Compounds - Vols. 
1,2, and 3 , (Westbrook and Fleischer,  1995 ). This book considers about 2100 
compounds in Vol. 1. The total number of known intermetallic compounds is 
at least 6000, and perhaps 11,000 or more (Villars in Westbrook and Fleischer, 
 1995 ). 

 A few compounds are important to society for their intrinsic hardness, 
although they are not as hard as borides, carbides, or nitrides. Examples are 
CuAl2  in Duralumin for aircraft structures, Ni 3 Al in Superalloys for aircraft 
gas turbines, and MoSi 2  for furnace heating elements. Given the large number 
of comounds, it is disappointing that so few are really useful. This is because 
so few are ductile. 

 A thorough review of the intermetallic compounds of mechanical interest 
has been written by Westbrook  (1993) . The borides, carbides, and nitrides will 
be considered separately in Chapter  10 .  
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  8.2   CRYSTAL STRUCTURES 

 Binary intermetallic compounds crystallize in a relatively small number of 
structures. The simple ones are the NaCl (B1), CsCl (B2), and Ni 3 Al (L1 2 ) 
structures, but there are also quite complex structures for transition metal 
binaries. An example is the  “ sigma phase. ”  The prototype of this structure is 
the  “ compound, ”  FeCr. This has a broad composition range and is the harden-
ing agent in the XCR - steels used extensively in automotive engine valves. 
The sigma phase also appears in at least 45 other binary transition metal 
systems (Wilson and Sooner,  1973 ), and is a hardening phase in several of 
them. A few of these are CoCr, FeV, IrTa, NiV, MnMo, and ReW. The last of 
these has a very high melting point (nearly 3100    ° C). 

  8.2.1   Sigma Phase 

 The prototype FeCr sigma phase is of particular interest because the free 
atoms have very nearly the same size (ratio   =   1.01), but they condense into a 
rather intricate structure. In the pure metals, the diameter of Cr is 2.50    Å , while 
that of Fe is 2.48    Å . (a difference of less than one percent), and both are bcc. 
Therefore, the existence of the sigma phase is determined by spd - hybridization 
of the electron orbitals. It is sometimes called a  “ size - effect ”  phase, but this is 
not really descriptive. 

 The unit cell of the sigma phase contains 30 atoms and its symmetry class 
is tetrahedral. It can be built up using 2 - dimensional layers having hexagonal 
symmetry (Frank and Kasper,  1959 ). These layers are Kagome nets. There are 
two types with hexagonal symmetry: one in which the hexagons share sides; 
the other in which the hexagons share corners (Figure  8.1 )  . 

 The fi rst layer in the stacking sequence of the sigma phase is type A of 
Figure  8.1  at level z   =   0. At z   =   ½ is a type B layer with its  “ holes ”  aligned over 
the holes in the A layer. At z   =   1 is another type A layer aligned with the fi rst 
layer. At levels z   =    ¼ , and z   =    ¾ , there are atoms centered on the hole centers. 
These form 1D rods passing through the structure along the c - axis. The 
structure is quite similar to that of β  - U and this is described quite well by 
Tucker  (1951) . For analysis of the packing see Frank and Kasper  (1959) . See 
also Joubert  (2007) . 

 The sigma phases are hard and brittle at below their Debye temperatures, 
but have some plasticity at higher temperatures. Thus there is some covalent 
bonding in them, and their glide planes are puckered, making it diffi cult for 
dislocations to move in them until they become partially disordered. Their 
structures are too complex to allow realistic hardness values to be calculated 
for them. Their shear moduli indicate their relative hardnesses. 

 The hardness of precipitated sigma phase in stainless steels seems to vary 
with the composition. In Type 446 plain chromium steel it is about 9   GPa 
(Guimaraes and Mei,  2004 ); whereas in Type 316 high Cr, Ni steel it is 
about 17   GPa (Ohmura et al.,  2006 ). Since they are ordered phases that do 
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not melt congruently, homogeneous sigma phase specimens are usually not 
available.  

  8.2.2   Laves Phases 

 When the atomic size ratio is near 1.2 some dense (i.e., close - packed) struc-
tures become possible in which tetrahedral sub - groups of one kind of atom 
share their vertices, sides or faces to from a network. This network contains 
 “ holes ”  into which the other kind of atoms are put. These are known as Laves 
phases. They have three kinds of symmetry: cubic (related to diamond), hex-
agonal (related to wurtzite), and orthorhombic (a mixture of the other two). 
The prototype compounds are: MgCu 2 , MgZn 2 , and MgNi 2 , respectively. Only 
the simplest cubic one will be discussed further here. See Laves  (1956)  or 
Raynor  (1949)  for more details. 

 More than 100 intermetallic compounds have one of the Laves - type struc-
tures. Figure  8.2  illustrates the cubic MgCu 2  case. To form it, start with a face -
 centered diamond arrangement of Mg atoms (Figure  8.2 a). There is a  “ tetroid 
cage ”  at the center of this arrangement (indicated by a star), and there are 
four incomplete tetroids surrounding the central one. The centers of the latter 
tetroids lie at the four unoccupied tetrahedral positions of the diamond struc-
ture. The MgCu 2  structure is generated by placing tetra - hedral clusters of 

    Figure 8.1     Two types of Kagome nets that form the basis of the  σ  — phase crystal 
structure. A — net with shared corners. B — net with shared edges.  

(a)

(b)



106  INTERMETALLIC COMPOUNDS

Cu atoms at each of the four empty tetrahedral positions. A corner from each 
of these clusters form the corners of a central tetrahedron. Thus the Cu atoms 
form a cluster of clusters as in Figure  8.2 b.   

 For the Cu tetrahedra to fi t into the empty spaces of the Mg pattern there 
must be a signifi cant difference in the atomic diameters. In this case, the diam-
eter ratio of the pure metals is about 3.2/2.56   =   1.25 which is just enough. 
Figure  8.3  is a schematic of the complete unit cell. This structure is often 
described in terms of layers lying normal to the  〈 111 〉  directions, but the 
present method is preferred by this author.   

 The other prototype Laves phases, MgZn 2  and MgNi 2 , are formed similarly 
but have different symmetries. MgZn 2  is hexagonal and derived as described 

    Figure 8.2     Structure (C15) of cubic Laves phases. MgCu 2  is the prototype. Top — Mg 
sub - structure with the pattern of the diamond structure. Bottom — Cu sub - structure 
with four tetrahedral clusters in the tetroid holes of the diamond structure. The stars 
indicate the centers of the patterns.  
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above from the wurtzite structure. MgNi 2  is a mixture of the other two 
structures. 

 Since these structures are formed by fi lling the open spaces in the diamond 
and wurtzite structures, they have high atomic densities. This implies high 
valence electron densities and therefore considerable stability which is mani-
fested by high melting points and elastic stiffnesses. They behave more like 
metal - metalloid compounds than like pure metals. That is, like covalent 
compounds embedded in metals. 

 Through X - ray scattering studies of the electron densities in MgCu 2 , Kubota 
et al.  (2000)  found concentrations of electrons between the Cu atom pairs, but 
not between Mg – Cu pairs. They interpreted this as p 3 d 3  covalent hybrid 
Cu – Cu bonds embedded in Mg metal. 

 An especially hard and stable Laves - type compound is cubic HfW 2 . Its 
melting point is 2650    ° C, and its hardness at room temperature is 1900   kg/mm 2  
(Stone,  1977 ). However, it has a high mass density, so its usefulness is 
limited. 

 The Laves phases resist plastic deformation at low temperatures. However, 
like semiconductors they soften as the temperature increases. For MgCu 2 , 
Livingston, Hall, and Koch  (1988)  found plastic yielding at about 0.25   GPa at 
600    ° C with brittleness at lower temperatures, and rapid further softening at 
higher temperatures. This corresponds to the expected behavior with covalent 
bonding. The glide system is that of fcc pure metals; (111) 〈 110 〉 . Glide appears 
to be resisted by the Cu tetrahedra.  

  8.2.3    N  i  3  A  l  

 This compound is critical to modern aircraft engines. It strengthens the alloys 
that are used to make the turbine blades and vanes in the highest temperature 

    Figure 8.3     Contiuation of Figure  8.2  showing super - position of the two sub - structures 
to yield the C15 Laves structure. The star indicates the center.  
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stages of the turbines. These are cast as monocrystals in order to eliminate 
weak grain boundaries from these engine components. The compounds, and 
the alloys which they strengthen, have the somewhat anomalous property of 
getting harder with increasing temperature in the range of interest (approx. 
100 – 750    ° C). See Figure  8.4 .   

 The structure of Ni 3 Al is the L1 2  (Cu 3 Au) structure (Figure  8.5 ). It is fcc 
with the corners occupied by Al atoms, and the face - centers by Ni atoms. The 
primary glide planes are (111) and the glide directipns are  〈 110 〉 . Therefore, 
the shears in the cores of dislocations in these crystals are broken into four 
parts as illustrated in Figures  8.6 ,  8.7 , and  8.8 . Each unit dislocation in the 
structure is split into four partial dislocations.   

 The arrangement of Al and Ni atoms on one side of the octahedral primary 
glide plane is shown in Figure  8.6 . The arrangement on the other side is the 
same, but displaced by 0.82 δ  ( δ    =   atomic diameter). The Burgers displacement 
vector is  b   〈 110 〉 . It is the sum of four partial vectors of the  〈 112 〉  type. That is: 
 b    =    Σ   b  i  (i   =   1    −    4). The fi gure also shows two schematic glide - plane unit 
cells. One in the glide - plane (layer 0), and the other in the plane just above 
(layer 1). 

 In Figure  8.7  a (111) glide plane (layer 0) is shown with a unit cell from 
level 1 superimposed on it. Figure  8.8  shows a glide path for a layer 1 cell, as 
well as a unit Burgers vector. At the core of a dislocation the level 1 cell glides 
(shears) over the underlying plane in one of the  b  i  directions. It takes four 
steps for the path to become complete so there are four stacking faults and 
four partial directions within it. 

 These extended dislocations cannot move concertedly, so kinks must form 
on the partials and these do the moving, causing consequent movement of the 

    Figure 8.4     Anomalous fl ow stresss of nickel aluminide. Adapted from Thornton et al., 
 1970 .  
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    Figure 8.5     The Ni 3 Al crystal structure.  

Nickel

Aluminum

unit dislocations. Unit kinks are not seen experimentally (at least not clearly) 
so the partial kinks probably repulse on another, thereby becoming distributed 
along the unit dislocations. Overall, then, motion of the cores in this structure 
is quite complex at the atomic level. 

 The Ni octahedra derive their stability from the interactions of s, p, and d 
electron orbitals to form octahedral sp 3 d 2  hybrids. When these are sheared by 
dislocation motion this strong bonding is destroyed, and the octahedral sym-
metry is lost. Therefore, the overall (0    ° K) energy barrier to dislocation motion 
is about C oct /4 π  where C oct    =   octahedral shear stiffness   =   [3C 44  (C 11     −    C 12 )]/
[4C 44    +   (C 11     −    C 12 )]   =   50.8   GPa (Prikhodko et al.,  1998 ), and the barrier   =   
4.04   GPa. The octahedral shear stiffness is small compared with the primary 
stiffnesses: C 44    =   118   GPa, and (C 11     −    C 12 )/2   =   79   GPa. Thus elastic as well as 
plastic shear is easier on this plane than on either the (100), or the (110) 
planes. 

 The coeffi cient,  η , of the viscosity resisting dislocation motion is the shear 
stress at the glide plane,  τ  divided by the frequency of momentum transfer,  ν . 
The maximum value that  τ  can have is about C oct /4 π , and as mentioned above 
 ν    =   10 13 /sec for the Al atoms, so  η     ≈    C oct. /4 π  ν     ≈    4    ×    10  − 3  Poise. This is compara-
ble to the dislocation viscosity coeffi cients in other metallic systems. Another 
view of the viscosity is Andrade ’ s theory in which:

    η ν δ= ( )( )4 3 m     (8.1)  
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with  ν  in the numerator, where m   =   mass of the momentum transferring 
particle   =   average atomic mass   =   71.4    ×    10  − 24    gm;  δ    =   glide plane spacing   =   
2.06    Å ; and  ν    =   10 13    sec  − 1 . Then  η    =   4.6 centi - poise which is about the viscosity 
of the alloy at its melting point. 

 The observed fl ow stress of stoichiometric Ni 3 Al at room temperature is 
22   kpsi [0.156   GPa] according to Thornton, Davies, and Johnston  (1970) . Above 
room temperature the fl ow stress rises to a peak of about 96   kpsi. [0.676   GPa] 
at 1025    ° K. (Figure  8.4 ). The increment is about 0.52   GPa. 

 The lattice parameter of Ni 3 Al is 3.572    Å  so the unit Burgers displacement 
is 5.052    Å , and the molecular volume is 45.58    Å  3 . The heat of formation 
is 42   kJ/mol (Rzyman et al.,  1996 ) so  Δ H f    =   0.49   eV/molecule. Then  Δ H f /
V m    =   1.7   GPa and the fl ow stress might be expected to be twice this, or 3.4   GPa. 
However, according to Thornton et al.,  (1970)  the 2% offset yield stress   =   20   kpsi 
at RT   =   0.14   GPa which increases to 100   kpsi. at 750   C   =   0.70   GPa. 

Aluminum

Nickel

Surface cells

Layer 0 Layer 1

    Figure 8.6     Glide plane (111) of Ni 3 Al and unit glide - plane cells for levels (0 — the 
plane below the plastic shear) and (1 — the plane above the plastic shear).  



    Figure 8.7     Glide plane of Ni 3 Al with the initial position of a unit cell shown.  
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Initial position of layer 1 cell

    Figure 8.8     Glide plane of Ni 3 Al showing paths associated with the four partial 
displacements that make a unit displacement.  

Aluminum

Unit b

Path of layer 1 cell’s center

(four partial Burgers displacements)

Nickel



112 INTERMETALLIC COMPOUNDS

 If the bonding were covalent the expected hardness number would be about 
Coct /8   =   6.4   GPa at RT, or 46X larger than the measured yield stress. It may be 
concluded that the bonding is essentially metallic. 

 Some measured values of hardness are given in Table  8.1  which shows how 
the hardness varies with stoichiometry (Qian and Chou,  1989 ). The values in 
the table are averages of 30 measurements for each composition. The stoichio-
metric value is 16X the yield stress (albeit from different authors). Since 
hardness numbers for metals are determined by deformation - hardening rates, 
the latter is very large for Ni 3 Al causing the hardness numbers to be 16X the 
compressive yield stress instead of the 3X of pure metals.   

 A clue to the origin of the anomalous increase of the fl ow stress with 
temperature is given by the fact that it begins at approximately the Debye 
temperature. This suggests that it is associated with atomic vibrations since 
this is the temperature at which short wavelength phonons become excited. 
In this compound the vibrational frequencies of the Al atoms are quite differ-
ent from those of the Ni atoms. At room temperature the Al frequencies are 
about 10   THz, or about twice the 5   THz frequencies of the Ni atoms. These 
values come from neutron diffraction studies (Stassis et al.,  1981 ). The ratio 
remains about the same as the temperature rises. Therefore, the (111) glide 
planes become increasingly rough in terms of frequencies as the temperature 
rises. Notice that Equation  8.1  indicates the viscosity coeffi cient increases with 
increasing vibrational frequency because more momentum gets transferred 
per unit time. The vibrational Al and Ni amplitudes are approximately the 
same at each temperature. 

 Eventually the average vibration amplitudes become large enough to 
saturate the effect as a result of increased entropy. Then the normal decline 
of fl ow stress with temperature begins. 

 Another possibility is that the vibrational frequency difference increases 
the cross - gliding rate, and therefore the deformation - hardening rate. In this 
case, when the temperature becomes high enough, dislocation climb causes 
rapid enough recovery to cancel the deformation - hardening rate.   

  8.3   CALCULATED HARDNESS OF  N  i  A  l  

 Data are insuffi cient for calculation of the hardnesses of most intermetallic 
compounds. Also, many are too complex for realistic calculations to be made. 
In these cases empirical correlations with shear moduli are most likely to give 

TABLE 8.1       

  % Al    VHN (GPa)  

  24    2.16  
  25    2.25  
  26    2.04  



useful guidance. Therefore, only an example will be treated here; namely, 
NiAl. 

 The crystal structure of NiAl is the CsCl, or (B2) structure. This is bcc cubic 
with Ni, or Al in the center of the unit cell and Al, or Ni at the eight corners. 
The lattice parameter is 2.88    Å , and this is also the Burgers displacement. The 
unit cell volume is 23.9    Å  3  and the heat of formation is:  Δ H f    =    − 71.6   kJ/mole. 
When a kink on a dislocation line moves forward one - half burgers displace-
ment, =   b/2   =   1.44    Å , the compound must dissociate locally, so  Δ H f  might be 
the barrier to motion. To overcome this barrier, the applied stress must do an 
amount of work equal to the barrier energy. If  τ  is the applied stress, the work 
it does is approximately τ b 3  so  τ     ≈    8.2   GPa. Then, if the conventional ratio of 
hardness to yield stress is used (i.e., 2    ×    3   =   6) the hardness should be about 
50   GPa. But according to Weaver, Stevenson and Bradt  (2003)  it is 2.2   GPa. 
Therefore, it is concluded that the hardness of NiAl is not intrinsic. Rather it 
is determined by an extrinsic factor; namely, deformation hardening. 

 According to the stress - deformation curve for high purity NiAl presented 
by Weaver, Kaufman, and Noebe  (1993)  the hardening - rate for deformations 
of about 1 – 3 % is about 2.1   GPa in good agreement with the hardness given 
above. It is concluded that deformation hardening determines the hardness 
of NiAl. In other words this compound behaves plastically like a metal. The 
crystal structure of NiAl (CsCl) results in rapid deformation hardening because 
both the primary glide plane and the cross - glide plane are (110) so cross -
 gliding occurs readily. Although the structure (CsCl) brings ionic crystals to 
mind, the bonding is not ionic but is predominantly metallic. 

 It may be expected that many intermetallic compounds will behave like 
metals during plastic deformation. However, some that contain covalent bonds 
will behave differently. In these, the size ratio tends to be 1.2 or greater. For 
NiAl the size ratio is 2.86/2.49   =   1.149. This may be compared with TiC 
(2.89/1.54   =   1.88), or TiB 2  (2.89/1.72   =   1.68). The latter are clearly covalently 
bonded.  

  8.4   SUPERCONDUCTING INTERMETALLIC COMPOUNDS 

 Among various superconductors, compounds with the A15 (Cr 3 Si) crystal 
structure have the highest critical temperatures. This crystal structure has a 
simple relationship with the L1 2  structure (Ito and Fujiwara,  1994 ) as illus-
trated in Figure  8.9 . When the unit cells are aggregated, the face - centered pairs 
of atoms form uniform chains of transition metal atoms along three orthogonal 
directions. This feature may be related to the relatively stable superconductiv-
ity in compounds with this structure.   

 By means of hardness studies, Chin et al.  (1978)    investigated the type 
of bonding in three of these compounds. They determined the Chin - Gilman 
ratios (the hardness number divided by the shear stiffness). Table  8.2  lists their 
results. The small ratios and the moderately large hardness values indicate that 
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the bonding is covalent. Furthermore, as pointed out by Chin et al., the inter -
 atomic spacings in the A - A transition metal chains are consistent with the 
transition metal atoms being covalently bonded. These long and dense 
covalent chains embedded a metal may account for the superconductivity. 

 TABLE 8.2       

  Compound    C 44  (GPa)    VHN (GPa)    Ratio  

  V 3 Si    81.0    10.8    0.13  
  V 3 Ge    70.0    9.7    0.14  
  Nb 3 Sn    40.8    4.5    0.11  

    Figure 8.9     Relationship between the L1 2  (Ni 3 Al) and the A15 (Cr 3 Si) crystal struc-
tures. In both cases the cube corners are occupied by the non - transition elements 
(Al and Si), but the face - centers are occupied differently; by one transition metal atom 
in the L1 2  case, and by a pair of transition metal atoms in the A15 case. An additional 
difference is that the cube center is unoccupied in Ni 3 Al, but is occupied by a Cr atom 
in Cr 3 Si.  

(a)

(b)



This is an example of the use of hardness measurements for interpreting 
other properties.    

  8.5   TRANSITION METAL COMPOUNDS 

 Numerous pairs of transition metals form compounds with various amounts 
of stability. Figure  8.10  shows a few of them reported by Stone  (1977) . These 
compounds form two clusters. The one at the lower left in the fi gure consists 
of pairs of metals that lie in the First Long Period (atomic numbers, 22 – 29), 
and have melting points in the range: 885 – 1427    ° C. The second cluster consists 
of pairs that lie in the Third Long Period (atomic numbers, 71 – 77), and have 
melting points in the range: 2540 – 3160    ° C.   

 The data of Figure  8.10  indicate two correlations. One is the high hardness 
is associated with high melting points. One of the factors in high melting points 
is high chemical stability which is also associated with high hardness. The other 
is that compound formation tends to occur between elements within the long 
periods, but not between them. 

    Figure 8.10     Hardnesses and melting points of some transition - metal melting points. 
The cluster of compounds at lower left in the fi gure are composed of elements from 
the First Long Period, while the cluster of compounds at the 1upper right are composed 
of elements from the Third Long Period.  
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 In general, there are insuffi cient data available for quantitative estimates 
to be made of the hardnesses of intermetallic compounds. However, in some 
cases trends can be verifi ed. Figure  8.11  illustrates one of these. It indicates 
that hardnesses and heats of formation tend to be related. In this case for a 
set of transition metal aluminides. The correlation in this case might have 
been improved if the heats per molecular volume couls have been plotted, 
but thr molecular volumes were not available. Nevertheless, the correlation is 
moderately good indicating that hardness and chemical bond strengths are 
related as in other compounds.    

  REFERENCES 

    G. Y.   Chin  ,   J. H.   Wernick  ,   T. H.   Geballe  ,   S.   Mahajan  , and   S.   Nakahara  ,  “  Hardness and 
Binding in A15 Superconducting Compounds , ”   Appl. Phys, Lett. ,  33 ,  103  ( 1978 ).  

    F. C.   Frank   and   J. S.   Kasper  ,  “  Complex Alloy Structures Regarded as Sphere Packings. 
II. Analysis and Classifi cation of Representative Structures , ”   Acta Cryst. ,  12 ,  483  
( 1959 ).  

    A. A.   Guimaraes   and   P. R.   Mei  ,  “  Precipitation of Carbides and Sigma Phase in AISI 
Type Stainless Steel under Working Conditions , ”   Jour. Mater. Process. Tech. ,  
155  –  156 ,  1681  ( 2004 ).  

    O.   Ito   and   T.   Fujiwara  ,  “  Electronic Structure Analysis of Intermetallics for Crystal 
Structure Changes in Nb 3 Al , ”   Modelling Simul. Mater. Sci. Eng. ,  2 ,  363  ( 1994 ).  

    Figure 8.11     Hardnesses and heats of formation of some transition - metal aluminides. 
 Data from E. R. Petty  (1960)  .  

Heat of formation (kcal/mol)

V
ic

k
e
rs

 h
a
rd

n
e
s
s
 n

u
m

b
e

r 
(k

g
/s

q
.m

m
)

1200

900

600

300

0
0 3 6 9 12 15

Ni2Al3

Co2Al5

Co2Al9

Cr2Al11

CrAl7

Cu9Al4

CuAl2

MnAl7

NiAl3



    J. - M.   Joubert  ,  “ Crystal Chemistry and Calphad Modeling of the  σ  Phase, ”   Progress in 
Materials Science , Elsevier ( 2007 ).  

    Y.   Kubota  ,   M.   Takata  ,   M.   Sakata  ,   T.   Ohba  ,   K.   Kifune  , and   T.   Takati  ,  “  A Charge Density 
Study of the Intermetallic Compound MgCu 2  by the Maximum Entropy Method , ”
 J. Phys.: Condensed Matter ,  12 ,  1259  ( 2000 ).  

