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PREFACE

As science has become more interdisciplinary and impinges ever more heavily on
technology, we have been led to the conclusion that there is a great need now for a
textbook that emphasizes the physical and chemical origins of the properties of solids
while at the same time focusing on the technologically important materials that are
being developed and used by scientists and engineers. A panel of physicists, chemists,
and materials scientists who participated in the NSF Undergraduate Curriculum Work-
shop in Materials in 1989, which addressed educational needs and opportunities in the
area of materials research and technology, issued a report that indicated clearly the
need for advanced textbooks in materials beyond the introductory level. Our textbook
is meant to address this need.

This textbook is designed to serve courses that provide engineering and science
majors with their first in-depth introduction to the properties and applications of a wide
range of materials. This ordinarily occurs at the advanced undergraduate level but can
also occur at the graduate level. The philosophy of our approach has been to define
consistently the structure and properties of solids on the basis of the local chemical
bonding and atomic order (or disorder!) present in the material. Our goal has been
to bring the science of materials closer to technology than is done in most traditional
textbooks on solid-state physics. We have stressed properties and their interpretation
and have avoided the development of formalism for its own sake. We feel that the
specialized mathematical techniques that can be applied to predict the properties of
solids are better left for more advanced, graduate-level courses.

This textbook will be appropriate for use in the advanced materials courses given in
engineering departments. Such courses are widely taught at the junior/senior level with
such titles as “Principles of Materials Science & Engineering,” “Physical Electronics,”
“Electronics of Materials,” and “Engineering Materials.” This textbook is also designed
to be appropriate for use by physics and chemistry majors. We note that a course in
materials chemistry is a relatively new one in most chemistry undergraduate curricula
but that an introductory course in solid-state physics has long been standard in physics
undergraduate curricula.

To gain the most benefit from courses based on this textbook, students should have
had at least one year each of introductory physics, chemistry, and calculus, along with
a course in modern physics or physical chemistry. For optimal use of the textbook it
would be helpful if the students have had courses in thermodynamics, electricity and
magnetism, and an introduction to quantum mechanics.

As the title indicates, the range of topics covered in this textbook is quite broad. The
21 chapters are divided into five sections. The range of topics covered is comprehensive,
but not exhaustive. For example, topics not covered in detail due to lack of space
include biomaterials, a field with a bright future, and composites, examples of which
are discussed only within specific classes of materials. Much more material is presented

xxiii



xxiv PREFACE

than can be covered in a one-semester course. Actual usage of the text in courses will
be discussed after the proposed subject matter has been outlined.

Following an introduction, which emphasizes the importance of materials in modern
science and technology, Section I, on the “Structure of Materials,” consists of four
chapters on the structure of crystals, bonding in solids, diffraction and the reciprocal
lattice, and order and disorder in solids.

Section II, on the “Physical Properties of Materials,” consists of six chapters
on phonons; thermally activated processes, phase diagrams, and phase transitions;
electrons in solids: electrical and thermal properties; optical properties; magnetic
properties; and mechanical properties.

Section III, titled “Classes of Materials,” consists of eight chapters on semicon-
ductors; metals and alloys; ceramics; polymers; dielectric and ferroelectric materials;
superconductors; magnetic materials; and optical materials. In each chapter the distinc-
tive properties of each class of materials are discussed using technologically-important
examples from each class. In addition, the structure and key properties of selected
materials are highlighted. In this way an indication of the wide spectrum of materials
in each class is presented.

Section IV, titled “Surfaces, Thin Films, Interfaces, and Multilayers,” consists of
two chapters covering these important topics. Here the effects of spatial discontinuities
in the physical and chemical structure on the properties of materials are presented,
both from the point of view of creating materials with new properties and also of
minimizing the potential materials problems associated with surfaces and interfaces.

Section V, titled “Synthesis and Processing of Materials,” consists of a single
chapter. Representative examples of how the structure and properties of materials
are determined by the techniques used to synthesize them are presented. “Atomic
engineering” is stressed. The tuning of structure and properties using postsynthesis
processing is also illustrated.

Problem sets are presented at the end of each chapter and are used to emphasize
the most important concepts introduced, as well as to present further examples of
important materials. Illustrations are employed for the purpose of presenting crystal
structures and key properties of materials. Tables are used to summarize and contrast
the properties of related groups of materials.

We have created a home page that provides a valuable supplement to the textbook
by describing additional properties of materials, along with additional examples of
current materials and their applications. Chapter W22 on our home page emphasizes
the structural and chemical characterization of materials, as well as the characterization
of their optical, electrical, and magnetic properties. As new materials and applications
are developed, the home page will be regularly updated.

Since this text will likely be used most often in a one-semester course, we recom-
mend that Chapters 1–4 on structure be covered in as much detail as needed, given
the backgrounds of the students. A selection of chapters on the properties of mate-
rials (5–10) and on the classes of materials (11–18) of particular interest can then be
covered. According to the tastes of the instructor and the needs of the students, some of
the remaining chapters (surfaces; thin films, interfaces, and multilayers; synthesis and
processing of materials) can be covered. For example, a course on engineering materials
could consist of the following: Chapters 1–4 on structure; Chapter 6 on thermally acti-
vated processes, etc.; Chapter 10 on mechanical properties; Chapter 12 on metals and
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alloys; Chapter 13 on ceramics; Chapter 14 on polymers; and Chapter 21 on synthesis
and processing.

Physics majors usually take an introductory course in solid-state physics in their
senior year. Therefore in such a course it will be necessary to start at “the beginning,”
i.e., Chapter 1 on the structure of crystals. Students in MS&E or engineering depart-
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We owe a debt of gratitude to our colleagues at The City College
and City University who, over the years, have shared with us their
enthusiasm for and interest in the broad and fascinating subject of materials.
They include R. R. Alfano, J. L. Birman, T. Boyer, F. Cadieu, H. Z. Cummins,
H. Falk, A. Genack, M. E. Green, L. L. Isaacs, M. Lax, D. M. Lindsay (deceased),
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J. Steiner, M. Tamargo, M. Tomkiewicz, and N. Tzoar (deceased). Colleagues outside
CUNY who have shared their knowledge with us include Z. L. Akkerman, R. Dessau,
H. Efstathiadis, B. Gersten, Y. Goldstein, P. Jacoby, L. Ley, K. G. Lynn, D. Rahoi,
and Z. Yin. Our thanks also go to our students and postdocs who have challenged
us, both in our research and teaching, to refine our thinking about materials and their
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INTRODUCTION

The study of materials and their properties and applications is an important part of
modern science and technology. As may be expected for such a wide-ranging subject,
the study of materials is a multidisciplinary effort, encompassing segments of physics,
chemistry, and essentially all branches of engineering, including aerospace, chemical,
civil, electrical, and mechanical. In addition, the relatively new discipline of materials
science and engineering focuses directly on the study of the properties and applications
of materials.

Materials can be classified as being either natural or artificial, the latter corre-
sponding to materials, not found in nature, that are prepared by humans. Important
natural materials have included organic materials such as wood, ivory, bone, fiber,
and rubber, along with inorganic materials such as minerals and ceramics (stone, flint,
mica, quartz, clay, and diamond) and metals such as copper and gold. Different eras
of civilization have been given names corresponding to the materials from which tools
were made: for example, the Stone Age, the Chalcolithic (Copper–Stone) Age, the
Bronze Age, and the Iron Age. Recently, the dominant technological materials have
been manufactured, such as steels as structural materials and the semiconductor Si for
electronics.

Although the use of solid materials extends to prehistory, the systematic study and
development of materials have begun much more recently, within the last 100 years.
Development of the periodic table of the elements in the nineteenth century and the
resulting grouping of elements with similar properties played a crucial role in setting
the stage for the development of materials with desired properties. The discovery that
x-rays could be used to probe the internal structure of solids early in the twentieth
century also played a key role in accelerating the study of materials.

The study of materials as presented in the textbook, The Physics and Chemistry of
Materials, begins with in-depth discussions of the structure of materials in Chapters 1
to 4 and of the fundamental principles determining the physical properties of materials
in Chapters 5 to 10. Following these discussions of structure and properties, which
apply to all materials, eight essentially distinct classes of materials are discussed in
Chapters 11 to 18, with emphasis placed on their special properties and applications.
The surfaces of materials, interfaces between materials, and materials in the form of
thin films and multilayers are then discussed in Chapters 19 and 20. A discussion of
the synthesis and processing (S&P) of materials follows in Chapter 21, with emphasis
both on general issues and also on the S&P of specific materials.

In addition to the text material, supplementary material for all the chapters is
found here, our home page at the Wiley Web site. This material includes a wide
range of additional discussions of the properties and applications of materials. Also,
experimental techniques used for the characterization of a wide range of materials
properties are discussed in Chapter W22. The following topics are reviewed briefly in

1



2 INTRODUCTION

the appendices appearing at the Web site: thermodynamics, statistical mechanics, and
quantum mechanics.

The eight classes of materials discussed in this book include semiconductors, metals
and alloys, ceramics, polymers, dielectrics and ferroelectrics, superconductors, magnetic
materials, and optical materials. Our discussions of these materials are meant to provide
an introduction and solid grounding in the specific properties and applications of each
class. Although each class of materials is often considered to be a separate specialty
and the basis for a distinct area of technology, there are, in fact, many areas of
overlap between the classes, such as magneto-optical materials, ceramic superconduc-
tors, metallic and ceramic permanent magnet materials, semiconductor lasers, dilute
magnetic semiconductors, polymeric conductors, and so on.

There have been many materials success stories over the years, including the high-
Tc superconductors, a-Si:H in photovoltaic solar cells, Teflon and other polymers,
optical fibers, laser crystals, magnetic disk materials, superalloys, composite materials,
and superlattices consisting of alternating layers of materials such as semiconductors
or metals. These materials, most of which have found successful applications, are
described throughout.

Our understanding of the structure of materials at the atomic level is well devel-
oped and, as a result, our understanding of the influence of atomic-level microstructure
on the macroscopic properties of materials continues to improve. Between the micro-
scopic and macroscopic levels, however, there exists an important additional level of
structure at an intermediate length scale, often determined by defects such as grain
boundaries, dislocations, inclusions, voids, and precipitates. Many of the critical prop-
erties of materials are determined by phenomena such as diffusion and interactions
between defects that occur on this intermediate structural level, sometimes referred to
as the mesoscopic level. Our understanding of phenomena occurring on this level in
the heterogeneous (e.g., polycrystalline, amorphous, and composite) materials that are
used in modern technology remains incomplete. Many of the properties of materials
that are critical for their applications (e.g., mechanical properties) are determined by
phenomena occurring on this level of microstructure.

Useful materials are becoming more complex. Examples include the high-Tc copper
oxide–based ceramic superconductors, rare earth–based permanent magnets, bundles
of carbon nanotubes, and even semiconductors such as Si–Ge alloys employed in
strained layers and superlattices. Recent and continuing advances in the design and
manipulation of materials atom by atom to create artificial structures are revolutionary
steps in the development of materials for specific applications. This area of nanotech-
nology is an important focus of this book.

As we enter the twenty-first century and the world population and the depletion of
resources both continue to increase, it is clear that the availability of optimum materials
will play an important role in maintaining our quality of life. It is hoped that textbooks
such as this one will serve to focus the attention of new students, as well as existing
researchers, scientists, and engineers, toward the goals of developing and perfecting
new materials and new applications for existing materials.



CHAPTER W1

Structure of Crystals

W1.1 Crystal Structures Based on Icosahedral Bonding Units

While the A–A12(cub) and A–A12(hex) bonding units appear in the FCC and HCP
crystal structures, respectively, the crystal structures that include A–A12(icos) and
A–B12(icos) icosahedral units are generally much more complicated. An example of
a crystal structure based in part on the A–B12(icos) unit, see Fig. 1.11 of the text-
book,† is the ˇ-tungsten (ˇ-W) crystal structure, an interesting example of which is
the intermetallic compound Nb3Sn. This compound is of the Frank–Kasper tetrahe-
drally close-packed type, with each Sn atom surrounded icosahedrally by 12 Nb atoms
at an interatomic distance of 0.296 nm and with each Nb atom at the center of a coor-
dination number CN 14 polyhedron surrounded by four Sn atoms at 0.296 nm, two Nb
atoms at 0.264 nm, and eight other Nb atoms at 0.324 nm. Frank–Kasper phases with
CN 15 and CN 16 coordination polyhedra also exist (e.g., Fe7W6 with CN 12, CN 14,
CN 15, and CN 16 coordination polyhedra). In general, larger atoms occupy the CN 15
and CN 16 central sites and smaller atoms occupy the CN 12 and CN 14 central sites.

Another family of close-packed structures based on both icosahedral units and poly-
hedral units with more than 12 NN is known as the Laves phases, the prototype of
which is the intermetallic compound MgCu2. In this structure each Mg atom is at the
center of a CN 16 polyhedron with 12 Cu atoms at 0.292 nm and four Mg atoms
at 0.305 nm, while each Cu atom is surrounded icosahedrally by six Mg atoms at
0.305 nm and six Cu atoms at 0.249 nm.

W1.2 Packing Fractions of BCC and CsCl Crystal Structures

The BCC crystal structure results when an identical atom is placed in the body-centered
interstitial site of the SC crystal structure. Now N�atom� D 2 and, as can be seen in
Fig. W1.2b,† three atoms are in contact along the body diagonal (of length

p
3 a) of the

unit cell in the [111] direction. The atoms along the cube edge are no longer in contact
with each other. It follows that

p
3 a D r C 2r C r D 4r, and therefore V�atom� Dp

3�a3/16. Finally,

PF(BCC) D �2��
p

3�a3/16�

a3
D

p
3�

8
D 0.68. �W1.1�

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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Figure W1.1. Directions in a lattice.
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Figure W1.2. Diagrams used in the calculations of packing fractions for the following crystal
structures: (a) simple cubic (SC), with the atoms lying in a (100) plane; (b) body-centered cubic
(BCC), with the atoms lying in a (110) plane; (c) cesium chloride (CsCl), with the atoms shown
in a (110) plane.

The CsCl crystal structure results when a smaller B atom is placed at the body-
centered interstitial site of the SC crystal structure, so that it makes contact with
the eight larger A atoms surrounding it. For the special case where rA D a/2 and
rB/rA D �

p
3 � 1�, the two A atoms remain in contact along a cube edge, as shown

in Fig. W1.2c. It follows, therefore, that
p

3a D 2rA C 2rB along the cube body
diagonal. The atom volumes are given by V�atom A� D �a3/6 and V�atom B� D
�
p

3 � 1�3�a3/6. With one A and one B atom per unit cell, the packing fraction is
therefore

PF D �1���a3/6�

a3
C �1��

p
3 � 1�3��a3/6�

a3

D 0.52 C 0.21 D 0.76. �W1.2�

This is the largest possible value for the packing fraction of two spherical atoms of
different radii in the CsCl crystal structure and is higher than the value of PF D 0.74
for the FCC and HCP crystal structures.
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W1.3 Density of CsCl

To illustrate the use of Eqs. (1.7) and (1.8) of the textbook, consider the case of CsCl
where the lattice constant is a D 0.411 nm and the atomic masses are m�Cs� D 2.207 ð
10�25 kg and m�Cl� D 0.5887 ð 10�25 kg. Therefore,

n�atom� D 2 atoms

�0.411 ð 10�9 m�3
D 2.88 ð 1028 atoms/m3, �W1.3�

� D �1��2.207 ð 10�25 kg�

�0.411 ð 10�9 m�3
C �1��0.5887 ð 10�25 kg�

�0.411 ð 10�9 m�3

D 4027 kg/m3. �W1.4�

PROBLEM

W1.1 Explain why icosahedral clusters of 13 atoms, corresponding to A–A12(icos),
are more stable (i.e., have a lower energy) than FCC or HCP clusters of 13
atoms [i.e., A–A12(cub) and A–A12(hex)]. [Hint: Count the number of “bonds”
formed in each cluster between pairs of atoms that are in contact or, in the case
of A–A12(icos), nearly in contact with each other.]



CHAPTER W2

Bonding in Solids

W2.1 Atomic, Hybrid, and Molecular Orbitals Involved in Bonding in
Solid-State Materials

When isolated atoms come together to form a solid, the atomic orbitals of the valence
electrons are often modified as bonding between the atoms occurs. In this section the
orbitals for electrons in isolated atoms (i.e., the atomic orbitals) are described first.
The hybrid orbitals resulting from combinations of atomic orbitals on the same atom
are described next, followed by a description of the molecular orbitals that result
when atomic or hybrid orbitals on different atoms combine with each other as the
atoms form bonds. It should be emphasized at the outset that the atomic, hybrid, and
molecular orbitals described here are just useful approximations to the actual solutions
of the Schrödinger equation for atoms and molecules. The derivations of mathematical
expressions for these orbitals are not given here since it is outside the scope of this
material to present in detail the physics and chemistry of atoms and molecules.

Atomic Orbitals. The atomic orbitals of the electrons in an atom correspond to
the solutions of the Schrödinger equation for the wavefunctions  which are labeled
with the three quantum numbers n, l, and ml [i.e.,  �nlml�]. (The magnetic quantum
number ms is discussed later.) The energies and spatial extents of the electrons in the
atomic orbitals are determined by the principal quantum number n, which has allowed
values n D 1, 2, 3, . . . ,1. For example, the binding energies of the  �nlml� atomic
orbitals in atomic hydrogen decrease as 1/n2 while their radii increase as n2. The
orbital angular momentum quantum number l specifies the angular momentum of the
electron and can take on the values l D 0, 1, 2, . . . , n� 1. For example, for n D 4, the
allowed values of l are 0 (for s states), 1 (for p states), 2 (for d states), and 3 (for
f states). The quantum number ml determines the orientation of the orbital in space
and can have the �2lC 1� integral values lying between �l and Cl. For d states with
l D 2 the five allowed values of ml are �2, �1, 0, C1, and C2.

The probability of finding the electron at a point in space is proportional to the
value of j �nlml�j2 at that point. The charge density associated with the electron in
this orbital is given by �ej j2. The electronic charge densities for one-electron or
hydrogenic atoms and ions are shown schematically in Fig. W2.1 for the single s,
three p (px, py , and pz), and five d (dx2�y2 , dz2 , dxy , dyz, and dxz) atomic orbitals. The
shapes of these orbitals as shown are only schematic (e.g., the orbitals do not actually
have the sharp boundaries indicated in the figure).
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Figure W2.1. Electronic charge distribution in hydrogenlike s, p, and d atomic orbitals. The
relative phases of the different lobes of the p and d orbitals are indicated with plus and
minus signs. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

It can be seen from Fig. W2.1 that the s orbital is spherically symmetric, whereas
the p and d orbitals have preferred directions in space. In particular, the px, py ,
and pz orbitals have two symmetric regions of high probability called lobes which
are directed along the x, y, and z axes, respectively. The five d orbitals are more
complicated. The dz2 orbital has a shape that is similar to the pz orbital but is much
more extended in one direction in space. The four other d orbitals are similar to each
other in shape, with four lobes as shown. It should be remembered that each orbital
can accommodate no more than two electrons, no matter how many lobes it has. It is
important to note that the phase of the wavefunction alternates between being positive
in one lobe and negative in the adjacent lobes. The significance of this will become
apparent when lobes of orbitals on different atoms overlap. Although rigorously correct
in principle only for one-electron atoms and ions, these atomic orbitals are also used
for multielectron atoms.

Some of the atomic orbitals that are important for bonding in solid-state materials
are listed in Table W2.1. The spin of the electron is s D 1

2 , and in this table the allowed
values C 1

2 and � 1
2 of the magnetic quantum number ms which correspond to spin-up

and spin-down electrons, respectively, are also given. A complete specification of the
atomic orbital is therefore given by  �nlmlms�. The maximum allowed occupancy
of an atomic orbital is given by 2�2lC 1�. A fully occupied or filled orbital or shell
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TABLE W2.1 Important Atomic Orbitals for Bonding in Solids

Atomic Maximum
Orbital n l ml ms Occupancy

1s 1 0 0 š 1
2 2 (1s2)

2s 2 0 0 š 1
2 2 (2s2)

2px , 2py , 2pz 2 1 0, š1 š 1
2 6 (2p6)

3s 3 0 0 š 1
2 2 (3s2)

3px , 3py , 3pz 3 1 0, š1 š 1
2 6 (3p6)

3dz2 , 3dx2�y2 , 3 2 0, š1, š2 š 1
2 10 (3d10)

3dxy , 3dyz, 3dxz

therefore contains 2�2lC 1� electrons. For example, a filled 3d10 shell corresponds to
10 electrons occupying all of the n D 3, l D 2 d orbitals of the atom. The fact that only
10 electrons can occupy an l D 2 orbital follows from the Pauli exclusion principle
(PEP), which states that in a quantum system such as an atom, molecule, or solid, each
electron must have a set of quantum numbers which is distinct from that of any other
electron in the system.

It should be noted that p and d orbitals are actually linear combinations of wave-
functions with different values of ml (except for pz or dz2 , which correspond to ml D 0).
The outer or valence electron configurations of neutral atoms in their ground states are
presented in Table W2.2.

Two important aspects of the bonding of electrons in neutral atoms are illustrated
in Fig. W2.2, where the energies of electrons are shown schematically as a function
of the atomic number Z. Starting with the energy levels of the H atom on the left, it
can be seen that:

1. Electrons are more tightly bound (i.e., their energies are more negative) as the
charge CZe of the nucleus increases.

2. Electrons in the same shell [i.e., in the n D 2 shell (2s and 2p) or the n D 3 shell
(3s, 3p, and, for high enough Z, 3d)] have similar energies which are usually
quite different from the energies of electrons in other shells.

It is also clear from Fig. W2.2 that electrons outside closed shells (e.g., the single
3s electron of the Na atom with Z D 11), are much less strongly bound than those
in filled shells. These less strongly bound electrons are the atomic valence elec-
trons, which can participate readily in the hybrid or molecular orbitals described
next.

Hybrid Orbitals. As atoms bond to each other in molecules and solids via covalent
bonding (i.e., the sharing of electrons), it is often useful to think of the valence electron
atomic orbitals having similar energies on a given atom (such as 2s and 2p or 3s,
3p, and 3d) combining with each other to form hybrid orbitals. The bonding between
the atoms can then involve the hybrid orbitals in addition to the atomic orbitals. An
example of this type of bonding in the CH4 molecule is discussed later.
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Figure W2.2. Dependence of the energies of electrons in atomic orbitals as a function of the
atomic number Z. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill,
1979.)

+

+

s 2pz

Figure W2.3. Formation of sp hybrid orbitals from s and p atomic orbitals on the same atom.
(Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

Consider now the linear combination of s and p atomic orbitals on the same atom,
leading to the formation of two new, equivalent hybrid sp orbitals. This process is
shown schematically in Fig. W2.3, where it can be seen that the resulting sp orbitals
have the directional properties of the p orbital but are asymmetric. In addition, sp
orbitals can also be formed from two s orbitals on the same atom if one of the electrons
in an s orbital is first excited or promoted to a higher-lying p orbital. This p orbital
then combines with the remaining s orbital to form two sp hybrid orbitals. The energy
initially expended to excite the electron from the s to the p orbital can be recovered
when the sp hybrid participates in a bond with another atom. This process of the
hybridization of atomic orbitals can occur in principle because it leads to the formation
of strong bonds between atoms and a lowering of the energy of the system.

The directionality of hybridized sp orbitals is due to the interference between the
s and p orbitals. For example, the pz orbital might have a phase corresponding to
 p > 0 if z > 0 and  p < 0 if z < 0. If the phase of  s is > 0, then  s C  p will
be larger (on average) for z > 0 than for z < 0. On the other hand,  s �  p will be
larger for z < 0 than for z > 0.
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The hybrid sp2 or sp3 orbitals can be formed similarly when two s and one or
two p atomic orbitals, respectively, combine on the same atom. The resulting three
equivalent sp2 hybrid orbitals have trigonal planar symmetry, while the four equivalent
sp3 hybrid orbitals have tetrahedral symmetry, as shown in Fig. W2.4. The sp3 orbitals
can be written approximately as linear combinations of the s, px, py , and pz atomic
orbitals (Borg and Dienes, 1992, p. 209). Note that the symmetric arrangements of these
sp, sp2, and sp3 orbitals in space result from the mutual repulsion of the electrons
occupying the orbitals.

Electrons in d atomic orbitals can also participate in the formation of hybrid orbitals.
Two important examples are shown in Fig. W2.5. The four dsp2 hybrid orbitals result
from the linear combination of the dx2�y2 , s, px, and py atomic orbitals on an atom.
These dsp2 hybrids appear similar in shape and symmetry (square planar) to the
dx2�y2 orbital but can accommodate four times as many electrons. The six d2sp3

hybrid orbitals that result from the linear combination of the dx2�y2 , dz2 , s, px, py ,
and pz atomic orbitals have the symmetry of an octahedron, also shown in Fig. W2.5.
Additional hybrids involving d orbitals are the three sd2 orbitals with trigonal planar
symmetry, the four sd3 orbitals with tetrahedral symmetry, the five dsp3 orbitals with

z

x x x

yy y+ +

pypx
s

x

y120°

x x x x
z z

(a)

(b)

z

y + y + y + y

s px py pz

Figure W2.4. Formation of trigonal planar sp2 and of tetrahedral sp3 hybrid orbitals from s
and p atomic orbitals on the same atom. (Adapted from A. L. Companion, Chemical Bonding,
2nd ed., McGraw-Hill, 1979.)
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Figure W2.5. Square-planar dsp2 and octahedral d2sp3 hybrid orbitals formed from s, p, and
d atomic orbitals on the same atom. (Adapted from A. L. Companion, Chemical Bonding, 2nd
ed., McGraw-Hill, 1979.)

TABLE W2.3 Important Hybrid Orbitals Involved in
Bonding in Solids

Coordination
Number CN

Hybrid (Number
Orbital Symmetry of Bonds) Examples

sp Linear 2 Cu2O
sp2 Trigonal planar 3 C (graphite)
sp3 Tetrahedral 4 C (diamond)
dsp2 Square planar 4 CuCl, CuO
d2sp3 Octahedral 6 FeS2

sp3d3f Cubic 8

the symmetry of a trigonal bipyramid, the six d4sp orbitals with the symmetry of a
trigonal prism, and the eight sp3d3f orbitals with the symmetry of the vertices of a
cube. The sd3 orbitals are involved in the bonding of the Cr4C ion (substituting for
Si4C) in tetrahedral coordination with four oxygen ions in crystals such as Mg2SiO4,
forsterite.

Some of the hybrid orbitals that are important for bonding in solid-state mate-
rials are listed in Table W2.3. Also listed are the symmetries of the orbitals, the
coordination number CN or number of bonds that can be formed by an atom using
these orbitals and examples of crystals in which the hybrid orbitals are involved in
the bonding. The formation of these hybrid orbitals is only a transitional step in the
bonding process, since these orbitals are eigenstates of neither the isolated atom nor
the resulting molecule or solid.

Molecular Orbitals and Chemical Bonds. The electrons involved in the chemical
bonds between atoms in a molecule no longer occupy specific atomic or hybrid orbitals
but rather, occupy molecular orbitals (MOs) that are associated with two or more
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atoms. The wavefunctions of these MOs can be calculated in principle by solving the
Schrödinger equation for the molecule. This is very difficult to do in practice since
the potential experienced by the electrons due to the nuclei and the other electrons
is not known a priori. As a result, the solutions for the MOs must be obtained in a
self-consistent manner.

As an example, consider the simplest chemical bond, the bond between two H
atoms in the H2 molecule. In the formation of this molecule, the 1s atomic orbitals
of each H atom begin to overlap in space as the atoms approach each other. If the
phases of the two 1s orbitals are the same, constructive interference results and a
bonding molecular orbital (BMO) is produced. If the phases are opposite, destructive
interference occurs and an antibonding state results. In an occupied bonding orbital
there is an excess electron density between the nuclei. In an occupied antibonding state
there is a diminished electron density between the nuclei.

When the interaction is completed and the H2 molecule is formed, the two 1s orbitals
have combined into a single BMO known as a �1s MO, in which the two electrons are
bound equally to both nuclei. In this doubly occupied �2

1s MO, shown schematically
in Fig. W2.6a, the electron charge density midway between the two nuclei is larger
than the sum of the original charge densities in the two 1s atomic orbitals. When a �
MO is doubly occupied, the two electrons are required by the PEP to have their spins
pointing in opposite directions, corresponding to a singlet state.

Z Zz z

(a)

(b)

z z

Figure W2.6. Formation of sigma molecular orbitals (� MOs): (a) from two s atomic orbitals
on different atoms; (b) from two pz atomic orbitals on different atoms. (Adapted from
A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)
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Stable molecules have lower energies than the initially isolated atoms. For example,
the H2 molecule is lower in energy than the two isolated H atoms by 4.52 eV (see
Fig. 2.1 in the textbook†). This energy can be associated with the energy of the covalent
H–H � bond [i.e., E�H–H� D 4.52 eV]. The � bonds correspond to the buildup of
charge between the two atoms involved and are the strongest covalent bonds. Other �
MOs similar to the one shown in Fig. W2.6a can also be formed from any of the other
atomic (2s, 2p, 3s, 3p, 3d, . . .) or hybrid (sp, sp2, sp3, dsp2, d2sp3, . . .) orbitals.
For example, when two 2pz atomic orbitals (see Fig. W2.1) on different atoms overlap
head-on and in phase, the �2p MO shown in Fig. W2.6b is formed.

Another important type of molecular orbital is the � MO formed from p or d atomic
orbitals. For example, consider again the interaction of two 2pz orbitals on different,
identical atoms which are now aligned side by side with their phases synchronized,
as shown schematically in Fig. W2.7. Their linear combination is known as a � MO
and contains two equivalent regions of high probability, placed symmetrically with
respect to the xy plane. When occupied by two electrons, the � MO corresponds to a
covalent � bond. The � bonds are in general weaker than � bonds because their charge
distributions are more spread out.

The last type of MO to be discussed here is the υ MO formed from the head-on
overlap of two 3d orbitals on different, identical atoms. An example is shown in
Fig. W2.8, where two 3dx2�y2 orbitals overlap along the z axis. Four equivalent regions
of high probability are formed symmetrically with respect to the z axis. When the υ
MO contains its two allowed electrons, a covalent υ bond is formed. The υ bonds are
in general weaker than � or � bonds.

The methane molecule, CH4, provides a simple example of � bonding. Here four
identical � bonds are formed from the four electrons in the 1s H orbitals and the four
electrons in each of the sp3 hybrid orbitals on the C atom. The resulting tetrahedral �

(a)

(c)
(b)

Figure W2.7. Formation of a � molecular orbital (� MO) from two pz atomic orbitals on
different atoms. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill,
1979.)

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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(b)

Figure W2.8. Formation of a υ molecular orbital (υ MO) from two 3dx2�y2 atomic orbitals on
different atoms. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill,
1979.)

H
H

H

H

C

Figure W2.9. Model of the sp3 tetrahedral � bonding in the CH4 (methane) molecule. (Adapted
from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

H

H

H

N

I p

Figure W2.10. Model of the “sp3 tetrahedral” � bonding in the NH3 (ammonia) molecule.
(Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

bonding in CH4 is shown schematically in Fig. W2.9, where the angles between the �
bonds have the ideal value of 109.47°.

Examination of the bonding in the ammonia molecule, NH3, illustrates the formation
of nonbonding molecular orbitals (NBMOs). In NH3 three � bonds are formed between
the H atoms and the N atom, as shown in Fig. W2.10. Since N has a valence of 5, the
two remaining valence electrons form a nonbonding, or lone pair (lp), orbital, also
shown in the figure. The NH3 molecule does not have perfect tetrahedral symmetry
since the three � bonds and the nonbonding orbital are not equivalent. The reality
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of the nonbonding orbital can be inferred from its transformation to a � bond in the
ammonium ion, NH4

C. Here a proton HC bonds to the N atom through its attraction
to the electrons in the NBMO, thereby converting this orbital into the fourth � bond
in the tetrahedral NH4

C ion. Non-bonding orbitals can also play important roles in the
bonding of solids. NBMOs participate in hydrogen bonding (see Section 2.7), which
helps to stabilize the structures of solid H2O and DNA.

The interaction of two atomic or hybrid orbitals on different atoms can also lead to
the formation of a less stable, antibonding MO (ABMO) lying higher in energy than
the more stable BMO. In the case of the H2 molecule the spins of the two electrons
in the �1s BMO are antiparallel, corresponding to a singlet spin state, while in the �1s

ABMO the spins are parallel, corresponding to a triplet spin state. The energy of the
�1s ABMO state lies well above that of the �1s BMO in H2, as shown in Fig. 2.1.
The triplet state of this molecule is therefore unstable. Examples of stable molecules
in which ABMOs are actually occupied by electrons are O2 and NO.

W2.2 Absence of Covalent Bonding in White Sn (b-Sn) and Pb

The absence of covalent bonding and the existence instead of metallic bonding in
the group IV elements white Sn (ˇ-Sn) of row 5 and Pb of row 6 can be attributed
to the increased separation between the s and p energy levels in these atoms. This
results from the fact that the 5s and 6s electrons are relatively more strongly bound
to the nuclei. It is therefore no longer energetically favorable for the 5s2p2 and 6s2p2

atomic electrons to undergo the hybridizations to 5sp3 and 6sp3 orbitals, respectively,
which are necessary for covalent bonding to occur. Another specific indication of the
relatively stronger binding of the 6s electrons is that Pb (6s26p2) often has a valence
equal to 2 in solids (e.g., PbO and PbS), indicating that the more strongly bound 6s2

electrons do not participate in the bonding.

W2.3 Madelung Energy of Ionic Crystals

A general expression for the electrostatic energy (i.e., the Madelung energy) of an
ionic crystal is obtained by adding together all the Coulomb interaction energies of the
ions. Let zie denote the charge of the basis ion at position si. Neutrality requires that
niD1zi D 0, where n is the number of ions in a unit cell. The Madelung energy is

U D e2

4��0


N

2

n∑
i,j

zizj
jsi � sjj C N

2

∑
R

n∑
i,j

zizj
jR C si � sjj


 , �W2.1�

where R is a Bravais lattice vector and N is the number of unit cells in the crystal
(assumed to be large). Note that R D 0 is excluded from the sum. In the first sum
the term i D j is omitted. The evaluation of this sum is carried out by summing over
“shells” of ions of given charge at a given distance from the central ion. The interactions
involving the cell at R D 0 are illustrated in Fig. W2.11.

This contribution of the electrostatic interaction to the cohesive energy of an ionic
crystal containing 2N ions is usually expressed as U D �NAe2/4��0d, where A > 0
is the Madelung constant and the energy of interaction for a NN cation–anion pair
separated by a distance d is �e2/4��0d. For the CsCl, NaCl, and cubic ZnS crystal
structures, the values of A are 1.7627, 1.7476, and 1.6381, respectively. On this basis
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si sj

R

Figure W2.11. The lines within the box correspond to the intrabasis Coulomb interactions
(within a given unit cell), while the lines joining the boxes denote the intercell interactions.

the CsCl crystal structure is expected to be slightly more stable than the NaCl crystal
structure. Other effects not included here, where ions have been treated as point charges,
such as overlap of charge clouds, make the very small calculated difference between
the CsCl and NaCl crystal structures rather meaningless. The actual ion–ion interaction
is more realistically modeled as the sum of a short-range repulsive potential and the
long-range Coulomb interaction,

V�r� D B

rm
� zczae2

4��0r
, �W2.2�

where B and m are empirical parameters. Ionic bonding and the Madelung energy are
described in more detail in Chapter 13.

W2.4 Hydrogen Bonding in Ice (Solid H2O)

An example of a crystal in which hydrogen bonding plays an essential role is solid H2O
or ice, where the hydrogen-bonding unit can be written as O–HÐ Ð ÐO. Each oxygen atom
in ice is bonded by strong O–H � bonds with the two H atoms in the H2O molecule
and by weaker HÐ Ð ÐO hydrogen bonds to two H atoms in neighboring H2O molecules.
The arrangement of a central O atom with the four H atoms is tetrahedral (Fig. W2.12).
The O–H distance in the O–H bond is about 0.10 nm and is about 0.175 nm in the
weaker HÐ Ð ÐO hydrogen bond. Ice has several stable crystal structures which share this
tetrahedral orientation of each O atom with respect to the four H atoms surrounding
it and also with respect to its four next-NN O atoms. At any given instant, two of
the four H atoms in each of these tetrahedral O-centered units in ice are bonded to
the central O atom by strong O–H bonds. The other two H atoms are bonded to the
central O atom via the weaker HÐ Ð ÐO bonds. Neutron diffraction studies of solid D2O
have shown, however, that the four D (or H) atoms associated with each O atom are
constantly changing their positions so that each D (or H) atom spends half of its time
in strong � bonds to the central O atom and the other half in strong � bonds with a
neighboring O atom. These results are consistent with thermodynamic studies of the
high residual entropy found in ice crystals, which reflects the “disorder” present in
ice even at very low temperatures. Thus while H2O molecules retain their identity in
crystals of ice, it is not possible to say which two of the four H atoms are bonded via
strong O–H � bonds with the central O atom at any instant.
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Figure W2.12. Crystal structure of ice (solid H2O) illustrating hydrogen bonding and showing
the disorder in the positions of the protons (H atoms). (From N. H. Fletcher, The Chemical
Physics of Ice, Cambridge University Press, Cambridge, 1970. Reprinted with the permission of
Cambridge University Press.)

The strengths of the two bonds in O–HÐ Ð ÐO bonding units are quite different, with
the much stronger O–H � bond having an energy E�O–H� ³ 4.8 eV, while the much
weaker HÐ Ð ÐO hydrogen bond has an energy E�H Ð Ð Ð O� of only about 0.4 eV. Thus the
melting of ice (which involves the weakening of the HÐ Ð ÐO hydrogen bonds between
H2O molecules) and the boiling of water (which involves the breaking of the hydrogen
bonds) occur at relatively low temperatures. The processes of melting and boiling leave
the much stronger O–H � bonds within each H2O molecule intact.

W2.5 Standard Enthalpies of Formation

Cohesive energies Hc must in general be distinguished from the standard enthalpies
of formation fHo of crystals, which are the changes in enthalpy involved in the
formation of a crystal from the constituent elements in their standard states. For
example, the standard enthalpy of formation at T D 0 K of ˛-SiO2(s) (i.e., ˛-quartz),
according to the reaction

Si�s�C O2�g� ���! SiO2�s� �W2.3�

is equal to the standard enthalpy change rHo for this reaction. Thus

rH
o[SiO2�s�] D fH

o[SiO2�s�] �fH
o[Si�s�] �fH

o[O2�g�]

D �905.978 � 0 � 0 D �905.978 kJ/mol. �W2.4�

Solid Si(s) and molecular O2�g� in Eq. (W2.3) are in their standard states with standard
enthalpies of formation fHo, which by definition are equal to zero.† The negative

† Unless otherwise specified, the standard enthalpies of formation fHo used in this section are from the
NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, 11, Suppl. 2 (1982).
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value for fHo[SiO2�s�] indicates that energy is released when SiO2�s� is formed
from Si(s) and O2�g� (i.e., the reaction is exothermic).

The cohesive energy of ˛-SiO2 at T D 0 K according to the reaction

SiO2�s� ���! Si�g�C 2O�g� �W2.5�

is given by

Hc[�SiO2�s�] D fH
o[Si�g�] C 2fH

o[O�g�] �fH
o[SiO2�s�]

D 451.29 C 2�246.785�� ��905.978�

D C1850.84 kJ/mol. �W2.6�

Here fHo[Si�g�] and fHo[O�g�] are the standard enthalpies of formation of gas-
phase Si and O atoms from solid Si(s) and O2�g� at T D 0 K, respectively.

W2.6 Bond Energies

The cohesive energy Hc[SiO2�s�] was shown in Eq. (W2.6) to be equal to
1850.84 kJ/mol. If this energy is assumed to be shared by the 4NA Si–O bonds per
mole of SiO2�s� (NA is Avogadro’s number), the Si–O bond energy is then

E�Si–O� D 4.80 eV. �W2.7�

The bond energies for single bonds listed in Table W2.4 have been obtained from
cohesive energies using this procedure. The crystals whose cohesive energies are used
are also listed. The close connection between bond energies and the electronegativity
scale is discussed in Section 2.8.

W2.7 Ionization Energies and Electron Affinities

It is clear from the discussions presented in Chapter 2 that the valence electrons play a
critical role in the bonding of atoms in solids. Certain important properties and param-
eters pertaining to atoms (or ions) include ionization energy, electron affinity, valence,

TABLE W2.4 Bond Energies

Bond E(X–Y)
X–Y (eV) Source

Si–Si 2.34 Si(s)
Si–C 3.21 ˇ-SiC(s, cubic)
Si–Ge 2.14 Average of Si(s) and Ge(s)
Si–N 3.45 Si3N4�s�
Si–O 4.80 ˛-SiO2�s�
C–C 3.70 C(s,diamond)
Ge–Ge 1.95 Ge(s)
Ge–O 3.66 GeO2�s�
B–N 3.32 ˇ-BN(s, cubic)
Al–N 2.90 AlN(s)
Al–O 5.33 Al2O3�s�
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and atomic or ionic radius. Of these important quantities, only the ionization energies
and electron affinities are obtained directly from experiment. The other parameters (i.e.,
valence, electronegativity, and atomic radii), can only be inferred from the measured
properties of atoms.

The first ionization energy IE(1) of an atom is the energy required to remove an elec-
tron from the neutral atom. IE(1) is also known as the ionization potential. Conversely,
the electron affinity EA of an atom is the energy released when an additional electron
is bound to a neutral atom, leading to the formation of a negative ion with charge �e.
The quantity IE(1) is thus a measure of the ease with which atoms give up electrons
(i.e., of their ability to become cations), while EA is the corresponding quantity for
the formation of anions.

The reactivity of an atom (i.e., its tendency to combine with other atoms to form a
solid), will be greater for atoms with low values of IE(1), such as Li and Na, or with
high values of EA, such as F and Cl. Conversely, atoms with high values of IE(1)
and low values of EA, such as He and Ne, will tend to be unreactive. Strongly ionic
crystals with high ionicities will be formed from pairs of atoms in which one atom has
a low IE(1) and the other atom has a high EA. The classic example is NaCl, where
the Na atom has IE�1� D 5.15 eV, the Cl atom has EA D 3.62 eV, and the resulting
ionicity (see Table 2.6) is fi D 0.94.

Values of IE(1) and IE(2) for the elements are presented in Table 2.9, with IE(1)
also shown graphically in Fig. 2.7a as a function of atomic number Z. It can be seen
that IE(1) generally increases in a given row of the periodic table from left to right as
Z, the resulting nuclear charge CZe, and the attractive electrostatic potential felt by the
electrons all increase. For example, at the beginning of the second row IE�1� D 5.39 eV
for Li with Z D 3, while at the end of the same row IE�1� D 21.56 eV for Ne with
Z D 10. Even though Z and the nuclear charge of atoms also increase down a given
group, IE(1) generally decreases in this direction because of the increase in atomic size
and the screening of the nuclear charge by electrons in filled inner shells.

The two atoms with the highest first ionization energies, He with IE�1� D 24.59 eV
and Ne with IE�1� D 21.56 eV, both have filled outer-electron shells. These two
elements, along with the other inert-gas elements in group VIII, are therefore quite
stable and unreactive. Only at low temperatures are these elements able to form close-
packed crystals in which the neutral atoms are bonded by the weak van der Waals
interaction.

Atomic excitation energies can also play a role in chemical bonding, particularly
in the formation of hybrid orbitals (see Section W2.1). For example, while IE�1� D
9.32 eV for Be is relatively high due to its 1s22s2 filled-shell electron configuration, Be
is nevertheless reactive due to the low first excitation energy of about 2.7 eV, which is
required to excite a 2s electron to a 2p atomic level. The 2s and the 2p electrons of the
excited Be atom can then form a pair of sp hybrid orbitals. Under these conditions, the
Be atom can be considered to have a valence of 2. These sp orbitals can form bonds
with other atoms, such as O in solid BeO, which has the wurtzite (i.e., hexagonal ZnS)
crystal structure.

The electron affinities EA for the elements up to Z D 87 are presented in Table 2.10
and Fig. 2.7b. It can be seen that EA is much smaller than IE(1) for a given atom.
Also, EA increases irregularly from left to right across each row of the periodic table,
reaching its maximum value for the group VII elements, which require just one addi-
tional electron to achieve a filled-shell configuration. All the elements in group II (and
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He) with filled s2 shells and in group VIII with filled s2 and p6 shells have negative
values of EA. These atoms are therefore unstable as negative ions.

W2.8 Valence

The valence z of an atom is usually defined either as the number of electrons it can
share with other atoms in covalent bonds or as the number of electrons it can gain or
lose in the formation of ionic bonds. These two definitions are often equivalent. For
example, the H atom can share its single 1s electron in a covalent bond with another
H atom or can give it up to a F atom during the formation of an ionic HF molecule.
In either case the valence of the H atom is 1.

On the basis of this definition, the most common valences for atoms are given by
the number of outer-shell s and p electrons and so can readily be predicted from their
locations in the periodic table. For example, atoms from group I (H, Li, Na, . . .) and
VII (F, Cl, Br, . . .) have valence 1, atoms from group II (Be, Mg, Ca, . . .) and VI (O,
S, Se, . . .) have valence 2, atoms from group III (B, Al, Ga, . . .) and V (N, P, As,
. . .) have valence 3, atoms from group IV (C, Si, Ge, . . .) have valence 4, while atoms
from group VIII (He, Ne, Ar, . . .) have valence 0.

As with many such simple definitions, there are a large number of instructive excep-
tions. For the transition metals and the noble metals Cu, Ag, and Au, for example,
there exist unfilled or just filled 3d, 4d, or 5d shells lying in energy just below the 4s,
5s, and 6s valence electrons. As a result, the d electrons may participate in bonding
and thereby act as valence electrons. Oxides of the 3d, 4d, and 5d transition metals
and of the noble metals illustrate this point since the valences for the metal cations
can vary from oxide to oxide, depending on the crystal structure. Some examples are
shown in Table W2.5. Note that in Fe3O4, magnetite, and Mn3O4, hausmannite, the Fe
and Mn cations are observed to have two different valence states, C2 and C3, within
the same oxide. Also included in the table are oxides of Pb, a metal with a 6s26p2

TABLE W2.5 Valence, Bonding, and Crystal Structures of Some Oxide Crystals

Chemical Valence z Local Atomic Crystal
Formula of Metal Ion Bonding Units Structure

Cu2O C1 Cu–O2, O–Cu4 Cuprite (BCC)
CuO C2 Cu–O4, O–Cu4 Tenorite (monoclinic)
MnO C2 Mn–O6, O–Mn6 NaCl
Mn2O3 C3 Mn–O6, O–Mn4 Distorted fluorite
Mn3O4 C2 (1) Mn–O4, O–Mn2CMn3C

3 Hausmannite (tetragonal)
C3 (2) Mn–O6

ˇ-MnO2 C4 ³ Mn–O6, O–Mn3 Rutile (tetragonal)
FeO C2 Fe–O6, O–Fe6 NaCl
Fe3O4 C2 (1) Fe–O6, O–Fe2CFe3C

3 Magnetite (inverse spinel)
C3 (1) Fe–O6

C3 (1) Fe–O4, O-Fe2C
2 Fe3C

2

Fe2O3 C3 ³ Fe–O6, O–Fe4 Corundum (hexagonal)
Pb2O C1 Pb–O2, O–Pb4 Cuprite (BCC)
PbO C2 Pb–O4, O–Pb4 Tetragonal
PbO2 C4 Pb–O6, O–Pb3 Rutile (tetragonal)
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electron configuration. The valence of Pb can vary due to the relatively large energy
separation between the 6s2 and 6p2 atomic energy levels.

The overall electrical neutrality of these oxide crystals requires that the total positive
charge of the metal cations be balanced by the total negative charge of the oxygen
anions. This balance is clearly reflected in the chemical formulas, assuming a valence
of oxygen equal to 2, and also in the local atomic bonding units, M–Om and O–Mn,
where m and n are the integal numbers of NNs of the metal M cations and of the O
anions, respectively. The following relationship involving the numbers of NNs and the
valences of the metal cation, z(M), and oxygen, z(O), is found to be satisfied for all
the oxides listed in the table:

mz�O� D nz�M�. �W2.8�

W2.9 Electronegativity

As an example of the use of Eq. (2.12), that is,

E�A–B� D E�A–A�C E�B–B�

2
C k�XA � XB�

2, �2.12�

consider quartz, SiO2. The single-bond energies E�Si–Si� D 2.34 eV and E�Si–O� D
4.80 eV are derived from thermochemical data (see Table W2.4). Using the single-bond
energy E�O–O� ³ 1.48 eV derived from similar data on H2O and H2O2, Eq. (2.12)
yields �XSi � XO�2 D 2.89. It follows that �XSi � XO� D �1.70 since it is known that
XSi < XO. To obtain an absolute scale for electronegativity, Pauling assigned the value
X D 4.0 to F, the most electronegative atom. In this way, the values of electroneg-
ativity presented in Table 2.11 have been obtained from Eq. (2.12). From Table 2.11
it can be seen that �XSi � XO� D 1.8 � 3.5 D �1.7, as found above. These values of
electronegativity reproduce fairly well the measured single-bond energies E(A–B) in
a wide range of materials. It should be noted that electronegativities have not been
assigned to the elements in group VIII of the periodic table, since these atoms with
filled outer-electron shells do not ordinarily form bonds with other atoms.

It can be seen from Tables 2.9, 2.10, and 2.11 that the atoms with the highest
electronegativities [i.e., F (4.0), O (3.5), N (3.0), and Cl (3.0)] are also the atoms with
some of the highest first ionization energies IE(1) and highest electron affinities EA.
This observation is the basis of an alternative electronegativity scale proposed by
Mulliken† in which these strictly atomic properties have been used to define X, as
follows:

X D IE�1�C EA

5.42
. �W2.9�

Here IE(1) and EA are expressed in electron volts. When applied to Si and O using
the data presented in Tables 2.9 and 2.10, the values XSi D 1.76 and XO D 2.78 are
obtained from Eq. (W2.9), compared with Pauling’s values of 1.8 and 3.5. Mulliken’s
scale of electronegativity is thus only reasonably consistent with that of Pauling.

Since electronegativity is a parameter that is neither directly measured from exper-
iment nor precisely defined from first principles, it is not surprising that several scales

† R. S. Mulliken, J. Chem. Phys., 2, 782 (1934); 3, 573 (1935).
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of electronegativity exist in addition to those of Pauling and Mulliken. Scales based
on different assumptions and using different physical properties as input have been
proposed by Sanderson (1976) and by Phillips (1973). The Phillips electronegativity
scale for elements in tetrahedrally coordinated environments is based on dielectric
properties, in particular the optical dielectric function. The difference between the
Pauling and Phillips electronegativities is that Phillips includes the effects of screening
of ions by the valence electrons through use of the Thomas–Fermi screening factor
exp��kTFr�, defined in Chapter 7. These electronegativity scales have been found to
be particularly useful when applied to physical properties closely related to those used
in their definition.

One of the main uses of electronegativities has been in the prediction of the frac-
tion of ionic character of a given bond (i.e., the ionicity of the bond). Ionicities as
determined by Phillips have been presented in Table 2.6. With Pauling’s definition
of electronegativity given in Eq. (2.12), the ionicity of the binary compound AB is
defined by Pauling to be

fi�Pauling� D 1 � exp
[
� �XA � XB�2

4

]
. �W2.10�

While the Pauling and Phillips definitions of X agree for the elements in the first row
of the periodic table, there are significant discrepancies for elements in lower rows.

A serious deficiency of Pauling’s and other electronegativity scales is that a single
value of X is typically assigned to an atom, independent of its valence in a solid.
Since, as shown in Table W2.5, the valence of an atom can vary in different crystal
structures, it should be expected that its electronegativity can also vary. Some examples
of the dependence of electronegativity on valence include XCu D 1.9 for the normal
Cu valence state of 1, [i.e., Cu(1)] but XCu D 2.0 for Cu(2), as well as XFe D 1.8 for
Fe(2), but XFe D 1.9 for Fe(3).

W2.10 Atomic Radii

For the one-electron atom H and for one-electron ions (HeC, Li2C, Be3C, . . .) with
nuclear charge CZe, the expectation value or most probable value for the radius of the
electron in its ground-state orbital is given by

hri D a1

Z
D 0.0529 nm

Z
, �W2.11�

where a1 D 4��oh̄
2/me2 is the first Bohr radius. The inverse dependence of hri on Z

reflects the increased attraction of the electron as the nuclear charge CZe increases.
A useful approximate expression for the radius of the outermost electron orbital with
principal quantum number n in a neutral atom is

hri ³ n2a1/Zeff, �W2.12�

where CZeffe is the effective nuclear charge experienced by the outermost electrons.
Note that Zeff will be less than Z as a result of the screening of the nuclear charge by
the electrons in filled inner shells.
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Some general observations concerning the radii presented in Table 2.12 can be made
(note that the only anions listed in the table are O2�, S2�, Se2�, Te2�, F�, Cl�, Br�,
and I�; the rest are cations):

1. The radii of atoms and ions increase as one moves down the periodic table, in
qualitative agreement with the dependence on the principal quantum number n
expressed in Eq. (W2.12).

2. For a given atom the radii rcov and rmet are closer in value to each other than to
the radius rion of the same atom.

3. Anions such as O2� or F� which have gained additional electrons have rion >
rcov, whereas the reverse is true for cations such as Be2C and Mg2C which have
given up electrons.

4. In the case of Si the three radii presented in Table 2.12 are quite different (i.e.,
rion D 0.040 nm, rcov D 0.118 nm, and rmet D 0.132 nm). These values apply, in
principle, to the Si4C ion in crystalline SiO2 or in the SiF4 molecule, to crystalline
Si with the diamond crystal structure, and to metal silicides such as V3Si in which
the Si atom has 12 NNs, respectively.

5. Values of rion will depend on the valence of the ion (see Table 2.4 and also the
sources listed in this table for values of rion for other valences). For example, the
values of rion presented in Table 2.12 for the group V elements are appropriate
for the cations N5C, P5C, and so on. The values of rion for the corresponding
anions N3�, P3�, As3�, and Sb3� are much larger (i.e., 0.150, 0.190, 0.200, and
0.220 nm, respectively).

As an example of the use of these radii, consider again SiO2 and the question
of its ionicity. Assuming ionic bonding, the interatomic distance d(Si–O) in SiO2

is predicted to be equal to the sum of the radii rion for Si and O (i.e., 0.040 nm C
0.140 nm D 0.180 nm). For the case of covalent bonding, the corresponding sum of the
radii rcov is 0.118 nm C 0.066 nm D 0.184 nm. The actual Si–O interatomic distance
in SiO2 has in fact been measured to be 0.161 nm (independent of the actual crystal
structure). Therefore, neither the ionic nor the covalent radii listed in Table 2.12 are
in fact completely appropriate for SiO2. The actual situation is that the bonding in
SiO2 is of the mixed ionic–covalent type, with the ionicity of the Si–O bond close
to 50%.

The van der Waals atomic radii rvdW are appropriate for neutral atoms with filled
outer shells which are effectively in contact with other atoms in solids but which are
not bonded to them. In such cases the internuclear distance d(A–B) can be set equal
to the sum of the van der Waals radii of atoms A and B. Examples include atoms
such as He and Ne in inert-gas crystals, nonbonded atoms in adjacent molecules in
molecular crystals such as solid H2, Cl2, or solid hydrocarbons, and nonbonded atoms
such as C in adjacent planes in the layered crystal graphite. Selected values of rvdW are
presented in Table 2.13. These values for rvdW were chosen by Pauling to be essentially
the same as the values of rion for the corresponding anions. This choice should not be
surprising since, for example, in the Cl2 molecule “the bonded (Cl) atom presents the
same face to the outside world in directions away from its bond as the ion, Cl�, does
in all directions” (Pauling, 1960, p. 258).
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PROBLEMS

W2.1 To see how rapidly the summation involved in the calculation of the Madelung
energyU converges, use Eq. (W2.1) to calculate the contributions to the summa-
tion from the first five shells of ions surrounding a central ion in the NaCl and
CsCl crystal structures.

W2.2 Compare the electronegativity difference jXC � XSij calculated from Eq. (2.12)
and the Si–Si, C–C, and Si–C bond energies listed in Table W2.4 with the
Pauling electronegativities for Si and C listed in Table 2.11.

W2.3 Calculate the Pauling ionicities fi for SiC, GaAs, AlN, ZnS, HgS, and NaCl.
Compare your results with the Phillips ionicities listed in Table 2.6 for the same
compounds. Are there any systematic differences between the two scales?



CHAPTER W3

Diffraction and the Reciprocal Lattice

W3.1 Voronoi Polyhedra

The concept of Wigner–Seitz cells that is used for periodic structures may be carried
over to amorphous solids except that it is given a different name, the Voronoi poly-
hedra. Select a given atom and draw lines to all other atoms. Create bisecting planes
perpendicular to each of these lines. All points that can be reached from the given
atom without crossing one of these planes lie within the Voronoi polyhedron of that
atom. The various Voronoi polyhedra all have differing sizes and shapes, but they do
collectively fill all space without overlap. In the case of a periodic solid, translational
symmetry demands that the polyhedra all have the same size and shape and they reduce
to the Wigner–Seitz cell. An example of a Voronoi polyhedron is given in Fig. W3.1.

W3.2 Molecular Geometry and Basis Structure from Diffraction Data

The location of the diffraction maxima for a crystalline sample provides information
that allows determination of the symmetry of the reciprocal lattice and measurement of
the lattice constants (i.e., the diffraction pattern specifies the Bravais lattice). In itself, it
does not provide information as to the location or identity of the basis atoms comprising
the unit cell. Such information, however, may be extracted from an analysis of the
intensity of the diffraction spots. Since scattering experiments measure the intensity
only and not the phase, the extraction of this information turns out to be a relatively
difficult problem. (If an x-ray laser could be constructed, presumably an x-ray hologram
could be produced that would contain both amplitude and phase information.) Imagine
that one could hypothetically measure the full scattering amplitude, including the phase:

F�q� D
∑

R

∑
j

fj�q�eiq·�RCsj�

D N
∑

j

fj�q�eiq·sj
∑

G

υq,G �W3.1�

and assume that the atomic form factors, fj�q�, are known from independent experi-
ments. Restricting q to lie on the reciprocal lattice gives

F�G� D N
∑

j

fj�G�eiG·sj . �W3.2�
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Figure W3.1. Voronoi polyhedron for a given atom in a disordered two-dimensional solid.

The unknowns are the set of vectors fsjg and the identity of the atoms at each sj. One
way to find them is to construct a mismatch function

�s1, . . . , sns� D
∣∣∣∣∣∣F�G� � N

∑
j

fj�G�eiG·sj

∣∣∣∣∣∣
2

�W3.3�

and search for the global minimum. At this minimum, if the data are perfectly accurate,
F D 0. In principle, if one measures the complex amplitudes at 3ns points in the
reciprocal lattice, one should be able to determine the ns vectors fsjg

In a realistic case, only the intensities,

I�G� D jF�G�j2, �W3.4�

are measured and phase information is lost. Nevertheless, it is still possible to construct
a mismatch function

��s1, . . . , sns � D

∣∣∣∣∣∣∣
I�G� � N2

∣∣∣∣∣∣
∑

j

fj�G�eiG·sj

∣∣∣∣∣∣
2
∣∣∣∣∣∣∣

2

�W3.5�

and again search for a minimum by adjusting the set fsjg. The search for this minimum
can be an arduous numerical task and limits the size of the unit cell that can be analyzed.

It is useful to introduce the Patterson function,

P�r� D
∑

G

I�G�eiG·r. �W3.6�

Before simplifying this, recall some elementary properties of Fourier series. A periodic
function in one dimension may be expanded as a Fourier series [(see Eq. (3.2) in the
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textbook†]:

��x� D
1∑

nD�1
�nei�2�n/a�x, �W3.7�

where the Fourier coefficients are [see Eq. (3.4)]

�n D 1

a

∫ a

0
��x0�e�i�2�n/a�x0

dx0. �W3.8�

Inserting this into formula (W3.8) yields

��x� D
∫ a

0
��x0�

1

a

1∑
nD�1

ei�2�n/a��x�x0� dx0, �W3.9�

implying the formula

υ�x � x0� D 1

a

1∑
nD�1

ei�2�n/a��x�x0�. �W3.10�

The three-dimensional generalization of the formulas above, involving sums over the
reciprocal lattice, leads to the result

υ�r � r0� D 1

VWS

∑
G

eiG·�r�r0�, �W3.11�

where VWS is the volume of the Wigner–Seitz cell.
The Patterson function becomes

P�r� D N2
∑
j,j0

fŁ
j0�G�fj�G�VWSυ�r � �sj0 � sj��. �W3.12�

This function is seen to possess sharp peaks whenever the vector r matches an
interatomic displacement vector sj0 � sj. Thus, by studying the Patterson map, one
may locate these vectors and attempt to reconstruct the geometric shape of the unit
cell.

The use of the methods described above permit one to obtain short-range structural
information about the basis of the crystal. This method is of particular value in deter-
mining the structure of crystals of biological molecules. It is also of use in studying
materials with complex unit cells, such as catalysts. It is of somewhat less use in
obtaining information concerning intermediate-range order.

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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PROBLEM

W3.1 Define the normalized form factor for a basis by �j�G� D fj�G�/ifi�G� and
assume that it is positive and does not depend on G. Let the normalized scattering
amplitude be given by ˛�G� D F�G�/Nifi�G�. Use the Schwarz inequality,

∣∣∣∣∣
∑

i

uŁ
i vi

∣∣∣∣∣
2



∑

i

juij2
∑

j

jvjj2,

to prove the following inequalities. Show that

j˛�G�j2 
 1.

Assuming inversion symmetry of the basis, show that

j˛�G�j2 
 1
2 [1 C ˛�2G�],

which is known as the Harker–Kasper inequality. Also prove that

j˛�G� š ˛�G0�j 
 [1 š ˛�G � G0][1 š ˛�G C G0�].

As an example of the applicability of inequalities to the determination of the
phase of the scattering amplitude, suppose it is known that j˛�G�j D 0.8 and
j˛�2G�j D 0.6. Determine whether ˛�2G� is positive or negative.



CHAPTER W4

Order and Disorder in Solids

W4.1 Further Discussion of the Random Close-Packing Model

That the random close-packing model (RCP) is a more appropriate microscopic struc-
tural model for metallic glasses than, for example, a nanocrystalline model can be
demonstrated using the results of diffraction studies of metallic glasses. To illus-
trate the differences between diffraction from amorphous and crystalline materials,
the transmission electron-diffraction patterns of thin films of amorphous and recrystal-
lized microcrystalline Fe are shown in Fig. W4.1. These two diffraction patterns can
be seen to be qualitatively different, with microcrystalline Fe showing sharp diffraction
rings and amorphous Fe showing instead only a few broad, diffuse diffraction rings.

The next-NN atomic configurations which are responsible for the second peak in
the reduced radial distribution function G�r� for the metallic glass Ni0.76P0.24, shown in
Fig. 4.11 of the textbook† are shown schematically in Fig. W4.2 for a planar, hexag-
onal array of close-packed atoms. It should be noted that in the RCP model such an
array would not actually be planar, and the corresponding distances would be some-
what less than

p
3 and 2. These distances are actually close to those expected in

icosahedra (see Fig. 1.11). The overlapping structure of this second peak is thus a
characteristic signature of metallic glasses with an RCP structure and may be consid-
ered to provide indirect evidence for the existence of icosahedral clusters of atoms in
metallic glasses.

The fact that the RCP structural model is successful in predicting that two distinct
types of atomic configurations contribute to the second peak in the radial distribution
function g�r� provides strong evidence for its validity. In contrast, nanocrystalline
models of metallic glasses are unable to explain the details of the observed g�r�.
These models, based on the existence of nanocrystallites in the metallic glass, are
able to predict the sharpness of the first peak. They predict, however, that the second
and higher peaks will be sharper than actually observed. Thus the intermediate-range
order predicted to extend beyond NN atoms by nanocrystalline models is not generally
observed in amorphous solids.

One final observation concerning the RCP model is that it can be said to represent an
“ideal” close-packed amorphous solid. This observation follows from the fact that in the
RCP model the spheres are packed as densely as possible, consistent with the nature
of amorphous solids. Achieving a higher density of packing of hard spheres would

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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(a) (b)

Figure W4.1. Transmission electron-diffraction patterns for thin films of (a) amorphous and
(b) recrystallized microcrystalline Fe. (From T. Ichikawa, Phys. Stat. Solidi a, 19, 707 (1973).
Reprinted by permission of Wiley-VCH Verlag Berlin.)

r1 = D

r3 = 2D

r2 = √3 D

Figure W4.2. NN and two types of next-NN configurations of atoms in metallic glasses. A
planar, hexagonal array of close-packed atoms is shown.

require that a form of crystallization occur locally, corresponding to the nucleation of
clusters of spheres with either the FCC or HCP crystal structures or as icosahedra. The
resulting solid would then, however, no longer be completely amorphous. A lower
density of packing could easily be achieved by removing spheres, thereby creating
vacancies and causing the resulting structure to be even more disordered than the ideal
amorphous solid represented by the RCP model.

Even though it can be argued that the RCP model is in some sense ideal, it never-
theless defines an amorphous structure only in a statistical way. This follows from the
fact that there can be an infinite number of possible amorphous solids with structures
that are consistent with the RCP structural model, whereas a crystalline solid has a
single, unique structure.

W4.2 Further Discussion of the Continuous Random Network Model

In the case of amorphous carbon, a-C, there is little doubt that a continuous random
network model (CRN) is appropriate, but there is great difficulty in knowing how to
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construct such a model. The difficulty resides in the fact that there are two common
forms of crystalline C: graphite, based on C–C3 trigonal bonding units, and diamond,
based on C–C4 tetrahedral bonding units. Both graphitelike and diamondlike types of
SRO are believed to be present in a-C.

The validity of CRN models for amorphous solids such as a-Si, a-SiO2, and a-Ge has
been verified by comparing the experimentally determined radial distribution functions
with those calculated from “ball-and-stick” CRN models constructed by hand and
“relaxed” by computer to minimize network strain. The agreement between experiment
and the predictions of the CRN models has been found to be impressive.† These
comparisons also demonstrate that nanocrystalline models for amorphous covalent (or
nearly covalent) glasses are inappropriate, as was also found to be the case for metallic
glasses.

W4.3 Illustrations of the Law of Mass Action

For Schottky defects (i.e., vacancies) the process of creating a vacancy VA without a
corresponding interstitial IA involves the movement of an A atom from a lattice site
to a surface site (i.e., SA). The defect reaction for this process is

A ��! VA C SA. �W4.1�

At the same time, an existing surface atom SA is covered. The net effect is that an
additional bulk atom is created below the surface, yielding

SA  ��! A. �W4.2�

The net defect reaction is therefore the sum of reactions (W4.1) and (W4.2); that is,

0 ��! VA. �W4.3�

The law of mass action for the creation of a Schottky defect is therefore

aL�V� D NL�V�

NL�A�
D KV�T�, �W4.4�

which yields

NL�V� D NL�A� exp
(
�Gr

kBT

)
. �W4.5�

The process of creating an interstitial without a corresponding lattice vacancy
involves the movement of a surface atom SA into an empty interstitial position VI,
thus creating an interstitial A atom IA. At the same time, a new surface atom is
uncovered. The resulting interstitial number or concentration is given by

NI�A� D NI�V� exp
(
�Gr

kBT

)
. �W4.6�

† An excellent summary of these comparisons appears in Zallen (1983, Chap. 2).
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When taken together, the processes just described for the creation of a Schottky
defect and of an interstitial atom are equivalent to the creation of a Frenkel defect (i.e.,
a vacancy–interstitial pair). It can be shown that the equilibrium constant for Frenkel
defect formation KF is equal to KVKI (i.e., to the product of the equilibrium constants
KV for vacancy formation and KI for interstitial formation).

The generation of charged defects (i.e., ionized donors and acceptors in semicon-
ductors) is described in detail in Chapter 11. The requirement of electrical neutrality
plays an important role in determining the concentrations of ionized dopant atoms and,
consequently, of charge carriers.

W4.4 Nonstoichiometry

Solids such as SiO2, NaCl, V3Si, and YBa2Cu3O7, which have a well-defined chemical
formula are stoichiometric compounds. When the composition of a solid deviates from
the standard chemical formula, the resulting solid is said to be nonstoichiometric, and
as a result, defects are present. Examples include SiO2�x, Fe3O4�x, YBa2Cu3O7�x, and
Mn1�xO. Additional examples of nonstoichiometric solids are discussed in Chapter 4,
with further examples presented in Chapters 11 to 18, where specific classes of mate-
rials are addressed.

Nonstoichiometry often results when a solid comes into equilibrium with external
phases. For example, the first three solids just listed are all oxygen-deficient, possibly
resulting from being in equilibrium with an oxygen-deficient atmosphere either during
growth or during subsequent processing at elevated temperatures. The fourth example,
Mn1�xO, is likely to have been formed in an oxygen-rich atmosphere. In all four cases,
the actual composition of the solid is determined by the oxygen activity of the ambient
(i.e., the partial pressure of O2), by the temperature, and by the chemical potentials of
the components.

Nonstoichiometry and the existence of point defects in a solid are often closely
related. Anion vacancies are the source of the nonstoichiometry in SiO2�x, Fe3O4�x,
and YBa2Cu3O7�x, and cation vacancies are present in Mn1�xO. In some cases the
vacancies within the structure are ordered. Nonstoichiometry in ionic solids usually
corresponds to at least one of the ions occurring in more than one charge state. For
example, if all the oxygen ions in Mn1�xO are O2�, then for every Mn2C vacancy
in the solid there must also be two Mn3C ions present to preserve overall electrical
neutrality.
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CHAPTER W5

Phonons

5.1 Monatomic Lattice with Random Interactions

In a disordered material the periodicity of the solid is broken, and this affects the phonon
spectrum. Various types of disorder are possible, including bond disorder, isotopic
mass disorder, or a breaking of the lattice periodicity. In this section a simple model
exhibiting bond disorder is studied: a monatomic lattice in one dimension with nearest-
neighbor (NN) interactions but with random spring constants. These are assumed to
have only two values, KA or KB, with probabilities pA and pB D 1 � pA, respectively.

The squares of the mode frequencies, ω2
�, are determined by finding the eigenvalues

of the random matrix D defined by

Dn,n D Kn C Kn�1

M
, Dn,nC1 D �Kn

M
, Dn,n�1 D �Kn�1

M
, �W5.1

where n D 1, 2, . . . , N labels the atoms in the monatomic lattice (with the subscript
convention 0 ! N and N C 1 ! 1). All other matrix elements are zero. Rapid numer-
ical techniques are available for diagonalizing such matrices.

The density of states (per unit frequency) per atom,

��ω D 1

N

∑
�

υ�ω � ω�, �W5.2

will be compared with the corresponding function expected for the uniform lattice with
an average spring constant K D pAKA C pBKB. The density of states per atom for the
uniform lattice is obtained using the dispersion relation of the book,† Eq. (5.7). Thus

��ω D 1

N

∫ �/a

��/a

Ldk

2�
υ

(√
4K

M

∣∣∣∣sin
ka

2

∣∣∣∣� ω

)

D 2

�

1√
�4K/M � ω2

, �W5.3

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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Figure W5.1. Phonon densities of states for random and uniform lattices. The calculation was
performed with N D 125.

where ω2 � 4K/M. The results are presented in Fig. W5.1, where units are chosen so
that M D 1, KA D 1, KB D 2, and pA D pB D 0.5. An N D 125 lattice was used and
an ensemble average over different sets of random bonds was made. The frequencies
corresponding to the pure KA or pure KB lattices are ωA D 2�KA/M1/2 and ωB D
2�KB/M1/2 (2 and 2.828 in the figure). The differences between the random and
uniform lattice (with K D 0.5KA C 0.5KB D 1.5) are striking. At low frequencies the
density of states follows the trend expected for the infinite uniform lattice. In the
high-frequency region (ωA < ω < ωB) there is a irregular structure for the density of
states. It is found that as N increases, the high-frequency structure remains basically
unchanged, except for the appearance of finer irregular features.

W5.2 Debye–Waller Factor

In this section the derivation of the Debye–Waller factor is sketched. For the sake of
simplicity consider a monatomic lattice of atoms with mass M. Let the instantaneous
position of the atom be denoted by R C u�R, t. The electron density is

n�r, t D natom�r � R � u�R, t. �W5.4

The analysis proceeds as in Chapter 3. The scattering amplitude F�q, t is

F�q, t D fatom�q
∑

R

exp[�iq · �R C u�R, t] D fatom�qS�q, t. �W5.5

When evaluated at a reciprocal lattice vector q D G, the geometric structure factor
becomes

S�G, t D
∑

R

exp[�iG · u�R, t]. �W5.6

The strength of the coherent x-ray scattering is proportional to the absolute square of
S�G. It is useful to work in the interaction representation of quantum mechanics, in
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which the operators are not time dependent. Begin by writing

jS�Gj2 D
∑
RR0

exp[iG · �u�R0 � u�R]. �W5.7

In the absence of fluctuations, this would be N2. In the presence of fluctuations, expand
the displacements as a sum of phonon modes [see Eq. (W5A.5)]:

u�R D
√

1

N

∑
EQ

O�Q[uQ exp�iQ · R C uC
Q exp��iQ · R], �W5.8

where uQ and O�Q are the amplitude and polarization of a phonon with wave vector Q
and frequency ωQ. It follows that

jS�Gj2 D
∑
RR0

∏
Q

exp
(

ip
N

G · O�QfuQ[exp�iQ · R0 � exp�iQ · R] C h.c.g
)
,

�W5.9
where h.c. is the Hermitian conjugate of the first term. This must be averaged over
a thermal distribution of phonons. The exponential is expanded into a power series.
Note that uQ is a Gaussian random variable with the first two moments being

huQi D 0, hjuQj2i D Nh̄

2MωQ

(
nQ C 1

2

)
. �W5.10

Averages of products of Gaussian random variables are expressible in terms of the first
two moments alone,

huQ1uQ2uQ3uQ4i D huQ1uQ2ihuQ3uQ4i C huQ1uQ3ihuQ2uQ4i C huQ1uQ4ihuQ2uQ3i,
�W5.11

where the expansion includes all distinct permutations of the indices. Thus only even
powers in the power series are nonvanishing. The series may then be resummed to
give

hjS�Gj2i D
∑
RR0

∏
Q

exp
{

� 2

N
�G · O�Q

2juQj2[1 � cos Q · �R � R0]
}
. �W5.12

In a three-dimensional crystal the term [1 � cos�Ð] averages to 1
2 and one obtains

hjS�Gj2i D N2 exp

�
∑

Q

�G Ð O�Q
2

(
nQ C 1

2

)
h̄

MωQ

 D N2e�2W. �W5.13

This gives the desired expression for the Debye–Waller factor, exp��2W. In the
high-temperature limit, the Bose–Einstein distribution function may be replaced by
nQ ! kBT/h̄ωQ. It is also possible to use the Debye theory, used in Chapter 5 to
evaluate the specific heat, to evaluate the Debye–Waller factor.
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Appendix W5A: Quantization of Elastic Waves

In this appendix the classical elastic field will be quantized, that is, replaced by a
set of phonons. It is a twofold procedure. First the elastic field is replaced by a set
of independent harmonic oscillators, one for each normal mode. Then each of these
is quantized in the same way that the simple harmonic oscillator is quantized. For
the sake of simplicity, attention is restricted in this appendix to the one-dimensional
monatomic lattice.

The starting point is the classical equation of motion for the particle displacements,
given by Eq. (5.2):

MRun D K�unC1 � un � K�un � un�1, n D 1, 2, . . . , N. �W5A.1

The energy of the system, or Hamiltonian, is the sum of the kinetic energy and the
potential energy:

H D 1

2M

N∑
nD1

p2
n C K

2

N∑
nD1

�unC1 � un
2. �W5A.2

Here pn represents the momentum conjugate to un. The equation of motion is obtained
from Hamilton’s equations of mechanics:

Pun D ∂H

∂pn
D pn

M
, �W5A.3

Ppn D � ∂H

∂un
D K�unC1 C un�1 � 2un. �W5A.4

Eliminating pn from these equations gives Eq. (W5A.1).
Introduce a new set of coordinates fQjg and momenta fPjg, which we call normal-

mode coordinates and momenta, defined by

un D 1p
N

N∑
jD1

Qje
inakj , �W5A.5

pn D 1p
N

N∑
jD1

Pje
inakj , �W5A.6

where a is the lattice constant and kj is defined in Eq. (5.4). It is convenient to impose
periodicity and define QNCj D Qj and PNCj D Pj. Two powerful identities may be
proved. The first involves a sum over lattice positions:

N∑
nD1

exp[ina�kj � kl] D Nυj,l, �W5A.7

and the second involves a sum over modes:

N∑
jD1

exp[ikja�n � m] D Nυn,m. �W5A.8
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As Figs. W5A.1 and W5A.2 show, the sums will be zero when summed either over
lattice positions with a given wave vector or summed over modes with a given lattice
position. The one exception to both cases is when the lattice position is zero or when
the wave vector is zero. For un and pn to be real numbers, one can show from
Eqs. (W5A.5) and (W5A.6) that

QŁ
N�j D QŁ

�j D Qj, PŁ
N�j D PŁ

�j D Pj. �W5A.9

By making use of the identities (W5A.7) and (W5A.8), the Hamiltonian may be
rewritten in terms of the P’s and Q’s:

H D
N∑

jD1

(
PŁ
jPj

2M
C Mω2

j

2
QŁ

jQj

)
. �W5A.10

In this form, the Hamiltonian is expressed as the sum of N independent harmonic
oscillators, each representing one of the normal modes of the lattice. The Pj and Qj

e2ik1a

eik1a

e8ik1a

e3ik1a

e4ik1a

e5ik1a

e6ik1a

e7ik1a

Figure W5A.1. Representation of the sum over lattice positions given in Eq. (W5A.7). Note
that the vector sum is zero. In this diagram N D 8 and j � l D 1.

eik2a

eik1a

eik8a

eik3a

eik4a

eik5a

eik6a

eik7a

Figure W5A.2. Representation of the sum over modes given in Eq. (W5A.8). Note that the
vector sum is zero. In this diagram N D 8 and n � m D 1.
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coordinates are also expressible in terms of pn and un:

Qj D 1p
N

N∑
nD1

une
�inakj , �W5A.11

Pj D 1p
N

N∑
nD1

pne
�inakj . �W5A.12

The quantization procedure is straightforward. One regards fung and fpng as sets
of quantum-mechanical operators obeying the usual equal-time commutation relations
(see Appendix WC):

[un, um] D 0, [pn, pm] D 0, [pn, um] D �ih̄υm,n. �W5A.13

Hamilton’s equations of motion are regarded as equations governing the time evolution
of these operators. The Hamiltonian H, given above, is now an operator. Using the
commutation rules, it can be shown that

[Pj,Ql] D �ih̄υj,l, [Pj, Pl] D 0, [Qj,Ql] D 0. �W5A.14

A further simplification of the problem results from introducing specific linear
combinations of the P’s and Q’s,

aj D 1√
2Mωjh̄

�MωjQj C iPj, aC
j D 1√

2Mωjh̄
�MωjQN�j � iPN�j.

�W5A.15
These operators are referred to as ladder operators. They obey the commutation rules

[aj, al] D 0, [aC
j , a

C
l ] D 0, [aj, a

C
l ] D υj,l. �W5A.16

The P and Q operators become

Qj D
√

h̄

2Mωj
�aj C aC

�j, �W5A.17

Pj D �i

√
Mh̄ωj

2
�aj � aC

�j. �W5A.18

The Hamiltonian finally becomes

H D
N∑

jD1

h̄ωj�a
C
j aj C 1

2 . �W5A.19

The quantity nj D aC
j aj is the number operator for phonons in mode j. Its eigenvalues

are the non negative integers 0, 1, 2, . . . . Its eigenfunctions are states with a definite
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number of phonons of mode j. Thus a given phonon mode may be unoccupied, have
one phonon, two phonons, and so on. The corresponding energy is

Ej D (
nj C 1

2

)
h̄ωj. �W5A.20

The problem has thus been reduced to a system of noninteracting harmonic oscillators,
each corresponding to a different mode, j. Note the presence of energy even in the
absence of phonons (nj D 0). This is called zero-point energy.

Appendix W5B: Dispersion Relations in the General Case

Consider a crystal structure and select any point O in the crystal to serve as an origin.
Translate it through the Bravais lattice, thereby replicating O through the set of trans-
lation vectors fRg. Denote the replicated points by fORg. The set of points in space
which are closer to O than any other OR is called the Wigner–Seitz (WS) cell and has
a polyhedral shape. (Note that this definition is slightly more general than the previous
definition of the WS cell in Chapter 3. in that point O need not be on an atom). Due
to the periodicity of the lattice, the WS cell contains exactly s atoms. Around each of
the origins fORg one may similarly construct a WS cell, thereby filling all of space.

In a phonon excitation the amplitude of vibration of atoms in a neighboring cell
fORg is simply related to the excitations of atoms in the base cell O:

u.�R D u. exp�ik · R, . D 1, 2, . . . , s. �W5B.1

Rather than using the spring constants directly, note that the expression for the
elastic energy [see Eq. (5A.2)] is written as a quadratic form. This permits the intro-
duction of an alternative set of elastic coefficients and expressing the energy in a
simpler form. Let the ˛th component of the displacement of the .th atom of cell R
be denoted by u.˛�R. Expand the elastic energy of the crystal in terms of the atomic
displacements and truncate the expansion at second order, a procedure known as the
harmonic approximation. The zeroth-order term is just a constant added to the energy
and may be neglected. The first-order term vanishes because the elastic energy has a
minimum at the equilibrium state. The second-order term is thus

U D 1

2

∑
.,.0

∑
˛,˛0

∑
R,R0

u.˛�RL.,.0
˛,˛0 �R � R0u.

0
˛0 �R0, �W5B.2

where the set of elastic coefficients is defined in terms of the second derivatives:

L.,.0
˛,˛0 �R � R0 D ∂2U

∂u.˛�R∂u.
0

˛0 �R0
. �W5B.3

The indices . and . 0 range over f1, 2, . . . , sg, and the indices ˛ and ˛0 over f1, 2, 3g.
Note that invariance of the crystal under Bravais lattice translations dictates that L
depends only on R � R0. One sees from the definition that L is symmetric, that is,

L.,.0
˛,˛0 �R � R0 D L.0,.

˛0,˛ �R
0 � R. �W5B.4
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The dynamical equations become

M. Ru.˛�R, t D �
∑
.0

∑
˛0

∑
R0

L.,.0
˛,˛0 �R � R0u.

0
˛0 �R0, t. �W5B.5

This represents a set of 3Ns coupled second-order differential equations for the ampli-
tudes.

If the atomic displacements were all made equal [i.e., u.˛�R D d˛ (for all . and
R)], there would be no restoring force and both sides of the equation would be zero.
Thus

0 D �
∑
.0

∑
˛0

∑
R0

L.,.0
˛,˛0 �R � R0d˛0 . �W5B.6

This is true for any vector d. Also note that as R0 sweeps over the Bravais lattice, so
does the vector R � R0. Thus one obtains the sum rule:

∑
.0,R0

L.,.0
˛,˛0 �R0 D 0. �W5B.7

Using the symmetry of the L matrix [Eq. (W5B.4)] this may also be written as

∑
.,R0

L.0,.
˛0,˛ �R

0 D 0. �W5B.8

For a mode with frequency ω and wave vector k the dynamical equations become

M.ω
2u.˛ D

∑
.0

∑
˛0

D.,.0
˛,˛0�ku.

0
˛0 , �W5B.9

where the dynamical matrix is defined as

D.,.0
˛,˛0�k D

∑
R0

L.,.0
˛,˛0 ��R0 exp�ik · R0. �W5B.10

Equation (W5B.9) is a set of only 3s coupled algebraic equations, so considerable
simplification has been achieved. A solution to these equations determines the phonon
frequencies as the eigenvalues and the polarizations of the phonons as the eigenvectors.
This procedure usually involves the numerical diagonalization of a matrix with 3s rows
and 3s columns.

Appendix W5C: Van Hove Singularities

In this appendix an analysis is made of the density of states in the neighborhood of
a van Hove singularity at position k0. The first-order term in the expansion of the
frequency vanishes so, to second order

ω��k D ω��k0 C 1

2

∑
˛,ˇ

�k � k0˛�k � k0ˇ
∂2ω�

∂k˛∂kˇ
C Ð Ð Ð . �W5C.1
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Introduce a new coordinate system which is both translated, so that the new origin is
k0, and rotated, so that the matrix

h˛ˇ D 1

2

∂2ω��k
∂k˛∂kˇ

�W5C.2

is diagonalized. In this new fk0g coordinate system

ω��k D ω��k0 C
∑
˛

h˛k
02
˛ , �W5C.3

where h˛ are the eigenvalues of h˛ˇ. Assuming that none of the h˛ vanishes, one may
further rescale the coordinates by defining

k00
˛ D jh˛j1/2k0

˛. �W5C.4

Note that translating or rotating a vector does not alter the size or shape of a volume
element in k space, but the scale transformation does, so dk00 D jh1h2h3j1/2dk. Let

ω��k D ω��k0 C ω, �W5C.5

so

��ω D
0∑
�

V

�2�3jh1h2h3j1/2

∫
dk00υ

[∑
˛

k
002
˛ sgn�h˛ � ω

]
. �W5C.6

The fsgn�h˛g numbers are š1, depending on the nature of the extremum. For
an absolute minimum the signature is fC1,C1,C1g. For an absolute maximum
it is f�1,�1,�1g. Saddle points are characterized by having mixed signs [e.g.,
fC1,C1,�1g, fC1,�1,C1g, etc.]. Thresholds occur at the van Hove singularities.
On one side of the threshold there is an added (or subtracted) density which varies as
jωj1/2. Depending on the type of extremum, it could rise, fall, lie to the left, or lie
to the right of the critical point.



CHAPTER W6

Thermally Activated Processes, Phase
Diagrams, and Phase Transitions

W6.1 Concentration Profiles Resulting from Diffusion

The following physical situations are often important in experimental measurements of
the diffusion coefficient D and also in processes in which impurities are intentionally
introduced into materials (e.g., the diffusion of dopants such as P and B into Si).
The first case involves the presence of a thin layer of material on a solid surface,
the second involves bringing two “thick” samples of different materials into intimate
contact with each other, and the third corresponds to modifying the composition profile
near the surface of a solid by maintaining a source of atoms with constant activity at the
surface. In all three cases the one-dimensional form of Fick’s second law, Eq. (6.8) in
the textbook,† is solved to obtain a prediction for the concentration profiles that result
after diffusion has been allowed to occur.

1. Consider a thin layer of A atoms of thickness d and with NA atoms per unit area,
deposited on the surface of a second material B. When the diffusion coefficient
DA of A atoms in B is assumed to be independent of concentration, and hence
of x, the concentration profile of A atoms in B for long diffusion times, such
that the diffusion length

p
DAt × d, will be given by

CA�x ½ 0, t	 D NAp

DAt

exp
(

� x2

4DAt

)
. �W6.1	

The resulting Gaussian profiles for the normalized concentration CA�x, t	/NA are
shown in Fig. W6.1 for several values of the diffusion length 2

p
DAt on both

linear and logarithmic scales. Note that the normalized surface concentration
CA�x D 0, t	/NA D 1/

p

DAt decreases with increasing time, due to the finite

source of A atoms available at the surface.
2. Consider two thick solids composed of A and B atoms that are in intimate contact

with each other. The source of A atoms diffusing into B is now essentially
unlimited, so that the concentration of A atoms at the interface, CA�0, t	, can be
assumed to be constant, CAo. Other boundary conditions are CA�1, t	 D 0 and

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”

45



46 THERMALLY ACTIVATED PROCESSES, PHASE DIAGRAMS, AND PHASE TRANSITIONS

x (µm)

102

10

1

103

104

105

(c
m

−1
)

C
A
(x

,t)

N
A

(c
m

−1
)

C
A
(x

,t)

N
A

21 30

NA = constant

0.5 µm

0.5 µm

1.0 µm

1.0 µm

0 1 2 3

2√Dt = 0.1 µm

0.8

1×105

0.6

0.4

0.2

0

2√Dt = 0.1 µm

Figure W6.1. Normalized Gaussian concentration profiles originating from a thin layer of atoms
on the surface of a solid at x D 0 for several values of 2

p
DAt on both linear and logarithmic

scales. (From A. S. Grove, Physics and Technology of Semiconductor Devices, copyright 1967
by John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

CA�x, 0	 D 0. After interdiffusion is allowed to occur, the concentration profile
of A atoms in B is given by

CA�x, t	 D CAo

[
1 � erf

(
x

2
p
DAt

)]
D CAo erfc

(
x

2
p
DAt

)
. �W6.2	

Here the chemical diffusion coefficient DA is again assumed to be independent
of x. The function erf�x	, called the error function, is one of the most important
functions in diffusion theory and erfc�x	 D 1 � erf�x	 is the complementary



THERMALLY ACTIVATED PROCESSES, PHASE DIAGRAMS, AND PHASE TRANSITIONS 47

x (µm)
1

1 2 30
0

2 30

1

10−1

10−2

10−3

10−4

10−5

CAo
 = const.

0.5 µm

0.5 µm

1.0 µm

0.1 µm
0.2

0.4

0.6

1.0

0.8
C

A
(x

,t)
C

A
o

2√Dt = 0.1 µm

2√Dt = 0.1 µm

Figure W6.2. Normalized concentration profiles originating from an essentially unlimited
source of atoms for several values of the diffusion length

p
DAt on both linear and logarithmic

scales. (From A. S. Grove, Physics and Technology of Semiconductor Devices, copyright 1967
by John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

error function.† The resulting normalized concentration profiles CA�x, t	/CAo are
shown in Fig. W6.2 for several values of

p
DAt on both linear and logarithmic

scales.
3. Another important situation corresponds to modifying the concentration profile

near the surface of a solid by maintaining a constant concentration CA of A
atoms at the surface of an initially homogeneous solid of composition CAo. This
can be accomplished, for example, by exposing the solid to a source of A atoms

† erf�x	 D �2/
p

	

∫ x
0 e

�a2
da, with erf�0	 D 0 and erf�1	 D 1.



48 THERMALLY ACTIVATED PROCESSES, PHASE DIAGRAMS, AND PHASE TRANSITIONS

10 2 3 4 5

x [µm]

2(DAt)1/2 : 0.2, 0.4, 0.8 µm

b.     CA < CAo

a.     CA > CAo

0.5

1.0

0

= 1.25
CA

CAo

CA(x,t)
CAo

CA

CAo

= 0.75

CA(x,t)

CAo

CA

CAo

x

2(DAt)1/2

CA

CAo

=          + ( 1−       ) erf (                )

Figure W6.3. Normalized concentration profiles in a solid obtained when its surface is exposed
to a source of atoms in the vapor phase with constant activity for several values of the diffusion
length 2

p
DAt using only a linear scale. Here CA is the constant concentration at the surface and

CAo is the initial concentration in the solid. Data used to generate these plots: for B diffusing
into Si at T ³ 1025°C, DA D 10�2 µm2/h, and t D 1, 4, 16 h.

in the vapor phase with constant activity. The net diffusion of A atoms either
into the solid (CA > CAo) or out of the solid (CA < CAo) is then allowed to take
place. If the solid has a thickness d × p

DAt, the resulting concentration profile
of A atoms is given by

CA�x, t	� CA

CAo � CA
D erf

(
x

2
p
DAt

)
. �W6.3	

These normalized concentration profiles are shown in Fig. W6.3 for several
values of 2

p
DAt using only a linear scale but for CA > CAo and CA < CAo.

When CAo D 0 this result is identical to that given in Eq. (W6.2). Note that
CA D 0 for desorption of A atoms into a vacuum.

W6.2 Examples of Diffusion Studies

Self-Diffusion in Cu. Experimental results for the self-diffusion coefficient D�T	 of
Cu are presented in Fig. W6.4 together with data on the fractional vacancy concen-
tration nv�T	, also shown in Fig. 4.23. As discussed in Section 4.7, Schottky defects
(i.e., simple vacancies) are identified as the dominant intrinsic defect in FCC metals
such as Cu and are responsible for the self-diffusion process. As a result, the following
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Figure W6.4. Experimental results for the self-diffusion coefficient D�T	 of Cu along with data
on the vacancy concentration nv�T	. [from A. S. Berger et al., J. Phys. F: Met Phys., 9, 1023
(1979). Reprinted by permission of the Institute of Physics.]

expressions from the textbook, Eqs. (6.14), (6.18), and (6.19),

D�T	 D Do exp
(

� Ea
kBT

)
,

Do D fa2ωD
2


exp
(
Sf C Sm

kB

)
,

Ea D Hf CHm,

can be used to analyze these data, except just below Tm, where there appears to be
some upward curvature in D�T	, possibly due to a contribution from divacancies. Self-
diffusion data such as these are often obtained using the tracer method, in which the
motion of radioactive isotopes of the host crystal atoms are “traced” using radiochem-
ical analysis.
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The activation energy for self-diffusion in Cu is found from the data presented in
Fig. W6.4 to be Ea D 2.07 eV. From this result and the value of Hf D 1.28 eV
for vacancy formation in Cu presented in Section 4.7, it follows that the enthalpy of
migration of vacancies in Cu is given by

Hm D Ea �Hf D 2.07 � 1.28 D 0.79 eV. �W6.4	

This value of Hm is typical for the noble metals. The prefactor Do for self-diffusion in
Cu obtained from Fig. W6.4 is 10�5 m2/s. It is difficult to obtain a more precise value
for Do due to the lengthy extrapolation involved.

An interesting correlation exists between measured values of Ea for self-diffusion
in metals and their melting temperatures Tm. The observed empirical relationship is
given, to within about š10%, by

Ea�eV	 ³ Tm�K	

700
. �W6.5	

This correlation results from the fact that both Tm and Ea are determined by the strength
of the bonding of atoms in the solid. Typical values of Do for self-diffusion in metals
are in the range 10�5 to 10�4 m2/s, and typical diffusion coefficients D�Tm	 at the
melting temperature are on the order of 10�12 m2/s.

An important diffusion-related phenomenon occurring in Si-based electronic devices
is the electromigration of Al and Cu ions in the metal lines connecting various elements
and levels within the planar structure. The diffusion of the metal ions in this case is
driven by the electrical current in the interconnect lines, the mechanism being the
transfer of momentum from the electrons to the ions. In this respect Cu has an advan-
tage over Al due to its higher atomic mass. The higher resistances and voids created
in the metal lines due to electromigration can lead to the failure of the device. Elec-
tromigration is described in more detail in Chapter 12.

Self-Diffusion and Impurity Diffusion in Si. Experimental results for self-
diffusion and for the diffusion of several substitutional and interstitial impurities in
Si are summarized in Fig. W6.5. Concentration profiles and diffusion coefficients for
dopant impurities in semiconductors are typically measured using electrical techniques
(e.g., the measurement of capacitance–voltage characteristics of p-n junctions). Self-
diffusion in Si remains an area of active research, with the question of whether the
diffusion is via vacancies or interstitials still under discussion. Recent calculations†

have indicated that only the self-interstitial diffusion mechanism can explain the
magnitude of the observed self-diffusion of Si that occurs with an activation energy
Ea in the range 4.5 to 5 eV and a prefactor Do ³ 0.01 to 0.1 m2/s. This value of Do is
much higher than the values typically observed for diffusion in metals. The dominance
of the self-interstitial, corresponding to a “dumbbell” configuration of two Si atoms
occupying a single lattice site, has been attributed to its predicted lower enthalpy of
formation, Hf D 3.3 eV, compared with a predicted value of Hf D 4.1 eV for the
vacancy.

† P. E. Bloechl et al., Phys. Rev. Lett., 70, 2435 (1993).
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Figure W6.5. Experimental results for self-diffusion and for the diffusion of several substitu-
tional and interstitial impurities in Si. (From W. Frank, Defect and Diffusion Forum 75, 121
(1991). Reprinted by permission of Scitec Publications.)

The diffusion of substitutional dopant impurities in Si is mediated by self-interstitials
and vacancies and is an essential part of the processing of Si-based devices. It can be
seen from Fig. W6.5 that the group III and V elements all diffuse faster in Si than
does Si itself, with values of Ea in the range 3.4 to 3.6 eV for acceptors and 3.9
to 4.2 eV for donors. Donors and acceptors diffuse much slower, however, than the
metal impurities shown, which have values of Ea in the range 0.4 to 0.8 eV and which
diffuse via the direct interstitial mechanism. These observations are consistent with the
group III and V elements entering the Si lattice substitutionally, thus participating in
the covalent bonding, while the metal atoms enter interstitial sites. The rapid diffusion
of unwanted metallic impurities in Si also plays an important role in their removal or
trapping near dislocations or other extended defects in the process known as gettering.

A recent study has found that in Si near T D 800°C, the acceptor ion B� diffuses via
an interstitial mechanism, while the donor ion SbC diffuses via a vacancy mechanism.†

This is consistent with a net negative charge for vacancies in Si, which therefore attract
donor ions such as SbC and repel acceptor ions such as B�. In addition, the larger
atomic size of group V donors makes them less likely to diffuse through the interstitial
sites in Si compared to smaller group III acceptors such as B�.

† H.-J. Grossman et al., Appl. Phys. Lett., 71, 3862 (1997).
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W6.3 Examples of Vaporization Studies

Typical experimental methods employed for the determination of the vaporization
flux Jvap�T	 or, equivalently, of the equilibrium vapor pressure Peq�T	 involve direct
measurement of the weight loss of the crystal and the detection of the evaporated
species via mass spectrometry.

The equilibrium vapor pressures Peq�T	 for Fe and Si presented in Fig. W6.6 are
the recommended values from a critical review† of the data for the thermodynamic
properties of Fe and Si. It can be seen that vaporization is indeed thermally activated
for Fe and Si. From these data the enthalpies and entropies of vaporization, defined in
terms of rGo by

rG
o D Hvap � TSvap, �W6.6	

can be determined. The enthalpy of vaporization Hvap D H�vapor	�H�solid	 is
simply equal to the standard enthalpy of formation fH° of the vapor [i.e., Fe(g)
or Si(g)] since the solid is in its standard state, where fH° is defined to be zero.
Values of Hvap and Svap at T D 298.15 K for Fe and Si are presented in Table W6.1
along with the melting temperature Tm and the equilibrium vapor pressure at Tm. Note
that, as expected, Hvap D 4.66 eV/atom for Si is quite close to 2E(Si–Si), where
E�Si–Si	 D 2.34 eV is the Si–Si covalent bond energy (see the discussion of bond
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Figure W6.6. Equilibrium vapor pressures Peq�T	 of Fe and Si. [Data from P. D. Desai, J.
Phys. Chem. Ref. Data, 15, 967 (1986).]

TABLE W6.1 Vaporization Results for Fe and Si

Hvap(298.15 K) Svap(298.15 K) Tm Peq�Tm	
(kJ/mol; eV/atom) (J/molÐK) (K) (atm)

Fe 415.5 š 1.3; 4.31 š 0.01 180.49 1811 3.58 ð 10�5

Si 450 š 4; 4.66 š 0.04 167.98 1687 5.41 ð 10�7

Source: Data from P. D. Desai, J. Phys. Chem. Ref. Data, 15, 967 (1986).

† P. D. Desai, J. Phys. Chem. Ref. Data, 15, 967 (1986).
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energies in Chapter 2). Mass spectrometry has shown that the Si2 dimer and Si3 trimer
represent about 0.4% and 0.1%, respectively, of the equilibrium vapor of Si at Tm.

When determining the vapor pressure of Si, care must be taken to ensure that the
vaporization of Si atoms occurs from a clean surface. The presence of carbon atoms on
the Si surface can retard vaporization due to the formation of the high-melting-point
compound SiC. The presence of oxygen atoms, on the other hand, can lead to greatly
enhanced vaporization rates due to the formation of the volatile molecule SiO.

W6.4 Gibbs Phase Rule

In a binary eutectic alloy such as Pb–Sn there are three separate phases whose compo-
sitions can be varied. In addition, the temperature and pressure of the alloy can be
varied. There would thus appear to be five quantities or degrees of freedom that can be
controlled independently (i.e., xl, x˛, xˇ, T, and P). In practice, however, these degrees
of freedom are not all independent, as illustrated by the Gibbs phase rule.

Consider a system of C components, labeled c D 1, 2, . . . , C, with P possible
phases, labeled p D 1, 2, . . . , P. Let &cp be the chemical potential for component c in
phase p. At thermal equilibrium the system has a common pressure and temperature,
and the chemical potential for each component is the same in every phase. Thus

&11 D &12 D Ð Ð Ð&1P

&21 D &22 D Ð Ð Ð&2P

... �W6.7	

&C1 D &C2 D Ð Ð Ð&CP,

for a total of C�P� 1	 independent equations.
Let xcp denote the mole fraction of component c in phase p. There are C times P

compositional variables, xcp, and for each phase there is the constraint that

P∑
cD1

xcp D 1, p D 1, 2, . . . , P. �W6.8	

There are thus a total of �C� 1	P independent mole fractions. Including the pressure
and temperature, the number of independent variables is �C� 1	PC 2. The number
of degrees of freedom F (sometimes called the variance) is the difference between the
number of independent variables and the number of equations relating them to each
other, that is,

F D �C� 1	PC 2 �C�P� 1	 D C� PC 2, �W6.9	

which proves the Gibbs phase rule.

PROBLEMS

W6.1 Show that the total number of atoms diffusing either into or out of the surface
of a solid of area A in time t is given by NA�t	 D 2�CA � CAo	A

p
Dt/
 when
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the concentration profile CA�x, t	 in the solid is given by Eq. (W6.3). Note that∫ 1
0 erfc�x	 dx D 1/

p

.

W6.2 Using the fact that the average distance of diffusion of an atom in a solid
in time t is given approximately by L D

√
hX2i ³ p

Dt, calculate the average
time hti it takes for a Cu atom (see Fig. W6.4) to “diffuse” one NN distance
at T D 1000 K. On average, what is the order of magnitude of the number of
oscillations that a Cu atom undergoes during this time?



CHAPTER W7

Electrons in Solids: Electrical and
Thermal Properties

W7.1 Boltzmann Equation

In Section 7.2 of the textbook,† formulas were derived on the basis of Newtonian
mechanics and the assumption that all of the conduction electrons contribute to the
electrical current. In the Sommerfeld theory this is not correct. Electrons with energies
less than ³ EF � kBT have difficulty being accelerated by the electric field since the
states above them are already filled. Only those electrons in the immediate vicinity
of the Fermi surface are excitable. The question is how to rederive the conductivity
formula taking into account the Pauli exclusion principle. Here a semiclassical approach
is adopted.

One introduces a distribution function f�r, p, t
 to describe the system of electrons
in phase space. The quantity 2f�r, p, t
 drdp/h3 gives the number of electrons within
volume element dr and within a momentum bin of size dp at time t (the factor of 2 is
for spins). The distribution function evolves in time due to collisions. The Boltzmann
equation relates the total time derivative of f to the difference between f and the
equilibrium distribution function f0 D F�E, T
, where E is the energy,

df

dt
D ∂f

∂t
C dr
dt

Ð ∂f
∂r

C dp
dt

Ð ∂f
∂p

D ∂f

∂t
C v Ð rfC F Ð ∂f

∂p
D �f� f0

��p

, �W7.1


where v is the velocity and F D �eE0 is the force on the electron. This equation has
been written in what is called the relaxation-time approximation: it is assumed that
the relaxation of f to f0 occurs in a time ��p
 as a result of collisions. Interest here
is in the steady-state behavior, so ∂f/∂t D 0 and f D f�r, p
. Attention will also be
restricted to the case of an infinite medium where a spatially homogeneous solution is
sought, so f D f�p
. It will also be assumed that � depends only on E.

An approximate expression for f is developed by substituting f0 for f in the
left-hand side of Eq. (W7.1):

f D f0 � �

(
v Ð rf0 � eE0 Ð ∂f0

∂p

)
C Ð Ð Ð . �W7.2


† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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Since f0 D F�E,T
, the derivatives may be reexpressed in terms of energy derivatives:

f D f0 � �
∂f0

∂E
v Ð

[
1

ˇ
r�ˇ�E� �

� eE0

]
. �W7.3


The electrical-current density is

J�r, t
 D �2e
∫

vf�r, p, t

dp
h3
, �W7.4


and the heat-current density is

JQ�r, t
 D 2
∫
�E� �
vf�r, p, t


dp
h3
. �W7.5


Note that the thermal energy transported is positive when E exceeds � and negative
when E is less than �. Upon inserting Eq. (W7.3) into Eqs. (W7.4) and (W7.5), the
need to angular-average a product of two velocities over momentum space is encoun-
tered. One uses hvv Ð Ai D v2A/3 D 2 < EA > /3m, where A is a constant vector, and
obtains

J D �16�e
p

2m

3h3

∫
E3/2��E


∂f0

∂E

(
E� �

T
rTC r�C eE0

)
dE, �W7.6


JQ D 16�
p

2m

3h3

∫
E3/2�E� �
��E


∂f0

∂E

(
E� �

T
rTC r�C eE0

)
dE. �W7.7


An expression for � is given in Eq. (7.24). Evaluation of the integrals leads to the
formulas

J D �E0 � �SrT, �W7.8


JQ D �STE0 � �rT, �W7.9


which are called the Onsager relations.

W7.2 Random Tight-Binding Approximation

In this section we study the behavior of ��E
 for a random one-dimensional solid. Two
models for randomness are studied: the first with “bond” randomness and the second
with “site” randomness. In the bond case the tunneling integral, t, varies randomly
from bond to bond, but the site energy, �, remains constant. As an example, let t
assume two values, t1 and t2, with probabilities p1 and p2, respectively. Numerical
results are displayed in Fig. W7.1, where results are shown for ��E
 for the case
where N D 125 sites, t1 D 1, t2 D 2, and p1 D p2 D 1

2 . A suitable average over many
independent configurations has been made. A comparison is made with the uniform
case involving an average tunneling integral hti D p1t1 C p2t2. It is apparent that near
the band center the densities of states are the same, while near the band edges the
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Figure W7.1. Comparison of electron densities of states for the random-bond and uniform
one-dimensional solids.
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Figure W7.2. Comparison of electron densities of states for the random-site and uniform
one-dimensional solids.

random solid exhibits an irregular behavior in contrast to the smooth but divergent
behavior of the uniform solid.

In Fig. W7.2 the result for the random-site model is presented. In this model the
site energy is allowed to have one of two values, �1 or �2, with probabilities p1 and p2,
respectively. The tunneling integral is held fixed at t D 1.5. As before, there is some
rough but reproducible behavior near the band edges. Note that in both the random-site
and random-bond cases there is a tailing off of the density of states beyond the band
edges.

W7.3 Kronig–Penney Model

An analytic solution to Bloch’s difference equation can be found when all Fourier coef-
ficients are equal (i.e., VG D U) and the problem is one-dimensional. Then Eq. (7.54)
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becomes [
h̄2

2m
�k C G
2 � E

]
uG�k
CU

∑
G0
uG�G0�k
 D 0. �W7.10


Let S D ∑
uG. If S D 0, then uG D 0 and there is no nonzero solution. If S 6D 0,

dividing by the first factor and summing over all G yields

SCU
∑

G

1

�h̄2/2m
�k C G
2 � E
S D 0. �W7.11


This will have a non-trivial solution when

1 CU
∑

G

1

�h̄2/2m
�k C G
2 � E
D 0. �W7.12


In one dimension Gn D 2�n/a, where n is an integer, and the sum converges. The
dispersion relations are given by the roots E�k
 of the equation

1 C
1∑

nD�1

U

�h̄2/2m
�k C 2�n/a
2 � E
D 0. �W7.13


Note some simple properties of the left-hand side of this equation: (1) it is periodic
under the replacement k ! k š 2�/a; (2) it is an analytic function of k except for

simple poles at k D �2�n/aš
√

2mE/h̄2; and (3) as k ! ši1 in the complex plane,
the left-hand side approaches 1. From the theory of complex variables (Carlson’s
theorem) it follows that these properties are uniquely shared by the function on the
left-hand side of the following equation:

1 C Ua

2h̄

√
m

2E


cot


a

2


k �

√
2mE

h̄2




 � cot


a

2


k C

√
2mE

h̄2






 D 0.

�W7.14


Letting y D a
√

2mE/h̄2, one has, after some trigonometric manipulation,

cos ka D cos y C ma2U

4h̄2

sin y

y
. �W7.15


It is important to note that the left-hand side of this equation is bounded by š1. For
arbitrary y, the right-hand side can exceed these bounds. No real solution is possible
for such values. Thus there are certain y values, and consequently certain energies, for
which no solution exists. These are called forbidden bands or gaps. Correspondingly,
the regions of energy for which solutions exist are called allowed bands.

An example of the energy spectrum for the Kronig–Penney model is given in
Fig. W7.3. As before, the energy gaps open at the boundaries of the first Brillouin
zone. The Kronig–Penney model considered here corresponds to the case where the
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Figure W7.3. Energy spectrum for the one-dimensional Kronig-Penney model. Here
ma2U/�4h̄2
 D �10.

potential consists of a periodic array of delta-function potentials for which

V�x
 D U
[N/2]∑

nD�[N/2]

ei�2�n/a
x D UN
[N/2]∑

nD�[N/2]

υx,na, �W7.16


where N has been assumed to be odd and [N/2] stands for the integer part of N/2.
It is also possible to formulate the Kronig–Penney model for the case of a periodic
square-well potential.

W7.4 Hall Effect in Band Theory

A discussion of the Hall effect from the perspective of band theory predicts a more
complicated behavior than that of classical Drude theory. The Boltzmann equation for
the distribution function, fn, in a given band n is

vn·rfn C Fn·
∂fn
∂p

D �fn � fn0

�n�p

, �W7.17


with Fn D �e�EY vn × B
 and vn D ∂εn/∂p [see Eq. (W7.1)]. Henceforth the band
index n will be suppressed. Equation (W7.17) is rewritten as

f D f0 � �v·rfC e�E Ð ∂f
∂p

C e�v × B Ð ∂f
∂p

�W7.18


and is iterated to produce an expansion in increasing powers of the fields:

f D f0 C e�E · v
∂f0

∂ε
C e2�v × B Ð ∂

∂p

(
�E · v

∂f0

∂ε

)
C Ð Ð Ð . �W7.19


It is seen from this expression that filled bands do not contribute to the currents, since
∂f0/∂ε D 0, and no current is supported by the equilibrium distribution. The current
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density from Eq. (W7.4) is

J D �2e
∫
dp
h3
fv

D �E � 2e3

h3

∫
dp
∂f0

∂ε
�vv × B· ∂

∂p
��E · v
. �W7.20


Attention here is restricted to the case of an isotropic metal. Assume � D ��ε
 and
write p D m�ε
v, so

J D �E C ,E ð B, �W7.21


where

, D 2e3

3h3

∫
dp
∂f0

∂ε

��v
2

m�ε

. �W7.22


In a multiband case one would sum this expression over all partially occupied bands.
For a perpendicular geometry �E?B
, the Hall coefficient may be expressed as

RH D ,

�2
. �W7.23


The expression for , shows that its magnitude and sign depends on the effective
mass at the Fermi level. This mass may be either positive or negative, depending on the
curvature of the energy band. For example, in the case of aluminum, the Fermi surface
lies outside the first Brillouin zone and has contributions from the second, third, and
fourth Brillouin zones. The net contributions from these bands produces a net positive
value for the Hall coefficient, opposite to that predicted by the classical Drude theory.
The Hall effect in semiconductors is discussed in Section 11.8.

W7.5 Localization

A measure of the ease with which a carrier can move through a crystal is the mobility
� D hvi/E, where hvi is the drift velocity and E is the electric field strength. In a
metal the mobility is determined by the collision time through the formula � D e�/m.
The connection between the mobility and the conductivity differs in two and three
dimensions. In d D 3 the relation is � D ne�, whereas in d D 2 it is � D Ne�, where
n and N are the number of electrons per unit volume and per unit area, respectively.
Obviously, the units for are different in the two cases, being /�1 m�1 and /�1,
respectively. For a thin film of thickness t, n D N/t.

In this section, disordered solids, in which the electron mean free path is determined
by the amount of disorder, are studied. The mean free path is related to the collision time
by , D vF�, vF being the Fermi velocity. There is a minimum value that , can have for
the solid still to have finite conductivity. Ioffe and Regel† (1960) argued that for conduc-
tivity, the electron waves would have to be able to propagate throughout the metal. The
presence of a mean free path introduces an uncertainty in the wave vector, k ³ 1/,,
as may be inferred from Heisenberg’s uncertainty principle. However, for the wave
vector to have a meaning, k < k ³ kF. Using mvF D h̄kF, this gives �min D e/h̄k2

F as

† A. F. Ioffe and A. R. Regel, Prog. Semicond., 4, 237 (1960).
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the minimum metallic mobility. The Ioffe–Regel criterion for localization is kF, < 1.
The Fermi wave vector is given by kF D �2�N
1/2 and kF D �3�n
1/3 for d D 2 and 3,
respectively. This implies the existence of a minimum metallic conductivity given by

� > �min �




e2

2�h̄
D 1

25, 813 /
if d D 2, �W7.24a


e2kF
3�2h̄

if d D 3. �W7.24b


Note that in d D 2, �min is independent of the properties of the metal. In d D 3, �min D
1.12 ð 105 /�1m�1 for Cu, compared with � D 5.88 ð 107 /�1m�1at T D 295 K.

Quantum-mechanical effects modify the classical Drude expression for the conduc-
tivity. For weak disorder the rate for elastic backscattering is enhanced due to construc-
tive interference of direct and time-reversed scattering events. Thus, suppose that there
is a sequence of scattering events for the electron from ion sites labeled A, B, C, . . . ,X
that lead to the electron being backscattered. The time-reversed scattering sequence,
X, . . . ,C, B, A, also leads to backscattering of the electron. In quantum mechanics
one must add together all amplitudes for a given process to determine the total ampli-
tude. Adding the above-mentioned amplitudes before squaring leads to constructive
interference and an enhanced backscattering. If the backscattering is increased, prob-
ability conservation implies that it comes at the expense of forward scattering, and
hence the conductivity. This effect is called weak localization. One may show that the
conductivity change is approximately

�

�
³ � 3

��kF,
2
. �W7.25


Suppose that one looks at impurities in a solid with a distribution of electron site
energies fEig whose width is W. The sites are coupled by tunneling matrix elements,
which decay exponentially with distance. In the familiar tight-binding model, all the
site energies are degenerate and the bandwidth, B, is determined by the NN tunneling
matrix element. All the states are extended Bloch waves and the conductivity is infinite.

In the disordered solid, things are not as simple. For conduction to occur, an electron
must tunnel from one site to another, and this requires a mixing of the local site
wavefunctions. From perturbation theory, two conditions must be satisfied for this to
occur: There must be a sizable tunneling matrix element connecting the sites, and the
energy difference between the site levels must be very small. These conditions are not
likely to occur simultaneously for any given pair of states. The problem is to explore
this competition as the size of the system becomes large. This is usually best done by
computer experiment. The results depend on the dimensionality of the system.

As disorder is introduced, some of the states separate from the allowed band
and reside in what was previously the forbidden region (e.g., the bandgap). This
phenomenon was seen in the discussion of the one-dimensional tight-binding solid
when randomness was present and there was an irregular component to the density
of states (see Section W7.2). These states are localized in space, meaning that their
wavefunctions die off rapidly with distance away from a given point in the crystal. As
more disorder is introduced, some of the previously occupied band states are converted
to localized states. The line of demarcation between the localized and extended states is
called the mobility edge. With increasing disorder, W is increased, and a critical value
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of W/B is ultimately reached for which all states become localized. This is called the
Anderson localization transition. The solid then becomes an insulator.

An estimate of the critical value of W/B can be made as follows. For electrons
to hop from site to site, one needs degeneracy. What determines whether two states
are degenerate or not is the size of the tunneling matrix element t compared with
their energy separation E. If t is larger than E, the states will mix and one may
consider them to be effectively degenerate. Since W represents the full spread of site
energies, the probability that two states will be “degenerate” is given by p D 2t/W.
Delocalization may be interpreted as a percolation phenomenon and it is possible for
the electron to propagate a large distance by following a percolation cluster. In the
discussion of percolation in Section 7.16 it was found that the percolation transition
occurs when p D d/Z�d� 1
 [see Eq. (7.130)]. It was also found in the discussion
of the tight-binding approximation in Section 7.9 that the bandwidth is B D 2Zt [see
Eq. (7.94)]. Thus the transition occurs when

W

B
D d� 1

d
. �W7.26


For d D 3 this gives B/W D 1.5, in rough agreement with computer experiments.
For B/W < 1.5 the states are localized, while for B/W > 1.5 they are extended. For
d D 1 the critical value of B/W is infinite, meaning that unless W D 0, all states will
be localized.

It is also useful to compare this formula to the Ioffe–Regel criterion. A measure
of the size of the bandwidth B is the Fermi energy. For example, a metal with a half-
filled band would have B ³ 2EF, where the Fermi energy is measured with respect to
the bottom of the band. If the mean free path is ,, one may think of the electron as
effectively bound in a spherical box of mean size ,. The confinement energy would
then be a measure of the spread of energies brought about by the inhomogeneities, so
W ³ h̄2/2m,2 since k ³ 1/,. Combining these formulas with Eq. (W7.26) and using
EF D h̄2k2

F/2m gives the condition when localization occurs as

kF, <

√
d

2�d� 1

. �W7.27


Note that in d D 3, kF, <
p

3/4 ³ 1. For a metal such as Cu, kF ³ 5/a, where a is
the lattice constant, and so , < a/5 for localization of electrons to occur.

It must be cautioned, however, that the current theoretical picture is not completely
understood. There are theoretical arguments based on single-electron scattering from
random potentials which say that in two dimensions there is only localization. There
are also some experiments that seem to point to the existence of conductivity in two
dimensions. There are also recent experiments suggesting that the M–I transition may
be associated with the formation of a Wigner crystal (i.e., a two-dimensional crystal-
lization of the electrons). Just what possible role many-body effects play in conductivity
has yet to be clarified.

There are two factors involved in localization. One is, as has been seen, perco-
lation. The other is phase interference of electrons traveling along different paths
but connecting the same pair of points. In a random medium the phase differences
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can be quite large, resulting in destructive interference. The effects of phase interfer-
ence in lower dimensions are more extreme and may contribute to suppression of the
conductivity.

W7.6 Properties of Carbon Nanotubes

Termination of Nanotubes. The nanotube must be capped at both ends for it not to
have dangling bonds. An understanding for how this capping comes about can be had
from examining Euler’s theorem. Consider a polyhedron with Nv vertices, Nf faces,
and Ne edges. Then for a simply connected body, Ne �Nf �Nv D �2. It will be
assumed that each vertex connects to three adjoining polygons and each edge to two
adjoining polygons. LetNi denote the number of i-sided polygons in the structure. Then

Ne D 1

2

1∑
iD3

iNi, �W7.28a


Nv D 1

3

1∑
iD3

iNi, �W7.28b


Nf D
1∑
iD3

Ni. �W7.28c


Combining these equations with Euler’s theorem gives

1∑
iD3

�i� 6
Ni D �12. �W7.29


For example, using only pentagons with i D 5 to terminate the ends of the nanotube,
then N5 D 12 and Ni D 0 for i 6D 5. Thus six pentagons are needed at each end since
only half of the 12-sided polyhedron is needed. The fullerene molecule C60 has N5 D
12 and N6 D 20, so �Ne,Nv, Nf
 D �90, 60, 32
.

Conductivity of Carbon Nanotubes. Adding a single electron to the nanotube
costs electrostatic charging energy Ec D e2/8��0C, where C is the capacitance (rela-
tive to infinity) of the nanotube (³ 3 ð 10�17 F). Unless the potential bias across the
tubule satisfies the condition �eVC Ec < 0, no current will flow. One refers to this
as a Coulomb blockade. Similar phenomena occur in granular metals. However, if a
quantum state of the wire overlaps the occupied states of one electrode and an empty
state of the second electrode, conduction can occur via resonant tunneling through the
quantum state. In this case there is zero-bias conductance. The conductance will be
temperature dependent, being proportional to

G /
∫
dE

∫
dE0��E
��E0 C V
f�E
[1 � f�E0 C V
]υ�E�E
υ�E0 �EC V


/ sech2
[
ˇ

2
�E� �


]
, �W7.30
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where the value of the quantum energy level relative to the chemical potential can be
changed by a gate voltage E� � D eVgate/˛, ˛ being a constant determined by
capacitance ratios. Thus there is a rapid variation of conductance with gate voltage.

Appendix W7A: Evaluation of Fermi Integrals

The Fermi integral to be evaluated is

Ij�ˇ, ˇ�
 D
∫ 1

0

EjC1/2

eˇ�E��
 C 1
dE. �W7A.1


Let x D ˇ�E� �
, so

Ij�ˇ, ˇ�
 D
∫ 1

�ˇ�

dx

ˇ

�u C x/ˇ
jC1/2

ex C 1
. �W7A.2


Integrate this by parts to obtain

Ij�ˇ, ˇ�
 D 1

�jC 3
2 
ˇ

jC3/2

∫ 1

�ˇ�
�ˇ�C x
jC3/2 ex

�ex C 1
2
dx. �W7A.3


Make a power series development in x and extend the lower limit of the integral to
�1, to obtain

Ij�ˇ, ˇ�
 D 1

�jC 3
2 
ˇ

jC3/2

∫ 1

�1

(
�ˇ�
jC3/2 C 1

2

(
jC 3

2

)(
jC 1

2

)

ð �ˇ�
j�1/2x2 C Ð Ð Ð
)

ex

�ex C 1
2
dx, �W7A.4


where the term linear in x integrates to zero. The integrals required are

∫ 1

�1

ex

�ex C 1
2
dx D 1, �W7A.5


∫ 1

�1

x2ex

�ex C 1
2
dx D 2

∫ 1

0

x2e�x

�1 C e�x
2
dx D 2

∫ 1

0
dx x2

1∑
nD1

��
nC1ne�nx

D 4
1∑
nD1

��
nC1

n2
D �2

3
. �W7A.6


The final result is

Ij�ˇ, ˇ�
 D 1

�jC 3
2 
ˇ

jC3/2

[
�ˇ�
jC3/2 C �2

6

(
jC 1

2

)(
jC 3

2

)
�ˇ�
j�1/2 C Ð Ð Ð

]
.

�W7A.7
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Using Eq. (W7A.7), two useful formulas may be derived. If  �E
 is a function of
the form  �E
 D ∑

pjEjC1/2 with j ½ 0, then

∫ 1

0
 �E
f�E, T
 dE D

∫ �

0
 �E
 dEC �2

6
k2
BT

2 ∂ 

∂E

∣∣∣∣
ED�

C Ð Ð Ð , �W7A.8


where f�E,T
 is the Fermi–Dirac distribution. Also, letting  �E
 D ∂:�E
/∂E and
integrating by parts, one obtains

∫ 1

0
:�E


∂f�E, T


∂E
dE D �:��
� �2

6
k2
BT

2 ∂
2:

∂E2

∣∣∣∣
ED�

C Ð Ð Ð . �W7A.9




CHAPTER W8

Optical Properties of Materials

W8.1 Index Ellipsoid and Phase Matching

In the discussions so far† the effect of the crystalline lattice has been omitted. The
description of light propagation in solids must take account of the breaking of rotational
symmetry by the solid. In this section such effects are considered.

Light propagation in an anisotropic medium is often accompanied by birefringence
(i.e., a speed of light that depends on the polarization of the light as well as its direction
of propagation). In this section it is shown how the concept of the index ellipsoid can be
utilized to determine the index of refraction. Then it is demonstrated how, by cleverly
making use of birefringence, one may achieve the phase-matching condition, which is
necessary for efficient nonlinear optical effects.

Start with Maxwell’s equations, Eqs. (W8A.1) to (W8A.4), in a nonmagnetic mate-
rial and imagine a plane electromagnetic wave, such as that drawn in Fig. 8.1 of the
textbook with frequency ω and wave vector k propagating through it. Assuming that
the fields vary as exp[i�k · r � ωt�], the equations become

k × E D ωB,
1

�0
k × B D �ωD, �W8.1�

k · D D 0, k · B D 0. �W8.2�

For a linear, anisotropic dielectric

D D 	0
$	r Ð E, �W8.3�

where $	r is the dielectric tensor. Taking the vector product of Faraday’s law with
k and combining it with the other equations leads to an algebraic form of the wave
equation:

k ×�k × E� D k�k · E�� k2E D ��0ω
2D. �W8.4�

Form the scalar product of this equation with D to obtain

D ·
1

$	R
· D D

( ω
kc

)2
D2 D

(
D

n

)2

. �W8.5�

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Figure W8.1. Polariton branches for MgO, from Eq. (W8.16) using 	�0� D 9.8, 	�1� D 2.95,
and ωT D 7.5 ð 1013 rad/s.

Here 1/$	r is the inverse of the $	r matrix. The dielectric tensor is symmetric and will
therefore be diagonal in some reference frame (called the principal axis coordinate
system). Choose that frame, defined by the mutually perpendicular unit vectors f Ouig,
and write, using dyadic notation,

$	r D n2
1 Ou1 Ou1 C n2

2 Ou2 Ou2 C n2
3 Ou3 Ou3, �W8.6�

where ni D √$	ri . Usually, the set f Ouig will coincide with the symmetry axes of the
crystal. Thus one finally obtains the pair of equations

∑
i

(
n OD Ð Oui
ni

)2

D 1, �W8.7�

where OD D D/D is the direction of the displacement vector, and∑
i

ODi Ð Oui Oui Ð k D 0. �W8.8�

The first formula is the equation of an ellipsoid in D space whose axes are aligned
with the principal axes and centered at the origin. It is called the index ellipsoid. The
second equation is that of a plane through the origin in D space. The intersection
of the plane with the ellipsoid produces the polarization ellipse. The intersection of
this ellipse with the unit sphere determines the two pairs of possible directions for
polarization of the wave.

Suppose that the vectors D and k are projected onto the principal axes:

OD D Ou1 sin � cos C Ou2 sin � sin C Ou3 cos �, �W8.9�

k D k� Ou1 sin˛ cosˇ C Ou2 sin˛ sin ˇ C Ou3 cos˛�. �W8.10�

Then the two conditions become

cos � cos˛C sin � sin˛ cos�ˇ �  � D 0, �W8.11�
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(
sin � cos 

n1

)2

C
(

sin � sin 

n2

)2

C
(

cos �

n3

)2

D 1

n2
. �W8.12�

If one were to choose a direction of propagation perpendicular to one of the principal
axes (e.g., Ou3), then ˛ D �/2 and sin � cos� � ˇ� D 0. There are two possibilities:

sin � D 0, n D n3 � no, �W8.13a�

or

j � ˇj D �

2
,

(
sin � sin ˇ

n1

)2

C
(

sin � cosˇ

n2

)2

C
(

cos �

n3

)2

� 1

n2
e���

.

�W8.13b�
Here no is referred to as the ordinary index and ne��� as the extraordinary index.

For crystals, the number of independent indices of refraction depends on the
symmetry. For the monoclinic, triclinic, and orthorhombic crystals there are three
independent indices. For the hexagonal, tetragonal, and trigonal crystals there are
two independent indices. For the cubic class there is only one independent index.
For amorphous materials the number of independent elements depends on whether or
not there is any remnant orientational or positional order. A glass, which is random
on the scale of the wavelength of light, is isotropic and has only one independent
element. Liquid crystals may have two independent elements. Quantum-well devices
may have two or even three independent elements, depending on the symmetry of the
structure. One refers to materials with two independent components as being uniaxially
symmetric. In that case, if n1 D n2, the extraordinary index is given by

(
sin �

n1

)2

C
(

cos �

n3

)2

D 1

n2
e���

. �W8.14�

A list of indices of refraction for various optical materials is given in Table W8.1. A
list of indices of refraction for various semiconductors is given in Table 11.7.

As discussed in Section 8.9, in any nonlinear optical process there are input waves
and output waves. One constructs a net input wave by forming the product of the input
waves. A similar construct may be formed for the output waves. Associated with these
net waves are phases. For the nonlinear process to proceed efficiently, these phases
must match each other. There can then be coherent transformation of the net input
wave to the output waves over a considerable length in space. The necessity for phase
matching occurs in nonlinear optics in processes where photons interact with each other
by means of a nonlinear optical material. For example, one may have second-harmonic
generation (SHG), where two ordinary wave photons of frequency ω and wave vector
k D ωno�ω�/c combine to form an extraordinary wave photon of frequency 2ω and
wave vector 2ωne�2ω, ��/c. Conservation of momentum then determines the angle �
for which phase matching occurs, via no�ω� D ne�2ω, ��. Other possibilities exist, such
as when an ordinary and an extraordinary photon at frequency ω combine to produce
an extraordinary photon at 2ω, where ne�2ω, �� D [ne�ω, ��C no�ω�]/2, and so on.

All nonlinear optical processes make use of phase matching to increase their effi-
ciency. These include third-harmonic generation, three- and four-wave mixing, para-
metric down-conversion, and stimulated Raman and Brillouin scattering.
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TABLE W8.1 Indices of Refraction for Materials at l = 589 nm (in Vacuum) at
T = 300 K

Material Symmetry n1 n2 n3

AgCl Cubic 2.071 — —
AgBr Cubic 2.253 — —
NaCl Cubic 1.544 — —
KCl Cubic 1.490 — —
ZnSe Cubic 2.89 — —
MgO Cubic 1.736 — —
C (diamond) Cubic 2.417 — —
SrTiO3 Cubic 2.403 — —
Al2O3 (alumina) Hexagonal 1.768 1.760 —
CaCO3 (calcite) Trigonal or

hexagonal
1.658 1.486 —

MgF2 Tetragonal 1.378 1.390 —
TiO2 (rutile) Tetragonal 2.616 2.903 —
As2S3 (orpiment) Monoclinic 2.40 2.81 3.02
SiO2 (˛-quartz) Hexagonal 1.544 1.553 —
SiO2 (fused silica) Amorphous 1.458 — —
SiO2 (trydimite) Trigonal 1.469 1.470 1.471
Na3AlF6 (cryolite) Monoclinic 1.338 1.338 1.339
Cu2CO3(OH)2 (malachite) Monoclinic 1.875 1.655 1.909
KH2PO4 — 1.510 1.469 —
PMMA — 1.491 — —
Polycarbonate — 1.586 — —
Polystyrene — 1.590 — —

Source: Data from M. J. Weber, Handbook of Laser Science and Technology, Vol. III, CRC Press, Boca
Raton, Fla., 1986, and other sources.

W8.2 Polaritons

Infrared radiation propagating through crystals at frequencies close to the optical
phonon frequencies propagates as coupled photon–phonon modes, called polaritons.
Consider, for example, transverse modes. A simple description of these modes follows
from combining the optical dispersion formula ω D kc/

p
	r�ω� with a Lorentz oscil-

lator model for the dielectric function introduced in Eqs. (8.23), (8.25), and (8.28). It
may be rewritten as

	r�ω� D 	r�0�C [	r�1�� 	r�0�]ω2
T

ω2 � ω2
T C i�ω

�W8.15�

for the case of a single oscillator of frequency ωT. Solving the resulting quadratic
equation in the variable ω2 yields two branches:

ω2
š D

	r�0�ω2
T C k2c2 š

√
�	r�0�ω2

T C k2c2�2 � 4	r�1��kcωT�2

2	r�1�
, �W8.16�
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where � ! 0. These branches are plotted in Fig. W8.1 for the case of MgO. The lower
branch has long-wavelength behavior given by ω D kc/

p
	r�0�, corresponding to a low-

frequency photon. The upper branch has the asymptotic behavior ω D kc/
p
	r�1�, as

for a high-frequency photon. The polaritons display the reststrahl gap, discussed in
Section 8.4, between the frequencies ωT and ωL D ωT

p
	r�0�/	r�1�. The fact that

there is no polariton mode between these two frequencies means that propagation of
light through the crystal is blocked there and it behaves as a good mirror in that
frequency range.

Appendix W8A: Maxwell’s Equations

The laws governing electricity and magnetism are Maxwell’s equations. They consist
of four equations, which will be presented in SI units:

1. Gauss’s law,
r · D D �, �W8A.1�

where D is the electric displacement vector and � is the charge density
2. Gauss’s law for magnetism

r · B D 0, �W8A.2�

where B is the magnetic flux density
3. Faraday’s law

r × E D �∂B
∂t
, �W8A.3�

where E is the electric field
4. Ampère’s law, as generalized by Maxwell:

r × H D J C ∂D
∂t
, �W8A.4�

where H is the magnetic field intensity and J is the current density

These equations are supplemented by the constitutive equations

D D 	0E C P, �W8A.5�

where 	0 D 107/�4�c2� ³ 8.854 ð 10�12C2N�1m�2 is the permittivity of free space
and P is the electric polarization vector (the electric dipole moment per unit volume).
In addition,

B D �0�H C M�, �W8A.6�

where �0 D 4� ð 10�7 Wb A�1m�1 is the magnetic permeability of free space and M
is the magnetization vector (the magnetic dipole moment per unit volume).

For linear isotropic materials, one writes Eq. (W8A.5) as

D D 	E D 	r	0E, �W8A.7�
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where 	 is the permittivity of the material and 	r is its dielectric function or relative
permittivity. The electric susceptibility is defined as  e D 	r � 1, so P D  e	0E. Thus
	 D �1 C  e�	0 and 	r D 1 C  e. Also, Eq. (W8A.6) is written as

B D �H D �r�0H, �W8A.8�

where � is the permeability of the material and �r is its relative permeability. The
magnetic susceptibility is defined as  m D �r � 1.

Two useful theorems follow from Maxwell’s equations. The first is the
continuity equation, the microscopic form of the law of conservation of charge.
Equations (W8A.7) and (W8A.8) will be assumed to apply. Then

r · J C ∂�

∂t
D 0, �W8A.9�

which follows from taking the divergence of Eq. (W8A.4) and combining it with
the time derivative of Eq. (W8A.1), using the identity r Ð r × H D 0. The second is
Poynting’s theorem, the microscopic form of the law of conservation of energy:

r · S C ∂u

∂t
D �E · J, �W8A.10�

where S is the Poynting vector, whose magnitude is the power per unit area (intensity)
carried by the electromagnetic field, defined by

S D E × H, �W8A.11�

and u is the electromagnetic field energy density, given by

u D 1

2

∫
�E · D C B · H� dr. �W8A.12�

The right-hand side of Eq. (W8A.10) gives the work done by the currents on the fields.
Equation (W8A.10) follows from taking the scalar product of E with Eq. (W8A.4),
subtracting the scalar product of H with Eq. (W8A.3), and making use of the identity
r · �E × H� D H · r × E � E Ð r × H.

Appendix W8B: Nonlocal Dielectric Function

The nonlocal relation between the electric displacement vector and the electric field
vector (for linear isotropic materials) is

D�r, t� D
∫∫

	�r � r0, t � t0�E�r0, t0� dr0 dt0. �W8B.1�

Since the wavelength is much larger than the interatomic spacing, it is reasonable to
assume that the dielectric function relating the fields at two points should depend only
on the displacement between the two points. The assumption concerning its dependence
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on the time difference is valid at frequencies low compared with electronic excitation
frequencies. It is an approximation at higher frequencies.

One makes a Fourier expansion of the fields,

D�r, t� D
∫∫

D�q, ω�ei�q·r�ωt� dqdω, �W8B.2�

E�r, t� D
∫∫

E�q, ω�ei�q·r�ωt� dqdω, �W8B.3�

and inserts these expressions in Eq. (W8B.1) to obtain

D�q, ω� D 	�q, ω�E�q, ω�, �W8B.4�

where the Fourier-transformed dielectric function is given by

	�q, ω� D
∫
drdt	�r, t�e�i�q·r�ωt�. �W8B.5�

Appendix W8C: Quantum-Mechanical Derivation of the Dielectric Function

In this appendix the quantum-mechanical derivation of the dielectric function will be
given. The Hamiltonian is taken to be

H D H0 � m · E0 cos�ωt� exp�˛t� � H0 CH1. �W8C.1�

(For technical reasons one introduces a switching factor, with parameter ˛ ! 0C, so
that the field is turned on slowly from a value of zero at t D �1.) Let the nth electronic
eigenstates of H0 be denoted by jni, where

H0jni D 	njni. �W8C.2�

To solve the time-dependent Schrödinger equation

Hj i D ih̄
∂

∂t
j i, �W8C.3�

one writes the wavefunction (approximately) as

j i D exp
(

� i

h̄
E0t

)
j0i C

∑
n>0

an�t� exp
(

� i

h̄
Ent

)
jni �W8C.4�

and proceeds to solve for the coefficients an�t�. Assuming that the system starts out in
state j0i at t D �1, one obtains

an�t� D � i

h̄

∫ t

�1
eiωn0t0 hnjH1j0idt0, �W8C.5�
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where ωn0 D �En � E0�/h̄. The expectation value of the scalar product of the dipole
operator with a constant vector C0 is

h jm · C0j i D � 1

2h̄

∑
n>0

⌊
h0jm · C0jnihnjm · E0j0i

ð
(

e�iωt

ω � ωn0 C i˛
� eiωt

ω C ωn0 � i˛

)
C c. c.

⌋
, �W8C.6�

where c.c. means complex conjugate.
The notation is now modified so that the initial state (previously labeled j0i) can be

any of a set fjmig, with associated probability fm, given by a Fermi factor. Then, by
rearranging the indices, one may write

h jm · C0j iD� 1

2h̄

∑
nm

[
hnjm · C0jmihmjm · E0jni e�iωt

ω�ωmnCi˛ �fn�fm�Cc. c.
]
.

�W8C.7�
Dividing by the volume, the expression becomes

1

V
h jm · C0j i D 1

2
	0C0 Ð $ �ω� Ð E0e

�iωt C c. c., �W8C.8�

where the dynamic electric susceptibility dyadic is

$ �ω� D � 1

	0h̄V

∑
m,n
m 6Dn

hnjmjmihmjmjni fn � fm
ω � ωmn C i˛

. �W8C.9�

The dielectric function is
$	r�ω� D $

I C $ �ω�, �W8C.10�

where
$
I is the unit dyadic. In the special case of a crystal, the states are labeled by

the quantum numbers fn, k, sg and the energy eigenvalues are given by 	n�k�. Instead
of having discrete energy levels, the levels are broadened into bands. The expression
for the optical dielectric function becomes

$	r�ω� D $
I C 1

	0V

∑
nn0

∑
kk0

∑
s

hnkjmjn0k0ihn0k0jmjnki
	n0�k0�� 	n�k�� h̄ω � ih̄˛

[fn�k�� fn0�k0�].

�W8C.11�
From Eq. (W8C.11) one sees that the oscillator strengths are determined by the transi-
tion matrix elements (i.e., the dipole matrix elements connecting electronic states of the
system). Comparing Eqs. (W8C.11) and (8.28), one sees that the resonance frequencies
are just the energies of the quantum states divided by Planck’s constant.



CHAPTER W9

Magnetic Properties of Materials

W9.1 Jahn–Teller Effect

Another effect that should be mentioned is the distortion of the octahedral arrangement
of the six NN O2� ions by 3d4 or 3d9 cations such as Mn3C or Cu2C, respectively.
Due to the occupation of the dx2�y2 and dz2 atomic orbitals by the 3d electrons in these
ions, additional asymmetric Coulomb forces will cause shifts in the positions of the
cations and anions, thus producing additional tetragonal or octahedral distortions of
the crystal. These distortions, which are a result of the Jahn–Teller effect, can remove
the degeneracy of the lowest energy level. The Jahn–Teller effect corresponds to the
removal of the ground-state degeneracy for a magnetic ion in a site of high symmetry
by distortions of the structure which lower both the energy and the symmetry of the
system. In the context of crystal field theory, the Jahn–Teller theorem states that such
distortions are in fact expected to occur under certain specific conditions (e.g., when
the symmetric ground state is not a Kramers doublet and when the effect is strong
enough to dominate thermal effects and the effects of spin–orbit interaction).

W9.2 Examples of Weak and Strong Crystal Field Effects

The ionic complexes Fe3C(F�)6 and Fe3C(CN�)6 are examples of the weak- and strong-
field limits, respectively, for the Fe3C ion in an octahedral crystal field. In the former
case the 3d5 Fe3C ion has spin S D 5

2 , as expected from Hund’s rules for a free ion,
while in the latter case the Fe3C spin S D 1

2 , corresponding to a single unpaired d
electron. These values of the spin S are consistent with the predictions of crystal
field theory presented in Table 9.2 of the textbook.† Crystal field theory is thus able
to explain the variation in magnetic properties of the same ion in different crystal
structures. In terms of the alternative molecular orbital theory, highly covalent bonding
between the Fe3C cation and the surrounding anions is proposed to occur in the strong-
field Fe3C(CN�)6 complex, while in the weak-field Fe3C(F�)6 complex the bonding
between cation and anions is primarily ionic with only a small covalent component.

W9.3 Crystal Fields and Cr3Y in Al2O3

The effects of crystal fields on a Cr3C ion with a 3d3 electronic configuration in an
octahedral site will now be considered in greater detail. Examples include Cr3C in

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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the solid antiferromagnetic oxide Cr2O3 or as an impurity or dopant ion in ruby (i.e.,
Al2O3), where each Cr3C replaces an Al3C ion. The latter example actually corresponds
to the first solid-state material to exhibit laser action, as described in Chapter 18. In
each of these examples six O2� ions are the NNs of each Cr3C ion. The free-ion
ground state of the 3d3 Cr3C ion is 4F3/2 (S D 3

2 , L D 3, J D L � S D 3
2 ) according to

Hund’s rules (see Table 9.1). The free-ion energy levels of Cr3C and their splitting in
an octahedral crystal field are shown in Fig. W9.1.†

The splitting of the energy levels of the Cr3C ion by the crystal field is much larger
than the splitting due to the spin–orbit interaction, not shown in Fig. W9.1, between
free-ion energy levels with the same S and L but different J, (i.e., J D L � S D 3

2 , 5
2 ,

7
2 , up to J D L C S D 9

2 . The ground-state 4F3/2 configuration of the free Cr3C ion,
which is (2SC 1
�2L C 1
 D 28-fold degenerate, is split into three levels in the crystal
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Figure W9.1. Free-ion energy levels of Cr3C and their splitting in an octahedral crystal field
shown in a Tanabe–Sugano diagram. The ground state of the 3d3 Cr3C ion, 4F3/2 �S D 3

2 ,
L D 3, J D L � S D 3/2), is split into three levels in the crystal field: a lower 4A2 level and two
upper levels, 4T2 and 4T1. The value o ³ 1.8 eV for Cr3C in Al2O3 is obtained from optical
absorption spectroscopy.

† Energy-level diagrams known as Tanabe–Sugano diagrams for ions with 3dn configurations in both
octahedral and tetrahedral crystal fields are shown as functions of crystal field strength in Sugano et al.
(1970, pp. 108–111). The transitions from the high-spin state (o < U) to a state with lower spin (o > U)
are shown in these diagrams to occur at critical values of o for ions with 3d4, 3d5, 3d6, and 3d7

configurations.
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TABLE W9.1 Mulliken Symbols for Crystal Field Representationsa

Symbol
M Dimensionality Symmetry

A One Symmetric with respect to rotation by
2�/n about the principal Cn axis.

