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Preface

The basic idea and the initial aim of this book, Physics of Functional Materials, was to provide the necessary knowledge
in physics for a deeper interpretation of many of the solidification and crystallization processes that are treated in the book
Materials Processing during Casting, written for the university undergraduate level and published in March 2006. The present
book fulfils this requirement and is at such a mathematical level that a basic knowledge of mathematics at university level is
sufficient.

However, the book Physics of Functional Materials has a very wide and general character. It is by no means designed
only for the purpose described above. On the contrary, this book may be useful and suitable for students in various sciences
at the Master’s and PhD level, who have not taken mathematics and physics as major subjects. Examples of such sciences
are materials science, chemistry, metallurgy and many other scientific and technical fields where a basic knowledge of the
foundations of modern physics and/or properties of materials is necessary or desirable as a basis and a background for higher
studies.

Fundamental properties of different materials such as diffusion, viscosity, heat capacity and thermal and electrical conduction
are examined more extensively in the present book than in available physics books of today. This book will fill a gap between
the demand for and supply of such knowledge.

The atomistic view of matter requires a genuine background of modern physics from atoms via molecules to solid-state
physics, primarily the modern band theory of solids, and the nature of bonds and crystal structure in solids. These topics are
treated in Chapters 1–3 and are applied in later chapters, particularly in Chapter 7.

The three first chapters on modern physics are followed by applications of classical physics of material properties. Basic
thermodynamics, properties of gases, including the kinetic theory of gases and the Boltzmann distributions of velocity and
energy of molecules, transformation kinetics including chemical reactions and diffusion in solids, mechanical, thermal and
magnetic properties of matter including ferromagnetism, are treated in Chapters 4–6.

Chapter 7 deals with thermal and electrical conduction in solids and their optical properties, particularly electrical conduction
in metals and semiconductors. Polarization phenomena in crystals and optical activity in solids and liquids are discussed. In
the last chapter, a short survey of the material properties of liquids is given.

Physics of Functional Materials contains solved examples in the text and exercises for students at the end of each chapter.
Answers to all the exercises are given at the end of the book.

Acknowledgements

We want to express our sincere thanks to Dr Gunnar Benediktsson (KTH, Stockholm) for many long and fruitful discussions
and support on solid-state physics. Dr Ulf Ringström (KTH, Stockholm) gave many valuable points of view on atomic and
molecular physics and optics. We also owe our gratitude to Dr Göran Grimvall and Dr Ragnar Lundell (KTH, Stockholm) for
valuable help concerning aspects of solid-state theory and solid mechanics, respectively.

Dr Jonas Åberg, Thomas Bergström and Hani Nassar (Department of Casting of Metals, KTH, Stockholm) gave us practical
support concerning the ever-lasting computer problems throughout the years. We thank them gratefully for their patience and
unfailing help. We also owe our gratitude to Dr Gunnar Edvinsson (University of Stockholm) and Dr Thomas Antonsson
(Department of Casting of Metals, KTH, Stockholm) for valuable computer help. Colleges at the Institutes of Physics at the
Universities of Uppsala and Lund and KTH, Stockholm, kindly allowed us to use freely their problem collections in physics.
We thank them for this generous offer. Some of their exercises have been included in this book. We also thank Dr Olof
Beckman, University of Uppsala, for permission to use some polarization figures.



viii Preface

We are most grateful for financial support from The Iron Masters Association in Sweden. Finally and in particular we want
to express our sincere gratitude to Karin Fredriksson and Lars Åkerlind. Without their constant support and great patience
through the years this book would never have been written.

Hasse Fredriksson
Ulla Åkerlind

Stockholm, Sweden
March 2008



1
Structures of Melts and Solids

1.1 Introduction 1
1.2 X-ray Analysis 2

1.2.1 Methods of X-ray Examination of Solid Materials 2
1.2.2 X-ray Examination and Structures of Metal Melts 4

1.3 The Hard Sphere Model of Atoms 10
1.3.1 Atomic Sizes 10
1.3.2 The Hard Sphere Model of Liquids 11

1.4 Crystal Structure 12
1.4.1 Crystal Structure of Solids 12
1.4.2 Types of Crystal Structures 13
1.4.3 Lattice Directions and Planes 15
1.4.4 Intensities of X-ray Diffractions in Crystal Planes 18

1.5 Crystal Structures of Solid Metals 19
1.5.1 Coordination Numbers 19
1.5.2 Nearest Neighbour Distances of Atoms 20
1.5.3 BCC, FCC and HCP Structures in Metals 21

1.6 Crystal Defects in Pure Metals 24
1.6.1 Vacancies and Other Point Defects 25
1.6.2 Line Defects 26
1.6.3 Interfacial Defects 28

1.7 Structures of Alloy Melts and Solids 30
1.7.1 Basic Concepts 30
1.7.2 Structures of Liquid Alloys 31
1.7.3 Structures of Solid Alloys 33

Summary 39
Exercises 42

1.1 Introduction

Crystallization is the process of transferring a material from a liquid or a gas phase into a solid state of regular order. The three
aggregation states have widely different atomic structures and properties. In order to understand crystallization processes, it is
essential to have a thorough knowledge of the atomic structure of both the melt or gas and of the new solid phase.

Physics of Functional Materials Hasse Fredriksson and Ulla Åkerlind
© 2008 John Wiley & Sons, Ltd



2 Physics of Functional Materials

In this chapter, the atomic structures of melts and various solid phases will be examined. The structures of pure elements
and of alloys and chemical compounds will be discussed. The chapter starts with a short introduction to X-ray analysis, which
is a very important tool for investigating atomic structures.

1.2 X-ray Analysis

The energetic X-radiation was discovered in 1901 by the German physicist W. K. Roentgen. The source was an evacuated
tube where electrons, accelerated by an electric field, hit a metal target (Figure 1.1). When the electrons suddenly lost their
kinetic energy, continous X-ray radiation was emitted together with a few discrete X-ray wavelengths characteristic of the
target atoms (Figure 1.2).

Cathode Anode

X-rays

Figure 1.1 The principle of an X-ray tube. Electrons are accelerated in a strong electric field between an anode and an indirectly heated
cathode, hit the anode and lose their kinetic energy successively during numerous collisions. Their kinetic energies are transformed into
continuous X-radiation. The whole equipment is included in a highly evacuated tube.

  KL

M

Kα-radiation

KL
M

Kβ-radiation

(a) (b)

Figure 1.2 (a) The origin of the characteristic X-radiation: When a high-speed electron hits an electron in an inner shell of a target atom,
both electrons leave the atom and a vacancy is left in its inner shell. The rest of the process is described in (b).
(b) The vacancy is filled by an electron from an outer shell of the atom and an X-ray photon with a wavelength characteristic for the anode
material is emitted. There are several alternative wavelengths, depending on the shell from which the jumping electron emanates. The X-ray
lines K� and K� shown in (a) and (b) appear simultaneously as numerous such processes occur at the same time.

X-ray analysis of materials has been used since the beginning of the 20th century to investigate the construction and
structure of materials. Measurements, calculations and interpretations of the results were made by hand for many decades.
Today, completely automatic computer-based X-ray spectrometers, which perform both the experiments and the analysis of
the results, are commercially available. However, it is necessary to understand the principles of their function, which are
described briefly below.

1.2.1 Methods of X-ray Examination of Solid Materials

A very important method to provide information on the structure of materials is X-ray diffraction measurements. In solid
crystalline materials, the diffraction pattern is caused by the atoms in the crystal lattice (Figure 1.3). If a crystal surface is
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exposed to parallel monoenergetic X-radiation with a known angle of incidence, Bragg’s law gives the condition for coherence
(in phase) of the diffracted waves:

θ θ

θθ

2θ
d

Figure 1.3 X-ray diffraction in a crystal.

2d sin � = p� (1.1)

where
d = distance between the atomic planes
� = angle between the incident ray and the atomic plane
� = wavelength of the monoenergetic X-ray
p = an integer �= 0.

If � is known and � can be measured, Bragg’s law can be used to determine the distance d between the atomic planes in the
crystal lattice.

An X-ray crystallographic examination of a single crystal will in principle be performed as described in Figure 1.4.

C

S

D

θ
2θ

Figure 1.4 The principle of an X-ray spectrometer.

The radiation from an X-ray tube S falls on a turnable single crystal C. The angle between the incident and diffracted rays
is 2�. The crystal is tilted stepwise. For every angle of incidence � the detector D is placed at the corresponding angle of
diffraction 2� and the intensity of the diffracted radiation is measured. In this way, the intensity as a function of � is obtained
and the whole X-ray spectrum of the solid material can be obtained.

The method described above is time consuming. If the single crystal is replaced with a powder compound, consisting of
small crystals of the solid material, it is no longer necessary to tilt the specimen to find high-intensity angles. All possible
crystallographic directions are present in the powder compound.

In practice, the Debye–Scherrer method of X-ray crystallographic investigations on metallic or other crystalline materials is
the most common one. The principle is the same as that described in Figure 1.4. The apparatus used is shown in Figure 1.5.
The detector consists of a cylinder-shaped photographic film. The monoenergetic radiation from the X-ray tube passes through
a narrow vertical slit and then the specimen, a thin powder compound, placed at the centre of the cylinder.

The diffracted radiation with the highest intensity has the angle of scattering 2� (Figure 1.7). The diffracted radiation
has a cone-shaped form. The radiation is registered on the photographic film as four slightly curved lines. These lines
are characteristic of the solid material and will appear symmetrically around the direct beam when the film is developed.
Figure 1.6b shows the appearence of the diffraction pattern of zinc.

The positions of the lines are measured. The pattern on the film is analysed and the various distances between the atomic
planes in the crystals are calculated. In this way, the structure of the solid material can be derived.
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2θ

Specimen

Film

Figure 1.5 X-ray examination according to the Debye–Sherrer method. Reproduced with permission from B. D. Cullity, Elements of
X-Ray Diffraction, © Addison-Wesley Publishing Company, Inc. (now under Pearson Education).

2θ = 180° 2θ = 0

(a)

(b)

Figure 1.6 (a) The appearence of a Debye–Sherrer pattern. (b) Debye–Sherrer pattern of zinc. Reproduced with permission from
B. D. Cullity, Elements of X-Ray Diffraction, © Addison-Wesley Publishing Company, Inc. (now under Pearson Education).

2θθ

Incident beam

Scattered beam

Figure 1.7 The angle 2� of scattering is the angle between the incident and scattered beams.

1.2.2 X-ray Examination and Structures of Metal Melts

By replacing the powder compound by a metal melt at constant temperature, the corresponding Debye–Sherrer measurements
can be made on a liquid metal.

The results deviate very much from those obtained for crystalline powders. Instead of a few sharp, well-defined lines one
obtains several wide, unsharp maxima and minima. The resulting patterns can be analysed and fairly detailed information on
the structures of the melts can be obtained. This is illustrated below by two examples.

Structures of Pure Metal Melts

The X-ray pattern of liquid gold at 1100 �C is shown in Figure 1.8. The intensity of the diffracted radiation is plotted versus
sin �/�, where � is half the scattering angle and � is the X-ray wavelength. In Figure 1.8, the main peak is found to the left
and a series of subsidary peaks to the right.
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The short vertical lines in Figure 1.8 show the corresponding X-ray pattern of crystalline gold. The intensities of the
diffracted waves are indicated by the heights of the lines. There is a clear correspondence between the positions along the
horizontal axis of the main peaks of liquid gold and the main lines of crystalline gold.

sin θ
λ

12500

Intensity

10000

7500

5000

2500

0
0 0.2 0.4 0.6 0.8

Figure 1.8 The intensity of scattered X-radiation as a function of sin �/�. The curve originates from scattering in liquid gold at 1100 °C.
The vertical lines originate from scattering in crystalline gold. Reproduced with permission from N. S. Gingrich, The diffraction of X-rays
by liquid elements, Rev. Mod. Phys. 15, 90–100. © 1943 The American Physical Society.

Intensity

0 0.30.20.1 0.60.50.4

sin θ
λ

Figure 1.9 The intensity of scattered X-radiation as a function of sin �/�. The curve originates from scattering in liquid zinc at 460 �C.
Reproduced with permission from N. S. Gingrich, The diffraction of X-rays by liquid elements, Rev. Mod. Phys. 15, 90–100. © 1943 The
American Physical Society.

An X-ray intensity spectrum such as those in Figures 1.8 and 1.9 supply the necessary basis to obtain information concerning
the structure of a liquid or solid metal. However, to interpret an intensity diagram and obtain information from it, such as
type of structure and atomic distances, it is necessary to transform the X-ray spectrum into another type of diagram. The
background of this is given in next section.



6 Physics of Functional Materials

From X-ray Plots to Atomic Distribution Diagrams

We consider the distribution of atoms around an arbitrary atom anywhere in the liquid and choose this atom as the
origin.

The probability of finding another atom in a unit volume at a distance r from the origin is called wr . The average probability
of finding another atom in any randomly selected unit volume is called w0.

The probability of finding the next atom within the volume element dV at a distance r from the origin atom equals the
product of dV and wr . If we choose a spherical shell with radius r and thickness dr as volume element, the probability dWr

of finding another atom within the spherical shell will be given by the expression

dWr = wrdV = wr4� r2dr (1.2)

It is possible to derive the probability wr as a function of the X-ray intensity theoretically. When this function is known,
it is possible to draw atomic distribution diagrams on the basis of X-ray intensity diagrams such as those in Figures 1.8 and
1.9. By plotting 4�r2wr as a function of the radius r we obtain the atomic distribution diagram of the metal melt in question.

The ratio wr/w0 is plotted as a function of r for liquid and solid crystalline gold in Figure 1.10. It shows the relative
probability of finding gold atoms in a unit volume at various places and distances from the origin. In analogy with Figure 1.8,
the vertical lines represent the values for solid gold. Their heights, relative to the right-hand scale, give the number of atoms
per unit volume at the indicated distance.

At infinity, the probability wr equals the probability w0 and the ratio equals 1.

w r /w0

3

0

1

2

0 0.1 0.2 0.50.40.3 nm

r

Figure 1.10 The relative probability wr/w0 of finding an atom in a unit volume in liquid gold at a distance r from the origin is a function
of r. The vertical peaks correspond to crystalline gold. Reproduced with permission from F. D. Richardson, Physical Chemistry of Melts in
Metallurgy, Vol. 1. © 1974 Academic Press Inc. (London) Ltd (now by Elsevier).

Interpretation of Atomic Distribution Diagrams. Nearest Neighbour Distances, Coordination Shells and
Coordination Numbers

Figures 1.11 and 1.12 are the atomic distribution diagrams for gold and zinc, corresponding to Figures 1.8 and 1.9, respectively.
Each curve can be regarded as a product of two functions of r, the probability wr (Figure 1.10) and 4� r2, which is a parabola.
Both figures show the same characteristics.

The first peak of the atomic distribution function gives the most probable distance between nearest neigbour atoms and is
called the nearest neighbour distance. The peak appears close to the same position as the nearest neighbour distance in the
solid crystalline metal.

The subsiding peaks at larger distances also show some correspondence with peaks in the solid metals but this decreases
with increasing distance. A very likely explanation is that the melt still possesses some of its short-range order of the solid
crystal but has lost its long-range regularity.
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4πr  
2wr

4πr  
2w0

50

40

30

20

10

r
0

0 0.2 0.4 0.6 0.8 nm

Figure 1.11 Atomic distribution diagrams of liquid gold at 1100 �C and of gold crystals. The probability of finding an atom within a
spherical shell with the radius r is a function of r. The curve corresponds to liquid gold. Reproduced with permission from F. D. Richardson,
Physical Chemistry of Melts in Metallurgy, Vol. 1. © 1974 Academic Press Inc. (London) Ltd (now by Elsevier).
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0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 nm

r

4πr  
2wr

Figure 1.12 Atomic distribution diagrams of liquid zinc at 460 �C and of zinc crystals. The probability of finding an atom within a
spherical shell with the radius r is a function of r. The curve corresponds to liquid zinc and the vertical peaks to crystalline zinc. Reproduced
with permission from F. D. Richardson, Physical Chemistry of Melts in Metallurgy, Vol. 1. © 1974 Academic Press Inc. (London) Ltd (now
by Elsevier).

The curves in Figures 1.11 and 1.12 drop steeply to the left and become zero for a characteristic small r value in both
cases. This value corresponds to the nearest possible spacing between a pair of atoms owing to their mutual resistance to
interpenetration. The characteristic distance is 0.22 nm for liquid gold.

The vertical peaks for solid gold and zinc are interpreted as coordination shells in the crystal structure. The maximum
number of atoms, that can be included within a coordination shell is called the coordination number of the shell. These atomic
concepts can be applied to both liquids and solids.
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From diffraction data, it is possible to derive values of the coordination numbers for the first and sometimes also for the
second coordination shell. This can be done graphically in the following way. To explain the method, we concentrate on the
atomic distribution diagram for gold.

We consider the number of atoms in a spherical shell between radius r and r +�r . It equals wr ×4�r2�r and is called the
radial distribution function.

The radial distribution function 4�r2wr for liquid gold is plotted in Figure 1.11 as a function of r together with the
function 4�r2w0. The latter curve represents the number of atoms in the shell volume 4�r2�r in a fictional space with equally
distributed atoms, i.e. no coordination shells. The area under the parabola curve represents the total number of atoms within
a sphere with radius r.

The real curve for liquid gold in Figure 1.11 has the same type of peaks as the corresponding curve in Figure 1.10. The
liquid gold curve in Figure 1.11 can be interpreted as the sum of a series of separate curves, which arise from each coordination
shell and start from the horizontal axis as indicated by dotted lines. These extrapolations can be done fairly accurately for
the first and sometimes also for the second peak. The area under each peak gives approximately the number of atoms in the
coordination shell:

Number of atoms in coordination shell =
rmin∫
r0

4� r2wrdr (1.3)

where r0 and rmin are the limiting r values of the peak.
Estimations of the area under the first peak in Figure 1.13 indicate that there are about 8.5 atoms in the first coordination

shell of liquid gold. The values for the second peak are too uncertain for any worthwhile calculations.
Increasing temperature causes the amplitudes of vibration of the atoms to increase and the fluctuations around their

equilibrium positions become more violent. This affects the diffraction patterns of liquid metals and the peaks of the curves
in Figures 1.11 and 1.12 become lower and wider when the temperature increases.

50

40

30

20

10

0
0 0.2 0.4 0.6 0.8 nm

r

4πr  
2wr

Figure 1.13 Radial distribution function of liquid gold plotted versus the distance r from the origin. Reproduced with permission from
F. D. Richardson, Physical Chemistry of Melts in Metallurgy, Vol. 1. © 1974 Academic Press Inc. (London) Ltd (now by Elsevier).

Example 1.1

The atomic distribution diagram of zinc is given in Figure 1.12 on page 7. Use this diagram to answer the following questions:

(a) Does the smooth parabola have any physical significance?
(b) What is the smallest possible distance between two atoms in liquid zinc at 460 �C?
(c) What is the nearest neighbour distance in crystalline zinc?
(d) What is the reason for claiming that there is a short-range order in molten zinc?
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(e) What is the coordination number in the first shell of solid crystalline zinc?
(f) What is the coordination number in the first shell of liquid zinc at 460 �C?

Solution:

(a) The smooth curve represents the number of atoms in a spherical shell at a distance r from the origin atom provided that
the probability of finding an atom in unit volume is equal everywhere. This is not the case and therefore the answer to
the question is ‘no’.

(b) The distance is found at the intersection of the curve and the r axis. r = 0�18 nm.
(c) The nearest neighbour distance is the r value of the first ‘crystalline’ peak. r = 0�26 nm.
(d) The r values of the first two ‘crystalline’ peaks are very close to the most probable distance in molten zinc, the r value

of the first top.
(e) The coordination number of the first shell is the sum of the number of the atoms in the first two sub-shells, i.e. 6+6 = 12.
(f) The probability of finding an atom within a spherical shell with the radius r can be written as

dWr = 4� r2wrdr (1′)

4πr 
2wr
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r

We obtain the number of atoms by integration of the function (1′):

Wr =
rmin∫
r0

4� r2wrdr

where r0 = 0�18 nm and rmin equals the r value of the first minimum of the curve. It is 0.36 nm as shown in the figure.
As we have no analytical function of wr , we have to integrate graphically. The dark area under the curve represents the

demanded number of atoms. Its area is calculated as 11.

Answer:

(a) No.
(b) r = 0�18 nm.
(c) r = 0�26 nm.
(d) The r values of the first two ‘crystalline’ peaks are very close to the most probable distance in molten zinc.
(e) 12.
(f) 11.
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1.3 The Hard Sphere Model of Atoms

The radius of an atom is not a well-defined quantity. An atom consists of a tiny core surrounded by an electron cloud of
position-dependent density with no sharp ‘surface’ limit. However, in crystallography and metallurgy, the simple model of the
atom as a hard sphere with a well-defined radius is in many cases most useful and satisfactory. Figure 1.10 on page 6 shows
that this is a reasonable model.

1.3.1 Atomic Sizes

Li

Na

K

Mg Al

(a)

Na+Na

Cl Cl–

(b)

Figure 1.14 Sketch of ‘radii’ of some atoms and ions (not to scale).

The size of an atom in a liquid or a solid varies with its surroundings, i.e. with the external forces acting on the electron cloud.
Hence the atom diameter varies with the type of binding (ionic, covalent, metallic, van der Waals) to neighbouring atoms, the
coordination numbers and the state of ionization.

The atomic radii of metals within a period of the periodic table, for example from Na to Al, decrease with increasing
nuclear charge because of the increasing attraction between the nucleus and the electrons.

A comparison of the radii within a group in the periodic table shows that the radii increase downwards because filled
electron shells force the outermost electrons to occupy a shell further out from the nucleus. Supply or removal of one or more
electrons, i.e. ionization, may change the atom radius for the same reason. Some examples are given in Figure 1.14.

r r

2r

Figure 1.15 Distance between atoms.

The hard sphere model of atoms is used to define the normal diameter of a metal atom from a practical point of view. In a
crystal the atoms are supposed to be spheres in contact with each other (Figure 1.15).

Atomic radius = half the distance of the closest approach of atomic centres in a crystal of the pure element

Figure 1.16 Crystal structure of solid zinc. Reproduced with permission from B. D. Cullity, Elements of X-Ray Diffraction, © Addison-
Wesley Publishing Company, Inc. (now under Pearson Education).



Structures of Melts and Solids 11

Coordination numbers and coordination shells and distances between nearest neighbour atoms in melts and solids will be
discussed in Section 1.5.2. Some data of the most common metals are given in Table 1.9 on page 21. It is reasonable to
assume from Figure 1.16 that space is an important parameter.

However, it is impossible to illustrate crystal structures by drawing hard spheres. Instead, the atoms are often represented
by points. This will be done to a great extent below. However, one should keep in mind that the hard sphere model is much
closer to reality than the point model.

1.3.2 The Hard Sphere Model of Liquids

Figure 1.17 Random distribution of close-packed atoms as a model of a metal melt. Reproduced with permission from J. D. Bernal, in
Liquids: Structure, Properties, Solid Interactions, edited by T. J. Hughel. © Elsevier Publishing Co 1965.

It is difficult to define a unit cell in a liquid in the same way as in a solid. The reason is that the atoms change their
positions relative to each other incessantly. However, in the early 1960s Bernal made attempts to interpret the structure of
a melt as a crowd of irregularly orientated atoms that does not provide enough space to include one more atom among the
others (Figure 1.17). His approach was generally in good agreement with the results of X-ray examinations of metal melts.

By tedious measurements and calculations (statistical geometry), he and his co-workers found that the structure of a liquid
can be successfully described by the following geometric model.

The atoms are represented by hard spheres situated at the corners of five different types of rigid polyhedra with the following
properties:

1. The edges of the polyhedra must all be of approximately equal length.
2. It is impossible to introduce one more sphere into the centre of the liquid without stretching the distances between the

spheres.

The five types of polyhedra, the so-called canonical holes or Bernal polyhedra, are

• tetrahedron
• octahedron
• dodecahedron
• trigonal prism
• archimedean antiprism.

The liquid is considered to consist of a mixture of the polyhedra in Figure 1.18. By performing a statistical treatment of the
composition of the liquid, Bernal and co-workers calculated the relative numbers of polyhedra:

tetrahedra 73%
half-octahedra 20%
tetragonal dodecahedra 3%
trigonal prisms 3%
archimedean antiprisms 1%
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a

c

d e

b

Figure 1.18 Unit blocks in Bernal’s liquid model. The five canonical holes of random close packing are (a) tetrahedron, (b) octahedron,
(c) dodecahedron, (d) trigonal prism and (e) archimedean antiprism. Reproduced with permission from J. D. Bernal, in Liquids: Structure,
Properties, Solid Interactions, edited by T. J. Hughel. © Elsevier Publishing Co 1965.

Bernal’s liquid model is obviously a hybrid between a close-packed random heap of atoms and atoms arranged in an ordered
state. It is interesting to note that by rapid quenching of a melt, one finds solids consisting of the polyhedra in question. It is
denoted an icosahedral phase and has fivefold symmetry.

The hard sphere model of liquids is an excellent illustration of the statement that short-range order exists in liquids.

1.4 Crystal Structure

1.4.1 Crystal Structure of Solids

Most solids, including all metals, have a crystalline structure. The strength and nature of the forces between the atoms of the
crystal lattice and also the electron clouds around the nuclei determine the macroscopic properties of the solid, for example
strength, elasticity and conduction of heat and charge. Hence it is very important to examine the crystalline structure of matter
in order to understand the background of its behaviour.

A striking example of the influence of the forces between the atoms on the mechanical strength of the solid is a comparison
between graphite and diamond, both of which consist of carbon (Figure 1.19).

The graphite structure consists of parallel layers of planar six-membered rings of carbon atoms. The carbon atoms within
the rings are held together by strong covalent bonds. The interaction between the layers is weak and due to van der Waals
bonds. This is the reason for the weakness of graphite towards shearing forces and its use as a lubricant.

(a) (b)

Figure 1.19 Crystalline structure of (a) graphite and (b) diamond. (a) Adapted with permission from W. Hume-Rothey, R. E. Smallman
and C. W. Haworth, The Structure of Metals and Alloys. (Published by the Institute of Metals, 1969) now © W. S. Maney & Son Ltd.
(b) Reproduced with permission from C. Kittel, Introduction to Solid State Physics, 6th edn, P. 19. © 1986 John Wiley & Sons, Inc.
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Diamond is one of the hardest elements in nature. This mechanical strength is due to the non-planar covalent bonds between
the carbon atoms.

In the following we will define some basic concepts used in crystallography and give a review of the different types of
existing crystallographic structures. These features will often arise in the discussions in this and later chapters.

1.4.2 Types of Crystal Structures

The skeleton of a crystallographic structure is a space lattice. A space lattice is defined as a collection of ‘mathematical’
points, arranged in such a way that each of the points is surrounded by precisely the same configuration. The view will always
be the same, independent of which point we chose as observation site. Each lattice point always lies at a centre of symmetry.
Every lattice point on one side of the observation site always has a corresponding lattice point in an identical position but
situated on the opposite side.

Crystals are build of unit cells or primitive cells. Each mathematical point in the lattice is replaced by an atom or group of
atoms. The crystal is built of rows of such unit cells. Even if the lattice structure is basically simple, the crystal structure can
be very complicated as the unit cell might consist of tens of thousands of atoms. This is the case in proteins and other organic
structures.

The crystal structure is hence determined by two factors:

1. the lattice structure (lattice)
2. the configuration of the unit cell (basis).

Crystal structure = lattice +basis

As early as 1848, long before X-ray methods of crystallography were known, the French crystallographer A. Bravais stated
that the atomic arrangements in all crystalline solids can be referred to 14 fundamental crystal classes, consisting of four types
of space lattice in combination with seven systems of unit cells. These 14 crystal classes are listed below together with a short
characteristic in each case. The 14 crystal classes are the only ones which can be packed to fill space, which is a necessary
condition.

The name crystal comes from the Greek word krystallos, which means ice. The structure of ice is normally hexagonal (see
below).

The names and characteristics of the seven systems of unit cells are given in Table 1.1 together with drawings of the
different crystal types. In Table 1.2, the common lattice symbols are listed. Table 1.3 gives more detailed information on the
14 types of crystal classes in a condensed form.

The classification of the unit cells is based on the degree of symmetry of the various crystal types. The number of symmetry
axes, symmetry planes and symmetry centres are used as a measure of the degree of symmetry.

Table 1.1 Bravais’ 14 fundamental types of crystal lattices.

Type of unit cell Type of space lattice

Simple Base-centred Body-centred Face-centred

Cubic
3 axes at right-angles, all of
equal length

Non-existent

Hexagonal
2 equal axes at 120� angle, each at
right-angles to the third axis of
different length

Non-existent Non-existent Non-existent

(continued overleaf )
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Table 1.1 (continued)

Type of unit cell Type of space lattice

Simple Base-centred Body-centred Face-centred

Tetragonal
3 axes at right-angles, 2 of them of
equal length

Non-existent Non-existent

Trigonal (rhombohedral)
3 equally inclined axes, not at right
angles, all of equal length

Non-existent Non-existent Non-existent

Orthorombic
3 axes at right-angles, all of different
lengths

Monoclinic
3 axes, one pair not at right-angles, all
of different lengths

Non-existent Non-existent

Triclinic
3 axes, all at different non-right-angles,
all of different length

Non-existent Non-existent Non-existent

Diagrams reproduced with permission from Understanding Science, No. 15. © 1966/1967 Sampson Low, Marston & Searle, London.

Table 1.2 Space lattice terms.

Term Characteristics Lattice symbol

Simple Atoms in the corners of the unit cell only S (simple) or P (primitive)
Body-centred Atoms in the corners of the unit cell + an extra atom in the

centre of the unit cell
BC or I (interior) (an extra atom inside)

Base-centred Atoms in the corners of the unit cell + an extra atom at the
centres of the base and top surfaces of the unit cell

C (extra atoms in the parallel C-faces)

Face-centred Atoms in the corners of the unit cell + an extra atom at the
centre of each surface of the unit cell

FC
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Table 1.3 Crystal systems and Bravais lattices.

Symbol Axial lengths and angles Bravais lattice Lattice symbol

Cubic Three equal axes at right-angles Simple S
a = b = c 	 = 
 = � = 90� Body-centred BC

Face-centred FC

Hexagonal Two equal coplanar axes at 120�,
third axis at right-angles

Simple S

a = b �= c 	 = 
 = 90� � = 120�

Tetragonal Three equal axes at right-angles, two equal Simple S
a = b �= c 	 = 
 = � = 90� Body-centred BC

Rhombohedral or trigonal Three equal axes, equally inclined Simple S
a = b = c 	 = 
 = � �= 90�

Orthorhombic Three unequal axes at right-angles Simple S
a �= b �= c 	 = 
 = � = 90� Body-centred BC

Base-centred C
Face-centred FC

Monoclinic Three unequal axes, Simple S
one pair not at right-angles Base-centred C
a �= b �= c 	 = � = 90� �= 


Triclinic Three unequal axes unequally inclined, none
at right-angles

Simple S

a �= b �= c 	 �= 
 �= � �= 90�

The lattice symbols have been explained in Table 1.2. The number of atoms per unit cell is given by

Nunit cell = Ninterior +
Nface

2
+ Ncorner

8
(1.4)

A primitive cell is a unit cell which contains one atom per unit cell. If the unit cell contains more than one atom, other
symbols are used.

1.4.3 Lattice Directions and Planes

The British crystallographer Miller introduced a nomenclature for directions and planes in crystals, which is generally accepted.
We will briefly explain the significance of his system, as it will be used in some of the following chapters.

Lattice Directions

O

c

a

b

[011]
[111]

[110]

[100]

[001] [100]

Figure 1.20 Some different crystal directions through the origin in a simple cubic crystal. The units lengths on the axes are a, b and c,
respectively.
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A direction in a lattice, is characterized by three integers, u, v and w. The directions are generally written <uvw>, which
means that all permutations of the uvw indices and combination of signs occur. If one refers to a specific line with the given
direction, square brackets are used, [uvw].

A line with the given direction is drawn through the origin. The integers u, v and w represent the coordinates of the lattice
points along the line. It is customary to choose the smallest possible integers. Negative numbers are indicated by a bar above
the figure instead of a minus sign; u, v and w are called the indices of the direction.

Some examples of special lines are given in Figure 1.20.

Lattice Planes. Miller Indices

The orientation of the normal to a crystal plane in a crystal is completely defined by the three intercepts between the plane
and the x, y and z axes in a coordinate system. However, it is not convenient to use these intercepts directly to describe the
direction of the normal of the plane, as infinity will be involved if a plane is parallel to any of the coordinate axes. Instead,
the Miller suggested the following definition of a crystal plane (Figure 1.21):

z

y

x

(0, 0, Z )

(X, 0, 0)

(0, Y, 0)

Figure 1.21 The intersections between the coordinate axes and the plane are X, Y and Z.

�hkl =
(

D

X

D

Y

D

Z

)
(1.5a)

where

X = D

h
� Y = D

k
� Z = D

l
(1.5b)

and
hkl = integers called the Miller indices
X, Y , Z = coordinates of the intersections between the plane and the coordinate axes
D = smallest common denominator of X, Y and Z

a, b, c = unit lengths on the x, y and z axes, respectively.

The constant D makes it possible to obtain integers on the right-hand side of Equation (1.5a). The Miller indices, written
within curly brackets {}, mean that all permutations of the hkl indices and combinations of signs occur. They define the
directions of the normals to the type of planes in question. If one refers to a specific plane with the given direction, ordinary
parentheses are used, (hkl).

If X = Y = Z = 1, the Miller indices of the plane, illustrated in Figure 1.21, are (111). If the plane is parallel with one of
the coordinate axes, the corresponding Miller index is zero as the intersection occurs at infinity.
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Figure 1.22 gives some examples. A bar over an index indicates a negative value of the intercept.

(100) (010) (001)

(110)(110)

(111)(101)

(102)

(101)

Figure 1.22 Miller indices of some lattice planes. The origin of the coordinate system is marked by a small circle in the figures.

Example 1.2

The units on the crystallographic axes in a crystal are a, b and c. Calculate the Miller indices of a plane with the intercepts
2a, 3b and 1.5c at the coordinate axes.

Solution:

We obtain the plane intercepts by dividing the intercepts with the length units of the respectively axes.
The plane intercepts are 2, 3 and 1.5.
The reciprocals of the intercepts are 1/2, 1/3 and 2/3.
If these numbers are multiplied by 6, the smallest common denominator, we obtain the Miller indices.

Answer:

The Miller indices are (324).

1

2

3

Figure 1.23 Hexagonal close-packed structure. Reproduced with permission from B. D. Cullity, Elements of X-Ray Diffraction, © Addison-
Wesley Publishing Company, Inc. (now under Pearson Education).
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Sometimes one finds sets of four Miller indices instead of three in the literature. They are used in the hexagonal system.
As can be seen in Figure 1.23, there are three symmetrical axes in the basal plane. Axes 1 and 2 are the axes of the unit

cell. The fourth index i, which refers to the third axis 3 in the basal plane, is defined as the reciprocal of the intercept on the
third axis.

The indices of a plane in the hexagonal system refer to four axes and is written (hkil). However, the intercepts of a plane
on axes 1 and 2 determine its intercept on axis 3. Hence the value of i depends on h and k:

i = −�h +k (1.6)

This type of indices are called Miller–Bravais indices.

Laue Indices

In Chapter 3, we will use so-called Laue indices in connection with diffraction in crystals. Laue indices are defined as Miller
indices multiplied by the order of diffraction. This topic will be discussed in more detail in Chapter 3 (page 133).

1.4.4 Intensities of X-ray Diffractions in Crystal Planes

The Bragg condition of X-ray diffraction [Equation (1.1) on page 3] gives no information on the intensities of the diffracted
X-rays. The theory of X-ray diffraction in its extended version includes intensity calculations of the diffracted radiation. A
detailed treatment is beyond the scope of this book, but a brief outline of the extended theory is given below.

It can be shown that in the special case of a cubic crystal structure, Bragg’s law is replaced by the simple condition

sin2 � = �2

4a2

(
h2 +k2 + l2

)
(1.7)

This generalized form of Bragg’s law for a cubic structure will be used in the intensity discussion below.

Intensity of the Diffracted Radiation

If the incident X-ray beam has an intensity I0, the intensity I of the diffracted beam can be written as

I = constant × I0S �hkl2 (N 3
)2

nhkl (1.8)

where
S(hkl) = geometric structure factor
I , I0 = intensities
N = number of unit cells
nhkl = occurrence number.