    F.   Laves  ,  “  Crystal Structure and Atomic Size , ”  p.  124  in  Theory of Alloy Phases ,  Amer. 
Soc. Metals ,  Clevelnd, OH, USA  ( 1956 ).  

    J. D.   Livingston  ,   E. L.   Hall  , and   E. F.   Koch  ,  “  Deformation and Dafects in Laves Phases . ”  
 Mat. Res. Soc. Symp. Proc. ,  133 ,  High Temperature Ordered Intermetallic Alloys III , 
p.  243  ( 1988 ).  

    T.   Ohmura  ,   K.   Tsuzaki  ,   K.   Sawada  , and   K.   Kimura  ,  “  Inhomogeneous Nanomech - anical 
Properties in the Multi - phase Microstructure of Long - term Aged Type 316 Stainless 
Steel , ”   Jour. Mater. Res. ,  21 ,  1229  ( 2006 ).  

    E. R.   Petty  ,  “  Hot Hardness and Other Properties of Some Binary Intermetallic 
Compounds of Aluminum , ”   Jour. Inst. Metals , 89 ,  343  ( 1960 – 61 ).  

    S. V.   Prikhodko  ,   J. D.   Carnes  ,   D. G.   Issak  , and   A. J.   Ardell  ,  “  Elastic Constants of a 
Ni - 12.69 at. %Al Alloy from 295 to 1300   K , ”   Scripta Mater. ,  38 ,  67  ( 1998 ).  

    X. R.   Qian   and   Y. T.   Chou  ,  “  The Effect of Born ion Microhardness in Ni 3 Al Polycrys-
tals , ”  MRS Symp. Proc. #133, p.  528  in  High - Temperature Ordered Inter - metallic 
Alloys III , Edited by   C. T.   Liu   et al.,  Mat. Res. Soc .,  Pittsburgh, PA, USA  ( 1989 ).  

    G. V.   Raynor  ,  “  Progress in the Theory of Alloys , ”  p.  1  in  Progress in Metal Physics — Vol. 
1 ,  Butterworths Scientifi c Publications ,  London, UK  ( 1949 ).  

    K.   Rzyman  ,   Z.   Moser  ,   R. E.   Watson  , and   M.   Weinart  ,  “  Enthalpies of Formation of Ni 3 Al: 
Experiment Versus Theory , ”   Jour. of Phase Equilibria , 17 ,  173  ( 1996 ).  

    C.   Stassis  ,   F. X.   Kayser  ,   C. K.   Loong  , and   D.   Arch  ,  “  Lattice Dynamics of Ni 3 Al , ”   Phys. 
Rev. B ,  24 ,  3048  ( 1981 ).  

    H. E. N.   Stone  ,  “  Some Properties of Intertransition Metal Compounds , ”   Jour. Mater. 
Sci. ,  12 , 1416 ( 1977 ).  

    P. R.   Thornton  ,   R. G.   Davies  , and   T. L.   Johnston  ,  “  The Temperature Dependence of the 
Flow Stress of the γ ′  Phase Based on Ni 3 Al , ”   Metall. Trans, AIME ,  1 ,  207  ( 1970 ).  

    C. W.   Tucker  ,  “  The Crystal Structure of the  β  Phase of Uranium , ”   Acta Cryst. , 4 ,  425  
( 1951 ).  

    M. I.   Weaver  ,   M. J.   Kaufman  , and   R. D.   Noeb  ,  “  The Effects of Alloy Purity on the 
Mechanical Behavior of Soft Oriented NiAl Single Crystals , ”   Scripta Met.  &  Mat. , 
29 ,  1113  ( 1993 ).  

    M. I.   Weaver  ,   M. E.   Stevenson  , and   R. C.   Bradt  ,  “  Knoop Hardness Anisotropy and the 
Indentation Size Effect on the (100) of Single Crystal NiAl , ”   Mater. Sci. Eng. A , 345 , 
 113  ( 2003 ).  

    J. H.   Westbrook   and   R. L.   Fleischer  , Editors,  Intermetallic Compounds —Vol. 1 ,  J. Wiley 
 &  Sons ,  New York, USA  ( 1995 ).  

    J. H.   Westbrook  ,  “  Structural Intermetallics: Their Origins, Status and Future , ”  in  
Structural Intermetallics , Edited by   R.   Darolia  , et al.,  The Minerals, Metals  &  
Matrials Society ,  Warrendale, Pa, USA  ( 1993 ).  

    C. G.   Wilson   and   F. J.   Spooner  ,  “  A Sphere - Packing Model for the Prediction of Lattice 
Parameters and Order in σ  Phases , ”   Acta Cryst. ,  39A ,  342  ( 1973 ).   

REFERENCES 117





9  Ionic Crystals 

Chemistry and Physics of Mechanical Hardness, by John J. Gilman
Copyright © 2009 John Wiley & Sons, Inc.

119

  9.1   ALKALI HALIDES 

 These crystals form a moderately large set of all combinations of the alkali 
metals: Li, Na, K, Rb, and Cs; and the halogens: F, Cl, Br, and I (Fr and At are 
usually left out of the set). Thus the set consists of 5    ×    4   =   20 compounds. 

 The bonding in these compounds is largely electrostatic. It is based on the 
net attraction between an array of positive metal ions and an equal number 
of negative halogen ions. Small sets of ions are relatively unstable so this form 
of cohesion is dependent on long range electrostatic interactions as well as 
those of short range. The ions are formed by the transfer of valence electron 
from the alkali metal atoms to the halogen atoms so the metal ions are positive 
while the halogen ions are negative. 

 The interactions of nearest neighbors in ionic crystals are very important if 
the neighboring ions have the same charge signs. Therefore, for example, dis-
locations move in these crystals only in directions for which shear does not 
juxtapose ions of the same sign. These are the  〈 110 〉  directions in the NaCl 
crystal structure. Also, dislocations move readily on (110) planes, but not on 
(100) planes. This has an important bearing on hardness. Pure ionic crystals 
loaded on compression (or tension) deform very easily on the (110) planes 
because there is no interference between ions. However, for plastic indenta-
tion, the deformation is more complex, so more than one glide system is 
required. Glide in the additional systems cause ions of like sign to interfere. 
These interferences determine the hardnesses. 

 The hardnesses of alkali halide crystals are particularly sensitive to impuri-
ties having different electrostatic charges than the host ions because such 
impurities cause severe local disturbances. Thus, in crystals such as NaCl, 
KBr, and LiF monovalent impurities have relatively small effects, but divalent 
impurities have large effects, and trivalent impurities have even larger effects. 
Impurities may also have different polarizabilities from the host ions (the 
larger the ionic size, the larger the polarizability). This changes the local energy 
density. 

 Because of the sensitivity to impurities, hardness measurements within the 
20 member set tend not to be systematic. One trend that is clear, however, is 
that hardness decreases with increasing polarizabilty (Figure  9.1 ).   
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 Another special factor in ionic crystals is that dislocation cores in them 
acquire net charge. As a result, plastic bending of an ionic crystal causes the 
top and bottom regions to become charged relative to the middle. This is easily 
demonstrated because such specimens preferentially attract fi ne insulating 
powders. It has been studied in some detail by Li  (2000) . 

 Figure  9.2  is schematic diagram of the crystal structure of most of the alkali 
halides, letting the black circles represent the positive metal ions (Li, Na, K, 
Rb, and Cs), and the gray circles represent the negative halide ions (F, Cl, Br, 
and I). The ions lie on two interpenetrating face - centered - cubic lattices. Of the 
20 alkali halides, 17 have the NaCl crystal structure of Figure  9.1 . The other 
three (CsCl, CsBr, and CsI) have the  “ cesium chloride ”  structure where the 
ions lie on two interpenetrating body - centered - cubic lattices (Figure  9.3 ). 
The plastic deformation on the primary glide planes for the two structures is 
quite different.    

  9.2   GLIDE IN THE  N  a  C  l  STRUCTURE 

 The plane on which dislocations move most easily in the NaCl structure are 
the (110) planes. This is the exposed diagonal plane in Figure  9.2  and is desig-
nated the  primary glide  plane. The  primary glide direction  is parallel to the 
lines of like ions lying in the (110) planes. This deformation system keeps the 
ions of opposite sign adjacent during the shear of one (110) plane over another, 
so no electrostatic confl ict arises. Thus simple compression of a NaCl type 
crystal along a  〈 110 〉  direction occurs readily in high purity crystals. For a more 
general plastic deformation (like that in plastic indentation), other glide 
systems must participate. 

    Figure 9.1     Shows the linear correlation between hardness and reciprocal polarizabil-
ity for 11 alkali halides.  The polarizability data are from Ruffa  (1963) , and the hardness 
data from Sirdeshmukh et al.  (1995)  .  
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    Figure 9.2     Schematic sodium chloride crystal structure.  
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    Figure 9.3     Cluster of unit cells of the cesium chloride crystal structure. This fi gure 
shows that ions of the same sign in this structure line up along the {100} directions. 
Thus the three rows are orthogonal to one another. Translation of a (100) plane of ions 
over its nearest (100) neighboring plane keeps ions of opposite sign adjacent to one 
another. This is also the case on the (110) planes, but the translation vector is   2  larger 
than for the the (100) planes.  
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 For example, during indentation of the NaCl structure some compression 
must occur in  〈 111 〉  directions. But, if the principal stress is in a  〈 111 〉  direction, 
there is no shear stress on any of the primary (110) 〈 110 〉  glide systems. There-
fore, a secondary system (100) 〈 110 〉  must be brought into play. The secondary 
system retains the primary glide direction, but creates electrostatic faults on 
the (100) planes at the mid - glide positions of moving dislocations (Figure  9.4 ). 
The stress needed to move a dislocation being resisted by these faults is 
(Gilman,  1973 ):

    H q b C d cm2 4
44

2= = × ( )−ε 1 2 10 2.     (9.1)  

here, q   =   electron ’ s charge,  ε    =   dielectric constant, b   =   Burgers displacement, 
and C 44    =   elastic shear constant.   

 Chin, et al.  (1972)  measured the hardnesses of Na and K halides (Cl, Br, and 
I) containing various additions of Ca ++ , Sr ++ , or Ba ++ . Then they extrapolated 
the measurements back to zero additions to get values for the pure crystals. 
They found that the latter depended linearly on the Young ’ s moduli of their 
crystals. Gilman  (1973)  found an equally good correlation with the shear stiff-
nesses, where H   =   1.37    ×    10  − 2  C 44  (d/cm 2 ) in excellent agreement with Equation 
 9.1 . A comparison of the data and the theory is given in Figure  9.5 .   

 Since the elastic stiffness is related to the electronegativity difference 
density (Gilman,  2003 ) so is the hardness. Thus, like the covalent solids, the 
hardnesses of the alkali halides depends on the strength of the chemical 
bonding within them. 

 It is also worth noting that Equation  9.1  indicates a connection between 
C 44 , hardness, and  ε . The dielectric constant,  ε  depends on the polarizability,  α  
of each alkali halide through the Clausius - Mossotti equation:

    ε ε π ρ α−( ) +( ) = ( )( )1 1 4 3 MA     (9.2)    

    Figure 9.4     Mid - glide electrostatic faulting in the NaCl structure on the (100) planes.  
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  9.3   ALKALI HALIDE ALLOYS 

 Mutual solubilities occur in many cases between pairs of alkali halides. 
The solubilities are often limited, but some are complete. There are 190 
possible pairs for the set of 20 alkali halides. Only one particularly simple pair 
will be considered here, the KCl - KBr system. These two compounds in this 
system are completely soluble in each other. A few data points for the 
system have been determined by Armington, Posen, and Lipson  (1973) . See 
Figure  9.6 .   

 A straightforward estimate of the maximum hardness increment can be 
made in terms of the strain associated with mixing Br and Cl ions. The frac-
tional difference in the interionic distances in KCl vs. KBr is about fi ve percent 
(Pauling,  1960 ). The elastic constants of the pure crystals are similar, and 
average values are C 11    =   37.5   GPa, C 12    =   6   GPa, and C 44    =   5.6   GPa. On the glide 
plane (110) the appropriate shear constant is C *    =   (C 11     −    C 12 )/2   =   15.8   GPa. 
The increment in hardness shown in Figure  9.5  is 14   GPa. This corresponds to 
a shear fl ow stress of about 2.3   GPa. which is about 17 percent of the shear 
modulus, or about C * /2 π . 

 The hardness shear modulus ratio in this case is similar to the one for metal-
lic glasses. This suggests that the structure in the KCl - KBr solid solution is 
highly disordered; i.e., glassy.  

    Figure 9.5     Comparison of theoretical and measured hardnesses of pure alkali halides. 
The solid circles are values at zero impurities extrapolated from measured values at 
known compositions.  
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  9.4   GLIDE IN  C  s  C  l  STRUCTURE 

 Figure  9.3  shows that ions of the same sign lie parallel to the shortest transla-
tion direction,  〈 100 〉  in CsCl. This is the primary glide direction, and (100) is 
the primary glide plane. Thus, prismatic glide can occur in any of the six  〈 100 〉  
directions if a punching traction is applied to one of the (100) faces. The 
compressive stress from a blunt punch can push a square column through a 
thick crystal specimen. This is called  “ pencil glide. ”   

  9.5   EFFECT OF IMPURITIES 

 As mentioned above alkali halide crystals are strongly hardened by small 
additions of divalent impurities. Data are available for 12 cases, the host 
crystals NaCl, NaBr, KCl, and KBr with additions of Ca 2+ , Sr 2+ , and Ba 2+  
(Chin, et al.,  1973 ). It was found that the hardness increases depend only on 
the concentrations of the additions and not on the divalent specie (Ca, Sr, or 
Ba). However, a dependence on the valence (1, 2, or 3) is observed. It was 
also found that hardness increment is proportional to the square root of the 
concentration, (C 1/2 ). 

 The observations given above are inconsistent with the model that Chin 
et al. used to interpret their measurements. This model, known as Fleischer ’ s 
model, is based on the idea that the ion – ion dipoles formed between divalent 

    Figure 9.6     Hardnesses of crystals in the KCl - KBr alloy system.  The four data points 
are from Armington, Posen, and Lipson  (1973)  . The dashed curve represents the 
concentration function: Ac(c - 1) on which the data fall. c   =   concentration and A is a 
constant.  
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impurities and cation vacancies create strain fi elds which interact with the 
elastic fi elds of dislocations, thereby impeding the motion of the latter. This 
model predicts a dependence of the hardening on the host crystal ’ s shear 
modulus which was not observed. Also, the differing polarizabilities of the 
divalent impurities should affect the local strain. This is not observed. 
Finally, the strain parameter,  ε  is used as an adjustable parameter so the theory 
lacks rigor. 

 The author proposed a model in which the charge differences are the 
important factor, and which has no disposable parameters. A schematic diagram 
of the vicinity of a divalent impurity in a monovalent ionic crystal is shown in 
Figure  9.7 . To balance the local charges, one of the positive ions is missing. 
There are two possible positions of the glide planes. One passes closest to the 
divalent impurity. The other passes closest to the cation vacancy. The lattice 
parameter, a o , and the Burgers displacement, b, are indicated on the 
diagram.   

 Before a dislocation on one of the glide planes passes through the complex, 
the distance between the two charge centers is   d b ao= = 2 . After it has 
passed by the distance is   ′ = ( ) =d b ao2 . Therefore, if K is the static dielectric 
constant, and q   =   electron ’ s charge, the energy difference between the before 
and after states is   ΔU q Ka2

0= ( ) −( )2 1 . 
 The work done by the applied stress,  τ , is W   =   ( τ /2)(b 2 a 0 )   =   ( τ /4)a 0  3 . 

Equating  Δ U and W yields  τ    =   (1.66q 2 )/(Ka 0  4 ), but two glide planes pass 
through each complex, so the effective concentration is twice the nominal. This 
introduces a factor of   2 . Also the compressive stress is 2 τ , so the hardening 
coeffi cient is B   =   (4.7q 2 )/(Ka 0  4 ). 

    Figure 9.7     Schematic diagram of the vicinity of a divalent impurity in the NaCl crystal 
structure.  
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 The experimental data has the form:

    σy = +A B C     (9.3)  

where A    <<    B so it can be neglected. Using average values K   =   5.29 and 
a 0    =   6.13    Å . Then B calc    =   11    ×    10 9    d/cm 2  compares with B exp    =   9.2    ×    10 8    d/cm 2 . 
The agreement between the two values is very good considering that no dis-
posable parameters have been used. The good agreement between the model 
and the measurements model reinforces the idea that the hardness results 
primarily from electrostatic charge interactions, not from elastic interactions. 
In other words, it is an atomically localized effect.  

  9.6   ALKALINE EARTH FLUORIDES 

 The alkaline earths, Be, Mg, Ca, Sr, and Ba, and the gas Ra are divalent and 
form some halogen crystals under STP conditions, but they also form gaseous, 
liquid, and unstable halogen compounds. 

 The Ca, Sr, and Ba difl uorides from an isomorphous set with the cubic 
calcium fl uorite crystal structure. The other alkaline earth fl uorides do not 
belong to this set; BeF 2  is a gas at STP, and MgF 2  is tetragonal, not cubic. 
Hardness numbers for these crystals are shown to be linearly proportional to 
their bond moduli in Figure  9.8 . Similarly, their hardnesses are proportional 
to their inverse polarizabilities, using data from Mahbubar et al.,  2002 . The 
hardness numbers are from Klenata et al.,  2005 ; as are the minimum (indirect) 
band gaps.     

    Figure 9.8     Proportionality between hardness and bond modulus for alkaline earth 
fl uorite crystals.  
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 The Chin - Gilman parameter for these compounds is about 0.11. 
 Of special interest is the behavior of solid solutions of CaF 2  and SrF 2 . Figure 

 9.9  shows a graph of hardness vs. composition for these solutions with the peak 
hardness at about 50 percent SrF 2  (see also Chernevskaya,  1966 ). The free 
energy of mixing peaks at about the same concentration, but it is almost 
entirely entropic because the enthalpy of mixing is essentially zero. This last 
may be deduced because the ions are not much different in size (the lattice 
parameters are 5.46 and 5.86    Å  for CaF 2  and SrF 2 , respectively (a seven percent 
difference); and the shear stiffnesses of the (100) glide planes are C 44    =   37.5 
and 34.6   GPa, respectively (an eight percent difference); and the cations have 
the same charge.   

 The entropy of mixing (ideal solution) is:

    
S = Nk c c c c

Nk when c
− + −( ) −( )[ ]

= =
ln ln

.
1 1

0 693 1 2     (9.4)   

 Thus the free energy of mixing is  − 0.693   NkT; or 1.8   meV/cation at 300    ° K. 
The molecular volume is a 0  3 /8    ≈    20.3    Å , so the cation volume is  ≈ 6.8    Å  3 . 
Thus the mixing free energy density is  ≈ 43   kg/mm 2  which agrees well with the 
58   kg/mm 2  increment of hardness shown in Figure  9.9 .  

    Figure 9.9     Effect of mixing Ca and Sr fl uorides on hardness. The increment of hard-
ness at 50% SrF 2  is about 58   kg/mm 2 .  Data from (Chernevskaya,  1966 ) .  
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  9.7   ALKALINE EARTH SULFIDES 

 Data for ionic oxides (alkaline earth oxides) are presented in Chapter  11 , 
although they could be presented in this chapter since they are bonded ioni-
cally. The sulfi des are closely related, and are presented here. 

 Indentation data for the sulfi des could not be found in the literature. 
However, Mohs scratch hardness numbers were found (Winkler,  1955 ). They 
were converted to Vickers numbers using a correlation chart. The hardnesses 
are shown in Figure  9.10 . Since they all have the same number of valence 
electrons, this is the same as plotting the hardnesses versus the valence elec-
tron densities.  

  9.8   PHOTOMECHANICAL EFFECTS 

 In alkali halide crystals containing color - centers (F - centers) illumination with 
light of appropriate energy causes transient changes of hardness (Nadeau, 
 1964 ). This effect apparently results from changes in the effective sizes of the 
F - centers when they become excited.  

    Figure 9.10     Vickers hardness numbers as a function of the molecular volumes of the 
alkaline earth sulfi des.  
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  9.9   EFFECTS OF APPLIED ELECTRIC FIELDS 

 As mentioned earlier in this chapter dislocations in ionic crystal may carry a 
net electric charge. Therefore, their motion may be infl uenced by applied 
electric fi elds, and may generate observable fi elds external to a specimen 
during plastic fl ow. These effects have been studied by Li  (2000)  and others.  

  9.10   MAGNETO - PLASTICITY 

 It was discovered by Al ’ shits et al.  (1987)  that static magnetic fi elds of order 
0.5T affect the motion of dislocations in NaCl crystals. This is not an intrinsic 
effect but is associated with impurities and/or radiation induced localized 
defects. Also, magnetic fi eld effects have been observed in semiconductor 
crystals such as Si (Ossipyan et al.,  2004 ).  
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  10.1   INTRODUCTION 

 The small atoms at the center of the fi rst row of the Periodic Table (B, C, 
N, O, and to a lesser extent Al, Si, and P) can fi t into the interstices of 
aggregates of larger transition metal atoms to form boride, carbide, and 
nitride compounds. These compounds are both hard and moderately good 
electronic conductors. Therefore, they are commonly known as  “ hard metals ”  
(Schwarzkopf and Kieffer,  1953 ). 

 The prototype hard metals are the compounds of six of the transition 
metals: Ti, Zr, and Hf, as well as V, Nb, and Ta. Their carbides all have the NaCl 
crystal structure, as do their nitrides except for Ta. The NaCi structure consists 
of close - packed planes of metal atoms stacked in the fcc pattern with the 
metalloids (C, N) located in the octahedral holes. The borides have the AlB 2
structure in which close - packed planes of metal atoms are stacked in the 
simple hexagonal pattern with all of the trigonal prismatic holes occupied by 
boron atoms. Thus the structures are based on the highest possible atomic 
packing densities consistent with the atomic sizes. 

 The structures of the prototype borides, carbides, and nitrides yield high 
values for the valence electron densities of these compounds. This accounts 
for their high elastic stiffnesses, and hardnesses. As a fi rst approximation, they 
may be considered to be metals with extra valence electrons (from the metal-
loids) that increase their average valence electron densities. The evidence 
for this is that their bulk modili fall on the same correlation line (B versus 
VED) as the simple metals. This correlation line is given in Gilman  (2003) . 

 Since these compounds conduct electricity via electrons like metals, there 
are no gaps in their bonding energy spectra. Therefore, they do not behave 
like covalent compounds. However, when a kink on a dislocation line moves 
in them, the shearing locally disrupts the structure, thereby increasing the 
energy. For example, in a carbide with the rocksalt structure, the carbon atoms 
lie in octahedral holes. A local shear creates a stacking fault that replaces these 
holes with trigonal prismatic ones. The drastic change of symmetry from 
octahedral to tigonal prismatic decreases the local cohesion markedly because 
it is the orthogonal symmetry of the 2p electrons of the carbon atoms that 
determines the symmetries of the octahedral holes. This symmetry is also the 
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primary reason why the prototype carbides all have the same crystal structure. 
Further discussion of the prototypes and other carbides is given by Cottrell 
 (1995) .  

  10.2   CARBIDES 

 The carbides with the NaCl structure may be considered to consist of alternat-
ing layers of metal atoms and layers of semiconductor atoms where the planes 
are octahedral ones of the cubic symmetry system. (Figure  10.1 ). In TiC, for 
example, the carbon atoms lie 3.06    Å  apart which is about twice the covalent 
bond length of 1.54    Å , so the carbon atoms are not covalently bonded, but they 
may transfer some charge to the metal layers, and they do increase the valence 
electron density.   