B One Antisymmetric with respect to rotation
by 2�/n about the principal Cn axis.

E Two
T Three
g (subscript) — Attached to symbols for representations

that are symmetric with respect to
inversion

e (subscript) — Attached to symbols for representations
that are antisymmetric with respect to
inversion

aFor additional details, see F. A. Cotton, Chemical Application of Group Theory, 3rd ed., Wiley-Interscience,
New York, 1990, p. 90.

field, a lower fourfold degenerate 4A2 level and two upper levels, 4T2 and 4T1, each of
which is 12-fold degenerate. These new levels in the crystal field are denoted by the
group-theoretic labels 2SC1M, where M refers to the Mulliken notation. The meanings
of the Mulliken symbols are summarized briefly in Table W9.1.

Note that L is no longer a good quantum number in the presence of the crystal field
and so can no longer be used to designate the new levels. The 4A2 level remains the
lowest energy level for all crystal field strengths, and therefore a high-spin to low-
spin transition is not observed for Cr3C in octahedral crystal fields, as expected from
Table 9.2.

The crystal field splittings o of the energy levels of the Cr3C ion are also typically
larger than splittings due to the Coulomb interaction between free-ion levels with
different L (e.g., between the 4F3/2 ground state and the 4P, 2P, 2G, 2D, 2H, and 2F
excited states shown in Fig. W9.1). As a result of crystal field splitting, the ground
state of the ion is no longer �2L C 1
 D sevenfold orbitally degenerate. Instead, orbitals
with different values of ml now have different energies in the solid. The splitting of
the ground-state level in a magnetic field therefore lifts only the degeneracy due to the
spin S. As a result, the ion acts magnetically as if J D S, with an effective magneton
number p D gpS�SC 1
. This is consistent with the p observed for Cr3C, presented
in Table 9.1.

The value of the crystal field splitting o (often referred to in the literature as 10Dq)
for Cr3C in Al2O3 has been obtained from optical spectroscopy. The optical absorption
spectrum observed for Al2O3 containing Cr3C as an impurity cannot be explained as
being due to absorption by the Al2O3 host or to transitions between energy levels in
the free Cr3C ion. Instead, the absorption is due to transitions between the new energy
levels of the Cr3C ion in the octahedral crystal field. The specific transitions involved
are from the ground-state 4A2 level to the excited-state levels shown in Fig. W9.1,
including the 2E, 2T1, 4T2, 2T2, and 4T1 levels. The value o D 1.8 eV is obtained in
this way. These energy levels for the Cr3C ion lie within the energy gap of the Al2O3

host, as is often the case for transition metal impurities in insulating materials.
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The crystal field quenches the orbital angular momentum L by splitting the originally
orbitally degenerate levels into levels separated by energies that are much greater than
mH, where m is the magnetic moment of the atom or ion. In this case the magnetic
field can split the spin-degenerate levels of the ground state only into the �2SC 1

nondegenerate levels, which are responsible for the paramagnetic susceptibility of the
ion, discussed in more detail in Section 9.4.

W9.4 Experimental Results for c in the Free-Spin Limit

Experimental results† for the contribution of Mn spins to the low-field magnetic suscep-
tibility % of a series of six dilute alloys of Mn in Au are shown in Fig. W9.2, plotted
in this case as % versus T/n on a logarithmic plot. The fact that Mn impurities at
dilute concentrations tend to act as free spins in Au is clear since the measured values
of % for the six alloys lie close to a single straight line with a slope of �1, consis-
tent with Curie law behavior. Note also that since the measured values of % D M/H
are much less than 1, it follows that M− H. This justifies the use of the approxi-
mation B D &oH. Assuming that g D 2, the value of the magnitude of the spin for
Mn in Au obtained from the Curie constant C is S D 2.25 š 0.1, which is close to
the Mn2C free-ion value of S D 2.5 (see Table 9.1). This value of S is the same as
that obtained from the measured saturation magnetization for the same alloys, using
S D Msat/ng&B.

Evidence for the appearance of interactions at high n and low T can be seen in
Fig. W9.2 where % at low T for the highest-concentration AuMn alloy falls below the
straight line that represents the Curie law behavior observed for the lower-concentration
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Figure W9.2. Experimental results for the contribution of Mn spins to the low-field magnetic
susceptibility % of a series of six dilute alloys of Mn in Au are shown plotted as % versus T/n
on a logarithmic plot. The concentration n of Mn spins is given in parts per million (ppm).
[From J. C. Liu, B. W. Kasell, and F. W. Smith, Phys. Rev. B, 11, 4396 (1975). Copyright 
1975 by the American Physical Society.

† J. C. Liu, B. W. Kasell, and F. W. Smith, Phys. Rev. B, 11, 4396 (1975).
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alloys. This result indicates that the spins in the most concentrated alloy are not as
“susceptible” as free spins in their response to external magnetic fields. Instead, their
coupling to and interaction with each other limits their ability to respond to external
fields and hence lowers their susceptibility %. The type of interaction responsible for this
behavior in AuMn alloys is an indirect interaction mediated by the conduction electrons.

W9.5 Spin Glasses and the RKKY Interaction

Clear evidence for the existence of the RKKY interaction has been found from studies
of the magnetic properties of dilute alloys (e.g., Mn in Au, Ag, Cu, and Zn). When the
spins of magnetic Mn2C ions are coupled to each other via the conduction electrons, the
average energy of the spin–spin interaction hURKKYi is given by nV0, where n is the
concentration of Mn2C ions per unit volume. This energy of interaction between spins
competes with the energy of thermal disorder kBT, with the result that the free-spin
Curie law %�T
 D C/T is modified and becomes instead

%�T
 D C

TC ) . �W9.1


Here C is again the Curie constant as defined in Eq. (9.26) and ) ³ nV0/kB > 0
is the Curie–Weiss temperature.† Equation (W9.1) is known as the Curie–
Weiss law for the magnetic susceptibility and is valid for T× ) (i.e., for kBT×
nV0).

Note that %�T
 D C/�TC )
 with ) > 0 is smaller than the free-spin susceptibility
%�T
 D C/T for all T, indicating again that spin–spin interactions reduce the ability
of the interacting spins to respond to external magnetic fields. This behavior has
already been illustrated in Fig. W9.2, where, as stated previously, % for the highest-
concentration AuMn alloy at low T falls below the straight line that represents the
Curie law behavior observed at higher T .

As T! 1 the Curie and Curie–Weiss laws become essentially identical since
thermal fluctuations will always overcome magnetic interactions in this limit. The most
significant difference is found for T− ), where %�T
 D C/�TC )
 reaches a finite
value while %�T
 D C/T for free spins diverges as T! 0. The dependence of % on
T expressed by the Curie–Weiss law in Eq. (W9.1) is also observed in ferromagnetic
and antiferromagnetic materials in their paramagnetic states above their respective critical
temperatures Tc. For ferromagnets it is found that ) < 0, whereas for antiferromagnets
) > 0.

W9.6 Kondo Effect and s–d Interaction

One more interesting effect involving localized spins and the conduction electrons
in metals can be mentioned. At sufficiently low temperatures the s–d or exchange
interaction given in Eq. (9.32) can lead to a complicated many-body ground state
of the system of the spin S and the conduction electrons of the metal. As already
mentioned, the scattering of an electron from a magnetic ion can cause the spin of
the scattered electron to flip (i.e., to change its direction), with a compensating change

† A. I. Larkin and D. E. Khmel’nitskii, Sov. Phys. JETP, 31, 958 (1970).
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TABLE W9.2 Competing Effects for Localized
Spins in Metals: Thermal, RKKY, and Kondo
Effects

nV0 × kBTK: spin–spin interactions are dominant.
kBT × nV0 Free spins
kBT − nV0 Frozen spins (spin glass behavior)

kBTK × nV0: single-spin effects are dominant.
T× TK Free spins
T− TK Compensated spins

occurring in the direction of the localized spin. The onset of this new ground state is
typically signaled by the appearance of a minimum in the resistance of the metal as the
temperature is lowered. It has been predicted that below a characteristic temperature
TK the spin S of the magnetic ion will be effectively canceled or compensated by
the oppositely directed spins of the conduction electrons that interact with S. This
behavior is known as the Kondo effect, and the magnitude of the Kondo temperature
TK increases as the strength of the s–d interaction increases.

The s–d interaction, if sufficiently strong, can lead to complete mixing of the
conduction electrons and the localized d electrons of the magnetic ion and therefore to
the disappearance of the localized spin S. An example of this behavior is provided by
Mn2C ions, which do not retain well-defined magnetic moments in certain dilute alloys
such as Mn in Al. In this case the characteristic temperature TK for the s–d interaction
is apparently very high, ³ 1000 K, since for T < TK, the spin will be compensated
and hence effectively absent.

The three competing effects that ultimately determine the behavior and possibly
even the existence of localized spins in metals are thermal effects, effects due to the
spin–spin RKKY interaction, and the single-spin Kondo effect.† The characteristic
energies that determine the strengths of these three effects are kBT, nV0, and kBTK,
respectively. The possible regimes of behavior are defined in terms of the relative
magnitudes of these three energies in Table W9.2. It can be seen that free-spin behavior
should in principle always be observed in solids at sufficiently high T. The term spin
glass used in the table is defined in the discussion of magnetism in disordered materials
in Section W9.11.

W9.7 c.T/ for Ni

A test of the Curie–Weiss law %�T
 D C/�T� TC
 for the ferromagnet Ni is shown
in Fig. W9.3, where %�1

. is plotted as a function of T. It can be seen that signifi-
cant deviations from Curie–Weiss behavior occur just above TC D 627 K. It is found
experimentally for Fe that % is proportional to �T� TC
�/ as T! TC from above.
Here / is measured to be 1.33 instead of the value 1 predicted by the Curie–Weiss
law. The molecular field theory fails near TC since it does not include the effects of
fluctuations of the local magnetization.

† An alternative approach to the question of the existence of localized spins in metals has been developed
by Anderson (P. W. Anderson, Phys. Rev., 124, 41 (1961) and by Wolff (P. A. Wolff, Phys. Rev., 124,
1030 (1961).) For a useful discussion of this approach, see White and Geballe (1979).
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Figure W9.3. Test of the Curie–Weiss law %�T
 D C/�T� TC
 for the ferromagnet Ni in the
form of a plot of %�1

. as a function of T . Deviations from Curie–Weiss behavior are observed just
above TC D 627 K. The straight line is the extrapolation of the results obtained for T > 700 K
and is given by %�T
 D C/�T� )
 where ) D 650 K. [Data From J. S. Kouvel et al., Phys.
Rev., 136, A1626 (1964).]

W9.8 Hubbard Model

An approach that attempts to include both itinerant and localized effects and also
electron correlations within the same model is based on a proposal by Hubbard.† In
the Hubbard model the oversimplified view is taken that the electrons in the partially
filled shell of the free ion enter a single localized orbital in the solid. There are
two important energies in the Hubbard model. The Coulomb repulsion energy U > 0
represents the effects of electron correlations between pairs of opposite-spin electrons
occupying the same orbital on a given ion, and the hopping or tunneling energy is t.
The parameter t is effectively the matrix element between states on neighboring ions
which differ by one electron of a given spin direction and is therefore related to the
energy required for an electron to hop from one site (i.e., one ion) to one of its NNs
without changing its spin direction. In a one-state Hubbard model there is one orbital
per atom and each orbital can be occupied by electrons in four different ways: (1) the
orbital is empty: (�,�), (2) and (3) the orbital is occupied by either a spin-up or a
spin-down electron: (#,�) or (�,"), or (4) the orbital is doubly occupied: (#,").

In the limit U × t and when there are just as many electrons as ions, there will be
a strong preference for occupation of each orbital by a single electron (i.e., case 2 or 3
above). This limit corresponds to an antiferromagnetic insulator in which the effective
exchange integral is J D �4t2/U, with adjacent orbitals occupied by opposite spin
electrons. In the opposite limit of U − t, the electrons are not localized but instead,
form a band of itinerant electrons. Thus the Hubbard model is capable of describing
a wide range of magnetic behavior in solids, depending on the relative values of the
two parameters U and t. In addition, the Hubbard model has the advantage that it can
be formulated so that the condition for local magnetic moment formation is not the
same as that for the occurrence of long-range order in the spin system. The negative-U
limit of the Hubbard model has been applied to charged defects in semiconducting
and insulating solids. The defect is negatively charged when the orbital in question is

† J. Hubbard, Proc. R. Soc. A, 276, 238 (1963); 277, 237 (1964); 281, 401 (1964).
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doubly occupied, or positively charged when the orbital is unoccupied. The energy U
can be effectively negative when lattice relaxations occur that favor negatively charged
defects.

The Hubbard model goes beyond the one-electron tight-binding approximation
presented in Chapter 7, in that it includes electron–electron interactions when two
electrons reside on the same site. The application of the Hubbard model to high-Tc
oxide-based superconductors is described briefly Chapter W16.

W9.9 Microscopic Origins of Magnetocrystalline Anisotropy

The microscopic origins of magnetocrystalline anisotropy can be viewed as arising from
anisotropic interactions between pairs of spins when these interactions are significant
and also from the interaction of a single spin with its local atomic environment (i.e.,
the crystal field). The pair model of Van Vleck, developed in 1937, attempts to explain
the change of the energy of interaction of pairs of spins according to their directions
relative to their separation r. This type of interaction is called anisotropic exchange, in
contrast to the isotropic Heisenberg exchange interaction of Eq. (9.30). The spin–orbit
interaction is believed to be an important source of the magnetic anisotropy. In the
pair model the first-order anisotropy coefficient K1 is predicted to be proportional to a
high power of the spontaneous magnetization Ms in the ferromagnet. This result can
explain the observed rapid decrease of K1 with increasing temperature, with Ms and
K1 both falling to zero at TC.

The direction of the spin of a magnetic ion in a material can also depend on the
nature of the crystal field acting on the ion. In this way the local atomic environment
can influence the direction of the magnetization M, hence giving rise to anisotropy. In
fact, the electronic energy levels of the ion are often modified by the interaction with
the crystal field, as discussed in Section 9.3.

W9.10 c|| and c⊥ for Antiferromagnetic Materials

The predicted differences between %jj and %? discussed in the textbook are clear
evidence that the magnetic properties of antiferromagnetic materials can be expected
to be anisotropic below TN. For example, in MnO the preferred directions for the
sublattice magnetizations MsA and MsB, and hence the directions corresponding to %jj,
can be seen from Fig. 9.17 to be the [101] and [101] directions in the f111g planes.
Also, if an antiferromagnet were perfectly isotropic below TN, it would follow that
%jj D %?. Since %? > %jj for T < TN, it can be energetically favorable for the spins to
rotate so that the spin axis is perpendicular to the applied field. This “flopping” of the
spin axis occurs at a critical applied magnetic field which is determined by the relative
strengths of the magnetocrystalline anisotropy and the antiferromagnetic interactions.

W9.11 Magnetism in Disordered Materials

Spin glasses (i.e., dilute magnetic alloys) are the focus of this section, due to the fairly
simple, yet important ideas involved in the explanation of their magnetic behavior.
In general, nonuniform internal molecular fields Beff whose magnitudes and directions
vary from spin to spin are present in amorphous magnetic materials. The probability
distribution P�Beff
 of the magnitudes of these internal fields in spin glasses (e.g.
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Cu0.99Fe0.01) will be nonzero even at Beff D 0. Thus there will always be spins with
Beff D 0 which are effectively free to respond to thermal excitations and to external
magnetic fields. This is clearly not the case in the magnetically ordered materials
discussed in the textbook, in which every spin experiences a nonzero molecular field,
at least below the critical temperature TC or TN for magnetic ordering.

In sufficiently dilute spin glasses and at relatively high temperatures each spin can
in principle be thought of as being free or as interacting with at most one other spin
in the material. The spins typically interact via the indirect RKKY interaction through
the conduction electrons. In this case the contributions of the interacting spins to the
magnetization M, the magnetic susceptibility %, and the magnetic contribution CM to
the specific heat obey the following scaling laws involving temperature T and magnetic
field H:

M�H,T
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(
T

n
,
H

n

)
,

%�T
 D F%
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(
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n

)
.

Here n is the concentration of magnetic impurities, and FM, F%, and FC are functions
only of H and T through the reduced variables H/n and T/n. These scaling laws
follow from the 1/r3 dependence of the RKKY interaction on the separation r between
spins, as presented in Eqs. (9.33) and (9.34).

Since the average separation hri between randomly distributed spins can be approx-
imated by n�1/3, it follows that the average strength hJRKKY�r
i of the interaction
between spins is proportional to hV0/r3i (i.e., to nV0), where V0 is a constant for a
given combination of magnetic impurity and host material. The value for V0 in dilute
CuMn alloys† is V0 D 7.5 ð 10�50 J Ð m3. Taking a Mn concentration of 0.1 at % D
1000 parts per million (ppm) in Cu yields n D 8.45 ð 1025 Mn spins/m3 and nV0 D
6.3 ð 10�24 J ³ 4 ð 10�5 eV. This concentration corresponds to an average distance
between Mn spins of about 2 nm. The value of Jsd for CuMn can be obtained from
Eq. (9.35) using the result given above for V0, a density of states for Cu of .�EF
 D
2.34 ð 1047 J�1m�3. The value so obtained is Jsd D 3.45 ð 10�19 J D 2.16 eV.

The scaling behavior of %�T
 predicted above has already been demonstrated in
Fig. W9.2, where % is shown plotted as a function of T/n for several AuMn alloys.
The measured magnetization M for three of these AuMn alloys at a fixed value of T/n
is shown in Fig. W9.4 plotted as M/n versus H/n. The scaling behavior predicted
is again observed. The magnetization M�H
 shown here falls well below the corre-
sponding Brillouin function M D ng&BJBJ�g&BJB/kBT
, which would apply if the
spins were free (i.e., completely noninteracting).

Experimental results for the magnetic contribution CM to the specific heat of a
series of dilute alloys of Mn in Zn are shown in Fig. W9.5, where CM/n is plotted as
a function of T/n. Scaling is observed for the more-concentrated alloys where RKKY

† F. W. Smith, Phys. Rev. B, 14, 241 (1976).
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interactions dominate, whereas evidence for single-impurity effects, possibly due to
the Kondo effect, is observed for the more dilute alloys at higher values of T/n. The
peak observed in the measured specific heat at T/n ³ 20 K/(at % Mn) corresponds to
a value of the ratio kBT/nV0 of thermal to RKKY interaction energies approximately
equal to 2. At lower T (i.e., for kBT < nV0) interactions between the spins cause them
to “freeze” in the local molecular field due to their neighboring spins. At T = 0 K the
spin glass is magnetically “frozen” and the spins are oriented along the direction of
their local molecular field. As T is lowered it is found experimentally that CM / n2,
indicating that interactions first appear between pairs of spins. The typical size of an
interacting cluster of spins increases as T decreases or n increases until the interactions
extend throughout the entire spin system.

The magnetic behavior of dilute spin glasses can thus be understood as resulting
from RKKY interactions between pairs of spins. Evidence for clusters of spins can
be found in more concentrated spin glasses, such as Cu containing more than a few
atomic percent Mn or in alloys such as CuxNi1�x and FexAl1�x. Although the magnetic
behavior is much more complicated in these concentrated alloys, the RKKY interaction
still plays an important role. The term mictomagnetism is sometimes used to describe
such materials in which the orientations of the spins are disordered and frozen at low
temperatures.
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PROBLEMS

W9.1 Using Hund’s rules, find the values of S, L, and J for the atoms in the 4d
transition element series (Y to Pd). Compare these values with the corresponding
results given in Table 9.1 for the 3d series.

W9.2 From Fig. 9.5 it can be seen that, relative to the degenerate spherically symmetric
level, the dxy , dyz, and dxz orbitals are shifted lower in energy by 2o/5 for
the octahedral case and higher in energy by 2t/5 for the tetrahedral case.
The corresponding opposite shifts for the dx2�y2 and dz2 orbitals are by the
amount 3o/5 or 3t/5 for the octahedral and tetrahedral cases, respectively.
Show that these energy shifts are such that the total energy of the 3d10 config-
uration will be the same in both the spherically symmetric and crystal-field-
split cases.

W9.3 Using the schematic energy-level diagrams shown in Fig. 9.5, calculate the
crystal field stabilization energies (CFSEs) and spins S [assuming that orbital
angular momentum L is quenched (i.e., L D 0)]:
(a) For the 3dn ions in octahedral sites. Compare your results with the values

presented in Table 9.2.
(b) For the 3dn ions in tetrahedral sites.
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(c) In a ferrite such as Fe3O4, will Fe2C ions prefer to enter octahedral or
tetrahedral sites on the basis of their crystal field stabilization energy CFSE?
What about Fe3C ions?

W9.4 Show that the induced saturation magnetizationMsat for a system of n D 1026/m3

free spins in a material makes a negligible contribution to the magnetic induc-
tion B .

W9.5 Derive the general expression for the Brillouin function BJ(x) given in Eq. (9.24).
W9.6 Consider a dilute magnetic alloy that contains n D 2 ð 1023 spins/m3. At low T

the spins can be saturated in a field H ³ 4 ð 106 A/m, withMsat measured to be
5.56 A/m. At high T the spins obey a Curie–Weiss law %�T
 D C/�TC )
 with
Curie constant C D 7.83 ð 10�6 K and Curie–Weiss temperature ) D 0.1 K.
(a) From these data determine the spin J and g factor of the spins.
(b) Are the spins free? If not, what type of spin–spin interaction would you

conclude is present in the alloy?
W9.7 Consider a spin S in a ferromagnet interacting only with its z NN spins (z D 12

for an FCC lattice).
(a) Using Eq. (9.41) show that the Curie–Weiss temperature ) is given by ) D
zS�SC 1
J�RNN
/3kB, where the exchange integral J�r
 is evaluated at the
NN distance RNN.

(b) Using the approximate values ) ³ TC D 1043 K and S ³ 1 for BCC ferro-
magnetic ˛-Fe, calculate the value of J(RNN).

W9.8 Show that at the Néel temperature TN, the predicted maximum value for the
magnetic susceptibility % according to the molecular field model is %max D
�1/5AB > 0. Explain why this prediction that %max is proportional to 1/5AB is
physically reasonable.

W9.9 Calculate the Pauli paramagnetic susceptibility %P for Na metal according to the
free-electron theory.



CHAPTER W10

Mechanical Properties of Materials

W10.1 Relationship of Hooke’s Law to the Interatomic U.r/

Since the macroscopic deformation of a solid reflects the displacements of individual
atoms from their equilibrium positions, it should not be surprising that the elastic
response of a solid is determined by the nature of the interactions between neighboring
atoms. In fact, Hooke’s law can be derived from the form of the potential energy
of interaction U�r� for a pair of atoms, as shown for a pair of hydrogen atoms in
Fig. 2.1 of the textbook.† The equilibrium separation of the two atoms corresponds to
the minimum in the U�r� curve at r D r0. Since U�r� is a continuous function, it can
be expanded in a Taylor series about r D r0, as follows:

U�r� D U�r0�C �r � r0�
(
dU

dr

)
r0

C �r � r0�2
2

(
d2U

dr2

)
r0

C Ð Ð Ð . �W10.1�

The first derivative, �dU/dr�r0 , is equal to zero at the equilibrium separation r D r0.
In addition, cubic and other higher-order terms can be neglected since �r � r0� − r0
for the (typically) small displacements from equilibrium.

It follows that the force acting between a pair of atoms can be approximated by

F�r� D �dU�r�
dr

D ��r � r0�
(
d2U

dr2

)
r0

D �k�r � r0�, �W10.2�

where k is a constant. This result has the same form as Hooke’s law since the displace-
ment �r � r0� of atoms from their equilibrium positions is proportional to the restoring
force F. This displacement is also inversely proportional to the curvature �d2U/dr2�r0
of the potential energy curve at r D r0, which for a given material is a constant in a
given direction.

It can be seen from Eqs. (10.21) and (W10.2) that Young’s modulus E is proportional
to the curvature �d2U/dr2�r0 of the potential energy. This is a reasonable result since the
macroscopic deformations that correspond to the microscopic displacements of atoms
from their equilibrium positions will be more difficult in materials where the potential
energy well is deeper and hence U�r� increases more rapidly as the atoms are displaced

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Figure W10.1. Schematic potential energies of interactionU�r� for “deep” and “shallow” poten-
tial wells and corresponding stress–strain curves

from their equilibrium positions. This is illustrated schematically in Fig. W10.1 for
the cases of “strong” and “weak” bonding between pairs of atoms, corresponding to
“deep” and “shallow” potential wells, respectively. For the case of a material with
strong bonding and a deep potential well, the curvature �d2U/dr2�r0 is high. Such a
material will have a high stiffness E and a high slope for the initial linear portion of
its stress–strain curve, as shown in the inset of this figure. The opposite will be true
for a material having weak bonding, a shallow potential well, and a corresponding
low curvature �d2U/dr2�r0 . In this case the material will have a low stiffness E. It
should be noted that the stress–strain curve will eventually become nonlinear as the
stress increases, due to the nonparabolicity of the interatomic potential U�r� for large
displacements �r � r0�.

Estimates for the magnitude of the elastic modulus E and its dependence on mate-
rial properties can be obtained by noting that E, as a measure of the stiffness of a
material, should be proportional to the stress needed to change the equilibrium separa-
tion between atoms in a solid.† For many materials with ionic, metallic, and covalent
bonding, this stress is itself approximately proportional to the magnitude of the inter-
atomic Coulomb force F D q2/4�d2, where q is the ionic charge, d the interatomic
separation, and � the electric permittivity of the material. This stress should also be
inversely proportional to the effective area, ³ d2, over which the interatomic force
acts. Thus the stress, and hence E, should be proportional to q2/d4.

A test of this relationship is presented in Fig. W10.2, where the bulk modulus B,
defined in Section 10.6, is shown plotted as a function of the interatomic separation d
in a logarithmic plot for three classes of materials with ionic, metallic, and covalent
bonding, respectively. For each class of materials the measured values of B fall on a
straight line with a slope close to �4, as predicted by the simple argument presented
above. It is clear from this result that high elastic stiffness is favored in materials
where the ions have large effective charges and are separated by small interatomic
separations.

The magnitude of the elastic constants can also be estimated from the expression
E ³ q2/4�d4 by using 1/4� ³ 9 ð 109 N Ð m2/C2, q D e D 1.6 ð 10�19 C, and d ³

† See the discussion in Gilman (1969, pp. 29–42).
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Figure W10.2. Logarithmic plot of the bulk modulus B versus the interatomic separation d
for three classes of materials with ionic, metallic, and covalent bonding, respectively. (From
A. G. Guy, Introduction to Materials Science, McGraw-Hill, New York, 1972. Reprinted by
permission of the McGraw-Hill Companies.)

0.2 nm. The result obtained, E ³ 100 GPa, is consistent with the experimental values
shown in Fig. W10.2 and listed in Table 10.2.

W10.2 Zener Model for Anelasticity

An interesting and useful model for describing anelastic processes has been proposed
by Zener. This model deals with a standard linear solid, a solid in which the stress
�, the strain ε, and their first derivatives ∂�/∂t and ∂ε/∂t are related to each other in
a linear equation. Although Zener’s model may not be sufficiently general to describe
all types of anelastic effects, it is quite useful for the purpose of illustrating important
general aspects of anelasticity.

In the Zener model the following equation is used to describe the anelastic effects
illustrated in Fig. 10.9:

� C �ε ∂�
∂t

D Er

(
εC �� ∂ε

∂t

)
. �W10.3�
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Here �ε is the time constant for the relaxation of stress under conditions of constant
strain, and �� is the time constant for relaxation of strain under conditions of constant
stress.† The quantity Er is the relaxed elastic modulus, that is, the stress/strain ratio
�/ε after all relaxation has occurred in the solid and when ∂�/∂t and ∂ε/∂t are zero.
If the changes in stress and strain in the material occur so rapidly (e.g., at sufficiently
high frequencies) that relaxation cannot proceed to completion, it can be shown that
the stress/strain ratio is given by the unrelaxed elastic modulus Eu D Er��/�ε.

The solutions of Eq. (W10.3) for the conditions shown in Fig. 10.9a (i.e., after
relaxation has occurred) are as follows:

� D �0 and ∂�/∂t D 0 : ε�t� D ε1 C �ε0 � ε1�e�t/�� .

� D 0 and ∂�/∂t D 0 : ε�t� D ε1e�t/�� .
�W10.4�

Here ε1 D �0/Er . These expressions illustrate the kinetics to be expected for simple
relaxation processes where the fraction of the relaxation completed in time t is f�t� D
1 � e�t/� . Analogous equations can be derived for the time dependence of � for the
conditions shown in Fig. 10.9b.

The mechanical response of materials to dynamic conditions of stress and strain
is of interest both for applications and for fundamental studies of anelasticity. Under
dynamic conditions, stress and strain are often periodic functions of time, that is,

��t� D �0e
�iωt and ε�t� D ε0e

�iωt, �W10.5�

where the amplitudes �0 and ε0 can be complex quantities. Upon substitution of ��t�
and ε�t�, Eq. (W10.3) becomes

�1 � iω�ε��0 D Er�1 � iω���ε0. �W10.6�

A complex elastic modulus Ec can then be defined as

Ec D Er�1 � iω���
1 � iω�ε D �0

ε0
. �W10.7�

For a stress amplitude �0 that is real, this corresponds to a complex amplitude ε0 for
the strain.

Under dynamic conditions and due to either elastic aftereffects or strain relaxation,
the strain ε will in general lag behind the stress � by a phase angle � (i.e., ε�t� D
ε0 exp[�i�ωt � ��]), whose tangent is given by

tan� D Im Ec
Re Ec

D ω��� � �ε�
1 C ω2�ε��

. �W10.8�

The quantity tan�, known as the loss coefficient, is often used as a measure of the
magnitude of the internal friction or energy loss in a material. When tan� is small,

† While the use of a single relaxation time is appropriate for some materials, other materials, such as
polymers, can have a large number of relaxation times, spanning many orders of magnitude.
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it can be shown that tan� ³ Uel/2Uel D 1/Q, where Uel/Uel is the fraction of
elastic energy dissipated per oscillation. (Q is the quality factor of an electrical circuit,
with 1/Q being a measure of energy dissipation.)

The predicted frequency dependence of the internal friction is illustrated in
Fig. W10.3, where tan� is shown as a function of frequency, specifically ω����ε�1/2 D
ωh�i. It can be seen that tan� has a maximum value at ωh�i D 1 [i.e., at ωmax D
����ε��1/2] and falls to zero for both ω − ωmax and ω × ωmax. For low frequencies,
ω − ωmax, the solid is fully relaxed, the elastic modulus is Er , and the internal friction
is close to zero in the Zener model, since the strain has sufficient time to follow the
applied stress (i.e., the phase angle � ³ 0). At high frequencies, ω × ωmax, the solid
is unrelaxed, the elastic modulus is Eu, and the internal friction is again close to zero.

Note that Eu > Er in Fig. W10.3, which follows from �� > �ε. In this case the
strain relaxes more slowly than the stress [see the definitions given earlier for �� and
�ε in Eq. (W10.3)]. It follows that the material will be stiffer at high frequencies than
at low frequencies. The hysteresis loops for such material will actually be closed,
straight lines with slopes given by Er and Eu at very low and very high frequencies,
respectively. Thus Hooke’s law will be valid for ω × ωmax and ω − ωmax. At ω D
ωmax the hysteresis loop will have its maximum width and maximum area Uel.

Zener has pointed out that although this model for a standard linear solid has several
general features that are observed for real materials, it does not in fact correspond
in detail to the behavior observed for any real solid. Nevertheless, measurements of
internal friction as a function of frequency often show the behavior predicted by Zener’s
model, as shown in Fig. W10.4 for German silver, an alloy of Cu, Ni, and Zn.

W10.3 Typical Relaxation Times for Microscopic Processes

See Table W10.1, from which it can be seen that lattice vibrations, the motion of
elastic waves, and the dissipation of heat are “fast” processes at T ³ 300 K, while the
diffusion of interstitial atoms and the motion of grain boundaries can be considered to
be “slow” processes.
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TABLE W10.1 Typical Relaxation Times t for Microscopic Processes in
Solids at T = 300 K

Time Scale for � (s) Microscopic Process

10�14 Electron collisions in metals
10�12 Vibrations of atoms (lattice vibrations)
10�10

10�8 Radiative recombination of electrons and holes
10�6

Elastic wave traverses solid (as in brittle fracture)
10�4

Dissipation of heat (thermal relaxation)
10�2

100 D 1
(Time of typical tensile test D ttest)

10C2

10C4 Diffusion of interstitial atoms
(1 week ³ 6 ð 105 s)

10C6

(1 year ³ 3 ð 107 s) Motion of grain boundaries
10C8 Creep

Flow of inorganic glasses

W10.4 Further Discussion of Work Hardening

The phenomenon of work hardening is difficult to treat theoretically, the most difficult
aspect being to predict how the density and distribution of dislocations vary with
the strain in the material. There is in fact no unique correlation between the level
of strain and the resulting distribution of dislocations. The experimental situation is
complicated by the fact that there can exist three distinct regions of work hardening
when the plastic deformation is presented in the form of a shear stress–shear strain
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Figure W10.5. Shear stress–shear strain � –ε curve for a typical single-crystal FCC metal.
Three inelastic regions are shown, with the rate of work hardening in each region characterized
by the slope d�/dε, denoted by "I, "II, and "III, respectively

curve (i.e., � versus ε). Such a curve is shown schematically in Fig. W10.5 for a typical
FCC metal in the form of a single crystal. Beyond the elastic region which extends up
to the shear yield stress �y , there can exist in some materials three inelastic regions,
I, II, and III. The rate of work hardening in each region can be characterized by the
slope d�/dε, which is denoted by "I, "II, and "III, respectively. The higher the slope,
the greater the rate at which work hardening occurs for a given increment in applied
shear stress �.

Although all may not be present in a given material, these regions have the following
characteristics:

Region I. Plastic deformation in region I begins with the onset of “easy glide” or slip
occurring on the primary slip system, as described in Section 10.14. A relatively low
rate of work hardening occurs in region I. This region corresponds to the existence of
long, straight slip lines in a single crystal. Region I is absent in polycrystals.

Region II. This is the linear work-hardening region, with "II ³ 10"I and "II ³ G/300,
where G is the shear modulus (i.e., the slope d�/dε in the elastic region). Plastic
deformation in this region results in the interaction of dislocations and occurs via the
mechanism of slip. The resulting distribution of dislocations is very inhomogeneous.
The shear stress in region II is often observed to be proportional to the square root of
the dislocation density %, that is,

�y�%� D �y0 C ˛Gbp%. �W10.9�

Here �y0 is the shear yield stress (i.e., the shear stress needed to move a disloca-
tion when no other dislocations are present), b is the Burgers vector, and ˛ (³ 0.3
to 0.6) is a constant. Note that % is given by the total length of all the disloca-
tions divided by the volume of the material and has units of m�2. It is clear from
this expression that % is an increasing function of shear stress [i.e., �y�%�� �y0].
Typical values for single-crystal or polycrystalline Cu are % ³ 1016 m�2 for �y ³
100 MPa.
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Region III. In this region the slope d�/dε decreases continuously with increasing
stress, with the dependence of � on ε usually observed to be close to parabolic, that is,

��ε� D "III

p
ε� ε0, �W10.10�

where ε0 is a constant.
Various theories can reproduce the form of Eq. (W10.9) observed in the linear

region II or the parabolic dependence of � on ε observed in region III. None of the
theories of work hardening is completely satisfactory, however, which should not be
surprising given the complexity of the problem. One of the first approaches, presented
by Taylor, considered the source of work hardening to be the interactions between edge
dislocations and the pinning that results. If l is the average distance that dislocations
move before being pinned, the resulting shear strain ε corresponding to a dislocation
density % is

ε D K%bl, �W10.11�

where K is a constant that depends on orientation.
For a material containing a uniform distribution of edge dislocations, the average

separation between the dislocations is L ³ %�1/2. The applied shear stress required
to move two dislocations past each other must overcome the effective internal stress
acting on one dislocation due to the other. This can be written as

� D kGb

L
, �W10.12�

where k is a constant. Since L ³ %�1/2, it follows that

� ³ kGb
p
%, �W10.13�

which has the form of Eq. (W10.9). When Eqs. (W10.11) and (W10.13) are combined,
the following dependence of � on ε is obtained:

��ε� ³ kG

√
bε

Kl
³ k0G

√
ε

l
, �W10.14�

where k0 is another constant. This prediction corresponds to the parabolic dependence
of � on ε observed in region III. The predictions of Taylor’s theory therefore agree
with the observed dependencies of � on % and on ε despite the simplifying assumptions
made, including the assumption of a uniform distribution of edge dislocations. Taylor’s
theory does not, however, explain the linear work hardening observed in region II.

W10.5 Strengthening Mechanisms

Dispersion Strengthening. Dispersion strengthening is a process in which small
particles of a hard phase such as alumina (Al2O3) or silica (SiO2) are distributed
uniformly in the matrix of a weaker material (e.g., a copper alloy), either by precip-
itation in situ or by sintering the materials together. This process strengthens the
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weaker host material and increases its resistance to plastic deformation. Dispersion-
strengthened materials can have high hardness at high temperatures when the dispersed
particles are of a refractory nature and very hard. This is an advantage of this strength-
ening method over precipitation hardening. The Orowan expression relating the yield
stress �y to the interparticle spacing  is described in Chapter W21 with regard to the
dispersion strengthening of steels

Precipitation Hardening. Precipitation hardening is a process in which a second
phase is precipitated from a supersaturated solid solution in a matrix via heat treat-
ment. Important examples include the precipitation of particles of Fe3C or Fe4N in
iron and of particles of the intermetallic compound CuAl2 in Al, as described in
detail in Chapter W21. Both dispersion strengthening and precipitation hardening arise
from short-range interactions between dislocations and the dispersed particles or the
precipitate. As a result, the dislocations are pinned and cannot move freely through
the material. The Orowan expression mentioned earlier is also applicable to these
short-range interactions between dislocations and precipitate particles.

Long-range interactions between precipitate particles and dislocations are also possi-
ble due to the internal stresses created by the difference in average atomic volumes of
the precipitate and the host matrix. Mott and Nabarro obtained the following estimate
for the average shear strain εav in a single crystal due to a volume fraction f of
spherical precipitate particles:

εav D 2εf. �W10.15�

Here ε D r/r0 D �r � r0�/r0 is the fractional radial misfit resulting from the insertion
of a particle of radius r in a cavity of radius r0 < r within the host matrix. The resulting
strain leads to an increase in the critical shear yield stress by the amount

�y D Gεav D 2Gεf, �W10.16�

where G is the shear modulus. According to this prediction, the critical shear yield
stress should be independent of the particle sizes and interparticle separations. In fact,
the precipitate particles will have little effect on the motion of the dislocations when
the particles are small and closely spaced and also when they are large and far apart.
Only at intermediate sizes and separations will they have a strong effect.

Solid-Solution Strengthening. An example of solid-solution strengthening is
doubling of the yield strength of Fe–C solid-solution alloys at a C/Fe atom ratio of
only 1/104. As mentioned in Section 10.12, interstitial C atoms in octahedral sites cause
tetragonal distortions of the BCC crystal structure of ˛-Fe. These lattice distortions in
turn impede the motion of dislocations, thereby strengthening the Fe. This strengthening
mechanism is described further for the case of steels in Chapter W21.

W10.6 Creep Testing

Typical creep tests at 0.5Tm < T < Tm and constant applied stress are shown in
Fig. W10.6, where three distinct stages are shown for the dependence of the nominal
strain on time. Results are shown at two applied stresses �. It can be seen that the
creep rate ∂ε/∂t is an increasing function of �, as expected, and also of temperature T.
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Figure W10.6. Typical creep test for 0.5Tm < T < Tm and constant applied stress. Three dis-
tinct stages are evident for the dependence of the nominal strain ε on time.

In stage I of primary creep the creep strain rate ∂ε/∂t actually slows down, probably
as a result of work hardening, and reaches a value that typically remains constant in
the most important stage II of secondary or quasiviscous creep. In stage III of tertiary
creep the creep rate increases, nonuniform deformation begins, and failure eventually
occurs. The creep strength of a material can be defined as the stress that will produce
a given strain in a given time at a given temperature T. For example, a typical low-
carbon nickel alloy has a creep strength of 60 MPa for 10�3% elongation per hour
at T D 534°C. The stress for fracture �f due to creep is lower the longer the time
of loading. Extrapolation of the results of creep tests to longer times is required for
predicting the performance of materials in service (e.g., predicting when failure will
occur under a given load or stress condition). This is due to the fact that creep tests
generally do not extend to the point of failure, particularly when carried out at low
stress levels and low temperatures.

Various models have been proposed to describe the dependencies of creep or the
creep rate Pε D ∂ε/∂t on time, temperature, and stress. There is no universal model, but
expressions such as

ε�t� D ε0 C εp�1 � e�mt�C Pεst, �W10.17�

∂ε

∂t
D A�n exp

(
� Qc
kBT

)
�W10.18�

have been proposed. In Eq. (W10.17), ε0 is the initial strain in the material, the second
term describes creep in stage I, and the term Pεst (which is linear in time) represents
stage II. Equation (W10.18) is proposed to be valid for the secondary creep rate in
stage II, with A and n being constants and Qc the thermal activation energy for creep.
For a number of pure metals it has been found that n D 5 and that Qc ³ Ea�diff�, the
measured thermal activation energy for self-diffusion in the metal.

A useful way of graphically illustrating the stress and temperature regions in which
various deformation mechanisms are dominant (i.e., rate controlling) is the Weertman–
Ashby map, shown in Fig. W10.7 for pure nickel. This map presents a plot of normal-
ized tensile stress �/G (where G is the shear modulus) versus T/Tm and corresponds
to a critical strain rate Pεc of 10�8 s�1. Coble creep and Nabarro creep correspond to
diffusion of vacancies within the boundaries of the grains and within the bulk of the
grains, respectively, and can be seen in Fig. W10.7 to be dominant in different regimes
of temperature and stress.
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plot of normalized tensile stress �/G versus T/Tm for a critical strain rate Pεc of 10�8 s�1.
(Reprinted from Acta Metallurgica, Vol. 20, M. F. Ashby, p. 887. Copyright  1972, by permis-
sion from Elsevier Science.)

W10.7 Further Discussion of Fatigue

When fatigue occurs under conditions of low true-stress amplitude �a, the response
of the material is primarily elastic and the number of cycles to failure Nf is large. In
this case the range εe over which the elastic component of the strain varies can be
described by

εe D 2�a
E

D 2� 0
f

E
�2Nf�

b, �W10.19�

where b is the fatigue strength exponent and � 0
f is the fatigue strength coefficient,

equal to the stress intercept for 2Nf D 1. The quantity � 0
f is approximately equal to

�f, the fracture stress under monotonic loading. The exponent b can be expressed in
terms of the cyclic hardening coefficient n0 by

b D � n0

1 C 5n0 . �W10.20�

Fatigue life thus increases with decreasing jbj, i.e. decreasing n0.
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When fatigue occurs under conditions of higher stress amplitude �a and the response
of the material has an inelastic or plastic component, the number of cycles to failure
Nf will be smaller. The range of variation εp of the plastic strain component can be
described by the Manson–Coffin relation,

εp D 2ε0
f�2Nf�

c, �W10.21�

where ε0
f, the ductility coefficient in fatigue, is equal to the strain intercept for 2Nf D 1,

and c is the ductility exponent in fatigue. Smaller values of c correspond to longer
fatigue life. In the limit of high strain and low number of cycles c is given by

c D � 1

1 C 5n0 . �W10.22�

As a result, fatigue life in this limit increases with increasing n0.
When a material is subjected under cyclic loading to both elastic and plastic strain,

the fatigue strength will be determined by the total strain:

εt D εe Cεp D 2� 0
f

E
�2Nf�

b C 2ε0
f�2Nf�

c. �W10.23�

The separation of a εt �Nf curve into its elastic and plastic components is illustrated
schematically in Fig. W10.8. It can be seen that εt approaches the plastic curve at
high strain levels and the elastic curve at low strain levels.

W10.8 Hardness Testing

Hardness is often measured by the indentation of a harder material, typically a diamond
indenter, into a softer material or by a scratch test. Indentation methods can be quan-
titative, while scratch testing gives essentially qualitative results. The most common
methods of indentation hardness testing include the Brinnell and Rockwell tests and
microindentation or microhardness tests such as the Knoop and Vickers tests. Hardness
values are expressed using hardness scales with the same names. A common scale for

log ∆εt

log 2Nf

Plastic strain
(slope = c)

Elastic strain
(slope = b)

Total strain

∆εe

∆εp

∆εt

Figure W10.8. Separation of a εt –Nf fatigue curve into its elastic and plastic components.
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minerals is Mohs hardness, determined by a scratch test, which extends from 1 for talc
to 10 for diamond.

The Knoop hardness test is a microindentation test that uses an indenter in the form
of an elongated pyramid while the Vickers test uses a square pyramid of diamond. The
Knoop and Vickers hardnesses are defined as the ratio of the applied force or load to
the surface area of the indentation. The Vickers hardness VHN is given by

VHN D 1.854F

d2
, �W10.24�

where F is the load in kilograms force (kgf) and d is the length of the diagonal of
the square indentation in millimeters. Some Vickers hardness values for metals and
other hard materials are given in Table 10.6. These hardness values, as with many
other mechanical properties, are sensitive to processing treatments that the material
may have received, especially those affecting the surface region.

The indentation of the Knoop indenter in the material under test is shallower than
that of the Vickers indenter, thus making the Knoop method more appropriate for
brittle materials and for thin layers. Because of the shallowness of the indentation, the
surfaces of materials to be tested for Knoop hardness must be very smooth.

W10.9 Further Discussion of Hall–Petch Relation

The Hall–Petch relation was originally justified on the basis of the assumption that
the effect of grain boundaries is to pin dislocations, but more recent interpretations
emphasize the emission of dislocations by grain boundaries. An approach by Li† takes
the onset of plastic deformation in polycrystalline materials as due to the activation of
dislocation sources, which are assumed to be grain-boundary ledges. The shear yield
stress for the motion of a dislocation relative to a distribution of other dislocations has
been given in Eq. (W10.9) by

�y�%� D �y C ˛Gbp%, �W10.25�

where % is the dislocation density and the other symbols are as defined earlier. If it is
assumed that there is a uniform distribution of dislocation sources on the surfaces of all
grain boundaries, regardless of their size, the dislocation density % will be proportional
to Sv, the grain boundary area per unit volume. If the grains are all taken to be cubes
of volume d3, Sv will be given by

Sv D 1

2

6d2

d3
D 3

d
, �W10.26�

where the initial factor of 1
2 accounts for the fact that each cube face (i.e., each grain

boundary) is shared by two grains. The Hall–Petch relation of Eq. (10.43) is obtained
when the result that % / Sv / 1/d is used in Eq. (W10.25).

† J. C. M. Li, Trans. TMS-AIME, 227, 239 (1963).
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The yield stress can also be increased by solid-solution strengthening, as discussed
in Section W10.5. The typical example is dilute alloys of C in BCC ˛-Fe, where
�y D �0 C kyN1/2

C . Here NC is the atomic fraction of C present in Fe.

W10.10 Analysis of Crack Propagation

When fracture occurs in a ductile material in which significant amounts of plastic
deformation can occur, the critical stress will be increased above the prediction of
Eq. (10.48) since the strain energy required for the generation of plastic deformation
near the crack must be included. Plastic deformation of the material surrounding the
crack tip can take the form of a dense array of dislocations and microcracks whose
presence can slow down and even stop the propagation of the crack. The effective
surface energy 3p associated with the plastic deformation is equal to the work per
unit area required to carry out the plastic deformation. When 3p is added to 3s in
Eq. (10.48), Griffith’s criterion in its general form becomes

�c D
√
�23s C 3p�E

a
. �W10.27�

For many ductile materials 3p × 3s, so that

�c D
√
3pE

a
�W10.28�

for the case of ductile fracture. The effect of the plastic deformation is to blunt the
crack tip, thus relaxing the stress concentration there by increasing the local radius of
curvature. As a result, ductile fracture requires higher stress levels than brittle fracture.

Correlations of fracture toughness K1c with density %, Young’s modulus E, and with
strength �f for several classes of engineering materials (alloys, plastics, elastomers,
composites, ceramics, glasses, etc.) have been presented by Ashby in the form of
materials property charts.† These charts and the accompanying discussions are helpful
in that they present and condense a large body of information and reveal correlations
between the properties of materials. A striking feature of the charts is the clustering
of members of a given class of materials. This clustering and the relative positions of
the various clusters on the charts can be understood in terms of the type of bonding,
the density of atoms, and so on, in the materials. Within each cluster the position of a
given material can be influenced by the synthesis and processing that it receives. The
following charts are also presented by Ashby: E versus %, �f versus %, E versus �f,
and E/% versus �f/%.

The rate of elastic strain energy release by a crack is G�el�, defined by

G�el� D � 1

2d

∂Uel

∂a
D �2a

E
. �W10.29�

† M. F. Ashby, Materials Property Charts, in ASM Handbook, Vol. 20, ASM International, Materials Park,
Ohio, 1997.
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At the point of fracture G�el� D Gc�el� and the critical fracture stress can therefore be
expressed in terms of Gc�el� by

�c D
√
EGc�el�

a
. �W10.30�

By comparing this result with Eqs. (W10.27) and (10.49), it can be seen that

Kc D
√
EGc�el�. �W10.31�

The quantity Gc�el� is also known as the critical crack extension force, with units
of N/m.
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PROBLEMS

W10.1 A bar of a solid material undergoes two consecutive deformations along the
x axis corresponding to nominal normal strains ε1 and ε2, as defined by
ε1 D �x1 � x0�/x0 and ε2 D �x2 � x1�/x1.
(a) Show that these two nominal strains are not additive [i.e., that εtotal D

�x2 � x0�/x0 6D ε1 C ε2].
(b) Show, however, that the corresponding true strains εtrue�1� and εtrue�2�,

as defined in Eq. (10.8), are additive.
(c) Find the difference between ε and εtrue for l D 0.1l0.

W10.2 From the expressions given for the shear modulus G and the bulk modulus B
in Table 10.4, show that Poisson’s ratio 5 for an isotropic solid must satisfy
�1 < 5 < 1

2 .
W10.3 Derive the expression for the elastic energy density uel�ε� for a cubic crystal

given in Eq. (10.32).
W10.4 Using the general definitions for strains as ε1 D ∂ux/∂x, ε5 D ∂ux/∂z C ∂uz/∂x,

and so on, show that the equation of motion, Eq. (10.35), can be written as
the wave equation given in Eq. (10.36).

W10.5 Consider the values of E, G, B, and 5 given in Table 10.2 for several poly-
crystalline cubic metals.
(a) Show that the values of E, G, and 5 are consistent with the expressions

for isotropic materials given in Table 10.4.
(b) Show that the same cannot be said for the values of B.

W10.6 If the changes in stress and strain in a material occur so rapidly (e.g., at suffi-
ciently high frequencies) that no relaxation occurs, show that the stress/strain
ratio is given by the unrelaxed elastic modulus, Eu D Er��/�ε.

W10.7 (a) For the conditions shown in Fig. 10.9a after relaxation has occurred,
derive the solutions of Eq. (W10.3) presented in Eq. (W10.4).
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(b) Also derive the analogous equations for the time dependence of � for the
conditions shown in Fig. 10.9b.

W10.8 Let �0 be real and set ε0 D ε00e�i� in Eq. (W10.5) so that the strain ε�t�
lags behind the stress ��t� by a phase angle �. Using these expressions (i.e.,
��t� D �0 exp��iωt� and ε�t� D ε00 exp[�i�ωt C ��]), in Eq. (W10.6), show
that tan� is given by Eq. (W10.8).

W10.9 The relaxation time � for a piece of cross-linked natural rubber is 30 days at
T D 300 K.
(a) If the stress applied to the rubber at T D 300 K is initially 1 MPa, how

long will it take for the stress to relax to 0.5 MPa?
(b) If the relaxation time for the rubber at T D 310 K is 20 days, what is the

activation energy Ea for the relaxation process? See Eq. (10.41) for the
definition of Ea.

W10.10 Repeat Problem 10.9 for the (0001), (1100), and (1010) planes of HCP Cd
and for the three h1120i directions in the (0001) plane.



CHAPTER W11

Semiconductors

W11.1 Details of the Calculation of n.T/ for an n-Type Semiconductor

A general expression for n as a function of both T and Nd can be obtained as follows.
After setting Na� D 0, multiplying each term of Eq. (11.34) of the textbook† by n,
replacing the np product by nipi, and rearranging the terms, the following quadratic
equation can be obtained:

n2 �Nd
Cn� nipi D 0. 	W11.1


The following substitutions are now made in this equation: from Eq. (11.27) for n,
Eq. (11.28) for nipi, and the following expression for NdC:

Nd
C	T
 D Nd �Nd

o	T
 D
1
2Nde

ˇ[Eg�Ed��	T
]
1
2e
ˇ[Eg�Ed��	T
] C 1

. 	W11.2


After setting y D n	T
/Nc	T
 D exp[ˇ	�	T
� Eg
], w D exp	�ˇEd), and z D
exp	�ˇEg
, the following equation is obtained:

Nc
2y2 �NcNd

w

	w/y
C 2
�NcNvz D 0. 	W11.3


The quantities Nc and Nv are defined in Eq. (11.27).
This expression can be rearranged to yield the following cubic equation for y	T
 D

n	T
/Nc	T
:

y3 C w

2
y2 �

(
Ndw

2Nc
C Nvz

Nc

)
y � Nvwz

2Nc
D 0. 	W11.4


The concentration of holes will then be given by

p	T
 D ni	T
pi	T


n	T

, 	W11.5


where n	T
 is obtained from Eq. (W11.4).

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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In the high-temperature limit when w × y [i.e., when ˇ	Eg � �	T
� Ed
 ³ 2 or
greater], the following quadratic equation is obtained from Eq. (W11.3):

y2 � Nd
Nc
y � Nv

Nc
z D 0. 	W11.6


The appropriate solution of this equation is

y D Nd/Nc C
√
Nd2/Nc2 � 4	�Nvz/Nc


2
. 	W11.7


In the T ! 0 K limit the terms in Eq. (W11.4) containing z D exp	�ˇEg
 can be
neglected, with the following result:

y2 C w

2
y � Ndw

2Nc
D 0. 	W11.8
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Figure W11.1. Effects of n- and p-type doping on the electrical resistivity of Si at T D 300 K,
with � plotted versus the dopant concentration on a logarithmic plot. (From J. C. Irvin, The
Bell System Technical Journal, 41, 387 (1962). Copyright  1962 AT&T. All rights reserved.
Reprinted with permission.)
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Solving this quadratic equation and also making use of the fact that w − 8Nd/Nc
yields

y	T
 D
√
Ndw

2Nc
. 	W11.9


In the intermediate temperature region, where y − w, z − y2 (i.e., Eg > 4[Eg �
�	T
] > 8Ed), and z − Ndw/2Nc, Eq. (W11.4) becomes

w

2
y2 � Ndw

2Nc
y D 0 or y	T
 D Nd

Nc
, 	W11.10


which can be written as n	T
 D Nd.

W11.2 Effects of Doping on Resistivity of Silicon

The effects of doping on the electrical resistivity of Si at T D 300 K are presented in
Fig. W11.1, where � is shown plotted versus the dopant concentration Nd or Na in a
logarithmic plot. The resistivity decreases from the intrinsic value of � ³ 3000 �Ðm
with increasing Nd or Na. Scattering from ionized dopant atoms also plays a role in
causing deviations at high values of Nd or Na from what would otherwise be straight
lines with slopes of �1 on such a plot.

W11.3 Optical Absorption Edge of Silicon

The absorption edge of Si is shown in Fig. W11.2, where the absorption coefficient
˛ determined from measurements of reflectance and transmittance at T D 300 K for a
single-crystal Si wafer is plotted as 	˛h̄ω
1/2 versus E D h̄ω. The linear nature of this
plot is in agreement with the prediction of Eq. (11.54). The onset of absorption at about
1.04 eV corresponds to h̄ω D Eg � h̄ωphonon, while the additional absorption appearing
at about 1.16 eV corresponds to h̄ω D Eg C h̄ωphonon. These two distinct absorption
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Figure W11.2. Optical absorption edge for Si at T D 300 K with the absorption coefficient ˛
plotted as 	˛h̄ω
1/2 versus the photon energy E D h̄ω. The energy gap Eg D 1.11 eV and the
energy of the phonon h̄ωphonon ³ 0.06 eV participating in this indirect optical transition can be
obtained in this way. (From Z. L. Akkerman, unpublished data.)
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onsets which are separated from Eg D 1.11 eV by h̄ωphonon D 0.06 eV ³ 485 cm�1 are
the result of the absorption and emission, respectively, of the phonon, which participates
in this indirect transition. If Si were a direct-bandgap semiconductor such as GaAs,
there would be only a single onset at h̄ω D Eg. In this way both Eg and the energy of
the participating phonon can be obtained from straightforward optical measurements.
The absorption onset associated with phonon absorption will become weaker as the
temperature decreases since fewer phonons will be available, while that associated with
phonon emission will be essentially independent of temperature.

W11.4 Thermoelectric Effects

The equilibrium thermal properties of semiconductors (i.e., the specific heat, thermal
conductivity, and thermal expansion) are dominated by the phonon or lattice contribu-
tion except when the semiconductor is heavily doped or at high enough temperatures
so that high concentrations of intrinsic electron–holes pairs are thermally excited. An
important and interesting situation occurs when temperature gradients are present in a
semiconductor, in which case nonuniform spatial distributions of charge carriers result
and thermoelectric effects appear. Semiconductors display significant bulk thermoelec-
tric effects, in contrast to metals where the effects are usually orders of magnitude
smaller. Since the equilibrium thermal properties of materials are described in Chap-
ters 5 and 7, only the thermoelectric power and other thermoelectric effects observed
in semiconductors are discussed here. Additional discussions of the thermopower and
Peltier coefficient are presented in Chapter W22.

The strong thermoelectric effects observed in semiconductors are associated with
the electric fields that are induced by temperature gradients in the semiconductor, and
vice versa. The connections between a temperature gradient rT, a voltage gradient
rV or electric field E D �rV, a current density J, and a heat flux JQ (W/m2) in a
material are given as follows:

J D �	E � SrT
 D JE C JrT,

JQ D �E � !rT.
	W11.11


Here � and ! are the electrical and thermal conductivities, respectively. The quan-
tity S is known as the Seebeck coefficient, the thermoelectric power, or simply the
thermopower, and  is the Peltier coefficient. While the electrical and thermal conduc-
tivities are positive quantities for both electrons and holes, it will be shown later that
the thermopower S and Peltier coefficient  are negative for electrons and positive for
holes (i.e., they take on the sign of the responsible charge carrier).

The Seebeck and Peltier effects are illustrated schematically in Fig. W11.3. The
thermopower S can be determined from the voltage drop V resulting from a temper-
ature difference T in a semiconductor in which no net current J is flowing and no
heat is lost through the sides. Since J D 0 as a result of the cancellation of the electrical
currents JE and JrT flowing in opposite directions due to the voltage and tempera-
ture gradients, respectively, it can be seen from Eq. (W11.11) that E D SrT D �rV.
Therefore, S is given by

S D �rV
rT D �V

T
	W11.12
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Figure W11.3. Seebeck and Peltier effects. (a) In the Seebeck effect a voltage difference V
exists in a material due to the temperature difference T. The Seebeck coefficient or ther-
mopower of the material is given by S D �V/T. (b) In the Peltier effect a flow of heat into
(or out of) a junction between two materials occurs when a current I flows through the junction.

and has units of V/K. Since V and T have the same sign for electrons and opposite
signs for holes, it follows that a measurement of the sign of S is a convenient method
for determining the sign of the dominant charge carriers. The physical significance of
S is that it is a measure of the tendency or ability of charge carriers to move from the
hot to the cold end of a semiconductor in a thermal gradient.

The Peltier coefficient 	T
 of a material is related to its thermopower S(T) by the
Kelvin relation:

	T
 D TS	T
. 	W11.13


Therefore,  has units of volts. The physical significance of the Peltier coefficient 
of a material is that the rate of transfer of heat JQab occurring at a junction between
two materials a and b when a current is flowing through the junction from a to
b is proportional to the difference ab D a �b. Note that JQab < 0 Fig. W11.3,
corresponding to the flow of heat into the junction. The Peltier effect in semiconductors
can be used for thermoelectric power generation or for cooling.

There is an additional thermoelectric effect, the Thomson effect, which corresponds
to the flow of heat into or out of a material carrying an electrical current in the presence
of a thermal gradient. The Thomson effect will not be described here since it usually
does not play an important role in the thermoelectric applications of semiconductors.

In the one-dimensional case for the Seebeck effect in a semiconductor the induced
electric field Ex is given by S dT/dx and the thermopower is given by

S D 1

qT

( h(Ee,hi
h(i � �

)
. 	W11.14


In this expression Ee,h is the kinetic energy of the charge carriers (i.e., the energy
Ee D E� Ec of an electron relative to the bottom of the conduction band or the energy
Eh D Ev � E of a hole relative to the top of the valence band). In addition, q D še is
the charge of the dominant charge carriers. Also, the chemical potential � is constant
in space in the absence of net current flow, (	E
 is the energy-dependent scattering or
momentum relaxation time for the charge carriers, and h(i and h(Ei are the averages
of these quantities over the appropriate distribution function.
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When (	E
 obeys a power law (e.g., ( / Er), the thermopower for an n-type semi-
conductor is

Sn	T
 D �kB
e

(
Ec � �

kBT
C r C 5

2

)
, 	W11.15


while for a p-type semiconductor,

Sp	T
 D kB
e

(
�� Ev

kBT
C r C 5

2

)
. 	W11.16


The exponent r is equal to � 1
2 for acoustic phonon scattering. The thermopowers of

semiconductors are typically hundreds of times larger than those measured for metals,
where, according to the free-electron model,

S D �,
2

6

kB
e

kBT

EF
³ 1 µV/K.

Physically, S is smaller in metals than in semiconductors due to the high, temperature-
independent concentrations of electrons in metals. In this case only a relatively small
thermoelectric voltage is required to produce the reverse current needed to balance the
current induced by the temperature gradient.

The Peltier effect in a semiconductor is illustrated schematically in Fig. W11.4,
where an electric field E is applied across the semiconductor by means of two metal
contacts at its ends. As a result, the energy bands and the Fermi energy EF slope down-
ward from left to right. In the n-type semiconductor in which electrons flow from left
to right, only the most energetic electrons in metal I are able to pass into the semicon-
ductor over the energy barrier Ec � � at the metal–semiconductor junction on the left.
When the electrons leave the semiconductor and pass through the metal–semiconductor
junction into metal II at the right, the reverse is true and they release an amount of heat
equal to 	Ec � �C akBT
 per electron. The term akBT represents the kinetic energy
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Figure W11.4. Peltier effect in a semiconductor. An electric field E is applied across a semi-
conductor, and as a result, the energy bands and the chemical potential � slope downward from
left to right. In the n-type semiconductor, electrons flow from left to right and in the p-type
semiconductor holes flow from right to left. The resulting temperature gradient is also shown
for each case.
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transferred by the electron as it moves through the semiconductor, with a ³ 1.5 to
2, depending on the dominant scattering process. Therefore, the net heat flow due to
electrons is from left to right through the semiconductor, with the temperature gradient
in the direction shown. It follows in this case for electrons that the magnitude of the
Peltier coefficient (i.e., the net energy transported by each electron divided by the
charge e) is

n	T
 D TSn	T
 D Ec � �C akBT

e
. 	W11.17


This result is consistent with Eq. (W11.15). Note that the position of the chemical
potential � within the energy gap can be determined from a measurement of n as
T ! 0 K.

For the p-type semiconductor shown in Fig. W11.4, holes will flow from right to
left. Since the energy of a hole increases in the downward direction on this electron
energy scale, only the most energetic holes can pass into the semiconductor over the
energy barrier �� Ev at the junction on the right. In this case the net heat flow is
from right to left, with the temperature gradient in the direction shown. It follows for
holes that

p	T
 D TSp	T
 D �� Ev C akBT

e
, 	W11.18


which is consistent with Eq. (W11.16).
The contribution of phonons to the thermoelectric power originates in the phonon

drag effect, the tendency of phonons diffusing from the hot to the cold end of a
material to transfer momentum to the electrons, thereby “dragging” them along in the
same direction. This effect becomes more noticeable at lower temperatures.

Experimental results and theoretical predictions for the Peltier coefficient  for n-
and p-type Si as functions of temperature are shown in Fig. W11.5. The Si samples
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Figure W11.5. Experimental results (points) and theoretical predictions (solid lines) for the
Peltier coefficient  for n- and p-type Si are shown as functions of temperature. The Si
samples show intrinsic behavior above T ³ 600 K. (From T. H. Geballe et al., Phys. Rev., 98,
940 (1955). Copyright  1955 by the American Physical Society.)
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show intrinsic behavior above T ³ 600 K. Note that plots of e versus T yield as
intercepts at T D 0 K, the quantities �	Ec � �
 and (�� Ev) for n- and p-type semi-
conductors, respectively. This is a convenient way of determining the position of the
chemical potential � relative to the band edges in doped semiconductors.

W11.5 Dielectric Model for Bonding

In the dielectric model of Phillips and Van Vechten (PV) for tetrahedrally coordi-
nated semiconductors with diamond and zincblende crystal structures the chemical
bonding is considered to be the sum of covalent and ionic contributions. As discussed
in Section 2.6, fc is the fraction of covalent bonding in an A–B bond involving atoms
A and B, while the ionic fraction or ionicity is fi D 1 � fc. Values of fi obtained on
the basis of the PV model are presented in Table 2.6. These values are based on the
dielectric properties of these materials and differ somewhat from those proposed by
Pauling, which are based on the thermochemistry of solids.

In the PV model the average total energy gap Eg(A–B) in, for example, a binary
compound AB containing only A–B bonds is defined as the average energy separa-
tion between the bonding and antibonding energy levels associated with the orbitals
involved in the A–B bond. Thus Eg is not an observable quantity and is in some sense
an average energy gap between the valence and conduction bands. A spectroscopic
or dielectric definition for Eg is used in the PV model rather than a thermochemical
definition based on heats of formation or cohesive energies. Specifically, Eg(A-B) is
defined experimentally in terms of the measured optical dielectric function by

/	0


/o
D 1 C A1

(
h̄ωp
Eg

)2

, 	W11.19


where

ω2
p D ne2

m/o
.

Here /	0
//o D n2(0) is the real, zero-frequency limit of the complex dielectric function
/	ω, q
//o, also known as the relative permittivity /r , and ωp is the plasma frequency.
Also, n is the concentration of valence electrons, /o the permittivity of free space, and
A1 a correction factor that is close to 1 which accounts for the possible participation
of d electrons in the optical response. The bonding–antibonding energy gap Eg(A–B)
differs from and is typically much larger than the optical energy gap Eg D Ec � Ev.
Equation (W11.19) is close in form to the expression given in Eq. (8.32), which is
derived from the Lorentz oscillator model for the optical dielectric function.

When the A–B bond is of a mixed ionic–covalent type, the gap Eg(A–B) is taken
to be complex, with a real covalent or homopolar component Eh and an imaginary
ionic or heteropolar component iC, so that

Eg	A–B
 D Eh C iC,

jEgj2 D E2
h C C2.

	W11.20




SEMICONDUCTORS 111

The definitions of Eh and C in terms of microscopic parameters associated with the
A–B bond and the binary AB compound are

Eh	A–B
 D A2

d2.5
,

C	A–B
 D 14.4b
(
zA
rA

� zB
rB

)
exp

(
�kTFd

2

)
.

	W11.21


where A2 D 39.74 eV, the dimensionless constant b ³ 1.5, d is the A–B interatomic
distance or bond length, and zA and zB are the valences and rA and rB the covalent
radii of atoms A and B, respectively, with d D rA C rB. Here Eh and C are given in
eV when rA and rB are in angstrom units. The exponential Thomas–Fermi screening
factor, defined in Section 7.17, describes the screening of the ion cores by the valence
electrons and is expressed in terms of the Thomas–Fermi wave vector or inverse
screening length:

kTF D
√

3ne2

2/EF
D
√
e2�	EF


/
, 	W11.22


where n is the concentration of valence electrons, EF the Fermi energy, / the permit-
tivity of the material, and �	EF
 the electron density of states per unit volume. Typical
values of kTF are ³ 5 ð 1010 m�1. It can be seen that C(A–B) is given by the difference
between the Coulomb potentials of the two atoms A and B composing the bond.

The use of known values of d(A–A) and of Eg(A–A) determined from /(0) using
Eq. (W11.19) for the covalent elemental semiconductors diamond and Si allows both
the exponent of d, �2.5, and the constant A2 D 39.74 eV to be determined in the
expression for Eh. The ionic component C(A–B) of Eg(A–B) for binary AB semi-
conductors can then be calculated using Eq. (W11.20) from empirical values of Eg
determined from Eq. (W11.19) and values of Eh(A–B) calculated from Eq. (W11.21).
It has been shown empirically that the ionic contribution C	A–B
 / XA � XB, the
difference of the electronegativities of the two atoms.

The ionicity of the A–B bond is defined in a straightforward manner by

fi D C2

Eg2 . 	W11.23


Thus fi D 0 when C D 0 and fi ! 1 for C × Eh. The ionicities presented in
Table 2.6, known as spectroscopic ionicities, have been calculated in this way using
the PV model. For group III–V compounds it has been found that C is usually smaller
than Eh so that fi < 0.5. The bonding in these compounds is therefore predominantly
covalent. The reverse is true for the group II–VI and I–VII compounds, where C is
usually greater than Eh.

Values of Eh, C, Eg	A� B
, and fi for several semiconductors with the diamond
or zincblende crystal structures are presented in Table W11.1. Note that Eh is nearly
constant for isoelectronic sequences (e.g., for Ge, GaAs, and ZnSe), where Eh ³
4.3 eV, since their NN distances d are nearly constant. The optical energy gap Eg
and the average total energy gap Eg(A–B) are neither proportional to nor simply
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TABLE W11.1 Values of Eh , C , Eg .A − B/, and fi for Several Semiconductors

Semiconductor

IV III–V II–VI Eh (eV) C (eV) Eg	A� B
 (eV) fi Eg/Eg(A–B)

C (diamond) 13.5 0 13.5 0 0.40
BN 13.1 7.71 15.2 0.256 0.39

BeO 11.5 13.9 18.0 0.602 0.52
3C–SiC (ˇ-SiC) 8.27 3.85 9.12 0.177 0.25
Si 4.77 0 4.77 0 0.23

AlP 4.72 3.14 5.67 0.307 0.43
MgS 3.71 7.10 8.01 0.786 0.55

Ge 4.31 0 4.31 0 0.16
GaAs 4.32 2.90 5.20 0.310 0.26

ZnSe 4.29 5.60 7.05 0.630 0.37
Gray Sn 3.06 0 3.06 0 0.026

InSb 3.08 2.10 3.73 0.321 0.028
CdTe 3.08 4.90 5.79 0.717 0.25

related to each other [e.g., for the group IV elements, the ratio Eg/Eg(A–B) decreases
from 0.4 for diamond to 0.026 for gray Sn].

A test of the usefulness of this definition of ionicity has been provided by correlating
fi with the crystal structures of about 70 binary group IV–IV, III–V, II–VI, and I–VII
compounds. It is found that compounds with fi < fic D 0.785 are all tetrahedrally
coordinated and semiconducting with either the diamond, zincblende, or wurtzite crystal
structures, while those with fi > 0.785 are all octahedrally coordinated and insulating
with the higher-density NaCl crystal structure. This is an impressive confirmation of
the usefulness of the definition of ionicity provided by the PV model.

A definition of electronegativity has also been formulated in the PV model for
nontransition metal elements with tetrahedral coordination. This definition differs from
that of Pauling presented in Section 2.9 by including the screening of the ion cores
by the valence electrons and is likely to be a more useful definition for this group of
elements and crystal structures.

W11.6 Nonstandard Semiconductors

In addition to the standard semiconductors discussed in our textbook, which typically
have the diamond, zincblende, wurtzite, or NaCl crystal structures, there also exist
nonstandard semiconducting materials with a variety of other structures and properties,
including disordered or amorphous semiconductors, oxide, organic, and magnetic semi-
conductors, and porous Si. Some interesting and technologically important examples
of these semiconductors are next discussed briefly.

Amorphous Semiconductors. Amorphous semiconductors that lack the long-range
order found in their crystalline counterparts often retain to a first approximation the
short-range order corresponding to the NN local bonding configurations present in
the crystal. For example, in amorphous Si (a-Si) essentially every Si atom is bonded
to four NN Si atoms in a nearly tetrahedral arrangement, with bond lengths close
to the crystalline value but with a significant spread of bond angles, ³ 7o, centered
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around the ideal value of 109.47o. As a result, a-Si and crystalline Si (c-Si) are similar
in many respects, including atomic density and the fact that both are semiconduc-
tors with similar energy gaps. They differ appreciably in other important respects,
including carrier mobility and ease of doping. The most important defects in a-Si
correspond to broken or dangling bonds that are likely to be associated with voids in
the material and that give rise to electronic levels lying deep within the energy gap.
In addition, distorted or weak Si–Si bonds can give rise to electronic states, referred
to as tail states, that are localized in space and that lie within the energy gap near the
band edges.

The electron densities of states of c-Si, a-Si, and a-Si:H in and near the energy gap
are shown schematically in Fig. W11.6. The density of states for c-Si has sharp edges
at E D Ev and at E D Ec. While the densities of states for the amorphous case are
very material dependent, there exists a strong similarity between the overall shapes of
the curves except in the gap region itself. The dangling-bond defect states in a-Si pin
the Fermi energy EF, thereby preventing its movement in the gap. These defect states
thus interfere with the doping of this material and consequently with its electronic
applications.

The optical dielectric functions of c-Si and a-Si are compared in Fig. W11.7a.
The optical response in the crystalline and amorphous phases is qualitatively the same,
especially at low energies where /1	0
 D n2	0
 is essentially the same since the atomic
density of the sample of a-Si is only slightly less than that of c-Si. At higher energies
it can be seen that the structure in /1 and /2 observed in c-Si which is related to the
existence of long-range order is absent in the amorphous material where k conservation
is no longer required. The value of the optical energy gap Eopt in amorphous semicon-
ductors such as a-Si and a-Si:H is often obtained using the Tauc law for band-to-band
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Figure W11.6. Electron densities of states in crystalline Si, a-Si, and a-Si:H in the region of
the energy gap.
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Figure W11.7. Comparison of the optical properties of crystalline and amorphous Si. (a) The
quantities /1 (dashed lines) and /2 (solid lines) of c-Si and a-Si are plotted versus photon
energy E D h̄ω. (From B. G. Bagley et al., in B. R. Appleton and G. K. Celler, eds., Laser and
Electron-Beam Interactions with Solids, Copyright 1982, with permission from Elsevier Science).
(b) The logarithm of the optical absorption coefficient ˛ is plotted as a function of photon energy
h̄ω for c-Si, a-Si, and a-Si:H. (Data from E. D. Palik, Handbook of Optical Constants of Solids,
Vol. 1, Academic Press, San Diego, Calif., 1985.)

absorption:

/2	ω
 D B	h̄ω � Eopt
2

	h̄ω
2
, 	W11.24


where B is a constant and Eopt ³ Ec � Ev. The parameter Eopt can therefore be obtained
from a plot of h̄ω

p
/2 versus h̄ω. Absorption at lower energies involving the tail states at

either the valence- or conduction-band edges is often observed to depend exponentially
on h̄ω, according to the Urbach edge expression:

˛	ω
 D ˛o exp
(
h̄ω

Eo

)
. 	W11.25


Here Eo is the Urbach edge parameter and is related to the width of the tail-state regions,
while ˛o is a constant. In high-quality a-Si:H films, Eo can be as low as 0.05 eV.

Even though the optical energy gap is larger for a-Si, ³ 1.6 eV, than for c-Si, light
is still absorbed in a-Si for energies below 1.6 eV. In fact, as shown in Fig. W11.7b,
both a-Si and a-Si:H have much higher absorption coefficients than c-Si in the region
of the visible spectrum up to 3 eV, at which point direct transitions begin in c-Si. This
is due in part to the fact that in c-Si the absorption corresponds to indirect transitions
for energies below 3 eV and also to the fact that absorption in a-Si can occur below the
optical gap due to transitions from localized to extended states, and vice versa. Thus
films of a-Si:H in photovoltaic solar cells with thicknesses ³ 1 µm are thick enough
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to absorb most of the solar spectrum, while much thicker films of c-Si are required for
the same purpose.

In a-Si and other amorphous semiconductors such as a-Ge there exist mobility edges
located at Ev and Ec, respectively, as shown in Fig. W11.6. These mobility edges for
charge carriers typically lie in the tail-state regions and divide electron states in the gap
which are spatially localized from those in the energy bands that extend throughout
the material. The corresponding charge-carrier mobilities �e and �h are essentially
zero within the gap and are finite for E < Ev and E > Ec within the bands. Thermally
activated conduction of charge can still occur within the localized states in the gap
and at low temperatures will take place via variable-range hopping, as described in
Chapter 7.

Hydrogenated amorphous Si (a-Si:H) is a particularly useful alloy in which the
incorporation of H atoms leads to the removal of localized defect states from the energy
gap of a-Si by forming Si–H bonds with most of the Si atoms which otherwise would
have dangling bonds. The tail states associated with weak Si–Si bonds in a-Si can also
be eliminated via the formation of pairs of strong Si–H bonds. The electrons occupying
the strong Si–H bonds have energy levels lying within the valence band of the material,
well below the band edge at Ev. In this way the concentration of electrically active
defects can be reduced from ³ 1026 eV�1 m�3 in a-Si (about one active defect per
103 Si atoms) to ³ 1021 eV�1 m�3 in a-Si:H (one active defect per 108 Si atoms). The
density of states in a-Si:H resulting from the incorporation of hydrogen is also shown
in Fig. W11.6. A schematic model of a segment of the continuous random network
(CRN) corresponding to the bonding in a-Si:H is shown in Fig. W11.8. Four H atoms
are shown completing the Si bonds at a Si monovacancy. This is an example of the
type of three-dimensional CRN structure discussed in Chapter 4. Films of a-Si:H are
typically formed by plasma deposition from the vapor phase onto substrates usually
held at T ³ 250°C.

The a-Si:H alloys can be successfully doped n- or p-type during deposition using
the standard dopant atoms P and B and as a result have found important applications
in photovoltaic solar cells and in the thin-film transistors (TFTs) used as switching
elements in flat panel displays. These applications are described in Sections W11.8 and

v

Si atom

Si vacancy

H atom

v

Figure W11.8. Model of a segment of the continuous random network corresponding to the
bonding in a-Si:H. Four H atoms are shown completing the Si bonds at a Si monovacancy.
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W11.10. The extended-state carrier mobilities in a-Si:H, �e ³ 10�4 to 10�3 m2/VÐs and
�h ³ 3 ð 10�7 m2/VÐs, are well below those found in crystalline Si, �e ³ 0.19 m2/VÐs,
due to the disorder and increased scattering present in the amorphous material. The
electrical conductivities attainable in a-Si:H by doping, �n ³ 1 ��1 m�1 and �p ³
10�2 ��1 m�1, are also well below those readily attainable in c-Si, � ³ 104 ��1 m�1.

In amorphous alloys based on Si, C, and H, the optical gap can be varied from
Eg ³ 1.8 eV for a-Si:H to above 3 eV for a-Si0.5C0.5:H, thus making the latter material
useful as a “window” layer in photovoltaic solar cells. The attainment of even larger
gaps at higher C contents is limited by the tendency in carbon-rich alloys for a mixture
of tetrahedral (i.e., diamond-like) and trigonal (i.e., graphite-like) bonding of the C
atoms to be present. The amorphous graphitic component of hydrogenated amorphous
carbon, a-C:H, has an energy gap Eg ³ 0.5 eV.

Amorphous semiconducting chalcogenide-based glasses such as a-Se and a-As2S3

have both covalent and van der Waals components in their chemical bonding, as
discussed in Section 2.2. These amorphous materials can contain molecular units such
as (Se)8 and therefore have networks of lower dimensionality and greater structural
flexibility than a-Si and a-Ge in which the bonding is three-dimensional. A schematic
model of the essentially two-dimensional CRN of a-As2S3 and other related mate-
rials is shown in Fig. 4.12. In these chalcogenide glasses, group V elements such as
As are threefold coordinated and group VI elements such as S and Se are twofold
coordinated, as in the crystalline counterparts. The highest-filled valence band in these
materials typically consists of electrons occupying lone-pair orbitals on the chalco-
genide atoms rather than electrons participating in chemical bonds with their NNs.
These glasses are typically formed by rapid quenching from the liquid phase. Appli-
cations of amorphous chalcogenide-based glasses include their use in xerography as
photoconductors, as described in Chapter 18.

Oxide Semiconductors. Some well-known oxide semiconductors include Cu2O
(cuprite), CuO, and CuO2. Some group III–V compounds which include oxygen as
the group V element are listed in Table 11.9. Semiconducting oxides such as SnO2,
In2O3, ITO (indium–tin oxide), Cd2SnO4, and ZnO can be prepared as transparent,
conducting coatings and have found a wide range of applications (e.g., as transparent
electrodes for photovoltaic solar cells).

Copper-based oxides such as La2CuO4 with Eg ³ 2.2 eV and with the perovskite
crystal structure have received considerable attention recently due to the discovery of
the high-Tc superconductivity that is observed when they become metallic through
doping or alloying. For example, when La2CuO4 becomes p-type through the replace-
ment of La3C by Sr2C, the resulting material La2�xSrxCuO4 is metallic for x > 0.06
and becomes superconducting at low temperatures, as described in Chapter 16.

Organic Semiconductors. Conjugated organic materials such as polymers
possessing resonant ,-electron bonding can be classified as semiconductors when the
energy gap Eg associated with the ,-electron system is in the range 1 to 3 eV. The
one-dimensional polymer polyacetylene, (CH)n, with alternating single and double
carbon–carbon bonds, can possess very high electrical conductivities, exceeding that
of copper, when suitable n-type (Na or Hg) or p-type (I) dopants are introduced. Other
polymers, such as polypyrrole and polyaniline, can also exhibit high conductivities
when suitably doped. A detailed description of the electronic structure and doping of
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polyacetylene is presented in Chapter W14. The large nonlinear optical effects found
in these materials may lead to important optoelectronic applications. Other applications
include their use as photoconductors in xerography.

Semiconducting organic molecular crystals can also exhibit strong electrolumines-
cence and photoluminescence and thus have potential applications in organic light-
emitting diodes.

Magnetic Semiconductors. Wide-bandgap ZnS and CdTe and narrow-bandgap
HgTe group II–VI semiconductors when alloyed with magnetic impurities such as
Mn (e.g., Zn1�xMnxS with 0 � x � 0.5) have potentially important applications based
in part on the “giant” Faraday rotations and negative magnetoresistances which they
can exhibit. The sp–d exchange interaction between the s and p conduction-band elec-
trons and the d electrons of the magnetic ions leads to very large Zeeman splittings at
the absorption edge and also of the free-exciton level. This sp–d interaction provides
the mechanism for the Faraday rotation observed for light propagating in the direction
of an applied magnetic field. The magnetic properties of these materials, known as
dilute magnetic semiconductors, are discussed briefly in Chapter W17.

Porous Si. An interesting form of Si that may have useful light-emitting applications
is porous Si, prepared via electrochemical etching of the surfaces of Si wafers. Porous
Si is believed to be a network composed of nanometer-sized regions of crystalline
Si surrounded by voids which can occupy between 50 to 90% of the volume of the
material. A transmission electron micrograph of porous Si in which the Si columns
are about 10 nm in diameter and the pore spaces are about 50 nm wide is shown
in Fig. W11.9. Tunable room-temperature photoluminescence in porous Si has been
achieved from the near-infrared to the blue-green region of the visible spectrum.

Proposals for the origins of the light emission from porous Si have focused on the
quantum confinement of charge carriers in Si regions with dimensions of 2 to 3 nm.
Other possible explanations are that oxidized regions with their larger bandgaps or the
effects of impurities such as hydrogen can explain the emission of light. It seems clear
in any case that oxygen and hydrogen play important roles in chemically passivating
the surfaces of the Si nanocrystals. These surfaces would otherwise provide surface
recombination sites that would quench the observed luminescence.

Figure W11.9. Transmission electron micrograph of porous Si in which the Si columns are
about 10 nm in diameter and the pore spaces are about 50 nm wide. (Reprinted with permission
of A. G. Cullis. From R. T. Collins et al., Phys. Today, Jan. 1997, p. 26.)
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W11.7 Further Discussion of Nonequilibrium Effects and Recombination

The buildup and decay of pn	t
 according to Eqs. (11.74) and (11.77), respectively,
are illustrated in Fig. W11.10. Band-to-band radiative recombination can be impor-
tant in highly perfect crystals of direct-bandgap semiconductors such as GaAs but is
very unlikely to be important in Si, Ge, and GaP. Indirect-bandgap semiconductors
have much longer recombination times (i.e., minority-carrier radiative lifetimes) than
direct-bandgap materials as a result of the requirement that a phonon participate in
the band-to-band recombination process. Some calculated values for minority-carrier
band-to-band radiative lifetimes are given in Table W11.2. These lifetimes have been
calculated using the van Roosbroeck–Shockley relation and are based on measured
optical properties (i.e., the absorption coefficient ˛ and index of refraction n), and on
the carrier concentrations of these semiconductors. The van Roosbroeck–Shockley
relation expresses a fundamental connection between the absorption and emission
spectra of a semiconductor and allows calculation of the band-to-band recombina-
tion rate in terms of an integral over photon energy involving ˛ and n. Note that
the calculated intrinsic lifetimes span the range from hours for Si to microseconds
for InAs.

Measured values of (p and (n in semiconductors such as Si and GaAs are often much
lower than the calculated values because of enhanced recombination due to defects and
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Figure W11.10. Buildup and decay of the minority-carrier hole concentration pn	t
 in an n-type
semiconductor under low-level carrier injection for two different minority-carrier lifetimes, with
(p	1
 < (p	2
.

TABLE W11.2 Calculated Minority-Carrier Band-to-Band Radiative Lifetimes at
T = 300 K

Lifetime

Semiconductor ni (m�3) Intrinsica Extrinsicb

Si ³8 ð 1015 4.6 h 2.5 ms
Ge ³2 ð 1019 0.61 s 0.15 ms
InAs ³2 ð 1021 15 µs 0.24 µs

aLifetimes are calculated values obtained from R. N. Hall, Proc. Inst. Electr. Eng., 106B, Suppl. 17, 923
(1959).
bThe extrinsic lifetimes correspond to carrier concentrations of 1023 m�3.
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surfaces, to be discussed later. Typical measured minority-carrier lifetimes in extrinsic
Si are 1 to 100 µs, whereas in extrinsic GaAs they are 1 to 50 ns.

Minority-carrier recombination times can be on the order of picoseconds in amor-
phous semiconductors, due to the strong disorder and very high concentrations of
defects. Amorphous semiconductors can therefore be very “fast” materials with regard
to the speed of their response to external carrier excitation. The recombination times
(p and (n in crystalline semiconductors are typically much longer than the average
collision times h(i ³ 10�13 to 10�12 s.

Electron–hole recombination in the indirect-bandgap semiconductors Si, Ge, and
GaP is much more likely to occur via the participation of defects and surfaces. These
two extrinsic recombination mechanisms are discussed next.

Defect-Mediated Recombination. Defects such as metallic impurities and dislo-
cations disturb the periodic potential of the lattice and as a result introduce energy
levels deep within the energy gap of the semiconductor, often near midgap, as shown
in Fig. 11.22 for Si. The recombination rate will then be enhanced when electrons in
the conduction band fall first into the empty defect levels and then fall further into
empty levels in the valence band. The defect-mediated recombination rate is propor-
tional to the concentration of defects that have empty energy levels in the energy gap.
These defects with deep levels in the gap are often referred to as recombination centers
or traps. The carrier wavefunctions associated with traps are highly localized. While
band-to-band recombination can be expected to be the dominant recombination process
at high temperatures when n, p, and their product np are all large due to thermal
generation, defect-mediated recombination will often be the dominant recombination
mechanism at lower temperatures.

The case of defect levels with two charge states, neutral (unoccupied) and negative
(occupied by a single electron), has been treated in detail by Hall and by Shockley and
Read.† Only a brief outline is presented here. The key idea is that empty defect levels
near midgap will greatly increase the rate of recombination of electrons and holes due
to the fact that such transitions are enhanced when the energy involved is smaller (e.g.,
³ Eg/2) than the energy Eg for band-to-band recombination.

The possible transitions involving electrons and holes resulting from a defect level
at the energy Et in the gap are presented in Fig. W11.11. Transitions 1 and 2 corre-
spond to the capture by the defect of an electron from the conduction band and of a
hole from the valence band, respectively, with transitions 1 C 2 together resulting
in the recombination of an electron with a hole. Transitions 3 and 4 correspond
to the emission by the defect of a hole into the valence band and of an electron
into the conduction band, respectively, with transitions 3 C 4 together resulting in the
creation of an electron–hole pair. These defect levels are also effective in deactivating
donors and acceptors in semiconductors through the capture of the donor electrons and
acceptor holes.

When the rates of the individual transitions 1 to 4 are considered along with the
probabilities of occupation of the levels, the following results are obtained for the
steady-state emission probabilities of electrons and holes from the levels [for details,
see Grove (1967)].

† R. N. Hall, Phys. Rev., 87, 387 (1952); W. Shockley and W. T. Read, Phys. Rev., 87, 835 (1952).
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Figure W11.11. Possible transitions involving electrons and holes and resulting from a defect
level at the energy Et in the gap. 1, Capture of an electron; 2, capture of a hole; 3, emission of
a hole; 4, emission of an electron.

Absence of Carrier Injection (GI D 0). The total emission rates for holes and electrons,
transitions 3 and 4, respectively, will be proportional to the following rates:
Transition 3:

hole emission rate ep D vpth�pNv exp
(

� Et
kBT

)
	W11.26


Transition 4:

electron emission rate en D vnth�nNc exp
(

�Eg � Et
kBT

)
	W11.27


Here vpth D √
3kBT/mŁ

h and vnth D √
3kBT/mŁ

e are the thermal velocities, �p and �n
are the capture cross sections (³ 10�19 m2), and Nv and Nc are the effective densities
of states defined in Eq. (11.27), all for holes and electrons, respectively. The rates
of transitions 1 to 4 will also be proportional to the concentration of recombination
centers Nt and to the probabilities expressed in terms of the Fermi–Dirac distribution
function that the final state is empty.

Low-Level Carrier Injection (GI > 0). Net recombination rate due to defects (assuming
that �n D �p D �):

U D R�GT D �	vnthvpth
1/2Nt	pn� n2
i 


nC pC 2ni cosh[	2Et � Eg
/2kBT]
. 	W11.28


Here the carrier concentrations n and p depend on the injection rate GI, and Nt is the
density of defects whose energy levels lie in the gap at an energy Et. The recombination
rate U has its maximum value for a given GI when Et D Eg/2 (i.e., when the hyperbolic
cosine term in the denominator has its minimum value of unity). Thus recombination
centers or traps are most effective when their energy levels are located at midgap.
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In an n-type semiconductor the defect energy levels at Et will ordinarily be occupied
by electrons since n × p. These electrons can be thought of as originating directly
from the donor levels. As a result, the effective donor concentration will be reduced
to Nd �Nt in an n-type semiconductor containing a concentration Nt of recombina-
tion centers. This phenomenon, which can also occur in p-type semiconductors, is
known as majority-carrier removal and leads to an increase of the resistivity of the
semiconductor.

The lifetime for the minority-carrier holes in an n-type semiconductor containing
recombination centers and under low-level injection is determined by their rate of
capture by these centers. The capture lifetime can be shown to be given by

(p D 1

�pvpthNt
. 	W11.29


A similar equation for (n is valid for electrons in a p-type semiconductor but with
�p and vpth replaced by �n and vnth. As soon as a hole is captured by a recombi-
nation center in an n-type semiconductor (transition 2 in Fig. W11.11), an electron
will be captured essentially immediately by the center (transition 1) due to the high
concentration of electrons in the conduction band. Thus the rate-limiting step for elec-
tron–hole recombination in a semiconductor containing recombination centers will be
the capture by the center of minority carriers. As a result, the minority-carrier lifetime
is an important parameter in semiconductor devices.

The minority-carrier lifetimes (p or (n can be determined experimentally from the
decay of the photoconductivity associated with photogenerated carriers. This lifetime
is typically much longer than h(i, the average elastic scattering time, which determines
the mobility of the charge carriers. The minority-carrier lifetimes (p or (n can be
determined reliably only for low levels of illumination or injection.

Surface Recombination. The recombination rates of electrons and holes can be
enhanced at the surface of a semiconductor due to the presence of surface states (i.e.,
electron energy levels lying deep within the energy gap which result from distortions
near the surface of the bulk periodic lattice potential). These levels in the energy gap can
arise from broken or reconstructed chemical bonds at the surface of the semiconductor,
as described in Chapter 19. When surface recombination is important, the electron and
hole concentrations will vary spatially and both will be depressed near the surface of
the semiconductor due to the enhanced recombination occurring there.

The recombination rate per unit area of surface for holes in an n-type semicon-
ductor under low-level injection is usually taken to be proportional to (pn � p0) and
of the form

Rsurface D sp	pn � p0
, 	W11.30


where sp is the surface recombination velocity and has units of m/s. This velocity can
be shown to be given by

sp D �pvpthNts, 	W11.31


where Nts is the concentration of recombination centers per unit area at the surface.
Typical values of sp for Si surfaces are ³ 1 m/s but can be as high as 103 m/s. The value
of sp for Si can be reduced to 10�2 to 10�1 m/s when the Si surface is oxidized. The
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removal of these centers by passivation of the surface (e.g., by growing or depositing a
surface film of a-SiO2) is an important step in the fabrication of semiconductor devices
(see Chapter W21). The spatial dependence p(x) of the hole concentration near the
surface due to recombination can be obtained by solving the continuity equation (11.65)
with the incorporation of an appropriate hole diffusion term. In addition, the effect of
a space-charge region near the surface on the recombination rate can be determined.
For details of these calculations, see Grove (1967).

The total minority-carrier recombination rate in a semiconductor is given by

1

(
D 1

(r
C 1

(nr
, 	W11.32


where (r and (nr are the radiative and nonradiative lifetimes, respectively. Another
useful expression for 1/(p in an n-type semiconductor when all three types of recom-
bination are important is

1

(p
D k1n0 C �pvpthNt C �pvpthNts

ds
, 	W11.33


where Eqs. (11.72), (W11.29), and (W11.31) have been used. Here ds is the width of
the region near the surface where surface recombination is effective.

W11.8 Transistors

The relative suitability of semiconductors for given types of applications is often eval-
uated on the basis of relevant figures of merit (FOMs) which are specific functions
of the properties of the semiconductors. For example, the Johnson FOM for the
power capacity of high-frequency devices is JM D 	Ecvsat/,
2, the Keyes FOM for
the thermal dissipation capacity of high-frequency devices is KM D !

p
vsat//, and

the Baliga FOM for power-loss minimization at high frequencies is BHFM D �E2
c . In

these expressions Ec is the critical electric field for breakdown, vsat the saturated carrier
drift velocity, ! the thermal conductivity, / the permittivity, and � the carrier mobility.
Figures of merit for various semiconductors, normalized to 1 for Si, are presented in
Table W11.3.

TABLE W11.3 Figures of Merit for Various Semiconductors

Eg JM KM BHFM
Semiconductor (eV) 	Ecvsat/,
2 	!

p
vsat//
 	�E2

c


Si 1.11 1.0 1.0 1.0
InP 1.27 13 0.72 6.6
GaAs 1.42 11 0.45 16
GaP 2.24 37 0.73 38
3C-SiC (ˇ-SiC) 2.3 110 5.8 12
4H-SiC 3.27 410 5.1 34
C (diamond) 5.4 6220 32 850

Source: Data from T. P. Chow and R. Tyagi, IEEE Trans. Electron Devices, 41, 1481 (1994).
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The entries in Table W11.3 indicate that the semiconductors listed with wider
bandgaps than Si offer in many cases potential order-of-magnitude improvements
in performance in high-power, high-frequency electronic applications. This is to be
expected since Ec is observed to increase with increasing Eg.

Transistors are semiconductor electronic devices with at least three electrodes, as
shown in Fig. W11.12 for the case of an npn bipolar junction transistor. The term
bipolar refers to the fact that both electrons and holes flow within the device in
response to applied voltages. Other transistor structures in which only electrons or
holes respond to applied voltages include field-effect transistors (FETs) such as the
junction FET and the metal–oxide–semiconductor FET (MOSFET). A wide variety
of structures are employed for transistors, depending on the application (e.g., ampli-
fication or switching involving high frequency, high power, high speed, etc.). Only a
brief outline of transistor action and the most important transistor structures will be
presented here.

Bipolar Junction Transistor. A Si bipolar junction transistor consists physically of
three distinct regions of Si with different types and levels of doping and separated by
p-n junctions of opposite polarity in series with each other. These three regions can
either be embedded in a single piece of Si or can consist of layers of Si grown epitax-
ially on a Si substrate. The latter configuration is found in planar device technology,
as described in Chapter W21. The two possible types of bipolar junction transistors
are npn and pnp. The physical principles of operation are the same in each type, but
with electrons and holes switching roles, and so on. When the npn junction transistor
is connected to an external circuit as shown in Fig. W11.13, the left-hand side is the
n-type emitter, the central region is the p-type base, and the right-hand side is the
n-type collector. The built-in electric fields in the n-p and p-n junctions are in oppo-
site directions, as shown in Fig. W11.12. The electron energy bands at zero bias are
shown for the case when all three regions are nondegenerate, but with the emitter more
heavily doped (i.e., nC) than the base or the collector.

The operation of the npn transistor consists of forward biasing of the emitter–base
n-p junction and a stronger reverse biasing of the base–collector p-n junction, as shown
in Fig. W11.13. The electron energy bands are also shown for the npn transistor when
biased as described above. Electrons are injected from the emitter into the base where

Enp

Ec
EF

Ev

Epn

Enp Epn

np

p

(a)

(b)

n

n+ n

Figure W11.12. An npn bipolar junction transistor: (a) directions of the built-in electric fields
at the two junctions; (b) electron energy bands across the transistor at zero bias.
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Figure W11.13. Operation of an npn transistor. (a) The emitter-base n-p junction is forward
biased, while the base–collector p-n junction is given a stronger reverse bias. The directions
of the three resulting currents Ie, Ib, and Ic for the emitter, base, and collector are shown.
(b) Symbol used for an npn junction transistor in a circuit diagram. The arrow on the emitter
indicates the direction of the conventional electric current. The direction of this arrow would be
reversed for a pnp junction transistor. (c) Electron energy bands for the biased npn transistor.

they diffuse rapidly across the narrow base region whose thickness is less than the
electron diffusion length Le D p

De(n. The electrons that cross the p-type base region
without recombining with the majority-carrier holes are then swept across the reverse-
biased base–collector n-p junction by its built-in electric field into the collector. The
motions of the electrons are shown on the energy-band diagram for the junction, with
the smaller hole current from base to emitter also indicated.

The directions of the three resulting currents Ie, Ib, and Ic for the emitter, base, and
collector are shown in Fig. W11.13a. The emitter current is given by

Ie D Ib C Ic D 	1 C ˇ
Ib, 	W11.34


where ˇ D Ic/Ib is the current gain of the transistor. For alternating currents the small-
signal current gain of the transistor is dIc/dIb. The ratio of the collector current to the
emitter current is given by

Ic
Ie

D ˇ

1 C ˇ
� 1. 	W11.35


Since most of the electrons injected from the emitter are able to travel across both
the base and the base–collector junction into the collector without recombining with
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holes, it follows that Ic is almost as large as Ie and that the base current is usually
much smaller than either Ie or Ic. Therefore, the current gain defined by Eq. (W11.34)
can be ˇ ³ 100 to 1000. A very thin base with a high diffusion coefficient and a
very long lifetime for minority carriers is required for high current gains in bipolar
junction transistors. Defect-free Si with its indirect bandgap, and hence very long
minority-carrier lifetimes, is clearly an excellent choice for this type of transistor.

A simplified circuit illustrating the use of an npn transistor as an amplifier of a
small ac voltage v	t
 is shown in Fig. W11.14. The dc voltage sources Veb and Vbc
provide the biasing of the two p-n junctions and the source of the input signal v	t

is placed in the base circuit. Kirchhoff’s loop rule applied to the emitter–base circuit
can be written as

Vbc C v	t
 D Vb � Ve � IeRe. 	W11.36


Since the emitter–base junction is forward-biased, the voltage drop Vb � Ve across
the n-p junction will in general be much smaller than the other terms in this equation.
Therefore, Eq. (W11.35) can be rewritten with the help of Eq. (W11.36) as

Ic D � ˇ

1 C ˇ

Vbc C v	t


Re
³ Vbc C v	t


Re
. 	W11.37


The additional output voltage Vc	t
 appearing across the resistor Rc in the collector
circuit and due to the input voltage v	t
 is equal to [Ic	v
� Ic	v D 0
]Rc. The voltage
gain of this transistor can therefore be shown to be

G D Vc
jvj D Rc

Re
. 	W11.38


Thus a small ac voltage in the base circuit can result in a much larger voltage in the
collector circuit. Typical voltage gains of junction transistors are ³ 100. In addition to
being used as an amplifier, transistors can also function as switches. In this case, by
controlling the base current Ib using the base voltage, the much larger collector current
Ic can be switched from a very high value to a very low value.

Vbc

Vb

Ib

Ic

Ie

Re

Rc

Vc

Ve

Veb

+

−
+
−

v(t)

Figure W11.14. Simplified circuit illustrating the use of an npn transistor as an amplifier of
a small ac voltage v	t
. The dc voltage sources Vbc and Veb provide the biasing of the two
junctions and the source of the input signal v	t
 appears in the base circuit.
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The intrinsic switching speed of the npn junction transistor described here is limited
by the time it takes the minority-carrier electrons to travel across the base region of
thickness d. Since the distance traveled by a diffusing electron in time t is given by
d D p

Dt, where D is the electron’s diffusivity, the electron transit time or switching
time of the transistor is

ttr ¾D d2

D
D ed2

�ekBT
. 	W11.39


Here �e is the mobility of the minority-carrier electrons, and the Einstein relation
given for D in Eq. (11.81) has been used. To achieve high switching speeds and
operation at high frequencies (i.e., a rapid response of the transistor to changes in
applied signals), it is important to make the base region as thin as possible and also to
fabricate the transistor from a semiconductor with as high a mobility as possible. With
D ³ 5 ð 10�3 m2/s for Si and d ³ 1 µm, the value of ttr is ³ 2 ð 10�10 s, while for
GaAs, values of ttr can be as low as 4 ð 10�11 s for the same value of d due to its
much higher diffusivity D ³ 0.023 m2/s. When the transit time ttr is shorter than the
minority-carrier lifetime (, the minority carriers can travel across the base ballistically
(i.e., without being scattered). Ballistic propagation of charge carriers can occur in a
device as its dimensions shrink in size and, as a result, the usual concepts of average
scattering time h(i and mobility � D eh(i/mŁ

c play much less important roles in limiting
the drift velocities of the carriers and operation of the device. Under these conditions
very high device speeds can be achieved.

Transistor action in a bipolar npn junction transistor thus corresponds to the injection
of minority-carrier electrons across the forward-biased emitter–base n-p junction into
the p-type base region. These electrons diffuse across the base and then drift and diffuse
in the accelerating electric field of the reverse-biased base–collector p-n junction,
where they then appear as collector current. The base current Ib, which limits the
current gain ˇ D Ic/Ib, corresponds to the back injection of holes from the base to
the emitter across the emitter–base n-p junction. The analysis of the operation of
a transistor must take into account the exact spatial distributions of dopants in the
emitter, base, and collector regions and must include the possible effects of high-level
injection.

A type of bipolar transistor that provides better gain and higher-frequency operation
than the bipolar junction transistor just discussed is the heterojunction bipolar transistor
(HBT). In an npn HBT the emitter is an n-type semiconductor with a wider bandgap
than the base and collector semiconductors. The electron energy-band diagram for an
HBT shown in Fig. W11.15 indicates that a potential barrier exists in the valence band
which hinders the back injection of holes from the p-type base into the emitter, thereby
limiting the current Ib flowing in the base circuit and increasing the current gain ˇ D
Ic/Ib. Due to the very fast, ballistic transport across the base, in contrast to the slower
diffusive transport that is ordinarily observed in bipolar junction transistors, HBTs
have been developed into the fastest devices of this kind and are used in microwave
applications and wireless communication devices.

In one successful HBT structure composed of group III–V semiconductors, InP
with Eg D 1.27 eV is grown epitaxially on a lattice-matched In0.53Ga0.47As alloy
with Eg ³ 0.8 eV. Electrons from the InP emitter reach the heavily doped pC-type
In0.53Ga0.47As base region with excess kinetic energy and travel essentially ballisti-
cally to the collector. The high cutoff frequency of 165 GHz and average electron
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Figure W11.15. Electron energy-band diagram for a heterojunction bipolar transistor (HBT).
In the npn HBT shown here the emitter has a wider bandgap than the base and collector
semiconductors. A potential barrier exists in the valence band that hinders the back injection of
holes from the p-type base into the emitter. (From A. F. J. Levi et al., Phys. Today, Feb. 1990,
p. 61. Copyright  1990 by the American Institute of Physics.)

velocity of 4 ð 105 m/s measured at T D 300 K in the active region correspond to a
total delay of less than 1 ps in the active region between the emitter and the bulk
of the collector. The extreme process control ideally required for the fabrication of
such HBT devices is indicated by the need to maintain an atomically flat interface
between the InP emitter and the base and to restrict the width of the emitter–base
doping profile to about 5 nm. Molecular beam epitaxy, described in Chapter W21, is
capable of achieving the control needed in the deposition process. Nevertheless, due
to the extreme deposition control needed and due to the lack of a reliable native oxide,
these group III–V-based devices are unlikely to replace Si technology, despite their
outstanding characteristics.

Another material demonstrating impressive performance and high speed in HBT
structures is alloys of SiGe grown heteroepitaxially on Si substrates. The lower-bandgap
p-type SiGe base region in Si–SiGe HBTs allows carriers to travel much faster across
the base and thus operation at higher frequencies.

A class of transistors whose operation involves only majority carriers is known as
field-effect transistors (FETs). These devices are simpler than bipolar junction tran-
sistors and correspond in practice to a resistor whose resistance is controlled by an
applied voltage and the resulting electric field in the semiconductor. They therefore
operate on a completely different physical mechanism than the bipolar junction tran-
sistors. Instead of having an emitter, collector, and base, FETs consist of a source and
a drain for electrons and a gate that is used either to control or create a conducting
channel in the semiconductor. FETs can be viewed as electronic switches that are in
either an “on” or an “off” state. As a result, an FET corresponds in a real sense to
a single bit (i.e., a binary unit of information). The junction field-effect transistor is
discussed briefly next. The metal–oxide–semiconductor FET (MOSFET) is described
in Chapter 11.
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Junction Field-Effect Transistor. The configuration of a junction FET in a rect-
angular bar of n-type Si is shown schematically in Fig. W11.16. The two metallic
electrodes at the ends of the bar are the source and drain and the conducting channel
in the n-type Si between them is controlled by the two pC-type gates at the center
of the bar. The bar of Si acts as a resistor whose resistance R is controlled by the
reverse-bias gate voltage Vg. As Vg is increased, the depletion regions at the two
reverse-biased pC-n junctions widen and effectively restrict the cross-sectional area
of the path or conducting channel of the majority-carrier electrons as they flow from
source to drain. The conductance G D 1/R of the Si bar is therefore controlled by the
gate voltage Vg. The junction FET is “on” when the channel is open and conducting
and is “off” when it is closed and nonconducting. The speed of the junction FET is
controlled by the transit time of the majority carriers through the channel and so is
inversely proportional to the gate length.

Current–voltage characteristics of a junction FET are also presented in Fig. W11.16
in the form of the source-to-drain current Id versus the source-to-drain voltage Vd for
a series of gate voltages Vg. For a given Vg, the current Id is observed to increase
linearly and then to saturate. The analysis of the current response of a junction FET is
complicated by the fact that the widths of the two depletion regions on opposite sides
of the bar are not constant along the channel. As shown in Fig. W11.16, the width
will be greater near the drain, where the voltage Vd adds its contribution to the reverse
biasing of the two pC-n junctions. The conducting channel will be “pinched” (i.e., will
decrease in cross-sectional area to a small value) when the two depletion regions are
very close to each other near the drain electrode. The current Id does not in fact go to
zero due to this “pinching” effect but instead, saturates, as observed. As the channel
shrinks in cross section, the electric field lines are squeezed into a smaller area. As a
result, the electric field in the channel increases and current continues to flow. In this
case, Ohm’s law will no longer be valid when the electric field reaches a value where
the mobility of the majority carriers starts to decrease due to inelastic scattering effects
associated with “hot” carriers, as described in the discussion of high-field effects in
Section 11.7.

The rapid increase in drain current Id that is observed to occur in Fig. W11.16 as
either Vg and/or Vd increase in magnitude is just the junction breakdown which occurs
when the pC-n junctions are strongly reverse-biased. It can be seen that both Vg and
Vd contribute to the breakdown of the junction FET.

In the junction FET the gate voltage effectively controls the resistance R or conduc-
tance G of the p-type Si region and so controls the flow of current through the device.
The transconductance of the transistor is defined by

gm D ∂Id
∂Vg

. 	W11.40


Here gm expresses the degree of amplification and control of the source-to-drain current
Id by the gate voltage Vg and is one of the most important characteristics of the
transistor.

Other Types of Transistors. An intrinsic problem in semiconductor devices is
that the doping procedure which provides the majority carriers can also lead to a
decrease in the carrier mobility at high doping levels, as illustrated in Fig. 11.15. This
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Figure W11.16. Properties of a junction FET. (a) Configuration of a junction FET in a rect-
angular bar of n-type Si. The two metallic electrodes at the ends of the bar are the source and
drain, and the conducting channel between them is controlled by the p-type gates at the center
of the bar. (b) Current–voltage characteristics of the 2N3278 junction FET in the form of the
source-to-drain current Id versus the source-to-drain voltage Vd for a series of gate voltages Vg.
(c) The width of the depletion regions is greater near the drain electrode, where the drain voltage
Vd adds its contribution to the reverse biasing of the two pC-n junctions. (From B. Sapoval and
C. Hermann, Physics of Semiconductors, Springer-Verlag, New York, 1993.)

decrease occurs because the ionized donor and acceptor ions act as charged scattering
centers, and this additional scattering leads to a decrease in the average scattering or
momentum relaxation time h(i. A procedure that can minimize this effect makes use
of heterostructures or superlattices and is known as modulation doping. Modulation
doping involves introduction of the dopant atoms into a wider-bandgap layer (e.g.,
AlxGa1�xAs with Eg up to 2.2 eV) and the subsequent transfer of the carriers across
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the interface to lower-lying energy levels in an adjacent layer with a narrower bandgap
(e.g., GaAs with Eg D 1.42 eV). The carriers are thereby spatially separated from the
charged scattering centers, as shown in Fig. W11.17. Much higher carrier mobilities,
up to 150 m2/VÐs in GaAs at T ³ 4.2 K, can be achieved using modulation doping than
are ordinarily attainable using normal doping procedures. Very fast electronic devices
which can be fabricated using modulation doping and in which the charge carriers
move ballistically include MODFETs (i.e., modulation-doped FETs) and HEMTs (i.e.,
high-electron-mobility transistors).

In applications related to information technology, such as displays and photocopiers,
where larger, rather than smaller, physical dimensions are needed, it is advantageous to
be able to deposit large areas of semiconducting thin films which can then be processed
into devices such as thin-film transistors (i.e., TFTs). A semiconducting material that is
useful for many of these applications is hydrogenated amorphous Si, a-Si:H, that can
be deposited over large areas onto a wide variety of substrates via plasma deposition
techniques and that can be successfully doped n- and p-type during the deposition
process, as discussed in Chapter W21.

Undoped

Uniformly doped

Modulation doped

∆EC

CB

VB

Confined
electron
gas

EF

EF

Donor
impurities

Donor
impurities

CB

VB

CB

VB

Figure W11.17. Modulation doping in GaAs-AlxGa1�xAs superlattices. The carriers are
spatially separated from the charged scattering centers associated with the dopant impurity ions.
(From R. Dingle et al., Appl. Phys. Lett., 33, 665 (1978). Copyright  1978 by the American
Institute of Physics.)
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Although a-Si:H is inferior to c-Si in its electronic properties (e.g., a-Si:H possesses
an electron mobility �e ³ 10�4 m2/VÐs compared to �e D 0.19 m2/VÐs for c-Si), these
properties are sufficient for applications in field-effect TFTs (or thin-film FETs), which
act as the switches which, for example, control the state of the pixels in large-area
liquid-crystal displays. A common configuration of an a-Si:H field-effect TFT is shown
in Fig. W11.18, along with its source-to-drain current Id versus gate voltage Vg transfer
characteristic, which is similar to that of a conventional MOSFET. At the transition
from the “on” to the “off” state, the source-to-drain resistance Rd increases by about
six orders of magnitude. Other large-area applications of a-Si:H films in photovoltaic
solar cells are discussed in Section W11.10. Polycrystalline Si has a higher mobility
than a-Si:H and thus can operate at higher frequencies in TFTs.

Another material with significant potential for electronic device applications is SiC.
SiC is considered to be a nearly ideal semiconductor for high-power, high-frequency
transistors because of its high breakdown field of 3.8 ð 108 V/m, high saturated elec-
tron drift velocity of 2 ð 105 m/s, and high thermal conductivity of 490 W/mÐK. Its
wide bandgaps of 3.0 and 3.2 eV in the hexagonal 6H– and 4H–SiC forms, respec-
tively, allow SiC FETs to provide high radio-frequency (RF) output power at high
temperatures. In addition, SiC has the important advantage over most group III–V and
II–VI semiconductors in that its native oxide is SiO2, the same oxide that provides
passivation for Si.

A SiC metal–semiconductor field-effect transistor (MESFET) is shown schemati-
cally in Fig. W11.19. The gate configuration in the MESFET consists of a rectifying
metal–semiconductor Schottky barrier at the surface of a doped epitaxial layer of
SiC that is grown on either a high-resistivity substrate or a lightly doped substrate of
the opposite conductivity type. When used in RF applications, an RF voltage that is
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Figure W11.18. Common configuration of an a-Si:H field-effect TFT, along with its
source-to-drain current Id versus gate voltage Vg transfer characteristic. (From R. A. Street,
Mater. Res. Soc. Bull., 17(11), 71 (1992).)
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Figure W11.19. SiC metal–semiconductor field-effect transistor (MESFET). The gate config-
uration in the MESFET consists of a rectifying metal–semiconductor Schottky barrier at the
surface of a doped, epitaxial layer of SiC. (From K. Moore et al., Mater. Res. Soc. Bull., 23(3),
51 (1997).)

superimposed on the dc gate voltage Vg modulates the source-to-drain current in the
conducting channel, thereby providing RF gain. The SiC MESFET can provide signif-
icantly higher operating frequencies and higher output power densities than either Si
RF power FETs or GaAs MESFETs.

W11.9 Quantum Hall Effect

The study of the electrical properties of the two-dimensional electron gas (2DEG)
has yielded some remarkable and unexpected results. In the experiment† that led
to the discovery of the quantum Hall effect, a high-mobility silicon MOSFET was
used to create the 2DEG, and its electrical properties were studied at low tempera-
tures, T ³ 1.5 K, and high magnetic fields, B ³ 15 T. More recent studies utilize the
GaAs–AlGaAs heterostructure to create the 2DEG. Consider the geometry shown in
Fig. W11.20, in which a magnetic induction B is imposed perpendicular to the 2DEG,
which lies in the xy plane. The longitudinal resistivity, �xx D 	VL/I
	w/L
, and Hall
resistivity, �xy D VH/I, are measured in two dimensions, where w is the width and L
is the length of the 2DEG, respectively. The electrons are in the ground quantum state
of a potential well in the z direction, perpendicular to the plane of motion. The spatial
extent of the wavefunction in the z direction is small compared with w and L.

Prior to the experiments, the a priori expectations for the behavior of these resis-
tivities as a function of B were simple. If N is the number of electrons per unit area
in the 2DEG, then, in analogy with the discussion in Section 7.3, it was expected that
�xy D B/Ne (i.e., the Hall resistivity should be proportional to the magnetic field and
inversely proportional to the number of electrons per unit area, N). The naive Drude
expectation for �xx was that it shows no magnetoresistance. However, Shubnikov and

† K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett., 45, 494 (1980).
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Figure W11.20. Geometry of the measurement of the quantum Hall effect for the
two-dimensional electron gas.

de Haas† had found oscillatory structure in the magnetoresistivity of three-dimensional
conductors as a function of 1/B. The period of this structure is given by a formula
derived by Onsager, 	1/B
 D 2,e/h̄AF, where AF is the area of the equatorial plane
of the Fermi sphere in k space with the magnetic field along the polar axis. The physical
origin involves Landau levels (discussed in Appendix W11A) crossing the Fermi level
as the magnetic field is varied. Similar oscillations were expected in two-dimensional
conductors. In place of a Fermi sphere there would be a Fermi circle in the 	kxky

plane.

A sketch of the experimental data for the integer quantum Hall effect (IQHE) is
presented in Fig. W11.21. A steplike structure with exceedingly flat plateaus is found

B

B
ρxx

ρxy

4e2

h
3e2

h 2e2

h

Figure W11.21. Experimental results for the Hall resistivity �xy and magnetoresistivity �xx
for the two-dimensional electron gas. (Reprinted with permission of H. Iken. Adapted from
B. I. Halperin, The quantized Hall effect, Sci. Am., Apr., 1986, p 52.)

† W. J. de Haas, J. W. Blom, and L. W. Schubnikow, Physica 2, 907 (1935).
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for �xy as a function of B. The flatness is better than 1 part in 107. The resistivity for
the nth step is �xy D h/ne2 D 25,812.8056 �/n, where n D 1, 2, 3, . . . , and is now
used as the standard of resistance. In addition, �xx consists of a series of spikelike
features as a function of B. The location of the spikes coincides with the places where
the transitions between the plateaus occur. In between the spikes it is found that the
longitudinal resistivity vanishes.

In the absence of a magnetic field, the density of states (number of states per unit
energy per unit area) for a free-electron gas in two dimensions is predicted to be
constant (see Table 11.5). Thus, for a parabolic conduction band,

�	E
 D 1

A

∑
k,ms

υ	Ek � E
 D
∫

2d2k

	2,
2
υ

(
h̄2k2

2mŁ
e

� E

)
D mŁ

e

,h̄2	E
, 	W11.41


where mŁ
e is the effective mass of the electron and 	E
 is the unit step function. The

Fermi energy is obtained by evaluating

N D
∫
dE�	E
	EF � E
 D mŁ

eEF
,h̄2 . 	W11.42


The radius of the Fermi circle is given by kF D p
2,N.

In the presence of a magnetic field, the density of states is radically transformed.
The spectrum degenerates into a series of equally spaced discrete lines called Landau
levels. The states are labeled by three quantum numbers: a nonnegative integer n, a
continuous variable kx, and a spin-projection quantum number ms. Details are presented
in Appendix W11A. The energies of the Landau levels are given by the formula
Enkxms D 	nC 1

2 
h̄ωc C g�BBms, where ωc D eB/mŁ
e is the cyclotron frequency of the

electron in the magnetic field. Note that the energy does not depend on kx. The energy
formula includes the Zeeman splitting of the spin states. The density of states becomes
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	W11.43

A sketch of the density of states is presented in Fig. W11.22. Figure W11.22a corre-
sponds to the case where there is no magnetic field. Figure W11.22b shows the
formation of Landau levels when the magnetic field is introduced but when there is no
disorder. The degeneracy per unit area of each Landau level, D, is readily evaluated
by taking the limit ωc ! 0 and converting the right-hand sum to an integral over n.
The result may then be compared with Eq. (W11.41) to give D D mŁ

eωc/2,h̄ D eB/h.
The filling factor is defined by ? D N/D. For ? D 1 the first Landau level (with n D 0
and ms D � 1

2 ) is filled, for ? D 2 the second Landau level (with n D 0 and ms D 1
2 ) is

also filled, and so on for higher values of n. Each plateau in �xy is found to be asso-
ciated with an integer value of ? (i.e., �xy D h/?e2). The filling of the Landau levels
may be controlled by either varying B or N. The areal density N may be changed by
varying the gate voltage in a MOSFET or by applying the appropriate voltages to a
heterostructure.

The boundaries of the 2DEG in a magnetic field act as one-dimensional conductors.
In the interior of a two-dimensional conductor the electrons are believed to be localized
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Figure W11.22. Density of states for a two-dimensional electron gas: (a) in the absence of a
magnetic field; (b) in the presence of a magnetic field, but with no disorder; (c) in the presence
of a magnetic field and with disorder. The smaller Zeeman spin splitting of the Landau levels
is not shown.

by scattering from the random impurities. On the edges, however, the electrons collide
with the confining potential walls and the cyclotron orbits consist of a series of circular
arcs that circumscribe the 2DEG. Electrons in such edge states are not backscattered
and carry current. Recalling the mechanism responsible for weak localization discussed
in Section W7.5, it is observed that the edge states cannot become localized. As a result,
edge states are delocalized over the entire circumference of the 2DEG. Phase coherence
is maintained around the circumference. If one were to follow an electron once around
the 2DEG, Eq. (W11A. 5) implies that its wavefunction accumulates a phase shift of
amount

υ@ D e

h̄

∮
A·dl D e

h̄

∫
B· OndS D e

h̄
, 	W11.44


where A is the vector potential, dS an area element, and  the magnetic flux through
the sample. Uniqueness of the wavefunction requires that υ@ D 2,NF, where NF is
an integer. Thus  D NF0, where 0 D h/e D 4.1357 ð 10�15 Wb is the quantum
of flux. Each Landau level contributes an edge state that circumscribes the 2DEG.
Eventually, as the Hall electric field builds up due to charge accumulation on the
edges, the cyclotron orbits of the edge states will straighten out into linear trajectories
parallel to the edges.

States with noninteger ? are compressible. If N/D is not an integer, one may imagine
compressing the electrons into a smaller area A0 so that N0 will be the new electron
density in that area. Because of the high degeneracy of the Landau level, this may
be done without a cost in energy until N0/D reaches the next-larger integer value. To
compress the electron gas further requires populating the next-higher Landau level,
which involves elevating the electronic energies. Therefore, states with integer ? are
incompressible.

The zero longitudinal resistivity of the 2DEG for integer ? may be a consequence
of the incompressibility of the filled Landau levels. If all the electrons flow as an
incompressible fluid across the 2DEG sheet, there is considerable inertia associated
with this flow. Furthermore, the fluid interacts simultaneously with many scattering
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centers, some attractive and some repulsive. Consequently, as the fluid moves along,
there is no net change in the potential energy of the system and no net scattering.

It is worth examining the condition ? D N/D in light of the condition for quantized
flux. Suppose that ? is an integer. Let there be a total of Ne conduction electrons in
the 2DEG. Then

? D N

D
D Neh

e
D Ne
NF

. 	W11.45)

Thus associated with each flux quantum are ? electrons.
For an electron to be able to pass through the sheet without being deflected by the

magnetic field, the magnetic force must be equal in magnitude, but opposite in direction,
to the Hall electric force (i.e., evB D eEH). The Hall electric field 	EH D VH/w
 is
due to charge that accumulates along the edges of the sample. Thus

VH D wvB D v

L
 D v

L
NF0 D NFvh

eL
. 	W11.46


The current carried by the 2DEG is given by

I D Nvew D Neve

L
. 	W11.47


The Hall resistivity is therefore given by

�xy D VH
I

D NFh

Nee2
D h

?e2
. 	W11.48


It is believed that the plateaus in the Hall resistivity coincide with regions where the
Fermi level resides in localized states between the Landau levels. The localized states
are a consequence of disorder. When there is disorder present, the density of states
no longer consists of a series of uniformly spaced delta functions. Rather, each delta
function is spread out into a broadened peak due to the local potential fluctuations set
up by the scattering centers. The states associated with the region near the centers of
the peaks are extended throughout the 2DEG, while those in the wings of the peak
are localized. This is illustrated in Fig. W11.22c, where the shaded regions correspond
to localized states and the unshaded regions correspond to extended states. The area
under each peak is D. As the magnetic field is varied and ωc changes, the Landau
levels move relative to the fixed Fermi level. When the Fermi level resides in the
localized states these states do not contribute to the conductivity. As long as no new
extended states are added while the localized states sweep past the Fermi level, �xy
remains constant. When B increases and EF enters a band of extended states, a charge
transfer occurs across the 2DEG which causes �xy to increase. Laughlin† has presented
a general argument based on gauge transformations showing how this happens.

The conductivity tensor is the inverse of the resistivity tensor. Thus, in the plateau
regions the Hall conductivity is �xy D ��xy/	�xx�yy � �xy�yx
 ! 1/�yx, since �xx D 0.
Thus j�xyj D ?e2/h. This is expected from the Landauer theory of conduction. The

† R. B. Laughlin, Phys. Rev. B, 23, 5632 (1981).
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current is carried by the edge states, with each Landau level contributing an edge state.
Note that both edges of the 2DEG can conduct through each edge state.

Further investigations of the quantum Hall effect at higher magnetic fields for
the lowest Landau level† have revealed additional plateaus in the Hall resistivity at
fractional values of ?. The phenomenon is called the fractional quantum Hall effect
(FQHE). If ? is expressed as the rational fraction ? D p/q, only odd values of q are
found. For the case p D 1, this is equivalent to saying that each electron is associated
with an odd number, q, of flux quanta.

The system of electrons that exhibits the FQHE is highly correlated, meaning that
the size of the electron–electron interaction is larger than the kinetic energy of the
electron. Instead of describing the physics in terms of bare electrons, one introduces
quasiparticles. One such description involves the use of what are called composite
fermions.‡ In this picture each electron is described as a charged particle attached
to a flux quantum. It may further become attached to an additional even number
of flux quanta. In such a description the composite fermion may be shown to obey
Fermi–Dirac statistics. The FQHE is then obtained as an IQHE for the composite
fermions.

In another description of the quasiparticles§ it is useful to think of the fractioniza-
tion of charge. For example, in the case where ? D 1

3 , the quasiparticles are regarded
as having charge eŁ D e/3. This does not mean that the actual physical charge of
the electron has been subdivided but that the wavefunction of a physical electron is
such that the electron is as likely to be found in three different positions. These posi-
tions may, however, independently undergo dynamical evolution and may even change
abruptly due to tunneling. Experiments on quantum shot noise¶ have, in fact, shown that
the current in the FQHE is carried by fractional charges e/3. More recent shot-noise
experiments have shown that the ? D 1

5 FQHE involves carriers with charge e/5.

W11.10 Photovoltaic Solar Cells

The photovoltaic effect in a semiconductor can occur when light with energy h̄ω > Eg
is incident in or near the depletion region of a p-n junction. The electron–hole pairs
that are generated within a diffusion length of the depletion region can be separated
spatially and accelerated by the electric field in the depletion region. They can thus
contribute to the drift current through the junction. This additional photo-induced drift
current (i.e., photocurrent) of electrons and holes upsets the balance between the drift
and diffusion currents that exists for Vext D 0 when the junction is in the dark. The
photocurrent flows from the n- to the p-type side of the junction (i.e., it has the same
direction as the net current that flows through the junction under reverse-bias conditions
when Vext < 0
. The total current density that flows through an illuminated junction
when a photo-induced voltage (i.e., a photovoltage) V is present is given by

J	V,GI
 D J	GI
� J	V
 D J	GI
� Js[exp	eV/kBT
� 1], 	W11.49


† D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett., 48, 1559 (1982).
‡ J. K. Jain, Phys. Rev. Lett., 63, 199 (1989).
§ R. B. Laughlin, Phys. Rev. Lett., 50, 1395 (1983).
¶ R. de Picciotto et al., Nature, 389, 162 (1997).
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Figure W11.23. Predicted current–voltage characteristics for a photovoltaic solar cell in the
form of a p-n junction, both in the dark (GI D 0) and illuminated (GI > 0), shown schematically
when the solar cell is connected to an external circuit. The generation rate of photo-excited
electron–hole pairs is given by GI. Also shown are the processes giving rise to the photo-induced
current.

where GI is the rate of generation or injection of carriers due to the incident light and
J	V
 is the voltage-dependent junction current given by Eq. (11.103).

Current–voltage characteristics predicted by Eq. (W11.49) are shown schematically
in Fig. W11.23 for a p-n junction connected to an external circuit, both in the dark
(GI D 0) and when illuminated (GI > 0). Also shown are the equivalent circuit of
the solar cell comprised of the p-n junction with series and shunt resistances and, in
addition, the processes giving rise to the photo-induced current. The useful current that
can be derived from the photovoltaic effect and which can deliver electrical power to
an external circuit corresponds to the branch of the J-V curve in the fourth quadrant
where V > 0 and J < 0. The voltage Voc is the open-circuit voltage that appears across
the p-n junction when J	GI,V
 D 0 (i.e., when no current flows). This voltage can be
obtained from Eq. (W11.49) and is given by

Voc D kBT

e
ln
[
J	GI


Js
C 1
]
. 	W11.50


The short-circuit current density at V D 0 is Jsc D J	GI
. Note that Voc corresponds to
a forward-bias voltage and has a maximum value for a given semiconductor equal to the
built-in voltage VB of the p-n junction, as defined in Eq. (11.94). The magnitude of the
short-circuit current density Jsc will be proportional to the integrated flux of absorbed
photons and to the effective quantum efficiency Ceff of the device (i.e., the fraction
of absorbed photons that generate electron–holes pairs, which are then collected and
contribute to the photocurrent). Note that Voc and Jsc change in opposite ways as the
energy gap of the semiconductor is varied. The voltage Voc increases with increasing
Eg, while Jsc, being proportional to number of carriers excited across the bandgap,
decreases with increasing Eg.

The optimal operating point of the p-n junction solar cell is in the fourth quadrant,
as shown. At this point the product JV has its maximum value 	JV
max (i.e., the
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Figure W11.24. Typical J–V curve for an a-Si:H Schottky-barrier solar cell under illumination
of 650 W/m2. (From M. H. Brodsky, ed., Amorphous Semiconductors, 2nd ed., Springer-Verlag,
New York, 1985.)

inscribed rectangle has the maximum possible area). The fill factor (FF) of the solar cell
is defined to be FF D 	JV
max/JscVoc, and a value as close to 1 as possible is the goal.
For a typical crystalline Si solar cell it is found that Voc ³ 0.58V, Jsc ³ 350 A/m2,
and FF ³ 0.8. A typical J-V curve for an a-Si:H Schottky barrier solar cell under
illumination of 650 W/m2 is shown in Fig. W11.24.

The efficiency of a photovoltaic solar cell in converting the incident spectrum of solar
radiation at Earth’s surface to useful electrical energy depends on a variety of factors,
one of the most important of which is the energy gap Eg of the semiconductor. There
are, however, two conflicting requirements with regard to the choice of Eg. To absorb as
much of the incident light as possible, Eg should be small. In this case essentially all of
the solar spectrum with h̄ω > Eg could be absorbed, depending on the reflectance R of
the front surface of the cell, and so on. Most of the photo-generated electrons and holes
would, however, be excited deep within their respective energy bands with considerable
kinetic energies (i.e., their energies relative to the appropriate band edge would be a
significant fraction of h̄ω). As a result, these charge carriers would lose most of their
kinetic energy nonradiatively via the process of phonon emission as they relax to the
nearest band edge. Only the relatively small fraction Eg/h̄ω of each photon’s energy
would be available to provide useful electrical energy to an external circuit.

An alternative solution would involve the use of a semiconductor with a high energy
gap so that a greater fraction of the energy of each absorbed photon could be converted
to useful electrical energy. Although this is true, the obvious drawback is that many
fewer photons would be absorbed and thus available to contribute to the photo-induced
current. From a consideration of both effects, it has been calculated that the optimum
energy gap for collecting energy at Earth’s surface in a single-color solar cell (i.e.,
a solar cell fabricated from a single semiconductor) would be Eg ³ 1.4 eV, which is
close to the energy gap of GaAs. In this case the maximum possible efficiency of the
solar cell would be ³ 26%.

For crystalline Si with Eg D 1.11 eV, the maximum possible efficiency is ³ 20%.
It has been possible so far to fabricate Si solar cells with efficiencies of ³ 15%. An
alternative to crystalline Si is a-Si:H since a-Si:H films with thicknesses of 1 µm are
sufficient to absorb most of the solar spectrum. Even though its energy gap Eg ³ 1.8 eV
is relatively high, a-Si:H is a direct-bandgap semiconductor due to the breakdown of
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selection rules involving conservation of wave vector k for optical absorption. As a
result, a-Si:H has higher optical absorption than c-Si (see Fig. W11.7b). In addition,
a-Si:H is much less expensive to produce than c-Si and so has found applications
in the solar cells that provide power for electronic calculators and other electronic
equipment. Other materials that are candidates for use in terrestrial solar cells include
the chalcopyrite semiconductor CuIn1�xGaxSe2 with Eg D 1.17 eV from which cells
with ³ 17% efficiency have been fabricated.

A possible solution to the problem associated with the choice of energy gap is to
fabricate two-color or multi color solar cells, also known as tandem solar cells. In
a two-color cell two p-n junctions fabricated from semiconductors with energy gaps
Eg1 and Eg2 > Eg1 are placed in the same structure, with the semiconductor with
the higher gap Eg2 in front. In this way more of the energy of the incident photons
with h̄ω > Eg2 would be collected by the front cell, while the back cell would collect
energy from the photons with Eg2 > h̄ω > Eg1 which had passed through the front cell.
Although higher conversion efficiencies can be achieved in this way, the higher costs
of fabricating such cells must also be taken into account. The cost per watt of output
power of a photovoltaic solar cell will ultimately determine its economic feasibility.

W11.11 Thermoelectric Devices

The most common devices based on thermoelectric effects are thermocouples, which
are used for measuring temperature differences. These are typically fabricated from
metals rather than semiconductors. Thermoelectric effects in semiconductors have
important applications in power generation and in refrigeration, due to the observed
magnitude of the thermoelectric power S in semiconductors, ³ 1 mV/K, which is 100
to 1000 times greater than the thermoelectric powers typically observed in metals. Ther-
moelectric energy conversion and cooling are achieved via the Peltier effect described
in Section W11.4. An important advantage of these thermoelectric power sources and
refrigerators fabricated from semiconductors is that they have no moving parts and so
can have very long operating lifetimes.

Schematic diagrams of a thermoelectric power source or generator and a thermo-
electric refrigerator are shown in Fig. W11.25. In the thermoelectric generator two
semiconductors, one n-type and the other p-type, each carry a heat flux from a heat
source at a temperature Th to a heat sink at a temperature Tc; see Fig. W11.4 for a
schematic presentation of the processes involved. In practice, many such pairs of semi-
conductors are used in parallel in each stage of the device. When a complete electrical
circuit is formed, a net current density J D I/A of majority carriers travels from the
hot to the cold end of each semiconductor.

The net heat input into the semiconductors from the heat source is given by

dQ

dt
D ITh	Sp � Sn
CKT� I2R

2
, 	W11.51


where the combined thermal conductance K and electrical resistance R of the pair of
semiconductors are defined, respectively, by
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Here ! is the thermal conductivity, � the electrical resistivity, and A and L the cross
section and length of each semiconductor, respectively.† The semiconductors are ther-
mally insulated and therefore lose no heat through their sides to the surroundings. The
three terms on the right-hand side of Eq. (W11.51) represent the rates of heat flow
either out of or into the heat source via the following mechanisms:

1. ITh	Sp � Sn
 D I	p �n
. This term represents the rate at which heat is
removed from the heat source at temperature Th via the Peltier effect at the junc-
tions between each semiconductor and the metallic contact. The thermopower Sm
of the metallic contacts cancels out of this term, and in any case, Sm is typically
much smaller than either Sp or Sn. Note that both components of the Peltier heat
are positive since “hot” electrons and “hot” holes enter the n- and p-type semi-
conductors, respectively, from the metallic contacts in order to replace the “hot”
carriers that have diffused down the thermal gradients in the semiconductors.

2. KT D K 	Th � Tc
. This term represents the rate at which heat is conducted
away from the heat source by charge carriers and phonons in the semiconductors.

3. I2R/2. This rate corresponds to the Joule heat that is generated in the semicon-
ductors, one half of which is assumed to flow into the heat source.

The electrical power P made available to an external load resistance RL can be
shown to be given by the product of the current I and the terminal voltage Vt:

P D IVt D I[	Sp � Sn
T� IR], 	W11.53


where 	Sp � Sn
T is the total thermoelectric voltage due to the Seebeck effect. The
efficiency of this thermoelectric generator in converting heat energy into electrical
energy is given by C D P/ PQ. It can be shown that C is maximized when the combined
material parameter Z given by

Z D 	Sp � Sn
2

	
p
�n!n C p

�p!p
2
	W11.54


is maximized. When Sp and Sn have the same magnitude but are of opposite signs, and
when the two semiconductors have the same thermal conductivities ! and electrical
resistivities �, Z takes on the following simpler form:

Z D S2

�!
. 	W11.55


† It is assumed here for simplicity that the thermopowers S, thermal conductivities !, and electrical resis-
tivities � of the two semiconductors are independent of temperature. In this case the Thomson heat is zero
and need not be included in the analysis.
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High values of S are needed to increase the magnitudes of the Peltier effect and
the thermoelectric voltage, low values of � are needed to minimize I2R losses, and
low values of ! are needed to allow higher temperature gradients and hence higher
values of Th. The dimensionless product ZT is known as the thermoelectric figure
of merit. Despite extensive investigations of a wide range of semiconductors, alloys,
and semimetals, the maximum currently attainable value of ZT is only about 1. When
maximum power transfer is desired, independent of the efficiency of the transfer, the
parameter to be maximized is then Z0 D S2/�.

Typical efficiencies for thermoelectric devices are in the range 10 to 12%. Ther-
moelectric power sources that obtain their heat input from the decay of radioactive
isotopes are used on deep-space probes because of their reliability and convenience
and because solar energy is too weak to be a useful source of electrical energy in deep
space far from the sun.

Thermoelectric refrigeration employs the same configuration of semiconductors
as used in thermoelectric generation, but with the load resistance RL replaced by
a voltage source V, as also shown in Fig. W11.25. In this case, as the current I
flows around the circuit, heat is absorbed at the cooled end or heat “source” and is
rejected at the other end, thereby providing refrigeration. As an example of thermo-
electric refrigeration, when n- and p-type alloys of Si0.78Ge0.22 are used, the value
S D Sp � Sn D 0.646 mV/K is obtained. With Th D 270 K and I D 10 A, each n-p
semiconductor pair can provide a cooling power of P D ITh S D 1.74 W. While the
use of thermoelectric refrigeration is not widespread due to its low efficiency compared
to compressor-based refrigerators, it is a convenient source of cooling for electronics
applications such as computers and infrared detectors.

Since different semiconductors possess superior thermoelectric performance in
specific temperature ranges, it is common to employ cascaded thermoelements in
thermoelectric generators and refrigerators, as shown in the multistage cooling device
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Figure W11.25. Schematic diagrams of (a) a thermoelectric power generator and (b) a ther-
moelectric refrigerator. In the thermoelectric generator or thermopile two semiconductors, one
n-type and the other p-type, each carry a heat flux from a heat source to a heat sink. In the
thermoelectric refrigerator the same configuration of semiconductors is employed, but with the
load resistance RL replaced by a voltage source V. In this case, as the current I flows around
the circuit, heat is absorbed at the cooled end or heat “source” and is rejected at the other end,
thereby providing refrigeration.
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Figure W11.26. Cascaded thermoelements are employed in thermoelectric generators and
refrigerators, as shown in the cooling module pictured here. (From G. Mahan et al., Phys.
Today, Mar. 1997, p. 42. Copyright  1997 by the American Institute of Physics.)

pictured in Fig. W11.26. In this way each stage can operate in its most efficient
temperature range, thereby improving the overall efficiency and performance of
the device. Temperatures as low as T D 160 K can be reached with multistage
thermoelectric refrigerators.

The semiconductor material properties involved in the dimensionless figure of merit
ZT for both power generation and for refrigeration are usually not independent of
each other. For example, when the energy gap Eg or the doping level Nd or Na of
a semiconductor are changed, the electronic contributions to all three parameters, S,
�, and !, will change. It is reasonable, however, to assume that the lattice or phonon
contribution !l to ! D !e C !l is essentially independent of the changes in the electronic
properties. To illustrate these effects, the values of S, �, and ! and their changes with
carrier concentration are shown at room temperature in Fig. W11.27 for an idealized
semiconductor. It can be seen that the quantity Z D S2/�! has a maximum value in this
idealized case near the middle of the range at the relatively high carrier concentration
of ³ 1025 m�3. As a result, the dominant thermoelectric materials in use today are
highly doped semiconductors.

The parameter Z has relatively low values in both insulators and metals. At the lower
carrier concentrations found in insulators, Z is low due to the resulting increase in the
electrical resistivity � and also at the higher carrier concentrations found in metals due
both to the resulting increase in the electronic contribution to the thermal conductivity
! and to the decrease of S. The decrease in S with increasing carrier concentration
occurs because a smaller thermovoltage is then needed to provide the reverse current
required to balance the current induced by the temperature gradient. These decreases
in S with increasing n or p can also be understood on the basis of Eqs. (W11.17) and
(W11.18), which indicate that Sn / 	Ec � �
 while Sp / 	�� Ev
. Either 	Ec � �

or 	�� Ev
 decrease as the chemical potential � approaches a band edge as a result of
doping. It is important that thermal excitation of electrons and holes not lead to large
increases in carrier concentrations at the highest temperature of operation, Tmax, since
this would lead to a decrease in S. It is necessary, therefore, that the energy gap Eg of
the semiconductor be at least 10 times kBTmax.

A useful method for increasing the efficiency C of thermoelectric devices is to
increase the temperature Th of the hot reservoir, thereby increasing both the Peltier
heat  D TS and the figure of merit ZT. In this way the Carnot efficiency limit
	Th � Tc
/Th will also be increased. The temperature Th can be increased by reducing
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the phonon mean free path, thereby decreasing !l through a disturbance of the periodic
lattice potential. This is typically accomplished by alloying or by introducing lattice
defects such as impurities. Another method of decreasing !l is to choose a semicon-
ductor with a high atomic mass M since the speed of the lattice waves is proportional
to M�1/2.

Current research into the development of new or improved thermoelectric materials
involves studies of a wide range of materials, including the semiconductors PbTe,
Si:Ge alloys, Bi2Te3, and Bi:Sb:Te alloys, which are in current use. It can be shown in
these “conventional” semiconductors that maximizing ZT is equivalent to maximizing
N	mŁ
3/2�/!l, where N is the number of equivalent parabolic energy bands for the
carriers, and mŁ and � are the electron or hole effective mass and mobility, respectively.
Other novel materials under investigation include crystals with complicated crystal
structures, such as the “filled” skudderite antimonides with 34 atoms per unit cell and
with the general formula RM4Sb14. Here M is Fe, Ru, or Os, and R is a rare earth
such as La or Ce. These crystals can have very good thermoelectric properties, with
ZT ³ 1. This is apparently related to the lowering of !l due to the motions of the rare
earth atoms inside the cages which they occupy within the skudderite structure.