The S(hkl) factor is a measure of the resulting amplitude of the diffracted X-ray beam. It can be written as

S�hkl =∑
j

fj e−2�i�ujh+vjk+wj l (1.9)

where (hkl) are the Miller indices and uj, vj and wj are the components of a position vector rj successively describing the
different basic positions of atoms in the unit cell of the crystal which contribute to the sum �; fj is called the atomic scattering
factor and i = √−1.

The intensity is proportional to the square of the amplitude. N 3 is the number of unit cells. The amplitude is the vector sum
of the single coherent amplitudes from all the unit cells. Therefore, the intensity is proportional to �N 32.

The occurrence number nhkl has the following significance. Suppose that a certain angle �, measured for diffraction
in a polycrystalline material with a cubic structure, corresponds to the condition (h2 + k2 + l2 = 4�a2 sin2 �/�2) [Equation
(1.7)]. If h2 + k2 + l2 = 1 it is fulfilled by six sets of crystal planes [(100), (010), (001), (1̄00), (01̄0) and (001̄)] or shorter
{100}. The resulting diffraction pattern is the sum of these six sets of independent crystal reflections. Hence the intensity
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increases by an occurence factor nhkl = 6 compared with reflection in a single set of planes, for example (010). Similarly,
all permutations of positive and negative integers hkl in combination with the condition h2 +k2 + l2 = 2 give the occurrence
number nhkl = 12.

Intensities of Diffraction Lines

The geometric structure factor S(hkl) can be calculated by applying Equations (1.8) and (1.9) to various cubic crystal
structures, for example FCC and BCC. The results can be summarized in the simple conditions given in Tables 1.4
and 1.5.

Table 1.4 FCC structure.

S(hkl) Condition

4f hkl = odd integers
(unmixed indices)

4f hkl = even integers
(unmixed indices)

0 For all other hkl combinations
(mixed indices)

The unit cell in an FCC structure contains four atoms (page 22). The basic positions have the coordinates (0, 0, 0), (0, 1/2, 1/2,
(1/2, 0, 1/2 and (1/2, 1/2, 0). These values are inserted into Equation (1.9), which gives the values 4f or 0, depending on the
values of hkl.

For example, the plane sets {200} and {111} give X-ray reflections, whereas the plane sets {210} do not reflect the incident
X-radiation.

Table 1.5 BCC structure.

S(hkl) Condition

2f h +k + l = even integers
0 h +k + l = odd integers

The unit cell in a BCC structure contains two atoms (page 22). The basic positions have the coordinates (0, 0, 0) and
(1/2, 1/2, 1/2. These values inserted into Equation (1.9) give the conditions in Table 1.5.

Hence the plane sets {110} give X-ray reflections, but not the plane sets {111}.

1.5 Crystal Structures of Solid Metals

1.5.1 Coordination Numbers

As indicated in Section 1.2.2 (page 6), diffraction data can be used to obtain information about the structure of solid materials,
distances in the crystal lattice and number of atoms in the coordination shells and nearest neighbour distances. Measurements
and calculations have been performed for many pure metals in the same way as for gold and zinc (page 7).

A collection of values for the most probable nearest neighbour distances and the coordination numbers for some common
liquid and solid metals is given in Table 1.9 on page 21.

Many metals have a close-packed structure, which means that the number of atoms per unit cell is higher than 1, the number
of atoms in a simple crystal structure. The most common close packed structures are given in Table 1.6.
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Table 1.6 The most common close-packed metal structures.

Name Structure No. of atoms per unit cell

BCC Body-centred cubic 2
FCC Face-centred cubic 4
HCP Hexagonal close-packed 2

1.5.2 Nearest Neighbour Distances of Atoms

The nearest neighbour distances d of the atoms in a lattice can be calculated from the lattice parameters. This has been done
for the three most common metal structures in Figure 1.24.

BCC

adBCC = 2
3 adFCC = 2

2

a

FCC

a

a

a120°
120°

c

HCP

dHCP = a (basal plane)

HCP

dHCP

a

c

43
c 

2a2
+

(a)

(c)

(b)

(d)
dHCP =

Figure 1.24 Relationships between nearest neighbour distances and lattice parameters for BCC, FCC and HCP structures. Reproduced
with permission from B. D. Cullity, Elements of X-Ray Diffraction, © Addison-Wesley Publishing Company, Inc. (now under Pearson
Education).

If the atoms are regarded as hard spheres in contact with each other, it is possible to derive the radii of the atoms from the
nearest neighbour distances.

It has been pointed out in Section 1.3.1 that the radii of the atoms depend on several factors. Tables 1.7 and 1.8 give some
examples of the dependence of atomic diameter on ionization and coordination number.

Table 1.7 Change of radius due to ionization.

Atom/ion Diameter of atom/ion (nm)

Fe 0�248
Fe2+ 0�166
Fe3+ 0�134
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Table 1.8 Change of coordination number due to size contraction.

Change of coordination
number

Size contraction of atom
diameter (%)

12 → 8 3
12 → 6 4
12 → 4 12

A change of coordination number means a change of crystal structure. The lattice constant changes when the crystal changes
from one structure to another and is a function of the packing of the atoms.

Table 1.9 Interatomic distances and coordination numbers of some common metals at their melting points. Reproduced
with permission from F. D. Richardson, Physical Chemistry of Melts in Metallurgy, Vol. 1. © 1974 Academic Press Inc.
(London) Ltd (now by Elsevier).

Metal Solid properties Liquid properties

Coordination
number

Nearest neighbour
distance (nm)

Coordination
number

Nearest neighbour
distance (nm)

Na 8 0.372 9�5 0�370
K 8 0.452 9�5 0�470
Mg 12 0.320 10�0 0�335
Al 12 0.286 10�6 0�296
Ge 4 0.245 8�0 0�270
Sn 4 or 2a 0.302 or 0.318a 8�5 0�327
Pb 12 0.350 8�0 0�340
Sb 3 or 3a 0.291 6�1 0�312
Bi 3 or 3a 0.309 or 0.353a 7–8 0�332
Cu 12 0.256 11�5 0�257
Ag 12 0.289 10�0 0�286
Au 12 0.288 8�5 0�285
Hg 6 or 6a 0.301 or 0.347a 10�0 0�307

aDifferent directions. The unit cell is asymmetric.

Table 1.9 and other available data show that Na, K, Cu, Ag and Au have similar nearest neighbour distances and first
coordination numbers in the liquid and solid states. They all have close-packed structures (HCP 12, FCC 12, BCC 8) and high
coordination numbers in the solid state.

Another related group of metals is Ge, Sn and Bi, which have complicated crystal structures and low coordination numbers
in the solid state. This type of metals changes considerably during melting. Both their first coordination numbers and their
nearest neighbour distances increase substantially.

1.5.3 BCC, FCC and HCP Structures in Metals

BCC Structure

Figure 1.25 Unit cell of the BCC structure. Reproduced with permission from B. D. Cullity, Elements of X-Ray Diffraction, © Addison-
Wesley Publishing Company, Inc. (now under Pearson Education).
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This structure is a simple cubic lattice with an additional atom in the centre of the cube (Figure 1.25).

Number of atoms per unit cell = �8×1/8+1 = 2

Number of nearest neighbours = 8

Examples of metals with a BCC structure are �-Fe, �-Fe, �-Ti, Li and V.

FCC Structure

Figure 1.26 Unit cell of the FCC structure. Reproduced with permission from B. D. Cullity, Elements of X-Ray Diffraction, © Addison-
Wesley Publishing Company, Inc. (now under Pearson Education).

This structure is a simple cubic lattice with an additional atom in the centre of each of the six faces of the cube (Figure 1.26).

Number of atoms per unit cell = �8×1/8+ �6×1/2 = 4

Number of nearest neighbours = 12

Examples of metals with an FCC structure are �-Fe, Al, Cu, Pb and �-Co.

In order to facilitate the study of the stacking sequence of atomic planes in an FCC structure, it has to be drawn in a
different way than in Figure 1.26. A better representation is shown in Figure 1.28a and b, where the crystal is rotated in
such a way that the parallel (111) planes in Figure 1.27 are horizontal and the perpendicular principal diagonal of the cube
has a vertical direction. Every atomic plane contains numerous atoms. For clarity, only a few of them are drawn in each
plane.

A

A
A

A

A

A

B

B
B

B

B

B

C

Figure 1.27 FCC structure with some {111} atomic planes. The A and B planes are, of course, parallel. Only one atom of the parallel
C plane is shown. Reproduced with permission from J. R. Mook and M. E. Hall, Solid State Physics, 2nd edn. © 1991 John Wiley &
Sons, Ltd.
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Figure 1.28 (a) Stacking sequence of some parallel atomic (111) planes in an FCC structure. The planes are seen from above. The
interstitial sites where the following upper atoms rest are marked with black.
(b) Stacking sequence of the parallel atomic (111) planes in the FCC structure in (a) seen from the side. The atomic positions of the A, B
and C layers are all different and repeat periodically. The stacking sequence in (a) corresponds to the part of (b) marked with a vertical
double arrow in (b). The sequence in (a) is repeated about twice in (b). Reproduced with permission from J. S. Blakemore, Solid State
Physics, 1st edn. © 1969 W. B. Saunders Company (now Elsevier).

HCP Structure

The BCC and FCC structures are simple in the sense that atoms are directly placed in the corners of the Bravais point lattice.
The hexagonal close-packed structure is more complicated as every lattice corner is occupied by an atom associated with an
additional atom outside the lattice corners like a dumb-bell. All dumb-bells are parallel in space. The structure can be regarded
as two lattices connected rigidly with one another. The unit cell is shown in Figure 1.29a and b.

Number of atoms per unit cell = �8×1/8+1 = 2

Number of nearest neighbours = 12

A

A

B

(a) (b)

c

a

a120°

Figure 1.29 (a) HCP structure and its unit cell. Only one of the three B atoms is enclosed within the unit cell.
(b) Single unit cell of the HCP structure. Reproduced with permission from B. D. Cullity, Elements of X-Ray Diffraction, © Addison-Wesley
Publishing Company Inc. (now under Pearson Education).

The ratio of the distances c/a (Figure 1.29b) in an ideal HCP structure formed of hard spheres in contact with each other is

c

a
=
√

8
3

= 1�633 (1.10)
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The experimental values of the ratio c/a deviate slightly from the theoretical value. A possible explanation could be that the
atoms are slightly ellipsoidal in shape instead of spherical.

Examples of metals with an HCP structure are. Sn, Zn and �-Co.

The arrays of unit cells must fill the crystal space completely. That this is the case with the HCP structure is shown in
Figure 1.30a and c . The atoms are not mathematical points and hence Figure 1.30c gives a better impression than Figure 1.30b
of the ‘close-packed’ structure. For geometric calculations the latter figure or Figure 1.29 is preferable, however.

The stacking sequence of the atomic planes in an HCP structure is shown in Figure 1.30a and c. The resemblance between
Figures 1.30a and 1.28a is striking. A comparison between the Figures 1.28b and 1.30c shows that the stacking sequence
of HCP (A–B–A–B–A � � � ) is somewhat simpler than that of FCC (A–B–C–A–B–C–A � � � ). The stacking sequence in (a)
corresponds to twice the sequence marked with a double arrow in (c).
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Figure 1.30 (a) Each plane in an HCP structure is shown from above. A and B planes alternate.
(b) Stacking sequence of the atomic planes in an HCP structure. The black atoms form a unit cell. (Figure 1.30 a and b, reproduced with
permission from B. D. Cullity, Elements of X-Ray Diffraction, © Addison-Wesley Publishing Company, Inc. (now under Pearson Education).)
(c) Stacking sequence of the atomic planes in an HCP structure shown from the side.

1.6 Crystal Defects in Pure Metals

In Section 1.4.2 we discussed the structures of crystals as arrays of atoms in a three-dimensional regular pattern. The shape
of a crystal is not the same as its structure, the arrangements of the lattice points.

Point defects

Line defects

Interfacial  defects

Vacancies

Substitutionals

Dislocations

Stacking faults

Grain boundaries

Twin boundaries

Interstitials
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Real crystals are never perfect. They always contain crystal defects, which give a distorted lattice. Even if the fraction is
not more than one atom out of place in 10 000, this is enough to have a strong influence on many important properties of the
material, for example mechanical strength, diffusion and crystal growth.

The imperfections, i.e. all sorts of deviations from the regular crystal pattern, can be divided into three main classes:
The most important subgroups are listed in the box and have the following features.

• The point defects are local. They concern just a few atoms close to the defect.
• The line defects are more long-range. Even atoms far from the centre of the defect are influenced.
• The interfacial defects are three-dimensional phenomena. They will be discussed in a later chapter.

1.6.1 Vacancies and Other Point Defects
• A vacancy = a missing atom in a lattice site.

Figure 1.31 Vacancies in a crystal lattice. Reproduced with permission from R. Cotterill, The Cambridge Guide to the Material World,
1st edn. © 1985 Cambridge University Press.

Vacancies are the most important point defects in metals (Figure 1.31). They will be discussed further in later chapters in
connection with density, diffusion phenomena and thermodynamic relationships.

Impurity atoms also occur in crystal lattices and cause distortion. Impurity atoms, added on purpose, give doped materials
(semiconductors). Impurity atoms occur either as interstitials or substitutionals:

• an interstitial atom = an atom between the ordinary lattice sites
• a substitutional atom = an atom instead of a lattice atom in an ordinary site.

Interstitials and substitutionals (Figure 1.32a and b) will be treated in Section 1.7.3 on page 33.

(a) (b)

Figure 1.32 (a) Interstitial atoms in a crystal lattice. (b) Substitutional atoms and a vacancy in a crystal lattice. Reproduced with permission
from R. Cotterill, The Cambridge Guide to the Material World, 1st edn. © 1985 Cambridge University Press.

Note the deformation of the equilibrium positions of the nearest neighbours in all three cases.
All point defects can move within the crystal lattice. In metals near the melting point, the vacancy frequence is about 1:1000

and the jumping rate for an atom is of the order 109 per second.
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1.6.2 Line Defects

Dislocations

Dislocations are line defects in the crystal lattice. To illustrate them we use a model in which the atoms are represented by
hard spheres and the bonds between them by elastic springs (Figure 1.33b). This model is used on a simple cubic lattice.
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Figure 1.33 Model of a simple cubic lattice in two versions, (a) and (b). Reproduced with permission from D. Hull, Introduction to
Dislocations. © 1965 Pergamon Press Ltd.

A virtual cut in the plane ABCD inhibits the bonds in the area concerned. This approach is used to describe the basic geometry
of dislocations. There are two types of dislocations, edge dislocations (Figures 1.34) and screw dislocations (Figure 1.35).
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Figure 1.34 (a) Edge dislocations are formed by inserting or removal of an extra atom plane. Reproduced with permission from D. Hull,
Introduction to Dislocations. © 1965 Pergamon Press Ltd (now with Elsevier).
(b) Positive edge dislocation. A new row appears in the crystal lattice. Reproduced with permission from J. Weertman and J. R. Weertman,
Elementary Dislocation Theory. © Oxford University Press.
(c) Negative edge dislocation. A row disappears in the crystal lattice. Reproduced with permission from J. Weertman and J. R. Weertman,
Elementary Dislocation Theory. © Oxford University Press.

A useful tool to characterize dislocations is a concept called Burgers vector, which is described in the box below.

Burgers Vector

Consider a defect crystal, which contains dislocations, and select an arbitrary loop around one of them, for example an edge
dislocation (a). The corresponding loop in a perfect crystal, free from all kinds of defects inside the loop, is shown in (b).

C

(a) (b)

F

B A

S S

AB

F

b

C

Figure Box 1.a and b (a) Closed loop: S(start)ABCF(finish). (b) Closed loop: SABCF. Reproduced with permission from D. Hull,
Introduction to Dislocations. © 1965 Pergamon Press Ltd (now with Elsevier).

The two loops differ because of the dislocation. Burgers vector is defined as the vector b where �b� = FS (figure(b)).
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Burgers vector lies in the same plane as the loop in case of edge dislocations. A positive edge dislocation (Figure 1.34b and
figure (b) in the box) arises when an extra layer of atoms is inserted in the slot caused by the virtual cut ABCD. In this case,
Burgers vector is positive. A dislocation is negative when a row disappears (Figure 1.34c), which corresponds to a negative
Burgers vector. These types of faults occur owing to stacking faults arising during condensation of vacancies.

Burgers vector is perpendicular to the (perfect) crystal plane in case of screw dislocations. A screw dislocation is produced
by adapting a shear stress along the line AB (Figure 1.35) in the absence of atomic bonds within the area ABCD. The shear
stress produces a permanent displacement of the crystal on one side of AB relative to the other (Figure 1.35). The displacement
is one lattice spacing. There are two possible directions of Burgers vector in case of screw dislocations.

B

C

D

B′

A

A′

Figure 1.35 Screw dislocation. Reproduced with permission from D. Hull, Introduction to Dislocations. © 1965 Pergamon Press Ltd (now
with Elsevier).

This final state can also be achieved if we use another approach. Let a vector AD, with the end D fixed along the line
DC (Figure 1.35), rotate in the vertical (100) plane in the clockwise direction, seen from D towards C, around the axis DC
and simultaneously move forward one lattice spacing, AA′ or BB′, per revolution around DC. The point A then describes a
right-hand helix (Figure 1.36a), which corresponds to a positive Burgers vector. The point B moves in the same way and the
dislocation is called a right-hand screw dislocation.

If the helix, on the other hand, retreats one lattice spacing per clockwise revolution or advances one lattice spacing
when rotating one counter-clockwise revolution, the dislocation is called a left-hand screw dislocation (Figure 1.36b), which
corresponds to a negative Burgers vector.

A B

D C

Screw directionRight-hand screw
(a)

A B

D C

Left-hand screwScrew direction
(b)

Figure 1.36 (a) Right-hand screw. (b) Left-hand screw.

A screw dislocation converts a pile of crystal planes into a single continuous helix. When the helix intersects the surface
a step is formed (Figure 1.37a), which cannot be eliminated by adding further atoms. The crystal grows as a never-ending
spiral (Figure 1.37b).

(a) (b)

Figure 1.37 (a) Evidence of a screw dislocation on the crystal surface. (b) Dislocation spiral on the surface of a polypropylene crystal.
Reproduced with permission from R. Cotterill, The Cambridge Guide to the Material World, 1st edn. © 1985 Cambridge University Press.
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1.6.3 Interfacial Defects

Stacking Faults

A crystal lattice can be regarded as large number of crystal planes piled on one another in a regular way. The normal stacking
sequences in FCC and HCP structures have been given in Figure 1.28b on page 23 and Figure 1.30c on page 24, respectively.

The normal stacking sequences of an HCP structure can be denoted ABAB and so on, where the letters are simply a short
designation of the atomic configurations in the respective crystal planes. Similarly, the normal stacking sequences in an FCC
structure can be described as ABCABC and so on.

A stacking fault is an interfacial defect where the regular sequence order of the planes is broken. Stacking faults are not expected
in crystals with ABAB sequences in, for example, BCC structures as there is no alternative for an A layer resting on a B layer.

For structures with sequences ABCABC, there are two possible positions for an A layer. It can rest on either a B or a C
layer. In crystals with an FCC structure, two types of stacking faults are possible, intrinsic and extrinsic stacking faults:

• An intrinsic stacking fault is the change in sequence resulting from the removal of a layer.
• An extrinsic stacking fault is the change in sequence resulting from an introduction of an extra layer.

Stacking faults can arise during solidification or heat treatment.

C
B
A
C
B
A
C

C

A

B
A

B

C
C
B
A
C
B
A
C

Intrinsic stacking fault Extrinsic stacking fault

B

A

C

B
A

C

B

A

C

B
A

CC
A

A

C
A
B

B

(a) (b)

Figure 1.38 Stacking faults in the (111) plane of an FCC lattice: (a) intrinsic and (b) extrinsic stacking faults. Reproduced with permission
from D. Hull, Introduction to Dislocations. © 1965 Pergamon Press Ltd (now with Elsevier).

In Figure 1.38a, part of the C layer has been removed. This results in a break in the stacking sequence. In Figure 1.38b, an
extra A layer has been introduced between a B and a C layer. This is equivalent to two breaks in the regular sequence order.

Grain Boundaries

Crystalline metals consist of aggregates of small crystals with mutually different orientations. The interfaces between these
grains are called grain boundaries (Figure 1.39). They can be observed in an optical microscope using polarized light or by
etching the sample.

Figure 1.39 Grain boundaries. Reproduced with permission from W. Hume-Rothey, R. E. Smallman and C. W. Haworth, The Structure
of Metals and Alloys. (Published by the Institute of Metals, 1969) now © W. S. Maney & Son Ltd.
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A grain boundary is equivalent to a dense array of static dislocations. It works like a high barrier to moving dislocations.
The grain boundaries promote hardening. The mechanical strength of a crystal is inversely proportional to the average grain
diameter. The smaller the grains are, the better will be the mechanical properties of the material.

Twinned Crystals

Twinned crystals is a common term for crystals which consist of two parts showing mutual symmetry. By some sort of a
symmetry operation, one part can be brought to coincide with the other. The two main kinds of symmetry operations are

• 180� rotation about an axis, called the twin axis
• reflection across a plane, called the twin plane.

The border plane between the two parts of a twinned crystal is called the composition plane. In the case of reflection twins,
the composition plane and the reflection plane may or may not coincide.

Owing to the origin, two kinds of twinned crystals are of special interest:

• Annealing twins in FCC metals and alloys (for example, Cu, Ni, brass and Al) that have been cold-worked and then
annealed to cause recrystallization. They also form during crystallization directly from melts.

• Deformation twins occuring in deformed HCP metals (for example, Zn and Mg) and BCC metals (for example, �-Fe and W).

Annealing twins in FCC metals are rotation twins as the parts can be brought to coincidence by rotation. The two parts
are related by a fictive 180� rotation about a twin axis of the direction <111>. The real cause is stacking faults during
growth.

II
I II

I1

I2

(a) (b)

Figure 1.40 FCC annealing twins consisting of (a) two and (b) three parts. Reproduced with permission from B. D. Cullity, Elements of
X-Ray Diffraction, © Addison-Wesley Publishing Company Inc. (now under Pearson Education).

Annealing twins occasionally appear under a microscope as in Figure 1.40a. Part II is twinned with respect to part I. The
two parts are in contact along the composition plane (111), which makes a visible linear trace.

More often, the grains consist of three parts (Figure 1.40b). The two parts are separated by a twin band. Such FCC annealing
twins are formed by changes in the normal growth mechanism. During growth two stacking faults are created, which are
shown schematically in Figure 1.41.

 ABCABCABACBACBACBCABCABCA

I1 I2

Parent crystal

II

Twin crystal Parent crystal

twin boundary twin boundary

Figure 1.41 The origin of twin bands in FCC annealing twins in the case illustrated in Figure 1.40b.
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In real materials, the number of crystal layers A, C, B in the twin band, shown in Figure 1.41, is thousands of times greater.
In a single grain, several twin bands of different directions can be found.

III 1

I 2

Figure 1.42 HCP deformation twins. Reproduced with permission from B. D. Cullity, Elements of X-Ray Diffraction, © Addison-Wesley
Publishing Company Inc. (now under Pearson Education).

Deformation twins are caused by deformation and occur in both BCC and HCP lattices. Figure 1.42 shows the most common
form of a twin band in HCP metals. The composition ‘plane’ is curved.

In general, a crystal may twin repeatedly and produce several new orientations. If crystal I1 twins to form II, which twins
to form I2, etc., then II and I2 are said to be the first-order, second-order, etc., twins of parent crystal I1.

1.7 Structures of Alloy Melts and Solids

An alloy can be characterized as a metallic liquid or solid, consisting of a close combination of two or more elements. Often
one metal occurs in a high concentration. It is called the parent metal or solvent. Any chemical element can be used as an
alloying element or solute. Examples of nonmetal alloying elements are carbon, oxygen, nitrogen and sulfur. However, the
only alloying elements used in high concentrations are metals.

Alloys are normally prepared by melting the parent metal and adding an accurately measured amount of each alloying
element to the melt, followed by vigorously stirring in order to obtain a homogeneous product.

The experimental methods to determine the structure of alloy melts and solids are the same as those used for pure metals
and described at the beginning of this chapter. The types of structures of alloys are generally the same as for pure metals.
However, it is worth spending a few pages on discussing briefly the characteristics of the structures of alloy melts and solids.

1.7.1 Basic Concepts

All systems achieve a stable equilibrium by spontaneously going over to their lowest possible energy levels. Solid metal
solutions are no exceptions from this basic law. Owing to the complexity of solid-state systems, it is difficult to perform
quantitative energy calculations in these cases.

All effects that occur when an alloying metal is dissolved in a parent metal are consequences of a transition of the system in
order to reach its minimum energy level. Atoms become displaced in the crystal lattice, they change their sizes as a function
of composition of the solid solution, new phases appear and chemical compounds, clusters or superlattices are formed.

In order to understand these effects qualitatively, we will discuss the structures of various types of solid alloys.

Random Solid Solutions

The structure of an alloy depends on the forces between the atoms. If the force between an alloying atom and a parent atom is
equal to, larger than or smaller than the force between two parent atoms, the internal energy is constant, increases or decreases
when the atoms rearrange themselves to increase the number of unlike nearest neighbours.

If the interactions between any atoms are equal, the atoms mix easily and homogeneously in any proportions. An solid alloy
of this kind is called a random solid solution. Many alloys approximately belong to this type.



Structures of Melts and Solids 31

Types of Solid Solutions

A crystal lattice can be regarded as positive ions in a lattice surrounded by free electrons moving between them. This type
of bonding is fairly indifferent to the exact proportions of the two types of atoms in the lattice and their distribution in the
lattice. Random solutions of alloying elements in a parent metal over a wide range of composition are thus possible.

It is possible to change the composition of such alloys almost continuously. At any composition the alloy is fully homoge-
neous and its structure differs only slightly from those of alloys with neighbouring compositions. A few alloys have completely
miscible components, i.e. all concentrations of the alloying element from 0 to 100% are possible. Equal crystal structure of
the two components is a necessary condition.

Normally the composition of homogeneous alloys is possible only within certain limits. When the limited range includes
one of the pure components of the alloy, the solution is said to be a primary solid solution with this component as solvent
and the other as solute. If no pure components are included in a solid solution, it is said to be a secondary solid solution.
The two components have compositions in the intermediate range in this case. Secondary solid solutions often have different
crystal structures than their components. The term intermediate phases is a common name for secondary solid solutions and
intermetallic compounds.

Solid solutions are either substitutional or interstitial (Figure 1.43 and 1.44). The type of solution has a great influence on
the properties of the alloy.

Figure 1.43 Substitutional solid solution. Reproduced with
permission from A. G. Guy, Elements of Physical Metallurgy,
2nd edn, 1980. © Addison-Wesley Publishing Co, Inc (now under
Pearson Education).

Figure 1.44 Interstitial solid solution. Reproduced with permis-
sion from A. G. Guy, Elements of Physical Metallurgy, 2nd edn,
1980. © Addison-Wesley Publishing Co, Inc (now under Pearson
Education).

In a substitutional solid solution, the alloying atoms replace some of the parent atoms in the crystal lattice. When the
alloying element is another metal, a substitutional solution is often formed. In an interstitial solution, the alloying atoms are
small enough to take sites between the normal parent atoms filling the lattice. Common examples of this type of solution are
carbon or nitrogen dissolved in a metal.

Alloys can consist of both interstitial and substitutional solid solutions at the same time. Examples are stainless steels,
which contain interstitially dissolved carbon together with substitionally dissolved chromium, nickel and/or other metals.

1.7.2 Structures of Liquid Alloys

The structures of liquid alloys normally do not differ very much from those of pure metal melts. The X-ray diffraction patterns
show that there exists short-range order both in liquid alloys and in pure metal melts. This is especially the case for alloys with
low melting points. In alloys with high melting points, the short-range order with preferred nearest neighbour associations
tends to become lost when the temperature increases, owing to increasing thermal agitation (internal kinetic energy) of
the atoms.

In the uncomplicated cases of simple binary liquid alloys, the position of the first diffraction peak gradually changes from
the position that it has in one of the pure metals to the position of the other metal when the composition changes from 0
to 100% of the alloying metal. The position of the first peak of the alloy can be predicted by simple interpolation when the
composition is known (Figure 1.45).

In some cases the single peak is replaced by a double peak on the way from 0 to 100%. This can be explained by the
formation of an intermediate chemical compound with a special interatomic distance instead of the interpolated liquid solution
distance. Figure 1.46 illustrates this. The X-ray diffraction patterns of pure Au, 50:50 Au–Sn, pure Sn and solutions with
intermediate compositions are shown. In this case, a short-range order compound AuSn is formed in the liquid with an Au–Sn
distance of 0.285 nm. This agrees closely with the distance 0.284 nm found in solid crystalline AuSn.
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Figure 1.45 Schematic X-ray diffraction patterns in liquid binary alloys of various compositions. No attention should be paid to the
intensities, only to the positions of the lines. Reproduced from F. D. Richardson, Physical Chemistry of Melts in Metallurgy, Vol. 1. © 1974
Academic Press Inc. (London) Ltd (now by Elsevier).
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Figure 1.46 X-ray diffraction pattern in liquid AuSn of various compositions. Reproduced from F. D. Richardson, Physical Chemistry of
Melts in Metallurgy, Vol. 1. © 1974 Academic Press Inc. (London) Ltd (now by Elsevier).
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1.7.3 Structures of Solid Alloys

Substitutional Solid Solutions. Hume-Rothery’s Rules

Most metals for practical use are alloys. They are developed for special purposes such as better strength, better hardness,
better chemical resistance against corrosion, better heat resistance or other better properties than the pure metal.

2rAA 

Figure 1.47 Distance between the atoms in a pure metal A.

The composition of an alloy cannot be chosen arbitrarily. The metals must form a solid solution and intermediate phases must
be avoided. As a result of the work of Hume-Rothery in the early 1930s it is possible to judge whether the metals in the
planned proportions can form a solid substitutional solution or not.

Hume-Rothery’s results can be summarized in four rules. The first rule concerns the sizes of the atoms. The atoms are
regarded as spheres, touching each other and filling the space. As a measure of the atomic radius of a metal we use half the
distance between two nuclei in the pure element (Figure 1.47).

1. The Relative Size Rule
The more the solute atom differs in size from the solvent, the lower will be the solubility of the metal. This is described
with the aid of a relative size factor, defined as

Size factor = 1+ rsolute − rsolvent

rsolvent

(1.11)

If this factor is larger than 1.14, it is unlikely that a solid solution can form and the solubility will be low. A complete
solid solution is obtained only if the size factor is less than 1.08.

2. The Electrochemical Rule
The more electropositive one of the metals is and the more electronegative the other one is, the lower will be the solubility
of the two metals. If the difference in chemical affinity of the two metals is large, the two atoms form a compound instead
of a solid solution.

3. The Relative Valence Rule
If the alloying metal and the basic metal differ in valence, the electron ratio, i.e. the average number of valence electrons
per atom, will be changed by alloying. Crystal structures are more sensitive to a decrease in the number of electrons than
to an increase. This is the reason why a high-valence metal dissolves a low-valence metal poorly, whereas a low-valence
metal may dissolve a high-valence metal well.

4. The Lattice Type Rule
Only metals with identical lattice structures are completely miscible, i.e. can form solid solutions of any proportions.

There are exceptions to Hume-Rothery’s rules, but overall they are very useful in predicting qualitative solubilities of
metals.

The first rule is a necessary but not sufficient condition. If the relative size factor is disadvantageous, the solubility of the
metals will be poor, even if the other conditions are fulfilled.

The relative size rule is an effect of the strain around a misfit atom (see Figure 1.32b on page 25). The atoms of the solvent
are displaced from their normal values in the crystal lattice because of the smaller or larger solute atom. These changes need
some extra energy, which limits the solubility.
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The sizes of the metal atoms are obtained from the lattice constants of the pure element. However, the sizes of the atoms
change as a function of the composition of an alloy, owing to changes in its degree of ionization, electron concentration or
crystal structure.

An example of the relative valence rule is the CuSi system. Substitutionally dissolved silicon atoms can occur in copper
as they increase the number of free electrons. If a copper atom replaces a silicon atom in a silicon crystal, the single valence
electron of coppar is not enough to form four covalent bonds to neighbouring silicon atoms and the crystal structure is seriously
changed.

Table 1.10 Lattice constants and atomic radii of some pure metals.

Metal Crystal structure Temperature (�C) Lattice
constant (nm)

Atomic radius (hard
sphere model) (nm)

Cu FCC 18 0.361 0.255
Ag FCC 25 0.408 0.288
Al FCC 25 0.404 0.285
Mg HCP 25 0.320 0.319
Zn HCP 25 0.266 0.265
Fe BCC 25 0.286 0.248

Hume-Rothery and co-workers found that if the size factor was advantageous and the relative valence rule was fulfilled, the
limit of solubility was set by the electron concentration. The solubility limit was about 1.4 free electrons per atom in all cases.
Divalent zinc dissolves in copper up to 40 at-% whereas trivalent aluminium dissolves up to about 20 at-% and tetravalent
germanium up to 13 at-%.

Most alloys are substitutionally solid solutions. Copper and the other metals in the same group in the periodic table are
excellent solvents for many metals. Copper lies in the middle with respect to atomic radius and electrochemical factor. It
dissolves considerable amounts of many metals and forms the basis of many commercially important alloys such as brasses,
bronzes and Cu–Ni alloys.

The transition metals, iron and other metals in the same group, also form many solid solutions. Iron has a advantageous
size factor for many metals such as Al, Co, Cr, Cu, Mn, Mo, Ni, Pt, V and W. These metals dissolve extensively in FCC-iron
(austenite) and in BCC-iron (ferrite).

Interstitial Solid Solutions

Figure 1.48 An interstitial carbon atom (black) in a (white) �-Fe lattice (BCC structure).

The only alloying elements which are small enough to form interstitial solid solutions are H, C, N and B. The interstitial
solutions are genuine alloys with metallic properties. The lattice rule plays an important role in forming interstitial solid
solutions. There is, for example, more room for carbon atoms in austenite (�-Fe, FCC structure) than in ferrite (�-Fe, BCC
structure). The solubility of carbon is therefore about eight times higher in austenite than in ferrite (1.7 and 0.2 wt-%,
respectively).

The difference in solubility of carbon between austenite and ferrite depends of the available space for C atoms. An FCC
structure offers much more space for interstitials than a BCC structure (Figure 1.48). The difference is very important in the
heat treatment of carbon steels.
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Most alloys consist of substitutional solid solutions. There are few interstitial solid solutions compared with the substitutional
ones, but some of them are very important. The interstitial solid solution of carbon in iron is the basis of steel hardening.

The hydrides, nitrides, carbides and borides of the transition metals are important groups of interstitial solid solutions. Their
structures are simple when the interstitial atom has a radius < 59% of that of the metal atom. Most of them have the FCC or
HCP structure and occasionally BCC. When the ratio exceeds 59%, the nonmetal atom is too large for the interstitial sites and
a more complex structure is formed. In carbon steel the ratio is 0.63. The carbon atom is too large to fit into the BCC crystal
structure and cementite, an intermediate phase Fe3C with a complex structure, is formed. Interstitial nitrogen in 18Cr–8Ni
stainless steel is important to maintain the iron in its austenitic form.

Intermediate Phases

When an alloying element is added to a base metal in such quantities that the limit of solid solubility is exceeded, a secondary
or intermediate phase appears. The secondary phase can be another solid solution, a chemical compound or a phase with a
structure other than the one of the primary solid solution.

According to their structure, the intermediate phases in alloys can roughly be classified as

• electrochemical or valence compounds
• size factor compounds
• electron compounds.

Electrochemical Compounds

(a) (b)

Figure 1.49 Some examples of electrochemical compounds. (a) The compound Mg2Si has the same structure as CaF2. (b) Structure
of ZnS. Reproduced with permission from W. Hume-Rothey, R. E. Smallman and C. W. Haworth, The Structure of Metals and Alloys.
(Published by the Institute of Metals, 1969) now © W. S. Maney & Son Ltd.

Electrochemical compounds obey the valence law. They are formed by electropositive and electronegative elements. Mg2Si
and ZnS are typical examples (Figure 1.49). Many of them have simple structures of the types found in ionic crystals. They
often have high melting points, indicating strong ionic or covalent bonds. Their properties are mainly nonmetallic. They are
brittle and have poor electrical conductivities.

Size Factor Compounds
The size factor compounds have compositions and structures that correspond to the lowest possible energies, lower than the
sum of the energies of the separate components. The component atoms in size factor compounds are closely packed and have
often high coordination numbers.