 Primary glide occurs on the (111) planes. Shear of a carbon layer over a 
metal layer (or vice versa), when the core of a dislocation moves, severely 
disturbs the symmetry, thereby locally dissociating the compound. Therefore, 
the barrier to dislocation motion is the heat of formation,  Δ H f  (Gilman,  1970 ). 
The shear work is the applied shear stress,  τ  times the molecular (bond) 
volume, V or  τ V. Thus, the shear stress is proportional to  Δ H f /V, and the hard-
ness number is expected to be proportional to the shear stress. Figure  10.2  
shows that this is indeed the case for the six prototype carbides.   

 Another approach to relating the hardness to atomic parameters is that of 
Grimvall and Thiessen  (1986)    in which hardness is related to vibrational ener-
gies. Their theory is slightly modifi ed here by using vibrational energy densities 
instead of the energies themselves. Specifi c heat data measure the excitation 

    Figure 10.1     Schematic layers of Ti and C atoms in the rocksalt crystal structure 
of TiC.  

Titanium
Carbon



of atomic vibrational modes. Since these data are known for many materials, 
this is a convenience of the method. There are two types of vibrational modes: 
longitudinal and transverse. In this case, the transverse modes are most impor-
tant because they are related to the shear moduli, and these are the modes 
that dominate the specifi c heat (Ledbetter,  1991 ). Being related to the average 
shear constants, they are the ones related to indentation hardness. 

 To simplify the analysis, the Einstein single frequency ( ω  e ) model is used. 
The Einstein frequency is given by:

    ωe g M= ( )     (10.1)  

where g   =   shear force constant, and M   =   effective atomic mass. The forces and 
masses can separated by forming the logarithm:

    ln ln lnωe g M= −( ) 2     (10.2)   

 The thermal energy of an Einstein oscillator is k θ  e  where k   =   Boltzman ’ s 
constant, and  θ  e  is the  “ Einstein temperature. ”  The mechanical energy of the 
oscillator is h θ  e /2 π  where h   =   Planck ’ s constant. 

 Then an entropic characteristic temperature can be defi ned:

    ln lnk hs eθ θ π( ) = ( )2     (10.3)   

    Figure 10.2     Hardnesses of prototype carbides calculated from the heats of formation 
vs. measured hardnesses.  
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 And, using Equation  9.1 , an effective force constant, g * , can be obtained:

    g M h k s* = ( )( )1 2π θ     (10.4)   

 Entropy versus temperature data give values for  θ  s , so values for g *  can be 
obtained from Equation  10.3 . These values depend on valence electron densi-
ties just as the elastic stiffnesses do. 

 To rationalize the units, g *  is divided by the lattice parameter, a of each 
carbide. The fi nal parameter (g * /a)   =   characteristic vibrational energy density 
has the units of energy per volume (GPa) which is the same as the hardness 
units. The correlation of this with hardness is shown in Figure  10.3 . The correla-
tion is good; especially when it is considered that the hardness numbers for 
carbides scatter as much as 30 percent.    

  10.3   TUNGSTEN CARBIDE 

 Tungsten carbide is of special interest because it retains its hardness to a high 
temperature compared with several other carbides. Thus titanium carbide 
is much harder (about 3200   VHN) at room temperature (compared with 

    Figure 10.3     Carbide hardnesses vs. characteristic vibrational energy densities derived 
from average force constants (entropic specifi c heat). After Grimvall and Theissen 
 (1986)   . The crystal structures are of the NaCi type.  The hardness data are from Teter 
 (1998) .   
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1630   VHN) but at 800    ° C, its hardness is about 1400   VHN, whereas TiC ’ s 
hardness has dropped to only about 450   VHN (Figure  10.4 ).   

 Tungsten carbide is also of interest because its crystal structure is related 
to both the NaCl structure of TiC, and the AlB 2  structure of TiB 2. . The structure 
consists of close - packed hexagonal W - atom layers stacked in a simple hexago-
nal structure with the carbon atoms occupying one - half of the hexagonal 
prismatic interstices. Therefore, the carbon atoms also form hexagonal layers 
between the tungsten layers (Figure  10.5 )    . 

 The relation of the WC structure to the TiB 2  structure is that in the latter 
boron atoms occupy all of the prismatic interstices instead of half of them. The 
relation to the TiC structure is that the prismatic interstices become octahedral 
interstices in the TiC structure and there are half as many. 

 The hardness of WC is associated with the fact that the array of W - atoms 
in the cores of glide dislocations changes from hexagonal prismatic to 
quasi - octahedral so the coordination number of the C - atoms changes from 
approximately six to approximately eight. This increases the local electron 
density so dislocation motion is resisted. 

 Conjugate behavior occurs in TiC. In this case, at the cores of glide 
dislocations, the octahedral array of Ti - atoms changes to approximately hex-
agonal prismatic, so the coordination number of the C - atoms changes from 
eight to six.  

    Figure 10.4     Comparison of the hot hardnesses of TiC and WC showing the crossover 
at about 350    ° C.  
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  10.4   BORIDES 

 The hardest of the transition - metal borides are the diborides. Their character-
istic crystal structure (Figure  10.6 ) consists of plane layers of close - packed 
metal atoms separated by plane openly - patterned layers of boron atoms 
( “ chicken - wire ”  pattern). If the metal atoms in the hexagonal close - packed 
layer have a spacing, d, then the boron atoms have a spacing of   d 3.     

 The B – B bond lengths in borides is close to that in pure boron crystals, 
and the latter are quite hard ( ≈ 3000   kg/mm 2 ). Furthermore, the relative bond 
lengths in the borides are different from the carbides. For example, in TiB 2  the 

    Figure 10.5     Crystal structure of WC.  
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B– B distance is 1.746    Å . In pure B, it is 1.75    Å . Therefore, covalent B – B bonds 
may be expected. During the complex deformation in an indentation, these 
strong bonds must be broken. They are the principal barriers to dislocation 
kink motion in the diborides. 

 Hardness values for the prototype diborides are listed in Table  10.1 . Most 
hardness measurements for diborides have been made for sintered specimens; 
thus, they vary from one author to another. The values listed are the highest 
ones reported. Average values have little meaning in this case.   

 Perhaps the best known diboride is TiB 2 , so it will be discussed in somewhat 
more detail.  

  10.5   TITANIUM DIBORIDE 

 To demonstrate the simple chemistry of the diboride structure, consider TiB 2 , 
as an example (Figure  10.6 ). In Ti metal, the spacing of the atoms is 2.89    Å . In 
the diboride, the spacing is 3.03    Å , indicating some transfer of electrons into 
the metal. In pure boron the spacing is 1.76    Å , whereas it is 1.75    Å  in the dibo-
ride. Thus the boron atoms of the hexagonal net pattern are covalently bonded. 
Overall, the diboride structure consists of interlamellar layers of metal and 
boron. This accounts for it having a combination of metallic (electrical conduc-
tion) and semiconductor (hardness) properties. Also, it suggests that plasmons 
in the boron layers infl uence the cohesion by interacting with plasmons in the 
titanium layers. 

 It has been found by Will  (2004)  from X - ray scattering measurements that 
valence electrons concentrate along the lines connecting the boron atoms, 
confi rming that the boron layer is a covalently bonded network. The titanium 
layers are metallic. However. the layers are not characteristic of either pure 
Ti, or pure B, so the bonding is quite complex. 

 The mechanical behavior of TiB 2  is characterized by its lattice parameters, 
valence electron density, elasticity tensor, plasmon tensor, and its heat of 

 TABLE 10.1    Vickers Hardness of Prototype Diborides 

      H v     Refer.  

  TiB 2     3350     (a)   
  ZrB 2     2300     (b)   
  HfB 2     2800     (b)   
  VB 2     2100     (a)   
  NbB 2     2600     (a)   
  TaB 2     2500     (a)   

   a.  W. G. Fahrenholz et al., Jour. Amer. Chem, Soc.,  90 , 1347 (2007) .  
  b.  A. A. Ivanko,  Handbook of Hardness Data , Edited by G. V. 
Samsonov, translated from the Russian by Ch. Nisenbaum, Israel 
Program for Scientific Translations (available from U.S. Depart-
ment of Commerce National Technical Information Service, 
Springfield, VA (1971) .   
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formation. None of these probes the electronic structure directly, but taken 
together they indicate the expected magnitude of the hardness. 

 Although the primary glide plane of TiB 2  is the basal (0001) plane, indenta-
tion requires glide on more than one type of plane. Also, indentation is con-
trolled by the most resistant deformation mode; in this case, probably the 
(1010)〈 1020 〉  mode. Therefore, the Burgers displacement, b, equals the length 
of the a - axis   =   3.03    Å . The HOMO - LUMO gap of boron which measures bond 
strength is 1.55   eV. Equating this to the shear work done,  ≈τ b 3 /2 during a dis-
placement, b/2 yields  τ    =   18   GPa, so H    ≈    36   GPa which is close to the measured 
value of 34   GPa. It may be concluded that the hardness of this and other 
diborides is determined by the strengths of their covalent chemical bonds.  

  10.6   RARE METAL DIBORIDES 

 The mechanical stabilities of solids are determined by their valence electron 
densities (#/cm 3 ). A benchmark is provided by diamond. The volume of a 
carbon atom in diamond is about 5.68    Å  3 , so the VED is 4/5.68   =   0.704   elec./ Å  3 . 
This is the highest of any element. Next highest is osmium whose volume 
is about 14    Å  3 . Taking 2s   +   6d for its valence electrons, this yields 
VED   =   0.57   elec./ Å  3 . Adding B to make OsB 2  adds additional electrons, 
increases the volume, and increases the hardness. The VED becomes 
0.51   elec./ Å  3 , which is a decrease compared with the metal. However, the 
hardness increases markedly from about VHN   =   350   kg/mm 2  to 2500   kg/mm 2

(Cumberland et al.,  2005 ). 
 The rare metal Rh lies adjacent to Os on the Periodic Table. Like Os, 

it forms a hexagonal diboride that is even harder. Its hardness is about 
4800   kg/mm 2  (Chung et al.,  2007 ), while its VED is about 0.477   elec./ Å  3 . 

 The crystal structures of these rare metal diborides are similar to Figure 
 10.6  except that the boride layers are puckered rather than fl at.  

  10.7   HEXABORIDES 

 Figure  10.7  illustrates the prototype hexaboride crystal structure, that of lan-
thanum hexaboride. It consists of a simple cubic array of boron octahedra 
surrounding a metal atom at the body center of each cube. The octahedra 
are linked by B – B bonds connecting their corners. This makes the overall 
structure relatively hard with approximately the hardness of boron itself since 
plastic shear must break B – B bonds. The open volumes surrounded by boron 
octahedra are occupied by the relatively large lanthanum atoms as the fi gure 
shows schematically.   

 The hexaboride crystal structure is related to the CsCl structure so by 
analogy the glide planes are (100) and the glide directions are 〈 100 〉 . At the 
cores of glide disloca - tions the structure becomes quasi - hexagonal. 



 An alternative version of the lanthanum hexaboride crystal structure has 
the boron octahedra occupying the body centered positions of the cubic array 
of lanthanum atoms (Figure  10.8 ). This version makes it clear that in order 
to plastically shear the structure, the boron octahedra must be sheared. 
Note that the octahedra are linked together both internally and externally by 
B – B bonds.   

 The hardnesses of some hexaborides are listed in Table  10.2 .   
 Table  10.1  indicates that the hexaborides are quite hard. This hardness is 

associated with their strong bonds especially between the boron atoms, and a 
measure of it is the heat of formation. Consider the case of LaB 6 . According 
to Topor and Kleppa  (1984)  the heat of formation is  Δ H f    =    − 400   kJ/mol.   =   4.15   eV. 
The lattice parameter of the cubic unit cell is a 0    =   4.156    Å , so the molecular 
volume is expected to be 71.8    Å  3 . Then by the same arguments used for the 
carbides (Section  10.1 ), the hardness is expected to be 1850   kg/mm 2  which 
compares well with the observed value in Table  10.1 . 

 The hardnesses of these crystals remains high up to the 600 – 700   C range 
and then decline rapidly (Chen, Xuan, and Otani,  2003 ). Also, it should be 
noted that the crystal hardnesses are anisotropic with the (110) surfaces more 
diffi cult to indent than the (100) surfaces (Li and Bradt,  1991 ).  

    Figure 10.7     Crystal structure of Lanthanum Hexaboride (prototypre hexaboride). 
The black circles represent boron octahedra. They form a simple cubic arrangement 
surrounding the central metal atom.  

B–B Bond length = 1.75 Ang.

Lanthanum diameter = 3.73 Ang.
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  10.8   BORON CARBIDE (CARBON QUASI - HEXABORIDE) 

 Although the chemical formula for this compound is often written B 4 C, crys-
tallographic studies have shown that it is actually B(CB 6 ) 2 , or alternatively, 
B 12 (CBC). That is, the structure contains 13 B atoms for every 2C, so it is nearly 
a hexaboride (Lee et al.,  1991 ). 

 The hardness of boron carbide (carbon hexaboride) is not well defi ned 
because it is made as sintered compacts which have variable densities, 
compositions, and defect densities. It is very hard (up to 4400   kg/mm 2 ), and of 
relatively low density, so it has been used extensively as body - armor (McColm, 

    Figure 10.8     Alternative drawing of the crystal structure of Lanthanum Hexaboride 
with the metal atoms occupying the cube corners.  

 TABLE 10.2     Hardnesses of Some Hexaborides 

  Hexaboride    VHN (kg/mm 2 )    Reference  

  Ca    2600     a   
  Sr    2900     b   
  Ba    3000     b   
  La    2000     c   
  Ce    1900     b   
  Sm    2000     b   
  Y    1800     c   

   a.  S. K. Dutta, Amer. Cer. Soc. Bull.,  54 , 727 (1975) .  
  b.  C. Miitterer et al., Surf.  &  Coatings Tech.,  86 – 87 , 715 (1996) .  
  c.  C. S. Otani et al., Jour. Alloys  &  Compds.,  350 , L4 (2003) .   



 1990 ). Its hardness is associated with its B – C bonds (1.64    Å ) and the C – B – C 
group (stronger than pure B – B bonds; l   =   1.75    Å ).  

  10.9   NITRIDES 

 Nitrides are closely related to carbides. Several of them have the same NaCl 
crystal structure, and similar lattice parameters. Also, the carbide and nitride 
of the same metal are mutually soluble. Their hardnesses are similar. 

 For example, consider the TiC and TiN pair. Their lattice parameters are 
4.32    Å , and 4.23    Å , respectively; the difference is only two percent. Together 
with their mutual solubility (Schwarzkopf and Kieffer,  1953 ) this suggests that 
they have the same number of bonding valence electrons, although atomic 
carbon has four valence electrons, and atomic nitrogen has fi ve. The extra 
nitrogen electron must be in a non - bonding state. This contradicts the valence 
electron concentrations assumed by Jhi et al.,  1999 . 

 Unfortunately, TiN is diffi cult to prepare in bulk form without porosity. 
Therefore, measured values of its properties show considerable scatter. In 
particular, consistent values for its hardness from one investigator to another 
are not available. They range from 1600 to 4000   kg/mm 2 . For practical applica-
tions, TiN is used in the form of thin fi lms. These are consistent in their hard-
nesses, but their complex structures make them diffi cult to interpret in terms 
of simpler quantities.  

  REFERENCES 

    A. H.   Cottrell  ,  Chemical Bonding in Transition Metal Carbides ,  lnst. Mater. ,  London, 
UK  ( 1995 ).  

    C. H.   Chen  ,   Y.   Xuan  , and   S.   Otani  ,  “  Temperature and Loading Time Dependence 
of LaB 6 , YB 6  and TiC Single Crystals , ”   Jour. Alloys and Compds. ,  350 ,  L4  
( 2003 ).  

    H. Y.   Chung  ,   M. B.   Weinberger  ,   J. B.   Levine  ,   A.   Kavner  ,   J. M.   Yang  ,   S. H.   Tolbert  , and 
  R. B.   Kaner  ,  “  Synthesis of Ultra - incompressible Superhard Rhenium Diboride at 
Ambient Pressure , ”   Jour. Amer. Chem. Soc. ,  316 ,  436  ( 2007 ).  

    R. W.   Cumberland  ,   M. B.   Weinberger  ,   J. J.   Gilman  ,   S. M.   Clark  ,   S. H.   Tolbert  , and   
R. B.   Kaner  ,  “  Osmium Diboride, An Ultra - incompressible, Hard Material , ”   Jour. 
Amer. Chem. Soc. ,  127 ,  7264  ( 2005 ).  

    J. J.   Gilman  ,  “  Hardnesses of Carbides and Other Refractory Hard Metals , ”   J. Appi. 
Phys. ,  41 ,  1664  ( 1970 ).  

    J. J.   Gilman  ,  Electronic Basis of the Strength of Materials , p.  115 ,  Cambridge University 
Press ,  Cambridge, UK  ( 2003 ).  

    G.   Grimvall   and   M.   Thiessen    ,  “  The Strength of Interatomic Forces , ”  p.  61 , in  Science of 
Hard Materials — Proc. Int. Conf., Rhodes — Inst. Phys. Conf Series #75 , Edited by 
  E. A.   Almond  ,   C. A.   Brookes  , and   R.   Warren  ,  Adam Hilger Ltd ,  Bristol, UK  ( 1986 ).  

REFERENCES 141



142 METAL-METALLOIDS (HARD METALS)

    D.   He  ,   Y.   Zhao  ,   L.   Daemen  ,   J.   Qian  , and   T. D.   Shen  ,  “  Boron Suboxide: As Hard as Cubic 
Boron Nitride , ”   Appl. Phys. Lett. ,  81 ,  643  ( 2002 ).  

    S. - H.   Jhi  ,   J.   Ihm  ,   S. G.   Louie  , and   M. L.   Cohen  ,  Narure ,  399 ,  132  ( 1999 ).  
    H.   Ledbetter  ,  “  Atomic Frequency and Elastic Constants , ”   Zeit. Fur Metalikunde ,  82 , 

 820  ( 1991 ).  
    S.   Lee  ,   S. W.   Kim  ,   D. M.   Bylander  , and   L.   Kleinman  ,  “  Crystal Structure. Formation 

Enthalpy, and Energy Bands of B 6 O , ”   Phys. Rev. B ,  44 ,  3550  ( 1991 ).  
    H.   Li   and   R. C.   Bradt  ,  “  Knoop Microhardness Anisotropy of Single - crystal LaB 6  , ”  

 Mater. Sci. Eng. A ,  142 ,  51  ( 1991 ).  
    I. J.   McColm  ,  Ceramic Hardness , p.  231 ,  Plenum Press ,  London, UK  ( 1990 ).  
    P.   Schwarzkopf   and   R.   Kieffer  ,  Refractory Hard Metals ,  The Macmillan Company ,  New 

York, USA  ( 1953 ).  
    P. S.   Spoor  ,   J. D.   Maynard  ,   M. J.   Pan  ,   D. J.   Green  ,   J. R.   Hellman  , and   T.   Tanaka  ,  “  Elastic 

Constants and Crystal Anisotropy of Titanium Diboride , ”   Appi. Phys. Lett.   70 ,  1959  
( 1997 ).  

    D. M.   Teter  ,  “  Computational Alchemy: The Search for New Superhard Materials , ”  
 Mater. Res. Soc. Bull. ,  23 ,  22  ( 1998 ).  

    L.   Topor   and   O. J.   Kleppa  ,  “  Standard Molar Enthalpy of Formation of LaB 6  by 
High - Temperature Calorimetry , ”   Jour, of Chem. Thermo. ,  16 ,  993  ( 1984 ).  

    G.   Will  ,  “  Electron Deformation Density in Titanium Diboride: Chemical Bonding in 
TiB 2  , ”   Jour. Sol. St. Chem. ,  177 ,  628  ( 2004 ).   



11  Oxides     

Chemistry and Physics of Mechanical Hardness, by John J. Gilman
Copyright © 2009 John Wiley & Sons, Inc.

143

  11.1   INTRODUCTION 

 Oxide crystals are the most common of all crystals because oxygen com-
bines readily with almost all metals and semiconductors. It combines 
particularly strongly with silicon which is very abundant, constituting about 26 
percent of the Earth ’ s crust. The combination forms silicate tetrahedra and 
they link together in a great variety of ways, including chains, sheets, 
and frameworks. These are the basis of a vast variety of natural and synthetic 
minerals. Most of these are too complex mechanically for simple analysis, 
so they will not be discussed here. Discussion here will be limited to two 
examples, quartz and talc. The former is a prototype for hard silicates, and 
the latter is the softest material considered by the Mohs scale. Other oxides, 
including alkaline earths, borates, garnets, and perovskites, will also be 
discussed. 

 The number of oxide type minerals is quite large. Kostov  (1956)  has identi-
fi ed 160 specifi c minerals, grouped them into classes (chrysoberyl, spinel, 
corundum, periclase, etc.), and proposed a classifi cation system. Only a few 
examples will be discussed here. 

 Methods for relating hardness values to other physical properties are pre-
sented, particularly chemical bond strengths. There is no universal method for 
doing this, although there have been attempts by other authors to do it with 
varying degrees of success. For example, see Gao,  2004   .  

  11.2   SILICATES 

 The silicates are a large class of solids of great importance in industry as 
well as science, particularly geology. The prototype silicate is quartz consisting 
of SiO 4  tetrahedra which share their corners and edges and are arrayed in 
various three - dimensional patterns depending on the temperature. In other 
crystalline minerals the tetrahedra are linked in one - dimensional chains, or 
two - dimensional sheets. The arrays in these latter cases are combined with 
various metal ions. 
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 In addition to the large number of silicate crystals, the SiO 4  tetrahedra are 
the basis of many glasses in which the structure derives from that of the liquid 
state. These structures have short - range but not long - range order. 

  11.2.1   Quartz 

 An apparent anomaly of quartz and related silicates is that SI – O bonds are 
very strong (3.8   eV, compared with C – C at 3.6   eV), but quartz is not especially 
hard. On the 10 - level Mohs scale it is only about seven (diamond is 10). Viewed 
another way, the energy gap between the bonding states and the anti - bonding 
states in quartz is about eight eV which is signifi cantly larger than diamond at 
5.7   eV, but diamond is much harder. This anomaly is resolved by considering 
the structures of dislocation cores in quartz. Also, it illustrates why the bond 
modulus is a more effective parameter than the gap itself in determining 
hardness (Gilman,  2007   ). 

 Figure  11.1  illustrates the crystal structure of quartz, comparing it with 
silicon (diamond structure). The form of quartz in the fi gure is that of cubic 
crystobalite, its most simple form at elevated temperatures. This form is easier 
to illustrate than the quartzes of lower symmetry. Also, although the structures 
of both Si and crystobalite are usually displayed using a cubic unit cell, a 
tetragonal cell is used here because it visualizes the atomic relationships 
better. The two images in the fi gure are scaled to match the observed scales 
for Si and SiO 4 . It may be seen that the chrstobalite structure is derived from 
the silicon structure by placing an oxygen atom at the center of each Si – Si 
bond, and then adjusting the bond lengths to the values shown in the fi gure 
(Bragg et al.,  1965   ).   

 As discussed in Chapter  4 , one way of viewing a dislocation is that it is a 
microscopic lever that concentrates stress. Levers transduce mechanical work 
(force x distance) from large forces moving short distances to small forces 
moving large distances. Thus dislocations convert small macroscopic stresses 
into large microscopic stresses. As a result, not just an amount of work (energy) 
is important, but also the length scale that is associated with it. 

 Dislocation lines do not move concertedly, that is, all at once. They move, 
by forming  “ kinks ”  along their lengths, and when the kinks move, the lines 
move. The open crystal structure of quartz (crystobalite) results in a relatively 
large amount of volume being associated with a kink on a dislocation line. This 
relatively large volume lowers the value of quartz ’ s bond modulus, making its 
hardness consistent with those of other covalently bonded substances. 