Appendix W11A: Landau Levels

In this appendix an electron in the presence of a uniform magnetic field is considered.
The Hamiltonian is

H D 1

2mŁ
e

	p C eA
2, 	W11A.1


where A is the vector potential. The magnetic induction is given by B D r × A,
which automatically satisfies the condition r · B D 0. A uniform magnetic field in
the z direction may be described by the vector potential A D �ByOi. The Schrödinger
equation H D E for motion in the xy plane becomes

1

2mŁ
e

	px � eBy
2 C p2
y

2mŁ
e

 D E . 	W11A.2


This may be separated by choosing  	x, y
 D u	y
 exp	ikxx
, so

[
p2
y

2mŁ
e

C mŁ
eω

2
c

2

(
y � h̄kx

eB

)2

� E

]
u	y
 D 0, 	W11A.3


where ωc D eB/mŁ
e is the cyclotron frequency. This may be brought into the form

of the Schrödinger equation for the simple harmonic oscillator in one dimension by
making the coordinate transformation y0 D y � h̄kx/eB. The energy eigenvalues are
E D 	nC 1/2
h̄ωc, where n D 0, 1, 2, . . . . The effect of electron spin may be included
by adding the Zeeman interaction with the spin magnetic moment. Thus

E D
(
nC 1

2

)
h̄ωc C g�BBms, 	W11A.4




146 SEMICONDUCTORS

where �B is the Bohr magneton, g ³ 2, and ms D š 1
2 . The energy is independent of

the quantum number kx.
From Eq. (W11A.1) it is seen that the solution to the Schrödinger equation in a

region of space where the vector potential is varying as a function of position is

 	r
 D exp
(
ik · r � i

e

h̄

∫ r

A	r0
 · dr0
)
. 	W11A.5
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PROBLEMS

W11.1 Prove that holes behave as positively charged particles (i.e., that qh D �qe D
Ce) by equating the current Je D 	�e
	�ve
 D Ceve carried by the “extra”
electron II in the valence band in Fig. 11.6 with the current Jh carried by the
hole.

W11.2 Derive the expressions for the intrinsic carrier concentration ni	T
 and pi	T
,
given in Eq. (11.29), and for the temperature dependence of the chemical
potential �	T
, given in Eq. (11.30), from Eq. (11.27) by setting ni	T
 D
pi	T
.

W11.3 Consider the high-temperature limit in an n-type semiconductor with a
concentration Nd of donors and with no acceptors. Show that the approximate
concentrations of electrons and holes are given, respectively, by n	T
 ³
ni	T
CNd/2 and p	T
 ³ pi	T
�Nd/2). [Hint: Use Eq. (11.35).]

W11.4 Calculate the average scattering time h(i for defect or phonon scattering at
which the broadening of the two lowest energy levels for electrons confined in
a two-dimensional quantum well of width Lx D 10 nm causes them to overlap
in energy. Take mŁ

c D m.

W11.5 Derive the expression RH D 	p�2
h � n�2

e
/e	n�e C p�h
2 for the Hall coef-
ficient for a partially compensated semiconductor from the general expression
for RH for two types of charge carriers given in Eq. (11.48).

W11.6 If V is the voltage drop that exists as a result of a temperature difference
T in a semiconductor in which no current is flowing, show that V and
T have the same sign for electrons and opposite signs for holes and that the
correct expression for calculating the thermoelectric power is S D �V/T.
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W11.7 (a) Using Vegard’s law given in Eq. (11.62) and the data presented in
Table 11.9, find the composition parameter x for which Al1�xBxAs alloys
(assuming they exist) would have the same lattice parameter as Si.

(b) What value of Eg would Vegard’s law predict for an alloy of this compo-
sition? [Hint: See Eq. (11.64).]

W11.8 Using the data presented in Table 2.12 for rcov	Ga
 and rcov	As
 and assuming
that d	Ga � As
 D rcov	Ga
C rcov	As
, calculate the parameters Eh, C, Eg,
and fi for GaAs based on the dielectric model of Phillips and Van Vechten.
Note: Estimate kTF using the definition given in Section 7.17.

W11.9 Plot on a logarithmic graph the carrier concentrations n and p and their
product np at T D 300 K as a function of the concentration of injected carriers
n D p from 1020 up to 1026 m�3 for the n-type Si sample with a donor
concentration Nd D 2 ð 1024 m�3 described in the textbook in Section 11.12.
Identify on the graph the regions corresponding to low- and high-level carrier
injection.

W11.10 By integrating Eq. (11.71), show that the buildup of the hole concentration
p	t
 from its initial value p0 is given by Eq. (11.74). Also, by integrating
Eq. (11.76), show that the decay of the hole concentration p	t
 to its equilib-
rium value p0 is given by Eq. (11.77).

W11.11 Using the fact that the additional output voltage Vc in the collector
circuit of the npn transistor amplifier described in Section W11.8 is equal
to [Ic	v
� Ic	v D 0
]Rc, show that the voltage gain G is given by Rc/Re.



CHAPTER W12

Metals and Alloys

A variety of theoretical tools is available for the study of metallic solids. Electronic
band-structure methods include the augmented plane wave (APW) method, the orthogo-
nalized plane wave (OPW) method, the Green function [Korringer, Kohn, and Rostoker
(KKR)] method, the pseudopotential method, and the cellular (Wigner–Seitz) method.
These approaches are discussed in solid-state physics textbooks (e.g., Fletcher or
Ashcroft and Mermin). These methods all rely on the perfect periodicity of the solid
and utilize Bloch’s theorem to limit the focus of attention to a unit cell. They are not
directly applicable to disordered alloys or solids with impurities or defects.

Quantum-chemistry calculations can be done for clusters of finite size, but the
computational time grows rapidly as the size of the cluster is increased, making such
calculations impractical for the study of large collections of atoms with present-day
computers.

The next three sections introduce methods that have found some utility in describing
realistic solids: the density-functional method, the embedded-atom method, and the
tight-binding approximation. Although lacking the accuracy of the band-structure or
quantum-chemistry computations, they are nevertheless useful in studying large-scale
systems, are relatively simple to implement on the computer, and are, for many
purposes, adequate.

W12.1 Density-Functional Theory

Density-functional theory is a method currently being used to obtain a theoretical under-
standing of metals, metallic alloys, surfaces of metals, and imperfections in metals. The
method is a natural outgrowth of the Thomas–Fermi method introduced in Chapter 7
of the textbook.† It is based on the observation by Hohenberg and Kohn that all the
ground-state properties of a many-body quantum-mechanical system of electrons may
be obtained from a knowledge of the electron density, n�r�. They proved that n�r�
determines the potential V�r� that the electrons move in, up to an insignificant additive
constant. Furthermore, an energy functional E[n] may be constructed and it may be
shown to attain its minimum value when the correct n�r� is employed.

The uniqueness proof is based on the minimum principle from quantum mechanics.
Begin by noting that if the potential energy function V�r� were known, one could solve

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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the Schrödinger equation and obtain the electron density n�r�. If there were two different
potentials V�r� and V0�r� leading to the same n�r�, the Schrödinger equation could be
solved for each potential and the respective ground-state wavefunctions  and  0 would
be determined. By the minimum principle, the ground-state energy obeys the inequality

E D h j�TC V�j i < h 0j�TC V�j 0i D h 0j�TC V0�j 0i C h 0j�V� V0�j 0i

D E0 C h 0j�V� V0�j 0i D E0 C
∫
n�r�[V�r�� V0�r�] dr. �W12.1�

Repeating the argument with the primed and unprimed variables interchanged leads to
E0 < EC ∫

n�r�[V0�r�� V�r�] dr. Adding the two inequalities leads to the contradic-
tion EC E0 < E0 C E. Q.E.D.

The energy of the system is written in the form

E[n] D
∫
n�r�

[
3

5
EF�r�

]
dr C

∫
n�r�V�r� dr C Eii

C 1

2

e2

4��0

∫
dr

∫
dr0n�r�n�r

0�
jr � r0j C Exc[n]. �W12.2�

Here EF D h̄2k2
F/2m, where kF�r� D [3�2n�r�]1/3 is a local Fermi wave vector, and

V�r� is the potential due to the ions. The first four terms are the kinetic energy, the
energy of interaction of the electrons with the ions, the ion–ion interaction, and the
Coulomb repulsion energy of the electrons. The quantity Exc is the energy arising
from exchange and correlation effects. The variational problem may be reduced to
the solution of a set of partial-differential equations called the Kohn–Sham equations.
These are of the form [

� h̄2

2m
r2 C veff�r�� Ej

]
 j�r� D 0, �W12.3�

where Exc[n] D ∫
n�xc dr and

veff�r� D V�r�C e2

4��0

∫
n�r0�

jr � r0jdr0 C vxc�r�, �W12.4�

vxc�r� D υExc[n�r�]
υn�r�

. �W12.5�

The electron density is constructed from the Kohn–Sham wavefunctions as

n�r� D
N∑
jD1

j j�r�j2. �W12.6�

In the local-density approximation (LDA) it is assumed that Exc depends only on n
and not on its derivatives, and one writes

vxc ³ d

dn
�n�xc�. �W12.7�
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Figure W12.1. Surface-charge density for Ni. Distance is measured in atomic units (a.u.).
[Adapted from D. R. Hamann, Phys. Rev. Lett., 46, 1227 (1981). Copyright 1981 by the American
Physical Society.]

Various research groups have presented useful functional forms for �xc�n�. The results
of the calculations of n�r� generally compare favorably with experiment or with
quantum-chemistry calculations for finite systems. Density-functional theory has also
been extended to include corrections involving rn terms. An example of calculational
results for the surface-charge density of Ni is given in Fig. W12.1.

W12.2 Embedded-Atom Method

The embedded-atom method attempts to calculate the energy of realistic metals by
making simplifying assumptions about how atoms interact with each other and with
the common sea of electrons. The energy is written as a sum of two terms

E D Erep C Eembed. �W12.8�

The first term is the interatomic-repulsive energy associated with the nuclei and their
core electrons. The repulsive energy is given by the sum of pairwise potentials:

Erep D 1

2

∑
i,j
i 6Dj

Uij�Rij�. �W12.9�

The second term is the interaction of the atoms with the electron gas in which the
atoms find themselves embedded. The embedding energy is approximated as the sum
of the energies of interaction of each atom with a uniform electron gas. The electron
density at site i is computed by superimposing the local electronic densities from all
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other atoms. Thus

Eembed D
∑
i

Fi


∑

j

0nj�Ri � Rj�


 . �W12.10�

The embedding energy, Fi�n0�, is computed using density-functional theory. A point
charge ze is placed at the origin. The jellium model is used for the electron gas. The
charge density is given by ��r� D e[n0 C zυ�r�� n�r�]. Detailed calculations were
carried out for a number of elements.† Typical results are presented in Fig. W12.2.
Values for the densities at which the minimum occurs and the corresponding well
depths are presented in Table W12.1.

Often Fi�n0� is approximated by a function of the form

Fi�n0� D Ain0 � Bi
p
n0. �W12.11�

The first term corresponds to the effect of the filled shells of the ion. For example, in
the inert gases, where all the shells are filled, the embedding energy is observed to grow
approximately linearly with the electron density, with a slope given by Ai. The second
term arises from the bonding of the valence electrons of the atom with the ambient
electrons. If the volume of the embedded atom is �, the number of electrons that the
atom overlaps with is N D n0�. In a tight-binding description, in which each ambient
electron is assigned to a neighboring site, one would could construct a wavefunction as
a superposition of the form j i D �j1i C Ð Ð Ð C jNi�/pN, where each term represents
a state localized on a given site. The tunneling-matrix element linking the atom to the
ith neighbor would be of the form t D h 0jVjii/pN. A band whose width is given by
2Nt would form. If the state at the bottom of that band is occupied, this would result
in a reduction of energy Ei D �h 0jVjiipN  �Bipn0. It is interesting to note that
the metallic bond is unsaturated (i.e., only part of the band is occupied). If the full
band were occupied, the band energy would not be reduced and Bi would be zero.
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Figure W12.2. Embedding energy as a function of electron density for several elements. Here
a1 is the Bohr radius. [Adapted from M. J. Puska, R. M. Nieminen, and M. Manninen, Phys.
Rev. B, 24, 3037 (1981). Copyright 1981 by the American Physical Society.]

† M. J. Puska, R. M. Nieminen, and M. Manninen, Phys. Rev. B, 24, 3037 (1981).
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TABLE W12.1 Position and Depth of
the Minimum of the Embedding Energy

n0 F�n0�
Atom �a�3

1 �a (eV)

H 0.0026 �1.8
He 0 —
C 0.0035 �1.8
N 0.0045 �1.4
O 0.0037 �4.1
F 0.0010 �5.1
Ne 0 —
Na <0.0005 <�0.6
Al 0.0005 �0.2
Cl 0.0005 �4.0

Source: Data from M. J. Puska, R. M. Niemi-
nen, and M. Manninen, Phys. Rev. B, 24, 3037
(1981).
aa1 D Bohr radius D 0.0529 nm.

The embedded-atom method allows rapid computation of the ground-state energy
of a configuration of many atoms. By varying the atomic positions it is possible to
search for the minimum energy. Such quantities as the lattice constants, cohesive
energy, elastic constants, and surface energies could be obtained, as well as information
concerning the effects of impurities and defects.

W12.3 Peierls Instability

As an example of the utility of the tight-binding method, this section is devoted to a
special phenomenon that occurs when a one-dimensional metal is constructed. With
the trend toward miniaturization proceeding at the pace that it is, such a situation
is not out of the realm of the possible. When the Fermi surface of an electron gas
approaches certain special points in the Brillouin zone, structural instabilities may
result. The special points could lie at boundaries of the Brillouin zones or could lie
within the zone. Peierls showed that in a one-dimensional solid, a half-filled band results
in an instability that converts the metal into an insulator. The instability produces a
dimerization of adjacent atoms and doubles the size of the unit cell.

The model is depicted in Fig. W12.3, where the lattice is shown before and after
dimerization. The lattice will be idealized by a tight-binding model in which the atoms
are connected by springs of spring constant ks. Prior to dimerization the electronic

a
a−d a−d a−da+d a+d a+d

a a a a a

Figure W12.3. One-dimensional solid, before and after dimerization due to the Peierls insta-
bility.
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energies are given by [see Eq. (7.81)]

E�k� D E0 � 2t cos ka, �W12.12�

where E0 is the site energy and t is the tunneling-matrix element. After dimerization
two bands appear, with the respective energies

Eš D E0 š
√

2�t2 C2�C 2�t2 �2� cos 2ka �W12.13�

where the tunneling-matrix elements for the springs of length aš d have been written
as t Ý. It is assumed that for small d the shift in  is proportional to d (i.e.,
 D ˛d�. The lower band is occupied and the upper band is empty, so the solid
becomes an insulator.

The total energy per unit length consists of the sum of the electronic energy and
the elastic energy. Its change is given by

υU

L
D

∑
s

∫ �/2a

��/2a

dk

2�

[
2t cos ka�

√
2�t2 C2�C 2�t2 �2� cos 2ka

]
C ksd2

2a
.

�W12.14�
The integral is expressible in terms of E[m], the complete elliptic integral of the second
kind,

υU

L
³ �22

�at

(
ln

4t


� 1

2

)
C ks2

2a˛2
. �W12.15�

For small  the result may be written as

υU

L
D 4t

�a

[
1 � E

(
1 � 2

t2

)]
C ks2

2a˛2
. �W12.16�

For small-enough  this will be negative, predicting that the instability will always
occur. Minimizing υU with respect to  leads to

 D 4t exp
[
�
(

1 C �ks˛2t

4

)]
, �W12.17�

with
υU

L
D �16t

�a
exp

[
�2

(
�ks˛2t

4
C 1

)]
. �W12.18�

Peierls instabilities are believed to play a role in solids constructed from linear
organic molecules such as polyacetylene.

W12.4 Corrosion and Oxidation

Corrosion occurs because metals in contact with ionic solutions often function as
electrodes of batteries. To see how this comes about, consider the energy needed to
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extract an atom, A, from a metal in contact with a solution, and to ionize it, resulting
in the ion, AzC, of charge state z, and z electrons

A ���! AzC C ze�. �W12.19�

First the cohesive energy of the atom, Ecoh, must be provided to remove the atom
from the solid into the vacuum. Then the free-space ionization energy, IE, must be
added to create the ion AzC in vacuum. Upon placing the charges back into solution,
the solvation energy of the ion, Ui�A

zC�, is regained, as well as the solvation energy
of the z electrons, zUe. Dividing this by the electronic charge, �e, gives a possible
expression for the standard potential for the electrode half-reaction:

V�A ���! AzC C ze�� D �Ecoh C IE �Ui�A
zC�� zUe

e
. �W12.20�

In practice only a relative scale for the standard potential is defined. The standard
potential is determined experimentally relative to a standard reaction, usually taken as
that for H2 ! 2HC C 2e�. The standard potential V is arbitrarily defined to be zero
for this reaction.

As an example of a battery, consider the Daniell cell (Fig. W12.4). Two metals, Zn
and Cu, are in contact with electrolytic solutions of ZnSO4 and CuSO4, respectively.
These metals are connected to each other electrically through some external conduction
path. The electrolytes are separated from each other by a saturated salt bridge, which
selectively permits passage of the SO4

2� ions but blocks the passage of Cu2C and Zn2C
ions. At the anode, Zn undergoes the oxidation reaction Zn ! Zn2C C 2e�, with Zn2C
ions going into solution and electrons going into the external circuit. The reduction
reaction Cu2C C 2e� ! Cu occurs at the cathode, where Cu2C ions are deposited on
the electrode as they recombine with circuit electrons. The net result is that the Zn
corrodes and the Cu gets plated. The potential difference of this cell is computed from
the difference of the standard potentials, determined by the half-reactions taking place
at the electrodes:

Zn ���! Zn2C C 2e��C0.76 V�, Cu2C C 2e� ���! Cu ��0.34 V� �W12.21�

and is 1.1 V. The larger this voltage, the larger the ionic current will be (according to
Ohm’s law), and the faster the corrosion of the Zn will be. For materials with smaller
standard potential differences, the corrosion would be slower. If the sign difference

CuZn

Zn++

ZnSO4 CuSO4

Cu++

SO4

−

− −

+

Figure W12.4. Daniell cell.
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were negative instead of positive, no battery action, and consequently no corrosion,
would occur. For example, if Zn were replaced by Ag, the oxidation half-reaction
would be

2Ag ���! 2AgC C 2e���1.6 V� �W12.22�

and the standard difference would be �1.26 V, so no battery action would occur.
It is important to relate the electrode processes to the thermodynamic energies

involved. The reaction Cu ! Cu2C C 2e� (aqueous) involves a change of Gibbs
free energyG D �15.66 kcal/mol D �0.680 eV, and the reaction Zn2C C 2e� ! Zn
(aqueous) has G0 D �35.14 kcal/mol D �1.525 eV (at T D 25°C). The net Gibbs
free energy change for the reaction is the sum of these and is �2.205 eV. Since two
electrons are transferred per reaction, z D 2, so the open-circuit electromotive force
(EMF) is E 0 D G/��ze� D 1.10 V. In a battery the electrical energy is supplied
from the change in Gibbs free energy of the constituents.

The overall reaction for the Daniell cell may be written as Zn C Cu2C ⇀↽ Zn2C C
Cu. For standard conditions (T D 25°C, P D 1 atm) the EMF is determined by G0.
However, conditions are usually not standard and the appropriate Gibbs free energy
change is

G D G0 CNkBT ln
aZn2CaCu

aCu2CaZn
, �W12.23�

where N is the number of atoms transferred and ai refers to the activity of species i.
The EMF becomes

E D E 0 � kBT

ze
ln
aZn2C

aCu2C
D E 0 � kBT

ze
ln
aZnSO4

aCuSO4

, �W12.24�

since aCu D aZn D 1 (by definition). Since the activities are approximately proportional
to the concentrations, as the concentration of Cu2C drops, so does the EMF of the cell.

It should be noted that there are similarities between electrolytic solutions and
semiconductors. In the electrolyte charge is carried by the ions, whereas in the semi-
conductor the carriers are electrons and holes. The standard potentials of electrolytes
replace the bandgap potentials of semiconductors.

Next consider a piece of iron with a drop of water on it. The outer surface of the
drop is assumed to be in contact with air. Oxygen is absorbed into the water, and
a concentration gradient is established with the part of the water in contact with the
iron relatively deficient in oxygen. Some of the iron is oxidized and goes into solution
according to the reaction

Fe ���! Fe2C C 2e��C0.44 V� �W12.25�

with the electrons entering the metal across the electrolyte–metal interface. Near the
outer boundary of the water–iron interface, the oxygen is reduced by accepting the
two electrons from the metal and combining with solvated protons (hydronium ions,
often denoted by H3OC) in solution, according to either of the two reactions

1
2 O2 C 2H3OC C 2e� ���! 3H2O �C0.615 V�,

2H3OC C 2e� ���! 2H2O C H2 �C1.23 V�. �W12.26�
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In the first case the standard potential difference is 0.175 V and in the second case it
is 0.79 V. In both cases the difference is positive, so the reaction can proceed. The
net result is that iron is corroded from the metal. In solution the iron ions combine
with oxygen to precipitate as rust. The rust (hydrated Fe2O3) is deposited on the metal
surface as a porous material, so additional water can come in contact with the iron.

The pH of an aqueous solution is a measure of the concentration of hydronium ions
and is defined by pH D � log10 nH3OC , with n given in units of moles per liter (mol/L).
Nernst noted that the half-potentials are dependent on the pH of the water, and shift
downward with increasing pH. Thus the acidity or basicity of the electrolyte can have
a strong effect on the corrosion process.

Two strategies for eliminating corrosion present themselves. One is to coat the metal
with a protective overlayer and thus block ionic flow. The second is to try to alloy the
metal to make its oxidation potential more negative. It is noteworthy that gold, with its
standard potential for the reaction Au ! Au3C C 3e� at �1.50 V, is the most negative
of the elements and is therefore the most “noble” of them all. This may be understood
in terms of Eq. (W12.20), because the ionization energy of Au is high (9.22 eV) and
the ionic radius is large (0.137 nm), which implies that the solvation energy Ui will
be small.

The extent of damage caused by corrosion is more dependent on the morphology
of the oxide than on the metals themselves. It is worth contrasting the oxidation of
Fe discussed above with the oxidation of Al. In the latter case the Al2O3 layer that
is produced forms a crystal on the surface of the Al and remains in registry with
the substrate. For additional oxygen atoms to come in contact with the Al, they must
first diffuse through the oxide layer. Although this is possible, especially at elevated
temperatures, it becomes more and more difficult as the oxide layer builds up. Thus the
oxidation process becomes self-arresting. For this reason, Al2O3 is called a passivation
layer in electronics application. The process of depositing such a layer, called anodiza-
tion, is discussed further in Section 19.11. In the iron case the porous nature of the rust
permits the corrosion to continue until all the iron is consumed. Chromium is added
to steel to form stainless steel. A passivation layer of Cr2O3 is formed. It should be
noted that the standard potential for the electrode reaction Cr3C C Fe D Fe3C C Cr is
�0.93 V, which is quite negative and implies that Cr2O3 is more likely to be produced
than Fe2O3.

Differences in potential may exist even for a grain of single crystal between different
faces, or between the surface and the interior, and these may act as the driving force
for battery action and corrosion. Stress differentials across a material may also produce
potential differences. This makes metals with microcracks vulnerable to corrosion.

W12.5 Coatings

The surface of a metal or alloy is often modified by applying a coating or by building the
coating directly into the surface. There are numerous reasons why this is done, including
enhancement of corrosion resistance (CR), wear resistance (WR), fatigue resistance
(FR), oxidation resistance (OR), and thermal resistance (TR), reducing the coefficient
of friction, or enabling an electric contact to be made. For example, integrated circuits
based on Si have TiN and Ti deposited on them as diffusion-barrier metal films. One
may also want to increase adhesion, use the surface as a catalyst, or endow the surface
with special optical properties.
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Traditional methods for applying coatings included such techniques as electroplating
and chemical reactions. Modern materials for these coatings include SiC, TiC, TiN,
TiB2, WC, W2C, AlN, CrN, and Si3N4. Coating techniques include sputtering, chem-
ical vapor-deposition (CVD) at high temperatures (800 to 1000°C), physical vapor
deposition (PVD) at lower temperatures (250 to 500°C), energetic ion implantation,
and thermal reactions.

Thin coatings (³ 10 µm) of SiC, TiC, TiN, Cr7C3, CrN, ZrC, or ZrN are applied to
tools to improve their WR and ability to cut, and where high levels of microhardness
are needed. Even diamond films, the hardest substance available, and the best thermal
conductor at room temperature, can be CVD-coated onto tools. The hardest coatings
are made of Si3N4, SiC, and TiB2.

Coatings are used in ultrahigh-vacuum systems because of their low sticking coef-
ficients for adsorbing gases, their low yield of secondary electrons (which are ejected
from a metal following the impact of a primary electron or ion), and the absence of
long-lived electronic excitations, which could result in photodesorption processes. In
addition, they prevent ultraclean metal parts from fusing together via the formation of
diffusion bonds, in which atoms from one metal migrate over to intermediate positions
between the two metals to form bridging bonds.

The coefficient of friction is often reduced substantially by applying a coating.
The metals Ag, Au, or Pb may be applied to steel as a lubricant. When there is
frictional heating, the coating melts and acts as a lubricant. A layer of Ti applied
to steel lowers the coefficient of sliding friction. Lowering friction proves to be of
considerable importance in the fabrication of semiconductors, where there are moving
parts that insert, position, and remove the wafers from the vacuum system. As these
parts move, there is friction. Associated with the friction is wear, and as particles are
broken off, the semiconductor can become contaminated. Since liquid lubricants are
of no use in a vacuum system, coatings are used instead.

There can also be improved resistance to corrosion. Typically, 50-µm layers are used.
Protection is afforded by such coatings as alumina, NiCr, SiC, and CoCr. Chromium,
Ni, Ta, and Ti are applied to steel and Pd or Pt are applied to Ti for this purpose.
A combination of Co, Cr, Al, and Y is applied to Ni alloys. The CR is due, in part,
to the dense granular structure, which tends to be equiaxed (hexagonally tiled). This
presents to the surrounding electrolytic medium a material of uniform electronegativity.
It also serves as an obstacle for diffusion of oxygen into grain boundary channels in
the underlying metal. Yttrium coated on steel or Cr on Cu inhibits oxidation, and ZrO2

improves the OR of Ni alloys.
Ion implantation produces a high density of interstitials, dislocations, and other

defects near the surface which can act as traps for other dislocations and therefore
harden the material and improve the WR. The compounds BN, CrN, SiC, Si3N4, TiC,
TiN, ZrC, and ZrN are used to harden steels.

Electrical contacts may be deposited on Si using Ag, Al, Pt, or Au coatings. For
GaAs, Al coatings may be employed, and for alumina, Cu coatings are used. The
formation of silicides of Pt, Pd, and Ti on Si creates Schottky barriers, which serve as
rectifiers with small forward-biased impedance.

An alloy of Co, Ni, Cr, Al, and Y acts to provide a high degree of OR for use in
such applications as jet turbines. Thermal-insulation layers are often used in conjunc-
tion with these, in which case they are called thermal-barrier coatings. The goal is
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to achieve low thermal diffusivity �*/�cp�. Materials for TR include MgO, Y2O3,
and ZrO2, which have low thermal conductivities and moderate heat capacities and
densities.

W12.6 Shape-Memory Alloys

It is possible to start with a hot metallic object of a particular shape, cool it, distort
it, and remove the external stress, to produce what will appear to be a plastically
deformed object. At a later time, however, the object may be reheated and it will
return to its original shape. The ability to revert to the original shape provides the
name for this class of metals — shape-memory alloys (SMA). Underlying this “talent”
lies some interesting physics. Typical SMA materials include the alloys FePt, FeNiC,
NiFeAlB, AuCd, NiAl, NiTi, and CuZnAl. There are also SMA materials composed
of ceramic materials (e.g., PbLaZrTiO).

The SM alloys are ordered and exist in two crystalline phases. The low-temperature
phase is called martensite (M) and the high-temperature phase is called austenite (A).
These names stem from the nomenclature used in steel metallurgy. More generally, the
high-T phase may be called the parent phase and the low-T phase the daughter phase,
although here the symbols A and M are used. Phase A has a higher degree of symmetry
than phase M. There is a phase transition governing the A $ M transformation (from
A to M, and vice versa). This is illustrated in Fig. W12.5, where the volume is plotted
against temperature. Plots of other physical quantities, such as electrical resistance,
are similar in structure and show hysterisis. Suppose that one starts in the M phase
and heats the sample. At a temperature TAs , one begins to form some austenite. The
amount of A formed depends on T� TAs . At temperature TAf , one will have reached
100% A. Above that temperature the A material is simply heated. If one then cools the
sample, at a temperature TMs , one begins creating the M phase. At temperature TMf ,
this conversion is complete, and below TMf there is 100% M. Note the presence of
a small hysteresis loop. Typical values of these temperatures for some SMA materials
are given in Table W12.2.

Figure W12.6 shows the A and M phase unit cells for the NiAl intermetallic
compound. The A phase has the higher-symmetry CsCl structure, while the M phase
has the lower-symmetry tetragonal structure (four atoms per unit cell). The phase

TMf
TMs

TAs
TAf

A

T

M

V

Figure W12.5. Variation of volume with temperature for a shape-memory alloy. Various critical
temperatures described in the text are indicated.
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TABLE W12.2 Start and Finish Temperatures for the
Austenite (A) and Martensite (M) Phases of Some
Shape-Memory Alloys

Temperature (°C)

Shape-Memory Alloy TAs TAf TMs TMf

Au49.5Cd50.5 40 42 37 35
Zn25.75Al4.01Cu70.24 20 45 30 �5
Zn25.60Al3.90Cu70.50 78 90 83 62
Al23.9Ni4.2Cu71.9 35 80 71 26
Ni58.9Fe13.98Al26.95B0.17 93 172 127 56
Ti50Pd22Ni28 201 252 200 107

A M

Figure W12.6. Example of the austenite and martensite unit cells in NiAl alloys.

A A A A

M1 M2 M3 M4

Figure W12.7. Four possible distortions of a square (phase A) to a rhombus (phase M).

transformation is reversible and is first order. No atomic-scale diffusion is taking
place and no slippage of atomic planes is occurring. Everything about the transition
is predictable, with randomness playing little role other than accelerating thermally
assisted transitions. The material is said to be thermoelastic. In reality, the unit cell for
the SMA materials is much larger, as may be seen by looking at the stoichiometry of
the materials (see Table W12.2). It is useful to think of the unit cell as being composed
of subunit cells with vacancies that may appear on different faces.

When the martensitic transition occurs, upon cooling there are a number of different
states the subunits can assume in the low-symmetry phase. This is illustrated in
Fig. W12.7, where the A phase is represented by a square and the M phase is
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(a) (f)

(c) (d)

(e)

Figure W12.8. Stages in the shape-memory process.

represented by a rhombus (which has lower symmetry). The four orientations are
labeled by a set of arrows. These structures self-accommodate (i.e., when the A-to-
M transition occurs, there is no change in the macroscopic size of the object). The
material consists of the various types of rhombi intermeshed with each other. This
is illustrated in Fig. W12.8, where several such rhombi are drawn. In Fig. W12.8a
one starts with an austenite crystal at a temperature above TAf , represented by a rect-
angle. The crystal is then cooled to the martensite phase. Figure W12.8b shows that
the large-scale shape is still rectangular but now has rhombus “domains” that accom-
modate each other. A stress is then applied to the crystal to change its shape to a
parallelogram. Figure W12.8c shows that one type of domain grows at the expense of
the others, and eventually, in Fig. W12.8d the desired shape is obtained. If the stress
is removed, the parallelogram shape is retained.

When a rhombus is forced to have a different orientation than its state of minimum
free energy would allow, stress is built into it. The system adjusts in such a manner
as to relieve this stress. This determines which rhombus will be the next to alter its
shape. Modification of the structure takes place in a sequential manner. In this way the
system has a memory, which consists of the sequence of stress-relaxing deformations
that take place. In some ways the process is similar to magnetizing a ferromagnet,
with a self-consistent strain replacing the role played by the self-consistent magnetic
field. Unlike the magnetic case, however, there is only one return path that the alloy
can follow when it is heated, and that is determined by the original orientations of the
rhombi.

Now the sample is heated. The domains retrace their evolution (see Fig. W12.8e
and f) until, when TAf is passed, the crystal has reverted to its original shape. If
the temperature is lowered again, the parallelogram shape is not regained unless it is
reshaped by external forces.

SMA materials exhibit a high degree of strain recovery, meaning that they revert
to their original size and shape when the stress causing the strain is relaxed. For
example, a NiAl alloy can have a strain recovery of 7%. The stress–strain curve exhibits
superelasticity. What appears to be plastic deformation in the M phase disappears when
the sample is heated to the A phase. In addition, it is possible to induce the martensitic
transformation by applying an external stress field. A more complete description of the
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material involves a three-dimensional phase diagram with stress plotted as a function
of both strain and temperature.

Applications of SMA materials benefit from their ability to store a large amount
of mechanical strain or elastic energy in a small volume. They may be used for
such diverse applications as circuit breakers, switches, automatic window openers,
steam-release valves, hydraulic controls for aircraft, rock cracking, sealing rings, and
actuators. They can even be used to unfurl antennas on satellites, where a bulky motor
assembly may be replaced by a simple SMA. A limitation on their use, however, is
their slow response time, being limited by thermal conduction.

W12.7 Metallic Glasses

If a liquid metal alloy were to be rapidly quenched (i.e., its temperature lowered
sufficiently rapidly) it is possible to solidify it without forming a crystalline state. Such
a material is called a metallic glass. Since the thermal conductivity of metals is high
and since the crystalline state is generally the state of lower free-energy, metals have
a strong tendency to crystallize quickly. However, if a small droplet of liquid alloy is
projected onto a cold surface, the resulting “splat” can cool very rapidly (with rates on
the order of �106 K/s) and become a metallic glass. Alternatively, one could inject a
fine stream of the molten alloy into a high-conductivity cold liquid to form the glass,
or vapor-deposit onto a cryogenic substrate. In many ways the formation of a metallic
glass is similar to that of window glass, but the thermal relaxation times are orders
of magnitude faster. The metallic glasses are essentially solids, with diffusion rates
often less than 10�22 m2/s, orders of magnitude smaller than in crystals. The random
close-packing model for metallic glasses is discussed in Chapter 4. Rapid quenching
is described further in Chapter W21.

These materials are amorphous and hence do not have dislocations, but rather, a
high degree of disorder on the atomic scale. They are strong, stiff, and ductile. In
addition, they are corrosion resistant. Furthermore, being largely homogeneous, they
allow sound to propagate without appreciable attenuation due to scattering. This is
because, for most acoustic applications, the wavelength of sound is long compared with
the scale size of the inhomogeneities, and the sound propagates through an effectively
isotropic medium. Things are different, however, when short-wavelength phonons are
involved, such as in the thermal-conduction process. Due to the lack of a crystal lattice
the metallic glasses are generally poor thermal and electrical conductors, with very
short phonon and electron collisional mean free paths.

Examples of metallic glasses include AuSi near the eutectic composition of 19 at %
Si, Pd80Si20, Pd78Si16Cu6, and Ni36Fe32Cr14P12B6. They include transition metals (Co,
Fe, La, Mn, Ni, Pd, Pt, Zr) alloyed with (B, C, N, P, Si) near the eutectic composition.
Some are ferromagnetic (e.g., Pd68Co12Si20 or Fe83P10C7) and some are antiferromag-
netic (e.g., Mn75P15C10). The ferromagnets are readily magnetized or demagnetized,
since there are no large-scale defects that pin the domain walls. The magnets are soft in
the amorphous state because the domain wall thickness is much larger than the domain
size. This is likely to be due to the absence of well-defined magnetic anisotropy in
the magnetic metallic glass as a result of the lack of crystalline order. As discussed in
Section 17.2 strong magnetic anisotropy favors magnetic domains with narrow domain
walls. The metallic glass Fe80B11Si9 is commonly used in power magnetic applications
such as power distribution due to its high Curie temperature, TC D 665 K, and hence
its good thermal stability.
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It is found that the more elements present in the alloy, the more complex the unit
cell of a crystal is, and hence the longer it would take to crystallize. An example is the
alloy Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 which forms a metallic glass at cooling rates of only
10 K/s. The high resistance to crystallization is believed to be due to the low melting
point of the corresponding crystalline alloy and the fact that the alloy is composed of
atoms of quite different sizes. Since one wants the glass to form rather than the crystal,
it is preferable to work with materials with long crystallization times. This accounts
for the high integers in the stoichiometry.

A further aid in the formation of the metallic glass is to have a composition corre-
sponding to the eutectic point, as in the case of AuSi, whose binary phase diagram
is sketched in Fig. W12.9. Since the eutectic temperature is low, diffusion will be
sluggish when the solid is formed, and the formation of crystals will be slow. If the
temperature drop is sufficiently fast, the eutectic metal will become a glass.

The metallic glass is only slightly less dense than the corresponding crystal. It
tends to form a random close-packed structure (see Chapter 4) of a binary system
with two sphere sizes (Fig. W12.10). The bonding is primarily metallic. There is some
evidence of short-range order [i.e., there are different polyhedral arrangements (e.g.,
tetrahedra, octahedra, trigonal prisms and cubic biprisms)], which appear in definite
proportions but are not spatially ordered. The bulk modulus of a metallic glass is
found to be comparable to its crystalline counterpart. The shear modulus, however,
is typically reduced by 25%. They have fairly low values of yield stress and can
undergo large plastic deformations of up to about 50%. If a crack were to form and
stress were concentrated in the neighborhood of its tip, the tip region would yield,
the sharpness of the tip would be reduced, and the stress would be relieved. This
healing mechanism curtails crack propagation and makes the material tough (i.e., able
to withstand large stresses without fracturing). Repetitive cycling of the stress on and
off does not work-harden the material, since no dislocations are present.

As the temperature is raised from room temperature to about half the melting temper-
ature, activated hopping of atoms becomes important. The atoms can search for the
lowest free-energy state and the solid can begin to crystallize. This prevents the metallic
glasses from being employed in high-temperature applications.
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Figure W12.9. AuSi tends to form a metallic glass near the eutectic composition, indicated
by the dashed line on the binary phase diagram. [Adapted from J. J. Gilman, Metallic glasses,
Phys. Today, May 1975, p. 46. See also H. Okamoto et al., Bull. Alloy Phase Diagrams, 4, 190
(1983).]
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(a) (b)

Figure W12.10. Arrangement of a binary-alloy metallic glass (a) compared with the crystalline
state (b).

Possible applications for metallic glasses include transformers, tape-recording heads,
filaments to reinforce rubber tires, transmission belts, and tubing. Their hardness makes
them suitable for cutting instruments. Their low acoustic-attenuation feature makes
them appropriate for use where sound vibrations are likely to be prevalent, such as in
loudspeakers.

In crystalline metals, different crystallographic faces have different work functions
and hence there is a contact potential difference between them. In an ionic solution it is
possible for corrosion to take place as ionic currents between the faces are established.
Due to the amorphous nature of the metallic glass, there is overall isotropy, and these
contact potential differences do not exist. This tends to make the metallic glasses
corrosion resistant.

W12.8 Metal Hydrides

The ability of hydrogen to adsorb on metals, dissociate, diffuse into the bulk, and then
form chemical compounds provides a way to store hydrogen in metals. The density of
hydrogen in metals can even exceed that of liquid hydrogen. This is attractive since the
process can often be reversed and the hydrogen may be released simply by warming
the metal. Hydrogen is a fuel with a high energy content and produces only water
vapor when it is burned. This makes it an attractive chemical-energy source for a
future technology.

Some metals can store only a fraction of a hydrogen atom per metal atom (e.g.,
TaH0.5), whereas others can store more (e.g., Th4H15 or CeH3). The metal Ta has a
BCC crystal structure, whereas Th and Ce have FCC crystal structures. The hydrogen
atom, being small, generally occupies interstitial sites, as is illustrated in Fig. W12.11.
In the left diagram there is an FCC metal with a hydrogen at one of the eight tetrahedral
interstitial sites per unit cell. In the right diagram the hydrogen is at one of the four
octahedral interstitial sites. In some cases all the FCC interstitial sites are occupied,
such as in Th4H15 and CeH3. For an FCC cell there are eight tetrahedral interstitial sites,
four octahedral interstitial sites, and four atoms per unit cell. For CeH3 it may happen
that all the interstitial sites are occupied. In Th4H15 there could be more than one
hydrogen per site. The hydrogen atoms generally have a high diffusivity through the
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Figure W12.11. (a) Hydrogen at a tetrahedral interstitial site in an FCC unit cell; (b) hydrogen
at the octahedral interstitial site in the same cell.

metal and readily hop from site to site. Some of this hopping ability is due to thermal
activation, but there is also an appreciable part due to quantum-mechanical tunneling.
This is similar to what occurs in the free NH3 molecule, where the tetrahedron formed
by the atoms periodically inverts as the N atom tunnels through the barrier presented
by the three H atoms. (In the actual motion there is a concerted motion in which
all atoms participate.) The hopping rates may be as large as a terahertz. At high-
enough concentrations the absorbed hydrogen can induce structural phase transitions
in the metal. This provides the means for monitoring the hydrogen content. It is also
responsible for hydrogen embrittlement, in which a metal may be weakened by the
presence of H. Imperfections, such as vacancies in the metal, can act as centers for
concentrating H, and as a result, recrystallization may take place. This causes a large
stress concentration and the imperfection may propagate because of it.

The presence of H may also cause drastic changes in the electrical and magnetic
properties of the metal. Hydrogen generally tends to suppress magnetism. This might
be expected because the origin of magnetism stems from the spin-dependent exchange
interaction between neighboring metal atoms, and this, in turn, depends on the wave-
function overlap. As new bonds are formed to create the hydride, less of the wave-
function is left to participate in magnetism.

In some instances the H causes the metal to become a semiconductor. Electrons
are extracted from the conduction band of the metal and are tied up in chemical
bonds to form the hydride. It is also found that the metals may become supercon-
ductors with transition temperatures considerably higher than the bare metals, perhaps
due to the enhanced electron–phonon coupling (see Chapter 16). Examples include
Th4H15 and PdH. Some of the anomalies observed for the hydrides are similar to those
observed in the high-temperature cuprates (e.g., an absence of an isotope effect for the
superconducting transition temperature).

W12.9 Solder Joints and Their Failure

Solder joints play a crucial role in the operation of electronic-circuit boards since they
provide both the mechanical and, more important, the electrical connections for the
various components and chips. Two modes of failure of these joints may be identi-
fied. The first is aging. In the normal course of operation the joints are subject to



166 METALS AND ALLOYS

thermal cycling. Due to the mismatch of coefficients of thermal expansion, heating
leads to stresses. These stresses cause the motion of dislocations, which may pile up to
form microscopic cracks or void spaces. The resulting embrittlement makes the joint
susceptible to fracture. A second source of failure results from intermetallic compound
(IMC) formation. Compound particles nucleate and grow within the joints and produce
mechanical stresses due to lattice-constant mismatch, and these can also cause embrit-
tlement. Since a typical circuit board may contain many hundreds of joints, even a
small probability for failure in a joint may compound to a severe lifetime limitation
for the board. The processes responsible for failure are identified by examining the
joints under high-power optical microscopes.

Examples of IMC formation that results from use of the common eutectic Pb–Sn
solder (see Fig. 6.8) on copper are Sn C 3Cu ! Cu3Sn or 6Cu C 5Sn ! Cu6Sn5.
Similarly, Ni can form a highly brittle compound when reacting with solder. The
growth of the layer thickness of an IMC, z, is governed by an empirical equation of
the form

dz

dt
D A0

e�Ea/kBT

zn
, �W12.27�

where A0 is a constant, Ea an activation energy, and n an empirical exponent ranging
from 1

2 to 1. It is found that the thicker the IMC layer, the more susceptible it is to
brittle fracture.

Ideally, solder joints should be designed to eliminate, or at least minimize, these
problems. One might try using spring-shaped elastic-component leads to relieve the
thermal stresses that develop. This conflicts with the desire for a higher concentration
of components on the board. It is better to match the coefficients of thermal expansion
to eliminate the thermal stresses altogether. However, this often leads to a degradation
of the electrical properties of the leads. It was found that decreasing the solder-joint
thickness results in a reduced tendency for fractures to occur. This may be because
of the ability of the joint to anneal its defects to the surface. One may also try to
make the material more homogeneous so that dislocations are less likely to be present.
Alternatively, one may try to alloy the material and insert dopants that would trap the
dislocations and prevent them from propagating to form cracks.

To date there is no preferred method. Each has its benefits and its drawbacks. The
design of joints is still in the “arts” stage.

W12.10 Porous Metals

Porous metals define a class of materials that find application in such diverse areas as
filters, heat exchangers, mufflers and other noise-abatement devices, fuel cells, elec-
trolytic cells, hydrogen-storage media, and thermal insulators. They may be fabricated
using several techniques, including sintering and slip-casting. The sintering method
involves mixing powders of the metal, M, with powders of another material, A, with a
higher melting point. When the metal M melts, it flows around the particles of A and
forms a solid metallic cage as it is cooled. If the pores are interconnected, material
A can then be removed by chemical means, so the porous metal M remains. In the
slip-casting method a solid foam is created from a nonmetallic material, and a disper-
sion of fine metal powder is absorbed by this sponge. When heated, the metal particles
fuse together and the nonmetallic powder is burned away. Again the metallic foam
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Figure W12.12. Binary phase diagram for a metal–hydrogen alloy. (Adapted from
V. Shapovalov, Porous metals, Mater. Res. Soc. Bull., Apr. 1994, p. 24.)

is produced. Chemical vapor-deposition techniques may be employed to build up a
thickness of metal on a porous substrate and then to remove the substrate by chemical
or thermal means, leaving behind a metal film.

The materials are characterized by a filling factor, which tells what fractional volume
of space is occupied by the metal, a distribution of pore sizes and shapes, and a topology
describing the interconnection between the pores. They are found to be poor electrical
conductors, both because of the low filling factors and the high degree of boundary
scattering along the thin conducting paths.

The term gasar has been coined to describe a foam produced by a gas–metal
eutectic transition. Due to the small size of the hydrogen atom (especially when
it is ionized to a proton), it has little difficulty being adsorbed in many metals, as
discussed in Section W12.8. The resulting hydrogen–metal alloy phase diagram often
has a eutectic transition. Such a diagram is illustrated in Fig. W12.12. The compound
is of the form M1�xHx. Hydrogen is bubbled into the liquid metal to increase x to
the eutectic composition xe. The material is then cooled below the eutectic tempera-
ture Te. This produces a eutectic composition consisting of a mixture of the ˛ phase
of the metallic hydride and H2 gas. The gas is able to desorb from the hydride,
leaving behind a porous structure. Gasars have proven to be the strongest of the
porous–metal structures. This is probably due to a homogeneous pore size distribu-
tion, which permits loading stresses to be distributed uniformly. If residual hydrogen
is trapped in the metal, the gasar is found to be a good thermal conductor, since
hydrogen is light and mobile and therefore is able to convect the heat through the
pore structure. The material is also able to damp acoustic waves efficiently, since the
trapped gas makes inelastic collisions with the surrounding cage as the cage vibrates
back and forth.
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CHAPTER W13

Ceramics

W13.1 Ternary Phase Diagrams

As the number of components of a system increases, the number of possible subsys-
tems increases rapidly and the complexity grows exponentially. For example, a two-
component system has only two possible unary subsystems and one binary subsystem
for a total of three different types of subsystems. A three-component system has three
unary subsystems, three binary subsystems, and a ternary subsystem, for a total of seven
different types of subsystems. In the general case a C-component system will have
C!/[C0!�C � C0�!] subsystems with C0 components, and will have a total of 2C � 1
possible subsystems. Often, it is desirable to optimize a particular physical property of
the system, so the composition and temperature must be chosen carefully to achieve
this optimization. Obviously, the process becomes more challenging as the number
of components is increased. Phase diagrams provide a type of road map upon which
it is possible to chart the composition of the material and indicate the various phase
boundaries.

Often, materials with interesting physical properties are constructed out of just
three components, which will be labeled by A, B, and C. These may be elements
or compounds. For example, the electro ceramic PbxZryTizO3 (PZT) is constructed
from the compounds A D PbO, B D TiO2, and C D ZrO2, and the composition is
�PbO�x Ð �ZrO2�y Ð �TiO2�z. Here x, y, and z are constrained by the valence balance
condition 2x C 4y C 4z D 6, so that only two of the variables may be varied indepen-
dently. The high-temperature superconductor YBa2Cu3O7�x is but one of many phases
constructed from Y2O3, BaO, and Cu2O. Glasses are often made from ternary mixtures,
such as soda-lime, made from SiO2, CaO, and Na2O.

According to the Gibbs phase rule (see Section W6.4), Eq. (W6.9), the number of
degrees of freedom, F, is related to the number of components, C, and the number
of phases, P, by F D C � P C 2. For constant temperature and pressure, two of the
degrees of freedom are removed, leaving F0 D C � P degrees of freedom. For a three-
component system, such as PZT, C D 3. Since there must be at least one phase present,
p ½ 1 and F0 � 2. The two degrees of freedom are conveniently displayed using the
Gibbs triangle, as illustrated in Fig. W13.1.

Imagine that there is a totality of one unit of components, so the chemical formula
is AaBbCc, with a C b C c D 1 and (a, b, c), each lying in the range 0 to 1. The
composition may be represented graphically as a point inside an equilateral triangle.
The height of this triangle is taken to be 1. In Fig. W13.1 point O represents AaBbCc.
The perpendicular distances to the sides of the triangle are a, b, and c, and the frac-
tions of components A, B, and C present are also a, b, and c. The corners of the
triangle represent pure-component (unary) compounds. If the point O were at A, then
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A

B C

a

bc
O

Figure W13.1. Point O represents the composition AaBbCc, where a C b C c D 1.

b D c D 0 and a D 1. The composition would be 100% A. The edges of the triangle
represent binary compounds. For example, a point on the base of the triangle will have
composition BbCc, with b C c D 1. If the point O is at the center of the triangle, then
a D b D c D 1

3 and 33.3% of each component is present.
It is a simple matter to prove that a C b C c D 1. Note that the area of equilateral

triangle ABC (with side L D 2/
p

3) is half the base times the height: � 1
2 ��L��1� D

1/
p

3. On the other hand, the area of ABC may be written as the sums of the areas
of the three triangles AOB, BOC, and COA, which gives 1/

p
3 D � 1

2 �L�a C b C c�, so
a C b C c D 1. Thus any point within the triangle ABC will always correspond to a
total of one unit of components.

An alternative method for determining the composition is to make the construction
shown in Fig. W13.2. Lines are passed through point O parallel to the three sides. The
intersections of these lines with the sides are labeled by the points D, E, F, G, H, and I.
It can be shown that the relative amounts of A, B, and C present are proportional to
the lengths of segments of the sides, that is,

c

AI
D b

IH
D a

HC
,

a

FG
D b

GC
D c

BF
,

c

DE
D a

EB
D b

AD
. �W13.1�

This construction may be generalized to the case of a scalene triangle. In Fig. W13.3,
point O represents 1 mol of material with composition AaBbCc, where a C b C c D 1.
Through point O, construct-lines FOI, HOE, and DOG are drawn parallel to sides CB,
AC, and BA, respectively. Each side is divided into three segments by these lines. It
may be shown that the following identity holds for the lengths of the segments:

DE:EC:BD D CF:FG:GA D IB:AH:HI D a: b: c. �W13.2�

The ternary diagram is used to depict the various phases of the material at thermal
equilibrium. At times one is interested only in the phase boundaries at a given temper-
ature and pressure. The diagram is then called an isothermal-ternary diagram. Alter-
natively, the temperature field could be represented by drawing isothermal contours on
the diagram. Since this proves to be more useful, this representation will be used here.

Refer to Fig. W13.4, where a three-dimensional temperature–composition diagram
is drawn. Viewed from the top, one has a ternary phase diagram. This diagram will be
used to follow a process in which a liquid solidifies. At sufficiently high temperatures
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Figure W13.2. Material AaBbCc is represented by point O. The segments AI:IH:HC are in the
same proportion as c: b: a.
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Figure W13.3. Composition triangle ABC together with various construction lines.
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Figure W13.4. Three sheets of the liquidus surface on a plot of temperature versus composition.



172 CERAMICS

the material is assumed to be liquid. As the temperature is slowly lowered, the material
begins to crystallize. The degree of crystallization, and the fractions and compositions
of solid and liquid formed, are determined by the liquidus surfaces. Of course, the
mean composition taken over all the phases always remains the same. In Fig. W13.4
the liquidus surface is presented for the simple case in which solid solutions are not
formed. The liquidus surface consists of three separate sheets, corresponding to the
three primary compositions A, B, and C. Various eutectic points are depicted by the
letter E with subscripts. Thus EAB denotes the eutectic point for the composition AaBb

for the special case where a C b D 1 and c D 0. EABC is the ternary eutectic point
and is the lowest point for which some liquid remain. There is a horizontal eutectic
plane (not shown) in the phase diagram passing through the point EABC below which
only completely solid material exists. The melting points for the pure components are
denoted by TmA, TmB, and TmC.

Shown on Fig. W13.4 is a cooling path for a liquid with composition (a, b, c). As the
temperature is lowered, point 1 is encountered and solid phase A begins to nucleate.
Further reduction of the temperature causes an increased growth of phase A and a
modification of the composition of the liquid. The liquid composition is determined by
the curve 1–2–3–4–5. Along 1–2–3, only solid phase A and a liquid are present. At
point 3, phase C begins to nucleate. Along path 3–4–5 (which is the valley between
sheets A and C), phases A and C and a liquid of varying composition are present. At
point 5 the liquid reaches the ternary eutectic composition. At a lower temperature,
only solid phases A, B, and C exist, with the original composition (a, b, c).

Figure W13.5 depicts the same scenario as in Fig. W13.4 but viewed from above.
The isothermal contours are not shown but are there implicitly. Note that A–1–2–3 is
a straight line. Along line 1–2–3 the composition may be determined by applying the
lever rule. Thus at a temperature corresponding to T1, the liquid will have composition
(a1, b1, c1). The amounts of liquid and phase ˛ at T D T2 are in the ratio of the
distances dA1/d12. At temperature T3 the liquid has composition (a3, b3, c3) and the
liquid to phase ˛ ratio is dA1/d13. At points 4 and 5 the compositions are such that
the center of gravity of points A, C, 4, or 5 lies at the original point 1.

There are numerous other possibilities for drawing the phase diagrams but they
will not be covered exhaustively here. The principles of analysis are similar. Several
points are worth mentioning, however. Stoichiometric binary compounds (e.g., AmBn,

5

A B

C

EAB

EAC EBC

EABC

1

2

3
4

Figure W13.5. Path toward solidification on the ternary phase diagram.
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with m and n integers) are represented by points on the appropriate edge (AB in this
case). Stoichiometric ternary compounds (e.g., AmBnCj, with m, n, and j integers)
appear as points in the interior of the triangle. These points are usually surrounded
by a domain of influence bounded by a phase boundary. An example of this will
be encountered in Section 13.7 of the textbook† when the ternary phase diagram for
the glass-forming region of Na2O Ð CaO Ð SiO2 is discussed (see Fig. 13.15). The net
result is that the ternary phase diagram often has the appearance of a mosaic with
numerous phases indicated. Often, there is a definite crystalline order associated with
a stoichiometric phase. Points with nearby compositions may be thought of as crystals
possessing defects. The farther one goes from the stoichiometric point, the larger the
number of defects. When a sufficient number of defects occur, a phase transition to
another crystal structure may result.

As mentioned earlier, it is possible to have as many as three distinct phases present
at once (i.e., P D 3). In that case, the effective number of degrees of freedom for a
ternary system is F D C � P D 0. Consider the Gibbs triangle depicted in Fig. W13.6,
which shows three phases (˛, ˇ, �) to be present. Since F D 0, the composition of the
material at point O is uniquely determined: the fractions of the various phases present
are (f˛, fˇ, f� ), where f˛ C fˇ C f� D 1. For the point O, the composition (a, b,
c) will be determined by solving the matrix equation

[ a
b
c

]
D

[ a˛ aˇ a�
b˛ bˇ b�
c˛ cˇ c�

][f˛

fˇ

f�

]
. �W13.3�

In Fig. W13.7 a sequence of four isothermal sections is illustrated, corresponding
to the temperatures T1 > T2 > T3 > T4 for an idealized ternary system. Temperature
T1 is above the liquidus surface, so any point in the phase diagram corresponds to a
homogeneous liquid. At temperature T2 it is assumed that part of the liquidus surface
is above the isothermal plane and part below. It is assumed that there are compositional
ranges for which the phases ˛, ˇ, and � coexist with the liquid phase, as illustrated in

β
α

γ

O

C

A B

Figure W13.6. Gibbs triangle with a three-phase field. There is a unique admixture of the three
phases at point O.

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Fredrick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Figure W13.7. Sequence of four isothermal phase diagrams, illustrating the presence of various
phases.

the figure. At T3 the temperature is slightly above the three-phase eutectic temperature.
One now finds the coexisting binary solid phases ˛ C ˇ, ˇ C � , and ˛ C � . There are
also regions corresponding to the coexistence of the unary phases with the liquid,
˛ C L, ˇ C L, and � C L, as well as regions consisting of the coexistence of the two
phases with the liquid, ˛ C ˇ C L, ˇ C � C L, and ˛ C � C L. At T4, below the eutectic
temperature, only solid phases are present: the unary phases ˛, ˇ, or �; the two-phase
regions ˛ C ˇ, ˇ C � , or ˛ C �; and the three-phase region ˛ C ˇ C � .

It is important to stress that the phase diagram applies only for thermal equilibrium.
Nevertheless, for rapid cooling, the diagram may be used as an intuitive guide to
understanding solidification. The composition of the microstructure that will form may
be estimated in much the same way as in the study of metals (see Section 6.5 and
Figs. 6.9 and 6.10). The faster the material passes through a given phase domain as
the sample is cooled, the less time there is available for nucleation and growth of that
equilibrium phase to occur.

W13.2 Silicates

Silicon and oxygen are the two most abundant elements in Earth’s crust. There is a
broad class of minerals based on combinations of Si and O and other elements called
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Figure W13.8. Schematic representation of the seven classes of silicate ions. There are O2�

ions residing at the corners of the tetrahedra and Si4C ions at their centers. (Adapted from
H. W. Jaffe, Crystal Chemistry and Refractivity, Dover, Mineola, N.Y., 1996.)

silicates. An appreciation of the various ions formed from Si and O permit one to
understand more complex structures in which other cations, such as Al, substitute for
the Si ions.

The valence of Si is C4 and that of O is �2. A basic ion formed is the (SiO4)4� ion.
The Si4C resides at the center of a tetrahedron, and the O2� ions are at the vertices.
The bond is about equally covalent and ionic and is very strong. The tetrahedra may be
connected in a variety of ways to form complex ions. Figure W13.8 depicts the basic
structures. There are seven principal classes of silicates. Orthosilicates (also known as
nesosilicates or island silicates), such as forsterite (Mg2SiO4), olivine (MgxFe2�xSiO4),
and zircon (ZrSiO4), are based on independent (SiO4)4� tetrahedra linked by divalent
cations. In place of the (SiO4)4� ion, there could be substituted the (AlO4)5� ion. An
example of this is the synthetic crystal YAG [yttrium aluminum garnet, Y3Al2(AlO4)3],
used as a laser crystal. In the sorosilicates there are two tetrahedra joined vertex to
vertex, sharing a common oxygen to form the (Si2O7)6� ion. An example is the mineral
thortveitite [Sc2(Si2O7)]. The structure with a triad of tetrahedra corner-sharing one
oxygen ion to form the (Si3O9)6� ion does not seem to be found in nature. In the
cyclosilicates, such as the gemstone beryl (Be3Al2Si6O18), the tetrahedra are arranged
in hexagonal rings corner-sharing six oxygens to create (Si6O18)12� ions. In the inosil-
icates, such as the mineral jadeite [NaAl(Si2O6)], tetrahedra form a linear chain with
corner-shared oxygens to produce an ion of the form (SiO3)2n�

n . In the phyllosili-
cates, such as mica or talc [Mg3(Si2O5)2(OH)2], the basic ionic unit is the (Si2O5)2�
ion. In the amphiboles (or double-chain silicates) two parallel inosilicate chains link
together so that every second tetrahedron has a corner-shared oxygen, producing the
ion (Si4O11)6n�

n . An example is the mineral tremolite [Ca2Mg5(Si4O11)2(OH)2]. The
final class of silicate is the tektosilicate, based on the neutral SiO2 subunit. An example
of this is quartz itself, with the composition SiO2, or anorthite [CaOAl2O3(SiO2)2].
The results are summarized in Table W13.1.

An oxygen shared by two tetrahedra is called a bridging oxygen. One that is
not shared is called a nonbridging oxygen (NBO). One may classify the structures
according to the number of nonbridging oxygens that the tetrahedra possess, as shown
in Table W13.1. Tektosilicates have no NBOs, or equivalently, four shared corners.
The structural unit is neutral and is based on SiO2. Disilicates have only one NBO
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TABLE W13.1 Seven Principal Classes of Silicates

Class Ion Shared Corners Nonbridging Oxygens

Nesosilicate �SiO4�4� 0 4
Sorosilicate �Si2O7�6� 1 3
Cyclosilicate �Si6O18�12� 2 2
Inosilicate �SiO3�2n�

n 2 2
Amphibole �Si4O11�6n�

n 2, 3 2, 1
Phyllosilicate �Si2O5�2� 3 1
Tektosilicate �SiO2� 4 0

Source: Data from H. W. Jaffe, Crystal Chemistry and Refractivity, Dover, Mineola, N.Y., 1996.
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Figure W13.9. Ranges of Raman shifts for various silicates. [Adapted from P. F. McMillan,
Am. Mineral., 69, 622 (1984).]

or, equivalently, three shared corners, and the ion is (Si2O5)2�. Metasilicates have two
NBOs (i.e., two shared corners) and the ion is (SiO3)2�. Pyrosilicates have three NBOs
(i.e., one shared corner) and the ion is (Si2O7)6�. Orthosilicates have four NBOs, hence
no shared corners, and are based on the (SiO4)4� ion.

Raman scattering may be used to identify the various ions. In Fig. W13.9 the ranges
of the Raman bands for the various ions in silicate glasses are depicted by the shaded
areas. In silicates there are cations present in addition to the silicate ions, so that
one may regard the materials as part silica and part foreign cations. The ordinate of
Fig. W13.9 gives the percentage of the material that is SiO2. Silica, of course, is 100%
SiO2. The 400-cm�1 peak is associated with a rocking motion in which the Si–O–Si
angle remains fixed but the oxygen rocks back and forth perpendicular to the initial
Si–O–Si plane. The 800-cm�1 peak corresponds to a bending motion of the Si–O–Si
bond angle. The peak at 1100 to 1200 cm�1 is due to a stretching motion of the Si–O
bond. In the orthosilicates, the bending motion of the Si–O–Si bond is responsible
for the 800-cm�1 peak. In the pyrosilicates two tetrahedra are joined together. The
bending motions could be either in phase or out of phase. As a result, the 800-cm�1
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peak is split into two peaks, one at a higher frequency and the other at a lower one. A
normal-mode analysis of the silicate ions leads to a more detailed description of the
correlation of peak location with ion type.

W13.3 Clay

Shards of pottery excavated in scattered archeological sites around the world testify
to the role that clay has played since antiquity as a primary technological material.
Clays are layered aluminosilicates, being composed primarily of Al, Si, O, and H
with varying degrees of alkali, alkaline earths, or Fe. Some common clays found in
nature include kaolinite, pyrophyllite, and talc. They are members of a mineral family
called phyllosilicates that include micas, such as muscovite, as well as serpentines and
chlorites. Clays are crystalline materials that have a small particle size. When combined
with water they become hydroplastic (i.e., they are readily moldable). When heated, the
particles fuse together while the overall macroscopic shape is retained. Upon cooling,
the molded shape becomes the desired object.

There are two types of primary layers in the clay structure. One is a 0.22-nm
layer composed of SiO4 tetrahedra joined by their corners in a hexagonal array
(Fig. W13.10a). The bases are coplanar and the tips of the tetrahedra all point in
the same direction. At the vertices are either O atoms or OH radicals. The second
primary layer is a 0.22-nm sheet of octahedra containing Al at the center which are
sixfold coordinated with O atoms or OH radicals at the vertices (Fig. W13.10b). [In
the case where there are only hydroxyl radicals, it is the mineral gibbsite, Al2(OH)6].
The various types of clay differ from each other in the number of these sheets, the

(a)
(b)

(c)

Figure W13.10. (a) Silica layer; (b) gibbsite layer; (c) kaolinite layer.
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replacement of some Al or Si by other elements, or by the presence of sheets of water
between the layers.

Kaolinite [Al2Si2O5(OH)4] has a 1:1 structure (i.e., the bilayer consists of one silica
layer and one gibbsite layer). The overall thickness is 0.716 nm (0.22 nm for the
tetrahedra C 0.22 nm for the octahedra C 0.276-nm spacing). The silica tetrahedra
(SiO4) point toward the gibbsite sheet, with the oxygens on the basal plane of the
silica forming one outer surface and the hydroxyls of the gibbsite forming the second
outer surface. The Al ions lie on a hexagonal lattice with two-thirds of the possible
sites filled. Successive bilayers have the same orientation and are bound to each other
by hydrogen bonding. A schematic of this arrangement (with the two sheets separated
from each other for illustration purposes) is drawn in Fig. W13.10c. The atomic posi-
tions in the successive layers are sketched in Fig. W13.11. Figure W13.11a shows the
basal O2� plane with Si4C atop the midpoint of the triangles formed by the oxygens;
Fig. W13.11b shows O2� ions above the Si4C ions, completing the tetrahedral layer
(T layer); Fig. W13.11c shows the positions of the Al3C ions and OH� ions in the
same layer as the aforementioned O2� ions. The OH� layers lie above the voids in the
basal layer. Finally, Fig. W13.11d shows a top layer with OH� ions. Each Al3C ion is
surrounded by six negative ions. Below each Al3C is a triangle with two O2� ions and
one OH� ion. Above each Al3C is a triangle of three OH� ions. The orientation of
the upper triangle is opposite to that of the lower triangle. The net result is that each
Al3C ion sits at the center of an octahedron. The layer is referred to as the O layer.
The protons of the top OH� layer are directed away from preceding O layer, ready
to hydrogen-bond with the next T layer. Thus the stacking sequence in kaolinite may
be denoted by TO–TO–TO– Ð Ð Ð . The actual crystal structure is not orthorhombic,
as in the sketch, but is slightly triclinic, with parallelipiped unit cell dimensions
�a, b, c� D �0.51, 0.89, 0.72� nm and angles (˛, ˇ, �� D �91.8°, 104.5°, 90°).

The lattice spacings in isolated gibbsite do not precisely match the lattice spacings
in silica. When the two layers are brought into registry, one layer is compressed and the

(b)

O2−

Si4+

Al3+
OH−

(a)

(c) (d)

Figure W13.11. Layer-by-layer assembly of a kaolinite sheet. (Adapted from H. W. Jaffe,
Crystal Chemistry and Refractivity, Dover, Mineola, N.Y., 1996.)
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other is stretched. The resulting strain energy grows as the area of the layer increases.
Eventually, the layers crack to relieve the strain energy. This limits the extent of the
clay particles to a small size.

Pyrophyllite [Al2(Si2O5)2(OH)2] differs from kaolinite in that it contains two silica
sheets instead of one (i.e., it has a 2:1 composition). The tetrahedra in the silica layers
point inward toward the gibbsite core layer, so the outer surface of the trilayer structure
consists of oxygen planes. Additional trilayers bond to this by weak van der Waals
bonds. The unit cell is monoclinic with dimensions �a, b, c� D �0.52, 0.89, 1.86� nm
and angles ˛ D ˇ D 90° and � D 99.9°.

Talc [Mg3(Si2O5)2(OH)2] has the same 2:1 structure as pyrophyllite, with the excep-
tion that the two Al3C ions are replaced by three Mg2C ions to maintain the valence
requirements. Thus all the sites of the hexagonal lattice are now filled with Mg atoms,
as opposed to the two-thirds occupancy for Al. Talc may be thought of as being based
on the mineral brucite [Mg3(OH)6] rather than on gibbsite, as before. It forms a mono-
clinic crystal with unit cell dimensions (0.53, 0.91, 1.89) nm and ˇ D 100°. Closely
related is the clay montmorillonite, in which only some of the Al3C are replaced by
Mg2C ions. Because of the valence mismatch, additional ions, such as NaC, must
also be incorporated, giving the composition Al2�xMgxNax(Si2O5)2(OH)2. In the clay
illite, some of the Si4C ions are replaced by Al3C ions. The valence mismatch is now
compensated by adding KC ions to the hexagonal voids of the O layers. The structure is
thus Al2(Si2�xAlxKxO5)2(OH)2. In the special case where x D 0.5, the mica muscovite
[KAl3Si3O10(OH)2] is obtained. The KC ion serves to ionically bind adjacent trilayers
tightly, thereby giving considerable rigidity to the structure.

W13.4 Cement

If limestone (calcite) is heated to 900°C, the reaction CaCO3 ! CaO C CO2 occurs and
CaO (quick lime) is produced. When placed in contact with water, the CaO becomes
hydrated and the product is called slaked lime. Heat is released, and the material swells
and eventually hardens (sets). Mortar is a mixture of quick lime and sand (silica), which,
when hydrated, forms a composite material that is used to bind bricks together.

Concrete, a composite material, is the primary structural material in use today. It
consists of pebbles and sand bound together by cement.

In this section the focus will be on the most common type of cement, called Port-
land cement. The composition is 60 to 66% CaO (lime), 19 to 25% SiO2 (silica),
3 to 8% Al2O3 (alumina), 1 to 5% Fe2O3 (ferrite), up to 5% MgO (magnesia) and
1 to 3% SO3. When heated, four primary compounds are formed: dicalcium silicate
(DCS) (2CaOÐSiO2), tricalcium silicate (TCS) (3CaOÐSiO2), tetracalcium aluminofer-
rite (TCAF) (4CaOÐAl2O3ÐFe2O3), and tricalcium aluminate (TCA) (3CaOÐAl2O3).
Portland cement is, on average (by wt %), 46% TCS, 28% DCS, 8% TCAF, and
11% TCA. In addition, there is 3% gypsum (CaSO4Ð2H2O), 3% magnesia, 0.5% K2O
or Na2O, and 0.5% CaO. When water is added, a hydration reaction occurs and heat is
generated. The hydrated particles conglomerate and a gel is formed. The cement sets
in the course of time.

The four compounds provide various attributes to the cement. Thus DCS hardens
slowly and improves the cement’s strength after a considerable time (a week). TCS
hardens more rapidly, gives the initial set, and provides early strength. TCA also
provides early strength and dissipates early heat. TCAF reduces the “clinkering”
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temperature where the particles bind together. The chemistry of hydration involves
the production of hydrous calcium silicates and aluminates via the following reactions:

2�DCS� C 4H2O ���! 3CaOÐ2SiO2Ð3H2O C Ca(OH)2

2�TCS� C 6H2O ���! 3CaOÐ2SiO2Ð3H2O C 3Ca(OH)2

TCAF C 10H2O C 2Ca(OH)2 ���! 6CaOÐAl2O3ÐFe2O3Ð12H2O

TCA C 12H2O C Ca(OH)2 ���! 3CaOÐAl2O3ÐCa(OH)2Ð12H2O

TCA C 26H2O C 3�CaSO4Ð2H2O� ���! 6CaOÐAl2O3Ð3SO3Ð32H2O

6CaOÐAl2O3Ð3SO3Ð32H2O C 2�TCA� C 4H2O

���! 3�4CaOÐAl2O3Ð3SO3Ð12H2O�

The reagent particles, consisting of the hydrated species, typically have sizes in the
range 1 to 50 µm and are bound together (flocculated) by polar bonds. The processes
above proceed by ionic reactions in water. Calcium hydroxide [Ca(OH)2] nucleates
and grows as crystallites ranging in size from 10 to 500 µm, whereas the hydrated
calcium silicate or aluminate forms a porous network of bonded colloidal particles.
The porosity is determined by the water-to-cement ratio (w/c). If the porosity exceeds
18%, a connected network of pores percolate and permeates the sample. If it reaches
30%, more than 80% of the pores are interconnected. The behavior is typical of a
percolating network. For high w/c ratios, it takes more hydration to close off the
pore space. If w/c is sufficiently high (> 60%) the pore space is never closed off by
hydration.

The flow (rheology) of cement before hardening is described approximately by the
viscoelastic equation

� D �B C �p1
dε

dt
, �W13.4�

where � is the applied stress, ε the strain, �p1 the plastic viscosity, and �B called the
Bingham yield stress. The last two parameters depend sensitively on the microstructure
of the cement and increase as finer particles are used. Typical values for �p1 are between
0.01 and 1 Pa Ð s, and for �B range between 5 and 50 Pa. To get the cement to flow,
the hydrogen bonds must be broken, and this accounts for the term �B. Viscoelasticity
is also seen to be important in the discussion of polymers in Chapter 14.

The strength of cements and concrete is largely a function of how much contact
area there is between the respective particles. This is illustrated in Fig. W13.12, where
three packing geometries are compared. Figure W13.12a symbolizes a close-packed
monodisperse (homogeneous in size) set of spherical grains. Figure W13.12b shows
that by densifying with smaller particles, a higher contact area may be achieved, thereby
strengthening the network. Figure W13.12c shows that an improper assortment of sizes
can weaken the network.

One of the main limitations of cement is its brittleness. Crack propagation is partially
limited by the pores and other flaws in the material. It has been found that by embedding
small fibers, crack propagation can be largely arrested and the cement may be toughened
considerably.
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(a) (b) (c)

Figure W13.12. Comparison of three packing geometries for spherical particles.

Appendix W13A: Radius Ratios and Polyhedral Coordination

The relationship between the radius ratio and the polyhedral coordination may be
derived by examining typical bonding configurations. In Fig. W13A.1 a planar arrange-
ment of four ions is shown. The smaller ion is the cation, with radius rc, and the larger
ion is the anion, with radius ra. In all cases the cation-to-anion distance will be given by
a D rc C ra, since the cation and anion are in contact. The anion-to-anion distance will
be denoted by d. Note that for all cases to be considered, d ½ 2ra, since it is assumed
that the anions cannot overlap. From Fig. W13A.1, since the angle between any two
a-vectors is 120°, it follows that d D a

p
3. The condition for triangular bonding thus

becomes

�rc C ra�
p

3 ½ 2ra, �W13A.1�

which translates into a lower bound for the radius ratio:

R D rc
ra

½ 2p
3

� 1 ³ 0.1547. �W13A.2�

For a cation in the center of a tetrahedron, the anion-to-anion distance is given by
d D a

p
8/3. Thus the lower bound for tetrahedral coordination is

R ½
√

3

2
� 1 ³ 0.2247. �W13A.3�

ra rc

d

d

d
a

a
a

Figure W13A.1. Anions, of radius ra, surrounding, and in contact with, a cation of radius rc,
forming a planar triangular configuration.
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In the sixfold octahedral coordination, d D a
p

2, so it follows that

R ½
p

2 � 1 ³ 0.4142. �W13A.4�

In the eightfold cubic coordination, d D 2a/
p

3, so

R ½
p

3 � 1 ³ 0.7321. �W13A.5�
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PROBLEMS

W13.1 Prove the relations given in Eq. (W13.1) for the ternary phase diagram.
W13.2 Prove the relations given in Eq. (W13.2) for the ternary phase diagram.

W13.3 Referring to Fig. W13.1, prove that b D c D 1
2 for a material represented by a

point midway on the line between components B and C.
W13.4 Referring to Fig. 13.6, show that

f˛:fˇ:f� D A��Oˇ���:A��O�˛��:A��O˛ˇ��,

where A is the area of the appropriate triangle.
W13.5 A quaternary phase diagram may be represented as a regular tetrahedron. The

four phases are represented by the vertices A, B, C, and D. Show that the
composition AaBbCcDd (with a C b C c C d D 1) may be represented by the
point O, which is at a perpendicular distance a, b, c, and d from faces BCD,
ACD, ABD, and ABC, respectively. Find the length of the edge of the tetra-
hedron. Can this procedure be generalized to a higher number of components?
If so, how?



CHAPTER W14

Polymers

W14.1 Structure of Ideal Linear Polymers

The first quantity characterizing the polymer is the molecular weight. If M1 is the mass
of a monomer unit, the mass of the polymer molecule is

MNC1 D �NC 1�M1. �W14.1�

Often, there will be a distribution of values of N in a macroscopic sample, so there
will be a distribution of masses. We return to this point later.

If one were to travel along the polymer from end to end, one would travel a distance
Na, where a is the length of a monomer unit. The end-to-end distance in space,
however, would be shorter than this, due to the contorted shape of the polymer. The
mean-square end-to-end distance hr2

Ni of a polymer with N intermonomer bonds may
be calculated. Figure W14.1 shows a chain in which the monomer units are labeled
0, 1, 2, . . . , N. One endpoint is at 0 and the other is at N. The vector from monomer 0
to monomer n is denoted by rn. Thus r0 D 0, the null vector, whereas rN is the end-
to-end vector. The vector from monomer m to monomer mC 1 is denoted by a OumC1,
where f Ouj, j D 1, 2, . . . , Ng are a set of unit vectors.

In the ideal polymer it will be assumed that these unit vectors are uncorrelated with
each other, so that if an ensemble average were performed,

h Ouji D 0 and h Ouj Ð Ouki D υj,k, �W14.2�

where υj,k D 0 or 1, depending on whether j 6D k or j D k, respectively. It follows that

rN D
N∑
nD1

a Oun, �W14.3�

r2
N D a2

N∑
nD1

N∑
mD1

Oum Ð Oun. �W14.4�

Performing an ensemble average yields

hrNi D 0, �W14.5�

hr2
Ni D a2

N∑
nD1

N∑
mD1

h Oum Ð Ouni D a2
N∑
nD1

N∑
mD1

υm,n D a2
N∑
nD1

1 D Na2. �W14.6�
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Figure W14.1. Structure of an ideal linear polymer chain.

One may also look at the shadows of the vector rN on the yz, xz, and xy planes.
Denote these by xN, yN, and zN, respectively. It follows that

hxNi D hyNi D hzNi D 0. �W14.7�

Due to the isotropy of space, it also follows that the mean-square end-to-end shadow
distances (ETESDs) are

hx2
Ni D hy2

Ni D hz2
Ni D 1

3 hx2
N C y2

N C z2
Ni D 1

3 hr2
Ni D 1

3Na
2. �W14.8�

For an ensemble of polymers there will be a distribution of end-to-end distances.
This distribution may be found from a simple symmetry argument. Let FN�x2

N�dxN
be the probability for finding the ETESD within a bin of size dxN at x D xN. This
may be written as an even function of xN since there is nothing to distinguish right
from left in the problem. The probability for finding the vector rN in volume element
dV D dxN dyN dzN is

dP D F�x2
N�F�y

2
N�F�z

2
N� dV D G�r2

N� dV, �W14.9�

where, by the isotropy of space, dP can depend only on the magnitude of rN. Here
GN�r2

N� dV gives the probability for finding the end-to-end distance in volume element
dV. If the relation above is differentiated with respect to x2

N, the result is

F0�x2
N�F�y

2
N�F�z

2
N� D G0�r2

N�. �W14.10�

Dividing this by
F�x2

N�F�y
2
N�F�z

2
N� D G�r2

N� �W14.11�

results in
F0�x2

N�

F�x2
N�

D G0�r2
N�

G�r2
N�
. �W14.12�
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Since rN may be varied independently of xN (e.g., by varying yN), both sides of this
equation must be equal to a constant. Call this constant �˛N. Integrating the resulting
first-order differential equation produces

FN�x
2
N� D ANe

�˛Nx2
N. �W14.13�

Since this represents a probability it must be normalized to 1, that is,

1 D
∫ 1

�1
FN�x

2
N� dxN D

∫ 1

�1
ANe

�˛Nx2
N dxN D AN

√
�

˛N
, �W14.14�

so AN D �˛N/��1/2.
Use this probability distribution, FN, to compute hx2

Ni:

hx2
Ni D

∫ 1

�1

√
˛N
�
x2
Ne

�˛Nx2
N dxN D 1

2˛N
D Na2

3
, �W14.15�

where the last equality follows from Eq. (W14.8). Thus

FN�x
2
N� D

(
3

2�Na2

)1/2

e�3x2
N/2Na

2
, �W14.16�

GN�r
2
N� D

(
3

2�Na2

)3/2

e�3r2
N/2Na

2
. �W14.17�

A plot of the end-to-end distance probability distribution function as a function of
� D r/a

p
N is given in Fig. W14.2. In this graph the volume element has been written

as 4�r2
N drN. Note that the most probable value of r is a�2N/3�1/2, as may be verified by

finding the extremum of the curve. This N1/2 dependence is characteristic of processes
involving a random walk of N steps.

1.0

0.5

0
0 1 2

ρ = r
a√N

√2/3

3 2π(   
 )   

4π
ρ2 e

−
3 2

3 2
ρ2

Figure W14.2. End-to-end distance probability distributionGN�R2
N� for the ideal linear polymer.



186 POLYMERS

The center of mass of the polymer is defined (approximately, by neglecting end-
group corrections) by

R D 1

NC 1

N∑
nD0

rn. �W14.18�

Let sn be the location of the nth monomer relative to the center of mass:

sn D rn � R. �W14.19�

Define a quantity s2 that is the mean square of sn:

s2 � 1

NC 1

N∑
nD0

hs2ni. �W14.20�

In the polymer literature the parameter s is referred to as the radius of gyration, although
its definition conflicts with that used in the mechanics of rigid bodies. Thus

N∑
nD0

hs2ni D
N∑
nD0

h�rn � R�2i D
N∑
nD0

hr2
ni � �NC 1�hR2i. �W14.21�

Note that
N∑
nD0

hr2
ni D

N∑
nD0

na2 D N�NC 1�

2
a2. �W14.22�

Also

hR2i D
(

1

NC 1

)2 N∑
mD1

N∑
nD1

hrn·rmi. �W14.23�

Note that

hrn·rmi D a2
n∑
jD1

m∑
kD1

h Ouj Ð Ouki D a2
n∑
jD1

m∑
kD1

υj,k D a2 min�m, n�, �W14.24�

where min�m, n� D m when m < n, and vice versa. It follows that

hR2i D 1

�NC 1�2

N∑
nD1

N∑
mD1

a2 min�m, n� D
(

a

NC 1

)2 N∑
nD1

(
n∑

mD1

m C
N∑

mDnC1

n

)

D
(

1

NC 1

)2 N∑
nD1

[
n�nC 1�

2
C n�N� n�

]

D
(

a

NC 1

)2 N

6
�2N2 C 3NC 1� D a2

6

N

NC 1
�2NC 1�. �W14.25�
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For large N this approaches

hR2i ³ Na2

3
. �W14.26�

By coincidence, this is the same as the expression given in Eq. (W14.15). An expression
for the square of the radius of gyration is finally obtained:

s2 D a2

6

N�NC 2�

NC 1
���! N

a2

6
. �W14.27�

It is also possible to obtain a formula for the mean-square distance of a given
monomer to the center of mass:

hs2ni D hr2
ni � 2hR · rni C hR2i. �W14.28�

Using

hR · rni D a2

NC 1

(
n∑

mD1

m C
N∑

mDnC1

n

)
D a2

NC 1

[
�n

2

2
C n

(
NC 1

2

)]
�W14.29�

results in

hs2ni D N2a2

NC 1

{
1

3
[w3 C �1 � w�3] C 1

6N

}
���! N

a2

3
[w3 C �1 � w�3], �W14.30�

where w D n/N.
Finally, the symmetry argument employed previously may be used to obtain an

expression for the probability distribution function, P�sn�, for the distances sn. Isotropy
of space leads to a Gaussian functional form for P:

P�sn� D Ae�!s2n . �W14.31�

Using this to evaluate hs2ni leads to the expression

hs2ni D

∫
d3sns

2
n exp��!s2n�∫

d3sn exp��!s2n�
D 3

2!
D N

a2

3

[( n
N

)3 C
(

1 � n

N

)3
]
, �W14.32�

so

! D 9

2

(
N

a

)2 1

n3 C �N� n�3
, �W14.33�

A D
(!
�

)3/2
. �W14.34�
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W14.2 Self-Avoiding Walks

There are two constraints that a linear-chain polymer must obey: each monomer must
be attached to the previous monomer in the chain, and no monomer can cross another
monomer. The case of a single molecule is considered first, followed by a dense
collection of molecules. If only the first constraint is imposed, the result has already
been derived: the end-to-end distance grows as

p
N, just as in a random walk. It will

be seen that the effect of the second constraint is to transform this to rN / N", where
" D 0.588 š 0.001. The fact that the distance grows as a power of N greater than
that for the overlapping chain model is expected. After all, since certain back-bending
configurations are omitted because they lead to self-overlap, it is expected that the
chain will form a looser, more-spread-out structure. The precise value of the exponent
depends on the results of a more detailed calculation.

In Table W14.1, results are presented for a random walk on a simple cubic lattice.
For a walk of N steps, starting at the origin, there are 6N possible paths. The 6 comes
from the fact that at each node there are six possible directions to go: north, south,
east, west, up, or down. The table presents the number of self-avoiding walks and also
the mean end-to-end distance. The exponent may be estimated by a simple argument.
At the simplest level (N D 2) the effect of nonoverlap is to eliminate one of the six
possible directions for the second step (Fig. W14.3). The mean end-to-end distance
is therefore �2 C 4

p
2�/5 D 1.531371 . . . . For a polymer of length N, imagine that it

really consists of two polymers of length N/2. These two half-polymers are assumed
to combine with the same composition rule as the two one-step segments above did.
Assuming the scaling formula rN D AN", one obtains

AN" D A

(
N

2

)" 2 C 4
p

2

5
, �W14.35�

which leads to " D 0.6148237 . . . . Successive refinements of the exponent are obtained
by applying the scaling prescription above to the entries in Table W14.1. Acceleration
of the convergence of the exponent is obtained by averaging successive values of the
exponents.

TABLE W14.1 Self-Avoiding Walks on a Cubic Lattice

Number Number of Possible Number of Self-Avoiding Mean End-to-End
of Steps Paths Paths of Length N Distance
N n (paths) n (SAW paths) hsi
1 6 6 1.00000
2 36 30 1.53137
3 216 150 1.90757
4 1,296 726 2.27575
5 7,776 3,534 2.57738
6 46,656 16,926 2.88450
7 279,936 81,390 3.14932
8 1,679,616 387,966 3.42245
9 10,077,696 1,853,886 3.62907

10 60,466,176 8,809,878 3.89778
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Figure W14.3. A polymer “path” starts at O and after two steps ends up at positions a, b, c, d,
or e. Path O–a has length 2; the other paths have length
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Figure W14.4. Comparison of the end-to-end distance distributions G�r2� for the random walk
(RW) and the self-avoiding walk (SAW). The units are arbitrary.

In Fig. W14.4 the distribution of end-to-end distances for the random walk (RW)
is compared to the distribution of distances for the self-avoiding walk (SAW). The
curves were generated by constructing a chain of 100 spheres, with each successive
sphere touching the previous one at a random location. An ensemble average of 10,000
random chains was made. One verifies that the SAW distribution is more extended than
the RW distribution.

Next consider a dense polymer. Each monomer is surrounded by other monomers,
some belonging to its own chain and some belonging to others. The no-crossing rule
applies to all other monomers. By extending the chain to larger sizes, the chain will
avoid itself, but it will more likely overlap other chains. Thus there is nothing to gain
by having a more extended structure. The net result is that there is a cancellation effect,
and the chain retains the shape of a random walk. Thus in the dense polymer the mean
end-to-end distance grows as

p
N.

W14.3 Persistence Length

On a large-enough length scale, a long polymer molecule will look like a random curve.
On a short-enough length scale, however, a segment of the polymer may look straight.
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Figure W14.5. Various possible bend locations in a polymer.

The question is at what length scale the transition occurs. The characteristic distance
is called the persistence length, Lp. A simple statistical argument provides an estimate
of this length. Refer to Fig. W14.5 to see the enumeration of bending configurations.

Select a monomer at random and look at its NN and subsequent neighbors down
the chain. Let p be the probability that two neighboring bonds are not parallel to
each other and q D 1 � p be the probability that they are parallel to each other. The
probability of forming a bend after moving one monomer down the chain is P1 D
p. The probability of forming the first bend after traversing two bonds is P2 D qp.
Similarly, the probability of traversing n bonds before the bend is

Pn D qn�1p. �W14.36�

Note that the probability is properly normalized, since

1∑
nD1

Pn D
1∑
nD1

�1 � p�n�1p D p

1 � �1 � p�
D 1. �W14.37�

The mean number of parallel bonds before a bend occurs is

hni D
1∑
nD1

Pnn D p

q

1∑
nD1

nqn D p
∂

∂q

1

1 � q
D 1

p
. �W14.38�

The persistence length is obtained by multiplying this by the bond length, a:

Lp D a

p
. �W14.39�

Suppose that the bend formation requires an activation energy Eb and that there are
g possible ways of making the bend. Then

p D ge�ˇEb

1 C ge�ˇEb ³ ge�ˇEb, �W14.40�

where it is assumed that Eb × kBT. Thus

Lp D a

g
eˇEb . �W14.41�
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At low temperatures the persistence length of an isolated polymer will be long. At high
temperatures Lp becomes shorter. This assumes, of course, that there are no obstacles
in the way to prevent coiling and uncoiling of the polymer. In a dense polymer melt,
however, the steric hindrance due to the presence of the other molecules prevents this
coiling–uncoiling from occurring.

W14.4 Free-Volume Theory

The concept of packing fraction has already been encountered when analyzing crys-
talline order and the random packing of hard spheres. The same concept carries over
to the case of polymers. When the polymer is below the melting temperature, Tm, and
is cooled, it contracts by an amount determined by the volume coefficient of thermal
expansion, ˇ. Consistent with a given volume there are many possible configurations
that a polymer molecule may assume. As the temperature is lowered closer to the
glass-transition temperature, Tg, the volume shrinks further and the number of possible
configurations is reduced. Concurrent with the decrease of volume and reduction in
the number of configurations is a rapid increase in the viscosity of the polymer. These
trends may be related by introducing the free-volume theory, or the closely related
configurational-entropy approach.

Free volume is defined as the difference in the volume that a sample has and the
volume it would have had if all diffusion processes were to cease. Recall that at
T D 0 K all thermal motion ceases. For low temperatures, atomic vibrational motion
occurs, but the atoms retain their mean center-of-mass positions. Below the Kauzmann
temperature, TK, all atoms on a polymer chain are sterically hindered by other atoms
and there can be no diffusion of the individual atoms on the polymer chain. At a
temperature above the Kauzmann temperature there can be some diffusion of the atoms
comprising the polymer, but the polymer as a whole still cannot move, since some of
its atoms are pinned by the steric hindrance of other atoms. It is not until a temperature
Tg > TK is reached that the molecule as a whole may begin to move. This motion
usually involves the concerted motion of a group of atoms. For the group of atoms to
diffuse, there must be a space for it to move into. The free volume is a measure of that
space. It is important to distinguish free volume from void space. In both the crystalline
state and the random close-packed structure there is void space but no free volume.
If PF is the packing fraction, 1 � PF is a measure of that void space. Free volume
begins to form when the volume constraint on the system is relaxed and the atoms are
permitted some “breathing room.” The packing fraction when there is free volume is
f < PF. Free volume plays the same role in amorphous polymers as vacancies play
in crystals.

Imagine that the polymers are partitioned into molecular groups (i.e., groups of
atoms on the polymer chain that are free to diffuse above TK). It will be assumed that
this distribution costs no energy, the partitioning being based just on probabilities. Let
Vf be the total free volume available to a system of N such molecular groups. The
average free volume per molecular group is

vf D Vf
N
. �W14.42�

Imagine that the free volume available to a molecular group comes in various sizes,
which will be labeled vi. Let Ni be the number of groups assigned the volume vi. Then
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there are two constraints: ∑
i

Ni D N �W14.43�

and (neglecting possible overlaps of free volume)

∑
i

Nivi D Vf. �W14.44�

The number of ways to partition N molecular groups into classes with N1 in the first
class, N2 in the second class, and so on, is given by the multinomial coefficient W:

W D N!

N1!N2! Ð Ð Ð D N!∏
i Ni!

. �W14.45�

The most probable distribution is sought [i.e., the one with the maximum configu-
rational entropy, S D kB ln�W�]. This involves maximizing W subject to the two prior
constraints. First use Stirling’s approximation, ln�N!� ³ N ln�N��N, to write

ln�W� D N ln�N��N�
∑
i

[Ni ln�Ni��Ni]. �W14.46�

When ln�W� is maximized with respect to the Ni, W will also be maximized. Intro-
duce Lagrange multipliers ! and 4 to maintain these constraints and vary the quantity
ln�W�� !

(∑
Ni �N

)� 4
(∑

Nivi � Vf
)

with respect to the variables Ni, to obtain

∂

∂Ni

{
N ln�N��N�

∑
i

[Ni ln�Ni��Ni] � !

(∑
i

Ni �N

)

�4
(∑

i

Nivi � Vf

)}
D 0, �W14.47�

so
� ln�Ni�� ! � 4vi D 0. �W14.48�

Solving this for the probability of obtaining a given volume yields

pi D exp��4vi�∑
i exp��4vi� . �W14.49�

The value of 4 is fixed by the constraint

vf D
∑
i

pivi D � ∂

∂4
ln
∑
i

exp��4vi�. �W14.50�

A further approximation is called for. Introduce a volume density of states

��v� D
∑
i

υ�v � vi� �W14.51�
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and write ∑
i

exp��4vi� D
∫
��v� exp��4v� dv. �W14.52�

It will be assumed that the volume density of states may be approximated by a constant,
although other possible variations may be imagined. Then

∑
i

exp��4vi� D
∫ 1

0
�0 exp��4v� dv D �0

4
, �W14.53�

and vf D 1/4.
The next assumption involves arguing that motion of a molecular group cannot

occur until a minimum amount of free volume, vŁ, is assigned to it. The probability
for having v > vŁ is

pŁ D
∑
i

pi�vi � vŁ� D

∫ 1

vŁ
��v� exp��v/vf� dv∫ 1

0
��v� exp

(
� v

vf

)
dv

D exp
(

� vŁ

vf

)
. �W14.54�

Recall from elementary physics that a hole in a solid expands when the solid
expands. This concept applies to the free volume as well, so

dvf
dT

D ˇ�vf C vK�, �W14.55�

where ˇ is the volume thermal-expansion coefficient and vK is the volume per molecular
group at the Kauzmann temperature, TK. Integrating this, and assuming for simplicity’s
sake that ˇ is constant, leads to

vf�T� D vK�e
ˇ�T�TK� � 1� ³ vKˇ�T� TK�, �W14.56�

where it is assumed that the exponent is small enough to be linearized. Thus

pŁ D exp
[
� vŁ

vKˇ�T� TK�

]
. �W14.57�

By assumption, the viscosity 6 varies inversely as pŁ. Normalize it to the value 6g,
the viscosity at temperature Tg:

6�T�

6g
D exp

[
vŁ

vKˇ

(
1

T� TK
� 1

Tg � TK

)]
. �W14.58�

This leads to the Williams–Landel–Ferry (WLF) equation

log10
6�T�

6g
D � C1�T� Tg�

C2 C T� Tg
. �W14.59�
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Empirically, it is found that C1 D 17.4 and C2 D Tg � TK D 51.6 K are the average
values for many polymers. This means that the glass-transition temperature is on the
average about 51.6 K above the Kauzmann temperature. Also, the free volume at the
glass-transition temperature amounts to 2.5% of the critical volume for diffusion:

vf,g D vkˇ�Tg � TK� D vŁ

C1
log10 e D 0.025 vŁ. �W14.60�

The time–temperature superposition principle presupposes the existence of a univer-
sal connection between viscosity and temperature. The WLF formula shows that this
supposition is, in fact, warranted. The free-volume theory also predicts that diffusion of
gases through the polymer should increase considerably above TK and should increase
further above Tg. It also predicts that the application of pressure, which compresses
the material and hence removes free volume, should serve to increase the viscosity.
This prediction is consistent with experiment.

One may measure the free volume by relating it to the thermal expansion of the solid.
Write the total volume of a sample at temperature T as the sum of three terms, V�T� D
Vp C Vv C Vf, where Vp is the volume occupied by the polymer atoms, Vv is the void
space, and Vf�T� is the free volume. At T D Tg, Vf�Tg� D 0 and V�Tg� D Vp C Vv �
Vg. For T > Tg, V�T� D Vg[1 C ˇ�T� Tg�]. Then Vf�T� D Vgˇ�T� Tg�. In practice
one takes for ˇ the difference in the values of the volume coefficient of thermal
expansion above and below Tg.

Note that the distinction between TK and Tg really exists only for macromolecules
such as polymers. For small molecules the movement of individual atoms is tantamount
to the motion of the molecule as a whole.

It is now believed that free-volume theory was a useful milestone in the approach to
a full understanding of the glass transition but is not the ultimate explanation. Modern
advances in what is known as mode-coupling theory provide a more fundamental
approach toward this understanding.

W14.5 Polymeric Foams

Foams constructed from polymers offer a variety of uses, including filters, supports for
catalysts and enzymes, and possible applications as electrodes in rechargeable batteries.
Examples range from polyurethane cushions to polystyrene coffee cups. Here the focus
is on one example of such a foam made of cross-linked polystyrene. Most of this
material consists of empty space, with the void volume typically occupying more than
90% of the total. There is a fully interconnected network of empty chambers connected
by holes whose size can vary between 2 and 100 µm in diameter, with a fairly uniform
size distribution (š20%). The density is typically in the range 20 to 250 kg/m3.

The foam is created by an emulsion technique that combines water, oil (containing
styrene), and an emulsifier, followed by vigorous agitatation of the mixture. The
emulsifier keeps the small oil droplets formed from recombining into larger droplets.
The water droplets can be made to occupy more than the 74% needed to form a
close-packed structure of uniform spheres by including additional smaller droplets.
The emulsion resembles soap bubbles, but with the air being replaced by water
(Fig. W14.6). Persulfates are present as an initiator for the polymerization and
divinylbenzene serves as the cross-linker as in the vulcanization process discussed
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Figure W14.6. Two-dimensional representation of a foam. The region between the circles
(spheres) is the portion occupied by the polymer. The spheres are empty.

in Section 14.1. The process of initiation is discussed in Chapter 21 of the textbook.†

The cross-linked matrix is rigid. Once the polymer foam has formed, there is a need
to remove the water and clean out the residual chemicals. The resulting material may
be sliced into useful shapes.

Other polymers may be used to create carbon foams. For example, a foam made
from polymethacrylonitrile (PMAN) with divinylbenzene serving as the cross-linker
may be pyrolyzed to leave behind a carbon shell in the form of the original foam.

Interest has now expanded to low-density microcellular materials (LDMMs) compo-
sed of low-atomic-weight elements (e.g., C or Si polymers). They are porous and have
uniform cell size, typically in the range 0.1 to 30 µm. They exhibit very low density,
and because of the uniform cell size, the mechanical properties are homogeneous. An
example is ultralow-density silica gel, which can have a density of 4 kg/m3 — only
three times that of air! These materials are both transparent and structurally self-
supporting. They have promising applications as thermal or acoustical insulators.

W14.6 Porous Films

The sports world is enriched by the existence of garments made of breathable micro-
porous films. These materials permit gases such as air and water vapor to pass through
them readily while offering protection against water droplets. An example of such a
porous film has the brand name Gore-tex, a Teflon-based material. Here the pores are
generated by heat-casting a film sheet and stretching it, thereby expanding the preex-
isting defects until they form a connected network of pores. The pore sizes are typically
0.2 µm long and 0.02 µm wide. Water droplets cannot pass through the network because
this would involve greatly expanding the droplets’ surface area, and consequently the
surface energy. Porosity levels of 40% are achievable.

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Recently, it was found that polypropylene contains two crystalline phases, an ˛-
phase (monoclinic) and a ˇ-phase (hexagonal), in addition to the amorphous phase.†

The lower-density ˇ-form (see Table 14.1) is less stable than the ˛-form and has a lower
melting temperature. By applying stress to the material, it is possible to transform ˇ to
˛. When this occurs there is a volume change, and void spaces are produced next to
where the converted ˇ-phase was. These voids percolate to form a network of pores.
By adding fillers and rubbers into the pores and stretching the material it is possible
to enlarge the pores to the optimal size.

Another way of preparing porous films is to irradiate the polymer film with high-
energy ions. The ions create radiation damage as they penetrate the material, resulting
in the breaking of polymer bonds along their tracks. By etching with acid or base, the
damaged regions may be removed, leaving behind pores. Pore diameters as small as
20 nm may be produced by this technique.

W14.7 Electrical Conductivity of Polymers

It has been found experimentally that some polymers possess very high electrical
conductivities when doped with small amounts of impurities. The electrical conductiv-
ities can approach those of copper [8Cu D 58.8 ð 106�9 Ð m��1 at T D 295 K; see
Table 7.1]. An example of such a polymer is trans-polyacetylene doped with Na
or Hg (n-doping) or I (p-doping). Other highly conducting polymers are polypyr-
role (C4H2NH)n, polythiophene (C4H2S)n, polyaniline (C6H4NH)n, and TTF-TCNQ
(tetrathiafulvalene-tetracyanoquinodimethane). The conductivity tends to be highly ani-
sotropic, with conductivity parallel to the polymer backbone strand being typically 1000
times larger than conductivity perpendicular to the strand. The precise origin of this
high conductivity has been the subject of considerable debate.

Observe that strands of polyacetylene make almost perfect one-dimensional solids,
with the molecule being typically 100,000 monomers in length. Furthermore, the cova-
lent bonds comprising the polymer are energetically highly stable. Any doping of
the sample proceeds by having donors or acceptor ions contribute carriers, without
these ions actually entering the strands themselves. Since shielding is absent in a one-
dimensional solid, these ions can be expected to interact with whatever mobile carriers
may be present in the string via a long-range Coulomb force. As will be seen later,
this is ineffective in backscattering the carriers, making the resistance of the polymer
very small.

In Fig. W14.7, two bonding configurations are presented for the trans state of poly-
acetylene and also the cis configuration. Unlike the case of the benzene molecule, where
a resonance structure is formed by taking a linear combination of the two bonding
configurations, in long polymers each configuration maintains its distinct character. In
benzene, the energy gap between the bonding and antibonding states is sufficiently
large that the system relaxes into the bonding state. In polyacetylene the gap is very
small. It is known that the carbon–carbon bond distances are different for the various
bonding states: 0.12 nm for the triple bond (e.g., acetylene), 0.134 nm for the double
bond (e.g., ethylene), and 0.153 nm for the single bond (e.g., ethane). By way of
comparison, benzene has 0.140 nm, intermediate between the single- and double-bond
values.

† P. Jacoby and C. W. Bauer, U.S. patent 4,975,469, Dec. 4,1990.
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Figure W14.7. Two arrangements of the alternating single and double carbon–carbon bonds in
polyacetylene, trans-A and trans-B. Also shown is the cis configuration.

The polyacetylene polymer may be modeled as a one-dimensional tight-binding
dimerized chain with two carbon atoms (labeled A and B) per unit cell and unit cell
length a. The amplitudes for having an electron reside on the nth A-atom site and the
nth B-atom site will be denoted by An and Bn, respectively. The NN hopping integrals
will be denoted by t and t0 for the single- and double-bond distances, respectively. The
details of the tight-binding equations are similar to those presented in Section 7.8, but
extended here to the case of two atoms per unit cell. Thus

t0AnC1 C tAn D ;Bn, �W14.61a�

tBn C t0Bn�1 D ;An. �W14.61b�

These equations may be simplified with the substitutions An D ˛ exp�inka� and Bn D
ˇ exp�inka�, leading to

;ˇ D �t C t0eika�˛, �W14.62a�

;˛ D �t C t0e�ika�ˇ. �W14.62b�

This leads to the solution for the energy eigenvalues

;4�k� D š
√
t2 C t02 C 2tt0 cos�ka�, �W14.63�

where 4 D š and with the first Brillouin zone extending from ��/a to �/a. There
are two allowed energy bands separated by a gap. The allowed bands extend from
�jt C t0j to �jt � t0j and from jt � t0j to jt C t0j, respectively. The gap is from �jt � t0j
to jt � t0j. In virgin polyacetylene the lower band is filled and the upper band is empty.
The material is a semiconductor, with a bandgap of 1.4 eV.

To describe the doping by an impurity atom (taken to be a donor, for the sake of
definiteness), assume that the donor atom has an ionization energy Ed. The Hamiltonian
for the chain-impurity system is

H D EdjIihIj C
∑
k,4

[;4�k�jk, 4ihk, 4j C V4�k��jk, 4ihIj C jIihk, 4j�], �W14.64�
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where V4�k� governs the hopping back and forth between the donor ion and the polymer
chain. The Schrödinger equation Hj i D ;j i may be solved with a state of the form

j i D gjIi C
∑
k,4

c4�k�jk, 4i, �W14.65�

and with the simplifying assumptions hIjk, 4i D 0, hIjIi D 1 and hk040jk4i D υ4,40υk,k0 .
This leads to

EdgC
∑
k,4

V4�k�c4�k� D ;g, �W14.66�

;4�k�c4�k�C gV4�k� D ;c4�k�. �W14.67�

Solving the second equation for c4�k� and inserting it into the first equation results in
the eigenvalue equation

Ed C
∑
k,4

V2
4�k�

;� ;4�k�
D ;. �W14.68�

Assume that V4�k� D V (independent of 4, k) and replace the sum over k states by an
integral over the first Brillouin zone. Then

;� Ed D V2

2�

∫ �/a

��/a
dk

2;

;2 � t2 � t02 � 2tt0 cos ka

D 2V2

a

;√
�;2 � t2 � t02�2 � 4t2t02

. �W14.69�

A graphical solution of the resulting sextic equation,

�;� Ed�
2[�;2 � t2 � t02�2 � 4t2t02] D 4V4;2

a2
, �W14.70�

shows that (at least) one discrete eigenstate will reside within the gap, irrespective of
the location of Ed. This will be referred to as the impurity level. At T D 0 K this level
is occupied.

For T > 0 K, electrons are donated to the polymer conduction band. (A similar
description applies to holes contributed by acceptor dopants.) Resistance is brought
about by the backscattering of these carriers by the charged impurity ions. Imagine that
the electrons move along the z direction, the direction of alignment of the polymers.
The distance of the impurity from the chain is denoted by D. The Coulomb potential
presented by an ion at z D 0 is then V�z� D �e/4�;0

p
z2 C D2. The matrix element

for backscattering is, for kD × 1,

M D h fjVj ii D � e2

4�;0

∫ 1

�1

e2ikz

p
D2 C z2

dz ���! �2
e2

4�;0

√
�

4kD
e�2kD,

�W14.71�
which is seen to fall off rapidly for large values of kD. Thus the high mobility may be
due, in part, to the small probability for backscattering events.
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However, if the conduction in polyacetlyene is really one-dimensional, and elec-
tron–electron interactions are neglected, random scattering will serve to localize the
electrons. The net result will be that it will be an insulator. More realistically, the
electron–electron interaction is not negligible but is important. The electron–electron
interaction serves to keep the electrons apart due to their Coulomb repulsion and lack
of screening. This introduces strong correlations in the electronic motions and may
override the tendency for localization.

Another approach to explaining the high conductivity of polyacetylene has to do
with bond domain walls, called solitons. Imagine that one portion of the polymer
chain is trans-A phase and a neighboring part is trans-B phase. This is illustrated in
Fig. W14.8, which depicts the domain wall as an abrupt change in bonding configu-
ration, a situation that is not energetically favorable. A lower-energy solution allows
for the transition to take place more gradually, on a length scale on the order of 10
lattice constants. In a sense, one must introduce the concept of a partial chemical
bond, making a transition from a single to a double bond over an extended distance.
A more complete model, put forth by Su et al.† includes the elastic and kinetic energy
of the lattice as well as the tight-binding Hamiltonian and a coupling between the
phonons and the electrons. It may be shown that the undimerized chain (i.e., where
there is only one atom per unit cell) is not the state of lowest energy, and a Peierls
transition to the dimerized state occurs. This opens a gap at the Fermi level, as in
the previous discussion, and makes the polymer a semiconductor rather than a metal.
The spatial structure encompassing the foregoing transition from trans-A to trans-B,
called a soliton, appears as a midgap discrete state. It is electrically neutral (i.e., the
polymer is able to make the transition from trans-A to trans-B without the need to
bring up or reject additional charge). However, it may be populated by donor electrons,
as illustrated in Fig. W14.8.

The charged solitons may propagate along the chain and are difficult to scatter.
Since the charge is spread out over an extended distance, it couples weakly to Coulomb
scattering centers. The solitons consist of a correlated motion of the electron and the
lattice and are similar in some ways to the polarons, familiar from three-dimensional
solids. On the downside, however, the solitons may be trapped by defects and this can
block their propagation. It is probably a fair statement to say that the final word on the
mechanism responsible for the high conductivity of polyacetylene has not been fully
decided upon.
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Figure W14.8. Domain walls between A and B phases of trans-polyacetylene.

† W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene Phys. Rev. Lett., 42, 1698 (1979).
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In some ways the situation in polyacetylene parallels that of the high mobility
found for the modulation doping of GaAs–GaAlAs quantum-well structures (see
Section W11.8). In the latter case the interface can be made nearly perfect, with
electrons confined to move along the quantum well by the confining walls of the
neighboring layers. Since the impurities do not reside in the wells, the Coulomb
interaction is weaker and spread out over a large region of space. The impurities
are not effective in scattering carriers, hence contributing to the high mobility.

W14.8 Polymers as Nonlinear Optical Materials

Optoelectronic devices are often based on nonlinear optical materials. As seen in
Section 8.9, such a material is one in which the polarization vector (electric-dipole
moment per unit volume) is a nonlinear function of the electric field of the light. One
may make a power series expansion in the electric field(s) and write (employing the
summation convention)

Pi�ω� D ;0B
�1�
i,j �ω�Ej�ω�C ;0d

�2�
i,j,k�ω;ω1, ω2�Ej�ω1�Ek�ω2�

C ;0d
�3�
i,j,k,l�ω;ω1, ω2, ω3�Ej�ω1�Ek�ω2�El�ω3�C Ð Ð Ð , �W14.72�

where d�2� and d�3� are the second- and third-order nonlinear optical coefficients,
respectively [see Eq. (8.46)]. For the case where ω1 D ω2 D ω/2, the quantity d�2�

determines the strength of second-harmonic generation (SHG), in which two photons
of frequency ω/2 may be combined to form a single photon of frequency ω. Similarly,
when ω1 D ω2 D ω3 D ω/3, the value of d�3� governs third-harmonic generation. The
more general case of unequal photon frequencies covers various types of three- and
four-wave mixing, as well as the dc Kerr effect, in which one of the photons has zero
frequency.

For molecules with inversion symmetry, d�2� vanishes identically. Hence, for SHG in
polymers, one must choose noncentrosymmetric molecules or solids. For efficient SHG
the phase-matching condition must be satisfied; that is, photon energy and momentum
must both be conserved:

k1 C k2 D k, ω1 C ω2 D ω, �W14.73�

where ω D kc/n�ω�, ω1 D kc/n�ω1�, and ω2 D kc/n�ω2�, n being the index of refrac-
tion of the material. The goal is to design materials with as large values for the nonlinear
susceptiblities as possible and to have these materials be thermally, mechanically, and
chemically stable. These polymers may then be fashioned into fibers, sheets, or bulk
material. The custom design of polymers, such as polydiacetylenes, has proved useful
in attaining this goal.

To obtain high values for the nonlinear optical coefficients, use is made of the
delocalized nature of the � electrons in hydrocarbon molecules. Generally, a “donor”
group is placed at one end of a molecule and an “acceptor” group is placed at the
other end. They are separated by a bridge region in which there are � electrons. This
molecule is then incorporated into a polymer. The values of the susceptibilities depend
on dipole matrix elements between electronic states and the differences of energies
between these states. Generally, the larger the dipole matrix element, the larger the
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susceptibility, and the closer an energy difference matches a photon energy, the larger
the susceptibility. It is therefore expeditious to keep the donor group as far away from
the acceptor as possible. A virtually excited electron from the donor makes a transition
to the acceptor with a concurrent large value for the transition-dipole moment. In d�2�

three dipole transitions and two energy denominators are involved. In d�3� there are
four transitions and three denominators.

It is important for the various regions of the polymer to act coherently, and therefore
it is important that there is alignment of the chain molecules. Since there is generally
a static electric-dipole moment associated with the molecule, it may be aligned in
an applied dc electric field, in a process called poling. The sample is heated above
the glass-transition temperature, Tg, the material is poled, and then the temperature is
lowered below Tg. The field is then removed and the sample has become an electret,
with a net electric-dipole moment per unit volume. This itself has interesting appli-
cations in designing piezoelectric materials (in which a strain gives rise to an electric
field, and vice versa) and electro-optic materials (in which the index of refraction may
be altered by applying external electric fields). An example of a polymer that is used
as a nonlinear optical material is 6FDA/TFDB. The molecule is shown in Fig. W14.9.
An example of a nonlinear chromophore that may be adjoined to a polymer appears
in Fig. W14.10 and is the 3-phenyl-5-isoxazolone compound.

One of the interesting features of polymers is the dependence of d�3� on the length
of the chain (/ N3.5 for N < 100). This may be understood as follows. The end-to-
end distance grows as N", with " ¾ 3

5 . One imagines a virtual excitation involving a
“surface” state at the end of the chain. Since there are four transition moments entering
d�3�, this would give an exponent 4". Finally, there areNmonomers per chain molecule,
so a net exponent of 4"C 1 D 3.4 could be expected. For very large polymers, however,
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the dipole approximation would break down and higher frequency-dependent multipole
moments would determine the nonlinear optical coefficients.

Recent attention has been directed to photorefractive polymers, such as doped
poly(N-vinylcarbazole), for use as an optical information-storage material. The physics
here is linear rather than nonlinear. A localized light beam directed at the polymer
causes a real donor-to-acceptor transition of an electron. This produces a localized
electric field that alters the local index of refraction. This constitutes the “write” step.
A weak probe laser beam is able to detect the altered index of refraction in the “read”
step. Poling in a strong external electric field restores the electrons to the donors, and
thus the material is erasable. Since light is involved, one may attain several orders
of magnitude greater read and write rates than with conventional magnetic media. By
using two write lasers rather than one, it is possible to etch holographic interference
patterns into the material.

PROBLEMS

W14.1 Consider a freely rotating chain consisting of N bonds, with the angle between
successive bonds constrained to be equal to � � D.
(a) Show that h Ouj Ð OujCki D cosk D.
(b) Show that the radius of gyration s is given by

s2 D Na2

6

1 C cos D

1 � cos D
.

W14.2 Show that the radius of gyration of a cyclic freely jointed chain is given by
s2 D Na2/12.



CHAPTER W15

Dielectric and Ferroelectric Materials

W15.1 Capacitors

Improvement in the design of capacitors has progressed steadily since the introduction
of the Leyden jar in the nineteenth century. The basic formula for the capacitance of a
parallel-plate capacitor is C D �r�0A/d, where �r is the dielectric constant, A the surface
area of a plate, and d the gap distance between plates. To increaseC one either increases
�r , increases A, or decreases d. Early capacitors consisted of metal foils separated
by wax (�r ³ 2.5), mica (�r ³ 3 to 6), steatite (�r ³ 5.5 to 7.5), or glass (�r ³ 5 to
10). The use of titania (rutile) provided a significant increase (�rjj D 170, �r? D 86).
This was followed by technology based on the perovskites, such as barium titanate
(�r ³ 1000), whose dielectric constant varies rapidly with temperature, undergoing a
near divergence at a phase transition temperature. By going to smaller grain sizes
(³ 1 µm) the divergence was spread out over a larger temperature range, making the
�r�T
 curve flatter. Such perovskites are called relaxors. DRAM chips currently utilize
capacitors with Si3N4 or SiO2 as the dielectric material. The electrodes are made of
doped Si or poly-Si.

The demands for miniaturization largely preclude an increase in the face area
A. One exception is the multilayer ceramic capacitor (MLCC), in which case C D
�r�0A�N� 1
/d, where N is the number of stacked plates. Electrolytic capacitors are
successful in increasing C by reducing the gap distance d to atomic dimensions. In
this case the dielectric consists of a monolayer of alumina (�r ³ 4.5 to 8.4) or tantalum
oxide (Ta2O5) (�r ³ 21) sandwiched between a metal and an ionic solution. The
inherent difficulty, however, is that electrolytic capacitors work only when polarized
in one direction. The oxide layer disappears when the polarity is reversed. This makes
them suitable for dc power supplies but not for ac applications. The development of
thin-film technology provides another avenue of approach for reducing d. The material
SiO (�r ³ 6) provides a convenient dielectric. SiO is a “mixture” or alloy of Si and
SiO2 (e.g., oxygen-deficient SiO2�x, with x ³ 1).

The MLCC typically uses BaTiO3 as the dielectric, although it has some shortcom-
ings. Ideally, the dielectric should have a low electrical conductivity so that the leakage
current is not too large. The time constant for decay of charge in a dielectric is given by
 D �/�. (This formula may be deduced from Gauss’s law, r · D D �, the constitutive
equations D D �E and J D �E, and the continuity equation ∂�/∂t C r · J D 0.) For
high-speed switching applications it is desirable to have  < 1 µs. For � D 1 ��Ðm
�1

and � D �0, the time constant is only 8.85 ð 10�12 s. To obtain a 1-µs storage time
requires �/� to be increased by over five orders of magnitude. It is also desirable to have
a high thermal conductivity to avoid the buildup of thermal stresses, a high breakdown
strength (> 4 ð 107 V/m) so that moderate voltages (³ 200 V) can be imposed across

203
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a small thickness (³ 5 µm), as well as a capacitance that will not vary appreciably with
electric field. One would like to have d ³ 0.5 µm, or less, if possible. Current research
indicates that d ³ 10 µm may soon be feasible. A low dissipation factor is generally
sought. The dissipation factor is defined as the ratio of the imaginary part of the dielec-
tric constant to the real part, and is also referred to as the loss tangent, tan υ 
 �2/�1. A
low firing temperature and a small grain size for the ceramic are assets. A list of typical
dielectrics (relaxors) is presented in Table W15.1. The value of the structural phase
transition temperature Tc is presented, along with the value of the relative dielectric
constant at that temperature. The closer the value of Tc is to room temperature, the
higher the value of the dielectric constant will be under normal operating conditions.
Much of the research in developing relaxor dielectrics has been aimed at tuning the
stoichiometric coefficients to bring Tc close to room temperature. This is illustrated
by the perovskite Pb1�xLax(ZryTi1�y)1�x/4O3 (PLZT) in Table W15.1. Changing the
composition �x, y
 from (0.02,0.65) to (0.08,0.7) lowers Tc from 320°C to 20°C and
changes �r at Tc from 4050 to 650. Typical room temperature values of �r for (SrTiO3,
(Ba,Sr)TiO3, PLZT) are (90–240,160–600, > 1000), respectively.

Electrode materials for use with the perovskites include the metals Ir, Pt, Ru and
the conducting oxides RuO2 and IrO2.

Grain-boundary barrier layer (GBBL) capacitors achieve a high capacitance essen-
tially by decreasing d. The dielectric consists of a set of microscopic conducting
granules, of typical size a, separated from each other by thin insulating surface layers,
of dimension dg. The average number of grains spanning the gap is N. Using NaC
�NC 1
dg D d, one finds that N D �d� dg
/�a C dg
 ³ d/a. The net capacitance is
obtained by regarding the NC 1 capacitors as being in series, resulting in

C D �r�0
A

Ndg
D �r�0

Aa

ddg
. �W15.1


Since a × dg, this results in a substantial increase in C.
Capacitor design involves other issues beside having large capacitance. Dissipation

is a major concern, and dc conductivity is another. Ion migration can cause currents
to flow. These often involve defects, such as oxygen vacancies, moving through the
dielectric. The tunneling of electrons from granule to granule in the GBBL capacitors

TABLE W15.1 Properties of Relaxor Dielectrics

Transition
Relaxor Materiala Tc�°C
 �r(max)

Pb(Fe1/2Nb1/2)O3 PFN FE 112 24,000
Pb(Mg1/3Nb2/3)O3 PMN FE �0.8 18,000
Pb(Mg1/2W1/2)O3 PMW AF 39 300
Pb(Zn1/3Nb2/3)O3 PZN FE 140 22,000
PbTiO3 PT FE 490 8,000
BaTiO3 BT FE 130 12,000

PLZT FE 140 12,000

Source: Data from Y. Yamashita, Am. Ceram. Soc. Bull., 73, 74 (1994).
aFE and AF stand for ferroelectric and antiferroelectric transitions, respectively. The composition of PLZT
is given by Pb1�xLax(ZryTi1�y)1�x/4O3, with x D 0.07 and y D 0.65.
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provides a conduction mechanism. When working with granular materials a concern
is the charging of the grains. For small enough granules, the discrete nature of the
electronic charge plays an important role in determining the I–V characteristics.

Another concern relates to the variation of capacitance with temperature. Often,
circuits are used in which the stability of the RC time constant plays an important
role. Since resistance of semiconductors drops with increasing temperature, it could
be compensated for by finding a capacitor whose capacitance rises with increasing T.
Relaxor materials often have such positive temperature coefficients.

W15.2 Substrates

Substrates are insulators that serve as the foundation upon which microcircuits
are supported. Typical materials include alumina, aluminum nitride (both plain and
diamond-coated), boron nitride, diamond thin films, mullite, and polyimide films, as
well as others. Usually, the Si wafer which serves as the template for Si devices
is bonded to a substrate that provides mechanical support and thermal dissipation.
Table W15.2 provides a list of some common materials. Patterns of deposited metals,
semiconductors, and insulators that comprise the circuit are supported by the Si
template. The electrical insulating properties of the substrate are reflected in high
values for the electrical resistivity.

Generally, the coefficient of thermal expansion, ˛, should match that of the semicon-
ductor so that thermal stresses may be minimized. For example, alumina and GaAs have
values that are well matched (see Table W15.2). GaAs can be bonded onto alumina
with a gold–tin solder. In addition, materials of high thermal conductivity, �, such as

TABLE W15.2 Properties of Substrate Materialsa

Coefficient
Dielectric Rupture of Thermal Thermal Processing
Constant Modulus Expansion Conductivity Temperature Resistivity
�r RMb ˛ � Tproc �

Substrate (at 1 MHz) (MPa) (10�6 K�1) (W/mÐK) (°C) (�Ðm)

Al2O3 9.9 550 6.7 17 1500 1013

SiC 9.7 186 4.5 135 2000 —
Si3N4 7.0 850 3.4 30 1600 1010

AlN 8.8 300 4.5 180 1900 1011

BeO 6.8 250 7.6 250 2000 —
Mullite 3.8 185 5 6 1400 >1012

Cordeirite 5 500 3 2 — 109

Titania 170 291 7.1 10.4 — —
Borosilicate

glass
4.0 70 3 2 800 —

Quartz C
borosilicate

7.9 150 7.9 16 850 —

Si 11.7 — 2.5 151 — —
GaAs — — 6.5 54 — 106

Source: Data from L. M. Sheppard, Ceram. Bull., 70, 1467 (1991)).
aNote that large variations of reported values appear in the literature.
bFracture strength under a bending load.
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AlN, permit heat to be dissipated rapidly. The mechanical strength of the substrate
should be high so that it can withstand the thermal stresses. Of paramount importance
are the ability to deposit metallic layers on the material and to be able to withstand
whatever machining operations are involved.

In photolithography there is the need to blacken the substrate, so that it will not
reflect stray light and damage the latent image being cast upon a VLSI circuit. Oxides
of Co, Cr, Fe, Nb, Ta, Ti, W, and Zr serve to blacken AlN without diminishing its
high thermal conductivity.

For high-speed switching operations it is desirable to have small capacitances, so
that the RC time constant will be small. This necessitates using substrates with small
dielectric constants, preferably with �r < 5. To this end, porous glasses may be used,
with �r ³ 2, although the presence of pores mechanically weakens the substrate. Boron
phosphate glass ceramics offer materials with �r ³ 4 and have very high resistivity,
³ 1014 �Ðm. One may also use layered structures, making use of the fact that for capac-
itors in series, Ctotal < min�C1, C2, . . .). For example, fluorohectorite is a synthetic
mica silicate with layers separated from each other by sheets of hydrated cations.
One may place layers of low-� polymer between the sheets to form a low-capacity
microstructure. Since the packaging of a VLSI chip also contributes to the capaci-
tance, materials with low dielectric constants should be employed. Such materials as
Teflon, polyimides, and benzocyclobutenes are often utilized.

W15.3 First-Order Ferroelectric Phase Transitions

First-order transitions may be handled by returning to Eq. (15.29) of the textbook† and
assuming that c > 0 and b < 0. In place of Eq. (15.30), one has

∂g

∂P
D a0�T� T0
PC bP3 C cP5 D 0. �W15.2


There now exists a temperature TC such that for T > TC, the minimum value of g is g0

and there is no spontaneous polarization (i.e., P D 0). To determine TC, the equations
∂g/∂P D 0 and g D g0 are solved simultaneously, giving

TC D T0 C 3b2

16a0c
, �W15.3


P D P�TC
 D š
√

�3b

4c
. �W15.4


Note that the order parameter undergoes a discontinuity as the temperature is lowered
below TC. For temperatures below TC, the spontaneous polarization is given by

P D š

√√√√� b

2c
C

√
b2

4c2
� a0

c
�T� T0
. �W15.5


† The material on this home page is supplemental to The Physic and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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The dielectric constant is obtained as before. For T > TC

�r D 1 C 1

�0a0�T� T0

, �W15.6


which is the same as in Eq. (15.35), but remains finite at T D TC. For T < TC one
finds that

�r D 1 C 1

4�0cx�x � b/2c

, �W15.7a


where

x D
√
b2

4c2
� a0

c
�T� T0
. �W15.7b


Since b < 0, this remains finite at T D T0.
The extension to three dimensions may be obtained by writing the Gibbs free-energy

density in a form consistent with cubic symmetry:

g D g0 � E · P C a

2
P2 C b

4
P4 C b0 � b

2
�P2

yP
2
z C P2

z P
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x C P2

xP
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y
C c
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C c0[P4
x�P

2
y C P2

z 
C P4
y�P

2
z C P2

x
C P4
z �P

2
x C P2

y
] C c00P2
xP

2
yP

2
z C Ð Ð Ð �W15.8


where E is the electric field vector. Matters may be simplified by letting c0 D 0 and
c00 D 0. As before, one begins with E D 0. At the minimum value of g, three conditions
apply:

∂g

∂Px
D Px[aC bP2 C �b0 � b
�P2

y C P2
z 
C cP4] D 0, �W15.9a


∂g

∂Py
D Py[aC bP2 C �b0 � b
�P2

z C P2
x
C cP4] D 0, �W15.9b


∂g

∂Pz
D Pz[aC bP2 C �b0 � b
�P2

x C P2
y
C cP4] D 0, �W15.9c


Various extrema may be identified. The first is at �Px, Py, Pz
 D �0, 0, 0
, at which point
the crystal has cubic symmetry and g D g0. A second solution occurs at �Px, Py, Pz
 D
�0, 0,šjPzj
, in which case

jPzj D

√√√√� b

2c
C �

√(
b

2c

)2

� a

c
, �W15.10


where � D š1. This solution corresponds to the breaking of cubic symmetry. There
exists a spontaneous polarization, and the crystal has tetragonal symmetry. (Equivalent
solutions follow from the cyclical permutation of Px, Py and Pz.) The reality of this
solution requires that b2 > 4ac. If b < 0, then � D C1 is always possible whereas if
b > 0, then � D �1 is always possible. If a < 0 and b < 0, then � D �1 can also
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occur. If a < 0 and b > 0, then � D C1 is another possibility. The Gibbs free-energy
density at the extrema is given by

g D g0 � ba

12c
C

(
a

3
� b2

12c

)
P2
z . �W15.11


If this Gibbs free-energy density lies below g0, it will be the preferred thermodynamic
state. Note that due to the symmetry of the solution, the parameter b0 does not appear
in Eq. (W15.10) or (W15.11).

For Ez 6D 0 the dielectric constant is determined approximately as before by solving

∂g

∂Pz
D Pz�aC bP2

z C cP4
z 
� E D 0. �W15.12


For the cubic case the result expressed in Eq. (W15.6) is found.
For the tetragonal case

�r D 1 C 1

4�0c


( b

2c

)2

� a

c
� �

√(
b

2c

)2

� a

c




�1/2

. �W15.13


Note that the dielectric constant diverges as b2 approaches 4ac.

W15.4 Nonvolatile Ferroelectric Random-Access Memory

Computer random-access memory (RAM) currently employs semiconductor
technology. One major drawback is that the information stored in RAM is lost in
the event of a power failure or other sudden shutdown of the computer. A remedy
for this is the use of nonvolatile ferroelectric random-access memory (NVFRAM).
Ferroelectric domains are used to store the bits of information. A binary 1 corresponds
to the electric polarization vector, P, pointing in one direction and a binary 0 to P
pointing in the opposite direction. Since the polarization within a domain is determined
by ionic displacements within the unit cells, domain walls typically propagate at speeds
characteristic of ionic motion (i.e., the speed of sound, cs ¾ 103 m/s). For a domain of
size L ¾ 1 µm, this translates into a switching time of L/cs ¾ 1 ns. In addition to their
nonvolatility, NVFRAMs can be written and erased many times (109 –1013) without
degradation of switching polarization (fatigue), have low leakage currents, and retain
their polarization state for a long time.

Many phenomena appearing in ferroelectrics have analogs in ferromagnetism. In
particular, the hysteresis loops of ferroelectricity, obtained when P is plotted against
the electric field, E, are analogous to the hysteresis loops of ferromagnetism, in which
the magnetization, M, is plotted as a function of the magnetic intensity, H. The latter
case is studied in some detail in Chapter 17, so only an abridged introduction to
hysteresis is given here.

The hysteresis loop describes P as a double-valued function of E and is illustrated
in Fig. W15.1. Suppose that initially all the electric dipole moments of a domain are
aligned by applying a strong electric field. The value of the polarization vector will
then be Psat D nµ, where n is the number of unit cells per unit volume and ) is the
electric-dipole moment of a unit cell. Upon lowering E to zero, the polarization drops to
a value Prem, called the remanent polarization. Thus, even in the absence of an electric
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−Psat
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Figure W15.1. Ferroelectric hysteresis loop.

field, the polarization state is preserved and Prem can serve as the binary 1 bit of the
state of memory. This is what provides the nonvolatility of the memory. If the field is
made more negative, the polarization will finally be zero at a value E D �Ec, where
Ec is called the coercive field. If the field is made strongly negative, the polarization
ultimately saturates at �Psat. Reversing the process, and making E D 0, leads to a
polarization �Prem. This can represent the binary 0 of a state of memory. Increasing
E to the value CEc removes the polarization, and making it strongly positive restores
the saturation polarization Psat. The net work done in going around the hysteresis loop
is the area enclosed by the loop,

∮
EdP, and is dissipated as heat.

In practical memory chips there are a large number of cells present on a surface array.
Each domain is defined by the intersection of two conducting strips, one called the word
line and the other called the bit line. To write a given bit, half the switching voltage is
applied across the word line and half across the bit line, thus creating Prem. To read a
given bit, a switching voltage is applied. Half of it is supplied by the word line and half
by the bit line, as in the writing case. If the cell is polarized in the CPrem state and a
positive voltage is applied, a relatively small change in the polarization occurs, Psat �
Prem. If the cell is in the �Prem state and a positive voltage is applied, a polarization
change Psat C Prem occurs. The resulting polarization current JP D �∂P/∂t produces a
transient sensing voltage that may be detected and compared with that of a standard
domain which is always switched from the C state. After reading the bit, the domain
polarization is restored to its initial state by applying the appropriate electric field.

One problem is to prevent the polarization state of one domain from interacting
with neighboring domains (i.e., cross-talking). Isolation transistors are inserted between
domains to prevent this from happening.

Ferroelectrics currently used in NVFRAMs include the perovskite PZT
[Pb(ZrxTi1�x)O3, with x ³ 0.53] and the layered perovskites SBT (SrBi2Ta2O9) and
SNT (SrBi2Nb2O9). In the SBT crystal structure the unit cell consists of a stack
along the c axis consisting of alternating SrTa2O6 perovskite blocks and planes
of atoms containing Bi2O3. Typical parameters for some of these materials are
Prem D 0.4 C/m2 and Ec D 2800 to 5000 kV/m for PZT, and Prem D 0.18 C/m2 and
Ec D 4500 kV/m for SBT. The values depend on film thickness and the method of
processing. The choice of proper electrode materials is of importance in decreasing
the fatigue of the devices, as it can have a substantial effect on the microstructure of
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the ferroelectric. For example, the sandwich combination Pt/PZT/Pt fatigues rapidly,
whereas RuO2/PZT/RuO2, deposited on a MgO(100) substrate, has little fatigue. Other
electrodes include IrO2 and (La,Sr)CoO3. The presence of oxygen vacancies can lead
to charge trapping, which can pin domain walls and locally shift Prem and Ec.

W15.5 Quartz Crystal Oscillator

As in the case of a bell, a crystal of finite size will “ring” with a characteristic set
of normal-mode frequencies when excited mechanically. In the case of a piezoelectric
crystal, electric fields are used to provide the stimulus. The frequencies are given
approximately by ω ¾ cs/L, where cs is a speed of sound and L is a typical dimension.
Although any piezoelectric crystal may be used, ˛-quartz is most commonly employed,
and attention here is restricted to it. Oscillators with frequencies in the megahertz
range are fabricated routinely. They are employed in clocks, computers, and radio
transmitters and receivers. The quartz-crystal monitor is a basic tool for measuring
thin-film deposition rates of adsorbates.

The nature of the modes of excitation of the crystal is determined by the shape of the
cuts relative to the unit cell. The cuts are specified in terms of the dimensions of a rect-
angular parallelipiped of (thickness, length, width
 D �t, l, w), axes of rotation (x, y, z),
and Euler angles of rotation of the parallelipiped relative to the crystal axes (., /,  ).
The notation for the crystal cut is xyz�t, l, w
./ . Various cuts are in use, labeled by the
notation AT, BT, CT, DT, ET, GT, MT, NT, and so on. These cuts are special in that
the piezoelectric coefficients are, to a first approximation, independent of temperature.
Figure W15.2 shows a quartz crystal along with the directions of some of the cuts.

It should be noted that quartz is an example of an enantiomorphous crystal, which
means that there are two independent but equivalent structures which are the mirror
images of each other, referred to here as right- and left-handed quartz.

BT AT
CT

ET

DT
FT

Z

Z

X

X

−A2
+A2

AT + 35° 15'
BT − 49°
CT + 38°
DT − 52°
ET + 66°
FT − 57°

Y

Figure W15.2. Quartz crystal along with some of the cuts used to create oscillator crys-
tals. (Adapted from R. A. Heising, Quartz Crystals for Electrical Circuits , Van Nostrand, New
York, 1946.)
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The normal-mode frequencies are determined by solving the elastic equations of
motion as in Section 10.10. To be more general, the expanded notation of Eq. (10.13)
will be used, so

�
∂2u˛
∂t2

D ��ω2u˛ D
∑
ˇ

∂�˛ˇ
∂xˇ

D
∑
ˇ)3

C˛ˇ)3
∂ε)3
∂xˇ

, �W15.14


where � is the density, u the displacement, �˛ˇ the stress tensor, ε)3 the strain tensor,
and C˛ˇ)3 the elastic coefficient tensor. All indices run from 1 through 3. The boundary
conditions are that the normal components of the stress tensor vanish on the surface:

∑
ˇ

�˛ˇ Onˇ D 0. �W15.15


Quartz (a trigonal or rhombohedral crystal) has the (symmetric) elastic coefficient
tensor (in reduced notation)

C D




C11 C12 C13 C14 0 0
Ð C11 C13 �C14 0 0
Ð Ð C33 0 0 0
Ð Ð Ð C44 0 0
Ð Ð Ð Ð C44 C14

Ð Ð Ð Ð Ð 2�C11 �C12



 �W15.16


where �C11, C12, C13, C14, C33, C44
 D �8.68, 0.71, 1.19, 1.80, 10.59, 5.82
ð 1010 Pa.
The density is � D 2649 kg/m3. The piezoelectric tensor is

d D
[d11 �d11 0 d14 0 0

0 0 0 0 �d14 �2d11

0 0 0 0 0 0

]
, �W15.17


with �d11, d14
 D �2.3,�0.67
 pm/V (for right-handed quartz). For left-handed quartz
the signs of d11 and d14 are opposite. The dielectric constant tensor is

εr D
[ ε1 0 0

0 ε1 0
0 0 ε2

]
�W15.18


with �ε1, ε2
 D �4.34, 4.27
. The coefficients of linear expansion are described by the
tensor

a D
[˛1 0 0

0 ˛1 0
0 0 ˛2

]
�W15.19


with �˛1, ˛2
 D �14.3, 7.8
ð 10�6 K�1.
After solving the wave equation, expressions for the various modes are obtained.

Consider here one such mode. The AT-cut �., /,  
 D ��90°, 35°150, 90°
 crystal has
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x

y

Figure W15.3. Shear oscillation of a quartz crystal oscillator. (Adapted from R. A. Heising,
Quartz Crystals for Electrical Circuits, Van Nostrand, New York, 1946.)

a mode that undergoes a shear oscillation described by the equation

ux�y, t
 D U0 cos
n6y

d
e�iωnt, �W15.20


where U0 is the amplitude and

ωn D n
6

d

√
C66

�
, n odd. �W15.21


The thickness of the slab is denoted by d. This formula implies a wave speed of cs Dp
C66/� D 7757 m/s for quartz, using C66 D 2�C11 �C12
. The vibrational motion is

depicted in Fig. W15.3.
One of the main problems with the crystal oscillator is that the resonant frequency

changes with temperature, due to thermal expansion and a temperature variation of the
elastic constants. One may describe the frequency drift over a restricted range by the
linear formula f/f0 D a�T� T0
, where a is called the temperature coefficient. The
size of the parameter a depends on the nature of the crystal cut. For example, in AT-cut
quartz, if T0 D 43°C, then a D 0 in the neighborhood of T D T0. This makes the AT
oscillator stable against (small) temperature fluctuations. The various popular crystal
cuts have different temperatures at which they attain optimum thermal stability. Ther-
mistors operating in conjunction with microprocessors can now accurately compensate
for the thermal drift of these oscillators and the precise cutting of crystals is less
necessary than it once was.

One interesting application of crystal oscillators is for use as a thickness monitor
for vapor-deposition technology. A layer of adsorbed material on the surface of a
crystal oscillator increases the system’s inertia and lowers the resonant frequency by
an amount proportional to the additional mass. Thus, for the quartz-crystal deposition
monitor (QCM), an adlayer of Al on an AT-cut slab with a resonant frequency of
6 MHz will shift the resonant frequency by 22.7 Hz per nanometer of adsorbate. With
precision-counting electronics, such shifts are readily measurable.

W15.6 Lithium-Ion Battery

The need for a compact reliable battery for computers, watches, calculators,
and implantable medical devices has prompted the invention of the lithium-
ion battery. Early batteries did not carry enough energy per unit mass. For
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example, the lead-acid battery can provide only ³ 35 WÐh/kg (70 WÐh/L) and
the Ni/Cd battery ³ 25 WÐh/kg (100 WÐh/L). In contrast, the Li battery provides
³ 200 WÐh/kg (250 WÐh/L), as compared with gasoline, which can provide ³
15,000 WÐh/kg of thermal energy (1 WÐh D 3600 J). Any battery has mass and
occupies a volume. For some applications mass is the more crucial parameter, so
one rates the battery in terms of WÐh/kg. In other applications volume may be more
crucial, so the rating in terms of WÐh/L is more relevant.

The Li battery consists of three parts: the anode (lithium), the electrolyte, and the
cathode. Since Li reacts strongly with aqueous solutions, the electrolyte is a liquid that
must be aprotic (not contain hydrogen ions). Ideally, one would want an electrolyte
with a high solubility for lithium salts and a high mobility for the ions. This involves
the use of electrolytes with high dielectric constants and low viscosities. Both of these
effects are understandable in terms of elementary physics.

When an ion of charge q is placed in a solvent, there is an electrostatic lowering
of its energy by the Born solvation energy. This is illustrated in Fig. W15.4, which
shows the solvent molecules as dipoles which become locally aligned with the electric
field of the ion. Assuming that a solvation hole of radius a is produced around the ion,
the solvation energy is U D �1 � 1/�r
q2/86�0a. With large �r the solvation energy
is increased. In addition, a large value of �r implies that ions are shielded from each
other’s influence by the polarization charge that gathers around the ions. The ions are
less likely to impede each other’s motion at high concentrations.

An applied electric field E leads to a steady-state ionic velocity vi D )iEi, where
)i is the ith ion’s mobility. The net conductivity is � D niqi)i, where ni, qi, and )i
are the concentration, charge, and mobility of the respective ions. Neglecting ion–ion
interactions, the electric force and the Stokes viscous force on a given ion cancel at
equilibrium. Thus qiE � 66>rivi D 0, where > is the viscosity of the liquid and ri is
the ionic radius (including whatever “hydration” shell accompanies it). Thus

)i D qi
66>ri

. �W15.22


The lower the viscosity of the electrolyte, the higher the mobility of the ions and
the lower the internal resistance of the battery. Consider an electrolyte of thickness L
and cross-sectional area A. The internal resistance is computed by regarding each ionic
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Figure W15.4. Dipoles of the solvent become polarized by the ion.
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TABLE W15.3 Electrolyte Solventsa

Dielectric Temperature (°C)

Constant Viscosity Melting Boiling
Electrolyte Solvent �r > (cp) Tm Tb

Acetonitrile (AN) 38 0.35 �46 82
Dimethoxyethane (DME) 7.2 0.46 �58 84
N,N-Dimethylformate (DMF) 37 0.80 �61 158
Methylformate (MF) 65 0.63 �99 32
Propylene carbonate (PC) 64 2.53 �49 241
Nitromethane (NM) 36 0.62 �29 101
Dimethylsulfite (DMSI) 23 0.77 �141 126
Tetrahydrofuran 7.6 0.46 �109 66
Ethyl acetate (EC) 6.0 0.44 �84 77

Source: Data from H. V. Venkatasetty, ed., Lithium Battery Technology, Wiley, New York, 1984.

channel as operating in parallel with the others, so
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Clearly, a low viscosity favors a low internal resistance.
In Table W15.3 data are presented relevant to some of the common organic solvents

used in conjunction with lithium salts as electrolytes for lithium batteries. The melting
and boiling temperatures (Tm and Tb) define the temperature limits for the electrolyte
remaining a liquid.