Examples are the so-called sigma phases such as FeCr, CoCr, FeV, FeW, Mn3Cr and Mn3V, which might form in high-alloy
steels and heat-resistant alloys. They are brittle and harmful because they cause cracks in the material when cold-worked.
Sigma phases in steel are normally formed owing to segregation during the solidification process. Methods for decreasing the
segregation have been developed and are used in industry.

An important group of size factor compounds are Laves phases. They are sometimes used for special applications in
electronic components. In other cases they are destructive and must be avoided, for example as precipitation during hardening
of high-temperature materials.

Laves phases appear at comparatively large differences between the component atoms, i.e. the A atoms are about 22.5%
larger than the B atoms. Their compositions are of the type AB2.



36 Physics of Functional Materials

Mg Cu

Figure 1.50 Structure of MgCu2, a Laves phase with a diamond lattice. It has a complicated structure with very high coordination number.
Reproduced with permission from W. Hume-Rothey, R. E. Smallman and C. W. Haworth, The Structure of Metals and Alloys. (Published
by the Institute of Metals, 1969) now © W. S. Maney & Son Ltd.

Three different structures are possible, one cubic and two hexagonal, depending on the number of free electrons per atom.
The cubic structure is stable in the range 1.33–1.8 free electrons per atom. Above 1.8 electrons per atom, the hexagonal
structures are the stable ones. Examples are MgCu2 (Figure 1.50), AgBe2, MgZn2, CaMg2, TiFe2 and MgNi2. Striking
properties of the Laves phases are dense packing and high coordination numbers. Each A atom has 16 neighbours, 4 A and
12 B, whereas each B atom has 12 neighbours. In a normal close-packed structures the coordination number is 12.

Electron Compounds
The appearance of intermediate phases is very sensitive to the electron ratio, i.e. the number of valence electrons per atom
in the crystal lattice. They are formed at definite compositions, i.e. definite values of the electron ratio of the alloy, and vary
also with the structure of the crystal lattice. The phases of the Cu–Zn system can, for example, be explained in this way.

The free electron concentration in the crystal is based on the number of valence electrons which each atom contributes to
the common electron cloud moving around in the metal. Table 1.11 shows the number of valence electrons in some metals.

The number of valence electrons in the transition metals is set to zero because they have partly unfilled d states in their
electronic structures which absorb electrons when the electron concentration is increased.

Table 1.11 Number of valence electrons in some metals.

Type of metal Metal Valence

First group of the periodic table Cu, Ag, Au 1
Second group of the periodic table Mg, Zn, Cd, Be 2
Third group of the periodic table Al 3
Fourth group of the periodic table Si, Ge, Sn 4
Fifth group of the periodic table Sb 5
Transition metals. Seventh group of the

periodic table
Fe, Co, Ni, Pt, V, W 0

Figure 1.51 Structure of � brass. Its chemical composition is CuZn. The average electron ratio of CuZn is 1.5.
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Copper is monovalent and its structure is FCC. The initial electron ratio is therefore 1. If zinc is added to the base metal, the
electron ratio increases. Adding, for example, 50 at-% of zinc, i.e. 50 Zn atoms are added to 100 Cu atoms, gives the average
electron ratio ��100×1+ �50×2�/150 or 1.33. At increasing Zn concentration a BCC � phase appears (Figure 1.51). If the
Zn content is raised further, a complex cubic � phase appears at a ratio of 1.62 and a close-packed hexagonal � phase at a ratio
of 1.75. Each phase exists over a range of compositions, as shown in the phase diagram of the Cu–Zn system (Figure 1.52).
The � and � phases are the primary solid solutions.

The unit cell of complex � brass (Cu5Zn8) consists of 27 unit cells of BCC � brass minus two atoms. Using Table 1.11, we
obtain the value of the electron ratio of � brass as �5×1+8×2/�5+8 = 21 � 13. A large number of compounds have the
same electron ratio value.
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Figure 1.52 Phase diagram of the system Cu–Zn. Reproduced with permission from M. Hansen and K. Anderko, Constitution of Binary
Alloys, 2nd edn. © 1958 McGraw-Hill Book Company, Inc.

Metal carbides are good and important examples of electron compounds. The carbides of the transition metals are extremely
hard. They are used in cutting tools and other applications where mechanical strength at high temperatures is needed. The
carbides of some transition metals are extremely stable with a simple cubic structure. Others (MoC, Mo2C, WC, W2C and
Ta2C) have a hexagonal structure. Chromium carbides are important and occur in alloy steels. Chromium is soluble in cementite
and forms three types of carbides: Cr23C6, Cr27C3 and Cr3C2.

Ordered Solid Solutions. Superlattices

If each atom in a solid metal is preferably surrounded by atoms of the same kind, a clustered state may be obtained.
If unlike atoms attract each other more than like atoms, the structure of the resulting alloy varies considerably with the

nature of the forces involved. If the unlike atoms differ electrochemically, the bond between them become partly ionic and
the structure is characterized as intermetallic. If one component is strongly elecronegative, e.g. O, Cl and S, a true chemical
compound is formed (intermetallic compound) and the material is no longer metallic. If both the unlike atoms are metals, the
material will form an alloy and remain metallic. This case will be discussed more in detail.
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In a stable solid solution of two metals A and B, the internal energy is smaller than the sum of the separate internal energies
of the two metals. Hence an ordered structure is favoured and attraction forces exist between the two types of atoms.

X-ray examination and other methods show that a long-range order exists and the two types of atoms are arranged in a
regular, alternating pattern at low or moderate temperatures through the entire crystal. This longe-range order of the crystal
can be regarded as two or more interpenetrating lattices, firmly attached to each other. Such an ordered solid solution is called
a superlattice. A perfect superlattice can be formed only if the two kinds of atoms occur in simple proportions. Both primary
and secondary solutions develop superlattices. An example of a simple superlattice is given in Figure 1.53a.

(a) (b)

Figure 1.53 (a) Superlattice of AuCu3. Its is identical with the BCC structure.
(b) The BCC structure can be regarded as two coupled simple cubic lattices. Only one lattice point of the second lattice is seen in (a).

If the temperature of the ordered solid solution increases above a certain critical temperature, the attractive forces are not
strong enough to maintain the superlattice against thermal agitation. However, the forces are still there and a short-range
order may exist locally but not in the entire crystal. At still higher temperatures the atom distribution becomes random.

Degree of Short-range Order

It is possible to obtain a quantative measure of the degree of order in a short-range order state. If the alloying B atoms and the
parent A atoms in a solid solution are distributed totally at random, the probability PA that a certain neighbour of a B atom is
an A atom equals the fraction xA of A atoms in the alloy. In this case the ratio PA/xA = 1.

We define the short range order coefficient 	 of a solid solution as the deviation of PA/xA from 1:

	 = 1− PA

xA

(1.12)

The short-range order coefficient is small and varies with the composition of the solid solution. An example is given in
Figure 1.54.

Short range coefficient α

0 0.2 0.4 0.6 0.8 1.0
Fraction of Ni atoms in the solid solution

− 0.02

− 0.04

− 0.06

0

Figure 1.54 The short-range order coefficient of AuNi solid solutions as a function of composition. Reproduced with permission from
A. G. Guy, Elements of Physical Metallurgy, 2nd edn, 1980. © Addison-Wesley Publishing Co., Inc (now under Pearson Education).
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Three different cases can be distinguished:

• PA/xA = 1:

If PA/xA = 1 there is no preference of neighbours and 	 = 0 which gives a disordered or random solid solution. This is the
case in all solid solutions at high temperatures. At lower temperatures there are two alternatives:

• PA/xA < 1:

If the B atoms are surrounded preferably by B atoms then PA < xA and 	 > 0. Hence 	 is positive in a clustered state.
• PA/xA > 1:

If the B atoms are surrounded preferably by A atoms then PA > xA and 	 < 0. In this case 	 is negative and a short-range
order exists in the solid solution.

The three cases are summarized in Table 1.12.

Table 1.12 State of solid solutions as a function of temperature and short range order coefficient.

T Low High Low

	 < 0 Ordered solid solution
Superlattice

	 = 0 Random order
	 > 0 Clustered state

Summary

� X-ray Studies of Solids and Melts

X-ray studies of solid metals shows the existence of a regular structure. The vertical lines in X-ray diagrams refer to the solid
and are interpreted as coordination shells.

The coordination number is the number of atoms which can be included in a coordination shell.
The curves with broad peaks in the diagrams originate from the corresponding melt. They show the existence of a short-range
order in the liquid.

� X-ray Analysis of Melts

X-ray data can be transformed into atomic distribution diagrams. From them it is possible to derive

• the nearest neighbour distance (r value of first maximum)
• the nearest possible distance between two atoms (intersection with r axis)
• the coordination number (area under first peak).

� Crystal Structure

The crystal structure is of the utmost importance for the properties of solids.
Crystals are built of unit cells arranged in a space lattice. The crystal structure is determined by two factors

• the lattice structure (lattice)
• the configuration of the unit cell (basis).

Crystal structure = lattice +basis

There are 14 fundamental types of crystal classes. Three of them, BCC, FCC and HCP, are common in metals.
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� Lattice Directions and Lattice Planes

Lattice Directions

A direction in a lattice is characterized by three integers, u, v and w. The directions are generally written <uvw>, which
means that all permutations of the uvw indices and combination of signs occur. If one refers to a specific line with the given
direction, square brackets are used, [uvw].

Lattice Planes
Miller indices (hkl) are used to define crystal planes; h, k and l are integers proportional to the reciprocal intersections between
the plane and the coordinate axes:

�hkl =
(

D

X

D

Y

D

Z

)

The constant D makes it possible to obtain integers on the right-hand side of the equation. The Miller indices, written within
curly brackets {}, mean that all permutations of the hkl indices and combination of signs occur. They define the directions of
the normals to the type of planes in question. If one refers to a specific plane with the given direction, ordinary brackets are
used, (hkl).

In hexagonal systems, the four Miller–Bravais indices (hkil) are used. The index i is given by the relationship i = −�h+k.

Intensities of X-ray Diffraction Lines in Cubic Structures

FCC Structures
hkl = odd integers (unmixed indices) give diffraction lines with intensities > 0 �S > 0.
hkl = even integers (unmixed indices) give diffraction lines with intensities > 0 �S > 0.
All other hkl combinations (mixed indices) give diffraction lines with intensities zero �S = 0.

BCC Structures
h +k + l = even integers give diffraction lines with intensities > 0 �S > 0.
h +k + l = odd integers give diffraction lines with intensities zero �S = 0.

� Crystal Defects

Point Defects

Vacancies, substitutionals and interstitials.

Line Defects

Edge dialocations, screw dialocations.

Interfacial Defects

Stacking faults, grain boundaries and twin boundaries.

� Structures of Liquid Alloys

There are no significant structural differences between liquid alloys and pure metal melts.

� Structures of Solid Alloys

Basic Concepts

A primary solid solution includes one of the pure components.
A secondary solid solution does not include any of the pure components.
In a random solid solution the atoms mix easily and in any proportions.
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Hume-Rothery’s Rules

Substitutional Solid Solutions
The composition of a substitutional solid solution cannot be chosen arbitrarily. Four conditions limits the possibilities of
forming a solid solution of two metals:

1. The Relative Size Rule:
The more the solute and solvent atoms differ in size the lower will be the solubility.

Size factor = 1+ rsolute − rsolvent

rsolvent

If it is > 1.14 the solubility is low; if it is < 1.08 the solubility is complete.
2. The Electrochemical Rule:

The more electropositive one of the metals is and the more electronegative the other one is, the lower will be the solubility
of the two metals. If the difference in chemical affinities of the two metals is large, the two atoms form a compound instead
of a solid solution.

3. The Relative Valence Rule:
A high-valence metal dissolves a low-valence metal poorly, whereas a low-valence metal dissolve a high-valence metal
well.

4. The Lattice Type Rule:
Only metals with identical lattice structures are completely miscible, i.e. can form solid solutions of any proportions.

Interstitial Solid Solutions
The only alloying elements which are small enough to form interstitial solid solutions are small atoms such as H, C, N and B.

The interstitial phases are genuine alloys with metallic properties.
Hume-Rothery’s rules are also valid for interstitial solid solutions.
A solid solution can be interstitial and substitutional at the same time. Stainless steel is an example.

Intermediate Phases
When an alloying element is added to a base metal in such quantities that the limit of solid solubility is exceeded, a secondary
or intermediate phase appears.

The secondary phase can be another solid solution, a chemical compound or a phase with a structure other than the one of
the primary solid solution.

According to their structure, the intermediate phases in alloys can roughly be classified as

• electrochemical or valence compounds
• size factor compounds
• electron compounds.

Ordered Solid Solutions
If each atom in a solid metal is preferably surrounded by atoms of the same kind, a clustered state might be obtained.

If there is no preference in attraction between alloying B atoms and parent A atoms, both types of atoms are distributed
totally at random.

If unlike atoms attract each other more than like atoms, the structure of the resulting alloy varies considerably with the
nature of the forces. If the two types of atoms are arranged in a regular, alternating pattern, the alloy is characterized as an
ordered solid solution, either as a short-range order solution or, at low temperature, as a superlattice with a regular alternation
of unlike atoms through the entire crystal.

Short-range order coefficient 	 = 1− PA

xA

� > 0 � clustered state.
� = 0 � random order
� < 0 � ordered solid solution; superlattice
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Exercises

1.1 A high voltage is applied on an X-ray tube.

(a) Describe the emitted X-ray spectrum from the tube.
(b) The X-radiation hits a target of copper. What is the minimum voltage for emission of the K series? The wavelength

of the K� line is 0.154 nm.
(c) The K� photons have a higher energy than the K� photons. Is it possible to choose the voltage over the X-ray tube

is such a way that K� photons but no K� photons are emitted?

1.2 A powder specimen that consists of small crystals is exposed to a beam of parallel X-rays of wavelength 0.112 nm.
A photographic plate is placed 10 cm behind the specimen perpendicular to the X-ray beam.

↓ ↓ ↓

10 cm

Depending on the random orientation of the crystals in the specimen, a system of rings appears on the plate when
developed. The radii of the rings were measured as 4.26 and 10.80 cm.

Calculate the distance between the atomic planes that cause this ring system.

1.3 The characteristic X-ray spectrum of a solid metal consists of sharp spectral lines. The corresponding spectrum of a
metal melt has a number of wide maxima instead. Why?

1.4 Radiation from an X-ray tube with a target of copper is diffracted in an X-ray spectrograph. A beam of the radiation
enters the spectrograph and a strong intensity maximum (first-order diffraction) is found when the angle between the
entering and diffracted beam is 31�7�. The crystal in the spectrograph consists of NaCl (FCC structure). Its density is
2�16×103 kg/m3.

Calculate the wavelength of the X-ray line in question and try to identify it.

1.5 Consider Figures 1.10 and 1.11.

(a) What is the sense of the quantities wr and w0 in Figure 1.10? What is the relationship between the curves in
Figures 1.10 and 1.11?

(b) Determine the shortest possible distance between two gold atoms in liquid gold.
(c) Determine the nearest neighbour distance for liquid gold.
(d) Make a graphical estimation of the coordination number of liquid gold at 1100 �C.

1.6 What fraction of the crystal volume is filled with atoms in the cubic structures

(a) SC (simple cubic)
(b) BCC
(c) FCC

if the atoms are regarded as hard spheres, which touch each other?

1.7 (a) Show that c/a = √
8/3 for an ideal HCP crystal.

(b) Calculate the maximum fraction of the available volume which can be filled if the crystal structure is HCP.
Hint: The unit cell of HCP is shown in Figure 1.29b on page 23.
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1.8 The crystal structure of Fe is BCC at temperatures below 637 �C and FCC above this temperature. Derive the percentage
density change when an iron specimen is transferred from a BCC to an FCC structure. Assume that the distances between
nearest neighbours do not change at the transition.

1.9 (a) Zinc oxide has a hexagonal close-packed structure (HCP) with two formula units per unit cell. The density of ZnO
in this phase has been determined experimentally as 5�60 × 103 kg/m3. Calculate a theoretical value of the density
with the aid of known constants and the following data: a = 0�3243 nm and c = 0�5195 nm.

(b) Discuss possible reasons for the discrepancy between the experimental and theoretical values of the density. Check
whether ZnO is an ideal HCP crystal or not.

(c) Zinc oxide also appears in an FCC structure. The density of ZnO with this structure has been measured as
5�47×103 kg/m3. Calculate the corresponding length of the unit cell.

1.10 Copper has an FCC crystal structure. Use standard table values to calculate

(a) the lattice constant, i.e. the length of the edge in the conventional unit cell
(b) the distance to the nearest neighbour atom
(c) the number of nearest neighbours to each atom.

1.11 (a) Define the geometric structure factor and the rules for the structure type (BCC and FCC) when all the atoms are of
the same kind.

(b) Which of the following planes give lines in the X-ray spectrum of a BCC crystal: (100), (110), (111), (200), (210),
(211), (220), (221), (222), (300), (310), (311), (320), (321).

(c) Which planes in (b) give X-ray lines if the crystal has FCC structure?

1.12 In an electron diffraction experiment on MgO (cubic structure), the following values of the diameters of the rings were
obtained:

19�9 mm 37�8 mm 49�9 mm

22�9 mm 39�7 mm 51�1 mm

32�4 mm 45�8 mm 56�0 mm

The acceleration voltage of the electrons was 90.0 kV. The distance L between the specimen and the target was 609 mm.

(a) Determine the type of cubic lattice and identify the reflections.
(b) Calculate the length of the edge in the conventional unit cell.

1.13 Describe briefly the different types of point defects in crystal lattices.

1.14 Give some examples of line defects and interfacial defects in crystals.

1.15 Discuss the two types of solid solutions.

(a) Which type occurs preferably in alloys? Why?
(b) Describe Hume-Rothery’s rules for such solid solutions.
(c) Give examples of atoms which appear in the other type of solid solutions. Why do they belong to this type?

1.16 What is an intermediate phase and when does it appear in an alloy?

1.17 Explain the following concepts:

(a) random solid solution
(b) ordered solid solution
(c) superlattice
(d) short-range order
(e) short-range order coefficient
(f) cluster.
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2.1 Introduction

Modern theory of atomic and molecular physics is the fundamental basis of all materials science and a key to understanding
material structure and processes. This chapter gives a brief survey of atomic and molecular structure, based on quantum
mechanics, as a preparation and basis for the following chapters, especially Chapters 3–6.

In Chapters 4, 5 and 6, a survey of the most important properties of gases, solids and liquids is given. This knowledge is
essential for materials science when various aspects of crystallization processes are discussed.

2.2 The Bohr Model of Atomic Structure

2.2.1 The Hydrogen Atom

Line spectra, for example emission line spectra specific for hydrogen and other elements and the Fraunhofer absorption lines
in the continuous spectrum of the Sun, were discovered at the beginning of the 19th century. The origin of the spectral lines
could not be explained.

In 1885, the Swiss schoolteacher J. J. Balmer found an empirical equation for some of the strongest lines in the visible part
of the spectrum of hydrogen (Figure 2.1):

1
�

= constant×
(

1
22

− 1
n2

)
Balmer series (2.1)

where
�= wavelength of the spectral line
n= positive integer >2.

The origin of the lines remained a puzzling and unanswered question for a long time.

Hα Hβ Hγ Hδ Hlimit

656.27 486.13 434.05 410.17 364.6 nm

Figure 2.1 Balmer series for hydrogen. The line spectrum is emitted, for example, from an electric arc in a discharge tube filled with
hydrogen gas at low pressure. Many H2 molecules dissociate into excited H atoms, which emit a line spectrum, including the Balmer series.
Reproduced with permission from A. Beiser, Modern Physics. An Introductory Survey. © 1968 Addison-Wesley Publishing Company (now
under Pearson Education).

Hα

Hγ

Hβ

Figure 2.2 When an H atom becomes excited, it absorbs exactly the amount of energy necessary to move the electron from the ground
state n = 1 to a higher orbit. The average lifetime of the electron in the excited state is of magnitude 10−8 s. Then the electron returns to
a lower orbit, for example one of those indicated, and emits a photon h�: h� = En −Em. This is the explanation of the Balmer series and
other spectral lines characteristic for hydrogen.
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On the basis of experiments on scattering � particles by a thin gold foil, Rutherford introduced his ‘classical’ atomic model
in 1911. According to his model, a hydrogen atom consists of small nucleus (a proton) surrounded by an electron which
rotates in a circular orbit around the nucleus like a planet around the Sun. This model could not explain the origin of the line
spectrum of the hydrogen atom.

The first explanation was given by Bohr when he published his atomic ‘semiclassical’ model in 1913 (Figure 2.2). He
combined Rutherford’s classical model with four postulates:

1. The dynamic equilibrium of the system nucleus and electron conforms with Newton’s mechanics.
2. Electrons can only stay in certain stationary orbits or stationary states around the nucleus.
3. The angular momentum of every electron round the centre of its orbit will in the stationary state of the system be equal to

an integer multiple of h/2�, where h is Planck’s constant:

L= n
h

2�
(2.2)

4. Only when an electron transition occurs from one stationary state to another is radiation emitted or absorbed with a
frequency � which is given by the relationship

�E = h�

where �E is the energy difference between the two states.

En (eV)n

0

−13.6

−3.4

−1.5

1

2

3

∞

Figure 2.3 Energy levels of the H atom.

The potential and kinetic energies of the electron can be calculated by classical mechanics. The energy of a free electron,
i.e. the electron at rest at an infinite distance from the nucleus (n = �), is chosen as zero on the energy scale. The sum is
equal to the total energy of the atom. It can be shown that the energy levels of the atom are (Figure 2.3)

En = −13�6 eV
n2

(2.3)

where
n = integer quantum number ≥1
En = energy of a hydrogen atom in the orbit n.

The lowest value of n is 1, which corresponds to the ground state, the lowest possible energy level of the hydrogen atom. For
the total energy E > 0, all energies are allowed as the kinetic energy of a free electron is continuous.
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Single-electron Atoms

Bohr’s fourth postulate in combination with Equation (2.3) led to excellent agreement with the measured wavelengths
of the Balmer series and the empirical Equation (2.1). A modified formula is valid also for other single-electron
atoms:

En = −13�6 eV× Z2

n2
(2.4)

where Z is the number of protons in the nucleus. An example is He+ with Z = 2.

2.2.2 Many-electron Atoms

Bohr initially assumed circular electron orbits. Later, Sommerfeld introduced elliptical orbits for the electrons and three
additional quantum numbers (denoted l, m1 and ms today) were defined to describe the orbit of each electron for better
agreement with experiments.

Even with this addition, Bohr’s theory could not successfully explain the structure of more complicated atoms and
their spectra, e.g. the spectra of the alkali metals, which are similar to the hydrogen spectrum. Many spectral lines
show a fine structure, i.e. instead of a single monochromatic line they consist of a narrow group of lines with slightly
different wavelengths, due to splitting of the energy levels involved. The Bohr model was unable to explain this
phenomenon.

A new theory, quantum mechanics, was introduced in the middle of the 1920s. It is a mathematically very advanced theory
and much more abstract and difficult to grasp and visualize than Bohr’s theory.

To overcome this complexity, some of the terminology of the Bohr model is still used, which is somewhat inadequate but
helps to give an comprehensible picture of the abstract model.

2.3 The Quantum Mechanical Model of Atomic Structure

The Bohr model of the atom represented a great breakthrough and it answered the old question of the origin of the spectral
lines. Bohr abandoned classical physics when he stated that no radiation is emitted by the electron in its stationary orbit
around the nucleus of the atom. He introduced quantum aspects in atomic physics with his fourth postulate. To understand the
development of quantum mechanics, it is necessary to describe the rapid and exciting development of physics at the beginning
of the 20th century.

2.3.1 Blackbody Radiation and Photoelectric Effect

At the end of the 19th century, there were several puzzling and challenging experimental results in physics that could not be
explained by classical physics. Two examples are blackbody radiation and photoelectric effect.

At any temperature T > 0 K, every object radiates electromagnetic waves. The radiation depends on the temperature and
on the character of the radiating surface. An object which absorbs all incident radiation, independent of wavelength, is called
a blackbody. An object at thermal equilibrium with its surroundings radiates as much energy per unit time as it absorbs. A
blackbody is a perfect emitter and absorber. No real body is a blackbody. A cavity with black walls and a small opening is
the best approximation of a blackbody.

The intensity distribution of the radiation emitted from such a cavity at a constant temperature T was studied by Kirchhoff
experimentally in 1860 and the intensity was plotted as a function of the frequency of the radiation (Figure 2.4). Rayleigh and
Jeans derived a theoretical expression for the energy density inside the cavity. They assumed that the energy density was a
continuous function of the frequency � and calculated the energy distribution using classical Boltzmann statistics (Chapter 4,
Section 4.3) in analogy with the distribution of kinetic energy of the molecules in a gas. The average energy of the ‘radiation
gas’ was calculated as kBT .

In Figure 2.4b, the Rayleigh–Jeans radiation law curve is included. The agreement with experimental values is good at low
frequencies but the disagreement at high frequencies is known as ‘the ultraviolet disaster’.

Max Planck proposed in 1900 that the energy is not a continuous function of the frequency but only discrete energy states
are allowed (Figure 2.5):

E = n×h� (2.5)
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where
n= a positive integer 1, 2, 3, 	 	 	
h= Planck’s constant
� = frequency of the radiation.
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Figure 2.4 Experimental intensity distribution of the radiation emitted from a cavity at constant temperature T as a function of frequency.

Planck’s law: E
��d� = 8��2

c3

h�d�

e
h�
kBT −1

(a) Experimental results. (b) Theoretical curves of Rayleigh–Jeans and Planck. Reproduced with

permission from I. Lindgren, J. Nilsson, O. Beckman, E. Karlsson and T. Kivikas, Fysik 3: Kvantfysik. © 1971 Almqvist & Wiksell
Forlag AV, Stockholm.

Figure 2.5 A quantum h� is regarded as a small group of waves which amplify each other by constructive interference within a limited
region and destroy each other by destructive interference elsewhere in space.

As can be seen in Figure 2.4, Planck’s radiation law gives excellent agreement with the experimental curve. This was the
first introduction of a quantum of radiation and a complete break with classical physics. Planck’s hypothesis was strongly
supported when Einstein in 1905 published a paper on the photoelectric effect, described in Figure 2.6. It could easily be
explained in terms of Planck’s quantum theory.

Figure 2.6 Photoelectric effect. Incident monochromatic light hits a metal surface. If the frequency � of the light exceeds a particular
frequency �0, electrons are emitted from the metal surface. The velocities of the electrons can be determined from the deviation in a known
magnetic field.

Einstein assumed that the incident light behaved like a stream of light quanta or photons, each with energy h�, and not like
a wave. He set the minimum energy �, required to release an electron from a metal surface, equal to the energy h�0, of the
quantum, which is just able to knock out the electron, i.e. �= h�0. Einstein applied the energy law to the process:

h� = �+ mv2

2
= h�0 + mv2

2
(2.6)

where v is the velocity of the electron and � is called the work function. The last term represents the kinetic energy of the
released electron, which equals h�−h�0, where � > �0.



50 Physics of Functional Materials

If  < �0, no electrons are emitted even if the intensity of the light is increased substantially. This is in excellent agreement
with the experimental observations, which are impossible to explain by classical physics.

On the other hand, there are numerous experiments which show the wave character of light and other electromagnetic
radiation, particularly all sorts of interference experiments. It was necessary to accept the duality of electromagnetic radiation.
It has simultaneously wave and particle properties.

2.3.2 Matter Waves

Electromagnetic radiation behaves both as waves (interference experiments) and as particles (photoelectric effect). Next
question to ask was if the opposite also is true. Can a particle, for example an electron, behave like a wave? In 1923, de
Broglie boldly suggested that all matter has both wave and particle properties. He started with the momentum of a photon:

p= h�

c
= h

�
(2.7)

and assumed that the equation p= h/� is valid for both waves and particles. A particle has a momentum equal to mv, which
gives the wavelength of the matter wave:

�deB = h

mv
(2.8)

where
v = velocity of the particle
�deB = de Broglie wavelength of the particle, which moves with the velocity v
h= Planck’s constant
m= mass of the particle.

× × × × × ×
→

× × × ↓ F × ×

× × R × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

u
B

Figure 2.7 Deviation of a beam of electrons in a magnetic field. The electrons behave like particles. The radius of the circle is determined
by the relationship mv2/R= Bev.

Figure 2.8 Diffraction pattern on passing a beam of electrons
through an Al foil. The de Broglie wavelength of the electrons
was the same as the wavelength of the X-rays in the experiment in
Figure 2.9. Reproduced from F. Blatt, Modern Physics. © McGraw-
Hill Inc. (1992).

Figure 2.9 Diffraction pattern obtained by passing monochro-
matic X-rays through the same Al foil as in the experiment shown in
Figure 2.8. Reproduced from F. Blatt, Modern Physics. © McGraw-
Hill Inc. (1992).
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The expression mv of the momentum is often denoted by p. It is valid in both classical and relativistic mechanics. In the
latter case, m represents the relativistic mass of the particle.

de Broglie’s hypothesis was confirmed by two famous experiments. The wave character of electrons was demonstrated by
Davisson and Germer in the USA in 1927 and independently by G. P. Thomson (son of J. J. Thomson, who discovered the
electron in 1897) in England in 1928 by electron diffraction through a thin metal foil (Figure 2.8). Their experiments showed
excellent agreement with Equation (2.8) and the resemblance with X-ray diffraction (Figure 2.9) is striking.

The electron distribution behind the foil in Figure 2.8 can be calculated as a diffraction phenomenon if the wave properties
of the moving electrons are considered. The result can be verified experimentally on a screen or a photographic plate.

Alternatively, the electrons can be regarded as particles and the electron distribution behind the foil can be found by
statistical calculations. The electrons can be registered by a mobile particle detector at various points in the plane of the
screen. The statistical distribution of a large number of electrons agrees with the diffraction pattern. The probability of finding
electrons at the bright areas of the diffraction pattern is high whereas few electrons hit the detector at the dark positions of
the diffraction pattern.

A beam of electrons shows wave properties during propagation. On interaction with matter, for example a photographic
plate or particle detector, the electrons behave like particles. High-speed electrons are relativistic, as is shown in the box.

Relativistic Mechanics

According to the theory of special relativity, we have the following fundamental equations:

Etotal =mc2

Ekin =mc2 −m0 c
2

p=mv

where

m= m0√
1− v2

c2

Classical mechanics is a special case of relativistic mechanics which is valid when v << c. Relativistic effects usually
have to be considered when v > 0�1c = 3×107 m/s. The corresponding energy of an electron is ∼ 2�5 keV.

2.3.3 Wave Mechanics and Quantum Mechanics

The discovery of the particle–wave duality led to a fruitful period of physics and is closely associated with the development
of two new theories, wave mechanics and quantum mechanics.

Schrödinger concentrated on de Broglie’s matter waves and developed the theory of wave mechanics. In 1925 he proposed
a general wave equation for the determination of the wavelength of the matter wave of a moving particle (page 53). This
equation is fundamental in wave mechanics and can be applied to all sorts of waves and particles.

Heisenberg concentrated on the particle or quantum aspect and discussed the impossibility of the simultaneous, infinitely
accurate determination of both the position and momentum of a moving particle. He published his fundamental uncertainty
principle (page 54) in 1927.

Quantum mechanics concentrates on the quantization of various physical quantities of particles whereas wave mechanics
describes the particle as a matter wave. In fact, it soon became clear that the two theories are two aspects of the same
fundamental theory, nowadays generally called quantum mechanics. The two theories proved to be different mathematical
formulations of the same physical theory.

Many other great physicists have contributed to the development of quantum mechanics, among them Born, Jordan, Dirac
and Pauli. Born’s interpretation of the wave function, which deals with the probability of finding the electron within a certain
volume element (page 54), is the link between Heisenberg’s uncertainty principle and Schrödinger’s wave mechanics.

Quantum mechanics has been applied to photons, electrons, protons, neutrons, atoms, molecules and even macroscopic
particles with great success. Classical mechanics is a special case of quantum mechanics just as geometric optics is a special
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case of wave optics. Classical mechanics holds for large particles, for example a moving ball, but fails for small particles
in high-speed motion. The de Broglie wavelength is very small for a heavy particle [Equation (2.8)] and no deviations from
classical mechanics can be observed.

Quantum mechanics is often considered to be a difficult subject. The main trouble, apart from mathematical difficulties, is
our experience of the macroscopic world, which is difficult to abandon in the microscopic world, where the normal laws of
mechanics fail.

2.3.4 The Schrödinger Equation

To understand the motion and distribution of the electrons in atoms and molecules, we have to consider their wave properties.
A beam of electrons passing a thin metal foil (Figure 2.8) is an example of a nonstationary process. This general case

corresponds to travelling matter waves. In this book we intend to apply quantum mechanics only to electrons in stationary
states in atoms and molecules. Stationary states correspond to standing waves. Hence electrons in stationary states in atoms
and molecules will be treated as standing matter waves.

Classical Equations for a Standing Wave

The general differential equation of a standing mechanical or acoustic wave in one dimension can be written as

�2s

�t2
= v2 �

2s

�x2
(2.9)

The solution of Equation (2.9) is

s = s0 sin
�x

v
sin�t (2.10)

where
s = displacement from the equilibrium position
s0 = amplitude of the wave
t = time
v = velocity of the wave
x = coordinate
� = frequency of the wave
�= wavelength
�= angular frequency of the wave = 2�� = 2�

v

�
.

Equation (2.10) can be written in a more general form as

s = �
x� sin�t (2.11)

where �
x� is the amplitude of the wave at position x.
If we introduce this expression for s and its derivatives into Equation (2.9), we obtain after division by sin�t

v2 �
2�

�x2
= −�2� (2.12)

If � is replaced by 2�v/�, Equation (2.12) can be divided by v and we obtain

�2�

�x2
+ 4�2

�2
� = 0 (2.13)

where � is a function of position x.
The general equation of a standing wave in three dimensions can be written as

�2�

�x2
+ �2�

�y2
+ �2�

�z2
+ 4�2

�2
� = 0 (2.14)

where the amplitude � of the wave is a function of x, y and z.
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The Schrödinger Equation

In order to determine the stationary energy states of the system, we have to set up the wave equation in analogy with the
equation of a vibrating string. The wave function � is analogous to the displacement s of a point on the vibrating string from
its equilibrium position but it has a different significance. � is a function of both time and position.

The wavelength � is in this case the matter wavelength of the electron, i.e. the de Broglie wavelength defined as in
Equation (2.8). If we introduce �deB instead of � into the time-independent Equation (2.14), we obtain

�2�

�x2
+ �2�

�y2
+ �2�

�z2
+ 4�2m2v2

h2
� = 0

If we substitute the kinetic energy mv2/2 by the total energy E minus the potential energy Epot and introduce the symbol
� = h/2�, we obtain

�2�

�x2
+ �2�

�y2
+ �2�

�z2
+ 2m

�2

(
E−Epot

)
� = 0 (2.15)

Equation (2.15) is the differential equation of amplitude of the matter wave. Epot is a function of x, y and z. When
Equation (2.15) is solved, the amplitude � of the matter wave is obtained as a function of x, y and z.

The displacement of a standing wave also depends on time. In Equations (2.10) and (2.11), we used a sine function. The
total time-dependent wave function � of a matter wave also varies periodically with time. Instead of a sine function for the
time dependence, we will use an exponential function, which facilitates calculations, and obtain

� = �e−2�i�t (2.16)

where

� = total wave function
� = amplitude of the wave function
� = frequency of the matter wave
t = time.

If we introduce the expression for � in Equation (2.16) and its partial derivatives with respect to t and x into the three-
dimensional form of Equation (2.9), we obtain the general differential equation for � :

− �
2

2m

(
�2�

�x2
+ �2�

�y2
+ �2�

�z2

)
+ (E−Epot

)
� = i�

��

�t
(2.17)

This is the Schrödinger equation, published in 1925, the fundamental equation in quantum mechanics which replaces the
equations of classical mechanics for atomic systems.

Equation (2.17) is to be solved for atomic systems. According to de Broglie, the frequency � of the matter wave is related
to the total energy E of the system by the relationship

E = h� (2.18)

Hence we can rewrite Equation (2.16) as

� = � e−i E
�
t (2.19)

Often it is sufficient to solve Equation (2.15) and obtain the amplitude � of the matter wave. This is the case for standing
matter waves.

Equation (2.17) is often called the time-dependent Schrödinger equation and Equation (2.15) as the time-independent
Schrödinger equation.
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2.3.5 Physical Interpretation of the Wave Function �

The discussion on pages 50–51 indicates that the position of an electron is closely related to statistics and probability. In
quantum mechanics it is impossible to tell the exact position of an electron. The best one can do is to predict the probability of
finding the electron within a given volume element. This is an essential feature of quantum mechanics, which was indicated
in the discussion earlier so far but has no concrete expression.