 The distance that the small segment of a dislocation line moves when a kink 
moves is called the Burgers displacement, b. Figure  11.2  illustrates it for the 
case of quartz. It determines the amount of work that is done by the advance 
of a kink (per unit width of the kink) which is acted upon by the virtual force 
generated by the applied shear stress,  τ . This force is  τ b per unit length of the 
dislocation line. Letting the kink width be b since the displacement is b, the 
work done is τ b 3 . This is resisted by the strength, U (eV) of a Si – O bond which 
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must be sheared to allow the kink to advance. Equating the driving work and 
the resisting energy gives a value for the required stress,  τ     ≈    U/b 3 . Here b 3  is 
approximately a molecular volume. This is consistent with other covalently 
bonded substances.   

 Numerically, the Burgers displacement which spans two SiO 2  tetrahedra is 
4.28    Å . Therefore, the pertinent volume of a kink is approximately b 3    =   78.4    Å  3  
which is large enough to considerably reduce the bond modulus (energy gap/
molecular volume). With E g    =   8   eV., BM   =   0.102   eV/ Å  3 , or 10.2   GPa. This com-
pares well with the hardness of quartz, 12   GPa (1200   kg/mm 2 ). 

 The hardness (480   kg/mm 2 ) of the quartz version of GeO 2  is also consistent 
with its bond modulus. Unfortunately, SnO 2  does not have a quartz like 
structure so there are only two members of this isoelectronic set (SiO 2  and 
GeO 2 ).  

    Figure 11.1     Comparison of the atomic structure of cristobalite (high temperature 
form of SiO 2 ) with that of silicon (diamond structure using tetrahedral unit cell).  
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  11.2.2   Hydrolytic Catalysis 

 Geologists have found that the mineral quartzite as well as synthetic quartz is 
softened by water (Griggs and Blacic,  1965 ). Dry quartz crystals retain their 
hardnesses to nearly 1000    ° C, but are weakened considerably (nearly an order 
of magnitude) by the presence of water. Similar weakening is observed for 
olivine (Mg,Fe) 2 (SiO 4 ) and feldspar (KAlSi 3 O 8   ). 

 It seems that water hydrolyzes the Si – O – Si connections between the slica 
tetrahedra, yielding Si – OH   :   HO – Si. That is, strong  – O –  bridges are replaced 
by weak H   :   H hydrogen bridges. These become associated with kinks on dis-
location lines increasing the mobilities of kinks and therefore dislocations 
(Griggs,  1967   ). Since the concentration of kinks is small compared with the 
total number of atoms, relatively little water is needed for this catalytic 
mechanism.  

  11.2.3   Talc 

 A bar of talc feels like a bar of soap which is why it is often called  “ soapstone. ”  
Its exceptional softness (it is the softest of the Mohs minerals) is a direct result 
of its unusual crystal structure. This consists of sheets of silicate tetrahedra 
without metal ions between the sheets. Thus the sheets are bonded only by 
London polarization forces. The latter are particularly weak because silicate 
tetrahedra have relatively small polarizabilities. 

 Talc is a hydrated magnesium silicate, Mg 6 (Si 8 O 20 )(OH) 4 . It is a layerd com-
pound like mica. One layer of its crystal structure is shown schematically in 
Figure  11.3 . Such layers are stacked up like playing cards in real crystals. Notice 
that the top and bottom of the layer consist of slicate tetrahedra with oxygen 

    Figure 11.2     Burgers displacement in quartz.  
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atoms at the very top and bottom. Thus the layers have no chemical bonds 
between them. This is why talc shears so easily.   

 Mica and other layered minerals differ from talc because metal atoms lie 
between their layers producing some chemical bonding. Also, their layers are 
usually stronger because Al replaces (partially or fully) the central Mg layer 
of Figure  11.3 .   

  11.3   CUBIC OXIDES 

  11.3.1   Alkaline Earth Oxides 

 Perhaps the most simple crystals in this class are the alkaline earth oxides. 
They are II – VI compounds and have rocksalt crystal structures. Data for their 
hardnesses versus their bond moduli (optical band gaps per molecular volumes) 
are displayed in Figure  11.4 .   

 A similar linear dependence is found for their reciprocal molecular volumes 
which are proportional to their polarizabilities,  α . Thus H is expected to be 
proportional to 1/ α  and indeed it is (Dimitrov and Komatsu,  2002 ). See 
Figure  11.5 . Furthermore, since their shear moduli C 44  are proportional to 1/ α  
(Gilman,  1997 ), the graph also indicates that their hardnesses are proportional 
to their shear moduli (Singh et al.,  2007 ).   

 In addition, it has been found that the hardnesses of these simple oxides 
are proportional to their heat of formation densities (that is, their heats of 
formation divided by their molecular volumes). Thus, the hardnesses of these 

    Figure 11.3     Schematic crystal structure of one layer of talc. Such layers are stacked 
to make the complete structure. The large and medium open circles represent oxygen 
atoms. The cross - hatched large circles represent hydroxyls (OH). The small open circles 
represent magnesium atoms (Mg); and the cross - hatched small circles represent silicon 
(Si) atoms.  Figure is reproduced from Bragg, Claringbull and Taylor  (1965)  .  
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compounds are consistent with their other physical properties and with the 
idea that chemical bonding strengths determine hardness.  

  11.3.2   Perovskites 

 Perovskites are compounds of the ABC 3  -  type where C is often oxygen, but 
not always. Figure  11.6  shows two versions of the perovskite crystal structure 

    Figure 11.4     Hardness of alkaline earth oxides vs. bond moduli.  
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    Figure 11.5     Same as Figure 11.4 with H versus reciprocal polarizabilties.  
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of the prototype CaTiO 3  compound. The given cubic structures are ideal ones. 
Often the real structures have small deviations from cubic ones. The top sche-
matic image shows the  “ textbook ”  unit cell, while the bottom image is intended 
to clarify the structure by showing the octahedral cages explicitly in an extended 
unit cell. In both cases, the large gray circles represent the Ca ions; the black 
circles represent the Ti ions; and the open circles represent oxygen.   

 The most abundant of all minerals in the interior of the earth is (Mg,Fe)SiO 3  
perovskite. It constitutes greater than seventy percent of the lower mantle, 
so it is of great importance to geophysics. At room temperature the hardness 
of MgSiO 3  is VHN   =   1800   kg/mm 2  and its Chin - Gilman parameter is 0.01. 

    Figure 11.6     Views of perovskite crystal structure. Top — conventional cubic unit cell: 
white circles   =   oxygen; black circle   =   transition metal; gray circles   =   alkali or alkaline 
earth metal. Bottom — extended unit cell to show the cage formed by the oxygen octa-
hedra. Adapted from Bragg et al.  (1965) .  
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The latter indicates that the dominant bonding type is covalent. This was also 
observed for CaTiO 3  and BaTiO 3 , both of which have the perovskite crystal 
structure, but are considerably softer than MgSiO 3 . The Mg perovskite is about 
twice as hard as crystobalite (quartz). However, hydration converts MgSiO 3
to talc, which is very soft. 

 The perovskite crystal structure is exhibited by a large number of com-
pounds because numerous metals can form the octahedral sub - units, and other 
metal ions can lie between the sets of eight octahedra. The main constraint is 
on the sizes of the ions that can be chosen to fi t compactly together. 

 It may be apparent from studying the perovskite structure that it is likely 
to exhibit quite anisotropic plastic (hardness) behavior, and it does. The 
primary glide plane is (110) and the glide direction is 〈 1 – 10 〉 . 

 Some perovskites are widely used as piezo - transducers, BaTiO 3  for example, 
and lead zirconate (PbZrO 3 ) which is a well - known ferroelectric material 
sensitive to stresses. Also, some perovskites are good pyro - transducers; that is, 
heat causes electric polarization of them. 

 If Fe atoms occupy the  “ B ”  sites (gray in the fi gure), they may be ferromag-
netic, and known as ferrites, although many of the latter have a different 
structure, that of magnetite. 

 Electronegative metals such as Na in the  “ B ”  sites may lead to high electri-
cal conductivity as in the tungsten  “ bronzes ”  (NaWO 3 ). 

 The hardnesses of some perovskites are given in Table  11.1  (based on the 
data of Yamanaka et al.,  2004   ). The table shows that these perovskites are 
moderately hard and the third column which lists their Chin - Gilman parame-
ters indicates that they are predominately ionically bound.   

 The dependence of hardness on the valence electron densities is illustrated 
by Figure  11.7 .    

  11.3.3   Garnets 

 Garnets are important gems, abrasives, microwave systems components, mag-
netic bubble memories, and laser hosts. For the latter, yttrium aluminum garnet 
is the most important. It also plays an important role in aircraft turbines where 
it forms a protective coating on the turbine blades. 

 The garnet structure has high overall symmetry (cubic) but a complex 
structure (Bragg and et al.,  1965 ). The prototype is the mineral Grossularite 

 TABLE 11.1    Cubic Perovskites 

      G (GPa)    VHN (GPa)    VHN/G  

  BaUO 3     46    5.5    .12  
  BaZrO 3     103    5.0    .05  
  BaMoO 3     94    3.2    .03  
  SrTiO 3     99    7.8    .08  
  SrMoO 3     70    5.5    .08  



(Ca 3  Al 2  Si 3  O 12 ) in which silica tetrahedra and aluminum octahedra are linked 
together so that sets of eight oxygen ions form quasi - cubic cells with calcium 
ions at their centers (Figure  11.8 ). The overall cubic unit - cell contains eight 
formula units (80 atoms) and has a cell parameter of 11.82    Å .   

  11.3.3.1   ( Y  3  A  l  5  O  12 ) —  YAG        Most garnets are silicates, whereas yttrium 
aluminum garnet (YAG) is an aluminate. In YAG, both the tetrahedral and 
the octahedral holes of the garnet structure are occupied by Al - ions and the 
quasi - cubic holes are occupied by Y - ions. 

 At room temperature the hardness of YAG is about VHN   =   1700   kg/mm 2 . 
This is considerably harder than YIG (yttrium iron garnet) at 1200   kg/mm 2 , or 
GGG (gadolinium gallium garnet) at 1350   kg/mm 2  (Sirdeshmukh et al.,  2001   ). 
However, the outstanding aspect of the hardness of YAG is its persistence at 
high temperatures. It is the hardest of all oxides at 1300    ° C, about 850, com-
pared with 600 for chrysoberyl (BeAl 2 O 4 ), and 250 for sapphire (Al 2 O 3 ), all in 
kg/mm 2 , (Gilman,  2004 ). See Figure  15.1 . 

 The intrinsic energy band - gap of YAG is about 6.6   eV., and the Burgers 
displacement is about half the unit cell size, or 6    Å . Then, if a kink volume is 
taken to be 6    ×    3    ×    3   =   54    Å  3 , the bond modulus is 0.11   eV/ Å  3 , or 1800   kg/mm 2 . 
Given how little is known about dislocation motion in garnet, this agreement 
with the room temperature hardness value is largely fortuitous.    

    Figure 11.7     Dependence of the hardnesses of some transition metal - rhodium - boron 
perovskites on their d - electron densities.  
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  11.4   HEXAGONAL (RHOMBOHEDRAL) OXIDES 

 In most oxides, the oxygen atoms are present as close - packed layers 
stacked either to produce cubic symmetry or hexagonal symmetry. Some of 
the cubic cases have already been discussed. Now some hexagonal cases will 
be considered. 

  11.4.1   Aluminum Oxide (Sapphire) 

 The crystal structure of Al 2 O 3  consists of approximately close - packed oxygen 
atoms stacked in an ABABAB type of sequence (Bragg et al.,  1965 , p.96). 
Between each pair of layers, two - thirds of the octahedral interstices are occu-
pied by Al atoms. As a result the pattern repeats after every six layers of 
oxygen, so the c - axis is 13    Å  long. Another feature of the structure is that 
groups of three oxygens form common faces of two adjacent octahedra. In 
each of these subgroups two Al atoms are linked as illustrated in Figure  11.9 . 
The Al – Al distance is about 2.76    Å  which is somewhat smaller than the spacing 
in the metal, 2.86    Å , or about 3.5 percent smaller.   

 At low temperatures, Al 2 O 3  is hard and brittle, but it can be plastically 
deformed at high temperatures. The primary glide plane is the basal (0001) 
plane, and the Burgers displacement at low temperatures is 5.84    Å . When 
the Al atoms become mobile at high temperatures this shortens to about 
2.76    Å . 

 The hardness of Al 2 O 3  is VHN   =   2700   kg/mm 2  and its rms. shear stiffness is 
366   GPa so its Chin - Gilman parameter is 0.074. This suggests that its chemical 
bonding is a combination of covalent and ionic bonding. 

    Figure 11.8     Shared faces of oxygen octahedra in the Al 2 O 3  crystal structure and 
related oxides. This generates the chemical stoichiometry and places pairs of Al atoms 
in close proximity.  
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 In order for a kink on a dislocation line to move it must shear (destroy) 
Al 2 O 3  subunits of the crystal structure. This requires approximately the heat 
of formation,  Δ H f  of Al 2 O 3  which is 402   kcal/mol   =   17   eV/molecule (Roth 
et al.,  1940 ). The work done by the applied shear stress must supply this 
energy. This is about  τ b 3  so the shear stress required is about 13.7   GPa, and 
the hardness, H, is about twice this, or 27.4   GPa, which is close to the observed 
hardness of 27   GPa. 

 It may be concluded that the hardness of Al 2 O 3  is determined by the 
strength of its chemical bonds. This is probably also the case for other A 2 B 3  
oxides, such as those with A   =   Fe, Cr, Ti, Nb, Y, etc.  

  11.4.2   Hexaboron Oxide 

 Because of its relatively loosely bound outermost electron, and its small size, 
boron reacts readily with other atoms (including itself) to form a variety of 
crystal structures. The B – B bond is only about 12 percent longer (1.75    Å ) than 
the very strong C – C bond (1.54    Å ). It not only forms very hard compounds 
with carbon and nitrogen, but also with oxygen. 

    Figure 11.9     Arrangementt of ions in silicate garnet (grossularite). Showing tetrahe-
dral, octahedral, and quasi - cubic groups. After Geller  (1967) .  
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 The structure of oxygen hexaboride illustrates the fl exibility of boron. In 
this case, the boron atoms form iscosahedra (12 faces) instead of octahedra 
(eight faces). This requires a rhombohedral (hexagonal) array of the oxygen 
atoms and the icosahedra. Figure  11.10  shows the arrangement in one layer 
of this structure. Two other layers have the same form but are rotated 60    °  
relative to one another, and the fourth layer repeats the position of the fi rst 
layer.   

 Good quality OB 6  crystals can be grown at high pressures and tempera-
tures from a fl ux. For an indenter loading force of 1N, their VHN is 4500   kg/
mm 2  which is only six percent less than the 4800   kg/mm 2  measured by the same 
authors for cubic BN. It is about 30 percent greater than values measured for 
sintered compacts of polycrystalline oxygen hexaboride. 

 The oxygen atoms lie about 3.1    Å  apart. This is much larger than the 1.3    Å  
in free oxygen molecules, so there is essentially no bonding between the 
oxygen atoms. On the other hand, the O – B separations are only 1.43    Å . Using 
this as the diameter of the bond, volume   =   1.53    Å  3 , and fi ve valence electrons 
(three for B and two for O) the VED is about 1.96   elect./A 3  which is only about 
fi ve percent less than the VED (2.07   elect./A 3 ) of the C – C bond. This may 
account for the great hardness of OB 6 .   

    Figure 11.10     Crystal structure of oxygen hexaboride showing one layer of the hex-
agonal structure.  



  11.5   COMPARISON OF TRANSITION METAL OXIDES WITH 
 “ HARD METALS ”  

 In the series TiB 2 , TiC, TiN, TiO, the hardness gets progressively smaller. 
This is illustrated in Figure  11.11  for two of the transition metals, Ti and 
Zr, but is also a trend for other ones. The trend is related to the decreasing 

    Figure 11.11     Comparison of the hardnesses of Ti and Zr compounds.  
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    Figure 11.12     Dependence of the hardnesses of titanium carbide, nitride, and oxide on 
their valence electron densities (VEDs).  

4000

3000

2000

1000

0
0.3 0.32 0.34 0.36 0.38 0.4

r = 0.98

TiC

TiN

TiO

VED (val elect. / mol. vol.)

V
H

N
 (

k
g
./
s
q
. 
m

m
.)

COMPARISON OF TRANSITION METAL OXIDES WITH “HARD METALS”  155



156 OXIDES

electro - negativity of the non - metal atoms which decreases their tendencies to 
transfer electrons to the metal atoms in the various compounds.     

 Three of these compounds have cubic symmetry, while TiB 2  has hexagonal 
symmetry. Since they are metallic, bond moduli cannot be defi ned for them, 
but valence electron densities can be. The hardnesses of the cubic titanium 
compounds depend linearly on their VEDs; the numbers of valence electrons 
are (4   +   4   =   8)TiC, (4   +   3   =   7)TiN, and (4   +   2   =   6)TiO. The linear dependence 
is shown in Figure  11.10 . A similar linear dependence on their C 44 s is also 
found (Figure  11.12 ).    
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  12.1   INTRODUCTION 

 In molecular crystals, there are two levels of bonding: intra — within the mole-
cules, and inter — between the molecules. The former is usually covalent or 
ionic, while the latter results from photons being exchanged between mole-
cules (or atoms) rather than electrons, as in the case of covalent bonds. The 
hardnesses of these crystals is determined by the latter. The fi rst quantum 
mechanical theory of these forces was developed by London so they are 
known as London forces (they are also called Van der Waals, dispersion, or 
dipole - dipole forces). 

 There are two general cases of dipole - dipole forces: those between mole-
cules in which the distribution of electronic charge is centrosymmetric and 
those in which it is not. In the fi rst case, there are no permanent electrical 
dipoles, whereas there is a permanent dipole if the charge distribution is non -
 centro - symmetric. When permanent dipoles are not present, there are never-
theless fl uctuating dipoles as a result of atomic vibrations. These are always 
present because of zero - point motion. At temperatures greater than 0    ° K, 
thermal energy further excites the molecular vibrational modes which create 
fl uctuating electric dipoles. 

 As molecular dipoles vibrate, they emit photons which excite vibrations in 
nearby molecules. In turn, these molecules emit photons which interact with 
the initiating molecule. In this way, the molecules interact by exchanging 
photons. Again there are two modes. In one case, the vibrations of the mole-
cules occur in phase with one another. In the second case, they interact out of 
phase. The energy of the system is lower when the vibrations are in phase, so 
this case creates attractions between the molecules, while the out - of - phase 
case creates repulsions. Since the energy of the in phase case is lower, the net 
effect is attraction. 

 Dipole - dipole forces are weaker than electrostatic forces, but they can 
represent a substantial fraction of monopole forces. They have important 
effects because they are predominantly positive. Therefore, they add up, and 
even though they decay rapidly with the distance between molecules, their 
sums remain signifi cant, leading to measurable adhesive forces between 
macroscopic solid bodies. 
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 The term  “ molecular crystal ”  refers to crystals consisting of neutral atomic 
particles. Thus they include the rare gases: He, Ne, Ar, Kr, Xe, and Rn. However, 
most of them consist of molecules with up to about 100 atoms bound internally 
by covalent bonds. The dipole interactions that bond them is discussed briefl y 
in Chapter  3 , and at length in books such as Parsegian  (2006) . This book also 
discusses the Lifshitz - Casimir effect which causes macroscopic solids to attract 
one another weakly as a result of fl uctuating atomic dipoles. Since dipole -
 dipole forces are almost always positive (unlike monopole forces) they add 
up to create measurable attractions between macroscopic bodies. However, 
they decrease rapidly as any two molecules are separated. A detailed history 
of intermolecular forces is given by Rowlinson  (2002) . 

 Molecules can link together in one dimension to form chains (threads), or 
in two dimensions to form membranes, or in three dimensions to form blocks. 
Hardness has meaning only for the last case. Long chains of molecules con-
stitute polymers and will be discussed in the next chapter. Small molecules 
formed of a few atoms are gases or liquids at room temperature, so hardness 
has no meaning for them. 

 The world of molecular crystals is vast, and because of their weak bonds 
their hardnesses are relatively small, so only a few of them will be discussed 
here. For a more comprehensive discussion of these materials, the reader may 
see the book by Schwoerer and Wolf,  2007 . 

 There is a rough correlation between the hardnesses and the cohesive 
energies of molecular crystals as shown by Roberts et al.  (1995) . These authors 
studied crystals of 11 pharmaceutical compounds and found a linear correla-
tion between their hardnesses and their cohesive energies. However, the data 
scatter substantially. The hardnesses range from about 1.0 (aspirin), through 
5.0 (sucrose), to 10.0 (anthracene) kg/mm 2 . 

 Trends in the hardnesses of molecular crystals are similar to those of inor-
ganic crystals (Stephens et al.,  2003 ). Thus, mixed crystals are harder than their 
pure components, crystals with foreign solutes are harder than pure crystals, 
and molecular crystals may be anisotropic.  

  12.2   ANTHRACENE 

 Aromatic compounds in the series, benzene, napthalene, anthracene, tetracene, 
etc., form crystals. However, benzene melts below room temperature. Naptha-
lene, although solid at room temperature, has a high vapor pressure. Therefore, 
the fi rst in the series whose crystals are stable enough at room temperature 
for extensive hardness studies is anthracene. 

 Molecules of anthracene consist of three shared quasi - hexagonal rings 
of carbon (14   C - atoms) plus ten H - atoms attached to ten of the carbons 
(Figure  12.1 ). In three dimensions the anthracene molecules have the shape 
of elongated tablets. They stack in crystals side - by - side in a staggered pattern 
to form sheets which pack together in herringbone arrays.   



 The hardnesses of the resulting crystals are relatively small, about 
10   kg/mm 2  (Vaidya et al.,  1997 ). Also, as might be expected from their layered 
structures, their hardnesses are quite anisotropic (Sasaki and Iwata,  1984 ). 

 Kojima  (1981)  discovered that a photo - plastic effect occurs in anthracene. 
It is largest for light of 430   nm. wavelength and is partially reversible. The effect 
probably results from a change in the polarizabilities of the anthracene mole-
cules caused by photo - excitation. This is expected to increase the cohesion in 
the crystals slightly. The magnitude of the effect is up to about ten percent. 

 Anthracene is hardened by about a factor of two by dissolving phenan-
threne in it (Vaidya and Shah,  2003 ), but the authors do not state the solute 
concentration.  

  12.3   SUCROSE 

 The molecular weight of sucrose (C 18 H 32 O 16 ) is about 504   g/mol so it is a 
relatively large but compact molecule. Crystals of it are aggregates of these 
globular molecules held together by London forces. They are brittle, but small 
plastic indentations can be made in them to yield an average hardness number 
of about 160   kg/mm 2  (Ramos and Bahr,  2007 ).  

  12.4   AMINO ACIDS 

 Amino acid molecules consist of an amino group (NH 2 ) combined with an acid 
carboxyl group (COOH), and an H atom, as well as a residual group, R. In 
biological systems there are twenty different R groups including aliphatic 
chains, aromatic loops, and some containing sulfur plus hydrocarbons. The 
most simple is glycine where R   =   H (Stryer,  1988 ). 

    Figure 12.1     Schematic series of aromatic polyacene molecules.  
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 Hardness data for only two amino acids were found in the literature. They 
are glycine and alanine. They are the smallest of the amino acids. Both consist 
of rather fl at tablet - like collections of atoms that form layered crystal struc-
tures in which the molecular sub - groups within the layers are held together 
by hydrogen bonds (Albrecht and Corey,  1939 ), and the molecules by London 
forces. Their hardnesses are: 

γ     −    glycine (H   =   29 kg/mm 2 )    −    K. Ambujan et al., Crys. Res. Tech.,  41 , 671 
(2006)

  l    −    alanine (H   =   120 kg/mm 2 )    −    L. Misoguti et al., Opt. Mater.,  6 , 147 (1966)    

 And their chemical compositions are: 

γ     −    glycine   =   C 2 NO 2 H 5
  l    −    alanine   =   C 3 NO 2 H 7

 The hardness value reported for alanine seems rather high, whereas the glycine 
value is typical for molecular crystals.  