The electrolyte consists of salt dissolved in the organic solvent. Typical salts
employed are LiCl, LiBr, LiI, LiAsF6, LiSCN, LiNO3 and LiClO4. See also Fig. 14.14,
which describes the use of p(EO)9LiCF3SO3 as a polymer electrolyte. Both the LiC
and the corresponding negative ions contribute to the electrical current. Interestingly
enough, the negative ion often has the higher mobility, despite the fact that its bare
radius is larger than that of the positive ion. The reason has to do with the “hydration”
shell. Positive ions, being smaller, bind solvent ions more effectively than do negative
ions. The solvated ion moves as a unit. Typically, the negative ion may have twice the
mobility of the positive ion.

Some common cathode materials employed are CFx, CuO, CuS, FeS, FeS2, MnO2,
MoS2, V6O13, SOCl2, V2O5, and Bi2Pb2O5. Often, these are intercalated into graphite
or another binder. In Table W15.4 typical battery systems are listed along with their
open-circuit voltage and operating voltages. Also listed are the energy densities stored
in the batteries. The open-circuit voltages, Vopen, are determined by the difference in the
standard electrode potentials between the cathode and the anode (see Section W12.4,
where corrosion is discussed).

W15.7 Fuel Cells

Fuel cells (FCs) are batteries in which there is a continuous input of fuel and oxidizer
and a corresponding output of electrical power as well as waste products and waste
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TABLE W15.4 Common Lithium-Ion Battery Configurations

Open-Circuit Operating Energy
Voltage Voltage Density
Vopen Voper u

Cathode Electrolyte (V) (V) (WÐh/kg)

CFx DME/PC C LiBF4 3.4 2.6 235
CuO 1,3-dioxolane 2.4 1.3 165
CuS — 2.1 1.8 198
FeS Li halide salts 1.4 1.3 105
FeS2 LiCF3SO3 in solvent 1.9 1.5 220
MnO2 — 3.3 2.8 150
MoS2 PC/Ec C LiAsF6 2.4 1.9 61
V6O13 PE C LiClO4 3.3 3.0 200
SOCl2 Thionyl chloride C LiAlCl4 3.7 3.2 385
V2O5 ME C LiAsF6 C LiBF4 3.4 2.8 264

Source: Data from C. D. S. Tuck, ed., Modern Battery Technology , Ellis Horwood, New York, 1991.

heat. FCs were invented in 1836 by Sir William Grove. The present FCs operate
on the inverse reaction to the electrolysis of water, 2H2 C O2 ! 2H2O, which is an
exothermic reaction in the liquid phase with G D �4.92 eV. The cells offer the
possibility of providing a clean and efficient energy source. The hope is that they will
some day become inexpensive enough to be more widely used.

There are five basic designs for the cells: the alkaline fuel cell (AFC), the proton-
exchange membrane fuel cell (PEMFC), the phosphoric acid fuel cell (PAFC), the
molten-carbonate fuel cell (MCFC), and the solid-oxide fuel cell (SOFC). The operating
temperature ranges for these cells are quite different. For the AFC, PEMFC, PAFC,
MCFC, and SOFC devices, the temperature ranges are 60 to 200, 60 to 110, 150 to 210,
550 to 700, and 1000 to 1100°C, respectively. In the case of the MCFC and SOFC,
elevated temperatures are needed to have sufficient ion mobility through the electrolyte.

A typical fuel cell is shown schematically in Fig. W15.5. In the PEMFC, hydrogen
is convected through the anode and impinges on a platinum catalyst layer. The reaction
H2 ! 2HC C 2e� is exothermic when it occurs on the catalyst. The electrons flow into
the external circuit and the protons diffuse into the proton-exchange membrane which

H2

H2O

O2H+

Catalyst Cathode

Electrolyte

Ie−

Anode

Figure W15.5. Prototype of a typical PEMFC fuel cell using hydrogen as the fuel.
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serves as the electrolyte. The membrane is typically a material with a high proton
conductivity, such as a sulfonated fluorocarbon polymer (NAFION), or the sulfonated
styrene/ethylene–butylene/styrene copolymer. On the other side of the membrane is
the cathode.† Oxygen diffuses in from the other side of the FC through the cathode
and combines with the protons and the electrons returning from the circuit according
to the reaction 4HC C O2 C 4e� ! 2H2O. Since there are four electrons pumped into
the circuit for the reaction 2H2 C O2 ! 2H2O, the theoretical EMF for the hydrogen
FC is � D �G/4e D 1.23 V. A fuel-cell generator generally consists of a stack of
several hundred FCs with the batteries connected in series with each other.

The internal resistance of the FC limits the actual terminal voltage when a current
is drawn from it. This is determined largely by the mean free path of the ions in the
electrolyte as well as by whatever hydrodynamic constraints are placed on the flows.
For example, a transition from laminar to turbulent flow for the hydrogen and oxygen
flowing through the electrodes will impose a constraint on how rapidly fuel and oxidant
may be delivered to the FC. In addition, thermally activated reverse reactions at the
electrodes (such as 2HC C 2e� ! H2 at the anode and 2H2O ! 4HC C O2 C 4e� at
the cathode) compete with the forward reactions, giving rise to what are called exchange
overpotentials. These reactions act as batteries with reverse polarity in series with the FC.

The theoretical efficiency for the conversion of chemical energy to electrical energy
in the FC is high. It may be computed from a knowledge of the enthalpy change H D
�5.94 eV in the liquid phase and the Gibbs free energy change G D �4.92 eV. Since
the waste heat is Q D TS D H�G, the efficiency is > D G/H D 82.8%.
Practical MCFCs have > ³ 60% and PAFCs have > ³ 40%.

One of the requirements of the electrolyte is that it be impervious to the reactants
but allow the ions to pass through with high conductivity. In the SOFC the electrolyte
is ZrO2/Y2O3 and it is the O2� ion that diffuses through the electrolyte. In the MCFC
the electrolyte is Li2CO3/K2CO3. The AFC uses KOH as the electrolyte and the PAFC
uses phosphoric acid, H3PO4. In the AFC OH� ions are the diffusing species, and in
the MCFC they are the CO3

2� ions.
One of the main problems with fuel cells is the preparation of the hydrogen fuel.

Ideally, one would like to produce it from fuels such as methane by a process called
reforming. The hydrogen could be stored temporarily in metal hydrides. Additional
problems to FC design arise from poisoning of the catalysts by CO or CO2.

REFERENCES

Batteries

Tuck, C. D. S., ed., Modern Battery Technology, Ellis Horwood, New York, 1991.

Venkatasetty, H. V., ed. Lithium Battery Technology , Wiley, New York, 1984.

Quartz-Crystal Oscillator

Heising, R. A., Quartz Crystals for Electrical Circuits, Van Nostrand, New York, 1946.

† Note that the term anode is used here as the electrode which acts as the source of positive charge inside
the battery and negative charge outside the battery. This is opposite to the more conventional definition.



DIELECTRIC AND FERROELECTRIC MATERIALS 217

Nonvolatile Ferroelectric RAM

Auciello, O., J. F. Scott, and R. Ramesh, The physics of ferroelectric memories, Phys. Today,
July 1998, 22.

Fuel Cells

Hoogers, G., Fuel cells: power for the future, Phys. World, Aug. 1998, 31.

Kartha, S., and P. Grimes, Fuel cells: energy conversion for the next century, Phys. Today, Nov.
1994, 54.

PROBLEM

W15.1 Consider the AT-cut quartz-crystal deposition monitor. Let cs denote the speed
of sound in quartz. Derive the formula for the shift of resonant frequency of
the oscillator, f, when an adlayer of thickness υ and mass density �a is
deposited on the surface:

f

f
D f

υ

cs

�a
�
,

where � is the density of quartz.



CHAPTER W16

Superconductors

W16.1 Further Discussion of Thermal Conductivity in Superconductors

When heat is conducted primarily by the electrons in the normal state for T > Tc
(i.e., when �n ³ �en), then below Tc, �s falls rapidly below �n. This is illustrated in
Fig. W16.1a for the elemental superconductor Al. In this case �s ³ �es is observed
to approach zero exponentially as T decreases, again providing strong evidence for a
superconducting energy gap. When the conduction of heat by phonons dominates in
the normal state for T > Tc (i.e., when �n ³ �ln), as is often the case in alloys where
electron-impurity scattering effects are important and also in the high-Tc superconduc-
tors discussed in Section 16.5 of the textbook,† then below Tc, �s ³ �ls. In this case,
�s can actually be greater than the corresponding normal-state value �n, as illustrated
in Fig. W16.1b for superconducting alloys of Pb with In and Bi. In most cases both the
conduction electrons and the phonons make appreciable contributions to the conduction
of heat in the normal state above Tc, so the variation of �s�T� below Tc lies between
the two limits presented here.

The situation is more complicated when the superconductor is in the mixed state.
The normal electrons associated with the vortices can scatter phonons, thus decreasing
�ls, but can also transport heat, thus increasing �es.

W16.2 Two-Fluid Model

The two-fluid model of Gorter and Casimir‡ presented in 1934 is a classical ther-
modynamic treatment which assumes that in the superconducting state the conduction
electrons can be separated into two separate, interpenetrating but noninteracting phases
or fluids. In this model the concentration of conduction electrons for T < Tc is given
by n D ns�T�C nn�T�, where ns and nn are the concentrations of the supercon-
ducting and normal electrons, respectively. The fraction of superconducting electrons
is fs D ns/n, while for the normal electrons, fn D nn/n D 1 � fs. It is assumed that
both ns and nn are temperature dependent, with ns�Tc� D nn�0 K� D 0 and ns�0 K� D
nn�Tc� D n.

According to one approach, the superconducting fraction is given by fs�T� D 1 �
�T/Tc�4 and the Gibbs free energy per unit volume of the superconducting state is

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
‡ C. J. Gorter and H. B. G Casimir, Physica, 1, 306 (1934).
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Figure W16.1. Thermal conductivity �s in the superconducting state and �n in the normal state.
(a) The ratio �s/�n falls rapidly below unity for T < Tc for the elemental superconductor Al. The
solid curves represent the predictions of the BCS theory for various values of the superconducting
energy gap in units of kBTc. (b) The quantity �s can be greater than �n below Tc, as illustrated
for three superconducting alloys of Pb with In and Bi. [(a) From C. B. Satterthwaite, Phys. Rev.,
125, 893 (1962). Copyright 1962 by the American Physical Society. (b) From P. Lindenfeld,
Phys. Rev. Lett., 6, 613 (1961). Copyright 1961 by the American Physical Society.]
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given as the sum of contributions from the superconducting and normal electrons by

Gs�T� D fs�T�

(
��0H2

c0

2

)
C
√

1 � fs�T�
(

��T
2

2

)
. �W16.1�

Here ��0H2
c0/2 is the condensation energy per unit volume of the superconducting

electrons relative to the normal state and ��T2/2 is the temperature-dependent part
of the energy of the normal electrons. The parabolic dependence of the critical field
Hc�T� on T given in Eq. (16.6) can be shown to follow from this two-fluid expression
for Gs�T�. It should be noted that while useful as a conceptual tool, the two-fluid
model in this form cannot predict the observed exponential temperature dependence of
the specific heat Ces as T ! 0 K.

W16.3 Superconducting Alloys of Metallic Elements

When alloys composed of superconducting elements such as Sn and In or Pb and Sn
are prepared within the limits of their mutual solid solubility, the resulting single-phase
superconductors also exhibit type I behavior as long as the electron mean free path l
has not been decreased too much by the enhanced electron-impurity scattering present
in the alloy. Further decreases in l result in an increase in the penetration depth � and a
decrease in the coherence length � until � ³ l and � > 1/

p
2. The alloy then becomes

a type II superconductor.
The transition temperature Tc of such alloys typically decreases slowly, by 1 or 2%,

when up to about 1 at % of alloying element is added, essentially independent of the
host or the alloying element. It is believed that this is also a mean-free-path effect in
which the decrease in l due to alloying eliminates the anisotropy of the energy gap
present in the pure metal. Additional alloying beyond the level of ³ 1 at % can lead
to an increase or a decrease in Tc, depending on the nature of the host and alloying
elements. When the alloying element possesses a magnetic moment (e.g., as for Fe
or Mn), Tc is typically depressed to 0 K by only a few tens or hundreds of parts per
million of the magnetic impurity.

Transition metal alloys are usually type II superconductors. In crystalline alloys of the
3d, 4d, and 5d transition metal elements such as the 4d alloys Nb1�xZrx and Nb1�xMox, it
is observed that Tc has maxima for values of the average number zav of valence electrons
per atom near 4.7 and 6.5. This is at least partially an electron density-of-states effect
since the electronic contribution to the alloy specific heat that is proportional to ��EF�
also exhibits peaks for the same values of zav. The BCS prediction of Eq. (16.27) indeed
indicates that high Tc should be correlated with high ��EF�, all other factors remaining
constant. It is also interesting to note that lattice (i.e., structural) instabilities are observed
in these alloys near the same electron concentrations where high Tc values are found.
The BCC crystal structure is stable for 4.7 < zav < 6.5, while the HCP crystal structure
is stable for both zav < 4.7 and zav > 6.5. From the BCS point of view it should not be
surprising that electron density-of-states effects and lattice effects both influence Tc.

W16.4 Superconducting Intermetallic Compounds

Intermetallic compounds differ from metallic alloys in that they have well-defined
compositions or limited ranges of composition. In addition, the elements present in a
compound occupy specific, ordered sites in the unit cell instead of occupying random
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A

B

Figure W16.2. Cubic unit cell for the superconductors with the A15 crystal structure and the
chemical formula A3B. (From L. R. Testardi, Rev. Mod. Phys., 47, 637 (1975). Copyright 1975
by the American Physical Society.)

sites as in an alloy. For example, the two materials currently used in superconducting
magnets, Nb3Sn and Nb0.36Ti0.64, correspond to an intermetallic compound and a
metallic alloy, respectively.

The A15 superconductors with the general formula A3B (e.g., V3Si, Nb3Sn, Nb3Ga,
and Nb3Ge) held the records for the highest Tc values from 1954 to 1986 when the
discovery of the high-Tc cuprate superconductors occurred. The cubic crystal structure
of these intermetallic compounds is shown in Fig. W16.2, where it can be seen that
the B atoms occupy the sites of a BCC lattice. In this structure pairs of A atoms
occupy adjacent sites in each of the six faces of the cubic unit cell, with three sets of
nonintersecting linear chains of A atoms extending along the mutually perpendicular
[100], [010], and [001] directions. Disorder in the chains due to deviations from the
A3B stoichiometry has been found to result in significant decreases in Tc.

Although there are at least 60 superconductors of the A3B type, high Tc values are
found only when the A atom is V, Nb, Mo, or Ta and the B atom is a metal such as
Al, Ga, or Sn or a nonmetal such as Si or Ge. Thus the attainment of high Tc values
is not strongly correlated with chemical bonding effects. Instead, the presence of a
high density of states at the Fermi level associated with the exact A3B stoichiometry
is apparently necessary. The stoichiometric Nb-based compounds with B D Al, Ga, Si,
and Ge are all metastable and are prepared by rapid quenching or other techniques. The
highest Tc values are Tc D 23.2 K for Nb3Ge and Tc D 20.3 K for Nb3Ga. Specific
heat and magnetic susceptibility studies have shown that Nb3Ge and Nb3Ga possess
some of the highest values of ��EF� for the A15 superconductors. The normal-state
properties of the A3B compounds have also been studied widely to help understand
the relatively high Tc values observed in these materials.

A list of some representative intermetallic compounds of different crystal structures,
including several of the NaCl and A15 types, with Tc values near or greater than 10 K
is presented in Table W16.1. This list serves to illustrate the extremely wide variety of
materials and crystal structures in which superconductivity with Tc ½ 10 K is found.
The superconducting AB compounds with the NaCl crystal structure form another
important class of superconductors. The element A is typically a transition metal such
as Nb, Mo, Ti, or Zr, while B is either C, N, O, or B. The highest Tc values are
observed for those compounds with 9 or 10 valence electrons per formula unit (e.g.,
NbC or NbN and MoC, respectively).
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TABLE W16.1 Transition Temperatures and Crystal
Structures of Intermetallic Compound Superconductors

Superconductor Structure Typea Tc (K)

MoC NaCl (FCC) 14.3
NbNx

b NaCl (FCC) 17.3
PdH NaCl (FCC) 9.5
PdD NaCl (FCC) 11.6
HfV2 MgCu2, Laves (FCC) 9.4
RhZr2 Al2Cu (BCT) 11.3
V3Si UH3, A15 (cubic) 17.1
Nb3Sn UH3, A15 (cubic) 18.1
Nb3Al UH3, A15 (cubic) 18
Nb3Ga UH3, A15 (cubic) 20.3
Nb3Ge UH3, A15 (cubic) 23.2
LiTi2O4 MgAl2O4, spinel (cubic) 13.7
YRh4B4 B4CeCo4 (tetragonal) 11.3
LaMo6Se8 PbMo6S8, Chevrel (trigonal) 11.4
YNi2B2C — (tetragonal) 16.6

Source: Most data from D. R. Lide and H. P. R. Frederikse, eds.,
CRC Handbook of Chemistry and Physics, 75th ed., CRC Press,
Boca Raton, Fla., 1994.
aThe Bravais lattice is given in parentheses.
bThe existence of nitrogen vacancies in NbNx , with x < 1, allows Tc
to be varied over a wide range. The Tc reported here is the highest
known value for NbNx .

The last entry, YNi2B2C, is a nonmagnetic member of the recently discovered family
of rare earth nickel borocarbides (i.e., RNi2B2C, where R is a rare earth element).
Superconducting members of this family include R D Y, Dy, Ho, Er, Tm, and Lu,
of which Dy, Ho, Er, and Tm, and the R D Gd and Tb members undergo magnetic
transitions to an antiferromagnetic state below a Néel temperature TN. It is observed
that Tc > TN for R D Ho, Er, Tm, and Lu, whereas the reverse is true for R D Dy.
Study of these materials offers the opportunity of examining the interplay between
magnetism and superconductivity.

W16.5 Further Discussion of Structure, Bonding, Composition, and
Normal-State Properties of the Oxide-Based Ceramic Superconductors

The oxide BaPb1�xBixO3 is superconducting for 0.05 < x < 0.3 and can be considered
to be the predecessor of the high-Tc cuprate superconductors discovered in 1986. For
this mixed-valence material with a slightly distorted perovskite structure, the stoichio-
metric insulating BaBiO3 compound with x D 1 can be represented by the formula
Ba2C�Bi3C�0.5�Bi5C�0.5�O2��3. When this oxide is doped with Pb4C ions or when it
is prepared in an oxygen-deficient form, the normally equal balance of closed-shell
Bi3C�5d106s2� and Bi5C�5d10� ions is disturbed and the concentration of electrons is
modified. This material is semiconducting for 0.4 � x � 1 and metallic for x � 0.35.
By 1980, a Tc of 13 K had been achieved in this material for x ³ 0.25, corresponding
to an electron concentration of about 3 ð 1027 m�3. This composition is actually closer
to BaPbO3, a metallic compound, than to the insulator BaBiO3.
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A related mixed-valence material that has the cubic perovskite structure for x > 0.25
is Ba1�xKxBiO3�y , where Tc ³ 30 K has recently been achieved for x ³ 0.4. The
charge carriers in this material have been shown to be electrons occupying a less than
half-filled energy band. Although the KC ions donate one less electron to the structure
than the Ba2C ions they replace, the result of the doping is an electron-deficient metal
rather than a metal in which the charge carriers are holes. The insulator BaBiO3 can
thus be transformed into a metallic superconductor either by doping with Pb on the
Bi sites or with K on the Ba sites. The latter method is clearly more effective for
obtaining higher Tc values.

Three of the superconductors shown in Fig. 16.17 are now described in more detail.

La2−xSrxCuO4 (LSCO). The stoichiometric compound La2CuO4 with nominal ionic
charges La3C,Cu2C, and O2� is an antiferromagnetic insulator with a Néel temperature
TN D 340 K. The Cu2C ions have magnetic moments m ³ 0.5 µB. This compound
becomes superconducting when doped with divalent ions such as Sr2C or Ba2C which
replace some of the La3C ions (e.g., La2�xSrxCuO4) or when doped with excess oxygen
which enters the LaO layers as O2� ions (e.g., La2CuO4�y with y < 0). Both types of
doping result in the introduction of holes into the CuO2 layers through the removal of
electrons. In the first case, one of the electrons normally contributed by each La3C ion
to these layers is now no longer available. If an Sr2C ion simply replaces a La3C ion
(similar to B3C replacing Si4C in crystalline Si) with no other changes taking place,
hole doping will occur, an electron will be missing from some type of chemical “bond,”
and ionic charge neutrality will be violated. But if Cu2C ! Cu3C in order to maintain
ionic charge compensation, all the bonds will be satisfied and the hole will instead be
present in the 3d shell of the Cu3C ion. The related compound Nd2�xCexCuO4 is an
electron-type superconductor when doped with Ce4C ions since each Ce4C contributes
an additional electron to the CuO2 planes.

When doped at the level x greater than about 0.05, enough holes are introduced into
the CuO2 planes so that La2�xSrxCuO4 becomes a metal. It also becomes a supercon-
ductor whose highest Tc ³ 40 K is observed at the optimum doping level of x ³ 0.16.
This is illustrated in the phase diagram for La2�xSrxCuO4 shown in Fig. 16.18. Notice
the similarity of this phase diagram to that of YBa2Cu3O7�x given in the same figure.
Regions where La2�xSrxCuO4 is an orthorhombic antiferromagnetic insulator and an
orthorhombic or tetragonal metal are indicated.

As can be seen in Fig. 16.17, each CuO2 layer in the La2CuO4 structure is separated
from adjacent CuO2 layers by pairs of LaO layers. This corresponds to a greater
separation between CuO2 planes than is found in YBa2Cu3O7 and in the other cuprate
superconductors where the CuO2 planes are clustered in groups of two or three and
are separated from each other only by single planes containing Y3C or Ca2C ions.

YBa2Cu3O7−x (YBCO). The orthorhombic unit cell of the YBa2Cu3O7 structure is
shown in Fig. W16.3 and the stacking sequence of the layers is shown in Fig. W16.4.
It can be seen that the two CuO2 layers in the unit cell are slightly puckered, while
the CuO layer containing the linear . . .CuOCuO . . . chains, taken to lie along the b
axis, is planar. YBa2Cu3O7 can be considered to be oxygen deficient in the sense
that two oxygen atoms would appear to be missing from the hypothetical compound
YBa2Cu3O9 D �YCuO3��BaCuO3�2, which has the nominal perovskite stoichiometry.
There are actually only eight possible oxygen sites in the unit cell, and one of these
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Figure W16.3. Orthorhombic unit cell of the YBa2Cu3O7 structure. (From J. D. Jorgensen
et al., Phys. Rev. B, 36, 3608 (1987). Copyright 1987 by the American Physical Society.)
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Figure W16.4. Stacking sequence of the layers parallel to the c axis in the YBa2Cu3O7 structure.
(From C. P. Poole, Jr., et al., Copper Oxide Superconductors, copyright 1988, John Wiley &
Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)
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sites, in the layer with the CuO chains, is always vacant. Thus YBa2Cu3O7 is, in fact,
the correct chemical formula for this compound.

The YBa2Cu3O7 structure differs from the other structures found in the high-Tc
cuprate materials as follows:

1. In addition to the CuO2 layers containing Cu ions with four NN O ions, there
exist CuO layers consisting of CuO chains in which each Cu ion has two NN
O ions in the layer and also two next-NN O ions just above and below it in the
BaO layers at a distance of ³ 0.18 nm. One half of the possible oxygen sites
in this CuO layer are vacant, with the filled oxygen sites ordered along the b
axis.

2. Overall ionic charge neutrality is maintained only if Cu3C ions and/or oxygen
vacancies are present in the structure. An alternative point of view is that ionic
charge neutrality is in fact not required and that instead there are mobile holes
in some of the copper–oxygen layers, as is discussed later.

The chemical bonding in YBa2Cu3O7 is almost completely ionic for the Y3C and
Ba2C ions but is of a mixed ionic–covalent type in the copper–oxygen layers. The inter-
action between the Y3C and Ba2C ions and the ions in the neighboring copper–oxygen
layers is very weak. Thus the layers containing Y3C and Ba2C are insulating and the
charge carriers are confined to the conducting copper–oxygen layers.

As mentioned earlier, if overall ionic charge neutrality were required within the
YBa2Cu3O7 formula unit with the assumed ionic charge states Y3C,Ba2C, and O2�,
the three Cu ions could have the following ionic charge states: Cu2C,Cu2C, and Cu3C

(i.e., one of the three Cu ions per formula unit would be trivalent). But requiring overall
neutrality for ionic charge would mean that no delocalized charge carriers are present
and YBa2Cu3O7 would be an insulator. For YBa2Cu3O7 to be a metallic conductor,
the Fermi energy must lie within a partially filled energy band. This would result if all
the Cu ions were actually in the Cu2C charge state, resulting in one bonding electron
per formula unit missing from the CuO2 layers. This is equivalent to the point of view
that there is one mobile hole per formula unit in the CuO2 layers. In fact, it is not
clear where the hole is present: on the Cu or O ions, in the CuO2 layers, or in the CuO
chains. If the Cu3C ion is present instead, the hole would appear in the partially filled
3d shell of this ion.

There are at least two different ways to understand the presence of mobile
holes in the stoichiometric YBa2Cu3O7 compound in terms of chemical bonding
arguments. According to a strictly ionic or formal charge viewpoint, if the charge
states of the ions are assumed to be Y3C,Ba2C,Cu2C, and O2�, the net ionic
charge per YBa2Cu3O7 formula unit is qion D C3eC 2�C2e�C 3�C2e�C 7��2e� D
C13e� 14e D �e. Overall charge neutrality in the material could then be maintained
by the presence of one hole with charge Ce per formula unit in the CuO2 layers.
From the alternative, covalent bonding point of view each of the four oxygen ions in
the CuO2 layers is assumed to have an ionic charge of C2e (instead of �2e) and to
contribute two electrons to the covalent bonds that it forms with its neighboring Cu2C

ions. According to this covalent point of view, each formula unit of YBa2Cu3O7 has
only 15 electrons available for bonding in the two CuO2 layers, including three from
the Y3C ion, instead of the 16 required for the eight covalent bonds present. There is
again one hole per formula unit present in the CuO2 layers. Since the actual bonding
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in the copper–oxygen layers is of a mixed ionic–covalent type, the true picture must
lie somewhere between the ionic and covalent limits just described.

If oxygen vacancies are present in the material, as indicated by the formula
YBa2Cu3O7�x with x > 0, then either fewer than one-third of the Cu ions would
have to be in the C3 charge state in order to preserve ionic charge neutrality, or there
would be fewer holes in the CuO2 layers. If the oxygen vacancies occur in the CuO
chains, corresponding to the formula Y(BaO)2�CuO2�2CuO1�x, the Cu2C ions in the
chains could donate electrons to the CuO2 layers, thereby removing holes and causing
a reduction in Tc.

The phase diagram for YBa2Cu3O7�x is shown in Fig. 16.18b. The physical proper-
ties of this material can be seen to be extremely sensitive to the oxygen stoichiometry,
with structural and metal–insulator transitions along with rapid changes in both TN
and Tc occurring as x is varied. Note that YBa2Cu3O7�x becomes tetragonal and
semiconducting for x > 0.65.

HgBa2Ca2Cu3O8 (HBCCO or Hg-1223). The current record for the highest known
Tc, 135 K, is held by the n D 2 or Hg-1223 member of the HgBa2CanCunC1O2nC4

family of compounds. For this family Tc increases with the number �nC 1� of CuO2

layers per unit cell (see Table 16.5). The unit cell of the n D 1 or Hg-1212 compound
with Tc D 128 K is shown in Fig. W16.5. The excess oxygen that is apparently neces-
sary for the superconductivity of HgBa2Ca2Cu3O8Cx resides in the Hg layers. The
hole doping of the CuO2 layers therefore originates from the Hg layer. Problems with
control of composition have been found in this material due to loss of Hg during
high-temperature processing.

Normal-State Properties. To obtain an understanding of the origins of the high-Tc
superconductivity in the cuprates, it is first necessary to understand why they are

Hg

Ba

Ca

O (partial occupancy)

Cu

O

Figure W16.5. Tetragonal unit cell of the nD1 or Hg-1212 member of the HgBa2CanCunC1O2nC4

series of compounds with Tc D 128 K. (Reprinted from R.L. Meng et al., Physica C214, 307
(1993), copyright 1993, with permission from Elsevier Science.)
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metallic conductors and not insulators in the normal state. Two viewpoints are possible:
Chemical bonding effects lead to the existence of mobile charge carriers or the delo-
calization of the charge carriers can be understood as resulting from the particular
electronic band structure of the material. Both points of view are useful and can provide
important insights into the existence of the normal-state metallic behavior. Extrinsic
effects such as doping can also play an important role in determining the conductivity
of these materials in the normal state.

In the normal state above Tc, the cuprate materials are not typical metals and are
not very good conductors of electricity. In addition, the electronic contribution to
the specific heat in these materials is rather high, about a factor of 10 greater than
that of simple metals such as Na or Cu. This latter result is attributed to the high
effective masses of the carriers in high-Tc materials. The normal-state properties of
these materials are strongly anisotropic, due to their tetragonal or orthorhombic crystal
structures. Another unusual property of the high-Tc materials is that their electrical
resistivities vary linearly with temperature above Tc.

From a covalent point of view, the chemical bonding between the Cu and O atoms
in the copper–oxygen layers makes use of the s, px, py , and dx2�y2 atomic orbitals of
the Cu2C�3d9� ions and the px and py atomic orbitals of the filled-shell O2� (2s22p6)
ions, as shown in Fig. W16.6. These four atomic orbitals on Cu atoms hybridize to
form square-planar dsp2 hybrid orbitals which then overlap, that is, interact with the
px and py atomic orbitals on adjacent O atoms (see Section W2.1 for a description of
these atomic and hybrid orbitals). These interactions can then lead to the formation of
&-type molecular orbitals or chemical bonds which in the cuprate superconductors are
actually of a mixed ionic–covalent nature due to the different electronegativities of the
Cu and O atoms involved. It is clear that occupation of all four dsp2 orbitals associated
with the Cu2C ion requires that two additional electrons be donated by other ions in the
structure, such as Y3C and Ca2C. The electrons in these bonds form the valence energy
bands of the material, which lie below the Fermi energy. From molecular orbital theory
it appears that the states at EF in YBa2Cu3O7 will be antibonding orbitals of the Cu
dx2�y2 type. Most high-Tc cuprates display hole-type conduction in a conduction band
that is nearly half full.

Cu2+:dsp2

O2−:px

O2−:py

Figure W16.6. Chemical bonding between the Cu and O atoms in the copper–oxygen layers
illustrated using the atomic orbitals involved: the square-planar dsp2 hybrid orbitals of the Cu
atoms and the px and py orbitals of the O atoms.
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Rather than using the extended Bloch wavefunctions which are appropriate in good
metals, the highly correlated nature of the electrons or holes in the copper–oxygen
planes is often treated using tight-binding Hubbard models of the type used to describe
the behavior of electrons associated with magnetic ions, as discussed in Chapter W9.
The tight-binding approximation in two dimensions is applied to the Cu–O planes in
Section 7.9. The goal of these models is to predict the occupancy by a pair of elec-
trons of the orbitals on two adjacent sites. The effects of electrons hopping between the
sites and of Coulomb repulsion between two electrons on a given site are the essential
ingredients of these tight-binding models. It is possible that the important aspects of
the high-Tc cuprate superconductivity can be understood in terms of the t–J version of
the Hubbard model. Here t is the tunneling or hopping matrix element, J the exchange
energy parameter given by J D t2/U, and U the Coulomb repulsion energy for two
electrons on the same site. In the limit U ! 0, the material will be a metal, while for
U × t, the material will be an insulator with one electron localized on each site. The
electrons in the high-Tc materials are strongly correlated because U is significantly
greater than the average kinetic energy of the electrons at EF. These strong correlations
can induce both localized magnetic moments, which may undergo antiferromagnetic
ordering and also localized electronic states leading to insulating behavior. An alterna-
tive approach to this problem is the resonant valence bond (RVB) model, in which the
ground state corresponds to the usual chemical bonds in the copper–oxygen planes.

Calculations of the energy bands based on the three-state Hubbard model appropriate
for the copper atom and two oxygen atoms per unit cell show that as a function of hole
doping into the CuO2 layers, peaks in the electronic density of states at EF can lead to
high Tc values. In addition, energy-band-structure calculations for these high-Tc mate-
rials have successfully predicted the observed anisotropy of the electrical conductivity
and have provided useful information concerning the distribution of charge, thereby
helping to clarify the chemical bonding present. Band-structure calculations predict
that the electronic states in the vicinity of EF are associated with the bonding orbitals
in the copper–oxygen layers, which originate from the Cu2Cdx2�y2 and the O2�px and
py atomic orbitals.

Metal–insulator (MI) transitions can also appear within the framework of the
Hubbard models as electrons are added to the energy bands. Metallic or conducting
behavior will occur when EF lies in a partially filled energy band. When EF is nearer
the top of an energy band and when there are unoccupied regions of the relevant
Brillouin zone outside the Fermi surface, hole-type conduction can dominate the elec-
trical behavior. MI transitions are indeed observed in the normal state of the high-Tc
materials, such as La2�xSrxCuO4�y , as the composition changes. This material is an
antiferromagnetic insulator with TN ³ 340 K when undoped (i.e., for x D 0 and y ½ 0)
and is metallic when doped (i.e., for y D 0 and x > 0.05; see Fig. 16.18).

All the high-Tc cuprate materials exhibit antiferromagnetic ordering in their insulating
phases, which results from interactions between the Cu �3d9� magnetic moments within
the CuO2 layers. The interaction responsible for the ordering is the indirect superexchange
mechanism involving the copperdsp2 hybrid orbitals and the oxygenp orbitals. The long-
range order along the c axis is controlled by the much weaker interlayer coupling of the
magnetic moments. The Néel temperature TN decreases rapidly as doping increases and
the metallic phase is approached. The incompatibility of the magnetic with the metallic
phase occurs because the localized 3d electrons involved in the long-range magnetic
order interact strongly with the delocalized charge carriers. As a result, the directions
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of the magnetic moments of the localized 3d electrons fluctuate rapidly, destroying the
antiferromagnetic long-range order. Short-range antiferromagnetic order can still exist
below Tc, however. Phase diagrams showing the dependencies of structure and of Tc
and TN on the compositional parameter x are shown in Fig. 16.18 for La2�xSrxCuO4�y
and YBa2Cu3O7�x. Note that YBa2Cu3O7�x is superconducting for x less than about 0.6
and is a semiconductor for 0.6 < x < 1. The oxygen content determines both the hole
concentration of this material and the shape of the Fermi surface. The Cu ions in YBCO
apparently have local moments m ³ 0.3 µB in the normal state above Tc.

Measurements of the Hall effect in the normal state of high-Tc materials have
provided useful information on the signs and concentrations of the charge carriers,
and, in conjunction with measurements of the electrical conductivity, have also helped
to determine the charge carrier mobilities. These Hall effect studies have identified
holes as the majority carriers in most high-Tc materials. The concentration of holes
is observed to increase with increasing T and with doping (e.g., replacement of La3C

by Sr2C in La2CuO4). In La1.9Sr0.1CuO4 with Tc ³ 35 K, the hole concentration is
³ 1 ð 1027 m�3, at least a factor of 10 lower than that found in typical metals. This
corresponds to about 0.1 hole per Cu atom, as expected from the Sr fraction. Hall effect
studies in YBa2Cu3O7�x also identify holes as the charge carriers, with concentrations
that decrease as x increases (i.e., as more O vacancies are present in the material).

The electrical resistivities of the high-Tc materials in their normal states are observed
to have temperature dependencies of the form

��T� D AC BT. �W16.2�

This behavior is unusual since in conventional metals, ��T� D AC BTn with n ³ 5
as T ! 0 K. To illustrate this behavior, the measured resistivities for YBa2Cu3O7

along the a, b, and c axes are presented in Fig. W16.7. The normal-state electrical
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Figure W16.7. Measured electrical resistivities for YBa2Cu3O7 along the a, b, and c axes.
[From T. A. Friedmann et al., Phys. Rev. B, 42, 6217 (1990). Copyright 1990 by the American
Physical Society.]
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resistivity of YBa2Cu3O7 can be seen to be quite anisotropic, with the resistivity �c
perpendicular to the ab planes a factor of up to 150 times greater than the in-plane
resistivities �a and �b. This behavior is consistent with the effective mass mŁ

c for the
motion of charge carriers along the c axis being much greater than mŁ

a and mŁ
b for

motion in the ab plane. Evidence for localization of the charge carriers along the c
axis has been found in some samples (i.e., �c increases as T decreases). The lowest
resistivity is found along the b axis, the axis of the Cu–O chains in the CuO planes,
indicating that the Cu–O chains do contribute to the electrical conductivity in this
material.

The temperature dependence of the resistivity of thin films of DyBa2Cu3O7�x as a
function of x is shown in Fig. W16.8. The transition from semiconducting to metallic
behavior can be observed as the concentration of oxygen vacancies decreases to zero.
It should be noted that the replacement of Y by the rare earth atom Dy has essentially
no effect on the superconducting or normal-state properties of this material.

Very similar values of the coefficient in Eq. (W16.2) of the linear term in �a�T�
or �b�T� are found for most of the cuprate materials above their Tc values, indicating
that the CuO2 layers may exhibit a type of universal normal-state behavior in these
materials.
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Figure W16.8. Temperature dependence of the resistivity of thin films of DyBa2Cu3O7�x . The
resistivity increases as x increases. The transition from semiconducting to metallic behavior
occurs as the concentration of oxygen vacancies decreases. [From G. Yu et al., Phys. Rev. B,
45, 4964 (1992). Copyright 1992 by the American Physical Society.]
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W16.6 Further Discussion of Superconducting-State Properties of the
Oxide-Based Ceramic Superconductors

An important property of the high-Tc cuprate superconductors is the strongly
anisotropic nature of the superconductivity which results from the anisotropic tetragonal
or orthorhombic structures of these materials. With the obvious exception of the
transition temperature Tc, all the superconducting properties (i.e., critical fields and
critical currents, superconducting energy gaps, penetration depths, coherence lengths,
etc.) have values that are the same (or nearly the same) in the ab plane but which
differ considerably from the corresponding values along the c axis. These anisotropies
result from the anisotropic structure and effective masses mŁ of the charge carriers
in the normal state, with mŁ

c/m
Ł
a ³ 30 in YBa2Cu3O7. Even-higher effective-mass

anisotropies are observed in the BSCCO and TBCCO families.
Since � / �mŁ�1/2 [Eq. (16.10)] and � / vF / �mŁ��1/2 [Eq. (16.32)], the following

inequalities can be expected to apply in high-Tc superconductors where � − � and
mŁ
c × mŁ

a:

�c > �ab × �ab > �c, �W16.3a�

�c × �ab × 1. �W16.3b�

These predictions are consistent with the following results obtained for YBa2Cu3O7:

�c ³ 500 nm > �ab ³ 100 nm × �ab ³ 3 nm > �c ³ 0.5 nm �W16.4�

as well as the observed extreme type II behavior. The clean limit ordinarily applies
to YBa2Cu3O7 since the electron mean free path l ³ 10 nm is much greater than �ab
or �c. As a result of this anisotropy, the cores of vortices will be circular when H is
applied along the c axis and elliptical when H is applied parallel to the ab plane. In the
mixed state with H applied along the c axis, the vortices are no longer continuous flux
tubes but are proposed to be individual “pancake” vortices in a given CuO2 layer which
are only weakly coupled to each other through the intervening, nonsuperconducting
layers. In addition, the low values of the coherence lengths � imply that the properties of
these superconductors will be quite sensitive to deviations from chemical and structural
uniformity.

Using the Ginzburg–Landau prediction that Hc2�i� / 0/�j�k , it can be shown that

Hc2�c�

Hc2�ab�
D
√
mŁ
ab

mŁ
c

− 1. �W16.5�

Thus the upper critical field Hc2�c� for H applied along the c axis in anisotropic
superconductors such as YBa2Cu3O7, where mŁ

c × mŁ
a or mŁ

b is predicted to be much
less than the in-plane critical field Hc2�ab�. This is indeed observed to be the case
for YBa2Cu3O7, where it is found that Bc2�c� D �0Hc2�c� ³ 20 T, while Bc2�ab� D
�0Hc2�ab� ³ 70 T at T D 77 K. The critical transport currents Jc in the high-Tc super-
conductors are also quite anisotropic, with the values of Jc parallel to the ab planes
typically 10 times greater than Jc parallel to the c axis (see Table W16.2). Apparently,
superconducting currents can flow along both the copper–oxygen layers and chains in
YBa2Cu3O7�x.
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The superconducting energy gaps of the high-Tc superconductors are also observed
to be quite anisotropic, with 2εab�0� ³ �6 to 8� kBTc and 2εc�0� ³ �2 to 4� kBTc. The
energy gap in YBa2Cu3O7 as measured by infrared reflectivity is quite anisotropic,
with 2εab�0� ³ 8kBTc and 2εc�0� ³ 3.5kBTc, the latter being in good agreement with
the weak-coupling BCS prediction and the former giving evidence for strong-coupling
behavior. Electron tunneling studies tend to give a lower value for the 2εab�0� gap,
which is, however, still well above the BCS prediction of 3.52kBTc.

The microwave surface resistance Rs of YBa2Cu3O7�x just below Tc shows evidence
for an energy gap of magnitude 2ε�0� ³ 8kBTc. Below Tc/2, however, the measured
Rs is much higher than would be predicted by BCS on the basis of an energy gap of
this size. These enhanced losses at lower T are due to unpaired charge carriers which
are present due either to a much smaller energy gap or to the absence of a true gap (i.e.,
gapless superconductivity). It has been suggested that these may be carriers residing
in the Cu–O chains. This “gapless” behavior is enhanced in oxygen-deficient samples
with x > 0. An additional source of microwave losses in some samples could be weak
links between the superconducting grains.

It is found in the high-Tc superconductors that �c is comparable to the typical spacing
between adjacent superconducting CuO2 layers within a given unit cell and less than
the distance between groups of CuO2 layers in adjacent unit cells. Thus the CuO2

layers are expected to be only weakly coupled to each other. The HgBa2Ca1Cu2O6

structure shown in Fig. W16.5, for example, has two CuO2 layers within each unit
cell which are separated from each other by Ca2C layers and from the CuO2 layers in
adjacent unit cells by the BaO and Hg2C layers.

The roles that the different layers or sites play in the high-Tc materials is illus-
trated by the effects that magnetic ions have on the superconductivity when they are
introduced into the structure. Magnetic rare earth ions on the Y site in YBCO do not
affect the superconductivity even if they order antiferromagnetically below Tc. The
3d magnetic ions on the Cu ion site destroy superconductivity, however, because they
interact much more strongly with the superconducting electrons or holes.

While results of specific-heat studies show a jump at Tc, it has not been possible
to check the BCS weak-coupling prediction that Ces�Tc��Cen�Tc� D 1.43�Tc, due
to the inability to obtain reliable values for � . Indeed, since Hc2 is so large for these
materials, it has not been possible to return to the normal state at sufficiently low T
where the �T term could be extracted reliably from the measured specific heat. In the
cuprates the phonon T3 contribution to the specific heat dominates over the electron
�T linear term at Tc. This behavior is opposite to that observed for relatively low-Tc
superconductors such as Sn, Pb, and Nb.

W16.7 Unusual Superconductors

The wide variety of materials that become superconducting is further illustrated by
several materials that may be considered to be unusual, not necessarily because the
mechanism responsible for superconductivity is no longer the BCS indirect elec-
tron–phonon mechanism but because the existence or some aspect of the supercon-
ductivity is unexpected or unusual. Several examples are described next.

Intercalated Graphite. When K atoms are chemically inserted (i.e., intercalated )
between the atomic planes of crystalline graphite, stoichiometric crystalline compounds
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such as KC8 can be obtained which are superconductors even though neither of the
components (i.e., semimetallic graphite or metallic K) are themselves superconductors.
The compound KC8 retains the structure of graphite but with regular planar arrays of
K atoms present which are separated along the c axis by single planes of C atoms. The
superconductivity of KC8 with Tc ³ 0.39 K apparently arises from the interactions
between the electrons provided by the “donor” K atoms and the phonons of the planar
graphite structure.

Doped Fullerites. In the solid state the C60 molecules known as buckminsterfullerene,
as fullerene, or simply as buckyballs possess a three-dimensional FCC crystal struc-
ture known as fullerite. When the two tetrahedral and one octahedral vacant interstitial
sites per C60 molecule in the FCC structure are occupied by alkali metal atoms such
as K, the insulating C60 solid becomes a conductor and superconductivity is observed.
These doped fullerites are known as fullerides. It has been observed that K3C60 has
Tc D 19 K, while a Tc value as high as 47 K has been found in Cs3C60. As in inter-
calated graphite (e.g., KC8), the dopant alkali KC ions in solid K3C60 provide the
conduction electrons, while the C60 molecular structure provides both the necessary
energy levels corresponding to extended or metallic electronic states and the phonons
that are needed for the occurrence of superconductivity, assuming that the BCS indirect
electron–phonon mechanism is operative.

Si and Ge Under Pressure. When Si and Ge are placed under pressures of about
120 atm, they undergo transformations to more highly coordinated metallic structures in
which each atom has more than four NNs. In this metallic state they become supercon-
ducting at Tc�Si� ³ 6.7 K and Tc�Ge� ³ 5.3 K. Note that metallic Sn and Pb from the
same column of the periodic table are conventional superconductors with Tc D 3.7 K
and 7.2 K, respectively. Other normally nonmetallic elements which become super-
conducting due to phase transitions which occur under pressure include the group V
elements P, As, Sb, and Bi and the group VI elements S, Se, and Te.

Heavy-Fermion Systems. There exist intermetallic compounds and metallic alloys
in which the electronic contributions to the specific heat and to the Pauli paramagnetic
susceptibility can be anomalously large, by about a factor of 100 above the predictions
of the free-electron model. These anomalies can also occur for the rare earth elements,
as described in Section 12.4, and are generally attributed to a strong, narrow peak in
the density of electron states at EF. Since ��EF� is proportional to the band-structure
effective mass mŁ of the electrons, these materials are usually called heavy-fermion
or heavy-electron systems. When superconducting, these materials have relatively low
Tc values: for example, Tc D 0.43 K for UPt3, 0.6 K for CeCu2Si2, and 1.3 K for
URu2Si2. In this sense these materials differ dramatically from essentially all other
superconductors where a high electronic specific-heat coefficient � is usually correlated
with a high Tc value (see Fig. 16.19). These heavy-fermion systems often undergo
antiferromagnetic ordering of the 4f or 5f magnetic moments at the Néel temperature
TN, which lies above the corresponding superconducting Tc.

A common component of these systems is an element with an unfilled f shell
(e.g., the rare earth Ce or the actinide U with 4f2 and 5f3 electron configurations,
respectively). These 4f or 5f electrons apparently hybridize or mix strongly with
the conduction electrons, resulting in a narrow energy band that overlaps the Fermi
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energy of the material. The mechanism for superconductivity in these heavy-fermion
systems has not yet been identified. It is possible that the indirect electron–phonon
BCS mechanism does not apply.

Charge-Transfer Organic Solids. Some unusual charge-transfer compounds
composed of organic molecular electron-donor ions such as BEDT-TTFC (ET for short;
[C2S2C2S2�CH3�2]2

C) and inorganic electron-acceptor ions such as Cu(NCS)2
� are

highly conducting materials that can become superconducting at temperatures as high as
Tc D 10 K. The properties of these charge-transfer organic superconductors are usually
highly anisotropic. They exhibit nearly one- or two-dimensional conducting behavior,
due to the presence in the structures of stacked planar aromatic rings connected by 0
bonds. In this sense there are some interesting similarities between these materials and
the high-Tc cuprate superconductors.

W16.8 Further Discussion of Critical Currents

The critical transport current density Jc in the mixed state of a type II superconductor
will be the current for which the Lorentz forces exceed the average pinning forces that
tend to prevent vortex motion. Thermal depinning of vortices can also lead to vortex
motion and hence losses. This will be especially important in the high-Tc materials
where the available thermal energy kBT can exceed the depth of the typical pinning
potential well. The introduction of defects such as dislocations in a cold-worked mate-
rial can lead to significant increases in the critical current without at the same time
affecting the upper critical field Hc2. The introduction of defects corresponding to a
certain size, type, and concentration of pinning center can be carried out through a
variety of techniques, including irradiation with protons or neutrons. The development
of superconducting materials with sufficiently strong pinning forces to allow the attain-
ment of high current densities in the presence of high magnetic fields is an area of
great current interest.

Some typical values of critical transport current densities Jc for superconductors of
technological importance are given in Table W16.2. Also specified are the temperature
and applied magnetic field at which Jc was measured. In the case of an applied field,
the direction of current flow is perpendicular to the direction of H.

It can be seen from Table W16.2 that the highest critical currents in YBa2Cu3O7 are
found in thin films rather than in single crystals. Apparently, the films contain more
pinning centers than do the single crystals. For the single crystals, Jc can be increased
by a factor of about 100 through neutron or proton irradiation. Oxygen vacancies in
YBa2Cu3O7�x may be the most important pinning centers. Grain boundaries between
neighboring YBa2Cu3O7 crystallites which are at low angles with respect to the CuO2

planes are necessary for the achievement of high critical current densities since high-
angle grain boundaries can act as weak links between the grains. It can also be seen that
for a given superconductor, Jc decreases with increasing T and also with increasing
applied externalH. This temperature dependence for Jc is consistent with the prediction
of the G-L theory that

Jc�T� D Hc�T�/��T�. �W16.6�

This critical current density is essentially equal to the depairing current density deter-
mined by equating the kinetic energy density of the current-carrying electrons to the
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TABLE W16.2 Critical Current Densities Jc for Superconductors of Technological
Importance

T Jc B D �0H
Superconductor (K) �MA/cm2� (T) Comments

Nb0.36Ti0.64 4.2 0.37 5 Filament
Nb3Sn 4.2 >0.1 12 Filament
YBa2Cu3O7�x 5 1.4 0–1 Single crystal, B ? ab

plane
77 0.01 0.1 Single crystal, B ? ab

plane
77 0.0043 1 Single crystal, B ? ab

plane
4.2 60 0 Epitaxial film
4.2 40 8 Epitaxial film, B in ab

plane
4.2 6 8 Epitaxial film, B ? ab

plane
4 1300 0 Epitaxial film, 500 nm

thick
77 1 0 1 to 2-µm films on metal

tapes
77 0.1 5 1 to 2-µm films on metal

tapes
Bi2Sr2CaCu2O8 4.2 0.17 30 Filaments in

Ag-sheathed tape
Bi2�xPbxSr2Ca2Cu3O10 4.2 0.1 25 Filaments in

Ag-sheathed tape
77 0.05 0 Filaments in

Ag-sheathed tape

Source: Data collected from various sources, including C. P. Poole, Jr., H. A. Farach, and R. J. Creswick,
Superconductivity, Academic Press, San Diego, Calif., 1995, p. 392.

superconducting condensation energy. The depairing current density corresponds to
the excitation of charge carriers across the superconducting energy gap due to their
increased kinetic energy associated with the flow of transport current. Measured values
of Jc often fall well below this prediction, due to the vortex motion, which is not
accounted for in the G-L theory.

A vortex that is pinned and therefore unable to move also hinders the motion
of neighboring vortices. Thus vortex motion and pinning are collective processes,
especially for fields near Hc2. When the pinning forces are not strong enough to
prevent vortex motion, the superconductor is termed “soft”, while the reverse is true
in “hard” superconductors. Hard superconductors exhibit magnetization curves which
show strong hysteresis effects due to the trapping of flux caused by vortex pinning.
Examples of hysteretic magnetization curves for the type II high-Tc superconductor
YBa2Cu3O7 are shown in Fig. W16.9. As the superconductor is cycled around the
magnetization loop the energy dissipated in the material per unit volume is proportional
to the area inside the hysteresis loop [see Eq. (17.10)]. The remanent magnetization
Mr and the coercive field Hc are defined as shown. The magnetization Mr remaining
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Figure W16.9. Magnetization curves for the high-Tc superconductor YBa2Cu3O7: (a) low-field
loops; (b) high-field loops. The observed hysteresis is due to the trapping of flux caused by the
pinning of vortices. The remanent magnetization Mr and the coercive field Hc are defined as
shown. The quantities Hm and Hg are the magnetic fields at which M reaches a maximum and
above which M is reversible, respectively. (From S. Senoussi et al., J. Appl. Phys., 63, 4176
(1988). Copyright 1988 by the American Institute of Physics.)

at H D 0 corresponds to the magnetic moment per unit volume of the shielding
supercurrents which flow around regions of trapped flux. These regions of trapped
flux are either void regions or regions that remain normal even after most of the mate-
rial has returned to the superconducting state. The fraction of the sample that remains
in the normal state at H D 0 is proportional to Mr .

The phenomenon of flux creep can occur in the presence of a transport current
flowing through a superconductor when the pinning forces are strong, while the process
of flux flow occurs when the pinning forces are weak. In both cases, dissipation is
present. The results of measurements of the critical currents in two Nb0.5Ta0.5 alloys
with different defect concentrations are shown in Fig. W16.10. The voltage–current
curves shown have intercepts on the current axis equal to ic, the critical current at which
a voltage first appears in the superconductor. The slopes dV/di for i > ic yield the flux-
flow resistance Rff, which corresponds to a resistivity �ff ³ �n�B/Bc2�, where �n is the
normal-state resistivity and B is the average flux density in the mixed state. Note that ic
is higher for the alloy with the higher defect or pinning center concentration, while the
flux-flow resistances are independent of the defect level. The resistance Rff increases
with increasing magnetic field, as the vortices move faster through the material, and
approaches the normal-state resistance as H ! Hc2.

The collective motion of vortices can be understood in terms of the flow of a
two-dimensional viscous fluid. When the vortices are strongly pinned, the vortex fluid
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Figure W16.11. Magnetic phase diagram for a type II high-Tc superconductor. The vortex solid
(or glass) and vortex liquid phases in the mixed state between Hc1 and Hc2 are shown.

instead forms a solid phase. When long-range order is present in the solid phase, a
vortex lattice is formed (see Fig. 16.11). The vortex solid is termed a vortex glass
if only short-range order is present, due to the spatial randomness of the pinning
centers. A schematic magnetic phase diagram for a type II high-Tc superconductor
showing the vortex solid and liquid phases in the mixed state between Hc1 and Hc2
is presented in Fig. W16.11 for H perpendicular to the ab planes. In practice, Hc1
can be orders of magnitude less than Hc2. This phase diagram is considerably more
complicated than the simpler version given in the textbook in Fig. 16.7c for low-Tc
conventional type II superconductors. The fact that dissipation-free transport of current
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can occur only in the vortex solid phase where the vortices are strongly pinned has
complicated the development of the high-Tc superconductors for high-field current-
carrying applications. Recent progress that has been made in this area is discussed
later when large-scale applications of superconductivity are described.

Note that the vortex solid “melts” as either higher temperatures (thermal activation)
or higher magnetic fields are applied to the superconductor. Under these conditions the
vortices become depinned from defects and decoupled from each other. This transition
occurs at the irreversibility temperature Tirr shown in Fig. W16.11, which defines
the melting line separating the vortex solid and liquid phases. This boundary also
serves to define the temperature-dependent irreversibility magnetic field Hirr. Magnetic
flux-dependent reversibility is observed in the vortex liquid phase, while magnetic
irreversibility is found in the vortex solid phase. Flux trapping therefore occurs much
more readily in the vortex solid phase. Even before the flux lattice melts, flux creep
can still occur for T < Tirr due to thermal activation of the vortices out of their pinning
potential wells. The velocity of the resulting flux motion is given by

v D vo exp
(

� U

kBT

)
, �W16.7�

where the activation energy U is a complicated function of current density J, magnetic
field H, and temperature T. Note that U ! 0 as J ! Jc. The energy U can have
values ranging from tenths of an electron volt up to several electron volts. The vortex
liquid phase is more evident and occupies a greater portion of the phase diagram for
high-Tc superconductors than for conventional superconductors, due to the higher Tc
values of the former, which enhance the effects of thermal depinning. The boundary
between the vortex solid and liquid phases can be shifted to higher magnetic fields and
temperatures by introducing additional pinning centers into the superconductor which
help to stabilize the vortex solid phase.

Although defects are useful for the pinning of vortices, if too much of the supercon-
ductor is defective (e.g., nonsuperconducting), the necessary superconducting current
paths will not be present.

W16.9 Further Discussion of Large-Scale Applications

Since Nb3Sn is inherently brittle and cannot be drawn down by itself into wires, the
wire used for superconducting applications is typically formed by inserting Nb rods
into Sn tubes which are then drawn down repeatedly to a certain size. The thin rod
thus formed is then inserted into a Cu tube and drawn down repeatedly again. Heat
treatment is then used to form the Nb3Sn superconducting compound at the Nb/Sn
interfaces. The resulting wire can carry high currents in a lossless manner and is also
relatively flexible and mechanically stable due to the copper sheathing. Nb–Ti alloys do
not require such complex processing since they have the advantage of being inherently
ductile.

The pinning centers in Nb–Ti alloys can be created by annealing processes that
cause the precipitation of clusters of metallic ˛-Ti with Tc ³ 0.4 K. After drawing
the wire down, the Ti pins typically are ³ 1 to 2 nm in size and spaced ³ 3 to 6 nm
apart. Pinning centers can also be introduced into the Nb–Ti alloy in an artificial
manner by placing a macroscopic pin material such as a low-field superconductor (Nb
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or Ti), a normal metal (Cu), or even a ferromagnetic metal (Ni or Fe) into the alloy
before drawing it down. The ferromagnetic pins are especially effective because of the
destructive effect that magnetic moments have on superconductivity.

The high-Tc cuprate superconductors are ceramics and hence are inherently brittle.
This property presents a serious challenge for the fabrication of long wires of these
materials. The current-carrying capacity of polycrystalline high-Tc samples can be
improved by techniques which enhance intergrain contact so that superconducting
currents can easily flow from one grain to another, preferably parallel to the ab planes,
which have higher critical currents. High-angle grain boundaries in high-Tc materials
which form weak links between adjacent superconducting crystalline grains will limit
the lossless flow of supercurrents through the materials.

High-Tc superconductors tend to have weaker pinning forces than elemental or inter-
metallic compound superconductors, due in part to the fact that they have “pancake”
vortices (i.e., the supercurrents surrounding each vortex exist only within the CuO2

layers). Therefore, the vortices in adjacent CuO2 layers are not as strongly coupled
to each other as in superconductors whose structures are three-dimensional. Intrinsic
pinning in high-Tc materials refers to the difficulty that vortices have in moving perpen-
dicular to the copper–oxygen layers through the isolation barriers composed of layers
of atoms which are essentially normal material. The pancake vortices can move within
the ab planes, and defects confined to a given layer will affect only the motions of
vortices in that layer. Flux creep occurs much more rapidly when vortices move parallel
to the copper–oxygen layers than when the vortex motion is perpendicular to the layers.

The vortex solid is much more stable in YBa2Cu3O7 than in other high-Tc super-
conductors, such as the BSCCO family. This is likely the result of pinning centers with
deeper potential wells in YBa2Cu3O7. Also, because the spacing between groups of
superconducting CuO2 layers is smaller in YBa2Cu3O7 than in the BSCCO family, the
pancake vortices are more strongly coupled along the c axis in YBa2Cu3O7. Never-
theless, YBa2Cu3O7 tends to have lower critical currents due to weak links between
adjacent superconducting grains and is more difficult to prepare in wire form.

A method similar to that used for Nb3Sn is employed for some high-Tc
materials where a silver tube is filled with powder of, for example, Pb-stabilized
Bi2�xPbxSr2Ca2Cu3O10. The filled tube is then drawn, rolled, and sintered, resulting
in a material that is fairly well aligned with the superconducting CuO2 layers of the
crystallites lying roughly parallel to each other. This desirable platelike microstructure
of the BSCCO superconductors results from the ease of cleavage of the two adjacent
BiO layers perpendicular to the c axis (see Fig. 16.17). The success of this processing
method is due to the chemical stability of the high-Tc materials in the presence of
Ag and also to the ease of diffusion of oxygen through the Ag sheath, that allows the
proper stoichiometry to be achieved following sintering or annealing in O2. Heavy-ion
irradiation of Bi2Sr2Ca2Cu3O10Cx/Ag tapes introduces columnar defects in the form
of amorphous regions ³ 7.4 nm in diameter surrounded by an associated strain field.
These columnar defects are currently the most efficient pinning centers known for flux
lines in layered superconductors, such as the high-Tc cuprates.

Although some important fabrication problems have been solved, the losses in
Bi2Sr2Ca2Cu3O10 wires remain too high for their application at T D 77 K in high
magnetic fields. When used in applications such as superconducting magnets or elec-
trical machinery where high magnetic fields are present, this material must be kept
below T D 25 to 30 K in order to operate in the vortex solid region of the magnetic
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phase diagram, where resistive losses are low. The magnetic field dependence of the
critical current density in BSCCO tapes sheathed in Ag is presented in Fig. W16.12
and compared with Jc for commercial Nb–Ti and Nb3Sn superconductors. It can be
seen that Ba2Sr2Ca2Cu3O10 retains its ability to carry transport currents to much higher
fields at T D 4.2 K, but not at 77 K, than the Nb-based superconductors.

The growth of YBa2Cu3O7 on flexible Ni alloy tapes with matching thermal expan-
sion coefficients and the use of an intermediate buffer layer of yttria-stabilized zirconia
to prevent chemical interactions has proven to be a useful method of synthesizing
superconducting wire which can operate at T D 77 K with Jc ³ 1 MA/cm2 in zero
magnetic field (see Table W16.2). When operated at T ³ 64 K, short lengths of these
YBa2Cu3O7 conductors have critical current densities in fields up to 8 T, which are
equal to those of the currently used Nb–Ti and Nb3Sn materials at T D 4.2 K.

In a high-Tc superconductor such as YBa2Cu3O7, where � ³ 1 to 2 nm, the optimum
configuration of pinning defects corresponds to a very high density of small defects.
Thus any form of atomic disorder should serve as a pinning center in these high-
Tc superconductors. The difficulty is in introducing this atomic-level disorder in a
reproducible manner.

W16.10 Josephson Effects

When both sides of a tunnel junction are superconducting (e.g., for an S–I–S junction),
an additional contribution to the usual quasiparticle or normal-electron tunneling current
can arise from the passage of a supercurrent of Cooper pairs across the junction even
when the applied voltage V D 0. The resulting Josephson current has been observed
experimentally, and the related Josephson effects serve as the basis for the operation
of SQUIDs as the most sensitive existing sensors of magnetic flux. The Josephson
relations that are the basis of the Josephson effects are derived next.
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Consider two superconductors S1 and S2 which are part of an S1 –I–S2 tunnel
junction (Fig. W16.13). S1 and S2 are weakly coupled to each other through an insu-
lating barrier I, which serves as a weak link. The time-dependent Schrödinger equations
for the macroscopic superconducting wavefunctions 1 and 2 in the two supercon-
ductors are given by

ih̄
d1

dt
D eV1 CK2,

ih̄
d2

dt
D eV2 CK1.

�W16.8�

Here the strength of the coupling through the barrier is represented by the parameter
K. The physical significance of these equations is that the wavefunctions and the
corresponding Cooper pairs of the two superconductors can overlap each other within
the junction region. When the overlap is sufficiently strong, the phases of the two
wavefunctions will be coupled to each other and Cooper pairs will be able to tunnel
across the junction even for V D 0. Note that these equations are also appropriate for
the case when a voltage is applied across the junction.

The wavefunctions 1 and 2 can be written as the products of an amplitude factor
expressed in terms of the concentration ns of superconducting electrons and a phase
factor as follows:

1�t� D
√
ns1�t�e

i91�t�,

2�t� D
√
ns2�t�e

i92�t�,
�W16.9�

where 9�t� D 92�t�� 91�t� is the phase difference between the wavefunctions on opposite
sides of the junction. Note that j1j2 D ns1 and j2j2 D ns2. When these expressions
for 1 and 2 are substituted into Eq. (W16.8), the following results can be derived:

h̄
dns1
dt

D 2K
p
ns1ns2 sin 9, �W16.10a�

h̄
dns2
dt

D �2K
p
ns1ns2 sin 9, �W16.10b�

d9

dt
D 2eV

h̄
. �W16.11�
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The Josephson current i�t� that can flow through the junction is given in terms of
the rates of change with time of ns1 and ns2 by

i�t� D e

(
V1
dns1
dt

� V2
dns2
dt

)
. �W16.12�

Here the volumes V1 and V2 correspond to the regions in the superconductors in which
the changes in ns1 and ns2 occur, typically within a coherence length � of the junction.
The substitution of Eqs. (W16.10a) and (W16.10b) into Eq. (W16.12) results in the
following current-phase relationship:

J�t� D Jc sin 9�t�. �W16.13�

The Josephson current density is defined as J D i/A, where A is the cross-sectional
area of the junction. Thus it is evident that an applied current will control the phase
difference 9 across the junction. The prefactor Jc, the critical current density, corre-
sponds to the maximum current that can flow through the junction when V D 0. It is
given by

Jc D 4eK
p
ns1ns2
h̄

�V1 C V2�

A
. �W16.14�

Equations (W16.11) and (W16.13) are known as the Josephson relations and are the
fundamental expressions describing the tunneling of Cooper pairs.

Four distinct types of phenomena involving the tunneling of Cooper pairs across a
Josephson junction are discussed next.

DC Josephson Effect. The dc Josephson effect corresponds to the spontaneous flow
of the direct tunneling current J D Jc sin 90 given in Eq. (W16.13) for V D 0. Since
in this case d9/dt D 0 from Eq. (W16.11), the difference in phase 90 of the supercon-
ducting order parameter across the junction will be constant. Thus a superconducting
Josephson junction can act as a direct-current source. It can be seen from Eq. (W16.14)
that J / ns�T�. It follows, therefore, that Jc�T� will increase from 0 at T D Tc and
will reach a finite value at T D 0 K, which can be shown to be about 80% of the
corresponding normal-metal tunneling conductance. For the current to exceed Jc, a
voltage must be present across the junction.

There exist junctions or weak links between pairs of superconductors in which the
current does not exhibit the sinusoidal dependence on the phase difference 9 expressed
in Eq. (W16.13). Although these are not Josephson junctions, they are nevertheless
sensitive to 9 and to changes in the magnetic flux  through the junction. True
Josephson tunneling can be observed only for the case of very thin barriers, ³ 1 nm
thick.

AC Josephson Effect. When a constant voltage is applied across the Josephson
junction, it follows from Eq. (W16.11) that the phase difference 9 will change linearly
with time according to

9�t� D 2eVt

h̄
C 90. �W16.15�



244 SUPERCONDUCTORS

In additional to the usual tunneling of normal electrons or quasiparticles, there will also
be a sinusoidal or alternating tunneling current of Cooper pairs in this case given by

J�V, t� D Jc sin
(

2eVt

h̄
C 90

)
. �W16.16�

This alternating current flows through the junction at the Josephson angular frequency
ωJ D 2eV/h̄ D 20V/0, where 0 is the flux quantum. This current corresponds to the
ac Josephson effect. For an applied voltage V D 1 mV, the corresponding Josephson
frequency fJ D ωJ/20 D 4.84 ð 1011 Hz is in the RF region. The junction can there-
fore act as a source of RF radiation whose frequency, 4.84 ð 1011 Hz/mV, can be
controlled precisely through the applied voltage. An interesting application of the ac
Josephson effect is in an extremely precise determination of the ratio e/h, which is
used in establishing a self-consistent set of recommended values of the fundamental
physical constants. The amplitude Jc is also a function of the applied voltage and
reaches a maximum at eV D 2ε, the superconducting energy gap. Note that in this
case a photon is involved in the Cooper pair tunneling for conservation of energy
because, with jVj > 0, the condensed states are no longer aligned across the junction.

A detailed analysis of the response of a Josephson junction when “driven” by a
constant voltage must also take into account the capacitance of the junction and also
any nonzero normal conductance that the barrier may have if it is not a perfect insulator.
While the response of the junction approaches normal-metal tunneling for eV > 2ε,
the i–V characteristics for eV < 2ε can be complicated and can exhibit hysteresis.

Inverse AC Josephson Effect. The inverse ac Josephson effect is observed when
either incident RF radiation or an applied RF current of frequency f causes a dc
voltage V D hf/2e to appear across an unbiased junction. The junction can thus serve
as a very sensitive detector of radiation. The i–V characteristic in this case exhibits
current steps or spikes as a function of the voltage, with the voltage separation between
steps given by V D hf/2e. For this application the use of a weak link in the form
of a constriction or point contact is preferred due to the ease of coupling the radiation
into or out of the junction.

Macroscopic Quantum Effects. The application of a transverse magnetic field H
to a “short” S1 –I–S2 Josephson junction can result in the flow of a tunneling current
given by

J�� D Jc sin 90
sin�0/0�

0/0
. �W16.17�

Here  is the total magnetic flux passing through the junction and given by  D
BAeff D �0Hdeffw, 0 is the quantum of flux, and 90 is the phase difference at a certain
point in the junction. A “short” junction is defined as one for which the magnetic field
of the junction current J is much less than the applied magnetic field H. Note that the
effective junction width deff D �dC �1 C �2� accounts for the penetration of magnetic
flux into the two superconductors adjacent to the junction (see Fig. W16.14). This
current represents a macroscopic quantum interference effect in which J�� oscillates
as a function of the magnetic flux  passing through the effective area Aeff of the
junction. Note that J D 0 when  D n0 (i.e., whenever an integral number of flux
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Figure W16.14. Application of a magnetic field H to an S1 –I–S2 tunnel junction results in
magnetic flux  D BAeff passing through the junction.

quanta pass through Aeff). The actual current flow changes directions over the cross
section of the junction perpendicular to the direction of the current flow.

W16.11 SQUIDS and Other Small-Scale Applications

The sensitivity of the two-junction loop (see Fig. 16.23a) to changes in magnetic flux
can be illustrated by first noting that the total change in phase9 of the superconducting
order parameter around the loop is proportional to the total magnetic flux  passing
through the loop. This follows from the expression∮

r9 · dl D 20

0

∮
A · dl, �W16.18�

where A is the vector potential and the integrals are taken around the loop along a path
on which the current density J D 0. The integral on the left is equal to 9 while the
integral on the right is just the total flux . Evaluation of the two integrals therefore
yields

9 D 9a � 9b D 20

0
, �W16.19�

assuming that the loop currents do not contribute to the flux . Since the phase is
constant within each superconductor, the changes in phase 9a and 9b occur across the
respective junctions.

The total current i passing through the two-junction loop from an external source is
given by the sum of the individual currents passing through each junction, which can
be written using Eqs. (W16.13) and (W16.19) as

i D ia�9a�C ib�9b� D ica sin 9a C icb sin 9b

D ica sin 9a C icb sin
(
9a � 20

0

)
D i��. �W16.20�

For the idealized case where the two junctions carry equal currents ica D icb D ic, it
can be shown that the maximum current that can flow depends on the flux  through
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the loop and is given by

imax�� D 2ic

∣∣∣∣cos
0

0

∣∣∣∣ . �W16.21�

This is known as the Josephson loop interference equation since, in the absence of an
applied voltage, no net current i can flow through the loop when the total flux through the
loop D �nC 1

2 �0 due to destructive interference between the two Josephson currents
ia and ib. The existence of these interference effects justifies calling the loop containing
two Josephson junctions a superconducting quantum interference device (i.e., a SQUID).
In practice the two junctions in the loop will not be identical, so the resulting, more
complicated expression for i��will depend on both ica and icb. Also, when the magnetic
flux passing through the junctions cannot be neglected, the current i given in Eq. (W16.20)
will be modulated due to the quantization of flux within the junctions themselves.

From a practical point of view, the fabrication of SQUIDs from high-Tc supercon-
ductors that can operate at T D 77 K is a significant challenge, due to the necessity of
maintaining bulk superconducting properties up to within a coherence length � of the
junction interface. This will be difficult even in the ab plane, where �ab ³ 1.5–2 nm.
Fortunately, grain boundaries making high angles with respect to the CuO2 layers that
occur naturally in YBa2Cu3O7 or which can be introduced during growth can act as
Josephson junctions. A significant disadvantage of operating a SQUID at T D 77 K is
the higher thermal noise that results in loss of resolution when compared to operation
at T D 4.2 K.

SQUIDs have been used for sensitive electrical and magnetic measurements in the
following configurations, shown in Fig. 16.23:

1. In the SQUID-based picovoltmeter the voltage is converted into a change of
magnetic flux to which the SQUID can respond.

2. The SQUID magnetometer consists of a dc SQUID (i.e., a pair of Josephson
junctions) coupled magnetically to a larger pickup loop. A resolution in magnetic
flux density B of 10�15 T can be achieved. This corresponds to approximately
10�40 over an area of 10�4 m2.

Some additional small-scale applications of superconductors are outlined briefly next.

Superconducting Computer Devices. The ability of Josephson junctions to switch
from the superconducting to the normal state and back within a few picoseconds (i.e.,
at frequencies ³ 100 GHz) with very low power dissipation makes possible their use
in ultrafast superconducting digital devices, including logic circuits, shift registers, and
A/D converters. These devices will probably make use of either single flux-quantum
(SFQ) logic or single-electron logic (SEL). The demonstrated compatibility of junction
fabrication with Si-based processing technology will be important for this application.
An important advantage of low-temperature operation, at either T D 4.2 or 77 K, will be
the stability of the devices with respect to the phenomenon of electromigration, which is
a serious problem for semiconductor devices operated at room temperature and above.

Optical Detectors. The rapid change in resistivity observed near Tc means that the
resistance of a superconductor which also has a low heat capacity can be very sensitive
to outside sources of energy. Thin-film superconducting devices based on this effect,
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known as transition-edge bolometers, have been employed as sensitive detectors of
far-infrared radiation. SIS tunnel junctions can also function as sensitive detectors of
single photons at infrared frequencies. A photon absorbed in the superconducting thin
film breaks superconducting Cooper pairs, thereby generating a cascade of electrons
that tunnel through the junction. The total charge collected is proportional to the energy
of the incident photon.

Thermal Switches. Superconducting wires with very low �s/�n ratios of thermal
conductivities in the superconducting and normal states are often used as thermal
switches. For example, a Pb wire at T D 4.2 K has �s/�n ³ 1/100 and a critical field
HC ³ 6.4 ð 104 A/m (³ 800 G). Thus for H < HC a thin Pb wire in the supercon-
ducting state will serve as a thermal insulator. When a field H > Hc is applied, the
Pb wire will serve as a good conductor of heat. This capability has been used in cryo-
genic heat capacity measurements where the sample being studied can be placed in
good contact with a liquid He bath and then thermally isolated simply by switching
the magnetic field applied to the Pb wire from H > Hc to H < Hc.

Microwave Components and Devices. The uses of thin films of the high-Tc
superconductor YBa2Cu3O7 or the conventional superconductor Nb as delay lines,
resonators, and filters in passive microwave devices are being developed due to the
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accompanying reduction of losses resulting from the low microwave surface resistances
Rs of these materials. For example, epitaxial thin films of YBa2Cu3O7 have much lower
values of Rs at T D 77 K for frequencies up to 100 GHz than are found in normal
metals such as Cu and Au. Measured values of Rs for YBa2Cu3O7 as a function of
temperature are compared with other superconductors in Fig. W16.15. For successful
operation, the properties of the superconducting film must be uniform in the surface
region corresponding to the penetration depth �.

One important goal is the achievement of more communication channels in the
microwave region of the electromagnetic spectrum for cellular and “personal commu-
nication” applications through the use of filters based on high-Tc thin films, which
have sharper frequency cutoffs than Cu filters. These microwave devices are likely to
be the first successful applications of the high-Tc superconductors.

REFERENCE

Hebard, A. F., Superconductivity in doped fullerenes, Phys. Today, Nov. 1992, p. 26.

PROBLEMS

W16.1 Using the Gibbs free energy per unit volume for the superconducting state as
given by the two-fluid model in Eq. (W16.1), calculate (a) Cs�T� as T ! 0,
and (b) C�Tc� D Cn�Tc��Cs�Tc�.

W16.2 A magnetic fieldH is applied parallel to the surface of a long superconducting
cylinder. (Note: See Fig. 16.10.)
(a) Show that the variation of the effective magnetization My [D �By/�0��

Hy] resulting from the supercurrents near the surface of the supercon-
ductor is given by My�x� D �Hy�x D 0��1 � e�x/�L �.

(b) What is the resulting value of My inside the superconductor (i.e., for
x × �L)?

W16.3 A superconducting wire of radius a D 1 mm is formed into a single-turn
circular loop of radius r D 10 cm. A current i is observed to flow around this
isolated loop for five years without any measurable decay. Estimate a lower
limit for the electrical conductivity & (or an upper limit for the resistivity �) of
this wire in the superconducting state. (Hint: The inductance of a single-turn
circular loop of wire is L ³ �0r[ln�8r/a�� 2].)

W16.4 A type I superconductor has a critical magnetic field slope at Tc D 3 K given
by d��0Hc�/dT D �15 mT/K.
(a) Estimate its critical fieldHc0 at T D 0 K. [Hint: Make use of the parabolic

expression for Hc�T� given in Eq. (16.6).]
(b) Estimate the superconducting condensation energy per unit volume Gn �

Gs at T D 0 K for this superconductor.
W16.5 Show that the parabolic dependence of Hc�T� given in Eq. (16.6) follows

from the two-fluid expression for Gs�T� of Eq. (W16.1) when the temperature
dependence of the fraction of superconducting electrons is given by fs�T� D
1 � �T/Tc�4.
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W16.6 For the A15 structure shown in Fig. W16.2 with the chemical formula Nb3Ge
and cubic lattice constant a D 0.515 nm, write down the NN and second-NN
configurations and distances for both the Nb and Ge atoms.

W16.7 In the superconducting oxide Ba1�xKxBiO3�y with the cubic perovskite crystal
structure, oxygen vacancies can be present to provide ionic charge compen-
sation for the replacement of Ba2C ions by KC ions. What value of y would
be needed for complete ionic charge compensation of this material when
x D 0.4?

W16.8 Show that the n D 0, 1, and 2 versions of the HgBa2CanCunC1O�2nC4�Cx
compound with x D 0.06, 0.22, and 0.40 have 0.12, 0.22, and 0.27 holes per
Cu atom, respectively. The additional oxygen atoms can be assumed to have
entered the Hg2C layers.

W16.9 (a) Using the results that the penetration depth � / �mŁ�1/2 and the coherence
length � / �mŁ��1/2, show that the inequalities �ab > �c and �c > �ab
apply to anisotropic superconductors in which mŁ

c × mŁ
a D mŁ

b .

(b) Using Hc2�i�D0/2
p

2�0�j�k , show that Hc2�ab�/Hc2�c�D
√
mŁ
c/m

Ł
ab.

W16.10 Show that the expression Jc�T� D Hc�T�/��T� for the critical transport
current density can be derived by setting the kinetic energy density KE/V
of the supercurrents equal to the superconducting condensation energy per
unit volume �0Hc�T�2/2. [Hint: Use KE/V D �ns/2��2m�hvi2/2, where hvi
is defined by Jc D �ns/2��2e�hvi for the Cooper pair current.]

W16.11 Starting from Eqs. (W16.8) and (W16.9), derive the Josephson relations given
in Eqs. (W16.11) and (W16.13).

W16.12 Sketch the tunneling current

J�� D Jc sin 90
sin�0/0�

0/0

passing through the tunnel junction shown in Fig. W16.14 as a function of
/0. Note that J D 0 when  D n0 (i.e., whenever an integral number of
flux quanta pass through the junction area A). Show that J� ! 0� approaches
the finite limit Jc sin 90.

W16.13 Consider a Nb–I–Pb junction which is d D 50 nm thick and 20 µm wide.
For what value of magnetic field H applied perpendicular to the junction
will exactly one quantum of flux 0 be present within the effective area Aeff

of the junction? Be sure to use the effective width of the junction deff D
dC �Nb C �Pb (see Fig. W16.14).



CHAPTER W17

Magnetic Materials

W17.1 Details on Domain Structures

If Nd is the number of domains in the array shown in Fig. 17.2b in the textbook,†

there will be (Nd � 1) domain walls, each of area lt, in the ferromagnetic film. When
Nd × 1, the total energy associated with the domain walls will be

Uw D Nd�wlt D �wV

d
, �W17.1�

where d is the width of each domain, V is the total volume, and Nd D w/d. The total
magnetic energy of the ferromagnetic film will then be

U D Um CUw D 0.136�0M2
sVd

t
C �wV

d
. �W17.2�

When the energy U is minimized with respect to d, the following results are obtained:

d D 2.71

Ms

√
�wt

�0
, �W17.3�

U D 0.738VMs

√
�0�w
t

. �W17.4�

If the energy U is less than the energy Um for the single domain given in Eq. (17.4),
the domain structure shown in Fig. 17.2b will be favored over the single domain
shown in Fig. 17.2a. This will be true and expressions (W17.3) and (W17.4) will
be valid as long as the domain wall surface energy �w is not too large, that is, as
long as

�w < 0.46�0M
2
s t. �W17.5�

The actual domain structure found in a ferromagnetic solid can be very complicated
and cannot in general be predicted beforehand except in very simple cases.

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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W17.2 Details on Size and Shape Effects

A straightforward estimate for an upper limit to the coercive field Hc for a small
magnetic particle can be obtained by noting that the effects of anisotropy can be
overcome by a magnetic field H applied in the direction opposite to the direction of
M along an easy axis. It has been shown† that the magnetic field, which leads to a
reversal of the magnetization via the rotation of Ms, is equal to the effective shape
anisotropy field Hs when the direction of the applied field H is opposite to the direction
of Hs and M. Thus Hs can be taken as an upper limit to the coercive field Hc. The
corresponding predictions for Hc are summarized in Table W17.1 for the three different
types of magnetic anisotropy discussed in Section 17.5. Values of Hc calculated for
small Fe particles from these predictions are also included.

It can be seen that the coercive fields due to the anisotropies associated with crystal
structure and with applied stress are both inversely proportional to Ms while Hc

resulting from particle shape anisotropy is directly proportional to Ms. For the case
of a collection of noninteracting randomly oriented particles, Hc is reduced below its
value for a single particle. Coercive fields can also be reduced by the magnetic inter-
actions between individual particles in a powder, the effect being greater the denser
the packing. Note that for the case of particle-shape anisotropy, the coercive field is a
maximum for a long circular cylinder (N? D 1

2 , Njj D 0) magnetized along its length.
In this case, Hc D Ms/2.

The contributions of surfaces and interfaces to the magnetocrystalline and magnetoe-
lastic anisotropies can be important in magnetic thin films and multilayers. For example,
in Au/Co/Au sandwiches the easy axis in the Co film is out of the plane for Co thick-
nesses of about six atomic layers and less. This has been attributed to magnetocrystalline

TABLE W17.1 Estimates Predicted for the Upper Limit of the Coercive Fields Hc of
Small Magnetic Particles

Type of Anisotropy Hc
a Typical Valueb (kA/m)

Magnetocrystalline

Single particle
2K1�or Ku�

�0Ms
39

Randomly oriented
0.64K1�or Ku�

�0Ms
25

Particles (K1 > 0)

Particle shape

Single particle �N? �Njj�Ms 855

Randomly oriented particles 0.48�N? �Njj�Ms 410

Applied stress
3��

�0Ms
3.6

aK1 and Ku are the magnetocrystalline anisotropy coefficients for cubic and uniaxial ferromagnets,
respectively.
bThe parameters used are those appropriate for Fe at T D 300 K: K1 D 4.2 ð 104 J/m3, Ms D 1710 kA/m,
magnetostriction � ³ 2 ð 10�5, yield strength �y D 1.3 ð 108 N/m2. For the case of shape anisotropy, the
particle shape corresponds to a long needle with N? D 1

2 and Njj D 0.

† C. Kittel, Rev. Mod. Phys., 21, 541 (1949).
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anisotropy related to the orbital component of the magnetic moment. This type of
magnetocrystalline anisotropy results from the anisotropic bonding in multilayers such as
Au/Co/Au and the spin–orbit interaction. In thicker Co films the shape-induced in-plane
anisotropy dominates the orbital anisotropy and the easy axis is in-plane.

When the easy axes are the same for the magnetocrystalline and shape anisotropy
effects, as might be the case in a long, needle-shaped particle, the coercive field is
predicted to be enhanced since these anisotropy effects are then additive. In this case,
Hc would be given by

Hc D 2K1�or Ku�

�0Ms
C �N? �Njj�Ms. �W17.6�

Measured values of Hc are often found to fall well below those predicted in
Table W17.1, which correspond to the coherent rotation of M. These lower values
of Hc are usually due to domain nucleation associated with defects. In other mecha-
nisms for the reversal of the magnetization that can occur at lower fields, the rotation of
M is noncoherent (i.e., it occurs in a spatially nonuniform manner within the material).†

W17.3 Details on Magnetostriction

The magnetostriction of single-crystal Fe1�xNix alloys with x D 0.6 and 0.85 is, in fact,
observed to be isotropic. For the Fe0.4Ni0.6 alloy � is large and positive, while for the
Fe0.15Ni0.85 alloy magnetostriction is essentially absent (i.e., � ³ 0). For completely
random polycrystalline materials which can be expected to be both elastically and
magnetically isotropic, the isotropic magnetostriction is given by

� D 2�100

5
C 3�111

5
, �W17.7�

where �100 and �111 correspond to single crystals of the same material.
While an applied stress can affect the state of magnetization in a magnetic material,

it does not affect the value of the spontaneous magnetization Ms in the elastic limit.
Changes in Ms can occur in the inelastic regime, however, but only when the applied
stress is large enough to cause a structural phase transition. When K� > K1 or Ku1

for the magnetocrystalline anisotropy, the effect of the applied stress can be large
enough to change the direction of the easy axis away from that corresponding to the
magnetocrystalline anisotropy.

The dependence of the linear magnetostriction υl/l on applied magnetic field for
the rare earth ferromagnet Tb0.6Dy0.4 is shown at T D 77 K in Fig. W17.1 for two
different stresses applied to an a-axis rod. The magnetization and magnetostriction
both reach saturation at essentially the same magnetic field. The observed changes in
υl/l result from the changing state of the magnetization in the material as the applied
field is increased and the magnetic domains are aligned in the direction of H. When
the magnetization is saturated, the observed magnetostriction also reaches its saturation
value �, as shown.

When a magnetic field H is applied perpendicular to the easy c axis of a crystalline
uniaxial ferromagnet such as Co, the development of the macroscopic magnetization

† I. S. Jacobs and C. P. Bean, Phys. Rev., 100, 1060 (1955).
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Figure W17.1. Dependencies of the magnetization M, (a), and magnetostrictive strain υl/l,
(b), on applied magnetic field at T D 77 K for the rare earth ferromagnet Tb0.6Dy0.4 are
presented for two different stresses (MPa D megapascals) applied to an a-axis rod. (Note that
the magnetization is actually plotted as �0M and that the field scales are the same in (a) and
(b)). [From A. E. Clark et al., IEEE Trans. Magn. MAG-22, 3156 (1992). Copyright 1992 by
IEEE.]

M takes place solely by rotation of the individual domain magnetizations. In this case
the dependence of the fractional change in length is given in terms of M by

υl

l
D 3�

2

(
M

Ms

)2

. �W17.8�

For cubic ferromagnets with magnetocrystalline anisotropy coefficients K1 > 0, the
dependence of υl/l on M/Ms is determined by the relative ease with which
90° and 180° domains walls move. A useful discussion of the phenomenology
of magnetostriction is given in Chikazumi (1964 Chap. 8). The topic of volume
magnetostriction is also covered by Chikazumi.
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W17.4 Giant and Colossal Magnetoresistance

So-called giant negative magnetoresistance (GMR) effects in magnetically
inhomogeneous materials, first observed in metallic Fe/Cr magnetic multilayers, typi-
cally correspond to changes in the ratio [R�0�� R�H�]/R�H� by 100 to 1000% in fields
of about 1.6 ð 103 kA/m. These effects arise from changes in the spin-dependent scat-
tering of the conduction electrons as a result of an applied magnetic field that affects the
orientation of the magnetization M in the ferromagnetic Fe layers. Experimental results
for the GMR effect in three different Fe/Cr multilayers at T D 4.2 K are shown in
Fig. W17.2. The longitudinal magnetoresistance and the magnetization of these multi-
layers reach saturation at the same magnetic field Hs. It can be seen that the magnitude
of the magnetoresistance changes with the thickness of the nonferromagnetic Cr layer.
In fact, the magnitude of the GMR effect oscillates as the thickness of the Cr layer is
increased. This is attributed to an interlayer exchange coupling that oscillates between
ferromagnetic and antiferromagnetic. Only multilayers for which the interlayer coupling
is antiferromagnetic display large GMR effects, apparently due to the fact that only in
these systems can the coupling be changed significantly by an applied magnetic field.

The scattering processes that give rise to the GMR effect are believed to take place
at the interfaces between the ferromagnetic layers and the adjacent nonferromagnetic or
nonmagnetic layers rather than within the ferromagnetic layers themselves. In fact, the
magnetoresistance of the Fe/Cr multilayers is much greater than the intrinsic magne-
toresistance of the Fe layers themselves. The resistance of the multilayer structure is
higher when the magnetizations in the ferromagnetic layers are antiparallel and lowest
when they are parallel. A wide variety of transition metal magnetic-multilayer systems
have been observed to demonstrate the GMR effect, including Co/Cu, which exhibits
very large GMR effects even at room temperature. In fact, Co/Cu multilayers are
now used in magnetic read heads for the detection of magnetic bits on hard disks, as
described in Sections 17.12 and W17.12.

The phenomenon of colossal magnetoresistance (CMR), with observed magnetic
field-induced decreases of resistance in the range 105 to 106%, have been observed
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Figure W17.2. Experimental observations of giant longitudinal magnetoresistance R�H�/R�0�
in three different (001)Fe/(001)Cr magnetic multilayers at T D 4.2 K. [From M. N. Baibich
et al., Phys. Rev. Lett., 61, 2472 (1988). Copyright 1988 by the American Physical Society.]



256 MAGNETIC MATERIALS

in ceramic magnetic materials of the form A1�xBxMnO3 (e.g, La1�xCaxMnO3), which
have the cubic perovskite crystal structure shown in Fig. 15.6. Here A and B are
trivalent rare earth and divalent alkaline earth ions, respectively. In these CMR mate-
rials, magnetic ions such as Mn can exist in more than one valence state (e.g., as
Mn3C and Mn4C in La1�xCaxMnO3). The change in valence from Mn3C to Mn4C
occurs as the La3C ions are replaced by Ca2C ions. The effects of an applied field
H on the ordering and alignment of the spins of the magnetic ions determine the
magnitude of the CMR effect. Conduction in these oxides is proposed to take place
by the hopping of d electrons from Mn3C ions to neighboring Mn4C ions via inter-
vening O2� ions. For hopping to occur, the spins of the two Mn ions involved must
initially be parallel, thus demonstrating that the resistivity of the material will depend
on its magnetic order. This indirect interaction between next-NN Mn3C and Mn4C ions
is termed double exchange and is essentially a ferromagnetic interaction. The prop-
erties of these materials are very sensitive to inhomogeneities related to deviations
from oxygen stoichiometry. It should be noted that LaMnO3 itself is an antiferromag-
netic insulator, while La1�xCaxMnO3 becomes ferromagnetic for 0.3 < x < 0.5. Note
that the superexchange interaction between next-NN Mn2C ions in MnO, described in
Section 9.7, via the intervening O2� ions is an antiferromagnetic interaction.

It is possible that this CMR may result from a magnetic field–induced ferromagnetic
metal–paramagnetic insulator transition.† The CMR effect occurs over a restricted
range of temperatures near the transition. Starting from high T, as the temperature is
lowered, evidence is found for the formation of small ferromagnetic clusters which are
approximately 1.2 nm in diameter in La0.67Ca0.33MnO3. The clusters are conducting
but are isolated from each other. As the temperature is lowered still further, the number
of these clusters grows until they percolate through the material at the transition
temperature and form an infinite cluster. Above Tc the material conducts weakly via
carrier hopping from cluster to cluster, while below Tc, electrons are delocalized over
the entire percolation cluster and the material conducts as a metal. The magnetic and
metal–insulator (M–I) transitions do not occur at well-defined temperatures, with the
M–I transition occurring at a slightly lower temperature.

The mechanism of the CMR is still an open area of research. In the high-temperature
insulating state the spin-up and spin-down states are degenerate and both bands are
fully occupied by Mn 3d electrons. The Fermi level lies above both bands. In the
low-temperature ferromagnetic state, there is a splitting of the spin-up and spin-down
bands. Spin-resolved photoemission studies have verified that the Fermi level lies in
the interior of the majority-spin band, so that those electrons can conduct, whereas
the minority-spin band lies below the Fermi level, and those electrons remain noncon-
ducting. The material is said to be a half-metal. The unequal occupancy of the two
bands leaves an unbalanced magnetic moment and the material becomes a ferromagnet,
as shown in Fig. W17.3.

The magnetic moment of each cluster is randomly oriented in zero field. Hopping
of electrons and holes from one cluster to another is inhibited since the spins of the
clusters may not be aligned. Carriers from one cluster would have to hop an appreciable
distance to find a suitably aligned cluster. The application of an external magnetic field
serves to align the magnetic moments of the clusters and hence to reduce the effective
hopping distance. This can account for the dramatic sensitivity of the conductivity

† For a useful review, see C. N. R. Rao et al., Chem. Mater., 8, 2421 (1996).
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Figure W17.3. Schematic diagram of the Mn 3d and O 2p spin-up and spin-down energy bands
in a La1�xCaxMnO3-type perovskite, both above and below the Curie temperature TC. [Adapted
from J. H. Park et al., Nature, 392, 794 (1998).]

to external magnetic field and thus for the CMR phenomenon. The effect is most
pronounced near Tc.

W17.5 Faraday and Kerr Effects

Faraday Effects. Faraday rotation usually corresponds to the rotation by an angle
"F of the plane of polarization of a linearly polarized EM wave due to its trans-
mission through a magnetic material (or through a suitable medium in the pres-
ence of a magnetic field). Faraday rotation in nonmagnetic materials is described in
Chapter W18. For the polar Faraday effect the Faraday rotation "F is usually defined
to be one half of the change in phase angle $ between the right and left circularly
polarized waves due to transmission. This is given by

"F D $C � $�
2

D %�nC � n��d
�

, �W17.9�

where � is the wavelength in vacuum, d the sample thickness, and nC and n� the
real parts of the complex indices of refraction for right and left circularly polarized
light, respectively. The difference �nC � n�� is called the magnetic circular birefrin-
gence (MCB).

When the absorption of light in the material is small, the Faraday rotation is

"F D �� 0
xyd

2nc'0
. �W17.10�

Here � 0
xy is the real part of �xy , an off-diagonal component of the complex conductivity

tensor �, n is the average of nC and n�, and '0 is the permittivity of free space.† The
quantity �xy is in general linear in the magnetization M of the material. When the

† In SI units the complex conductivity tensor ��ω� is related to the complex dielectric function tensor 'r�ω�
by ��ω� D �iω'0['r�ω�� 1].
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induced magnetization M is linear in the applied field H, as in paramagnetic and
diamagnetic materials, both �xy and "F are also linear in H. The Faraday rotation is
then expressed as

"F D VHd, �W17.11�

where V is the Verdet constant, usually expressed in the non-SI units of
arcminutes/oerstedÐm [see Eq. (W18.12) and Table W18.1]. Note that V can depend on
temperature through the magnetic susceptibility of the material and on the wavelength
� of the light through the optical constants of the material. In general, "F will be given
by VMd, where M is the magnetization of the material.

Magnetic circular dichroism (MCD) corresponds to the difference in the absorption
of light with right and left circular polarizations, also in the polar geometry. When the
absorption is small, the difference in the absorption coefficients is given by

˛C � ˛� D � 00
xy

c'0
, �W17.12�

where � 00
xy is the imaginary part of �xy . The MCD or Faraday ellipticity effect will also

transform linearly polarized light into elliptically polarized light. When employed with
circularly polarized x-rays, MCD is known as XMCD spectroscopy and is a technique
that can be used to determine element-specific spin and orbital magnetic moments
and their anisotropies in a quantitative manner. Since XMCD can have submonolayer
sensitivity, it is a useful technique for studying magnetism at surfaces and in thin films,
including the direction of easy magnetization in thin films and magnetic imaging.

For the longitudinal or transverse Faraday geometries, the observed effects are
quadratic in M or H and are referred to as magnetic linear birefringence (MLB)
and magnetic linear dichroism (MLD). These effects are not discussed here. For a
summary of the MLB and MLD effects, see Craig (1991).

Kerr Effects. Magneto-optical Kerr effects (MOKEs) correspond to changes in the
state of polarization of electromagnetic waves associated with their reflection from the
surfaces of magnetic materials. The Kerr signal is proportional to the average surface
magnetization of the material and to its reflectivity. Typical geometries for the polar,
transverse, and longitudinal Kerr effects are illustrated schematically in Fig. 17.16.

In the polar Kerr effect geometry the magnetization M of the ferromagnet is oriented
perpendicular to its surface. In this case, when the incident EM wave is linearly polar-
ized, the reflected wave will be elliptically polarized and the major axis of the resulting
ellipse will be rotated either clockwise or counterclockwise, depending on the direction
of M. The polar Kerr rotation "K and ellipticity ,K are given by

"K C i,K D i'xyp
'xx�'xx � 1�

, �W17.13�

where the complex quantities 'xx and 'xy are diagonal and off-diagonal components of
the complex dielectric function ' D '1 C i'2. The angle of rotation of the major axis
of the ellipse is

"K D �� 00
xy

2%nc'0
. �W17.14�
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This is similar in form to "F for the Faraday effect given in Eq. (W17.10), but with
two important differences: the thickness d in "F is replaced here by the wavelength
� of the incident light, and the real part � 0

xy of �xy appearing in "F is replaced here
by the imaginary or absorptive part � 00

xy . Note that for a transparent material, � 00
xy , and

hence "K, are both zero. The polar Kerr effect has the largest response of the three Kerr
effects and, in addition, probes the component of the magnetization perpendicular to
the surface of the material. Only the polar Kerr effect is nonzero for normal incidence.

In the transverse Kerr effect geometry, M is parallel to the surface of the magnetic
material and is perpendicular to the incident plane of polarization of the EM wave. In
the longitudinal Kerr effect geometry, M is also parallel to the surface but lies in the
incident plane of polarization. The Voigt effect has the same geometry as the transverse
Kerr effect but corresponds to the case of reflection from a nonabsorbing medium.

If the E field of the incident EM wave is perpendicular to the plane of incidence in
the transverse Kerr geometry, the reflectivity R will not be affected significantly by the
magnetization of the material. If, however, the E field lies in the plane of incidence, R
will depend linearly on M. It follows therefore that when unpolarized light is incident
on an absorbing magnetic material, the reflectivity R measured for different regions
will depend on the local direction of M (i.e., on the magnetic domain structure). This
effect can be employed for the observation of magnetic domains in magnetic recording
media. The Voigt effect is observed when the magnetic material is nonabsorbing. In
this case the amount of linearly polarized light that is converted upon reflection to
elliptically polarized light will be proportional to M2. This corresponds to a type of
magnetic birefringence.

The surface MO Kerr effect (SMOKE) is often used in conjunction with
ultrahigh-vacuum techniques to probe the magnetic properties of surfaces. Phenomena
that have been studied include the existence of surface magnetism, the magnetic
anisotropy induced by and associated with surfaces, and the Curie temperature TC as
a function of film thickness. Figure W17.4 shows magnetization curves of Fe/Mo/Fe
multilayer films obtained via SMOKE. A square hysteresis loop is obtained when the
two Fe layers are ferromagnetically aligned via coupling through the Mo layer. When
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Figure W17.4. Magnetization curves of Fe/Mo/Fe multilayer films obtained via SMOKE. A
square hysteresis loop is obtained when the two Fe layers are ferromagnetically aligned via
coupling through the Mo layer. When the Mo layer is thicker, 7.6 monolayers (ML), the Fe layers
couple antiferromagnetically and the switching field Hs is required to return their alignment to
ferromagnetic. (From Z. Q. Qiu and S. D. Bader, Mater. Res. Soc. Bull., 20(10), 34 (1995).)
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the Mo layer is thicker (e.g., 7.6 monolayers) the Fe layers couple antiferromagnetically
and the switching field Hs is required to return their alignment to ferromagnetic.

W17.6 Details on Dynamic Magnetic Effects

Eddy Currents. The eddy currents generated in, for example, a long cylinder of a
magnetic material by a changing magnetic field H�t� can be calculated from electro-
magnetic theory using Faraday’s law of induction. When the cylinder consists of a
single magnetic domain and when the field H penetrates the cylinder completely, the
power loss per unit volume of the material due to the eddy currents can be expressed
in terms of the changing magnetization M by

p D P

V
D �2

0r
2

8.

(
dM

dt

)2

. �W17.15�

Here r is the radius of the cylinder and . is the electrical resistivity of the material.
When M�t� D M0e�iωt, the power loss p will be proportional to ω2M2

0. From this
expression it is clear that eddy current losses in magnetic materials can be reduced by
increasing the resistivity . of the material.

When the cylinder has a magnetic microstructure consisting of more than one
magnetic domain, the eddy current losses will be increased over the single-domain
case due to localization of the currents induced in the vicinity of the domain walls. As
domain walls move or as the magnetization within a domain rotates, the local time-
dependent changes in M and H induce localized eddy currents whose distributions
are very difficult to calculate. Localized eddy current losses will occur even if the
magnetization loop is traversed slowly.

When the rates of change of H and M are very large, as at high frequencies, the
magnetic fields resulting from the induced eddy currents will oppose the change in the
applied field, thereby screening the applied field H from the center of the solid. This is
known as the skin effect and is most pronounced in conducting materials. The applied
field H and the corresponding changes in the magnetization M will decrease to 1/e of
their values at the surface within a distance υ known as the skin depth, given by

υ D
√

2.

ω�
. �W17.16�

Here � is the magnetic permeability of the material. Since Fe is a magnetic material
widely used in the cores of transformers, it is useful to note that υ ³ 0.9 mm at f D
60 Hz, using .�Fe� D 1 ð 10�7 1Ðm and ��Fe�/�0 ³ 500 at T D 300 K. To allow
for complete penetration of the magnetic field, transformer cores are therefore formed
from thin, laminated sheets of Fe. In applications of magnetic materials at microwave
frequencies, it is usually advantageous to employ materials with high resistivities such
as magnetic ferrites in order to reduce the eddy current losses.

Ferromagnetic Resonance. The magnetization vector M of a magnetic solid will
undergo precession around the direction of the total static magnetic field Htot, as illus-
trated schematically in Fig. W17.5. The sources of Htot can correspond to a combination
of an applied field H and internal fields such as a demagnetizing field HD, an effective
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Figure W17.5. Precession of the magnetization vector M of a magnetic solid around the direc-
tion of a magnetic field Htot. An external RF magnetic field HRF�t� acting at right angles to the
static field Htot is also shown.

anisotropy field Ha, and an effective molecular field Heff D Beff/�0. This precessional
motion is a consequence of the torque per unit volume t/V D �0M × Htot exerted on
M by Htot as described by the equation of motion:

dM
dt

D �3�0M × Htot. �W17.17�

Here 3 D ge/2m is the gyromagnetic ratio and g is the Landé g factor, given for an
atom in Eq. (9.6). This expression is valid in the absence of any damping of the motion
of M. For a long cylinder the precession of M occurs at an angular frequency given by

ω D 3�0Htot. �W17.18�

In the presence of damping forces acting on M, energy will be transferred from
the spin system (i.e., the magnetization) to the lattice or to the electrons. Examples
of possible loss mechanisms include eddy currents, excitation of spin waves, and so
on. These energy losses can be compensated by the application of a transverse radio-
frequency magnetic field HRF�t� D H0e�iωt acting at right angles to the static field
Htot (see Fig. W17.5). As the frequency ω of HRF is varied, resonance will occur at
ω D ωr D 3�0Htot, at which point the spin system absorbs the maximum amount of
energy from the microwave field. For g D 2 and 3 D 1.76 ð 1011 C/kg, the resonant
frequency is ωr D 2.21 ð 1011 Hz in a typical field of Htot D 103 kA/m. This frequency
corresponds to a wavelength � D 8.54 mm (i.e., to microwave radiation). The full-width
at half maximum of the resonance peak in 500 is proportional to the magnitude of the
damping while the magnitude of 500 at resonance is inversely proportional to the damping.

One important application of the resonant absorption of EM radiation by a ferro-
magnet (i.e., of a ferromagnetic resonance measurement) is the determination of the
g factor, g D 2mωr/e�0Htot. Results obtained for the 3d transition metal ferromag-
nets are g�Fe� D 2.10, g�Co� D 2.18, and g�Ni� D 2.21. These values indicate that
the magnetization in these materials is associated primarily with the spin magnetic
moment mspin of the electron. In fact, measurements of the g factor by ferromagnetic
resonance allow the ratio ε D morb/mspin of the components of the magnetic moment
of the material to be determined using the relationship g D 2�1 C ε�. For these three
elemental ferromagnets the ratios ε�Fe� D 0.05, ε�Co� D 0.09, and ε�Ni� D 0.105 are
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obtained. Since in these metallic ferromagnets the alternating field H�wave penetrates
the material only to within the skin depth υ at the surface, defined in Eq. (W17.16),
surface preparation is very important.

Additional parameters that can be obtained from measurements of ωr in ferromag-
nets and ferrimagnets are the magnitudes of the effective anisotropy field HK and the
effective molecular field Heff. For example, the resonant frequency due to magnetic
anisotropy effects alone is obtained when H D 0 and Htot D Ha in Eq. (W17.18).
With HK D 2K/�0Ms, measurement of ωr D g�0HK can yield K if Ms is known
from independent measurements.

In antiferromagnets it is possible for the magnetizations of the two spin sublattices to
precess at the same frequency. For a uniaxial antiferromagnet in zero applied magnetic
field, the resonant frequency is

ωr D 3�0

√
HK�HK C 2Heff�, �W17.19�

where HK is the effective anisotropy field and Heff is the effective molecular field.
Values of HK and Heff obtained for the antiferromagnet MnF2 via antiferromagnetic
resonance are 700 and 43,000 kA/m, respectively.

For ferrimagnets the resonance occurs in essentially the same way as in ferromag-
nets as long as Heff × H or HK. The resonant frequency can lie in the range from
microwave to infrared frequencies, depending on the particular mode excited.

Magnetic Relaxation. The time-dependent changes in the magnetization M which
lag behind changes in an applied magnetic field H are known either as magnetic relax-
ation or as the magnetic aftereffect. Eddy currents can also lead to relaxation effects
and have already been discussed. These magnetic relaxation effects can be reversible
as long as no irreversible changes in the magnetic microstructure have occurred due
to diffusion or to macroscopic structural changes.

Following a discontinuous change in H, changes in M can exhibit exponential time
dependencies expressed either by

M�t� D M0�1 � e�t/7� �W17.20a�

or by
M�t� D M0e

�t/7, �W17.20b�

where 7 is the time constant for the relaxation process. The mathematical formalism
for the description of magnetic relaxation is similar to that employed in Chapter W10
for a description of the anelastic mechanical properties of materials. The energy losses
associated with periodic magnetic-relaxation processes typically occur at frequencies
ω D 2%/7, which are lower than those associated with ferromagnetic resonance. The
characteristic time 7 for magnetic relaxation depends on the nature of the microscopic
processes controlling the relaxation process. The lifetime 7 can be temperature depen-
dent if the process is thermally activated. Examples of such processes include diffusion
of atoms or the hopping of electrons from atom to atom.

A physical mechanism for the magnetic relaxation observed in BCC ˛-Fe was
first proposed by Snoek.† The Snoek effect is also discussed in Chapter 10, where

† J. Snoek, Physica, VI, 591 (1939).
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its influence on the elastic properties of ˛-Fe is described. Relaxation of the elastic
properties is proposed to be due to the redistribution of C or N atoms among the
available interstitial sites in the BCC crystal structure. The same redistribution of C or
N affects the magnetization of the material through the magnetoelastic interaction and
so is related to the magnetostriction of ˛-Fe. An alternative explanation for the origin
of the observed magnetic relaxation as suggested by Néel involves the effect on the
anisotropic exchange interaction between Fe atoms due to the intervening interstitial
C or N atoms.

Relaxation of the magnetization can also result from the thermally activated rota-
tions of the magnetic moments of magnetic domains, of magnetic particles, or even
of individual spins over energy barriers, which can be due, for example, to the effects
of magnetic anisotropy. In small magnetic particles this effect is closely related to
superparamagnetism. In the amorphous magnetic materials known as spin glasses,
relaxation of the remanent magnetization occurs via the activation of single spins or
clusters of strongly interacting spins over local energy barriers so that their magnetic
moments point in energetically favorable directions. There is often a broad distribu-
tion of time constants associated with these processes so that the “freezing” process
does not follow a simple thermal-activation law with a single time constant or acti-
vation energy. This process of spin glass “freezing” occurs over a wide range of
temperatures.

The term magnetic viscosity is often used to describe the magnetic relaxation of
collections of small magnetic particles or of spin glasses, for which there can exist a
wide distribution of relaxation times resulting from a corresponding broad distribution
of energy barriers to magnetization rotation, domain wall motion, and so on. In this
case, the time dependence of the magnetization is often approximated by

M�t� D M0 � S ln�t/70�, �W17.21�

where M0 and 70 are constants and S D �dM/d�ln t� is the magnetic viscosity. There
are good reasons, however, to avoid the use of this simple logarithmic time dependence
for M�t� because such an expression does not in general fit experimental observations at
times that are either short or long compared to the time duration texp of the measurement
(Aharoni, 1996, pp. 100–105). Relaxation processes for which 7 − texp or 7 × texp

will clearly fall outside the range of validity of Eq. (W17.21).
In many materials the magnetic viscosity levels off to a constant value at low

temperatures, a result that is contrary to what is expected from thermally activated
processes. This effect has been attributed to the quantum-mechanical reversal of the
magnetization (i.e., to quantum tunneling of the magnetization).

Magnetomechanical Damping. The energy losses associated with mechanical
vibrations in magnetic materials, referred to as magnetomechanical damping, are
generally larger than those observed in nonmagnetic materials. The stresses causing
the vibrations in a magnetic material lead to strains, which in turn cause changes in
the magnetization via magnetostriction. The result is that by Faraday’s law, oscillatory
stresses can result in the generation of eddy currents with their associated losses in
a magnetic material. Losses due to domain wall motion can also result from applied
stresses.
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TABLE W17.2 Technologically Important Magnetic Materials

Magnetically
Material Hard or Soft Applications

Metals
Steels (alloyed with W, Cr, etc.) Hard Permanent magnets
Fe particles (oxide-coated) Hard Magnetic recording media
FexNi1�x alloys:

78 Permalloy, Fe0.22Ni0.78;
Supermalloy,
Fe0.16Ni0.79Mo0.05;
Invar, Fe0.65Ni0.35

Soft Electromagnetic devices,
magnetic recording heads,
precision instruments

Mumetal: ³ Fe0.18Ni0.77Cu0.05 Soft Magnetic shielding,
transformer cores

Co alloys (CoCr, etc.) Hard Magnetic recording media
Fe1�xSix Soft Transformer cores
Fe:Si:Al alloys: Sendust,a

85Fe10Si5Al
Soft Magnetic recording heads

Alnico alloys: Alnico 5,a

51Fe14Ni8Al24Co3Cu
Hard Permanent magnets

Amorphous rare
earth–transition
metal alloys

Soft Magneto-optical recording
media

Amorphous Fe:B:Si:C alloys Soft Magnetostrictive elements
Intermetallic compounds

SmCo5 and Sm2Co17 Hard Permanent magnets
Nd2Fe14B Hard Permanent magnets
TbFe2 and (Tb0.3Dy0.7)Fe2

(Terfenol-D)
Soft Magnetostrictive elements

Ceramic compounds
3-Fe2O3 Hard Magnetic recording media
CrO2 Hard Magnetic recording media
Mn1�xZnxFe2O4 Soft Magnetic recording heads
Y3Fe5O12 (YIG) Soft Microwave technology
BaOÐ6Fe2O3 or SrOÐ6Fe2O3

(BaFe12O19, SrFe12O19)
Hard Permanent magnets,

magnetic recording media

aComposition given in weight percent.

W17.7 Technologically Important Magnetic Materials

See Table W17.2 for magnetic materials described in Chapters 17 and W17.

W17.8 Details on Permanent-Magnet Materials

To illustrate the operation of a permanent magnet, consider a toroidal magnet producing
a magnetic field Hg in an airgap, as shown schematically in Fig. W17.6a. The intro-
duction of the air gap leads to the presence of a demagnetizing field HD D �NM inside
the magnet, directed opposite to both M and B. When no external field H is applied
to the magnet, its operating point will lie somewhere on the portion of the B–H or
M–H loop in the second quadrant.

The portion of the B–H loop in the second quadrant which determines the operation
of a permanent magnet is the demagnetization curve, shown in Fig. W17.6b. Note that
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Figure W17.6. Permanent magnet: (a) configuration of a toroidal permanent magnet supplying
a magnetic field Hg to an air gap; (b) portion of the B–H loop that determines operation of the
permanent magnet, which is the demagnetization curve in the second quadrant.

it is standard practice to plot B–H curves for permanent-magnet materials rather than
the usual M–H magnetization curves. Here the magnetic induction B D �0�Hi C M� in
the material is shown plotted versus the internal magnetic field Hi. The demagnetization
curve extends from the remanent induction Br D �0Mr at Hi D 0 down to Hi D �H0

c,
the coercive field corresponding to B D 0. Note that Br is the maximum flux density
that the magnet can produce under closed-circuit conditions (i.e., in the absence of an
air gap). The operating point for the magnet in the absence of an external magnetic
field is determined by the presence of the air gap and the resulting demagnetizing field
HD. In this case the internal magnetic field is given by

Hi D HD D �NM. �W17.22�

The operating point is thus not at Br but rather, at the point where the magnetic
induction B�< Br� is given by

B D �0�HD C M� D �0�1 �N�M. �W17.23�

Here 1 ½ N ½ 0 is the demagnetizing factor for the magnet with the air gap. The
magnetization M is less than Mr , due to the presence of HD. Note that in the air gap
Bg D �0Hg ³ B if the gap is narrow enough so that the fringing magnetic fields are small.

For a given amount or volume of magnetic material, the highest field Hg in a given
air gap is achieved when the energy density product �BH� of the magnetic induction
B and the field Hi inside the magnet is maximized. The energy density product is
also known as the strength of the magnet. The operating point of the magnet should
therefore lie as close as possible to the point on the B–H curve for which �BH� is
largest [i.e., at �BH�max]. The actual energy stored per unit volume is BH/2. In this
way the permanent magnet needed to produce a given magnetic field can be as small
as possible.

The actual point of operation of the permanent magnet is determined by the demag-
netizing factor N of the magnet with the air gap and corresponds to the magnetic
induction given in Eq. (W17.23). The slope of the line connecting the origin to the
operating point on the B–H curve is therefore

s D B

Hint
D ��0�1 �N�

N
. �W17.24�
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This is the load line of the magnet as shown in Fig. W17.6. Slopes of s D 1 and s D 0
correspond, respectively, to the limiting values of N D 0 and N D 1. For N − 1, the
slope is given approximately by s D ��0/N.

Transition Metal Alloys. The ferromagnetic 3d transition metals Fe, Co, and Ni
are present in essentially all of the widely used permanent-magnet materials listed
in Table W17.3, either in alloys with each other or with other transition metals,
in intermetallic compounds with rare earth metals, or in ceramic compounds. The
magnetic anisotropy field HK for pure Fe is only ³ 40 kA/m, which eliminates pure
Fe as a material for most permanent-magnet applications due to its relatively low coer-
cive field Hc. The precipitation-hardened alloys based primarily on Fe, Ni, Al, and Co,
as well as some steels that have permanent-magnet applications, are discussed next.

Precipitation-Hardened Alloys. Precipitation hardening in the case of magnetic mate-
rials refers to the use of heat treatments to enhance the magnetic hardness of the material
by the precipitation of a second phase which can pin domain walls and hence increase
Hc. By varying both the specific processing treatments employed and the composition,
the alloys known in the United States as Alnico and based on Fe, Al, Ni, Co, and so
on, can be prepared with magnetic properties, which have led to their widespread use
in permanent magnets. Many other transition metal alloys based on Fe, Co, or Ni can
also undergo precipitation hardening for use in permanent magnets.

TABLE W17.3 Properties of Permanent-Magnet Materials

�BH�max Br H0
c
b TC

Material �kJ/m3�a (T) (kA/m) (K)

Transition Metal Alloys

Alnico 5c: (51Fe, 14Ni, 8Al,
24Co, 3Cu)

35.8 1.25 43.8 1120

Steelsc

Cobalt steel (35Co, 0.7C, 7.7 0.95 19.1
4Cr, 5W, bal. Fe)

Tungsten steel (5W,
0.3Mn, 0.7C, bal. Fe)

2.5 1.03 5.6

Rare Earth–Transition Metal Intermetallic Compounds

Nd–Fe–Bd 200–380 1.0–1.4 700–1000 580
SmCo5

e 130–180 0.8–0.9 600–670 990
Sm(Co,Fe,Cu,Zr)7

e 200–240 0.95–1.15 600–900 1070

Ceramics

BaOÐ6Fe2O3
d 28 0.4 250 720

aNote that 1 kJ/m3 D 1 kAÐT/m.
bThe quantity H0

c is the coercive field corresponding to B D 0.
cData from D. R. Lide and H. P. R. Frederikse, eds., CRC Handbook of Chemistry and Physics, CRC Press,
Boca Raton, Fla., 1994, pp. 12–113. The alloy composition is given in weight percent. See the Handbook
for methods of fabrication.
dCommercial material from Magnet Sales & Manufacturing Catalog.
eData from K. H. J. Buschow, Rep. Prog. Phys., 54, 1123 (1991). Sm(Co,Fe,Cu,Zr)7 is a two-phase material
which can be thought of as a composite of SmCo5- and Sm2Co17-type phases.
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Figure W17.7. Demagnetization curves of an Alnico alloy, 51.8Fe, 7.5Al, 23Co, 3Cu, 0.7Nb
in wt %, cooled from T D 1250°C and annealed at T D 560 to 590°C: (a) randomly oriented
grains with no heat treatment in a magnetic field; �BH�max D 14 kJ/m3; (b) randomly oriented
grains heat-treated in a magnetic field; �BH�max D 43 kJ/m3; (c) columnar grains heat-treated
in a magnetic field; �BH�max D 69 kJ/m3. [From J. E. Gould, Proc. I.E.E., 106A, 493 (1959).
Copyright 1959, IEE Publishing.]

A typical precipitation-hardened alloy is Alnico 5, which has the composition (in
weight percent) 51Fe, 14Ni, 8Al, 24Co, and 3Cu. The extrinsic magnetic properties
of Alnico 5 are listed in Table W17.3. Due to their high TC values of ³ 1120 K,
Alnico 5 and similar alloys have higher maximum operating temperatures than most
other permanent magnets. Following quenching from T ³ 1200°C and annealing in
the range 500 to 600°C, these alloys consist of highly magnetic rodlike particles of
˛-Fe embedded in a weakly magnetic matrix of Ni and Al. When cooled slowly from
T D 1200°C to below TC in a magnetic field, the precipitation occurs in such a way
that the long axes of the particles become aligned with each other, thus increasing the
shape magnetic anisotropy of the material and its coercive field. This is illustrated in
Fig. W17.7, where the demagnetization curves for an Alnico alloy are shown following
three different types of thermomagnetic treatment.

Alnico alloys have high values of Br , due to their high Fe contents but have
lower coercive fields Hc compared to the other permanent-magnet materials listed in
Table W17.3. The magnitude of the coercive fields of Alnico alloys can be attributed
to the pronounced shape anisotropy of the magnetic particles. The maximum magnetic
anisotropy attainable in these alloys is determined by the difference (N? �Njj) of the
demagnetization coefficients of the particles [see Eq. (17.16)]. Even better magnetic
properties [i.e., higher Br , �BH�max, and H0

c] can be found in highly [100]-oriented
alloys with columnar microstructure obtained by controlled solidification from the melt.

Co is apparently required for the appearance of significant magnetic anisotropy in
these alloys, while additions of Nb and Ti can also lead to increased values of H0

c. The
physical reasons for these changes are not clear.

Steels. Steels alloyed with W, Cr, and Co have been used extensively as permanent
magnets. Given the proper heat treatment, these alloying elements can react with the
C in the steel, forming precipitates of carbides of W, Cr, and Co which act to impede
the motion of domain walls. Anisotropy effects associated with the shapes of these
carbide precipitates are apparently not as strong as in typical Alnico alloys, which
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have coercive fields that are higher by a factor of 3 or more. The low values of Hc in
steels limit their attainable values of �BH�max.

The martensitic lattice transformations from the FCC 3-phase to the BCC ˛-phase
that occur in these steels upon cooling lead to lattice distortions due to the resulting
high internal stresses. The magnetic anisotropy of magnet steels is therefore enhanced
by stress-related magnetostrictive effects.

Rare Earth–Transition Metal Intermetallic Compounds. The most attractive
materials for current high-performance permanent magnets are the intermetallic
compounds based on rare earths and the ferromagnetic transition metals Fe and Co.
These materials, sometimes referred to as supermagnets, possess the highest-known
coercive fields, Hc ³ 1100 kA/m, and energy products, �BH�max ³ 300 kJ/m3. The
low-symmetry hexagonal or tetragonal crystal structures of these materials expose
the rare earth ions to the high magnetocrystalline anisotropy needed for enhancing
the coercive field. The transition metal components keep TC sufficiently high for
practical applications. An important advantage of the rare earth–based permanent-
magnet materials is that they can be used to generate the same magnetic fields as
iron-core electromagnets, which are 10 times as massive. This feature has made possible
miniaturized electrical motors and, in general, smaller and lighter electromagnetic
devices and products. Larger magnetic inductions, in the range 3 to 10 T, require
the use of superconducting magnets. The important intermetallic compounds SmCo5,
Sm2Co17, and Nd2Fe14B are discussed next.

SmCo5 and Sm2Co17. The first permanent-magnet materials, consisting of rare
earth–transition metal (RE–TM) intermetallic compounds and based on Sm and Co,
were discovered in the early 1960s. These materials have high values of Msat, due to
the ferromagnetic coupling of the Sm and Co spins. This is not found to be the case
in alloys containing heavy rare earths, such as Gd, where the RE–TM coupling is
antiferromagnetic. The substitution of other magnetic 3d transition metals, such as Fe,
Mn, Cr, or Ni for Co, in these RE–TM compounds has not been successful, due to
the resulting low TC values or low magnetic anisotropies. The high TC values of these
alloys make them attractive for use in applications in which the operating temperature
of the magnet is relatively high.

According to the Hume–Rothery rules described in Chapter 12, the fact that the RE
ionic radii are much greater than those of the TM ions strongly limits the possibility of
the formation of RE–TM solid solutions. Instead, a series of intermetallic compounds
are formed. The crystal structure of SmCo5 is hexagonal and that of Sm2Co17 is
trigonal (rhombohedral) (Fig. W17.8). In the SmCo5 structure the planes containing
the Sm ions and twice as many Co ions lie between adjacent planes containing only
Co atoms. The Sm2Co17 structure is derived from the SmCo5 structure by an ordered
replacement of one-third of the Sm ions by pairs (“dumbbells”) of Co ions that are
aligned along the c axis.

The overall magnetocrystalline anisotropies of both Sm–Co compounds is uniaxial,
with SmCo5 having the largest value observed for any magnetic material, corresponding
to an effective magnetic anisotropy field HK ³ 3.2 ð 104 kA/m. In the Sm2Co17 struc-
ture the dumbbell pairs of Co atoms prefer to have their magnetic moments lying in
the basal plane, thereby reducing the overall magnetic anisotropy of the material.

Recently, Fe-based compounds such as Sm2Fe17N3�x have been developed with high
TC values, up to 749 K, strong uniaxial anisotropy, and high saturation magnetization.
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Figure W17.8. Crystal structures of the intermetallic compounds hexagonal SmCo5 and rhom-
bohedral Sm2Co17. The substituted “dumbbell” Co ions in Sm2Co17 appear crosshatched. (From
K. Kumar, J. Appl. Phys., 63, R13 (1988). Copyright 1988 by the American Institute of Physics.)

The N atoms enter octahedral interstitial sites in the structure. In materials such as
Sm2Fe15Ga2C3�x, C atoms can serve the same purpose. In addition, Ga has been
substituted for some of the Fe in order to increase TC and the uniaxial anisotropy field.
The presence of the interstitial N or C atoms expands the structure and apparently has
the effect of strengthening the magnetism by supporting the formation of ferromagnetic
networks of Fe atoms in these materials.

The best commercially available materials are precipitation-hardened composites
consisting of a Sm2Co17-type phase embedded in a SmCo5-type matrix. These materials
combine the high Msat value of Sm2Co17 with the high magnetic hardness of SmCo5.
The high observed values of Hc result from the alignment of the easy axes of the
particles parallel to each other in the material. These composites have the approximate
composition SmCo7.7 and also typically contain some Fe, Cu, and Zr atoms replacing
some of the Co.

Powder metallurgy techniques are used in the fabrication of these magnets. The
elements are first melted together, then ground into micrometer-sized particles. The c
axes of the particles are aligned magnetically in a magnetic field. The particles are then
densified by sintering. Finally, thermal treatments are utilized for the optimization of Hc.
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Nd2Fe14B. The intermetallic compound Nd2Fe14B, discovered in 1984, exhibits the
most desirable magnetic properties of all permanent-magnet materials at room temper-
ature (see Table W17.3). Since it is based on Fe, Nd2Fe14B has the advantage of being
less expensive than the Co-based materials discussed earlier. In addition, Nd3C has
a larger magnetic moment than Sm3C and couples ferromagnetically to the magnetic
moments of the Fe atoms, leading to a higher magnetization. The magnetic coupling
between the Nd 4f electrons and the Fe 3d electrons is believed to be indirect, occur-
ring not via the RKKY interaction through the conduction electrons but instead, through
the rare earth 5d electrons. The ion Nd3C has an outer electron configuration 4f3 and
contributes one 5d and two 6s electrons to the conduction bands. The Fe magnetic
moment is ³ 2.1�B, close to the value found in pure ˛-Fe.

Nd2Fe14B has a complicated tetragonal unit cell with dimensions a D 0.88 nm and
c D 1.22 nm and containing 68 atoms (i.e., four formula units). The crystal structure
presented in Fig. W17.9 is essentially a layered one, with sheets of Nd and B atoms

c

a

a

Fe c B g

Nd f Nd g

Fe e Fe j1 Fe j2 Fe k1 Fe k2

Figure W17.9. Tetragonal unit cell of Nd2Fe14B. The structure is essentially a layered one, with
sheets of Nd and B atoms (and some Fe atoms) lying between close-packed double layers of Fe
atoms. (From J. F. Herbst, Rev. Mod. Phys., 63, 819 (1991). Copyright 1991 by the American
Physical Society.)
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(and some Fe atoms) lying between close-packed double layers of Fe atoms. Six
crystallographically distinct positions for the Fe atoms and two for the Nd atoms exist
in this structure. The origin of the strong uniaxial magnetocrystalline anisotropy of
Nd2Fe14B is the low symmetry of the Nd sites and, apparently, the interaction of the
Nd3C ions with the resulting strong crystal fields.

Despite the crystal-field effects, the Nd3C ions retain their full magnetic moment
due to the strong on-site spin–orbit interaction (i.e., the orbital angular momentum L
is not quenched). In this structure the Nd atoms lie within hexagonal prisms of Fe
atoms while the B atoms lie within trigonal prisms of Fe atoms. These trigonal prisms
are also a common and fundamental feature of transition metal–metalloid structures
such as those found in the FeB and Fe3C systems. The role of the B in Nd2Fe14B is
to produce a low-symmetry crystal structure without causing an appreciable reduction
of the magnetization of the material.

The material Nd2Fe14B is a uniaxial ferromagnet with a fairly low TC value of
585 K and with the all Nd and Fe spins aligned at room temperature parallel to the c
axis, the easy axis for the magnetization M. The resulting saturation magnetization is
quite high, Msat D 1270 kA/m, even higher than the value 800 kA/m for SmCo5. As
a measure of the strength of the uniaxial magnetic anisotropy, the effective magnetic
anisotropy field HK is about 7200 kA/m.

NdFeB magnet material can be formed by rapid solidification, (i.e., by melt spinning
and quenching into ribbon form) or by the pressing and sintering of powder mate-
rial. The ribbon material has a metastable microstructure that is very sensitive to
the quenching rate. The optimum material consists of 20-nm grains of Nd2Fe14B
surrounded by an approximately 2-nm-thick amorphous intergranular phase. The grain
boundaries pin the domain walls, thereby impeding their motion and increasing the
coercive field. Processing is necessary to transform the brittle ribbon material into the
final dense form, with the two-phase microstructure suitable for permanent-magnet
applications.

Improvements in the properties of Nd2Fe14B can be achieved by introducing a
variety of alloying elements (e.g., substituting Co for some of the Fe atoms raises TC,
replacing some of the Nd by Dy or Gd atoms enhances the anisotropy, etc.). Currently
used NdFeB magnet materials are based on Nd2Fe14B but actually correspond to a
range of compositions and microstructures.

Ceramics. Permanent magnets based on the ceramic compounds barium ferrite,
BaOÐ6Fe2O3 (BaFe12O19), strontium ferrite, SrOÐ6Fe2O3, and their solid solutions
have the advantages of very high coercive fields, Hc ³ 200 kA/m, due to the strong
uniaxial magnetocrystalline anisotropy field of this material, HK ³ 1300 kA/m. They
also possess high environmental stability, due to the absence of problems associated
with oxidation. The magnetic properties depend critically on the sintering of the ceramic
powders to obtain bulk material. The fact that Hc is typically well below HK may be
due to the platelet shape of the particles and the fact that the resulting shape anisotropy
opposes the larger uniaxial magnetocrystalline anisotropy. This issue is also mentioned
in Section W17.9, where the use of barium ferrite in magnetic recording media is
discussed.

These ceramic materials are ferrimagnetic and thus have relatively low values of Br
and Msat. Their high values of Hc and low cost have nevertheless led to widespread
applications in permanent magnets and in magnetic recording media. Their high
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resistivities, . ³ 102 to 1071Ðm, make them useful for high-frequency applications.
The flexible magnets consisting of a magnetic powder such as barium ferrite bonded
in a flexible binder are an interesting and ubiquitous application of these ceramic
materials.

W17.9 Details on Magnetic Recording Materials

Particulate Magnetic Recording Media. The intrinsic shape anisotropy of small,
elongated magnetic particles can be a convenient and stable source of magnetic
anisotropy for controlling Hc. Particulate recording media therefore often consist of
elongated magnetic particles dispersed and embedded (20 to 50% of total volume) in a
suitable medium consisting of organic components (polymers or resins), which is then
applied as a 0.2 to 10-µm-thick film to a nonmagnetic support (e.g., a tape or disk).
For superior recording performance it is clearly desirable to have particles of a fixed
length-to-width ratio as well as of a uniform size distribution. Some of the particulate
magnetic materials currently used in recording media are discussed next.

Iron Oxides. The iron oxide 3-Fe2O3 (maghemite) was one of the first magnetic
materials used for recording applications and is still in wide use today, due to its
low cost and physical and chemical stability. Figure W17.10 illustrates a transmission
electron micrograph of needle-shaped (acicular) particles of 3-Fe2O3. These magnetic
particles are typically oriented with their long axis, which in this case is also the
easy axis of magnetization due to shape anisotropy, parallel to the surface of the film
and also parallel to the direction of the motion of the head along the film. In this
longitudinal geometry the magnetic properties are optimized with high Mr and with
good magnetic squareness. The lengths of the particles are typically 0.2 to 0.4 µm.

Acicular iron oxide particles are magnetically stable since the shape-induced uniaxial
magnetic anisotropy is unaffected by changes in temperature and stress, as opposed

Figure W17.10. Needle-shaped (acicular) particles of 3-Fe2O3 (maghemite) used in magnetic
recording media are shown in a transmission electron micrograph. The lengths of the particles
are 0.2 to 0.4 µm and the aspect ratio is 7:10. (From M. Ozaki, Mater. Res. Soc. Bull., 14(12),
35 (1989).)
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to magnetocrystalline anisotropy, which is often quite sensitive to such changes. The
chemical stability of the 3-Fe2O3 particles is due in large part to the fact that they are
fully oxidized.

The oxide 3-Fe2O3 is a ferrimagnet with the cubic inverse spinel crystal structure in
which there are vacancies on one-sixth of the normally occupied octahedral Fe3C sites
of the Fe3O4 inverse spinel crystal structure, described in Section 9.8. The remaining
octahedral sites that would normally be occupied by Fe2C in Fe3O4 are occupied by
Fe3C instead. Due to the partial cancellation of the sublattice magnetizations, the value
of Msat ³ 400 kA/m for 3-Fe2O3 is well below the corresponding value of 1710 kA/m
for pure Fe at T D 300 K. The small particles used in recording typically have Msat ³
350 kA/m, due to the presence of magnetically inactive surface layers or other defects.

The values of Hc observed for the 3-Fe2O3 particles are in the range 24 to 32 kA/m.
These are an order of magnitude below the estimate given in Table W17.1 for the case
of a magnetic field applied parallel to the long axis of a needle-shaped magnetic particle
(i.e., Hc D HK ³ N?Ms D 0.5Ms). This estimate for Hc corresponds to the reversal
of the magnetization by coherent rotation of M. In practice the magnetization rotates
incoherently (i.e., it begins to reverse direction at much lower fields) due to the fact
that the magnetization directions in different parts of the sample do not remain parallel
in ways that are influenced by defects or inhomogeneities in the particles.

CrO2. Needle-shaped particles of the tetragonal transition metal oxide CrO2 have also
found applications in magnetic recording due to their higher coercive fields, in the
range 44 to 48 kA/m. The oxide CrO2 is unique because it is the only transition
metal oxide that is ferromagnetic at room temperature. Greater recording densities are
possible with CrO2 since the higher values of Hc make it possible to overcome the
effects of the larger demagnetizing fields HD which occur as the recording density
increases. The high coercive fields that are observed result from both the shape and
magnetocrystalline anisotropies of the CrO2 particles.

Iron Oxides Containing Co. The most widely used particulate recording media now
employ iron oxide particles whose coercive fields have been enhanced by the addition
of cobalt (Co2C). For these cobalt-modified iron oxide particles Hc is typically in the
range 32 to 80 kA/m. These materials also allow higher recording densities than do the
pure iron oxides discussed earlier. The enhancement of Hc resulting from the addition
of Co to the iron oxide structure is due to the increase in the magnetocrystalline
anisotropy of the material when Co2C ions experience the octahedral crystal fields
of the surrounding O2� ions. Exchange interactions with the next-NN Fe3C ions also
contribute to the enhanced anisotropy.

The current practice is to apply Co only to the surfaces of the iron oxide parti-
cles. These surface-modified particles show better stability with the Co surface layer
enhancing the uniaxial anisotropy and coercive force of the particles.

Metal Particles. Small, needle-shaped particles of ferromagnetic Fe coated with
surface oxides for passivation are advantageous for high-density recording because
they have higher magnetizations and coercive fields than those of the ferrimagnetic
or ferromagnetic oxide particles discussed earlier. While pure Fe has a spontaneous
magnetization Ms D 1710 kA/m at T D 300 K, these Fe particles, which are
about 200 nm long and only 20 nm in diameter, have effective values of Ms ³
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750–900 kA/m, due to the surface oxides, which can occupy about one-half of the
particle volume. These reduced values of Ms are still nearly twice as large as those
found for oxide particles. Typical values of Hc are 120 kA/m, also well above the
values of Hc for oxide particles. Since the uniaxial magnetic anisotropy of these Fe
particles is due to their elongated shape, their coercive fields show little dependence
on temperature or stress.

Barium Ferrite. The ferrimagnetic material barium ferrite, BaOÐ6Fe2O3 (BaFe12O19),
is unique among recording materials, due to its very high magnetocrystalline anisotropy
and hence Hc in the low-symmetry hexagonal magnetoplumbite crystal structure. This
crystal structure has a unit cell consisting of two formula units and containing two
spinel-like regions, each with the formula Fe6O8, and two HCP-like regions, each
with the formula BaFe6O11, in which an oxygen atom in a close-packed layer is
replaced by a Ba2C ion. The crystal structure of BaFe12O19 is illustrated in Fig. W17.11,
where one half of the hexagonal unit cell is shown. The other half is obtained by a
mirror reflection relative to either the top or the bottom plane. The high intrinsic Hc

value, 160 to 240 kA/m, of this material is combined, however, with a rather low
Msat value of ³ 300 kA/m. Although barium ferrite particles have the shape of thin
hexagonal platelets (Fig. W17.12), the easy direction of magnetization remains along
the c axis, which is perpendicular to the plates. This results from the dominance of the
magnetocrystalline anisotropy over the shape anisotropy. A perpendicular rather than
a longitudinal recording medium results when the barium ferrite platelets are present
with their surfaces parallel to the surface of the medium.

The intrinsic coercive field of barium ferrite is actually too high for magnetic
recording applications (but not for the permanent-magnet applications discussed
earlier), and is usually reduced to ³ 4 to 10 kA/m by the replacement of some of
the Fe3C ions by less magnetic Co2C ions or by nonmagnetic Ti4C ions.

Thin-Film Magnetic Recording Media. In addition to the composite particulate
magnetic recording media just described, continuous magnetic thin films are the mate-
rial of choice for hard-disk applications, due in large part to their potential for higher
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Figure W17.11. Crystal structure of BaFe12O19 with one half of the hexagonal unit cell shown.
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Figure W17.12. Thin platelet-shaped hexagonal particles of barium ferrite, BaFe12O19. (From
M. P. Sharrock, Mater. Res. Soc. Bull., 15(3), 53 (1990).)

recording densities than are currently possible in particulate media. The higher densities
arise from the higher coercive fields and remanent magnetizations possible in magnetic
alloy films. Another advantage is that the magnetic properties of thin films can readily
be controlled by varying the composition and the deposition and processing conditions.
A significant disadvantage of thin-film media is that they are much less durable than
currently used particulate media.

The criteria for continuous thin-film recording media are essentially the same as
those for particulate media (i.e., magnetic hardness), with high Hc, high Mr , high
coercivity squareness, and low noise. As a result, it is important to control the magni-
tudes and distributions of the crystalline, shape, and stress anisotropies in thin-film
magnetic recording media. Typical thin-film media with thicknesses in the range 10
to 100 nm have values of Ms in the range 5 to 100 kA/m and Hc in the range 40 to
120 kA/m.

The ideal thin-film recording medium should consist of small (10 to 50 nm) magneti-
cally noninteracting crystallites or grains, with as uniform a size distribution as possible.
The grains should not be too small or superparamagnetic effects will limit the stability
of information storage. The actual magnetic behavior of thin-film recording media
can be complicated, as it depends on the interactions between the grains and on the
magnetic anisotropy energies, which in turn depend on internal stresses, composition
gradients, and properties of the grain boundaries.

The thin films used in longitudinal recording media typically include the ferromagnet
Co along with other transition metals, such as Ni, Cr, Ta, Pt, Re, and Zr. A wide
range of polycrystalline Co-based alloy films has been prepared via electrochemical
deposition and by physical processes such as evaporation and sputtering. A tilted
columnar grain structure with strong shape anisotropy is obtained by evaporating the
films at an angle of 70° from the normal. The voids that appear between the columnar
grains are beneficial because they help to isolate the grains physically and magnetically,
thereby reducing noise in the recording. These metal-evaporated tape (MET) media
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Figure W17.13. Schematic cross section of a magnetic hard disk. Typical thicknesses of the
layers are as follows: Al–Mg, 0.6 to 0.8 mm; NiP, 10 µm; Cr, 20 to 100 nm; CoCr, 30 nm;
a-C, 10 to 20 nm; L, lubricant, several monolayers. [Adapted from K. E. Johnson et al., IBM J.
Res. Dev., 40, 511 (1996).]

based on Co, CoNi, or CoNiCr can have high coercive fields of 120 kA/m. The wear
and corrosion resistance of the films can be enhanced by a surface Co oxide when they
are deposited in the presence of oxygen. The desired magnetic isolation of the grains
is also improved by the presence of the surface oxide.

The cross section of a typical thin-film magnetic hard disk is illustrated in
Fig. W17.13. The mechanical support for the multiple coatings that are utilized is
an Al–Mg alloy disk. The disk is plated with an amorphous layer of NiP, which is
then textured with grooves to improve the wear characteristics of the disk. The active
layer is typically a ferromagnetic film of CoCr containing additional elements, such
as Pt and Ta, which control its coercivity. The CoCr-based film consists of magnetic
domains that are readily alignable by the applied magnetic field of the write head. It
is covered by a protective, hard amorphous carbon (a-C) layer, which in turn is coated
with a polymeric lubricant to reduce friction. The CoCr active layer is deposited on
an underlayer of Cr, which enhances the deposition of the active layer with high Hc

and with its easy axis of magnetization in-plane. The flatness of the outer a-C layer is
of paramount importance, since the disk rotates past the read/write head at a speed of
about 40 m/s and at a distance of only about 100 nm.

Compositional segregation in the CoCr-based layer can help to minimize intergrain
interactions, leading to lower noise. Alloy compositions can be chosen that will undergo
a phase change or spinodal decomposition at elevated temperatures to achieve the
desired segregation.

Ferromagnetic thin films have also been developed for perpendicular recording appli-
cations and have great potential for higher bit densities. Sputtered CoCr alloy films
with columnar microstructure can show perpendicular magnetic anisotropy, due to the
orientation of the c axis of the grains perpendicular to the plane of the film. The
complicated dependencies of the magnetic, structural, and mechanical properties of the
films on the deposition conditions present both a considerable challenge and the flex-
ibility needed to prepare films with the characteristics desired. One current approach
involves deposition of these Co-based films onto Cr underlying films, which help to
enhance the coercive field of the film deposited. This example of the use of surfaces
and interfaces to modify the equilibrium bulk properties of magnetic films is typical of
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processes that will play an increasingly important role in the continuing development
of higher-density, lower-noise magnetic recording media.

W17.10 Details on Magneto-Optical Recording Materials

The magnetic materials currently in use in MO recording media that so far have
the best combination of magnetic and MO properties are amorphous alloys of rare
earths and transition metals (i.e., RE–TM alloy media) in which the RE ions interact
antiferromagnetically with the TM ions. The magnetization of the RE ions domi-
nates at low temperatures, while at higher temperature the magnetization of the TM
ions dominates. At an intermediate temperature, known as the compensation tempera-
ture Tcomp, the RE and TM magnetizations cancel each other. The temperature Tcomp

can be adjusted by varying the film composition or the deposition and processing
conditions.

Examples of amorphous RE–TM alloys include the ternary alloys a-GdTbFe,
a-TbFeCo, and a-DyFeCo, which have the required magnetic and MO properties
but which have limited chemical stability. Although the source of the perpendicular
magnetic anisotropy observed in these amorphous alloy films is not clear, possibilities
include stress-induced anisotropy, pair ordering, and single-ion anisotropy. Shape-
induced magnetic anistropy in thin films favors an easy axis in the plane of the film
(i.e., parallel or longitudinal anisotropy). Typical values of the anisotropy coefficients
are Ku D 104 and 105 J/m3 for the Gd- and Tb-based alloys, respectively.