It is known from elementary wave theory that the square of the amplitude is proportional to the intensity of a wave. In
1926, Born suggested, in analogy with this, that the value of the wave function � within a volume element dxdydz at position
(x, y, z) is related to the probability of finding the particle within the volume element:

• The probability of finding a particle within a volume element dxdydz is

�� �2 dxdydz=�� ∗dxdydz (2.20)

where � ∗ is the complex conjugate of � .
This definition can be used to normalize the wave function:

∫∫∫
space

�� ∗dxdydz= 1 (2.21)

In the special case of standing waves, �� ∗ can be replaced by ��∗ because we have, according to Equation (2.16),

�� ∗ = �e−2�i�t�∗e+2�i�t = ��∗ (2.22)

Hence it is sufficient in the case of stationary states to deal with the amplitude function � instead of� and use the normalization
equation: ∫∫∫

space

��∗dxdydz= 1 (2.23)

The probability concept is a most useful interpretation of the wave function. The concept has already been used in Chapter 1
on page 6. As we will see later, it can be used to find the electron probability distribution around the nucleus of the atom and
to find selection rules for transition from one orbital to another in an atom or molecule.

In all atomic and molecular applications, only stationary states are considered. Hence from now on we will only discuss
the solutions of the time-independent Schrödinger equation and use the expression ��∗dxdydz to calculate probabilities in
atomic and molecular systems.

2.3.6 The Heisenberg Uncertainty Principle

Independently of Schrödinger’s theory, Heisenberg analysed the possibilities of determining the position and momentum of
a moving particle simultaneously. His result, published in 1927, is an essential part of quantum mechanics, by no means in
contradiction with wave mechanics. Born’s interpretation of the wave function represents a link between Schrödinger’s wave
mechanics and Heisenberg’s quantum mechanics. The outlines of his theory will be discussed briefly below.

Consider a particle with mass m which moves with the velocity v. According to de Broglie (page 50), its momentum can
be written as mv = h/�deB, where �deB is the de Broglie wavelength of the moving particle.

Accurate measurement of the wavelength requires an extended wave. If we want an exact value of the wavelength or the
momentum of the particle, then the position of the particle is completely undetermined according to wave mechanics. The
probability of finding the particle within a given volume element d� is �� ∗d� or ��d�. It is the same everywhere as the de
Broglie wave has an infinite extension.

Similarly, if we wish to define the position of a particle very accurately, the wave function must differ from zero only at a
given point. This can only be achieved by overlapping of many sine waves of all wavelengths from zero up to infinity. This
makes the wavelength and hence the momentum completely uncertain:

• Position and momentum cannot be measured exactly simultaneously.

This is a consequence of Heisenberg’s uncertainty principle, which is closely related to wave mechanics:

�y�py ≥ h

4�
(2.24)
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where
h= Planck’s constant
�y = uncertainty in position (standard deviation)
�py = uncertainty in momentum (standard deviation).

The Heisenberg uncertainty principle is also valid for another pair of quantities, energy and time:

�E�t ≥ h

4�
(2.25)

Because it is impossible to determine the position and momentum of an electron simultaneously, well-defined electron
orbitals are impossible. The only possibility is to calculate the probability of finding an electron within a certain volume
element as a function of position.

2.3.7 Solutions of the Schrödinger Equation. Particle in a Box

The Schrödinger equation is soluble if the following conditions are fulfilled:

� must everywhere be (2.26)

• single-valued
• finite
• continuous (both � and its derivative)
• and vanish at infinity (if the particle position is finite).

If and only if these conditions are fulfilled is the Schrödinger equation soluble, not for arbitrary values of E, but for special
values of E only. These values, which are called eigenvalues, can be derived from the conditions given above.

The corresponding wave functions are called the eigenfunctions. They represent the stationary states of the wave motion,
for which the waves do not cancel owing to destructive interference.

In order to demonstrate clearly that the conditions (2.26), in spite of their nonmathematical form, lead to concrete values of
the eigenvalues E, we will discuss an electron in a one-dimensional box as a simple example.

Example 2.1

Epot

I II III

Epot = 0
0 L

x

(a)

An electron is trapped in a rectangular well and can move back and forth within the well. The potential energy Epot is zero
within the well and very high outside the well.

Use quantum mechanical calculations to find the eigenvalues of the electron, i.e. find the possible energy levels E of the
electron in the box.
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Solution:

The electron can move in the limited region 0 ≤ x ≤ L. According to classical physics the electron is trapped within the box.
The probability of finding the electron within regions I and III is zero.

To obtain the quantum mechanical probability of finding the electron within an interval dx we have to solve the Schrödinger
equation:

�2�

�x2
+ 2m

�2

(
E−Epot

)
� = 0 (1′)

for each of the three regions.
For region II we have

�2�

�x2
+ 2m

�2

E−0�� = 0 (2′)

The solution of Equation (2′) is

�II = A sin

(√
2mE
�2

x+�

)
(3′)

where A and � are two constants, which will be determined by boundary conditions.
Inside region I, the potential energy Epot is larger than the total energy E. In this case we write the Schrödinger equation as

�2�

�x2
− 2m

�2

(
Epot −E

)
� = 0 (4′)

Equation (4′) has a solution which is the sum of two exponential functions:

� = B exp

⎡
⎣
√

2m
Epot −E�

�2
x

⎤
⎦+C exp

⎡
⎣−

√
2m
Epot −E�

�2
x

⎤
⎦ (5′)

where B and C are constants. At x = −� the function must vanish. For this reason, the constant C must be zero.

�I = B exp

⎡
⎣
√

2m
Epot −E�

�2
x

⎤
⎦ (6′)

� must be continuous and single-valued everywhere and even at the junction between regions I and II. This condition is
sketched graphically in the figure below on the right.

I II

(b)

I II

(c)

This condition results in the relationship �I = �II at x = 0 or

B = Asin� (7′)

It can be seen from Equation (6′) that if Epot is very large the amplitude �I → 0 when x approaches zero from the negative
side. The continuity condition requires that �I
0�= �II
0� or 0 = Asin�. As A 
= 0, � must be zero and we obtain from (3′)

�II = Asin

(√
2mE
�2

x

)
(8′)
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Equation (7′) shows that if � = 0, B also becomes zero. This means that if Epot = � the probability of finding the electron
outside the box is zero.

II IIII

x = 0 x = L

(d)

x = 0

I II III

x = L

(e)

Analogously, there must not be a discontinuity at x = L which gives the relationship �II = �III = 0 for x = L:

�II = Asin

(√
2mE
�2

L

)
= 0 (9′)

Hence the standing wave within the rectangular well has nodal points at x = 0 and x = L (figure above on the right). This
condition can be written as √

2mE
�2

L= n� (10′)

where n is an integer >0. From Equation (10′), we obtain the resulting quantization condition for the energy.

Answer:

The only possible energy levels of the electron are

E = h2

8m
n2

L2

where n is a positive integer.

Example 2.1 shows that the eigenvalues, i.e. the discrete energy values, are a natural consequence of the solution of
the Schrödinger equation. Similarly, quantum numbers appear in the solutions of � in atomic and molecular systems. The
mathematical calculations are far more complicated in these cases than in Example 2.1 and will only be described briefly in
the text.

2.4 Solution of the Schrödinger Equation for Atoms

2.4.1 The Hydrogen Atom

The principles of solving the Schrödinger equation for single-electron atoms has been sketched on pages 53 and 55. Here the
solution will be discussed for the concrete case of the hydrogen atom and hydrogen-like ions.

The basis of the calculations is Equation (2.15) on page 53. In this case, the potential energy of the electron is equal to

Epot = − 1
4��0

e×Ze

r
(2.27)

Inserting this value into Equation (2.15), we obtain

��2

�x2
+ ��2

�y2
+ ��2

�z2
+ 2m

�2

(
E+ Ze2

4��0r

)
� = 0 (2.28)

This differential equation can be solved and gives values of �, which are single valued, continuous and finite, for all positive
values of E but only for the following negative values of E:

E = − me4


4��0�
2 ×2�2

Z2

n2
(2.29)
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where
m = mass of the electron
e = charge of the electron
� = Planck’s constant/2�
Z = number of protons in the nucleus of the atom
n = positive integer.

2.4.2 Quantum Numbers and Their Interpretation

The Principal Quantum Number

The principal quantum number is represented by n. If the values of the constants are inserted into Equation (2.29), it becomes
identical with the old Bohr equation [Equation (2.4) on page 48]. In this case, the Bohr model and the quantum mechanical
model give the same result.

For each eigenvalue of the Schrödinger equation there is normally more than one eigenfunction. Each eigenfunction
represents an orbital. These eigenfunctions are distinguished by two additional quantum numbers, l and ml, which appear in
the solutions of �.

The Azimuthal Quantum Number

The quantum number l is the azimuthal quantum number. It can have the values

l= 0�1�2� 	 	 	 � 
n−1� (2.30)

Apart from the hydrogen-like atoms, there are small differences in energy between states with different l values and equal n.
The value of l influences the shape of the orbital and its angular momentum. All orbitals with l = 0 are spherically

symmetrical. Orbitals with higher l values are more complicated. A simple example (l= 1) is given on page 68.

2π
h

m ν
r

m ν × r ⏐l⏐ = n × 

Figure 2.10 The classical angular momentum of a particle with
mass m in a circular orbital with radius r is mv × r. According
to Bohr’s postulate 3 on page 47 the angular momentum of the
electron in its orbit (fat circle) is a vector of length �l� = n×h/2�.

z

Orbital angular
momentum of
the electron

l (l + 1)l = h

Figure 2.11 The quantum mechanical angular momentum vector
l has the length �l� = �

√
l 
l+1�. This l vector precesses incessantly

around an axis of constant direction. Its maximum projection on the
axis is l×�.

The azimuthal quantum number can be given a physical interpretation, which is easy to imagine concretely. It can be
interpreted as a measure of the quantum mechanical angular momentum of the electron in its orbital. The quantum mechanical
angular momentum is equal to �

√
l 
l+1� (Figure 2.11).

The classical angular momentum n×h/2� (Bohr’s postulate 3, page 47) cannot represent the angular momentum because
this would contradict Heisenberg’s uncertainty principle. Both direction and size cannot have exact values simultaneously.
The quantum mechanical angular momentum has an exact value, whereas its direction is totally undetermined, owing to the
precession motion of the l vector. This is in agreement with the uncertainty principle.

The l values are obviously very characteristic of the electron orbitals in the atom. A special terminology has been introduced
to represent them as single letters, shown in Table 2.1.
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Table 2.1 Nomenclature for electron orbitals.

l 0 1 2 3
Name s p d f

The Magnetic Quantum Number

The quantum number ml is called the magnetic quantum number. It can have the values

ml = 0�±1�±2� 	 	 	 �±l (2.31)

which means 2l+1 different values. It can be interpreted in the following way. A result of quantum mechanics is that

• The orbital angular momentum in atoms is space quantized.

The quantization is defined by the magnetic quantum number. Allowed orientations of the orbital angular momentum vector
are those which give a projection on a fixed direction equal to the magnetic quantum number ml multiplied by �, i.e. h/2�
(Figure 2.12).

z

ml h

2 h

h

 = h l (l + 1)l

0

−h l = 2

−2 h ml = 2, 1, 0, − 1, − 2 

2l + 1 = 5

Figure 2.12 Each energy level splits into 2l+ 1 different energy levels owing to different directions of the angular momentum vector.
The components of l in the direction of the magnetic field is quantized and has the value ml×�. The directions correspond to orbitals with
slighly different energies. Hence each l level splits into 2l+1 slightly different energy levels in a magnetic field.

Magnetic moment

μ

I

Single coil

S

N

Figure 2.13 Magnetic moment of a single coil with current I .

The name of the third quantum number indicates that magnetic effects must be involved. This topic will be discussed below.
An electron in its orbit corresponds to a circular current (a coil with one round). The circular current is equivalent to a

small magnet or rather a magnetic plate with a magnetic moment, proportional to the current (Figure 2.13).
In analogy with this, an orbital in an atom can be regarded as a single coil with a negative current and consequently as a

small magnetic plate (Figure 2.14) with a magnetic moment in the opposite direction to that in Figure 2.13.
Each orbital in an atom is characterized by its principal quantum number n and its azimuthal quantum number l. As

explained on page 58, the latter defines the size of the orbital angular momentum vector. In analogy with Figure 2.10, the
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μ l

Orbital magnetic moment

S

N

Figure 2.14 Orbital magnetic moment of an electron.

Orbital angular momentum

Orbital magnetic moment

μl

l (l + 1)l = h

Figure 2.15 Orbital angular momentum and orbital magnetic moment of
an electron.

direction is that shown in Figure 2.15. It is also important to note that the orbital angular momentum and the orbital magnetic
moment always have opposite directions.

Epot Position of μ

μ B π

ϕ

0 π /2

−μ B 0
B

↑

↓

←

Figure 2.16 Potential energy of a magnet with magnetic moment � as a function of orientation. The magnetic potential energy is defined
as the negative scalar product of the magnetic moment and the strength of the magnetic field.

Because the �l vector is rigidly coupled to the orbital angular momentum vector (Figure 2.15) and the orbital angular
momentum is space quantized, the orbital magnetic moment vector must also be space quantized in a magnetic field.

In the absence of a magnetic field, all orbitals with the same principal quantum number n and azimutal quantum number l
have the same energy, independent of the orientation of the orbital angular momentum.

On the other hand, in a magnetic field B all magnets have potential energies which depend on their orientation relative to
the magnetic field (Figure 2.16). This can be written as

Epot = −� ·B = −�B cos� (2.32)

where � is the angle between the magnetic moment and the B field. Hence Epot depends on the direction in space of �.
Figure 2.16 shows the values of Epot for some special positions of �.

Energy

B = 0 B

Figure 2.17 Splitting of degenerate energy levels in a magnetic field. The figure shows the energy levels of the five l orbitals (ml = 0,
±1, ±2) indicated in Figure 2.12, without and with a magnetic field of strength B.

If the magnet is free to move, it orients itself in the direction of the magnetic field as this position correspond to the minimum
potential energy [−�B
�= 0�]. A maximum effort has to be made to turn the magnet in the opposite position [+�B
�= ��].
This is also valid for the orbital magnet moment with �= �l. The potential energies of the three positions in Figure 2.16 will
be Epot = 0, ±�lB.

Hence orbitals with different values of their magnetic quantum numbers have different energies in a magnetic field. In the
presence of an external magnetic field B, the 2l+1 orbitals with different orientations in Figure 2.12 have slightly different
energies. The single energy level splits into 2l+1 energy levels in a magnetic field (Figure 2.17). The equidistant splittings
between successive levels are proportional to the strength of the magnetic field B. If the magnetic field is zero, all the 2l+1
energy levels coincide. They are said to be degenerate.
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The introduction of the magnetic quantum number ml makes it possible to explain the very puzzling fact that spectral lines
split into narrow multiplets in a magnetic field. This phenomenon is called the Zeeman effect, which is treated on pages 69–71.

The Spin Quantum Number

The fourth quantum number, which characterizes the orbital electrons in the atoms, is the spin quantum number, postulated
and introduced by Uhlenbeck and Goudsmit. By use of the electron spin, several unexplained phenomena could be explained,
among them the Zeeman effect and the periodic table of the elements.

Intrinsic angular
momentum of
the electron   

s (s + 1)h

Spin vector  

Rotating electron

Figure 2.18 Intrinsic angular momentum of the electron.

Each electron in an orbital behaves as if it had an intrinsic rotation (Figure 2.18). Hence the rotating electron must have
an intrinsic angular momentum. In analogy with the orbital angular momentum �l� = h/2�×√l 
l+1� or �

√
l 
l+1�, the

intrinsic angular momentum of the electron can be described by a so-called spin vector: �s� = h/2�×√s 
s+1� or �
√
s 
s+1�,

where s is the spin quantum number.1 The value of the spin s is a half integer:

s = 1/2 (2.33)

Like the orbital angular momentum, the spin vector is space quantized in a magnetic field. Two rotation directions are
possible, as shown in Figures 2.19 and 2.20, which correspond to

ms = ±1/2 (2.34)

The spinning of the electron corresponds to electrical charge in motion and causes an intrinsic magnetic moment �s of the
electron.

The spin vector is coupled to the orbital angular momentum vector, either parallel or antiparallel. Hence each (n, l, ml) orbital
splits into two levels with slightly different energy. ms = ±1/2 is often symbolized by arrows: spin up = ↑ and spin down = ↓.

s (s + 1)

s (s + 1)

 = hs

Spin vector

N

S

N

S

μ s

μ s

 = hs

Spin vector

Figure 2.19 Intrinsic angular momentum vector (electron spin) and magnetic
moment vector of the electron.

z

½⋅h

s (s + 1)h

−½⋅h
s = ½ 2s + 1 = 2
ms = ± ½

Figure 2.20 Space quantization of the spin vector.

1 The spin quantum number s (italic) should not be confused with the letter s (roman) in Table 2.1 on page 59. The latter is merely a letter designation of a
special type of electron orbital.
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2.4.3 Quantum Numbers of Many-electron Atoms

The Pauli Principle

The number of possible orbitals in a hydrogen atom and in hydrogen-like ions is determined by the four quantum numbers n,
l, ml and ms. Another consequence of quantum mechanics is that

• In an atom no more than one electron can have the same set of values of the four quantum numbers n, l, ml and ms.

This is the Pauli exclusion principle. This important principle makes it possible to understand the theoretical background of
the periodic table of the elements and the existence of shells and subshells of the electrons around the atom nucleus.

Table 2.2 gives the theoretical background to the periodic system of the elements, which was primarily published in 1869
by Mendeleev, based on an empirical knowledge of the chemical properties of the elements.

Quantum Numbers of Many-electron Atoms

The chemical properties of atoms are determined by the outer electrons. When the atomic number Z increases, the electrons
successively fill the empty orbitals. The orbitals with the lowest energy are filled primarily as equilibrium corresponds to
lowest possible energy of the atom.

Electron Configuration
As a simple example of an electron orbital description of an atom, we choose sodium, which has the atomic number 11 and
hence 11 orbital electrons. The electron configuration of Na (Figure 2.21) can be written as 1s2 2s2 2p6 3s. The first figures
are the principal quantum numbers and the letters s and p represent the value of the azimuthal quantum number according to
Table 2.1 on page 59.

Na

Figure 2.21 Configuration of the Na atom.

The configuration of the electrons around the nucleus of an atom is described by providing each orbital designation with a
superscript which indicates the number of electrons in the respective orbital in question.

Coupling Between Orbital Angular Momentum and Electron Spin
It is not possible to obtain exact solutions of the Schrödinger equation for many-electron atoms, but the theoretical background
will be the same as that given above. The total orbital angular momentum L is obtained as the resultant of the angular
momentum vectors li of all the electrons. The total spin vector S is the vector sum of the spin vectors si of all the electrons.
The vector addition is greatly facilitated by the fact that the vector sum of the orbital angular momentum and the resultant
spin are zero for filled shells and subshells.

The lengths of the L and S vectors are calculated using Equations (2.35) and (2.36), respectively:

�L� = �

√
L
L+1� (2.35)

�S� = �

√
S 
S+1� (2.36)

where � = h/2�.



Table 2.2 Maximum numbers of electrons in orbitals according to the Pauli principle.

n

n 1 2 3 4

l 0 0 1 0 1 2 0 1 2 3

Type of
orbital

s s p s p d s p d f

ml 0 0 −1 0 1 0 −1 0 1 −2 −1 0 1 2 0 −1 0 1 −2 −1 0 1 2 −3 −2 −1 0 1 2 3

ms ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2 ±1/2

No. of
electrons

2 8 18 32

Name of
shell

K L M N
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J (J + 1)

S (S + 1)

L (L + 1)

MJ h

h

h

h

Figure 2.22 L–S coupling in atoms. The L and S vectors precess around the resultant J vector. J is the total angular momentum. The
vector J precesses around a given axis.

The vectors L and S are coupled to each other in analogy with the l and s vectors in a single electron orbital (page 61).
The coupling occurs in such a way that the vectors L and S precess around the resultant vector J (Figure 2.22). The
quantum number J is an integer or a half integer depending on whether the quantum number S is an integer or half
integer:

J = L+S� L+S−1� L+S−2� 	 	 	 � �L−S� (2.37)

The vector J also performs a precession motion.
Hence there are 2S+ 1 alternatives owing to the electron spin, which is the multiplicity of the energy level. The resultant

precesses around a fixed direction and does not contradict Heisenberg’s uncertainty priciple. 2S+1 is the multiplicity of the
energy level.

In a magnetic field, the resultant J vector is space quantized in analogy with the space quantization of the l vector of
a single electron orbital. The projection of the vector J equals MJ� where the magnetic quantum number MJ can have the
values

MJ = J� J −1� 	 	 	 �0� 	 	 	 �−J (2.38)

Nomenclature
To describe the energy state of an atom, a terminology corresponding to s, p, d, f, 	 	 	 , for an orbital electron has been
introduced to express the values of L and S. An energy state is called S, P, D, F, 	 	 	 when L= 0, 1, 2, 3, 	 	 	 . The multiplicity
2S+1 is used as a superscript on the S, P, D, F, 	 	 	 states to indicate their multiplicity. Some common examples are given
in Table 2.3.

Table 2.3 Electron configurations and electronic states of some atoms.

Atom Electron configuration L S Possible electronic states

H 1s 0 1/2 2S
He 1s2 0 0 1S
O 1s2 2s2 2p4 0, 1, 2 0, 1 1S, 3P, 1D
Na 1s2 2s2 2p6 3s 0 1/2 2S
Al 1s2 2s2 2p6 3s2 3p 1 1/2 2P
Cl 1s2 2s2 2p6 3s2 3p5 1 1/2 2P

The resultant J is often given as a subscript after the capital letter, for example the doublet 2P consists of the levels 2P3/2
and 2P1/2

.
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Energy Levels
The energy levels of the orbitals can be calculated by accurate measurements of the spectral lines of the atoms and identification
of their upper and lower levels. The behaviour of the lines in a magnetic field supports the analysis (page 69).

The energy difference of an ‘electron jump’ from an upper energy level to a lower energy level, which defines the frequency
of the emitted spectral line, is simply

h� = E′ −E′′ (2.39)

where
� = frequency of the photon
E′, E′′ = energy of the upper and lower energy level, respectively.

2P3/2
2P1/2

λ = 589.6 nm 589.0 nm

2S1/2

Figure 2.23 Splitting of the yellow doublet line of Na.

The multiplet levels E′ and E′′ (doublets, triplets, 	 	 	 ) are often so close that they appear as a single energy state. The spectral
lines that involve such states appear as single lines in low resolution but consist of several lines. An example is the yellow
line of sodium (Figure 2.23). The lines are said to have a fine structure.

2.5 Quantum Mechanics and Probability: Selection Rules

z

θ
l (l + 1)l = h

Figure 2.24 The precession motion of the l vector of an electron illustrates Heisenberg’s uncertainty principle.

Some quantities in quantum mechanics have exact values without violating Heisenberg’s uncertainty principle. The orbital
angular momentum of an electron or an atom has an exact value. Consequently, it is impossible to determine the direction in
space of the vector (page 58). The angle � in Figure 2.24 is exact but the vector precesses around the z axis and its direction
cannot be determined.

Another example is the quantum mechanical width �E of energy states in the atom. In the ground state the mean lifetime �t
is infinite, which allows �E = 0 according to Heisenberg’s uncertainty principle (pages 54–55). All excited states, however,
have a finite quantum mechanical width.
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Example 2.2

An atom is excited when a valence electron in its lowest orbital is moved to a higher orbital. The average lifetime in
the excited state is of the magnitude 10−8 s. After this time it returns to the lowest orbital and emits a photon. Calculate
the quantum mechanical uncertainty in energy of the upper orbital and the uncertainty in the frequency of the emitted
photon.

Solution:

In this case, Heisenberg’s uncertainty principle can be written as [Equation (2.25) on page 55]

�E′ ≥ h

4��t
= 6�6×10−34 J s

4�×10−8 s
≈ 5×10−27 J

We also have

h� = E′ −E′′ ⇒ h�� = �E′

which gives

h�� = h

4��t
⇒ �� = 1

4�×�t
= 1

4�×10−8
≈ 107s−1

Answer:

The quantum mechanical uncertainty in the energy level is of magnitude 5 × 10−27 J. The corresponding uncertainty in the
frequency of the emitted photon is of magnitude 107 s−1.

2.5.1 Electron Density Distribution

The exact position of an electron in an orbital cannot be given in the classical sense. Instead, the electron distribution can be
described by a ‘probability cloud’ or probability density as a function of position around the nucleus of the atom. The electron
density distribution can be described as the probability of finding the electron inside a given volume element by studying the
function [compare Equation (2.16) on page 53]:

�� ∗d� = �e−2�it�∗e+2�itd� = ��∗d� (2.40)

This function can be illustrated graphically. If we choose the volume element d� as a spherical shell 4�r2dr, we can illustrate
the probability of finding the electron in a special orbital in any direction at a distance from the nucleus within the interval
r to r+dr graphically as a function of r . Figure 2.25 give some simple examples. If l = 0 the electron density distribution
shows spherical symmetry.

The electron clouds are three-dimensional. Figure 2.26 shows a sketch of a cross-section of the electron clouds for the s
orbitals given in Figure 2.25.

The values of r in Figure 2.25, which corresponds to the most likely probability, has approximately the same magnitude as
the major semi-axis of the corresponding elliptical Bohr orbit.

The electron distribution is shown in two different ways in Figures 2.25 and 2.26. A third method, which has the advantage
of space visualization, is used in Figure 2.27a. This shows schematically the wave functions of an s electron and three
p-electrons, i.e. the configuration sp3. Figure 2.27b shows the corresponding values of ��∗.
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Figure 2.25 Probability density distribution of the electron of the H atom for n= 1, 2, 3 as a function of r. 1 Å = 0�1 nm or 10−10 m. The
vertical axis is double. It represents the values of r2��∗ (full curves) and ��∗ (dotted curves). The vertical marks on the r axis indicate
the major semi-axis of the corresponding Bohr orbits for n= 1, 2, 3. Reproduced from G. Hertzberg, Atomic Spectra and Atomic Structure,
Dover, 1944.

(a) (b) (c)

Figure 2.26 Electron clouds for (a) n= 1, (b) n= 2 and l = 0 and (c) n= 3 and l = 0. Reproduced from G. Hertzberg, Atomic Spectra
and Atomic Structure, Dover, 1944.
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Figure 2.27 (a) Wave functions of an s electron and three p electrons. The figure shows that the wave functions of the p electrons are
perpendicular to each other.
(b) ��∗ of the s and p electrons. The three p wave functions in (a) and (b) overlap partly but have been separated into three figures for
better visualization. © 1971 Ingvar Lindgren, Jan Nilsson, Olof Beckman, Erik Karlsson, Toivelemb Kivikas (Published by Almqvist &
Wiksell Forlag AV, Stockholm).
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2.5.2 Selection Rules for Electronic Transitions

Another very important application of probability in quantum mechanics is the calculation of transition probabilities from one
orbital or energy state to another. Emission and absorption of spectral lines (photons) represents so-called dipole radiation.
The dipole moment is a vector, which can be written e r. It can be shown that the intensity of the radiation is proportional to
the wave functions of the two orbitals involved and to the dipole moment of the atom. It can be shown that the intensity is
proportional to the amplitude vectors R′ and R′′ with the components

R
′/ ′′
x =

∫
�′ex�′′∗d� R

′′/ ′
x =

∫
�′′ex�′∗d� (2.41)

R
′/ ′′
y =

∫
�′ey�′′∗d� R

′′/ ′
y =

∫
�′′ey�′∗d� (2.42)

R
′/ ′′
z =

∫
�′′ez�′′∗d� R

′′/ ′
z =

∫
�′′ez�′∗d� (2.43)

where
R = amplitude vector of a spectral line
x, y, z = coordinates
�′, �′′ = amplitudes of the wave functions of the orbitals involved.

The intensity of the spectral line can be written as

I = constant ×�3R
′/ ′′
R

′′/ ′
(2.44)

where
I = intensity of spectral line
� = frequency of the spectral line.

E´ ψ´

E´´ ψ´´

Figure 2.28 Emission or absorption line.

When the R vectors, which involve the eigenfunctions of the two orbitals, are calculated for all transitions between arbitrary
levels in the atoms, the values become zero in many cases. This means that the transition is forbidden and cannot occur.
Simple selection rules, i.e. changes of quantum numbers for allowed transitions, can be listed (Table 2.4).

An s electron in an H atom can only jump to a p orbital and a p electron can jump to an s orbital or a d orbital. An electron
can jump from a 3P state to another 3P state or to a 3S or a 3D state.

Another example is the normal Zeeman effect, which can be explained by application of selection rules.
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Table 2.4 Examples of selection rules.

Hydrogen atom Many-electron atoms

�n= any value �n= any value
�J = 0, ±1
except J ′ = 0 to J ′′ = 0

�l= ±1 �L= 0, ±1
simultaneously �l= ±1
for the ‘jumping’ electron

�ml = +1 or −1 �MJ = 0, ±1

�s = 0 �S = 0

2.5.3 Zeeman Effect

On pages 59, we found that each orbital energy level, characterized by the quantum number l, splits into 2l+1 energy levels
in a magnetic field. The same phenomenon occurs in many-electron atoms where the resultant J vector is space quantized
(Figure 2.29). The magnetic moment �J in its different space positions opposite to the space quantized J vector in a magnetic
field is the cause of the splitting of the energy levels (page 60).

z Direction of B field

MJ h

2 h

 = J (J + 1)J

0

−h J = 2 2J + 1 = 5

−2 h MJ = 2, 1, 0, −1, −2 

h

h

Figure 2.29 Provided that S = 0 each energy levels splits into 2J +1 different energy levels owing to different directions of the J vector.
Its component in the direction of the magnetic field is quantized and has the values Ml�. The directions correspond to orbitals with slighly
different energies. Hence each J level splits into 2J +1 slightly different energy levels in a magnetic field.

If we apply Equation (2.32) (page 60) it is possible to calculate the intervals between successive energy levels when the
atoms (light source) are (is) placed in a magnetic field B. The energies of the split levels is expressed as in Equation (2.32),
Epot = �B cos� where � is the angle between � and B as the B field is directed in the opposite z direction (Figure 2.16 on
page 60).

On page 60, we found that the magnetic and angular momentums are rigidly coupled to each other. Therefore, ��� is
proportional to �J� with the magnitude �

√
J 
J +1� and we can write

Epot = −constant ×√J 
J +1�B cos
�−�� (2.45)

where �−� is the angle between J and B. Figure 2.29 and Equation (2.45) give the following expression for − cos
�−��:

− cos
�−��= cos�= MJ√
J 
J +1�

(2.46)

The constant in Equation (2.45) is the so-called Bohr magneton. Its value is derived in the box below.
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Magnetic Moment of an Orbital Electron. Calculation of the Bohr Magneton

Classical Theory

lclassical

• ν
r

e
I

r

μ l

S

N

Consider an electron in its orbit around its nucleus (left figure). Its angular momentum lclassical is defined as

�lclassical� = �r×mv� =mvr 
1′�

The electron in its orbit is equivalent to an electric current in a coil with radius r (right figure). Such a a magnetic plate
(page 59) has the magnetic moment

��l� = I �r2 
2′�

In this case, the current I will be

I = ne= v

2�r
e 
3′�

where
n = the number of rounds per unit time in the orbit.

Equations (2′) and (3′) give

�l =
ve

2�r
�r2 
4′�

After reduction of �l, the �l/lclassical ratio will be ∣∣∣∣ �l

lclassical

∣∣∣∣= e

2m

5′�

Quantum Mechanical Theory

If we replace the classical angular momentum with the quantum mechanical expression for l in Equation (5′), we
obtain

�l = e

2m
�

√
l
l+1�= constant ×√l
l+1� 
6′�

or

�l = �B

√
l
l+1� 
7′�

Identification of equations (6′) and (7′) shows that the constant �B is

�B = e�

2m

8′�

The constant �B is called the Bohr magneton. It has the value 9�274×10−24 A m2.
Equation (7′) is valid for all the orbital electrons in an atom and also for their resultant L. Provided that the resultant

S = 0 it is also valid for the total angular momentum J in this case as J = L when S = 0.
However, it should be pointed out that L can not be replaced by J when S 
= 0 in Equation (7′).
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Inserting the value of the Bohr magneton:

�B = e�

2m
(2.47)

into Equation (2.45), we obtain with the aid of Equation (2.46)

Epot = �BBMJ (2.48)

The intervals between two successive energy levels (Figure 2.30) are

�Epot = �BB�MJ (2.49)

As �MJ = 1, we finally obtain

�Epot = �BB = e�

2m
B (2.50)

+2 
+1 
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ν ν – Δν ν ν + Δν
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Figure 2.30 Normal Zeeman effect. (a) Sketch of electron jumping from a d orbital to a p orbital in the absence and the presence of a
magnetic field.
(b) A single spectral line splits into three lines in a magnetic field. The splitting is proportional to the strength of the magnetic field.

The intervals �Epot between the successive levels are proportional to the strength of the magnetic field and equal in the
upper and lower states (Figure 2.30). Owing to the selection rules in Table 2.4 on page 69, the spectral line without a magnetic
field is split into three narrow lines and no more in a magnetic field (Figure 2.30).

The normal Zeeman effect described above is the simplest splitting in a magnetic field. It is valid only when S = 0.
The more complicated anomalous Zeeman effect [S 
= 0 and Equation (2.48) is not valid] is beyond the scope of this
book but it may be mentioned as an illustration that the two yellow Na lines (Figure 2.23 on page 65) split into four and
six lines, respectively, in a magnetic field. The reason for the anomalous Zeeman effect will be explained in Chapter 6
(page 319).

Spectral lines emitted by atoms in electrical fields also split into several components. This so-called Stark effect is not as
simple to interpret in general terms as the normal Zeeman effect.

2.6 The Quantum Mechanical Model of Molecular Structure

The most powerful tool for the experimental investigation of atomic and molecular structure is the analysis of the spectra of
atoms and molecules. The structures of molecules are much more complicated than those of atoms.

The inner filled electron shells change very little when a molecule is formed but the electrons in the outer orbital, the
valence electrons, change from atomic orbitals into molecular orbitals. To characterize the molecular orbitals we will introduce
the terms �, � and � in analogy with s, p and d orbitals (Table 2.5). These designations have a physical significance.
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Table 2.5 Nomenclature for molecular orbitals.

ml 0 1 2 3
Name � � � �

l (l + 1)

ml h
• •

h

Figure 2.31 Projection of the l vector on the nuclear axis.

They tell us the value of the projection of the l vector, in terms of �, on the axis of the nuclei of a diatomic molecule
(Figure 2.31).

The spectrum of an atom consists of a limited number of spectral lines, characteristic of the emitting atom, whereas the
spectrum of a molecule can extend from the microwave region over the infrared and visible range to the ultraviolet part
of the electromagnetic spectrum. It is much more complicated than atomic spectra and consists of hundreds of spectral
lines.

2.6.1 The H2
+ and H2 Molecules

The theoretical analysis of a molecule is performed in the same way as that of an atom. To illustrate the method we will first
discuss the two simplest molecules, the H2

+ and H2 molecules. The procedure is the same as for atoms:

1. Find the potential energy of the orbital electron and introduce this function into the Schrödinger equation.
2. Find the conditions for � to be single valued, finite, continuous and vanish at infinity, i.e. derive the eigenvalues of the

orbital.
3. Solve the Schrödinger equation, i.e. derive the eigenfunctions corresponding to each eigenvalue.

The H2
+ Molecule

The potential energy of the electron can be written as (Figure 2.32)

Epot = e2

4��0

(
− 1
r1

− 1
r2

+ 1
r

)
(2.51)

e–

r1 r2

(H+)1 (H+)2

r

Figure 2.32 Classical picture of the H2
+ ion.

The solution of the Schrödinger equation is rather complicated in this case and will be omitted here. Instead, the deduction
of the eigenvalues will be based on the following qualitative discussion and illustrated graphically.
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Consider a hydrogen atom together with its eigenfunction and a proton (H+) at a large distance from each other. The two
alternatives are sketched in Figures 2.33a and b. The two undisturbed wave functions �1 and �2 of the electron are equally
probable. �1 and �2 are the amplitudes of the wave functions of H atoms 1 and 2, respectively.