  12.5   PROTEIN CRYSTALS 

 Proteins are poly - amino acids. The monomer acids combine when the carboxyl 
group of one amino acid reacts with the amino group of a neighbor. The former 
loses an OH, and the latter an H. These become H 2 O, and a  “ peptide bond ”  
forms as a link between each monomer pair yielding a poly - peptide. Since 
there are twenty amino acids in biological systems which can join together in 
any sequence and the chains can be short or very long, the number of protein 
molecules is almost limitless. Monolithic poly - peptides may also form of almost 
any length. 

 The hardness of only one type of protein crystal has been found in the 
literature. It is for lysozyme. This is an enzyme found in egg whites and tears. 
It destroys bacterial membranes. It is relatively small for a protein molecule, 
consisting of a chain of 129 amino acids folded into a globule with the 
volume    ≈    30,000    Å  3 . Its crystals are aggregates of these globular molecules 
held together by London forces (Stryer,  1988 ). 

 In an environment with high humidity lysozyme is quite soft with a hardness 
number of only VHN   =   2   kg/mm 2  at 295   K (Koizumi et al.,  2004 ). It softens at 
305   K to 1   kg/mm 2  and hardens to 2.7   kg/mm 2  at 285   K. 

 Glide bands are observed around hardness indentations in lysozyme so 
dislocations (with large displacements) are associated with its deformation. 

 A shear modulus of about 1   GPa has been measured for wet lysozyme. Thus 
its Chin - Gilman parameter is about 0.02 which is large compared with metals 
and small compared with covalent crystals.  



  12.6   ENERGETIC CRYSTALS (EXPLOSIVES) 

 An interesting class of molecular crystals are those that easily decompose 
exothermally; i.e., explosive crystals. Some form from small molecules such as 
lead azide [Pb(N 3 ) 2 ] and ammonium perchlorate (NH 4 ClO 4 ) and others form 
moderately large molecules such as RDX (cyclotrimethylenetrinitramine), 
and PETN (pentaerythritol - tetranitrate). 

 The Vickers hardnesses of a few energetic crystals are given in Table  12.1 .   
 Note that these hardness values are approximate because these crystals 

fracture very easily. The fracture surface energy of PETN is only 0.11   J/m 2

(110   erg/cm 2 ) (Hagan and Chaudhri,  1977 ). 
 The Chin - Gilman parameter for PETN where the shear modulus is known is 

about 0.036 which is consistent with other molecular crystals.  

  12.7   COMMENTARY 

 Molecular crystals come in too many varieties and mixtures of chemical 
binding for simple theories of their hardnesses to be feasible. This is aggra-
vated by their relatively low symmetries, making them quite ansotropic. Rough 
estimates of their hardnesses can be made if their shear moduli are known 
using the Chin - Gilman parameter. However, the shear moduli have been 
measured in only a few cases. 

 In general, molecular crystals are too soft for them to be of interest as 
structural materials. Also, they fracture readily. Because of their transparencies 
and non - linear properties some of them are of interest for optical applications, 
but most of them suffer from optical damage at low intensities of light.  
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  Crystal    VHN (kg/mm 2 )    Reference  

  NH 4 ClO 4     13    Elban and Armstrong, 1998  
  RDX    24    Hagan and Chaudhri, 1977  
  PETN    18    Amuzu et al., 1976  
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  13.1   INTRODUCTION 

 From a mechanical viewpoint, there are two broad classes of polymers: those 
that are thermoplastic (not cross - linked) and the thermosets (cross - linked). In 
the former case, molecular weight (length) is of considerable importance, but 
it is so large in the latter case that it no longer plays a role. Within the two 
broad classes atomic composition also varies. Thus, given the three parame-
ters — molecular weight, amount of cross - linking, and atomic composition — the 
properties of polymers vary over a very large domain almost continuously. 
This makes a description of their behavior extremely unwieldy. 

 Few, if any, polymeric materials have exceptional physical properties. Never -
 theless, by volume, they are the most widely used of any materials. This is 
because the raw materials used for making them are inexpensive, and 
especially because they are easy to convert into any desired shape. 

 Structural arrangements in polymers can be exceedingly complex. Crystals 
are rare, but not unknown. By fi rst growing monomer crystals of diacetylene 
molecules, and then photo - polymerizing them, large optical - quality polydi-
acety - lene crystals can be made, for example. 

 Because of their propensity for being disordered, polymeric solids are 
some - times called  “ organic glasses, ”  but some polymers are inorganic, so this 
is not a good practice. 

 Disorder in a polymer specimen can be converted into order simply by 
stretching it, by extruding it, or by carefully orienting the long molecules 
during its solidiifi cation. This strengthens it considerably in the dimension 
parallel to the unique axis. Similarly, strong membranes can be made by 
 “ blowing ”  polymeric tubes to cause stretching in two dimensions. In both cases 
the materials range from being somewhat to being very anisotropic. 

 Clearly, the hardnesses of thermoplastic polymers are not intrinsic. They 
depend on various extrinsic factors. Only trends can be cited. For example, as 
the molecular weight in polyethylene materials increases, they become harder. 
And, as the molecular aromaticity increases, a polymeric material becomes 
harder. Thus, higher molecular weight anthracene is harder than napthalene 
and more aromatic Kevlar is harder than polymethacrylate. 
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 There are, in general, two kinds of chemical bonding in polymers. Between 
individual molecules, the bonding consists of London ’ s dispersion forces, but 
within the molecules there are much stronger covalent bonds. Cross - links are 
covalent, so they strongly bond pairs of molecules locally. Therefore, materials 
with high densities of cross - links have much higher melting points and hard-
nesses than do thermoplastics. Also, their properties tend to be isotropic. 

 The variety of polymers seems endless. First of all, they can have various 
 “ backbones. ”  Not just carbon chains, but also chains of any elements in the 
block:    

  B    C    N    O  
      Si    P    S  
          As    Se  
              Te  

and mixtures of these elements along the lengths of chains. Second, the chains 
can have a multitude of lengths from very short to very long. Third, the chains 
can be cross - linked to form ribbons, tubes, membranes, and scaffolds. Fourth, 
residues of any imaginable size and shape can be attached on the sides of the 
chains. Fifth, metal atoms can be incorporated into the chains, as well as the 
residues. 

 Given the great variety outlined above, only some general trends for the 
hardnesses of polymers can be discussed here. For more detail regarding ther-
moplastic polymers, the reader is referred to Balt á , Calleja and Fakirov 
 (2000) .  

  13.2   THERMOSETTING RESINS (PHENOLIC AND EPOXIDE) 

 The fi rst widely used synthetic polymer was phenol formaldehyde (Bakelite). 
It is made by heating phenol (C 6 H 5 OH — hydroxybenzene) together with 
formalde - hyde (H 2 CO). These react to yield a three - dimensionally cross - linked 
polymer. To reduce the brittleness of Bakelite, it is usually fi lled with fi bers or 
platelets of an inert solid. It is a good electrical insulator, relatively hard, and 
thermally stable to a few hundred degrees Centigrade. Its hardness is 50 – 60   kg/
mm2  (Mott,  1956 ). 

 Epoxy resins (di - phenolic chains) are closely related to phenol formalde-
hydes and are widely used to make reinforced composites with glass or carbon 
reinforcing fi bers. Their monomers are cross - linked at lower temperatures 
than phenolic formaldehydes. Typical hardnesses for them are H v    =   4.4   kg/mm 2

(Olivier, et al.,  2008 ). 
 The hardnesses of a few other resins are:    

  Cellulose nitrate    12   kg/mm 2

  Vinyl resin    15  ″
  Polystyrene    20  ″



 These are approximate numbers because the sizes of indentations in them 
are time dependent, but the values do indicate that these materials are rela-
tively soft. 

 A widely used polymeric resin for making construction laminates (Formica), 
low - cost dinnerware, and so on, is melamine (C 3 N 6 H 6 ) formaldehyde. It is 
harder than phenol formaldehyde.  

  13.3   THERMOPLASTIC POLYMERS 

 The fi rst of the thermoplastic synthetic polymers to be developed was cellu-
loid, made by combining nitrated cellulose (pure cotton subjected to nitric 
acid) and camphor (C 10 H 16 O), a plasticizer. The motivation was a search for a 
replacement for the ivory used in making billiard balls. It became a commer-
cial product circa 1865, and is still used for making ping - pong balls. 

 Thermoplastics consist of long chains of monomer units. The bonding within 
the chains consists of strong covalent bonds, while the bonding between the 
chains consists of the relatively weaker Van der Waals (London) type. The 
resulting solids soften when heated to relatively low temperatures. They exhibit 
a variety of mechanical behaviors. Creep at relatively low temperatures is 
commonly observed for almost all of them, so their hardnesses are not quan-
titatively well - defi ned, although there are distinct qualitative differences. For 
example, it is quite clear that high density polyethylenes used for piping are 
harder than low density polyethylenes used for milk bottles. The former have 
VHNs    ≈    30   kg/mm 2 , while the latter have VHNs    ≈    80   kg/mm 2 . 

 In addition to the lengths of polymer molecules, the cross - sectional shapes 
have a major effect on their hardness and thermal stability. Aliphatics 
(paraffi ns, polyethylene, etc.) have the most simple cross - sectional shapes. 
Their simple and relatively symmetric shapes allow them to slide past on 
another readily via a process called  reptation  (de Gennes,  1990   ). As a result, 
linear polyethylene is relatively soft (Figure  13.1 ).   

 The cross - sectional shapes of Nylon chains have oxygen and nitrogen atoms 
protruding so they are less symmetric than polyethylene chains. Along with 

    Figure 13.1     Dependence of the hardness of linear polyethylene on its molecular 
weight.  Data from Balt á  - Calleja et al.,  (1990) .   
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other factors, this makes Nylon considerably harder than polyethylene, nearly 
ten times harder (VHN   =   80 – 90   kg/mm 2 ). 

 Chains that include aromatic rings (phenols, pyridines, etc.) are said to be 
polycyclic  and are stiffer, harder and more stable than aliphatic chains. Poly-
carbonate is an example, being hard enough for use in eyeglass lenses. An 
extreme example is Kevlar fi ber. 

 Cross - linking of the chains produces substantial increases in hardness and 
thermal stability. However, it also reduces toughness, that is, increases 
brittleness. 

 A general characteristic of polymers is that their hardnesses tend to be 
proportional to their elastic moduli, particularly their shear moduli (Flores 
et al.,  2000 ). However, the shear modulus is often anisotropic so an average 
value may not be an appropriate measure of hardness. The modulus for the 
plane of shear should be a better indicator.  

  13.4   MECHANISMS OF INELASTIC PLASTICITY 

 Inelastic deformation of any solid material is heterogeneous. That is, it  always
involves the propagation of localized (inhomogeneous) shear. The elements 
of this localized shear do not occur at random places but are correlated in a 
solid. This means that the shears are associated with lines rather than points. 
The lines may delineate linear shear (dislocation lines), or they may delineate 
rotational shear (disclination lines). The existence of correlation means that 
when shear occurs between a pair of atoms, the probability is high that an 
additional shear event will occur adjacent to the initial pair because stress 
concentrations will lie adjacent to it. This is not the case in a liquid where the 
two shear events are likely to be uncorrelated. 

 Correlated plastic deformation in polymers is very evident in the  “ necking ”  
of polymeric rods or fi laments. This is one form of inhomogeneous deforma-
tion. Experiments with Nylon fi laments, for example, have shown that necks 
in them behave quite similarly to the Lueders bands observed in steel (Dey, 
 1967 ). This strongly suggests that plastic deformation in Nylon is associated 
with the motion of dislocations. 

 Disclinations can be expected when shear occurs between two parallel 
polymer chains (Gilman,  1973 ). This has been postulated to account for anelas-
tic relaxation in some polymers at low temperatures. A general discussion of 
disclinations in polymers has been given by Li and Gilman  (1970) .  

  13.5    “ NATURAL ”  POLYMERS (PLANTS) 

 The most common of all natural polymers is  cellulose . It is ubiquitous in plant 
life in various molecular modifi cations and structural arrangements. Large 
quantities are found in the trunks, branches and leaves of trees as well as in 



grasses and other plants. Cellulose is a polysaccharide chain in which diglucose 
monomers are linked by oxygen atoms (Figure  13.2 ). The chains are somewhat 
ribbon - like so they pack together well and are held laterally to their neighbors 
by hydrogen bonds. Thus they form solid rigid masses. In wood, cellulose is 
embedded in a matrix of  lignocellulose  (a mixture of glassy  hemicellulose  and 
 lignin ). The lignin fraction is large (up to 30 percent) and is a complex highly 
branched polyaromatic molecule with a very high molecular weight. It makes 
an important contribution to the strength of wood and the transport of water 
through it.   

 The hardness of wood varies markedly from soft balsa to hard ironwood 
with pine, oak, and maple in between. It is measured either by determining 
the force needed to push a hard ball (diameter   =   0.444   in) into the wood to a 
depth equal to half the ball ’ s diameter (Janka hardness); or by the initial slope 
of the force  vs.  penetration - depth curve (Hardness modulus). Average values 
of Janka hardnesses for typical woods are listed in Table  13.1 . The data are 
from Green et al.,  (2006) , and are for penetration transverse to the tree axis. 
The values are for moisture contents of about ten percent. The fi rst set of fi ve 
items are  “ hardwoods, ”  while the second set are  “ softwoods. ”  To roughly 
convert Janka hardnesses to VHN multiply by 0.0045.    

    Figure 13.2     Schematic glucose dimer — the monomer of the cellulose polymer. The 
dimer consists of two 5 - carbon, 1 - oxygen rings linked by an oxygen bridge and a hydro-
gen bond so the rings lie in a plane, making the polymer resemble a ribbon. Two of the 
carbons in each ring have hydroxyl groups attached, two are connected to oxygen 
bridges and the fi fth one has an aldehyde group attached.  Adapted from Stryer 
 (1975) .   
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 Table 13.1       

  Wood    Janka hardness (lbf)  

  Hickory    2400  
  White ash    1600  
  Yellow poplar    400  
  Red oak    1100  
  Sugar maple    1800  
  Redwood    410  
  White pine    430  
  Douglas fi r    740  
  Southern pine    1200  
  Ponderosa pine    700  
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  13.6    “ NATURAL ”  POLYMERS (ANIMALS) 

 In the world of animals the most common polymer is  chitin . It is closely related 
to cellulose. The main difference is that its monomers contain amino groups 
(Figure  13.3 ). Chitin is the material that forms the  “ shells ”  of scorpions, crabs, 
lobsters, and shrimp as well as the wings of insects. Chitin is not a particularly 
hard material, but it is relatively tough. It is a polysaccharide since its building 
blocks are glucose, but it contains some nitrogen. This distinguishes it from 
cellulose, which is purely hydrocarbon.   

 The most common structural polymer in  mammals  is  collagen  which is 
composed of three helical strands of poly - aminoacids (polypeptides) with a 
high concentration of glycine (30 percent). Each of the helical strands is itself 
composed of a helical polypeptide molecule (Figure  13.4 ). Furthermore, the 
collagen microfi brils twist together to form macrofi brils. The hierarchy of 
twistings contributes to the compliance and toughness of connective tissues in 
animals (e.g., muscle membranes and tendons).    
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    Figure 13.3     Monomer of chitin. Similar to the rings of the cellulose monomer except 
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  14.1   INTRODUCTION 

 Glasses are defi ned here to be supercooled liquids, that is, liquids that have 
been cooled so quickly that they have not had time to crystallize before atomic 
movements in them became very slow. The electronegative elements with 
affi nity for two valence electrons (O, S, Se, and Te) can readily form chains of 
atoms and therefore relatively stable liquids which can be quenched to form 
glasses. Pure oxygen ’ s mass is too low to do this at normal temperatures, but 
if it is combined with Si, P, Al, and so on to increase its effective mass, it is an 
outstanding glass former. Silica (SiO 2 ) does not readily crystallize to form 
quartz, so it readily takes the form of a glass. Numerous other covalently 
bonded compounds do the same, both simple and complex ones. 

 The defi nition of a glass used here differs from materials without any atomic 
order made, for example, by condensing a vapor. Glasses made by supercool-
ing do have short - range order in them because the atomic structures of liquids 
are not random. Liquids usually have  “ association ”  in them, consisting of 
entities ranging from preferential pairing of atoms to long chains of atoms. 
Polymeric liquids are examples of the latter, but inorganic compounds also 
often form highly associated liquids. Examples are silicates, phosphates, and 
borates. 

 It is very diffi cult to cool pure metals and other pure elements fast enough 
to form glasses. However, metallic alloys can often be converted into glasses, 
particularly if they contain a mixture of small and large atoms such as iron 
and boron, or they are multi - component mixtures of metals that crystallize 
into more than one intermetallic compound (i.e., eutectic compositions). 
Thus, covalent chemical interactions of the atoms are important because they 
stabilize liquids and thereby inhibit crystallization. 

 High polymers do not readily crystallize because of their large lengths, so 
they are sometimes called  “ organic glasses. ”  However, there are many inor-
ganic polymers, so this is not accurate terminology. They have been discussed 
in the previous chapter. Figure  14.1  is a schematic comparison of dislocation 
lines in a crystalline and a glassy structure.    
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  14.2   INORGANIC GLASSES 

 General discussion of the properties of inorganic glasses may be found in the 
book by Doremus  (1994) , for example. 

 The hardnesses of ordinary glasses are comparable with those of quenched 
and tempered steels, ranging from about VHN   =   450 to 650   kg/mm 2 . Among 
the hardest inorganic glasses is fused silica at about 700   kg/mm 2 . This is con-
siderably softer than quartz (VHN    ≈    1200   kg/mm 2 ). The difference is partially 
accounted for by the fact that fused silica is about 20 percent less dense than 
quartz (SG   =   2.21 vs. 2.65). 

 There are so many compositions of glass that generalizations regarding 
their hardnesses are diffi cult to make. Some trends can be found. For example, 
high alumina glasses tend to be harder than silica glasses; high glass - transition 
temperatures correlate with high hardness; and so on. The trends suggest that 
the hardnesses depend on bond strengths as in other materials, but various 
other factors affect the reported values. The other factors include the load on 
the indenter, the size of the indentation, the time duration of the indentation 
process, and the environment of the indenter (i.e., humidity, etc.). Li and Bradt 
 (1992)  showed that the difference observed for indenters immersed in water 

    Figure 14.1     Schematic comparison of dislocation lines in a crystalline and a glassy 
structure. Dashed line indicates the center of a dislocation line. The vectors indicate 
the displacement of the atoms in the next level above the plane of the fi gure. At (a) 
the displacement (Burgers) vectors ln the periodic crystal have a constant value. At (b) 
the displacements in the glass fl uctuate in both magnitude and direction.  

(a) (b)



versus toluene is about 15 percent for the hardness of fused silica. These 
authors also tabulated data for fused silica that shows a spread from 378 to 
1330 (Ave.   =   690   kg/mm 2 ). 

 The susceptibility of hardness measurements of silica and silicate glasses to 
environmental factors is consistent with the effects of water on the deforma-
tion of quartz. The load effect and indentation size effect appear to be a result 
of the frictional forces at the indenter - specimen interfaces. 

 It is very diffi cult to obtain values for the intrinsic hardnesses of silicate and 
related types of glass. Therefore, no attempts at quantitative analyses will be 
made here. A semi - empirical method has been proposed by Yamane and 
Mackenzie  (1974)  based on the geometric mean of: bond strength relative to 
silica, shear modulus, and bulk modulus. For 50 silicate glasses it yields esti-
mates within ten percent of measured values, and for a few non - silicate glasses 
it is quite successful, as Figure  14.2  indicates.   

 The success of the Yamane and Mackenzie method reinforces the idea that 
bond strengths are the key to hardness in glasses. This indicates that to make 
harder glasses, strong bonds need to be part of the composition. Figure  14.3  
illustrates this for borosilicate optical glasses where the effect of the silica 
content on the hardness of the glass is shown when the remainder of the com-
position is B 2 O 3  and K 2 O in the ratio 5/3. This approach of adding strong bonds 
to increase hardness was also used by Makishima et al.,  (1983)    to make a high 

    Figure 14.2     Comparison of calculated and measured hardnesses of non - silicate glasses 
(after Yamane and Mackenzie,  1974 ).    
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hardness glass (1200   kg/mm 2 ) by increasing the nitrogen content to 18 
percent.   

 When silica glass is indented at room temperature (low relative to the 
melting point) a large part of the deformation at the indentation is a result of 
densifi cation rather plastic shearing (Neely and Mackenzie,  1968   ). This is anal-
ogous with the phase transformations that occur at indentations in covalent 
crystals (Chapter  5 ). In both cases, the initial structure is open since the initial 
coordination number of the atoms is only four. During densifi cation at hetero-
geneous locations, it can, in principal proceed to become six, eight, twelve, and 
slightly beyond. Some of the densifi cation may recover during unloading. 

 The hardnesses of several glasses have been shown by Prod ’ homme  (1968)  
to correlate with their viscosities at room temperature (Figure  14.4 ). The vis-
cosities were estimated by extrapolation from measured values at elevated 
temperatures because they were too high to measure at room temperature. 
The fi gure is a semi - logarithmic plot so the hardnesses increase slowly with 
viscosity. The rank - order is as expected with silica being the hardest, followed 
by the high boron glasses, then the ordinary crowns, and the soft Selinium at 
the bottom. No rationalization of the exponential dependence comes to 
mind.   

 A similar connection between hardness and glass viscosity is indicated in 
Figure  14.5  where hardness is plotted against softening temperature (the tem-
perature at which the viscosity becomes 10 11  Poise). Since the correlation 
coeffi cient is 0.92, the linear relationship is reasonably good.    

    Figure 14.3     Effect of silica content on the hardness of borosilicate optical glass. The 
ratio of B 2 O 3  to K 2 O is 0.54 in these glasses.  The data are from Schmidt and Reichardt 
 (1986) .   
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    Figure 14.4     Relationship between hardnesses of various inorganic glasses and their 
viscosities.  Data are from Prod ’ homme  (1968) .   
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    Figure 14.5     Hardnesses of optical glasses  versus  softening temperatures at which their 
viscosities become approximately 10 11  Poise. A few of the points are labeled with their 
names.  Data from Bastick  (1950) .   
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  14.3   METALLIC GLASSES 

 In multi - component liquids, stabilization of the liquid is revealed by the forma-
tion of eutectics where the freezing temperature is suppressed. In such liquids, 
the atomic species (say A and B) are not distributed at random. There are 
more associated AB pairs (or other clusters) than expected for a random dis-
tribution. As a result in binary metal - metalloid alloys, such as Fe - B, the low 
melting - point eutectics occur at preferential compositions. The most common 
of these is at about 17 at. % B  , or an atom ratio of one B for fi ve Fe atoms 
(Gilman,  1978 ). This suggests that clusters of metal atoms surrounding 
metalloid atoms form (trigonal bipyramids). These probably share corners, 
edges, and faces. 

 Metal - metalloid alloys when cooled fast enough become produce glasses. 
The required cooling rates are of the order of 10 6     ° C/sec. These rates are 
achieved using cold copper quenching - wheels to make ribbons and sheets. At 
lower cooling - rates multi - component mixtures of several transition metals 
may form glasses. These are sometimes called  “ bulk glasses ”  (Greer and Ma, 
 2007 ), but this is a special defi nition of the word  “ bulk. ”  

 The hardnesses of metallic glasses vary with composition and temperature. 
The hardness is determined by the mobilities of dislocations in them (Gilman, 
 1968 ). 