Figure W17.14 presents a useful summary of the magnetization Ms, coercive field
Hc, uniaxial anisotropy coefficient Ku, and Kerr rotation "K of an a-Gd24Tb1Fe75 alloy
from low temperatures up to its TC, which is just above 500 K. For this alloy the
compensation temperature Tcomp at which the sublattices of the antiferromagnetically
coupled Gd and Fe magnetic moments cancel each other is close to 340 K (i.e., near
the typical operating temperature). At Tcomp the coercive field Hc diverges as Ms ! 0
(see Table W17.1). When the magnetization Ms of a magnetic domain is very low, due
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Figure W17.14. Magnetization Ms, coercive field Hc, uniaxial anisotropy coefficient Ku, and
Kerr rotation "K for an amorphous Gd24Tb1Fe75 alloy from low temperatures up to its TC.
The compensation temperature Tcomp at which the sublattices of Gd magnetic moments and
Fe magnetic moments cancel each other is close to 340 K. (From F. J. A. M. Greidanus and
W. B. Zeper, Mater. Res. Soc. Bull., 15(4), 31 (1990).)
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to the compensation effect, very high external fields are required to exert large enough
torques to rotate Ms. Thus the Hc required becomes very large in the vicinity of Tcomp.
The Kerr rotation is determined primarily by the Fe spins since the Kerr effect for the
RE elements is small.

The intrinsic magnetic properties of these amorphous RE–TM alloys are determined
by their compositions and can be controlled by varying the Fe/Co ratio in a-TbFeCo
alloys and the Gd/Fe ratio in a-GdTbFe alloys. Film microstructure also plays a critical
role in these alloys and is determined by the deposition and processing conditions. The
absence of grain boundaries aids in the reduction of noise. The main difficulty with
amorphous RE–TM films is their lack of chemical stability.

Promising MO materials for future applications include oxides such as ferrites and
garnets and Co/Pt multilayers, all of which can have good chemical stability. In the
Co/Pt multilayers the perpendicular magnetic anisotropy may arise from interactions
at the interfaces between the Co and the Pt layers.

W17.11 Details on Fe Alloys and Electrical Steels

Pure Fe and Fe–Ni Alloys. The magnetic properties of pure Fe are discussed first
as the classic example of a magnetically soft material. As Fe is treated to remove
impurities such as C, N, O, and S (typically, by heating in H2 or in H2 and H2O),
the permeability � increases dramatically, Hc decreases steadily, and Ms is hardly
affected. In addition, the hysteresis loop narrows considerably and eddy current and
other magnetic losses due to irreversible processes are reduced. This behavior is illus-
trated in Table W17.4 for two grades of Fe and reflects the fact that Ms is an intrinsic
property, while � and Hc are extrinsic, depending on microstructure, impurity content,
and so on. Since the impurities listed earlier have limited solubilities in Fe, ³ 0.01 at %,
they tend to form inclusions or precipitates such as Fe3C, Fe4N, FeO, and FeS. These
precipitates, if present, impede or pin the motion of domain walls. Their elimination
thus allows domain walls to move more readily.

TABLE W17.4 Magnetic Properties of Pure Fe and Some Magnetically Soft Fe Alloys
and Electrical Steels at Room Temperature

Alloya �r�max�b Hc (A/m) Ms (103 kA/m)

“Pure” ˛-Fe (³99%) ³103 80 1.71
Pure ˛-Fe (³99.99%) 2 ð 105 0.8 1.71
78 Permalloy (78Ni, 22Fe) ³105 4 0.86
Supermalloy (79Ni, 16Fe, 5Mo) ³106 0.16 0.63
Mumetal (77Ni, 18Fe, 5Cu) 2.4 ð 105 2 ³0.5
Hipernik (50Ni, 50Fe) 7 ð 104 4 1.27
Silicon-iron (97Fe, 3Si) (oriented) 4 ð 104 8 1.6
Amorphous Fe80B11Si9 — 2 1.27

Source: Data for Fe80B11Si9 from N. Cristofaro, Mater. Res. Soc. Bull., May 1998, p. 50; remaining data
from A. Chikazumi, Physics of Magnetism, Wiley, New York, 1964, p. 494.
aThe compositions of the alloys are given in weight percent unless otherwise stated.
bThe maximum relative magnetic permeability �r�max� is expressed here in units of �0 D 4% ð 10�7

N/A2 and corresponds to the maximum value of B/H on the hysteresis loop in the first quadrant taken in
increasing field.
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Purified Fe can be considered to be one of the very high permeability soft magnetic
materials, even though its magnetic anisotropy and magnetostriction are both nonzero.
Drawbacks to the widespread use of pure Fe are its relatively low resistivity . ³
10�7 1Ðm, a problem when eddy current losses are important, and the expense asso-
ciated with purification and with other treatments, such as careful annealing to relieve
strain. Corrosion of pure Fe is another well-known problem. Fe-based magnetic alloys
such as Fe–Ni, Fe–Co, and Fe–Si can have even better properties than those of pure
Fe and are also less expensive to produce, being less sensitive than pure Fe to the level
of impurities.

The reason that “pure” BCC ˛-Fe is so sensitive to impurities and defects is related
primarily to the fact that its intrinsic magnetocrystalline anisotropy coefficient K1 and
magnetostriction � are both nonzero, with K1 > 0 and �100 > 0. By alloying BCC
˛-Fe with FCC Ni, which has K1 and �100 both < 0, solid-solution FCC Fe–Ni alloys
with compositions near 78 wt % Ni can be produced that have intrinsic magnetic
anisotropies and magnetostrictions which are much smaller than found in either of the
pure metals. The alloy with 78 wt % Ni is known as 78 Permalloy and is used when
maximum permeability is desired. When high values of Ms are more important, the
content of Fe atoms with larger magnetic moments (2.2�B versus 0.6�B for Ni) must
be higher, so 45 to 50 wt % Ni alloys are often used. Examples include 45 Permalloy
with 45 wt % Ni and Hypernik with 50 wt % Ni (see Table W17.4).

The advantage of very low magnetocrystalline anisotropy for obtaining magnetically
soft materials is that for K ³ 0 the domain wall thickness υ is much larger than the
typical size of any defect [see Eq. (17.6)]. In this case the interactions of defects such as
precipitates or inclusions with domain walls is much weaker, so the effects of pinning
are greatly decreased. Low magnetic anisotropy can thus help to minimize the effects
of structural imperfections.

The useful FCC Fe–Ni alloys with Ni concentrations greater than 30 wt % have
magnetic properties that are usually very sensitive to thermal and mechanical processing
treatments and to the presence of impurities. They are ordinarily annealed at high
temperatures, above T D 900 to 1000°C, and then cooled rapidly to avoid the occur-
rence of long-range chemical ordering (e.g., formation of the FeNi3 phase). The
problem associated with ordering is that the magnetocrystalline anisotropy in the
ordered FeNi3 phase is much higher than in the disordered alloys. The disordered
FCC phase which is desired can also be retained by the addition of a few at % of
transition metal impurities, such as Cu, Cr, or Mo.

Alloys with special properties can be obtained by the addition of elements such as
Cu and Mo to Fe–Ni. The alloy Supermalloy, which is obtained by adding Mo to
Fe–Ni, corresponds to 79 wt % Ni, 16 wt % Fe, and 5 wt % Mo. Supermalloy has
a much higher initial permeability, lower electrical resistivity, and requires simpler
heat treatment than do the permalloys. A very useful alloy for magnetic shielding is
Mumetal, typically 77 wt % Ni, 18 wt % Fe, and 5 wt % Cu. One of the advantages of
adding Cu to Fe–Ni is the increased capability for mechanical working of the resulting
alloys.

The 35 at % Ni FCC Fe–Ni alloy known as Invar, with TC ³ 250 to 300°C, has
an extremely low thermal expansion coefficient ˛ at room temperature, ³ 10�6 K�1,
an order of magnitude below the values of ˛ for either pure Ni or pure Fe. This
“Invar anomaly” associated with a low value for ˛ apparently results from cancella-
tion of the usually positive lattice thermal expansion by a negative magnetostrictive
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strain contribution resulting from decrease of the spontaneous magnetization Ms in the
temperature range just below TC. Above TC the thermal expansion increases to normal
values in the paramagnetic state where the magnetostriction is small.

At the same time that the Invar anomaly or effect occurs, an anomaly in the spon-
taneous volume magnetostriction V/V is also observed in these alloys. It is believed
that a magnetic moment–volume instability may play an important role in the Invar
effect. It has been predicted that in FCC 3-Fe there can exist two different ferromagnetic
states, one a high-spin state with large magnetic moment and large volume and another
a low-spin state with low magnetic moment and low volume. In Invar the energy sepa-
ration between the high spin–high volume state and the low spin–low volume state
lying at higher energy is not large, and therefore the low spin-low volume state is ther-
mally accessible. In this way a negative magnetic contribution to the normally positive
thermal expansion can appear.

A wide variety of 3d transition metal alloys show Invar-type behavior.† They have
found important applications due to their dimensional stability, including in precision
instruments, springs, glass-to-metal seals, and bimetallic applications. Alloys with
exceptional elastic stability (e.g., the Fe–Ni alloys known as Elinvar with 40 to 45
at % Ni), find applications in springs, electronic instruments, tuning forks, and so on.
Additional elements such as Be, Mn, Mo, Si, and Se are often added to these alloys
for hardening purposes and to prevent aging effects.

Fe-Co alloys are also of interest as soft magnetic materials, with useful materials
including Permendur (2% V–FeCo) and Hiperco (65Fe, 35Co). In Permendur, vana-
dium is added to the equiatomic FeCo alloy to increase the resistivity and the ease of
fabrication, both of which are low in FeCo, due to the tendency for an order–disorder
transition to occur as this alloy is cooled or even quenched. Hiperco has the highest
Ms in the alloy series, as can be seen in Fig. 17.17.

Fe–Si Alloys. Although the Fe–Ni alloys just discussed can be prepared with a wide
range of magnetic, mechanical, and thermal properties suitable for many applications,
Fe-Si alloys are often used in their place — primarily for economic and not physical
reasons. The addition of 1 to 4 wt % Si to Fe leads to desired increases in the perme-
ability, the electrical resistivity, and the stability of the magnetic properties as well as
a decrease in the coercive field. Drawbacks to the use of Si as an alloying element
in Fe include a decrease in the magnetization, essentially a dilution effect associated
with the addition of a nonmagnetic element, and an increase in brittleness. The primary
benefit related to the addition of Si is the reduction of eddy current losses.

The preferred Fe–Si alloys contain only 1 to 4 wt % Si since alloys having higher
Si contents are too brittle to be worked into the desired sheet form. Improved magnetic
properties in these low-Si-content alloys can be achieved by the proper mechanical and
thermal treatment. Hot rolling and annealing can be used to obtain a desired mechanical
texture in polycrystalline sheets. When the resulting texture is (110) [001] [i.e., having
the (110) plane parallel to the surface of the sheet with the grains having their [001]
directions preferentially aligned parallel to each other], the grain-oriented sheets can
be more readily magnetized into a uniform state. This is possible because the [001]
direction corresponds to one of the easy axes of magnetization in ˛-Fe. The oriented

† For a useful recent review of Invar, see E. F. Wassermann, Chapter 3 in K. H. J. Buschow and
E. P. Wohlfarth, eds., Ferromagnetic Materials, North-Holland, Amsterdam, 1990.
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Fe-Si alloy thus obtained has magnetic properties which are much superior to those of
an unoriented alloy.

The 6.4 wt % Si alloy actually has superior magnetic and electrical properties
compared to the alloys with lower Si contents. The problem with brittleness at this high
Si content can be overcome if additional Si can be incorporated into an existing 3 wt %
Si sheet which requires no further mechanical treatments. This can be accomplished
by deposition of Si onto the surface of the sheet followed by thermal treatments to
diffuse and disperse the surface layer of Si into the bulk.

A metallic glass based on Fe and containing both Si and B (i.e., a-Fe80B11Si9) has
lower losses and a lower Hc than grain-oriented Fe-3.2 wt % Si steel. Even though the
amorphous metal has a lower TC than the Fe–Si alloy, 665 K as compared to 1019 K,
its thermal stability is sufficient for many applications in electrical equipment. The
lower losses in a-Fe80B11Si9 are due to its higher electrical resistivity and lower Hc.
The lower Hc results from the disordered structure and the resulting lack of defects
such as grain boundaries and dislocations that would impede the magnetization and
demagnetization processes through the pinning of domain walls.

W17.12 Details on Materials for Read/Write Heads

Magnetic materials that are currently in use in recording heads include the Fe–Ni
alloys known as permalloys, Sendust (an Fe–Al–Si alloy), Mn–Zn ferrites, amor-
phous alloys, and, most recently, thin films in the form of magnetic multilayers or
superlattices. The use of the magnetic multilayers is based on the recently discovered
giant magnetoresistance effect discussed in Section W17.4.

The permalloys, discussed earlier for their applications in electromagnetic devices,
are Fe–Ni alloys that have low magnetic anisotropy and low magnetostriction, both
of which contribute to the high permeabilities observed. The permalloy Fe19Ni81 is
the most widely used material for inductive heads. In addition, Fe19Ni81 shows a
magnetoresistive effect of about 4%. Susceptibility to corrosion and high wear rates
are limitations of the permalloys.

The Fe–Si–Al alloy known as Sendust, with approximately 85 wt % Fe, 10 wt %
Si, and 5 wt % Al, has K1 and � both equal to zero and, as a result, can be prepared
with �max D 1.2 ð 105�0. This alloy is very brittle and its fabrication into useful forms
involves the use of compressed powders.

Mn–Zn ferrites (i.e., Mn1�xZnxFe2O4 with 0.25 < x < 0.5) are insulating and have
the high mechanical hardness necessary for applications as head materials. Since they
are ferrimagnetic, they have relatively low values of Ms. The addition of Zn to
MnFe2O4 lowers TC, which actually results in higher values of the permeability at
room temperature. Adding Zn from x D 0 up to 0.5 also leads to an increase in Ms.
This results from the fact that ZnFe2O4 is a normal spinel, while MnFe2O4 is the more
usual inverse spinel. Therefore, the added Zn atoms displace Fe3C ions from the tetra-
hedral to the octahedral sites that were formerly occupied by the now-missing Mn2C
ions. As a result, complete cancellation of the spins of the Fe3C ions in octahedral
sites by the oppositely directed Fe3C spins in tetrahedral sites no longer occurs and Ms

increases. Due to their high permeability and insulating properties, Mn0.5Zn0.5Fe2O4

ferrites are also used in transformers and inductors.
Magnetic multilayers have recently been incorporated into magnetic read-head struc-

tures since they exhibit sensitivities to magnetic fields of 100 to 1000 A/m (i.e., a few
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oersteds), which can be five times greater than observed in the conventional materials
discussed earlier. These multilayer structures may consist of a sandwich of ferromag-
netic metals such as NiFe, Co, or both, separated by a layer of Cu that can be 2 to 3 nm
thick. One of the ferromagnetic layers is magnetically hardened so that its magnetic
moment is pinned (i.e., unaffected by any magnetic fields to which it may be exposed
in operation). This can be accomplished, for example, by exchange-coupling this layer
to a thin antiferromagnetic layer such as MnFe, MnNi, or NiO through the mecha-
nism of exchange biasing. Since the exchange coupling of the ferromagnetic layers
through the 2-nm Cu spacer layer is relatively weak, the magnetic moment of the
second, magnetically soft ferromagnetic sensing layer can rotate or switch directions
in response to the magnetic field of the transition region on the magnetic disk. In this
way the resistance of the magnetic sandwich changes, the presence of the bit is read,
and the stored data are recovered. This type of magnetic structure is based on the giant
magnetoresistance effect and is known as a spin valve. A dual-spin-valve structure that
employs pinned films on each side of the sensing layer increases the response of the
read head.

W17.13 Details on Magnetostrictive Materials

The specific materials with important magnetostrictive applications typically contain
at least one magnetic rare earth element and often a magnetic transition metal element
as well. Examples include Tb, Dy, and Tb1�xDyx alloys, Fe-based intermetallic
compounds such as TbFe2, SmFe2, and the pseudobinary compound Tb0.3Dy0.7Fe2,
and Fe-based amorphous metallic glasses. Some values of the giant magnetostriction
observed in these magnetic materials are presented in Table W17.5. Normal values
of the dimensionless magnetostriction � are in the range 10�6 to 10�5 for most
ferromagnetic and ferrimagnetic materials.

TABLE W17.5 Magnetic Materials with
Giant Magnetostrictionsa

Material
3�s
2

(10�6)

Dy (78 K) 1400
Tb (78 K) 1250
TbFe2 2630
SmFe2 �2340
DyFe2 650
Tb0.3Dy0.7Fe2 (Terfenol-D) ³2300

Source: Data from K. B. Hathaway and A. E. Clark,
Mater. Res. Soc. Bull., Apr. 1993, p. 36.
aThese data are for polycrystalline materials at room
temperature, unless otherwise noted. The saturation
magnetostriction 3�s/2 is equal to �jj � �?. Here
�jj is the magnetostriction measured in the same
direction as the applied field H [i.e., υl�" D 0°�/l]
of Eq. (17.29), while �? is the magnetostriction
measured in the same direction in the material but
with H rotated by 90° [i.e., υl�" D 90°�/l].
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Rare Earth Metals and Alloys. Magnetostrictive strains of up to 10�2 have been
observed in the rare earth metals Tb and Dy below their Curie temperatures TC of
237 and 179 K, respectively. The magnetostriction of a Tb0.6Dy0.4 alloy is shown in
Fig. W17.1 as a function of magnetic field. The magnetic and magnetostrictive behav-
iors of these lanthanide rare earth metals are determined by their partially filled 4f
shell. The localized, highly anisotropic wavefunctions of the 4f electrons, in which the
electron spin and orbital motion are strongly coupled to each other via the spin–orbit
interaction, lead to strong magnetic anisotropies and also to high magnetostrictions.
Note that the orbital part of the magnetic moment is not quenched (i.e., L 6D 0) in
the rare earths. Of the 4f rare earth ions, Tb3C and Dy3C also have the advan-
tage of having two of the largest observed magnetic moments, 9.5�B and 10.6�B,
respectively.

Intermetallic Compounds. Since the rare earth (RE) elements and alloys display
giant magnetostrictions only below their TC values (i.e., well below room temperature),
considerable effort has gone into finding materials that have correspondingly high
magnetostrictions at ambient temperatures. The most successful materials developed
so far have been intermetallic compounds and alloys based on rare earths and Fe [e.g.,
TbFe2 and (Tb0.3Dy0.7)Fe2]. These materials also have the advantage of TC values,
which increase as the rare earth concentration is increased.

At room temperature a giant magnetostriction corresponding to υl/l ³ 10�3 to 10�2

has been observed in high magnetic fields in the magnetically hard cubic Laves-phase
C15 intermetallic compound TbFe2 (TC D 704 K). The largest observed magnetostric-
tions occur in the TbFe2 and SmFe2 compounds in which the rare earth ions are
highly anisotropic and also couple strongly to the Fe ions. The magnetostriction itself
is highly anisotropic in these REFe2 materials, with j�111j × j�100j. It follows that
the orientation of the grains is very important for obtaining high magnetostrictions in
polycrystalline REFe2 alloys.

The ferromagnetic intermetallic compound Tb0.3Dy0.7Fe2 (Terfenol-D) possesses a
room-temperature giant magnetostriction of � ³ 10�3 even in low magnetic fields.
The particular ratio of Dy to Tb chosen in this compound minimizes the magnetic
anisotropy. If present, magnetic anisotropy would require high magnetic fields for
magnetic saturation and the full magnetostriction to be achieved. This compensation
of the magnetic anisotropy is possible because Tb and Dy have uniaxial magnetocrys-
talline anisotropy coefficients Ku1 of opposite sign. The magnetic phase diagram for the
pseudobinary Tb1�xDyxFe2 system is presented in Fig. W17.15. At high temperatures
the alloys are cubic in the paramagnetic phase and become trigonal (rhombohedral)
with the easy axes along the h111i directions in the ferrimagnetic phase below TC. At
the composition of Terfenol-D (i.e., x D 0.7) a transition to a tetragonal ferrimagnetic
phase with spins aligned along the h100i directions occurs just below room temper-
ature. Choosing a composition where operating at room temperature just above the
rhombohedral-to-tetragonal transition is possible allows the alloys to have the desirable
attribute of a large magnetostriction in low magnetic fields.

In transductor rods of Terfenol-D the stored magnetoelastic energy density is typi-
cally 130 to 200 kJ/m3 and can be as high as 288 kJ/m3 in (111) single crystals. These
energy densities correspond to maximum strains of 1.6 to 2.4 ð 10�3. The fraction of
the magnetic energy that can be converted to mechanical or elastic energy, and vice
versa, is about 0.6 for Terfenol-D.
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Figure W17.15. Magnetic phase diagram of the pseudobinary system Tb1�xDyxFe2. [From
R. E. Newnham, Mater. Res. Soc. Bull., 22(5), 20 (1997). Courtesy of A. E. Clark.]

Terfenol-D can also be used in thin-film form for magnetostrictive sensors and
transducers in microelectromechanical system (MEMS) technology. Amorphous films
of Terfenol-D are magnetically soft and are preferred over crystalline films because the
magnetostriction increases rapidly at low magnetic fields with only small hysteresis
observed. Due to the high magnetostriction, the magnetic domain microstructure of
these films is controlled by the film stress. When compressively stressed, the magneti-
zation M in the domains is perpendicular to the film surface, while under tensile stress
M lies in the plane of the film.

The mechanical damping in the films can be controlled by external magnetic fields
since film stress is closely coupled to the direction of the magnetization M, and vice
versa. Very high values of damping can be achieved by the application of a perpendic-
ular magnetic field to a film under tensile stress as the direction of the magnetization
is rotated from parallel to the film’s surface to the perpendicular direction.

Fe-Based Amorphous Metallic Glasses. The conversion of magnetic to mechan-
ical energy in amorphous Fe-based metallic glasses (e.g., a Metglas alloy of composi-
tion Fe81B13.5Si3.5C2) can be as high as 90% when the amorphous ribbons are annealed
in a transverse magnetic field and then cooled rapidly. In this state the ribbons have
an induced tranverse magnetic anisotropy. When placed in a longitudinal magnetic
field, the domain magnetizations rotate smoothly from the perpendicular to the parallel
direction, with no motion of domain walls. The rotation can be accomplished in very
low applied fields due to the low anisotropy fields HK that can be achieved in these
amorphous materials. The ribbons elongate due to their positive magnetostriction.

W17.14 Dilute Magnetic Semiconductors

An interesting class of magnetic materials from a fundamental point of view is the group
II–VI semiconductors, such as ZnS, ZnSe, CdS, CdTe, HgS, and HgTe, diluted with Mn
atoms which enter these zincblende structures as random substitutional replacements
for the divalent Zn or Hg ions. In Zn1�xMnxS or Hg1�xMnxTe, the Mn2C ions with
spin S D 5

2 interact antiferromagnetically with each other via an indirect superexchange
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interaction through the bonding electrons associated with the S or Te anions. The Mn2C
ions also interact with the conduction-band s and p electrons via the sp–d interaction.
This is essentially just the s–d interaction described in Chapter 9, which plays a critical
role in the indirect RKKY interaction between pairs of magnetic ions in metals.

The magnetic behavior of these dilute magnetic semiconductors is paramagnetic for
low Mn concentrations (e.g., x ³ 0.15 to 0.2 for Cd1�xMnxTe). At higher Mn concen-
tration the behavior corresponds to that of a disordered antiferromagnet (i.e., a type of
spin glass in a semiconducting host). The sp–d interaction leads to interesting elec-
trical and optical properties for the s and p conduction-band electrons, including a
pronounced magnetoresistance and also a giant Faraday rotation. Potential optoelec-
tronic applications for these materials include their use in display technologies and as
infrared detectors, magneto-optical materials, and quantum-well lasers. Other applica-
tions of these materials may involve exploiting the spin of the electron in solid-state
devices, an area known as spintronics. So far it has proven to be difficult to dope these
II–VI magnetic semiconductors n- and p-type.

Recently, it has been possible to deposit films of Ga1�xMnxAs with Mn concentra-
tions above the solubility limit via low-temperature molecular beam epitaxy. The Mn
atoms in these alloys provide both magnetic moments and hole doping.
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PROBLEMS

W17.1 (a) Derive the results for the domain width d and energy U given in
Eqs. (W17.3) and (W17.4), respectively.

(b) Show also that U given in Eq. (W17.4) for the domain structure shown in
Fig. 17.2b will be lower than Um for a single domain given in Eq. (17.4)
as long as the thickness t is not too small. Calculate the value of the critical
thickness tc.

(c) Use the parameters appropriate for Fe at T D 300 K to calculate tc. [Hint:
See the data for Fe at T D 300 K given following Eq. (17.6).]

W17.2 (a) For the precession of the magnetization vector M in a magnetic field H in
the z direction, as expressed by equation of motion (W17.17) and shown
schematically in Fig. W17.5, show that the three components of M have
the following equations of motion:

dMx

dt
D �3�0MyH,

dMy

dt
D C3�0MxH,

dMz

dt
D 0.

(b) Using the trial solutions Mx�t� D M? cosωt and My�t� D M? sinωt, show
that ω D ωr D 3�0H.
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(c) Calculate ωr for g D 2 and H D 103 kA/m. To what type of
electromagnetic radiation does this correspond?

W17.3 Consider a permanent magnet in the form of a toroid with an air gap, as shown
schematically in Fig. W17.6.
(a) If lg and Ag are the length and cross-sectional area of the air gap, respec-

tively, and l and A are the corresponding values for the magnet, use
elementary equations of electromagnetic theory (i.e.,

∮
H · dl D �0I and∫

B · dA D ) to show that B/H D �BglAg/HglgA D ��0lAg/lgA, where
Bg D �0Hg corresponds to the induction in the air gap and B D �H corre-
sponds to the induction in the magnet.

(b) By comparing this result with Eq. (W17.23), show that �1 �N�/N D
lAg/Alg.

(c) Show that the limit N − 1 corresponds to lg − l [e.g., a very narrow air
gap (assuming that Ag ³ A)].

W17.4 For a certain permanent magnet the demagnetization curve in the second quadrant
of the B–H loop can be described approximately by B�H� D Br�1 � jHj2/H02

c �
with Br D 1.25 T and H0

c D 500 kA/m.
(a) Calculate the maximum energy product �BH�max for this material in units

of kJ/m3.
(b) What demagnetization coefficient N should be chosen for this magnet so

that in the absence of an external magnetic field, �BH� D �BH�max at its
operating point?

(c) What is the magnetization M in the magnet at this operating point?



CHAPTER W18

Optical Materials

W18.1 Optical Polarizers

A polarizer is basically an optically anisotropic material for which the transmission
depends on the direction of polarization of the light relative to the crystal axes. The
ability to control the polarization permits one to build such optical elements as modu-
lators and isolators.

Suppose that a plane electromagnetic wave propagates along the z direction. The
electric field vector lies in the xy plane and may be characterized by two complex
amplitudes: E0 D E0x

OiC E0y
Oj. The intensity of the light (i.e., its power per unit area),

is written as

I D
√
�

	
jE0j2 D

√
�

	

jE0x j2 C jE0y j2� D Ix C Iy, 
W18.1�

where Ix and Iy are the intensities of x and y polarized light. If Ix and Iy are the
same, the light is said to be unpolarized. If they are different, the light may be linearly
polarized. The degree of linear polarization, PL, is given by

PL D Ix � Iy
Ix C Iy , 
W18.2�

where it is assumed that Ix ½ Iy so as to make 0 � PL � 1. If Iy D 0, then PL D 1 and
there is 100% linear polarization. If PL D 0 the light is unpolarized. If 0 < PL < 1,
the light is partially linearly polarized.

A more detailed description of the light involves information concerning the rela-
tive phases of the electric field components as well as the intensity and degree of
polarization. It is convenient to construct the complex column vector

�0 D
[
E0x
E0y

]

W18.3�

and form the two-dimensional matrix, called the density matrix,

�0�
C
0 D

[
E0xE

Ł
0x E0xE

Ł
0y

E0yE
Ł
0x E0yE

Ł
0y

]
. 
W18.4�

(If the light is fluctuating in time, one generally performs a time average and replaces
�0�Ł

0 by h�0�Ł
0i.) Note that the matrix is Hermitian (i.e., its transpose is equal to

287
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its complex conjugate). A general complex two-dimensional matrix needs eight real
numbers to specify its elements, but the Hermitian condition reduces this number to
four. This matrix may be expanded in terms of four elementary Hermitian matrices.
The Pauli spin matrices (used coincidentally to describe the electron spin operator in
Appendix WC) and the identity matrix are chosen for this purpose. Thus multiplying
the column vector �0 by the row vector �C

0 formed from the two complex conjugate
elements gives

�0 D �0�
C
0 D 1

2 
S
0
0I C S0 · s�, 
W18.5�

where

�x D
(

0 1
1 0

)
, �y D

(
0 �i
i 0

)
, �z D

(
1 0
0 �1

)
, I D

(
1 0
0 1

)
.


W18.6�
The real numbers S0

i 
i D 0, 1, 2, 3� are called the Stokes parameters and fully char-
acterize the state of polarization, including the relative phase relations. They are
given by

S0
0 D jE0x j2 C jE0y j2, 
W18.7a�

S0
3 D jE0x j2 � jE0y j2, 
W18.7b�

S0
1 D E0xE

Ł
0y C E0yE

Ł
0x , 
W18.7c�

S0
2 D i
E0xE

Ł
0y � E0yE

Ł
0x �. 
W18.7d�

From Eq. (W18.1) one sees that S0
0 is proportional to the intensity, I. The quantity

PL D S0
3/S

0
0 is the degree of linear polarization and PC D S0

2/S
0
0 is the degree of

circular polarization. The degree of total polarization is given by PT D
√
P2
C C P2

L.

The Stokes parameter S0
1 contains information concerning the relative phase of the

x- and y-polarized light, or equivalently, between the right- and left-circularly polar-
ized light.

Consider the transmission of unpolarized light through a polarizer. Assume for the
moment that the principal axes of the polarizer are aligned with the x and y axes.
After transmission, the field is changed to E D Ex OiC Ey Oj, where the new amplitudes
are related to the old amplitudes by

Ex D E0x e
i�xpx, Ey D E0y e

i�ypy. 
W18.8�

The parameters px and py are dimensionless attenuation constants, depending on the
absorption coefficients when the electric field is directed along the principal optical
axes. Thus px D exp
�˛xL� for a polarizer of thickness L, and similarly for py . These
coefficients may be frequency dependent, a phenomenon called dichroism. Henceforth,
as a simplification, it will assumed that the phase factors �x and �y are zero.

The Stokes parameters may be arranged as a four-element vector and the effect
of the polarizer will then be described by a four-dimensional matrix called the 4 ð 4
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Mueller matrix, M,



S0

S1

S2

S3


 D 1

2



p2
x C p2

y 0 0 p2
x � p2

y

0 pxpy 0 0

0 0 pxpy 0

p2
x � p2

y 0 0 p2
x C p2

y





S0

0

S0
1

S0
2

S0
3


 �



A 0 0 B
0 C 0 0
0 0 C 0
B 0 0 A





S0

0

S0
1

S0
2

S0
3


.


W18.9�
If the principal axes were rotated with respect to the x and y axes by angle #, this
could be described by rotating the M matrix by the rotation matrix T:

T D




1 0 0 0
0 sin 2# 0 cos 2#
0 0 1 0
0 � sin 2# 0 cos 2#


 , 
W18.10�

and the Mueller matrix becomes

M
#� D TMT�1 D




A B sin 2# 0 B cos 2#
B sin 2# A sin2 2# CC cos2 2# 0 
A� C� sin 2# cos 2#

0 0 C 0
B cos 2# 
A�C� sin 2# cos 2# 0 A cos2 2# C C sin2 2#


 .


W18.11�
Various types of polarizing sheets have been devised. They are generally based

on the use of dichromophore molecules (i.e., molecules that produce dichroism). The
H-sheet, invented by E. H. Lamb, consists of molecules of polyvinyl alcohol (PVA)
stretched along a particular direction, to which an iodine-based dye is added. When
light has its electric field parallel to the long axis of the molecules, they become
polarized and develop large fluctuating electric-dipole moments. This sets up large
local fields near the molecules and their excitation is readily transferred to the iodine-
based dye molecules, where the energy is absorbed and thermalized. Light oriented
perpendicular to the molecules does not cause as large a polarization and is therefore
not transferred to the dye efficiently. Consequently, the perpendicularly polarized light
is transmitted with higher efficiency than light oriented parallel to the PVA molecules.
The PVA molecules are in laminated sheets consisting of cellulose acetate butyrate for
mechanical support and chemical isolation.

Later the J-sheet was introduced, consisting of needlelike dichroic crystals of herap-
athite oriented parallel to each other in a matrix of cellulose acetate. A variation of this
is the K-sheet, in which rather than achieving dichroism by adding a stain (an additive
that absorbs at a particular color or colors), hydrogen and oxygen are removed by a
dehydration catalyst. The material is stretched to produce aligned polyvinylene poly-
mers. Another variation, the L-sheet, relies on organic dye molecules to achieve the
dichroism. Typical dye molecules are aminil black, Erie green, Congo red, and Niagara
blue. It is also possible to embed thin parallel metal wires in a substrate to create a polar-
izer. Typically, fine Al wires are placed in substrates of glass, quartz, or polyethylene.

For a dichromophore molecule or crystallite to be successful, it must exhibit a large
anisotropy. In combination with the dye molecule it must be strongly absorbing for
one state of polarization and weakly absorbing for the other state.

An example of the spectral dependence of the polarization parameters on wavelength
is given in Fig. W18.1, where p2

x and p2
y are presented for the polarizer KN-36 (a
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Figure W18.1. Spectral parameters p2
x and p2

y plotted as a function of the wavelength $ for the
polarizer KN-36. (Adapted from E. Collett, Polarized Light, Marcel Dekker, New York, 1993.)

commercial polarizer of the K-sheet variety). The filter is called a neutral polarizer
because these parameters are approximately flat across the visible spectrum.

It should be noted that the concept of a polarizer may be extended to any device that
modifies the Stokes parameters of the transmitted light. A large number of physical
parameters is associated with the Mueller matrix of the device. Full characterization
of a general polarizer is rarely given.

W18.2 Faraday Rotation

In Section W18.1 polarization of light was obtained by means of dichroism. In this
section attention is given to how the direction of polarization may be changed with
little attenuation. The polarization of an electromagnetic wave is rotated when it prop-
agates through a medium along the direction of a magnetic field, a phenomenon called
Faraday rotation. The angle of rotation, #F, is determined by the magnetic induction
or flux density, B D B Ok D 	0H Ok, the length of propagation, z, and the Verdet constant
of the material, V:

#F D VHz. 
W18.12�

The process is illustrated in Fig. W18.2.

B

E

Figure W18.2. Rotation of the electric polarization vector of light propagating along a mag-
netic field.
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To obtain an expression for V, one may model the electrons as a collection of
Lorentz oscillators interacting with the light and the magnetic field imposed. The model
is general enough to include both bound and free electrons. The classical equation of
motion for an oscillator is[

d2

dt2
C * d
dt

C ω2
0

]
r
t� D � e

mc

(
E
t�C dr

dt
ð B

)
, 
W18.13�

with B along the positive z direction. For free electrons mc is the cyclotron effective
mass of the electrons (see Problem W18.1), whereas for bound electrons mc is replaced
by the free-electron mass, m. If the electrons are bound, then ω0 represents an electronic
resonance frequency of the medium, while for free electrons it may be taken to be zero.
Assuming harmonic variations for E
t� and r
t� of the form exp
�iωt�, one obtains
the following equations for the amplitudes x and y:


ω2
0 � ω2 � iω*�x D � e

mc

Ex � iωBy� 
W18.14a�


ω2
0 � ω2 � iω*�y D � e

mc

Ey C iωBy�. 
W18.14b�

Letting xš D x š iy, Eš D Ex š iEy , and ωc D eB/mc (the cyclotron frequency) gives

xš
ω� D � e
mc

Eš
ω2

0 � ω2 � iω* Ý ωωc
. 
W18.15�

The polarization vector of the medium is expressed similarly as

Pš D �nexš D �š�0Eš, 
W18.16�

where n is the concentration of oscillators. The relative permittivity or dielectric
constant is �rš D 1 C �š.

The wave vector is different for right- and left-circularly polarized light: kš D
ω

p
�rš/c. Introducing the dielectric function for zero magnetic field,

�r0 D 1 � ω2
p

ω2 � ω2
0 C iω* , 
W18.17�

where ωp is the plasma frequency, one finds that

�rš D 1 � 1 � �r0
1 š 
ωωc/ω2

p�
1 � �r0�
. 
W18.18�

To first order in B, the difference in the wave vectors is

kC � k� D ωc
c

(
ω

ωp

)2 
1 � �r0�2p
�r0

. 
W18.19�

After propagating a distance z through the medium, this leads to a phase-angle difference,

#F D 
kC � k��z D e

mcc

(
ω

ωp

)2 (
1 � εr0

)2

p
�r0

Bz. 
W18.20�
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The Verdet constant is therefore

V D e

mcc

(
ω

ωp

)2 
1 � �r0�2p
�r0

³ ne3

m2
cc�0

ω2


ω2 � ω2
0�

3/2
√
ω2 � ω2

0 � ω2
p

, 
W18.21�

where the damping constant is neglected in the last expression.
This formula displays the factors influencing the size of the Verdet constant: the

concentration of oscillators, the cyclotron effective mass of the carriers, and the reso-
nance frequency relative to that of the light. In semiconductors, the effective mass
could be small and the value of V could be large. In the neighborhood of an electronic
resonance, the value of V could likewise become large.

Typical values for the Verdet constant for several nonmagnetic materials are presented
in Table W18.1. It is customary to express V in arc-minutes/OeÐm, where 1 Oe D
1, 000/40 A/m. A magnetic induction of B D 40 ð 10�7 T corresponds to a field
intensity H of 1 A/m. The Faraday and Kerr effects in magnetic materials are discussed
in Chapter 17 of the textbook.† Magneto-optical applications are also given there.

An optical isolator may be constructed from a polarizer and Faraday rotator that
rotates the polarization vector by 45°. If light is partially reflected from some interface

TABLE W18.1 Verdet Constants for Several Non-
magnetic Materials

$ V
Material (nm) (arc-min/OeÐm)

Diamond 589.3 2.3
NaCl 589.3 3.5
KCl 589.3 2.8
SiO2 589.3 1.7
B2O3 633 1.0
Al2O3 546.1 2.4
SrTiO3 620 14
ZnSe 476 150

496 104
514 84
587 53
633 41

Tb2Al5O12 520 �103.9 (300 K)
520 �343 (77 K)
520 �6480 (4.2 K)

KH2PO4 (KDP) 632.8 1.24

Source: Data from M. J. Weber, Handbook of Laser Science and
Technology, Vol. 4, CRC Press, Boca Raton, Fla., 1986; and
D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 75th
ed., CRC Press, Boca Raton, Fla., 1994.

† The material on this home pate is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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after it passes through the isolator, the direction of its electric field vector will be
reversed by the reflection. As it propagates backward through the Faraday rotator, the
electric field vector will experience a further 45o rotation. Since the field will then be
perpendicular to the polarizer, it will be blocked by it. This prevents the reflected light
from propagating backward and possibly causing damage to optical components.

W18.3 Theory of Optical Band Structure

Band-structure engineering may be applied to more complex structures than were
considered in Section 18.6. In this section an analysis is given of one such structure,
consisting of a one-dimensional periodic array. Each unit cell of the array contains
two layers of transparent material with different indices of refraction. The propagation
of electron waves in one-dimensional periodic structures is studied in Chapter 7, and
it forms the basis for understanding the band theory of solids. Here the concept is
extended to the optical case.

Consider the passage of light through two materials in the case where the photon
energy is less than the bandgap. Barring any other absorption processes, both materials
would, separately, be transparent. Next construct a stratified structure in which alternate
layers of the two materials are stacked in a periodic fashion. It will be shown that for
some wavelengths, propagation cannot occur and the structure acts as a mirror. Other
colors, however, will pass through and the structure therefore acts as a color-selective
filter. These effects come about due to the destructive and constructive interference of
reflected light waves, in much the same way as electronic band structure results from
the interference of scattered electron waves in solids.

Let the indices of refraction for the two materials be n1 and n2, and let the thick-
ness of layer n1 be b and the thickness of layer n2 be a� b. The structure has a
periodicity of size a (Fig. W18.3). For transverse waves propagating along the x direc-
tion, the problem of wave propagation reduces to solving the Helmholtz equation
[r2 C k2
x�]E D 0, where k1 D ωn1/c, k2 D ωn2/c, and E is the electric field of the
light. The solution in medium 1 is

E
x� D Ajeik1
x�ja� C Bje�ik1
x�ja� if ja < x < ja C b, 
W18.22a�

n1

n2

n

ja xja+b (j+1)a (j+1)a+b

Figure W18.3. Stratified layers of optically transparent materials.
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and in medium 2 is

E
x� D Cjeik2
x�ja� C Dje�ik2
x�ja� if jaC b < x < jaC a. 
W18.22b�

Matching E and dE/dx at x D jaC b yields

Aje
ik1b C Bje�ik1b D Cjeik2b C Dje�ik2b, 
W18.23a�

k1Aje
ik1b � k1Bje�ik1b D k2Cjeik2b � k2Dje�ik2b. 
W18.23b�

Repeating the match at x D 
jC 1�a yields

AjC1 C BjC1 D Cjeik2a C Dje�ik2a, 
W18.24a�

k1AjC1 � k1BjC1 D k2Cjeik2a � k2Dje�ik2a. 
W18.24b�

Let

31 D eik1a, 32 D eik2a, 41 D eik1b, 42 D eik2b. 
W18.25�

After eliminating Cj and Dj from the equations above, one arrives at the recurrence
formula (

AjC1

BjC1

)
D M

(
Aj
Bj

)
, 
W18.26�

where the 2 ð 2 transfer matrix M is

M D 1

4k1k2




k1 C k2�24Ł

24132 
k2
2 � k2

1�4
Ł
14

Ł
232

�
k1 � k2�23Ł24142 �
k2
2 � k2

1�3
Ł
24

Ł
142


k2
1 � k2

2�4
Ł
24132 �
k2 � k1�24Ł

14
Ł
232

�
k2
1 � k2

2�3
Ł
24142 C
k1 C k2�23Ł24Ł

142


 . 
W18.27�

Note that M is independent of the index j. The sum of the diagonal elements is called
the trace:

Tr
M� D 1

4k1k2
[
k1 C k2�2
4Ł

24132 C 424
Ł
13

Ł
2�� 
k1 � k2�2
3Ł24142 C 324Ł

14
Ł
2�].


W18.28�
The determinant of the M matrix is 1.

The eigenvalues of the M matrix are defined as the roots of the characteristic
equation ∣∣∣∣M11 � 	 M12

M21 M22 � 	
∣∣∣∣ D 0 D 	2 � 	 Tr
M�C 1, 
W18.29�

and are

	š D 1

2
Tr
M�š

√(
1

2
Tr
M�

)2

� 1. 
W18.30�

The product of the two eigenvalues is equal to 1, the determinant. If both eigenvalues
are real, one of them is larger than 1 and the other is smaller than 1. On the other
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hand, if one of the eigenvalues is complex, the other is its complex conjugate and
each eigenvalue has magnitude 1. If the eigenvalue is real, repeated application of
the transfer matrix will cause the amplitudes Aj and Bj to grow exponentially with
increasing j, leading to an unphysical situation. Under such circumstances, propagation
is not possible. The condition for propagation is therefore that 	š be complex [i.e.,
that 
TrM�2 < 4]. This will define what is called a propagation band. The condition
may be recast as the condition

f
k1 C k2�2 cos[
k2 � k1�b� k2a] � 
k1 � k2�2 cos[
k2 C k1�b� k2a]g2 < 
4k1k2�
2.


W18.31�
In Fig. W18.4 the allowed propagation band for the special case b D a/2 is illus-

trated. Let

k D k1 C k2
2
, q D k2 � k1

2
, x D ka

2
, y D qa

2
. 
W18.32�

Then the propagation-band conditions are

y2 cos2 y < x2 cos2 x, y2 sin2 y < x2 sin2 x. 
W18.33�

Some wavelengths are able to propagate through the structure and others are blocked.
Typical materials for use in these devices, which may serve as either mirrors or

filters, are TiO2 (n D 2.4) and SiO2 (n D 1.46). Other combinations are MgF2 (n D
1.38) and ZnS (n D 2.35) or MgF2 with TiO2. A one-dimensional array of air holes
in a Si strip on top of an SiO2 substrate has been fabricated† which displays a 400-nm
gap centered around $ D 1.54 µm.

To withstand bursts of light that may arise in pulsed lasers, one generally wants
matched coefficients of thermal expansion and high thermal conductivity. The reason
is that mismatched thermal expansion between successive layers will generate strains
upon heating that could produce dislocations at the interface. Repeated thermal expan-
sion may enlarge these dislocations and could eventually crack the material. The high

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

ka/2

qa
/2

Allowed band

Figure W18.4. Region of parameter space for the propagation band.

† J. S. Foresi et al, Nature, 390, 143(1997).
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thermal conductivity permits the material to cool rapidly. Optical damage is considered
further in Section W18.4.

The extension of the periodic structure to two or three dimensions has led to the
construction of what are called photonic crystals. By creating an array of holes in
a dielectric slab a photonic crystal operating in the microwaves has been built.† By
stacking Si rods in a face-centered tetragonal array with air filling the interstices, it
has been possible to fabricate‡ a photonic crystal with a bandgap in the infrared (10 to
14.5 µm). Similarly, a periodic array of air-filled spheres in a titania crystal has been
fashioned to serve as a photonic crystal in the visible region of the spectrum.§

Just as electrons may be localized in a medium with random scatterers, the same
is true of electromagnetic radiation. Localization in the microwave region has been
demonstrated by using a three-dimensional metal-wire network with random scatterers.¶

It is clear that band-structure engineering is still at its early stage of development and
that new and exciting developments are rapidly emerging in the field.

W18.4 Damage

Laser damage to optical components, such as laser crystals, mirrors, polarizers, fibers,
electro-optic crystals, and prisms, is of concern in applications involving high power,
in both pulsed and continuous wave (CW) operation. Due to the optical absorption,
the materials heat up. Materials with a low heat capacity and low thermal conductivity
are more likely to reach high temperatures. In layered structures the mismatch in
thermal expansion coefficients can lead to crack formation and propagation. Typically,
bulk damage results for 10-ns pulses when the power density is in the range 200 to
4000 TW/m2.

One of the prime concerns is the phenomenon of self- focusing. This can occur in a
medium with a positive value of the nonlinear index of refraction, n2I. A laser beam
generally has a cross-sectional intensity profile with a higher intensity, I
R�, near the
axis than away from it. A typical form for the profile is Gaussian; that is,

I
R� D 2P0

0f2
e�2
R/f�2, 
W18.34�

where R is the radial distance, P0 the power in the beam, and f a measure of the
beam radius. The nonlinearity causes a larger value for the index of refraction, n
R� D
n1 C n2I
R�, near the axis, when n2 > 0. The medium behaves as a lens, and this tends
to focus the radiation [i.e., make f
z� decrease with increasing propagation distance,
z]. However, there is a competing effect due to diffraction, which tends to defocus the
radiation. This defocusing effect becomes stronger the smaller the value of f. There
exists a critical value of P0 for which the focusing effect of the nonlinearity dominates
over the defocusing effect of diffraction and the beam focuses. When it does so, the
focal spot can become as small as a wavelength of light and the intensity can become

† E. Yablonovitch et al, Phys. Rev. Lett., 67, 2295 (1991).
‡ S. Y. Lin et al, Nature, 394, 251 (1998).
§ J. Wijnhoven and W. Vos, Science, 281, 803 (1998).
¶ M. Stoychev and A. Z. Genack, Phys. Rev. B, 55, R8617 (1997).
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very large. A crude estimate of the critical power may be obtained by setting f D 1/k,
where k is the wave vector, and setting n1 ³ n2I. This gives Pcr ¾ n1/n2k2.

Often, the electric field of the light can exceed the strength of the typical electric
fields in the solid and electrons can be accelerated to high energies, causing radiation
damage such as atomic displacements. The highly concentrated beam could cause local
melting, vaporization or ionization.

The situation is exacerbated when there are preexisting cracks or dislocations in the
material. When subjected to the (uniform) electric field of the laser, the local electric
field in the vicinity of the defect could be nonuniform, with particularly strong fields
being generated near sharp features. The same effects occur near a lightning rod, where
the strongest field occurs near the sharpest point. Local breakdown is likely to occur
near the defect, often inflicting additional damage there.

Defects are usually introduced into optical components during their fabrication stage.
For example, YAG is seen to have edge dislocations, helical dislocations, and zigzag
dislocations. Laser crystals are often plagued by secondary phases of crystals mixed in
with the primary phase. Bubbles are often present. These larger features can also serve
as scattering centers which deplete the laser beam of power and couple their signals to
other optical components. For this reason it is important that the optical components
be largely free of defects before being used in high-power applications.
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PROBLEM

W18.1 The effective-mass tensor for an electron is diagonal in the xyz-coordinate
system and has elements mŁ

1, mŁ
2, and mŁ

3. A magnetic induction B is directed
in an arbitrary direction. If the cyclotron resonance frequency is eB/mc, find
an expression for mc.



CHAPTER W19

Surfaces

W19.1 Surface States

It is possible to introduce Tamm surface states by adding an attractive delta function
potential of strength U to the step potential introduced in Eq. (19.3):†

V�z� D �V0��z��Uυ�z�. �W19.1�

Note that the units of U are JÐm and that of V0 are joules. The independent variables
in the Schrödinger equation can be separated with the substitution

 �r� D 
�z� exp�ikjj · rjj� �W19.2�

where a solution can be found with


�z� D
{

exp���z� if z > 0,
exp�Cqz� if z < 0.

�W19.3�

Here

� D
√
k2

jj � 2mE

h̄2 , �W19.4a�

where E < 0 and

q D
√
k2

jj � 2m�EC V0�

h̄2 . �W19.4b�

The function 
�z� is continuous at z D 0. The discontinuity in the derivative is deter-
mined by the strength of the delta function:

√
k2

jj � 2mE

h̄2 C
√
k2

jj � 2m�EC V0�

h̄2 D 2mU

h̄2 . �W19.5�

The solution to this equation gives the dispersion formula for the surface state band,
E�kjj�. Note that at kjj D 0, E must lie below �V0.

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W”.
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For the Shockley state one may develop a heuristic model to help understand its
origin. Consider a semiconductor and look at the states near the top of the valence band
at energy Ev. For simplicity’s sake the effective mass of the holes will be assumed to
be isotropic and the band will be taken to be parabolic. The energy of an electron in
the valence band is then given by

E�k� D Ev � �h̄k�2

2mŁ
h

. �W19.6�

One may develop a phenomenological Schrödinger equation based on a spatially depen-
dent mass m�z� with m�z� being the free-electron mass in vacuum and the negative of
the hole mass inside, that is,

m�z� D
{�mŁ

h if z < 0
Cm if z > 0.

�W19.7�

The resulting Schrödinger equation is

� h̄
2

2
r Ð
[

1

m�z�
r

]

C Ev��z�
 D E
. �W19.8�

(The gradient operator is written in this split form so that the probability current
perpendicular to the surface may be proven to be continuous.)

As before, look for a solution of the form given by Eqs. (W19.2) and (W19.3). Now

q D
√

2mŁ
h

h̄2 �E� Ev�C k2
jj , �W19.9a�

� D
√
k2

jj � 2mE

h̄2 . �W19.9b�

The wavefunction 
�z� in Eq. (W19.3) is already continuous. The continuity of prob-
ability current perpendicular to the surface,

� h̄

mŁ
h

Im
(

Ł d

dz

)
D h̄

m
Im
(

Ł d

dz

)
, �W19.10�

which is needed for a valid wavefunction, implies that

q

mŁ
h

D �

m
. �W19.11�

Thus the condition for the surface-state band is

1

mŁ
h

√
2mŁ

h

h̄2 �E� Ev�C k2
jj D 1

m

√
k2

jj � 2mE

h̄2 . �W19.12�
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For kjj D 0 the surface state lies at an energy above the top of the valence band
(E > �jEvj) but below the vacuum level (E < 0):

E�kjj D 0� D � jEvj
1 C mŁ

h/m
. �W19.13�

More generally, one often employs a complex band structure in which the bulk
energy bands are extended to negative values of k2. This permits an effective Hamil-
tonian for the solid to be written which may be solved in conjunction with the
Hamiltonian for the electron in vacuum. The procedure of wavefunction matching
is similar to what was employed, but the implementation is more computational.

W19.2 Surfactants

Surface-active agents, or surfactants, are molecules that can radically alter the surface
or interface properties of a system even in small concentrations. The system usually
involves the liquid–solid, liquid–liquid, or liquid–gas interface. Sometimes the term
surfactant is used in reference to adsorbates [e.g., a monolayer of As is used on
Si (100) and Ge (100) to aid in Si–Ge heteroepitaxy]. Here, however, the focus is on
the liquid–solid interface. The surfactant molecule can consist of a long hydrocarbon
chain with an polar unit at one end. In the liquid the hydrocarbon chain must push
aside the liquid molecules to make room for the surfactant molecule. This involves
reducing the forces responsible for the liquid bonds. In water the surfactant molecule
must break apart the hydrogen bonds that exist. Since the hydrocarbon chain has
all its valence requirements satisfied by carbon–carbon or carbon–hydrogen bonds,
it is fairly inert to chemical or electrical interactions with the liquid. The net result
is that the liquid tends to expel the hydrocarbon in order to lower its energy. The
hydrocarbon chain is called hydrophobic, since it avoids being in water. On the other
hand, the polar end can lower its energy by immersing itself in the liquid. There
is an electrical attraction between the polar group and the liquid. This end is called
hydrophilic, due to its affinity for water. In order for the molecule to go into solution,
the energy decrease involved in the hydrophilic interaction must be greater than the
energy increase due to the hydrophobic interaction. Typical examples of surfactant
molecules are C12H25SO4

�NaC and C12H23COO�NaC.
The surface or interface provides a region of space where both the hydrophobic and

hydrophilic tendencies can be satisfied simultaneously. If the polar group lies in the
liquid and the hydrocarbon chemisorbs onto the surface, a doubly low energy can be
achieved. The lowest-energy state of the system therefore involves an accumulation of
the surfactant molecules at the surface. This means that even in small concentrations
the molecules will aggregate at the surface.

The adsorption of the surfactants at the surface or interface lowers the interfacial
tension, often significantly. This can radically alter such properties as surface diffusion,
chemisorption, and crystal growth. Since the surface atoms are now binding themselves
to the surfactant molecules, they have fewer bonding electrons to form the surface
bonds, thereby depressing the surface tension.

The surface tension drops monotonically with increasing surfactant concentration
until a critical concentration is reached (usually when the surface is completely
covered). Beyond that the surface properties no longer change. This curious behavior
is traced to an interaction that the surfactant molecules have among themselves. The
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surfactant molecules can form a composite unit in solution called a micelle. The micelle
comes about, for example, by creating a ball of molecules with their hydrocarbon chains
directed toward the center of the sphere and the polar groups directed outward into the
liquid. Liquid is not present in the interior of the micelle. This also satisfies both the
hydrophobic and hydrophilic tendencies of the molecule. Other geometries, involving
micellar rods or parallel sheets, are also possible.

To understand why a surfactant molecule would prefer to leave the liquid and adsorb
onto a surface, one must compare the energies of the molecule in solution with it being
adsorbed on the surface. A crude model for the interaction of the surfactant molecule
with the liquid may be obtained by imagining that the polar end is a point dipole that
carves out a small spherical cavity around it in the liquid. Let the sphere have a radius
equal to a. Denote the strength of the dipole by �, and the electric permittivity of the
liquid by �. The electrostatic potential in all of space is then given by

�r, �� D




�E0r cos � C � cos �

4��0r2
if r < a,

p cos �

4��r2
if r > a,

�W19.14�

where, in order to satisfy the continuity of  and the radial component of the electric
displacement vector Dr

p D 3��

�0 C 2�
, �W19.15�

E0 D 2�

4��0a3

�� �0

�0 C 2�
. �W19.16�

Here E0 is the electric field in the cavity due to the polarization charges in the liquid.
The interaction energy of the dipole with this field, Us, is called the solvation energy:

Us D � �2

4��0a3

�� �0

�0 C 2�
. �W19.17�

The hydrophobic interaction, Ui, may be estimated by imagining that the hydrocarbon
chain carves out a cylindrical cavity with surface area A. This causes a rise in the
surface energy given approximately by the product of the surface tension of the liquid
and the area

Ui D #A. �W19.18�

For the molecule to go into solution, the total energy, Us CUi, must be negative.
When chemisorption of the surfactant molecule occurs, there is an additional energy
Uc, corresponding to the chemisorption bond. Since Uc < 0 it is favorable for the
surfactant molecules to go out of solution and adsorb onto the surface.

W19.3 Adsorption

Suppose that a solid is exposed to a monatomic gas at temperature T and pressure P.
Atoms will strike the surface and a fraction, s, will stick to it. It is therefore important
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Figure W19.1. An element of area on the surface, dA, and volume element in the gas, dV;
particles emanating from a volume element at P strike the element of area dA on the surface.

to determine the impingement flux, F, defined as the number of atoms striking the
surface per unit area per unit time. As will be seen, F is determined simply in terms
of P, T, and the atomic mass, M.

In Fig. W19.1a an element of area dA of the surface is drawn, as well as a volume
element dV in the gas a distance r away. The vector joining dA and dV makes an
angle � with the surface normal. The radial extent of dV is dr. The number of atoms in
dV is dN D ndV, where n is the number of atoms per unit volume (number density).
For the moment, consider only the subset of atoms moving with a given speed v. These
atoms are moving in random directions. Those atoms that are directed approximately
at dA will strike it at a time t D r/v later, over a duration lasting dt D dr/v. Therefore,
the volume element may be expressed as dV D r2 d,vdt, where d, is the solid angle
subtended by dV at dA.

The fraction of atoms emanating from dV which strike dA is determined by the solid
angle subtended by dA by a typical point in dV, P. Referring to Fig. W19.1b, the solid
angle is d,0 D dS/r2, where dS is the projection of dA onto a plane perpendicular to
r, and is given by dS D dA cos �. The desired fraction is df D dA cos �/4�r2, where
the solid angle has been divided by 4� steradians.

The differential flux is

dF D df

dA

dN

dt
D nv

4�
cos � d,. �W19.19�

The net flux is obtained by integrating dF over a hemisphere (using d,0 D 2� sin � d�,
where 0 	 � 	 �/2), that is,

F D nhvi
4
. �W19.20�

Here there is finally an average over all speeds.
The kinetic theory of gases provides a means for computing hvi:

hvi D

∫
d3vv exp[�ˇ�mv2/2�]∫
d3v exp[�ˇ�mv2/2�]

D
√

8

�ˇm
; �W19.21�
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here ˇ D 1/kBT. Finally, employing the ideal gas law, P D nkBT, the desired expres-
sion for the impingement flux is obtained:

F D Pp
2�MkBT

. �W19.22�

The rate of deposition of adsorbed atoms per unit area, dNa/dt, is determined by
multiplying the impingement flux by the sticking probability, s. The quantity s is the
fraction that stick “forever” (or for at least several vibrational periods). Thus

dNa
dt

D sPp
2�MkBT

. �W19.23�

The sticking probability or coefficient can be a complicated function of the surface
conditions and the adsorbed atom areal number density, Na. Often, this areal density is
expressed as the coverage, �, which is the fraction of a monolayer that is adsorbed (i.e.,
� D Na/Nam). For example, at low temperatures, s for N2 on W(110) first rises and
then falls as � increases. For N2 on W(100), however, s decreases monotonically with
increasing coverage. Different faces of the same crystal can have different values of s.
For example, for W(100) s D 0.6 at � D 0, whereas s D 0.4 for W(411) and s D 0.08
for W(111). The existence of steps on the surface often increases the value of s over
what it would be for a smooth surface. For example, s for N2 adsorbing on Pt (110)
increases from 0.3 for a smooth surface to 1.0 for a step density of 8 ð 108 m�1. This
trend is to be expected since steps generally possess dangling bonds which enhance
the degree of chemical reactivity.

The impingement flux is rather high at normal atmospheric pressure. For example,
for air at room temperature the flux is 3 ð 1027 atoms/m2Ðs. Taking s ³ 1, one sees that
a monolayer (Na ³ 1019 m�2) will be deposited on the surface in about 10�8 s. To study
a clean surface, ultrahigh-vacuum conditions must be maintained, with pressures as low
as 10�12 torr, 760 torr being 1 atmosphere of pressure. This often requires preparing the
sample under ultrahigh-vacuum conditions, as well. The unit of exposure of a surface
to a gas is called the langmuir; 1 langmuir corresponds to an exposure of 10�6 torrÐs.

Once the atom strikes the surface and sticks, at least temporarily, it will migrate
from place to place by a series of thermally activated jumps. Most of the time, however,
will be spent at adsorption sites. These sites correspond to the minima of the potential
energy surface. Typical places for these sites are illustrated in Fig. W19.2, which shows
the on-top site, T; the bridge site, B; and the centered site, C, for two crystal faces.
More complicated sites can exist for other crystal faces. Steps, kinks, and defect sites
are also common adsorption sites.

T

B

C

Figure W19.2. The top site, T, the bridge site, B, and the centered site, C for two crystal
faces. The left face could be FCC (111) or HCP (0001). The right face could be FCC (100) or
BCC (100).
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W19.4 Desorption

Desorption is the inverse process to adsorption. Atoms bound in the potential well of
the surface vibrate at a characteristic vibrational frequency determined by the atomic
mass and the curvature at the bottom of the well. In addition, the atoms interact with
the bath of thermal phonons presented by the solid. This causes the energy of the
adsorbed atom to fluctuate in time. When the energy fluctuates by an amount suffi-
cient to overcome the binding energy, the atom can dissociate from the surface and be
desorbed. The vaporization process is described in terms of desorption in Section 6.3
of the textbook.

A reasonable estimate for the rate of atoms per unit area that desorb may be obtained
from the expression

dNd
dt

D Naf exp
(

� Ec
kBTs

)
. �W19.24�

Here Na is the number of atoms adsorbed per unit area, f the vibrational frequency
of the atoms, and Ts the surface temperature. The probability of the atom achieving
the required energy Ec is given by the Boltzmann factor. The factor f represents
the “attempt” frequency. In using this expression the situation depicted in Fig. 19.15a
applies. For the case of a second physisorption well, as in Fig. 19.15b, Ep should be
used in place of Ec and the density of physisorbed atoms, Np, should be used rather
than the density of chemisorbed atoms, Na.

In thermal equilibrium the surface and gas temperatures are equal, Ts D T, and the
adsorption rate equals the desorption rate. Under these conditions it can be shown
that

Na�T� D sP

f
p

2�MkBT
exp

(
Ec
kBT

)
. �W19.25�

Thus the number density of adsorbed atoms is proportional to the pressure of adsorbate
atoms in the gas.

Now proceed to look at the Langmuir model for adsorption. In this model one
regards the surface as having a density of adsorption sites, Ns (denoted by Nam in
Section W19.3). The sticking probability is modified as these sites are filled with
adsorbate atoms. When all the sites are filled, the adsorption process comes to a
halt. This model is not general. It applies to a restricted set of adsorption processes,
usually corresponding to a strong chemisorption bond formed between the solid and
the adsorbate.

Let � denote the fraction of sites that are occupied, that is,

� D Na
Ns
. �W19.26�

In place of the previous sticking probability, s, one now has s�1 � ��. Thus, equating
the adsorption rate to the desorption rate yields

sP�1 � ��p
2�MkBT

D Ns�f exp
(

� Ec
kBT

)
. �W19.27�
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Solving for � gives the Langmuir adsorption isotherm,

��P, T� D aP

1 C aP
, �W19.28�

where

a�T� D s

Nsf
p

2�MkBT
exp

(
Ec
kBT

)
. �W19.29�

The formulas above show that the surface coverage saturates to � D 1 at high gas
pressures.

More sophisticated models have been constructed to describe the situation where
multilayer adsorption and desorption can occur.

W19.5 Surface Diffusion

The normal state of affairs for adsorbed atoms is for them to move around on the surface
at finite temperatures. This is in contrast to the bulk solid, where diffusion occurs
via vacancies or interstitials present under equilibrium conditions. Surface diffusion
proceeds by a series of thermally activated jumps. In general, no atoms of the substrate
have to be “pushed” out of the way to achieve this jump. In this sense it is different
from the bulk solid.

Consider a surface that has rectangular symmetry. The diffusion equation for the
motion of the adsorbed atoms will be derived. Let the probability for finding an atom
in the surface net cell �x, y� at time t be denoted by F�x, y, t�. The probability is just
the concentration of adsorbed atoms divided by the concentration of available sites,
F D Na/Ns. Let px be the probability that the atom makes a jump of size dx in the
positive x-direction in a time 3. For the y direction the analogous jump probability
involves dy . Attention will be restricted to the case where there is surface reflection
symmetry, so px is also the probability for a jump to the point x � dx. At time t C 3
the probability becomes

F�x, y, t C 3� D �1 � 2px � 2py�F�x, y, t�C px[F�x C dx, y, t�C F�x � dx, y, t�]

C py[F�x, y C dy, t�C F�x, y � dy, t�]. �W19.30�

The first term on the right-hand side represents the probability for the atom originally at
�x, y� to have remained on the site. The second and third terms together give the proba-
bility that neighboring atoms hop onto the site. Expanding both sides in powers of 3, dx,
and dy , and retaining lowest-order nonvanishing terms, leads to the diffusion equation

∂F

∂t
D Dx

∂2F

∂x2
C Dy

∂2F

∂y2
, �W19.31�

where the diffusion coefficients are

Dx D pxd2
x

3
, Dx D pyd2

y

3
. �W19.32�
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In the case where there is square symmetry, the two diffusion coefficients become
equal to each other and may be replaced by a common symbol, D.

Instead of talking about probabilities, it is more useful to talk about surface concen-
tration, which will now be denoted by C (i.e., C D Na D NsF). Equation (W19.31)
is obeyed by C, since one need only multiply through by Ns. In the derivation above
it was assumed that the hopping probabilities are independent of whether or not the
site to which it hops is occupied. This is clearly a limitation. It may be remedied by
allowing the diffusion constants themselves to be functions of the particle concentra-
tion. One may introduce a particle current per unit length, J, defined as the number
of adsorbed atoms hopping across a line of unit length per unit time. Suppose, for
example, that the surface is horizontal and a line is drawn from south to north. If
there is a higher concentration to the east of the line than to the west, there will be a
larger number of atoms jumping to the west than to the east. Thus the current will be
proportional to the gradient of the probability. Using arguments similar to those used
before leads to

J D �D Ð rC. �W19.33�

Here a diffusion matrix, D, has been introduced and the possibility of having off-
diagonal terms must be allowed for.

The continuity equation that governs the flow of particles on the surface is

r Ð J C ∂C

∂t
D
(
dC

dt

)
adsorb

�
(
dC

dt

)
desorb

. �W19.34�

The terms on the right-hand side correspond to the increase or decrease in concentration
due to adsorption and desorption, respectively. One thereby obtains the generalized
diffusion equation:

�r Ð �D Ð rC�C ∂C

∂t
D
(
dC

dt

)
adsorb

�
(
dC

dt

)
desorb

. �W19.35�

For pure surface diffusion, the right-hand side of this equation would be zero.
In the diffusion process the probability for making a hop depends on the surface

temperature, Ts, and the surface barrier height, Eb;

px�Ts� D 3f exp
(

� Eb
kBTs

)
. �W19.36�

Here f is the attempt frequency, which is essentially the vibrational frequency of
the adatom parallel to the surface. In this formula, both the attempt frequency and
the barrier height may be different for the x and y directions. For simplicity’s sake,
attention will henceforth be restricted to the case of square symmetry. Since the hopping
probabilities exhibit Arrhenius-type behavior, the diffusion coefficient will also exhibit
such behavior. The higher the temperature, the greater will be the rate of surface
diffusion.
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The solution to the homogeneous diffusion equation, ignoring adsorption and desorp-
tion, in two dimensions subject to the initial condition is C�r, t D 0� D C0υ�r� is

C�r, t� D C0

4�Dt
exp

(
� r2

4Dt

)
. �W19.37�

This may be verified for t > 0 by insertion of this formula into the diffusion equation.
[Note that C�r, t� and C0 do not have the same dimensions.] As t ! 0 the spatial
extent of C becomes narrower and the size of C increases without bound, but the
integral over area remains fixed at the value C0, consistent with the initial condition.
This concentration function may be used to compute the mean-square displacement,
that is,

hr2i D

∫
C�r, t�r2dA

C0
D 4Dt. �W19.38�

The mean-square displacement that a particle travels from its starting point grows as
the square root of time for diffusive motion. This is to be contrasted with the case
of ballistic motion, where the distance covered grows linearly with t. The presence
of surface defects may play an important role in surface diffusion because they often
offer paths of high mobility for the diffusing atoms. They may also trap diffusing atoms
(e.g., dislocations can pull surface atoms into the bulk or ledges may trap atoms).

One way of observing surface diffusion is by means of the field-ion microscope.
Using the atomic-scale resolution capabilities of the microscope permits one to follow
the path of a single atom. Usually, the temperature of the tip of the microscope is
raised, and the temperature is maintained for some time and then cooled. At elevated
temperatures the atom has a chance to hop to an adjacent site. In this way the random
walk associated with diffusive motion may be studied. The diffusion coefficient may
be extracted from Eq. (19.38) and studied as a function of temperature. From the
Arrhenius behavior of D the barrier height Eb may be determined.

W19.6 Catalysis

Surfaces of solids may be used to promote or accelerate particular chemical reactions
selectively. Such a catalytic process generally involves the following steps: adsorption
of molecules onto the surface; dissociation of the molecules into smaller components
(including possibly atoms); diffusion of the components on the surface; reaction of
the components to form product molecules; and finally, desorption of the product
from the solid. Each of these steps generally involves potential barriers that need to
be surmounted, so there are a number of physical parameters governing the overall
reaction rate.

Consider, for example, the Haber process for the synthesis of ammonia. Historically,
this process has proven to be extremely important because of the role of ammonia as a
primary starting material in the manufacture of fertilizers and explosives. The process
is illustrated in Fig. W19.3.

The catalyst used is iron. When nitrogen molecules adsorb on iron, the dissociation
energy for N2 is lowered. This is because some of the orbitals that were previously
involved in the N–N bond now hybridize with the Fe 3d orbitals and serve as the
basis for establishing the N2 –Fe bond. At elevated surface temperatures (³ 400°C) the
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Figure W19.3. Six stages in the Haber process: nitrogen (dark circles) and hydrogen (light
circles) combine to form ammonia on iron.

probability for N2 dissociation increases. The net result is that individual N atoms are
bound to the iron and are able to hop from site to site as a result of thermal activation.
Hydrogen undergoes a similar dissociation process (i.e., H2 ! H C H). When a free
H and N combine, there is a probability for reacting to form the NH radical, which is
still adsorbed. Further hydrogenation results in the formation of NH2 and ultimately,
the saturated NH3 molecule. Whereas the NH and NH2 radicals are chemically active,
and hence remain chemisorbed to the Fe, the NH3 is only physisorbed. It is easy
for it to desorb. The net result is that Fe has served as the catalyst for the reaction
N2 C 3H2 ! 2NH3. Although a number of metals can be used to dissociate N2 and
H2, Fe is optimal in that it does not attach itself so strongly to N and H so as to prevent
their further reacting with each other to reach the desired product, NH3. What matters
is the net turnover rate — how rapidly the overall reaction can be made to proceed per
unit area of catalyst.

It is found that some faces of Fe are more catalytically active than others. The Fe
(111) and (211) faces are the most active faces, while the (100), (110), and (210) are
less active. It is believed that the (111) and (211) faces are special in that they expose
an iron ion that is only coordinated to seven other iron atoms (called the C7 site). It
is also found that potassium atoms enhance the sticking coefficient for gas molecules
and therefore help promote the catalytic reaction. This is attributed to the lowering of
the work function of the surface, which makes it easier for Fe 3d orbitals to penetrate
into the vacuum so they could form chemical bonds with the adsorbed nitrogen and
hydrogen species.

Another example of catalysis is provided by the catalytic convertor used in the
automobile industry. Here the problem is to remove carbon monoxide (CO) and nitric
oxide (NO) from the exhaust fumes of the internal combustion engine. The catalyst of
choice consists of particles of platinum (Pt) and rhodium (Rh) on a (relatively inex-
pensive) supporting material. An actual catalyst consists of small particles supported
on oxide powders. The CO molecule adsorbs on the metal. Some oxygen is present.
The O2 molecules dissociatively adsorb (i.e., O2 ! 2Oad). Similarly, NO dissociatively
adsorbs (i.e., NO ! Nad C Oad). Free N and O atoms diffuse across the surface. When
an O atom encounters the CO molecule, the reaction CO C O ! CO2 is possible. Since
the valency requirements of this molecule are fully satisfied, it readily desorbs from
the catalyst. The adsorbed N atoms can react similarly to form nitrogen molecules
(N C N ! N2), which also readily desorb.
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The morphology of the surface often plays a crucial role in its efficiency as a catalyst.
Various crystallographic faces of a given material often have catalytic activities that can
vary by orders of magnitude. These large variations reflect the underlying exponential
dependence of hopping probability on barrier height. Step sites and other defects often
provide locales that favor one or more of the processes needed to transform reactants
to products. This is presumably related to the presence of dangling bonds that can
be utilized in forming surface-chemical intermediates. Catalysts are frequently used in
the form of powders, to maximize the amount of available surface area per unit mass.
In some cases coadsorbates are introduced because they provide beneficial surface
structures, such as islands, which can play a role similar to that of steps.

W19.7 Friction

The average power generated per unit area by kinetic friction is given by �kNv/Aa.
This causes an average temperature riseT of the interface. The actual temperature rise
will depend on the thermal conductivities � of the solids and characteristic geometric
lengths. One may write the formula as

T D �kNv

Aa

1

�1/l1 C �2/l2
D �kPv

1

�1/l1 C �2/l2
. �W19.39�

where P is the pressure. The lengths l1 and l2 correspond to the characteristic distances
over which the change T occurs. However, since the actual contact area is much
smaller than the apparent contact area, there will be points where the temperature
rise is considerably higher. There the temperature rise, to what is called the flash
temperature, will be given by

T0 D �kNv

At

1

�1/l1 C �2/l2
. �W19.40�

This may be a serious problem in ceramics, which generally have low values of �. The
high temperatures produce thermal stresses that lead to brittle fracture. This may be
eliminated by depositing a good thermally conducting layer, such as Ag, which serves
to dissipate the frictional heat.

A possible explanation for the velocity dependence of �k , noted above, is due to
the melting of surface asperities. When v becomes sufficiently large, T0 given by Eq.
(W19.40) may be large enough to melt the surface asperities.

An interesting case arises if two atomically flat surfaces with different lattice spac-
ings are brought into contact and slide past each other. If the ratio of the lattice spacings
is an irrational number, the lattices are said to be incommensurate. In that case simu-
lations show that one surface may slowly slide relative to the other without the need
to change the number of bonds between them. Furthermore, the energy released by
forming a new bond may be resonantly transferred to open a nearby existing bond.
There is no static friction predicted in such a case, only viscous friction.

One interesting result of nanotribology is that the kinetic friction force is actually
velocity dependent. The force is proportional to the relative velocity at the true contact
points. Of course, this velocity may be quite different than the macroscopic velocity
due to the local deformations that occur. The kinetic friction force, on a microscopic
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level, is actually a viscouslike friction force. The characteristic relaxation time is given
by the sliptime.

Lubrication involves attempting to control friction and wear by interposing a third
material between the two contacting surfaces. Commonly used solid-state lubricants
include the layered materials graphite and MoS2. Here lubrication is achieved by having
weakly bound layers slough off the crystals as shear stress is applied. Liquid lubricants
include such organic compounds as paraffins, diethyl phosphonate, chlorinated fatty
acids, and diphenyl disulfide. Spherical molecules, such as fullerene, or cylindrical
molecules such as carbon nanotubes, behave in much the same way as ball bearings in
reducing friction. Lubricants can also carry heat away from flash points or can serve
to equalize stress on asperities.

Molecular-dynamics (MD) simulations are often used in conjunction with nanotri-
bology experiments to obtain a more complete understanding of the physics of friction.
An example involves the jump-to-contact instability, in which atoms from a surface
(such as Au) will be attracted toward an approaching tip of a solid (such as Ni) when
the separation is less than 1 nm. At a separation of 0.4 nm, the two metals will actually
come into contact by means of this instability.

In another example it was recently found that the amount of slip at a liquid–solid
interface is a nonlinear function of the shear rate, P# . If v is the relative velocity of
the fluid and solid at the interface, Navier had postulated that v D Ls P# , with Ls being
a slip length characteristic of the solid and liquid. The MD simulations† show that
Ls D L0

s �1 � P#/ P#c��1/2.
The interplay between triboelectricity and friction is not yet completely understood,

although there is evidence that the sudden stick-slip motion does produce electrification.
When two different materials are brought into contact, a charge transfer will occur to
equalize the chemical potential for the electrons. The resulting difference in potential
is called the contact potential. If the materials are slowly separated from each other
the charge transfer is reversed and no electrification occurs. However, for sudden
separation, as occurs in a slip, there is incomplete reverse charge transfer and the
materials become electrified. It is possible that this accounts for the picosecond bursts
of light seen at the moving meniscus of the Hg–glass interface‡.

Appendix W19A: Construction of the Surface Net

Let fRg be a set of lattice vectors and fGg the corresponding set of reciprocal lattice
vectors for a Bravais lattice. The lattice vectors are expressed in terms of the primitive
lattice vectors fuig (i D 1, 2, 3) by

R D n1u1 C n2u2 C n3u3, �W19A.1�

where fn1, n2, n3g are a set of integers. Similarly, the reciprocal lattice vectors may
be expanded in terms of the basis set fgjg by

G D j1g1 C j2g2 C j3g3, �W19A.2�

† P. A. Thomson and S. M. Troian, Nature, 389, 360 (1997).
‡ R. Budakian et al, Nature, 391, 266 (1998).
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where fj1, j2, j3g are also a set of integers. The primitive and basis vectors obey the
relations

ui·gj D 2�υij. �W19A.3�

Select an atom at point O in the interior of the solid as the origin. Let the surface plane
be perpendicular to a particular vector G and a distance h from O. If the displacement
vector r from O to a point on the surface plane is projected along G, the magnitude
of this projection is constant. Thus the plane is described by the equation

r· OG D h �W19A.4�

where OG is a unit vector. This is illustrated in Fig. W19A.1.
Inserting a lattice vector for r leads to the formula

2��j1n1 C j2n2 C j3n3� D hG. �W19A.5�

This equation may be used to eliminate one of the numbers n1, n2, or n3. Which can
be eliminated depends on the numbers j1, j2, and j3. If j1 is nonzero, n1 may be
eliminated and

R D u1

j1

(
h

2�
G� n2j2 � n3j3

)
C n2u2 C n3u3 �W19A.6�

If j1 is zero, either n2 can be eliminated (assuming that j2 is nonzero) or n3 can be
eliminated (assuming that j3 is nonzero), with analogous formulas for R following
accordingly. In the following it will be assumed that j1 is nonzero.

The atoms of the ideal surface plane lie on a regular two-dimensional lattice called
the surface net. To study this net more closely, project the vector r onto the surface
lattice plane. Referring to Fig. W19A.2 shows that for a general vector r the projected
vector is

r0 D r � r Ð OG OG D OGð �r ð OG�. �W19A.7�

Thus a set of projected primitive lattice vectors fu0
ig can be constructed:

u0
1 D OGð �u1 ð OG�, �W19A.8a�

u0
2 D OGð �u2 ð OG�, �W19A.8b�

u0
3 D OGð �u3 ð OG�. �W19A.8c�

O
x

h

z
G

r

y

Lattice plane

Surface plane

Figure W19A.1. Ideal surface plane defined in terms of the direction of the reciprocal lattice
vector, G, and h, the distance of an atom at O.
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Figure W19A.2. Projecting a vector r onto the lattice plane defined by vector G.

The projected lattice vector is therefore

R0
mn D hu0

1

2�j1
GC n2v2 C n3v3, �W19A.9�

where v2 and v3 are the primitive surface net vectors, defined by

v2 D u0
2 � j2

j1
u0

1, �W19A.10a�

v3 D u0
3 � j3

j1
u0

1. �W19A.10b�

Note that the projected vector R0
mn is defined by only two subscripts, m and n. The

angle between the primitive surface net vectors is determined by the formula

cos � D v2 · v3

v2v3
. �W19A.11�

(It is convenient to relabel the net vectors so that v1 and v2 define the surface net. This
is accomplished by making the cyclic permutation 3 ! 2 ! 1 ! 3.)

In many cases the surface net that results from cutting the lattice by a surface
plane is easy to visualize, so one might argue that the mathematical machinery above
is superfluous. However, when attempting to automate the procedure, the analytic
approach has decided advantages. After all, a computer is not adept at visualization.

Example. Suppose that a simple cubic crystal is sliced by a plane perpendicular to
the [111] direction. Take this plane to pass through an atom at the origin. In this case,
j1, j2, j3 D �1, 1, 1� and h D 0. Thus

OG D
OiC OjC Okp

3
. �W19A.12�

The projected primitive lattice vectors are

u0
1 D a

3
�2Oi� Oj� Ok�, �W19A.13a�

u0
2 D a

3
��OiC 2 Oj� Ok�, �W19A.13b�

u0
3 D a

3
��Oi� OjC 2 Ok�. �W19A.13c�
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θ

v3

v2

Figure W19A.3. Simple cubic lattice being sliced by a (111) plane passing through the origin.

Figure W19A.4. The (111) surface of a simple cubic crystal.

The surface net vectors are

v2 D a��OiC Oj�, �W19A.14a�

v3 D a��OiC Ok�. �W19A.14b�

The surface-projected lattice vector is

R0
mn D ma��OiC Oj�C na��OiC Ok�. �W19A.15�

Figure W19A.3 shows three of the atoms that lie in the surface plane. Figure W19A.4
depicts the layout of the corresponding surface net. It must be emphasized that these
two-dimensional nets are the analogs of the Bravais lattices in three dimensions. Just
as the lattice in three dimensions may be endowed with a basis of atoms, the same is
true in two dimensions.

Applying the formalism above allows one to obtain a precise picture of the surface
that results by taking an arbitrary slice through any crystalline structure.

Appendix W19B: Fowler–Nordheim Formula

In this appendix the Fowler–Nordheim formula for the current density produced in
field emission is derived. An electric field E0 is applied normal to a flat metal surface.
The potential energy experienced by the electrons is given by

V�z� D
{

0 if z < 0,
V0 � Fz if z > 0,

�W19B.1�
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where F D eE0, as illustrated in Fig. 19.11. The Schrödinger equation governing the
tunneling process is

� h̄2

2m
r2 �r�C V�r� �r� D E �r�. �W19B.2�

The transverse motion is decoupled by writing  �r� D 
�z� exp�ikjj Ð R�. In the region
z < 0 the Schrödinger equation becomes

(
∂2

∂z2
C k2

z

)

�z� D 0, �W19B.3�

where

kz D
√

2mE

h̄2 � k2
jj . �W19B.4�

The solution of Eq. (W19B.3) is given by


�z� D eikzz C re�ikzz, �W19B.5�

with r being interpreted as a reflection amplitude.
For z > 0 the Schrödinger equation is

� h̄2

2m

d2


dz2
C �V0 � Fz�
 D h̄2k2

z

2m

. �W19B.6�

With the substitution

u D
(

2m

h̄2F2

)1/3
(
V0 � Fz � h̄2k2

z

2m

)
, �W19B.7�

the Schrödinger equation becomes Airy’s differential equation:

d2


du2
� u
 D 0. �W19B.8�

The solution may be expressed as a linear combination of the two Airy functions. The
coefficients are chosen so that for large x, 
 represents a wave traveling to the right.
Asymptotic expansions of the Airy functions are presented in Table W19B.1. Thus


�u� D N[Bi�u�C iAi�u�], �W19B.9�

where N is a normalization constant. The current density carried by this wave is
given by

Jz D eh̄

m
Im
(

Ł d

dx

)
D eh̄jNj2

m�

(
2m

h̄2F2

)1/3

F. �W19B.10�
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TABLE W19B.1 Asymptotic Expansion of the Airy Functionsa

Ai�u� ! 1

2
p
�u1/4

e�> , Ai0�u� ! � 1

2
p
�
u1/4e�>

Bi�u� ! 1p
�u1/4

e> , Bi0�u� ! 1p
�
u1/4e>

Ai��u� ! 1p
�u1/4

sin
(
> C �

4

)
, Ai0��u� ! � 1p

�
u1/4 cos

(
> C �

4

)

Bi��u� ! 1p
�u1/4

cos
(
> C �

4

)
, Bi0��u� ! 1p

�
u1/4 sin

(
> C �

4

)
.

Source: Data from M. Abramowitz and I. A. Stegun, eds., Handbook of Mathemat-
ical Functions, National Bureau of Standards, Washington, D.C., 1964.
a> D 2

3u
3/2.

The wavefunction given by Eq. (W19B.9) and its first derivative at z D 0 are set
equal to the corresponding quantities given by Eq. (W19B.5). Solving these equations
for N yields

N D 2ikz
p
� e�>0L�3/2

ikz/u
1/4
0 � Fu1/4

0 �2m/h̄2F2�1/3
, �W19B.11�

where u0 D �2m/h̄2F2�1/3�V0 � h̄2k2
z /2m�, >0 D 2

3u
3/2
0 , and L3 is the volume of the

metal.
The current density is obtained by integrating Eq. (19B.10) over the Fermi sphere:

J D
∑
s

∑
k

Jz�EF � E� D 2
∫
d3kL3

�2��3
Jz�EF � E�. �W19B.12�

The integration over transverse coordinates leads to

∫
d2kjj�EF � E� D �

(
2mEF
h̄2 � k2

z

)


(
2mEF
h̄2 � k2

z

)
. �W19B.13�

Thus one obtains

J D 2me

�2h̄3V0

∫ EF

0
dE0�EF � E0�

√
E0�V0 � E0� exp

[
�4

p
2m

3Fh̄
�V0 � E0�3/2

]
.

�W19B.14�
The major contribution to the integral comes from the region E0 D EF. Thus one may
make the replacements �V0 � E0�3/2 ³ W3/2 C 3

2

p
W�EF � E0�, E0�V0 � E0� ³ EFW

and extend the lower limit of the integral to �1. Here W is the work function. One
finally obtains the Fowler–Nordheim formula:

J D e3E2
0

4�2h̄V0

√
EF
W

exp
(

� 4

3eE0h̄

p
2mW3

)
. �W19B.15�

An additional correction may be included to account for the image potential that the
charge experiences when it is in the vacuum region, but it will not be included here.
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Appendix W19C: Photoemission Yields

In this appendix theoretical expressions for the photoelectric yield will be derived for
an idealized solid whose surface consists of a potential step. The Sommerfeld model
will be used to describe the electrons.

First, the simplifying assumption that the potential is only a function of the normal
coordinate, z, will be made. The wavefunctions are then of the form

 f�r� D 
f�z� exp�ik0
jj Ð rjj�, �W19C.1a�

 i�r� D 
i�z� exp�ikjj Ð rjj�, �W19C.1b�

where the subscripts f and i refer to the final and initial states, respectively, and kjj
and k0

jj refer to propagation vectors along the surface.
Write the matrix element in Eq. (19.29) as

h fjm Ð Ej ii D �eh fjrjj Ð Ejjj ii � eh fjzEzj ii. �W19C.2�

By introducing the Hamiltonian, H, the first term can be shown to vanish:

h fjrjj Ð Ejjj ii D 1

Ef � Ei
h fj[H, rjj Ð Ejj]j ii

D � i

mω
h fjpjj · Ejjj ii D � ih̄

mω
kjj · Ejjh fj ii D 0. �W19C.3�

In this model it is only the normal component of the electric field that is capable of
exciting the electron gas and of causing photoemission. Any photoemission observed
at normal incidence, in which case the electric field would be tangent to the surface,
would be considered volume photoemission and beyond the scope of the model.

The full Hamiltonian governing the interaction of the electron with the light is

H D H0 CH# D p2

2m
C V�z�C eEzz[exp�Bz���z�C�z�] C eEjj · rjj. �W19C.4�

The last term is the interaction of the electron with the component of the field parallel
to the surface, and can be dropped. The third term is the perturbation, H# . For the
initial state the unperturbed Schrödinger equation becomes

[
p2
z

2m
C V�z�� εi

]

i�z� D 0, �W19C.5a�

and for the final state, [
p2
z

2m
C V�z�� εf

]

f�z� D 0, �W19C.5b�

where

εi D Ei � h̄2k2
jj

2m
, �W19C.6a�
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εf D Ef � h̄2k2
jj

2m
. �W19C.6b�

The Schrödinger equation will be solved for the simple step potential:

V�z� D
{

0 if z > 0
�V0 if z < 0.

�W19C.7�

(The effect of a finite electron mean free path could, in principle, be included by
making V0 complex.)

For the initial state the solution was found in Eq. (19.8) in the discussion of relax-
ation of metals. Thus


i�z� D


B exp���z� if z > 0
B sin�qz C υ�

sin υ
if z < 0

�W19C.8�

where

� D 1

h̄

√
�2mεi, �W19C.9a�

q D 1

h̄

√
2m�V0 C εi�. �W19C.9b�

For the final state one has an out-state, an outgoing wave with unit amplitude in
the vacuum supplemented with incoming waves in both the vacuum and the metal.
(A packet constructed out of such states will evolve into a purely outgoing packet for
long times.) Thus


f D
{

exp�ikz�C r exp��ikz� if z > 0,
t exp�iq0z� if z < 0,

�W19C.10�

where

k D 1

h̄

√
2mεf, �W19C.11a�

q0 D 1

h̄

√
2m�εf C V0� �W19C.11b�

Matching the wavefunction and the derivative at z D 0 yields

t D 1 C r, �W19C.12a�

q0t D k�1 � r�. �W19C.12b�

Then the reflection amplitude is

r D k � q0

k C q0 , �W19C.13a�
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and the transmission amplitude is

t D 2k

k C q0 . �W19C.13b�

The matrix element of the perturbation is

h fjH# j ii D
∫
d2rjj expdi�kjj � k0

jj� · rjje

ð eEz

∫ 1

�1
dz 
Ł

f�z�z[exp�Bz���z�C�z�]
i�z�, �W19C.14�

which may be written as

h fjH# j ii D eEz�2��
2υ�k0

jj � kjj��I1 C I2�. �W19C.15�

The first integral is

I1 D tŁB
sin υ

∫ 0

�1
dzz exp[z�B� iq0�] sin�qz C υ�

� tŁB
2i sin υ

[
exp�iυ�

[BC i�q � q0�]2
� exp��iυ�

[B� i�q C q0�]2

]
, �W19C.16a�

and the second integral is

I2 D
∫ 1

0
[exp��ikz�C rŁ exp�ikz�]zB exp���z�dz

D B

[
1

�� C ik�2
C rŁ

�� � ik�2

]
. �W19C.16b�

Plugging this into Fermi’s golden rule gives the transition rate per unit area:

d

dA
D 2�

h̄

∑
s

∫
d2kjj
�2��2

∫ 1

0

dq

�

∫ d2k0
jj

�2��2

∫ 1

�1

dk

2�
2 sin2 υ�eEz�

2�2��2υ�k0
jj � kjj�jMj2

ð υ�Ei C h̄ω � Ef��k��EF � Ei��Ef � EF�. �W19C.17�

where EF is the Fermi energy level and

M D � tŁ exp�iυ�

2i sin υ[BC i�q � q0�]2
C tŁ exp��iυ�

2i sin υ[B� i�q C q0�]2
C 1

�� C ik�2
C rŁ

�� � ik�2
.

�W19C.18�
The photoelectric yield is obtained by dividing this by the incident number of photons
per unit area:

Y D d/dA

I/h̄ω
D 8�h̄ω

cE2
0

d

dA
. �W19C.19�
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Figure W19C.1. Theoretical differential photoelectric yield of emitted electrons for Al irradi-
ated with 10.2-eV photons. The quantity dY/dεF is defined in Eq. (W19C.22).

The transverse wave-vector integral is

∫
dkjj
�2��2



(
EF � εi � h̄2k2

jj
2m

)


(
�EF C εf C h̄2k2

jj
2m

)

D m

2�h̄2 [EF � εi � max�0, EF � εf�]�EF � εi � max�0, EF � εf��. �W19C.20�

After evaluating the remaining integrals, one finds that

Y D 16mωe2

�h̄2c
sin2 �

∫ 1

0
dq
∫ 1

0
dkjMj2 sin2 υ υ�εf � εi � h̄ω�

ð dEF � εi � max�0, EF � εf�e�EF � εi � max�0, EF � εf��, �W19C.21�

where � is the angle of incidence relative to the surface normal.
The energy distribution curve (EDC) is obtained by omitting the integration over

the variable k and using the energy-conserving delta function to do the q integration.
The result is expressed in terms of εf:

dY

dεf
D 8

�

m2e2ω

h̄4C
sin2 �

jM2j sin2 υ√
εf�V0 C εf � h̄ω�

[EF � εf C h̄ω � max�0, EF � εf�]

ð[EF � εf C h̄ω � max�0, EF � εf�]�εf C V0 � h̄ω�. �W19C.22�

It is straightforward to show that near threshold the matrix element M is proportional
to k.

A theoretical electron EDC is presented for Al in Fig. W19C.1. This is to be
compared with experimental results, as shown in Fig. 19.13. In both cases one notes
a rise in the photoyield with increasing energy followed by a precipitous drop at high
energy, corresponding to electrons emerging from the Fermi surface, giving rise to
those with maximum kinetic energy, �mv2/2�max. There is evidence for band-structure
features in the experimental data. Band-structure effects are not included in the simple
Sommerfeld model used here.



CHAPTER W20

Thin Films, Interfaces, and Multilayers

W20.1 Strength and Toughness

Having seen how a film adheres to the surface, attention now turns to a study of its
mechanical strength. The strength of the bond of a thin film to a substrate may be
determined by comparing the surface energies before and after separation. Let �SS0

denote the surface tension between the film and the substrate. In delaminating the film
from the substrate new solid–vapor interfaces are created, so the change in surface
energy per unit area, called the intrinsic toughness, is given by the Dupré formula:

υu D �SV C �S0V � �SS0 . �W20.1�

This is a positive number because it takes energy to create a cleavage.
If sufficient stress is applied to a film in the direction normal to the interface, the

film will separate from the surface. The maximum stress the interface can withstand
will be denoted by 	max. Let 	zz�z� denote the stress needed to separate the film a
distance z from the equilibrium position, taken to be z D 0. Then

υu D
∫ 1

0
	zz�z� dz. �W20.2�

In the case of metal films on metal substrates, it has been found that the stress may
be obtained by taking the derivative of a potential energy per unit area of the empirical
form

u�z� D F
( z

a

)
E, �W20.3�

where E and a are parameters that depend on the metals and F is the universal
function:

F�t� D ��1 C t�e�t. �W20.4�

It is believed that this form results from the formation of bond charge at the interface
and depends on the exponential falloff of the wavefunctions into vacuum. It is also
believed that this formula applies as well to covalent bonds. The stress is therefore

	zz D E

a2
ze�z/a. �W20.5�
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It rises from zero at the surface, goes through a maximum at z D a, and falls off with
further increase in z. At the maximum it has the value

	max D E

ae
, �W20.6�

where e D 2.718. Integrating the analytical formula for the stress results in the expres-
sion

	max D υu

ae
D �SV C �S0V � �SS0

ae
. �W20.7�

W20.2 Critical Thickness

If a crystalline film grows epitaxially on a substrate in such a way that both are
constrained to be flat, there is a critical film thickness beyond which misfit dislocations
will develop. This often leads to degradation of the mechanical and electrical properties
of the film. The theory of Freund and Nix† generalizes earlier work by Matthews and
Blakeslee‡, who analyzed this phenomenon for the case of a thin film on a thick
substrate. This critical thickness is determined by the condition that the work needed
to produce a dislocation be equal to the strain energy recovered from the system. Letting
af and as be the stress-free lattice constants for the film and substrate, respectively,
and εf and εs be the corresponding strains, one has

εm D as � af
af

³ εf � εs �W20.8�

for the mismatch strain.
It will be convenient to assume that the film and substrate are both isotropic

materials and that they have identical mechanical properties, such as G, the
shear modulus, and �, the Poisson ratio. The film and substrate are subjected
to a biaxial stress. The components of the stress tensor may be expressed as
�	1, 	2, 	3, 	4, 	5, 	6� D �P, P, 0, 0, 0, 0�, where P is the in-plane pressure. The
compliance tensor Sij will be of the same form as Eq. (10.18) in the textbook§

with Sij elements replacing Cij elements. Using Eq. (10.14b), the elements of the
strain tensor are �ε1, ε2, ε3, ε4, ε5, ε6� D �P�S11 C S12�, P�S11 C S12�, 2S12P, 0, 0, 0�.
Note that ε1 D ε2 D εm. The biaxial modulus M common to both the substrate and the
film is defined by the relation ε1 D P/M. From Table 10.4, using S11 � S12 D 1/�2G�
and S12 D ��S11, one obtains an expression for the biaxial modulus:

M D 2G
1 C �

1 � �
. �W20.9�

† L. B. Freund and W. D. Nix, Appl. Phys. Lett., 69, 173 (1996).
‡ J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth, 27, 118 (1974).
§ The material on this home page is supplemental to the The Physics and Chemistry of Materials by
Joel I. Gersten and Fredrick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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The net force per unit length on a plane perpendicular to the interface must vanish, so

Mεftf C Mεsts D 0, �W20.10�

where tf and ts are the corresponding thicknesses of the film and substrate. Thus

εs D �εm
tf

tf C ts
, εf D εm

ts
tf C ts

�W20.11�

before any dislocations are generated.
The geometry is illustrated in Fig. W20.1 both before and after the dislocation is

formed in the substrate. Let b be the Burgers vector of the dislocation, bx and by
its components parallel to the interface, and bz the perpendicular component. From
elasticity theory, the long-range attractive force per unit length on the edge dislocation
from both free surfaces is estimated to be

F�z� D G[b2
x C b2

y C �1 � ��b2
z ]

4"�1 � ��

(
1

z
� 1

ts C tf � z

)
. �W20.12�

The direction of the force is shown in Fig. W20.1. The energy released per unit thick-
ness when the strain in the substrate is relaxed is U D Mεstsbx. The work per unit
thickness needed to cause a migration of the edge dislocation from the bottom of the
substrate to the interface is

W D �
∫ ts

r0

F�z� dz D �G[b2
x C b2

y C �1 � ��b2
z ]

4"�1 � ��

∫ ts

r0

(
1

z
� 1

ts C tf � z

)
dz

D �G[b2
x C b2

y C �1 � ��b2
z ]

4" �1 � ��
ln

tstf
r0�ts C tf�

. �W20.13�

where r0 is a cutoff parameter of atomic dimensions at which macroscopic elasticity
theory breaks down. The bottom of the substrate is at z D 0. Equating W and U

z

ts

tf
x

f

f

s

s
b

F

(a)

(b)

Figure W20.1. (a) Film on a substrate subjected to stresses due to lattice mismatch for the case
af > as; (b) an edge dislocation migrates from a surface to the interface. [From L. B. Freund and
W. D. Nix, Appl. Phys. Lett., 69, 173 (1996). Copyright 1996, American Institute of Physics.]
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results in the formula

εm D b2
x C b2

y C �1 � ��b2
z

8"�1 C ��bxtc
ln

tc
r0

, �W20.14�

where a reduced critical thickness is defined by 1/tc � 1/tfc C 1/tsc. Equation (W20.14)
expresses εm in terms of tc, but this may be inverted numerically to give tc in terms of
εm. Note that if the substrate is thick, tc gives the film thickness tfc directly.

Typical experimental data for GexSi1�x films deposited on a thick Si substrate† give
the critical thickness as approximately 1000, 100, 10, and 1 nm for x D 0.1, 0.3, 0.5,
and 1.0, respectively.

W20.3 Ionic Solutions

The description of an ionic solution involves specifying the ionic densities, nš�r�,
the solvent density, ns�r�, and the potential, )�r�, as functions of the spatial position
r. The presence of a solid such as a metal or semiconductor is likely to introduce
spatial inhomogeneities in these quantities. Far from the solid one may expect these
variables to reach the limiting values n1

š , n1
s , and )1, respectively. It is conve-

nient to take )1 � 0 . If the ionic charges are zCe and �z�e, then bulk neutrality
requires that zCn1

C D z�n1
� . Near the solid deviations from neutrality occur and elec-

tric fields are present. In this section the relationship between these quantities is
studied.

It is convenient to use a variational principle to derive these equations‡. At T D 0 K
the familiar Poisson equation may be derived from the energy functional:

U D
∫

dr u D
∫

dr
[
� +

2
�r)�2 C zCenC) � z�en�)

]
. �W20.15�

By using the Euler–Lagrange equation

r Ð
(

∂u

∂r)

)
D ∂u

∂)
, �W20.16�

one obtains

r2) D �e

+
�zCnC � z�n��, �W20.17�

where + is the electric permittivity of the solvent.
For T > 0 K one constructs a quantity analogous to the Helmholtz free energy:

F D
∫

drf D U � TS, �W20.18�

† J. C. Bean et al., J. Vac. Sci. Technol., A2, 436 (1984).
‡ The approach is similar to that of I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett., 79, 435
(1997).
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where S is the entropy, defined in terms of an entropy density, s,

S D
∫

dr s. �W20.19�

To obtain s imagine partitioning the volume of the solvent into boxes of size V. The
number of ions of a given type in a box is Nš D nšV, and the number of solvent
molecules is Ns D nsV. Idealize the situation by imagining that each particle (positive
ion, negative ion, or solvent molecule) occupies the same volume. Let N be the number
of sites available in volume V. Then N D NC C N� C Ns. The number of ways of
distributing the particles among the N sites is W D N!/�NC!N�!Ns!�. The entropy
for the box is given by S D sV D kB ln�W�. Use of Stirling’s approximation results in
the expression

S D �kB

∫
dr

(
nC ln

nC
n

C n� ln
n�
n

C ns ln
ns

n

)
, �W20.20�

where n D N/V. The total numbers of positive and negative ions are fixed. One varies
F subject to these constraints

υ

(
F � 0C

∫
drnC�r� � 0�

∫
drn��r�

)
D 0, �W20.21�

where the chemical potentials 0š are Lagrange multipliers. Variation with respect to
nš and ) leads to the Poisson equation, as before, and

nš�r� D �n � nC�r/ � n��r�� exp[�ˇ�šzše)�r� � 0š�], �W20.22�

where ˇ D 1/kBT and use has been made of the fact that ns C nC C n� D n. Evaluating
this far from the solid, where )�r� ! 0, yields

0š D kBT ln
n1

š
n � n1š � n1š �zš/zÝ�

. �W20.23�

The Poisson equation becomes

r2) D �ne

+

zCn1
C exp��ˇzCe)� � z�n1

� exp�ˇz�e)�

n1
s C n1C exp��ˇzCe)� C n1� exp�ˇz�e)�

. �W20.24�

At high charge densities on an interface the right-hand side saturates at a maximum
value. Thus, if Ýˇzše) × 1,

r2) D Ýne

+
zš. �W20.25�

In the limit where nš − n the denominator simplifies and Eq. (W20.24) reduces to
what is called the Poisson–Boltzmann equation:

r2) D �e

+
[zCn1

C exp��ˇzCe)� � z�n1
� exp�ˇz�e)�]. �W20.26�
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In the limit where jˇzše)j − 1, this reduces further to the Debye–Hückel equation:

r2) D 1

22
D

), �W20.27�

where 2D is the Debye screening length, given by

1

22
D

D e2

+kBT
�z2

Cn1
C C z2

�n
1
� �. �W20.28�

In this case the potential will fall off exponentially with distance as )�z� / exp��z/2D�.
The distance 2D determines the range over which the charge neutrality condition is
violated and an electric field exists.

Returning to Eq. (W20.24), in the one-dimensional case, let the solid occupy the
half-space z < 0. One may obtain a first integral by multiplying through by d)/dz and
integrating from 0 to 1:

ˇ+

2

(
d)

dz

)2
∣∣∣∣∣
zD0

D n ln
n1
s C n1

C exp��ˇzCe)0� C n1
� exp�ˇz�e)0�

n1
s C n1C C n1�

�W20.29�

where )0 is the solid-surface potential. The quantity d)/dz is the negative of the
electric field and is related to the charge density on the surface through the boundary
condition that Dz is continuous. This is also partly determined by solving the Poisson
equation inside the solid and linking the two solutions across the surface. The interface
between a semiconductor and an ionic solution is considered in Section W20.4.

W20.4 Solid–Electrolyte Interface

Having considered both the semiconductor and the ionic solution in isolation, we are
now in a position to combine them and to study their interface. Some aspects of
solid–ionic solution systems have been encountered in Section W12.4 in the discus-
sion of corrosion and oxidation, and in Section 19.11 concerning anodization. To be
somewhat general, imagine that both a metal surface and a semiconductor surface are
involved (Fig. W20.2). In thermal equilibrium the chemical potential of the electrons
is constant throughout the system. Furthermore, there has to be net charge neutrality.
Consider what happens when an electrochemical reaction occurs involving an exchange
of electrons with the solids. An example is the reduction–oxidation reaction (redox
couple) H2 ⇀↽ 2HC C 2e�. In the forward direction the reaction is the oxidation of H2.
In the backward direction it is the reduction of HC. Each species is characterized by
its own unique chemical potential in the electrolyte. To dissociate and ionize the H2

molecule, energy must be supplied equal to the difference in energy between the two
species. For the moment, any complications caused by the realignment of the solva-
tion shell of solvent molecules are ignored. The solvation shell consists of those water
molecules in the immediate vicinity of the ion whose dipole moments are somewhat
aligned by the electric field of the ion.

More generally, consider the redox couple between two hypothetical ionic species
labeled A1 and A2, of ionic charges z1e and z2e, respectively:

n1A1 ���⇀↽��� n2A2 C ne�. �W20.30�



THIN FILMS, INTERFACES, AND MULTILAYERS 327

vacS

Ec

Ev
EF

EF

χs
µL

µs
eφmδµ µ(A/A+)

L M

(a)

(b)

µ

Figure W20.2. Band bending and equalization of Fermi levels in the semicon-
ductor–electrolyte–metal system: (a) semiconductor (S), electrolyte (L), and metal (M) in
isolation, sharing a common vacuum level; (b) band-bending and electrostatic-potential profile
when the materials are brought in contact.

The chemical potentials obey the relation

n1�01 C z1e)� D n2�02 C z2e)� C n�0 � e)�, �W20.31�

where the energy shift due to the local electrostatic potential is included. The chemical
potentials in solution are given in terms of the activities by the Nernst equation:

0i � �eziεi D �eziε
0
i C kBT ln ai, �W20.32�

where ε0
i and ai are the standard electrode potentials and activities of species Ai,

respectively. To a first approximation the activities are often set equal to the fractional
concentrations, ci:

0i ³ �eziε
0
i C kBT ln ci. �W20.33�

Charge conservation gives

z1n1 D z2n2 � n. �W20.34�

Therefore, 0 is a sensitive function of the ionic concentrations:

0 D n101 � n202

n

D eε � kBT

n
ln

�c2�n2

�c1�n1
. �W20.35�

Here

ε D n2z2ε0
2 � n1z1ε0

1

n
�W20.36�
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is called the standard redox potential of the couple. At any given point in the electrolyte
the redox reaction is driven backwards or forwards, allowing concentrations of species
1 and 2 to adjust so as to maintain the chemical potentials at constant levels.

In the description above, the energy of reduction of a positive ion (i.e., the energy
needed to add an electron to the ion) equals the energy of oxidation (i.e., the energy
needed to remove an electron from an atom to create a positive ion). However, when
the response of the solvent is included, these energies no longer coincide. The solvent
molecules adjust themselves so as to minimize the Coulomb energy of the system.
Since charge-exchange reactions alter the net ionic charge, there is a solvent shift
of the energy levels. Thermal fluctuations in the solvent cause the energy levels to
fluctuate in time. Whenever the energy balance condition is satisfied, a resonant charge
exchange process can occur.

The convention is to take the hydrogen couple H2 ⇀↽ 2HC C 2e� as the reference
level by which to measure the redox potentials (the standard electrode potentials) of
other redox couples. Typical couples are presented in Table W20.1 along with their
standard redox potentials. The entries are arranged according to how good a reducing
agent the atoms are. Thus Li is a strong reducing agent (i.e., it readily donates elec-
trons to a solid). F2 is a strong oxidizing agent, readily accepting electrons from a
solid.

Equation (W20.35) must be modified for use in describing the solid–electrolyte
interface. The problem arises because of the arbitrariness of the choice of the hydrogen
couple in defining the zero of the standard redox potential. For use in describing
the solid–electrolyte interface, both chemical potentials must be referred to the same
reference level (e.g., vacuum). It is therefore necessary to find the difference between
the standard redox potentials and the energies relative to vacuum, υ0 (see Fig. W20.2).
Thus Eq. (W20.35) should be replaced by

0 D eε C υ0 � kBT

n
ln

�c2�n2

�c1�n1
. �W20.37�

The value of the offset energy υ0 is obtained by looking at the Gibbs free-energy
changes (i.e., rGo) for a series of reactions (Morrison, 1980) and comparing the result
to the value quoted for the standard redox potential:

AgC�g� C e� D Ag(g) �7.57 eV
Ag�g� D Ag(s) �2.95 eV
AgC�aq� D AgC�g� C5.00 eV

AgC�aq� C e� D Ag(s) �5.52 eV

The first line corresponds to the free-space ionization of a silver atom. The second line
introduces the cohesive energy of silver. The third line utilizes a calculated value for
the solvation energy of a silver ion in water. The solvation energy is the difference in
electrostatic energy of an ion of charge Ce at the center of a spherical cavity in the
water and the electrostatic energy of the ion in free space:

U D � e2

8"+0a

(
1 � 1

+r

)
. �W20.38�
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Here a is the metallic radius of AgC (0.145 nm) and +r�0� D 80 is the static dielectric
constant for H2O at T D 27°C. The value of the standard redox potential for the reac-
tion AgC�aq� C e� D Ag�s� (Table W20.1) is 0.800 eV. Thus υ0 D �5.52 C 0.80 D
�4.72 eV. However, this value must be regarded as being only approximate. It disre-
gards the solvation energy of the electron and underestimates the radius of the solvation
shell. Typically, values for υ0 in the range �4.5 to �4.8 eV are employed in the
literature.

Electrons in an isolated semiconductor will, in general, have a chemical potential
which is different from that of an electron in an electrolyte. This is illustrated in
Fig. W20.2. The upper half of the diagram shows the semiconductor (S), electrolyte
(L), and metal (M) isolated from each other, sharing a common vacuum level. Note that
the chemical potential of an electron in the electrolyte, 0L, is determined by subtracting
the chemical potential for the redox couple, 0�A/AC� [given by Eq. (W20.37)], from
the offset energy υ0, as in Fig. W20.2.

When the two are brought into contact, as in the lower half of Fig. W20.2, there
will be a charge transfer and the chemical potentials will equilibrate. This will cause
band bending in the semiconductor in much the same way that it was caused in the
p-n junction. At the two interfaces there is not charge neutrality and electric fields
exist due to the dipole double layers.

W20.5 Multilayer Materials

One rather simple use of multilayers is to fabricate optical materials with interpolated
gross physical characteristics. For example, one could achieve an interpolated index
of refraction n by alternating sufficiently thin layers of indices n1 and n2. The linear
interpolation formula, n D �1 � f�n1 C fn2, where f is the fraction of space occupied
by material 2, would only give a crude approximation to n and is not physically

TABLE W20.1 Standard Redox
Potential Energies at T = 25°C

ε
Redox Couple (V)

Li D LiC C e� 3.045
Rb D RbC C e� 2.925
K D KC C e� 2.924
Cs D CsC C e� 2.923
Na D NaC C e� 2.711
Mn D Mn2C C 2e� 1.029
Zn D Zn2C C 2e� 0.763
Cu D Cu2C C 2e� 0.34
Pb D Pb2C C 2e� 0.126
H2 D 2HC C 2e� 0.000
CuC D Cu2C C e� �0.153
Fe2C D Fe3C C e� �0.770
Ag D AgC C e� �0.800
2Br� D Br2 C 2e� �1.065
2Cl� D Cl2 C 2e� �1.358
2F� D F2 C 2e� �2.870
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motivated. A better interpolation could be obtained by recalling that ni D p
+ri and

making use of the Clausius–Mossotti formula, Eq. (8.40). That formula showed that
the ratio �n2 � 1�/�n2 C 2� may be expressed as a linear combination of polarizability
contributions from each of the materials present in a composite medium. Thus an
appropriate interpolation formula would be

n2 � 1

n2 C 2
D �1 � f�

n2
1 � 1

n2
1 C 2

C f
n2

2 � 1

n2
2 C 2

. �W20.39�

The design is valid provided that the length scale of the periodicity is small compared
with the wavelength of light.

The linear interpolation formula = D �1 � f�=1 C f=2 could be used to fabricate
materials with interpolated thermal conductivities. However, this is only approximate,
since the interface region between two media often has different physical properties
from either medium, including its own thermal resistance due to phonon scattering.

As another example of linear interpolation, suppose that there are two physical
properties, denoted by n and p, that one would like to obtain. Assume that there are
three materials, with values (n1, n2, n3) and (p1, p2, p3), respectively. Construct the
multilayer by taking lengths (a1, a2, a3) such that the superlattice has periodicity

a1 C a2 C a3 D D. �W20.40�

Then, assuming simple additivity of the properties, one has

a1n1 C a2n2 C a3n3 D Dn, �W20.41a�

a1p1 C a2p2 C a3p3 D Dp. �W20.41b�

These three linear equations may be solved for the lengths a1, a2, and a3. One finds
that

a1

D
D 1


[�n2p3 � p2n3� C �p2 � p3�n C �n2 � n3�p], �W20.42a�

a2

D
D 1


[�n3p1 � p3n1� C �p3 � p1�n C �n3 � n1�p], �W20.42b�

a3

D
D 1


[�n1p2 � p1n2� C �p1 � p2�n C �n1 � n2�p], �W20.42c�

where
 D n2p3 C n3p1 C n1p2 � p2n3 � p3n1 � p1n2. �W20.43�

The extension to a higher number of variables is obvious.

W20.6 Second-Harmonic Generation in Phase-Matched Multilayers

Nonlinear polarization is introduced in Section 8.9 and discussed further in Section
18.6. For efficient second-harmonic generation one needs two things: a material with a
large nonlinear electrical susceptibility and birefringence. The latter is needed so that
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phase matching between the primary beam at frequency ω and the secondary beam
at frequency 2ω can be obtained over a long coherence length. The semiconductor
GaAs has a large ?�2� (240 pm/V) but is a cubic crystal, so is optically isotropic and
not birefringent. By constructing a multilayer structure with interspersed thin layers of
oxidized AlAs (Alox), artificial birefringence is obtained†.

Here one uses the approximate additivity of the dielectric function for the TE mode
of propagation:

+TE D �1 � f�+r1 C f+r2 . �W20.44�

The TE mode of a waveguide has the electric field perpendicular to the direction of
propagation, but the magnetic field need not be. Similarly, the approximate additivity
of the inverse of the dielectric function for the TM mode of propagation yields

1

+TM
D 1 � f

+r1

C f

+r2

. �W20.45�

The TM mode has a magnetic field perpendicular to the propagation direction. In
Eqs. (W20.44) and (W20.45), +r1 and +r2 are the respective dielectric functions of the
materials and f is the filling fraction. The respective indices of refraction for GaAs and
Alox are n1 D p

+r1 D 3.6 and n2 D p
+r2 D 1.6. The net birefringence is determined

by the difference in the indices of refraction for the TE and TM modes:

n D p
+TE � p

+TM. �W20.46�

This, in turn, is a function of the filling fraction and may therefore be engineered to
specifications.

The same concept may be used to the advantage of another nonlinear process,
difference frequency generation (DFG). In this process, photons of frequencies ω1 and
ω2 are mixed together to produce a photon of frequency jω1 � ω2j.

W20.7 Organic Light-Emitting Diodes

Recently, a structure composed partly of stacked organic films was designed to act as a
tunable three-color transparent organic light-emitting diode (TOLED). Since the addi-
tive primary colors are red, blue, and green, this device can function as a universal light-
emitting diode. The structure is illustrated in Fig. W20.3. Electron injection into the
upper organic layer is through the low work function Mg:Ag cathode. The transparent
conductor indium tin oxide (ITO) serves as the anodes. The organic molecules used are
4,40-bis[N-(1-napthyl)-N-phenylamino]biphenyl (˛-NPD), which is a hole conductor,
bis(8-hydroxy)quinaldine aluminum phenoxide (Alq0

2Oph), which fluoresces in the
blue, and tris(8-hydroxyquinoline aluminum) (Alq3), which is an electron conductor
and fluoresces in the green. By doping Alq3 with 3% 5,10,15,20-tetraphenyl-21H,23H-
porphine (TPP), the fluorescent band is pulled down to the red. A layer of crystalline
3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) serves as a transparent hole
conductor and shields the sensitive organic layer against ITO sputtering. One of the

† A. Fiory et al., Nature, 391, 463 (1998).
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Figure W20.3. Three-color tunable organic light-emitting device. [Reprinted with permission
from Z. Shen et al., Science, 276, 2009 (1997). Copyright 1997, American Association for the
Advancement of science.]

keys to success in fabricating this device is that amorphous and organic films tend not
to be tied down by the need to satisfy lattice-matching constraints.

W20.8 Quasiperiodic Nonlinear Optical Crystals

A recent application of multilayer structures to the field of nonlinear optics involves
the construction of a periodic superlattice. For example, to carry out second-harmonic
generation efficiently, phase matching is required (i.e., the material must be able
to simultaneously satisfy momentum and energy conservation). However, k�2ω� �
2k�ω� D K21 6D 0, in general. Similarly, for third-harmonic generation, k�3ω� �
3k�ω� D K31 6D 0. By constructing a superlattice with the periodicity 2"/K21 or
2"/K31, the index of refraction will possess this periodicity and will be able to supply
the missing wave vector. The strength of the scattering amplitude will involve the
Fourier component of the index of refraction at that wave vector. This scheme has
been applied to such nonlinear crystals as LiNbO3.

It is also possible to construct a quasiperiodic lattice (one-dimensional quasicrystal)
which can supply K21 and K31 simultaneously. It is assumed that these wave vectors
are such that K31/K21 is not a rational number. Such a structure can be based on the
Fibonacci sequence of layers ABAABABAABAAB. . . . Such a crystal using LiTaO3

has been built†. In that scheme the A and B layers each had a pair of antiparallel
ferroelectric domains. The thicknesses of the domains were LA1 and LA2 in layer A
and LB1 and LB2 in layer B. Let LA D LA1 C LA2 and LB D LB1 C LB2 and assume that
LA1 D LB1 D L. Let LA2 D L�1 C C� and LB2 D L�1 � CD�, with D D �1 C p

5�/2 and C
a small number. Let D D DLA C LB be a characteristic distance. Then the vectors Gm,n

serve as quasiperiodic reciprocal-lattice vectors

Gm,n D 2"

D
�m C nD�. �W20.47�

† S. Zhu et al., Science, 278, 843(1997).
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There exist a set of numbers �m1, n1� that make Gm1,n1 ³ K21 and another pair �m2, n2�
that make Gm2,n2 ³ K31 . Thus both K21 and K31 are provided by the structure. In the
reference cited above, the values used for the structural parameters were L D 10.7 µm
and C D 0.23.

W20.9 Graphite Intercalated Compounds

Graphite consists of graphene layers of sp2-bonded carbon rings arranged in the
stacking sequence ABAB. . . and separated by 0.335 nm, which is substantially larger
than the nearest-neighbor distance of 0.142 nm. The in-plane lattice constant of the
hexagonal sheet is 0.246 nm. The layers are only weakly bound together by van der
Waals forces. It is possible to insert foreign atoms and molecules in the interlayer
region to form graphite intercalated compounds (GICs). It is found that the atoms
intercalate in well-defined stoichiometric ratios, forming compounds such as KC24. In
one type of arrangement one layer of intercalate is followed by n graphene layers, as
illustrated in Fig. W20.4a. This is called an n-stage GIC. For example, KC24 can exist
as a two-stage compound KC12ð2 or a three-stage compound KC8ð3. Values of n up to
8, or higher, are not uncommon. In other compounds there may be several intercalate
layers, followed by n graphene layers. In still other situations the intercalates may form
islands arranged in an array interspersed in the graphite structure (the Daumas–Herold
domain structure). This is illustrated in Fig. W20.4b.

The distance between successive intercalate layers, dc, depends on the degree of
staging. Different forms of ordering are found in the GICs. The intercalated layers
could either be commensurate or incommensurate with the host lattice. The graphene
layers could either maintain the ABAB. . . . stacking sequence or adopt some other
sequence, such as AB/BA/AB/BA/. . . (where a slash denotes an intercalated layer).
The intercalate could exist as an ordered two-dimensional crystal, a disordered glass,
or even a liquid.

The intercalated atoms and molecules may act as either donors or acceptors. In
either case, carriers are injected into the " bands of the graphene sheet. Typical donors
are the alkali metals, which form GICs such as LiC6, LiC12, LiC18, KC8, KC24, . . . ,

d

(b)(a)

Figure W20.4. Graphite intercalated compounds: (a) n D 5 stage compound; (b) island inter-
calation.
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KC72, RbC8, RbC24 or CsC8, and CsC24. Acceptor compounds are C10HNO3, C14Br,
or C16AsF5. Note the convention of placing the chemical symbol for the donors to the
left of the carbon and the symbol for acceptors to the right.

Staging results from the interplay of various microscopic forces. Charge transfer is
brought about by the difference in chemical potentials between the graphite and the
intercalate. This, by itself, lowers the energy of the system. The Coulomb interaction
between the layers, partially screened by the mobile carriers in the graphite, is important
in establishing the staging. Elastic interactions are also involved, since the layer spacing
of the host lattice is altered to accommodate the intercalated layer. One of the early
attempts† at describing the system theoretically involved the introduction of the model
internal energy:

U

N0
D t

∑
i

	i � u

2

∑
i

	2
i C 1

2

∑
ij

0Vij	i	j, �W20.48�

where N0 is the number of intercalation sites in a layer and 	i is the fractional occu-
pancy of the ith layer, a number between 0 and 1. The first two terms represent
the interaction of the intercalate with the host, and the bonding of the intercalate
to form a two-dimensional solid, respectively. The third term describes the screened
Coulomb energy and is positive. The parameters Vij are taken to be of the form
Vij D �V/2�jzijj�˛ , where zij is the interplanar distance. This form is suggested by
making a Thomas–Fermi analysis of the screening for large n. The quantities t, u, V,
and ˛�³ 5� parametrize the theory.

The entropy for a given layer is determined by partitioning N0	i intercalate atoms
among N0 sites. Since there are Wi D N0!/[�N0	i�!�N0 � N0	i�!] ways of doing this,
the layer entropy is, by Stirling’s approximation,

Si D kB lnWi D �kBN0[	i ln 	i C �1 � 	i� ln�1 � 	i�]. �W20.49�

The Helmholtz free energy for the system is

F

N0
D t

∑
i

	i � u

2

∑
i

	2
i C 1

2

∑
ij

0Vij	i	j C kBT
∑
i

[	i ln 	i C �1 � 	i� ln�1 � 	i�].

�W20.50�
Only the layers with nonzero 	i contribute to F. The chemical potential for the ith
layer is given by

0i D 1

N0

∂F

∂	i
D t � u	i C

∑
j

0Vij	j C kBT [ln 	i � ln�1 � 	i�] . �W20.51�

Setting all the chemical potentials equal to 0 leads to the set of coupled equations

	i D 1

1 C e
ˇ�t�u	iC

∑
j

0Vij	j�0�
. �W20.52�

† S. A. Safran, Stage ordering in intercalation compounds, H. Ehrenreich and D. Turnbull, eds., Solid State
Physics, Vol. 40, Academic Press, San Diego, Calif., 1987, p. 183.
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For a given set of staging occupancies it is possible to obtain 0�T�, F, and the other
thermodynamic variables.

Further refinements in the theory have evolved over the years. Interest in GICs
stems largely from the fact that their electrical conductivity is high and may be varied
in a controlled way by changing the stoichiometry.

Graphite fluorides (CF)n have been used as cathodes in lithium batteries. By itself,
(CF)n is a poor electrical conductor, so it is often combined with a good electrical
conductor such as graphite. The anode is made of lithium. Such lithium batteries
have high specific energy (360 WÐh/kg) and a high voltage (3 V). The material (CF)n
is a stage 1 compound with every C atom bonded to a fluorine. The layers alter-
nate in the sequence CFCFCF. . . . The lattice constants are a D 0.257 nm and c D
0.585 nm.

Other GICs that may potentially be used as cathodes have intercalant anions such as
PF6

�, AsF6
�, and SbF6

�. The obstacle to their use is the lack of a suitable electrolyte.
Superconductivity is also observed in GICs (see Chapter W16).
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PROBLEM

W20.1 Consider the case of a thin film deposited on a thick substrate (tf − ts).
(a) Show that the resulting strains in the substrate and film are +s ³ 0 and

+f ³ �as0 � af0�/af0, respectively, where as0 and af0 are the stress-free
lattice constants of the substrate and film.

(b) Show that the strain in the film can be relieved completely if the misfit
dislocations at the film/substrate interface are, on the average, separated
by a distance d D as0/j+mj, where +m is the misfit strain defined by
Eq. (W20.8).



CHAPTER W21

Synthesis and Processing of Materials

W21.1 Synthesis and Processing Procedures

The various procedures used in the synthesis and processing of materials can be grouped
into a few general classes. Specific examples of many of these procedures are given in
Chapter 21 of the textbook† and in this chapter. Important classes of synthesis include
those that produce materials in bulk form or in forms with reduced dimensionality (e.g.,
powders, fibers, and thin films or layers and surface coatings). Bulk materials and larger
powders often require further processing to produce materials with the final desired
shape or form. Processing that changes only the form and not the microstructure
of a material is not stressed here. Smaller powders, fibers, and thin films are more
often prepared in essentially their final form but may still require further processing to
achieve the desired microstructure.

Important classes of materials synthesis and processing procedures are listed in
Table W21.1. Specific examples discussed here and in the textbook are also indicated.

A wide range of energy sources are used in the synthesis and processing of materials,
depending on the specific procedure involved and the products desired. Some important
examples are listed in Table W21.2.

W21.2 Heteroepitaxial Growth

Consider the case where atoms of type A, with lattice constant a in the solid state,
are deposited on a flat substrate consisting of atoms of type B, with lattice constant
b, where b > a. Assume that the symmetries of the two crystals are the same. At
first the A atoms may form a monolayer in registry with the substrate. As additional
layers are deposited, however, the bulk strain energy in A builds up since there is
a lattice-mismatch strain given by �b� a�/a [see Eq. (W20.8)]. The strain may be
relieved by having misfit dislocations form at the interface or, alternatively, by having
the surface of the A crystal warp. These possibilities are illustrated in Fig. W21.1.
Misfit dislocations are discussed in Section W20.2.

If the surface warps, an undulating pattern appears that may be observed using such
high-resolution instruments as the transmission electron microscope or the atomic force
microscope. The condition for warping is that the additional surface energy needed to
curve the surface be less than the bulk strain energy relieved by allowing the adsorbate

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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TABLE W21.1 Important Classes of Materials Synthesis and Processing Procedures

Synthesis of bulk samples
Synthesis from the liquid phase

Czochralski method for growth of single-crystal Si (Section 21.6)
Liquid-phase epitaxy (LPE): GaAs
Bridgman method
Sol-gel synthesis (Section 21.12)
Rapid solidification (Section W21.12)
Flux growth of ceramics using oxide fluxes
Arc melting of metallic alloys
Hydrothermal growth: crystalline quartz, TGS, ADP, KDP

Synthesis from solid powders or bulk material
Sintering of powders (Section 21.11)
Catalysis (Section 21.14)
Polymers (Section 21.13 to 21.15 and W21.21 to W21.25)
High pressure–high temperature synthesis of diamond crystals

Synthesis from the vapor phase
Modified Lely process (SiC platelets): PVD (Section W21.17)

Synthesis of fine particles or powders
Grinding (Section 21.11)
Plasma spraying
Gas condensation: carbon nanotubes (Section 21.15)
Nucleation from a saturated liquid phase

Synthesis of fibers
Drawing from the melt: silica fibers

Synthesis of thin films and surface coatings
Synthesis from the vapor phase
Chemical vapor deposition (CVD) (Section W21.5)

Molecular beam epitaxy (MBE) (Section W21.6)
Metal–organic CVD (MOCVD), also known as metal–organic vapor-phase epitaxy

(MOVPE)
Plasma-enhanced CVD (PECVD) (Section W21.7)

Physical vapor deposition (PVD)
Sputter deposition (reactive versus nonreactive) (Section W21.3)
Ion beam deposition
Thermal evaporation (electron beam or hot filament)
Thermal spraying

Synthesis from the liquid phase
Chemical deposition (surface plating via immersion)
Electrochemical deposition or electroplating (surface plating via passage of a current

through a solution)
Synthesis via chemical reactions

Reaction between a vapor or a liquid and the surface
Thermal oxidation: Si�s�C O2�g�! SiO2�s� (Section 21.7)

Processing
Annealing

Rapid thermal annealing
Oxidation

a-SiO2 via thermal oxidation or SIMOX (Section 21.7)
Doping

Via diffusion or ion implantation
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TABLE W21.1 (Continued )

Ion implantation (Section W21.3)
For surface modification (e.g., carburizing, nitriding, etc.) (Section W21.13)

Etching (Section W21.8)
Plasma treatments (Section W21.8)
Float-zone purification (Section W21.4)
Lithography (Section W21.8)
Mechanical processing (Section W21.10)

Work hardening

TABLE W21.2 Sources of Energy Used in Synthesis and Processing

Thermal (heating due to contact with hot gases and/or thermal radiation)
Annealing
Rapid thermal processing

Pressure and temperature
Sintering
Shock compression

Plasma (heating due to energy absorbed from accelerated electrons and ions, emitted light,
also the direct effects of Joule heating)

Electromagnetic radiation
Laser beams

Electric fields and the kinetic energy of accelerated ions
Sputtering

(a) (c)(b)

l

t⊥

Figure W21.1. Epitaxial growth: (a) monolayer of atoms in registry with the substrate;
(b) formation of a misfit dislocation; (c) warping of an adsorbed thick layer of atoms.

to relax its strain. The condition for this may be estimated by assuming a parabolic
profile for the warp y D 4tx�� x�/2, where t is the height of the warp and  is the
periodicity. If t− , the change in surface area is A D 8wt2/3 and the volume of
the warp is V D 4tw/6, where w is the surface dimension transverse to the warp.
The strain energy relieved is approximately Eε2V/2, where the mismatch strain is
given by ε D �b/a�� 1, and E is the Young’s modulus of the adsorbate. The increase
in surface energy is � A, where � is the energy per unit area at the vacuum interface.
This leads to the condition

t

2
<
E

8�

(
1� b

a

)2

�W21.1�

for the development of an undulating surface pattern rather than misfit dislocations.
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Recently, a lattice-engineered compliant substrate has been invented which does not
cause the adsorbate to develop misfit locations or to warp.† This is important, because
it permits epitaxial growth of badly mismatched materials without sacrificing crystal
quality.

The compliant substrate is a bilayer substrate that is created by having an adsorbed
layer bonded to a substrate of the same material but at a twisted angle, as illustrated in
Fig. W21.2. The two layers interact, go into partial registry in a domainwise fashion,
and form domain walls consisting of screw dislocations, as is shown in Fig. W21.3.
This embeds an intrinsic strain into the bilayer substrate. Since the interatomic forces
are anharmonic, with the spring constants becoming substantially weaker as the bonds
are stretched, the effective spring constants for the substrate are less stiff than they
would be for a fully periodic substrate. The compliant substrate is therefore able to
deform readily to accommodate an adsorbate with a different lattice constant.

Figure W21.2. Bilayer substrate consisting of a base layer bonded to a twisted overlayer.

Figure W21.3. Accommodation of the bilayer by the formation of registered domains with
domain walls formed by screw dislocations. [Adapted from F. E. Ejeckam et al., Appl. Phys.
Lett., 70, 1685 (1997).]

† F. E. Ejeckam et al., Appl. Phys. Lett., 70, 1685 (1997).
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Thin-Film Growth Modes. The nucleation and growth of thin films on solid surfaces
can involve a variety of atomic processes, including adsorption, surface diffusion, and
the formation of chemical bonds between adatoms and also between adatoms and atoms
of the surface at specific surface sites. These surface processes are discussed in detail
in Chapters 19 and W19. Three main modes of thin-film crystal growth are believed
to occur at surfaces, at least in those cases in which interdiffusion or chemical reaction
between the adsorbing species and the substrate does not lead to the formation of an
alloy, chemical compound, or intermetallic compound and in which surface defects
such as steps or dislocations do not play a dominant role in the nucleation stage of
film growth. Other important modes of thin-film growth include, for example, processes
such as the reaction of O2 with the surface of Si at high temperatures leading to the
growth of an amorphous SiO2 layer or the formation of silicides when metals such as
Cu, Au, Ni, Pd, and Pt are deposited on Si.

The three thin-film growth modes to be described here are the island growth mode,
also known as the Volmer–Weber mode, the layer growth mode, also known as the
Frank–van der Merwe mode, and the layer-plus-island growth mode, also known as
the Stranski–Krastanov mode. These growth modes are illustrated schematically in
Fig. W21.4. To aid in their description, use will be made of the surface free energies
�A and �B of the growing film and the substrate, respectively, as well as the free energy
�AB of the A–B interface. Examples of thin films growing in each growth mode will
also be given. It is, of course, doubtful that concepts such as surface energies can be
applied to thin films which nucleate on surfaces as single atoms. In such cases, an
atomistic point of view that focuses on individual atomic processes and the potential
energies of interaction of adsorbate atoms with the substrate and with each other must
be employed. The nucleation of the new phase, whether it be in the form of a cluster
or a monolayer, is often a rate-determining step in thin-film growth and, in general,
must be understood as resulting from atomic interactions.

Useful reviews of the processes involved in the nucleation and growth of thin films
and also of the three growth modes discussed here can be found in Venables et al.
(1984) and Venables (1994). Another approach that describes the deposition of thin
films from thermal beams and focuses on four different types of atom/molecule-surface
interactions has been given by Voorhoeve (1976). A variety of techniques are used to
monitor thin-film growth, either in situ or ex situ. These include transmission and

(a) (b)

q < 1 (ML)

1 < q < 2

 q > 2

(c)

Figure W21.4. Three main thin-film growth modes (ML D monolayer): (a) island growth
mode, also known as the Volmer–Weber mode; (b) layer growth mode, also known as
the Frank–van der Merwe mode; (c) layer-plus-island growth mode, also known as the
Stranski–Krastanov mode.
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scanning electron microscopies (TEM and SEM, respectively), reflection high-energy
electron diffraction (RHEED), Auger electron spectroscopy (AES), and, more recently,
various forms of scanning tunneling microscopy (STM).

Island Growth Mode (Volmer–Weber). In this growth mode, small clusters of
adsorbing atoms (or molecules) nucleate on the substrate surface and, if they are stable,
continue growing as islands until they coalesce. The islands grow by incorporating
atoms that reach the island directly from the vapor phase or by diffusing across the
surface. This growth mode is believed to occur when the atoms or molecules of the
growing film are more strongly bonded to each other than to the substrate or, in
terms of the surface and interface free energies, when �A C �AB > �B. This inequality
is only qualitatively correct since it does not take into account the free energy of
A atoms within the bulk of the film when the deposited islands are more than one
monolayer thick. Island growth is also expected when the lattice parameters of the
film and substrate are very different and when the two lattices cannot be brought into
some form of epitaxial alignment by rotation.

Examples of this growth mode include metal films deposited on insulating substrates
such as the alkali halides (e.g., NaCl), on the basal plane of graphite and other layered
materials, such as MoS2 and mica, and on insulators such as MgO. By measuring
the densities and sizes of stable Au or Ag clusters on the (100) surfaces of alkali
halides and comparing with existing theoretical models, researchers have been able to
determine that the size of a stable nucleus is usually just one metal atom. In addition,
values for the exponential prefactors and activation energies associated with desorption
and surface diffusion have been determined. Effects associated with cluster mobility
at high temperatures can play important roles in this mode of thin-film growth and are
therefore often included in the growth models.

Surface reconstructions are common on semiconductor surfaces and can complicate
thin-film growth due to the resulting surface anisotropy and possibly to steps with
different heights on the same surface. The presence of surface impurities such as
carbon or oxygen or of defects such as dislocations can lead to island growth and
defective films. In the case of heteroepitaxy [e.g., Si on SiO2 or on Al2O3 (sapphire)],
island growth is typically observed, with critical nucleus sizes in the range of one to
four atoms.

Layer Growth Mode (Frank–van der Merwe). In this growth mode the adsorbing
atoms form a monolayer on the substrate, and additional nucleation and layer growth
can occur simultaneously on the substrate and also on the previously deposited layers.
The growth in this mode can appear complex, for kinetic reasons (Fig. W21.5), when
the thickness of the region in which growth is occurring corresponds to several mono-
layers. The actual structure of this growth zone or interface transition region will depend

Film

Substrate

Figure W21.5. Layer growth mode showing nucleation occurring within a multilayer growth
zone.
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on the relative rates of the nucleation and growth processes. When the nucleation rate
is high and monolayer growth is slow, the growth zone will be wider than when nucle-
ation is slow and layer growth is fast. When the growth rate is high enough, deposition
will occur monolayer by monolayer (i.e., each monolayer will be essentially completed
before nucleation of a new monolayer occurs).

Monolayer-by-monolayer growth can readily be monitored via RHEED, in which
case regular oscillations of the RHEED intensity occur with the same period as the
monolayer growth. These oscillations are observed when nucleation of each new mono-
layer occurs on the terraces of existing monolayers but not when growth occurs by
step flow (i.e., by the addition of adatoms to existing steps on an off-axis substrate).
Decay of the RHEED oscillations can provide evidence for the development of surface
roughness due to widening of the growth zone from a single monolayer to several
monolayers.

Nucleation will be enhanced at high supersaturations (i.e., high incoming fluxes of
growth species) while growth will be enhanced at high temperatures, as long as the
temperature is not so high that the growth species tend to be desorbed from the surface
before they are incorporated into the growing monolayer. In the limits of very high
supersaturation and low temperature, the growing film can be quite disordered and may
even be amorphous.

This layer growth mode is believed to occur when the atoms or molecules in each
monolayer are more tightly bonded to the substrate than to each other or, in terms of
surface and interface free energies, when �A C �AB < �B. This condition is analogous
to that presented in Section W20.1 for the wetting of liquids on surfaces. In some cases
the second monolayer to be formed in this growth mode may be less tightly bonded
to the first monolayer than the first monolayer is to the substrate.

Examples of this growth mode include inert gases on graphite, some alkali halides,
and metal-on-metal [e.g., Ni on Cu(100) or Cu(111) and Ag on W(110)] and
semiconductor-on-semiconductor growth systems. Interesting examples include FCC
Fe on Ni, Cu, and Au, where the normal BCC crystal structure of ˛-Fe (ferrite) is not
stable due to the strain imposed by the substrate. Misfit dislocations often appear at
finite thicknesses in the case of the heteroepitaxial growth of metals on metals due to
strain in the growing film.

The epitaxial growth of the semiconductors Si, Ge, GaAs, Ga1�xAlxAs, and other
compound and alloy semiconductors has been studied widely. In the case of homoepi-
taxy [e.g., Si on Si(100)] the layer growth mode is observed under the ideal conditions
of clean substrate surfaces and the high temperatures required for the adatom surface
mobility that is necessary to allow crystalline films to be formed. Growth is often
carried out on vicinal surfaces that are slightly off-axis (³ 1° to 4°), in order to have
available regular arrays of surface steps at which growth can occur via the layer mode.
In this way the difficult initial step involving nucleation of growth on perfectly flat
terraces can be avoided.

Layer-Plus-Island Growth Mode (Stranski–Krastanov). As the name suggests, this
growth mode is intermediate between the island and the layer growth modes just
described in that a strained monolayer (or several monolayers) of growth occurs first,
with additional growth occurring in the form of islands nucleating on the growing film.
As a result, there is a transition from two- to three-dimensional growth. This growth
mode can apparently occur for a variety of reasons: for example, the first monolayer of
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the growing film assumes the surface structure of the substrate, which is different from
that of the bulk film. This is called pseudomorphic growth. In this case layer growth
occurs initially when

EsA0dC �A0 C �A0B < �B, �W21.2�

where A0 refers to the growing film, which is strained when it takes on the structure
of the substrate. The term EsA0d represents the elastic energy per unit area associated
with the strain in the growing film, with EsA0 the strain energy per unit volume and
d the film thickness. As d increases, the left-hand side of Eq. (W21.2) will eventually
exceed the right-hand side at a certain critical thickness. When this occurs, either misfit
dislocations will appear in the film to relieve the strain, as discussed in Section W20.2,
or the island growth mode will take over. When island growth that is essentially
unstrained takes over, it follows that �A C �AA0 > �A0 .

The critical nucleus size, ³ 10 to 100 atoms, for the second, or island, phase
of the Stranski–Krastanov growth mode is much larger than in the case of island
(Volmer–Weber) growth, where typically a single atom is the critical nucleus. The
need for a larger critical nucleus in the Stranski–Krastanov growth mode is likely due
to the rather small preference for island growth over layer growth.

Examples of this growth mode include the growth of some metals on metals and
on semiconductors [e.g., the Pb/W(110), Au/Mo(110), Ag/W(110), Ag/Si(111), and
Ag/Ge(111) systems, among others]. The growth of Ge on Si(100) and Si(111) can
also occur via this mode, with a uniformly strained Ge film initially growing to about
three monolayers. This is followed by a transition to the growth of three-dimensional Ge
nanocrystals on top of the initial strained Ge film, which is often called a wetting layer.

W21.3 Processing Using Ion Beams

Ions provide a versatile means for processing solids. They provide a directed source
of energy that couples to the ions of a solid via collisions or via excitation of the
electrons. Ions play a triple role in the processing of materials. First, an ion beam may
be used to sputter material off the surface, thereby cleaning or etching it. Second, ion
beams are used to implant ions into surfaces, such as dopants into semiconductors.
Third, ion beams may be used to deposit material from another target onto the surface,
a process known as sputter deposition.

In cleaning or etching via sputtering one generally employs relatively low-energy
ions (1 to 10 keV) of an inert gas, such as ArC, to deposit energy in the surface region.
A collision cascade results in which the ion energy is shared among many atoms, much
as when a cue ball strikes an array of billiard balls. When the kinetic energy of an
excited surface atom exceeds its binding energy, it will leave the solid. Atomic layers
of the solid are thereby removed. The sputtering yield Y is the number of sputtered
atoms per incident ion. This number is typically between 0.01 and 10 and depends on
the energy of the beam and the material being sputtered.