ψ1

ψgerade ≈ ψ1 + ψ2

ψungerade ≈ ψ1 – ψ2

ψ2

σ21s

σu1s

H
1s

H 1s

(H+)2

(H+)1

H2
+

p1

p1

p2

p2

p1

p1

p2

p2

0

0

(a)

(b)

(c)

(d)

H2
+

Figure 2.33 (a) The electron belongs to proton 1. (b) The electron belongs to proton 2. (c) The ‘gerade’ wave function corresponds
to a stable H+

2 molecule. (d) The ‘ungerade’ wave function corresponds to an unstable H+
2 molecule. Reproduced with permission from

M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

When the nuclei approach each other, the orbital of the electron changes. The electron no longer belongs to the initial H
nucleus. It belongs to either nucleus and is shared between them.

H+ +H ↔ H +H+ (2.52)

The resulting eigenfunction of the molecule H2
+ will neither be �1 nor �2 but a combination of the two wave functions. There

are two alternatives:

�gerade = �1 +�2 (2.53)

or

�ungerade = �1 −�2 (2.54)

The subscripts gerade (German for even) and ungerade (German for odd) of the resulting molecular wave function amplitudes
means that the function is symmetrical or antisymmetrical, respectively, in space.

The symmetrical wave function �gerade does not change sign when indices 1 and 2 are exchanged in Equation (2.53). �ungerade

is antisymmetrical as the wave function changes sign when the indices 1 and 2 are exchanged in Equation (2.54).
The amplitudes of the molecular wave functions can be used to calculate the probability of finding the electron at various

positions in the vicinity of the nuclei. This is shown in Figure 2.33.
The electron cloud in the region between the protons helps to keep the molecule together owing to the attraction between

the protons and the negative charge in spite of the repulsion between the two nuclei (Figures 2.33c and 2.34a). The electron
cloud on either side of the nuclei will help to pull the nuclei apart. Obviously the gerade molecular orbital acts as ‘glue’
between the nuclei and results in a stable H2

+ molecule. The ungerade molecular orbital has a very low electron density
between the protons and corresponds to an instable H2

+ molecule (Figures 2.33d and 2.34b).
Each eigenfunction � has its own eigenvalue E. In this case we have one gerade and one ungerade orbital with corresponding

eigenvalues, i.e. one stable and one unstable energy state. If the energy of each H atom initially is zero, we have two energy
states of the molecule with very different energies. The energy difference between the states is called the exchange energy,
which only can be explained by quantum mechanics. Exchange energy is a very common and important phenomenon in
connection with molecule formation.
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(b)
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Figure 2.34 Electron density for (a) gerade and (b) ungerade molecular orbitals in H2
+ as a function of position along the proton–proton

axis and in a plane that contains the two protons [(c) and (d)]. Reproduced with permission from M. Alonso and E. Finn, Fundamental
University Physics. © Addison-Wesley.

The difference in energy of the two states depends on the distance between the two protons. The energy of the two states as
a function of the distance between the two protons is given in Figure 2.35. The lower curve represents the ground state of the
H2

+ molecule. The upper state is unstable. �gerade is said to be a bonding wave function, whereas �ungerade is an antibonding
wave function.
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Figure 2.35 The energy of the two lowest energy states in the H2
+ molecule as a function of the distance between the protons. The

equilibrium distance between the two nuclei = 2a0, where a0 is the Bohr radius, i.e. the radius of the n = 1 orbital in the H atom. As
a0 = 0�053 nm, the equilibrium distance corresponds to 0.106 nm. Reproduced with permission from M. Alonso and E. Finn, Fundamental
University Physics. © Addison-Wesley.

The H2 Molecule

The simplest neutral molecule is the H2 molecule, which consists of two protons and two electrons. The potential energy of
this four-body system consists of six terms corresponding to the interaction between electron 1 and the two protons, electron 2
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and the two protons and an interaction term for the electrons and one for the protons. The solution of the Schrödinger equation
for the H2 molecule will therefore be much more complicated than that of H2

+.
Instead, we will use the results for the H2

+ molecule and combine them with the knowledge that each orbital can accomodate
two electrons with anti-parallel electron spin vectors (Table 2.2 on page 63). Both electrons have bonding wave functions,
which results in a very stable molecule. Similarly, there is an unstable state where the two electrons have parallel electron
spin vectors (Figure 2.36). Figure 2.37 shows the energy of the molecule as a function of the internuclear distance.

0.074 nm

1
2

3

4

(a)

↑↓

0.074 nm

(b)

1 1

2 23 3
↑↑

Figure 2.36 Probability density distribution of the electrons in (a) the
ground state and (b) the lowest repulsive state of the H2 molecule. The
figures 1, 2, 3, 	 	 	 represent the relative probability densities. Reproduced
with permission from G. Hertzberg, Atomic Spectra and Atomic Structure,
Dover, 1944.
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r
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Figure 2.37 Energy of the H2 molecule as a function of
the distance between the two protons. Reproduced with
permission from M. Alonso and E. Finn, Fundamental
University Physics. © Addison-Wesley.

Two binding electrons represent a stronger bond in the H2 molecule than the single electron in the H2
+ molecule. This

results in a shorter internuclear distance between the protons at equilibrium and a more stable molecule, i.e. a deeper minimum
of the ground state, than the corresponding quantities found in the H2

+ molecule. The calculated curve in Figure 2.37 agrees
well but not completely with the experimental results. We will come back to this discrepancy in Section 3.3.3 in the next
chapter, where the bond of the H2 molecule is further discussed (pages 108–109).

At infinite distance between the two protons there are no longer any forces acting between them. Then the H2 molecule has
dissociated into two H atoms in their ground states. The concepts of bonding energy and dissociation energy will be discussed
in Chapter 3.

2.7 Diatomic Molecules

2.7.1 Classification of Electronic States

L (L + 1)h

hML

Figure 2.38 Precession of the orbital angular momentum vector L around the internuclear axis.

In Section 2.4.3, we have seen that the resulting orbital angular momentum �L� = �
√
L
L+1� is constant (Figure 2.38). In

a diatomic molecule, the L vector precesses around the internuclear axis and its component ML can only have integer values
owing to the same type of space quantization as the orbital angular momentum vector l in atoms (page 58 and Figure 2.12 on
page 59):

ML = 0�±1�±2� 	 	 	 �±L (2.55)
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The orbital electrons move in the electrostatic field of the two nuclei, which is very strong. The consequence of this is that
the energy states with different ML values have widely different energies and the internuclear axis is a very special direction.
The change of sign of ML corresponds classically to a reversed rotation direction of the electrons, which does not change the
energy. Hence the energy levels which correspond to ±ML are degenerate and coincide. The L vector is no longer important,
only the component along the nuclear axis makes sense.

In order to distinguish between atomic and molecular quantities, ordinary letters are used for atoms and Greek letters for
molecules. Hence the component of the resulting orbital angular momentum of a diatomic molecule is called �:

�= 0�1�2� 	 	 	 �L (2.56)

In analogy with the nomenclature for atoms, for molecular states we have the nomenclature given in Table 2.6. These
designations are analogous to the names of the atomic orbitals of the electrons. They have only been ‘translated’ into Greek.

Table 2.6 Nomenclature for atomic and molecular states

L 0 1 2 3
Atomic state S P D F

� 0 1 2 3
Molecular state � � � �

The nomenclature for the resulting spin �S� = �
√
S 
S+1� is the same as for atoms. The multiplicity (superscript) is equal

to 2S+1. For example, if S = 1/2 and �= 1, the state is called a 2� state.

2.7.2 The Rigid Rotator

m1 m2ω

r1 r2
r

Figure 2.39 Model of a diatomic molecule. The interatomic distance is r = r1 + r2.

The simplest possible model of a rotating diatomic molecule is the dumb-bell model. The two nuclei are assumed to be
point-like with masses m1 and m2. They are rigidly joined at a distance r at the ends of a weightless rod (Figure 2.39).

The dumb-bell rotates around its centre of mass. The classical expression of its rotation energy is

Erot = 1/2I�
2 (2.57)

where
I = moment of inertia of the dumb-bell
� = angular frequency= 2��rot

�rot = rotation frequency.

The moment of inertia of the dumb-bell in Figure 2.39 is

I =m1r1
2 +m2r2

2 (2.58)

It can be shown that

I = m1m2

m1 +m2

r2 (2.59)
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where
m1�2 = masses of the two nuclei
r = internuclear distance.

If we introduce the so-called reduced mass

�= m1m2

m1 +m2

(2.60)

into Equation (2.59), we obtain

I = �r2 (2.61)

i.e. the dumb-bell can be replaced by a single mass � at distance r from the origin which rotates around an axis through origin
perpendicular to the plane of rotation. Such a system is called a simple rigid rotator (Figure 2.40).

r

μ

Figure 2.40 Simple rigid rotator.

Quantum Mechanical Theory of the Rigid Rotator

In order to determine the possible energy states of a rigid rotator according to quantum mechanics, we have to solve the
Schrödinger equation. No potential energy is associated with the rotation as long as the rotator is completely rigid. Hence we
obtain

��2

�x2
+ ��2

�y2
+ ��2

�z2
+ 2�

�2

E−0�� = 0 (2.62)

Single-valued, finite and continuous solutions of eigenfunctions � are obtained if the eigenvalues are

Erot = �
2J
J+1�

2�r2
= �

2J
J+1�

2I
(2.63)

where J is the rotation quantum number, which is an integer, J = 0�1�2�3� 	 	 	 .

hc F(J )

0 J = 0
J = 1

J = 2

J = 3

J = 4

J = 5

Figure 2.41 Energy levels of a rigid rotator. Erot = 0 at J = 0.
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The rotational energy levels (Figure 2.41) are written by tradition as

Erot = hcF
J�= hcBJ
J +1� (2.64)

B is is obtained from Equations (2.63) and (2.64):

B = �
2

2hc�r2
(2.65)

and is called the rotation constant. F
J� and B are measured in m−1.
Combination of Equation (2.63) and the classical expression

Erot = P2

2I

gives an expression for the angular momentum P:

P = �

√
J
J+1� (2.66)

Equation (2.66) agrees with the general result for the angular momentum vectors in atoms.
We introduce the vector J, which represents the angular momentum vector and has the magnitude

�J� = �

√
J
J+1� (2.67)

Combining Equation (2.66) with P = I�= I×2��rot, we obtain the rotational frequency:

�rot = h

4�2I

√
J 
J+1� (2.68)

Example 2.3

In the far-infrared part of spectrum, a pure rotational spectrum of HCl has been found. When continuous infrared radiation
above 30 m passes through a tube containing gaseous HCl molecules and is allowed to hit a detector, a number of nearly
equidistant absorption maxima are found. The figure shows some of them.
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(a)

Reproduced from G. Hertzberg, Atomic Spectra and Atomic Structure, Dover, 1944.

Calculate the distance between the atoms in the HCl molecule for the most abundant Cl isotope with the aid of the measured
wavenumbers 
83�0�104�1�124�30�145�0�165�5�185�9�206�4�226�5�×102 m−1.
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Solution:

hcF (J )
J  + 1

J  – 1

0

J 

(b)

According to Equation (2.64), the rotational energy levels can be written as

Erot = hcF
J�= hcBJ
J+1� (1′)

The differences between the energy levels correspond to the absorption maxima:

�Erot = hc!F
J�−F
J −1�"= hcB!J 
J +1�− 
J −1� J"

or

�Erot = hc×2BJ

If we calculate the difference between the absorption maxima, we obtain

�2Erot = hc×2B (2′)

The wavenumber difference between the absorption maxima is obviously equal to 2B. It can be calculated from the experimental
values given in the text: 
21�1�20�2�20�73�20�48�20�35�20�52�20�12�×102 m−1. Using the method of least squares, the mean
value can be calculated as 20�7×102 m−1 and we obtain 2B = 20�7×102 m−1.

From Equations (2.63) and (2.64), we obtain

hcB = �
2

2I
= �

2

2
1

m1m2r
2/
m1 +m2�

or

r =
√
�2

2
m1 +m2

Bhcm1m2

=
√

h

8�2c

1+35
10�35×102 ×1×35×1�66×10−27

r = 1�29×10−10 m

Answer:

The distance between the H and Cl atoms in the ground state of the H35Cl molecule is 0.13 nm.



80 Physics of Functional Materials

2.7.3 The Harmonic Oscillator

The simplest possible model of a vibrating diatomic molecule is the harmonic oscillator. The two atoms oscillate towards and
away from each other around an equilibrium distance. It can be shown that this system is equivalent to a spring with force
constant k and equilibrium length re acting on a mass point of mass �, where � is the reduced mass of the two atom masses
m1 and m2 (Figure 2.42).

�= m1m2

m1 +m2

(2.60)

re μ

r F = –k (r – re)

←

Figure 2.42 Harmonic oscillator.

The force F acting on the mass is proportional to the deviation from equilibrium:

F = −k 
r− re�= �
d2 
r− re�

dt2
(2.69)

where
r = distance between the atoms at time t
re = equilibrium distance between the atoms
� = reduced mass of the two atoms.

If for simplicity we introduce x = r− re, we obtain

−kx = �
d2x

dt2
(2.70)

Integration of Equation (2.70) gives

x = x0 sin

(√
k

�
t+�0

)
= x0 sin 
2��osct+�0� (2.71)

where the frequency of oscillations is

�osc = 1
2�

√
k

�
(2.72)

Quantum Mechanical Theory of the Harmonic Oscillator

E ν
5
4
3
2
1
0

Figure 2.43 Energy levels of a harmonic oscillator in a potential curve kx2/2.

The potential energy of the harmonic oscillator is
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Epot = kx2

2
(2.73)

where x = r− re. This expression is introduced into the Schrödinger equation:

��2

�x2
+ 2�

�2

E− kx2

2
�� = 0 (2.74)

The condition for the existence of single-valued, finite and continuous solutions of � is

Evibr = �

√
k

�

(
v + 1

2

)
(2.75)

where v is the vibration quantum number. It can only have integer values, v = 0�1�2�3� 	 	 	 .
The equidistant energy levels of the harmonic oscillator are shown in Figure 2.43. Even if the vibration quantum number

is zero, the molecule is vibrating and not at rest at the bottom of the potential curve. This is in complete agreement with
Heisenberg’s uncertainty principle. If there were no vibrations, both position (equilibrium distance between the nuclei) and
momentum (zero) would have exact values, which is forbidden according to quantum mechanics. However, this is not the case
and Heisenberg’s uncertainty principle is not contradicted.

By combining Equations (2.72) and (2.74) we obtain the following expression for the eigenvalues, i.e. the vibration energies:

Evibr = hcG
v�= hc
�osc

c

(
v + 1

2

)

or

Evibr = hc�e

(
v + 1

2

)
(2.76)

where the vibrational constant �e is

�e = �osc

c
= 1

2�c

√
k

�
(2.77)

As can be seen from Equation (2.76), the SI unit of G
v� and �e is m−1. �e is the traditional designation of the vibration
constant. It should not be confused with the angular frequency �, which has the dimension s−1.

2.7.4 Eigenfunctions and Probability. Density Distribution of the Harmonic Oscillator

To each eigenvalue of the harmonic oscillator there is one eigenfunction. The square of an eigenfunction represent the
probability of finding the oscillator at a particular distance r between the atoms. The probability densities as a function of the
deviation from the equibrilium position of the oscillator are illustrated graphically for some values of v in Figure 2.44.

Figure 2.44 shows that the probability is reminiscent of a classical oscillator for high values of v. A pendulum, for example,
spends more time at the end points than at the lowest point of its orbit where its velocity has a maximum. Consequenly, the
probability is higher at the end points than elsewhere.

The lower the vibrational quantum number is, the higher will be the quantum mechanical probability deviation from the
classical result. This is best shown for v = 0. Here the probability of finding the oscillator in either end position or turning
point is small, which is in sharp contradiction with everyday experience.

So far we have treated the rigid rotator and the harmonic oscillator separately. In reality, vibrational and rotational transitions
occur simultaneously in molecules. If an electron transition also occurs simultaneously, a band spectrum is obtained in the
visible part of the electromagnetic spectrum. This will be discussed briefly below.

If no electronic transition occurs, simultaneous vibrational and rotational transitions give a rotational–vibrational spectrum,
i.e. a number of spectral lines in the near–infrared part of spectrum.

If no electronic transition or vibrational transition occurs, only rotational transitions occur and a rotational spectrum appears
in the far-infrared part of spectrum.
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Figure 2.44 Probability density distributions of the harmonic oscillator for different values of the vibrational quantum number. The dotted
curves represent the eigenfunctions. The continuous curves are the squared eigenfunctions. Reproduced from G. Hertzberg, Atomic Spectra
and Atomic Structure, Dover, 1944.

2.7.5 Spectra of Diatomic Molecules

So far it has been possible to solve the Schrödinger equation only for a few of the simplest molecules. Most of the present
knowledge of energy levels, internuclear distances and other quantities of molecules is based on accurate measurements and
analysis of molecular spectra. Lines are classified and their quantum numbers determined with the aid of the selection rules,
derived from quantum mechanics. If the analysis has been successful, the molecular constants can be calculated.

A spectral line, emitted by an atom, originates from a transition of an electron from one orbital to another. An electronic
transition between two orbitals in a molecule may be accompanied by a simultaneous change of the vibrational and rotational
state of the molecule:

h� = �Ee +�Evibr +�Erot (2.78)

The contributions are ranked in decreasing order. Pure rotational spectra appear in the microwave or far-infrared region and
involve no change of the outermost electron or the vibration state. A necessary condition is that the molecule has an electrical
dipole moment.

Combined vibrational and rotational spectra of diatomic molecules appear in the infrared region. Each value of �Evibr is
accompanied by many alternative values of �Erot.

An electronic transition �Ee is accompanied by a number of alternative changes �Evibr. Each combination of �Ee +�Evibr

is accompanied by many alternative values of �Erot. The spectrum is a band system consisting of a number of rotation bands,
one for each vibrational transition.

Anharmonic Oscillator

Comparison between theory and experiments shows that the harmonic oscillator and the rigid rotator are models which have
to be improved to give better agreement. Figure 2.45 shows that the energy curve is not symmetrical like that in Figure 2.43
on page 80. The average internuclear distance increases with increasing v values. Therefore, the effective �e [Equation (2.77)
on page 80] decreases with increasing v. Better agreement with experiments is obtained if correction terms are added to the
vibrational energy in Equation (2.76), which gives
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�Evibr = hc

[
�e

′
(

v′ + 1
2

)
−�e

′xe
′
(

v′ + 1
2

)2
]

−hc

[
�e

′′
(

v′′ + 1
2

)
−�e

′′xe
′′
(

v′′ + 1
2

)2
]

(2.79)

Energy

r

D0 De

Figure 2.45 Potential curve of a diatomic molecule.

The potential curve of an anharmonic oscillator is shown in Figure 2.45. It is no longer symmetrical. On the left-hand side
it is very steep, which corresponds to strong repulsive forces which appear when the electron clouds of the two nuclei starts
to overlap. On the right-hand side the attraction forces becomes successively weaker when the internuclear distance increases.
Finally the molecule dissociates into two free atoms. The dissociation energy De is defined as the depth of the potential curve.
It can be calculated with the aid of the vibrational constants:

De = �e
2

4�exe

or D0 = �e
2

4�exe

− �e

2
(2.80)

If the depth of the potential curve is measured from the energy level v = 0 instead of the bottom of the potential curve, the
dissociation energy D0 is obtained.

In many cases, the so-called Morse function is a good approximation of the true potential energy curve of molecules. It is
frequently used as a potential energy function:

Epot =De

[
1− e−#
r−re�]2

(2.81)

where # is a constant which depends of the reduced mass and the dissociation energy of the molecule:

#= constant ×�e

√
�

De

(2.82)

The Morse function for the H2 molecule is shown in Figure 2.46 as a dotted curve. It is very convenient to use the Morse
function for most diatomic molecules.

106
 m−1

Energy

4.000 v

3.000

2.000

1.000

r
0.000

0 0.10 0.20 nm

1

2

3

4
5
6

8

10

12

D0 De

Figure 2.46 The potential curve of the ground state of the H2 molecule. The energy is given in 106 m−1, which is a multiple of the unit of
wavenumber. If figures on the energy axis are multiplied by hc, the energy expressed in joules is obtained. A convenient unit for dissociation
energies is electron volts. Reproduced from G. Hertzberg, Atomic Spectra and Atomic Structure, Dover, 1944.
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Nonrigid Rotator

The molecules become stretched for high J values, owing to the increasing centrifugal force, when the rotation becomes
more rapid. The moment of inertia increases and the value of the constant B in Equation (2.64) on page 78 decreases. Small
correction terms are added when Equation (2.64) is applied, which gives

�Erot = hc
[
B′

v′J
′ 
J ′ +1�−D′

v′J
′2 
J ′ +1�2

]
−hc

[
B′′

v′′J
′′ 
J ′′ +1�−D′′

v′′J
′′2 
J ′′ +1�2

]
(2.83)

The internuclear distance also increases with increasing v. Hence the values of B and D change with v. This is indicated
with a subscript v in Equation (2.83). The upper and lower B values are not equal.

2.7.6 Selection Rules

Selection Rules for Electronic Transitions

The selection rules for electronic transitions are much more complicated in molecules than in atoms and will not be discussed
in detail here. The molecular orbital angular momentum couples to the rotation of the molecule and the quantum number J
represents the total angular momentum.

For the most common coupling cases, the following selection rule for the electronic transition is valid:

$�= 0�±1 (2.84)

In analogy with atoms the multiplicity of the molecular states do not change:

�S = 0 (2.85)

Hence 2�−2� and 3�−3� transitions may occur whereas 3�−1� and 2�−2� are both forbidden, i.e. have zero intensity.

Selection Rules and Band Intensities for Vibrational Transitions

For vibrational transitions in the near-infrared region, the selection rule for the vibrational quantum number is

�v = ±1 (2.86)

If an electronic transition occurs simultaneously with the change of the vibration state of the molecule, there is no restriction
for the vibrational quantum number. However, the intensity of the vibration bands varies widely. This can be understood by
considering the electronic and vibrational states of the molecule.

The electronic transition occurs very rapidly and the internuclear distance changes very little during this time. Hence the
transition must be represented by a vertical line in Figure 2.47.

The intensity of a vibration band is proportional to the transition probability I:

I = constant ×
∫
�
v′��
v′′�∗dr (2.87)

Vibrational bands are denoted by their vibrational quantum numbers. The first figure is v′ and the second is v′′.
Figure 2.44 on page 82 shows that the values of the eigenfunctions have maxima at the turning points for high values of

v and in the middle for v = 0. Transitions with maximum values of the overlap integral in Equation (2.87) correspond to the
strongest vibrational transitions. In the case drawn in Figure 2.47, the strongest bands are the 4–0 band, the 0–2 band and
the 1–5 band. The transition on the left-hand side of the figure does not appear at all as the molecule dissociates before the
transition occurs.

Figure 2.48 shows two typical band spectra in the ultraviolet and visible regions of the spectrum.
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Figure 2.47 The most intense vibration bands of a band system are found by studying the transition probability of the tentative bands.
Reproduced with permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.
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Figure 2.48 (a) The % bands of the NO molecule in emission. The strongest bands originate from v′ = 0.
(b) Part of the band spectrum of the AlO molecule.

Example 2.4

Figure 2.48a shows the ultraviolet band spectrum of NO, a 2�−2� transition where 2� is the ground state of the molecule.
Use the information in the picture to make a rough estimation of the dissociation energy D0 of the NO molecule in its ground
state, expressed in eV.

Solution:

The dissociation energy can be calculated by use of Equation (2.80) on page 83 if the �′′
e and �e

′ ′′x′′
e values are known. These

values can be estimated from the vibration bands given in the figure.
We assume that the origin of each band is approximately equal to its sharp band head and choose the six most intense

bands, related to the lower energy state, for our calculation.
The difference between the lower vibration levels v′′ +1 and v′′ can be written as

�Gv′′+1/2 =G
v′′ +1�−G
v′′� (1′)
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or, in terms of �′′
e and �′′

ex
′′
e :

�Gv′′+1/2 = �′′
e 
v

′′ +1�5�−�′′
ex

′′
e 
v

′′ +1�5�2 −
[
�′′

e 
v
′′ +0�5�−�′′

ex
′′
e 
v

′′ +0�5�2
]

After reduction, we obtain

�Gv′′+1/2 = �′′
e −�′′

ex
′′
e

[

v′′ +1�5�2 − 
v′′ +0�5�2

]

which can be reduced to

�Gv′′+1/2 = �′′
e −2�′′

ex
′′
e 
v

′′ +1� (2′)

The wavelengths of the strongest band heads are read from the figure and the �Gv′′+1/2 values are calculated.

Vibration band � of band head Wavenumber �Gv′′+1/2

v′–v′′ (nm) (m−1) (m−1)

0–0 226.9 4�407×106

1�88×105

0–1 237.0 4�219×106

1�85×105

0–2 247.9 4�034×106

1�82×105

0–3 259.6 3�852×106

1�78×105

0–4 272.2 3�674×106

1�77×105

0–5 286.0 3�497×106

ν´´

ν´

0
0–4 0–50–30–20–10–0

0

1
2
3
4
5

(a)

Equation (2′) is applied for v′′ = 0�1�2�3�4 and 5, which gives the equation system

1�88×105 = �′′
e −2�′′

ex
′′
e

1�85×105 = �′′
e −4�′′

ex
′′
e

1�82×105 = �′′
e −6�′′

ex
′′
e

1�78×105 = �′′
e −8�′′

ex
′′
e

1�77×105 = �′′
e −10�′′

ex
′′
e

This equation system consists of five equations and has only two unknown quantities. In order to minimize the errors and use
all the information, we solve the system by the method of least squares. We multiply each equation with the coefficient of
the first variable �′′

e and then add the equations. Then we repeat the same procedure for the second variable and obtain the
following equations:

9�10×105 = 5�′′
e −30�′′

ex
′′
e (3′)

54�02×105 = 30�′′
e −220�′′

ex
′′
e (4′)

The solution of this equation system is

�′′
e = 1�91×105m−1 �′′

ex
′′
e = 0�0145×105 m−1

The dissociation energy is obtained from the equation

D0 = �2
e

4�exe

− �e

2
=

(
1�91×105

)2

4×0�0145×105
− 1�91×105

2
m−1 = 61�9×105 m−1

D0 = hc

e
×61�9×105 = 7�7 eV



Theory of Atoms and Molecules 87

Answer:

Energy

r

D0

The dissociation energy of NO in its ground state is calculated as 7–8 eV.
This value is higher than the table values 5.3 eV (D0) and 6.5 eV (De) for the 2� ground state of NO. The relative error in
�′′

ex
′′
e is much larger than that in �′′

e . The original equation system shows that �Gv′′+1/2 in the last equation with the highest
statistical weight of �′′

ex
′′
e is too high. This results in a too small �′′

ex
′′
e value and a too high value of the dissociation energy.

The discrepancy between the band origins and the band heads is another source of error.

Selection Rules for Rotational Transitions

The selection rules for the quantum number J are, in case of a simultaneous electron jump,

�J = 0�±1 for ��= ±1 (2.88)

�J = ±1 for ��= 0 
and no jump� (2.89)

The condition �J = ±1 is also valid for pure rotational transitions in the far-infrared region and for rotation–vibration bands
in the near-infrared region where ��= 0 because there is no electron jump at all.
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Figure 2.49 Rotational lines of a 1�−1� transition.

The rotational structure of each vibration band has two or three branches corresponding to the selection rule (2.88) and
(2.89). If �J = J ′ − J ′′ = 0 we have a Q branch. For an R branch �J = +1. If �J = −1 the branch is called a P branch
(Figure 2.49).
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Both the R and P branches start at the band origin. The R branch initially ‘walks’ towards the violet side of spectrum, turns
and ‘walks’ towards the red if B′′ >B′. The P branch ‘walks’ towards the red all the time. Such bands are said to have a band
head and to be shaded to the red. This is the most common case because re

′′ normally is smaller than re
′.

If B′ > B′′, the P branch ‘walks’ to the red, turns and ‘walks’ towards the violet. The R branch ‘walks’ towards the violet
all the time and the band is shaded towards the violet. The Q branch also shows a head, i.e. is shaded.

The lines are named after their J ′′ values. Hence the first lines in the branches in Figure 2.49 will be R(0), Q(1) and P(2).

Band head 

Band origin ν0

λ
P(12)P(10)P(6)P(6)P(4)

R(20)R(18)R(16)R(14)

P(2)

R branch

P branch

Figure 2.50 Rotational structure of one of the bands in an 1�−1 � transition. The bands are shaded towards the red. Reproduced with
permission from G. Hertzberg, Atomic Spectra and Atomic Structure, Dover, 1944.

Characteristic of a rotation band is the maximum or minimum frequency of one (R or P branch) or two (Q branch and
R or P branch) of the branches, which gives the band a ‘shaded’ appearance with a sharp edge, normally towards the red
(Figure 2.50). This is shown in Figure 2.48 on page 85. The explanation is the turn of the branches explained above.

2.8 Polyatomic Molecules

The energy levels and the spectra of polyatomic molecules are even more complicated than those of diatomic molecules.
Polyatomic molecules in general have several sets of vibration energy levels as the atoms can vibrate with different vibration
frequencies between pairs of atoms. This gives a manifold of vibration bands which may overlap and belong to different
vibrational systems.

Each vibration level is associated with corresponding rotational levels. A diatomic molecule has only one moment of inertia
for an axis perpendicular to an axis through the nuclei whereas a polyatomic molecule in general has three different moments
of inertia in the principal directions x, y and z and three different modes of rotation. The result is a complicated spectrum.

Symmetry may make some of the vibration frequencies equal or degenerate, which makes the spectrum somewhat simpler.
An example of this is the CO2 molecule, which is both linear and symmetrical.

The normal modes of vibration of the CO2 molecule are shown in Figure 2.51. The condition for a vibration–rotation
spectrum in the near-infrared region is that the molecule has an electrical dipole moment.

ω 3ω 3

ω 2ω 2

ω 1

ω 2

ω 1

ω 3

O

O C

C O

O

OCO

Figure 2.51 The three alternative modes of vibration of the CO2 molecule. The sizes of the atoms are not drawn to scale. Reproduced
with permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

The CO2 molecule has no permanent electrical dipole moment. In the vibration mode �1 there is no induced dipole
moment either. In the case of �2 and �3 electrical dipole moments are induced during the vibrations. Hence infrared bands
corresponding to the frequencies �2 and �3 appear but not the bands corresponding to �1.

Most polyatomic molecules are nonlinear and asymmetric. Vibrations in such a molecule result in a rapidly varying electrical
dipole moment of the molecule.
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Summary

� Quantum Mechanics

Quantum mechanics is the basis of modern atomic and molecular physics. The basic tool is the Schrödinger equation:

− �
2

2m

(
�2�

�x2
+ �2�

�y2
+ �2�

�z2

)
+ (E−Epot

)
� = i�

��

�t

The relationship between the time-dependent wave function and the amplitude of the matter wave is

� = �e−i E
�
t

Matter Waves

Wavelength of matter wave:

�deB = h

mv

Differential equation of the amplitude of the matter wave:

�2�

�x2
+ �2�

�y2
+ �2�

�z2
+ 2m

�2

(
E−Epot

)
� = 0

This equation is valid under stationary conditions (standing waves). It is often referred to as the time-independent Schrödinger
equation. � is a function of x, y and z.

Physical Interpretation of the Wave Function

The probability of finding a particle within a volume element dxdydz at stationary conditions is

�� �2 dxdydz=�� ∗dxdydz= ��∗dxdydz

Heisenberg’s Uncertainty Principle

�y�py ≥ h

4�
or �E�t ≥ h

4�

� Quantum Numbers in Atoms and Their Intepretation

Solution of the Schrödinger equation for an orbital electron of an H atom gives expressions for the eigenfunction � (standing
waves) and the eigenvalue E.

The four quantum numbers that characterize the orbitals of the electrons appear in the solutions:

• n = principal quantum number = number of ‘shell’
n = 1, 2, 3 for the K, L and M shells, respectively

• l = azimuthal quantum number
l = 0, 1, 2, 3, 	 	 	 , (n−1)

Length of orbital angular momentum vector of the electron:

�l� = �

√
l 
l+1�

• ml = magnetic quantum number
ml = 0, ±1, ±2, ±3� 	 	 	 �±l

The projection of the orbital angular momentum vector in the direction of a magnetic field =ml�.

• s = spin quantum number = 1/2



90 Physics of Functional Materials

Length of spin vector of the electron:

�s� = �

√
s 
s+1�

The projection of the spin vector on the direction of a magnetic field =ms�.

ms = ±1/2

Nomenclature for Atomic Orbitals

l 0 1 2 3
Name s p d f

� Many-electron Atoms

The Pauli Principle
In an atom no more than one electron can have the same set of values of the four quantum numbers n, l, ml and ms.

Quantum Numbers of Many-electron Atoms
The total orbital angular momentum L and the total spin vector S are obtained as the resultants of the angular momentum
vectors li and si, respectively, of all the electrons:

�L� = �

√
L
L+1�

�S� = �

√
S 
S+1�

The vector addition is greatly facilitated by the fact that filled shells and subshell have zero L and S resultants.
L and S are coupled in such a way that the quantum number J defines the resultant vector J. The quantum number J is an

integer or half-integer when the quantum number S is an integer or half- integer, respectively:

J = L+S�L+S−1�L+S−2� 	 	 	 �L� 	 	 	 � �L−S�

The multiplicity of the energy state = 2S+1.
In a magnetic field, the resultant J vector is space quantized:

MJ = J� J −1� 	 	 	 �0� 	 	 	 �−J

Nomenclature

L 0 1 2 3
Atomic state S P D F

The multiplicity of an electronic is indicated by a superscript before the symbol. 2P means that L= 1 and S = 1/2.

� Selection Rules for Electronic Transitions

Spectral lines are emitted when an electron ‘jumps’ from an upper to a lower orbital. The intensities of the lines depend on the
electron density distributions in the two electronic states and can be calculated from the two wave functions. In some cases
the probability of a transition is zero. Simple transition rules have been found.

Important selection rules:
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Hydrogen atom Many-electron atoms

�n= any value �n= any value
�J = 0, ±1
except J ′ = 0 to J ′′ = 0

�l= ±1 �L= 0, ±1
simultaneously �l= ±1
for the ‘jumping’ electron

�ml = +1 or −1 �MJ = 0, ±1

�s = 0 �S = 0

� Zeeman Effect

If a light source is placed in a magnetic field, the spectral lines split into components owing to splitting of the energy levels
of the atoms:

�Epot = �BB�MJ

In the case of the normal Zeeman effect (singlet lines, e.g. �S = 0), the energy difference between successive energy levels
is the same for all energy levels (�MJ = 1):

�Epot = �BB = e�

2m
B

where the Bohr magneton �B = e�/2m.
Each line is split from a single line with wavenumber � into three lines with wavenumbers �±��, owing to the selection

rules.
In the case of the anomalous Zeeman effect (�S 
= 0), the lines are split into many more components than three and the

simple theory is not valid.

� Molecular Orbitals in Diatomic Molecules

The structures of molecules are more complicated than those of atoms. An exact solution of the Schrödinger equation is
possible only for the simplest molecules (H2

+ and H2).
Electrons in molecular orbitals have the same quantum numbers, which describe spin and orbital angular momentum, as in

atoms. More important than the l vector is its projection on the axis between the two nuclei of a diatomic molecule.

Nomenclature for Molecular Orbitals

ml 0 1 2 3
Name � � � �

The H2
+ Molecule

When the protons are far apart, the electron in an H2
+ molecule can belong to either proton:

H
wave function �1�+p2 or p1 +H
wave function �2�

When the protons approach, two ‘composed’ wave functions are formed:

�gerade = �1 +�2 and �ungerade = �1 −�2
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The gerade symmetrical wave function corresponds to a stable state and high electron density between the nuclei. The electron
cloud act as ‘glue’. The ungerade asymmetric wave function corresponds to an unstable state and low electron density between
the nuclei.

The phenomenon when two states with highly different energies are formed from two initial states with equal energies is
called the exchange energy. It is an common and important quantum mechanical effect.

Classification of Electronic States
In a diatomic molecule, the resulting angular momentum vector L precesses around the internuclear axis. Its component along
the axis is space quantized:

ML = 0�±1�±2� 	 	 	 �±L

The orbital electrons move in the electrostatic field of the two nuclei, which is very strong.
Energy states with different ML values, independent of sign, have widely different energies. The vector L is no longer

important, only the component � along the nuclear axis makes sense.

Nomenclature for Molecular States

� 0 1 2 3
Molecular state � � � �

The multiplicity of a molecular electronic state is the same as for atoms. If S = 1/2 and � = 0, the electronic state is 2�.