 It has sometimes been argued that since glasses do not have periodic struc-
tures, plastic deformation in them is not mediated by dislocations. Then, since 
shear deformation in them cannot occur concertedly because not enough force 
is available, it is further argued that plastic deformation occurs through diffu-
sive processes. As a matter of fact, however, fl ow is observed to occur much 
too rapidly in many of them for diffusion to be in control at temperatures 
below the glass - transition temperature. The rapidity of the fl ow is indicated by 
the fact that  “ tin cry ”  can readily be heard in several glasses while they are 
being deformed. The crying noise indicates the formation of glide bands within 
fractions of milliseconds (i.e., at nearly the speed of sound). This has been 
confi rmed by systematic studies of acoustic emission from glasses being 
deformed (Vinogradov and Khonik,  2004 ). 

 On the surfaces of polished metallic glasses, very sharp, distinct offsets are 
observed at room temperature, indicating large and highly localized deforma-
tion that must be associated with the propagation of dislocations (Pampillo, 
 1972 ). The experimental observations have been reviewed by Li  (1976) . 

 Crystals have played a dominant role in the development of experimental 
knowledge about dislocations. Thus, it is often forgotten that the concept of 
dislocations was developed within the theory of continuous elastic solids. The 
very name was coined by A. E. H. Love, an elastician (Love,  1944 ). Therefore, 
dislocations need not have fi xed displacement vectors. 

 In glasses, dislocation lines are the boundaries between plastically sheared 
areas, and material in which plastic shear has not yet occurred (Gilman,  1968 ). 
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These lines do not have displacement vectors with single valued magnitudes 
or directions, as are found in crystals. Their displacement vectors (Burgers 
vectors) fl uctuate with magnitudes that are narrowly distributed around the 
 “ mesh size ”  of the structure. This is because the elastic energy depends on the 
square of the displacements across dislocation lines. Otherwise the force (i.e., 
the work) needed to cause the shear becomes very large (Chapter  4 ). When 
shear occurs locally, the probability that a subsequent shear will occur adjacent 
to it is much larger than that it will occur at some unrelated place. Thus cor-
related plastic shear activity tends to occur at dislocations in both periodic 
(crystal) structures, and in nonperiodic structures (glasses, granular media, 
etc.). In the latter case, suppose the characteristic size of the microstructure is 
 Δ  (the shear displace - ments), and the fl uctuations in the shear displacements 
are  ±  δ . Then, since the elastic part of energy of a dislocation is proportional 
to the square of the displacement, ( Δ     ±     δ ) 2 , the ratio of the elastic energy 
with the fl uctuations to the energy without fl uctuations is [1   +   ( δ / Δ ) 2 ]. Thus, 
fl uctuations as large as 30 percent cause only a 10 percent increase in the 
elastic energy. 

 The average value of  Δ  must be conserved over long distances to minimize 
both the elastic energy and the chemical (core) energy. Also, there will be little 
tendency for a dislocation line to remain in a single plane. It will tend to follow 
the plane of maximum shear stress. This is observed experimentally. 

  14.3.1   Hardness — Shear Modulus Relationship 

 The stress needed to move a dislocation line in a glassy medium is expected 
to be the amount needed to overcome the maximum barrier to the motion 
less a stress concentration factor that depends on the shape of the line. The 
macro - scopic behavior suggests that this factor is not large, so it will be assumed 
to be unity. The barrier is quasi - periodic where the quasi - period is the average 
 “ mesh ”  size,  Δ  of the glassy structure. The resistive stress, initially zero, rises 
with displacement to a maximum and then declines to zero. Since this happens 
at a dislocation line, the maximum lies at about  Δ /4. The initial rise can be 
described by means of a shear modulus, G, which starts at its maximum value, 
G 0 , and then declines to zero at  Δ /4. A simple function that describes this is, 
G   =   G 0  cos (4 π x/ Δ ) where x is the displacement of the dislocation line. The 
resistive force is then approximately G(x)  Δ  2 , and the resistive energy, U, is:

    U G x dx G= ( ) =∫0
2

0

4

0
34 4Δ Δ Δ

Δ
cos π π     (14.1)   

 The work, W, done by the applied shear stress,  τ , is approximately W   =    τ  Δ  3 . 
Equating U and W yields  τ    =   G 0 /4 π . Then, since  τ    =   Y/2, the yield stress Y is 
given by Y    ≈    G 0 /2 π . 

 Metallic glasses are almost elastic - perfectly plastic, so indentations in them 
are limited by the critical shear stress, not by strain - hardening as in crystalline 
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metals. Therefore, their hardness numbers are expected to be H    ≈    G 0 /2 π . 
This is just what is observed (Figure  14.5 ). The fi gure shows data for various 
glasses (mostly metal - metalloid ones) as a function of their shear moduli 
(Davis et al.,  1994 ). 

 For a variety of transition metal glasses, the hardness - shear modulus correla -
 tion is shown in Figure  14.6  (Johnson and Samwer,  2005 ). Here the hardness 
data were derived from  “ yield stresses ”  using the ratio of about three that has 
been observed by Stoica et al.  (2005) . The variation is linear and it agrees 
quantitatively with the simple model that led to Equation  14.1 . The average 
value of H/G is 1/2 π  for the data of Figure  14.6 . Thus for both metal - metalloid 
and transition - metal glasses, the Chin - Gilman parameter averages 0.16. This 
suggests that the chemical bond type in both cases is covalent. This further 
suggests that glass - forming liquids are stabilized by short - range covalency 
between hetero - atom pairs (Figure  14.7 ).     

 Figure  14.8  shows how the hardness varies with the boron content of FeB 
glasses. The variation is nearly linear over the glass forming range.   

 The highest hardness, 1250   kg/mm 2  (12.5   GPa) in Figure  14.5 , corresponds 
to a yield stress of about 600,000   psi. which is similar to that of heavily 
cold - drawn steel. This hardness is about that expected from the strength of 
FeB chemical bonds. The enthalpy (heat) of formation,  Δ H f , of FeB is about 
70   kJ/mol.   =   0.73   eV. while the molecular volume is about 9.6    Å  3  so the atomic 
shear strength is expected to be about  Δ H f /2V m    =   6   GPa. Then the expected 
hardness is about 1800   kg/mm 2 , which is not far from the observed value. Thus, 
the barriers to dislocation motion appear to be FeB bonds.   Note: this hardness 
is about six times larger than that of the hardest glasses composed only of 

    Figure 14.6     Hardnesses of metallic glasses vs. their elastic shear moduli.  Data from 
Davis et al.,  1994 .  The glass compositions are: Cu 68 Zr 32 , Fe 40 Ni 38 Mo 4 B 18 , FeB (various). 
The line in the graph has a slope of G/2 π .  
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transition metals (no metalloid atoms). This ratio is similar to the difference 
in the bond strengths between metal - metalloid and metal - metal interactions. 

 Two outstanding properties of FeB metallic glasses are their low magnetic 
permeabilities and their low acoustic attenuations. The former results from 
their lack of magnetic anisotropy and has led to their use in power transform-
ers, theft detectors, and various electronic devices. The latter results from the 
very low dislocation mobility in them.  

    Figure 14.7     Hardesses of transition metal glasses  vs.  their shear moduli. Representa-
tive compositions are indicated by numbers corresponding to the list on the right in 
the fi gure.  
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    Figure 14.8     Effect of boron concentration on the hardnesses of  FeB  glasses.    
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  14.3.2   Stable Compositions 

 Metallic glass compositions based on Fe and Ni are thermally stable only up 
to a few hundred degrees where they begin to fl ow readily and devitrify. 
However, they can be based on more refractory metals (e.g., Mo 60 Fe 20 B 20 ), and 
are then stable to temperatures above 900    ° C. Very high hardness can also 
be achieved, for example, Mo 40 Fe 40 B 20  glass has a hardness of 1950   kg/mm 2

(Ray and Tanner,  1980 ). 
 Also, by mixing several transition metals glass - forming liquids can be stabi -

 lized so relatively slow cooling - rates will form glasses. This allows thicker 
cross - sections to be obtained with glassy structures. Such glasses have come 
to be known as  “ bulk ”  metallic glasses.   
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  15.1   INTRODUCTION 

 There is a very large literature on the effect of temperature on hardness. 
A summary of it is that when materials get hot, they soften. However, in the 
opinion of this author, there is no satisfactory physical theory of this softening. 
It is commonly discussed in terms of the thermal activation theory. However, 
the latter applies to gas - phase chemical reactions (and less well to simple 
liquid - phase chemical reactions); that is, to reactions and interactions between 
discrete molecules. But the dislocation lines that determine hardness are not 
particles. Adjacent segments of the lines interact strongly. Also, the observed 
temperature dependence of hardness does not generally behave as if it is 
associated with well - defi ned (i.e., specifi c) activation energies. Finally, disloca-
tions move at very low temperatures close to 0    ° K where the thermal energy 
density is negligible compared with the strain energy density induced by an 
applied stress. 

 A major diffi culty with the thermal activation theory is that the applied 
stress is usually large during plastic indentation at low to moderate tempera-
tures. Therefore, the internal energy per atomic volume associated with the 
applied stress is large, indeed very large, compared with the thermal energy 
per atom. This means that the thermal vibrations act only as a perturbation of 
the effects of the applied stress. The gradients of the stress - induced chemical 
potential are the primary driving forces. Plastic deformation occurs even if the 
temperature is close to T   =   0    ° K. 

 Since there is no good physical framework in which the measured hardness 
versus temperature data can be discussed, descriptions of it are mostly 
empirical in the opinion of the present author. Partial exceptions are the ele-
mental semiconductors (Sn, Ge, Si, SIC, and C). At temperatures above their 
Debye temperatures, they soften and the behavior can be described, in part, 
in terms of thermal activation. The reason is that the chemical bonding 
is atomically localized in these cases so that localized kinks form along 
dislocation lines. These kinks are quasi - particles and are affected by local 
atomic vibrations. 

 Hardness - temperature graphs are quite variable from one material 
to another. There are no standard shapes of the curves even when the 
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temperatures are normalized by using ratios of the temperature values to 
melting points or to Debye temperatures (West brook,  1957 ). 

 Because the subject is largely empirical, no attempt at a systematic discus-
sion of it will be made here. Nevertheless, hot hardness is of great technological 
importance so a few selected topics will be discussed. Hot hardness limits the 
performance of many engineering devices, particularly heat engines. Among 
the latter are steam engines, internal combustion engines, and gas turbines, 
as well as rockets. The effi ciencies of these depends on the maximum operat-
ing temperature which is determined by on high temperature strength 
(hardness). 

 In almost all applications, hot hardness alone is not enough to defi ne useful 
materials. Corrosion resistance, particularly oxidation resistance, is also needed. 
The surfaces of all metals react with oxygen. Some form protective oxide coat-
ings, such as aluminum oxide and chromium oxide (stainless steel), but most 
do not. Therefore only a few pure metals are useful for making high tempera-
ture structures. Alloying is sometimes effective in markedly improving oxida-
tion resistance. Familiar examples are; stainless steel in which chromium 
additions to iron result in the formation of protective chromate surface coat-
ings. Another case, important for gas turbines, is the addition of aluminum to 
nickel to make nickel - based superalloys. The latter have the best known com-
bination of hot hardness and hot oxidation resistance of all metallic alloys.  

  15.2   NICKEL ALUMINIDE VERSUS OXIDES 

 Figure  15.1  compares the hot hardnesses of the intermetallic compound Ni 3 Al, 
which strengthens nickel - based alloys, and three oxides. It is apparent that the 
intermetallic compound, although hard, is not nearly as hard as the oxides 
which are ten times as hard at room temperature. Also, the oxides retain their 
hardnesses at high temperatures. At 800    ° C, the garnet (YAG) remains seven 
to eight times as hard as the Ni 3 Al and remains quite hard up to 1400    ° C, which 
is nearly the melting point of steel (1500    ° C). At 1200    ° C, yttrium aluminum 
garnet is the hardest of all known oxides.   

 Ni 3 Al is one of a very few intermetallic compounds that is ductile at room 
temperature. Additionally, it has the interesting property that between 25 and 
550    ° C it gets harder rather than softer. This  “ anomalous yielding ”  is not 
unique to this compound. Several other intermetallic compounds behave 
similarly. 

 Additional discussion of Ni 3 Al is given in Chapter  8 .  

  15.3   OTHER HARD COMPOUNDS 

 There are a number of intermetallic compounds that are hard at high tem-
peratures (Fleischer and McKee,  1993 ). A few examples are AlNb 2 , AlZr 2 , 



Ir 3 Ni 2 Nb 5 , Be 17 Nb 2 , and SiV 3 . However, they are not oxidation resistant, so they 
have limited usefulness. One that is harder than Ni 3 Al at 1150    ° C and has good 
ductility and oxidation resistance is AlRu (and AlRu with B). 

 Also metal - metalloid compounds tend to retain their hardnesses as 
temper - atures become elevated. These compounds have been discussed in 
Chapter  10 .  

  15.4   METALS 

 Figure  15.2  shows some typical hardness data for a typical metal (copper) as 
a function of temperature. It indicates that there are usually two regimes: one 
above about half the melting temperature and one below. Both tend to be 
exponential declines, so they are linear on semi - logrithmic graphs. The tem-
perature at which the  “ break ”  occurs is not strictly fi xed, but varies from one 
metal to another, with the purity of a metal, with grain size, and so on.   

    Figure 15.1     Comparison of the hot hardnesses of three strong oxides and the strong 
intermetallic compound, Ni 3 Al. Yttrium aluminum garnet is the hardest of all oxides 
at high temperatures.  
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 The two lines on graphs such as Figure  15.2  may each be described by 
equations of the form:

    H A B T= −( )exp     (15.1)  

where A and B are constants. Values of these constants have been determined 
for many metals by Westbrook  (1953) . When T becomes zero, Equation  15.1  
indicates that H   =   A so this constant is simply the limiting hardness at very 
low temperatures. It correlates roughly with the average shear moduli of the 
metals as might be expected. The slopes of the log H versus T lines yield values 
of the B constant. Westbrook found that these lie along a correlation curve 
when plotted against the reciprocals of the melting temperatures. Thus the 
slopes tend to be smaller the higher the melting temperature, but no simple 
interpretation of this has been given.  

    Figure 15.2     Log H plotted versus temperature for copper; a typical metal. The graph 
indicates the exponential decline of the hardness with increasing temperature, and the 
change in behavior at about half the melting point, T m .  
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  15.5   INTERMETALLIC COMPOUNDS 

 For compounds the hardness - temperature curves are similar to those for the 
pure metals. Semi - logarithmic graphs of the data show two straight lines with 
the  “ knees ”  at about half the melting temperatures. For a dozen aluminides, 
Petty  (1960)  shows this.  
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  16.1   INTRODUCTION 

 The concept of  “ chemical hardness ”  was originally developed as a measure of 
the stability of molecules. Its relationship to physical hardness and to solids is 
discussed here. Also, it is pointed out that shear moduli and polarizabilitites, 
as well as band gaps in covalent crystals, are related to it. 

 Chemical hardness is an energy parameter that measures the stabilities of 
molecules — atoms (Pearson,  1997 ). This is fi ne for measuring molecular stabil-
ity, but energy alone is inadequate for solids because they have two types of 
stability: size and shape. The elastic bulk modulus measures the size stability, 
while the elastic shear modulus measures the shape stability. The less 
symmetric solids require the full set of elastic tensor coeffi cients to describe 
their stabilities. Therefore, solid structures of high symmetry require at least 
two parameters to describe their stability. 

 The formal defi nition of the electronic chemical hardness is that it is the 
derivative of the electronic chemical potential (i.e., the internal energy) with 
respect to the number of valence electrons (Atkins,  1991 ). The electronic 
chemical potential itself is the change in total energy of a molecule with a 
change of the number of valence electrons. Since the elastic moduli depend 
on valence electron densities, it might be expected that they would also depend 
on chemical hardness densities (energy/volume). This is indeed the case. 

 Physical hardness can be defi ned to be proportional, and sometimes equal, 
to the chemical hardness (Parr and Yang,  1989 ). The relationship between the 
two types of hardness depends on the type of chemical bonding. For simple 
metals, where the bonding is nonlocal, the bulk modulus is proportional to the 
chemical hardness density. The same is true for non - local ionic bonding. 
However, for covalent crystals, where the bonding is local, the bulk moduli 
may be less appropriate measures of stability than the octahedral shear moduli. 
In this case, it is also found that the indentation hardness — and therefore the 
Mohs scratch hardness — are monotonic functions of the chemical hardness 
density . 

 One implication of these fi ndings is that chemical hardness is related to the 
band gaps of covalent crystals, consistent with its being related to the LUMO -
 HOMO gaps of molecules. Data indicate that this is indeed the case. Another 
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implication is that the chemical potential of a solid is, in general, a second 
order tensor that is related to the deformation tensors (strains) through the 
fourth order tensor of elastic coeffi cients. 

 The theory of chemical and physical hardnesses is useful because it unifi es 
understanding of various properties and it connects the behaviors of molecules 
with those of liquids and solids. 

 Stability is sometimes associated with the bulk modulus alone, but this is 
not valid because the bulk modulus of a liquid, and its corresponding solid, 
are nearly equal at the melting temperature, while their mechanical stabilities 
are very different. For example, take the case of aluminum. The bulk modulus 
of its liquid is about 0.3   Mbar, while that of its solid is about 0.7   Mbar, both 
measured near its melting point. On the other hand, the shear modulus of 
liquid aluminum is zero, while it is about 0.25   Mbar for solid aluminum.  

  16.2   DEFINITION OF CHEMICAL HARDNESS 

 Chemical potential,  μ , is another name for total internal energy. Convenient 
units for it are energy per mole. In terms of the work done on (PdV), and the 
entropy (S) of a gaseous or liquid substance, it may be written in differential 
form (Callen,  1960 ):

    d PdV TdSμ = −     (16.1)  

where: P   =   pressure; V   =   molar volume   =   (v/N); N   =   number of moles; 
T   =   temperature; and S   =   molar entropy. When T   =   0, ignoring the zero - point 
energy, this reduces to:

    d PdVμ =     (16.2)   

 For a solid this is more complex; P becomes the stress tensor,  σ  ij , so the work 
done is  σ  ij  dV. But,  σ  ij    =    Σ  kl  C ijkl   ε  kl , so:

    d C dVijkl ijkl ij klμ ε ε= −1 2 Σ     (16.3)   

 In general, C ijkl  is a 9    ×    9 tensor with 81 terms, but symmetry reduces this 
considerably. Thus, for the cubic crystal system, it has only three terms (C 1111 , 
C 1212 , and C 4444 ) and for an isotropic material only two terms remain: B   =   bulk 
modulus and G   =   shear modulus. A further simplifi cation is that the bulk 
modulus, B for the cubic system is given by (C 1111    +   2C 1212 )/3, and the two shear 
moduli are C 44  and (C 1111     −    C 1212 )/2. 

 Experimental data as well as density functional theory show that the 
ground - state properties of solids depend primarily on the densities of the 
valence electrons. Therefore,  μ  E  may be considered to be the  electronic 
chemical potential  (Pearson,  1997 ). Since  μ  E  denotes the energy per mole of 



electrons, and N is the number of electrons, if a change, dN, occurs while the 
number of positive nuclei,  β  remains constant, the energy change is:

    dU dE= + ( )μ ρ β     (16.4)   

 Therefore, if  β  doesn ’ t change, we have Figure  16.1 :

    Figure 16.1     The chemical hardness of an atom, molecule, or ion is defi ned to be half. 
The value of the energy gap between the bonding orbitals (HOMO — highest orbitals 
occupied by electrons), and the anti - bonding orbitals (LUMO — lowest orbitals unoc-
cupied by electrons). The  “ zero ”  level is the vacumn level, so I is the ionization energy, 
and A is the electron affi nity. (a) For  “ hard ”  molecules the gap is large; (b) it is small 
for  “ soft ”  molecules. The solid circles represent valence electrons.  Adapted from Atkins 
 (1991) .   
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    μ βE U N= ( )∂ ∂     (16.5)     

 In standard thermodynamics, N would be the number of molecules, and the 
chemical potential might be designated,  μ  T , which is the negative of the 
Milliken electronegativity, X M . This latter is the rate of change of the energy 
with changes in the number of electrons and is related to the ionization energy, 
I, and the electron affi nity, A. Thus:

    μ βE MX U N I A= − = ( ) ≈ − +( )∂ ∂ 2     (16.6)   

 That is, the Milliken electronegativity equals the slope of the U versus N 
 “ curve. ”  The apos - trophes refer to the fact that it is a pseudo - curve since it is 
only defi ned for integral num - bers of electrons. 

 The electronic chemical hardness,  η  E  is the curvature of the U versus N 
 “ curve. ”  Thus it is the second derivative of U with respect to N:

    η μβ βE TU N N= ( ) = ( )1 2 2 2∂ ∂ ∂ ∂ ,     (16.7)   

 Chemical hardness measures the resistance to a chemical change. This may 
be seen by considering a reaction between two molecules C and D in which 
electrons are transferred from D to C. Initially the two chemical potentials 
are:

   μ ηC C CX N= + 2 Δ  

   μ ηD D DX N= − 2 Δ   

 After the reaction has occurred the chemical potentials must become equal. 
Solving for  Δ N:

    ΔN C D C D= −( ) +( )χ χ η η2     (16.8)   

 Hence, the electronegativity difference drives the reaction, while the sum of 
the hardnesses resists the reaction.  

  16.3   PHYSICAL (MECHANICAL) HARDNESS 

 Yang, Parr, and Uytterhoeven  (1987)  have shown that chemical and mechani-
cal hardnesses (physical stabilities) are connected. Consider the isotropic case, 
and differentiate Equation  16.5  with respect to N:

    ∂ ∂ ∂ ∂μ N V N P N( ) = −( )( )2     (16.9)  

but the defi nition of the bulk modulus is:



    ∂ ∂P B V V T= − ( )α,     (16.10)  

differentiating this with respect to N:

    ∂ ∂ ∂ ∂P N B V V N T= − ( )α,     (16.11)  

setting N   =   one mole:

    ηP mBV=     (16.12)   

 So, the physical hardness density,  η  P/ V m    =   B. (In Parr ’ s notation, the indenta-
tion hardness, H (kg/mm 2 )   =   (M/ ρ )B, where ( ρ /M) is the number density of 
the atoms, but this does not agree very well with measured values, most solids 
being anisotropic.)  

  16.4   HARDNESS AND ELECTRONIC STABILITY 

 When atoms come together to form molecules, their orbitals combine in sym-
metric and antisymmetric pairs to form two principal sets of orbitals: those 
that bond the atoms and those that anti - bond. Pairs of electrons of opposite 
spin occupy the bonding orbitals which have a range of energies. The top of 
the range is called the HOMO level — highest occupied molecular orbital. The 
antibonding orbitals are of higher energy and also lie in a range, the bottom 
of which is called the LUMO level — lowest unoccupied molecular orbital. The 
two ranges are separated by an energy gap. Any electrons with enough energy 
to lie above the LUMO level weaken the bonding by exerting a pressure called 
the Schr ö dinger pressure. Thus the stability of a molecule is related to the size 
of the LUMO - HOMO gap. 

 To get an approximate expression for the chemical hardness, start with an 
expression for the electronic chemical potential. Let a hypothetical atom have 
an energy, U o . Subtract one electron from it. This costs I   =   ionization energy. 
Alternatively, add one electron to it. This yields A   =   electron affi nity. 
The derivative   =   electronic chemical potential   =    μ    =    Δ U/ Δ N   =   (I   +   A)/2. The 
hardness is the derivative of the chemical potential   =    η    =    Δ  μ / Δ N   =   (I    –    A)/2. 