In the ion-implantation process, a low-flux energetic ion beam (10 to 500 keV)
penetrates the solid to a depth of ³ 10 nm to ³ 10 µm. For example, 200-keV AsC
ions penetrate 20 µm in Si before coming to rest. Some ions are able to penetrate
much deeper if the direction of the beam is nearly parallel to a crystal axis through
a process called channeling. Boron is used almost exclusively as an acceptor. Donor
ions include Sb, As, and P. The ions slow down due to collisions with the nuclei and
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the electrons and eventually come to rest some distance below the surface. There are
a range of penetration depths that occur, with the net result that the solid is doped
by the ions. Essentially, any element may be injected and the absolute concentration
as well as the concentration profile may be controlled precisely. Since the technique
is not thermodynamic in nature, it permits one to build up high concentrations of
dopants, beyond the limits imposed by solubility constraints. By subsequent annealing,
much of the radiation damage may be removed and the result can be a supersaturated
solid solution of the dopant atoms in the host crystal. Precipitation or segregation may
also occur. As the incident ion slows down by nuclear collisions, it leaves a trail of
radiation damage in its wake. This consists largely of interstitial ions and vacancies.
The concentration of displaced ions, Nd, is proportional to the fluence,  (the number
of incident ions per square meter), and is given approximately by the formula

Nd D 4000 Fd
Ed

, �W21.3�

where Fd is the energy deposition per unit length of penetration and Ed is the energy
needed to displace an ion (10 to 25 eV). In some circumstances the radiation damage
may be annealed out by elevating the temperature. In other cases it may be used to
create amorphous material. Typical values of  are in the range 1016 to 1019 ions/m2.

In the ion sputtering process, ion beams are directed at various target materials with
different chemical compositions to create a vapor of varying chemical composition.
Atoms or molecules from the vapor strike the substrate of interest and stick to it. For
example, ion-beam deposition of highly tetrahedral amorphous C is produced with C
ions of energy 10 to 100 eV. Layers as thin as a monolayer may be deposited on
a substrate. Ion deposition is frequently used for metallization or for coating disks
with magnetic material. In some cases the ion beam can assist in the deposition of a
chemical vapor directly on the surface by activating the vapor of the material to be
deposited.

The path of an incident ion as it penetrates the solid is a directed random walk. In
characterizing the penetration of the ion beam, various moments of the distribution of
final resting places are employed. Assuming the beam to be directed in the z direction,
there is the mean projectile range or penetration depth

Rz D hzi D 1

N

N∑
nD1

zn, �W21.4�

where N is the number of ions striking the sample and zn is the penetration depth of
the nth ion. The mean radial displacement is given by

Rr D h
√
x2 C y2i D 1

N

N∑
nD1

√
x2
n C y2

n. �W21.5�

Higher moments include the straggling distance,

�z D
√
h�z � Rz�2i D

√√√√ 1

N

N∑
nD1

�zn � Rz�2, �W21.6�
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the radial straggling distance,

�r D
√√√√ 1

N

N∑
nD1

�x2
n C y2

n�� R2
r , �W21.7�

and still higher statistical moments of the distribution, such as the skewness (asym-
metry) and kurtosis (sharpness of falloff in the wings). Calculations of the spatial
distribution, as well as the statistical moments, may be performed by resorting to
numerical simulations in which a large number of trajectories is analyzed.

The physical parameters controlling the ion processes are the atomic numbers and
masses of the projectile and target, Z1, Z2 andM1,M2, respectively, the Thomas–Fermi
screening constant of the solid, kTF (which curtails the long-range nature of the Coulomb
interaction), the incident current, I1, the beam area, A, and the kinetic energy of the
projectile, E. Two energy loss processes are of importance, nuclear stopping and elec-
tronic stopping. In the nuclear-stopping process the projectile and target nuclei make a
close collision, interacting via the screened Coulomb interaction. Energy and momenta
are shared between the two nuclei. In the electronic-stopping process the electric field
pulse of a passing projectile ion excites the electrons in the conduction band or upper
valence band of the solid. Both interband and intraband excitations may occur. The
gain of energy of the electrons is offset by the loss of energy of the projectile, so that
energy is always conserved. By the energy-time uncertainty principle, the shorter the
duration of the pulse, the wider is the spread of excitation energies. Thus Et ³ h
with t ³ b/v, where b is the impact parameter (perpendicular distance between the
line of approach of the incident ion and the target nucleus) and v is the projectile
speed. Hence electronic stopping is expected to dominate at high energies, where a
wider range of excitation energy is available due to the shortness of the pulse.

In the nuclear-stopping process the incident ion is deflected from a target ion through
an angle ' and therefore transfers an amount of energy T to the recoiling target nucleus,
where

T D 4M1M2E

�M1 CM2�2
sin2 '

2
. �W21.8�

Maximum energy transfer for a given M1 and M2 occurs during backscattering, when
' D ). Furthermore, when M1 D M2 there will be a maximum energy transfer for a
given '.

In discussing the energy-loss processes it is convenient to introduce a dimensionless
energy, *, defined as the ratio of an effective Bohr radius to the distance of closest
approach in a head-on Coulomb collision. The effective Bohr radius is given empiri-
cally by a ³ 0.8854a1�Z

2/3
1 C Z2/3

2 ��1/2, where a1 is the Bohr radius, 0.0529 nm. The
distance of closest approach is r0 D e2Z1Z2�M1 CM2�/4)*0EM2. The dimensionless
energy is

* D E�keV�ð 32.53M2

�M1 CM2�Z1Z2

√
Z2/3

1 C Z2/3
2

. �W21.9�

A comparison of the nuclear and electronic-stopping powers, d*/d,, is given in
Fig. W21.6. The scaled penetration distance , is the distance in units of a, the effective
Bohr radius. The nuclear and electronic stopping powers become equal at some energy.
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Figure W21.6. Stopping power for nuclear (n) and electronic (e) processes as a function of the
parameter *. In Si * D 1 corresponds to E D 9 keV for 11Be ions or E D 1.5 MeV for Bi ions.
(Adapted from J. A. Davies, Mater. Res. Soc. Bull., 17(6), 26 (1992).

For As, B, and P in Si, this energy is 700, 10, and 130 keV, respectively. Sputtering
processes generally occur in the realm * < 10. For Z1 > Z2 the electronic stopping
power is given approximately by the formula �d*/d,�e D 0.15

p
*.

The mean projectile range is given by

Rz D a
∫ *in

0

1

�d*/d,�e C �d*/d,�n d*, �W21.10�

where *in corresponds to the incident energy E. An approximate formula for the mean
range is

Rz�nm� D E�keV�ð 13,000
1CM2/M1

,sZ
1/3
1

, �W21.11�

with ,s being the mass density of the solid (in kg/m3). The straggling in average total
path length R is given approximately for small * by

R

R
D 0.7

p
M1M2

M1 CM2
. �W21.12�

In reactive-ion etching (RIE) the surface of a solid is exposed to a chemical etchant
in the presence of an ion beam. The ion beam serves to excite the reactants, thereby
enhancing the chemical reaction rate. The system behaves as if its temperature were
elevated. Examples include the etching of Si by F2, Cl2, or Br2 in the presence of
an ArC beam. The ion beam also serves to create steps on the surface with dangling
bonds available for chemical reaction.

Recently, it has been shown that ion implantation, combined with annealing
and recrystallization, can be used to fabricate semiconductor nanocrystals.† Alumina
substrates were bombarded with semiconductor ion doses up to 1021 ions/m2. If the
substrate is kept at a high temperature during bombardment, then cooled and annealed
at a relatively low temperature, the substrate retains the ˛-alumina structure and the

† J.D. Budal et al., Nature, 390, 384 (1997).
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semiconductor nanocrystals that precipitate align themselves relative to the substrate. If
the substrate is bombarded at low temperatures with a high dose of ions, the substrate is
amorphized. A low-temperature anneal then leads to the substrate forming --alumina.
This leads to a different orientation of the nanocrystals than above.

Ion implantation may be combined with etching to produce thin slices of crystals
in a technique called ion slicing. He2C ions, with an energy of ³ 4 MeV, impinge
on a crystal. The implanted ions deposit a high percentage of their energy near the
penetration depth (³ 10 µm), creating a damage layer. This layer may be attacked with
an etching solution and the resulting crystal slice may be delaminated from the rest
of the crystal. Subsequently, it could be placed on the surface of a different crystal.
This circumvents the need for epitaxial growth of thin films and extends the ability to
obtain films on substrates to cases where epitaxial growth may not be possible.

W21.4 Float-Zone Purification of Single-Crystal Si

The purest single crystals of Si are currently grown from the liquid phase using a
method in which the molten Si is not in contact with any container, thereby elimi-
nating the main source of impurities. This is the float-zone (FZ) method, illustrated
schematically in Fig. W21.7, and is a type of zone refining. The starting material
is a cylindrical rod of pure, polycrystalline Si which is mounted vertically and held
at both ends, either under vacuum or in an inert atmosphere. In this method only
a short section of the Si rod away from the ends is molten at any given time. The
molten section is heated via radio-frequency induction using a coil surrounding the
container and is held in place by surface tension forces. To initiate the growth of
a single crystal, a small single-crystal Si seed is placed in contact with the molten
end of the rod. A necking process similar to that used in the CZ growth method,
described in Chapter 21, is then used to remove any dislocations from the growing
crystal.

The external heating coil and the molten Si zone are moved slowly along the Si
rod several times in the same direction until the desired purity and crystallinity are
obtained. Rotation of the cylindrical rod is also used in this method, to promote cylin-
drical uniformity of the material. Single crystals of FZ Si of up to 15 cm in diameter

Polysilicon rod

Heating coil

Single crystal

Melt

Neck
Seed

Figure W21.7. Float-zone method used for the growth of extremely pure single crystals of Si
and other materials.
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can be grown and purified by this technique. The use of FZ Si in Si microelec-
tronic devices is limited due to its low oxygen content, ³ 1022 atoms/m3, a factor
of 100 less than in CZ Si. As a result, the beneficial effects of internal gettering
and of mechanical strengthening due to oxygen precipitation are not available in
FZ Si.

The attainment of extremely high purities in the single-crystal Si rod, corresponding
to impurity fractions of ³ 10�10 (i.e., 99.99999999% pure Si), results from the much
lower solubility of most atoms in solid Si than in liquid Si. This difference in solubility
is due to the much more restrictive conditions for the bonding of atoms in solid Si
as compared to liquid Si and is expressed in terms of the equilibrium distribution or
segregation coefficient KA for a given atom A. The coefficient KA is the ratio of the
equilibrium concentrations of atom A in the two phases:

KA D cA�solid�

cA�liquid�
. �W21.13�

If the fractional concentrations cA(solid) and cA(liquid) are both − 1, KA is also
given by the ratio of the thermodynamic activities of atom A in the two phases. The
coefficient KA can be determined experimentally from the equilibrium phase diagram
for the Si–A system. If the liquidus and solidus curves are nearly straight lines for low
concentrations of A in Si and have negative slopes sL and sS, respectively (Fig. W21.8),

KA D sL
sS
< 1. �W21.14�

Solutes that depress the melting temperature of Si have KA < 1, while those that raise
Tm have KA > 1.

The distribution coefficient KA for dilute concentrations of A atoms in a solid such
as Si can be related to the enthalpy change Hm associated with melting of the solid
and to the change of Tm as a function of the A-atom concentration in the solid. The
appropriate expression, obtained by equating the chemical potentials of A atoms in the

Tm

xo

Kxo

L

0 Ax =A+Si

S + L
S

T

Slope sS

Slope sL

Si

Figure W21.8. Equilibrium phase diagram for the Si–A system. The liquidus and solidus curves
are nearly straight lines for low A-atom concentrations and have negative slopes sL and sS,
respectively.
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liquid and solid phases,† is

KA D 1C Hm0

RT2
m0

Tm � Tm0

cA�liquid�
. �W21.15�

Here Hm0 and Tm0 correspond to pure Si. For dilute solutions [i.e., cA(liquid) and
cA(solid) both − 1], the ratio �Tm � Tm0�/cA(liquid) is essentially independent of
temperature and so, therefore, is KA. It can be seen from Eq. (W21.15) that, as stated
earlier, KA < 1 when Tm D Tm � Tm0 is negative, and vice versa.

To illustrate the connection between distribution coefficients and phase diagrams,
consider the case of solid-solution Si–Ge alloys whose phase diagram is shown in
Fig. W21.9. The distribution coefficients for Ge in Si, KGe(Si), and for Si in Ge,
KSi(Ge), can be obtained from this diagram using the slopes sL and sS as the concen-
trations of Ge and Si tend to zero. The following results are obtained:

KGe�Si� ³ 0.3 and KSi�Ge� ³ 5.5. �W21.16�

Thus Si atoms have a greater tendency than Ge atoms to enter the solid phase in
Si–Ge alloys and actually prefer the solid phase to the liquid phase. The solid phase
in equilibrium Si–Ge alloys will therefore always be enriched in Si relative to the
liquid phase, as indicated in Fig. W21.9. This follows from the fact that the melting
temperature of Si, Tm D 1414°C, is greater than that of Ge, Tm D 938°C. As discussed
in Chapter 6, this behavior is also observed for solid-solution Cu–Ni alloys, which are
always Ni-rich in the solid phase, Ni having the higher melting point.

Values of cA(solid) obtained experimentally can deviate from those expected from
the equilibrium value of KA when the growth process deviates from equilibrium condi-
tions. As an example, KA is observed to depend on the growth rate. It is reasonable to
expect that KA ! 1 as the growth rate approaches infinity since A atoms at the growth
interface will be trapped in the solid phase due to lack of time to diffuse away.
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Figure W21.9. Equilibrium phase diagram for solid-solution Si–Ge alloys. (Adapted from
M. Hansen, Constitution of Binary Alloys, McGraw-Hill, New York, 1958.)

† P. Gordon, Principles of Phase Diagrams in Material Systems, McGraw-Hill, New York, 1968, p. 140.
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TABLE W21.3 Distribution Coefficients K of Elements in Si Near Tm = 1414°C

Column III K Column IV K Column V K Column VI K

B 0.8 C 0.07 Na <10�7 O 0.5
Al 0.002 Si 1 P 0.35
Ga 0.008 Ge 0.3 As 0.3
In 0.0004 Sn 0.016 Sb 0.023

Source: Most values are from F. A. Trumbore, Bell Syst. Tech. J., 39, 221 (1960).
aThe value for N is uncertain.

In the FZ method if a given dilute impurity with distribution coefficient K < 1
has an initial concentration c0 in the solid Si rod, the first portion of the Si rod
that is melted and then allowed to resolidify slowly will have the lower impurity
concentration Kc0 < c0. The same level of purification will not, however, be achieved
in the rest of the Si rod since the concentration of the impurity in the molten zone
will slowly increase above c0. The impurity concentration in the first segment of the
Si rod will therefore be reduced by the factor K each time the molten zone is passed
slowly through it. Since typically K− 1 for many unwanted impurities, an extremely
low concentration c ³ Knc0 can in principle be achieved in the first segment of the
Si rod after n passes of the molten zone. The opposite end of the Si rod in which
the impurities have become concentrated is cut off after the purification process is
completed. Since the impurity concentration, while low, will still be nonuniform along
the length of the Si rod, homogenizing treatments that involve passing the molten zone
repeatedly along the rod in both directions are employed to obtain a uniform impurity
concentration.

Values of the equilibrium distribution coefficients for several elements in Si are
given in Table W21.3. The only elements with distribution coefficients in solid Si
which are greater than 0.05 are from groups III, IV, V, and VI of the periodic table
(e.g., B, C, Ge, P, As, and O). The elements B, P, and As are substitutional impurity
atoms which are often used for doping Si. Unwanted metallic impurities such as Cu,
Au, and Zn have very low values of K ³ 10�7 to 10�4. The coefficient K is observed
to be temperature dependent, falling rapidly with decreasing T.

In addition to its use for Si, the FZ technique remains the preferred method
for obtaining highly purified crystals of a wide variety of semiconducting, metallic,
and ceramic materials, including single crystals of the high-Tc superconductor
La–Sr–Cu–O.

W21.5 Epitaxial Growth of Single-Crystal Si Layers via CVD

The homoepitaxial growth of single-crystal layers (epilayers) of Si on Si substrates as
carried out via chemical vapor deposition (CVD) is the preferred method of growth
for the layers used in the fabrication of Si-based electronic devices. The CVD of Si
employs a wide variety of deposition systems and conditions and so is a very versatile
growth procedure. The CVD process involves the thermal decomposition (pyrolysis)
of gaseous precursor molecules, with both vapor-phase (homogeneous) and surface
(heterogeneous) chemical reactions playing important roles. It is desirable, in general,
to suppress vapor-phase chemistry to avoid powder formation and the defects that
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would result from particle incorporation in the films. The Si epitaxial layers deposited
undergo further processing when used in Si-based electronic devices. These additional
processing steps are discussed in Section W21.8, where the fabrication of Si-based
integrated circuits is described.

The growth of Si from the vapor phase at substrate temperatures in the range
Ts D 500 to 1150°C has several advantages relative to the Czochralski and float-zone
methods, which involve growth from the melt at Tm D 1414°C. The advantages include
reduced diffusion of both dopant and unwanted impurity atoms and reduced thermal
stresses in the film and substrate. Reduced dopant diffusion allows the fabrication of
abrupt interfaces between regions of different doping levels, an important factor in the
development of smaller and faster devices.

The single-crystal Si wafers used as substrates for the epitaxial growth of Si layers
are grown via the Czochralski method and are required to be as defect-free as possible
since dislocations and other structural defects present in the substrate can propagate
into the growing film. The surface of the substrate must also be smooth and clean (i.e.,
free from impurities such as carbon and oxygen), to prevent the nucleation of stacking
faults and the appearance of other defects, such as dislocations, voids, inclusions, and
precipitates in the growing film. There exist well-developed polishing and cleaning
procedures, both ex situ and in situ, for the preparation of Si wafers for use as substrates.
Ex situ chemical cleaning, which results in an air-stable, oxide-free Si surface, involves
an H2O2-based chemical cleaning procedure, the RCA clean,† followed by a 10-s dip
in a 10:1 H2O:HF solution. This treatment generates a hydrophobic Si surface which
is chemically stabilized by a surface layer of strong Si–H bonds. In situ cleaning
methods include high-temperature treatments, often in H2, to remove any SiO2 present
on the surface as volatile SiO molecules and also to remove C from the surface via its
diffusion into the bulk or by the evaporation of the surface layer of Si.

A typical cold-wall Si CVD system is shown in Fig. W21.10. It consists of a water-
cooled fused-quartz tube surrounded by radio-frequency heating coils into which the
Si wafer substrates are placed in a susceptor made of graphite, SiC-coated graphite,
or quartz. The deposition can be carried out at atmospheric pressure (APCVD) or
at reduced pressures (RPCVD), P ³ 0.01 to 0.1 atm. The current standard epitaxial
growth method is RPCVD, which has the advantage of minimizing autodoping (i.e.,
the doping of the growing Si layer by dopant atoms originating from the Si substrate).

Film growth from the vapor phase is a very general method of materials synthesis
and typically involves the following steps, each of which may in fact represent a
complicated sequence of more elementary steps:

1. Transport of gaseous species from the source to the substrate
2. Adsorption onto the substrate surface
3. Nucleation and growth of the film
4. Removal from the surface of unwanted species that might interfere with film

growth

The nucleation and growth steps are described in Section W21.2. The thermal
decomposition of the gaseous species can occur either in the vapor phase or on the

† W. Kern and D. A. Puotinen, RCA Rev., 31, 187 (1970).
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613 (1970).)

heated substrate surface. The hydrodynamics of the flowing gases in the CVD system
can have a significant influence on the growth process.

In the case of Si CVD, there are many possible choices for the molecular precursors,
including SiH4 and SiHCl3. The important growth species present on the surface are
then the highly reactive radicals silylene, SiH2, and SiCl2. These radicals are the
products of the thermal decomposition of the feedstock gases and will undergo further
reactions on the surface of the growing film. Carrier gases such as H2 and He are often
used to aid in the transport of vapor species to the substrate. The concentrations of
atoms, radicals, and molecules adsorbed on the growing surface are controlled by their
incident fluxes (i.e., by their partial pressures in the vapor phase) and by the substrate
temperature Ts which controls their desorption rates.

Typical net chemical reactions resulting in the growth of the Si epilayer include the
following:

SiH4�g� ��! Si�s�C 2H2�g�,

2SiHCl3  ��! 2Si�s�C 3Cl2�g�C H2�g�.
�W21.17�

These reactions actually represent a series of elementary steps taking place in the vapor
phase and on the substrate surface. Growth rates are ³ 1 µm/min at Ts ³ 1100°C and
decrease rapidly as Ts is lowered (see Fig. 21.3). Homogeneous vapor-phase reactions
leading to the formation of disilane Si2H6 are

SiH4�g� ���! SiH2�g�C H2�g�,

SiH4�g�C SiH2�g� ���! Si2H6�g�.
�W21.18�
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These reactions can ultimately lead to the formation of undesirable polymeric silicon
hydride powder, �SiH2�n.

The partial pressures of the vapor species involved in growth must exceed their
equilibrium vapor pressures with respect to the Si surface at Ts in order for the net
deposition of a film to occur. The growth species must therefore be supersaturated
in the vapor phase, with the supersaturation ratio SSR for the case of Si(g) atoms
defined by

SSR�Si�g�, Ts� D P�Si�g��

Peq�Si�g�, Ts�
, �W21.19�

where P�Si�g�� is the actual vapor pressure of Si(g) just above the substrate surface
and Peq�Si�g�, Ts� is the equilibrium vapor pressure of Si(g) with respect to pure Si(s).

A wide variety of investigations have allowed the following conclusions to be
reached concerning the growth of Si epilayers via CVD:

1. The rate-controlling step for the growth of Si is either the removal from the
surface of hydrogen in Si–H bonds via the desorption of H2, or the dissociation
of SiH2 or SiCl2 on the surface.

2. The rate-controlling step for obtaining high crystallinity in the Si epilayer is the
diffusion of Si on the growing surface.

3. Lattice defects are generated when the Si adsorption rate exceeds the rate at
which Si can diffuse on the surface and be incorporated into the growing film.
Si atoms then enter nonideal, higher-energy bonding configurations.

4. Si atoms compete with other species on the surface, such as dopant atoms or
molecules and hydrogen, oxygen, or carbon atoms, for the available bonding
sites to Si substrate atoms, thereby limiting the Si atom diffusion rate.

The termination of the growing Si surface by hydrogen in Si–H bonds can play
a critical role in the CVD of Si by inhibiting epitaxial growth through the blocking
of surface sites for the adsorption of reactive species such as SiH2 and SiH3. This is
particularly important at Ts less than about 400 to 500°C.

Recently, the CVD of Si and of Si–Ge alloys has been combined with UHV tech-
niques to achieve a very high level of system and substrate cleanliness (e.g., the
elimination of oxygen and carbon surface impurities). The use of this growth method,
known as UHV/CVD, allows the deposition of epitaxial Si and Si–Ge layers at much
lower pressures, P ³ 10�3 torr, and lower Ts,³ 500 to 550°C, than are ordinarily
used. Operation at lower pressures has several advantages: the undesirable homoge-
neous pyrolysis of precursors in the vapor phase is minimized, the very low partial
pressures of O2 and H2O necessary for the maintenance of an active, SiO2-free Si
surface are more readily achieved,† and molecular flow conditions are obtained, with
the result that recirculating flows, eddy currents, and turbulence are avoided. Due to
the clean and hydrogen-stabilized surfaces of the Si wafers when they are placed into

† For experimental results and discussions of the interactions of O2 and H2O with Si at high temperatures,
see F. W. Smith and G. Ghidini, J. Electrochem. Soc., 129, 1300 (1982); G. Ghidini and F. W. Smith, J.
Electrochem. Soc., 131, 2924 (1984).
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the UHV/CVD system, no further in situ treatment at high temperatures is required to
prepare the Si surface for epitaxial growth.

The use of lower substrate temperatures reduces problems associated with dopant
atom redistribution via diffusion and also is a very effective method of reducing defect
concentrations in the films. Growth at lower Ts will reduce the equilibrium concentra-
tions of defects such as vacancies and will also reduce the mobility of point defects and
hence their tendency to interact with each other to form extended defects. In addition,
thermal stresses which can also lead to the generation of defects in the film will be
reduced at lower Ts. Better film thickness uniformity is also expected at lower Ts since
the deposition process changes from one controlled by vapor-phase transport at higher
Ts to one controlled by surface reactions at lower Ts, as discussed in Section 21.3. It
is still necessary to maintain Ts well above the range in which the film will become
noncrystalline or amorphous.

Nonequilibrium structures and alloys can also be prepared at low Ts. These include
strained Si–Ge epilayers grown on Si with thicknesses well above the critical values
for the generation of misfit dislocations and also alloys of Si with concentrations of
dopant atoms such as B which are several orders of magnitude above equilibrium
concentrations. Sharp transitions, particularly in dopant profiles, between the substrate
and the epilayer are essential as device dimensions continue to shrink. Both the layer
growth rate and dopant diffusion rates decrease exponentially as Ts decreases. Since
the activation energy for diffusion, Ea�diff� ³ 3.5 eV, is much greater than that for
growth, Ea�growth� ³ 1.5 eV, reasonable growth rates, ³ 0.1 to 10 nm/min, can still
be obtained at Ts ³ 500°C, where dopant diffusion has been effectively frozen out.

A schematic of the hot-wall apparatus used in the UHV/CVD method is shown in
Fig. W21.11. The carefully cleaned Si wafers have surfaces passivated by H termi-
nation (i.e., Si–H bonds), which can be thermally desorbed from the Si surface at
Ts > 400°C. In the UHV/CVD of Si the vapor phase consists entirely of SiH4.

Films that are “defect-free” (i.e., with defect densities less than ³ 100 cm�2) are
readily achieved via CVD. The most sensitive quantitative method of determining

Mass
spectr. Furnace

UHV/load chamber

Gas
source

Vacuum
transfer
apparatus

Turbo
pumpTurbo

pump

Al2O3

trap

Rotary pump

Rotary pump
and
roots blower
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densities of structural defects such as dislocations in Si epitaxial layers is by means of
chemical etching. Since the disordered regions of the lattice containing defects are in
a state of higher energy, they are more rapidly attacked (i.e., etched) by appropriate
acids. Optical microscopy can then be used to count the etch pits and also to iden-
tify the nature of the defects from the shape of the etch pit. Transmission electron
microscopy (TEM) is the preferred method for probing the atomic perfection of the
interface between the substrate and the epilayer. Electrically active defects such as
impurity-related traps are not readily detected via etching or TEM. Their presence can
be determined by the effects that they have on devices such as diodes, transistors,
or metal–oxide–semiconductor (MOS) capacitors, which are fabricated from the Si
epilayers.

Metallic elements such as Fe and other transition metals are undesirable impurities
in Si due to the fact that they act as traps (i.e., as centers for the recombination of
electrons and holes). Although they do not enter into CZ or FZ Si from the melt due
to their very low distribution coefficients, they will diffuse rapidly into the bulk at
elevated temperatures if they can reach the surface of the Si crystal through the vapor
phase.

Other recent approaches to Si epitaxy via CVD include the use of intermediate layers
such as cubic CaF2, fluorite, whose lattice constant, a D 0.546 nm, matches that of Si,
a D 0.543 nm, to within 0.6% at T D 300 K. The CaF2 layer is deposited epitaxially
onto the Si(100) surface first, followed by the deposition of the Si epilayer onto the
CaF2 layer. The top Si epilayer is then removed for further processing by dissolving
the intermediate CaF2 layer in an appropriate solvent. In this way the original Si(100)
substrate can be reused.

A recent approach to understanding the growth of Si epilayers at low tempera-
tures has involved the definition of a limiting epitaxial thickness hepi above which
the deposited films become amorphous. This is in contrast to the usual definition of a
minimum epitaxial temperature Tepi, below which epitaxy is impossible, due to insuffi-
cient surface diffusion of atoms adsorbed on the surface. Epitaxial growth of Si can be
observed in a very clean MBE system at all temperatures between T D 50 and 300°C,
but only up to the thickness hepi, which increases exponentially with increasing T and
decreases with increasing growth rate. For Si films grown via MBE, hepi was found
to be 1 to 3 nm at room temperature. The transition from crystalline to amorphous
growth at hepi has been attributed to a surface-roughening effect, with the accumula-
tion at the growing surface of impurity atoms such as hydrogen playing a major role
in the roughening process.

W21.6 Molecular-Beam Epitaxial Growth of GaAs

The growth via molecular-beam epitaxy (MBE) of films of the group III–V semicon-
ductor GaAs, as well as of other III–V and II–VI semiconductors, has many features
in common with the CVD of epitaxial Si layers, including the steps of transport and
adsorption of the appropriate precursor vapor species onto the substrate surface, nucle-
ation and growth of the film, and removal of unwanted species from the substrate
surface. In MBE molecular beams (i.e., beams of neutral molecules or atoms) are
directed onto a heated substrate in a UHV system. Due to the low particle density of
the beam and also to the very low background pressure in the growth chamber, the parti-
cles in the beam do not interact with each other and undergo essentially no collisions
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with residual gas molecules on their path from the source to the substrate. A typical
MBE growth chamber is shown schematically in Fig. W21.12. Along with the vacuum
chamber and all the associated accessories, appropriate vacuum pumps and electronics
for the control of the various components are required. The mass spectrometer is used
for residual gas analysis. It can also be used to measure the fluxes of reactant species
and can provide signals to be used for adjusting the effusion cell temperatures so that
constant fluxes, and hence constant deposition rates, can be maintained.

Advances in UHV technology† have permitted the deposition via MBE of films at
relatively low Ts with unparalleled control of composition, purity, and interface sharp-
ness, involving literally atomic layer-by-layer growth. The low growth temperature has
the advantage of reducing undesirable thermally activated processes such as diffusion,
while the low growth rates �³ 10 nm/min� offer the advantage of accurate control of
film thickness. The UHV conditions employed in MBE also permit in situ monitoring
of the film structure and thickness using high-energy electron beams reflected at very
low angles from the surface of the growing film. This technique is known as reflec-
tion high-energy electron diffraction (RHEED). The chemical purity and composition
of the substrate and of the film can also be monitored in situ using Auger electron
spectroscopy (AES). Finally, the use of modulated-beam mass spectrometry (MBMS)
employing separate beams of Ga and As2 has allowed the detailed study of surface
processes involved in the growth of GaAs via MBE.

The solids that are the source materials for the MBE of GaAs are contained in heated
effusion cells within the vacuum chamber. Elemental Ga metal is used for the Ga flux,
while solid GaAs is used for As2 and solid elemental As for As4. Additional elements

† See Weissler and Carlson (1979) for a useful description of UHV techniques.
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used for doping, alloying, and for multilayer or junction depositions are contained in
their own effusion cells. The nature and flux of the vapor species from each effusion
cell are controlled by the temperature of the cell, with the flux directed through a small
orifice in the wall of the cell toward the substrate. Shutters placed between each cell
and the substrate are used to block individual beams when control of the composition or
thickness of the growing film is desired. The substrates are mounted on heated holders
whose temperature Ts can be controlled accurately by regulated internal heaters. The
substrate holders can be rotated during growth in order to obtain extremely uniform
epitaxial films.

Due to the very low background pressure in the MBE chamber during growth, P ³
10�9 torr (³ 10�7 Pa), very few unwanted residual gas molecules are incident on the
substrate and incorporated into the films. Due to the cleanliness of the growth chamber,
growth rates can be very low, 6 to 60 nm/min, which allows extremely thin layers with
abrupt interfaces to be grown on surfaces that are essentially atomically smooth. Typical
beam fluxes can be in the range 1011 to 1016 atoms (or molecules)/cm2Ðs.

The substrates used for GaAs integrated-circuit fabrication are semi-insulating bulk
GaAs crystals grown via the liquid-encapsulated Czochralski method. These undoped
substrates typically contain 104 to 105 dislocations/cm2. Before being placed in the
growth chamber the substrates undergo a variety of polishing, etching, and rinsing
procedures which are chosen carefully for each type of substrate. Further treatment of
the substrate within the growth chamber is also possible and typically involves heating
to about T D 580°C to remove oxygen, followed by Ar ion bombardment to remove
the less volatile carbon contamination. To obtain extremely clean growth surfaces,
undoped epitaxial layers of GaAs are often grown in the MBE growth chamber on
existing bulk substrates.

Stoichiometric GaAs films are typically grown in the range Ts D 500 to 600°C under
an incident vapor flux that is enriched in As-containing species due to the instability of
the heated GaAs surface with respect to the preferential loss of more volatile arsenic
species. When As2 is incident, stoichiometric GaAs films are obtained as long as the
As2 flux exceeds 50% of the Ga flux [i.e., as long as R�As2�/R�Ga� > 0.5]. The sticking
coefficient of Ga is equal to unity for Ts less than about 480°C and then decreases
exponentially with an activation energy of Ea ³ 2.5 eV at higher temperatures. Under
proper growth conditions any excess arsenic beyond that needed for stoichiometric
growth is desorbed from the surface of the growing film. This is attributed to a high
sticking coefficient for As2 on a Ga-terminated surface and a low sticking coefficient
for As2 on an As-terminated surface, as observed experimentally. As a result, the
growth rate of GaAs, which is controlled by the incident monoatomic Ga flux, can
also be limited kinetically by the desorption of As-containing species that block sites
for the incorporation of Ga atoms.

The GaAs growth process from Ga and As2 has been shown by sensitive MBMS
and RHEED studies to be limited by the first-order dissociative chemisorption of As2

molecules when they encounter pairs of vacant As sites next to filled Ga sites. Growth
of GaAs from Ga and As4 has been shown to be more complicated, involving the
dissociation of pairs of As4 molecules on adjacent Ga atoms. Four of the resulting eight
As atoms are incorporated into the growing film while the remaining four desorb as As4.
The doping of GaAs films for high-frequency and light-emitting device applications
occurs during growth and is controlled by a variety of thermodynamic and kinetic
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effects. For example, a dopant element such as Cd or Zn with a high vapor pressure
can desorb from the growing surface and so may not be incorporated.

For a given substrate material there is a well-defined temperature range for the
growth of high-quality epitaxial films. For example, MBE of GaAs is typically carried
out for Ts between 500 and 600°C. The low-Ts limit is related to decreasing crys-
tallinity, while the high-Ts limit is due to the high vapor pressure of As2 and the
resulting deviations from stoichiometry. The lower limit for Ts can be extended down
to 200 to 300°C by using reduced arsenic fluxes, and the upper limit can be extended
up to 700°C with the use of higher arsenic fluxes. Films deposited at Ts D 700°C are of
higher quality (e.g., purer), due to reduced incorporation of impurities such as oxygen,
which form volatile molecules that desorb from the growth surface at high Ts.

MBE systems are usually dedicated to the deposition of specific materials [e.g.,
either group III–V (GaAs, GaP, InP, etc.) or II–VI (ZnSe, CdTe, etc.) compound
semiconductors]. For each group of materials the compositions and configurations of
the films or superlattices deposited is essentially unlimited, with the only constraint
being the imagination of the grower. MBE is a versatile deposition technique which, in
addition to being used for group III–V and II–VI semiconductors, has also been used
for the deposition of elemental semiconductors such as Si and Ge, for metals such as
˛-Fe, Co, and Al, and insulating layers such as CaF2.

Other techniques used for the deposition of compound semiconductor thin films
includes metal–organic CVD (MOCVD), metal–organic MBE (MOMBE), also
known as chemical beam epitaxy (CBE), which make use of volatile organometallic
compounds such as trimethyl gallium, �CH3�3Ga. When arsine, AsH3, is used as the
source of As, a typical reaction leading to the growth of GaAs is �CH3�3GaC AsH3 !
GaAsC 3CH4.

W21.7 Plasma-Enhanced CVD of Amorphous Semiconductors

The use of energetic radio-frequency (RF) and microwave plasmas to produce
highly-reactive chemical species (excited atoms, molecules, radicals, and ions) allows
deposition of a wide variety of semiconducting and insulating thin films onto practically
any substrate at low temperatures, typically in the range Ts D 25 to 500°C. Important
advantages of this plasma-enhanced CVD (PECVD) method are that high-temperature
materials such as oxides, nitrides, and carbides can be deposited without excessive
heating of the substrate and also that large-area substrates can be coated. Low-
temperature deposition is important because lower temperatures are required in
integrated-circuit fabrication, due to the need to avoid diffusion of dopant atoms and
due to the presence of the low-melting-point metal Al used for device interconnections.
As a result of the lower Ts, the films deposited are usually amorphous and also often
highly nonstoichiometric, with significant deviations from the nominal SiO2, Si3N4, and
SiC compositions in the case of Si-based films. Depending on the precursors employed
and the substrate temperature, the films also can contain up to ³ 40 at % hydrogen,
which is chemically bonded in the random covalent network.

Despite the absence of long-range order, a considerable degree of short-range chem-
ical order, corresponding to the strongest possible set of chemical bonds, is usually
present in these films. This type of bonding results from the good atomic mixing taking
place at the surface of the growing film as a result of energetic species (e.g., ions) inci-
dent from the plasma. This atomic mixing allows bonding configurations to be achieved
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which correspond to a state of low enthalpy. The Gibbs free energy G D H� TS for
these amorphous films results from competition between achieving the lowest-possible
enthalpy H, corresponding to the strongest set of chemical bonds in the network, and
achieving the highest possible entropy S, corresponding to random bonding between
the atoms in the network. A free-energy model for the bonding in amorphous covalent
networks has been formulated which takes into account the effects of both enthalpy
and entropy.†

Interesting and important examples of amorphous films deposited by PECVD include
hydrogenated amorphous Si (i.e., a-Si:H), amorphous silicon oxide, nitride, and carbide
(i.e. a-SiOx:H, a-SiNx:H, and a-SiCx:H), and amorphous or diamond-like carbon (DLC)
(i.e., a-C:H). One of the important advantages of the PECVD method is that films with
a wide range of compositions can be deposited due to the wide variety of available
gas-phase precursors and to the considerable range of deposition parameters such as Ts,
discharge pressure and power, and substrate bias potential, which controls the bombard-
ment of the film by ions. As a result, film properties such as the optical energy gap and
the electrical conductivity at room temperature can be varied over wide ranges [e.g.,
between ³ 0 and 5 eV and between 10�14 and 10�2�5Ðm��1, respectively]. Avail-
able gaseous precursors include SiH4,O2,H2O,NH3, and hydrocarbons such as CH4

and C2H2. Other precursors, such as borazine �B3N3H6� and tetraethoxysilane [TEOS,
Si�OC2H5�4], can be generated from liquids. Gases such as diborane �B2H6� and phos-
phine �PH3� can be added directly to the discharge when doping of the deposited layer
(e.g., a-Si:H) is desired. Precursors that are typically used in the PECVD of thin films
are listed in Table W21.4.

PECVD films have a wide range of semiconducting, dielectric, and protective-
coating applications. Examples include n- and p-type a-Si:H in photovoltaic solar
cells and thin-film transistors (TFTs), a-SiOx:H as a dielectric layer and a-SiNx:H as
an encapsulating layer in semiconductor devices, p-type a-SiCx:H as a window layer
in a-Si:H solar cells, and a-C:H as a protective coating for magnetic-recording media,
and so on.

As a specific example of the PECVD process, consider the deposition of hydro-
genated amorphous silicon nitride, a-SiNx:H, from SiH4 and NH3 mixtures using
volume flow ratios R D NH3/SiH4. Under typical conditions [e.g., Ts D 400°C and
P D 0.5 torr (D 66 Pa) in RF discharges], the deposition rates of these a-SiNx:H films
are ³ 0.1 to 0.5 nm/s and are controlled by the SiH4 flow rate. This occurs because

TABLE W21.4 Typical Precursor Gases Used in PECVD

Film Precursor Gases Film Precursor Gases

a-Si:H SiH4, SiH4/H2 a-Ge:H GeH4, GeH4/H2

a-C:H C2H2, C2H4, C6H6 a-SiNx:H SiH4/NH3, SiH4/N2,
a-SiOx:H Si(OC2H5�4/O2, SiH2Cl2/NH3

SiH4/O2, a-SiCx:H SiH4/C2H2

SiH4/Ar/N2O a-BNx:H B3N3H6, B2H6/NH3

a-C:F CF4, C2F4

† For the application of the free-energy model to a-SiNx :H, see Z. Yin and F. W. Smith, Phys. Rev. B, 43,
4507 (1991); for a-C:H, see H. Efstathiadis, Z. L. Akkerman, and F. W. Smith, J. Appl. Phys., 79, 2954
(1996).
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SiH4 is dissociated much more rapidly than NH3 in the plasma. For R D 0 a-Si:H
films are deposited, and for R− 1 a fraction of the incorporated N atoms can act as
substitutional donor impurities in a-Si:H. As R increases still further and more N is
incorporated, the optical energy gap widens and the films become electrically more
insulating. For very high ratios, R ³ 60, and for lower Ts ³ 100°C, the films become
N-rich, with N/Si ratios that can exceed the stoichiometric value of 4

3 for Si3N4. These
films do not correspond to a-Si3N4, even when N/Si D 4

3 due to the incorporation of
H in the range 10 to 30 at %.

The a-SiNx:H films used in devices have N/Si ³ 1 and typical compositions given by
a-Si0.4N0.4H0.2. Undesirable bonding configurations in these films include Si–Si bonds
and Si–NH2 bonding units. The former lead to an increase in the dielectric function
and also cause optical absorption at low energies, while the latter lead to a lack of
chemical and thermal stability. Films with higher H contents are in general not useful in
devices. Films with compositions close to the compound silicon diimide [i.e., Si(NH)2],
the bonding analog of SiO2, with NH units replacing O atoms, can be obtained at very
high NH3/SiH4 flow ratios. Films of Si(NH)2 are unstable in the presence of H2O due to
the chemical reaction Si(NH)2�s�C 2H2O�g�$ SiO2�s�C 2NH3�g�, particularly when
Si–NH2 bonding units are present. Films of a-SiNx:H thus provide a typical example
of how H incorporation can play a key role in controlling the properties of amorphous
semiconducting and insulating films.

The plasmas used in PECVD processes include RF plasmas at 13.56 MHz (wave-
length  D 22.1 m) and microwave plasmas at 2.45 GHz ( D 12.2 cm). The RF
plasmas are often employed using a capacitively coupled parallel electrode config-
uration, as shown in Fig. W21.13, although inductive coupling is also used. The
microwave plasmas typically consist of a plasma ball with dimensions of a few
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Figure W21.13. The RF plasmas used in plasma-enhanced CVD are typically employed in a
capacitively coupled parallel electrode configuration, as shown here. (From K. Mui et al., Phys.
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centimeters and are usually more confined in space than their RF counterparts. Elec-
tron cyclotron-resonance (ECR) plasmas which employ magnetic fields to aid in the
coupling of energy into the plasma are also used in low-pressure discharges. Electron-
impact dissociation of the feedstock gas in the plasma provides the excited neutral
and charged species (i.e., free radicals and ions) needed for film deposition. Chemical
reactions occurring in the gas phase and on the surface of the growing film can also
produce species that are important for the deposition process.

A complete description and analysis of all the important processes occurring both
in the plasma and on the surface of the growing film during PECVD is an extremely
difficult task, due to the large number of possible species and processes and the often
unknown rate constants and cross sections of these processes. A schematic model of
the gas-phase and surface processes involved in the PECVD of a-Si:H from SiH4 is
shown in Fig. W21.14. The various ions, neutral radicals, and other molecular species
present in the vapor phase are indicated, as are some of the surface reactions. The
presence of the H-rich surface layer on the growing a-Si:H film is apparent. The net
growth rate is the result of the competition between the deposition and etching rates.
In most PECVD processes the substrate to be coated is mounted in a vacuum system
on a heated substrate holder so that Ts can be varied from room temperature up to
³ 400°C. Typical discharge pressures are in the range 0.1 to 10 torr (13 to 1300 Pa)
and typical plasma energy fluxes at the substrate are 10 to 100 mW/cm2.

Hydrogen dilution (i.e., adding H2 to the plasma) often has the advantage of actually
reducing the hydrogen content of the deposited film by, for example, enhancing the
removal from the growing surface of weakly bonded species such as SiH2 or SiH3.
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Another method used to reduce the hydrogen content is increasing Ts, which leads
to increased mobility of the H atoms within the films, and their recombination into
H2 molecules, which can then diffuse to and desorb from the film surface. Higher
deposition rates are also possible at higher Ts. The use of higher Ts allows greater
atomic diffusion to occur in the films, which aids in the annealing (i.e., healing) of
defects. Film stress and morphology are also strongly dependent on Ts as well as on
ion bombardment.

Changes in the PECVD growth conditions, such as increasing the partial pressure of
H2 in SiH4/H2 mixtures, increasing the power density or the frequency of the plasma, or
increasing the substrate temperature Ts, can lead to the deposition of microcrystalline
�µc� films such as µc-Si:H. These µc-Si:H films have microstructures consisting of
variable volume fractions of Si nanocrystals in an a-Si network. Preferential etching
of the more weakly bonded amorphous component by H atoms is likely to play an
important role in the deposition of µc-Si:H films.

In addition to deposition, reactive plasmas can also be used in a wide variety
of etching processes, such as those used in the fabrication of Si devices. Some of
these etching applications are discussed in Section W21.8. The plasma hardening of
metal surfaces by the implantation of N or C ions, discussed in Section W21.13, and
plasma doping by implantation of B ions into Si are also important materials processing
procedures.

Another plasma-related mode of film deposition makes use of the physical sputtering
of atoms from a target in, for example, an Ar plasma. The target material, as well as the
deposited layer, can be a metal, semiconductor, or an insulator. The sputtered atoms
are incident on the substrate, where they lead to the desired layer deposition. Physical
sputtering is typically used for the deposition of metal films.

In another mode of operation, known as reactive sputter deposition, additional
precursor gases are introduced into the plasma, where they are excited. These excited
species contribute to the layer deposition since they can react with the target atoms both
at the surface of the growing film and on the surface of the target. This method can
readily be used to control the composition of the deposited layer. Reactive sputtering
is typically used for the deposition of compound films such as oxides (including the
high-Tc superconducting copper-based oxides), nitrides, carbides, and silicides. Typical
precursor gases include O2 and H2O for oxygen, NH3 and N2 for nitrogen, CH4 and
C2H2 for carbon, SiH4 for silicon, and H2 when hydrogen is to be incorporated, as
in a-Si:H.

W21.8 Fabrication of Si Devices

A brief overview of the important steps involved in the fabrication of Si-based elec-
tronic devices from Si wafers of sufficiently high resistivity is presented next. To
illustrate the complexity of the process, consider the fabrication of a 256-Mbit dynamic
random-access memory (DRAM). A wafer yields 16 chips, each 25 mm square and
consisting of ³ 3ð 108 devices with features as small as 0.25 µm. Due to the large
number �³ 300� of synthesis and processing steps involved in IC fabrication, it is not
possible here to describe these procedures in detail. Wolf and Tauber (1990) and Maly
(1987) provide useful descriptions of the steps involved in IC fabrication. Some of the
important steps have already been described (e.g., the CVD of epitaxial Si films and
the PECVD of silicon nitride dielectric films). The thermal oxidation of Si to form
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passivating and protecting a-SiO2 layers is discussed in Chapter 21. Other steps, such
as diffusion (Chapter 6) and ion implantation (Section W21.3), are also discussed else-
where. Therefore, only some additional details and current issues relevant to Si device
fabrication are presented here.

Thermal Oxidation of Si. The thermal oxidation of Si to form layers of a-SiO2 is
repeated often during the fabrication of Si-based devices. In addition to protecting and
passivating the surface of Si, oxide layers are also used as the surface for photoresist
deposition, as masks for dopant diffusion, and as buried dielectric layers to isolate
components of the device structure. Repeated oxidations of a given Si substrate can be
carried out as often as necessary for the patterning of different circuit configurations via
the photolithographic process, described later. For example, windows can be opened
into an a-SiO2 layer which can be used as diffusion masks, first for p-type doping into
a n-type layer and then for n-type doping into the resulting p-type region in order to
fabricate an npn transistor. This type of process is illustrated in Fig. W21.15.

The oxide dielectric layers include the thin gate oxides separating a metallic gate
from, for example, the p-type region of a MOSFET, thicker field oxides which isolate
transistors from metallic interconnecting wires, and dielectric caps which protect the
device from the surrounding environment. Gate oxide thicknesses are typically ³ 15
to 100 nm and are expected to decrease to the range 3.5 to 4.5 nm, and those of field
oxides are ³ 0.3 to 1 µm. These oxide layers are fabricated via the usual thermal
oxidation process or via a plasma deposition process, discussed later. Thin gate oxides
often include a region incorporating nitrogen (i.e., an oxynitride layer), which serves
to suppress diffusion of boron from the polysilicon gate into the MOSFET channel.

The Si/a-SiO2 interfaces can be prepared to be atomically or chemically abrupt,
at least to within 0.5 nm, the dimensions of an Si–O4 tetrahedron, and are flat on
the scale of hundreds of nanometers. Nevertheless, the actual width of the interface
(i.e., the region in which the properties of the Si and a-SiO2 differ from their bulk
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Figure W21.15. Fabrication of an npn transistor involving repeated oxidation, lithographic, and
diffusion processing steps. In the case shown windows are created in an a-SiO2 layer which can
then be used as diffusion masks, first for p-type doping into a n-type layer and then for n-type
doping into the resulting p-type region. (From B. Sapoval et al., Physics of Semiconductors,
Springer-Verlag, New York, 1993.)
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values) has been found to be ³ 3 nm from sensitive core-level spectroscopies which
can determine the strain in Si–O–Si bonding units. The properties of these interfaces
are critically important for the operation of devices, and their physical and chemical
structures and properties are discussed in Section 20.11.

Lithography. Optical lithography (i.e., photolithography) involves the patterning of
two-dimensional circuits or designs onto Si wafers by means of the passage of light
through a mask that corresponds to the outline of the desired circuit. This is illustrated
in Fig. W21.16 and consists of the following sequence of steps:

1. A uniform a-SiO2 layer is deposited onto the Si.
2. The a-SiO2 layer is then covered by a layer of photosensitive polymeric material

known as a photoresist. The photoresist is applied as a uniform liquid layer, using
a spin-on procedure that is discussed in Section W21.24, and is then solidified
via the application of heat.

3. The photoresist undergoes polymerization or cross-linking during exposure to
light through a mask; this is the photoresist development step.

4. In the case illustrated involving the use of a negative photoresist, the unillu-
minated and hence unpolymerized areas of photoresist are removed via etching
with an appropriate chemical solvent.

5. The exposed a-SiO2 pattern is removed via etching using an acid that does not
attack the polymerized photoresist.

6. The polymerized photoresist is finally removed via another suitable chemical
solvent.

The patterned a-SiO2 layer that remains on the surface can act as an insulating layer
in the structure or can be used as a diffusion barrier in a subsequent processing step.
The predominant method of photoresist removal is currently the use of oxygen plasmas
which are described later in the discussion of etching processes.

(a)

(c)

(e)

(b)

(d)

(f)

SiO2

Si

UV radiation
Hardened photoresist

Photo mask

Lacquer

Figure W21.16. Optical lithography process involving the patterning of two-dimensional
circuits or designs onto wafers through the use of light passing through a mask. (From B. Sapoval
et al., Physics of Semiconductors, Springer-Verlag, New York, 1993.)
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The interaction of light with photoresist materials such as the high-molecular-weight
polymer polymethylmethacrylate (PMMA, also known as Plexiglas or Lucite)
is discussed in Section 14.10. The light-induced breaking of bonds (i.e.,
photodissociation) in the long polymeric chains in the illuminated portions of the
PMMA photoresist layer renders these regions susceptible to removal via etching.
There are two types of photoresists in use: negative photoresists, which undergo light-
induced cross-linking and so become insoluble and harder to remove after illumination,
and positive photoresists like PMMA, which undergo light-induced chain breaking
and so become more soluble and easier to remove after illumination. While negative
photoresists are usually more photosensitive than positive photoresists and require
less illumination, they have lower resolution and hence their use is not desirable in
high-density ICs. PMMA is the photoresist with the highest-known resolution.

As the dimensions of features in ICs continue to decrease below 0.25 µm, optical
lithography using UV light (e.g., the ArF laser line at  D 193 nm) may no longer be
possible since the minimum size of a feature is controlled by diffraction effects that
limit the definition of the image to about one-half of the wavelength of the light used.
The resolution limit D is given by

D D 

2 sin 8
, �W21.20�

where 8 is the angle subtended by the mask opening at a point on the surface and sin 8
is the numerical aperture (NA). For an opening of width w that is a height H above
the substrate, tan 8 D w/2H. The corresponding depth of focus, h, is given by

h D 

sin2 8
. �W21.21�

Another important length scale governing the exposure depth is 1/˛, the inverse of the
absorption coefficient of the light in the photoresist.

Nanolithographic technologies (i.e., technologies with the higher resolution needed
for producing geometrical circuit features with sizes below ³ 0.1 µm) are based on
shorter-wavelength beams of electrons or x-rays, or on the use of scanning probe micro-
scopies such as scanning tunneling microscopy (STM) and atomic force microscopy
(AFM). These advanced technologies are being explored as alternatives to optical
lithography. Electron beams have the advantages of being able to be steered and focused
rapidly using electric and magnetic fields. There are as yet no suitable photoresist
materials for features smaller than 0.1 µm.

In the LIGA process (lithographie galvanoformung abformung), synchrotron radia-
tion is employed to expose the photoresist polymer PMMA. Exceptionally sharp walls
are produced, resembling steep cliffs. Metallization of the structure can even result in
excellent molds from which replicas may be cast.

Diffusion. The thermal diffusion of dopants into a device in order to create junctions
between n- and p-type regions, or just to change the electrical resistivity of a region,
occurs repeatedly during device fabrication. Since solid-state diffusion is discussed in
Chapter 6, only some details relevant to Si device fabrication are mentioned here.

Due to the need to limit the region of doping in the substrate, all diffusion
processes are preceded by oxidation and mask-patterning lithographic steps. Layers
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of a-SiO2 serve as good mask materials for diffusion processes due to the low
diffusion coefficients of typical dopants in the oxide. At typical diffusion temperatures
of T D 900 to 1100°C, dopants present in a source at the Si surface will diffuse through
the opening in the mask into the Si both vertically (i.e., normal to the surface), and
laterally.

Two methods of dopant diffusion are typically used, constant-source diffusion or
two-step diffusion. In the first method, used when shallow junctions are desired, a thick
layer consisting of a mixture of B2O3 or P2O5 and SiO2 is deposited onto the surface.
This layer acts as a constant source of dopant atoms, so the dopant concentration at
the surface remains essentially constant as diffusion occurs deeper and deeper into
the substrate (see Fig. W6.2). The second method, used when deeper junctions are
desired, starts with a predeposition step which is essentially the same as the constant-
source method. After removal of the dopant source from the surface, a second, high-
temperature step is used to drive the dopant atoms farther into the substrate (see
Fig. W6.1).

Complicating the diffusion of acceptors such as B in Si are the effects known as
oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED). OED
and TED both result from the injection of excess Si interstitials into the Si substrate
and away from the Si/a-SiO2 interface in the case of OED and out of a damaged ion-
implanted layer in the case of TED. Dopants such as B must pair with defects such as
vacancies or interstitials to move through the lattice, and as a result, their diffusion is
affected by the motion of excess interstitials.

Ion Implantation. Ion implantation is used as an alternative to the introduction of
dopants by diffusion in IC fabrication when the high temperatures associated with
diffusion cannot be tolerated. In addition, the lateral spreading of dopants associated
with the diffusion process is minimized when ion implantation is used, a significant
advantage in high-density devices. As with diffusion, implantation occurs through a
mask and extends into the Si for a characteristic distance known as the range. The mask
is an opening in an a-SiO2 overlayer or any other overlayer (metal, photoresist, etc.).
Some of the important aspects of ion implantation are discussed in Section W21.3. The
dose and energy of the implanted ions determine the doping level and the position of
the resulting junction within the implanted Si. When desirable, implantation through
a thin overlayer is possible as long as the incident ions are sufficiently energetic.
A schematic phase-space map of the typical ion energies (in electron volts) and ion
beam currents (in particle-amperes) used in semiconductor processing is illustrated in
Fig. W21.17.

The lattice disorder created in the Si by the incident energetic ions can lead to
dopant deactivation when the dopant atoms do not enter the lattice substitutionally or
when traps are generated. A subsequent annealing step must then be carried out to
repair the damage and for dopant activation.

When plasmas are used to excite the species to be implanted, the process is known
as plasma-immersion ion implantation (PIII). In this method the substrate is immersed
directly in the plasma, and rather than using accelerated beams of energetic dopant
ions, high fluxes of relatively low-energy dopant ions are instead extracted from the
plasma by applying pulsed high negative voltages, ³ 2 to 4 kV, to the substrate. When
PIII is used to form shallow pC-n junctions, the n-type Si substrate is first converted
to amorphous Si by using SiF4 in the plasma, followed by the introduction of BF3 to
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ion beam currents (in particle-amperes) used in semiconductor processing. (From E. Chason
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the plasma to implant B ions into the a-Si. An extremely shallow junction depth of
80 nm can be achieved following thermal activation of the dopant atoms using rapid
thermal annealing of the implanted region at T D 1060°C for 1 s. The PIII process for
dopant implantation is similar to the plasma carburizing and nitriding processes used
to modify the surface properties of metals, as discussed in Section W21.13.

In the process known as separation by implantation of oxygen (i.e., SIMOX) a buried
dielectric layer is created below the surface of a Si substrate via the implantation of
oxygen ions. This process is a major candidate for the creation of Si-on-insulator (SOI)
structures in which devices are isolated by being surrounded completely by an insulator
rather than by using a reverse-biased p-n junction. The OC implantation consists of
a high dose, ³ 2ð 1018 cm�2, of ions, which leads to the formation of a continuous
buried a-SiO2 layer following an annealing step for 3 to 5 h at T D 1100 to 1175°C.
The characteristic distance of the buried layer from the Si surface is 0.3 to 0.5 µm
when OC ion energies of 150 to 180 keV are used.

Chemical and Physical Vapor Deposition. A variety of chemical and physical
vapor deposition procedures are used to deposit the conducting, semiconducting, and
insulating layers that are needed in device fabrication. Reactions between the incident
vapor species and the substrate are not necessarily required to grow the desired films
in these CVD and PVD procedures. As an example, a-SiO2 layers must be deposited
via PECVD when this dielectric layer is to be grown on a metallic layer instead of
on Si. The CVD of epitaxial Si layers and the PECVD of the silicon oxide, nitride,
and oxynitride layers used as dielectrics for interlevel isolation, for passivation, and
as gate insulators have already been discussed. Si epilayers can be deposited on Si
substrates with differing doping levels (e.g., an n-type Si epilayer deposited onto an
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nC Si substrate). PVD in the form of electron-beam evaporation or sputtering is used
for the deposition of Al layers.

A challenging problem is the deposition of conformal layers (i.e., layers of uniform
thickness) on nonplanar substrates having steps, trenches, and holes. Examples of relia-
bility problems in devices due to deposited layers with nonuniform thicknesses include
inadequate electrical isolation in dielectric layers and nonuniform current densities in
conducting layers, leading to enhanced electromigration in the conductors and hence
open circuits. In the case of a-SiO2 deposition, when mixtures such as SiH4/Ar/N2O or
SiH4/Ar/O2 are used, the sticking coefficients for SiHn species are high, with the result
that the a-SiO2 layers tend not to be conformal. A method for obtaining conformal
a-SiO2 layers is plasma deposition using the liquid tetraethoxysilane (TEOS) as the
source of the precursor in mixtures with O2 or O3 (ozone) and Ar. Oxide depositions
using dilute TEOS/O2 mixtures at T D 200 to 300°C result in lower deposition rates,
< 50 nm/min, compared to SiH4-based depositions, but the resulting layers have good
conformality, due to the low sticking coefficients and higher surface mobility of the
TEOS-based precursors.

Metallization. Aluminum and Al alloys have been the metals of choice for providing
the electrical connections between circuit elements in ICs due to their desirable physical
and chemical properties (e.g., excellent electrical conductivity, the ability to form both
ohmic and Schottky barrier contacts to Si, good bonding and adherence to both Si
and SiO2 and also to diffusion barriers such as TiN and Ti, the ability to be patterned
in Cl-based plasmas, and the ability to form a stable oxide, Al2O3, when exposed to
air). Aluminum alloyed with 0.5 wt % Cu exhibits higher hardness and good electrical
conductivity, along with improved resistance to electromigration, a process described in
Section 12.9. The resistance to electromigration resulting from alloying Al with Cu is
attributed to the precipitation of Cu at grain boundaries. This inhibits the harmful grain-
boundary diffusion of Al, which leads to vacancy accumulation and void formation in
the Al connecting lines. Even though Cu itself has low electrical resistivity and good
resistance to electromigration, it has not been widely used so far as an interconnect
metal because a successful dry-etching process has not been developed for patterning
the Cu lines. In addition, diffusion barriers must be used between Cu lines and Si
because Cu impurity atoms act as deep traps in Si.

Problems with Al layers deposited by PVD methods such as electron-beam evapo-
ration and dc magnetron sputtering are associated with incomplete filling of vias and
with poor step coverage for feature sizes below 0.5 µm. Other possible deposition
procedures that may lead to improved via filling and step coverage include high-
temperature Al-alloy sputtering processes, the use of Al reflow processes, and CVD at
T D 100 to 200°C using Al-containing metal–organic molecules at deposition rates of
100 to 200 nm/min. Aluminum reflow processes involve the use of elevated deposi-
tion temperatures or postdeposition annealing to allow the deposited Al alloy to flow
into and fill via/contact holes. The Al-alloy reflow temperatures lie below the alloy
melting points by ³ 150°C, with both temperatures decreasing with increased alloying
of elements such as Cu or Ge.

The refractory metal W can be selectively deposited via CVD and allows much
better step coverage and via and hole filling than Al. In addition, it exhibits excel-
lent resistance to electromigration. Bilayers of Ti and TiN serve as diffusion barriers
between W and Si and also as intermediate layers for the CVD of W. The initial Ti
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layer is reacted with the underlying Si at T ³ 700°C to form a titanium silicide TixSiy
phase with both good electrical conductivity and contact to the underlying Si. A TiNx

diffusion barrier layer is then deposited to prevent undesired reactions between the
TixSiy layer and the fluorine involved in the CVD of W via the hydrogen reduction of
the WF6 precursor [i.e., WF6�g�C 3H2�g�!W�s�C 6HF�g�]. When selective depo-
sition of W and lower deposition temperatures are required, the silane reduction of
WF6 can be used [e.g., 2WF6�g�C 3SiH4�g�! 2W�s�C 3SiF4�g�C 6H2�g�].

Local interconnects formed from low-resistivity doped polycrystalline Si layers are
useful because these layers can make good electrical contact to Si substrates and can
also serve as diffusion barriers between Si and Al lines. Electrical contacts between
pure Al and nC and pC Si are not stable at processing temperatures in the range
T D 350 to 500°C, due to the solubility of Si in Al and also to the rapid diffusion of
Si into the polycrystalline Al contacts. The reciprocal diffusion of Al into the Si layer
can lead to the spiking (i.e., shorting) of shallow junctions. The use of polysilicon
is restricted to buried contacts and to limited regions due to its relatively high sheet
resistance of 20 to 30 5/square.

Etching Processes. Device fabrication involves a variety of processing steps
employing the etching or controlled removal of material from the surface of the wafer.
The etching or stripping process can employ either wet, liquid-phase or dry, gas-
phase etchants. Chemical etching, in which the etchant reacts with the material to be
removed, can occur in either the liquid or gas phases, is typically highly selective, and
is isotropic (i.e., the etching occurs at the same rate in all directions). Physical etching
is a gas-phase process in which material is removed by sputtering (i.e., via energy and
momentum transfer from incident ions), is less selective than chemical etching, and
is typically anisotropic (i.e., etching occurs preferentially in one direction). Selectivity
refers to the ability of the etching process to remove some materials but not others.
An example is positive-photoresist lithography, where liquid solvents etch away the
illuminated portion of the photoresist while the unilluminated portion is unaffected, or
as when an HF acid etch is used to remove a-SiO2 but neither Si nor photoresist.

A plasma etching process with both chemical and physical components is reactive-
ion etching (RIE), in which ions created in a plasma react with and also transfer kinetic
energy to the material to be etched. An advantage of RIE is that it can be both selective
and anisotropic. Plasma etching is used for the removal of Si, of a-SiO2 and silicon
nitride, of metals, and of photoresist. Appropriate etching species are chosen for each
case: for example, F atoms and ArC ions for etching Si or polysilicon (forming SiF4)
and O atoms for etching or stripping photoresist (forming CO, CO2, and H2O). The
ArC ions provide additional kinetic energy, which can greatly increase the yield of
the etching process by enhancing chemical etching reaction rates on the surface. For
example, a 1-keV ArC ion can result in the removal of up to 25 Si atoms when a flux
of F atoms is also incident on the surface. The use of ArC ions can also increase the
anisotropy of the etching but may decrease the etching selectivity.

Etch inhibitors are also used in RIE to prevent etching from occurring outside
the area exposed to the ion beam. An example is the anisotropic etching of trenches
and holes in Al using CCl4/Cl2 mixtures, where the CCl4 molecules are the inhibitor
precursors. A protective, etch-inhibiting amorphous chlorocarbon film is present on the
areas of the Al surface not exposed directly to the ion beam, including on the sidewalls
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of the features being etched. The presence of C in the etching mixture thus leads to
an enhancement of the anisotropic etching of the desired trenches and holes.

Reactive-ion etching rates are very difficult to predict. This is due to difficulties
associated with modeling the plasma processes giving rise to the incident fluxes of
reactive atomic and molecular radicals and ions on the surface. There are also diffi-
culties with modeling the many surface processes, including adsorption, diffusion,
reaction, and desorption, involved in the generation of etching products. In addition,
in the F etching of Si, a fluorinated SiFx surface layer two to five monolayers thick is
present and the diffusion of the etching species, F� ions, through this layer plays an
important role in the process. A rough estimate for the characteristic thickness of this
layer is d ³ D/Re�Si�, where D is the diffusion coefficient for F� ions in the surface
layer and Re�Si� is the etching rate in m/s.

The etching of Si by halogen atoms such as F and Cl is found to depend on the
doping level and type of the Si substrate, with etching rates of n-type Si exceeding
those of p-type Si by a factor of about 2 for F and by many orders of magnitude for Cl.
These observations indicate that the position of the Fermi level and the concentrations
of charge carriers near the Si surface can play important roles in the etching process.
The current model is that electrons in n-type Si tunnel from the bulk through the SiFx
layer, leading to the formation of F� or Cl� ions that attack Si–Si bonds in either
the surface layer or the bulk. Molecules such as CF4 are typically used as etching
precursors because the etching of Si by F2 leads to roughening the surface through
pitting. The overall etching reaction in this case can be written as

4CF4 C Si ���! SiF4 C 2C2F6. �W21.22�

When wet chemical etching is used to remove an unprotected a-SiO2 layer, the
isotropic nature of the etching can cause unwanted undercutting of the oxide beneath the
protective photoresist mask. As a result, the pattern obtained is not the one desired. Dry
etching carried out at reduced pressures in the gas phase can combine the advantages
of chemical etching in being selective and physical etching in being anisotropic, so
that no undercutting of the oxide occurs.

The smallest feature size (e.g., the minimum trench width) that can be obtained via
etching is

w ³ 2d

ah
, �W21.23�

where d is the depth of the trench and ah D Rev/Reh is the ratio of the vertical and
horizontal etch rates of the material in which the trench is being etched. As an example,
0.2-µm-wide and 4-µm-deep trenches with the aspect ratio d/w D ah/2 D 20 can be
etched into single-crystal Si using F-based chemistry.

Remaining problems associated with the use of plasmas in device fabrication are
related to ion-induced damage and plasma-induced contamination.

Annealing. Annealing at elevated temperatures is often required in IC fabrication for
a variety of purposes:

1. To remove, or at least minimize, processing-induced defects (e.g., those created
in the Si lattice during ion implantation).



372 SYNTHESIS AND PROCESSING OF MATERIALS

2. To activate implanted dopants in Si or polysilicon following ion-implantation
procedures.

3. To drive dopant atoms farther into the Si following their implantation in a shallow
layer.

4. To promote the reactions between deposited metals such as Ti and the underlying
Si in order to form desired silicides.

5. To deactivate deep trap-generating impurities such Cu and Fe via gettering, a
process in which these impurities diffuse to and are immobilized in the strain
fields of extended defects such as oxide precipitates or dislocations. In this way
the traps are removed from the active area of the device.

The time and temperature of an anneal must be chosen so that unwanted dopant
redistribution does not occur. Any exposure of the device to high temperatures must
therefore be as brief as possible. A method for limiting the annealing time is the
process of rapid thermal annealing (RTA), also known as rapid thermal processing
(RTP). A typical RTA dopant drive-in procedure involves a rapid temperature increase
to T D 1050 to 1150°C, a 10-s anneal, and a rapid decrease to temperatures at which
diffusion is negligible.

W21.9 Processing of Microelectromechanical Systems

The fabrication of Si-based microstructures for use in microelectromechanical systems
(MEMS) having typical dimensions ³ 1 to 100 µm is an exciting new area of materials
research.† In addition to its well-known and extremely versatile electronic properties,
crystalline Si also possesses very useful mechanical and thermal properties, such as
high durability, elasticity, and thermal conductivity, which can be exploited in very
small electromechanical structures. With the development of MEMS, Si semiconductor
device-fabrication technology can now also be exploited in sensors and actuators for
measurement and control in the fields of thermodynamics, optics, magnetism, acous-
tics, and hydrodynamics. Besides Si, other materials used in MEMS include a-SiO2,
crystalline quartz, and other ceramics, such as SiC. Since MEMS technology is in a
state of rapid development, only a brief survey is given here.

The fabrication of MEMS is involved primarily with the processing of Si wafers
into the desired final forms using a variety of etching and micromachining procedures.
These processing procedures currently include the following:

1. Anisotropic wet chemical etching, usually in KOH solutions
2. Dry etching (i.e., reactive-ion etching) with the etchant activated via plasma

excitation
3. Surface micromachining involving the removal of a sacrificial layer of a-SiO2 or

porous Si via etching in HF
4. Porous Si technology, also involving surface micromachining but using much

thicker sacrificial layers of porous Si, up to hundreds of micrometers thick

† A recent review article is W. Lang, Mater. Sci. Eng., R17, 1 (1996).
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Figure W21.18. Micromachining processes currently used to fabricate microelectromechanical
systems (MEMS) from Si wafers: (a) anisotropic wet chemical etching; (b) dry etching or reac-
tive-ion etching; (c) surface micromachining involving a sacrificial layer of a-SiO2; (d) porous
Si technology, also involving surface micromachining but with much thicker sacrificial layers
of porous Si. [Reprinted from W. Lang, Mater. Sci. Eng., R17, 1 (1996). Copyright 1996, with
permission from Elsevier Science.]

Examples of these processes are shown in Fig. W21.18. Free-standing features (e.g.,
Si cantilevers) are readily produced. The key to the rapid growth of MEMS technology
is that most of these procedures involve deposition, lithography, and etching processes
that have already reached an advanced level of development in Si electronic device
fabrication. Porous Si, however, is a relatively new material consisting of variable
volume fractions of crystalline Si filaments or wires and of empty pores, which is
prepared by electrochemical anodic etching or anodization of crystalline Si in HF
(see Fig. W11.9). The use of thick porous Si in MEMS is also compatible with Si
device-fabrication techniques.

While Si electronic devices are essentially planar, containing circuit elements with
typical thicknesses ³ 1 µm, Si electromechanical devices or MEMS are truly three-
dimensional and often contain free-standing structures such as cantilevers and bridges.
The current trend in MEMS is to include several Si-based electronic devices and
mechanical sensors and actuators in a single MEMS. The most widely used Si
MEMS sensors at present are pressure transducers and thermopile radiation detectors.
Other MEMS include micromotors, micromirrors in optical switches, accelerometers,
microvalves, and flow sensors. In the future, MEMS actuators may be used to move
STM tips in three dimensions as part of data storage systems at the near-atomic level.
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Figure W21.19. Martensite is a supersaturated solid solution of interstitial C in Fe.
(a) Body-centered tetragonal (BCT) unit cell of martensite. The Fe atoms are actually displaced
from their normal lattice sites to accommodate the C atoms in the octahedral sites. (b) Lath
microstructure of martensite in a Fe–2Mn–0.03C wt % steel. (From ASM Handbook, 9th ed.,
Vol. 9, Metallography and Microstructures, ASM International, Materials Park, Ohio, 1985,
p. 670.)

W21.10 Synthesis and Processing of Steels

While the simplest steels are just Fe–C alloys, steels in general can be very complex
materials in both composition and microstructure. This complexity makes the design
of a steel with a given set of properties quite challenging. It is useful first to review
how the complex phases that may be present in steels are related to the simpler phases
of pure Fe and Fe–C compounds and alloys.

Nonequilibrium Multicomponent Phases in Steels. The various nonequilibrium,
multicomponent phases of Fe and Fe-based alloys and compounds which are the iden-
tifiable components of a wide variety of steels are described briefly next. These phases
are all formed from the transformation or decomposition of austenite as the steel is
cooled below the eutectoid temperature and include pearlite, bainite, martensite, and
acicular ferrite. Table W21.5 summarizes the properties of these important phases and
also of their multicomponent mixtures, which are found in the steels commonly used
today.

Pearlite. Pearlite is a coarse, lamellar eutectoid mixture consisting of alternating layers
of cementite and ferrite, shown in Fig. 21.11, which results from the decomposition
of austenite as its temperature is lowered below Te ³ 727°C. Along with ferrite, it is
a very common constituent of a broad range of steels in which it makes a substantial
contribution to the strength of these materials. Pearlite also reduces the ductility and
toughness of steels since cracks can nucleate at the ferrite–cementite interfaces.

The diffusion of C atoms is usually assumed to be the rate-controlling step for the
nucleation and growth of pearlite in austenite. This is essentially a high-temperature
reaction that occurs between Te and T ³ 550°C. Nucleation can take place at a variety
of sites, including at austenite grain boundaries as well as on ferrite and cementite
phases when they are already present in the austenite. At low transformation temper-
atures where the diffusion of C is slower, the lamellar spacing is much smaller and
the resulting material is known as fine pearlite. The spacing of the lamellae in pearlite
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TABLE W21.5 Important Phases of Fe, Fe–C Compounds and Alloys, and Their Multi-
component Mixtures Found in Steels

Phase Structure and Descriptiona How Phase Is Obtained

Equilibrium Phases of Pure Fe

˛-Fe (ferrite) BCC, a D 0.286 nm at T D 20°C;
stable up to T D 912°C;
TC D 769°C

Stable phase at STP

--Fe (austenite) FCC, a D 0.364 nm at T D 912°C Stable phase for 912 < T < 1394°C
υ-Fe (υ-ferrite) BCC, a D 0.293 nm at

T D 1394°C; Tm D 1538°C
Stable phase for T > 1394°C

Equilibrium Fe–C Compound

Fe3C (cementite) Orthorhombic, a D 0.509,
b D 0.674, c D 0.452 nm; a
complex interstitial compound

Present in Fe–C alloys under
conditions of metastable
equilibrium (see Fig. 21.9)

Equilibrium Fe1�xCx Alloys

˛-Fe–C (ferrite) Solubility limit of C in ˛-Fe at
T D 27°C: x D 1.2ð 10�6

(0.00012 at % or 1.2 ppm)

Present in Fe–C alloys under
equilibrium conditions (see Fig.
21.9)

--Fe–C (austenite) Solubility of C in --Fe at
T D 1150°C: x ³ 0.09 (9 at %)

Present in Fe–C alloys under
equilibrium conditions (see Fig.
21.9)

Nonequilibrium Multicomponent Phases

Pearlite A coarse, lamellar form of
cementite in ferrite; a eutectoid
structure

Formed between T D 720 and 550°C
during cooling of austenite

Bainite An intermediate structure
composed of fine aggregates of
ferrite plates (laths) and
cementite particles

Formed between T D 550 and
³ 250°C during cooling of
austenite

Martensite BC tetragonal,
c/a D 1C 0.045 wt % C; a
supersaturated solid solution of
interstitial C in ferrite, having a
lath or lenticular microstructure

Rapid quenching of austenite to keep
C in solution; formed between
T ³ 250°C and room temperature
or below

Acicular ferrite A disorganized structure of
randomly oriented ferritic plates
in a matrix such as martensite

Nucleation of ferrite at small,
nonmetallic inclusions during
cooling of austenite

aThe range of thermal stability is given at P D 1 atm.

is larger at higher transformation temperatures due to the enhanced diffusion of C,
with the resulting material known as coarse pearlite. The spacing is also controlled
in part by the competition between the decrease in free energy associated with the
more stable phase and the increases in surface energy associated with the interfaces
between the ferrite and cementite lamellae and of any strain energy associated with
the transformation.
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Bainite. The term bainite refers to the intermediate structures found in steels, which are
composed typically of fine aggregates of ferrite plates or laths and cementite particles.
Bainite is formed at intermediate temperatures (T ³ 250 to 400°C for lower bainite
and T D 400 to 550°C for upper bainite), below those at which pearlite (T D 550 to
720°C) is formed and above those at which martensite is formed (typically from room
temperature up to T ³ 250°C). Bainite can also be formed when austenite is cooled
too rapidly for the diffusion of C required for the formation of pearlite to occur and
too slowly for martensite to be formed. Depending on the contents of C and of other
alloying elements, the bainitic microstructure can be quite complicated, with austenite
and martensite replacing cementite. There is a start temperature TBs for the austenite-
to-bainite transition, with the amount of bainite that can be formed, increasing as T
is lowered below TBs. The TTT diagram shown in Fig. 21.12 illustrates the formation
of bainite at intermediate temperatures. Upper bainite is favored in low-carbon steels,
while lower bainite is favored in high-carbon steels.

Martensite. Martensite is a supersaturated solid solution of interstitial C in Fe formed
via the rapid quenching of austenite, which prevents the diffusion of C that would result
in the formation of cementite. The body-centered tetragonal (BCT) crystal structure of
martensite is shown in Fig. W21.19a. Carbon atoms are randomly distributed in the six
equivalent octahedral interstitial sites at the midpoints of the edges along the c axis and
in the centers of the basal faces. The lattice parameters of the BCT martensite unit cell
depend on the C composition according to amar D �0.286 nm��1� 0.0035 wt % C� and
cmar D �0.286 nm��1 C 0.041 wt % C�, resulting in cmar/amar D �1C 0.045 wt % C�.
The lattice constant a D 0.286 nm of ˛-Fe has been used here for the zero-carbon
limit.

The corresponding lath microstructure of martensite (Fig. W21.19b) can appear in
a matrix of ferrite or pearlite. The martensitic transformation, known as a diffusionless
transformation, involves the rapid appearance of shear strain in the FCC austenite
lattice. The result is a change in shape of the unit cell from cubic to tetragonal. The
preferential occupation of the octahedral sites by the C atoms distorts the structure,
thus determining the c axis of the resulting BCT crystal structure. High densities of
dislocations and also slip and twinning can occur in the martensite during its formation.
Similar martensitic transformations or reactions occur in other alloys, such as Fe–Ni,
In–Tl, and the shape-memory alloys discussed in Chapter W12.

The decomposition of metastable austenite to form martensite usually occurs over
a well-defined range of temperatures, beginning at the martensitic start temperature
TMs (often written as Ms), which ordinarily lies in the range from T ³ 250°C to
below room temperature. Additional martensite is formed as the temperature is lowered
further below TMs, until most of the austenite has been converted to martensite at the
finish temperature TMf (or Mf). The transformation is an athermal one (i.e., it is
not thermally activated and occurs essentially instantly once a nucleus of martensite
is formed). Thus there is no time delay for the formation of martensite on the TTT
diagram as observed for the formation of pearlite or bainite. The amount of austenite
converted to martensite depends only on temperature and not on the time allowed
for the transformation. Both TMs and TMf are lower when the austenite phase in the
steel has been stabilized by carbon or other alloying elements. The cooling must occur
rapidly enough so that the metastable austenite does not transform instead to ferrite,
pearlite, or bainite at temperatures between Te and TMs.
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The actual microstructure present in a quenched steel will often exhibit spatial
variations from the surface into the bulk, due to the fact that the cooling rate and
temperature will be different at different depths within the sample. This is certainly
the case in rapidly solidified steels, as discussed later.

Rapidly quenched steels that have both enhanced hardness and brittleness due to
the formation of martensite from austenite are said to have good hardenability. The
strength of the steel due to the martensite is enhanced as the C content is increased and
can result from a variety of strengthening mechanisms, several of which are described
later. When a martensitic steel is reheated so that the C can diffuse, the martensite will
be transformed into other phases, such as pearlite and bainite. This process, known as
tempering, is also described.

The cooling rates needed to transform a given steel completely to martensite can be
determined from another type of temperature–time diagram, the continuous-cooling
transformation (CCT) diagram shown in Fig. W21.20. This diagram provides infor-
mation concerning the kinetics of the transformation which is not obtainable from the
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Figure W21.20. The cooling rates needed to transform a given steel completely to martensite (M)
can be determined from the continuous-cooling or CCT diagram, shown here for 30 NC11 steel.
The ferrite (F), pearlite (P), and bainite (B) phase regions are also shown. (From ASM Handbook,
9th ed., Vol. 4, Heat Treatment, ASM International, Materials Park, Ohio, 1991, p. 26.)
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Figure W21.21. Coarse acicular ferrite, a disorganized structure of randomly oriented ferritic
plates, is shown in a weld zone along with polygonal ferrite. The horizontal bar corresponds
to 20 µm. (From ASM Handbook, 9th ed., Vol. 9, Metallography and Microstructures, ASM
International, Materials Park, Ohio, 1985, p. 585.)

isothermal TTT diagram shown in Fig. 21.12. In the CCT diagram the ferrite, pearlite,
and bainite phases are shown in addition to martensite.

Acicular Ferrite. Acicular ferrite is a nonequilibrium phase that has superior
mechanical properties, including toughness, and consists of a disorganized structure
of randomly oriented, interlocking ferritic plates in a matrix such as martensite. This
phase can be obtained via the incorporation of small, nonmetallic inclusions that serve
as nucleation sites for the plates. It can also appear in weld zones (Fig. W21.21). The
morphology of this phase is three-dimensional since the ferritic plates can nucleate and
grow in several different directions around an inclusion. Whether bainite or acicular
ferrite is formed in a given steel as austenite is cooled depends on the ratio of nucleation
sites at austenitic grain boundaries to those at the surfaces of inclusions, with grain-
boundary nucleation leading preferentially to bainite. Ti2O3 and other oxide particles
have been found to be especially effective in nucleating acicular ferrite, with the exact
mechanism remaining unknown.

Processing Treatments for the Strengthening of Steels. A variety of processing
treatments are used to strengthen steels and also other metals and alloys (e.g., Al alloys
and Ni alloys). Important examples of these processes are given now, and a brief
description of the strengthening mechanism is presented for each case. The strength of
a given steel often results from contributions from more than one of these mechanisms.
In practically every case the strengthening occurs via the pinning of dislocations, as
discussed in Chapter 10. The specific application for which a given steel is designed
will determine the conditions under which strength is needed (e.g., at high tempera-
tures, under repeated loading, along with good ductility, etc.). Due to the large number
of available processing variables, it is not possible to discuss here all of the important
processing treatments that can be used to strengthen steels.

Mechanical Work Hardening. The tensile strength of a plain carbon steel that contains
no other alloying elements can be increased up to 1500 MPa when it is drawn down
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(e.g., to a wire) in a work-hardening or cold-working process in which its cross-
sectional area is reduced by up to 95%. This large increase in strength produced by
plastic deformation results from the generation of defects such as dislocations and
dislocation arrays which reduce the mobility of other dislocations. The measured shear
stress typically arises from two dislocation-pinning mechanisms, one arising from
“small” defects, such as isolated dislocations, and the other from “larger” defects,
such as dislocation arrays. The former mechanism decreases with increasing T, due to
the thermally activated motion of dislocations around small defects while the latter is
temperature independent. Work hardening is discussed in more detail in Section 10.13,
where the dependence of the shear yield stress =y on dislocation density and strain is
discussed in detail.

Solid-Solution Strengthening. Steels can also be strengthened or hardened by the
presence of interstitial or substitutional impurities. The strong, attractive interactions
between dislocations and the interstitial impurities C and N play an important role in
this strengthening mechanism. Since interstitial C and N atoms as well as dislocations
produce their own strain fields in the material, the attractive interaction arises from an
overall reduction in strain energy when the C and N atoms reside in the strain field of a
dislocation. The binding energy of a C atom to a dislocation in Fe is ³ 0.5 eV. At high
interstitial concentrations the resulting distribution of interstitial atoms surrounding the
dislocation, known as the Cottrell atmosphere, can condense at the dislocation core.
The movement of dislocations under the influence of an external stress will clearly be
impeded by this interaction since the Cottrell atmosphere of interstitials has the effect
of increasing the effective mass or inertia of the dislocation.

The condensation of interstitial atoms near dislocations can occur in steels at temper-
atures even as low as room temperature, due to the high diffusivity of C and N through
defect-free regions of the material. Under applied stress and at higher temperatures,
thermal activation of dislocations away from the atmosphere of interstitials can lead
to a reduction of the yield strength. The strengthening process known as strain aging
occurs under an applied stress after the yield point has been reached when interstitial
atoms condense on newly generated dislocations.

The martensite structure, formed by rapid quenching, is usually very hard, due
primarily to interstitial C and the resulting solid-solution strengthening but also due to
the high densities of dislocations caused by the transformation of austenite to marten-
site. Martensite can, however, be brittle and not very ductile. The process known as
tempering, (discussed later), is often used to increase its ductility and toughness.

The strengthening resulting from solid solutions of substitutional impurities such as
Si, Mn, Cr, and Mo in steels results from the strain introduced into the structure by these
impurities and thus is greater for impurity atoms, whose sizes are quite different from
that of the host Fe atom. The increase of yield stress �y of steel for various interstitial
and substitutional impurities is illustrated in Fig. W21.22. The interstitial impurities C
and N can be seen to have a much larger effect on �y than the substitutional impurities
Si, Mn, Mo, and Ni due to the tetragonal distortions introduced into the lattice by C
and N. These tetragonal distortions allow the stress fields of C and N impurities to
interact with both edge and screw dislocations, while substitutional impurities have
spherically symmetric stress fields and so can interact only with edge dislocations.
Since substitutional alloying elements are usually added to the steel for other reasons
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Figure W21.22. Increase �y of the yield stress of steel for various interstitial and substi-
tutional impurities. (From ASM Handbook, Vol. 1, Properties and Selection: Iron, Steels, and
High-Performance Alloys, ASM International, Materials Park, Ohio, 1990, p. 400.)

(e.g., to improve corrosion resistance or to combine with oxygen or sulfur), the increase
in strength associated with their presence can be considered a bonus.

Strengthening via Grain-Size Reduction. The reduction of grain size and the resulting
increase in the number of grain boundaries are some of the most effective ways of
increasing the strengths of steels. The Hall–Petch relation between the yield stress �y
and the average grain size d of a material,

�y�d� D �0 C kyp
d
, �W21.24�

is described in Section 10.14. Here �0, the yield stress for a single crystal with no
grain boundaries, and ky are constants that are independent of d for a given steel. The
strengthening effect of grain boundaries results from their ability to pin dislocations.
Reduction of the grain size in steels into the range 2 to 10 µm can produce yield
stresses of over 500 MPa. This reduction is typically achieved via hot rolling and the
addition of small amounts of certain alloying elements. The grain size can also be
controlled by varying the cooling rate (i.e., the time available for the grains to grow).
The kinetics of grain growth in metals are discussed in Section 21.5.

The growth of larger grains can be inhibited by the addition of small amounts,
< 0.1 wt %, of grain-refining elements such as V, Al, Nb, and Ti, which form carbides,
nitrides (e.g., VC and AlN), or carbonitrides. The 3 to 10-nm carbide and nitride
particles that are formed tend to pin grain boundaries, thus helping to prevent grain
growth. The resulting steels, which also contain 0.008 to 0.03 wt % C and up to
1.5 wt % Mn, have yield strengths in the range 450 to 550 MPa and are known as
high-strength low-alloy (HSLA) steels or micro-alloyed steels.

Dispersion Strengthening. The strengthening of steels through the introduction of
more than one structural phase in the ferrite matrix is known as dispersion strength-
ening. The typical phases present in plain carbon steels include carbides such as
cementite, nonequilibrium phases such as pearlite, bainite, and martensite, and the
precipitates formed by tempering. In alloy steels the thermodynamically more stable
carbides of Si, Mn, and V often replace iron carbides. Other possible phases in steels
include nitrides, other intermetallic compounds, and graphite.
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A simple relation has been developed by Orowan for the yield stress �y of an alloy
containing a random distribution of spherical particles of a different phase which are
impenetrable by dislocations. With an average interparticle spacing , the result is

�y�� D �0 C 2TL
b

, �W21.25�

where �0 is the yield stress of the particle-free matrix and TL and b are the line tension
(i.e., energy per unit length) and Burgers vector of a typical dislocation, respectively.
An order-of-magnitude estimate for the line tension is TL ³ Gb2 ³ 1.7ð 10�9 J/m ³
10 eV/nm, using G ³ 82 GPa as the shear modulus and b D a/2 D 0.144 nm for Fe.
The term 2TL/b is the stress required to move a dislocation past a second-phase
particle via bowing. This process leaves a dislocation loop around each such particle.
Equation (W21.25) is only approximately valid for steels in which the precipitates are
plates or rods. In pearlite where the microstructure consists of a lamellar mixture of
cementite and ferrite, the parameter controlling the strength is usually the average size
of the uninterrupted ferritic regions, known as the mean free ferrite path (MFFP). In
this case the flow stress is proportional to (MFFP)�1/2, a relationship of the Hall–Petch
type [see Eq. (W21.24)]. Thus the fine pearlite formed at lower T will be stronger than
the coarse pearlite formed at higher T.

The extent of the dispersion strengthening in a given steel is controlled by the C
content, by alloying, and by the processes that determine which phases are present
(e.g., heat treatment, tempering, etc.). When steels are quenched in order to form
martensite, they are typically very strong but also tend to be quite brittle. Subsequent
reheating or tempering of martensitic steels at an intermediate temperature between
T ³ 150 and 700°C (i.e., below the eutectoid temperature Te) is used to improve
their ductility and toughness without at the same time causing too large a decrease in
strength. The tempering process is controlled by the diffusion of carbon, which comes
out of the supersaturated solid solution found in martensite and forms finely divided
carbide phases. The martensite is thus converted to ferrite and the resulting material
is then a dispersion of fine particles of cementite or transition metal (TM) carbides in
a ferrite matrix. The formation of TM carbides such as MoC, Mo2C, WC, W2C, and
VCx �x ³ 0.75� occurs via precipitation and at much higher temperatures, T ³ 500 to
600°C, than that of cementite due to the much lower diffusivities in ferrite of these
substitutional impurities as compared to that of C. This process, which can involve the
conversion of cementite to TM carbides, is known as secondary hardening and is a
type of age hardening.

Alloying elements such as Ni, Mn, and Si are often added to steels to make them
heat treatable (i.e., to facilitate the heat treatment of austenite to produce martensite).
This occurs because the formation of pearlite is retarded and so the desired martensite
is more easily formed.

When the steel includes a high TM content (e.g., 18 to 25 wt % Ni along with Mo
and Ti), particles of intermetallic compounds such as Ni3Mo and Ni3Ti can be formed
via precipitation. Such materials are known as maraging steels and can have very high
yield stresses, �y ³ 2000 MPa, along with good ductility and toughness.

The nucleation and growth of particles, often of a second phase, in a matrix is
a recurrent theme in steels, especially in the discussion of dispersion-strengthening.
This topic is also discussed in Section 21.5, where the Johnson–Mehl equation for the
annealing and recrystallization (i.e., grain growth) of metals is discussed.
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In addition to their uses in the strengthening processes just described, heat treat-
ments of steels are used for a variety of other purposes. Various heat treatments are
given to plain carbon steels containing pearlite in order to achieve the desired pearlite
microstructures. As an example, spheroidizing annealing at just below Te is used to
transform the lamellar pearlite structure into one in which the pearlite takes on a
spheroidal microstructure (i.e., the cementite lamellae have been spheroidized). This
process leads to improved ductility and machinability of the steel. The driving force
for this process is the reduction of the surface energy between the cementite and ferrite
phases. This process is similar to the tempering of martensite discussed earlier, which,
however, results in much smaller cementite particles, due to the lower temperatures
used for tempering.

As just described, tempering is the term often used for the heat treatment or
annealing of steels to achieve desired changes in microstructure and mechanical prop-
erties such as improved ductility. For example, the strength of martensite falls quickly
and its ductility improves during tempering, due to the precipitation of C in carbides
or carbon-containing intermetallic compounds. In contrast, tempering has little effect
on bainite because there is not much C in solid solution. The effects of tempering on
the mechanical properties of a steel are illustrated in Fig. W21.23. Similar behavior is
observed for the tempering or annealing of nonferrous metals and alloys.
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Thermomechanical processing treatments involve the simultaneous use of both heat
and plastic deformation to achieve desired changes in both the external shape and
the microstructure of a material. The hot rolling of steels in the range T D 1200 to
1300°C, for example, achieves several purposes: the reduction in cross section of a
large steel ingot, the breaking down of the original coarse microstructure in the as-
cast material, the reduction of compositional inhomogeneities, and the redistribution
of impurities. As hot rolling is carried out at successively lower temperatures, the
precipitation of carbides, nitrides, and carbonitrides occurs, leading to the pinning of
grain boundaries. As a result, grain refinement (i.e., the achievement of lower average
grain sizes) and dispersion strengthening can both occur during hot rolling, leading to
significant increases in the yield strength of the steel.

The welding of steels to fabricate structural forms is often an unavoidable processing
step which can cause unwanted changes in the microstructure and properties of the
steel in the vicinity of the weld. Fusion welding involves the melting of the steel
in regions near the weld, known as the fusion zone, as well as large increases of
temperature in surrounding areas known as the heat-affected zone. Significant changes
in the microstructure of the steel can occur in both zones, affecting both its corro-
sion resistance and strength. Many of the phase transformations and processes already
described in this section occur in and near the weld. Honeycombe and Bhadeshia
(1996, Chapter 13) present a brief summary of the important effects associated with
the generation of weld microstructures in steels.

W21.11 Precipitation Hardening of Aluminum Alloys

Pure FCC Al metal has the following properties: a low density, , ³ 2700 kg/m3, and
a low melting point, Tm D 660°C; high electrical and thermal conductivities; high
ductility in the annealed state; high corrosion resistance due to the thin coating of the
protective oxide Al2O3. Because of the relatively low strength of pure Al, its alloys
with elements such as Cu, Si, and Mg have found a wider range of applications. The
microstructures of these alloys are characterized by a solid-solution phase, ˛-Al, and
by intermetallic compounds such as CuAl2 and Al3Mg2.

Al alloys are typically strengthened by the mechanism of precipitation or age hard-
ening. The precipitation-hardening process involves the use of heat treatments, which
result in precipitation within the original matrix of a uniform dispersion of very small
particles of a second phase. Although a heat-treatment process, precipitation hardening
involves a distinctly different sequence of steps than occur in the heat treatment of
steels, which results in the formation of martensite, for example. Two heat treatments
are typically required, the first for creating a solid solution and the second for accel-
erating the process of precipitation or aging. The first heat treatment takes place at
a temperature near Te and for a time long enough to produce a solid solution. The
alloy is then quenched to room temperature to obtain a supersaturated solid solution.
The second heat treatment is then carried out at a lower T to allow the diffusion to
occur which is necessary for formation of the precipitates of the second phase, which
results in the strengthening of the alloy. Precipitation hardening is more commonly
carried out in Al–Cu, Al–Si, Cu–Be, Cu–Sn, and Mg–Al alloys and in Ni3Ti and
Ni3Al compounds than in ferrous alloys. Precipitation hardening in Ni3Al is discussed
in Section 12.8.

To illustrate a specific example of the precipitation-hardening process in Al alloys,
consider the Al-rich side of the Al–Cu equilibrium phase diagram (Fig. W21.24). The
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Figure W21.24. Al-rich side of the Al–Cu equilibrium phase diagram shown to illustrate the
precipitation-hardening process. The two stable solid phases present are the solid-solution ˛-Al
phase and the 8 phase (i.e., the intermetallic compound CuAl2). The sequence of treatments
used for precipitation hardening of an Al–1.5Cu wt % alloy is also shown: 1, solid-solution
heat treatment at T ³ 550°C; 2, quench to room temperature; 3, precipitation heat treatment at
T ³ 250°C. (From ASM Handbook, 9th ed., Vol. 3, Alloy Phase Diagrams, ASM International,
Materials Park, Ohio, 1992, p. 244.)

two stable solid phases present are ˛-Al, which is a solid solution of Cu in Al, and the
8 phase corresponding to the intermetallic compound CuAl2. The solubility of Cu in
˛-Al reaches a maximum value of xe D 5.6 wt % at Te D 548°C and then decreases
rapidly with decreasing T, reaching ³ 0.02 wt % at room temperature. The initial heat
treatment for obtaining a solid solution takes place near Te for Al1�xCux alloys with
x < xe. Following quenching to room temperature, the Al–Cu alloy then undergoes
a precipitation heat treatment. If the alloy is left either at room temperature for a
few days or is reheated to T ³ 100 to 150°C, the Cu atoms are not able to undergo
sufficient diffusion to form precipitates of CuAl2. Instead, they rearrange themselves
locally within the lattice on f100g planes in two-dimensional platelets or disks known
as Guinier–Preston (GP) zones. The first structures formed, known as GP-1 zones, are
coherent with the Al lattice and are essentially randomly distributed in the alloy. They
are typically 3 to 6 nm long with thicknesses of 0.5 to 1 nm. Their Cu contents are
deficient with respect to x D 1

3 , the fraction found in CuAl2.
Additional aging of the alloy leads to the gradual growth of the GP-1 zones and

then to the formation of a series of phases or precipitates. The larger GP-2 zones, also
known as the 800 phase, with lengths ³ 10 nm, widths ³ 1 to 4 nm, and Cu contents
x ³ 1

3 are formed next, followed by their conversion into an intermediate 80 phase,
which is metastable and incoherent with the Al lattice. The stable 8 equilibrium phase
finally forms from the 80 phase when the aging temperature is raised to T ³ 200 to
250°C. The 80 and 8 phases both have the CuAl2 stoichiometry but have different
crystal structures. The hardness and strength of precipitation-hardened Al–Cu alloys
reach maximum values when the GP-2 zones (i.e., the 800 phase) are formed and then
decreases with further heat treatment as the 80 and then the 8 phases appear.

The sequence of microstructures of the supersaturated ˛-Al solid solution and of the
800 and 8 phases are illustrated schematically in Fig. W21.25. Precipitation-hardened
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Figure W21.25. Microstructures of (a) the supersaturated ˛-Al solid solution and of (b) the 800

and (c) the 8 phases. The 8 phase has the CuAl2 stoichiometry. The actual particle or zone sizes
are much larger than shown here. (From W. D. Callister, Jr., Materials Science and Engineering,
2nd ed., copyright 1991 by John Wiley & Sons, Inc. Reprinted by permission of John Wiley &
Sons, Inc.)

Al alloys can in general have complicated microstructures corresponding to mixtures
of the phases mentioned earlier. The strengthening of the alloy can be described by
the Orowan expression, Eq. (W21.25), with  the average distance between precipitate
particles. Strengthening is enhanced when significant lattice strain exists at the interface
between the precipitates and the surrounding matrix. This lattice strain is particularly
effective in impeding the motion of dislocations. When aging proceeds to the extent
that the CuAl2 precipitates become too large and too few in number, they are much
less effective in impeding the motion of dislocations. When this happens, the strength
of the alloy can actually decrease, a phenomenon known as overaging.

W21.12 Synthesis of Metals via Rapid Solidification

As the name indicates, rapid-solidification processing (RSP) of metals involves a rapid
transition from the liquid to the solid state. RSP usually involves the cooling of liquid
metals at sufficiently high rates, ³ 103 to 109 K/s, so that nonequilibrium composi-
tions, phases, or microstructures that are not ordinarily obtainable at “normal” cooling
rates of ³ 10�2 to 102 K/s (³ 10 to 105 K/h) can be synthesized. The amorphous or
nanocrystalline microstructures often resulting from the RSP of metals have led to the
use of the term metallic glass. It is ordinarily extremely difficult to produce elemental
metals in an amorphous state due to the ease with which liquid metals crystallize due
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to their low viscosities and high diffusivities and the ease with which solid metals
recrystallize. By contrast, materials based on Si–O4 tetrahedra, such as silicates, form
glasses relatively easily on cooling due to the high viscosity of the liquid.

Metals that have been synthesized via RSP include hard and soft magnetic materials;
high-strength Al, Mg, and Ti alloys; tool steels; shape-memory alloys; Ni-based super-
alloys and brazing materials. Some of the properties of metallic glasses are discussed
in Chapter W12. The random close-packing model for the short-range order found in
metallic glasses is discussed in Chapter 4.

Techniques that are used in RSP to obtain extremely high cooling rates include the
following:

1. Splat cooling. A small, molten drop of metal is incident at high speed onto a
metallic substrate (e.g., copper) held at room temperature or below. A related
method involves the trapping of the molten drop between two cooled surfaces
(e.g., a hammer and an anvil).

2. Melt spinning. A molten stream of metal is projected against a rapidly rotating
surface.

3. Twin-roller quenching. A molten stream of metal is forced between a pair of
rapidly rotating rollers.

4. Plasma or flame spraying. The metal in the form of a powder is introduced into
a high-temperature plasma or flame and then sprayed onto a cooled substrate.

5. Surface melting. A source of thermal energy such as a laser, ion beam, or electron
beam causes a thin surface layer of a metal to melt. The surface layer then
undergoes rapid resolidification as soon as the source of heat is removed.

In the first three techniques listed above, and in similar techniques not mentioned
here specifically, the rapid solidification is achieved by placing as thin a layer of molten
metal as possible in contact with a cooled surface of high thermal conductivity to obtain
as high a rate of heat extraction as possible from the molten metal. As a result, the
materials are typically thin foils or thin, continuous ribbons. The small dimension of
the rapidly solidified material is typically ³ 25 to 50 µm.

Another technique for achieving the rapid solidification of a metal is through the
use of strong undercooling of several hundreds of degrees celsius, as when small,
molten metallic particles are cooled well below their normal melting point by avoiding
nucleation of the solid phase. This RSP technique, known as atomization, involves
breakup of a stream of molten metal into fine particles. In this case once a solid
nucleus forms in a given particle, solidification occurs extremely rapidly due to the high
velocity of the solid–liquid interface, which passes through the particle. The resulting
solid powder usually needs additional processing (e.g., consolidation) before it can be
used to form a solid object. Additional processing of RSP materials is often needed to
develop microstructures with the desired mechanical properties. Strong undercooling
can, of course, also occur during the rapid cooling processes listed above.

A necessary condition for obtaining nonequilibrium compositions via RSP is that the
growth rate or solidification velocity vsl be greater than the diffusive speed vd D D/da
of the solute in the liquid metal. Here D is the thermal diffusivity, ³ 10�9 m2/s, of the
solute and da is the interatomic distance, ³ 3ð 10�10 m. Other important materials
parameters that influence the degree of solute incorporation in the solid phase include
the solid–liquid interface energy density �sl and the latent heat Hm and entropy
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change Sm for the liquid–solid transition. When vsl > vd ³ 0.03 m/s, it follows that
solute can be trapped at above-equilibrium levels in the solidifying solvent. In the limit
vsl × vd, the solute distribution coefficient K will approach 1. This has been observed
in doped Si and in metallic alloys when vsl > 5 m/s. For comparison, a typical value
for the normal cooling of a steel ingot is vsl ³ 3ð 10�5 m/s.

It is useful to discuss RSP in terms of the equilibrium phase diagram of the system
in question even though the process of rapid solidification leads to nonequilibrium
solid products. Consider the solid solution and eutectic binary phase diagrams shown
schematically in Fig. W21.26. Indicated in each diagram is the curve of T0 versus
composition, where T0 is the temperature at which the liquid and solid phases of the
same composition have the same Gibbs free energy. For the eutectic system shown
in the middle, where the two solid phases have the same crystal structure, there is a
smooth T0 curve. In the right-hand phase diagram where the two solid phases have very
limited mutual solid solubilities, the T0 curves do not intersect. In all three cases shown
in Fig. W21.26, the solid formed will have the same composition as the liquid when
cooling is rapid enough so that solidification occurs at T < T0. Under these conditions
the solidification rate can exceed the diffusion rate in the liquid so that the components
cannot redistribute themselves in the liquid phase. The glass-transition temperature Tg
is shown in the right-hand phase diagram. In a glass-forming system where Tg is so
low that it cannot be readily reached via rapid solidification, a dispersion of particles
of a second phase can then occur in the primary matrix.

Metastable phases can also be formed when cooling rates are sufficiently high. In
addition to the important example of the Fe–C system, where Fe3C is a metastable
product, a wide variety of interesting icosohedral metastable phases of Al with fivefold
rotational symmetry (e.g., Al6Mn1�x, Al6Mn1�xFex, Al12Fe1�xMox, and Al62Cu26Fe12)
have been prepared via RSP. An RSP phase diagram using information obtained by
heating the surfaces of Al-rich Al–Mn alloys with a scanned electron beam is presented
in Fig. W21.27. Here the solid phases obtained for a range of scan (i.e., solidification)
velocities vsl from 0.001 to 1 m/s and for Mn concentrations from 0 to 30 wt %
are shown. Icosohedral (fivefold symmetry) and decagonal (tenfold symmetry) phases
in the form of dendrites in an Al-rich matrix are obtained for vsl greater than about
0.02 m/s and for more than³ 18 wt % Mn. The solid-solution phase ˛-Al extends up to
³ 14 wt % Mn for vsl greater than about 0.03 m/s, well beyond the equilibrium eutectic
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Figure W21.26. Solid-solution and eutectic binary phase diagrams are shown schematically,
with the temperature T0 at which the liquid and solid phases of the same composition have the
same Gibbs free energy indicated.



388 SYNTHESIS AND PROCESSING OF MATERIALS

Intermetallic
phases

S
ca

n 
ve

lo
ci

ty
, c

m
/s

ec

Manganese concentration, wt %

0.1

1

10

100

1000

0 10 20 30

α -AI
0.8

0.8

0.5

0.5

1

0.6 0.6

0.4 0.4 0.4

0.2

0 0

1
Icos.

T

Figure W21.27. RSP phase diagram. The numbers indicate the relative fractions of the inter-
metallics that are icosohedral; from x-ray diffraction intensities. The region labeled T is a
decagonal region. [From R. J. Schaefer et al., Metall. Trans., 17A, 2117 (1986).]

limit of 1.8 wt % at Te D 658°C. The possibility of obtaining metastable phases in
Al–Mn alloys is enhanced due to the many different intermetallic compounds found
in Al-rich alloys and also due to their relatively low growth velocities.

Despite the initial and continuing enthusiasm for the RSP technique, many of the
hoped-for applications have not yet materialized, due in part, perhaps, to a lack of
fundamental knowledge concerning the processes occurring during rapid solidifica-
tion. It is, of course, an extremely difficult problem to control the microstructure,
morphology, and stoichiometry of a rapidly solidified material under processing condi-
tions that are so far from equilibrium. The consolidation of RSP-generated materials
into useful forms without causing a degradation of their desirable as-synthesized prop-
erties has also proven to be difficult.

W21.13 Surface Treatments for Metals

Most pure metals are thermodynamically unstable with respect to oxidation and other
environmental chemical reactions. As a result, a wide variety of physical and chemical
processing procedures is used to modify the surface properties of metals in order to
improve their corrosion resistance, wear resistance, and surface hardness. Some of these
procedures have been mentioned in Chapter W12 and include electroplating, chemical
reactions, vapor deposition, ion implantation, and thermal reactions. In addition, the
electrolytic anodization of Al resulting in the formation of an oxide layer has been
discussed in Section 19.11. Two additional surface-treatment procedures are discussed
briefly here: surface carburizing and nitriding and the intense-pulsed-ion-beam (IPIB)
surface treatment.

The surface carburizing and nitriding of metals are both processes that involve
changing the chemical composition of the metal in a surface layer. They can be
achieved using a variety of techniques for introducing C and N into the material.
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Gas carburizing (in the austenite region near T D 1000°C) and nitriding (in the ferrite
region near T D 500°C) of low-carbon steels typically involve heating the steel in C-
or N-containing atmospheres (CH4 or NH3), which leads to the rapid diffusion of C
or N atoms into the near-surface region known as the case (hence the use of the term
casehardening). Other metallic substitutional alloying elements, such as Ni, Mn, and
Cr, are not affected by this treatment, due to their much lower diffusivities in iron.
Analogous processes known as carbonitriding (or nitrocarburizing) and boronizing
can also be used for surface hardening.

The resulting spatial distribution of C in the steel depends on both the temperature
and time of the carburizing process. The carbon concentration is given approximately
by the solution of Fick’s second law of diffusion [see Eq. (W6.2)]. Typical C concen-
trations obtained in the surface layer are ³ 0.8 to 1 wt % (i.e., well below the solubility
limit of C in austenite). As the steel is cooled from the carburizing temperature, the
microstructure that develops varies with depth into the material due to the varying C
concentration. Pearlite and cementite are formed at and just below the surface, then
only pearlite when the C concentration has fallen to the eutectoid composition, followed
by a mixture of pearlite and ferrite at greater depths. For most steels carburized for 5
to 10 h, the thickness of the carburized surface layer is from 0.5 to 2 mm.

Following the carburizing step, additional heat treatments known as casehardening
are necessary to form precipitates of martensite, which result in the formation of a
wear-resistant surface layer on the steel. This subsequent heat treatment usually takes
place in the austenite phase near T D 850°C and is followed by rapid quenching to
form martensite. A martensite tempering heat treatment is then carried out in the range
T D 150 to 200°C to relieve stresses.

Surface nitriding procedures are ordinarily employed for steels containing the
alloying elements Al, V, Cr, and Mo and result in surface layers which are harder than
those which are obtained by carburizing. Nitriding is usually carried out in an NH3

atmosphere and at lower temperatures, and therefore for longer times, than for the case
of carburizing since the eutectoid temperature Te in the Fe–N system is only ³ 590°C.
The possible microstructures appearing in the Fe–N system are more complicated than
in the Fe–C system since more than one stable iron nitride (e.g., Fe4N, Fe3N, and
Fe2N) can exist in the nitrided surface layer, depending on the processing conditions.
The relatively N-rich compound Fe3N is typically found near the surface, while Fe4N
is found at a greater depth where the diffused N concentration is lower. In addition,
precipitates of the nitrides of the alloying elements Al, V, Cr, and Mo are also found
in the nitrided surface layer. As a result, the surface layer can be quite hard due to
the dispersion-strengthening mechanism. In contrast to carburizing, no additional heat
treatment is required to harden the nitrided surface layer.

In the case of surface hardening via carbonitriding or boronizing, carbonitrides and
borides are formed instead of carbides or nitrides. The Fe2B phase is preferred over the
FeB phase because it is less brittle and also because the resulting casehardened surface
is under compressive stress. Boronized layers on plain carbon steels are typically two
or three times harder than carburized layers on the same steels.

The carburizing and nitriding of steels can also be carried out in CH4/Ar/H2 or CO2

and NH3 or N2/H2 plasmas, respectively, with the result that the necessary treatment
times and temperatures can be greatly reduced. In addition, the plasma can clean the
surface via sputtering, activate the chemical species so that they interact more readily
with the surface to be hardened, and even heat the surface. Plasma nitriding is also used
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to improve the surface hardness and wear resistance of Ti alloys containing Al and
V. Four distinct layers can be found in the surface region following plasma nitriding
at T D 800°C for 13 to 15 h: a 0.3 to 0.5-µm surface layer of FCC υ-TiN, a 1.7 to
2-µm layer of tetragonal ε-Ti2N, a thin layer of Ti2AlN, and then the diffusion zone
containing nitrogen-stabilized ˛-Ti. An alternative source of energy is employed in the
laser nitriding of Fe and Ti in a N2 atmosphere which leads to improved hardness and
corrosion resistance.

The intense-pulsed-ion-beam (IPIB) surface treatment is a recently developed
thermal process that causes rapid heating and melting of the surface layer of a
metal, followed by extremely rapid cooling, ³ 109 K/s, of the layer. This procedure,
which can be considered to be a type of rapid-solidification processing, results in
nonequilibrium microstructures such as amorphous, metastable, or nanocrystalline
layers in the surface region. Such surface layers on tool steels and high-temperature Ti
alloys have greatly improved surface hardnesses and wear and corrosion resistances.
The plasma-immersion ion-implantation (PIII) procedure used to implant dopant ions
into semiconductors is also used to implant N into the surfaces of metals in order to
improve wear resistance.

The intense pulsed ion beams are typically composed of H or heavier ions. A single
ion pulse containing ³ 1013 to 1014 ions/cm2 leads to the implantation of ionic species
at the level of only ³ 10�5 at % in the implanted surface region, which can be ³ 102

to 103cm2 in area. The depth of the IPIB treatment can be ³ 2 to 10 µm for H ions
but a factor of 20 less than this for heavier ions. IPIB-induced shock waves due to the
use of heavier ions such as N can lead to greatly improved mechanical and chemical
properties to a depth of up to 100 µm.

As an example of the IPIB treatment, the surface cross section of a tool steel
sample treated with a 40-ns-duration 10-J/cm2 pulsed beam of 0.5–1 to MeV C and H
ions is shown in Fig. W21.28. The treated depth is ³ 5 µm. In this near-surface layer
which originally consisted of ferrite and large cementite particles, the carbon has been
dissolved into the Fe matrix during the melting. Following rapid resolidification of this
region, 20-nm carbide grains have been observed.

Carbide

Unmelted region

Treated depth

5 µm

Treated: hardness = 9.05 GPa
Untreated: hardness = 3.39 GPa

O-1 tool steel

Figure W21.28. As an example of the intense-pulsed-ion beam (IPIB) treatment, the surface
cross-section of a O1 tool steel sample treated with a 40-ns-duration 10-J/cm2 pulsed beam of
0.5- to 1-MeV C and H ions is shown. [From H. A. Davis et al. Mater. Res. Soc. Bull., 21(8),
58 (1996).]
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W21.14 Chemical Vapor Deposition of Diamond

The synthesis of crystalline diamond films via CVD has become an important area
of research over the last 15 to 20 years. The growth of diamond takes place either
at atmospheric pressure (105 Pa), as in the case of the oxygen–acetylene or plasma
torches, or at reduced pressures of about 103 to 104 Pa (7.6 to 76 torr) when microwave
plasmas or hot filaments are used. The substrates employed are Si crystals, transition
metals such as Mo and W, and ferrous-based materials such as tool steels. Substrate
temperatures Ts are normally in the range 800 to 1100°C, although growth of diamond
has been observed up to ³ 1250°C and down to ³ 500°C. Graphite is deposited at
higher Ts while amorphous carbon is deposited at lower Ts. Typical chemical compo-
sitions of the CVD environment as expressed by the ratios of the feedstock gas flow
rates are H2/CH4 ³ 100:1 or H2/CH4/O2 ³ 100:4:0.4 in the microwave plasma or
the hot filament method and C2H2/O2 ³ 101:100 (i.e., slightly carbon-rich) in the
oxygen–acetylene torch.

An understanding of the growth of diamond under conditions where graphite is
the thermodynamically stable form of carbon can be obtained by recognizing that
the competing forms of solid carbon, graphite, and amorphous carbon have higher
solubilities in the vapor phase relative to diamond in reactive environments containing
large amounts of either atomic hydrogen or oxygen (or both). The thermodynamic
quasiequilibrium (QE) model† has been applied to the carbon–hydrogen (C–H) and
C–H–O systems to provide the basis for an analysis of the CVD of diamond. In
this approach the dominant vapor species (H, CxHy , O) in equilibrium with either the
diamond or graphite surfaces and also the deposition and etching rates of diamond or
of graphite can be determined. When the kinetic effects associated with the enhanced
etching of graphite by atomic hydrogen and oxygen are included in the model, regions
in the CVD phase diagram of the C–H and C–H–O systems are predicted where
diamond is the only stable form of solid carbon present.

The key assumption of the QE model is that thermochemical equilibrium exists
between the solid carbon surface and the vapor species desorbed from it. Kinetic
theory is employed to determine the rates at which vapor species arrive at and leave
the carbon surface. The standard Gibbs free energies of formation fG0�CxHy, T� of
the vapor species are employed to obtain the needed equilibrium constants K�CxHy, T�
using the expression

K�CxHy, T� D exp
[
�fG0�CxHy, T�

RT

]
. �W21.26�

These in turn provide the equilibrium vapor pressures of the CxHy�g� species for the
reactions

xC�s�C y
2

H2�g�$ CxHy�g�, �W21.27�

using

Peq�CxHy, T� D K�CxHy, T�[P�H2�]
y/2, �W21.28�

† J. C. Batty and R. E. Stickney, J. Chem. Phys., 51, 4475 (1969).
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where P�H2� is the partial pressure of H2 in the system. The pressures in this equation
are expressed in atmospheres.

By requiring conservation of H atoms in the fluxes of atoms and molecules inci-
dent on and leaving either the diamond or the graphite surface, predictions for the
evaporation rates Re�CxHy, T� can be obtained. Deposition rates are then obtained
from

Rd�C� D I�C�� Re�C�, �W21.29�

where I(C) is the net flux of incident C atoms and Re(C) is the net flux of C atoms
leaving the surface. The evaporation rates Re�CxHy, T� and deposition rates Rd of
diamond and graphite are presented as functions of temperature in Fig. W21.29 for a
mixture of 1% CH4 in H2 at P D 5ð 103 Pa. It can be seen that the evaporation rates
of CxHy species are predicted to be higher above diamond (dashed curves) than above
graphite (solid curves), as expected from the slightly higher free energy of formation
of diamond relative to graphite. Under the conditions presented in Fig. W21.29, there
exists an intermediate temperature range, from T D 910 to 2295 K, where diamond
is stable relative to hydrogen. For T < 910 K diamond is etched via the formation of
CH4�g� while for T > 2295 K etching via the formation of C2H2�g� dominates.

The data presented in Fig. W21.29 can be used to construct the CVD phase diagram
for the C–H system shown in Fig. W21.30. Here the regions of stability of solid carbon
(i.e., diamond or graphite) are presented at 5ð 103 Pa as functions of temperature and
reactant ratio C/�CC H�. In this case there exists a region where diamond is predicted
to be the only stable phase of solid carbon. This occurs because the phase boundary of
graphite has been shifted to the right by taking into account the enhanced etching of
graphite by atomic hydrogen. Experimental data points for the deposition of diamond
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are also presented and can be seen to be in very good agreement with the predicted
region of stability of diamond. Similar predictions for the C–H–O system have been
obtained for the deposition of diamond via the oxyacetylene torch.†

Problems remaining in the CVD of diamond films are related to obtaining films
with fewer defects and with lower levels of nondiamond components, such as
graphitic carbon, amorphous carbon, and impurities such as hydrogen and nitrogen.
The successful preparation of n-type films is also an important goal for the eventual
use of diamond as an active element in electronic devices. The p-type doping of
diamond by substitutional B acceptors is well established.

In addition to the CVD of diamond films, the synthesis of diamond at high temper-
atures (³ 2000 K) and pressures (³ 60 atm) (i.e., under HPHT conditions) in the form
of small single crystals or abrasive grains is a well-developed technology, with several
tons of diamond being prepared yearly. Under these conditions, diamond is appar-
ently thermodynamically stable with respect to graphite, although the phase boundary
between diamond and graphite is still not very well known in the HPHT region. The
HPHT method relies on the solubility of carbon in molten transition metals such as Ni
at high T and P and its subsequent controlled precipitation as diamond crystals.

Cubic BN (c-BN) with the zincblende crystal structure is similar in many respects to
diamond, having essentially the same lattice constant, a wide bandgap (³ 6.4 eV) and
also very high hardness and thermal conductivity. c-BN is actually superior to diamond
for electronic applications due to the fact that it can be doped both n- and p-type with
Si and Be, respectively. The ceramic c-BN also has excellent potential for use as a
hard, wear-resistant coating for tools since its solubility in ferrous materials is much

† R. B. Wang, M. Sommer, and F. W. Smith, J. Cryst. Growth, 119, 271 (1992).
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lower than that of carbon. So far a successful technique for preparing single-phase
c-BN in thin film or bulk form has not been developed.

W21.15 Synthesis of YBa2Cu3O7−x

Early methods of synthesizing the high-temperature superconductor YBa2Cu3O7�x
(YBCO or 1:2:3) involved a solid-state self-flux reaction resulting in a metastable
compound. Typically, a mixture of BaCO3, CuO, and Y2O3 with the molar ratios
Y/Ba/Cu D 1:4:10 was mixed and ground in a zirconia crucible, pressed into pellets,
and heated at 890°C for a day. The process was repeated a second time. Finally,
the material was annealed at 1000°C while being subjected to flowing O2 for three
days. The cooling rates had to be slow to obtain crystals of size ³ 1 mm. The parent
compound is YBa2Cu3O7, which is nonstoichiometric. This compound is enriched with
oxygen as the O atoms intercalate into the crystal and order. The oxygen content of
the crystals (7� x) was found to be a function of the oxygen partial pressure during
annealing. Optimal values of Tc (³ 90 K) were obtained for x D 0.3. To obtain crystal
growth the temperature had to be sufficiently high to obtain a partial melt, yet suffi-
ciently low so as not to decompose the crystals to more thermodynamically stable
forms (such as Y2BaCuO5). A ternary phase diagram is given in Fig. W21.31.

The deposition of thin films of YBCO requires a different approach. Methods such
as magnetron sputtering, pulsed excimer-laser ablation, and metal-organic chemical
vapor deposition (MOCVD) have been developed. A proper choice of substrate has
to be made so that epitaxial growth will occur. YBCO is an orthorhombic crystal
with lattice constants a, b, and c D 0.383, 0.389, and 1.169 nm. Suitable substrates for
growing crystals with the c axis normal to the substrate surface are the (100) faces
of SrTiO3 (a D 0.39 nm) and LaAlO3 (a D 0.536 nm ³ ap2). These substrates have
high melting temperatures, Tm D 2030°C and 2110°C, respectively, and also have low
microwave loss, which is important in designing superconducting microwave filters
and cavities.

BaO

Ba4Y2O7

Ba2Y2O5

Ba2CuO3

BaCuO2Ba3Y4O9

BaY2O4

Y2Cu2O5
CuO

2:1:1 1:2:3

∼1:4:2
∼1:5:3

Pss

Y2O3
1
2

Figure W21.31. Ternary phase diagram for Y–Ba–Cu–O. The numbers x:y:z refer to the
Y:Ba:Cu stoichiometry. Pss denotes a solid solution region. The temperature is T ³ 975 to
1000°C. (Adapted from L. F. Schneemeyer et al., Barium yttrium copper oxide crystals, in
D. W. Murphy and L. V. Interrante, eds., Inorganic Synthesis, Vol. 30, Wiley, New York, 1995.)
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In the MOCVD method the cations are bound to organic anions, and the resulting
metal–organic precursor has a high vapor pressure at relatively low temperatures
(³ 250°C). An inert carrier gas such as Ar is used. Precursors such as Ba(THD)2,
Cu(THD)2, and Y(THD)3 are used, where THD is bis(2,2,6,6-tetramethyl-1,3,5-
heptanedione). Oxygen is introduced. The vapor is transported to the heated substrate,
where the organic components are pyrolyzed and the oxides of the cations are deposited.
In this method the substrate is the hottest part of the system, so the deposition takes
place only on the substrate, not on the walls of the system.

In pulsed laser deposition (PLD) a Kr–F excimer laser generates a  D 248 nm pulse
of duration 30 ns with a fluence of ³ 5ð 104 J/m2. The pulse is absorbed near the
surface of a block of material that is to be deposited on a substrate some distance away.
The pulse has sufficient energy to vaporize (and partially ionize) several hundred layers
of atoms. A plume of ablated material is cast off primarily in the forward direction
perpendicular to the target. The substrate temperature is in the range 500 to 700°C,
which provides sufficient atomic mobility for crystal growth to occur. The deposited
layer retains the chemical composition of the target. Unlike the MOCVD method, one
is not dependent on all the precursors having a high vapor pressure.

W21.16 Synthesis of Si3N4

There exist a variety of methods for synthesizing Si3N4 powders, but only three
methods are used commercially. They are carbothermal reduction and nitridation, direct
nitridation of silicon, and a liquid-phase process. Si3N4 exists in two phases, a low-
temperature metastable ˛-phase and a high-temperature stable ˇ-phase. Both phases
have a hexagonal unit cell, but the stacking sequences of the planes along the c axis
are different. The ˛-phase has the stacking sequence ABABABAB. . . , whereas the
ˇ-phase has the sequence ABCDABCD. . . . The ˛-phase can readily accommodate
cations within its structure.

In the carbothermal reduction and nitridation process silica reacts with carbon in a
nitrogen atmosphere according to the overall formula

3SiO2�s�C 2N2�g�C 6C�s� ���! Si3N4�s�C 6CO�g�. �W21.30�

The reaction occurs at temperatures in excess of 1420°C at atmospheric pressure and is
endothermic with H D 1270 kJ/mol. To prevent the reverse reaction from occurring,
the CO gas must be removed. Unless impurities are added the reaction strongly favors
the production of the ˛-phase. The reaction proceeds in several stages. One possible
route is to produce a supersaturated SiO gas and then have this gas react with carbon
and nitrogen. Some possible pathways are

SiO2 C C ���! SiOC CO, 3SiOC 3CC 2N2 ���! Si3N4 C 3CO, �W21.31�

or

SiO2 C C ���! SiOC CO, 3SiOC 3COC 2N2 ���! Si3N4 C 3CO2,
�W21.32�

followed by
CO2 C C ���! 2CO. �W21.33�

Other reactions are possible as well.
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The direct nitridation of silicon involves “burning” solid silicon in a nitrogen atmo-
sphere to promote the exothermic reaction

3Si�s�C 2N2�g� ���! Si3N4�s�. �W21.34�

The enthalpy of formation is fHo D �730 kJ/mol at a temperature of 1320°C. This
reaction produces a mixture of both the ˛-phase and the ˇ-phase. It is possible to
reaction-sinter the Si3N4 by slowly raising the temperature to ³ 1400°C and keeping
it at that temperature for several days. Then the ˇ-phase is produced.

The liquid-phase process involves pouring liquid silicon tetrachloride into liquid
ammonia at P D 230 Pa and T D �29°C. The SiCl4 is dissolved in an organic solvent
composed of cyclohexane and benzene. A polymer of silicon diimide is formed at the
interface according to the reaction

n�SiCl4�C 18n�NH3� ���! �Si�NH�2�n C 4n�NH4ClÐ3NH3�. �W21.35�

The (Si(NH)2)n dissolves in the organic solvent. The solvent, ammonia, and NH4Cl are
then removed and the silicon diimide is heated to 1000°C to convert it to amorphous
silicon nitride according to the reaction

3�Si�NH�2�n ���! n�Si3N4�C 2n�NH3�. �W21.36�

Further heating anneals the amorphous material to crystalline ˛-Si3N4.
Densification of Si3N4 can be accomplished, for example, by liquid-phase sintering.

The Si3N4 is mixed with silica and additives such as alumina and yttria which are
used to lower the melting temperature of the silica. This is important because Si3N4

has a low dissociation temperature (1500°C) and it is desirable to keep the liquid
temperature at around 1470°C. In the sintering process the silica and additives melt,
some of the Si3N4 goes into solution and precipitates out, ultimately causing the grains
to merge and to eliminate the intergranular void spaces. The microstructure that results
is strongly influenced by the additives used.

It is also possible to densify Si3N4 powders by means of hot pressing, hot isostatic
pressing, or gas pressure sintering. Oxides, such as MgO or Y2O3, or BeSiN2 are added
as sintering aids.

It is possible to deposit Si3N4 films by means of CVD. The precursors are ammonia
(NH3) and dichlorosilane (SiCl2H2). The operating temperature is 700 to 800°C. Unfor-
tunately, this is too high for application to electronic VLSI chips. PECVD is used to
reduce the operating temperatures to below 450°C, in which case amorphous films also
containing H are deposited.

Laser reactions may also be used to synthesize Si3N4. A mixture of NH3 and SiH4

is irradiated with infrared radiation from a CO2 laser. The SiH4 is vibrationally excited
and the net endothermic reaction

3SiH4�g�C 4NH3 ���! Si3N4�s�C 12H2�g� �W21.37�

is able to proceed. Particles of size ³ 20 to 100 nm are produced.
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W21.17 Synthesis of SiC

At low temperatures (T < 1800°C) one may sinter powders of Si and C to produce the
ˇ (zincblende) form of SiC via the reaction SiC C! SiC. For temperatures higher
than 2000°C, hot pressing may be used. Silicon carbide is most commonly synthesized
using the Acheson process, which employs a resistance furnace. A mixture consisting
of carbon, NaCl, SiO2 sand, and some sawdust is placed around a core of graphite.
An electrical current is passed through the graphite, heating it to a temperature of
around 2600 to 2700°C (below the melting temperature of 2830°C). The reaction
SiO2 C 3C! SiCC 2CO is highly exothermic, with H D 14, 700 kJ/kg, and this
helps create the high temperature. The ˛ (wurtzite, high temperature) form of SiC
grows around the graphite core. The NaCl helps to remove impurities from the material.
The sawdust creates sufficient pore space so that the CO gas may escape.

The Lely process is another way of synthesizing SiC. Amorphous SiC granules are
placed inside a hollow graphite tube and the combination is heated to ³ 2500°C in an
inert gas such as Ar. Some of the SiC sublimes, forming a vapor. From this vapor SiC
crystals nucleate on the granules and then continue to grow.

Silicon carbide may also be grown by chemical vapor deposition on a hot
substrate. The temperatures are typically much cooler than used in the Acheson and
Lely processes. The precursor gases that are used are silane, (SiH4) and methane
(CH4) or propane (C3H8). Typical net reactions are SiH4 C CH4 ! SiCC 4H2 or
3SiH4 C C3H8 ! 3SiCC 10H2. Laser-induced reactions are also possible, such as
2SiH4 C C2H4 ! 2SiCC 6H2. It is also possible to use single molecules called
carbosilanes, containing Si and C in a 1:1 ratio, as the precursor. Included are molecules
such as 1,3-disilacyclobutane. It is possible to produce ˇ-SiC at temperatures³ 1000°C
and even lower. Other molecules in use include 1,3-disila-n-butane and methylsilane
(CH3SiH3).

Silicon carbide powders may be formed into shapes using methods such as extrusion,
injection molding, and hot isostatic pressing, among others. SiC may be sintered using
the hot-pressing technique at temperatures in excess of 2000°C.

Of the various methods for preparing SiC, CVD produces the highest-quality crys-
tals. For example, a thermal conductivity of A D 300 W/mÐK at T D 300 K is attain-
able, compared with values in the range 15 to 120 for sintered SiC, 120 to 170 for
reaction-bonded SiC, and 50 to 120 for hot-pressed SiC. CVD SiC also yields the
material with the highest elastic modulus, E D 466 GPa, and the lowest coefficient of
thermal expansion, 2.0ð 10�6 K�1, at room temperature.

W21.18 Synthesis of the Zeolite ZSM-5

Sol–gel synthesis is also used to produce the zeolite ZSM-5, introduced in Section 13.6.
This zeolite is an aluminosilicate in which the silicon-to-aluminum ratio is very high. A
typical procedure is to first prepare NaAlO2 by Al2O3 C 2NaOH! 2NaAlO2 C H2O
and then put it in a solution of NaOH and H2O. A second solution is prepared by
dissolving a small amount of tetrapropylammonium bromide in H2SO4 and water. The
solutions are combined with a sol consisting of silica, Na2O, and water. The silica-
to-alumina ratio can be kept high to make the resulting crystal almost entirely silica.
The resulting solution is kept at 95°C for up to two weeks and the sol–gel reaction is
monitored closely to see when crystallites of the zeolite form. When the crystallization
is complete, the organic molecules can be slowly pyrolyzed in oxygen at elevated
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N+ N+

TPA TMA

Figure W21.32. Tetrapropylammonium (TPA) ion and tetramethylammonium (TMA) ion.
[Adapted from D. W. Lewis et al., Nature, 382, 604(1996).]

temperatures. The resulting crystal consists mainly of tetrahedrally coordinated silica
with aluminum ions incorporated into the framework. Sodium ions (equal in number
to the Al ions for charge balance) reside outside the framework in the pore spaces. The
zeolite serves as an ion exchanger, so other ions may be substituted for the sodium.

The tetrahedral molecule tetrapropylammonium (TPA) ion (Fig. W21.32) serves as
a template molecule upon which the zeolite nucleates. The framework and pore size of
the crystal are determined by the geometry of this ion. The steric hindrance presented
by the ion guarantees a large pore size. Since the charge on the TPA ion is C1e, it
serves to compensate for the valence deficit that occurs when an Al3C ion replaces a
Si4C ion. Each of the TPA propyl groups extends into one of the four channels that
emanate from each intersection, with the nitrogen atom residing at the junction. If other
ions are used, the pore size will be different. This gives the chemist the opportunity to
custom design zeolite structures based on the template molecule employed.

Recent observation of the formation and growth of a similar material, zeolite A
(Na12[(AlO2)12(SiO2)12]Ð27H2O), identified the steps involved in the formation of crys-
tals.† The monomers polymerized to form small amorphous clusters of aluminosilicate
particles with diameters in the range 5 to 10 nm in solution. Tetramethylammonium
(TMA) (see Fig. W21.32) is used as a template for zeolite A. When TMA is added to
the solution, the solution becomes basic and the particles aggregate to form amorphous
gel particles, with sizes in the range 40 to 80 nm. The aggregation is presumably due
to the screening of the Coulomb repulsion between the particles by the ions in solution,
allowing the long-range van der Waals forces to bring the particles together. After three
days at room temperature, single crystals nucleate within the gel particles and grow to
the size 10 to 30 nm. After a week there is complete conversion of the gel particles to
the single crystals, of size 40 to 80 nm. Presumably the high supersaturation present
in the amorphous gel particles is the driving force for the nucleation and growth of
the crystals. If the temperature is then elevated to 80°C, there is transport through the
solution and the crystals undergo Ostwald ripening. Larger crystals in the range 200
to 400 nm are formed within one day.

By using micelles as the templating agent it is possible to produce mesoporous films
of transition metal oxides with variable pore sizes.‡ The micelles are rodlike structures

† S. Mintova et al., Science, 283, 958 (1999).
‡ T. Sun and J. Y. Ying, Nature, 389, 704 (1997).
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that are self-assembled from hexylamine molecules, with the molecular axes directed
perpendicular to the rod axis. The length of the hydrocarbon chain determines the
radius of the rod.

It has been reported† that zeolite-like materials with helical pores could be
constructed by using inorganic cations or amines as templates. In place of the
aluminosilicate structure of ZSM-5, the inorganic framework is based on zinc
and beryllium arsenate and gallium germanate. Such structures could serve as
chiral catalysts that would yield products with enantioselectivity (i.e., with a fixed
handedness).

W21.19 Synthesis of the Perovskite PLZT

Lead zirconate titanate, Pb(Zr,Ti)O3 (PZT), is a ceramic material used in the electronics
and optics industries. There are a number of ways of synthesizing it. Powders can be
made by the solid-state reaction method or by wet chemical synthesis.

In the solid-state reaction method the reagent powders PbO, ZrO2, and TiO2 are
mixed, ground, and then heated at 850°C for about 3 hours, during which time crys-
tallization takes place. To create the daughter compound Pb1�x Lax (Zry Ti1�y)1�x/4O3

(PLZT) one uses a combination of La2O3 and ZrO2 instead of pure zirconia.
Wet chemical methods include coprecipitation, hydrothermal synthesis, and sol–gel

synthesis. An example of the coprecipitation method is to mix various salts together
with ammonium hydroxide and water, for example,

�1� x�PbCl2 C xLaCl3 C y
(

1� x
4

)
ZrCl4 C �1� y�

(
1� x

4

)
TiCl4 C 6NH4OH

���! �1� x�Pb(OH)2 C xLa(OH)3 C y
(

1� x
4

)
ZrO(OH)2

C �1� y�
(

1� x
4

)
TiO(OH)2 C

(
1� x

4

)
H2OC 6NH4Cl. �W21.38�

The various hydroxides form a gel precipitate. The solution is washed to eliminate
the ammonium chloride salt. It is then heated at a temperature of 550°C for an hour
during which time the hydroxide groups are converted to water and the PLZT crystals
are formed through the reaction

�1� x�Pb(OH)2 C xLa(OH)3 C y
(

1� x
4

)
ZrO(OH)2 C �1� y�

(
1� x

4

)
TiO(OH)2

���! Pb1�xLax�ZryTi1�y�1�x/4O3 C
(

2C x
4

)
H2O. �W21.39�

Hydrothermal synthesis allows the reaction to occur at lower temperatures (350°C),
but at higher pressures.

The sol–gel synthesis of PLZT utilizes precursors typically consisting of metal
salts (lead acetate hydrate and lanthanum acetate hydrate) and alkoxides (zirconium n-
propoxide and titanium isopropoxide). Salts are used because the alkoxides of lead and

† T. E. Gier et al., Nature, 395, 154 (1998).
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lanthanum are not soluble. The acetates are added to an alcohol such as methoxyethanol
in water. Reactions such as

Pb(OAc)2 C ROH ���! Pb(OAc) (OR)C HOAc �W21.40�

or
4Pb(OAc)2 C H2O ���! 3Pb(OAc)2ÐPbOC 2HOAc �W21.41�

occur, with corresponding ones for La(OAc)3. Here R D C2H4OCH3 and it is seen that
the reaction replaces the OAc ion by an OR ion. Typical condensation reactions that
can occur are

A(OR)4 C B(OAc)n ���! �OR�3A–O–B(OAc)n�1 C ROAc, �W21.42�

where n D 2 or 3, A D Ti or Zr, B D Pb or La, and R D C3H7 or C2H4OCH3.
Thin films of PLZT created by the sol–gel process may be spun onto silica or MgO

substrates while still wet and then dried. The films may be processed further for various
applications.

W21.20 Synthesis of Glasses: Pilkington Process

The synthesis of glass involves essentially three steps. In the first step a batch of raw
materials is prepared. The principal ingredient is SiO2. Modifier oxides, such as Na2O
or K2O, are added to lower the melting temperature. Other oxides, such as CaO, are
added to provide chemical stability. If a glass-ceramic with controlled crystallinity is
to be produced, Al2O3 is also added.

In the second stage the mixture is melted. For common glasses the temperature is
elevated to 1300 to 1400°C, while for glass-ceramics the temperature range is 1400 to
1500°C. Volatile gases leave the liquid. The viscosity of the liquid decreases rapidly
with increasing temperature, so the rate of escape of the gas bubbles is sensitive to
temperature.

The final stage involves forming the glass into the desired shape. Techniques such
as rolling, blowing, casting, pressing, and drawing are used. In creating ordinary glass
the cooling rate is as fast as it can be without producing cracking. If it is too high, the
temperature differential between the surface and interior portions of the glass produces
stress fields that could lead to cracking. In creating glass-ceramics, slower cooling is
required. The cooling rate is critical in determining the amount of crystallization that
will occur. Residual stresses may be eliminated or reduced by annealing the glass.

In some cases the surface of the glass is tempered to enhance its mechanical prop-
erties. For example, one may heat the glass uniformly in a furnace, remove it, and
then rapidly cool the outer surface. Due to the poor thermal conductivity of glass,
the interior remains hot for some time. Viscoelastic relaxation allows the atoms in the
interior to assume new configurations to relieve the stress. Upon further cooling the
glass becomes so viscous that relaxation no longer can occur and the interior develops
a tensile stress in response to the thermal contraction. Correspondingly, the surface
region is put in a state of compressive stress. The existence of the internal stress field
permits the glass to withstand larger flexural stresses that may be imposed on it.

In addition to thermal tempering, chemical tempering is also possible. For example,
by exchanging the NaC ions for smaller LiC ions near the surface, the surface is placed
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under compressive stress. It is also possible to remove Na by exposing the glass to
gases such as SO2 and H2O. Effectively, the NaC ions are replaced by protons from
the water, producing OH radicals.

The Pilkington process, or float process, represents more of a manufacturing process
than a change in the microstructure of a material. It is included here because it shows
the importance of surface tension in a practical manufacturing setting. The process
provides an economical means for large-scale production of finished sheets of glass.
Molten glass is poured onto a tub of molten metal and is allowed to float until it cools
below the glass temperature, Tg. If Tm is the melting temperature of the metal, then if
Tm < T < Tg, the solidified glass that forms will float on the molten metal and may
readily be removed. Tin is usually used as the metal because it melts at a sufficiently
low temperature (Tm D 232°C).

Let ,m and ,g be the densities of the metal and glass. For flotation it is required
that ,m > ,g. For tin and glass the specific gravities are 6.5 and 2.2, respectively.
The interfacial surface tensions are denoted by -mv, -gv, and -mg, where the subscript
v refers to the surrounding atmosphere (without oxygen). The thickness of the glass
sheet will be denoted by t and its base area by A. The base area of the vat of metal is
A0. The geometry is depicted in Fig. W21.33.

To find t one minimizes the total potential energy, consisting of gravitational and
surface contributions,

U D 1

2
,mg[A�y � h�2 C �A0 � A�y2]C ,ggAt

(
y � hC t

2

)

C -gvAC -mgAC -mv�A0 � A�, �W21.43�

subject to the constraints of constant glass and metal volumes

Vm D A�y � h�C �A0 � A�y, �W21.44�

Vg D At. �W21.45�

The surface energy associated with the vertical sides of the slab is small and is
neglected. Introducing Lagrange multipliers  and C, one has

υ�U � CVm � Vg� D 0. �W21.46�
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Figure W21.33. Slab of molten glass floating on a bath of molten metal in the Pilkington
process.
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The partial derivatives are taken independently with respect to the variables y, h, t,
and A to obtain the four equations

,mg�A
0y � Ah�C ,gAgt � CA0 D 0, �W21.47�

,mg�y � h�C ,ggt D C, �W21.48�

,Gg�y � hC t� D , �W21.49�

1

2
,mg�h

2 � 2hy�C ,ggt
(
y � h C t

2

)
C -gv C -gm � -mv C Ch� t D 0. �W21.50�

Eliminating the Lagrange multipliers results in

,mh D ,gt, �W21.51�

which could have been deduced from Archimedes principle, and a formula for t,

t D
√

2,m�-gv C -gm � -mv�
g,g�,m � ,g� , �W21.52�

independent of the volume of the glass. Note that it is necessary for -gv C -gm > -mv;
otherwise, the glass would spread, with A! A0. Since the interfacial surface tensions
are dependent on T, one has some control over the thickness of the sheet by varying
the temperature and the cooling rates.