� Rigid and Nonrigid Rotators

The simplest possible model of a rotating diatomic molecule is the dumb-bell model. The dumb-bell rotates around its centre
of mass:

Erot = 1/2I�
2

I = �r2 = m1m2

m1 +m2

r2

The solution of the Schrödinger equation gives the possible energy states for the rigid rotator:

Erot = �
2J 
J +1�

2�r2
= �

2J 
J +1�

2I

or

Erot = hcF
J�= hcBJ 
J +1�

B = �
2

2hc�r2

The rotator becomes slightly stretched during rotation. In such a nonrigid rotator, the increase in r is considered by a
correction term and the rotational energy can be written as

Erot = hcF
J�= hc
[
BJ 
J +1�−DJ 2 
J +1�2

]
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� Harmonic and Anharmonic Oscillators

The simplest possible model of a vibrating diatomic molecule is the harmonic oscillator. The two atoms oscillate toward and
away from each other around an equilibrium distance. The solution of the Scrödinger equation give the energy levels:

Evibr = �

√
k

�

(
v + 1

2

)
�= m1m2

m1 +m2

or

Evibr = hcG
v�= hc�e

(
v + 1

2

)
�e = 1

2�c

√
k

�

As the potential well of a diatomic molecule is not symmetrical, the oscillator is anharmonic. This is considered by a
correction term and the vibrational energy can be written as

Evibr = hc

[
�e

(
v + 1

2

)
−�exe

(
v + 1

2

)2
]

Even if v = 0, the molecule is always vibrating.
The dissociation of a diatomic molecule is approximately

De = �e
2

4�exe

or

D0 = �e
2

4�exe

− �e

2

� Selection Rules in Molecular Transitions

Electron jumps from one orbital to another in molecules are usually accompanied by simultaneous changes of the vibrational
and rotational energy states. Changes of the vibrational and rotational energy states with no electronic transition also occur in
addition to rotational transitions alone.

Electronic Transitions

��= 0�±1 and �S = 0

Vibrational Transitions
No restrictions in combination with an electronic transition:

�v = ±1 in the absence of an electronic transition

Rotational Transitions
In combination with an electronic transition:

�J = 0�±1 for ��= ±1

�J = ±1 for ��= 0

�J = ±1 in the absence of an electronic transition
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Exercises

2.1 Calculate the ionization energy of the hydrogen atom (eV) when the wavelength of the H� line in the Balmer series is
known to be 656.3 nm. The charge of the electron, Planck’s constant and the speed of light are supposed to be known
and can be found in standard tables.

2.2 Calculate the minimum energy that has to be supplied to an unexcited hydrogen atom to enable it to emit the H& line in
the Balmer series. The ionization potential of hydrogen is 13.6 eV.

2.3 (a) Calculate the maximum wavelength of light that is able to release photoelectrons from a sodium electrode if the
work function of sodium is 2.3 eV.

(b) Photons of wavelength 200 nm hit the electrode. Calculate the maximum kinetic energy of the released
photoelectrons.

2.4 A certain photocell is made of a quartz tube and equipped with two electrodes. One of them is covered with a layer of an
alkali metal. The electrodes are connected with a sensitive amperometer and a variable-voltage source. When the alkali
metal electrode is exposed to light of wavelength 435.8 nm the current decreases to zero at a certain voltage between
the electrodes. If the electrode is exposed to photons of wavelength 253.7 nm the voltage has to be changed by 2.04 V
to maintain zero current. Calculate Planck’s constant, with e= 1�601×10−19 As and c = 3�00×108 m/s.

2.5 An X-ray tube has a constant voltage. The most energetic radiation emitted by the tube has the wavelength 0.300 nm.
Calculate the smallest de Broglie wavelength of the electrons in the tube. The relativistic effects on the electrons can be
neglected.

2.6 X-radiation of wavelength 0.0496 nm hits a crystal lattice under the Bragg angle (first order). In another experiment, a
beam of neutrons hits the lattice under the same angle. The neutrons are reflected in the same way as the photons. What
is the kinetic energy (eV) of the neutrons?

2.7 Describe the fundamental way of using quantum mechanics to find energy levels and quantum numbers of atomic and
molecular systems.

2.8 The wave function of the hydrogen atom in its ground state is

� = (
�a0

3
)− 1

2 e− r
a0

where a0 is the radius of the smallest Bohr orbit. According to the statistical interpretation of the wave function, the
charge density at the point (x, y, z) in space is '
x� y� z�= e���2.
(a) Show that the probability distribution has a maximum for x= a0, i.e. the probability that the electron will be found

at this distance from the nucleus is larger than for any other distance.
(b) Calculate the average values of r and r2.

2.9 (a) Describe the quantum numbers that characterize the orbitals in the atoms and the designations of the electrons in the
various orbitals.

(b) What is the signification of the Pauli principle?
(c) Describe the nomenclature and background of the energy states in atoms.
(d) List the selection rules for electronic transitions from one orbital to another (electron jumps) in atoms.
(e) An atom can have both singlet and triplet states. Is this in agreement with the selection rules?

2.10 One of the strong spectral lines of Hg is a transition between two energy levels with an energy difference 4.892 eV.
(a) What wavelength has the spectral line? (Check your answer in a standard table.)
(b) Calculate the number of quanta that are emitted per second by a 100 W Hg lamp if 5% of the supplied energy to the

lamp is transformed into radiation of the given wavelength.
2.11 Calculate the energy required to ionize a neutral He atom completely in its ground state, by removing the two electrons

one by one. In the series 1s 1S–np 1P the wavelength approaches 50.43 nm for large values of n. It is also known that
the ionization energy of hydrogen is 13.6 eV.

2.12 Find the electron configuration and type of electronic state for unexcited H, He, Li, Be, B, F, Ne, Na, Cl, Ar and K
atoms.
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Hints:

1. Filled shells and subshells do not contribute to the L and S vectors.
2. Shells or subshells with one missing electron can be treated as shells or subshells with only one electron when the L

and S vectors are derived.

2.13 The first excited configuration of the neutral Be atom is 2s2p with the terms 3P0, 3P1, 3P2 and 1P1. If the ground
term energy is chosen as zero level the wavenumbers (1/�) (in the customary unit cm−1) are 3P0 21 978�28 cm−1,
3P1 21 978�92 cm−1 and 3P2 219 81�27 cm−1. In the beryllium spectrum, another close multiplet with the following wave-
lengths and wavenumbers has been found:

1 2 3 4 5 6
265.0760 265.0694 265.0619 265.0596 265.0550 265.0454 nm
37 713.80 37 714.74 37 715.81 37 716.14 37 716.79 37 718.16 cm−1

It has been found that these lines represent transitions from the excited triplet 2p2 3P2, 3P1, 3P0 down to the first mentioned
triplet.

(a) Make a diagram and draw the allowed transitions, according to the selection rules.
(b) Identify the measured values in the above table with these transitions.

2.14 Describe the normal Zeeman effect and give an explanation for a simple case.

2.15 The red line in the Cd spectrum (1/�= 15 530�00 cm−1) is emitted at the transition 5s15d1 1D2 → 5s15p1 1P1. If the light
source is placed in a strong magnetic field of 1.0 T the lines split into several components. Illustrate this in a diagram
and calculate the wavenumbers for the allowed transitions. All singlet states obey the rules of the normal Zeeman effect.

2.16 The H2
+ molecule has in its ground state an energy that is 2.65 eV lower than the energy of a system that consists of a

hydrogen atom in its ground state and a proton at infinite distance from each other. Energy of 4.48 eV has to be supplied
to transfer the H2 molecule in its ground state into two hydrogen atoms at infinite distance from each other. Calculate:

(a) the energy of H2
+ relative to H+ +H+ + e− at infinite distance from each other;

(b) the energy of H2+ + e−, at infinite distance from each other, relative to the energy of two neutral atoms H + H, at
infinite distance from each other, in their ground state;

(c) the ionization energy of H2.

2.17 (a) Describe the nomenclature and background of the electron energy states in diatomic molecules.
(b) List the selection rules for electron transitions from one orbital to another (electron jumps) in the molecules.
(c) Give the L, S and J values for a 2� state and name its components. Are transitions to a 2� state, a 2� state and

another 2� state possible?

2.18 Show that the energy values of the rigid rotator can be derived easily by combining the general quantization rule of
angular momentum and the classical relationship between rotational energy and angular momentum.

2.19 Give a survey of the selection rules in diatomic molecules in the case of

(a) pure rotation of the molecule, vibration + rotation and vibration + rotation when an electronic transition occurs
simultaneously, respectively.

(b) Discuss briefly the intensity of vibration+ rotation bands in the latter case.

2.20 In the near-infrared part of the spectrum the CO molecule has an absorption spectrum at 2144 cm−1. It corresponds to
the transition from v′′ = 0 to v′ = 1. Calculate

(a) the basic frequency of the corresponding vibration in the molecule
(b) the zero level of the vibrational energy.

2.21 The Morse function:

Epot =De

[
1− e−
r−re�]2
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is often used as an approximation of the potential curve of diatomic molecules. As the vibrational energy levels are not
equidistant, the model of an anharmonic oscillator is used to describe their positions:

Evibr = hcG
v�= hc
[
�e 
v + 1/2�−�exe 
v + 1/2�

2
]

From an analysis of 1�–1� bands in the MgO molecule, the following values of the vibrational constants have been
derived:

�′′
e = 785 cm−1and �′′

ex
′′
e = 5�1 cm−1�

Calculate the dissociation energies De and D0 of the ground state 1� of the molecule. Give the answers in eV.

2.22 Two consecutive lines in the rotational spectrum of the HCl molecule have a wavenumber difference of 21�2 cm−1.
Calculate:

(a) the moment of inertia of the molecule with respect to an axis through the centre of mass and perpendicular to the
axis of the molecule

(b) the distance between the atoms.

2.23 An absorption line in the rotational spectrum of the CO molecule has been observed to absorb microwaves of the
frequency 1�153×1011 Hz. Calculate the distance between the nuclei.

2.24 Why are the spectra of polyatomic molecules in most cases much more complicated than those of diatomic molecules?

2.25 From the spectrum of the water molecule, H2O, the moments of inertia through the centre of mass of the molecule with
respect to the axes 1 and 2 in the plane of the molecule have been calculated. The values I1 = 1�92 × 10−47 kg m2 and
I2 = 1�02×10−47 kg m2 were derived.

M

θθ 2

a                              a

m m

1

Calculate the distance between the O and H nuclei and the angle H–O–H.
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3.1 Introduction

Solid-state physics is based on modern atomic and molecular physics, especially quantum mechanics. These theories have
been briefly discussed in Chapter 2. In this chapter, the outlines of the modern theory of solids are given. Most of the theory
presented here is the basis for understanding different types of crystallization processes discussed in later chapters. It is also
the basis for the models which are used for the analysis and control of such processes.
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3.2 Bonds in Molecules and Solids: Some Definitions

In Sections 3.3 and 3.4, we will discuss bonds between atoms in molecules and solids. As an introduction to this field, we
will start here with some general definitions.

The general definition of potential energy, which corresponds to a force, is

Epot =
x∫

a

−Fdx (3.1)

Attractive forces are positive and the corresponding potential energy is negative. Repulsive forces are negative and the
corresponding potential energy is positive. The zero level of the potential energy is determined by the constant a in Equation (1).

These concepts can be applied to the interaction between two particles, which may be two atoms or a nuclei and an electron.

3.2.1 Binding Energy and Dissociation Energy. Ionization Energy. Electron Affinity.

F

0

–F

r x
 

Figure 3.1 Attractive force between two atoms at a distance r in a coordinate system x. In the case of atomic interaction the constant a
in Equation (1) is chosen in such a way that the potential energy is zero when the two atoms are at an infinite distance from each other.
Reproduced with permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

The electrons in their orbits around the nucleii are mainly responsible for the forces between the atoms in molecules and
solids.

As we shall see below, the origin of the attractive forces varies, but they are always caused by the electrons in the outermost
orbitals of the atoms. The potential energy of these forces is negative if we use the coordinate system suggested in Figure 3.1
and choose zero potential energy at infinity (a = �).

Strong repulsive forces appear when the distance between two atoms is so small that their outer filled electron orbitals begin
to overlap. The potential energy is positive and the potential energy increases rapidly when the distance is further decreased.

The minimum potential energy of a system corresponds to its equilibrium state. Both the attractive and repulsive forces
depend on the interatomic distance. At the equilibrium distance the net force is zero as the attractive and repulsive forces
balance each other and the total energy has a minimum. The general shape of the energy curve is the same as in Figures 2.35
and 2.37 on pages 74 and 75, respectively.

Binding Energy and Dissociation Energy

Consider a stable diatomic molecule AB. The two atoms A and B are bound to each other and the total energy of the system
is negative. The two nucleii vibrate relative to each other.

The binding energy EB of the molecule is defined as

EB = the energy released when the two atoms A and B are moved from infinity to their

equilibrium distance and form a stable molecule AB.

The equilibrium distance is the average distance between the vibrating nuclei A and B. Binding energies of some diatomic
molecules are given in Table 3.1.

The binding energy is equal to the dissociation energy, D0, of the molecule or the energy required to separate the atoms A
and B and move them to infinite distance from each other (Figure 3.2):

EB = D0 (3.2)
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These definitions can be generalized to many-particle systems, for example polyatomic molecules and solids, where all the
components initially are at an infinite distance from each other.

Table 3.1 Binding energies of some
diatomic molecules.

Molecule Binding energy (eV)

H2 4�5
Cl2 2�5
Na2 0�72
O2 5�1

Energy

D0

r

Figure 3.2 Total energy of a diatomic molecule as a function of distance. The ground state is marked. Dissociation energies are discussed
on page 83 in Chapter 2. Reproduced with permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

Ionization Energy and Electron Affinity

The ionization energy, Eion, of an electron in a stable orbit of an atom is defined as

Eion = the energy required to move an electron from its orbit in the atom to infinity.

Each electron has its own ionization energy in an atom. The electrons in the highest energy level become ionized first. Some
examples of ionization energies are given in Table 3.2.

Table 3.2 Ionization energies of some
metals.

Atom Ionization energy (eV)

Na 5�1
K 4�3
Al 6�0
Cu 7�7
Fe 7�9

When an electron is removed from the atom, the latter becomes a positive ion. Addition of an extra electron in an empty orbit
of an atom gives a negative ion. The electron affinity, Eaff , is defined as

Eaff = the energy which is released when an electron is moved from infinity to lowest possible

orbit in an atom forming a stable negative ion.
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The electron affinity is a measure of the ability of an atom to attract electrons from outside. Table 3.3 gives some examples.
Energy is released when an electron is added to a halide atom.

Table 3.3 Electron affinities of some
atoms.

Atom Electron affinity (eV)

F 3�5
Cl 3�7
Br 3�4
I 3�1
O 1�5

3.2.2 Sublimation Energy and Condensation Energy. Cohesive Energy. Lattice Energy

The definitions given above refer to molecules or atoms. The following concepts refer to crystals.

Sublimation Energy and Condensation Energy

When a solid is heated, it melts in most cases. Further heating leads to boiling, i.e. a vapour is formed. Sometimes atoms
may be transferred directly from the solid to the gaseous state without the intermediate liquid state. This process is called
sublimation. The sublimation energy of an atom is defined as

ES = the energy required to move an atom from its position in the solid to infinity.

The reverse process is the condensation of a vapour directly into a solid. The released condensation energy per atom is
equal to the sublimation energy:

ES = Econd (3.3)

Cohesive Energy. Lattice Energy

Cohesive energy = the energy which has to be added to one stoichiometric unit of a crystal to

separate its components into neutral free atoms at rest at infinite distance

from each other.

Lattice energy is a concept which is used in connection with ionic crystals. It is defined as

Lattice energy = the energy which has to be added to one stoichiometric unit of a crystal to

separate its component ions into free ions at rest at an infinite distance from

each other.

3.3 Bonds in Molecules and Nonmetallic Solids

Solids are classified as crystalline or amorphous. In crystalline matter, the atoms has a periodic ordered structure whereas the
atoms in amorphous matter show a random order. The dominant part of solids has a crystalline structure.

In Chapter 1, we described different crystal structures and the methods for studying them. Here we will discuss the theory
of bonds between the atoms in molecules and solids using the results of quantum mechanics. On the basis of this theory, the
properties of crystalline nonmetallic solids can be understood.
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Crystalline solids can be classified according to the predominant type of bonds between the atoms in the crystal lattice. No
crystal materials belong 100% to any of the pure types of bonds listed below, but to a mixture of several types. The main
types of bonds are

• molecular bonds
• ionic bonds
• covalent bonds
• metallic bonds.

The first three types of bonds listed above will be discussed in Section 3.3. The last type of bond is very important in metals
and responsible for their particular properties. Metallic bonds will be discussed in Section 3.4.

3.3.1 Molecular Bonds

Molecular bonds are much weaker than the other three types of bonds listed above. The origin of molecular bonds is dipole
interaction between molecules.

Dipole Interaction Between Molecules

The electrical dipole moment of a dipole is a vector defined as

p = qr (3.4)

where q is the electrical charge and r a vector directed from the negative towards the positive charge (Figure 3.3).

–q

r

p

+q

Figure 3.3 Dipole moment.

When two molecules at infinite distance are brought closer to each other, they will be affected by electrostatic forces. Even
if a molecule has a zero dipole moment it may be a fluctuating dipole owing to vibrations in the molecule, for instance.
Examples of fluctuating dipoles are mentioned on page 106. In the vicinity of a permanent or temporary dipole, the orbitals
of other neighbouring molecules become slightly displaced and the molecules become induced dipoles.

This mutual interaction between dipoles is the origin of the van der Waals forces between the molecules. The weak,
attractive van der Waals forces are inversely proportional to the seventh power of the distance between the molecules (see
page 106). They will be discussed more extensively in connection with real gases in Chapter 4.

Molecular Bonds in Solids

Molecular bonds also occur in solids which consist of molecules and not of ions. The forces between the molecules are the
weak van der Waals forces between permanent, fluctuating or induced dipoles.

The best-known example of this type of bonding is graphite, which is discussed on page 111. The graphite lattice consists
of layers of hexagonal carbon rings held together by covalent bonds. Adjacent layers act as macromolecules and are held
together by weak van der Waals forces, which account for the fragile, flaky and slippery nature of graphite.

Molecular bonds are very weak compared with ionic and covalent bonds.
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3.3.2 Ionic Bonds

Ionic Bonds in Molecules

A simple and typical example of an ionic bond in a free molecule is the formation of a free Na+Cl− molecule from a free
Na atom and a free Cl atom. The molecule formation occurs in practice in a mixture of sodium vapour and chlorine gas. The
molecule formation can be described as follows.

An Na atom and a Cl atom at infinite distance from each other approach gradually, owing to the thermal kinetic motion in
the gas. When their outermost orbits are close to each other, the outer electron clouds of the atoms rearrange and an Na+Cl−

molecule is formed. The K and L shells in the Na atom are filled and there is a single valence electron in the 3s orbital
(configuration 1s2 2s2 2p6 3s). The Cl atom has the configuration 1s2 2s2 2p6 3s2 3p5. The 3s electron of Na leaves its orbit
and forms the eighth and missing electron in the M subshell of Cl. Then both ions have filled shells and subshells. There is a
strong electrostatic attractive force between the ions.

The distance between the ions decreases until it equals the equilibrium distance for the Na+Cl− molecule, when the
electrostatic attraction force balances the strong repulsive force, which appears when the electron clouds of the two subshells
begin to overlap. Owing to the Pauli exclusion principle, no electrons can have four equal quantum numbers. Hence some
electrons must be excited to higher energy levels. This process requires much energy and results in a steep energy curve. The
equilibrium corresponds to the lowest possible total energy of the system and results in a stable ionic molecule.

The energy of the Na+Cl− molecule can be calculated theoretically by studying the energy of the system as a function of
the interionic distance r.

Energy of a Free Ionic Molecule
As shown above, the molecule formation in the case of Na+Cl− can be described schematically to occur in three steps:

1. The Na atom at infinite distance is ionized.
2. The electron is absorbed by a Cl atom at infinite distance.
3. The Na+ ion and the Cl− ion at infinite distance are brought together until their interionic distance equals the equlibrium

distance re.

The total energy is negative, which is characteristic of a bound system, i.e. a stable molecule. The first step requires addition
of the ionization energy. During the second step, the electron affinity energy is released. The balance between the attractive
electrostatic and the repulsive electron shell forces results in a potential curve similar to those of other diatomic molecules
(Figure 3.4). The potential curve ends at infinity in an Na+ ion and a Cl− ion. The energy scale in Figure 3.4 is chosen in the
normal way, i.e. E = 0 for an Na atom and a Cl atom at infinite distance from each other.
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Figure 3.4 Potential energy of a free Na+Cl− molecule as a function of the interionic distance r. At r = � the molecule is separated into
an Na+ ion and a Cl− ion. Reproduced with permission. © E. Lindholm (Deceased).

The energy required to transfer an electron from the Na atom to the Cl atom can be calculated from the ionization energy
of Na and the electron affinity of Cl (see pages 99–100):

ENa
ion −ECl

aff = 5�14−3�82 eV = 1�32 eV
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The total energy of the Na+Cl− system consists of the sum of four energy terms in addition to the energy required for the
electron transfer:

Etotal = Eattr +Erep +Ecovalent +Evib +1�32 eV (3.5)

The first term corresponds to the normal potential energy −q2/4� �0re (eV) of the attractive electrostatic force between
two point charges of different signs, where q is the charge of the ion.

The second term is the electrostatic potential energy, which corresponds to the strong repulsive force which appears at small
interionic distances. Born assumed that the repulsive energy could be written empirically as a constant times 1/rn, where n
is a number specific to each type of crystal. An alternative is an exponential function, discussed in connection with ionic
crystals.

The third term is the covalent energy. As pointed out on page 101, no bond belongs to a single type of bond. Even in a
typical ionic crystal such as Na+Cl− the bond is not 100% ionic. The wave function of the electron can be written as

�total = fion�ion +fcovalent�covalent (3.6)

where the fractions fion and fcovalent are constants. In typical ionic molecules the fraction fcovalent is small but never zero. Hence
the bond is to a minor extent covalent. This matter will be discussed further in connection with covalent bonds below. In the
case of Na+Cl−, the covalent energy Ecovalent can be neglected in comparison with the ionic energy.

The fourth term represents the vibrational energy. Owing to the Heisenberg uncertainty principle (Chapter 2, page 54) the
ions cannot be at rest relative to each other. The two ions perform harmonic vibrations around their common centre of mass
(Chapter 2, page 80). The vibrational energy is small in this case and can be neglected in comparison with the other terms.

Hence the total energy of a free Na+Cl− molecule can be written as

Etotal = − 1
4��0

e

r
+ constant

rn
+1�32 eV (3.7)

The constant in Equation (3.7) can be determined from the equilibrium condition dE/dr = 0 for r = re.
During the third step, the binding energy of the Na+Cl− molecule is released. Figure 3.4 shows that it is equal to the

dissociation energy D0 (Chapter 2, page 83) of the ionic molecule. This quantity can be estimated experimentally.
The theory of ionic molecules, given above, is generally valid for free ionic molecules.

Ionic Bonds in Ionic Crystals

Ionic bonds occur in crystals which mainly consist of positive and negative ions. The attractive electrostatic forces between
neighbouring, differently charged ions are strong and hold the crystal firmly together. As in free ionic molecules, the
equilibrium interionic distance is determined by the balance between the electrostatic attractive forces between the ions and
the electrostatic repulsive forces between the outer electron shells of the positive and negative ions.

Ionic crystals are hard and brittle and have high melting points. The valence electrons are firmly bound to the negative ions
(Figure 3.5). Hence no transport of electrons through the crystal is possible. Ion crystals are insulators at room temperature.
At high temperatures the ions become mobile and ion conduction is possible.

Figure 3.5 Na+Cl− crystal. The difference in size of the two types of ions is not considered.
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Lattice Energy of Ionic Crystals

Total Energy
The theory of the lattice energy was developed by Born at the beginning of the 20th century. To describe it we choose the
formation of an Na+Cl− crystal from a piece of Na metal and Cl2 gas. The mechanism of the formation of Na+ and Cl− ions
in a crystal lattice is the same as for a free Na+Cl− molecule. However, in the case of a crystal lattice the presence of other
positive and negative ions, which surround each ion, has to be taken into consideration. Also, other effects are different in a
crystal lattice than in a free molecule.

The total energy of an Na+Cl− unit or, in the general case, one stoichiometric unit, consists of a total of five contributions
in addition to the transfer energy of an electron from Na to Cl. Four of them are analogous to the corresponding contributions
in a free ionic molecule, but are modified in some cases. The fifth term, Epol, which is due to interaction between electrical
dipoles, has no equivalent in a free ionic molecule.

Etotal = Eattr +Erep +Ecovalent +Evib +Epol +1�32 eV (3.8)

Each of the five other terms will be discussed shortly below. It should be noted that they must be expressed in eV.

Attractive Electrostatic Potential Energy
The electrostatic interaction between each ion and all the ions in the whole crystal lattice must be taken into consideration.

The Na+Cl− crystal has an FCC lattice. Each Na+ ion is surrounded by six Cl− ions at a distance R, by 12 Na+ ions at a
distance R

√
2 and by eight Cl− ions at a distance R

√
3 and so on. The potential energy, expressed in eV, of the interaction

between one Na+ ion and all the other ions in the crystal will be

Eattr = −e

4��0R

(
6√
1

− 12√
2

+ 8√
3

− 6√
4

+ 24√
5

� � �

)
(3.9a)

The same sum is obtained if we consider the interaction of a Cl− ion with neighbouring ions. If we add the two sums, each
bond is included twice. Hence the potential energy of the interaction of an Na+Cl− unit with the rest of the crystal lattice can
be written (expressed in eV) as

Eattr = A

4��0

−e

R0

�eV� (3.9b)

where
A = Madelung’s constant for the crystal structure
R0 = smallest possible distance between unequally charged ions in the crystal lattice
e = charge per ion.

Equations (3.9a) and (3.9b) show that the Madelung constant A in this case is the expression in the parentheses in
Equation (3.9a).

In the general case, the charge is an integer multiple of the elementary charge and A is a pure number, determined entirely
by the particular structure of the crystal. Table 3.4 give the values of A for some crystal structures.

Table 3.4 Values of Madelung’s constant
of some crystal structures.

Crystal/structure A

CsCl (SC) 1.7627
NaCl (FCC) 1.7476
ZnS (diamond structure) 1.6381

Each Cs+ ion is surrounded by eight Cl− ions (simple cubic structure). For space reasons, Na+Cl− has a different structure
to CsCl. There is not space enough for eight Cl− ions around the Na+ ion, which is considerably smaller than the Cs+ ion.
Instead, each Na+ ion is surrounded by six Cl− ions (FCC structure).
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Repulsive Electrostatic Potential Energy
The repulsive potential energy has the same origin as that in a free ionic molecule. The repulsive forces are short-range forces
and hence the repulsive potential energy depends only on the electron distribution in the outer electron shells of the nearest
neighbour ions. Born’s approximation is valid. It can be written (in the energy unit eV) as

Erep = e

4��0

B

Rn
(3.10)

where n and B are constants. The value of n can be calculated from measurements of the compressibility of the crystal. The
value of n for Na+Cl− has been found to be 9.1.

The attractive and repulsive electrostatic forces balance each other at equilibrium. The constant B can be calculated from
the equilibrium condition

[
d
(
Eattr +Erep

)
/dR

]
R=Re

= 0 (3.11)

or

d
dR

[
e

4��0

(−A

R
+ B

Rn

)]
R=Re

= e

4��0

(
A

R2
+ −Bn

Rn+1

)
R=Re

= 0

which gives the relationship

B = A

n
Rn−1

e (3.12)

Consider a crystal consisting of N0 positive and N0 negative ions. If we neglect the surface effects, the total electrostatic
binding energy of the crystal will be

Eelectrostatic = N0

(
Eattr +Erep

)
equilibrium

= N0

A

4��0

−e

Re

(
1− 1

n

)
(3.13)

The total binding energy of 2N0 ions is equal to the expression in Equation (3.13). The sum seems to be double this amount
but then each pair of ions would have been counted twice, which is not correct. The total electrostatic energy per ion pair
is then

Eelectrostatic

N0

= A

4��0

−e

Re

(
1− 1

n

)
(3.14)

A still better empirical approximation of the repulsive electrostatic energy than Equation (3.10) is an exponential function
of the type

Erep = Z	e− R

 (3.15)

where
R = distance between nearest neighbour ions
Z = the number of nearest neighbours of any ion
	, 
 = specific empirical parameters for each type of crystal.

If Equation (3.10) is replaced by Equation (3.15), analogous calculations give

Eelectrostatic = N0

A

4��0

−e

Re

(
1− 


Re

)
(3.16)

The electrostatic energy per ion pair (in eV) will then be

Eelectrostatic

N0

= A

4��0

−e

Re

(
1− 


Re

)
(3.17)
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Residual Covalent Binding Energy
Even in a typical ionic crystal such as Na+Cl− the bond is not 100% ionic but also to some extent covalent and molecular.
This is taken into account by adding two energy terms, Ecovalent in analogy with the free ionic molecule and a term Epol (see
below).

In the case of an Na+Cl− crystal, the covalent binding energy is small and can be neglected.

Zero-point Vibrational Energy
In analogy with the free ionic molecule, the zero point vibrational energy must be taken into account. In a crystal with N0

ions there are 3N0 − 6 different modes of vibration. The added zero point vibrational energies of these vibrations contribute
to the total energy of the Na+Cl− unit.

The total vibrational energy, which is the sum of all the zero point vibrational energies, can be written in eV (compare page
83 in Chapter 2) as

Evibr =∑
i

hc

e
�i

(
ni

vibr +
1
2

)
(3.18)

where ni
vibr are the vibrational quantum numbers.

Polarization Energy
A molecule is said to be polarized when the centre of its positive charges does not coincide with the centre of its negative
charges. The molecule is a dipole. Temporary dipoles may arise in the crystal, owing to vibrations, and cause induced dipoles.
We have seen on page 101 that the dipole–dipole interaction is the origin of molecular bonds. Such weak van der Waals
forces also act within crystals. The interaction between dipoles results in polarization energy, which contributes to the lattice
energy of the Na+Cl− unit. To find this energy, we use the definition of the electrical dipole moment p on page 101:

p = qx (3.19)

A homogeneous electric field induces a dipole in an atom. The dipole moment is proportional to the electrical field:

p = �E (3.20)

where
p = dipole moment of the induced atomic dipole
� = polarizability of the atom
E = electric field.

The energy of the atomic dipole in the electric field (in SI units) can be found by integration:

Epol = −
x∫

0

qEdx = −
x∫

0

qEd
�E

q
= −1

2
�E2 (3.21)

A crystal may be considered as a system of oscillating dipoles. If the electric field originates from a dipole, the electric field
at a point at a distance R from the dipole varies as 1/R3. As the polarization energy is proportional to E2, the polarization
energy is proportional to �1/R3�2:

Epol = −constant

R6
(3.22)

The constant includes the factor 1/e, which has to be introduced to express Epol in eV.

Calculation of the Lattice Energy
According to the definition on page 100, the lattice energy of an ionic crystal can be written as

Elattice = �Etotal�R=� − �Etotal�R=R0
(3.23)

It can be calculated with the aid of Equation (3.8) in combination with expressions of the various energy contributions, i.e.
Equations of the type (3.13) or (3.17), (3.18) and (3.22). The covalent energy contribution is small and can be been neglected.

In Table 3.5, the results of such calculations for an Na+Cl− unit are given. The table shows the relative magnitude of the
different energy types.
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Table 3.5 Lattice energy and energy types
per Na+Cl− unit.

Type of energy Energy (eV)

Attractive energy −8�92
Repulsive energy +1�03
Covalent energy ∼0
Zero point vibrational energy +0�08
Polarization energy −0�13
Calculated lattice energy −7�94

Experimental Determination of the Lattice Energy
The calculation of the lattice energy above is based on theory. Alternatively, it is possible to derive the lattice energy from
experimentally determined quantities only. This can be done with the aid of the so-called Born–Haber cycle. As an example,
we consider once again an Na+Cl− crystal.

The Born–Haber cycle starts with a piece of solid Na and Cl2 gas and builds the Na+Cl− crystal step by step:

1. An Na atom is released from the Na lattice when sublimation energy is added.
2. The free Na atom is ionized by addition of ionization energy.
3. A Cl2 molecule is dissociated. The formation of one Cl atom requires half the dissociation energy.
4. The Cl atom absorbs an electron. Electron affinity energy is released.

The above steps can be written as chemical formulae. The quantities refer to the formation of one pair of solid Na+Cl−.

Nasolid +ENa
S → Navapour

Navapour +ENa
ion → Na+

vapour + e−

1/2Cl2 + 1/2DCl2
→ Cl

Cl + e− → Clvapour
− +ECl

aff

We can also describe the overall process in terms of lattice energy:

Navapour
+ +Clvapour

− → �Na+Cl−�solid +Elattice

Na+Cl− is a very stable crystal. When it is formed, heat of formation, which we will call Q, is released. This process can
be described by

Nasolid + 1/2Cl2 → �Na+Cl−�solid +Q

If we add the first five chemical formulae and subtract the sixth one, we obtain the relationship

Elattice = ENa
S +ENa

ion + 1/2DCl2
−ECl

aff +Q (3.24)

All the quantities included in the right-hand side of Equation (3.24) have been determined experimentally. If we introduce
their tabulated values we obtain

Elattice = 1�1+5�1+1�2−3�8+4�3 = 7�9 eV

The agreement with the theoretical value in Table 3.5 is very good. Hence the theory is satisfactory and essentially correct.
The energy of an Na+Cl− unit of a crystal is shown in Figure 3.6. For comparison, the energies of both a free Na+Cl−

molecule (Figure 3.4) and an Na+Cl− unit of a crystal are shown side by side. The energy scales in the two figures are the
same. In both cases the energy well is deep, which means that the bonds are strong, especially in the crystal.
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Figure 3.6 Potential energy of an Na+Cl− crystal as a function of
the interionic distance R. Elattice = 7�9 eV. Reproduced with permis-
sion. © E. Lindholm (Deceased).
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Figure 3.4 Potential energy of a free Na+Cl− molecule as a func-
tion of the interionic distance r. At r = � the molecule is separated
into an Na+ ion and a Cl− ion. Reproduced with permission.
© E. Lindholm (Deceased).

3.3.3 Covalent Bonds

Cl atoms have filled K and L shells and seven electrons in the M shell. If two Cl atoms share two electrons they are able to
form a stable Cl2 molecule with both their M subshells filled:


··

Cl··· + · ··
Cl ·· →

··
Cl ··

··
Cl ·· +Q

The two atoms share the electron pair, which gives the lowest possible energy of the system.
This type of bond is called a covalent bond or electron pair bond or homopolar bond. The bonds are very strong and

covalent solids are therefore characterized by high melting points and high mechanical strength. They are poor conductors of
heat and electricity because there are no non-localized electrons which can carry energy or charge from one place to another.
The electron excitation energies of covalent solids are high, of the magnitude of several eV. The excitation energy of diamond,
for example, is 6 eV. As the thermal average energy kBT at room temperature is of the magnitude 0.025 eV, covalent solids
are normally in their electronic ground states.

A very important example of covalent bonds is the so-called hybrid formation of carbon in methane, which explains the
special type of bonds which occur in carbon, silicon and germanium (page 110).

Bond in the H2 Molecule

The free H2 molecule is a typical example of a covalent bond and of great theoretical interest because it is the only molecule
which allows exact theoretical calculations.

On pages 72–74 in Chapter 2, the ionic molecule H2
+ was discussed. The bond between the equal H atoms was found to

be strong and the probability of finding the electron between the nuclei comparatively high, which results in a deep potential
well of the molecule. In the case of H2 two electrons instead of one give an even stronger bond than that of H2

+.
The strength of the bond in H2

+ was found to be due to exchange energy. In the case of H2, exchange energy appears for
both electrons, but other types of so-called resonance energy are also involved. The interchange frequency of the electrons
between the two nuclei is of the magnitude 1018 s−1.

The assumption by Fermi and Dirac that electrons are indistinguishable is closely related to quantum mechanics and the
Pauli principle. This assumption is essential and very successful in connection with metallic bonds, as will be shown later.
Here we also have to consider the fact that the two electrons in H2 are indistinguishable.