 One more step provides an operational defi nition. The HOMO level lies, 
I   =   ionization energy, below the vacuum level, while the LUMO level lies, 
A   =   electron affi nity, below it. Thus, the chemical hardness lies midway in the 
gap and usually is given in units of eV. 

 The bonding in solids is similar to that in molecules except that the gap in 
the bonding energy spectrum is the minimum energy band gap. By analogy 
with molecules, the chemical hardness for covalent solids equals half the 
band gap. For metals there is no gap, but in the special case of the alkali metals, 
the electron affi nity is very small, so the hardness is half the ionization 
energy.  
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  16.5   CHEMICAL AND ELASTIC HARDNESS (STIFFNESS) 

 Equation  16.12  expresses a relation between  η  and B. This is not a universal rela-
tion, but it does apply to the sp - bonded elements of the fi rst four columns of the 
Periodic Table. Using chemical hardness values given by Parr and Yang  (1989) , 
and atomic volumes from Kittel  (1996) , it has been shown that the bulk moduli 
of the Group I, II, III, and IV elements are proportional to the chemical hardness 
density (CH/atomic volume) (Gilman,  1997 ). The correlation lines pass nearly 
through the coordinate origins with correlation coeffi cients, r   =   0.999. Thus 
physical hardness is proportional to chemical hardness (Pearson,  2004 ). 

 The Group IV elements also show a linear correlation of their octahedral 
shear moduli, C 44 (111) with chemical hardness density (E g /2V m ). This modulus 
is for for shear strains on the (111) planes. It is a measure of the shear stiff-
nesses of the covalent bonds. The (111) planes lie normal to the bonds that 
connect the atoms in the diamond (or zinc blende) structure. In terms of the 
three standard moduli for cubic symmetry (C 11 , C 12 , and C 44 ), the octahedral 
shear modulus is given by C 44 (111)   =   3C 44 /1   +   [4C 44 /(C 11     −    C 12 )]. Since the (111) 
planes have three - fold symmetry, they have only one shear modulus. The 
bonds across the octahedral planes have high resistance to shear which prob-
ably results from electron correlation in the bonds (Gilman,  2002 ).  

  16.6   BAND GAP DENSITY AND POLARIZABILITY 

 Since chemical hardness is related to the gaps in the bonding energy spectra 
of covalent molecules and solids, the band gap density (E g /V m ) may be substi-
tuted for it. When the shear moduli of the III – V compound crystals (isoelec-
tronic with the Group IV elements) are plotted versus the gap density there 
is again a simple linear correlation. 

 Another property that is related to chemical hardness is polarizability 
(Pearson,  1997 ). Polarizability,  α , has the dimensions of volume polarizability 
(Brinck, Murray, and Politzer,  1993 ). It requires that an electron be excited 
from the valence to the conduction band (i.e., across the band gap) in order 
to change the symmetry of the wave function(s) from spherical to uniaxial. An 
approximate expression for the polarizability is  α    =    β  (N/ Δ  2 ) where  β  is a 
constant, N is the number of participating electrons, and  Δ  is the excitation 
gap (Atkins,  1983 ). The constant,  β    =   (qh)/(2 π  2 m) with q   =   electron charge, 
m   =   electron mass, and h   =   Planck ’ s constant. Then, if N   =   1, (1/ α ) is propor-
tional to  Δ  2 , and elastic shear stiffness is proportional to (1/ α ). 

 It is simple to understand the connection between the shear modulus and 
 α . A sphere can be deformed into a prolate ellipsoid either by mechanical 
stress, or by an electric fi eld. The input work required is measured by G   =   shear 
modulus in the fi rst case and by  α  in the second case. Equating the input work 
needed in each case and solving for G, yields:

    G q r= ( )( )3 4 2π α     (16.13)  



where r   =   atomic (molecular) radius (Gilman,  1997 ). For metals,  α  is the 
atomic polarizability. For non - metals,  α  is derived from the dielectric constant, 
 ε (0), using the Clausius - Mossotti equation. Polarizability underlies much 
mechanical behavior, and depends only on size at constant valence electron 
number.  

  16.7   COMPRESSION INDUCED STRUCTURE CHANGES 

 There have been many studies of crystal structure changes in high pressure 
cells, and these are referred to as  “ pressure - induced ”  changes. However, this 
terminology is unfortunate since true hydrostatic pressure is rarely achieved 
experimentally. The cells have fi xed symmetry (shapes), but structure trans-
formations require symmetry changes, so it is not possible to maintain 
hydrostatic conditions during a phase transition when the symmetry of the 
specimen changes while that of the pressure cell does not. Also, it has been 
shown for covalently bonded crystals, that most of the deformation during 
compression - induced phase changes results from bond - bending rather than 
bond - shortening (Gilman,  1993   ). Thus the values reported for the critical 
 “ pressures ”  of structure changes are unlikely to be truly pertinent. 

 In relatively recent years, it has been found that that indentations made in 
covalent crystals at temperatures below their Debye temperatures often result 
from crystal structure changes, as well as from plastic deformation via disloca-
tion activity. Thus, indentation hardness numbers may provide better critical 
parameters for structural stability than  “ pressure cell ”  studies because inden-
tation involves a combination of shear and hydrostatic compression and a 
phase transformation involves both of these quantities. 

 The connection between hardness and a measure of the ease with which a 
crystal can change its shape is its reciprocal polarizability (as shown above). 
The softer the crystal, the greater its polarizability. The hardnesses have the 
dimensions of pressure, and the polarizabilities are derived from the dielectric 
constants through the Clausius - Mosottii equation. That is:

    α π ε εcm N= ( )( ) −( ) +( )[ ]3 4 1 1 2     (16.14)  

where  ε    =   dielectric constant, and N   =   number density of atoms (cgs units). 
Since 1/ α  is proportional to the energy band - gap, it is also proportional to the 
chemical hardness. 

 An implication of the connection with polarizability is that structural trans-
formations may occur when the external work done is just enough to equal 
E g  ( Δ V/V). That is, just enough to close the band - gap. This suggestion was 
originally made by Jamieson  (1963)   , and was supported by studies of Gilman 
 (1993)   . 

 An indication that hardness numbers are good indicators of structural sta-
bility is that they correlate quite well with critical transformation pressure 
values. This was shown in Gilman  (2007)    where theoretical values of critical 
pressures from Van Vechten  (1973)    are plotted along with VHN ’ s for most of 
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the III – V compounds. Theoretical values are used because they are internally 
more consistent than experimental values which depend on various conditions. 
Although some of the hardness numbers in the fi gure may not be accurate, 
the trend is very clear, and the correlation coeffi cient is high (r   =   0.997).  

  16.8   SUMMARY 

 It is shown that the stabilities of solids can be related to Parr ’ s  “ physical hard-
ness ”  parameter for solids, and that this is proportional to Pearson ’ s  “ chemical 
hardness ”  parameter for molecules. For sp - bonded metals, the bulk moduli 
correlate with the chemical hardness density (CHD), and for covalently 
bonded crystals, the octahedral shear moduli correlate with CHD. By analogy 
with molecules, the chemical hardness is related to the gap in the spectrum of 
bonding energies. This is verifi ed for the Group IV elements and the isoelec-
tronic III – V compounds. Since polarization requires excitation of the valence 
electrons, polarizability is related to band - gaps, and thence to chemical hard-
ness and elastic moduli. Another measure of stability is indentation hardness, 
and it is shown that this correlates linearly with reciprocal polarizability. 
Finally, it is shown that theoretical values of critical transformation pressures 
correlate linearly with indentation hardness numbers, so the latter are a good 
measure of phase stability.  
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  17.1   INTRODUCTION 

 Returning to a theme of Chapter  1 , one of the factors that limits the advance 
of technology is the hardness of materials; alias strength. It limits the mechani-
cal performance of many systems, such as: turbines, rocket engines, cutting 
tools, pressure vessels, energy storage devices, weapons, gyroscopes, aerospace 
structures, and the like. Thus there is strong continuing incentive to fi nd harder 
materials, or effective combinations of hardness and other properties. 

 A benchmark for hardness is diamond, the hardest known substance. Its 
nominal hardness is 100   GPa (VHN   =   10,000   kg/mm 2 ), but methods are known 
that may make it still harder. Based on this benchmark, materials with hard-
nesses between 20 and 40   GPa are said to be  “ very hard ” , while a material with 
hardness greater than 40   GPa is said to be  “ super - hard ” . The latter are very 
rare, and there is no true competitor for diamond. However, some property 
combinations make particular materials more useful than diamond in some 
applications. For example, cubic - BN is better for cutting iron - based alloys 
because it reacts chemically with Fe much less strongly than does the carbon 
of diamond. Therefore, its wear - rate is substantially less.  

  17.2   PRINCIPLES FOR HIGH HARDNESS 

 Hardness measures the resistance of a material to a permanent change of 
shape. That is, the resistance to shear deformation (not the resistance to a 
volume change). The precursor to a permanent shape change is a temporary 
elastic shape change, and a shear modulus determines this. Therefore, the fi rst 
necessity for high hardness is a high shear modulus. 

 It is worth noting what determines elastic resistance to shear. Both shape 
changes and volume changes are determined by the behavior of the valence 
electrons in materials, but in quite different ways. Volume changes affect the 
average distances between the electrons, and between the valence electrons 
and their associated positive nuclei. Shear changes have little, or no, effect on 
these average distances because small shears do not affect volumes. However, 
shear causes a shift in the centroid of the electrons relative to the nucleus. 



198  “SUPERHARD” MATERIALS

This induces polarization and is resisted by a restoring force. The restoring 
force is essentially the same as the force that resists electric polarization and 
is determined by the polarizability (Gilman,  1997 ). 

 In terms of polarizability,  α  the shear elastic modulus, G is given approxi -
 mately by:

    G q r≈ ( )( )3 4 2π α     (17.1)  

where q   =   electron charge, and r   =   radius of an equivalent atom. Here  α  is not 
an atomic polarizability, but is the local polarizability in a crystal where it is a 
tensor quantity. As was shown in Chapter  9 , the shear moduli of the alkali 
halides are inversely proportional to their polarizabilities. The latter are deter-
mined from their optical properties. 

 Note that in Equation  17.1 ,  α     ≈    4 π r 3 /3 so G    ≈    q 2 /r 4 . But, the bulk modulus, 
B is also proportional to q 2 /r 4 , so G is proportional to B (approximately). 
Therefore, B can be used as a preliminary screen in a search for materials with 
high values of G. 

 High shear moduli alone do not equate with high hardness. A second 
require - ment is low dislocation mobility (high Chin - Gilman parameter). In 
other words, high resistance to plastic deformation. This property is associated 
with highly localized chemical bonds (covalent bonding) rather than non - local 
bonding (ionic and metallic bonding). A good example is the case of pure 
osmium metal. 

 Among the metals of the Periodic Table, osmium has the highest bulk 
modulus (412   GPa), and shear stiffness constants of C 44    =   270   GPa and 
C 66    =   268   GPa. (Pantea et al.,  2008 ). The corresponding values for diamond are: 
B   =   433   GPa and C 44  (111)   =   507   GPa. Although the bulk modulus of Os is 
about 95% that of diamond, the indentation hardness is only about 3% of 
diamond ’ s hardness. In other words dislocations move readily in Os but not 
in diamond. 

 Dislocation motion can be impeded in many metals by introducing covalent 
bonds. A well - known case is that of titanium where TiB 2  is about 40 times 
harder than Ti alone. The B - atoms form covalent bonds. In the case of Os 
forming OsB 2  by adding B to the metal increases the hardness by about 
10 ×  (Cumberland,  2005 QQ), and for Re the ratio is larger; about 15 ×  (Chung 
et al.,  2007 ). 

 Other methods for impeding dislocation motion are the introduction of 
grain boundaries, and/or twin boundaries. While these impediments may 
increase the hardness, they are also likely to decrease the tensile strength.  

  17.3   FRICTION AT HIGH LOADS 

 Friction forces between indenters and specimens are signifi cant at all loads, 
but particularly for very hard specimens where the contact surfaces may 



 “ seize ”  if adsorbed gases get squeezed out of the contact zone. As discussed 
in Chapter  2 , the effect of friction becomes increasingly important for small 
indentations (high hardness values). This causes the  “ indentation size effect ” . 
Friction is, of course, dependent on the friction coeffi cient which depends on 
both surface roughness and contact pressure (Mueser,  2008 ). For high values 
of these the coeffi cient can considerably exceed unity, and approach indefi -
nitely large values. 

 Recent interest has developed in  “ nanocrystalline ”  aggregates which are 
apparently harder than their constituent crystals. However, the surfaces of 
such aggregates cannot be expected to be smooth; either geometrically or 
elastically. Therefore, being rough, they may have high friction coeffi cents, and 
the high values of hardness reported for them may be misleading. For diamond 
(Sumiya, et al.,  2004 ). For cubic BN (Dubrovinskaia et al.,  2007 ). 

 There is disagreement in the literature about the role of friction. Compare, 
for example, Cai  (1993)  with Ishikawa et al.  (2000)  This has arisen in various 
ways. In the case of metals, where the Chin - Gilman parameter is small, friction 
is not important for relatively large indents. However, as the C - G parameter 
becomes much larger for covalent crystals, and as the indent size decreases 
friction becomes more important. Also, environmental factors, such as humid-
ity, affect friction coeffi cients. In the regime of superhardness with dry speci-
mens and small indents friction becomes very important.  

  17.4   SUPERHARD MATERIALS 

 If superhardness is defi ned as H    >    40   GPa (4000   kg/mm 2 ) there are only a 
few cases:    

  Diamond    H   =   90 – 100   GPa      
  BN    50      
  B 6 O    45    He et al.,  2002   
  ReB 2     40    Chung et al.,  2007   
  BC 2 N    70    Solozhenko et al.,  2001   
  B 13 C 2     42    Domnich et al.,  1998   
  B 3 Si    54    Samsonov and Latysheva,  1955   
  B 5 SiC 2     70    Portnoi et al.,  1959   

 It is interesting that all of these crystals except diamond are boron 
compounds. Note also, that most of them consist exclusively of relatively 
small atoms. The exception is ReB 2 . Since Re has a large number of valence 
electrons the general rule is followed that high hardness is associated with high 
VED (valence electron density). 

 Theoretically C 3 N 4  would be superhard if it could be synthesized (Sung and 
Sung,  1996 ). However, its synthesis has not yet been achieved. 

 Reports of superhard composities (Veprek et al.,  1998 ) must be viewed with 
skepticsm because of the effect of high friction on hardness measurements. 
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The same skepticism applies to nanocrystalline diamond that is reported to be 
harder than diamond single crystals (Sumiya and Irifune,  2007 ). Other cases 
in which rough surfaces may have skewed the measurements are TiN/SiN 
coatings (Kauffmann et al.,  2005 ); and (AlMgB 14    +   TiB 2 ) mixtures (Cook 
et al.,  2000 ). 

 Diamond itself can be hardened somewhat through plastic deformation. 
DeVries  (1975)  found that the wear resistance of diamond can be increased 
by compressing it under high confi ning pressure at 1200    ° C. This hardening 
effect has been confi rmed and extended with CVD diamonds (Yan et al., 
 2004 ). The latter authors measured hardness values as large as 160   GPa. 
Although the high values may have been infl uenced by the effects of friction 
(17.3  above), there is no doubt that some hardening did result from their 
heat -  “ pressure ”  treatments (2000    ° C — 5 – 7   GPa — 10   min).  
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A-A transition metal chains, 114
Activation energies, 54
Ag-Au alloy system, 87–88
Age-hardening, 3, 90, 103
Alanine, 160
AlB2 structure, 131. See also Aluminum 

entries; Boron entries
Aliphatics, 165
Alkali halide alloys, 123
Alkali halide crystals

effect of impurities in, 124–126
hardnesses of, 119
photomechanical effects in, 128
structure of, 120, 121

Alkali halides, 119–120
hardnesses of, 122

Alkaline earth fl uorides, 126–128
Alkaline earth oxides, 147–148
Alkaline earth sulfi des, 128
Alloying, 87–88
Alloys, 83–98

alkali halide, 123
Aluminates, 151
Aluminum alloys, 3. See also AlB2

structure; High alumina glasses; 
Ni3Al; NiAl; Nickel aluminide; 
Nickel–aluminum alloys; Yttrium 
aluminum garnet (YAG)

Aluminum oxide, 152–153. See also High 
alumina glasses

crystal, 152
Amino acids, 159–160
Andrade’s theory, 109–110
Animals, polymers from, 168
Anisotropy, of crystals, 24–25

Anthracene, 158–159
Anti-bonding, 35–36, 39
Anti-bonding energy curve, 40
Anti-bonding orbitals, 37, 191
Applied electric fi eld effects, 129
Aromatic compounds, 158
Atomic aggregates, properties of, 5
Atomic displacement, shear work done 

for, 68
Atomic electron wavefunction 

symmetries, 73–74
Atomic polarizability, 195
Atomic wavefunctions, effect of 

overlapping, 39
Atoms

electronic structures of, 28
local inelastic shearing of, 56–57
shearing of, 27
vibrational frequencies of, 112
wavefunctions on, 55–56

Bakelite, 164
Band gap density, 194
Band-gaps, 45. See also Energy gap 

entries
Barium. See BaTiO3

BaTiO3, 150
B-B bonds, 138, 153

lengths of, 136–137
B-C bonds, 141
bcc metals, 99
BeF2, 126
Beryllium. See BeF2

Binary intermetallic compounds, 104
Binary metal-metalloid alloys, 176
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Blunt indenters, 24
Bond energies, 54
Bond energy densities, 41
Bonding

covalent, 36–41
electrodynamic, 45–49
ionic, 41–43
in molecular crystals, 157
nature of, 36
in solids, 41–45
in thermoplastic polymers, 165

Bonding electrons, 83
Bonding energy curve, 40
Bonding energy spectra, gaps in, 131
Bonding orbitals, 37, 191, 193
Bonding state, 38
Bond lengths, in borides, 136–137
Bond moduli (modulus), 68, 71

quartz, 144
inelastic shear deformation and, 69

Bond modulus parameter, 56–57
Bond strengths, glass hardness and, 173
Boride compounds (borides), 103, 131, 

136–137. See also Boron entries
Boron, fl exibility of, 154. See also AlB2

structure; Diborides; FeB metallic 
glasses; Hexaborides; Hexaboron 
oxide; TiB2 structure

Boron carbide, 140–141
Boron compounds, 199. See also Boride 

compounds (borides)
Boron crystal structures, 153
Borosilicate optical glasses, 173, 174
Bragg bubble model, 83
Brass, 2
Brinell hardness, xi
Brinell Hardness Numbers (BHN), 100
“Broken” covalent bond, 75
Bromine. See KCl-KBr system
Bronzes, 2
Bulk glasses, 176

metallic, 180
Bulk moduli (modulus), 6

of simple metals, 83
stability and, 190

Burgers displacement, 52, 67, 68, 138
in quartz, 144–145, 146

Burgers displacement vector, 108
Burgers vectors, 52, 53, 177

CaF2, behavior of solid solutions of, 
127

Calcium. See CaF2

Carbide compounds (carbides), 103, 131, 
132. See also Carbon entries; WC 
structure

Carbide hardnesses, versus vibrational 
energy densities, 134

Carbon-carbon bond, 44
Carbon quasi-hexaboride, 140–141
Catalysis, hydrolytic, 146
Celluloid, 165
Cellulose, 166–167
Ceramics, development of, 2
Cesium chloride (CsCl) crystal structure, 

120, 121
glide in, 124

Characteristic vibrational energy density, 
134

Charge, centers of, 45, 48
Charge densities, 67
Charge differences factor, 125
Chemical bonding, 6, 27–49. See also

Bonding; Chemical bonds
forms of, 7, 27–28
nature of, 31
in polymers, 164

Chemical bonds
dislocation mobility and, 71–75
mechanical hardness and, xi

Chemical bond strengths, importance of, 
77

Chemical hardness, xi, 189–196
defi ned, 190–192
Pearson, 56
relationship to band gaps, 189–190

Chemical hardness density (CHD), 194, 
196

Chemical potential, 190–192
Chin-Gilman parameter(s), 6, 14, 99, 

127
friction and, 199
high, 198
for lysozyme, 160
for metal-metalloid and transition-

metal glasses, 178
of MgSiO3, 149–150

Chin-Gilman ratios, 113–114
Chitin, 168
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Chlorine. See Cesium chloride crystal 
structure; KCl-KBr system; Sodium 
chloride (NaCl)

Chromium. See Cr3Si crystal structure; 
FeCr sigma phase

Civilization, role of hardness in, 1
Clausius-Mossotti equation, 122, 

195
“Clean” boundaries, 94
Cloud-cloud interactions, 33–35. See also

Electron cloud
Coherent boundaries, 96
Cohesion, in transition metals, 99
Cohesive energies, 6, 56

correlation with hardnesses, 158
Collagen, 168
Composites, superhard, 199
Compressibility, 6
Compression-induced structure changes, 

195–196
Compression specimens, effect of light 

on, 79
Compression tests, 63, 64
Conductivity, metallic, 43
Conical indenter, incremental 

penetration of, 16–17
Conjugate behavior, in TiC, 135
Constrained indentation, 15–16
Continuum theory of plasticity, 11
Copper, 1–2. See also Cu tetrahedra; 

MgCu2 structure
Core energy per unit length, 89
Correlated plastic deformation, 166
Coulomb’s Law, 31
Covalent bonding, 27
Covalent bonds, 36–41

elastic shear stiffnesses of, 69–71
ground state of, 35
strong, 40

Covalent chemical bonds, in transition 
metals, 100–101

Covalent crystal hardness, effect of light 
on, 79

Covalent crystals, 19, 44–45, 62
bulk moduli and, 189
dislocation motion in, 74
hardness in, 72

Covalent semiconductors, 67–82
behavior of, 76–77

Cr3Si crystal structure, 113, 114. See also
Silicate entries; Silicon

Creep, 165
Cristobalite, atomic structure of, 144, 145
Cross-gliding, of screw dislocations, 95
Cross-links, in polymers, 164
Cross-sectional shapes, in thermoplastic 

polymers, 165
Crystal dislocations, 71
Crystal faces, varying hardnesses of, 25
Crystals. See also Molecular crystals

anisotropy of, 24–25
covalent, 44–45, 62, 67
dipole structure in, 58–59
dislocation and, 176
dislocation motion in, 7
energetic, 161
hardest, 3
high-purity-metal, 5
protein, 160
twin boundaries in, 96

Crystal structure(s)
changes in, 195–196
hexaboride, 138–139
of intermetallic compounds, 104–112
polar, 77–79
of transition metals, 99

Crystal structure type, ionicity and, 69
Cubic III-V compounds, 69, 70
Cubic oxides, 147–151
Cubic perovskites, 150
Cu tetrahedra, 105–106. See also Copper

Damping constants, directly measured, 
61

Debye temperature(s), 62, 68, 80
of Ni3Al, 112
sigma phases at, 104

Deformation fi eld, 19
Deformation-hardening, 18–19, 57–58, 

60, 85–86
of NiAl, 113

Deformation-hardening coeffi cient, 18, 
19

Deformation-hardening rates, 112
Deformation-softening, 52, 62
Densifi cation, in silica glass, 174
Density, 189
Density functional equations, 39
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Diamond, 197, 198
crystal structure of, 67–68, 74–75
hardening, 200

Diamond structure, glide region of, 
74–75

Diborides, 136–137
rare metal, 138
structure of, 137
Vickers hardness of, 137

Dielectric constant, 122
Dielectric materials

polarizability in, 48
polarization domains in, 96

Dipole-dipole forces, 157, 158
Dipole-dipole interactions, 44
Dipole moment, 48
Dipoles

deformation hardening and, 86
in electrodynamic bonding, 45–46

Disclination lines, 166
Dislocation. See also Dislocations

defi nition of, 52–53
temperature and, 183
two-dimensional model of, 83–84

Díslocation cores, 73, 76
in ionic crystals, 120

Dislocation density, 57
Dislocation lines, 166

in crystalline and glassy structures, 172
edge type, 53, 55
in glasses, 176–177
motion of, 53–54
in quartz, 144
precipitates and, 89–90

Dislocation line tangle, 14
Dislocation loop, 54
Dislocation mobility, 7

chemical bonds and, 71–75
Dislocatíon mobility model, 72–74
Dislocation motion/movement, 52–55, 60

covalent bonds and, 198
in covalent crystals, 62
in metallic glasses, 178
surface layers and, 94–95
intrinsic resistance to, 84–85

Dislocations. See also Dislocation
multiplication of, 52, 57–59
stress concentration and, 144

Dislocation velocities, 54, 57, 88
individual, 59–60

Displacement vectors, in glasses, 
177

Dissipated plastic energy, 17
Divalent impurities, 124–125
Domain walls

ferroelectric, 96
magnetic, 95–96

Doping effects, 80–81
Drag coeffi cients, 85
d-state probability amplitudes, 30–31

Edge dislocation dipoles, 86
Effective force constant, 134
Einstein single frequency, 133
Elastic bulk modulus, 189
Elastic compatibility, 91
Elastic constants, 14, 71
Elastic deformation, 12
Elastic hardness, 194
Elastic relaxation, 62–63
Elastic shear modulus, 189
Elastic strain, 13, 17

versus plastic deformation, 51–52
Elastic strain-energy, 62, 89–90
Elastic tensor coeffi cients, 189
Electric dipole, 46
Electric dipole moment, 44
Electric fi eld, 45
Electric fi eld effects, 129
Electrodynamic bonding, 27, 45–47
Electron behavior, molecule ground 

state bonding and, 35
Electron cloud, radius of, 32–33. See also

Cloud-cloud interactions
Electron densities, 30

of hydrogen atoms, 36–37
Electronegative metals, 150
Electronegativity, of non-metal atoms, 

156
Electron excitation, 83
Electronic chemical hardness, 189, 

192
Electronic chemical potential, 190–192, 

193
Electronic stability, hardness and, 193
Electron-pair bonds, 44–45
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Electrons
energy levels of, 28
resonant transfer of, 36

Electron spin-spin anticorrelation, 35
Electron spin vector, 29
Electrostatic bonding, 119
Electrostatic charge interactions, 126. 