By applying a tensile stress to the sheet of glass while it is cooling, it is possible to
stretch it and thereby make it thinner, according to the relation t D Vg/A. Let a constant
external tension per unit thickness = D S/t be introduced, where S is the tension. This
is equivalent to adding the term �=A to the potential energy, so replacing the term -gv
by -gv � = gives the result

t D
√

2,m�-gv C -gm � -mv � =�
g,g�,m � ,g� . �W21.520�

As the parameter = increases, the thickness t decreases.

W21.21 Synthesis of Polycarbonate

Polycarbonate is synthesized by means of a polymerization reaction that occurs at the
interface between two immiscible liquids. One liquid is an organic solvent (such as
methylene chloride, CH2Cl2) and the other is a basic solution (such as NaOH in water)
which acts as the initiator for the reaction. The starting material for the monomer
from which the polymer is built is bisphenol-A, C(C6H4)2(CH3)2(OH)2, and is soluble
in the organic solvent. The organic solvent is dispersed into small globules in the
alkaline solution. Phosgene gas, CCl2O, is bubbled through the emulsion. The primary
reaction is

C�C6H4�2�CH3�2�OH�2 C CCl2OC NaOH ���! C�C6H4�2

ð �CH3�2OHCClO2 C H2OC NaCl. �W21.53�
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Figure W21.34. Synthesis of polycarbonate.

Successive reactions form the polymer, as indicated in Fig. W21.34. The polycarbonate
that is formed is soluble in the organic solvent. Catalysts used to accelerate the reaction
include triethylbenzyl ammonium chloride and various tertiary amines. The size (n)
of the monomer is regulated by adding a monofunctional phenol such as p-tert-butyl
phenol, which serves to terminate the chain. Since there is only one functional group
on this terminator, it is utilized to attach to the polymer and to stop the polymer
growth. The solvent globule size also serves to limit the size of the polymer. A typical
synthesis sequence might include an initiation and reaction stage, followed by removal
of the aqueous solution, removing the solvent (and recycling it), drying the product,
and finally, extruding the polycarbonate residue.

W21.22 Synthesis of Polystyrene

Several methods are available for the synthesis of polystyrene (see Fig. 14.1). One
may polymerize it in a solution, suspension, or in bulk. The monomer is styrene
(C6H5CHCH2), which will be denoted by M. In free-radical polymerization a free-
radical initiator such as benzoyl peroxide [(RCOO)2, with R D C6H5] is added. The
initiator thermally dissociates into two free radicals according to the reaction

�RCOO�2 ���! 2�RCOOÐ� ���! 2RÐ C 2�CO2�. �W21.54�

The free radicals are like ordinary molecules but have one unpaired electron. The free
radical combines with the monomer to create a longer radical:

RÐ CM ���! M1Ð. �W21.55�
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This in turn can link up to another monomer in a chain-growth process to create a still
longer radical:

M1Ð CM ���! M2Ð, �W21.56�

and the polymer continues to grow, one monomer at a time. After n steps one has

Mn�1Ð CM ���! MnÐ. �W21.57�

The growth eventually stops by a competing termination reaction. Two such reactions
are chain coupling and disproportionation. In the chain-coupling reaction, two poly-
meric radicals combine, the electron spins become paired, and the growth is terminated:

MnÐ CMmÐ ���! MmCn. �W21.58�

In the disproportionation reaction a hydrogen atom is transferred from one radical to
another. The net result is

MnÐ CMmÐ ���! Mn CMm. �W21.59�

This could involve changes of bond order within the resulting molecules. Alternatively,
termination could be induced through a transfer reaction by introducing a molecule of
the generic form R0R00 with an acceptor group R0:

MnÐ C R0R00 ���! MnR0 C R00. �W21.60�

Typical chain-transfer molecules include ethylbenzene, CCl4, and CBr4.
To prevent spontaneous polymerization, styrene is introduced into the processing

environment with a retardant, such as benzoquinone. This retardant is stripped away
before the styrene is introduced into the reactor. Also introduced are the initiator
and the transfer molecule. After the polymerization is complete, the volatile chemi-
cals are distilled out and the polymer is fed to an extruder, which produces the end
product — pellets.

W21.23 Synthesis of Electro-active Polymers

Included among the electro-active polymers are cis- and trans-polyacetylene [(CH)x],
polythiophene (PT), polyaniline (PAN), polypyrrole (PPY), poly(para-pyridine)
(PPPyr), poly(para-phenylene) (PPP), and its decorated variant poly(2-methoxy-5-(20-
ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPP) (Fig. W21.35). They tend to have
delocalized ) electrons distributed over the polymer and filling the valence band. The
conduction band consists of the antibonding )Ł orbitals and is empty. The polymers
are therefore one-dimensional semiconductors.

The electrical activity comes about when the polymers are doped. Unlike the case
of solid-state semiconductors where the dopant atoms are introduced into the lattice,
these polymers are doped by placing atoms into the space between polymer chains. If
the dopant is a donor, it donates an electron to the )Ł conduction band. The polymer is
thereby reduced. Typical elemental donor atoms are the alkalis Li, Na, and K, and the
alkaline earth Ca. If the dopant is an acceptor, it creates a hole in the ) valence band.
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Figure W21.35. Some electroactive polymers.

The polymer is thereby oxidized. Typical elemental acceptors include the halogens Cl
and I.

The doping may be introduced simply by exposing the polymer to a vapor or solution
containing the dopant and allowing the dopant to diffuse into the bulk. Alternatively,
electrochemical injection could be used. A “battery” is constructed with one electrode
being the polymer and the other electrode containing the dopant. For example, to dope
t-(CH)x p-type one takes one electrode to be t-(CH)x and the other electrode to be
Li. An electrolyte such as LiClO4 dissolved in propylene carbonate could be used.
One proceeds to charge this battery. The Li electrode is biased sufficiently negative
to reduce LiC ions. The battery pumps n electrons from the (CH)x, leaving it in as
positively charged (CH)nCx , thereby oxidizing it. For each polymer molecule n ClO4

�
ions drift through the electrolyte over to the (CH)nCx and diffuse into it to preserve
charge neutrality. The reactions for p-doping may be summarized as nLiC C ne� !
nLi and �CH�x ! �CH�nCx C ne�.

Light-emitting diodes can be fabricated by placing a film of polymer between two
electrodes. The electrodes are chosen so that the anode Fermi level lies slightly above
the ) valence band of the polymer and the cathode Fermi level lies below the )Ł
conduction band. Schottky barriers are formed. Application of a forward bias then
allows electrons to tunnel via Fowler–Nordheim tunneling from the cathode into the
conduction band. Similarly, electrons tunnel from the valence band into the anode,
leaving behind holes. The electrons and holes drift in opposite directions and radiatively
combine in the interior of the film. A typical polymer that is used is MEH-PPV. Indium
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tin oxide (ITO) is used as an anode because of its transparency to light. A typical
cathodic material is Ca. A pattern of ITO anodes can be deposited on a substrate using
photolithographic techniques. The polymer is then spin cast onto the device. Finally,
the cathodic metal can be deposited from a vapor.

In light-emitting diodes the color of the light is determined by the bandgap. By using
other polymers or adding side groups onto the polymer, one may tune this bandgap to
other values. For example, MEH-PPV emits red light, whereas its mother, PPV, emits
green light. The polymers PVK [poly(N-vinylcarbazole)] and PPP emit blue light.

W21.24 Spin Coating

The rheology of polymers puts severe constraints on possible processing methods.
Above the glass-transition temperature, Tg, the polymer is a viscoelastic fluid that
cannot simply be poured into molds. Of course, the temperature could be elevated to
reduce the viscosity, but this also entails the risk of breaking the polymer chains or
thermally inducing other unwanted chemical reactions. The methods used to form the
materials into useful shapes involve various forms of extrusion, injection molding, blow
molding, compression molding, coating, fiber spinning, thermoforming, and calen-
dering. These manufacturing processes are not considered here. Instead, the focus of
attention will be on the technique of spin coating, which has proven to be valuable in
fabricating microelectronic circuits.

For a simple Newtonian fluid the stress and the strain rate are proportional to each
other. To obtain a high strain rate, one must apply a large stress. If one wished to
push the fluid through a die, one could do so by maintaining a pressure differential
P across its ends. For a die in the shape of a circular pipe of radius R and length
z, Poisseuille’s law gives the flow rate Q (volume/time) as

Q D �)R
4P

8Ez
, �W21.61�

where E is the viscosity. Clearly, a high-pressure differential favors a rapid throughput
of material.

For polymers above Tg, the stress and the strain rates are not linearly related. An
empirical formula is

� D 
(
�∂u
∂r

)n
, �W21.62�

where u is the axial velocity component, r the radial distance from the axis, and  a
constant depending on the polymer. The exponent n can be as small as 0.1. One may
regard this as a formula defining a strain-rate-dependent viscosity E D ��∂u/∂r�n�1.
As the strain rate increases, the polymer becomes less viscous. By balancing forces on a
coaxial cylindrical section of length z and radius r, one finds that � D �rP/�2z�.
Combining this with the previous formula gives

u�r� D � 1

2

P

z

n

nC 1
�R1C1/n � r1C1/n�. �W21.63�
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The flow rate is found to be

Q D n)

3nC 1

(
� 1

2

P

z

)1/n

R3C1/n. �W21.64�

For n D 1 this reduces to the Poisseuille law, with  D n. For n 6D 1 it is a suitable
generalization.

In the spin-coating process the substrate is mounted on a rotating turntable that is
spun at angular velocity ω (Fig. W21.36). A polymer is poured on the axial region and
it flows radially outward as it revolves around the axis. The centripetal force on any
volume of polymer is due to the viscous force.

The radial component of the velocity is determined by solving the equation

∂

∂z

[
E

(
∂vr
∂z

)]
D �r,ω2, �W21.65�

where vr is zero at the surface of the substrate (z D 0) and reaches a maximum value
at the surface of the coating. Integration leads to

vr�r, z� D n

nC 1

rω2,



[
h1C1/n � �h � z�1C1/n] , �W21.66�

where h is the thickness of the coating. The volume flow rate, Q, is given by

Q�r� D
∫ h

0
vr2)r dz D n

2nC 1

2)r2ω2,


h2C1/n, �W21.67�

so

h�r� D
(

2nC 1

n

Q

2),r2ω2

)n/�2nC1�

. �W21.68�

When the spinning stops, the surface tension will flatten the surface so as to mini-
mize the surface energy. The time scale for this relaxation may be expressed using
dimensional analysis in the form = D ED/�, where D is a characteristic dimensionless
scale length formed from R and the volume of the film.

Suppose that there is a uniform coating of thickness h0 at time t D 0. Allow the
spinning to occur so that an excess of polymer will flow over the edge. Apply continuity

h

r
w

z

Figure W21.36. Spin-coating process.
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concepts to develop an equation for h as a function of time. Consider the rate of change
of the volume above the annulus lying between r and r C dr:

∂�dV�

∂t
D 2)r dr

∂h

∂t
. �W21.69�

This change would be caused by a net flux into the cylinder. The flux coming from
the inside is

�r� D
∫ h

0
vr�r, z�2)r dz D 2)r2 n

2nC 1

ω2,


h�2nC1�/n. �W21.70�

The continuity equation states that

�r���r C dr� D ∂�dV�

∂t
, �W21.71�

so
∂h

∂t
D � n

2nC 1

ω2,



1

r

∂

∂r
�r2h�2nC1�/n�. �W21.72�

A solution of this equation h�t�, independent of r, is

h�t� D
(
h��nC1�/n

0 C 2nC 2

2nC 1

,ω2


t

)�n/�nC1�

, �W21.73�

where h�0� D h0. In the case of a Newtonian fluid, n D 1 and  D E. The volume flow
per unit time over the outer rim of the disk, of radius R, is

�R� D
∫ h

0
vr�R, z�2)R dz D 2)R2 n

2nC 1

ω2,


h�2nC1�/n. �W21.74�

W21.25 Microwave and Plasma Processing of Polymers

Microwave Processing. Often, it is advantageous to heat a material to remove
defects, alter the crystallinity, control the morphology, promote drying, accelerate a
polymerization reaction, and so on. The problem with polymers, however, is that they
tend to be poor thermal conductors. The temperature that needs to be reached is usually
close to the ceiling temperature Tc, the temperature at which there is irreversible
chemical damage to the polymer. Heating the surface of the material leads to thermal
gradients, so the heating rate must be made very slow to avoid having parts of the
material with T > Tc. Microwaves offer the advantage of being able to heat a sample
uniformly, at least over a skin depth, making it possible to achieve much more rapid
heating rates.

Microwave radiation couples to molecular groups on the polymer that possess
electric-dipole moments, such as OH, CN, or NH2. Once local vibrations, librations, or
rotations of these groups are excited, they dissipate the energy to the rest of the polymer
chain by radiating one-dimensional phonons. The radiation also couples to ions and
produces ac currents. The moving ions collide with the polymer chain, also creating
phonons. In the liquid phase the dipole moments are able to reorient themselves readily,
and this gives rise to strong coupling to the microwave field. As the temperature is
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lowered and the polymer becomes more rubbery, the groups lose some of their flexi-
bility and the absorption is reduced. If the liquid is cooled below the glass-transition
temperature Tg, more of the degrees of freedom are removed and the dipolar coupling
becomes still less. In the crystalline phase the steric hindrance becomes even more
severe and the coupling drops even further. Often, additives are added to enhance the
dipolar absorption during processing. These include metallic particles, carbon black,
or carbon fibers. If conducting particles are added and these percolate throughout the
material, eddy currents may be established by the microwave fields. These currents
produce ohmic heating.

The skin depth υ is given in terms of the ac conductivity � by the formula υ D
1/
p

2ωC0�. The value of � is determined by the concentration of carbon black, so the
value of υ may be chosen so it is larger than the sample thickness. Within the sample
the intensity of the radiation falls off according to Beer’s law, I�z� D I0 exp��z/υ�. In
the limit of a material of small thickness, obeying d− υ, the power absorbed per unit
area is given by P/A D �jE0j2d/2, where E0 is the electric field in the medium.

An important application of microwave radiation is in curing the polyimide thin
films used in the design of electronic chips. Microwaves may also be used to ensure a
uniformity of epoxy resins that are thermoset. In composite materials uniform curing
is important to improve the fracture properties. Thus microwave radiation provides a
valuable processing tool for polymers.

Plasma Processing. Whereas microwaves are most useful in processing the bulk of
polymers, plasma processing is used to modify the surfaces of polymers. The plasma
may be used to clean the polymer surface. It may be used selectively to remove
unwanted polymers of low molecular weight (oligomers). It is often used to remove
photoresist from electronic chips as part of the lithography process. It may serve to
etch new topographic features into the surface or to sputter away old ones. It may
be employed to alter the surface chemically, such as by adding new chemical groups
to the polymer. It may also be used to deposit protective coatings or coatings on the
surface that modify its physical properties.

The reason for the vulnerability of small molecules to plasma etching has to do with
their inability to dissipate energy via phonons. The longer-chain molecules may conduct
thermal energy along their chains to the interior of the polymer. The shorter chains
are not able to do so. Instead, the vibrational temperature of the oligomers is increased
by exposure to the plasma until they dissociate. Frequently, gaseous products such as
CH4 and H2 or free radicals such as CH2 are produced. For the sputtering process ArC

plasmas are used. Since Ar is inert, it does not contaminate the underlying surface by
chemically bonding to it.

Surfaces may be reactively etched by using plasmas with ions such as O2
C, SF6

C,
or CF4

C. The microstructure of the surface may be suitably changed. One may roughen
a surface to increase its surface area so that a coating will adhere to it better.

At times the surface is chemically altered. It is first exposed to process gases that
adsorb on the surface and create free radicals. Gases such as O2, N2, NH3, and CF4 are
used. Subsequent exposure to the plasma provides the activation energy that permits
the polymer chain to acquire new functional groups.

An example of a coating that may be deposited using plasmas is PMMA. The poly-
merization reaction, in which gaseous methylmethacrylate molecules are polymerized
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into long chains of polymethylmetacrylate (PMMA), could be initiated by exposure to
a plasma.
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PROBLEMS

W21.1 Calculate the equilibrium constant K for the reaction SiO2�s�$ Si�s�C
O2�g� at T D 1300 K and also the O2�g� equilibrium vapor pressure
Peq[O2�g�,�1300 K]. Use fGo[SiO2�s�, 1300 K] D �678.535 kJ/mol for
high cristobalite, the stable form of SiO2�s� at T D 1300 K. This problem
illustrates that SiO2�s� is very stable against decomposition into its elemental
components Si(s) and O2�g�.

W21.2 The heat or enthalpy of formation fHo of Si(g) vapor is essentially indepen-
dent of temperature from T D 0 K up to the melting temperature Tm D 1414°C
and is approximately equal to (448 š 2) kJ/mol. Convert this result from
kJ/mol to eV/atom and compare the result with the Si–Si bond energy given in
Chapter 2, [i.e., E�Si–Si� D 2.34 eV]. From what you know about the crystal
structure and bonding in Si(s), what can you conclude about the vaporization
of Si(s) from this comparison?

W21.3 Consider the equilibrium phase diagram for the Si–A system shown schemat-
ically in Fig. W21.8, where the liquidus and solidus curves are both nearly
straight lines for low concentrations of element A in Si, with negative slopes
sL and sS. Show that the distribution coefficient KA of A in Si is given by the
ratio of the slopes of these two lines [i.e., by Eq. (W21.14)]. (Hint : Review
the discussion of equilibrium binary phase diagrams in Section 6.5.)

W21.4 For the thermal oxidation of Si using dry O2:
(a) Derive the expression for the thickness x�t� of the growing a-SiO2 layer

given in Eq. (21.53).
(b) Derive the expressions for x�t� given in Eq. (21.54) for thin layers and in

Eq. (21.55) for thicker layers.
W21.5 Calculate the mass densities of ˛-Fe at T D 20°C, --Fe at T D 912°C, υ-Fe at

T D 1394°C, and Fe3C at T D 20°C (four formula units per orthorhombic unit
cell), and of martensite at T D 20°C for x D 0.02 and 0.04 using the structural
data given in Table W21.5.

W21.6 Propose and explain a mechanism by which the alternating layers of ferrite
and cementite found in the pearlite shown in Fig. 21.11 can be formed when
austenite is slowly cooled through the eutectoid temperature Te.

W21.7 For the situation illustrated in Fig. W21.28, where an ion beam deposits
10 J/cm2 of energy into the surface of a tool steel, calculate the thickness
d of the surface layer that can be melted. To simplify the calculation, assume
that the steel is pure Fe, its specific heat is constant from T D 300 K up to
Tm D 1538 K, and the energy is deposited uniformly within the thickness d
that is melted.



CHAPTER W22

Characterization of Materials

22.1 Introduction

The characterization of materials requires obtaining detailed information about the
spatial arrangement of the atoms and identifying precisely which atoms occupy which
particular sites in the crystal structure. It also includes the specification of imperfections,
impurities, inhomogeneities, and so on. Often, it involves measuring some particular
electronic or optical properties. In this chapter we describe a set of tools that the mate-
rials scientist has at his or her disposal to characterize materials physically. Some of
these tools may be thought of as “cameras” that produce pictures of the material in
real space. These include the scanning-electron microscope (SEM), the transmission-
electron microscope (TEM), the scanning-tunneling microscope (STM), and the atomic-
force microscope (AFM). Also included is the high-resolution transmission-electron
microscope (HRTEM) and the low-energy electron microscope (LEEM). Other comple-
mentary tools take pictures in momentum space or wave-vector space rather than in
real space. Included among these are apparatuses that study x-ray diffraction (XRD),
low-energy electron diffraction (LEED), neutron diffraction, and reflection high-energy
electron diffraction (RHEED). As with any still camera, information is most readily
obtained about the static structure of the material, although the blurriness also conveys
some dynamical information.

Additional tools provide information about the dynamical response of a material.
Again, this information could be obtained as a function of the real time variable or as
a function of the complementary frequency variable. In real time one may use time-
dependent luminescent studies to capture the dynamical evolution of a system. Included
among the numerous techniques available in frequency space are the optical spectro-
scopies: infrared, visible, and ultraviolet spectroscopy and light scattering, ellipsometry,
infrared absorption, Raman scattering, photoluminescence, and nonlinear optical spec-
troscopy. Spectroscopy may also be performed with electrons in such techniques as
electron energy-loss spectroscopy (EELS) and Auger emission spectroscopy (AES).
Inelastic neutron scattering is often used. There are also spectroscopic techniques in
which both the electrons and photons play a significant role, such as extended x-
ray absorption fine-structure spectroscopy (EXAFS), x-ray photoemission spectroscopy
(XPS), and ultraviolet photoemission spectroscopy (UPS). Included among the spec-
troscopic tools are a variety of resonance techniques: nuclear magnetic resonance
(NMR), electron-spin resonance (ESR), nuclear-quadrupole resonance (NQR), and the
Mössbauer effect.

Further information about the solid may be obtained using ionic probes, such as
in secondary-ion mass spectrometry (SIMS) and Rutherford backscattering (RBS).

413
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Positron beams are used in positron annihilation spectroscopy (PAS) and positive muon
beams are used in the technique of muon-precession spectroscopy (µPS).

The chapter also touches briefly on transport measurements of electrical resistivity,
the Hall effect, thermal conductivity, thermopower, and the Peltier coefficient. It
describes some magnetic characterization tools, such as the Foner magnetometer, the
Faraday balance, and the ac bridge. The SQUID magnetometer is discussed in the
textbook in Section 16.7.†

Not all methods of characterization are of equal importance. Such techniques as
XRD and NMR are more universally employed than others such as LEEM, EXAFS,
and HRTEM. Therefore, more space is devoted in the chapter to the former than to
the latter techniques. Nevertheless, all the methods in the chapter (as well as others)
are used to characterize materials and so should be understood.

DIFFRACTION TECHNIQUES

In this section various diffraction techniques are studied. The most important is x-ray
diffraction, which provides information about the long-range order in the bulk of the
material. Low-energy electron diffraction provides similar information for the surface
of the material. Reflection high-energy electron diffraction and neutron diffraction are
also very useful in determining the structure. In particular, neutron scattering is sensitive
to the magnetic ordering of a solid.

W22.2 X-ray Diffraction

When a beam of x-rays interacts with an arbitrary material its atoms may scatter the
rays into all possible directions. In a crystalline solid, however, the atoms are arranged
in a periodic array and this imposes strong constraints on the resulting diffraction
pattern. It will be assumed for now that the temperature is sufficiently low that the
atoms may be regarded as being frozen in position. Diffraction was introduced in
Chapter 3, where the emphasis was on the kinematical aspects of the diffraction. In
Section 3.4 the Bragg and von Laue points of view were stated and compared.

In the Bragg description, x-ray diffraction (XRD) is brought about by the construc-
tive interference of waves scattered from successive lattice planes in the crystal. Each
plane actually scatters from 10�4 to 10�3 of the incident wave. Referring to Fig. 3.6, let
an incident beam of wave vector k impinge on a set of lattice planes, the rays making
an angle � with respect to the planes. Attention is restricted to the case of specular
elastic scattering, so the outgoing scattered beam, of wave vector k0, also makes an
angle � with these planes and

k0 D k. �W22.1�

The angle of deviation between the outgoing and incident rays is � D 2�. The sepa-
ration between neighboring planes is denoted by d. The Bragg condition is given by

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Eq. (3.52). Constructive interference between successive paths occurs when the path
difference equals an integer number of wavelengths.

Von Laue regarded x-ray diffraction as coming about due to the scattering of photons
from the periodic lattice. Since the crystal possesses a discrete translational symmetry,
there is only wave-vector conservation modulus a reciprocal lattice vector G. The inci-
dent and outgoing wave vectors have the same magnitude and are related by Eq. (3.54).
It follows that

G2 C 2G · k D 0 �W22.2�

As a result, only very specific directions of the incident wave vector k will result in
diffracted beams.

There are at least four ways that one may perform x-ray diffraction experiments:

1. Using a broadband (nonmonochromatic) x-ray source and looking at the back-
reflection. By utilizing a broadband source such as is produced by bremsstrahlung,
there will be a spread of frequencies and hence a spread of wave-vector magni-
tudes. Even if the angle of incidence is held fixed, there will be some values of
k for which Laue backscattering will occur.

2. Using a diverging (noncollimated) beam of x-rays. Similarly, by using a beam
with a spread of angles, it is possible for the Bragg formula to be satisfied even
if k is held fixed.

3. Using a monochromatic and collimated source but rotating the crystal until the
diffraction condition is met. It is also possible to keep the beam unidirectional
and monochromatic but to rotate the sample through some angular trajectory.
Whenever the angle is such that the Bragg condition is met, diffraction will
occur.

4. Diffracting the monochromatic x-rays from a powder. In a powder there are
mesoscopic-sized crystals oriented in arbitrary directions. If the x-ray beam
impinges on such a powder there will be some orientations for which � will
satisfy the Bragg condition. Having fixed the direction that k makes with the
normal to the crystal, any rotation of the crystal around k will still satisfy the
Bragg condition. Such rotations will cause the Bragg spots to sweep out circles.
Since there are a huge number of orientations present in a powder, a circular
diffraction pattern is produced.

According to the Heisenberg uncertainty relation, a finite size s for a crystal
fragment implies an uncertainty in the G vectors that give rise to diffraction maxima;
that is,

Gs ³ 1. �W22.3�

This means that the diffraction lines are not perfectly sharp but rather have an angular
width on the order of

� ³ tan �

Gs
. �W22.4�

This helps in satisfying the Bragg condition in a powder. It also permits a quantitative
estimate of the degree of long-range order to be made by examining the width of the
diffraction spots or lines.
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Having determined the allowed directions for x-ray scattering from simple conserva-
tion laws, one proceeds to obtain expressions for the intensities of the various diffracted
beams. X-ray energies are much larger than typical energies of electrons in the conduc-
tion band (e.g., the Fermi energy) or the energies of electrons in the upper valence
bands (characterized by the energy gaps and bandwidths). However, the x-ray energy
may be less than the binding energies of some of the deep-core electrons, particularly
in the heavier elements. One may classify the electrons into two categories, which
will be termed active and deep-core. Active electrons are the electrons in the conduc-
tion and upper valence bands; deep-core electrons lie in the deep bands. To a first
approximation the active electrons may be treated as if they were free. The deep-core
electrons are tightly bound to the nuclei and, aside from special resonance situations,
are essentially inert.

The dynamics of a free electron interacting with an electromagnetic field follows
from Newton’s second law:

�eE0 sinωt D ma�t�. �W22.5�

The total instantaneous power radiated by the accelerating charge is given by Larmor’s
radiation formula:

P�t� D 2

3

e2a2�t�

4��0c3
. �W22.6�

The time-averaged radiated power is thus

hPi D e4E2
0

12��0m2c3
. �W22.7�

The incident intensity (power per unit area) of the x-ray field is given by the product
of the speed of light and the energy density in the field

I D c

2

[
�0E

2�t�C B
2�t�

�0

]
. �W22.8�

The time-averaged intensity is obtained by noting that the electric and magnetic energy
densities are the same, so

〈
�0E

2�t�C B
2�t�

�0

〉
D �0E

2
0, �W22.9�

hIi D �0c

2
E2

0. �W22.10�

The cross section for x-ray scattering is the ratio of the scattered power to the incident
intensity:

� D hPihIi D
8�

3
r2

0 . �W22.11�

This is the Thomson cross section for x-ray scattering. The quantity r0 D e2/4��0mc2 D
2.818ð 10�15 m is called the classical radius of the electron.
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The scattered radiation is not emitted isotropically (i.e., equally in all directions).
Consider first a linearly polarized incident electromagnetic wave. An electron oscil-
lating back and forth constitutes a microscopic antenna. The angular distribution of
this antenna is given by the dipole distribution

P ³ � Ok0 ð OE0�
2. �W22.12�

The polarization vector E0 is perpendicular to the wave vector of the incident beam
k. If E0 lies in the scattering plane (the plane containing k and k0; see Fig. 3.6) the
function above is proportional to cos2 �. If it is perpendicular to the scattering plane,
the function above is 1. For unpolarized radiation, which consists of an equal admixture
of the two polarization states, the factor is �1C cos2 ��/2. The differential scattering
cross section for scattering radiation into a given solid angle d� centered around angle
� is thus

d�

d�
D r2

0

2
�1C cos2 2��. �W22.13�

This has been normalized so that when integrated over all solid angles, the previously
obtained formula for the total cross section is regained.

Having derived the cross section for x-ray scattering from a single electron using
classical mechanics, this result may now be generalized to the quantum-mechanical
case. Two points need to be considered. First, the electron is to be described by a
wavefunction whose magnitude squared gives the local probability density for finding
the electron at a point in space. If space were decomposed into small volume elements,
each element has a probability for containing the electron and hence will contribute to
the total x-ray scattering signal. Second, each element radiates coherently to produce the
scattered x-ray beam. Determination of the phase of the scattering is simple. Suppose
that the element is located at position r. The incoming field arrives at this position with
phase (ik · r). For the outgoing beam the radiation is created at position r and emerges
with wave vector k0. Therefore, the outgoing field has a phase factor exp��ik0 · r�.
The scattering amplitude has a phase factor exp[i�k� k0� · r]. The atomic form factor
is the Fourier transform of the electron probability distribution:

f�q� D
∫
n�r�exp[i�k� k0� · r]dr D

∫
n�r� exp[�iq · r]dr. �W22.14�

where q D k0 � k is the wave-vector transfer (proportional to the momentum transfer),
n�r/ is the probability density for the electrons, and the integral extends over the volume
of the crystal. The classical differential scattering cross section derived previously is
multiplied by the absolute square of this factor and becomes

d�

d�
D r2

0

2
[1C cos2�2��]jf�q�j2. �W22.15�

One may extend this result immediately to the case of x-ray scattering by an atom by
interpreting n�r� as the electron number density of the atom. Note that the nucleus,
although electrically charged, does not contribute to the x-ray signal because of its
heavy mass. As mentioned earlier, the deep-core electrons of the heavier elements also
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are not effective in scattering x-rays, so Eq. (W22.15) should only be regarded as being
approximate.

The case of x-ray scattering from a crystal may now be investigated. The scattering
amplitude F�q� for the crystal is given by Eq. (3.31). It may be expressed as the
product of an atomic-form factor and a geometric-structure factor, as in Eq. (3.45).
For a monatomic crystal the electron number density is taken to be a superposition of
atomic densities and to be of the form

n�r� D
∑

R

natom�r − R�. �W22.16�

In cases where there are several atoms per unit cell, the electron density is

n�r� D
∑

R

∑
j

nj�r� R� sj�. �W22.17�

In place of Eq. (3.34), one obtains

F�q� D S�q�
∑
j

fj�q�exp��iq · sj�. �W22.18�

The final formula for the differential cross section becomes

d�

d�
D r2

0

2
N2 (1C cos2 2�

)∑
G

υq,G

∣∣∣∣∣∣
∑
j

fj�G�exp��iG · sj�

∣∣∣∣∣∣
2

exp��2W�,

�W22.19�
where N is the number of unit cells in the crystal. The factor exp��2W�, called
the Debye–Waller factor, takes into account thermal fluctuations. It is introduced in
Section W5.2. The existence of the N2 factor points to the fact that x-ray Bragg scat-
tering is a coherent effect.

In particular experimental implementations of x-ray diffraction, additional angular-
dependent terms may enter. For example, in the rotating-crystal method there is a factor
1/ sin 2� that arises from the time the crystal spends satisfying the Bragg condition.
If the crystal were to rotate with an angular velocity ωc, the time integral of the von
Laue momentum constraint would be

∫
dt υ�G2 � 2Gk sin �� D 1

2Gkωc cos �
D 1

2ωck2 sin 2�
. �W22.20�

This enters as an additional factor multiplying the differential cross-section formula.
For the powder-diffraction method there is a different angular factor.

In Fig. W22.1 a Laue back-reflection diffraction pattern for x-rays backscattered
from Si(111) is presented. In Fig. W22.2 an x-ray diffraction pattern from a powdered
sample of ˇ-SiC is presented. In this figure the intensities of the diffracted x-ray cones
are plotted as a function of the scattering angle, 2�. This type of graph conveys more
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Figure W22.1. Laue back-reflection x-ray diffraction pattern for Si(111). The threefold rota-
tional symmetry of the Si(111) planes is apparent.
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Figure W22.2. X-ray diffraction pattern of sintered SiC fiber-bonded ceramic powders.
[Reprinted with permission from T. Ishikawa et al., Science, 282, 1295 (1998). Copyright 1998,
American Association for the Advancement of Science.]

information than the powder x-ray diffraction pattern that is presented in Fig. 6.16
in that the relative contributions from the different diffraction peaks are presented. In
addition, the widths of the diffraction peaks are related to the quality of the crystallites.
The larger and more perfect the crystallites are, the sharper the diffraction pattern
will be.

W22.3 Low-Energy Electron Diffraction

C. J. Davisson and L. H. Germer, Phys. Rev., 30, 705 (1927), directed a monoener-
getic beam of electrons at the surface of a solid and found that the reflected electrons
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consisted of a set of diffracted beams. This was consistent with the de Broglie hypoth-
esis that, associated with electrons of momentum p, there is a wave with wavelength
given by ( D h/p D 2�/k. The momentum of a free electron is related to the energy
by p D �2mE�1/2. Thus the wave vector of the electron is

k D 2�

(
D 1

h̄

p
2mE. �W22.21�

The solid-state crystal provides a microscopic diffraction grating for these electrons.
The wavelength of a 100-eV electron is 0.124 nm, a distance comparable to the

spacing between atoms in a solid. The wavelength may be conveniently adjusted by
varying the accelerating voltage of the electrons. This method of studying the crystal
is called low-energy electron diffraction (LEED). Since the mean free path of electrons
in crystals is short (typically, around 1.0 nm for 100 eV), the penetration distance is
short. LEED is therefore a tool that provides information about the surface and the
first few atomic layers of a solid.

The projectile electron interacts with the ion cores and electrons of the solid. Assume
that the surface is flat on a distance scale large compared with the interatomic spacing.
The interaction with the ion cores is primarily coulombic, whereas the interaction with
the electrons includes an exchange contribution. The net result is that the potential
energy is given by some function V�R, z�, where R is a vector along the surface and z
is the coordinate normal to the surface. In most cases of interest V�R, z� is a periodic
function of R and may be expanded in a Fourier series

V�R, z� D
∑

G

VG�z� exp�iG · R�. �W22.22�

Here the G vectors constitute a set of two-dimensional vectors called the surface
reciprocal net. They play the same role in two-dimensional periodic systems as the
reciprocal lattice plays in three dimensions. Note that the Fourier coefficients are them-
selves functions of z. The periodicity in the z direction is broken for two reasons. First,
the crystal is terminated by the surface. Second, there is lattice-plane relaxation as
discussed in Chapter 19. In many instances surface reconstruction occurs, in which the
surface layer has a translational symmetry parallel to the surface which is not the same
as the atoms in the bulk. The unit net of the reconstructed surface is in registry with
the underlying bulk lattice and can include several bulk unit-cell projections.

In describing the kinematics of LEED there are two conservation laws operating.
The first is conservation of wave vector parallel to the surface, modulus a reciprocal
lattice vector

K0 D KCG. �W22.23�

The second law is conservation of energy,

h̄2k
02

2m
D h̄

2k2

2m
. �W22.24�

Here the wave vector k is expressed as the sum of a vector lying in the surface plane,
K, and a vector perpendicular to the surface:

k D KC kz Oz. �W22.25�
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Similarly, for the outgoing electron,

k0 D K0 C k0z Oz. �W22.26�

The scattering geometry is presented in Fig. W22.3. Note that the vector K has been
drawn twice for presentation purposes. Let the angle the incident electron makes with
the surface be � and the corresponding angle for the outgoing electron be �0. The
conservation laws relate these angles:

sin2 �0 D sin2 � � G
2 C 2K · G

k2
D sin2 � � G

2 C 2Gk cos � cos 

k2
, �W22.27�

where  is the angle between K and G. Thus for a given incident angle there will
be a set of outgoing angles corresponding to the different values of G. Naturally, the
value of the right-hand side of Eq. (W22.27) must lie between 0 and 1 or the diffracted
beam will be suppressed. The surface components of the electron wave vectors make
an angle � with respect to each other given by

cos� D k2�cos2 � C cos2 �0��G2

2k2 cos � cos �0
. �W22.28�

A simple geometric interpretation of the result above is obtained by referring to
Fig. W22.3. Since k and k0 have the same magnitude, they may be regarded as both
touching a sphere (the Ewald sphere) of radius k centered around the origin. Their
respective shadows in the plane of the surface must differ by a surface reciprocal-lattice
vector in order to produce a diffraction peak. One may imagine a set of parallel rods
extending upward from the surface piercing the Ewald sphere with the intersections
determining the diffraction directions.

As mentioned in Chapter 19, in two dimensions there are five possible Bravais
nets tiled with: squares, hexagons, rectangles, centered rectangles, and parallelograms.
These are illustrated in Fig. 19.2. The primitive unit mesh vectors, u1 and u2, (as
defined in Table 19.1), with their corresponding reciprocal net vectors, G1 and G2, are

K'

q '

y
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K K

z

q

G
y

f

x

Figure W22.3. LEED scattering geometry: an incident electron with wave vector k is scattered
to an outgoing state with wave vector k0.
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TABLE W22.1 Five Bravais Nets and Their Properties

Primitive Reciprocal Lattice
Bravais Net Vectors Vectors

Square aOi �2�/a�Oi
a Oj �2�/a� Oj

Rectangular aOi �2�/a�Oi
b Oj �2�/b� Oj

Centered rectangular aOi �2�/a�Oi� �2�/b� Oj
�aOiC b Oj�/2 �4�/b� Oj

Hexagonal aOi �2�/a�[Oi� Oj/p3]

a�OiC Ojp3�/2 �4�/a� Oj/p3

Oblique aOi �2�/a�[Oi� Oj cot���]

b�Oi cos� C Oj sin�� �2�/b� Oj csc���

given in Table W22.1. They are related by

G1 D �2�
Ok × u2

Ok · u1 × u2

, G2 D 2�
Ok × u1

Ok · u1 × u2

. �W22.29�

It is usually necessary to fit the observed LEED intensities to a model of the surface
and near-surface region to obtain a detailed picture of the surface atomic structure. An
example of a typical LEED pattern is given in Fig. W22.4. It shows the reconstruction
of an Ir(100) surface with a 5ð 1 superstructure. The reciprocal lattice vectors are of
the form G D hG1 C kG2, with h and k being integers. The spots may be enumerated
by these integers in the figure.

Figure W22.4. LEED pattern for a reconstructed Ir (100) surface. [Reprinted from K. Heinz,
Surf. Sci., 299/300, 433 (1994), Copyright 1994 with permission from Elsevier Science.]
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W22.4 Reflection High-Energy Electron Diffraction

In reflection high-energy electron diffraction (RHEED) a high-energy beam of electrons
is directed at grazing angles of incidence onto the solid. The electron energy is in
the range 10 to 100 keV and the angles are in the range 0.1° to 5°. The scattering
mechanism becomes more Coulomb-like, with the dominant scattering in the near-
forward direction. It is particularly sensitive to the surface structure of the solid.

Referring to the kinematic formulas developed for LEED and the corresponding
figure (Fig. W22.3) illustrating the scattering geometry, the following simplifications
are made. First, it is assumed that � is small, so that cos � ³ 1. For electrons in the
energy range 10 to 100 keV the wave vector k is in the range 5.1ð 1011 m�1 to
1.6ð 1012 m�1. This is typically two orders of magnitude larger than the reciprocal
net vectors, G. One may therefore make a series expansion in powers of G/k and
retain the lowest-order terms. Thus the numerical values for �, �0, and � and G/k are
all small. The results are

�
02 D �2 � 2G

k
cos � G

2

k2
, �W22.30�

�2 D G2

k2
. �W22.31�

If a spherical screen is located a distance R from the sample along the y axis, spots
will appear at the points

x D R cos �0 sin� ³ R� ³ šRG
K
, �W22.32a�

y D R cos �0 cos� ³ R, �W22.32b�

z D R sin �0 ³ R�0 D R
√
�2 � 2G

k
cos � G

2

k2
. �W22.32c�

Note that G cos D Gy . Thus the spots lie on a circle whose radius is

r D
√
x2 C z2 D R

√
�2 � 2Gy

k
. �W22.33�

If the surface of the solid consists of a square mesh of side a then the components of
G are

�Gx,Gy� D
(

2�nx
a

,
2�ny
a

)
, �W22.34�

where nx and ny are integers. The radius of the circle is

r��, ny� D R
√
�2 � 4�ny

ka
. �W22.35�

Corresponding to a given value of ny is a circle of a given radius. The location of
points along the circle is determined by nx.
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(a)

(b)

Figure W22.5. RHEED patterns taken with 20-keV electrons from Si (111) with the 7ð 7
structure. The upper pattern (a) is for [121] and the lower pattern (b) is for [011] incidence.
[From S. Ino, Jpn. J. Appl. Phys., 16, 891(1977). Copyright 1977 by the Japanese Journal of
Applied Physics.]

Examples of RHEED patterns are given in Fig. W22.5. RHEED is used to monitor
atomic layer-by-layer thin-film growth in MBE. Oscillations of spot amplitudes yield
growth rates and provide information on the growth mode.

W22.5 Neutron Scattering

Neutron scattering involves directing a beam of neutrons from a nuclear reactor at
a solid and monitoring the scattered neutrons with a detector. There are both elastic
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and inelastic contributions. The elastic contribution produces a diffraction pattern and
provides useful structural information such as interatomic spacings and symmetries of
the crystal. Inelastic scattering provides information concerning the phonon spectrum
and magnons in magnetic materials. Neutrons scatter off the nuclei via the strong
interaction and off electrons by magnetic interactions. The cross sections are small,
on the order of several square fermis [(10�15 m)2], so the mean free path is long.
Therefore, information is obtained concerning the bulk sample. It makes a difference
whether the sample is magnetized or not, and neutron scattering is therefore a valuable
tool for probing the magnetic ordering of matter. Studies may be made as a function of
temperature, external magnetic field, pressure, stress, or other thermodynamic variables.
It provides a powerful tool for obtaining phase diagrams of materials.

The neutrons that emerge from the reactor are collimated into a narrow beam by
placing absorbing shields in all but the desired beam direction. For thermal neutrons
(T D 300 K) the mean wave-vector magnitude is k D 4.3ð 1010 m�1. A monoener-
getic source is constructed from the thermal source by Bragg scattering the neutrons
off a crystal and further collimating the beam. By varying the angle of incidence the
neutron energy is tunable through some range of values. The typical wave vector is
several times greater than typical reciprocal lattice vectors G of samples to be studied.
Scattering from magnetized crystals can produce a polarized neutron beam.

The discussion begins by studying the case of neutron diffraction (i.e., elastic scat-
tering from the crystal). Suppose that the incident neutron wave vector is k and the
scattered wave vector is k0. The wave-vector transfer is

q D k0 � k. �W22.36�

If the lattice is periodic in three dimensions, momentum is conserved modulus a recip-
rocal lattice vector, implying that

q D G. �W22.37�

The energy conservation condition is

h̄2k
02

2Mn
D h̄2k2

2Mn
, �W22.38�

where Mn is the neutron mass. It follows that

q D 2k sin
�

2
, �W22.39�

where � is the scattering angle between vectors k and k0. The sample is rotated, and
whenever q D G is satisfied, a diffraction peak occurs. For single crystals the actual
value of the G vector is determined from the knowledge of k and k0.

As with x-ray diffraction, at finite temperatures the crystal may be regarded as an
admixture of ordered and disordered phases. The disordered part does not produce a
diffraction pattern but rather, produces a thermal diffuse background scattering. When
the crystal temperature is raised so that it finally melts, there is only diffuse scattering.
Additional contributions to the diffuse background are due to imperfections, impurities,
the magnetic moments of unaligned nuclei, and isotopic inhomogeneities.
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Inelastic neutron scattering is also possible. In this case one or more phonons or
magnons are either absorbed or emitted by the neutron in the course of scattering.
It is possible to measure the dispersion curve of these elementary excitations [i.e.,
to determine the dependence of their frequency ω�Q� on their wave vector Q]. For
absorption of a single phonon (or magnon) the conservation laws are

k0 D kCQCG,
h̄2k

02

2Mn
D h̄2k2

2Mn
C h̄ω�Q�. �W22.40�

The corresponding formulas for the emission of a single excitation are

k0 D k�QCG,
h̄2k

02

2Mn
D h̄2k2

2Mn
� h̄ω�Q�. �W22.41�

Phonons and magnons are excitations that obey Bose–Einstein statistics. The number
of excitations in mode Q is given by the Bose–Einstein distribution function:

n�Q, T� D 1

exp[h̄ω�Q�/kBT]� 1
. �W22.42�

The relative contribution of occupied to unoccupied states should be in the ratio of the
Boltzmann factor, exp[�h̄ω�Q�/kBT]. One therefore expects to see a spectrum (called
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Figure W22.6. Phonon dispersion curves for AgBr at T D 296 K measured by neutron scat-
tering. [From Y. Fujii et al, Phys. Rev. B, 15, 358 (1977). Copyright 1977 by the American
Physical Society.]
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the dynamical structure factor) of the form

S�Q, ω� D e�2W
∑

type,Q

jM�Q�j2 [[n�Q, T�C 1]υ�ω C ω�Q��C n�Q, T�υ�ω � ω�Q��],

�W22.43�
where M is a matrix element describing the coupling of the neutron to the particular
excitation and is defined in terms of the energy transfer:

h̄ω D h̄
2k
02

2Mn
� h̄

2k2

2Mn
. �W22.44�

The sum over “types” includes the various branches of the phonon spectrum (TA, LA,
TO, LO) as well as magnons, if they are present.

If the energy of the neutrons is sufficiently high, it is also possible to have emis-
sion or absorption of more than one elementary excitation. Thus two-phonon, three-
phonon,. . . processes are possible.

In summary, neutron scattering provides the means to measure the dispersion curves
of the low-energy elementary excitations of the crystal. An example of a set of such
curves is given in Fig. W22.6, where data for AgBr are presented along principal
symmetry directions of the reciprocal lattice.

OPTICAL SPECTROSCOPY

In the following sections various optical methods to acquire information about solids
are explored. First, optical spectroscopy is discussed for electromagnetic radiation in
the infrared, visible, and ultraviolet regions of the spectrum. The solid is excited from
its ground state to some excited state and information concerning such transitions
may be obtained from the reflectance or transmittance. This is followed by a discus-
sion of ellipsometry, which provides a technique for systematically mapping out the
electromagnetic properties of materials by examining the reflected light. The methods
of Fourier transform infrared spectroscopy and Raman spectroscopy provide comple-
mentary techniques for further characterizing the bulk of materials in the infrared.
Luminescence provides additional information about the excited states of the solid
as they relax toward lower-energy states by radiative emission. Finally, nonlinear
optical spectroscopy provides important information on how strong electromagnetic
fields interact with solids.

W22.6 Optical Spectroscopy in the Infrared, Visible, and Ultraviolet

The propagation of light through a material is governed by a complex index of
refraction Qn�ω� D n�ω�C i5�ω�. The real part of this index determines the speed of
propagation through the medium

v D c

n�ω�
. �W22.45�

The imaginary part determines the absorption coefficient that appears in the law of
attenuation, Beer’s law:

I�x�

I0
D exp[�˛�ω�x]. �W22.46�
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Here I�x�/I0 is the fraction of the initial light intensity entering the material that
remains after traversing a distance x and

˛�ω� D 2
ω

c
5�ω�. �W22.47�

One of the central goals of solid-state physics over the years has been to try to explain
the optical properties of materials in terms of the response of the electrons and the
lattice.

The index of refraction is measured directly using a reflectance apparatus. The
reflection coefficient, R, is the ratio of the reflected intensity to the incident intensity
and is given, for the case of normal incidence on a thick sample [see Eq. (8.16)], by

R�ω� D [n�ω�� 1]2 C [5�ω�]2

[n�ω�C 1]2 C [5�ω�]2
�W22.48�

(For thin samples the expression is more complicated due to interference effects caused
by reflection from the back surface of the film.) Selected data for n�ω� and 5�ω� for the
semiconductor GaAs are shown in Fig. W22.7. There is a sharp electronic band-edge
apparent at ³ 1 µm and a sharp optical-phonon resonance at ³ 30 µm.

In attempting to understand the optical properties, the various contributions to the
index of refraction need to be identified. These include the effect of optical phonons,
conduction electrons, interband transitions, and excitons, as well as trapped electrons.
These effects are studied in Chapter 8.

Typical ionic vibrational frequencies lie in the infrared region of the spectrum, and
this is true for the phonons as well. From Chapter 8 the optical-phonon contribution
to the complex index of refraction is given by the formula

[n�ω�C i5�ω�]2 D �r�1�
(

1C ω2
L � ω2

T

ω2
T � ω2 � iω8

)
. �W22.49�
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Figure W22.7. Optical constants n and 5 for GaAs as a function of energy E. (Data taken from
D. E. Aspnes and A. A. Studna, Optical Constants of Solids, E. D. Palik, ed., Academic Press,
San Diego, Calif., 1985).
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For GaAs the fit is made to the infrared spectrum and the fitting parameters are 9L D
292 cm�1, 9T D 269 cm�1, �r�1� D 11.0, and 8 D 2.4 cm�1, where ω D 2�9c.

In the case of a metal, one must take into account the plasma oscillations in
describing the optical region of the spectrum, as in Section 8.4. The index of refraction
would then be given by

[n�ω�C i5�ω�]2 D �r�1�
[

1� ω2
p

ω�ω C i/:�

]
, �W22.50�

where the plasma frequency is given by [see Eq. (8.11)]

ωp D
√

ne2

m��1� . �W22.51�

This is often used to fit the dielectric function in the region of the plasma resonance.
The lifetime : is determined by the collisions of the electrons within a given band with
phonons (intraband transitions).

Other channels for absorption open when the photon energy is larger than the gap
between an occupied and an unoccupied band. A semiconductor is a case in point.
When the photon energy exceeds the bandgap, electrons may be excited from the top
of the valence band to the bottom of the conduction band. If these extrema coincide in
k space, the transition is called direct. If not, phonon emission or absorption can make
up for the momentum mismatch and the transition is called indirect. One therefore finds
a sharp increase in 5�ω� when the photon energy exceeds the bandgap. The functional
form depends on the density of states in the two bands. To the extent that the smooth
variation of the radiation matrix elements are neglected, 5�ω� is proportional to

5�ω� ³
∫ �

�1
dE;v�E�;c�EC h̄ω�. �W22.52�

Thus it is given by the joint density of states between the valence band (v) and the
conduction band (c).

If excitons are present, then, as seen in Section 8.10, sharp absorption lines are
observed below the bandgap energy. These correspond to the energy of the formation
of the exciton (bandgap energy less the binding energy) and of its excited states.

One may also liberate electrons trapped in impurity levels by photon absorption and
monitor their presence by studying the behavior of 5�ω� below the energy gap.

The chemical composition of a solid may readily be determined by sputtering excited
atoms from the surface. The resulting atomic emission lines are identified using a
monochromator and photodetector. The technique is called atomic-emission spectrom-
etry. Typically, a beam of high-energy argon ions is used for the excitation. Before an
accurate quantitative analysis may be made, however, one must know the sputtering
and excitation probabilities for the individual atoms when subjected to the argon ions
at a given energy. These may be obtained from sputtering experiments using samples
with predetermined compositions.

It is also possible to look at the atomic absorption spectrum of the resulting plasma
to obtain a quantitative analysis. The technique is then called atomic-absorption spec-
trometry (AAS).
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Other methods, beside ArC ion bombardment, are available for producing sputtering,
including laser irradiation, electric arcs, and electron-stimulated desorption (ESD).

W22.7 Ellipsometry

Ellipsometry provides a means for characterizing the optical properties of solids, inter-
faces, thin films, and multilayers. The method employs polarized monochromatic light
which is reflected from the surface and analyzed. A typical experimental apparatus
with an arrangement referred to as the PCSA geometry is depicted in Fig. W22.8. A
collimated light beam, with wave vector k, passes through a polarizer P, and a compen-
sator C, is obliquely reflected from a sample S, passes through an analyzer A, and the
beam is finally detected with wave vector k00. The angle of incidence (and reflection)
is �.

Two basis states of the polarization geometry are shown in Fig. W22.9. The polar-
ization plane is defined as the plane containing the vectors k and k00 and it also contains
the normal to the solid surface, On. In the p-polarization case the incident and reflected
electric field vectors, E and E00, lie in the polarization plane, as shown in Fig. W22.9a.
In the s-polarization case, shown on the right, the electric field vectors are perpendicular
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Figure W22.8. Geometry of an ellipsometry experiment.

k

p

k

s

(a) (b)

E"E

k"
B"

B'

E'

f'

f f

B

n
∧

'm'

k'

E E"
k"

B'

E'f'

f

B B"

n
∧

k'

Interface

f

m

∋

∋
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cases. (Adapted from J. D. Jackson, Electrodynamics, 2nd ed., Wiley, New York, 1975, Figs. 7.6
and 7.7.)
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to the polarization plane. The unit basis vectors shown in Fig. W22.8, Os, Op, and Op0, are
appropriate for expressing the incident and reflected fields. The electric permittivity of
the solid, �0, will be a complex function of frequency, in general.

After passing through the polarizer, whose polarization axis makes an angle P with
the polarization plane, the electric field is E1 D E0� Op cosPC Os sinP�. The compensator
has a polarization axis defined by the unit vector OC, making an angle C with the polar-
ization plane. It has different transmittance for electric fields along OC and perpendicular
to OC. It may be described by the transmittance dyadic

$
T D Tjj OC OCC T?�$I2 � OC OC�,

where the two-dimensional unit dyadic may be expressed as
$
I2 D Op OpC Os Os. The field

emerging from the compensator is

E D [Tjj OC OCC T?�$I2 � OC OC�] · E1

D E0f[�Tjj � T?� cos�P�C� sinCC T? sinP] Os
C [�Tjj � T?� cos�P�C� cosCC T? cosP] Opg. �W22.53�

The ratio of Es to Ep may be written as

Es
Ep
D tanCC ;c tan�P�C�

1� ;c tanC tan�P� C� �W22.54�

where ;c � T?/Tjj. In the case where the compensator is a quarter-wave plate one has
;c D i D

p�1.
By matching boundary conditions for plane-wave reflection and transmission at the

interface, Fresnel derived expressions for the reflection coefficients for the amplitudes
of p- and s-polarized light. For the case of reflection from a semi-infinite solid, Fresnel
found that (Jackson, 1975, Sec. 7.3)

rs D
Qn cos� �

√
Qn02 � Qn2 sin2 �

Qn cos� C
√
Qn02 � Qn2 sin2 �

, �W22.55a�

rp D
Qn02 cos� � Qn

√
Qn02 � Qn2 sin2 �

Qn02 cos� C Qn
√
Qn02 � Qn02 sin2 �

, �W22.55b�

where it is assumed that the magnetic permeabilities are equal (i.e., �0 D �). In the
general case, either Qn or Qn0, the indices of refraction for the incident and reflecting
media, respectively, may be complex functions of frequency. In the case where light
is incident from vacuum, Qn D 1.

The reflected wave is given by E00 D �rp Op0 OpC rs Os Os� · E, that is,

E00 D E0�xs OsC x0p Op0�, �W22.56�

where

xs D rs[�Tjj � T?� cos�P�C� sinCC T? sinP] � jxsjeis , �W22.57a�

xp0 D rs[�Tjj � T?� cos�P�C� cosCC T? cosP] � jxp0 jeip0 . �W22.57b�
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The ratio �Ep0/Es�out is often expressed as

(
Ep0

Es

)
out
D xp0

xs
� tan ei, �W22.58�

where  D p0 �s.
After emerging from the analyzer, which makes an angle A with the polarizing plane,

the electric field is Eout D OA OA · E00. The intensity of the outgoing light is proportional
to jEoutj2,

I�A� D I0�1C ˛ cos 2AC ˇ sin 2A�, �W22.59�

where I0�/ jE0j2� is the mean intensity amplitude,

˛ D jxp0 j
2 � jxsj2

jxp0 j2 C jxsj2 D
tan2  � 1

tan2  C 1
, �W22.60a�

ˇ D 2jxp0 jjxsj cos

jxp0 j2 C jxsj2 D
2 tan cos

tan2  C 1
. �W22.60b�

Solving for  and  gives

 D tan�1



√

1C ˛
1� ˛ j tanPj


 , 0 �  � �/2, �W22.61a�

 D š cos�1



√

ˇ2

1� ˛2


 , �� <  � �. �W22.61b�

By fitting I�A� expressed by Eq. (W22.59) to the measured data, values for ˛ and ˇ
may be determined. One may then adjust the real and imaginary parts of Qn0 D n0 C i50
to obtain an optimum fit to the measured values of ˛ and ˇ. By carrying out this
procedure as a function of photon frequency, the real and imaginary parts of the index
of refraction, n0�ω� and 50�ω�, may be obtained.

The method is readily extended to the case where there is a film on a substrate.
The dielectric properties of the film are often modeled using an effective-medium
approximation. The sensitivity of ellipsometry is very high and the effects of monolayer
or even submonolayer films may be detected.

The growth of an hydrogenated amorphous carbon (a-C:H) film on a Mo substrate
is illustrated in Fig. W22.10, which shows the evolution of h�1i and h�2i, the real and
imaginary parts of the pseudodielectric function h�ri. The pseudodielectric function
corresponds to a hypothetical uniform and isotropic material with a clean and abrupt
surface boundary that gives the same ellipsometric data as the actual sample being
studied.† The start point corresponds to the bare Mo substrate and the end point to
a ³ 123 nm thick a-C:H film. The evolution of h�1i and h�2i has been modeled in

† D. E. Aspnes, Thin Solid Films, 89, 249 (1982).



CHARACTERIZATION OF MATERIALS 433

−10
−5 0 5 10 15

−5

10

15

20

<e
2
>

<e1>

Start RF discharge
pure CH4

End0

5

Figure W22.10. Pseudodielectric function for a-C:H film growth on Mo. “START” refers to a
bare Mo substrate and “END” to a film of 123 nm covering the substrate. [From R. W. Collins,
Appl. Phys. Lett., 52, 2025 (1988). Copyright 1988, American Institute of Physics.]

this case by the layer-by-layer growth of a uniform a-C:H film with �1 D 2.84 and
�2 D 0.425 at ( D 388 nm.

W22.8 Fourier Transform Infrared Spectroscopy

It is possible to measure the entire infrared-transmission spectrum of a solid at one
time using Fourier transform infrared spectroscopy (FTIR). The method is not limited
to the infrared or to absorption spectroscopy, although it is often used there. The
technique makes use of an interferometer with a moving mirror. The technique is to
create a replica of the infrared spectrum at much lower frequencies and to make the
measurements there.

The interferometer is illustrated in Fig. W22.11. Broadband infrared radiation E0�ω�
(usually blackbody radiation) is produced by a filament or globar O and is directed
toward a “half-silvered” mirror m. The beam is split into two parts, each one trav-
eling along a different arm of the interferometer. The first beam strikes mirror M
and the second beam strikes the moving mirror M0. The beams are recombined at

SD m

M

M'

v

Figure W22.11. FTIR apparatus showing the interferometer.
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the “half-silvered” mirror, are directed through sample S, and are finally detected at
detector D (usually, a bolometer). A recording is made of the intensity as a function
of time, which is then Fourier analyzed.

Let d be the distance from m to mirror M and d0 C vt be the distance from m to
mirror M0. The amplitude of the recombined wave is the superposition of the amplitudes
of the two beams

E�t� D E0�ω�

2
exp�2ikd�C E0�ω�

2
exp[2ik�d0 C vt�]. �W22.62�

The intensity incident on the sample is proportional to the absolute square of E. The
detected intensity is

I�t� D 2
∫ 1

0
dωI0�ω�T�ω�

[
1C cos

(
2
ω

C
�d0 � dC vt�

)]
. �W22.63�

where I0�ω� D jE0�ω�j2, T�ω� being the transmission coefficient for the sample. Now
take the Fourier transform of this to obtain

I��� D
∫ 1
�1

dt

2�
I�t� exp�i�t�

D
∫ 1

0
dωI0�ω�T�ω�

[
2υ���C υ

(
�� 2

v

c
ω
)

exp�i?�

Cυ
(
�C 2

v

c
ω
)

exp��i?�
]
, �W22.64�

where ? D 2ω�d� d0�/c. Focusing attention on the resonant (second) term and
computing its amplitude gives

jI���j ' c

2v
I0

( c
2v
�
) ∣∣∣T( c

2v
�
)∣∣∣ . �W22.65�

In the ideal case, since the blackbody spectrum is known, the functional dependence
of I0�ω� is known. Therefore, a measurement of I��� permits the determination of
jT�c�/2v�j. Since v will typically be on the order of 1 mm/s, the ratio c/2v will
be 1.5ð 1011. Thus a measurement in the frequency range of � ³ 1 kHz is used to
determine the spectrum in the range of 1014 Hz! A replica of the infrared spectrum
has been produced at low frequencies.

In reality, the situation is more complicated, since the source is not a blackbody.
Usually, a baseline spectrum is taken without a sample. In this way the output can be
normalized to the response of the system, including the source spectrum and detector
sensitivity.

FTIR permits one to obtain data simultaneously over a large frequency range and
over a large collection angle. Multiple scans are used to improve the signal-to-noise
ratio. The technique is readily extended to other forms of spectroscopy, such as Raman
spectroscopy.

The FTIR spectrum for diamond is presented in Fig. W22.12. The spectrum clearly
shows various critical points and combinations of critical points in the phonon spectrum.
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Figure W22.12. FTIR spectrum for diamond at T D 300 K. [From R. Vogelgesang et al., Phys.
Rev. B, 58, 5408 (1998). Copyright 1998 by the American Physical Society.]

This spectrum may also be contrasted with the Raman spectrum given in the following
section. The spectrum should be compared with the phonon density of states presented
in Fig. 5.9.

W22.9 Raman Spectroscopy

The Raman effect was originally discovered in molecular physics. Monochromatic light
of frequency ω was directed at a gas sample, and the scattered light was passed through
a monochromator and onto a photodetector. The scattered light consisted mainly of
radiation at frequency ω (Rayleigh scattering), but also possessed sidebands at lower
(Stokes shifted) and higher (anti-Stokes shifted) frequencies. The displacement of the
sidebands is characteristic of the type of molecule under study and is related to the
vibrational frequencies associated with nuclear motion. The angular momentum selec-
tion rules J D 0, š2 are obeyed, where J is the total angular momentum, consistent
with what is expected for scattering of a spin 1 particle, the photon. This differs from
the absorption case where the selection rules are J D 0,š1.

A simple classical theory provides a heuristic explanation of the effect, although a
quantum-mechanical treatment is required to understand the effect quantitatively. Let
the molecule be described by a polarizability tensor $̨, defined in Chapter 8. Incident
light provides an electric field with amplitude E0, which induces an oscillating electric
dipole

m D $a�ω� · E0 exp��iωt�. �W22.66�

This dipole will radiate in accordance with the Larmor radiation formula. The energy
emitted per frequency interval dω is

U�ω� D ω4

12��0c3
j$̨�ω� Ð EE0j2. �W22.67�
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This is elastically scattered light and is called Rayleigh scattering. Now suppose that
the molecule is allowed to vibrate in a particular normal mode with a vibrational
frequency � (which is much less than ω). The polarizability tensor will also fluctuate
at this frequency. Let Q be the normal-mode coordinate displacement associated with
�. Then, to a first approximation,

a�ω, t� D a0�ω�C ∂a�ω�
∂Q

Q cos�t. �W22.68�

The oscillating dipole now produces sidebands at frequencies ω C� and ω ��, in
addition to the oscillation at ω. The emission at these frequencies constitutes the
Raman anti-Stokes and Stokes radiation, respectively. Rayleigh scattering occurs at
frequency ω.

In the quantum-mechanical description the molecule is originally in the ground-
electronic state in some vibrational state, and the light causes it to make a virtual
transition to an excited-electronic state. This is followed by the molecule radiating a
photon and falling into any vibrational state associated with the ground-electronic state.
If the state happens to be the original one, it produces Rayleigh scattering. If it is to
a higher-energy state, it is Stokes Raman scattering, whereas if it is to a lower-energy
state, it is anti-Stokes Raman scattering. In Raman scattering the outgoing photon is
either lowered in energy or raised in energy by the vibrational quantum h̄�. In order
for anti-Stokes scattering to occur, there must be population in the excited vibrational
state to begin with, which arises from thermal excitation. Stokes scattering can always
occur. The ratio of the anti-Stokes to the Stokes scattering is given by the Boltzmann
factor:

Ianti�Stokes

IStokes
D exp

(
� h̄�
kBT

)
. �W22.69�

Raman scattering is useful in condensed matter physics and chemistry in several
instances. In solids the vibrational motions of the molecules are coupled and the exci-
tations spread out in energy. In crystals they assume the character of phonons and
are delocalized over the entire crystal. In highly disordered materials they may remain
as localized oscillations extending over many nearby neighbors. The phonons may be
categorized as being optical or acoustic. Raman scattering from the acoustic phonons
is called Brillouin scattering.

For example, consider the scattering by conduction electrons in a lightly n-doped
semiconductor. An electron may be virtually excited to some higher energy band and
then reemit a different photon in returning to the original band. However, the wave
vector of the photon is small compared with the size of the Brillouin zone. Therefore,
there cannot be much of a change in the wave vector of the electron. It could emit an
optical phonon with k D 0, selection rules permitting. It could also produce Brillouin
scattering. If anharmonic effects are taken into account, however, terms involving the
simultaneous excitation of two phonons are also present. In terms of the simple classical
model introduced earlier,

a�t� D a0�ω�C
2∑
iD1

∂a�ω�

∂Qi
Qi cos�it C 1

2

∑
ij

∂2a�ω�

∂Qi∂Qj
Qi cos�itQj cos�jt.

�W22.70�
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Sidebands now include terms with frequencies ω ��1 ��2, among others. Extending
this concept to solids implies that two-phonon production is possible. The net wave
vector carried off by a pair of optical phonons may be small (i.e. k1 C k2 D 0). Thus
light is able to create such a state with little momentum transfer.

Surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for
studying adsorbed species on the surfaces of solids. The Raman cross section for
adsorbed species is found to be enhanced by as much as six orders of magnitude over
the gaseous cross sections. Much of this enhancement is due to the increase in the
strength of the local electromagnetic field at the surface over its value in free space.
The amplification occurs because of local surface roughness, which creates miniature
“lightning rods,” and also because of particular electronic resonances of the solid, such
as surface plasmons. At frequencies approaching these resonances the surface acts
as a high-Q resonator and has high-frequency (ac) electric fields due to the incident
and outgoing radiation. There is also considerable evidence that the formation of the
chemical bond between the adsorbed molecule and the substrate enhances the value of
the Raman tensor, ∂˛/∂Q.

An example of a Raman spectrum is given in Fig. W22.13. The intensity of the
Raman scattering for diamond is plotted as a function of the frequency shift (in wave
numbers). The Raman spectrum may be contrasted with the infrared absorption spec-
trum given in Fig. W22.12. The Raman spectrum is due to both a single-phonon
process at ω0 (as shown in the inset to Fig. W22.13) and to much weaker two-phonon
processes. The one-phonon Raman peak at ω0 D 1332.4 cm�1 corresponds to the zone-
center optic mode at ³ 2.5ð 1014 rad/s of Fig. W22.12. Note that Raman scattering
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Figure W22.13. Raman spectrum for diamond at T D 300 K. The incident light is polarized in
the (111) plane. The backscattered light is in the [111] direction. [From R. Vogelgesang et al.,
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provides a much higher precision measurement of mode frequencies than does neutron
scattering. See also Fig. 11.21, which gives a Raman spectrum for a Si–Ge alloy.

W22.10 Luminescence

Light is absorbed by materials and a fraction of the light is reemitted, usually with
photons of lower frequencies. The process is called luminescence. The light may come
out promptly, on a time scale of the order of a nanosecond, in which case the process
is called fluorescence. It may come out on a much longer time scale, in which case it is
called phosphorescence. Just how much light comes out depends on the nature of the
competing channels for nonradiative decay. The quantum efficiency for luminescence
may be defined as the ratio of the number of output photons per unit time to the number
of input photons per unit time:

? D
PNoutput

PNinput
ð 100%. �W22.71�

In metals, where the excitation of electrons–hole pairs requires no activation energy,
the nonradiative decay mechanism is probable and the quantum efficiency is very small.
In semiconductors, where there is a substantial energy gap, the quantum efficiency may
be quite large.

In Fig. W22.14 a typical luminescence process for a semiconductor is illustrated.
An incident photon is absorbed by the solid, promoting an electron from a filled
valence-band state (v) to a vacant conduction-band state (c). The photon must, in most
instances, have an energy that exceeds the energy gap, Eg. The notable exception is the
case where excitons exist just below the bottom of the conduction band. The processes
above, in which an electron jumps from one band to the other band, is called an
interband process. A hole is left behind in the valence band. The electron is generally
produced in an excited state of the conduction band. By a sequence of phonon-emission
processes the electron relaxes to the bottom of the band. Similarly, the hole migrates
to the top of the valence band by such intraband processes. The time scale for these
transitions is typically picoseconds or less. Luminescence takes place when the electron
makes a radiative-decay transition from the bottom of the conduction band to the top
of the valence band. The radiative lifetime is longer than a nanosecond.

CB
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hw'

hw

Figure W22.14. Luminescence in a direct-gap semiconductor.
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substrate at T D 4 K. [From M. A. Marciniak et al., J. Appl. Phys., 84, 480 (1998). Copyright
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Hot luminescence occurs when the radiative recombination occurs not from the
bottom of the band but from some excited state in the conduction band. If the relaxation
occurs primarily with optical-phonon emission, a series of bumps will be seen in the
emission spectrum, corresponding to the photon energy less some number of optical-
phonon energies.

It is possible to study luminescence either in the frequency domain or in the time
domain. In the latter case the procedure is called a time-resolved luminescence study.
Luminescence may also be used to study defects. Cathodoluminescence is produced
by an electron beam striking the surface of a solid.

An example of a photoluminescence spectrum is given in Fig. W22.15 for a film
of InAs0.911Sb0.089 lattice-matched to a GaSb substrate. In addition to the main lumi-
nescence peak, there is a sideband lowered by the energy of a single LO phonon
(³ 28.2 meV). The narrow line width (³ 5 meV) indicates that the material is of high
quality.

W22.11 Nonlinear Optical Spectroscopy

With the advent of the laser it has become very easy to generate high-intensity elec-
tromagnetic fields. Materials no longer necessarily respond in a linear manner to
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these fields, and it is important to understand their nonlinear properties. A number of
phenomena are associated with nonlinear optics, such as second- and third-harmonic
generation, three- and four-wave mixing, parametric excitation, self-focusing, self-
phase modulation, and self-induced transparency, etc. Closely related to the pure
nonlinear optical properties are the electro-optical and acousto-optical properties of
materials. One is often interested in knowing how the optical properties of a material
can be altered by applying electric fields or sound waves.

Attention will be focused on the polarization vector induced when an electric field
exists in a medium. For a linear isotropic medium,

P�ω� D �0E�ω�E�ω� �W22.72�

where E�ω� is the electric susceptibility. For an anisotropic linear material the corre-
sponding formula is [see Eq. (8.44)]

P�ω� D �0
$E�ω� · E�ω� �W22.73�

where $E�ω� is the electric susceptibility tensor. The anisotropy of this tensor is respon-
sible for birefringence (i.e., the variation of the speed of light in a material with the
polarization direction).

In nonlinear optics there are also nonlinear susceptibilities that may be defined. For
example, there is the second-order susceptibility defined by [see Eq. (8.46)]

P˛�ω� D �0

∑
ˇ8

∫
d�2�˛ˇ8 �ω1, ω2;ω�Eˇ�ω1�E8�ω2� dω1 dω2. �W22.74�

This process describes the interaction of two photons of frequencies ω1 and ω2 in a
material to create a photon of frequency ω. Energy conservation requires that

ω1 C ω2 D ω. �W22.75�

For this process to proceed it is also necessary to guarantee wave vector conservation,
that is,

k1 C k2 D k. �W22.76�

This is called phase matching. The concept appears in Section W8.1, where the index
ellipsoid is introduced. Methods for achieving phase matching in inhomogeneous
media were discussed in Sections W20.6 and W20.8. Using the dispersion formula
it implies that

ω1
n�ω1�

c
C �ω � ω1�

n�ω � ω1�

c
D ωn�ω�

c
. �W22.77�

This will, in general, not be valid for arbitrary frequencies. By rotating the crystal and
making use of the different indices of refraction for the ordinary and extraordinary
waves, however, it is possible to achieve phase matching.
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A particular application of the second-order nonlinearity is in the process of second-
harmonic generation. In that case [see Eq. (8.46)]

P˛�2ω� D �0

∑
ˇ8

d�2�˛ˇ8�ω, ω; 2ω�Eˇ�ω�E8�ω�. �W22.78�

Depending on the symmetry of the crystal, there will only be a small number of inde-
pendent components of d�2�˛ˇ8 . The various components of the second-order polarization
may be measured by focusing lasers of various polarizations onto a crystal volume and
measuring the amount of second-harmonic light that is generated. Values for the d�2�˛ˇ8
components for various materials are given in Table 8.4.

The second-order polarizability exists only in crystals without inversion symmetry.
The polarization vector P, being a vector, should reverse its direction under a reflection
operation, as should E. But this is inconsistent with Eq. (W22.78), since the left-hand
side changes sign but the right-hand side does not. In crystals with inversion symmetry
d�2�˛ˇ8 is zero.

The third-order nonlinearity is described in terms of a fourth-order polarizability
tensor defined analogously as

P˛�ω� D �0

∑
ˇ8υ

∫ ∫
d�3�ˇ8υ�ω1, ω2, ω � ω1 � ω2;ω�

ð Eˇ�ω1�E8�ω2�Eυ�ω � ω1 � ω2� dω1 dω2, �W22.79�

where the phase-matching condition is

k1 C k2 C k3 D k �W22.80�

and energy conservation requires that

ω1 C ω2 C ω3 D ω. �W22.81�

The tensor d�3�˛ˇ8υ�ω, ω, ω; 3ω� may be determined by performing a third-harmonic
generation experiment. Values for it appear in Table 8.5.

The application of an electric field to a crystal may alter the linear index of refraction
of the crystal. This is of considerable technological importance since it implies that
laser beams may be deflected electronically and at electronic frequencies. The degree
to which the index of refraction changes when an electric field is applied to the crystal
is determined by the electro-optic tensor (see Section 18.8).

The effective index of refraction for light propagating in a given direction k with a
given polarization vector Oε is defined in terms of the index ellipsoid. One constructs
an imaginary ellipsoid in space (see Eq. (W8.12)]:
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where x, y, and z define the coordinates in which the index of refraction tensor (related
to the polarization tensor) is diagonal, and nx, ny , and nz are the corresponding indices
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of refraction. Draw a plane through the center of the ellipsoid perpendicular to k. The
plane intercepts the ellipsoid in an ellipse. The length of the vector from the center of
the ellipsoid to the ellipse in the direction of Oε is the value of n for that light ray.

Now introduce an electric field E. The index ellipsoid will become stretched or
compressed and will be rotated relative to the coordinates above. The new equation
becomes[
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The dependence of these coefficients on E is, for weak fields, a linear one. Thus
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r˛ˇEˇ, ˛ D 4, 5, 6. �W22.84b�

The electro-optic tensor coefficients r˛ˇ may be measured by passing a laser beam
through a crystal with various orientations, applying an electric field, and measuring
the beam deflection produced.

Using similar ideas, it is possible to study the photoelastic tensor, which is a tensor
describing the variation of the index of refraction when a strain is introduced.

ELECTRON MICROSCOPY

Conventional optical microscopy is limited in its ability to resolve structure smaller in
size than the wavelength of visible light, (. The Rayleigh criterion is

sin � ³ 1.22
(

d
, �W22.85�

which relates the acceptance angle of the microscope, �, and the distance, d, between
two points that can be resolved. Since visible light has wavelengths in the range 400 to
700 nm, light cannot be used to see individual atoms, whose size is typically 0.1 nm.
If electromagnetic radiation is to be used to study materials, one may improve matters
in two ways. The first is to use shorter-wavelength radiation. X-rays would be ideal,
since their wavelength can be chosen to be comparable to the size of an atom. Another
approach is to use very fine optical fibers tapered to a “point” whose size is ³ 10 nm
and then bring this fiber close to the surface of the material to be probed. The coupling
is done through the near field of the electromagnetic field. Using this technique, 10-nm
resolution can be achieved simply and inexpensively. The method is called near-field
scanning optical microscopy (NSOM).

Another approach is to use electrons instead of light. The relativistic expressions
for the wavelength of an electron are

( D h

p
D hc√

E2 � �mc2�2
D hc√

K�KC 2mc2�
D hc√

eV�eVC 2mc2�
, �W22.86�
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where p is the momentum, E the total energy, K the kinetic energy, and V the potential
difference through which the electron is accelerated to achieve this kinetic energy. By
using 20-kV potentials, wavelengths of 0.009 nm are obtained, smaller than an atom.
Thus resolution is no longer a limitation, but other factors, such as aberrations, prevent
this fine resolution from being realized.

Electrons may be focused using electrostatic or magnetostatic lenses. The focal
lengths of these lenses may be varied at will by changing the potentials and currents,
respectively. It is therefore possible to construct electron microscopes in much the same
way as optical microscopes are constructed. The main difference is that in electron
microscopy the distance from the lenses to the sample is held fixed while the focal
lengths are changed. In optical microscopy, of course, it is the other way around.
The image in electron microscopy is usually obtained by rastering the beam across
the sample and having the electrons collected by a detector. After amplification, the
processed image is displayed on a fluorescent screen. High-vacuum conditions are
needed for the electron beam to avoid collisions with gas molecules.

When high-energy electrons strike a material, they excite it and thereby lose
energy. Bulk and surface plasmons can be excited. Interband transitions occur and
electron–hole pair excitations are produced. There are also core-electron knock-out
processes, which are followed by x-ray emission or Auger deexcitation. The Auger
process is a multielectron process in which one electron fills an inner-shell vacancy,
and one or more other electrons are ejected from the atom. Intraband transitions occur
in metals. The net result is that copious amounts of secondary electrons are produced.
In addition, there are backscattered primary electrons. Light may be emitted from the
material when the electron–hole pairs recombine. If the sample is thin enough, a beam
of electrons will be transmitted through the sample.

There are several methods for observing the sample. These include scanning-
electron microscopy (SEM), transmission-electron microscopy (TEM), high-resolution
transmission-electron microscopy (HRTEM), and low-energy electron microscopy
(LEEM). These cases are discussed individually.

A number of typical electron micrographs using these techniques have appeared
in Chapter 4. Figure 4.1d showed nanocrystalline diamond with a resolution of ³
100 nm. Figure 4.1e was a micrograph with atomic-scale resolution of the interface
between crystalline Si and amorphous SiO2. Figure 4.6 displayed nanocrystalline Au
clusters embedded in an amorphous matrix. Figure 4.7 presented various morpholo-
gies of colloidal ˛-Fe2O3 particles. Figure 4.3 gave an HRTEM micrograph of a
PbTiO3 –SrTiO3 superlattice. Figure 4.9 showed the microstructure of a quasicrystal.
Figures 4.20 and 4.21 presented images of a stacking fault and a twinned structure,
respectively. These micrographs attest to the versatility of electron microscopy as a
tool for studying the microstructure of materials.

W22.12 Scanning-Electron Microscopy

The scanning-electron microscope (SEM) collects the backscattered and secondary
electrons that are emitted from the surface of the material. Typically, a focused 5-
nm-diameter beam with a current of 10�11 A is directed at the surface and penetrates
the material. At first, when the electron is moving fast, high-energy processes such
as Auger excitation are possible. Secondary electrons are produced, but backscattering
is improbable at first because of the small Rutherford cross sections at high energies.
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Note that single electron–electron collisions will not produce backscattering, whereas
electron–ion collisions will. At high energies, where core-electron knockout is possible,
it will often be followed by characteristic x-ray emission. Superimposed on this will
be the brehmsstrahlung spectrum due to the rapid deceleration of the electrons. The
energy of the beam spreads out and is deposited over a region ³ 1 µm into the surface.

The easiest electrons to detect are the secondary electrons because they are numerous
and all of low energy. Backscattered electrons are particularly useful because the cross
section for backscattering depends on the atomic number of the target, in accordance
with our understanding of Rutherford scattering. Thus materials with different Z will
produce different amounts of backscattering. This provides a means for contrasting one
type of atom with another.

In the scanning-electron microscope, one may deflect the electron beam so that it
focuses on different parts of the sample. As it rasters over the surface, one detects the
electrons, optical luminescence, or x-rays emitted as a function of the position where
the beam is when these are produced. This often involves the use of a scintillation
counter and photomultiplier tube. The data may be processed and a visual image of

(a)

(b)

Figure W22.16. SEM micrographs of carbon nanotubes on polycrystalline Ni substrates. [From
Z. P. Huang et al., Appl. Phys. Lett., 73, 3845 (1998). Copyright 1998 by the American Institute
of Physics.]
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the surface presented. The depth of field and magnification are controlled by varying
the focal lengths. Resolutions ³ 10 nm are achievable.

Instead of gathering the electrons or radiation from the incident surface of the crystal,
it is also possible to use a thin film and gather them from the opposite side of the crystal.
This technique is called scanning-transmission electron microscopy (STEM).

Figure W22.16 illustrates a scanning electron micrograph of highly oriented, multi-
walled carbon nanotubes on a polycrystalline Ni substrate. The nanotubes were grown
by chemical vapor deposition. It is found that growth takes place within the grain
surface but not along the grain boundaries.

W22.13 Transmission-Electron Microscopy

In the transmission-electron microscope (TEM) a thin slice of the material to be studied
(0.1 to 0.5 µm thick) is used and an energetic electron beam (20 to 100 keV) is passed
directly through the sample. One may view either the image of the sample or the
diffraction pattern that is produced on a fluorescent screen. Magnetic lenses are usually
employed because it is possible to achieve short focal lengths with them. A schematic
drawing of the TEM is presented in Fig. W22.17. The filament f heats the needle
like cathode C, which emits electrons thermionically. The beam passes through a hole
(called a wehnelt cap), which causes the beam to converge on and cross the optic axis
(or reach some minimum spot size of radius r0c ³ 20 µm for thermionic emitters). The
corresponding point serves as a point source of electrons. The beam is then accelerated
by an anode a and passes through a series of condenser lenses Ci and apertures Ai. It
passes through a small portion of the sample and then a series of magnifying lenses
Mi before it is projected on the fluorescent screen S and recorded on a photographic
plate P. The sample is usually covered with a conductive coating in order to enable it
to discharge electrically.

Typical cathode materials include W and LaB6. Their work functions are 4.5 and
2.7 eV, and their operating temperatures are 2800 and ³ 1700 K, respectively. In
some TEMs field emitters are used instead of thermionic emitters. They make use of
Fowler–Nordheim tunneling from very fine cathode tips. Materials used are W and
W covered with ZrO2. They may be operated at considerably lower temperatures, so
the thermal spread of electron energies is considerably smaller than the ³ 3 eV for
thermionic emitters. This allows one to obtain a much better minimum spot size (³ 5
to 50 nm). Field-emission sources are brighter than thermionic sources. The respec-
tive brightnesses are typically ³ 109 and ³ 1012 A/m2Ð steradian. Typical vacuums
for thermionic-emitter systems range from 10�2 to 10�4 Pa. For field-emitter systems
ultrahigh vacuums are established, typically in the range 10�7 to 10�8 Pa.

sample

f c w a C1 A1 C2 A2 A3 M1 M2 M3 S

p

Figure W22.17. Schematic view of a transmission-electron microscope.
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The focal length of a magnetic lens is given by the formula

1

f
D e

8mV

∫ 1
�1

B2�z� dz, �W22.87�

where B�z� is the magnetic field along the axis and eV is the energy of the electron
as it passes through the lens. The magnetic lens also rotates the image by an angle �
given by

� D
√

e

8mV

∫ 1
�1

B�z� dz. �W22.88�

The magnetic lenses have aberrations associated with them. These include the impor-
tant spherical aberrations, chromatic aberrations, and astigmatism, as well as the less
important coma and barrel or pincushion distortions. Spherical aberrations are due the
fact that the rays scattered from an object point at small angles ˇ through the lens are
focused at a different image point than rays scattered at larger angles. The net result
is that an object point along the axis is imaged to a disk of radius rs rather than to a
point. It may be shown that the size of this disk is given by the formula rs D Csˇ3,
where Cs is ³ 1 mm. Unlike in the optical-lens case, there is no simple way to correct
for spherical aberrations.

Chromatic aberrations are due to a variation of focal length with beam energy,
and may be understood in terms of Eqs. (W22.87) and (W22.88). Inelastic losses of
V ³ 5 to 50 eV are common for electrons passing through the sample, due to the
excitation of electron–hole pairs, plasmons, phonons, and so on. The net result is that
an object point is imaged to a disk-of-confusion whose radius is rc. It may be shown
that rc D CcˇV/V, where Cc is a distance characterizing the axial variation of the
magnetic field in the lens.

The imprecision with which magnetic lenses can be constructed leads to asymmetries
being present. Astigmatism is caused by having a different focal length for electrons
deflected in the x direction than in the y direction, the difference being fA. A point
source is focused to a disk of minimum size rA D ˇfA. It may usually be corrected
by employing a balancing astigmatic lens.

The Rayleigh diffraction criterion gives an estimate for the minimum separation of
two resolvable points, rd D 0.61(/ˇ, where ( is the wavelength of the electrons. One
may obtain an estimate for the instrument resolution by assuming that the spherical
aberration and diffraction dominate. Then

r�ˇ� D
√(

0.61(

ˇ

)2

C �Csˇ3�2. �W22.89�

There is a competition between the diffraction of the beam and the spherical aberrations
of the lenses. The minimum value of r occurs when ˇ D �0.61(/Cs

p
3�1/4 and its

value is rmin D 0.91C1/4
s (3/4. The smaller ( can be made, the better the resolution

will be. Typical optimal instrumental resolutions are of the order of several tenths of a
nanometer. For 100-keV beams r D 0.33 nm is possible, but the samples must be less
than 5 nm in thickness. For 400-keV beams, a resolution of 0.17 nm has been obtained.
By using beams of incoherent rather than coherent electrons and by underfocusing the



CHARACTERIZATION OF MATERIALS 447

Image
plane

Diffraction
spots Image

points

Sample

Back
focal
plane

Image
plane

Back
focal
plane

x

y

z

Figure W22.18. A forward-directed beam and diffracted beams are produced when the incident
electron beam passes through the sample. The right figures show the diffraction spots in the
back focal plane and the sample image points in the image plane.

electron beam to compensate partially for spherical aberrations, it has recently been
possible to obtain 0.078-nm resolution with a 300-keV electron beam.†

After passing through the sample, the diffraction spots create images on the back-
focal plane of the object lens (e.g., C2 of Fig. W22.17). One may use the magni-
fying lenses to view this diffraction pattern directly on the screen and to produce a
transmission-electron diffraction (TED) micrograph. Alternatively, a real image of the
sample is produced on the image plane of the object lens. This real image may be
magnified and projected on the fluorescent screen.

Emerging from the sample is both a forward-directed transmitted beam of electrons
and diffracted beams of electrons, as illustrated in Fig. W22.18. The aperture A3 of
Fig. W22.17 may be used to choose one or more of these beams selectively and block
the others. The technique is called selective-area diffraction (SAD). In the method of
bright-field (BF) imaging one allows the forward-directed beam to be imaged on the
screen. In the method of dark-field (DF) imaging, a diffracted beam is selected instead.
The diffraction pattern in the back-focal plane and the image of the sample are depicted
in the right-hand side of Fig. W22.18. The central diffraction spot corresponds to the
forward-directed beam. The other spots correspond to various diffracted beams for a
case where there is fourfold symmetry. As will be seen in Section W22.14, the more
beams that are accepted by the aperture, the higher the resolution will be.

Kikuchi Lines. Diffraction of electrons differs from that of x-rays in two important
respects. First, the samples are thin, so there are only a finite number of atomic layers,
Nz, perpendicular to the beam. Second, inelastic processes are much more important
for electrons than for x-rays.

Due to the finite value of Nz�³ 1000�, instead of there being a pure spot diffraction
pattern, the spots are elongated into streaks of length Gz ³ 2/Nzd, where d is the
lattice spacing. Thus it is still possible to see a diffraction spot even when the von
Laue condition is not exactly satisfied. One defines the mismatch reciprocal vector s

† P. D. Nellist and S. J. Pennycook, Phys. Rev. Lett., 81, 4156 (1998).
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Figure W22.19. Ewald sphere and streaking of diffraction spots.

through the relation k0 � k D GC s. This is illustrated in Fig. W22.19. The vectors k
and k0, making an angle 2� with each other, have a common origin and have the same
length. The head of vector k touches the origin of reciprocal-lattice space. The Ewald
sphere passes through this origin. A diffraction spot will still be produced if the head
of vector k0 also touches the Ewald sphere, but is located a distance s � Gz in the
z direction away from the nearest reciprocal lattice point, G. The extent of Gz is
denoted by the dashed rectangle in the figure.

Suppose the electron is incident on the lattice in a direction that is far removed from
satisfying the von Laue diffraction condition. Electrons can suffer inelastic collisions,
thereby losing energy and scattering into various directions centered around the incident
direction. Energy losses of up to 50 eV are common. The probability for scattering
through a given angle relative to the forward direction falls rapidly with increasing
angle. An effect of this is illustrated in Fig. W22.20, where an electron suffers an
inelastic collision at point p. For some scattered beams the energy and direction will
be just right to satisfy the Bragg diffraction condition for a set of lattice planes. Two
such planes L and L0 are illustrated in Fig. W22.20. The beams B and B0 are able

q

q

q

q

p

L

L'

B'

C'

C

B

k

Figure W22.20. Formation of Kikuchi lines by Bragg diffraction and constructive interference
of beams of inelastically scattered electrons.
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Figure W22.21. Kikuchi line pattern. (Generated using the computer program KOQUA2.2
written by S. Weber and C. Schetelich.)

to interfere with each other, as are the beams C and C0. If the Bragg condition is
satisfied for the direction of beams B and B0, a bright spot will be produced in that
direction. The intensity comes at the expense of radiation that was in the near-forward
direction, so there will be a corresponding dark spot established along the direction
of beams C and C0. The angular spread between the lines C and B is 2�, independent
of the angles through which the electrons are scattered. When one takes into account
all possible angles of incidence for the electrons, the beams B and C sweep out the
surfaces of cones. These cones intersect the projection of the Ewald sphere in a pair
of hyperbolas. For high-energy electrons the radius of the Ewald sphere is large and it
looks approximately planar. The intersections of the cones with the plane then produce
a pair of approximately parallel lines. This gives rise to the Kikuchi line pattern. To
each set of lattice planes there is a pair of Kikuchi lines, one dark and one bright.
Furthermore, these lines are parallel to the intersection of the corresponding lattice
planes with the Ewald sphere.

The Kikuchi line pattern shifts if the crystal is tilted. This permits one to orient a
crystal precisely. An example of a Kikuchi line pattern, together with a set of diffraction
spots, is illustrated in Fig. W22.21. Furthermore, at the intersection of Kikuchi lines,
one finds spot patterns. Thus the Kikuchi patterns are used as maps to locate the
orientations of the crystal, which give rise to diffraction-spot patterns.

W22.14 High-Resolution Transmission-Electron Microscopy

In high-resolution transmission-electron microscopy (HRTEM) a beam of high-energy
electrons is passed through a thin sample and focused on an image plane. Suppose that
the sample is a crystal. Recall that the diffraction condition is

G · kC G
2

2
D 0. �W22.90�

If k is much larger than G, this equation can be satisfied only for those lattice planes
whose G vectors are almost perpendicular to k, for that is the only way to keep the
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magnitude of the first term comparable to that of the second term. The angles between
k and k0 are given by

sin � D G

2k
�W22.91�

and will be small.
As mentioned earlier, magnetic lenses have associated with them spherical aberra-

tions. A beam far from the optical axis will not focus at the same point as a beam
near the optical axis. In conventional microscopy, therefore, it is usually not possible
to focus the Bragg-reflected beams along with the directly transmitted beam. This puts
a limitation on the resolution. However, in HRTEM the Bragg peaks are coming off at
small angles and therefore remain paraxial (i.e., close to the optic axes). The spherical
aberrations are therefore not of major concern and it is possible to focus several Bragg
orders together (Fig. W22.22).

In the figure, the sample is labeled S, the lens, L, the focal plane, F, and the image
plane, I. An electron beam is incident on the sample from the left and is focused on
the image plane. Note that the various Bragg-reflected beams combine with the direct
beam in the image plane. This causes a sharply defined focal spot. The reason for
this is that slightly away from the focal spot the various beams start to interfere with
each other destructively and the intensity decays rapidly with distance away from the
spot. The more diffracted beams that can be collected, the sharper the image. Once
the image is formed on the image plane, further magnification is possible by the use
of additional lenses, as in the case of TEM.

The angular sharpness of the image varies inversely as the number of diffracted
beams in a given direction that may be focused. This is illustrated with a two-
dimensional example. Consider Fig. W22.23, in which a set of N beams passes through
the lens at positions yi and is focused at the lower point on the screen. At this point
all the beams arrive in phase with each other:

 D �i C kli, i D 1, . . . , N, �W22.92�

LS F I

Figure W22.22. A large number of diffracted beams are focused by the lens L and are combined
to form a high-resolution image of the sample S on the image plane I.
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Figure W22.23. Estimation of the angular sharpness of the image.

where the ��i C kli� differ by integer multiples of 2�. The total amplitude at the point
is therefore

A D
N∑
iD1

exp�i � D N exp�i �. �W22.93�

Next consider a point on the screen a distance y above the original point. The phase
that each beam arrives with is now different:

 i D �i C k
√
�yi � y�2 C D2 '  � k yyi � y

2/2

D
, �W22.94�

where it is assumed that D is much larger than yi. The amplitude at the upper point is
therefore
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The points yn on the lens are separated from each other by an arbitrary distance .
This amplitude will fall to zero when the phases are spread uniformly over a circle,
that is, when

kyN

D
D 2�, �W22.96�

which shows that y is inversely proportional to N:

y D (D

N
. �W22.97�

In the three-dimensional case the diffracted beams will be spread out over an area.
The total number of beams will be denoted by N2. Thus the size of the image falls off
as the inverse of the square root of the number of focused diffracted beams.

It is now possible to use HRTEM to obtain spatial resolution approaching 0.1 nm,
if beams of 1 MeV are used, although most conventional HRTEM applications use
lower-energy beams and settle for more modest resolution goals. It is an ideal tool for
studying line defects, planar defects, and interfaces.
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Figure W22.24. HRTEM image of the Si/a-SiO2 interface. (From J. M. Gibson, High resolution
transmission electron microscopy, Mater. Res. Soc. Bull., Mar. 1991, p. 27.)

An HRTEM image of a Si/a-SiO2 interface is shown in Fig. W22.24. The individual
atoms of the Si crystal appear in the lower half of the image. The upper half shows
the image of the amorphous silica.

W22.15 Low-Energy Electron Microscopy

Like LEED, low-energy electron microscopy (LEEM), involves forming a diffraction
pattern using elastically scattered electrons from a crystalline surface. Unlike LEED,
however, most of the pattern is discarded. Usually, one diffracted beam is extracted and
imaged on a screen using conventional electron-microscope lenses. Typical energies
used are in the range 100 eV to 3 keV. The resolution is as fine as 2 nm. LEEM is
useful for seeing structure on a mesoscopic size scale. This includes surface steps,
dislocations, imperfections, islands of adsorbates, superlattice structure, grains, and
surface inhomogeneity.

In LEEM the electron beam is directed at the sample with near-normal incidence.
Electrons are emitted from an electron gun from an oblique direction to the surface,
and a bending magnet is used to change the direction to normal incidence. The same
bending magnet is used to redirect the reflected electrons in another oblique direction
toward the image plane. In Fig. W22.25 the basic imaging scheme is displayed for the
case where LEEM is used to image a surface step, S, on the left. For simplicity the
injection, bending magnet, and extraction are not shown, and it is simply assumed that
the electron beam is incident from the right. Four reflected beams are illustrated, each
with a pair of diffracted beams. The beams pass through an electron lens, L, and then
through a screen, A, with an aperture in it. The aperture is placed in the focal plane
of the lens. Only the specularly reflected rays are allowed through, the other diffracted
beams are blocked. The rays that pass through the aperture illuminate the screen I. In
passing through the aperture, the beams undergo Fresnel diffraction and are broadened
into cones. Thus beam 1 is spread into cone 1, beam 2 into cone 2, and so on. The
regions illuminated by these cones are denoted 10, 20, and so on.
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Figure W22.25. Optics of the formation of a LEEM image.

(a) (b)

(c) (d)

Figure W22.26. LEEM micrograph of the etching of a terrace on Si(100) by oxygen at
T D 1235 K. The images are those of vacancy islands at (a) 1 s, (b) 10 s, (c) 20 s, and (d) 30
s after nucleation. [From J. B. Hannon et al., Phys. Rev. Lett., 81, 4676 (1998). Copyright 1998
by the American Physical Society.]

The figure illustrates the situation where rays 1 and 2 are reflected from the part of
the step closer to the lens, while rays 3 and 4 come from the part farther from the lens.
Positive amplitude is indicated to the left of the image plane and negative amplitude
to the right of the image plane. Suppose that the energy of the electrons is adjusted so
that the step size is one-fourth of a wavelength. This would cause rays 1 and 2 to be
half a wavelength out of step with rays 3 and 4 when they hit the image plane, I. At
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point D on the image plane, the net amplitude is zero. It will therefore show up as a
dark line. This line is the phase-contrast image of the step on the surface.

Although there are other means of creating the phase contrast, such as defocusing
by a small amount, the foregoing scheme illustrates the basic method of how a surface
may be imaged using low-energy electrons in a microscopy arrangement. In practice a
small area of the sample is illuminated with the incident beam. Information from the
diffraction pattern is then processed. The beam is rastered over the sample and data
are stored for presentation. The spatial resolution is a function of the electron energy
used, varying from 60 nm at 250 eV to 2 nm at 30 keV.

An illustration of a LEEM micrograph is given in Fig. W22.26. The dark-field
micrographs show various stages of the nucleation of vacancy islands formed during
the etching of a 10 µm terrace on the Si(100) surface in an oxygen atmosphere.

ELECTRON SPECTROSCOPY AND ION SCATTERING

In the following sections we describe methods for obtaining the energy distribu-
tion of charged particles. These distributions provide important information about the
elementary excitations of the solid. In photoemission experiments a beam of elec-
tromagnetic radiation is used to produce energetic electrons that are emitted from
the surface and are analyzed and detected. Both ultraviolet radiation and x-rays are
used. Low-energy electron beams are scattered from solids to provide information
concerning the surface and adsorbates on the surface. Extended x-ray absorption fine
structure may be used to obtain accurate information about short-range order in solids.
Auger emission spectroscopy is an important tool for obtaining quantitative informa-
tion concerning the chemical composition on or near surfaces. Secondary-ion mass
spectrometry and Rutherford backscattering provide additional information regarding
the chemical composition and defect structure.

W22.16 Photoemission

Photoemission involves the absorption of a photon by a material and the immediate
emission of an electron into vacuum. It has been studied in some detail in Section 19.9.
The energy spectrum and photoelectron yield are measured, often as a function of
photon energy. Photoemission may be carried out with ultraviolet radiation, in which
case it is called ultraviolet photoemission spectroscopy (UPS), or with x-rays, in which
case it is called x-ray photoelectron spectroscopy (XPS) or electron-spectroscopy for
chemical analysis (ESCA). Since the mean free path of electrons is limited in mate-
rials, photoemission provides information concerning the surface region of the solid,
especially in the case of UPS. Photoemission may be used to study either crystalline
or amorphous solids. It is not useful for liquids because of the need to have a good
vacuum present, so that electrons may reach the detector without making collisions
with gas molecules.

Ultraviolet Photoemission Spectroscopy (UPS). In UPS electrons are promoted
from occupied states below the Fermi level to states above the vacuum level. The
photon’s energy must exceed the work function e of the material being studied. The
maximum energy the electron may have is given by a famous formula of Einstein:

E D h̄ω � e, �W22.98�
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Figure W22.27. Photoemission from a metal with an occupied valence band and a partially
occupied conduction band. The density of electron states in the solid and vacuum, and the
energy-distribution curve I�E� are shown.

where h̄ω is the energy of the incident photon. Since the energy of the ultraviolet photon
is relatively small, electrons are extracted from the conduction band and the upper
valence bands. A schematic of the photoemission process is given in Fig. W22.27.
Three quantities are sketched in this figure. The left-hand side shows the density of
states in the solid, ;s�E�. The vacuum level is taken to be the zero of energy. The
Fermi level lies at energy �e. Those states below the Fermi level are occupied
and are shaded on the diagram. The density of states in the vacuum ;v�E� is also
sketched in the figure. It corresponds to that of a free electron. On the right-hand side
of the figure the energy distribution curve of the emitted electrons, I�E�, is sketched.
Ideally, this curve is (aside from possibly smoothly varying distortions due to the
energy dependence of the dipole matrix elements) a replica of the density of states of
the solid below the Fermi energy. More realistically, there are significant contributions
due to secondary electrons.

A formula for the energy-distribution curves may be derived from Fermi’s golden
rule. The rate of absorption of photons is

�ω� D 2�

h̄

∑
i,f

∑
s

jMj2υ�Ef � Ei � h̄ω�f�Ei, T�[1� f�Ef,T�], �W22.99�

where M is the dipole matrix element of the interaction of the photon with the electron,
and i and f refer to the initial and final states of the electron, respectively. There is
a sum over the two spin states, s, of the electron. The radiation interaction preserves
spin projection. There are also Fermi–Dirac distribution function factors introduced in
Chapter 7 and Appendix WB,

f�E, T� D 1

exp[ˇ�E� ��]C 1
. �W22.100�

Here � is the chemical potential (approximately equal to the Fermi energy, EF, at low
temperatures). The first Fermi factor guarantees that there is an electron in state i, the



456 CHARACTERIZATION OF MATERIALS

second factor guarantees that state f is empty, so a transition can occur. Introduce the
electron density of states ;�E� as in Eq. (7.67). The absorption rate may be expressed as

 D
∫
�E0� dE0, �W22.101�

where �E0� dE0 is the rate of absorption of photons leading to excited electrons within
the energy band E0 to E0 C dE0. This rate is given by

�E0� D �

h̄
jMj2;v�E0�;s�E0 � h̄ω�f�E0 � h̄ω, T�[1� f�E0, T�], �W22.102�

where an average squared matrix element is used as an approximation. The rate of
producing photoemitted electrons is

I�E0� D �E0�P�E0�, �W22.103�

where P�E0� is the probability that if a photoelectron is produced, it will emerge from
the surface.

The graph of I�E0� versus E0 is called the energy-distribution curve (EDC). The
previous formulas show that I�E0� is proportional to the product of the density of states
for the initial and final states. If the photon energy is sufficiently high, the final density
of states may be approximated by a free-electron density of states ;v�E0� / �E0�1/2.
The energy-distribution curve may then be used to determine the density of states
;s�E0 � h̄ω� below the Fermi surface.

The total photoelectric current divided by the incident current of photons is called
the photoelectric yield. It is seen to be proportional to the joint density of states,

I�ω� ¾ �

h̄
jMj2P

∫
;s�E

0�;v�E0 � h̄ω�f�E0 � h̄ω, T�[1� f�E0, T�] dE0, �W22.104�

where an average escape probability factor P has been extracted from the integral.
As the electron leaves the solid, it can undergo inelastic-scattering processes with

other electrons. Some of these other electrons emerge as secondary electrons. One
therefore finds a large number of low-energy secondary electrons emerging from the
solid as well as the photoemitted electron. The energy-distribution curve therefore rises
at low energies.

In some experiments the angular distribution of the emitted electrons is analyzed
as well as the energy distribution. The study is called angular-resolved photoemission
spectroscopy (ARPES). This is particularly useful for obtaining information about the
surface layer of the solid or atoms or molecules adsorbed on the surface. Different
orbitals in these atoms or molecules point in different directions, and this influences
the emission pattern. For example, those orbitals pointing perpendicular to the surface
are more likely to photoemit electrons in a direction perpendicular to the surface. This
can reveal interesting information regarding the nature of the chemical bonds or the
particular bonding sites of adsorbed species.

An example of a UPS spectrum is given in Fig. W22.28 for sputter-deposited
Ge100�xAgx with 0 � x � 39.6 at room temperature. The spectra were taken with 21.2-
eV photons from a He I ultraviolet light source. The Ge 4p valence band extends from
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Figure W22.28. Ultraviolet photoemission spectrum of sputter-deposited Ge100�xAgx for
0 � x � 39.6 [From A. Suzuki and K. Tanaka, Jpn. J. Appl Phys., 37, 4872 (1998). Copyright
1998 by the Japanese Journal of Applied Physics.]

a binding energy of 4.5 to 0 eV, and the 4s band is at a binding energy of 9 eV. The
peak that develops at 5.5 eV is due to the Ag–4d band. For 0 � x � 5.6 the spectra
show that Ag is dissolved in a Ge matrix, since a single Ag–4d peak appears. For
x ½ 5.6, phase separation occurs as silver clusters begin to form and the UPS spectrum
evolves toward that of bulk Ag, shown at the top of the figure.

X-ray Photoemission Spectroscopy (XPS or ESCA). Often, x-rays rather than UV
light are used in a photoemission experiment. The high energy of the x-ray permits
the observation of photoemitted core electrons of the solid. The bandwidths of the
core electrons are very narrow and the levels may be approximated as having a single
energy, Ecore. The energy of the emitted electron is

E0 D h̄ω � Ecore. �W22.105�

For a given x-ray photon energy h̄ω there will be a sharp peak in the EDC.
The precise value of the core energy is sensitive to the distribution of valence

electrons surrounding the core. To photoionize the core electron, the electron must
exit the atom by passing through the valence shells. There is a difference of potential
between the core and the outside world determined by the charge distribution of the
valence electrons. To get a qualitative feeling for this, consider a simple example.
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Suppose that a distribution of valence electrons is described by a charge distribution
;�r�, which will be taken to be spherically symmetric, for the sake of simplicity.
Poisson’s equation gives the potential

r2V�r� D 1

r2

∂

∂r

[
r2 ∂

∂r
V�r�

]
D �;�r�

�0
. �W22.106�

Here V�r� is the contribution to the potential from the valence electrons. The contri-
bution to the potential due to the nucleus is fixed, and will be ignored. Taking the
position of the core to be approximately at r D 0, this gives a difference of potential

V�1�� V�0� D � 1

�0

∫ 1
0

1

r2

∫ r

0
;�r0�r02 dr0 dr. �W22.107�

For example, suppose that the valence-electron charge distribution is given by

;�r� D �Q�
3

8�
exp���r�, �W22.108�

so that the total valence charge is �Q. The parameter � in this model represents the
inverse of the length over which the valence charge distribution decays outside the
atom in question. Then the difference of potential will be

V�1�� V�0� D Q �

8��0
. �W22.109�

The energy of an electron residing in the core may be written as the sum of a constant
plus the difference in potential energy between the electron at the core position and
the electron at infinity:

Ecore D constant� e[V�0�� V�1�]. �W22.110�

For the model above, therefore,

Ecore D constantC eQ�

8��0
. �W22.111�

For more compact charge distributions � will be larger and the core level will be
shifted upward (i.e., less tightly bound). Correspondingly, for more spread-out valence
charge distributions, the core level will be lowered. In forming chemical bonds, the
electron distribution around atoms is distorted. This gives rise to core-level shifts
characteristic of the particular bonds that are formed. By measuring the difference
between the energy of the incident photon and the emitted electron, the energy of the
core level may be found.

Examples of x-ray core-level spectra are given in Fig. W22.29. Data for
La1.85Sr0.15CuO4 are taken at T D 300 K, where it is semiconducting, and T D 80 K,
where it is superconducting. The spectrum focuses on the Cu 2p3/2 state. The data
provide evidence for a change of valence state with temperature.
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Figure W22.29. X-ray core-level spectroscopy of La1.85Sr0.15CuO4 at T D 300 K and
T D 80 K. [From D. D. Sarma, Phys. Rev. B, 37, 7948 (1988). Copyright 1988 by the American
Physical Society.]

W22.17 Low-Energy Electron Loss Spectroscopy

As in LEED, the technique of low-energy electron loss spectroscopy (LEELS) involves
directing a beam of electrons at a surface. In LEELS, however, the energy loss of the
electron is studied rather than the elastic scattering. Electrons of energy E impinge
on a solid, making an angle � with respect to the surface and come off at a variety
of angles. A detector is positioned so it accepts electrons that emerge at an angle �0
and an azimuthal angle � (Fig. W22.30). The current of the scattered beam, I, is then
analyzed as a function of the energy of the electron, E0. LEELS data generally can
consist of a table of I�E0, �0, �� as a function of E and �, but more often are presented
as an angular-integrated function I�E0�, showing loss peaks. As with LEED, LEELS
provides information primarily about what is occurring on or near the surface.

When the electron scatters from the surface, it may emit (or absorb) an elemen-
tary excitation from the solid. This excitation is usually a phonon, but other types of
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Figure W22.30. Scattering geometry for a LEELS experiment.
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excitations, such as two-dimensional plasmons associated with charged layers on the
surface, are also possible. The excitation carries with it both energy and momentum.
In general, the LEELS spectrum consists of energy-loss peaks from three origins: bulk
excitations of the substrate, surface excitations of the substrate, and excitations of
adsorbed species on the surface. Because of the limited penetration of electrons into
the solid, LEELS is particularly useful for studying the latter two surface excitations.

Surface excitations of the substrate are characterized by having a wave vector
parallel to the surface, Q, and a frequency ω�Q�. For the case of a periodic lattice there
is conservation of wave vector in the plane of the surface, modulus a reciprocal-net
vector (i.e., surface reciprocal-lattice vector):

K0 D KCQCG, �W22.112�

where K and K0 are the surface components of k and k0. In the case of surface
adsorbates, unless the adsorbates form an ordered net, there will be no wave-vector
conservation.

In the following, attention will be restricted to the case where there is energy loss.
Energy gain, however, is possible if the temperature of the surface is high enough for
a thermal excitation to be present and absorbed by the electron. The basic equation of
LEELS is the energy conservation condition:

E0 D E� h̄ω. �W22.113�

For example, in the case of the excitation during inelastic scattering from an adsorbed
molecule, the energy of the electron will be reduced by the difference in energy between
two vibrational levels of the adsorbed molecule. It is also possible to study the vibra-
tional spectrum of the adsorbate bonded to the surface. As an analytical tool one may
make a quantitative analysis of the adsorbates, since the vibrational frequencies of each
molecule are a unique fingerprint for that molecule. The strength of the LEELS signal
is proportional to the number of adsorbed molecules.

Suppose that a substrate surface excitation is excited. It is possible to obtain the
dispersion curve of the excitation [i.e., to find ω�Q�]. The procedure follows from the
energy conservation law:

E0 D E� h̄ω�Q�. �W22.114�

Attention will be restricted to the case of near-specular scattering (i.e., let G D 0).
Using the following expressions for the wave-vector components (see Fig. W22.30),

K D
p

2ME

h̄
cos �, K0 D

p
2ME0

h̄
cos �0, �W22.115�

and the law of cosines
Q2 D K2 CK20 � 2KK0 cos�, �W22.116�

the following expression for the wave-vector transfer is found:

Q D 1

h̄

√
2m�E0 cos2 �0 C E cos2 � � 2

p
EE0 cos � cos �0 cos��. �W22.117�
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Figure W22.31. LEELS spectra for ZnO for several scattering angles. [Reprinted From
Y. Goldstein et al., Surf. Sci., 98, 599 (1980), Copyright 1980, with permission from Elsevier
Science.]

Since E0 is measured and E is known, the value of ω�Q� may be determined. Equation
(W22.117) gives Q in terms of E, E0, �, �0 and �. Thus the dispersion relation for the
excitation can be measured.

An example of a LEELS spectrum is presented in Fig. 19.17 for n-type GaAs. The
spectrum shows phonon loss and gain peaks as well as a surface-plasmon loss peak.
In Fig. W22.31 data for angular-resolved LEELS are presented for electrons scattering
from a ZnO surface with an accumulation layer. The data are interpreted in terms
of the excitation of two-dimensional plasmons in the accumulation layer. From this
data, using Eq. (W22.117), it is possible to obtain information about ω�Q� for the
two-dimensional plasmon. The breadth of the peaks is due to the large dispersion of
the two-dimensional plasmon.

W22.18 Extended X-ray Absorption Fine Structure

An accurate determination of interatomic distances in a crystal may be obtained by
carefully studying the x-ray absorption spectrum. The absorption spectrum exhibits
oscillatory structure that comes about due to an interference effect involving the
electrons. The method is called extended x-ray absorption fine-structure (EXAFS)
spectroscopy.

When x-rays pass through a sample of thickness d the intensity of the emerging
beam, I, is related to the intensity of the incident beam, I0, through Beer’s law:

I�d� D I0 exp��˛d�, �W22.118�
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where the very small surface reflection of the x-rays is neglected. The attenuation
constant, ˛, has contributions arising from both the absorption of x-rays and the Bragg
scattering of x-rays out of the incident beam (extinction). In this section attention
centers on the absorption contribution.

Absorption comes about when an electron is photoionized from an atom. The elec-
tron is promoted from some low-lying state to a state in the conduction band. In the case
of deep-core levels the bandwidths are very narrow and there is a threshold absorption
energy from a given band equal to the difference in energy between the Fermi energy,
EF, and the core-level energy, Ecore. For simplicity’s sake, restrict the discussion to
the case of a parabolic conduction band. When the excited electron travels through the
crystal it has a wave vector

k D 1

h̄

√
2m[h̄ω � �Ec � Ecore�], �W22.119�

where Ec is the energy of the bottom of the conduction band. Thus the wave vector is
a function of the x-ray frequency.

The rate at which photon absorption takes place depends on how probable it is
to find the excited electron at the position of the nucleus. Technically, this comes
about because the rate depends on a matrix element of the radiation operator between
wavefunctions governing the initial and final states of the electron. In particular, it is
sensitive to the magnitude of the final-state wavefunction at the position of the atom.
If this magnitude were somehow to increase, the absorption would increase, whereas
if it were to decrease, the absorption would decrease.

Upon absorption of the photon a spherically outgoing electron wave is created
with the wave vector above. This wave may scatter off neighboring atoms in the
crystal a distance aj away. The waves reflected interfere with the wave emitted as in
Fig. W22.32. What is of primary interest is the situation at the location of the ionized
atom. If there is constructive interference, the amplitude of the final-state electron
wavefunction will be maximum. If there is destructive interference, the amplitude will
be minimum. The condition for constructive interference is

2kaj C υj D 2�N. �W22.120�

Figure W22.32. Spherically outgoing excited electron waves scatter off neighboring atoms and
these reflected waves interfere with the emitted wave.
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Figure W22.33. EXAFS oscillations for YBa2(Cu1�yCoy)3O6Cx . [From H. Renevier et al., Phys.
Rev. B, 47, 11398 (1993). Copyright 1993 by the American Physical Society.]

Here 2aj is the round-trip distance to atom j and υj is a phase shift characteristic of
the scattering of the electrons from the atoms. One expects the phase shift to be a
slowly varying function of electron energy. Thus interference oscillations in the x-ray
absorption spectrum are expected. The separation between neighboring interference
maxima (Fig. W22.33) provides a measurement of the various distances to shells of
nearby atoms. Thus

k D �

aj
D 1

h̄

√

2m[h̄ω � �Ec � Ecore�]. �W22.121�

In practice, the absorption spectrum is Fourier analyzed as a function of k and the
peak positions in r space appear directly. Separate peaks may be identified with NNs,
next-NNs, and so on.

An example of EXAFS oscillations appears in Fig. W22.33 for excitation of a
Co core level. The data are for the compound YBa2(Cu1�yCoy)3O6Cx. The quan-
tity E�k� is the modulated part of the absorption constant. It is defined by E�k� D
[˛�k�� ˛0�k�]/˛0�k�, where ˛�k� is the absorption coefficient, including its oscilla-
tions, and ˛0�k� is obtained by averaging ˛�k� (a smoothly varying function of k) over
the oscillations. By using the oscillations to determine the NN distance, it is possible
to determine that the Co ion has a valence state of C3. It is also possible to determine
the coordination number (5) of the Co ions to the oxygen ions.

In addition to EXAFS there is a technique called SEXAFS, which is surface EXAFS.
Grazing-incidence x-rays are used so that the radiation does not penetrate the solid
deeply and the surface region of the solid is probed. A technique closely related to
EXAFS is XANES (x-ray absorption near-edge structure).

W22.19 Auger Emission Spectroscopy

A useful tool for characterizing the chemical composition of a solid in the vicinity of
the surface is Auger emission spectroscopy (AES). A monoenergetic beam of high-
energy (1 to 10 keV) primary electrons impinges on the surface of the solid and causes
collisional ionization events to occur. Some of these events result in deep core-level
electrons being knocked out. In light elements (Be to Si), typically a K-shell electron
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is ionized, leaving a K-shell hole behind. In intermediate atomic-number elements
(Al–Nb) the core hole might be in the L shell, and in still heavier elements (Zr–Au)
in the M shell. (The various shells are actually themselves split into subshells by both
fine-structure splitting and crystal-field splitting. Thus one may refer to the L-I, L-II,
L-III subshells, etc.)

Upon formation of the hole, the ion is left in an excited state. An electron from
some higher-energy shell (which may be broadened into a band) can fill the vacancy,
but first it must get rid of its excess energy. Suppose, for example, that a K-shell hole
is created and is to be filled by an electron falling from the L shell. There are two
methods by which the L-shell electron can shed its excess energy. One is by emitting
an x-ray, whose energy is given by

h̄ω D EL � EK. �W22.122�

The second method is by having the electron make a Coulomb collision with another
electron [e.g., also from a subshell of the L shell (denote it by L0)] and transfer the
energy to that electron. The energy of the L0 electron will then be elevated to

E D EL0 C EL � EK. �W22.123�

If this energy exceeds the vacuum level, some fraction of the Auger-excited L0 electrons
will be emitted from the solid (Fig. W22.34). Since for the inner shells the energies
EK, EL, and EL0 , are all well defined and vary from atom to atom, the energy E will
also be well defined and will be characteristic of the particular atom involved.

The intensities of the Auger peaks provide quantitative information about the chem-
ical abundance of those elements present. The location of the peaks in the energy
distribution and their line shapes also provide information about their chemical bonding.
In Table W22.2 some characteristic Auger-transition energies are listed.

For light atoms the Auger process is the dominant mode of filling the core hole.
For heavy atoms x-ray emission becomes appreciable. Other possible Auger transi-
tions involve additional shells and/or subshells of the atom. Thus one has K–L–M,
K–M–M, L–M–M, N–O–O, L–M–N processes, and so on. For the upper valence
bands, however, where the band width is large, there will be a broad band of electron
energies emitted and the technique loses its value as an analytical tool.

Ecore

M"
M'
M

L'
L

K

Figure W22.34. Auger process. An electron from the L-shell fills the K-shell vacancy and
causes an L0 electron to be emitted.
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TABLE W22.2 Typical Auger Transitions
and Their Energies

Auger Electron
Atom Transition Energy (eV)

Ag M–N–N 351
Si K–L–L 1619
Al K–L–L 1396
Mg K–L–L 1186
Cu L–M–N 920
Si L–M–M 92.5
Al L–M–M 68
Mg L–M–M 45

The reason that AES is regarded as a surface technique has to do with the mean
free path of electrons in solids. The electrons lose energy by a variety of processes,
including plasmon emission, electron–hole pair excitations, and phonon emission. This
limits the range in which it is possible to get Auger electrons out of the solid to the
vicinity of the first few surface layers.

Auger spectra are usually presented as derivative spectra. This makes the spectra
less sensitive to drifts in the electrical current. The derivatives are obtained by super-
imposing a weak ac component to the incident current and taking the difference in the
Auger current electronically. An example of an Auger spectrum for galvanized steel
exposed to atmospheric corrosion for four days is presented in Fig. W22.35. In the
energy range of interest there are features due to Zn and also atmospheric components
such as O and C present.
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Figure W22.35. Auger electron emission spectrum for galvanized steel undergoing atmospheric
corrosion. (From C. Beltran et al., in F. A. Ponce and M. Cardona, eds., Surface Science,
Springer–Verlag, Berlin, 1991.)
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Sometimes, instead of using atomic notation such as L–M–M one denotes the
process by L–V–V, indicating that the valence bands (V) are considerably broader
than the atomic levels.

W22.20 Secondary-Ion Mass Spectrometry

Sputtering is the process whereby a beam of energetic ions is directed at the surface
of a solid and atomic and molecular fragments of the solid are ejected. The fragments
may be electrically charged or neutral. In secondary-ion mass spectrometry (SIMS) a
quantitative analysis of the emerging ion constituents is undertaken using a mass spec-
trometer. Often, the emerging neutrals are ionized by external means before the analysis
is made. SIMS provides a powerful technique to study the profile of composition versus
depth in a sample.

SIMS is capable, in principle, of detecting all elements present in the range of parts
per million or even parts per billion. It has a dynamic range of nine orders of magni-
tude, meaning that it may detect dominant atoms as well as impurity atoms present in
low concentrations. It can distinguish different isotopes. Typical depth resolution is on
the order of 10 nm, whereas the focused beam size can be made as small as 100 nm.
Sputtered holes as deep as 30 µm may be bored in the sample. It is therefore possible
to create three-dimensional images of a heterogeneous structure by methodically sput-
tering away the outer layers. Sputtering is also used in conjunction with AES for depth
profiling.

Typically, the energy of the incident ion is in the range 1 to 20 keV. The most often
used ions are O2

C and CsC. The oxygen ion is used when the sample is electropositive,
whereas the cesium ion is used when the sample is electronegative.

In the sputtering process the incident ion makes Coulomb collisions with the ions of
the material. Since the energy of the incident ion is fairly high, to a first approximation,
one may regard the collisions as if they take place between free particles. This permits
the use of conservation laws to analyze the process. Consider the collision of two ions
of masses M1 and M2, respectively. Suppose that particle 1 has momentum p1; particle
2 is at rest. After the collision the momenta are p01 and p02. Momentum conservation
requires that

p1 D p01 C p02. �W22.124�

Energy conservation gives
p2

1

2M1
D p021

2M1
C p022

2M2
. �W22.125�

Let the angle that p02 makes with p1 be �. Then it follows that

E02 D
4M1M2

[M1 CM2]2
E1 cos2 �. �W22.126�

Let the angle between vectors p1 and p01 be denoted by �. The final energy of particle
1 is then

E01 D E1


cos � C

√
M2

2/M
2
1 � sin2 �

1CM2/M1




2

. �W22.127�
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In general, the collisions are not elastic and there is some degree of excitation and
ionization taking place. For the hard collisions (i.e., collisions involving substantial
momentum transfer) that are responsible for sputtering, however, the energy transfer
involved in the moderation of the incident ions is large compared with the ionization
energy. The effects of the weaker collisions responsible for ionization may be studied
separately.

A 10-keV O2
C ion has a speed of 2.5ð 105 m/s, which greatly exceeds the speed of

sound in solids. The lattice is unable to carry the energy away as phonons. A cascade
of collisions occurs in the region where the incident ion strikes the surface. The energy
of the ion is distributed among the atoms in that region. If the energy per atom exceeds
the cohesive energy of the solid, these atoms are likely to evaporate from the surface.
Some of them will emerge as ions, although most will come out as neutrals. Some of
the emerging ions will be reneutralized on the way out. The probability that a given
species will leave as an ion is very chemical dependent as well as a function of the
nature of the sputtering ion. It is known, for example, that a cesiated surface has a low
work function, whereas an oxygenated surface has a high work function. This could
easily affect the reneutralization probabilities for the emerging ions, since electrons
will have to tunnel out from the solid across a vacuum barrier to reach the emitted
ions as they leave the solid.

Once the ions emerge from the sample, the mass spectrometry may be carried out in
one of three ways. One may use an accelerating cathode to speed up the ions and then
inject them into a uniform magnetic field. Alternatively, one may use a quadrupole
mass spectrometer. Finally, one may make a time-of-flight measurement. The first
method will be examined.

The speed of the positive ion as it passes through the cathode depends on the cathode
voltage V, relative to the sample:

v D
√

2qV

M
, �W22.128�

where the initial velocity of the ion as it leaves the solid is negligible. The diameter
of the resulting circular orbit in the magnetic field is

D D 2Mv

qB
, �W22.129�

where q and M are the charge and mass of the ion and B is the strength of the magnetic
induction. Thus the mass-to-charge ratio is

M

q
D B2D2

8v
. �W22.130�

A typical SIMS spectrum of Si exposed to oxygen is presented in Fig. W22.36, where
the number of counts in a detector is plotted as a function of the mass-to-charge ratio
M/Z and where q D Ze. Note that the species ejected reflect the bonding in the solid
and, in particular, that an SiO2 fragment is not ejected.

W22.21 Rutherford Backscattering

A powerful technique for compositional depth profiling of a solid is Rutherford
backscattering (RBS). Usually, an ˛-particle source is used with its energy on the
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Figure W22.36. SIMS spectrum for SiO2.

order of 1 MeV. The ˛-particle is directed normal to the surface and, when scattered
through an angle � > �/2, exits through the same surface that it entered. The energy of
the ˛-particle is measured and the energy loss is determined. This energy loss depends
on how far the particle penetrated the solid and the type of atom responsible for its
deflection.

As a fast charged particle passes an atom it loses energy, primarily by electronically
exciting or ionizing the atom. In a solid, phonon processes or other elementary exci-
tations also come into play. These processes lead to a steady decrease in the energy
of the particle and may be described by an energy loss per unit length. Bethe gave an
approximate theoretical formula for the energy loss per unit distance due to electronic
excitation and ionization:

dE

ds
D �2�nZ2

E

(
Z1e2

4��0

)2

ln
2mv2

IE
, �W22.131�

where Z1 is the charge state of the projectile (2 for ˛-particles), Z2 the atomic number
of the target nucleus, E is the energy of the projectile and v the corresponding speed,
n the concentration of target atoms, m the mass of an electron, and IE the ionization
energy of the target atom. The energy loss is a slowly varying function of the energy
and may be assumed to be constant if the energy-loss range under consideration is
sufficiently small. The precise form of the energy-loss function varies from material to
material and may be determined experimentally by passing beams through thin samples
and measuring the resulting energy loss. It presumably also contains corrections due
to phonon losses.

In addition to the mechanism above, there exists the possibility of energy loss
resulting from hard Coulomb collisions between the ˛-particle and the target nuclei
(i.e., Rutherford scattering). The cross section for these collisions is on the order of a
barn (10�28 m2). The differential scattering cross section in the laboratory frame is

d�

d�
D
(
Z1Z2e2

8��0E1

)2
[cos � C

√
1� x2 sin2 �]2

sin4 �
√

1� x2 sin2 �
, �W22.132�

where E1 is the energy of the ˛-particle just prior to scattering and x D M1/M2.
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Figure W22.37. Rutherford backscattering geometry.

Suppose that the ˛-particle enters the solid with energy E at normal incidence and
travels a distance D before undergoing Rutherford backscattering. It will arrive at the
target nucleus with energy E1:

E1 D E�
∫ D

0
ds
dE

ds
' E� D

(
dE

ds

)
1
, �W22.133�

where the subscript indicates that the energy-loss function is to be evaluated at an
average energy for the inward journey. The detector is set to measure the backscattered
current at a scattering angle �, as in Fig. W22.37. The energy of the projectile just
after the backscattering event is

E01 D F���E1, �W22.134�

where it was found in Eq. (W22.127) that

F��� D

cos � C

√
1/x2 � sin2 �
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The projectile then travels an additional distance �D sec � before emerging from
the solid. The final energy is

E2 D E01 �
∫ �D sec �

0

dE

ds
ds ' E01 C D sec �

(
dE

ds

)
2
. �W22.136�

Here dE/ds is evaluated for the backscattered journey. Thus

E2 D EF���� D
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The current entering the detector per unit solid angle per unit energy is

d PN
d�dE2

D I
∫ H

0
dDn

d�

d�
υ�E2 C aD� EF����, �W22.138�
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Figure W22.38. Rutherford backscattering spectrum for 1.7�MeV HeC ions incident on a
YBa2Cu3O7�x film on an Al2O3 substrate. (From H. J. Gossmann and L. C. Feldman, Mater.
Res. Soc. Bull., Aug. 1987, p. 26.)

where I is the incident particle current, a was defined in Eq. (W22.137),H is the sample
thickness, and n is the concentration of target atoms. The delta function ensures the
correct energy relation. Carrying out the integral gives

d PN
d�dE2

D In
a

d�

d�
�EF���� E2��E2 � �EF���� aH��. �W22.139�

The  function is 1 for positive argument and 0 for negative argument. It implies the
existence of a high- and a low-energy cutoff in the energy spectrum. The high-energy
cutoff corresponds to scattering from atoms on the front surface of the sample. The
low-energy cutoff corresponds to scattering from atoms at the depth H (i.e., at the
back surface of the sample). Since F��� is unique to each target atom, the locations
of these cutoffs permits the identification of the presence of a particular type of atom.
The size of the step is proportional to the concentration, n. A typical RBS spectrum
is given in Fig. W22.38 for a thin film of YBa2Cu3O7�x. The spectrum consists of
a superposition of rectangles, one for each element, and each with its characteristic
width aH, and energy E2 extending from EF���� aH to EF���.

SURFACE MICROSCOPY

The next three sections are concerned with scanning surface microscopy. The atomic-
force microscope, the scanning-tunneling microscope, and the lateral-force microscope
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are studied. A mobile probe is passed over the surface in a rastering fashion and a time-
dependent voltage signal is sent by the microscope to a computer, where an image of
the surface is constructed. In the atomic-force microscope the signals are proportional
to the interatomic force between the tip of the probe and the surface. In the scanning-
tunneling microscope it is proportional to the electron current that tunnels between the
probe and the conducting surface. The lateral force microscope rubs the tip over the
surface and measures both the normal force and the frictional force between the solids.

There are numerous extensions of scanning-probe microscopy. The near-field scan-
ning optical microscope (NSOM) uses a tipped optical fiber to transmit light to a
surface and to collect the scattered light, providing information concerning the reflec-
tivity variations of the surface. The scanning-capacitance microscope employs the probe
and substrate as the plates of a capacitor and measures the variation of capacitance
due to variations in the surface height or due to dielectric deposits on the surface.
The scanning-thermal microscope rasters a thermocouple over the surface to measure
differences in local temperature. The scanning magnetic-force microscope probes the
local magnetic structure on the surface by means of a magnetic tip. Numerous other
physical effects are also used as the basis for microscopy.

W22.22 Atomic-Force Microscopy

Two objects brought in proximity will exert forces on each other. This is true of atoms
and molecules and is also true of mesoscopic objects. At the most fundamental level,
this force is of electromagnetic origin (neglecting the extremely weak gravitational
force), although it usually appears in the guise of weak chemical bonding forces.
These include van der Waals forces, the interaction of electric multipole moments with
each other, and possibly magnetic forces as well. The atomic-force microscope (AFM)
uses this force in a controlled way to determine surface structure.

Figure W22.39 is a sketch of the essential elements of the atomic-force microscope.
A sample is mounted on a stage that is capable of being moved in three independent
directions, x, y, and z. A conducting cantilever beam L with a stylus S at the end is
brought close to the surface and the sample is moved in a rastering motion beneath it.
Above the cantilever is a plate which, together with the cantilever, forms a capacitor.
As the sample is moved back and forth, the force on the stylus varies with time. When
the stylus is attracted to the sample, the gap size of the capacitor is increased and the
capacitance decreases. If this capacitor is part of an LC circuit, the resonance frequency

Sample

xyz

S

p L

Figure W22.39. Atomic-force microscope.
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Figure W22.40. Atomic-force microscope micrographs for a growth spiral. [From G. T. Paloczi
et al., Appl. Phys. Lett., 73, 1658 (1998). Copyright 1998, American Institute of Physics.]

may be monitored as a function of time. In another mode of operation, a piezoelectric
crystal, p, attached to the cantilever, can be sent a feedback signal to keep the height
of S above the surface constant. The voltage across the piezoelectric crystal needed to
maintain this constancy then becomes the signal. Other ways of detecting the stylus
motion are possible, such as interferometry.

It is important that the microscope be immune to vibrations of the surrounding
environment. In addition to vibration isolation, such immunity may be obtained by
using a cantilever that has a high natural vibration frequency (in the tens of kilohertz)
and by rigidly attaching it to the sample stage. Then, to a first approximation, the entire
microscope will vibrate as a rigid body and the separation between the stylus and the
sample surface will remain approximately constant.

Since interatomic forces tend to be short ranged, the tip of the stylus provides the
dominant force in its interaction with the sample. The stylus is particularly sensitive
to forces produced by the sample’s dangling bonds, steps, and surface imperfections.

A state-of-the-art atomic-force microscope has recently been constructed with a
cantilever consisting of a single crystal of silicon of dimensions 95 µm long by 0.6 µm
thick. The resonant frequency is 77 kHz and it is sensitive to forces smaller than
10�11 N. A typical scanning velocity is 200 nm/s.

An example of the application of the AFM to the study of a growth spiral is presented
in Fig. W22.40. Sequential images are shown for the outward growth of steps from a
screw dislocation. It is found that when steps reach a critical length, new steps at right
angles to them begin to grow. This is a result of the competition between step-length
energy and layer-area energy. The surface is that of calcite.

W22.23 Scanning-Tunneling Microscope

The scanning-tunneling microscope (STM) uses electrons that tunnel from a conducting
solid to a conducting probe electrode (stylus) to map the topography of the surface of a
solid. The construction is almost identical to that of the atomic-force microscope except
that a potential difference,V, is imposed between the stylus and the surface. A tunneling
current is established, and this current depends sensitively on the distance between the
stylus and the sample. The stylus is made as sharp as possible. Tunneling through
the vacuum favors the most direct path, so the characteristic region of the surface
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Figure W22.41. Tunneling process: (a) unbiased; (b) biased.

contributing tunneling electrons is somewhat smaller than the radius of curvature of
the stylus tip.

As the surface is rastered past the stylus, the distance D between the stylus and the
surface will fluctuate and this will cause the tunneling current to vary. As in the case
of the AFM, it is common practice to supply a feedback voltage to the piezoelectric
crystal to keep the surface at a constant distance below the stylus. This prevents the tip
of the stylus (the “head”) from crashing into the surface, thereby destroying the stylus.
The variation of this feedback voltage with time (and hence stylus location) provides
the signal needed to reconstruct the image of the surface.

It is fairly simple to derive an approximate expression for the tunneling current
in a one-dimensional approximation. Consider Fig. W22.41, which shows two cases
where the stylus is in proximity to the surface, one without external bias and one
with a bias voltage V. For the sake of definiteness, assume that the sample is on the
left and the stylus is on the right in each case. Let �1 be the work function potential
of the sample and �2 be the work function potential of the stylus. When the metals
are brought into contact, or near contact, the Fermi levels will rapidly equilibrate by
having some charge flow from the metal with the smaller work function potential.
This establishes the contact potential difference. (This effect is the basis for what is
called the Kelvin probe technique for measuring work function changes associated with
adsorption.) Next, suppose that an external bias voltage V is imposed on the system.
The Fermi levels are no longer the same and a tunneling current of electrons can flow
from one metal to the other. In the case of the diagram it flows from the sample to the
stylus.

The particle current per unit area is given by an integral over the Fermi sea of the
left-hand conductor:

Jz D �2
∫

dk
�2��3

vzP�vz�f�E, T�[1� f�E� eV,T�], �W22.140�

where f(E,T) is the Fermi–Dirac distribution function and P is the probability for
tunneling through the barrier. The quantity P is given by

P D v0z
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where v0z is the velocity on the right and vz is the velocity on the left. The Fermi–Dirac
factors guarantee that the tunneling electron will come from an occupied sample state
and tunnel into a vacant stylus state. The form of the barrier potential energy is

U�z� D EF1 C e
[
�1 C ��2 � �1 � V� z

D

]
, �W22.142�

where z D 0 at the sample surface and image potential corrections are neglected. At
low temperatures the Fermi factors may be replaced by unit step functions (i.e., 
functions). If the  functions are expanded to first order in V, the expression becomes

Jz D 2

�2��3

∫
dkvzP�vz�eV

1

2
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which may be expressed in terms of the density of states at the Fermi level:

Jz D eVvF
2

;�EF1�hcos �iP D e2VvF
4

;�EF1�P. �W22.144�

Here vz has been replaced by vF cos � and the average value of cos � in the forward
direction is equal to 1

2 . The tunneling integral is readily computed, and finally, a formula
for the particle current density is obtained:
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The quantity v0F is the Fermi velocity for the tunneling probe. The exponential falloff
with tunneling distance is expected as well as the dependence on some average barrier
height.

The actual value of the electric current is given by I D �eAJz, where A is a char-
acteristic area. For the case of a stylus tip with radius of curvature R, one may expect
A ³ �R2. Equation (W22.145) is not completely correct. In reality, one should use the
local density of states rather than the bulk density of states. The local density of states
varies from position to position in directions parallel to the surface and reflects the
variations in local charge density of the surface bonds. Therefore, as one rasters the
surface under the tip, the tunneling current will vary from position to position.

An example of an STM picture of the surface of Si(100) is presented in Fig. W22.42.
It shows, with atomic resolution, a Si(100) 2ð 1 surface with a Na overlayer.

W22.24 Lateral-Force Microscope and Surface Force Apparatus

A variant of the atomic-force microscope, called the lateral-force microscope (LFM),
can measure the shear stress on a microscopic stylus that is slid across a surface
(Fig. W22.43). It is sensitive to forces as small as 1 pN. The stylus, which constitutes
one of the solids (commonly diamond or Si3N4), is supported by a flexible cantilever
that can be deflected as the stylus rubs against the other surface. By measuring the
bending of the cantilever, one may determine the normal force exerted on it by the
stylus. By measuring the torsion of the cantilever, information concerning the frictional
force is obtained. These measurements are made by reflecting a beam of light from the
back of the cantilever and recording the position of the reflected spot on a screen. The
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Figure W22.42. Micrograph of the Si(100) surface with an overlayer of Na atoms. [From
A. A. Saranin et al., Phys. Rev. B, 58, 4972 (1998). Copyright 1998 by the American Physical
Society.]

Figure W22.43. Lateral force microscope (LFM). A light beam is reflected off a cantilever and
strikes an array of photodetectors. The flexure and torsion of the cantilever are related to the
normal and friction forces.

solid lying beneath the stylus is attached to a piezoelectric crystal stage. By applying
time-varying potential differences across this crystal, the sample may be rastered back
and forth beneath the stylus. Thus a friction map may be generated.

By coating the stylus with a self-assembled monolayer (SAM) of organic molecules,
it is possible to sensitize the stylus so that it will respond differently to different adsor-
bates on the other solid. This is because the chemical specificity of the intermolecular
interactions determines the friction force. It was recently found that friction can be
both anisotropic and asymmetric when the monolayer consists of tilted molecules.† The
asymmetry refers to moving the stylus in the direction of the molecular tilt compared
with against it.

The surface force apparatus (SFA) is a device with two atomically flat parallel mica
plates. The width of the separation may be reduced to nm dimensions. Lubricants are

† M. Liley et al., Science, 280, 273 (1998).
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placed in the gap and the plates are slid past each other. Evidence for the formation
of well-defined liquid layers is found when the gap distance is smaller than 10 nm.
The viscosity rises very rapidly as the gap distance is reduced. One finds evidence
for the formation of two-dimensional glassy solids within these layers if the layers
are very thin (e.g., four molecules thick). As the lubricant is sheared, these layers are
deformed elastically and then may release the strain energy by slipping or melting
when a critical shear stress is reached. The resulting stick-slip motion is reminiscent
of the mechanism believed to produce seismic earthquakes. The sudden slip motions
are also believed to peel material off the surfaces, thereby producing delamination
wear. Wear is the general term given to the change of geometry of the surfaces and
the removal of material from them as a result of friction. In polymer applications it
is found that the threshold for substantial wear is correlated with the product Pv, in
accordance with Eq. (W19.39). The value is referred to as the Pv limit. For example,
for polycarbonate and Teflon, the Pv limits are 0.01 and 0.06 MPa.m/s, respectively,
for v D 0.5 m/s at room temperature.

Another device that is used to study the friction of lubricants is the quartz-crystal
microbalance (QCM). The damping of vibrations (i.e., the Q of the quartz crystal plate)
is influenced by the viscosity of the lubricant with which it is in contact.

TRANSPORT MEASUREMENTS

In Chapter 7 electrical-transport properties such as the electrical resistivities and the
Hall coefficients of materials have been introduced. Some elementary thermal and ther-
moelectric properties are also discussed. In the following two sections some methods
for measuring these properties are reviewed.

W22.25 Electrical Resistivity and Hall Effect

The simplest method for measuring resistivity involves the use of a cylindrical sample
of material of length L and cross-sectional area A. The resistance R is measured and the
resistivity is given by ; D RA/L. The accuracy of the measurement is limited by the
geometric measurements and the ability to control fringing fields. A simple geometrical
arrangement for measuring the Hall coefficient is given in Fig. 7.1 and discussed in
Section 7.3.

For a large sample of material with a planar surface, the four-contact method may
be employed to measure ;. Suppose that the material occupies the half-space z < 0.
Place four contacts at four points on the surface at the locations defined by the vectors
rA, rB, rC, and rD. The contacts are placed close together so the distance between them
is much less than the distance to the edges of the surface. If a current I is injected into
contact A, it will set up an electrostatic potential field �A�r� D ;I/�2�jr� rAj� within
the material. Similarly, if one draws a current I out of contact B, the potential field is
given by �B�r� D �;I/�2�jr� rBj�. When the current is injected at A and removed
at B, these potentials are superimposed to give ��r� D �A�r�� �B�r�. The difference
in potential is then measured between points C and D. The resistance is

RCD,AB D VCD,AB

I
D ;

2�

(
1

rCA
� 1

rCB
� 1

rBA
C 1

rDB

)
, �W22.146�

where rCA D jrC � rAj, and so on.
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Figure W22.44. Clover-shaped sample for the van der Pauw method of measuring the resistivity
or the Hall coefficient.

The van der Pauw method† extends this method to two dimensions and permits one
to measure the resistivity and Hall coefficient for a thin sample of material. It will be
assumed that there is isotropy in the plane of the slab. Four fine electrodes, labeled
A, B, C, and D, are attached to the boundaries of a slab of thickness d. The shape
of the sample is unimportant, as long as it has no holes in it (i.e., it must be simply
connected). (This may be proven by the method of conformal transformations using
complex-variable theory. It will not be derived here.) A typical geometry that is used
is illustrated in Fig. W22.44. In the resistivity case two measurements are made. First
a current I is driven from C to D and the voltage VAB,CD is measured across electrodes
A and B. The resistance RAB,CD is computed by the formula RAB,CD D VAB,CD/I. The
measurement is repeated with a current driven from D to A and the voltage measured
across B and C. The resistivity is given implicitly by the formula

exp���RAB,CDd/;�C exp���RBC,DAd/;� D 1. �W22.147�

The method may be generalized to anisotropic samples.‡

The Hall coefficient RH is determined by measuring the change in the resistance
RBD,AC when a magnetic induction B is imposed perpendicular to the slab. The
formula is

RH D dRBD,AC

B
. �W22.148�

From a measurement of the Hall voltage the sign of the carrier may be determined.