When the two H atoms 1 and 2 approach each other and molecular orbitals are formed, it is impossible to know which one
is electron A and which is electron B. The wave functions for the united molecule are combinations of the wave functions
�1�A� and �1�B�, �2�A� and �2�B�. Calculations show that the lowest energy is given by the symmetrical, gerade wave
function:

�g = �1�A��2�B�+�1�B��2�A� (3.25)

Both electrons are in the molecular orbital (�g 1s) and have anti-parallel spins. The energy changes with the internuclear
distance as is shown in Figure 3.7 (Figure 2.35 on page 74 in Chapter 2).
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Figure 3.7 Energy of the H2
+ molecule as a function of the distance between the two protons. Reproduced with permission from M. Alonso

and E. Finn, Fundamental University Physics. © Addison-Wesley.

The corresponding antibonding wave function is an antisymmetric ungerade wave function which corresponds to an instable
molecular orbital (�u 1s). Two electrons with parallel spins fill the state.

The total energy varies with the internuclear distance. The ground state of the stable H2 molecule has a deep minimum
which corresponds to the binding energy. The pair of electrons results in a strong attractive force which balances the repulsion
between the two H+ nuclei. This is a typical covalent bond.

However, bonds in molecules never belong 100% to one type of bond, for example covalent or ionic bonds, but are always
a mixture of two types or more.

In the case of H2 there is no total agreement between the theoretical calculations of the energy curve and the experimental
values. There is a possibility that both electrons are near one or the other nucleus, which results in an ionic molecule
H�1�+H�2�− or H�2�+H�1�− and we obtain (page 103)

�total = fcovalent�covalent +fionic�ionic (3.6)

When this effect is taken into consideration, complete agreement between theory and experiment is achieved.

Covalent Bonds in Carbon

Graphite and transparent diamond crystals are well-known structures of carbon. Diamond is very hard and is used in cutting
tools. Graphite is used in pencils and as a lubricant. Carbon powder and active carbon consist of ground graphite. Carbon
often appears as a solute in metals and is therefore of particular importance in metallurgy.

Hybrid Formation of sp3 Orbitals in CH4

Carbon normally has the valence 4. This is difficult to understand from the electron configuration of the carbon atom,
1s2 2s2 2p2. To explain why the valence is 4 we will consider the simplest of all symmetric free carbon molecules, CH4.

When the four H atoms approach the carbon atom they become excited into a higher energy level than the ground state. One
of the 2s electrons in carbon becomes excited up to a 2p orbital and the new electron configuration in carbon will be 1s2 2s 2p3.
The threshold energy, which has to be supplied, is a necessary contribution that makes it possible to achieve symmetry of the
bonds, which corresponds to the lowest possible total energy, lower than the sum of the initial energies of the four H atoms
and the C atom.

The wave functions that correspond to the 2p electrons are identical apart from their directions. For symmetry reasons they
correspond to three perpendicular directions in free space (Figure 2.27 on page 68 in Chapter 2). For simplicity we call the
wave functions ��2px�, ��2py� and ��2pz�.

Because the electrons are indistinguishable (as those in the H2 molecule), the spherically symmetric wave function �(2s)
and the three perpendicular wave functions ��2px�, ��2py� and ��2pz� combine and give four new wave functions, which are
identical, apart from their directions. We call them ��ta�, ��tb�, ��tc� and ��td�. Their directions are symmetrical. If the C
atom is located to the centre of a tetrahedron, the directions of the wave functions and the bonds coincide with the directions
to the corners of the tetrahedron (Figure 3.8).
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� �2s�+� �2px�+�
(
2py

)+� �2pz� = � �ta� (3.26)

� �2s�+� �2px�−�
(
2py

)−� �2pz� = � �tb� (3.27)

� �2s�−� �2px�+�
(
2py

)−� �2pz� = � �tc� (3.28)

� �2s�−� �2px�−�
(
2py

)+� �2pz� = � �td� (3.29)
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Figure 3.8 Tetrahedron directions. Reproduced with permission. © E. Lindholm (Deceased).

Hence there will be four t electrons in the tetrahedron directions instead of one 2s electron and three 2p electrons. The
total energy that corresponds to this set of t wave functions is a minimum and lower than the energy of the 2s and three
2p electrons. Hence this symmetrical configuration is stable. The symmetric covalent tetrahedral bonds are characteristic of
diamond (Figure 3.9).

Figure 3.9 Tetrahedral bonds in diamond. Adapted with permission from M. J. Sinnott, The Solid State for Engineers. © 1958 John Wiley &
Sons, Inc.

However, hybridization of carbon is only possible in connection with chemical binding, because the excitation of the 2s
electron in carbon requires supply of energy from outside.

With the same wave function representation as in Figure 2.27 on page 68 in Chapter 2, we can illustrate the C–H bond as
follows:

H + C → C–H

+ →

→ t1s 2p+

The bonds in methane, CH4, are covalent. Each of the four t electrons of carbon forms an electron pair with the 1s electron
of each of the four hydrogen atoms. The two electrons with anti-parallel spins are in a molecular � orbital. The reason why
hybridization occurs is that the hybrid wave functions lead to the lowest possible energy of the system.

For the same reason as above, the semiconductors Si and Ge have tetrahedral bonds analogous to those in carbon. We will
come back to this topic in connection with semiconductors.

Hybridization is a general phenomenon. It is not specific to carbon and not restricted to sp3 orbitals.
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Bonds in Graphite
Another type of hybrid carbon bonds appear in graphite and in aromatic organic compounds where stable planar C6 rings, for
example benzene (C6H6) and its derivatives, are formed (Figure 3.10).

(a) (b)

H

H H

H                             H

H

Figure 3.10 (a) Planar layer of hexagonal carbon rings in graphite.
(b) Benzene molecule. The C–C and C–H bonds are strong covalent � bonds.

The types of hybrid formation are analogous in diamond and graphite (Figure 3.11). In the case of graphite and aromatic
substances, the interaction between one 2s electron and two 2p electrons result in three localized � bonds with sp2 hybrid
wave functions.

Each carbon atom in the ring has four valence electrons, which makes 24 electrons. Eighteen of them are used for the �
bonds and the remaining six � bonding electrons are not localized to any particular C atoms but are free to move along the
planar layer of carbon rings but not perpendicularly to them. This explains the electrical conductivity of graphite, whereas
diamond is an excellent insulator.

Figure 3.11 Structure of graphite. The consecutive layers of carbon rings act as macromolecules which are held together by van der Waals
forces. Reproduced with permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

In Section 3.3.2, we discussed bonds in ionic crystals and the influence of the neighbouring ions in the crystal. In solids
with mainly covalent bonds there is also multiple interaction between the atoms in the crystal. These topics will be discussed
in Section 3.5. Of particular importance is a comparison between the energy levels in diamond and the semiconductors silicon
and germanium, which have the same type of covalent bonds and the same crystalline structure.

Figure 3.12 ‘Football’ structure of C60. Reproduced with permission from S. Lillieborg.
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In 1985, a new type of carbon structure was found, when macromolecules of carbon, so-called fullerenes, were prepared.
The best-known example is C60, which consists of 20 hexagonal faces and 12 pentagonal faces and has the shape of a football.
Most of the fullerenes crystallize in an FCC structure. The unit cells are kept together by van der Waals forces.

Figure 3.12 on page 111 shows that the same type of carbon rings appear in the fullerenes as in graphite.

3.4 Metallic Bonds

Metals are a special type of solids which are of great practical importance in industry and in everyday life. Metallic solids have
good mechanical strengths, high melting points and often excellent thermal and electrical conductivities. They have relatively
low ionization energies and are opaque.

The mechanical strength and high melting point of most metals indicate that the bonds between the atoms in a metal are
strong just like the bonds in ionic and covalent solids. However, the type of bonding is completely different in all three cases.
In ionic solids, strong electrostatic forces are responsible for the attraction between the ions. In covalent solids, the strong
interatomic forces are caused by electron pairs which keep the atoms firmly together.

3.4.1 Free Electron Model of a Metal

We have seen that the valence electrons of the atoms are responsible for the nature of the strong bonds in ionic and covalent
solids. In both cases the valence electrons are bound to the ions and atoms, respectively. In covalent solids, the strong bonds
are caused by electron pairs.

Most metals have a few, weakly bound electrons in their outermost incomplete electron shells. In Chapter 1 we found that
metals normally have high coordination numbers. Hence there are far from enough valence electrons to form electron pair
bonds between all near neighbour atoms in a metal.

Instead, all the valence electrons are assumed to be shared between all the metal atoms. A metallic crystal can be regarded
as a three-dimensional array of positive ions firmly held together by the attraction from a common electron cloud, consisting
of all the valence electrons in the crystal. The electrons belong to the whole crystal lattice and not to any particular metal ion.

If the metal is exposed to an electric field, the valence electrons of most metals can easily move in a direction opposite to
the field and carry the electric current. The electrons also transport momentum and kinetic energy in case of a temperature
gradient instead of an electric field across the metal. Hence most metals are good electrical and thermal conductors. These
properties will be treated in Chapter 7.

The theory suggested above, which has proved to be very successful, is called the free electron model of a metal. It will be
treated extensively below.

3.4.2 Classical Model of the Electron Gas

The English physicist J. J. Thomson detected the electron in 1897 and measured e/m, the ratio of its charge and mass. By
studying the motion of small charged oil drops in an electrical field, the American physicist R. A. Millikan made very careful
measurements of the electron charge. Then the mass and charge of a free electron could be estimated separately:

e = −1�60×10−19 A s m = 9�11×10−31 kg

The mobile electrons in a metal do not have the same mass as an electron in free space. For this reason, the concept effective
mass m∗ has been introduced. The effective mass depends on the energy of the electron inside the metal. We will come back
to this phenomenon later (pages 145–146).

A free metal atom in its ground state has a number of filled electron shells around the nucleus and one or several valence
electrons in orbitals in the next shell. The filled shells are tightly bound to the nucleus whereas the valence electrons are
supposed to be free in the sense that they are not bound to any special nucleus. As mentioned above, the valence electrons
belong to all the ions and can easily move anywhere within the metal volume but not outside. They can be compared with the
molecules in an ideal gas, which explains the former name ‘electron gas’.

Thermal Distribution of Energies in the Classical Electron Gas

The kinetic theory of gases, which was introduced at the end at the 19th century by Maxwell, could successfully explain the
properties of gases. Among other things, it was possible by simple means to calculate the relationship between the average
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value of the kinetic energy of a molecule in the gas and the temperature. As the number of molecules in a gas is very large,
statistical methods could be applied. The so-called Maxwell–Boltzmann distribution gives the number of gas molecules per unit
volume which have energies within an energy interval between E and E +dE, which corresponds to velocities between (vx,
vy, vz) and (dvx +dvx, vy +dvy, vz +dvz). The Maxwell–Boltzmann distribution and the kinetic theory of gases are extensively
discussed in Chapter 4.

As is shown in Chapter 4, it is possible to find the number of independent particles with kinetic energies within the interval
E and E +dE as a function of E. The shape of the curve depends on the temperature.

Number of particles per unit volume
with energies between E and E+dE  

T = 300 K 

E

kBT1 2 3

Figure 3.13 Maxwell–Boltzmann distribution of particle energies at room temperature and thermal equilibrium. Reproduced with permis-
sion from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

Figure 3.13 shows the Maxwell–Boltzmann energy distribution of particles as a function of particle energy at a temperature
of 300 K. It can be concluded that few particles have energies equal to 3kBT and still fewer have energies equal to 10kBT .
Hence we can in practice regard 10kBT as an upper limit of the kinetic energy of the particles.

This result was applied to an electron gas, i.e. to the valence electrons in a metal. If the Maxwell–Boltzmann distribution
is valid, the most energetic valence electrons have energies < 10kBT at room temperature and thermal equilibrium, which
corresponds to ∼0�025 eV.

In the classical free electron theory, the electrons were regarded as free noninteracting classical particles in a potential well,
which keeps the electrons inside the metal, trapped in a potential well.

The validity of the classical theory of the electron gas in a metal could be checked with the aid of the photoelectric effect
[Equation (2.6)] discussed on page 49 in Chapter 2. When a photon with energy h� hits a metal surface, an electron with
velocity vext outside the metal may be emitted:

h� = �+ m vext
2

2
(3.30)

where � is a material constant called work function, which is the minimum energy required to release the most energetic
trapped valence electrons from the metal surface (Figure 3.15).

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x

R

Figure 3.14 Photoelectric effect. The released electron deviates
in a magnetic field and its velocity can be calculated from the
measured radius R and the known strength of the field B.

E0 φ

Maxwell–Boltzmann
distribution of electrons 

E kin
max

0 

Figure 3.15 Potential well for trapped valence electrons at the
surface of a metal. The figure also shows the kinetic energies of the
valence electrons provided that the Maxwell–Boltzmann distribu-
tion (Chapter 4) was valid (which it is not). The calculations give
Emax

kin ≈ 10kBT ≈ 0�025 eV.

The released electron deviated in a circle in a known magnetic field B (Figure 3.14). The radius R of the circle was measured
and the velocity of the electron could be calculated.
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When the photon energy and the velocity of the released electron were known from experiments, � could easily be calculated
from Equation (3.30).

The experiments showed clearly that the valence electrons in metals have much higher kinetic energies than 0.025 eV at room
temperature. One reason for the total failure of the classical model of the electron gas in a metal is that Maxwell–Boltzmann
statistics is not valid for electrons.

3.4.3 Quantum Mechanical Model of the Electron Gas

As shown above strong objections can be raised to the classical model of the electron gas. It is not reasonable to regard the
electrons as noninteracting classical particles like the molecules in an ideal gas.

The introduction of quantum mechanics and its successful application to electrons in atoms and molecules raised the idea
that quantum mechanics could be applied also to free electrons in a metal. The valence electrons in atoms have energies
calculated from quantum mechanics and obey the Pauli exclusion principle. It is highly unlikely that they behave like classical
particles as free electrons in a metal.

Sommerfeld replaced the classical model with a model based on quantum mechanics. He published his quantum mechanical
model in 1928. As we shall see below, his results deviated strongly from the results of the classical electron gas model.

The Schrödinger Equation of Free Electrons in a Metal

In order to solve the Schrödinger equation for a free electron in a metal, we must know the potential energy of the free
electron as a function of position. It is no easy task to find this function as the electron is exposed to the electric field from
all the nuclei with their inner electron shells in the metal and from all the other free electrons.

E0

Epot = 0

Figure 3.16 Potential well of the free valence electrons in a metal.

In the classical theory, the interactions between the free electron and the nuclei and between the free electrons were assumed
to be zero. Sommerfeld did not neglect the interactions but he made the simplifying assumption that the potential energy of
the free electron is constant, independent of position inside the metal (Figure 3.16). As the zero level of the potential energy
can be chosen arbitrarily, we choose the value Epot = 0 in analogy with Figure 3.15 on page 113. Hence we obtain, according
to Equation (2.15) on page 53,

�2�

�x2
+ �2�

�y2
+ �2�

�z2
+ 2m∗

�2
�E −0�� = 0

(
� = h

2�

)
(3.31)

where m∗ is the effective mass of the electron in the metal (page 112).
The electron is trapped in a three-dimensional box equal to the volume of the metal. In fact, the problem with a particle in

a box has been discussed and solved for the one-dimensional case in Example 2.1 on page 55 in Section 2.3.7. The solution
has to be extended to three dimensions in this case.

Solution of the Schrödinger Equation in One Dimension
We found in Example 2.1 in Chapter 2 (page 55) that the eigenvalue and eigenfunction of the electron in a one-dimensional
box with length Lx are (some indices have been added here)

E = �
2

2m∗
n2

x

L2
x

and � = A sin

(√
2m∗E
�2

x

)
0 < x < L (3.32)
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The calculations and equations will be much simpler in the following if we introduce the wavenumber k or rather the
wavevector k, which is a vector in the direction of the wave motion:

k = kxx̂+kyŷ +kzẑ (3.33)

with the magnitude

�k� = 2�

	
(3.34)

where 	 is the wavelength of the matter wave.
In the one-dimensional case of a matter wave moving along the x-axis, we have ky = kz = 0 and the amplitude of the wave

will be

� = A sin �kxx� = A sin

(√
2m∗E
�2

x

)
= A sin

(
1
�

√
2m∗Ex

)

which leads to

kx = 1
�

√
2m∗E (3.35)

Solution of the Schrödinger Equation in Three Dimensions

Amplitude of the Matter Wave
The amplitude of the eigenfunction which corresponds to the eigenvalue E in the three-dimensional case is

� = C sin
(

1
�

√
2m∗Ex

)
sin
(

1
�

√
2m∗Ey

)
sin
(

1
�

√
2m∗Ez

)
(3.36)

or

� = C sin �kxx� sin
(
kyy
)

sin �kzz� (3.37)

where

kx = ky = kz = 1
�

√
2m∗E (3.38)

Eigenfunction of the Matter Wave
In the three-dimensional case, the eigenvalue is found to be

E = h2

8m∗

[(
nx

Lx

)2

+
(

ny

Ly

)2

+
(

nz

Lz

)2
]

(3.39)

The squares of the integers, nx
2, ny

2 and nz
2, appear in the eigenvalue expression for the same reason as n2 did in

Example 2.1 on page 57 in Chapter 2. The standing matter wave must have nodes at the crystal surface, i.e. the metal
surface. The conditions can be expressed either in terms of the wavelengths or the wave numbers [Equation (3.34)] of the
matter wave:

Lx = nx	x

Ly = ny	y

Lz = nz	z

(3.40a)

or

kx = 2�
nx

Lx

ky = 2�
ny

Ly

kz = 2�
nz

Lz

(3.40b)
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Consequently, an electron which is bound to move within the space (Lx, Ly, Lz) can move only in certain motion modes in
agreement with Equation (3.7.2) and with the condition

E = �
2

2m∗
(
kx

2 +ky
2 +kz

2
)

(3.41)

Two important conclusions are:

• The wavenumbers of the free electrons are quantized.
• The energy states of the free electrons are quantized.

nx, ny and nz are integer quantum numbers. As the number of valence electrons in a macroscopic crystal is always very
large, of magnitude 1028 m−3, both E and k are perceived as continuous.

Energy Levels of Free Electrons in a Metal

The free electrons in a metal do not belong to particular metal ions. Consequently, the whole metal represents one system
with a large number of free electrons and a large number of different energy states. Each electron supplies one eigenfunc-
tion and its associated eigenvalue to the pool. Consider, for example, 1 kmol of a metal with valence 1. In this case the
number of valence electrons in the metal is equal to Avogadro’s number, NA = 6�02 × 1026 kmol−1. In the general case,
we have:

• The number of occupied collective electron energy states in a metal crystal is equal to the total number of valence electrons,
i.e. the valence number times the number of atoms.

E0

φ

Energy levels of electrons 

0 

EF

Figure 3.17 Potential well E0 and occupied energy levels of free electrons in a metal. EF = the Fermi level.

Like all other atomic systems, the free electron system must obey the Pauli principle. The Pauli principle, applied to the
energy states of the free electron system, gives:

• Each energy state, defined by the quantum numbers nx, ny and nz, can only accommodate two electrons with opposite spins.

As the total number of free electrons is equal to the number of energy levels, only half of the available sites are filled.
In the absence of thermal excitation, the most low-lying energy levels are filled and the rest are empty (Figure 3.17). Hence
the valence electrons are forced to be located not only in each of the lowest energy states, corresponding to the Boltzmann
thermal distribution (Chapter 4), but also in higher and higher energy states in agreement with the Pauli exclusion principle.
The upper energy limit EF is called the Fermi level, which represents the energy of the most energetic valence electrons in
the metal at T = 0 K.

The Fermi level is of magnitude 5 eV, which is a very high energy. Thermal excitation of classical particles up to such
high kinetic energies would require a temperature of magnitude 50 000 K instead of room temperature in combination with
the Pauli principle for electrons.
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The relationship between the depth of the wall, the Fermi energy and the work function can be obtained from Figure 3.17:

E0 = EF +� (3.42)

The quantum-mechanical model for the electron gas, or the ‘Fermi sea’, is much more likely than the classical model where
all the electrons are crowded at the bottom of the potential well.

The next step is to calculate the energy distribution in the electron gas. We still keep the assumption that the mutual
electrostatic interaction between the electrons and the electron interaction with the lattice ions are neglected.

Fermi–Dirac Distribution. Fermi Factor

During the discussion of the covalent bond of the H2 molecule on page 108, it was mentioned that the two valence electrons in
H2 cannot be distinguished. When the Maxwell–Boltzmann statistics are derived, the particles are supposed to be distinguishable
(Chapter 4, page 174). Hence the Maxwell–Boltzmann statistics cannot be applied on electrons and have to be replaced by
some other statistical distribution.

The physicists Fermi and Dirac showed that all particles with half integer spins obey the statistics which named after them.
The derivation of Fermi–Dirac statistics is performed in the same way as Maxwell–Boltzmann statistics (Chapter 4, page 174)
but with the very important difference that the electrons are indistinguishable. The result is that fMB shall be replaced by the
so-called Fermi factor, fFD:

fFD = 1

e
E−EF
kBT +1

(3.43)

where EF is the Fermi level discussed on page 116.
The Fermi factor fFD represents the probability that the energy level E will accommodate an electron at temperature T . The

Fermi factor is shown in Figure 3.18 for T = 0 K. The Fermi level is the border between occupied and unoccupied energy
levels at T = 0 K.

E

0 EF

0

fFD

1

Figure 3.18 The Fermi factor fFD as a function of energy at T = 0 K.

1. The number of free electrons and energy states is very large. Each electron has its own eigenfunction and each energy state
can accommodate a maximum of two electrons according to the Pauli principle.

2. At absolute temperature T = 0 K all energy states ≤ EF will be occupied by two electrons with opposite spins and all
energy states ≥ EF will be empty:

fFD �E� = 1
e−� +1

= 1 for E < EF

fFD �E� = 1
e+� +1

= 0 for E > EF

3. At temperatures T > 0 K electrons with kinetic energies of magnitude E > EF − kBT may be thermally excited up to
available energy levels > EF.

The Fermi factor fFD has the following property. The sharp discontinuity between occupied and empty energy levels at
E = EF is smoothed out at higher temperatures. Some of the most energetic electrons become excited up to empty sites above
the Fermi level and leave vacant sites below the Fermi level, as shown in Figure 3.19.
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Figure 3.19 (a) The Fermi factor as a function of energy for different values of the temperature T . Reproduced with permission from
C. Kittel, Introduction to Solid State Physics, 6th edn. © 1986 John Wiley & Sons, Inc.
(b) Distribution of electrons in electron energy states in the vicinity of the Fermi level. Reproduced with permission from M. Alonso and
E. Finn, Fundamental University Physics. © Addison-Wesley.

The upper temperature limit for solid metals is the melting points of the metals, i.e. ≤ 3500 K, and for most metals
considerably lower.

Now it is easy to understand why metals are opaque. The energy states of the valence electrons are so closely spaced that
they are practically continuous and form an energy band (Figure 3.17 on page 116). Valence electrons in low-lying energy
states inside the metal can easily absorb photons of arbitrary energies and be excited to higher empty energy levels in the
energy band, above the upper limit of filled energy levels.

If the bound valence electrons with high kinetic energies are excited sufficiently they may escape from the surface of the
metal. In this case the energy of the electrons is no longer quantized as arbitrary values of the kinetic energy are allowed
outside the metal. Hence photons of all energies can be absorbed. Consequently, all wavelengths of visible light become
absorbed and no wavelengths are transmitted. The result is that the metal becomes opaque.

Representation of � and Ekin in k Space

In Section 3.4.3, where the Schrödinger equation for a free electron in a metal was solved, we found that both the eigenfunction
and the eigenvalue were expressed in terms of the wavenumber k of the matter wave of the free electron.

A very fruitful approach for further development of Sommerfeld’s quantum mechanical model of the electron gas is to
introduce the k space and to discuss the kinetic energy and the energy states of the free electron in this representation. In this
way, the Fermi level and the density of energy states per energy unit can be derived. This is the basis of the important band
theory of solids which will be discussed in Section 3.5.

The Eigenfunction of the Free Electron
If we use complex functions instead of sine functions and introduce a vector representation of the wavevector, the eigenfunction
of the free electron [Equation (3.33) on page 115] can be written in a much more compact way, which simplifies future
calculations consideratly.

If we make use of Euler’s equation:

ei� = cos �+ i sin � (3.44)

the eigenfunction can be written as

� = Ce±ik · r (3.45)

The ± sign in the exponent in Equation (3.45) corresponds to two alternative directions of propagation of the moving wave:

� = C sin��t ∓k · r� (3.46)
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where both k [Equation (3.33) on page 115] and r are vectors:

k = kxx̂+kyŷ +kzẑ (3.33)

r = xx̂+yŷ + zẑ (3.47)

Graphical Representation of �
Consider a matter wave with eigenfunction �, wavelength 	 and wavenumber k. We define the wavevector k of the matter
wave as a vector with the magnitude 2�/	 and a direction equal to the direction of propagation of the matter wave. In k
space, the wavevector k is represented by a point (Figure 3.20a), i.e. by a vector from the origin to the point (kx, ky, kz).

The planes in Figure 3.20b are drawn perpendicular to the k vector. It can be seen from Equations (3.45) and (3.46) that
the scalar product k · r has the dimension zero and represents a phase angle. For the first plane perpendicular to the k vector
in Figure 3.20b we have

krI = �I (3.48)

The value of �I is constant for all the points in the plane. In addition, the eigenfunction of the free electron has the same value
at every point of a plane. If krI = �I is inserted into Equation (3.45), we obtain

���I� = Cei�I (3.49)

kz (kx, ky, kz)
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ΨII = C ei.ϕ
II =C ei.(ϕ1+2π) = Ψ1
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y
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x
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II 

ΨI = C ei.ϕ
I

Figure 3.20 (a) In k space the wavevector k is a point with the coordinates (kx, ky, kz). (b) The planes I and II in r space are drawn
perpendicular to the direction of propagation. The distance between the planes is equal to the wavelength 	.

If the perpendicular plane is displaced in the direction of the normal, the value of the scalar product k · r is increased and
the value of eigenfunction varies periodically. In particular, when �I is increased by 2� (�II = �I + 2�), the value of the
eigenfunction will be the same for both the parallel planes:

���II� = Cei�II = Cei��I+2�� = Cei�I = ���I� (3.50)

The same is true for all parallel and equidistant planes. If 2� in Equation (3.50) is replaced by an integer multiple of 2�, the
result will be the same. Hence:

• If the distance between successive planes is 	, the value of the eigenfunction is the same at every point of all parallel
equidistant planes, at distances 	 from each other.

This set of parallel planes in r space corresponds to the wave vector k in k space.

Kinetic Energy of the Free Electron
In the preceding section, where the solution of the Schrödinger equation is discussed, the wave character of the free electron
in a metal was used. The eigenvalue is equal to the kinetic energy of the electron as its potential energy is zero. It is possible
to use the particle character of the electron to find its kinetic energy.

The kinetic energy of the electron can be calculated classically in terms of velocities or momentum:

Ekin = m∗v2

2
= m∗ (vx

2 + vy
2 + vz

2
)

2
= p2

2m∗ = px
2 +py

2 +pz
2

2m∗ (3.51)
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The momentum vector p of the free electron, written in components, is

p = m∗vxx̂+m∗vyŷ +m∗vzẑ (3.52)

If we take the duality between waves and particles into consideration, we can express the kinetic energy of the electron in
terms of the wavevector k. According to Equation (2.8) on page 50, the de Broglie wavelength of the free electron is

	deB = h

m∗v
= h

p
⇒ p = h

	deB

(3.53)

Combining Equation (3.53) with Equation (3.34) on page 115, we obtain

p = h

	deB

= h

2�

2�

	deB

= �k (3.54)

Combining Equations (3.51) and (3.54), we obtain

Ekin = p2

2m∗ = �
2

2m∗ k2 (3.55)

or in components

Ekin = p2

2m∗ = �
2

2m∗
(
kx

2 +ky
2 +kz

2
)

(3.56)

Equation (3.56) is identical with equation (3.41) on page 116.

Graphical Representation of Ekin

Equations (3.55) and (3.56) offer two different possibilities to represent the kinetic energy of the free electron as a function of
the wavevector graphically. The simplest way is to show Ekin as a function of the wavenumber k. According to Equation (3.55),
the curve in Figure 3.21 is a parabola. It is important to remember that both k and Ekin are quantized (page 116) because the
electron does not move in free space but is included in the metal. The curve is not continuous but consists of a large number
of closely situated points, as shown in Figure 3.21.
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Figure 3.21 Kinetic energy of a free electron in
a metal as a function of the wavenumber of the
matter wave. a = the lattice constant. Reproduced
with permission from M. Alonso and E. Finn, Funda-
mental University Physics. © Addison-Wesley.
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Figure 3.22 (a) Allowed energy levels of a free electron in a metal are repre-
sented by points in k space. Only two dimensions are shown in the figure.
(b) Energy levels of a free electron in a metal with constant energy correspond
to points in k space on a spherical surface, the so-called Fermi surface.

Alternatively, all the allowed values of the k vector can be plotted in k space, i.e. in a three-dimensional kx, ky, kz coordinate
system. Two dimensions of such a plot are shown in Figure 3.22a. The circle around the points has a radius that represents
the maximum k value which is compatible with Equation (3.55) for a given value of Ekin. Each point represents the tip of a k
vector, i.e. one of the many possible matter waves inside the metal.

Figure 3.22b is an attempt to show the same thing in three dimensions. Each energy level is represented by a sphere, which
contains all the tips of the k vector on its surface. A sphere that represents a given kinetic energy is called a Fermi surface.
The maximum energy of nonexcited electrons is a sphere with a radius equal to the k value, which corresponds to the Fermi
level EF.
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Fermi Distribution of Energies in the Electron Gas

Figure 3.19b on page 118 shows that the energy levels are filled with electrons approximately up to the Fermi level EF. We
also know that each energy level can accommodate two electrons.

For full information of the valence electron distribution on different energy levels in a piece of metal, called the crystal
below, we have to calculate

• the density of available electron energy states = N�E�, i.e. the number of available energy states per energy unit and unit
volume

• the density of occupied energy states = fFDN�E�, i.e. the number of occupied energy states per energy unit and unit volume.

Calculation of the Density of Available Electron Energy States
The simplest way to calculate N�E� is to consider the three-dimensional plot of allowed energy levels, represented by points
in the k space, in Figure 3.22.

Each k value is represented by a point in k space. The task of finding the number of energy states within the shell is
equivalent to finding the number of points within the shell.

ky
k + dk

k

kx

Figure 3.23 Each point in k space represents an energy state.

Each point in the three-dimensional plot (two dimensions of the plot are shown in Figure 3.23) represents an energy state.
Hence the number of energy states in the whole crystal within the energy interval (E +dE) and E is equal to the number of
points in the volume between the two spherical shells in k space. To obtain the number of points within the shell, we divide
the shell volume by the unit volume in k space, i.e. by the volume occupied by one point:

Number of points within the shell = volume of spherical shell in k space
volume per point in k space

or

Number of points within the shell = 4�k2dk

�kx�ky�kz

(3.57)

Calculation of the Shell Volume in k Space in Terms of Energy
The volume of the spherical shell is equal to 4�k2dk. We want to express this volume in k space in terms of E. For this
purpose, we use Equation (3.35) on page 115. Differentiating Equation (3.35), we obtain

dk = 1
�

√
2m∗ dE

2
√

E
(3.58)

Hence the volume in k space of the spherical shell, expressed in terms of energy, will be

4�k2dk = 4�
2m∗E
�2

(
1
�

√
2m∗ dE

2
√

E

)

or

4�k2dk = 2� �2m∗�
3
2 �

−3E
1
2 dE (3.59)
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Calculation of the Volume per Point in k Space
Consider the enlargement in Figure 3.24 of some of the points in k space in Figure 3.23. The distances between adjacent
points are �kx, �ky and �kz in the three main directions. Each point in k space disposes a volume �kx�ky�kz.

Δkx

Δky

Δky

Δkz

Δkx

Figure 3.24 Volume per k point.

By differentiating Equations (3.40b) on page 115, we can express this volume in terms of the dimensions of the crystal:

�kx�ky�kz = 2�

Lx

2�

Ly

2�

Lz

= �2��3

V
(3.60)

where V is the crystal volume in r space and �nx = �ny = �nz = 1.

Calculation of the Density of Available Electron Energy States
By inserting the expressions in Equations (3.59) and (3.60) into Equation (3.57), we obtain the number of points within the
shell in k space. It is also equal to the number of energy levels within the energy interval (E +dE) and E in the whole crystal
with volume V . Hence we obtain

N�E�dE ×V = 4�k2dk

�kx�ky�kz

= 2� �2m∗�
3
2 �

−3E
1
2 dE

�2��3

V

(3.61)

If we divide Equation (3.61) by VdE we obtain, after reduction, the desired number of available energy states per energy
unit and unit volume:

N�E� = �2m∗�
3
2

4�2�3
E

1
2 (3.62)

The density of electron energy states is plotted as a function of the energy E in Figure 3.25, which shows that deviations
from Equation (3.62) occur close to the maximum A of N�E�. This phenomenon will be discussed on pages 142–145.

N (E)

E

Top of band

A

Figure 3.25 Density N�E� of electron energy states as a function of the electron energy E.

As each energy state can accommodate two electrons, one with spin up and the other with spin down, we can also obtain
the electron density n�E�, i.e. the number of electron sites per unit volume with energies between (E +dE) and E:

n�E� = 2N�E� (3.63)

Equations (3.62) and (3.63) are very useful and will be frequently applied later.
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Calculation of the Density of Occupied Electron Energy States
The number of occupied electron energy states per unit energy is obtained if we multiply the density of electron energy states
by the Fermi factor. Hence the density of occupied electron energy states will be

N�E�fFD = �2m∗�
3
2

4�2�3
E

1
2 fFD (3.64)

The function is derived graphically and shown in Figure 3.26.

N (E)

E

(a)

fFD

E

EF

1

0

(b)

Density of occupied energy states

E F

E

(c)

Figure 3.26 (a) Density of electron energy states as a function of the electron energy. (b) The Fermi function. (c) Density of occupied
electron energy states as a function of the energy.

Calculation of the Fermi Level
Equation (3.64) can be used for the determination of the value of the Fermi level of the metal. The calculation will be
especially simple if the temperature T = 0 K. In this case fFD = 1 for all energies below EF.

At T = 0 K there is no thermal excitation of the electrons and all the valence electrons occupy the lowest possible energy
states compatible with the Pauli principle. The highest energy is by definition equal to the Fermi energy EF. The Fermi level
is approximately equal to this value even at temperatures > 0 K if the temperature is not too high (error of magnitude 0.1 eV).
In this case the total number of valence electrons per unit volume ntotal must be equal to the sum of all occupied energy states
per unit volume between E = 0 and E = EF.

The total number of valence electrons per unit volume in the metal is obtained by integration of Equation (3.64) from E = 0
up to E = EF:

ntotal =
EF∫

0

2N�E�fFDdE =
EF∫

0

2× �2m∗�
3
2

4�2�3
E

1
2 ×1×dE (3.65)

or

ntotal = �2m∗�3/2

2�2�3

2
3

E
3/2
F (3.66)

where ntotal is the number of valence electrons per unit volume.
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Equation (3.66) can be used for determination of the Fermi level. If it is solved for EF we obtain

EF = �
2

2m∗
(
3�2ntotal

)2/3
(3.67a)

The Fermi level or Fermi energy is a function of the number of electrons per unit volume in the metal. Fermi energies of
some common metals are given in Table 3.6.

Table 3.6 Fermi energies of some
common metals.

Metal Fermi energy
(eV)

Valence

Na 3�2 1
K 2�1 1
Cu 7�0 1
Ag 5�5 1
Au 5�5 1
Mg 7�1 2
Al 11�6 3

As EF is a material constant we can calculate a value of the so-called ‘Fermi radius’ kF, i.e. the ‘radius’ in reciprocal space
of the Fermi sphere (Fermi surface), for each metal. With the aid of Equation (3.55) on page 120 we obtain

kF = 1
�

√
2m∗EF (3.67b)

If the metal is alloyed with another metal, the number of free electrons per unit volume n total changes and also EF [Equation
(3.67a)] and kF.

Example 3.1

Calculate the average kinetic energy (eV) of the valence electrons in copper at room temperature. Compare the result with the
average thermal energy of a classical particle at T = 300 K. The Fermi level of copper is 7.0 eV.