See also Electrostatic interactions
Electrostatic energy of interaction, 

41–42
Electrostatic faulting, 122
Electrostatic interactions, 46. See also

Electrostatic charge interactions
Electrostatic potential, 45
Energetic crystals, 161
Energy band-gap, of YAG, 151. See also

Energy gap entires
Energy density map, 38
Energy gap, 191. See also Energy 

band-gap
Energy gap densities, 40–41
Energy per mole, 190
Energy per unit length, 89–90
Entropic characteristic temperature, 133
Entropy

of mixing, 127
versus temperature data, 134

Epoxy resins, 164
Equilibrium bond length, 38
Equilibrium energy, 42, 43
Excitation energy, 48
Explosives, 161
Extrinsic barriers, to dislocation motion, 

85
Extrinsic sources, of plastic resistance, 

85–96

fcc metals, 99, 100
fcc pure metals, 18–19
FeB metallic glasses, 178, 179. See also

Boron entries; Iron
FeCr sigma phase, 104. See also Cr3Si

crystal structure
Ferrites, 150
Ferroelectric domain walls, 96
Ferromagnetic metals, 95–96
Finite deformation, 13–14
Fleischer’s model, 124–125

Flow stress, 18
of Ni3Al, 110

Fluctuating electric dipoles, 157
Fluorides, alkaline earth, 126–128
Fluorine. See BeF2; CaF2; MgF2; SrF2

Force balance, 35
Free energy of mixing, 127
Friction

at high loads, 198–199
role of, 199

Frictional resistance, 20
Frictional resistive force, 22
Friction coeffi cient(s), 21, 22, 199

differences in, 79
Frontier orbitals, 76

Gadolinium gallium garnet, 151
Garnets, 150–151. See also Gadolinium 

gallium garnet; Yttrium aluminum 
garnet (YAG)

Gas-like viscous mechanism, 60
Glasses, 171–181

compositions of, 2
hardnesses of, 172–173
inorganic, 172–175
intrinsic hardnesses of, 173
metallic, 176–180

Glass viscosities, hardnesses and, 174–175
Glide

in the CsCl structure, 124
dislocation motion and, 74
Laves phases and, 107
in the NaCl structure, 120–122

Glide activation energies, 55, 78
Glide planes, 69

in alkali halide crystals, 125
of Ni3Al, 108, 111

Glycine, 159–160
Gold. See Ag-Au alloy system
Grain boundaries, 4, 90–94

plastically compatible, 91
Grain-size, friction coeffi cient and, 25
Grossularite, 150–151
Guinier-Preston zones, 90

Hard compounds, 184–185
Hard metals, 131–142

versus transition metal oxides, 155–156
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Hardness(es). See also Chemical 
hardness entries; High hardness; 
Hot hardness; Mechanical hardness; 
Superhard entries

of alkaline earth oxides, 147–148
of alloys, 88
of aluminum oxide, 152, 153
ambiguity of, 7
correlation with cohesive energies, 158
in covalent crystals, 72
defi ned, 27
as a diagnostic tool, 4
effect of temperature on, 183–187
electronic stability and, 193
importance of, 1–4
increment in, 123
indentation, 7–9, 14–20, 68, 189
of metallic glasses, 176
of metals, 99
nature of, 7–9
overestimates of, 25
physical, 192–193
of polymers, 166
of pure metals, 61–62
relationship to other properties, 5–6
stoichiometry and, 112
vibrational energies and, 132–133
of thermoplastic polymers, 163
of transition metals, 115–116
“ying and yang” of, xii

Hardness/bond modulus proportionality, 
for alkaline earth fl uorite crystals, 
126

Hardness indentation, 52, 63. See also
Indentation hardness

plastic deformation and, 51
Hardness indenters, 8
Hardness measurements, xi, 6

correlations between, 23–24
Hardness modulus, 167
Hardness numbers, xi, 11, 17

as indicators of structural stability, 
195–196

mechanism underlying, 6
of metallic glasses, 178
range of, 1

Hardness shear modulus ratio/
relationship, 123

in metallic glasses, 177–179

Hardness-temperature curves/graphs, 
183–184

for compounds, 187
Harmonic oscillators, 46
Heat of formation, 139, 153
Heisenberg’s Principle, xii, 31–33, 36
Heitler-London equation, 39
Heitler-London molecular orbital theory, 

36, 39, 44
Hemicellulose, 167
Hertz theory of elastic contact, 11
Heterogeneities, indentation sizes 

relative to, 22–23
Hexaborides, 138–140

hardnesses of, 140
Hexaboron oxide, 153–154
Hexagonal oxides, 152–154
Hexagonal symmetry, 152
High alumina glasses, 172
Highest occupied molecular orbital 

(HOMO) level, 35–36, 39, 76, 191, 
193. See also HOMO-LUMO 
energy gap; LUMO-HOMO energy 
gap

High hardness, principles for, 197–198
High loads, friction at, 198–199
High polymers, 171
High shear moduli, 198
HOMO-LUMO energy gap, of boron, 

138. See also Highest occupied 
molecular orbital (HOMO) level; 
LUMO-HOMO energy gap

Homopolar crystals, 78
Hot hardness, 183–187

importance of, 184
Hybrid orbitals, 67
Hydrogen, molecular bonding of, 31–36
Hydrogen atom, 1s state of, 36–37
Hydrogen molecule, 32
Hydrolytic catalysis, of quartz, 146
Hydroxyls, 147

Impact method, 8
Impurities

in alkali halide crystals, 124–126
alkali halide sensitivity to, 119
effects of, 80–81

Impurity atoms, 87–88
Incoherent boundaries, 96
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Incremental indentation, 17
Incremental plastic deformation, 16–17
Indentation, 11–26

deformation during, 11
versus scratch hardness, 23

Indentation behavior, interpreting, 14
Indentation hardness, 7–9, 189. See also

Hardness indentation
bond modulus and, 68
what is measured by, 14–20

Indentation hardness numbers, 86, 195
Indentations, deformation around, 12
Indentation size, 22–23
Indentation size effect (ISE), 20–22, 199

approximate model of, 21
Indenters

blunt or soft, 24
smoothness of, 25

Individual dislocation velocities, 59–60
Inelastic deformation

resistance of materials to, 56
via heterogeneous shear, 52

Inelastic plasticity, mechanisms of, 166
Inelastic response, 11
Inelastic shearing, of atoms, 56–57
Inorganic glasses, 172–175
In-phase molecular vibrations, 157
Interaction energy, 47
Interbonding, 157
Intermetallic compounds, 103–117

crystal structures of, 104–112
hard, 184–185
hardnesses of, 103, 116
hardness-temperature curves for, 187
superconducting, 113–115

Intermetallic Compounds (Westbrook & 
Fleischer), 103

Internal friction, 84
Intrabonding, 157
Intrinsic behavior, 83–85
Intrinsic resistance, 83

to dislocation motion, 84–85
Inverse power function, 42
Ionic bonding, 27

in solids, 41–43
Ionic crystals, 19–20, 42, 119–130

interactions of nearest neighbors in, 
119

net electric charge of, 129

Ionic oxides, 128
Iron, smelting of, 2–3. See also FeB 

metallic glasses; FeCr sigma phase; 
Ferr- entries

Isotropic crystal structure, 52

Janka hardness, 167
Jellium atom, 44
“Jellium” model, 43–44

Kagome nets, 104, 105
KCl-KBr system, 123, 124
Kinetic energy, 33, 43
Kinks

in aluminum oxide, 153
behavior of, 75–77
localized shearing at, 56
motion of, 53–55, 75–76
in Ni3Al, 108–109

Knoop indenters, 25

Lanthanum hexaboride, 138, 139, 
140

Lattice parameters
of Ni3Al, 110
of nitrides, 141

Laves phases, 105–107
Layered minerals, 146–147
Lead zirconate, 150
LiF crystals, 60, 86. See also Lithium 

fl uoride (LiF)
Lifshitz-Casimir effect, 158
Lignin, 167
Lignocellulose, 167
Linear combinations of atomic orbitals 

(LCAOs), 37
Line energy, 95
Liquid-like viscous mechanism, 60–61
Liquids

multi-component, 176
supercooled, 171

Lithium fl uoride (LiF), 40–41. See also
LiF crystals

Local covalent bonding, 73
Local deformation, specimen surface 

irregularities and, 25
Local strain-hardening, 94
Local viscosity coeffi cient, 88
London forces, 157, 159
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Long-chain molecules, inter-chain 
bonding of, 45

Longitudinal vibrational modes, 133
Low dislocation mobility, 198
Lowest unoccupied molecular orbital 

(LUMO) level, 36, 39, 76, 191, 193. 
See also LUMO-HOMO energy gap

LUMO-HOMO energy gap, 40, 47, 193. 
See also HOMO-LUMO energy 
gap; Lowest unoccupied molecular 
orbital (LUMO) level

Lysozyme, 160

Macrofi brils, 168
Macroscopic plastic deformation, 63–64
Madelung’s constant, 42
Magnesium silicate, hydrated, 146. See

also Mg entries
Magnetic domain walls, 95–96
Magnetic moment, angular position of, 

29
Magneto-plasticity, 129
Magnetostriction, 96
Mammals, collagen in, 168
Materials

defi ning useful, 184
“superhard,” 197–200

Maximum hardness increment, 123
Maximum shear strain, 11
Maxwellian mode, 60
Mechanical hardness, xi, 192–193

importance of, 1
Melting points, transition-metal, 115
Metallic alloys, conversion into glasses, 

171
Metallic bonding, 27, 43–44
Metallic glass compositions, stable, 180
Metallic glasses, 176–180

hardness–shear modulus relationship 
in, 177–179

Metal-metalloid alloys, 176
Metal-metalloid compounds, hard, 185
Metal-metalloids, 131–142
Metals. See also Simple metals; 

Transition metals
cohesive energy in, 56
hardness data for, 185–186
hardnesses of, 7

Metal surfaces, reactive, 94

MgCu2 structure, 105–106, 107. See also
Copper

MgF2, 126
MgNi2 structure, 107
MgSiO3 perovskite, 149–150. See also

Magnesium silicate
MgZn2 structure, 106–107
Military ordnance, 3
Milliken electronegativity, 192
Minerals

layered, 146–147
oxide-type, 143

Minus shear, 53
Mobile dislocation density, 64
Mohs scratch hardness, 23–24, 189
Mohs scratch hardness numbers, 128
Mohs scratch hardness scale, 9, 144
Mohs scratch method, 8
Molecular bonding, 31–36
Molecular chains, 158
Molecular crystals, 157–162

bonding in, 157
Monocrystalline turbine blades, 4
Multi-component liquids, 176
Multiple-cross-glide process, 57, 86

NaCl crystals, effect of static magnetic 
fi eld on, 129. See also Sodium 
chloride (NaCl)

NaCl crystal structure, 121, 131, 141
electrostatic faulting in, 122
glide in, 120–122

Nanocrystalline aggregates, 199
Nanocrystalline diamond, 200
Naphthalene, 158
“Natural” polymers, 166–168
Nearest neighbor distance, 42
“Necking,” 166
Net electrostatic energy, major 

contributions to, 33
Newtonian viscosity, 62
Ni3Al, 107–112. See also Nickel 

aluminide; Nickel–aluminum alloys
crystal structure of, 108, 113, 114
hardness numbers of, 112

NiAl. See also Nickel aluminide; 
Nickel–aluminum alloys

calculated hardness of, 112–113
crystal structure of, 113
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Nickel aluminide, versus oxides, 184. See
also MgNi2 structure; Ni entries

Nickel–aluminum alloys, 4. See also
Ni3Al; NiAl

Ni octahedra, 109. See also Nickel–
aluminum alloys

Nitride compounds (nitrides), 103, 131, 
141

Noncentrosymmetric crystal structures, 
25

Non-local bonding, 73
Non-silicate glasses, hardnesses of, 173
Nylon chains, 165–166

Octahedral shear moduli, 194
Octahedral shear stiffness, 69–71, 109
180º walls, 96
Optical devices, 4
Orbitals, 193

hybrid, 67
Organic glasses, 163, 171
Orowan Equation, 64
Oscillators, 46–47
Osmium (Os), 138

bulk modulus of, 198
Out-of-phase molecular vibrations, 157
Overlapping charge clouds, potential 

energy of, 34
Oxide crystals, 143
Oxides, 94–95, 143–156. See also Zinc 

oxide (ZnO)
alkaline earth, 147–148
cubic, 147–151
hexaboron, 153–154
hexagonal (rhombohedral), 152–154
versus nickel aluminide, 184

Oxygen. See BaTiO3; MgSiO3 perovskite
Oxygen hexaboride, crystal structure of, 

153–154

Parr’s “physical hardness” parameter, 
193, 196

Pearlitic steel, 3
Peierls dislocation mobility model, 72–73
Peierls-Nabarro model, 83–84
Peierls-Nabarro stress, 62
“Pencil glide,” 124
Pendulum method, 8
Pentaerythritol-tetranitrate (PETN), 161

Permanent dipoles, 157
Perovskites, 148–150

crystal structure of, 149, 150
Perturbation theory, 48
Phase transformation dislocations, 62
Phenol formaldehydes, 164
Photomechanical effects, in alkali halide 

crystals, 128
Photons, from molecular dipoles, 157
Photo-plastic effect, in anthracene, 159
Photoplasticity, 79–80
Physical hardness, 192–193

defi ned, 189
Physical hardness density, 193
Piezo-transducers, 150
Planck’s constant, 47
Plants, polymers from, 166–167
Plasmons, 44, 48
Plastically compatible grain boundaries, 

91
Plastic compression, 15
Plastic deformation, xi–xii, 4, 11–13, 17–

18, 51–65
as discontinuous, 12
effects of grain boundaries on, 94
in glasses, 176
Laves phases and, 107
macroscopic, 63
symmetry in, 55–56
as a three-dimensional process, 52
as a transport process, 51, 64
versus elastic strain, 51–52

Plastic incompatibility, 92
Plasticity, inelastic, 166
Plastic resistance, 20

extrinsic sources of, 85–96
Plastic resistive force, 21
Plus shear, 53
Point-cloud interactions, 33–34
Point-cloud potential, 35
Point-point interactions, 33–34
Polar crystals, surface effects in, 68–69
Polarity, effect of, 77–79
Polarizability, 47–48, 194–195
Polarization process, 48
Polycrystalline material, grain 

boundaries in, 91
Polycrystalline transition metals, 99
Polycyclic chains, 166
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Polydiacetylene crystals, 163
Polyethylenes, high density, 165
Polymeric liquids, 171
Polymeric materials, polarizability of, 

47–48
Polymeric resin, 165
Polymeric solids, 163
Polymers, 163–169

chemical bonding in, 164
“natural,” 166–168
structural arrangements in, 163
thermoplastic, 165
variety of, 164

Polypeptides, 160, 168
Potassium. See KCl-KBr system
Potential energy, 43

of overlapping charge clouds, 34
Precipitated sigma phase, hardness of, 

104–105
Precipitates, 89–90

in the age-hardening process, 90
Precipitation hardening theory, 89
Primary glide, in carbides, 132
Primary glide direction, 120, 124
Primary glide plane, 120, 124

of titanium diboride, 138
Principal quantum numbers, 28
Prismatic glide, 124
Protein crystals, 160
p-states, 30
Pure metal-like crystals, lack of 

resistance to motion in, 83–84
Pure metals, viscosities for, 61–62
Pyro-transducers, 150

Quality control, xi
Quantum mechanical energies, 46
Quantum mechanical tunneling process, 

62
Quantum numbers, 28, 29
Quantum states, 28
Quartz, 143, 144–145

crystal structure of, 144, 145

Rare earth metals, 101
Rare metal diborides, 138
Reciprocal polarizabilities, 147, 148, 195
Rehbinder Effects, 95
Reptation, 165

Resins, thermosetting, 164–165
Restoring force, 198
Rhodium (Rh), 138
Rhombohedral oxides, 152–154
Rockwell machines, 8
Roscoe Effect, 94
Rydberg equation, 39–40

Sapphire, 152–153
Saturation dislocation density, 86
Scatter, 54
Schrödinger equation, 31, 36
Schrödinger pressure, 31, 193
Scientifi c research, high pressure, 4
Scratch hardness, versus indentation, 23
Screw dislocation, 22

curvature of, 95
kinks on, 67–68

Semiconductor crystals, 71
photoplasticity in, 80

Semiconductors, covalent, 67–82
Semiempirical equations, 39–40
Shear(s), xi–xii. See also Shearing

elastic resistance to, 197–198
inelastic, 67
in metallic glasses, 177
plus and minus, 53

Shear band, 93, 94
Shear crack case, 92–93
Shear deformation, resistance to, 197
Shear elastic modulus, 198
Shearing, 6. See also Inelastic shearing

energy required for and energy barrier 
resisting, 56

Shear moduli (modulus), 6, 18, 19, 190
factors that determine, 7
in metallic glasses, 177–179
of metals, 99
of molecular crystals, 161
polarizability and, 194–195

Shear stiffness, 44
octahedral, 69–71

Shear strain, in polycrystals, 91
Shear strain energy density, 93
Shear stress, 67, 86

in aluminum oxide, 153
in carbides, 132
dependence of dislocation velocity on, 

60
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Sigma phase, 104–105
Silica (SiO2), 171. See also Si entries

fused, 172
Silica glass, indented, 174
Silicate glasses, intrinsic hardnesses of, 

173
Silicates, 143–147
Silicate tetrahedra, 143–144, 146–147
Silicon, atomic structure of, 145. See also

MgSiO3 perovskite
Silver. See Ag-Au alloy system
Simple metals, 83–98
Si-O bonds, 144
Si-O-Si connections, 146
Slip-line theory, 52
Soapstone, 146–147
Sodium chloride (NaCl), 42–43. See also

NaCl entries
“Softening temperature,” 80
Soft indenters, 24
Solids, bonding in, 41, 193
Solid-state lasers, hardness in, 4
Specimen surfaces, smoothness of, 25
SrF2, behavior of solid solutions of, 127
s-states, 29
Stable metallic glass compositions, 180
State symmetries, 29–31
“Stick-slip” mode, 60, 62
Stiffness, 194
Strain-hardening, 52, 56, 63, 86

dipoles and, 57
Stress concentrators, 89
Stress-deformation curve, 17–18

for NiAl, 113
Stresses, concentrated, 92–93
Strontium. See SrF2

Structure changes, compression-induced, 
195–196

Sucrose, 159
Sulfi des, alkaline earth, 128
Superalloys, development of, 3–4
Superconducting intermetallic 

compounds, 113–115
Superhard composites, 199
“Superhard” materials, 197–200

types of, 199
Surface contaminants, 94
Surface cross-gliding mechanism, 95
Surface effects, in polar crystals, 68–69

Surface environments, 80
Surface fi lms, 94–95
Symmetries

atomic electron wavefunction, 73–74
in plastic deformation, 55–56

Talc, 143, 146–147
Technology, impact of hardness on, 4–5
Temperature, effect on hardness, 80, 183–

187. See also Therm- entries
Tetrahedral clusters, 105–106. See also

Cu tetrahedra; Silicate tetrahedra
Thermal activation theory, 183
Thermoplastic polymers, 163, 165–166
Thermosets, 163
Thermosetting resins, 164–165
Thomas-Fermi screening factor, 44
III-V compounds, 77, 78, 80
III-N nitrides, 69, 70
“Tin cry,” 176
Titanium. See BaTiO3

Titanium carbide, 134–135
Titanium diboride (TiB2), 137–138

structure of, 135
Total internal energy, 190
Transition complex, 76
Transition metal compounds, 115–116
Transition metal oxides, versus hard 

metals, 155–156
Transition metal-rhodium-boron 

perovskites, 151
Transition metals, 99–101

extrinsic factors affecting, 100–101
Transverse vibrational modes, 133
Trigonal prismatic holes, 131
Tungsten carbide (WC), 134–135
Tungsten carbide crystals, 3

structure of, 135
Twin boundaries, 96

II-VI compounds, 69, 71, 80, 147
Valence electron density (VED), 107, 

131, 190, 199
of hexaboron oxide, 154, 155
of solids, 138
of titanium diboride, 137
of transition metal oxides, 156

Van der Waals bonding, 165
Van der Waals forces, 157
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Velocity-stress curve, 60
“Very hard” materials, 197
Vibrational energies, 132–133
Vibrational frequencies, 112
Vibrational modes, 133
Vickers hardnesses

of energetic crystals, 161
of prototype diborides, 137

Vickers hardness numbers, 128
Vickers indentation method, 8, 9
Vickers microhardness, xi
Viscosities, glass, 174–175
Viscosity coeffi cient measurements, 61
Viscosity resisting dislocation motion, 

109
Viscous drag, 59, 60–62
Viscous drag coeffi cient, 84–85

Wavefunction behavior, bonding/
anti-bonding states and, 36

Wavefunctions, 29
on an atom, 55–56
effect of overlapping, 39

WC structure, 135. See also Carbide 
entries; Carbon entries; Tungsten 
entries

Wood, hardness of, 167

YAG. See Yttrium aluminum garnet 
(YAG)

Yamane and Mackenzie method, 
173

Yield stress(es), 14, 87, 90
in metallic glasses, 177, 178

Young’s moduli (modulus), 18, 122
Yttrium aluminum garnet (YAG), 4, 150, 

151, 184

Zener’s equation, 92, 93
Zero-point energies, 46, 47
Zero-point oscillations, 44
Zinc. See MgZn2 structure
Zincblende (ZnS)

crystals, 69
structure of, 77, 79

Zinc oxide (ZnO), 79
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