W22.26 Thermopower, Peltier Coefficient, and Thermal Conductivity

A system in thermal equilibrium obeys the first law of thermodynamics, given by
Eq. (WA.1), TdS D dU C PdV� �dN. When the system is driven slightly out of
equilibrium, current densities are produced. These include the particle-current density,
J, and the energy-current density, JU. Consider the case where the charged carriers are
electrons, so the particle current density is proportional to the electrical-current density
(i.e., JE D �eJ). The driving forces for JE include the electric field, E D �r�, as well
as the gradient in the chemical potential and the gradient in the temperature. The same
forces drive JU. In place of the energy-current density, the first law of thermodynamics
is used to define the heat-current density, JQ, in terms of the chemical potential:

JQ D TJS � JU � �J, �W22.149�

† L. J. van der Pauw, Philips Res. Rep., 13, 1 (1959).
‡ L. J. van der Pauw, Philips Res. Rep., 16, 195 (1961).
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where JS is interpreted as an entropy-current density. For weak driving forces the
current densities are expressed as linear combinations of the driving forces:

JE D eL11

T
r��� e��C eL12r 1

T
, �W22.150a�

JQ D L21

T
r��� e��C L22r 1

T
, �W22.150b�

where Lij are coefficients. Onsager proved (in general) that L12 D L21 so there are three
independent coefficients. An example of the Onsager relations has been encountered
when the transport properties of metals were studied in Section 7.5.

The significance of the Lij coefficients may be obtained by examining special cases:

1. If T and � are constant in space, then

JE D e2L11

T
E, �W22.151�

so � D e2L11/T. The coefficient L11 is therefore proportional to the electrical
conductivity.

2. If the heat current is measured for the case where there is no electric current
(i.e., JE D 0), it is found that

JQ D �L11L22 � L2
12

L11T2
rT D �5rT, �W22.152�

where 5 is the thermal conductivity.
3. In the absence of an electric current, an electric field is established in the sample,

that is,

�eE D r�� L12

TL11
rT. �W22.153�

The electromotive force is given by

ε D
∮

E · dl D �1

e

∮
dl · r��

∮
Qdl · rT, �W22.154�

where Q D �L12/eTL11 is called the absolute thermoelectric power of the mate-
rial. (The symbol Q is used here rather than S so as not to confuse it with the
entropy.) The first term on the right-hand side may be written as

∮
d� and is

zero. The second term may be written as � ∮ QdT.

Consider an experimental arrangement such as is shown in Fig. W22.45, consisting
of two conductors, labeled A and B, with absolute thermoelectric powers QA and
QB, respectively. Let a voltmeter be inserted in one of the conductors to measure the
electromotive force ε. Label the temperatures at the left and right junctions TJ and
TJ CT, respectively, and the temperature at the voltmeter TJ CT0. It is assumed
that T− TJ and T0 − TJ. Then

ε D �QA[�TJ CT�� �TJ CT0�]� QB[TJ � �TJ CT�]
� QA[�TJ CT0�� TJ]
D �QB � QA�T. �W22.155�
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Figure W22.45. Arrangement for measuring the absolute thermopower.

Thus the difference in the thermopowers is the voltage per unit temperature difference:

QB � QA D ε

T
. �W22.156�

A four-probe technique is used to measure the thermopower. Thermocouple ther-
mometers are placed at the left and right junctions to measure TJ and TJ CT, and
the difference of the temperatures is taken to obtain T. The voltage leads are placed
across the gap, as shown in Fig. W22.45. In measuring the thermopower one places
both the sample and thermometer in vacuum, to eliminate convective heat channels.
They are also shielded with highly reflecting surfaces to minimize radiative losses.
(The same techniques are used in the design of a thermos bottle.) The voltage could
be measured using a potentiometer connected to a sensitive galvanometer. Very small
thermocouples, connected to very fine leads, are employed as thermometers.

Thermocouples are thermometers that produce an electromotive potential related to
the temperature at the junction. A typical thermocouple is illustrated in Fig. W22.46.
Two conductors, A and B, form a junction that acts as the temperature probe. The
other wires are each connected to identical conductors, labeled C. The AC and BC
junctions are each held at the same standard temperature, T0. A mixture of ice and
water at atmospheric temperature is often used to set T0 D 0°C. The other ends of
the C wires are connected to a galvanometer and a potentiometer at room temper-
ature. Typical thermocouples involve the use of copper versus constantan, chromel
versus alumel, chromel versus constantan, iron versus constantan, and platinum versus
platinum–rhodium.

A

B

C

C

G
T0T TR

Figure W22.46. Thermocouple arrangement.
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Figure W22.47. Peltier effect.

The Peltier effect involves creating a junction of two dissimilar conductors and
passing an electrical current through it. The electrical current is the same in each
conductor. Assume that the temperature is held constant. The situation is illustrated
in Fig. W22.47. In the absence of a temperature gradient term, the heat current is
proportional to the electric current:

JQ D L12

eL11
JE D �QTJE. �W22.157�

Since Q is discontinuous from one conductor to the other, this implies that a heat
transfer must take place at the junction. The heat extracted at the junction from the
environment is given by

JQ D JB
Q � JA

Q D �T�QB � QA�JE � �BAJE, �W22.158�

where �BA is called the Peltier coefficient. Thus the Peltier coefficient is defined as
the heat extracted per unit current. It may be determined from a measurement of the
thermopower through the relation

�BA D �T ε
T

. �W22.159�

There are a number of ways to measure the thermal conductivity. They often may
be classified as transient measurements or steady-state measurements. An example of a
transient measurement is the following. Take a rod of length L initially at temperature
T0. At t D 0 place the left end of the rod in contact with a thermal bath at temperature
T1. Measure the temperature of a point on the rod at position x for times t > 0. The
thermal diffusion equation is

r · JQ C ∂u
∂t
D �r Ð �5rT�C ∂�;cT�

∂t
D �5∂

2T

∂x2
C ;c∂T

∂t
D 0, �W22.160�

where it is assumed that 5 is independent of T. The solution to Eq. (W22.160) is

T�x, t� D T1 � �T1 � T0� erf
(

x

2
p
at

)
, �W22.161�
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where ; is the density, c the specific heat, and the thermal diffusivity is a D 5/;c.
The error function erf(x) is defined in Chapter W6. The rise of T(x,t) with time at a
fixed x is compared to this formula, and a value for a is determined. The value of c is
obtained from a calorimetry experiment.

In the steady-state measurements simple geometrical arrangements are chosen and
heat is supplied to the material at a known rate. The temperature differential is
measured. For example, if a rod of length L is connected to a heater supplying a
known heat flux JQ, and the temperature difference T is measured between two
points along the rod a distance x apart, then 5 D JQx/T.

A preferable geometrical arrangement involves the use of concentric cylinders. A
cylindrical heater of length L and radius R1 is surrounded by a hollow sample of
material of the same length, with inner radius R1 and outer radius R2. Heat is delivered
by the electrical heater at a known rate, H. Thermocouples are used to measure the
temperature difference T between the inner and outer surfaces of the sample. The
thermal conductivity is then given by

5 D H

2�LT
ln
R2

R1
. �W22.162�

MAGNETIC MEASUREMENTS

The magnetic properties of materials are discussed in Chapter 9, and a number of
magnetic materials are studied in Chapter 17. In this section some of the measure-
ment techniques for characterizing magnetic materials are described. They include
use of the Foner magnetometer, the Faraday balance, and the ac bridge. The SQUID
magnetometer is discussed in Chapter 16.

W22.27 Foner Magnetometer

The Foner magnetometer is used to measure the magnetization of a small sample
of magnetic material. When measuring the saturation magnetization the shape of the
sample is not important. For nonsaturation conditions a spherical sample is used so
that the orientation of the sample is not relevant. The sample is placed on a reed and
is made to vibrate in the presence of a coil of wire. For this reason the apparatus is
also known as the vibrating-sample magnetometer (VSM). Alternatively, the coil may
be vibrated in the presence of the magnetic sample. In either case an ac electromotive
force is established in the coil which is readily measured. From this measurement the
magnetization may be determined.

A formula for the EMF may be obtained by considering a coil with a current I in the
neighborhood of the sample and neglecting resistance effects. Let L be the inductance
of the coil in the absence of the sample. The energy of the system is

U D 1
2LI

2 � �0m · H, �W22.163�

where H is the magnetic field intensity and m is the magnetic moment of the sample.
It will be assumed that H D H Ok and that m DMV, where M is the magnetization and
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V is the volume of the sample. The energy of the system will be constant, so

dU

dt
D 0 D LIdI

dt
� �0MV

dH

dt
. �W22.164�

Use LI D N, where N the number of turns in the coil and  is the magnetic flux
through the coil. Assume that H D H�z� and write dH/dt D vz dH/dz, where vz is the
z component of the velocity of the sample. From Faraday’s law the EMF is given by
ε D �Nd/dt D �L dI/dt. Thus

ε D ��0MVvz
1

I

dH

dz
. �W22.165�

For a harmonic oscillation of the sample, z D A cosωt, where A is the amplitude
(typically ³ 1 mm) and ω is the frequency (typically corresponding to ³ 100 Hz).
Therefore,

ε�t� D �0ωMVA

I

dH

dz
sinωt. �W22.166�

From a measurement of the amplitude of the EMF and the mechanical motion, together
with knowledge of the sensitivity of the instrument, j�dH/dz�/Ij, and the volume of the
sample, one may determine the magnetization of the sample. The sensitivity function
depends on the geometry. For example, consider the ideal case of two coils of wire
of radius R separated by a coaxial distance 2D. A sketch of the Foner magnetometer
is given in Fig. W22.48. Some external source (not shown), such as a loudspeaker, is
used to establish vibrations in the reed to which the sample is attached. The coils are
wound so that the currents generated in the coils will flow in opposite directions. Near
the center of symmetry one finds the sensitivity

1

I

dHz

dz
D � 3NDR2

2�R2 C D2�5/2
. �W22.167�
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Figure W22.48. Foner magnetometer. (Adapted from S. Foner, J. Appl. Phys., 79, 4740 (1996).
Copyright 1996 by the American Institute of Physics.)
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The maximum sensitivity occurs when R D 2D and has the value j�dH/dz�/Ij D
96N/�5R2

p
5�. The sensitivity grows with the number of turns (which could typically

be ³ 25,000) and falls off inversely as the square of the radius.
The Foner magnetometer readily measures magnetic moments on the order of 10�10

A·m2 at liquid-nitrogen temperatures, to reduce the thermal noise. The instrument is
generally calibrated in terms of a known ferromagnetic material, such as Ni. Magne-
tizations are measured relative to the calibration standard.

W22.28 Faraday Balance

The Faraday balance permits one to measure the magnetization of a sample
in a magnetic field. The technique is illustrated in Fig. W22.49. A solenoidal
superconducting magnet establishes a magnetic field intensity H0 in the axial direction
which magnetizes the sample, the magnetization being M�H0�. Note that this uniform
magnetic field does not produce a net force on the sample. Weights are placed on the
right-hand side of the balance equal to the weight of the sample to maintain equilibrium.
Then an inhomogeneous magnetic field H is established by the smaller pair of coils.
The coils are arranged as shown in Fig. W22.49. The magnetic force in the axial
direction is given by

Fz D ∂�m · B�
∂z

D M�H0�V�0
∂H

∂z
DW, �W22.168�

where V is the volume of the sample. The additional weight W is placed on the right-
hand side to counterbalance the magnetic force. In practice, an analytical microbalance
is adapted to serve as the balance. The field gradient is vertical. The radius, R, equals
the separation between the coils, D, as in the Helmoltz coil arrangement, but the
currents are in opposite directions so that a uniform gradient dH/dz is established.

W22.29 AC Bridge

The complex frequency-dependent magnetic permeability of a material, �r�ω� D
�1�ω�C i�2�ω�, may be measured by means of the ac bridge method. One prepares a

SampleD

2R

Figure W22.49. Faraday balance.
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Figure W22.50. Ac bridge.

sample in the shape of a ring and winds N uniform turns of wire around it to fashion
an inductor. The inductance is given by

L�ω� D �0�r�ω�hN2

2�
ln
b

a
, �W22.169�

where it is assumed that the ring is in the form of an annulus of inner radius a, outer
radius b, and thickness h. The inductance is seen to be a complex quantity and may
be regarded as a pure inductor in series with a pure resistor. The reactance of the pair
is X D �iωL�ω� D R� iω Re �L�ω�� � R� iωL, where

R D ω�0�2hN2

2�
ln
b

a
. �W22.170�

The inductor is inserted into one leg of a bridge, as shown in Fig. W22.50. The other
legs of the bridge consist of a variable inductor L0 in series with a variable resistor R0,
and two capacitors, each with capacitance C. An ac voltage of frequency ω is imposed
across the bridge. The value of R0 and L0 are adjusted until a null reading for the
voltage occurs across the terminals A and B. The bridge is then balanced with L0 D L
and R0 D R. The values of �1�ω� and �2�ω� are then determined from Eqs. (W22.169)
and (W22.170).

RESONANCE TECHNIQUES

The ability of scientists to determine resonance frequencies accurately has played a
central role in the development of atomic and nuclear physics and gas-phase chemistry.
The techniques were later applied to liquid-phase chemistry and ultimately to solid-
state measurements. In the following sections several of these resonance techniques are
described. The discussion begins with nuclear magnetic resonance spectroscopy. This
is followed by a consideration of nuclear quadrupole resonance spectroscopy. Then
electron spin resonance is studied. Finally, the Mössbauer effect is described.

W22.30 Nuclear Magnetic Resonance

It is possible to obtain useful information concerning the composition of a material
and the local environment of its individual nuclei by performing nuclear magnetic
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resonance (NMR) measurements. The procedure involves placing a sample of the
material in a constant uniform magnetic field. A weak perturbing radio-frequency
magnetic field is simultaneously applied to the sample while its frequency is varied
until maximum power is delivered by the RF field to the sample. This frequency is
called the resonance frequency. For a given magnetic field it is found that each nucleus
has its own particular resonance frequency. The strength of the resonance is directly
proportional to the amount of that particular nucleus present in the sample. This is
the basis of the use of NMR as a tool for determining the chemical composition. In
addition, there are slight shifts of the resonance frequency caused by variations of the
local chemical environment of the nucleus. This is due to the nuclei coupling to the
surrounding electrons by magnetic interactions and the electrons also coupling to the
applied magnetic field. Since the electron distribution reflects the chemical environment
(e.g., which chemical bonds are present and what the NNs and next-NNs are), one may
also use NMR to obtain this kind of information as well. From a knowledge of the
NNs and next-NNs one is often able to piece together the structure of complicated
chemical compounds or solids. The utility of NMR hinges on the ability to generate
uniform magnetic fields and to perform resonance measurements with extremely high
precision. The utility is also based on having a database of NMR signals from known
sequences of atoms with which a comparison may be made in determining the structure
of a complex molecule or solid.

Some of the main features of NMR follow directly from a classical-mechanical
theory, although the correct description must be formulated within the framework of
quantum mechanics. The need for a quantum theory stems from the fact that angular
momentum is quantized. A nucleus has an angular momentum operator given by

J D Ih̄, �W22.171�

where I is a vector of spin matrices (i.e., Ix, Iy , and Iz are square matrices). The
magnitude of the angular momentum, according to quantum mechanics, is given by
h̄[I�IC 1�]1/2, where I is either a nonnegative integer or a half integer. The number
of rows in the matrices Ix, Iy , or Iz is 2IC 1. For nuclei, I is small and quantum
effects are important. For pedagogic reasons, however, the discussion begins with the
classical theory. The quantum-mechanical treatment is covered in Appendix W22A.

A nucleus has a magnetic moment directed along the spin angular momentum vector

m D gI�Nh̄I D h̄8I, �W22.172�

where �N D eh̄/2Mp D 5.050824ð 10�27 J/T is the nuclear magneton, gI is the
nuclear g factor, and 8 D gI�N. Each nucleus has its unique value of 8 , and this
is what gives NMR its chemical (and isotopic) specificity. Impose a uniform magnetic
induction B D B0 Ok on the nucleus. The nucleus will experience a magnetic torque and
this will cause the spin angular momentum to change its direction in time according to

dI
dt
D m × B

h̄
D 8B0 I × Ok D I × Z. �W22.173�

This is in the form of a precession equation for I. The precession frequency is the
magnitude of the vector

Z D 8B
h̄
. �W22.174�
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TABLE W22.3 Spin I = 1
2 Nuclei Commonly

Used in NMR Spectroscopy

Isotopic
Abundance f (B D 1 T)

Nucleus (%) (MHz)

1H 99.985 42.5764
13C 1.10 10.7081
15N 0.366 4.3172
19F 100 40.0765
29Si 4.67 8.4653
31P 100 17.2510
89Y 100 2.0949
109Ag 48.161 1.9924
119Sn 8.59 15.9656
183W 14.3 1.7956
199Hg 16.87 7.7121
205Tl 70.476 24.9742
207Pb 22.1 9.0338

Source: D. R. Lide, ed., CRC Handbook of Chemistry
and Physics, 75th ed., CRC Press, Boca Raton, Fla.,
1997.

A list of some nuclei commonly used in NMR, along with their precession frequen-
cies, f D �/2� is given in Table W22.3. Many nuclei have I D 0 and so are not
NMR-active (e.g., 12C, 16O, 28Si, 56Fe).

The effect of the electrons, which are sensitive to the chemical environment, is to
partially shield the nucleus from the magnetic field. The magnetic induction may be
written as

B D �$I �$�� · B0, �W22.175�

where $� is called the shielding tensor. It may be written as the sum of an isotropic
part, �

$
I , and an anisotropic part, $� (i.e., $� D �$I C$�). The effect of the shielding

is usually described in terms of a chemical-shift parameter, υ. The value is usually
reported relative to a standard value

υ D ���st

�st
ð 106, �W22.176�

where �st is the frequency of the standard. The frequency shifts for protons typically
range from 0 to 10 ppm. For 13C they range up to ³ 200 ppm. The standard used is
often the tetramethylsilane (TMS) molecule, (CH3)4Si.

If the precession equation is separated into components, three equations are obtained:

dIx
dt
D �Iy, dIy

dt
D ��Ix, dIz

dt
D 0. �W22.177�

It follows that Iz and I remain constant in time. The x and y components undergo a
precessional motion

Ix D I0 cos�t, Iy D �I0 sin�t, �W22.178�
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where I0 is a constant in the classical theory. The value of Iz is that appropriate to
thermal equilibrium, and is given in terms of the Brillouin function:

hIzi D IBI
(
8IB

kBT

)
, �W22.179�

which is analogous to Eqs. (9.23) and (9.24).
In a solid, the nuclei interact with the other atoms of the material through a variety

of interactions, including spin–orbit and spin–spin interactions. These interactions
have two effects. First, they cause the z component of the nuclear spin to relax to its
equilibrium value, with a characteristic relaxation time T1, that is,

dIz
dt
D �Iz � hIzi

T1
. �W22.180�

The parameter T1 is called the longitudinal or spin-lattice relaxation time. Second, they
cause the precessional motion to become phase interrupted. Introduce a phenomeno-
logical damping term to account for this spin–lattice interaction:

dIx
dt
C Ix
T2
D �I × ��x, �W22.181�

dIy
dt
C Iy
T2
D �I × ��y, �W22.182�

The parameter T2 is called the transverse relaxation time. It is assumed that there is
no difference in the phase-interruption time constant for x- or y-spin components.

It is convenient to form the combination IC D Ix C iIy and combine the two preces-
sion equations into one: (

d

dt
C i�C 1

T2

)
IC D 0. �W22.183�

This is an equation for damped oscillation of the spin.
Next, introduce the perturbing magnetic field, H0�t�, at right angles to B. It is taken

to be circularly polarized, since this leads to a simpler formula. Thus

H0x D H0 cosωt, H0y D �H0 sinωt. �W22.184�

The dynamical equation becomes

(
d

dt
C i�C 1

T2

)
IC D i�0Iz exp��iωt�, �W22.185�

where �0 D �08H0/h̄. In the limit of weak RF fields, Ix and Iy will be small, so Iz
will differ from hIzi only by terms of order �H0�2. Hence Iz will be approximated by
hIzi. A steady-state solution for IC is found by writing IC D I0 exp��iωt�, so

I0 D �0hIzi
�� ω � i/T2

. �W22.186�
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Figure W22.51. Precession of a nuclear spin around the magnetic-induction vector.

This equation demonstrates that as the frequency ω approaches the resonance frequency
�, the amplitude of IC can grow to be large, limited only by the shortness of T2. The
resonance is detected by monitoring the power transfer from the RF circuit to the spin
system. It shows up by adding extra inductance and resistance to the RF circuit. This
power, of course, is ultimately transferred to the translational motion of the other atoms
and so heats the material. A sketch of the precessing magnetic dipole is presented in
Fig. W22.51.

The resonance frequency of a nucleus depends on the local magnetic field. In addi-
tion, for spin I ½ 1, nuclei also possess electric-quadrupole moments. These interact
with electric fields and affect the NMR spectrum in important ways. The local magnetic
field is given by the sum of the applied field and the fields due to all the other elec-
tronic and nuclear magnetic moments of the material. Since these moments are likely
to be oriented in an almost random manner, each nucleus will experience a different
magnetic field and hence have a different resonance frequency. Instead of the sample
exhibiting a sharp NMR resonance line, the line will be inhomogeneously broadened.
It is important to make a distinction between the magnetic moments participating
in the resonance (such as protons interacting with other protons in an proton NMR
signal) and other moments (such as protons interacting with Fe atomic spins in iron).
In this example, the spin–spin interaction of the protons is approximately included
in the parameter T2. The other interactions contribute to the inhomogeneous broad-
ening of the NMR line. This limits the ability to resolve closely spaced resonance
lines.

There are at least two methods to overcome this limitation. One may do NMR on
a liquid instead of a solid. There is a phenomenon called motional line narrowing
which can occur in liquids and will now be explained. As the nuclei move about due
to their thermal motion, the contribution to the local magnetic field from other nuclei
is as likely to be in one direction as in the opposite direction. Its average value is
zero, although the mean-square fluctuation remains nonzero. Let the contribution to
the precession frequency of a given nucleus from the other magnetic dipoles of the
material be denoted by �00�t�. As a simple model, suppose that it may assume only
two values, C�00 and ��00, and that there is a 50% probability of switching from one
value to the other every : seconds. The mean value of the square of the accumulated
phase after a time t is then

[∫ t

0
�00�t0� dt0

]2

D t

:
�002:2, �W22.187�
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where t/: is the number of opportunities for switching that occur. If the effective
dephasing time is determined by when this is ³ 1 radian, an estimate for T2 is obtained:

T2 D 1

�002:
. �W22.188�

As the thermal motion increases, : becomes smaller and the dephasing time becomes
longer.

A second technique for reducing the inhomogeneous width is called magic-angle
spinning. It permits high-resolution NMR to be applied to solid-state samples. It may
be accomplished by either actually physically spinning the solid about an axis making
an angle � D 54.7° with the dc magnetic field and using a very weak RF field, or
holding the sample stationary but arranging that the ratio of the RF magnetic field to
the dc magnetic field be equal to H0/H0 D tan�54.7°� D 21/2. To understand how this
comes about, consider the magnetic dipole–dipole interaction between the magnetic
dipoles located at the various sites ri in the solid:

U D �0

4�

N∑
iD1

N∑
jDiC1

3�mi · Orij��mj · Orij��mi · mj

r3
ij

, �W22.189�

where rij D jri � rjj. It will be assumed that the magnetic field is strong enough so
that mi precesses rapidly around the applied magnetic induction B0. On the average,
the magnetic moment therefore points along the direction of the magnetic field. The
angular factor in the numerator may then be written as

2P2�cos �ij� D 3 cos2 �ij � 1 D 3� OB0 Ð Orij�2 � 1, �W22.190�

where P2�cos �� is the second-order Legendre polynomial. Now suppose that the solid
is spun around some axis with an angular velocity �s (Fig. W22.52). There is an
identity, called the addition theorem for spherical harmonics,

PL�cos �ij� D 4�

2L C 1

L∑
MD�L

YŁLM��, ��YLM� ij, �ij�, �W22.191�
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Figure W22.52. Orientation of the external magnetic field, B0, the displacement unit vector,
Orij, and the rotation velocity, �s.
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where the YLM are spherical harmonics and � denotes an azimuthal angle (not shown in
the figure) around vector Zs. In the course of the angular motion, the terms involving
M 6D 0 average out, so

P2�cos �ij� ���! P2�cos ij�P2�cos ��. �W22.192�

If cos2 � D 1
3 (i.e., � D 54.7°), then P2�cos �� D 0 and the spin–spin interaction is

effectively removed as a first-order perturbation in the problem. This allows the lines to
become very narrow when the solid is spun at the magic angle. It must be emphasized,
however, that magic-angle spinning is only effective in eliminating the broadening due
to “like” spins. It does not eliminate inhomogeneous broadening due to other sources.

It is possible to remove some dipole–dipole broadening effects due to the interac-
tions between unlike spins by employing a technique called dipolar decoupling. For
example, suppose that 1H is present and one is interested in studying the 13C spectrum.
Normally, the two spins would interact in such a way as to broaden the spectra. A
strong RF field is applied whose frequency resonates with the protons. The spins of
the protons are made to flip up and down rapidly and hence their magnetic moments
average to zero. Their interaction with the 13C nuclei is suppressed.

It is also possible to use a technique called cross-polarization to increase the sensi-
tivity of the NMR resonance of one of the spins of a multispin system. For example,
there may be many more 1H nuclei present than 13C nuclei. In this technique one
applies two RF frequencies which effectively lock the nuclear resonances together.
This occurs when the Hahn–Hartmann condition applies (i.e., 8CBC D 8HBH). The
Zeeman splittings of the two nuclei are made degenerate with each other, and this
facilitates the resonant exchange of energy via the spin–spin interaction. The net result
is a transfer of magnetization from the majority 1H nuclei to the minority 13C nuclei
and a strengthening of the 13C signal.

It should also be mentioned that in some solids the analysis of the NMR line shape
reveals that the interaction between “like” spins leads to non-Lorentzian resonances.
This reflects a limitation of the Bloch equations in which one attempts to parametrize
all dephasing effects in terms of a single time, T2. The measured line shape may contain
important information concerning the interatomic distances and the short-range order,
in general.

The relaxation time T1 can be very long, in the range of minutes or longer. In some
cases this long relaxation time limits the ability to carry out NMR experiments on
solids. On the other hand, it also implies that quantum coherence is being maintained for
a long period of time. This could potentially be utilized in the construction of quantum
computers, which rely on the quantum-mechanical coherence being maintained during
the course of a calculation.

NMR is a long-established technique and there are a variety of ways of employing
it. There are powerful methods using time-programmed pulses of RF magnetic fields,
but these will not be discussed here.

It is also possible to obtain information concerning the density of conduction
electrons by measuring the Knight shift. At a given frequency the nuclear magnetic
resonance of a nucleus in a metal occurs at a different value of the magnetic field than
it would in an insulator. The Knight shift is defined as �B/B. This is due to the fact
that the conduction electrons exhibit magnetism, and this modifies the local magnetic
field experienced by the nucleus. The interaction responsible for this shift (called the
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Fermi contact interaction) is a point-magnetic interaction between the electron-spin
magnetic moment and the magnetic moment of the nucleus. An expression for this
interaction may be obtained by regarding the nucleus as a small magnetized sphere of
radius b and allowing the size of the sphere to shrink to zero. The magnetic induction
inside the sphere can be shown, by elementary magnetostatic arguments, to be given
by Bin D �0gI�NI/2�b3. The interaction energy is V D ge�Bs · Bin, so

V D 2�0

3
ge�BgI�Ns · Iυ�r�, �W22.193�

ge being the electron g factor and �B the Bohr magneton. The substitution
1/�4�b3/3�! υ�r� is also made in deriving this formula. Applying first-order
perturbation theory, one finds an expression for the energy of the nuclear magnetic
moment in the magnetic field:

E D �gI�NI ·
[

B� 2�0

3
ge�Bsj �0�j2

]
, �W22.194�

where j �0�j2 is the probability density for finding the electron at the nucleus. The
Knight shift, K, is therefore

K � �B
B
D 2�0ge�Bhszi

3B
j �0�j2. �W22.195�

This may be expressed in terms of the magnetic susceptibility E and the magnetic
permeability � using the relation hszi/B D E/n�0ge�B, where n is the electron density.
Typical experimental values for the Knight shift for the alkali metals 7Li, 23Na, 39K,
and 87Rb are 0.026%, 0.112%, 0.265%, and 0.653%.

The Fermi contact interaction is also responsible for the relaxation of the z compo-
nent of the spins. Korringa derived a relation for the spin–lattice relaxation time, based
on Fermi’s golden rule, in terms of the Knight shift in metals:

T1

(
B

B

)2

D h̄g2
e�

2
B

4�kBTg2
I�

2
N

D h̄g2
eM

2
p

4�kBTg2
Im2

e

. �W22.196�

In Fig. W22.53 magic-angle spinning NMR spectra are presented for 29Si at
79.5 MHz from samples of the catalyst ZSM-5 discussed in Section 13.6. The spectra
are compared for various degrees of removal of Al from the framework. The NMR
spectra are far more sensitive to the changes in the lattice structure than are x-ray
diffraction spectra. A precise determination of the lattice geometry may be obtained
from NMR studies.

W22.31 Nuclear Quadrupole Resonance

Nuclei with spins greater than or equal to 1
2 possess magnetic moments. If the spins

are greater than 1, they also possess electrical-quadrupole moments. The quadrupole
moment is a measure of the spherical asymmetry of the charge distribution of the
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Figure W22.53. 29Si magic-angle spinning NMR spectra for the zeolite ZSM-5 for various
degrees of dealumination. The Si/Al ratios are: (a), 20; (b), 125; (c), 800. [Reprinted with
permission from C.A. Fyfe et al., J. Phys. Chem., 88, 3248 (1984). Copyright 1984 by the
American Chemical Society.]

nucleus. The quadrupole moment is defined in terms of the nuclear charge density
;�r� by

eQ D
∫
dr ;�r��3z2 � r2�, �W22.197�

where the z axis is directed along the spin angular momentum vector. The sign of Q
is an indicator of the shape of the nucleus, being positive for cigar-shaped nuclei and
negative for pancake-shaped nuclei. Nuclei do not possess electric-dipole moments,
consistent with the invariance of the strong interaction under parity reversal (and also
time reversal).

The interaction of a quadrupole moment with an inhomogeneous electric field is
obtained from a Taylor series expansion:

U D
∫
dr�r�;�r� D Ze�0�C e

6

∑
˛,ˇ

∂2

∂x˛∂xˇ
Q˛ˇ C Ð Ð Ð , �W22.198�
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where �r� is the electrostatic potential and Z is the atomic number of the nucleus.
The coefficients Q˛ˇ define what is called the quadrupole tensor:

eQ˛ˇ D
∫
dr ;�r��3x˛xˇ � r2υ˛ˇ�. �W22.199�

It is defined here so that it has the dimensions m2 and is represented by a symmetric
matrix. The only vector defined for the nucleus as a whole is the spin angular-
momentum vector. Therefore, all vectors can be expressed in terms of I, so

∫
dr ;�r�x˛xˇ D C

2
�I˛Iˇ C IˇI˛�,

∫
dr ;�r�r2 D CI2. �W22.200�

If the expectation values of these expressions are evaluated in the state in which
I2jI, Ii D I�IC 1�jI, Ii and IzjI, Ii D IjI, Ii, then C may readily be shown to be
equal to

C D eQ

I�2I� 1�
. �W22.201�

The product of the spin matrices has been written in a form that preserves the symmetry
of the quadrupole tensor. (Note that angular momenta matrices need not commute with
each other.) The Hamiltonian for the quadrupole interaction is

HQ D C

6

∑
˛ˇ

˛ˇ

[
3

2
�I˛Iˇ C IˇI˛�� υ˛ˇI2

]
, �W22.202�

using a shorthand notation for the second derivative of the potential. After some manip-
ulation and making use of r2 D 0, this reduces to

HQ D e2Qq

4I�2I� 1�

[
3I2
z � I2 C ?�I2

x � I2
y�
]
, zz � eq, xx �yy

zz
� ?,
�W22.203�

where ? is called the asymmetry parameter and eqQ is called the quadrupole-coupling
parameter. The effects of this interaction are probed in NQR experiments.

This equation shows how the nuclear spin couples to the gradient of the electric
field. This field is set up by the neighboring ions and their associated electron charge
distributions. The field depends on the types of neighboring atoms, the internuclear
distances, and the types of chemical bonds that are formed. NQR therefore provides a
useful tool for obtaining the information above.

It is not possible to create strong-enough RF laboratory electric-field gradients that
can be used as the basis for NQR resonance measurements. Instead, one uses the
RF magnetic field, usually in conjunction with a dc magnetic field, and looks at the
simultaneous NMR and NQR effects. For example, suppose that there is a dc magnetic
field directed along the z axis, and this is aligned with a symmetry axis of the crystal. In
this case, ? D 0. The Hamiltonian then consists of a Zeeman term and the quadrupole
interaction:

H D �8B0Iz C e2Qq

4I�2I� 1�
�3I2

z � I2�. �W22.204�
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The first-order splitting caused by such an interaction may be obtained for the eigen-
states jI,mi as

hI, mjHjI,mi D �h̄8B0m C e2Qq

4I�2I� 1�
[3m2 � I�IC 1�]. �W22.205�

The effect of the Zeeman term is to lift the degeneracy by spreading out the sublevels
uniformly. The effect of the quadrupole coupling is to raise (or lower) states with šm
by the same amount. The combined effect is to produce a nonuniform spreading of
the sublevels. The magnetic-dipole selection rule is m D š1. The transitions may
be tracked in a resonance experiment, and the value of eqQ may be obtained to high
precision.

For the case where there is no axial symmetry the formulas are more complicated.
For I D 1 one finds that

h1, mjHj1, mi D



�e

2

2
qQ if m D 0,

Ý8B0 C e
2qQ

4
�1š ?�, if m D š1,

�W22.206�

and for I D 3
2 one finds that
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�W22.207�

Typical values of Q are presented in Table W22.4, along with nuclear spins, abun-
dances, and Zeeman (precession) frequencies for magnetic-dipole transitions. Nuclear
quadrupole resonance provides information about bond hybridization and the cova-
lent nature of the chemical bond. For example, if there is sp-hybridization, only the
p-orbital contributes to the quadrupole moment. Similarly, in ionic bonding, the closed-
shell ions do not possess quadrupole moments.

TABLE W22.4 Spins, Abundances, Precession Frequencies, and Quadrupole Moments
for Some Nuclei

Isotopic
Spin Abundance f�B D 1 T� Q

Nucleus I (%) (MHz) (10�30 m2)

2H 1 0.015 42.5764 0.2860
11B 3

2 80.1 13.6626 4.059
17O 5

2 0.038 5.7741 �2.558
25Mg 5

2 10.00 2.6082 19.94
27Al 5

2 100 11.1028 14.03

Source: Data from D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, Boca
Raton, Fla., 1997.
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W22.32 Electron-Spin Resonance

Much of the inner workings of atoms has been elucidated by employing resonance
techniques in conjunction with the use of external magnetic fields. The physics of the
atom is described in terms of a succession of contributions to the Hamiltonian. These
describe the kinetic energy, the electrostatic interaction between the electrons and the
nucleus, the electron–electron electrostatic interactions, the spin–orbit coupling, the
spin–spin interaction, the interaction of the electron orbital angular momentum L and
spin S with external magnetic fields, the hyperfine interaction, the nuclear Zeeman and
quadrupole couplings, and various relativistic and quantum-electrodynamic corrections.
If the atom is not free but is embedded in a crystal, one must, in addition, consider the
effect of the crystal electric field imposed by the neighboring ions and electrons, the
interaction of the atomic spin with the spins on nearby atoms, and the possibility of
losing electrons to or gaining electrons from other atoms of the solid. These effects are
often by no means small and lead to major perturbations of the energy levels and the
corresponding spectroscopy. To the extent that they can be understood, however, they
provide a powerful analytical tool for probing the solid. The field is called electron-spin
resonance (ESR) or sometimes electron paramagnetic resonance (EPR). For simple
electron-spin systems, ESR may be described in terms of the Bloch equations, although
the quantum-mechanical approach is used in this section.

ESR is a very rich field and cannot be summarized adequately in a short amount of
space. It can provide information concerning donor or acceptor impurities in semicon-
ductors. It can be used to study transition metal ions. It is useful for analyzing color
centers in insulators. It is sensitive to electron and hole traps. There are two simple
uses for it: determining the symmetry of the site where the spin sits and determining
the valence of the magnetic ion.

In atomic physics one is concerned with the coupling of the nuclear spin, I, to
the electronic spin, J D LC S, to form a total angular momentum F D IC J. In the
presence of a magnetic induction B D OkB0, the Hamiltonian for a given electronic term
is written as

H D (L · SC �BB · �LC gS�C AS · IC �NB · I, �W22.208�

where the first term is the spin–orbit coupling, the second term is the electronic Zeeman
effect, the third term represents the hyperfine coupling, and the last term is the nuclear
Zeeman effect (which is three orders of magnitude weaker). The parameter g is the
g factor of the electron and is approximately 2. One usually forms matrix elements
of this Hamiltonian in an appropriate basis, diagonalizes the matrix, and interprets the
eigenvalues as the energy levels. Resonance spectroscopy may then be used to drive
transitions between the energy levels and therefore to deduce the coupling constants,
( and A, as well as to determine L, S, and I.

The same basic idea is used in the solid, but the Hamiltonian becomes more compli-
cated. First, quenching of the orbital angular momentum may occur. This occurs in
the sp-bonded materials and transition metal ions (but not in the rare earths with f
electrons, which need to be considered separately). Since the crystal is not an isotropic
medium, the mean orbital angular momentum operator does not commute with the
potential energy function. On the other hand, to a first approximation, the electron and
nuclear spins are impervious to the presence of this anisotropy. In place of the full
rotational symmetry of the free atom, there is the point-group symmetry of the crystal.
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A fruitful approach is to try to write a Hamiltonian operator involving S, I, and B in
a form that will respect the symmetry operations of the crystal. This will often require
introducing more than two arbitrary constants. Resonance techniques are able to deter-
mine these parameters in the same way as they are determined for a free atom. The
size of the parameters often offers important clues to the nature of the chemical bonds
formed. Moreover, a study of the degeneracies and their lifting under the application
of a magnetic field allows valuable information concerning the valency and symmetry
of the paramagnetic ions to be obtained.

As an example, consider the case of a magnetic ion sitting on a site with octahedral
symmetry inside a cubic host crystal. The Hamiltonian may be written as

H D g�BB · SC AS · IC C�S4
x C S4

y C S4
z �C D�S6

x C S6
y C S6

z �C Ð Ð Ð , �W22.209�

where the higher-order terms are usually smaller than the lower-order terms and are
often neglected. This Hamiltonian respects the cubic symmetry of the crystal in that
the permutation x! y! z! x is a symmetry operation (rotations of 120° around
the main diagonal), as is x!�x (reflections in bisecting planes), �x, y�! �y,�x�
(90° rotations), and so on.

Now suppose that a tetragonal distortion is introduced in the crystal. The x and y
lattice constants are assumed to remain the same, but the z lattice constant is made
different. This introduces new parameters into the Hamiltonian:

H D gz�BSzBz C gxy�B[SxBx C SyBy]C AzSzIz
CC0S2

z C Axy[SxIx C SyIy]C P
[
I2
z � 1

3I�IC 1�
]
, �W22.210�

where higher-order terms have been dropped.
If the symmetry is lifted further, by creating an orthorhombic distortion, the Hamil-

tonian is expanded even further:

H D gz�BSzBz C gx�BSxBx C gy�BSyBy C AzSzIz C AxSxIx C AySyIy
C P[I2

z � 1
3I�IC 1�]C C0S2

z C C00�S2
x � S2

y�. �W22.211�

A typical lifting of the degeneracy is represented in Fig. W22.54 for the case of a
d-shell electron. The ten-fold degenerate level for the free ion is split in stages and
ultimately consists of five doubly degenerate levels.

In Fig. W22.55 results are presented for a Mn2C ion in a calcite host crystal, CaCO3.
In the presence of the magnetic field the S D 5/2 level is Zeeman-split into 2IC 1 D 6
lines. The widths of the lines are attributed mainly to random strains in the crystal.

W22.33 Mössbauer Spectroscopy

Consider the gamma decay of an isolated radioactive nucleus in an excited state I
resulting in a ground-state nucleus F. A gamma ray of energy h̄ω is emitted in one
direction and nucleus F recoils with momentum h̄ω/c in the opposite direction. The total
energy available in the transition is the sum of the photon energy and the recoil energy:
E D h̄ω C �h̄ω�2/2Mc2, whereM is the nuclear mass. The photon that is emitted cannot
be absorbed by another F nucleus, because it is shifted out of resonance (i.e., h̄ω < E�.
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Figure W22.54. Lifting of the degeneracy of the d-electron energy levels as the symmetry of
the crystal is lowered.
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Figure W22.55. ESR spectrum of a Mn2C ion in a calcite host. [Reprinted from J. G. Angus
et al, Chem. Geol., 27, 181 (1979). Copyright 1979, with permission from Elsevier Science.]

The natural width of the emission line, determined by its radiative lifetime, is typically
on the order of several 10�9 eV, much smaller than the recoil energy. There are only
several nuclei that may be used in Mössbauer spectroscopy. Chief among them is 57Fe.
The parent nucleus is 57Co. The sequence of decays is 57Co!57 FeŁ C e�, with a half-
life of 271 days, followed by 57FeŁ !57 FeC 8 , with a half-life of 99.3 ns. The energy
of the gamma ray used in Mössbauer spectroscopy is 14.41 keV, although there are
two others emitted at 123 and 137 keV. Other useful emitters are 119Sn, 121Sb, 125Te,
129I, 151Eu, 190Os, and 197Au.

Gamma decay often involves a change in the nuclear spin. Due to the hyperfine
interaction there may be several possible values for h̄ω.

Next consider the nucleus embedded in a crystal, which will be called the source
crystal. In the discussion of the Debye–Waller factor, exp��2W�, the factor was inter-
preted as the probability for the crystal to be found in a periodic arrangement. If the
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crystal is periodic, when one atom moves, all atoms must move. Energy conservation
requires E D h̄ω C �h̄ω�2/2NMc2, where N is the number of atoms in the crystal. For
a macroscopic sample the second term is negligible and so it is safe to write E D h̄ω.

Suppose that an attempt is made to absorb the gamma ray using a second crystal. The
absorption process is one in which the inverse process takes place (i.e., FC h̄ω! I).
In general, this too will involve nucleus I recoiling upon absorption, and even if
E D h̄ω, it would not have sufficient energy to cause the transition. However, recoil-
less absorption is also possible. The probability for this is given by a Debye–Waller
factor for the absorbing crystal. The conclusion is that it is possible to have resonant
energy transfer from one crystal to the other. This is the Mössbauer effect.

By moving one crystal relative to the other, the gamma rays are Doppler
shifted. This may drive the crystals out of resonance again. Thus, if the
absorber is moved toward the source at velocity v, it sees a gamma ray at
frequency ω0 D ω[�1C v/c�/�1� v/c�]1/2 ³ ω�1C v/c�. By gradually increasing v
and monitoring the transmitted gamma rays through the absorbing crystal, it is possible
to carefully map out the line shape of the gamma ray and hyperfine structure of the
nucleus.

The utility of the Mössbauer effect is that the line shape and hyperfine splittings
provide information concerning the local electronic environment of the nucleus. One
compares the energy levels in the source with those of the absorber. Each is subject to
a chemical shift (also called an isomer shift) determined, for example, by its oxidation
state. The Mössbauer spectrum also provides information about the magnetic fields and
spins in the solid. Thus information is provided in a similar fashion to that obtained
from NMR or NQR studies. For example, one may obtain the quadrupole splitting, as in
NQR. In the case of 57Fe, with I D 3

2 , the quadrupole splitting is given by the formula

E D �e2qQ/2�
√

1C ?2/3 [see Eq. (W22.207)]. From a measurement of the Zeeman
splitting, one may determine the strength of the magnetic induction, B, at the nucleus.

An example of a Mössbauer spectrum is presented in Fig. W22.56. The gamma-ray
source is Mg125

3 TemO6 (with a 58-day half-life) and the absorber is ZnTe. The recoil-
less fraction depends on the Debye–Waller factor, exp[�2W�T�]. Equation (W5.13)
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Figure W22.56. Mössbauer spectrum produced with the metastable source Mg125
3 Tem-O6 and the

absorber ZnTe at T D 78 K. [From W. Bresser et al, Phys. Rev. B, 47, 11663 (1993). Copyright
1993 by the American Physical Society.]
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gives an expression for W�T� which may be evaluated using the Debye theory used
to calculate the specific heat of solids. Thus W will also depend parametrically on the
Debye temperature D. By studying the Mössbauer signal as a function of temperature,
it is possible to determine D. A value D D 188 K is found for the absorber.

ELEMENTARY PARTICLES

The final sections of the characterization chapter are concerned with two techniques
that rely on elementary particles other than the familiar ones of ordinary matter. They
are positron-annihilation spectroscopy and muon-precession spectroscopy.

W22.34 Positron-Annihilation Spectroscopy

The positron is the antiparticle of the electron, with the same mass and spin but opposite
charge and magnetic moment (relative to the spin). When positrons come together with
electrons, pair annihilation occurs. If the pair is in a spin-singlet state and is at rest,
two 0.511-MeV gamma rays are emitted in opposite directions. If the pair is in a triplet
state, three gamma rays are emitted, the sum of the energies adding up to the total rest
energy of 1.022 MeV. The rate for singlet decay is much faster than for triplet decay.

In positron-annihilation spectroscopy (PAS) a beam of positrons is directed at a solid
and the resulting gamma-ray distribution is analyzed. Three popular ways of analyzing
the data are to:

1. Measure the time decay of the gamma-ray signal
2. Measure the angular correlation of the gamma rays
3. Measure the energy distribution of the gamma rays

Typical positron sources include 22Na (:1/2 D 2.6 years, E D 0.54 MeV) and 68Ge
(:1/2 D 280 days, E D 1.89 MeV), where E is the energy of the positron. Accelerators
are also often used. The positrons are rapidly thermalized after entering the solid by
making frequent collisions with the electrons and sharing their energy and momentum
with them. The thermalization time is typically 25 ps. The penetration “depth” with 1%
survival against annihilation is ;d D 10 kg/m2 for a 2-MeV positron, which translates
into approximately 0.003 m for Al, where ; D 2700 kg/m3. A typical positron lifetime
in a metal (Mg) is 232 ps.

Positrons, being positively charged, avoid the regions of high positive potential
inside an atom and thus tend to settle as far from the nuclei as possible. If open-volume
defects such as voids or vacancies are present, the emitted positrons are likely to settle
there. Trapping can also occur in dislocations. PAS therefore provides a powerful
method for studying these defects in a crystal. The decay rate per unit volume is
proportional to the probability that both the electron and positron are to be found in
that volume. If the positron is in a vacancy instead of being inside a normal region
of the crystal, this joint probability can be expected to be lower than its normal value
and hence the decay rate will also be different. The decay of the gamma-ray signal in
time will also be modified. This effect may be modeled by simple kinetic equations,
as follows.
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Let nf be the number of free positrons per unit volume and nt be the corresponding
number of trapped positrons per unit volume. Let the decay rate for a free positron
be f and for a trapped positron be t. Let C be the concentration of traps, �t the
trapping cross section, and v the positron speed. The rate of change of the free-positron
density is given by

dnf
dt
D �fnf � C�tvnf. �W22.212�

The rate of change of the trapped-positron density is

dnt
dt
D C�tvnf � tnt. �W22.213�

Begin by injecting a pulse of free positrons at time t D 0, so

nf�0� D n0, nt�0� D 0. �W22.214�

The kinetic equations are readily integrated to give

nf�t� D n0 exp[��f CC�tv�t], �W22.215�

nt�t� D c�tvn0

f � t C c�tv fexp��tt�� exp[��f C c�tv�t]g. �W22.216�

The rate of gamma-ray production per unit volume is

dn8
dt
D ntt C nff

D n0
�f � t��f CC�tv�
f � t C C�tv exp[��f CCv�t�t]

C n0
C�tvt

f � t CC�tv exp��tt�. �W22.217�

The exponents and amplitudes multiplying the exponentials may be extracted by fitting
the time-resolved gamma-ray decay rate to a two-exponential fit.

PAS may be used to obtain information about the distribution of electrons in
momentum space. In a metal the electrons fill the Fermi sea and therefore have a
momentum distribution whose maximum value is determined by the Fermi energy and
the band structure. The wavefunction of the electron at the location of the positron
may be expanded in momentum eigenstates. The square of the expansion coefficient
gives the probability of finding the electron with that momentum at the positron. The
physics follows from elementary conservation laws.

Let the momentum of the electron be p, the wave vectors of the gamma rays be
k1 and k2, and the momentum of the thermalized positron be approximated by 0.
Momentum conservation gives

h̄[k1 C k2] D p. �W22.218�

Energy conservation gives

mc2 C E D mc2 C
√
m2c4 C c2p2 D h̄�ω1 C ω2�, �W22.219�
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where E is the energy of the electron. The gamma-ray dispersion formulas are essen-
tially those in vacuum,

ω1 D k1c, ω2 D k2c. �W22.220�

Eliminating ω1 and ω2 leads to

h̄�k1 C k2� D mc C
√
p2 C �mc�2, �W22.221�

h̄2�k2
1 C k2

2 C 2k1k2 cos �� D p2. �W22.222�

where � is the angle between k1 and k2. Solving for k1 yields

h̄k1 D 1

2c

∣∣∣∣∣∣mc2 C Eš
√
�mc2 C E�

(
EC mc2 � 4mc2

1� cos �

)∣∣∣∣∣∣ . �W22.223�

For the solution to be real, this formula must have a nonnegative argument for the
square root. This implies that

1� cos � ½ 4

1C√1C �p/mc�2 . �W22.224�

Let � D � � υ and assume that υ is small. Then this becomes

� p

mc
� υ � p

mc
. �W22.225�

If there is a distribution in p values this equation implies that there will be a distribution
in values of υ or, equivalently, of �. The momentum distribution of the electrons in
the solid may therefore be probed by measuring the angular-correlation function of the
gamma rays.

Another way to measure the momentum distribution is to keep � fixed at � and to
measure the energy distribution of the gamma rays. Thus

h̄k1 D 1

2

(
mcC E

c
š p

)
. �W22.226�

Taking the nonrelativistic limit gives

h̄ω1 D mc2 š pc
2
, �W22.227�

which shows that a momentum value determines two values for the energy. The distri-
bution of gamma-ray energies may be mapped into a distribution of electron momenta.

Thermalized positrons are emitted from the surfaces of metals as a result of
the negative work functions presented by these metals to positrons, WC. Some
examples are WC D �0.16 eV for Al(100); WC D �3.0 eV for W(100) and W(110);
WC D �0.14 eV for Cu(110); WC D �0.33 eV for Cu (111); and WC D �1.3 eV
for Ni(100). The origin of these negative work functions is largely due to the surface
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dipole layer that exists near the surfaces of metals. The positrons that are able to diffuse
close to the surface are ejected with a distribution of kinetic energies centered around
the negative of the work function. The width of the distribution is determined by the
temperature of the solid. The angular distribution of the emitted positrons is sharply
peaked around the surface normal when the surface is atomically flat and clean. For
example, the full width at half maximum for W(100) positrons is ³ 30°. Adsorbates
on the surface broaden the emission cone. The emitted positrons may also display
inelastic energy-loss peaks due to the excitation of surface adsorbates, much as is seen
in LEELS experiments involving electrons.

Trapping of positrons by vacancies alters their decay rate, and this can be used to
probe the thermal formation of vacancies in the interior of a solid. Positrons have also
found use in studying multilayer interfaces and in depth profiling.

In addition to positron emission it is also possible for positronium (Ps) to be emitted.
Positronium is a hydrogenic system consisting of a bound electron and positron. The
binding energy of the ground state is 6.8 eV. The presence of surface defects, such as
steps or vacancies, alters the emission rate for Ps.

Figure W22.57 gives an example of the electron momentum distribution obtained
from the angular correlation of annihilation radiation of positrons in Cu (lower curve).
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Figure W22.57. Momentum distribution of electrons obtained from studying the angular corre-
lation of annihilation of positrons in Cu (lower curve) and the annihilation of para-Ps in
single-crystal quartz (upper curve). [From P. J. Schultz and K. G. Lynn, Rev. Mod. Phys., 60,
701 (1988). Copyright 1988 by the American Physical Society.]
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Also shown is the electron momentum distribution in single-crystal quartz (upper curve)
obtained from the angular correlation of gamma rays from para-Ps. In Cu there is a high
Fermi energy, so there is a broad distribution of electron momenta. The momentum
distribution provides direct information concerning the wavefunction of the electrons
in solids.

W22.35 Muon-Precession Spectroscopy

Muon precession spectroscopy (�PS) permits one to measure the spatial inhomogeneity
of the magnetic field inside a material. Muons are created in an accelerator by colliding
energetic particles with nuclei. At first �C mesons are produced, but these decay into
�C mesons (muons) and 9� neutrinos. The muons are created in a state of negative
helicity (i.e., their spins point opposite to their momenta). In one type of experiment the
muons enter the sample perpendicular to an external magnetic field. The implantation
energy is typically 50 MeV. They rapidly slow down to an energy of 2 to 3 keV in
approximately 0.1 to 1 ns. At this point they capture an electron from the material
and form muonium. Muonium has the same properties as hydrogen, except the muon
replaces the proton. The muonium is rapidly deexcited, on a time scale of 0.5 ps,
achieving a kinetic energy of 15 eV. In another picosecond it thermalizes. Despite the
fact that the muon has undergone all this deceleration and capture, the spin direction
of the muon remains unchanged. The mean lifetime of the muon against decay, : D
2.22 µs, is long compared to the processes above.

The muons precess around the direction of the magnetic induction vector B0 at a
frequency

��r� D �BB0�r�
h̄

me
m�
g�. �W22.228�

Here �B is the Bohr magneton, m� the muon mass, and the g factor for the muon is
g� ³ 2. The local precession angle is ��r�t. When the muon finally does decay by the
process

�C ���! eC C 9� C 9e, �W22.229�

the positron eC is emitted preferentially along the direction of the muon-spin vector
(consistent with the nonconservation of parity). The fraction of muons that live to time
t is exp��t/:�. The product positrons are detected with sufficient angular resolution to
determine the direction in which the muon spin was pointing at the time of its decay.
The positron signal varies with angle and time as

S��, t� D N0 exp
(
� t
:

)
[1C A cos��t � ��]. �W22.230�

The penetration depth of the muons is large compared with the sample size, D, so
only a small fraction of the muons are actually captured, but they populate the sample
uniformly.

If there is a distribution of magnetic fields inside the material, there will be a distri-
bution of precession frequencies and the angular distribution of the signal will become
dephased. The time over which this occurs is a measure of the spatial inhomogeneity
of the magnetic field.



504 CHARACTERIZATION OF MATERIALS

Muon precession has been used to determine the local magnetic fields in anti-
ferromagnetic materials and in ferromagnetic transition metals. It has also provided
information concerning the penetration depth of magnetic fields into superconductors.

Appendix W22A: Quantum-Mechanical Description of NMR

In the development of the quantum theory of NMR in this section, the scope is limited
to the case of a nucleus with spin I D 1

2 . Choose the quantization axis along the
direction of the dc magnetic field and define it as the z direction. There are two states
for the system, spin up and spin down. The time-dependent Schrödinger equation is

H D ih̄ ∂ 
∂t
, �W22A.1�

where H is the Hamiltonian governing the system and  is a two-component vector
with time-dependent components:

 �t� D
[
u�t�
v�t�

]
. �W22A.2�

The components u�t� and v�t� give the amplitudes for being in the spin-up and spin-
down states, respectively. Introduce a two-dimensional matrix called the density matrix
;, defined by

; D h  Ci, �W22A.3�

where  C is a row vector whose elements are the complex conjugates uŁ�t� and vŁ�t�.
The average is taken over an ensemble of ways of preparing the same state, but with
different phases. Note that the density matrix is described by a Hermitian matrix (i.e.,
; D ;C). Also, the sum of the diagonal matrix elements of ; (the trace, abbreviated
Tr;) is 1, since juj2 C jvj2 D 1. It may be expanded in terms of the Pauli spin matrices,
which form a basis for expanding an arbitrary 2ð 2 Hermitian matrix:

; D 1
2 [I2 C Px�t��x C Py�t��y C Pz�t��z] D 1

2 [I2 C s · P�t�], �W22A.4�

where P�t� is a real polarization vector and where the matrices are

I2 D
[

1 0
0 1

]
, �x D

[
0, 1
1 0

]
, �y D

[
0 �i
i 0

]
, �z D

[
1 0
0 �1

]
. �W22A.5�

This form for ; is manifestly Hermitian and obeys the trace condition Tr; D 1. It
follows from the Schrödinger equation that the density matrix obeys the equation

H; � ;H D [H,;] D �ih̄ ∂;
∂t
. �W22A.6�

The square bracket in this equation is called the commutator.
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In a uniform magnetic field the Hamiltonian consists of the magnetic interaction of
the dipole with the magnetic field, that is, the Zeeman interaction

H0 D �m · B D �8
2
B�Z D � h̄

2
��z. �W22A.7�

There are two eigenfunctions of the time-independent Schrödinger equation H0 D
E :

 � D
[

1
0

]
,  D

[
0
1

]
, �W22A.8�

with the corresponding eigenvalues

E� D � h̄�2 , E D C h̄�
2
, �W22A.9�

where � D 8B/h̄. Suppose that the system is in thermal equilibrium at some temper-
ature T. The Boltzmann probability for occupying the states with energy EC and
E� are

PC D exp��ˇEC�
exp��ˇEC�C exp��ˇE�� , P� D exp��ˇE��

exp��ˇEC�C exp��ˇE�� , �W22A.10�

where ˇ D 1/kBT. The density matrix corresponding to this thermal distribution is

;0 D exp��ˇH0�

Tr[exp��ˇH0�]
. �W22A.11�

In terms of the polarization vector introduced in Eq. (W22A.4), the components are

P0
z D tanh

ˇh̄�

2
, P0

x D 0, P0
y D 0. �W22A.12�

Next introduce the rotating RF magnetic field B0, as before. The Hamiltonian is

H D �m · [BC B0�t�] D � h̄
2
��z � h̄

2
�0��x cosωt � �y sinωt�, �W22A.13�

where �0 D 8B0/h̄. Inserting this into the time-dependent Schrödinger equation leads
to the following three equations:

i PPz D ��
0

2
[PC exp�iωt�� P� exp��iωt�], �W22A.14a�

i PP� D ��P� C�0Pz exp�iωt�, �W22A.14b�

i PPC D �PC ��0Pz exp��iωt�, �W22A.14c�

where
PC D Px C iPy, P� D Px � iPy. �W22A.15�
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Next include the interaction with the other atoms of the system. The diagonal compo-
nents of the density matrix represent the probabilities for being in the upper or lower
state. These are taken to relax to the thermal values with a time constant called T1. In
place of Eq. (W22A.14a) is

PPz C Pz � P
0
z

T1
D i�

0

2
[PC exp�iωt�� P� exp��iωt�]. �W22A.16�

The x and y components of the density matrix represent what are called coherence
terms. These will also relax from their nonequilibrium values with a time constant
called the dephasing time, T2. Thus the following generalizations of Eqs. (W22A.14b)
and (W22A.14c), including relaxation, are

PP� C P�
T2
D i�P� � i�0Pz exp�iωt�, �W22A.17a�

PPC C PC
T2
D �i�PC C i�0Pz exp��iωt�. �W22A.17b�

These three formulas are called the Bloch equations. They are similar in form to the
classical equations derived earlier [see Eqs. (W22.181) and (W22.182)]. To find a
steady-state solution, let

PC D FC exp��iωt�, P� D F� exp�iωt� �W22A.18�

and obtain

FC D �0Pz
�� ω � i/T2

, F� D �0Pz
�� ω C i/T2

, �W22A.19�

where

Pz D P0
z

��� ω�2T2
2 C 1

��� ω�2T2
2 C �1C T1T2�02�

. �W22A.20�

This expression demonstrates that the probability of finding the system in the upper-
energy state is increased above that expected at thermal equilibrium. The probability
of finding the system in the lower-energy state is decreased correspondingly. The
maximum increase occurs at resonance, when ω D �. The full-width at half maximum
of the resonance is

ω D 2

T2

√
1C T1T2�02. �W22A.21�

By studying the behavior of ω as a function of �0 it is possible to extract the
parameters T1 and T2.

Since the populations of atoms in the upper and lower energy levels change as the
RF frequency is varied, the magnetic energy of nuclei must also change. This energy
must have come from somewhere. Since a dc magnetic field is incapable of supplying
energy, it must have come from the RF field. The RF oscillator supplying the RF field
experiences an added resistive and inductive component in the resonant circuit. This
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may be monitored electronically, and the location of the resonance frequency may be
determined.
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PROBLEMS

W22.1 A beam of x-rays impinges on the surface of a metal at a small angle of
incidence. Treat the metal as a plasma. Show that total-internal reflection
is possible when the angle is sufficiently small. Derive an expression for the
critical angle in terms of the plasma frequency of the metal and the frequency
of the x-rays.

W22.2 The Bragg description of x-ray scattering assumes that specular scattering
from the various lattice planes occurs. What happens when nonspecular scat-
tering occurs? Does one find additional peaks due to nonspecular scattering?

W22.3 Light is incident normally on a film of material of thickness D characterized
by the complex index of refraction Qn D nC i5. Derive expressions for the
reflection coefficient and the transmission coefficient. What fraction of the
radiation is absorbed inside the medium? Consider the multiple reflections
inside the slab.

W22.4 Given the dielectric function ��ω� D 1� ω2
p/ω�ω C i/:� for a plasma, verify

the following sum rules:

∫ 1
0
ω�2�ω�dω D �

2
ω2
p,∫ 1

0
[n�ω�� 1]dω D 0,

�1�ω� D 2

�
P

∫ 1
0

ω0�2�ω0�
ω02 � ω2

dω0,

�2�ω�� 4�

ω
��0� D � 2

�
ωP

∫ 1
0

�1�ω0�� 1

ω02 � ω2
dω0.

[The symbol P denotes taking the “principal part” (i.e., leaving out a small
region around the singularity when evaluating the integral and then making
the region smaller and smaller in such a way that the integral remains nonsin-
gular).] The last two equations are called the Kramers–Kronig relations. All
these formulas are general.

W22.5 Derive the Rutherford differential scattering cross section for a charge Z1e,
moving with kinetic energy E, scattering through an angle � off a stationary
charge Z2e:

d�

d�
D Z2

1Z
2
2e

4

16E2�4��0�2
1

sin4��/2�
.

W22.6 Derive the cross section for an ion of charge Ze scattering from a molecule
and vibrationally exciting it. To a first approximation, assume that the charge
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moves on a straight line with velocity v and impact parameter b. Model the
molecule as a simple harmonic oscillator with spring constant k, mass M, and
a charge Cq at one end of the spring and �q at the other end. Compute the
impulse delivered to the oscillator. Assume that the oscillator is excited when
the energy transferred exceeds the vibrational quantum of energy hf. Proceed
to calculate the cross section for low-energy electron loss spectroscopy from
a layer of molecules on the surface of a solid.

W22.7 Repeat the calculation in Problem. W22.6 using the Born approximation (i.e.,
representing the incident and outgoing wavefunctions as plane waves and
using first-order time-dependent perturbation theory). Assume that the moving
charge couples to the harmonic oscillator by the Coulomb interaction. You
may assume that the amplitude for molecular vibration is small compared
with other relevant distances.

W22.8 In the atomic-force microscope, as well as the scanning-tunneling microscope,
it is important to try to eliminate the effect of external vibrations as much as possible.
Model the cantilever and stylus as a spring–mass system, with resonant frequency ω0,
as shown in Fig PW22.8. Show that if the entire microscope is made to oscillate up
and down with frequency ω and amplitude A, the distance between the stylus and the
sample will oscillate with the same frequency but with an amplitude approximated by
�ω/ω0�2A, when ω − ω0.

Figure PW22.8

W22.9 K-shell electrons of Cl� ions in NaCl absorb x-rays of wavelength (. The
energy needed to ionize this electron from the K shell will be denoted by IK.
The NN distance is denoted by a. EXAFS oscillations are observed when (
is varied. Find the periods of these oscillations. Include the effect from NNs
and next-NNs.

W22.10 Electrons with 200 eV energy are incident on the (100) face of GaAs. Find
the angles at which the LEED beams will emerge. Repeat the calculation for
the (111) and (110) faces.

W22.11 Calculate the force between the stylus of the atomic-force microscope and a
solid material. Model the stylus as a sphere of radius R and the solid as a
half-space filled with material in the region z < 0. Let the minimum distance
between the sphere and plane be H. Assume a concentration ns of atoms per
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unit volume in the stylus and correspondingly nm in the material. Assume that
each stylus atom interacts with each material atom through the Lennard-Jones
potential given in Eq. (2.3):

u�r� D 4ε
[(�
r

)12
�
(�
r

)6
]
,

where ε and � are constants characterizing the interaction and the 1/r6 term
represents the van der Waals potential. (To obtain a precise answer, it will
probably be necessary to do a numerical integration. You may, instead, make
whatever reasonable assumptions are necessary to obtain an estimate.)

W22.12 A silver mirror is found to have a reflectivity R as a function of wavelength
( given by the following data:

(��m� 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
R (%) 20 12 85 91 93 95 97 98 98

Why is the reflectivity so high at long wavelengths? Use the data above to
estimate the plasma frequency, ωp, of Ag.

W22.13 An x-ray diffraction study of (Ca0.3Sr0.7)0.9CuO2 made with the Cu(K˛) line
(( D 0.1544 nm) reveals peaks at the following values of the angle  D 2�
(in degrees): 23.1, 26.7, 32.4, 35.3, 42.6, 46.5, 54.9, 59.8, 65.4, 68.2. The
crystal is believed to be orthorhombic. Find the reciprocal lattice vectors and
lattice constants.

W22.14 Indium, at room temperature, is a tetragonal crystal with a D 0.325 nm and
c D 0.495 nm. Find the 2� values for the first 16 x-ray diffraction peaks.
Assume that the Mo (K˛) line is used (( D 0.07136 nm).

W22.15 Six surfaces of a crystal are shown in Fig. PW22.15. The two leftmost figures
show the (100) and (111) faces of an FCC crystal. The remaining figures
show adsorbed atoms on these faces. In the primitive 2ð 2 [p�2ð 2�] struc-
tures and the centered 4ð 2 structure [c�4ð 2�] one-fourth of a monolayer is
adsorbed. In the centered 2ð 2 structure [c�2ð 2�], one-half of a monolayer
is adsorbed. Find the LEED pattern from each of the six surfaces.
(Note: Often, faces of pure crystals will reconstruct and substrate atoms will
occupy the sites occupied by adsorbate atoms, as in this example.)

FCC(100)

FCC(111)

p(2×2)

p(2×2)

c(2×2)

c(4×2)

Figure PW22.15
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W22.16 Ring patterns are formed when x-rays are diffracted from a crystalline powder.
Show that the radii of the rings vary with the integers N as rN /

p
N. What

are the allowable values for N for the following crystal structures: simple
cubic, BCC, FCC, and diamond?

W22.17 Given � D 0.05 rad for the (100) diffraction maximum from polycrystalline
Al, use Eq. (W22.4) to find the average crystallite size. Use ( D 0.1 nm.

Computer Problems

W22.18 To get a feeling for the design of an electron microscope, write a program to
determine the focal length for a beam of electrons directed toward a charged
ring at normal incidence. To do this, obtain an expression for the electric field
at an arbitrary point in space set up by a charged ring of unit radius. This
may be left as an integral over the length elements of the ring. Numerically
integrate Newton’s second law, taking as the initial condition the displacement
of the electron from the axis. Determine where this beam crosses the symmetry
axis. Show that to a first approximation, this focal length is independent of
the original distance from the axis. To the next approximation you may use
the program to study the spherical aberrations of this electrostatic lens.

W22.19 Repeat Problem W22.18 for an electron beam directed at a circular loop of
wire carrying an electric current. This time use the Biot–Savart formula to
calculate the magnetic field at an arbitrary point in space, and calculate the
magnetic force on a moving electron. Proceed as before to integrate Newton’s
equations of motion numerically.

W22.20 A commonly used device in SIMS is the electrostatic quadrupole mass
analyzer. It consists of four parallel cylinders whose projections form a square.
Two diagonally opposite wires are positively charged and the other two are
negatively charged. Show that to a first approximation, the angle of deflection
of an electron beam is independent of its distance from the plane of reflection
symmetry of the wires. To the next approximation, study the aberrations of
this device.



APPENDIX WA

Thermodynamics

Thermodynamic variables are classified as extensive if they scale as the volume of the
system, V. Thus U, the internal energy, N, the number of particles, and S, the entropy,
are extensive variables. (Here attention is restricted to a system in which there is only
one kind of particle.) Variables that do not scale as the size of the system are called
intensive. The internal energy of the system may be expressed as a function of the
extensive variables [i.e., U D U�V,N, S�]. Thus

dU D
(
∂U

∂V

)
N,S
dVC

(
∂U

∂N

)
V,S
dNC

(
∂U

∂S

)
N,V
dS

D �PdVC �dNC TdS.
�WA.1�

One sees by comparing the coefficients of dV, dN, and dS that P, the pressure, T, the
temperature, and �, the chemical potential, are intensive variables. Equation (WA.1) is
known as the first law of thermodynamics. It recognizes that energy is conserved and
that heat is a form of energy. The differential quantity TdS represents the heat input
to a system, PdV is the work done by the system, ��dN the energy transported by
particles leaving the system, and dU the increase of internal energy of the system.

Since one often has control over variables other than (V,N, S) it is convenient to
introduce thermodynamic potentials. The Helmholtz free energy, F, is defined as

F D U� TS. �WA.2�

Forming the differential and combining the result with Eq. (WA.1) leads to

dF D �PdVC �dN� S dT. �WA.3�

The Helmholtz free energy is useful in problems in which one controls the variables
(V,N,T). If (V,N,T) are constant, dF D 0 at equilibrium.

The enthalpy, H, is defined by

H D UC PV. �WA.4�

Its differential leads to the formula

dH D TdSC �dNC VdP. �WA.5�
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The enthalpy is used when one controls (S,N,P). If (S,N,P) are held constant, dH D 0
at equilibrium.

The Gibbs free energy is defined by

G D U� TSC PV D FC PV D H� TS. �WA.6�

Its differential results in

dG D �dN� S dTC VdP. �WA.7�

The Gibbs free energy is of use in problems where one controls (N,T,P). If (N,T,P)
are held constant, dG D 0 at equilibrium.

From Eqs. (WA.2), (WA.4), and (WA.6), one sees that F, H, and G are all extensive
variables. One may integrate Eq. (WA.1) to obtain the Euler relation

U D �PVC �NC TS, �WA.8�

from which it is seen that
G D N�. �WA.9�

The chemical potential for a one-component system is thus the Gibbs free energy per
particle. From Eqs. (WA.1) and (WA.8) one obtains the Gibbs–Duhem formula:

Nd� D VdP� S dT. �WA.10�

A number of thermodynamic relations follow from expressing Eqs. (WA.1), (WA.3),
(WA.5), and (WA.7) as partial derivatives. They are

T D
(
∂U

∂S

)
N,V
, P D �

(
∂U

∂V

)
N,S
, � D

(
∂U

∂N

)
V,S
, �WA.11a�

P D �
(
∂F

∂V

)
N,T
, S D �

(
∂F

∂T

)
N,V
, � D

(
∂F

∂N

)
V,T
, �WA.11b�

T D
(
∂H

∂S

)
N,P
, � D

(
∂H

∂N

)
P,S
, V D

(
∂H

∂P

)
N,S
, �WA.11c�

� D
(
∂G

∂N

)
T,P
, S D �

(
∂G

∂T

)
N,P
, V D

(
∂G

∂P

)
N,T
. �WA.11d�

A pair of useful mathematical identities follow from forming the differential of a
function z(u,v):

dz D
(
∂z

∂u

)
v

duC
(
∂z

∂v

)
u
dv, �WA.12�

and then forming u(z,v),

dz D
(
∂z

∂u

)
v

((
∂u

∂z

)
v

dz C
(
∂u

∂v

)
z
dv

)
C

(
∂z

∂v

)
u
dv, �WA.13�
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Matching coefficients of like differentials leads to

1 D
(
∂z

∂u

)
v

(
∂u

∂z

)
v

, �WA.14�

0 D
(
∂z

∂u

)
v

(
∂u

∂v

)
z
C

(
∂z

∂v

)
u
. �WA.15�

The Maxwell relations are a set of formulas that state that the order of differentiation
does not matter when a second derivative is formed. Thus, for z(u,v),

dz D
(
∂z

∂u

)
v

duC
(
∂z

∂v

)
u
dv � � duC � dv, �WA.120�

the Maxwell relation is (
∂�

∂v

)
u

D
(
∂�

∂u

)
v

. �WA.16�

Applying this to Eqs. (WA.1), (WA.3), (WA.5), and (WA.7) gives

�
(
∂P

∂N

)
V,T

D
(
∂�

∂V

)
N,T

,

(
∂P

∂T

)
V,N

D
(
∂S

∂V

)
N,T

,

(
∂�

∂T

)
V,N

D �
(
∂S

∂N

)
V,T

�WA.17�

�
(
∂P

∂N

)
V,S

D
(
∂�

∂V

)
N,S

, �
(
∂P

∂S

)
V,N

D
(
∂T

∂V

)
N,S

,

(
∂�

∂S

)
V,N

D
(
∂T

∂N

)
V,S

�WA.18�(
∂T

∂N

)
S,P

D
(
∂�

∂S

)
N,P

,

(
∂T

∂P

)
S,N

D
(
∂V

∂S

)
N,P

,

(
∂�

∂P

)
S,N

D
(
∂V

∂N

)
S,P

�WA.19�(
∂�

∂T

)
N,P

D �
(
∂S

∂N

)
T,P

,

(
∂�

∂P

)
T,N

D
(
∂V

∂N

)
T,P

, �
(
∂S

∂P

)
T,N

D
(
∂V

∂T

)
N,P

.

�WA.20�

The heat capacity at constant pressure and constant number of particles is

CP,N D T
(
∂S

∂T

)
P,N

D
(
∂H

∂T

)
P,N
. �WA.21a�

The heat capacity at constant volume and constant number is

CV,N D T
(
∂S

∂T

)
V,N

D
(
∂U

∂T

)
V,N
. �WA.21b�

The second law of thermodynamics states that the entropy of the universe (system
plus environment) never decreases [i.e., S ½ 0]. Of course, S can decrease locally,
as when a system orders, but this decrease must be matched by at least as large an
increase in the entropy of the environment. An idealized process in which S D 0 is
called a reversible process.

The third law of thermodynamics states that the entropy of a pure crystalline material
is zero at T D 0 K. At T D 0 K the system finds itself in the ground state. If g is the
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degeneracy of that state, g/N! 0 as N! 1. The third law implies that is impossible
for the system to attain the temperature T D 0 K.

For a multicomponent system, one generalizes Eq. (WA.1) to

dU D �PdVC
∑
i

�i dNi C TdS. �WA.1a�

One may simply regard the quantities �i and Ni as elements of vectors and interpret
terms like �dN in the previous formulas as being scalar products between these
vectors.

One may apply thermodynamics to a chemically reacting system. For such a system,
the set fNjg denotes the reactants or products. In a chemical reaction

∑
j

�jA[j] D 0, �WA.22�

where A[j] is the symbol for chemical j (e.g., A D Cu or A D SiO2). The stoichiometric
coefficients �j are positive integers for the reactants and negative integers for the
products. If dM is the number of times that this reaction occurs, dNj D �jdM. Inserting
this into Eq. (WA.7) gives, for equilibrium at constant P and T,

dG

dM
D

∑
j

�j�j D 0. �WA.23�

This is called the equation of reaction equilibrium and relates the different chemical
potentials of the products and reactants.

At equilibrium some extremal principles apply: For fixed (N,V,U), S will be maxi-
mized; for fixed (N,V,T), F will be minimized; for fixed (S,N,P),H will be minimized;
for fixed (N,T,P), G will be minimized.



APPENDIX WB

Statistical Mechanics

Statistical mechanics provides the theoretical link between the microscopic laws of
physics and the macroscopic laws of thermodynamics. Rather than attempt to solve
the microscopic laws in their entirety (which is presumably very difficult), one abstracts
some key concepts, such as conservation laws, and augments them with certain statis-
tical assumptions about the behavior of systems with large numbers of particles in
order to make the problem tractable.

The first goal will be to make contact with the first law of thermodynamics,
T dS D dU C P dV, as given in Eq. (WA.1) (for constant N). Consider a system of
N particles whose possible energy is Ei. One way to obtain statistical information is
to create an ensemble (i.e., one replicates this system a large number of times, M,
and imagines that the various systems can exchange energy with each other). Let Mi

denote the number of systems with energy Ei. The total number of systems must
be M, so ∑

i

Mi D M. �WB.1

Conservation of energy requires that

∑
i

MiEi D E, �WB.2

where E is the total energy of the ensemble.
The total number of ways in which M systems can be distributed into groups with

(M1,M2, . . .) members in each group, respectively, is

W D M!

M1! M2! . . .
. �WB.3

One wishes to find the most-probable set of values for the Mi. Therefore, one looks for
the set that maximizes W [or equivalently ln(W)] subject to the constraints imposed by
Eqs. (WB.1) and (WB.2). Thus, introducing Lagrange multipliers ˛ and ˇ to enforce
the constraints, one has

υ

[
ln W � ˛

(∑
i

Mi � N

)
� ˇ

(∑
i

MiEi � E

)]
D 0. �WB.4
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Use is made of Stirling’s approximation, ln M! ³ M ln M � M for M × 1, to write
this as

υ

[
M ln M � M �

∑
i

�Mi ln Mi � Mi � ˛

(∑
i

Mi � M

)
� ˇ

(∑
i

MiEi � E

)]
D 0.

�WB.5
One may now differentiate with respect to the individual Mi and set the derivatives
equal to zero. This leads to

Mi D e�˛�ˇEi. �WB.6

The probability of finding a particular state i in the most-likely probability distribution
is given by the formula

pi D Mi

M
D e�ˇEi∑

i e�ˇEi
, �WB.7

where, clearly,
∑

pi D 1. Equation (WB.7) indicates that it less probable to find high-
energy states than low-energy states.

Introduce the canonical partition function for the N-particle system

ZN D
∑

i

e�ˇEi . �WB.8

The function ZN is given by a sum of terms, each term representing the relative
probability for finding the system in the state i with energy Ei. The mean entropy of
a system is defined as

S D kB

M
ln W D �kB

∑
i

pi ln pi, �WB.9

where use has been made of Eq. (WB.7). The mean energy of the system, interpreted
as the internal energy, U, is given by

U D
∑

i

piEi. �WB.10

Note that if a small change were made in the fpig, the corresponding changes in
the entropy and internal energy would give rise to

υ

(
U � S

kBˇ

)
D
(∑

i

Eiυpi C 1

ˇ

∑
i

ln piυpi C 1

ˇ

∑
i

υpi

)
�WB.11

since
∑

i υpi D 0. This is consistent with the first law of thermodynamics dU � T dS D
�P dV, when T and V (and N) are held constant. Thus one may interpret the parameter
ˇ D 1/kBT as being proportional to the inverse absolute temperature. The Helmholtz
free energy is F D U � TS and, from Eqs. (WB.7), (WB.8), and (WB.9), is simply
related to the partition function

ZN D e�ˇF. �WB.12
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Now consider an N-particle system of noninteracting identical particles. The
individual energies for a given particle will be denoted by �i. A state of the system is
defined by specifying the number of particles in each state (i.e., by a set of integers
fnig). Thus

N D
∑

i

ni, �WB.13

E�n1, n2, . . . D
∑

i

ni�i. �WB.14

From Eq. (WA.1) recall that the first law of thermodynamics for a system with a
variable number of particles may be written as T dS D dU � � dN C P dV, where �
is the chemical potential. The analysis proceeds much as before, with the exception
that one now will be measuring the energies of the particles relative to the chemical
potential. The average number of particles in a given state is given by

hnji D
∑

n1

∑
n2

Ð Ð Ð nje�ˇi��i��ni∑
n1

∑
n2

Ð Ð Ð e�ˇi��i��ni
D
∑

nj
nje�ˇ��j��nj∑

nj
e�ˇ��j��nj

. �WB.15

For particles with spin 1
2 , 3

2 , . . . obeying Fermi–Dirac statistics, such as electrons
(spin 1

2 ), the only possible values for nj are 0 or 1. This leads to the mean number of
particles in a given state:

f��j, T D hnji D 1

eˇ��j�� C 1
. �WB.16

This is known as the Fermi–Dirac distribution function. For particles with spin 0,
1, 2,. . . obeying Bose–Einstein statistics, such as photons or phonons, any nonneg-
ative integer is acceptable for nj. Performing the sums in Eq. (WB.15) leads to the
Bose–Einstein distribution function:

hnji D 1

eˇ��j�� � 1
. �WB.17

In the high-temperature limit, Eqs. (WB.16) and (WB.17) both reduce to the
Maxwell–Boltzmann distribution when �j � � × kBT:

hnji ���! e�ˇ��j��. �WB.18



APPENDIX WC

Quantum Mechanics

In the short space of an appendix it is not possible to develop quantum mechanics.
However, it is possible to review some of the key concepts that are used in the textbook†

and at the Web site.
In the Schrödinger description of quantum mechanics a physical system such as an

atom or even a photon is described by a wavefunction  . The wavefunction depends
on the variables describing the degrees of freedom of the system and on time. Thus
for a particle moving in one dimension, the wavefunction is  (x, t); for a particle
moving in three dimensions, it is  (r, t); for a two-particle system in three dimen-
sions, it is  (r1, r2, t); and so on. In the Dirac notation an abstract state vector
j �t�i is introduced and is projected onto the appropriate space, according to the iden-
tification  �x, t� D hxj �t�i,  �r, t� D hrj �t�i, and so on. As will be seen shortly,
 �x, t� is a complex function (i.e., it has real and imaginary parts). The wavefunction
contains all the information that may be obtained about a physical system. Unfortu-
nately, it is now possible to write down the exact wavefunctions only for very simple
systems.

According to Born’s interpretation of the wavefunction, if a measurement of the
position of a particle is made at time t (in the one-dimensional case), the relative
probability of finding the particle between x and x C dx is given by dP D j �x, t�j2dx,
where the square of the absolute value of  is taken. When possible, it is useful to
normalize the probability density so that

h �t�j �t�i �
∫ 1

�1
j �x, t�j2 dx D 1. �WC.1�

This states that the particle must be found somewhere, with probability 1.
The wavefunction for a particle in one dimension satisfies the Schrödinger equation

� h̄2

2m

∂2 

∂x2
C V�x� D ih̄

∂ 

∂t
. �WC.2�

Here m is the mass of the particle, h̄ D h/2� D 1.0545887 ð 10�34 Js, i D p�1, and
V�x� is the potential energy influencing the particle’s motion as it moves through
space. In general, the wavefunction will be a complex function of its arguments. The
Schrödinger equation is linear in  . Thus, if  1 (x, t) and  2 (x, t) are solutions, the

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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superposition  D c1 1 C c2 2 is also a solution. This means that both constructive
and destructive interference are possible for matter waves, just as for light waves.

In quantum mechanics physical quantities are represented by operators. Examples
include the position, x, the momentum, px D �ih̄∂/∂x, and the energy (or Hamiltonian),
H D p2

x/2m C V�x�, which is the sum of the kinetic energy and the potential energy
operators. If a number of measurements of a physical quantity are made and the results
averaged, one obtains the expectation value of the quantity. The expectation value of
any physical operator, Q, is given in quantum mechanics by

hQi D h �t�jQj �t�i D
∫ 1

�1
 Ł�x, t�Q �x, t� dx. �WC.3�

To guarantee that the expectation value always be a real number, it is necessary for
Q to be a Hermitian operator. A Hermitian operator is one for which the following
identity holds for any two functions f and g:

hfjQgi D hQfjgi D
∫ 1

�1
fŁ�x�Qg�x� dx D

∫ 1

�1
�Qf�x��Łg�x� dx. �WC.4�

The operators x, px, and H are examples of Hermitian operators, as is the set of orbital
angular momentum operators:

Lx D ypz � zpy, Ly D zpx � xpz, Lz D xpy � ypx. �WC.5�

If a measurement is made of a physical variable Q, the result will be one of the
eigenvalues qi of the operator Q, and the act of measurement will reset the wave-
function to the corresponding eigenfunction of that operator, jqii. The eigenvalues and
eigenfunctions are defined through the relation

Qjqii D qijqii. �WC.6�

The eigenvalues of a Hermitian operator may be shown to be real numbers. Their
eigenfunctions may be chosen so that they form an orthogonal set, that is,

hqijqji D
∫
�Ł
qi �x��qj �x� dx D υi,j. �WC.7�

It is customary to normalize the eigenfunctions as well, when possible. For example,
the eigenfunctions of the momentum operator px are the plane waves �k�x� D exp�ikx�.
They are not normalizable since it is equally probable to find the particle anywhere on
the infinite domain �1 < x < 1. The corresponding momentum eigenvalue is h̄k.

It is assumed that the eigenfunctions of any physical operator form a complete set
(i.e., that the wavefunction may be expanded in terms of them). Thus

j �t�i D
∑
n

cn�t�jqni. �WC.8�

If a measurement of Q is made, the probability of finding the eigenvalue qn is given
by jcnj2. Obviously,

∑ jcnj2 D 1.
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A necessary and sufficient condition for a set of operators fQig to be observable
simultaneously is that they commute with each other (i.e., [Qi,Qj] D QiQj �
QjQi D 0). Examples of sets of commuting operators are fQ1, Q2, Q3g D fx, y, zg,
or fQ1, Q2, Q3g D fpx, py, pzg, or fQ1, Q2g D fL2, Lzg, where L2 D L2

x C L2
y C L2

z .
Noncommuting operators may not be measured simultaneously to arbitrary accuracy.
Examples include fQ1, Q2g D fx, pxg, since [x, px] D ih̄, or fQ1, Q2, Q3g D fLx, Ly, Lzg
[see Eq. (WC.22)]. When operators fail to commute, successive measurements of the
respective physical variables interfere with each other. Thus measurement of x affects
the outcome of a measurement of px. The result is summarized by the Heisenberg
uncertainty principle, which states that the product of the uncertainties in these variables
obeys the inequality xpx ½ h̄/2.

Stationary states of the Schrödinger equation are the analogs of standing waves in
classical wave physics. They are solutions that may be expressed in factored form [i.e.,
 �x, t� D ��x� exp��iEt/h̄�]. Such a state has a time-independent probability density,
j��x�j2 and an energy E. Insertion of this expression into Eq. (WC.2) results in the
time-independent Schrödinger equation,

H��x� D E��x�, �WC.9�

which shows that ��x� is an eigenfunction of H with energy eigenvalue E.
Examples of common quantum-mechanical systems include the one-dimensional

infinite square well, the simple harmonic oscillator, and the hydrogen atom. For the
one-dimensional infinite square well, the potential energy operator is given by V�x� D 0
for 0 < x < a and V�x� D 1 otherwise. The energy eigenfunctions are (see Table 11.5)

�n�x� D
√

2

a
sin

n�x

a
, �WC.10�

where n D 1, 2, 3, . . . . The energy eigenvalues are

En D h̄2

2m

(n�
a

)2
. �WC.11�

For the simple harmonic oscillator with frequency ω, the time-independent
Schrödinger equation is given by

H�n�x� D � h̄2

2m

∂2�n�x�

∂x2
C mω2x2

2
�n�x� D En�n�x�. �WC.12�

The energy eigenvalues are given by

En D (
nC 1

2

)
h̄ω, �WC.13�

where n D 0, 1, 2, . . . . The eigenfunctions may be expressed as products of Gaussians
multiplied by Hermite polynomials:

�n�x� D 1

2n/2
p
n!

(mω
�h̄

)1/4
exp

(
�mωx

2

2h̄

)
Hn

(√
mω

h̄
x

)
. �WC.14�

The first few Hermite polynomials are H0�x� D 1, H1�x� D 2x, and H2�x� D 4x2 � 2.
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The Schrödinger equation for the hydrogen atom is

� h̄2

2m
r2�nlm�r�� e2

4�'0r
�nlm�r� D En�nlm�r�. �WC.15�

The energy eigenvalues for the bound states are

En D � e2

8�'0a1n2
, �WC.16�

where the first Bohr radius is given by a1 D 4�'0h̄
2/me2 and n D 1, 2, 3, . . . . The

bound-state wavefunctions are of the form

�nlm�r� D NnlmRnl�r�Ylm�,, ��, �WC.17�

where Ylm�,, �� is a spherical harmonic (see the next paragraph). The quantum number
l assume the values 0, 1, 2, . . . , n� 1. The m quantum numbers take on the values
�l,�lC 1, . . . , l� 1, l. The ground state, with the quantum numbers �n, l, m� D
�1, 0, 0�, is

�100�r� D
√

1

�a3
1

exp
(

� r

a1

)
. �WC.18�

The hydrogen atom also possesses a continuum of states for E > 0, which describe
the Coulomb scattering of an electron from a proton.

The spherical harmonics are simultaneous eigenstates of the angular momentum
operators L2 and Lz, that is,

L2Ylm�,, �� D l�lC 1�h̄2Ylm�,, ��, �WC.19�

LzYlm�,, �� D mh̄Ylm�,, ��, �WC.20�

where , and � are spherical polar coordinates. The first few spherical harmonics are

Y00�,, �� D 1p
4�
, Y10 D

√
3

4�
cos ,,

Y11 D �
√

3

8�
sin , ei�, Y1�1 D

√
3

8�
sin , e�i�.

�WC.21�

The angular momentum commutation relations are

[Lx, Ly] D ih̄Lz, [Ly, Lz] D ih̄Lx, [Lz, Lx] D ih̄Ly. �WC.22�

The spin of the electron is incorporated by writing the wavefunction as a two-
component column vector. The upper and lower elements are the probability amplitudes
for the electron having spin up or spin down, respectively. The operators for spin-
angular momentum are written in terms of the Pauli spin matrices:

Sx D h̄

2
/x, Sy D h̄

2
/y, Sz D h̄

2
/z, �WC.23�
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where the Pauli spin matrices are given by

/x D
(

0 1
1 0

)
, /y D

(
0 �i
i 0

)
, /z D

(
1 0
0 �1

)
. �WC.24�

The Sx, Sy , and Sz matrices obey the angular momentum commutation rules given in
Eq. (WC.22).

Tunneling through a barrier is one of the dramatic quantum-mechanical effects.
Consider a potential barrier given by V�x� D V0 for 0 < x < a and V�x� D 0 otherwise.
Let a particle approach it with energy E < V0. The particle is able to tunnel through
the barrier with some finite probability. The transmission probability is given by

T D 1

1 C V2
0 sinh2 qa/4E�V0 � E�

, �WC.25�

where q D p
2m�V0 � E�/h̄.

Time-independent perturbation theory is used to calculate the effect of a small
interaction term added to the Hamiltonian. LetH D H0 C 1V and H0�n D E0

n�n define
the unperturbed eigenvalues and eigenfunctions. The quantity 1 is a small parameter.
Assume that the eigenvalues are nondegenerate (i.e., no two values of E0

n coincide).
Then an approximate expression for the eigenvalues of H�n D En�n is

En D E0
n C 1h�0

njVj�0
ni C 12

∑
j

0 jh�0
jjVj�0

nij2
E0
n � E0

j

C Ð Ð Ð , �WC.26�

where the term j D n is excluded from the sum.
The case in which there is degeneracy is usually handled by matrix techniques. A

finite set of eigenfunctions is chosen and the matrix elements of H are formed:

Hjn D h�0
jjHj�0

ni. �WC.27�

The eigenvalues and eigenvectors of the Hamiltonian matrix are computed. An example
of this is provided by the two-level system in which the unperturbed states are labeled
j1i and j2i. The Hamiltonian matrix is

H D
(
E1 V12

V21 E2

)
, �WC.28�

where V21 D VŁ
12. The eigenvalues are obtained as solutions of the secular equation

∣∣∣∣E1 � E V12

V21 E2 � E

∣∣∣∣ D �E1 � E��E2 � E�� jV12j2 D 0 �WC.29�

and are given by

Eš D E1 C E2

2
š

√(
E1 � E2

2

)2

C jV12j2. �WC.30�



528 QUANTUM MECHANICS

The variation principle permits one to obtain an approximate solution to the
Schrödinger equation and an upper bound on the energy of the ground state of a system.
An arbitrary function F�x� is chosen and the expectation value of the Hamiltonian is
computed using this function:

E[F�x�] D hFjHjFi
hFjFi . �WC.31�

Then it may be shown that the ground-state energy obeys the inequality E0 � E[F�x�].
The function F�x� depends on a set of parameters, f˛ig. The parameters are varied to
obtain the minimum value of E[F�x�]. The more parameters the function contains, the
more accurately F�x� will approximate the ground-state wavefunction and the closer
E[F�x�] will be to the ground-state energy.

In some problems there is a discrete state that is degenerate with a continuum of
states. Assuming that the system starts in the discrete state, one calculates the transition
rate, , to the final continuum of states. Again, take the Hamiltonian to be of the
form H D H0 C 1V. The initial state satisfies H0jii D Eijii and the final state satisfies
H0jfi D Efjfi. The Fermi golden rule states that

 D 2�

h̄

∑
f

jhfj1Vjiij2υ�Ef � Ei�. �WC.32�

In treating systems with more than one particle, the symmetry of the wavefunction
under interchange is important. For identical particles with half-integer spin, such
as electrons, protons, neutrons, and 3He, the wavefunction changes sign if any two
particles have their positions (and spins) interchanged, that is,

 �1, . . . , i, . . . , j, . . . , N� D � �1, . . . , j, . . . , i, . . . , N�. �WC.33�

The particles are said to obey Fermi–Dirac statistics. For identical particles with integer
spin, such as photons or 4He, the wavefunction is symmetric under interchange:

 �1, . . . , i, . . . , j, . . . , N� D  �1, . . . , j, . . . , i, . . . , N�. �WC.34�

Such particles obey Bose–Einstein statistics.
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Elements
Ag 22, 158, 240, 328–329, 331–332, 342–344,

457, 465, 486
Al 50, 60, 153, 157–158, 220, 289, 320, 351,

369–370, 383–385, 465, 491, 494, 499,
501, 514

Ar 344, 347, 397, 430
As 116, 234, 301, 344, 347, 351, 357
Au 157–158, 311, 341–342, 344, 351, 443, 497
B 45, 51, 115, 344, 347, 351, 494
Be 21, 24
Bi 234
Br 329, 347
C 112, 122, 195, 205, 311, 351, 374–377,

391–393, 396–397, 486, 490
a-C 32, 116, 276, 345
diamond 13, 20, 33, 70, 89, 99, 153, 158,

426, 435, 437, 474
graphite 13, 233, 342–343, 352, 391–393,

397
C60 33, 63, 234, 311
nanotube 444

Ca 404
Cd 102, 212
Cl 21, 23, 25, 153, 329, 347, 370
Co 158, 162, 206, 252, 255, 261, 275, 278,

282, 288, 497
Cr 13, 75–77, 158, 206
Cs 89, 329, 466, 492
Cu 24, 48–50, 54, 61–62, 75, 93, 116, 155,

158, 166, 248, 329, 341, 343, 351, 465,
479, 501–502

Dy 282–283
Eu 497
F 21, 23, 153, 328–329, 335, 347, 370, 486
Fe 21, 24, 32, 52, 86, 95, 156–157, 162, 206,

252, 255, 259–262, 264, 273, 278–280,
285, 309, 329, 343, 351, 357, 389–390,
411, 479, 486, 497–498

Ga 351, 357
Ge 20, 89, 111–112, 116, 118–119, 234, 301,

343–344, 350–351, 356, 360, 499
a-Ge 33

H 7, 9, 14–15, 17, 22, 24–25, 153, 164–165,
215–216, 309, 326, 328–329, 486, 490, 494

He 21, 24–25, 153
Hg 116, 196, 486
I 196, 497
In 351, 513
Ir 204, 422
K 89, 309, 329, 404, 491
La 162
Li 21, 24, 89, 212, 328–329, 335, 404, 491
Mg 331, 465, 494, 499
Mn 75, 162, 329, 496
Mo 344, 432–433, 513
N 23, 153, 162, 304, 309, 351, 396, 486
Na 9, 21, 89, 116, 153, 196, 329, 404, 475,

491, 499
Nb 206, 247, 249
Ne 21, 25, 153
Ni 80–81, 96, 151, 158, 162, 166, 212, 261,

311, 341, 343, 444, 483, 501
O 17, 19, 23, 152, 156–158, 215–216, 309,

341, 351, 360, 395, 453, 466–468, 486, 494
Os 497
P 45, 115, 162, 234, 344, 347, 351, 486
Pb 17, 22, 158, 212, 247, 249, 329, 344, 486
Pd 158, 162, 341
Pt 158, 162, 204, 210, 216, 278, 304, 309,

341, 479
Rb 89, 329, 491
Rh 309, 479
Ru 204
S 116, 234
Sb 52, 234, 334, 351, 497
Se 116, 234
Si 19–20, 25, 45, 50–53, 89, 104–105, 109,

112–114, 117–119, 121–122, 125–126,
128–129, 132, 139, 147, 158, 162, 195,
203, 205, 234, 295–296, 301, 324,
341–344, 347–356, 360–365, 373, 387,
397, 411, 419, 424, 443, 452–453, 465,
468, 475, 486, 491
Si2 53
Si3 53
a-Si 33, 112–113, 139–140
poly-Si 114–116, 130–131, 203

Sn 17, 112, 166, 351, 401, 486, 497
Sr 158
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Ta 158, 206, 591
Tb 282–283
Te 234, 497
Ti 157–158, 206, 239, 369, 372, 390
Tl 486
W 206, 304, 343–344, 369, 445, 486, 501
Y 158, 486
Zn 155, 329, 351
Zr 162, 206

Binary compounds and alloys
AgBr 70
AgCl 70
AgMn 79
Al1�xCux 383–384
AlMg 276
Al3Mg2 383
AlMn 80
Al6Mn1�x 387
AlN 20, 26, 158, 205–206, 380
Al2O3 20, 70, 76–77, 94,

157–158, 203, 205, 292,
342, 369, 383, 396, 398

AlP 112
AlSi 383
AsH3 359
As2S3 70, 116
Au0.495Cd0.505 160
AuMn 78–79, 83–84
AuxSi1�x 162–163, 171
BF3 367
B2H6 360
BN 20, 112, 120, 158, 205,

393–394
B2O3 292, 367
BeO 21, 112, 205
Bi2Te3 145
CCl4 370
CF4 370
a-C:H 360, 432–433
(CH)n 116
CH4 9, 15–16, 389–392, 397
C2H2 391–392
C3H8 397
CO 309
CO2 309
CaF2 356–357
CaO 89, 179
CdS 284
CdTe 112, 117, 284
CeH3 164
CoCr 158, 264, 276
CoxNi1�x 158, 276
Cr7C3 158
CrN 158
CrO2 264, 273

Cr2O3 15, 76
Cs3C60 234
CsCl 5
CuAl2 383–385
CuBe 383
CuCl 13, 409
CuFe 83
CuMn 79, 83
Cu1�xNix 85
CuO 13, 22, 116, 214–215, 394
CuO2 116
Cu2O 13, 22, 116
CuS 214–215
CuSn 383
Cu6Sn5 166
DyFe2 282
FexAl1�x 85
FeB 389
FeB (compound) 271
Fe2B 389
Fe3C (cementite) 271, 278, 324–328, 411
Fe1�xCx (steel), 100, 157–158, 374–382,

390
Fe65Co35 280
FeCr 255
FeF6 75
Fe2N 389
Fe3N 389
Fe4N 278, 389
FexNi1�x (Permalloy) 253, 264, 278–279,

281–282, 376
FeNi3 279
Fe60Ni40 280
Fe65Ni35 264, 279
FeO 22, 89, 278
Fe2O3 22, 157, 264, 272–273,

443
Fe3O4 22, 34, 86, 273
FeS 214–215, 278
FeS2 13
Fe1�xSix 264, 278, 280–281
Fe7W6 3
GaAs 26, 111–112, 118–119,

122, 126, 129–130, 132,
147, 158, 205, 331, 343,
356–359, 428, 512

GaP 118–119, 122
GaSb 439
GexAgy 456
GeO2 20
GexSi1�x 324
HF 22, 352, 370
H2O 17–19, 23, 215–216, 329,

360
H2O2 23, 352
HfV2 223
HgS 26, 284
HgTe 116, 284
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InAs 89, 118
In2O3 116
InP 122, 126
InSb 112
InTl 376
IrO2 204, 210
KC8 234
K3C60 234
KCN 332–333
KCl 70, 292
LaB6 445
LiBr 214
LiCl 214
LiI 214
MgAl 383
Mg2Cu 3
MgF2 295
MgO 68, 70–71, 89, 158, 210,

342, 396
MgS 112
MnF2 262
MnFe 281
MnO 22, 34, 82
MnO2 22, 214–215
Mn2O3 22
Mn3O4 22
MoC 223, 381
Mo2C 381
MoS2 214–215, 311, 342
NH3 16, 309, 360–361, 389,

396
NO 17, 309
NaCl 21, 26, 34, 70, 292, 342,

397, 512
Nb3Al 223
Nb3Ga 222–223
Nb3Ge 223, 249
NbMo 221
NbN 223
Nb3Sn 3, 222–223, 236, 239,

241, 246
NbTa 237–238
NbTi 222, 236, 239, 241
NbZr 221
NiAl 159–161
Ni3Al 383
NiCr 158
Ni50Fe50 278
NiMn 282
Ni3Mo 381
NiO 89, 282
Ni0.76P0.24 21
Ni3Ti 159, 381, 383
PH3 360
P2O5 367
PbBi 220
PbIn 220
PbO 17, 22

Pb2O 22
PbO2 22
PbS 17
PbSn 53
PbTe 145
PdD 223
PdH 165, 223
Pd0.8Si0.2 162
RhZr2 223
RuO2 204
Ru2O 210
SiC 20, 26, 53, 116, 122,

131–132, 158, 205, 372,
397, 419

SiCl4 396
a-SiFx 371
SiF4 25, 367, 370
SiGe 127, 142, 145, 350,

354–355
a-Si:H 362
SiH4 353, 360, 362, 370,

396–397
Si2H6 353
Si3N4 20, 158, 203, 205,

395–396, 474
SiO 53
SiO2 19–20, 23, 25, 33–34, 70,

94, 122, 131, 203, 205,
210–212, 217, 289, 292,
295, 341, 352, 364–370,
372–373, 396–397, 411,
443, 452, 468, 502

SmCo5 264, 266, 268–269, 271
Sm2Co17 264, 268–269
SmFe2 282–283
SnO2 116
Ta2H 164
Ta2O5 203
Tb1�xDyx 253–254, 282–283
TbFe2 264, 282–283
Th4H15 164–165
TiB2 158
TiC 158
TiN 157–158, 369–370, 390
Ti2N 390
TiO2 70, 203, 205, 292,

295–296
Ti2O3 378
TixSiy 370
UPt3 234
VC 380–381
V3Ga 593
V2O5 214–215
V3Si 25, 34, 223
WC 158, 381
W2C 158, 381
WF6 370
Y2O3 158, 216, 394, 396
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ZnMn 79, 83–84
ZnO 116, 461
ZnS 21, 26, 117, 284, 295
ZnSe 70, 111–112, 284, 292
ZnTe 498
ZrC 158
Zr3N4 158
ZrO2 158, 216, 445
ZrZn2 630

Ternary compounds and alloys
Al1�xBxAs 147
Al62Cu26Fe12 387
Al6Fe1�xMox 387
Al6Mn1�xFex 387
B3N3H6 360
a-BNH 360
BaBiO3 223–224
BaCO3 394
BaFe12O19 264, 266, 271,

274–275
BaPbO3 223
BaTiO3 203–204
BeSiN2 396
CH2Cl2 402
(CH)3Ga 359
CH3SiH3 397
(CH3)4Si 486
CaCO3 70, 496–497
Cd1�xMnxTe 284
Cd2SnO4 116
CeCu2Si2 234
CuNiZn 91
CuSO4 155
a-DyFeCo 277
a-Fe80B11Si9 162, 278, 281
Fe(CN)6 75
FeCoV 280
Fe83P10C7 162
Fe85Si10Al5 (Sendust) 264, 281
Ga1�xAlxAs 129–130, 132, 343
Ga1�xMnxAs 284
a-GdTbFe 277–278
H3PO4 216
Hg1�xMnxTe 284
InAs1�xSbx 439
InxGa1�xAs 126
InxSnyO2 (ITO) 116, 331, 406
KOH 372
La2CuO4 116, 224
LaMo6Se8 223
LiAsF6 214–215
LiNbO3 332
LiTaO3 332
LiTi2O4 223
Mg3(OH)6 (brucite) 177

Mg2SiO4 13
Mg3TeO6 498
MnFe2O4 281
Mn75P15C10 162
NH4Cl 396
Na3AlF6 70
Nd2Fe12B 264, 266, 270–271
Ni77Fe18Cu5 (Mumetal) 264, 278–279
Ni79Fe16Mo5

(Supermalloy) 264, 278–279
PbTiO3 443
Pd68Co12Si20 162
Pd78Si16Cu6 162
RM4Sb14 (R D La, Ce,

etc., M D Fe,Os,Ru) 145
a-SiCH 360
SiCl2H2 396
SiHCl3 353
a-SiNH 360–361
Si(NH)2 360, 396
SiO2�xH2x 360
Si2ON2 271
Sm2Fe17N3 268
SrFe12O19 271
SrTiO3 70, 204, 292, 394, 443
Tb2Al5O12 292
Tb0.3Dy0.7Fe2 264, 282–284
a-TbFeCo 277–278
Ti2AlN 390
URu2Si2 234
Y3Al2(AlO4)3 (YAG) 175, 297
Y3Fe5O12 264
YRh4B4 223
Y2SiO5 696
Zn25.75Al4.01Cu70.24 160
ZnFe2O4 281
Zn1�xMnxS 117, 284
ZnSO4 155

Quaternary compounds and alloys
Al2Si2O5(OH)4 (kaolinite) 178
Ba0.6K0.4BiO3 224, 249
BaPb1�xBixO3 223
Be3Al2Si6O6 (beryl) 175
Cu2CO3(OH)2 70
CuIn1�xGaxSe 140
DyBa2Cu3O7 231
a-FeBSiC (metglas) 264, 284
FeWMnC (tungsten steel) 266–267
KH2PO4 (KDP) 70, 292
La1�xCaxMnO3 256–257
La2�xSrxCuO4 116, 224, 229–230,

351, 459
Mn1�xZnxFe2O4 264, 281
Nd2�xCexCuO4 224
Pb(Mg1/3Nb2/3)O3 204
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PbxZryTizO3 (PZT) 209–210
Pb(Zn1/3Nb2/3)O3 (PZN) 204
RNi2B2C

(R D Y,Dy,Ho,Er,Tm,Lu) 223
Sm2Fe15Ga2C3 269
YBa2Cu3O7�x 34, 224–228, 230,

232, 235–237,
240–241, 246–248,
394, 470

Larger compounds, alloys, and
some minerals
BivSrwCaxCuyOz 236, 240–241
Cordeirite 205
FeCoCrWC (cobalt steel) 266–267
FeNiAlCoCu (Alnico) 264, 266–267
HgvBawCaxCuyOz 227, 233, 249
Mica 177–178, 203,

342
Mullite 205
Ni36Fe32Cr14P12B6 162
Pb1�xLax(ZryTi1�y)1�x/4O3

(PLZT) 204
Sm(CoFeCuZr)7 266, 269
Talc 99
Zeolites:

Linde A 398
ZSM5 397, 492

Polymers
Goretex 195
Polyacetylene (PA) 154, 196–200,

404

Polyaniline 116, 196, 404
Bisphenol-A polycarbonate (PC) 70, 402–403, 476
Polyethylene (PE) 289
Polyimide 205–206, 409
Polymethacrylonitrile (PMAN) 195
Polymethylmethacrylate 70, 366, 409

(PMMA)
Polypropylene (PP) 196
Polypyrrole 116, 196, 404
Polystyrene (PS) 70, 194, 403
Polytetrafluorethylene

(PTFE, Teflon) 206, 476
Poly(2,5-thiophene) 196, 404
Polyurethane (PUR) 194
Polyvinylene 289
Poly(N-vinylcarbazole) (PVK) 202, 406
Rubber 102

Some organic molecules

Ba(THD)2 395
Bisphenol-A 402
Cu(THD)2 395
DNA 17
Tetraethylorthosilicate (TEOS) 360, 369
Tetramethylammonium (TMA) bromide 398
Tetrapropylammonium (TPA) bromide 398
6FDA/TFDB 201
3-phenyl-5-isoxazolone 201
poly(2-methoxy-5-(20-ethyl-hexyloxy)-

1,4-phenylene vinylene) (MEH-PPP) 404
Tetrathiafulvalene-tetracyanoquino-

dimethane (TTF-TCNQ) 196
Y(THD)3 395
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Absorption coefficient, 366
AC Bridge, 483
Acceptor, 200

diffusion, 51
Accumulation layer, 461
Acheson process, 397
Activity, 48, 156, 327, 349
Adsorption, 302, 352, 356
Aging, 280

overaging, 385
Amorphous solid, 277, 355–356, 359–363, 385
Anelasticity, 89–91
Angular momentum

quenching of, 78, 85, 271, 283
Annealing, 347, 371–372, 382

rapid thermal, 368, 372
spheroidizing, 382

Anodization, 157, 388
Antibonding state, 110
Antiferroelectric, 204
Antiferromagnetism, 82, 223–224, 262
Atomic absorption spectroscopy, 429
Atomic emission spectroscopy, 429
Atomic force microscope (AFM), 340, 366, 471,

512
Atomic form factor, 27, 418
Atomic orbital, 7–9

s, 7–9, 228
p, 7–9, 228–229
d, 7–9, 75, 228–229

Auger emission spectroscopy (AES), 357, 462
Austenite, 159–160, 374–378, 389
Autodoping, 352

Bainite, 374–382
Baliga figure of merit, 122
Band bending, 327
Bandgap, see Electronic energy bandgap
Band structure, see Electronic energy band

structure
Battery, 155, 212, 215, 405

Daniell cell, 155–156
fuel cell, 214, 217
lithium ion, 212

Beer’s law, 409, 427, 461
Bingham stress yield, 180

Birefringence, 67
Bloch equations, 505–506
Bloch wavefunction, 229
Boltzmann equation, 55, 59

relaxation time approximation, 55
Bond

disorder, 35
energy, 20, 411

Bonding, 14–17, 88, 226, 359–361
covalent, 17, 89, 110, 226
hydrogen, 17–19
ionic, 17–18, 89, 110, 226
metallic, 89
mixed ionic-covalent, 110, 226, 228
van der Waals, 177

Bonding state, 110
Bonding unit, local atomic

A-B2, 365
A-B4, 364
A-A12(cub), 5
A-A12(hex), 5
A-A12(icos), 3, 5, 31–32
A-H...B, 18

Born solvation energy, 213
Bose-Einstein distribution, 37, 426, 521
Bragg diffraction, 414, 448
Bravais lattice, 41
Bridging oxygen, 175
Bright field imaging, 447
Brillouin function, 86
Brillouin zone, 229
Brittle material, 99, 377, 381
Bulk modulus, 88–89, 101
Burgers vector, 93, 381

Capacitor
electrolytic, 203
multilayer ceramic, 203

Carbon nanotube, 63
Catalyst, 215, 308–309
Ceiling temperature, 408
Cement, 179
Cementite, 374–376, 380–382, 389–390, 411
Ceramic, 271
Characterization, 413–511
Charge-transfer organic solid, 235
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Chemical potential, 53, 146, 325, 327–329, 334,
349–356, 455

Chemical shift, 498
Chemical vapor deposition, 158, 351–363,

368–369, 391–394, 397, 455
atmospheric pressure (APCVD), 352
metal-organic (MOCVD), 359
plasma-enhanced (PECVD), 359–363
reduced pressure (RPCVD), 352
UHV/CVD, 354–355

Chemisorption, 309, 358
Clausius-Mossotti formula, 330
Clay, 177
Cluster, 239, 256
Coating, 157
Coercive field, 209, 236–237, 251–252, 265–266,

268, 271, 277–278
Cohesive energy, 19–20, 155
Cold work, 379
Collision time, electronic, 60
Commutation relations, 40
Compensation point (temperature), 277
Compliant substrate, 340
Composite fermion, 137
Conductivity

electrical, see Electrical conductivity
thermal, see Thermal conductivity

Contact potential, 164, 311, 473
Continuous-cooling transformation (CCT) diagram,

377–378
Continuous random network, 32–33, 115, 359
Coordination number, 13
Corrosion, 154, 157

resistance, 383, 388, 390
Cottrell atmosphere, 379
Coulomb

blockade, 63
interaction, 17–18, 81–82, 88, 110, 229

Covalent bonding, see Bonding, covalent
Crack

extension force, critical, 101
propagation, 100–101

Creep, 95–96
Coble, 96
Nabarro, 96
primary, 96
rate, 95
secondary, 96
strength, 96
tertiary, 96

Critical thickness, 322, 324, 344
Crystal field, electric, 75–78, 82, 271, 273

splitting, 77, 85
stabilization energy (CFSE), 85
strong-field limit, 75
weak-field limit, 75

Crystal growth, 342
Crystal structure

beta-tungsten (beta-W), 3, 222, 249
body-centered tetragonal, 376
cesium chloride (CsCl), 17
hexagonal, 268–269
inverse spinel, 273, 281
magnetoplumbite, 274
oxide crystals, 22
perovskite, 203
sodium chloride (NaCl), 17, 222
spinel, 281
tetragonal, 270
trigonal (rhombohedral), 268–269
zincblende (cubic ZnS), 17

Crystallite, 275
Curie

constant, 78–79, 86
law, 78–79
temperature, 259, 266

Curie-Weiss
law, 79–81, 86
temperature, 79, 86

Cyclotron frequency, 145
Czochralski growth, liquid-encapsulated, 358

Dangling bond, 113, 115, 310, 347
Daniell cell, 155–156
Dark-field imaging, 447
Daumas-Herold domain, 333
Debye-Huckel theory, 326
Debye screening length, 326
Debye temperature, 499
Debye-Waller factor, 36–37, 418, 497
Defect 118, 354, 356. See also Dislocation,

Vacancy, etc.
Demagnetizing

curve, 264–265, 267
factor (magnetic material), 265, 286
field, 260, 264

Density
atomic, 5
mass, 5, 211

Density functional theory, 149–150
Density of states

electronic, 113, 221–222, 474
phonon, 35–36, 43

Dephasing time, 506
Deposition, 303

pulsed laser 395
sputtering, 158, 344–345

Desorption, 304, 354
Dichroism, 288
Dielectric, 364
Dielectric constant (or function), 72–73, 110,

113–114, 205, 207–208, 211, 213, 258, 361,
511

anisotropic, 67
nonlocal, 72
tensor, 67
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Dielectric strength, 203
Diffraction

amorphous solid, 31–32
Bragg, 414, 448
electron, 419, 422, 513
Laue, 415
powder, 415, 514
x-ray, 413–414, 418

Diffusion, 45–51, 53–54, 162, 164, 350, 352,
354–355, 357, 359, 364, 366–367, 374, 379,
381, 383, 389

barrier, 369
chemical, 46
coefficient, 45, 50, 367, 371
constant-source, 367
grain boundary, 369
length, 45, 124
oxidation-enhanced (OED), 367
self-, 48–51, 96
self-interstitial mechanism, 50
transient-enhanced (TED), 367
two-step, 367
vacancy mechanism, 51, 96
velocity, 386
zone, 390

Dislocation, 93, 95, 100, 322–323, 336, 348, 358,
376, 379, 381

density, 93–94, 99
edge, 94, 379
line tension, 381
loop, 381
misfit, 355
pinning, 94, 378–380
screw, 340, 379, 472
slip, 93

Disorder
amorphous, see Amorphous solid
nanocrystalline, 31

Dispersion strengthening, 94–95, 380–381, 383,
389

Distance, polymer end-to-end, 183–185
Distribution (segregation) coefficient, 349–351,

356, 387, 411
Domain wall, 199, 208, 210
Donor, 200

diffusion, 51
Doping and dopants, see Semiconductor, doping

and dopants
Ductility, 100, 374, 378, 381–383
Dupre formula, 321
Dynamical matrix, 42
Dynamical structure factor, 427

Eddy currents, 260, 262–263, 278–280
Edge state, 134
Effective magneton number, 77

Effective mass, 228, 231, 291
band curvature, 234

Elastic
aftereffect, 90–91
constant, 211
energy, 100–101
modulus, see Young’s modulus

Electret, 201
Electrical conductivity, 196

conductance, 63
tensor, 257
two-dimensional, 61

Electrical resistance of alloys, 478
Electrode half-reaction, 155
Electrode potential, see Standard electrode

potential
Electrolyte, 213–215
Electromigration, 50, 369
Electron affinity, 20–23

negative, 21
Electron configuration, valence, 10
Electron paramagnetic resonance, see Electron spin

resonance
Electron spin resonance, 495
Electronegativity, 23, 111, 228

Mulliken, 23
Pauling, 23–24, 26
Phillips, 24

Electronic device, 349, 351, 373
fabrication, 363–372
feature size, 371
figure of merit, 122–123
planar technology, 123

Electronic energy bandgap, 293, 438
Electronic energy band structure, 228. See also

Semiconductor, energy band structure
Electrons

itinerant, 81
d-, 22, 85

Electrooptic tensor, 442
Ellipsometry, 430, 433
Embedded atom method, 151–153
Energy band, 257
Energy, cohesive, see Cohesive energy
Energy distribution curve, 320, 455–456
Enthalpy, 360, 515

change, standard, 19
of formation, standard, 19, 52, 411
of melting (fusion), 349, 386
of migration, 50
of vaporization, 52

Entropy, 18, 325, 360, 515, 517,
520

of melting (fusion), 386
of vaporization, 52

Epitaxial
growth, 337, 351–359
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Epitaxial (Continued)
temperature, 356
thickness, 356

Equilibrium constant, thermodynamic, 33–34, 391,
411

Error function, 46–48
Etching, 363, 370–371, 391–392

chemical, 370, 373
dry, 371–373
inhibitor, 370
isotropic, 370
physical, 370
plasma, 396, 409
reactive-ion, 370, 372–373
selective, 370
wet, 371–373

Euler relation, 516
Euler theorem, 63
Eutectic

alloy, binary, 53
composition, 162–163
temperature, 167, 170, 172

Eutectoid, 374, 381, 389, 411
Ewald sphere, 448, 421
Exchange energy (integral), 81, 86, 229
Extended x-ray absorption fine structure (EXAFS),

461, 512

Failure, 96
Faraday balance, 483
Faraday effect, see Magneto-optical effect
Fatigue, 97–98

life, 97
strength, 98

Fermi
circle, 133
energy, 134, 455
level, 256, 371, 455, 473
sphere, 133
velocity, 60

Fermi-Dirac distribution, 65, 455, 473, 521
Fermi golden rule, 319, 455, 528
Fermi integrals, 64
Ferrimagnetism, 262, 271, 281
Ferrite

acicular, 374–375, 378
ceramic, 86, 271, 274–275, 281
phase of iron, 374–378, 381–382, 389–390, 411

Ferroelectric, 204, 332
nonvolatile random-access memory, 208
phase transitions, 206

Ferromagnetic resonance, 260–262
Fick’s laws, 45, 389
Field emission, 445
Float-zone purification, 348–351
Fluorescence, 438
Foner magnetometer, 481

Fourier transform infrared spectroscopy (FTIR),
433

Fowler-Nordheim tunneling, 314, 405, 445
Fractional charge, 137
Fracture

brittle, 100, 166
ductile, 100
stress, 96, 100–101
toughness, 100

Frank-Kasper phase, 3
Frank-van der Merwe growth, 341–342
Free-energy model, 360
Free volume, 191, 194
Friction, 310
Fuel cell, 214, 217
Fullerite, 234

g factor
Landé, 86, 261

Galvanomagnetic effect, see Magnetoresistance
Gaussian diffusion profile, 45–48
Geometric structure factor, 36, 418
Gettering, 51, 349, 372
Gibbs-Duhem formula, 516
Gibbs free energy, 156, 328, 375, 387, 516

of formation, standard, 391
Gibbs phase rule, 53, 169
Gibbs triangle, 169–170, 207–208
Ginzburg-Landau theory (of superconductivity),

236
Glass, metallic, 31, 162–164, 281–282, 284,

385–388
Glass transition temperature, 191, 194, 201, 387,

409
Grain boundary, 99, 235, 240, 246, 271, 275, 369,

374, 378, 380
barrier layer, 204
pinning, 380, 383

Grain size, 380
reduction, 380

Graphite intercalation compound, 233–234, 333
Griffith criterion, 100
Guinier-Preston zone, 384
Gyromagnetic ratio, 261

Haber process, 308–309
Hall

coefficient, 60, 146, 477
effect, 59, 132, 476
resistivity, 132, 136

Hall-Petch relation, 99–100, 380–381
Hardening

age, 381, 383
case-, 389
precipitation-, see Precipitation hardening
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secondary, 381
work-, see Work hardening

Hardness, 95, 98–99, 377, 382, 388, 390
Knoop, 99
Vickers, 89

Harker-Kasper inequality, 30
Harmonic oscillator, 39–40, 525
Heat capacity, 517
Heat treatment, 95, 267, 381–384, 389
Heavy fermion, 234–235
Heisenberg exchange interaction, see Magnetic

interaction
Helmholtz free energy, 324, 334, 515, 520
High-resolution transmission electron microscopy

(HRTEM), 449
Hohenberg-Kohn theorem, 149
Holes, 146
Hooke’s law, 87–89, 91
Hot carrier, 128
Hot isostatic pressing (HIP), 396–397
Hubbard model, 81–82, 229
Hume-Rothery rules, 268
Hund’s rules, 76, 85
Hybrid orbital, 9–13

dsp2, 12–13, 228–229
d2sp3, 12–13
d4sp, 13
sd3, 12
sp, 11–12, 21
sp2, 12–13
sp3, 12–13
sp3d3f, 13

Hydrophobic interaction, 301–302
Hydrophyllic interaction, 301
Hydrothermal synthesis, 399
Hysteresis, 91, 159, 208–209, 237

Icosahedra, see Bonding unit, local atomic
Impurity, 351, 379
Incommensurate lattice, 310
Index ellipsoid, 67–68, 441
Index of refraction, 70, 257, 293, 296, 427–428,

431
extraordinary, 69
ordinary, 69

Inert-gas solid, 21
Initiator, 194
Interface, 374–375, 386

energy, 386
Si/a-SiO2, 364, 367
solid-electrolyte, 326

Intermetallic compound, 166, 268
Internal energy, electronic, 515, 520
Internal friction, 90–92
Interstitial, 33, 367, 376

impurity, 379
self-, 50–51

Interstitial site, 164–165, 269, 281
BCT, 374, 376
FCC, 34

Invar anomaly (effect), 279–280
Ioffe-Regel criterion, 60–62
Ion beam processing, 344
Ion channeling, 344
Ion implantation, 158, 367–368, 411

intense-pulsed-ion beam (IPIB), 390
plasma-immersion (PIII), 367, 390
range, 367
SIMOX, 368

Ionic
bonding, See Bonding, ionic
solution, 324

Ionicity, 21, 24, 26, 111–112
Ionization energy, 20–21, 23
Ion slicing, 348
Isomer shift, see Chemical shift
Isotropic solid, 101

Jahn-Teller effect, 75
Jellium model, 152
Johnson figure of merit, 122
Johnson-Mehl equation, 381
Josephson effect, 241–245

ac, 243–244
current, 241, 243
dc, 243
frequency, 244
inverse ac, 244
junction, 241–242, 246
quantum interference, 244–245
relations, 241–243, 249

Kauzmann temperature, 191, 194
Kelvin probe technique, 473
Kelvin relation, 107
Kerr effect, see Magneto-optical effect
Keyes figure of merit. 122
Kikuchi line, 447
Kinetic effect, 391
Knight shift, 491
Kohn-Sham equation, 150
Kondo

effect, 79–80, 85
temperature, 80

Kramers doublet, 75
Kramers-Kronig relations, 511
Kronig-Penney model, 57–58

Landau level, 133–136, 145
Landau theory of phase transitions, 206
Langmuir adsorption isotherm, 305–306
Laser, 76
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Laser damage, 296
Latent heat of fusion, see Enthalpy, of melting
Lateral force microscope, 474
Lattice relaxation, 82
Laue diffraction, 415
Laves phase, 3, 283
Law of mass action, 33–34
Lely process, 397
Lever rule, 172
Light-emitting diode, 331, 405
Liquidus line, 170–173, 349, 411
Lithography, 365–366

LIGA process, 366
nano-, 366
photo-, 205, 364–365
photoresist, 365

Local density approximation, 150
Localization, 60

Anderson, 62
weak, 61, 134

Lone-pair orbital, see Molecular orbital,
nonbonding

Long-range order, see Order, long-range
Lorentz oscillator model, 70, 291
Loss coefficient, 90
Low-density microcellular material, 195
Low-energy electron diffraction (LEED), 419, 422
Low-energy electron loss spectroscopy (LEELS)

459, 512
Low-energy electron microscopy (LEEM), 452
Luminescence, 438

cathodoluminescence, 439

Madelung
constant, 17
energy, 17, 26

Magic-angle spinning, 489
Magnetic

aftereffect (relaxation), 262–263
energy, 251
energy-density product, 265–266, 286
field, effective internal (molecular), 82, 85, 260,

262
hardening, 282
microstructure, 262, 267, 271, 276, 278
permeability, 260, 278, 281
susceptibility, 78–79, 82–84
viscosity, 263

Magnetic anisotropy, 251–252, 259, 263, 267, 275,
281, 283

coefficient, 82, 253, 277, 279, 283
energy density, 275
field, 251, 260, 262, 284
magnetocrystalline, 82, 252, 268, 271–274, 279
magnetostrictive, 252, 263, 268, 277
pair model (Van Vleck), 82
pair-ordering, 277

shape, 252–253, 267, 272, 274
single-ion, 277
uniaxial, 268, 271

Magnetic domain, 251, 259–260
pinning of, 266, 271, 279
wall energy, 251
wall thickness, 279, 285

Magnetic interaction
double exchange, 256, 273
Heisenberg exchange, 82, 255
indirect, 270
RKKY (Ruderman-Kittel-Kasuya-Yosida),

79–80, 83–85
sp-d, 285
superexchange, 229, 256, 284–285

Magnetic materials
hard, 264, 269
magneto-optical recording, 277–278
magnetostrictive, 282–284
permanent magnet, 264–272, 286
read/write head, 281–282
recording media, 272–277
soft, 264, 278

Magnetic moment, 234, 253, 261, 280
formation, 81

Magnetization, 83–84, 253–254, 256–257, 261,
263, 286

curve, 259, 264
easy direction for, 251, 253, 272
loop, 259, 278
quantum tunneling of, 263
remanent, 236–237, 265–266
saturation, 86
spontaneous, 82, 253, 277–278, 280
sublattice, 273

Magnetoelastic energy, 283
Magnetomechanical damping, 263
Magneto-optical effect, 257–260

Faraday, 257–258, 285, 290
Kerr (MOKE), 258–260, 277–278
magnetic circular birefringence, 257
magnetic circular dichroism, 258
magnetic linear birefringence, 258
magnetic linear dichroism, 258
surface Kerr (SMOKE), 259

Magnetoresistance, 133, 255–257, 281, 285
colossal, 255
giant negative, 255, 281–282
longitudinal, 255

Magnetostriction, 253–254, 279, 281–284
giant, 282–283
isotropic, 253
linear, 253
strain, 254, 279
volume, 280

Magnon, see Spin wave
Manson-Coffin relation, 98
Martensite, 159–161, 374–381, 389, 411
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Martensitic transformation, 16, 268, 376
Mass spectrometry, 466–467, 514

modulated-beam, 357
Materials property chart, 100
Maxwell’s equations, 71
Mean free path

electron, 60, 221, 232
ferrite path (MFFP), 381

Mechanical damping, 284
Melting temperature, 50, 52, 214, 349–350
Metal hydride, 164
Metal-insulator transition, 229, 256
Metallic

bonding, see Bonding, metallic
radius, see Radius, metallic

Metallization, 369–370
Metal, transition, 266
Micelle, 301
Microelectromechanical system (MEMS), 372–373
Microporous film, 195–196
Microstructure, 240, 363, 374, 376–377, 381–386,

388–390
Microwave processing, 408
Mictomagnetism, 85
Mismatch function, 28
Mobility, 60, 115, 213

edge, 61, 115
minimum metallic, 60

Modulation doping, 129–130
Modulus of elasticity, see Young’s modulus
Molecular beam epitaxy (MBE), 356–359
Molecular field theory, Van Vleck

(antiferromagnetism), 86
Molecular geometry, 27
Molecular orbital, 13–17

antibonding (ABMO), 17, 228
bonding (BMO), 14
delta, 15–16
nonbonding (NBMO, lone-pair), 16–17, 116
pi, 15
sigma, 14, 228
theory, 75, 228

Molecular weight, 183
Mossbauer spectroscopy, 496
Mueller matrix, 289
Mulliken notation, 77
Multilayer material, 255, 281, 329
Muon-precession spectroscopy, 503

Near-field optical spectroscopy, 442
Necking, 348
Néel temperature, 86, 223–224, 229, 234
Nernst equation, 327
Neutron scattering, 424, 426
Noncrystalline solid, see Amorphous solid
Nonlinear chromophore, 201
Nonlinear optical coefficient, 200, 296, 440

Nonlinear optical material, 332
Nonlinear optical spectroscopy, 439
Nonstoichiometry, 34
Normal mode, 38
Nuclear magnetic resonance, 484, 504
Nuclear quadrupole resonance, 491
Nucleation, 342, 352, 356, 374, 378, 381,

386

Onsager formula, 133
Onsager relations, 56, 478
Optical absorption edge, 105
Optical band structure, 293
Optical spectroscopy, 427
Orbital, see Atomic orbital, Hybrid orbital,

Molecular orbital
Order

intermediate-range, 31
long-range, 112, 359
short-range, 112, 163, 359

Orowan expression, 95, 381, 385
Ostwald ripening, 398
Oxidation, 154, 156

of Si, 364–365, 411
Oxide

field, 364
gate, 364

Packing fraction, 191
BCC, 3
CsCl, 4

Paramagnetism, Pauli, 86, 234
Passivation, 122, 157, 364
Patterson

function, 28–29
map, 29

Pauli exclusion principle, 9
Pauli paramagnetism, see Paramagnetism, Pauli
Pearlite, 374–382, 389, 411

coarse, 381
fine, 381

Peierls instability, 153, 199
Peltier effect, 106–109, 140–143, 477, 480
Percolation, 256
Permittivity, 72

relative, 110
Persistence length, 189
Phase-contrast image, 454
Phase diagram, equilibrium

binary, 163, 167, 349–350, 383–384, 387,
411

CVD, 391–393
eutectic, 387
ternary, 169–170, 394

Phase matching, 69, 200, 330, 440–441
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Phase transition
athermal, 376
first order, 206

Phillips and Van Vechten model, 110–112, 147
Phonon

density of states, 35–36, 43
drag, 109
monatomic random lattice, 35
quantization, 38

Phosphorescence, 438
Photoemission, 317

angular-resolved spectroscopy (ARPES), 456
inverse, 454, 456
ultraviolet spectroscopy (UPS), 454
x-ray spectroscopy (XPS), 457
yield, 317

Photonic crystal, 296
Photorefraction, 202
Photoresist, 409
Photovoltaic solar cell, 137–140, 360

fill factor, 139
multicolor, 140
open-circuit voltage, 138
short-circuit current, 138

Physical vapor deposition, 368–369
Physisorption, 309
Piezoelectricity, 201, 210
Pilkington process, 400
Plasma

carburizing, 368
deposition, 359–363
electron cyclotron-resonance (ECR), 262
etching, 396, 409
frequency, 110, 291, 429, 513
nitriding, 368
processing, 409

Plasmon
surface, 461, 465
two-dimensional, 461

Plastic deformation, 93, 99, 379
pn junction, 137, 368

built-in voltage, 138
J-V characteristic, 138

Poisson-Boltzmann equation, 325
Poisson equation, 324–325, 458
Poisson ratio, 101, 322
Polariton, 68, 70
Polarization

remanent, 208
saturation, 209
spontaneous, 206–207

Polarizer, 287–290
Polyhedron

prism, triangular, 271
Voronoi, 27
CN14, CN15, CN16, 3

Polymer, 116
cross-linked, 194

electrical conductivity, 196, 404
foam, 194
linear, 183
nonlinear optical, 200
porous film, 195

Polymerization, 365
Porous metal, 166
Porous silicon, 117, 372–373
Positron-annihilation spectroscopy (PAS), 499
Potential energy, 87–88
Precipitate, 94–95, 267, 278, 369, 380–383, 389,

393
Precipitation hardening, 95, 266–267, 269,

383–385
Processing, 337–410
Pseudobinary compound, 282, 284
Pseudomorphic growth, 343
Pyrolysis, 354

Quadrupole coupling parameter, 493
Quadrupole mass spectrometer, 467, 514
Quadrupole moment, 494
Quadrupole tensor, 493
Quality factor, 91
Quantized magnetic flux, 135
Quantum confinement, 117
Quantum efficiency, 138
Quantum Hall effect, 132

fractional, 137
integer, 133

Quantum mechanics, 523
Quantum well, 146, 525
Quartz crystal

deposition monitor, 210, 212
microbalance, 476
oscillator, 210, 212

Quasiequilibrium model, 391–392
Quasiperiodicity, 332

Radial distribution function, 31
Radius, 24

covalent, 25, 110
ionic, 25
metallic, 25
van der Waals, 25

Radius of gyration, 186, 202
Radius ratio and polyhedral coordination, 181
Raman scattering, 176, 435
Random close-packing model, 31–32, 386
Random walk, 185–186

self-avoiding, 188–189
Range, 345–347
Rapid solidification (quenching), 162, 271,

385–388, 390
velocity, 386

Rayleigh resolution criterion, 442
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Rayleigh scattering, 436, 446
Reactive ion etching, 347
Reciprocal lattice vector, 36
Recombination, electron-hole, 118–122, 356

defect-mediated, 119–121
surface, 121–122

Reconstruction, 420
Recrystallization, 165, 347
Redox couple, 326, 328–329
Reflection high-energy electron diffraction

(RHEED), 357, 423–424
Reflectivity, 428, 513
Relaxation, 101

time, 89–92
Relaxor ferroelectric, 203–04
Resistivity, 104–105, 132, 205, 230–231, 260,

272, 279, 476–477
Resonance valence band model, 229
Reststrahlen band, 71
Rupture modulus, 205
Rutherford backscattering, 467–468, 511

Scaling law, 83
Scanning electron microscope (SEM), 433
Scanning tunneling microscope (STM), 366. 373,

472
Scattering

amplitude, 36, 418
Brillouin, 436
Raman, see Raman scattering
spin-dependent, 255

Schottky barrier, 139, 369
Schottky defect, see Vacancy
Schrodinger equation, 145, 242, 299, 314, 523, 526
Screening, Thomas-Fermi, 111, 346
Second-harmonic generation, 69, 330
Secondary ion mass spectrometry (SIMS), 466
Seebeck

coefficient, 106
effect, 106–107, 141

Segregation, 276
Semiconductor

amorphous, 112–116
carrier concentration, 103–105, 146–147
conductivity, 104–105
doping and dopants, 129–130, 355, 364, 366
energy gap, 139
group III–V, 359
group II–VI, 284, 359
magnetic, 117, 284–285
minority carrier lifetime, 118, 121
organic, 116–117
oxide, 116
thermoelectric effects, 106–110

Shape-memory alloy, 159–161
Shear modulus, 93, 95–96, 101, 163, 322, 381
Shockley state, 300

Short-range order, see Order, short-range
Shubnikov-deHaas effect, 133
Silicate, 174–176
Sintering, 94, 271, 396–397
Skin depth, 260
Skin effect, 260
Slip, 376

system, 93
Snoek effect, 262–263
Solder joint, 165
Sol-gel synthesis, 399
Solid-electrolyte interface, 326, 328
Solid solution, 383

strengthening, 95, 100, 379–380
Solidus line, 349, 411
Soliton, 199
Solvation energy, 213, 302, 328
Sommerfeld model, 317
Specific heat, 37, 480

electronic, 234
magnetic contribution, 83–84

Speed of sound, 210, 217
Spin, 86

free, 78
high-to-low transition, 77
majority, 256
minority, 256

Spin coating, 406
Spin-flop axis, 82
Spin glass, 79–80, 82–85, 263, 285
Spin-orbit interaction, 75–76, 82, 253, 271, 283
Spintronics, 285
Spin valve, 282
Spin wave (magnon), 261
Spinodal decomposition, 276
Sputtering 363, 370, 389, 430, 466. See also

Deposition, sputtering
SQUID, 245–246
Stacking fault, 352
Staging, 333
Standard electrode potential, 155–157, 327
Statistical mechanics, 519
Steel, 267–268, 278, 374–383, 389

high-strength low-alloy (HSLA), 380
maraging, 381
tool, 411

Sticking coefficient, 158, 303–304, 358, 369
Stokes parameters, 288
Stopping power, 347
Straggling distance, 346
Strain, 263, 385

aging, 379
energy, 375, 379
field, 379
nominal, 101
rate, 96–97
recovery, 161
shear, 94–95, 376
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Strain (Continued)
tensor, 211
true, 101

Stranski-Krastanov growth, 341, 343
Strength, 321, 374, 378–383
Stress, 263, 268

compressive, 389
flow, 381
intensity factor for plane stress (strain), critical,

100
shear, 93–94, 379
thermal, 352, 355

Stress-strain curve, 88, 92–94
Sublimation, see Vaporization
Substrate, 205
Sum rule, 511
Superconductor

coherence length, 249
condensation energy, 221, 248–249
Cooper pair, 241–244, 247
critical current, 232, 235–241, 249
critical field Hc, thermodynamic, 248–249
critical field Hc1, lower, 238
critical field Hc2, upper, 238
electron tunneling, 241, 249
energy gap, 232
flux creep, 237, 239–240
flux flow, 237
free energy, 219, 221, 248
gapless, 232
hard versus soft, 236
high-Tc, 223–233, 240–241, 246, 249
irreversibility field, 239
irreversibility temperature, 239
Josephson effect, see Josephson effect
magnetization, 236–237, 248
mixed state, 235, 238
penetration depth, 249
perfect conductivity, 248
quantized flux, 244, 249
specific heat, 228, 232, 248
SQUID, see SQUID
surface resistance, 246, 248
thermal conductivity, 219–220, 247
transition temperature, 223
trapped flux, 237, 239
two-fluid model, 219, 248
type II, 238
vortex, 232, 240
vortex fluid, 237–239
vortex glass, 238
vortex lattice, 238
vortex pinning, 235–239
wavefunction, 242

Supercooling, 386
Superelasticity, 161
Superexchange, see Magnetic interaction
Superlattice, 281

Supermagnet, 268
Superparamagnetism, 263, 275
Supersaturation ratio (SSR), 354
Surface, 258–259, 353

diffusion, 306–307, 356
energy, 100, 339, 342, 375, 382, 401
enhanced Raman scattering (SERS), 437
extended absorption fine structure (SEXAFS),

463
force apparatus, 475
net, 311, 420
plasmon, 461
reaction, 355, 362
reciprocal net, 422, 431
recombination velocity, 121
roughening, 356
state, 121, 299
step, 310
treatment (for metals), 388–390

Surfactant, 301
Symmetry

decagonal, 387
icosahedral, 387
rotational, 387

Synthesis, 337–410

Tail state, 113, 115
Tanabe-Sugano diagram, 76
Tauc law, 113–114
Tempering, 377, 379, 381–382
Tensile strength, 378, 382
Thermal conductivity, 310, 386, 397, 477–478, 480

ceramic, 203, 205
semiconductor, 295

Thermal diffusivity, 159, 386, 480
Thermal expansion, 166, 205

linear coefficient, 211, 275, 295–296
volume coefficient, 191, 194, 397

Thermistor, 212
Thermocouple, 140, 479
Thermodynamics, 515

first law, 477, 515, 518–520
second law, 517
third law, 517

Thermoelectric
device, 140–145
field, 478
figure of merit, 142
power (thermopower), 106–107, 140, 146, 477,

479–480
Third-harmonic generation, 69
Third-order susceptibility, 441
Thomson effect, 107
Tight-binding model, 62, 82, 152, 154, 229

random, 56–57
Time-temperature-transformation (TTT) diagram,

376, 378
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Torque, magnetic, 261
Toughness, 321, 374, 378, 381
Transistor, 112–132, 147, 364

bipolar junction, 123–127
DRAM, 363
field-effect (FET), 123, 127–129
gain, 124–125
HEMT, 130
heterojunction bipolar (HBT), 126–127
MESFET, 131–132
MODFET, 130
MOSFET, 132, 134, 364
thin film (TFT), 115, 130–131, 360

Transition element, 85
Transition metal, 266
Transmission electron microscope (TEM), 340,

356, 445
Traps, 121, 356, 369, 499
Tunneling, 527

energy, 81, 229
Twin, 376
Two-dimensional electron gas, 132

Ultraviolet photoemission spectroscopy (UPS), 454
Unit cell

body-centered tetragonal, 374
orthorhombic, 224
tetragonal, 270

Urbach edge (tail), 114

Vacancy, 51, 227, 367, 369, 499
concentration, 49
Frenkel defect, 34
Schottky defect, 33–34, 48

Valence, 22–23
electron, 10
mixed, 223–224, 253

van der Pauw method, 477
van der Waals bonding, see Bonding, van der

Waals
van Hove singularity, 42–43

Van Roosbroek-Shockley relation, 118
Vaporization, 52–53, 411
Vapor pressure, 52–53, 115, 354, 391, 411
Variable-range hopping, 115
Vegard’s law, 147
Velocity, thermal, 120
Verdet constant, 258, 290, 292
Vibrating-sample magnetometer, 481
Viscoelasticity, 180
Viscosity, 193–194, 213–214
Void, 113, 275, 369
Voigt effect, 259
Volmer-Weber growth, 341–342
Voronoi polyhedron, 27

Wear resistance, 388, 390
Weertman-Ashby map, 96–97
Welding, 383
Wigner crystal, 62
Wigner-Seitz cell, 41
Williams-Landel-Ferry equation, 193–194
Work function, 331, 454

negative, 501
Work hardening, 92–94, 96, 378–379

Taylor’s theory of, 94

X-ray diffraction
Laue, 415
powder, 415, 514
rotating crystal method, 415, 418

Yield
stress (strength), 95, 163, 379–383
stress, shear, 93, 95, 99

Young’s modulus, 87–91, 100–101, 339, 397

Zeeman effect, 493
Zener model, 89–91
Zero-point energy, 41