Solution:

The average kinetic energy can be calculated by use of the density of occupied electron energy states in a metal [Equa-
tion (3.65)]:

ntotal =
EF∫

0

2N�E�fFDdE =
EF∫

0

2× �2m∗�3/2

4�2�3
E1/2 ×1×dE

The average kinetic energy can be written as

E =

EF∫
0

E ×N�E�fFDdE

EF∫
0

N�E�fFDdE

=

EF∫
0

E
2 �2m∗�3/2

4�2�3
E1/2dE

EF∫
0

2 �2m∗�3/2

4�2�3
E1/2dE

or

E =

EF∫
0

E3/2dE

EF∫
0

E1/2dE

=
E

5/2
F

5/2

E
3/2
F

3/2

= 3
5

EF = 0�6×7�0 eV = 4�2 eV



Theory of Solids 125

The thermal energy of a classical particle at room temperature is

3
2

kBT = 1�5×1�38×10−23 ×300 J = 1�5×1�38×10−23 ×300
1�60×10−19

eV = 0�04 eV

Answer:

The average kinetic energy of the valence electrons in copper is 4.2 eV, about 100 times higher than the average kinetic energy
of a classical particle at room temperature.

3.5 Band Theory of Solids

As we have seen above, Sommerfeld’s free electron model of the valence electrons in a metal proved to be most successful
compared with the classical model. The quantum mechanical electron model is generally accepted in solid-state physics.
However, objections can be raised to his assumption that the potential energy inside a metal is constant. It was natural to
improve Sommerfeld’s model by replacing the constant potential energy of the electrons with a varying potential energy with
the same periodicity as the crystal lattice. This led to the development of the band theory of solids.

As an introduction to this theory, we will start with a simple example, which discusses qualitatively the origin of energy
bands in solids and illustrates the connection between molecular physics and solid-state physics.

3.5.1 Origin of Energy Bands in Solids

Epot

r

Figure 3.27 Potential energy along the axis between two H nuclei of the H2 molecule as a function of the distance from the origin.

Figure 3.27 shows the potential energy near the H2 molecule along the axis through the two H nuclei. The potential energy
function is introduced into the Schrödinger equation, which is solved and gives the eigenvalue E and the eigenfunction �.

In Section 2.6.1 on pages 74–75 we discussed the formation of an H2 molecule from two H atoms and the two resulting
eigenfunctions which correspond to one stable and one unstable energy state (Figure 3.28). Here we will discuss the formation

eV E

↑↑σg 1s σu 1s 

↑↓ (σg 1s)2

r0
r

0.1 0.3 0.4 nm
–4.48 eV 

Figure 3.28 Energy of the H2 molecule as a function of the distance between the two protons. Reproduced with permission from
M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.
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of a ‘solid’ from six equidistant H atoms in a row. The potential energy in the one-dimensional ‘crystal’ is shown at the top
of Figure 3.29a. The eigenfunction curves (a)–(f) in Figure 3.29a are obtained by combining the six 1s eigenfunctions of the
H atoms in various ways.

The six resulting eigenfunctions correspond to six separate eigenvalues, i.e. energy states. The energies of these states vary
with the distance R between adjacent H nuclei. As can be seen from Figure 3.29b, the energy levels split when the distance
R decreases. At the ground-state distance R0 the 1s level has widened to a ‘band’ with six energy levels. The 2s level in the
H atom also splits into a band. Between these two bands there is a forbidden region or an energy gap.

The width of the band does not increase even if the number of atoms is increased. If the number of atoms is increased, the
number of energy levels increases but all the new energy levels lie between the minimum and maximum energies [curves (f)
and (a) in Figure 3.29b].

The number of energy levels in the energy band is equal to the number of energy states, i.e. the given number of atoms.
Six H atoms have together six 1s states, which give six energy levels in the band. Each energy state can accommodate two
electrons owing to the anti-parallel spins of the electrons, which doubles the number of available sites for electrons.
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Figure 3.29 (a) Eigenfunctions of the H6 row. (b) Energy curves of the H6 row in (a). Reproduced with permission. © E. Lindholm
(Deceased).

3.5.2 Energy Bands in Solids. Brillouin Zones

Eigenvalues and Eigenfunctions of Free Electrons in a Crystal Lattice. Brillouin Zones in One Dimension

The electrostatic attraction between the ions in a crystal lattice results in a periodic potential energy (Figure 3.30a) of the
same type as in the H2 molecule (Figure 3.27).

a

b

0 a 2a 3a 4a 5a

Figure 3.30 (a) Coulomb potential energy due to a row of ions in a crystal lattice.
(b) Periodic potential energy in a linear crystal lattice according to, the so-called Kronig–Penney model.
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Three-dimensional Case
The potential energy in the crystal lattice is complicated and depends on the structure of the crystal. It is necessary to use an
approximate three-dimensional model such as that in Figure 3.30b rather than that in Figure 3.30a. In a crystal with a simple
cubic structure the period of the square well is equal to the lattice constant a.

The periodic potential energy Epot(x, y, z) is introduced into the Schröderinger equation, which complicates its solution
considerably. In this case, the Schrödinger equation can be written as

��2

�x2
+ ��2

�y2
+ ��2

�z2
+ 8�2m∗

h2
�E −Epot�x� y� z��� = 0 (3.68)

The periodic potential energy leads to a periodically varying amplitude Uk�r� of the wave function of the electron instead of
a constant amplitude as in the case of a free electron. Uk�r� is one of a numerous group of functions, the so-called Bloch
functions. They are generally used to describe electrons in lattices.

The wave function is a planar matter wave, which is modulated by the function Uk�r�. The amplitude of the wave function
of an electron in a three-dimensional lattice can be written as

��r� = Uk �r� eik · r (3.69)

where
r = vector with components (x, y, z)
k = wavevector in the direction of the matter wave.

The wavevector k was introduced on page 115. The eigenvalues that correspond to the eigenfunctions are complicated
functions of k and depend of the geometry of the crystal lattice. The general properties of the eigenfunctions will be described
below for the one-dimensional case.

One-dimensional Case. The Kronig–Penney Model. Brillouin Zones in One Dimension
In the one-dimensional case, the Schrödinger equation can be written as

��2

�x2
+ 2m∗

�2
�E −Epot�x��� = 0 (3.70)

x

−b 0 a+b
0

E0

a

Figure 3.31 One-dimensional Kronig–Penney potential energy model. This function is introduced into the Schrödinger equation. The
solutions consist of the eigenvalues and their corresponding eigenfunctions (Chapter 2).

Kronig and Penney suggested in 1930 a simple model of the periodically varying potential energy. They assumed that the
potential energy of an electron had the shape of a periodic array of square wells. The distance between successive wells was
assumed to be a+ b, where b is the width of the well (Figure 3.31). The Schrödinger equation for the two regions can be
written as

d2�

dx2
+ 2m∗

�2
�E −0�� = 0 0 < x < a (3.71)

d2�

dx2
+ 2m∗

�2
�E −E0�� = 0 a < x < a+b (3.72)

We will omit the further calculations and only describe the solutions. In the case of a linear lattice with the spacing a (b is
small), the solution of the Schrödinger equation, i.e. the egenfunction for a given k value, can be written as

��x� = eikxUk �x� (3.73)
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where Uk�x� is the Bloch function. In addition, Uk�x� must be periodic, i.e. satisfy the condition (Bloch’s theorem)

Uk �x� = Uk �x+a� (3.74)

The corresponding eigenvalue in terms of the wavevector k is complicated and depends on the lattice constant. Both the
eigenvalues and the wavevectors are quantized just as for a free electron. However, the Bloch function Uk�x�, generates a
very important difference:

• For the values of k which are given by the conditions

k = p
�

a
p = ±1�±2� � � � (3.75)

the Schrödinger equation has no unique solutions. For each of these k values there are two eigenvalues, separated by an
energy gap.

The condition (3.75) is analogous to Bragg’s law, applied to X-ray diffraction in crystals (Chapter 1). The reason for this
condition can be understood on basis of physical arguments, which will be discussed on page 135.

Instead of a quasi-continuous curve (consisting of closely spaced points), i.e. the parabola of the free electron (Figure 3.21
on page 120), the Kronig–Penney energy curve (Figure 3.32) shows bands of allowed energy values interrupted by energy
gaps, i.e. regions of forbidden energy values. As mentioned above, the eigenvalues and the k numbers are quantized. The
broken curve is not continuous but consists of closely spaced points.
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−
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−
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k

0
Energy bands
(dark areas)
and forbidden
energy gaps

Figure 3.32 Energy levels in a linear periodic lattice as a function of the wavenumber k. a = the lattice constant. Reproduced with
permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

Figure 3.32 shows the energy as a function of k. The discontinuities appear at the k values given in Equation (3.75). At k
values far from the discontinuity points the energy is nearly the same as for free electrons (dashed curve in Figure 3.32) and
the electrons can move freely through the crystal lattice.

For a free electron the potential energy Epot = 0. For small values of the potential barriers (Figure 3.31) the discontinuous
curve is comparatively close to a parabola. At high barriers the curve has the appearance shown in Figure 3.32.

The k zones of allowed energies are called Brillouin zones. Their extensions are described in Figure 3.32. The allowed
energy bands are shown on the right in Figure 3.32. The widths of the energy bands increase with increasing energy. The
stronger the electron is bound to the lattice ions, the narrower will be the widths of the energy bands.

Inner electron shells around the lattice ions consist of narrow levels in analogy with the conditions in atoms.
The band theory of solids is able to explain properties of solids where the Sommerfeld model fails. It is generally accepted

and established in solid-state physics.
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Number of Possible Eigenfunctions and Energy States per Band

The concept of primitive cell was introduced in Chapter 1 on page 13.
A space lattice is a mathematical pattern built of three independent translation base vectors in three dimensions.
A unit cell is defined as the volume in a space lattice which by translation movements can fill the whole lattice space

without overlapping any other cell or leaving a hollow space inside the lattice.
A primitive cell is a special type of unit cell, which contains only one lattice point per unit cell.

x

L

1 4  . . . . . . . . . . . . . . Ntotal

x+L

32

Figure 3.33 Primitive cells in a linear crystal.

Consider a linear crystal of length L which consists of Ntotal primitive cells in a row (Figure 3.33). If the spacing of the
crystal lattice is a, the relationship will be

L = Ntotala (3.76)

To solve the Scrödinger equation for the crystal, it is necessary to introduce the boundary condition

� �x� = � �x+L� (3.77)

Using Equation (3.73), we can write Equation (3.77) as

eikxUk �x� = eik�x+L�Uk �x+L� (3.78)

If Equation (3.74) is applied to all the primitive cells, we can conclude that

Uk �x� = Uk �x+a� = Uk �x+2a� = � � � = Uk �x+L� (3.79)

Combining Equations (3.78) and (3.79), we realize that the following condition must be valid for a linear crystal:

eikx = eik�x+L� (3.80)

or

kL = p×2� p = ±1�±2�±3� � � � �±Ntotal (3.81)

Hence

k = p
2�

L
(3.82)

The upper limit of the k values of the first band is k = Ntotal × 2�/L, which corresponds to k = 2�/a, in agreement with
Equation (3.76).

Each point in k space corresponds to an eigenfunction and its corresponding eigenvalue, i.e. an energy state. According to
the Pauli exclusion principle, each energy state can be occupied by no more than two electrons with opposite spin vectors.
Hence the first band can accommodate a maximum of 2Ntotal electrons. The same result is obtained if we examine the second
and all the following bands.

Even if we consider a three-dimensional lattice the result will be the same:

• The number of energy states in each Brillouin zone is equal to Ntotal, the total number of atoms of the crystal.
• Each Brillouin zone can accommodate a maximum of 2Ntotal electrons.
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Brillouin Zones in Two and Three Dimensions

The Brillouin zones in one dimension and the corresponding electron energy bands in a one-dimensional crystal are shown
in Figure 3.32. Within the Brillouin zones the energy E is quasi-continuous and forms energy bands. At the Brillouin zone
boundaries (k = p×�/a [Equation (3.75)]) the Schrödinger equation has no unique solution but two eigenvalues for each of
these k values. At the zone boundaries the energy E is discontinuous, which results in forbidden gaps between the energy bands.

In two- and three-dimensional crystals the energy conditions are much more complicated than in linear crystals. The solution
of the Schrödinger equation in the general case and the mathematical calculations to find the eigenvalues are complicated and
beyond the scope of this book. Instead, we will discuss the general theory of Brillouin zones in two and three dimensions
from a physical point of view.

The reciprocal lattice space is a very useful concept in the general theory of Brillouin zones. The wavevector k and k space
were introduced on page 115 and discussed further at pages 118–119. As we shall see later, the k space is identical with the
reciprocal space of the ordinary space, which we will call r space.

The general diffraction condition of matter waves in crystals is closely connected with the general theory of Brillouin zones.
It will be discussed below.

Reciprocal Lattices of Crystals

Real Space
The real space, or r space for short, is the ordinary three-dimensional space. To describe an arbitrary crystal structure in r
space, we choose a coordinate system with the base vectors a, b, c along the axes equal to the translation vectors of the crystal
structure. The angles between the coordinate axes are not necessarily �/2 but depend on the type of crystal structure.
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Figure 3.34 Crystal planes in r space.

The atoms in a crystal lattice form several sets of parallel planes. It is well known that radiation of all kinds, for example
electrons and X-rays, is diffracted through constructive interference at the atoms which form the crystal planes. This has been
discussed in Chapter 1 and will be applied below.

A set of crystal planes has been marked in Figure 3.34. The indices of the multiple set of parallel planes are called (hkl). If
we introduce the unit vector of the normal to the set of parallel planes we obtain the distance dhkl from origin to the closest
plane by forming the scalar product of the normal unit vector and one of the vectors a/h, b/k or c/l (Figure 3.34):

dhkl = n̂ · a
h

= n̂ · b
k

= n̂ · c
l

(3.83)

where (hkl) are the Miller indices (Chapter 1, page 16) of the planes.

Reciprocal Space
Next we will define the reciprocal space of the r space and use the result to derive an expression of the normal vector to the
set of parallel planes in Figure 3.34.
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The general definitions of base vectors a∗, b∗ and c∗ of the reciprocal space as functions of the base vectors a, b and c of
the r space are given by Equations (3.84). The word reciprocal also implies the reverse operation: the base vectors of the real
space a, b, and c as functions of a∗, b∗ and c∗ are given by Equations (3.85). The equations are completely symmetrical.

a∗ = 2�
b× c

a · �b× c�

b∗ = 2�
c×a

a · �b× c�

c∗ = 2�
a×b

a · �b× c�

(3.84)

a = 2�
b∗ × c∗

a∗ · �b∗ × c∗�

b = 2�
c∗ ×a∗

a∗ · �b∗ × c∗�

c = 2�
a∗ ×b∗

a∗ · �b∗ × c∗�

(3.85)
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Figure 3.35 Part of Figure 3.34. The distance to the closest plane from the origin.

Figure 3.35 shows the plane closest to the origin. The normal vector to the plane has been drawn. The normal vector to the
set of parallel planes can be written as

n̂ =

(
a
h

− b
k

)
×
(

b
k

− c
l

)
∣∣∣∣
(

a
h

− b
k

)
×
(

b
k

− c
l

)∣∣∣∣
(3.86)

After multiplication in the numerator, we obtain

n̂ =

(
a×b

hk
+ c×a

lh
+ b× c

kl

)
∣∣∣∣
(

a
h

− b
k

)
×
(
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l

)∣∣∣∣
(3.87)

Equation (3.87) is introduced into the first of Equations (3.83):

dhkl = n̂ · a
h

=

(
a×b

hk
+ c×a

lh
+ b× c

kl

)
∣∣∣∣
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or

1∣∣∣∣
(

a
h

− b
k

)
×
(

b
k

− c
l

)∣∣∣∣
= dhklhkl

a · �b× c�
(3.88)

Equation (3.88) is introduced into Equation (3.87) and we obtain

n̂ = dhklhkl
a · �b× c�

·
(

a×b
hk

+ c×a
lh

+ b× c
kl

)
(3.89)

After transformation of the right-hand side of Equation (3.89), and use of Equations (3.84), we obtain

n̂ = dhkl

2�
�ha∗ +kb∗ + lc∗� (3.90)

Next we define the reciprocal lattice vector G(hkl):

G�hkl� = ha∗ +kb∗ + lc∗ (3.91)

G(hkl) is perpendicular to the set of crystal planes (hkl) as it is parallel with the unit vector n̂. The magnitude of G(hkl) is

�G�hkl�� = 2�

dhkl

(3.92)

Equation (3.90) can be written as

dhkl = 2�

�ha∗ +kb∗ + lc∗� (3.93)

The G(hkl) vector is a vector in the reciprocal space. It is shown in Figure 3.36b. The set of parallel planes (hkl) in r space
corresponds to the point (hkl) in reciprocal space. The distance between consecutive planes is constant and equal to the value
given in Equation (3.93) (Figure 3.36a).
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Figure 3.36 (a) Crystal planes in r space. Unit vectors on the x, y and z axes are a, b and c, respectively.
(b) The G(hkl) vector in reciprocal space corresponds to the crystal planes in r space in (a). Unit vectors on the x∗, y∗ and z∗ axes are a∗,
b∗ and c∗, respectively.

For the special case of a cubic crystal lattice, we have

�a� = �b� = �c� = a and �a∗� = �b∗� = �c∗� = 2�

a
(3.94)

which gives for a cubic lattice

dhkl = a√
�h2 +k2 + l2�

�cubic lattice� (3.95)
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von Laue’s Diffraction Condition
On page 128, we found that the condition of the Brillouin zone boundaries [Equation (3.75)] in a one-dimensional crystal
(Figure 3.32 on page 128) is very reminiscent of a diffraction condition. For future use we will set up the general diffraction
condition in a three-dimensional lattice for any kind of wave.

Consider a crystal lattice and a planar wave with the wavevector k. After diffraction at the atoms in a crystal plane (normal
vector n̂), the wavevector has changed to k′. We want to find an expression for the change �k = k′ −k of the wavevector due
to the diffraction. The condition for elastic diffraction (no energy loss) can be written as

�k� = �k′� = 2�

	
(3.96)

where

k = wavevector of the incident wave
k′ = wavevector of the diffracted wave
	 = wavelength.

From Figure 3.37a, we obtain the general diffraction condition for constructive interference:

��k� = r′ ·k′

�k′� − r′ ·k
�k� = p	 (3.97)

where p1 is a positive or negative integer. Equations (3.96) and (3.97) give

r′ · �k′ −k� = p×2� (3.98)

The r′ vector is a function of the structure of the crystal lattice:

r′ = n1a+n2b+n3c (3.99)
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Figure 3.37 (a) Diffraction. (b) Bragg diffraction.

With the aid of Figure 3.37b (Bragg diffraction), we obtain

��k� = �k′ −k� = 2k sin � = 2�

	
2 sin � (3.100)

The change �k of the wavevector can be written as

�k = n̂ · ��k� = n̂
2�

	
2 sin � (3.101)

If we introduce the expression for the unit vector of the normal to the reflecting crystal plane [Equation (3.90) on page 132]
into Equation (3.101), we obtain

1 The usual letter n is avoided in order to eliminate confusion. The letter n is used in connection with the normal of the diffraction plane.
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θ θ

d hkl

Plane of diffraction

Figure 3.38 The diffraction condition for constructive interference is 2dhkl sin � = p	.

�k = dhkl

2�
�ha∗ +kb∗ + lc∗�

2�

	
2 sin � (3.102)

or

�k = 2dhkl sin �

	
�ha∗ +kb∗ + lc∗� = 2dhkl sin �

	
G�hkl� (3.103)

If we introduce the condition of constructive interference (Figure 3.39) into Equation (3.103), we obtain

�k = p�ha∗ +kb∗ + lc∗� (3.104)

where p is a positive or negative integer and hkl are the Miller indices.
In crystallography, Laue indices are always used instead of Miller indices. Laue indices are equal to the Miller indices

except that they may include an integer factor which is equal to the order p.
In the following we will replace the Miller indices by Laue indices (called hkl as before), which include the order p of

diffraction. In this case, Equation (3.104) can be written as

�k = ha∗ +kb∗ + lc∗ = G�hkl� (3.105)

where hkl now means the Laue indices.
Equation (3.105) is the general diffraction condition for a crystal lattice of arbitrary structure. It is important to point out that.

• All the atoms in the crystal lattice must be included in the set of parallel planes for constructive interference.

If this condition is not fulfilled, the interference will be nonconstructive.

Reciprocal Space, k Space and Brillouin Zones
1. On page 119, we found that a planar matter wave can be represented by a wavevector k. The amplitude of the wave is

represented by a set of parallel equidistant planes in r space. The planes and the k vector are perpendicular. The k vector
is represented by a point in k space.

2. On page 132, we defined the reciprocal lattice vector G�hkl� = ha∗ + kb∗ + lc∗. It was shown that the G(hkl) vector is
perpendicular to the set of parallel equidistant crystal planes (hkl) in the abc space. The G(hkl) vector corresponds to a
point (hkl) in the reciprocal space a∗b∗c∗.

3. The condition for the Brillouin zone boundaries in the one-dimensional case (page 128) can be interpreted as a diffraction
condition. The Laue diffraction condition represents the generalized condition for the Brillouin zone boundaries in the
three-dimensional case.

4. The reciprocal lattice vector G(hkl) appears in von Laue diffraction condition [Equation (3.105)].

Points 1, 2 and 4 lead to the conclusion that the reciprocal space is identical with the k space while the crystal space is the r
space. In addition,

• The k space is reciprocal to the r space and vice versa.

A distance in reciprocal space has the dimension inverse length (k = 2�/	). An important property of the reciprocal space is that

• A set of equidistant parallel planes (hkl) in r space corresponds to a point (hkl) in the reciprocal space (k space).

This property and the diffraction condition (point 3 above) will be used to find the Brillouin zones boundaries in two and three
dimensions. When the crystal structure of a metal (r space) is known, its Brillouin zone boundaries (k space) can be constructed.
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Brillouin Zones in Two Dimensions

The ‘free’ electrons in a metal are only free in the sense that they can move within the metal volume but they cannot leave the
metal. Each electron in motion corresponds to a matter wave moving in the same direction as the electron. The Brillouin zone
boundaries in one dimension are defined by the condition in Equation (3.75) (page 128). As k = 2�/	, Equation (3.75) can be
written as 2�/	 = p��/a�. If we replace a by dhkl, which is a more general designation of the distance between consecutive
parallel crystal planes, we obtain

2dhkl = p	 (3.106)

Equation (3.106) corresponds to the condition for constructive interference after diffraction at the atoms in a lattice plane
(hkl) 2dhkl = p	 sin � when � = �/2. If 	 is the wavelength of the matter wave of free electrons in the metal lattice, dhkl is
the distance between consecutive planes, perpendicular to the direction of the motion of the electrons.

• The Brillouin zone boundary condition (3.106) can be interpreted as total reflection of the matter waves of the free electrons
and the condition for formation of a standing matter wave.

Brillouin Zones Boundaries of a Simple Square Lattice
Each type of crystal structure gives rise to its own characteristic Brillouin zones. As an introduction, we will study the simplest
structure, a square lattice. We want to find the first Brillouin zone which corresponds to the unit cell a2 in r space.

Consider a two-dimensional, square metal lattice with the lattice constant a. Each set of parallel crystal lines corresponds
to a particular point k in k space. The process of finding the k points related to three main directions of lines in r space is
shown in Table 3.7.

Table 3.7 Derivation of the reciprocal lattice vectors in k space which correspond to three given sets of parallel crystal lines
in r space.

Set of crystal
lines in r space

<hk> crystal
lines in r space

dhk in r space
�a� = a �b� = a

Point (hk) in
k space

Reciprocal lattice vector
G�hk� = point in k space
G�hk� = ha∗ + kb∗

�a∗� = 2�/a �b∗� = 2�/a

Reciprocal
lattice vector
in k space
a∗ = �2�/a�kx

b∗ = �2�/a�ky

a

< 10 > d10 = a (1,0)

(
2�

a
� 0
)

 AO

2π/a

Vector OA

a < 01 > d01 = a (0,1)

(
0�

2�

a

)
B

O

2π/a

Vector OB

a

< 11 > d11 = a√
2

(1,1)

(
2�

a
�

2�

a

)
 C

O

2π/a

Vector OC

Each reciprocal lattice vector is perpendicular to the corresponding crystal lines and has the same direction as the matter
wave of the electrons, which is diffracted by the atoms of the lattice.
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A very large number of directions of crystal lines in r space are possible. We let the quasi-continuous direction of the
parallel planes vary from 0 to 2� and plot the corresponding G points in k space. The G values form a quasi-continuous
square in k space with the lattice points A, B, C, D and the origin in the centre (Figure 3.39a).

A

(a)

D

CB

ky

kx

(0 ; 0)

(0;−π/a)

(−π/a ;0) (π/a ;0)

(0 ; π/a)

(b)

a2

a a* = 2π/a

(c)

Figure 3.39 (a) Reciprocal unit cell of a two-dimensional crystal lattice with simple square structure.
(b) Unit cell in r space. (c) Unit cells in k space.

The square �a∗�2 in k space (Figure 3.39c) is said to be the reciprocal cell of the unit cell a2 of the crystal lattice
(Figure 3.39b). Each corner in both types of cells is shared between four cells. Hence each cell contains 4× �1/4� = 1 lattice
point. This is easier to realize if we change the coordinate system in such a way that an atom in the crystal lattice and a k
point in the reciprocal space are placed in the centre of the squares (upper squares in Figures 3.39b and c).

On page 129, we found that each Brillouin zone contains Ntotal energy states if the number of atoms is Ntotal. Hence there
are Ntotal allowed values of k (page 129) in the first Brillouin zone. The unit cell in reciprocal space (Figure 3.39a) represents
the boundary of the first Brillouin zone in k space.

The outer boundaries of higher Brillouin zones are derived in a similar way. The general process is described in Figure 3.40a
for the boundaries of the second and third Brillouin zones of a two-dimensional square crystal lattice. The outer boundary of
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Figure 3.40 (a) The three shortest reciprocal lattice vectors G1, G2 and G3 are drawn together with their perpendicular bisectors. By
drawing all symmetrical lines of types L1, L2 and L3 around the k point O we obtain enclosed areas, identical with the first, second and
third Brillouin zones. Zone 1 depends only on type L1, the others are bounded by several line types.
(b) First, second and third Brillouin zones of a two-dimensional crystal lattice with simple cubic structure. All the Brillouin zones have
equal areas. © 1986 John Wiley & Sons, Inc.
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the second Brillouin zone is an inclined square (Figure 3.40b) and the third Brillouin zone is bounded by the symmetrical
‘cross’ in Figure 3.40b.

Areas of the Brillouin Zone
The areas A1, A2, A3, � � � of the Brillouin zones in two dimensions can be calculated as follows. The area of the first Brillouin
zone, marked in Figure 3.40b, will be

A1 = �OA�2 = 2�

a

2�

a
=
(

2�

a

)2

Figure 3.40b shows that the area of the second Brillouin zone is

A2 = �OA
√

2�2 = 2�
√

2
a

2�
√

2
a

−A1

or

A2 = 2
(

2�

a

)2

−
(

2�

a

)2

=
(

2�

a

)2

The first, second and third Brillouin zones in Figure 3.40b are marked by the figures 1, 2 and 3. Each of them consists of
eight triangles of equal areas. Consequently, their total areas are equal.

Each Brillouin zone corresponds to an energy band. Each of them contains Ntotal energy levels and can accommodate 2Ntotal

electrons. The same is true for all Brillouin zones, as was mentioned on page 129. As we have seen in the one-dimensional
case, there is an abrupt and discontinuous change of energy at the Brillouin zone boundaries (page 128).

An important example of two-dimensional crystals is thin films of semiconducting materials.

Brillouin Zones in Three Dimensions

We have seen that the boundaries between Brillouin zones are points in one dimension and lines in two dimensions. In the
general three-dimensional case the boundaries are planes, which enclose the three-dimensional Brillouin zones.

We found the boundary points in a mathematical way (page 128). We found the boundary lines by using the condition for
standing matter waves in two dimensions and the theory of reciprocal lattices in the preceding section. In the three-dimensional
case we will apply the same principles as in the two-dimensional case to find boundary planes of the Brillouin zones.

To find the planes which enclose the three-dimensional Brillouin zones in k space we will use a so-called Wigner–Seitz cell.
The construction of a Wigner–Seitz cell in r space is described in the next section. The planes which enclose the corresponding
Wigner–Seitz cell in k space are the Brillouin zone boundaries.

Wigner–Seitz Cell

Figure 3.41 Cross-section of a Wigner–Seitz cell in r space. Two-dimensional drawing of a Wigner–Seitz cell.

A lattice cell, which contains only one lattice point, is a primitive unit cell. A Wigner–Seitz cell is a primitive cell and can be
constructed in the following way.
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Consider a point in a crystal lattice. Lines are drawn to all nearest neighbours and second nearest neighbours (Figure 3.41).
Perpendicular planes are drawn through the midpoint of each of these lines. The nearest and next nearest of these planes
(not necessarily all of them) form a polyhedron, that encloses the lattice point. This polyhedron is the Wigner–Seitz cell.
Wigner–Seitz cells can be constructed both in crystal space (r space) and in k space.

It can be shown that the Brillouin zone is equivalent with a Wigner–Seitz cell in the reciprocal lattice. When we discussed
the Brillouin zones in a two-dimensional reciprocal lattice on page 136 we used in fact a two-dimensional Wigner–Seitz cell
(upper square in Figure 3.39c).

General Conditions for Three-dimensional Brillouin Zones
Brillouin zones are closely related to standing matter waves of free electrons in crystals. A point in k space represents the
wavevector k of the matter wave with wavelength 	 [Equation (3.34) on page 115].

The generalized conditions for Brillouin zones in three dimensions can be summarized as follows:

• The matter wave of the electrons in the crystal lattice of the metal can be reflected at sets of crystal planes under certain
conditions [Equation (3.104) on page 134]. The total reflection results in a standing matter wave in the crystal. The reflection
condition can be expressed in terms of �k [Equation (3.105) on page 134].

• All atoms in the crystal must be included in the set of parallel planes.
• The energies of the free electrons within the Brillouin zones form energy bands (Figure 3.32 on page 128). The higher the

k value within each zone, the higher will be the energy of the electrons. At the Brillouin zone boundaries the energy of the
electrons changes discontinuously.

Other general statements are as follows:

• The volumes of the different Brillouin zones of a given crystal structure are equal.
• Each Brillouin zone can accommodate maximum 2Ntotal electrons.

We will discuss some examples below. As a first example we choose a crystal with a simple cubic structure.

Brillouin Zones of a Simple Cubic Crystal Lattice
The lattice point (1, 0, 0) in crystal space in Figure 3.42a corresponds to the multiple set of planes {100} in the reciprocal space,
which are parallel with the kykz plane. For the sake of simplicity, only two planes close to origin are shown in Figure 3.42b.
Similarly, the lattice points (0, 1, 0) and (0, 0, 1) in crystal space correspond to sets of planes parallel to the kxkz plane and the kxky

plane, respectively. Hence the reciprocal lattice of a simple cubic lattice also has a simple cubic structure.

z r space

(1, 0, 0)
(a)

y

x

k space

kx

ky

kz

(b)

Figure 3.42 The reciprocal lattice of a simple cubic lattice also has a simple cubic structure.

According to the reverse nature of Equations (3.84) and (3.85) on page 131 and our experiences from the two-dimensional
case (pages 135–136), we can conclude that the reciprocal lattice of the cube in k space in Figure 3.43b is the cube in crystal
space in Figure 3.43a. As stated on page 134, the set of parallel planes in r space, which corresponds to a reciprocal lattice
point, must include all atoms in the crystal lattice. This condition is obviously fulfilled in this case.

Hence the cube in k space in Figure 3.43b, bounded by the six planes:

x = ±�

a
y = ±�

a
z = ±�

a
(3.107)

represents the boundaries of the first Brillouin zone.
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Figure 3.43 (a) Primitive unit cell (Wigner–Seitz cell) of a simple cubic lattice in r space. Lattice constant = a. • = origin in r space.
(b) First Brillouin zone (Wigner–Seitz cell in k space) of a simple cubic crystal. � = origin in k space.
(c) Outer surface of the second Brillouin zone (Wigner–Seitz cell in k space) of a simple cubic crystal. � = origin in k space. Reproduced
with permission from W. Hume-Rothery and B. R. Coles, Atomic Theory for Students of Metallurgy. (Published by the Institute of Metals,
1969.) now © W. S. Maney & Son Ltd.

The construction of higher Brillouin zone boundaries of a simple lattice in two dimensions was briefly described in
Figure 3.40a. Higher Brillouin zones in three dimensions are constructed analogously by use of perpendicular bisector planes
to longer G vectors than the first ones. The polyhedrons which correspond to the higher Brillouin zone boundaries are generally
more complicated than that of the first Brillouin zone.

The outer polyhedron of the second Brillouin zone boundary for a simple cubic crystal is shown in Figure 3.43c.

Brillouin Zones of FCC, BCC and HCP Crystal Lattices
The principles of finding the Brillouin zones of more complicated crystal structures are the same as for the simple cubic
structure, but the results are much more complicated. The Brillouin zone polyhedrons are derived by constructing the Wigner–
Seitz cells in k space. This is equivalent to applying the condition which gives standing matter waves of the moving free
electrons in the crystal with all atoms in the crystal lattice included (page 134).

We will restrict the treatment to short descriptions of the three close-packed structures FCC, BCC and HCP, which are
common in metals and semiconductors.

FCC
The reciprocal lattice of the FCC crystal lattice has a BCC structure. Hence the first Brillouin zone of an FCC Wigner–Seitz
cell (Figure 3.44a) will be a BCC polyhedron (Figure 3.44b).

In the FCC structure d111 = a
√

3/3 and d200 = a/2. Hence the resulting first Brillouin zone is a BCC polyhedron bounded
by eight planes of the type2 {111} at the distance �/d111 = �

√
3/a from the origin in k space and six planes of the type {200}

at the distance �/d200 = � ×2/a from the origin in k space.

(a) (b)
(c)

Figure 3.44 (a) Primitive unit cell (Wigner–Seitz cell) of an FCC crystal. • = origin in r space. Reproduced with permission from W. Hume-
Rothery and B. R. Coles, Atomic Theory for Students of Metallurgy. (Published by the Institute of Metals, 1969.) now © W. S. Maney & Son Ltd.
(b) The first Brillouin zone (Wigner–Seitz cell in k space) of an FCC crystal is a BCC polyhedron. � = origin in k space. Reproduced with
permission from W. Hume-Rothery and B. R. Coles, Atomic Theory for Students of Metallurgy. (Published by the Institute of Metals, 1969.)
now © J. S. Maney & Son Ltd.
(c) Outer surface of the second Brillouin zone (Wigner–Seitz cell in k space) of an FCC crystal. � = origin in k space. Adapted with
permission from M. J. Sinnott, The Solid State for Engineers. © 1958 John Wiley & Sons, Inc.

2 The plane symbol {} means that planes with all possible signs and permutations inside the brackets are included (Chapter 1, page 16).
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The polyhedron which corresponds to the outer surface of the second Brillouin zone is shown in Figure 3.44c.
The diamond structure can be described as two FCC lattices where the second one is displaced one-quarter of the principal

diameter relative to the first one. The semiconductors Si and Ge have the same structure.

BCC
The reciprocal lattice of the BCC crystal lattice has an FCC structure. Hence the first Brillouin zone of a BCC Wigner–Seitz
cell (Figure 3.45a) will be an FCC polyhedron (Figure 3.45b).

In the BCC structure, all the lattice points are included in a set of parallel (110) planes and d110 = a
√

2/2. Hence the
first Brillouin zone of a BCC crystal is an FCC polyhedron bounded by 12 planes of the type {110} at the ‘distance’
�/d110 = �

√
2/a from the origin in k space (Figure 3.45b).

(a)
(b)

Figure 3.45 (a) Primitive unit cell (Wigner–Seitz cell) of a BCC crystal. • = origin in r space.
(b) The first Brillouin zone (Wigner–Seitz cell in k space) of a BCC crystal is an FCC polyhedron. � = origin in k-space. Reproduced with
permission from W. Hume-Rothery and B. R. Coles, Atomic Theory for Students of Metallurgy. (Published by the Institute of Metals, 1969.)
now © W. S. Maney & Son Ltd.

HCP
The Wigner–Seitz cell of an HCP crystal is shown in Figure 3.46a. In the ideal case the ratio c/a = √

8/3 = 1�63. This ratio
is often modified owing to the interaction between the Fermi surface and the faces of the Brilloin zone.

The first Brillouin zone of an HCP crystal, i.e. the Wigner–Seitz cell of HCP in k space, has the same shape as the
Wigner–Seitz cell of the crystal.

a

c

(a) (b) (c)

Figure 3.46 (a) Primitive unit cell (Wigner–Seitz cell) of an HCP crystal. • = origin in r space.
(b) The first Brillouin zone (Wigner–Seitz cell in k space) of an HCP crystal is an HCP polyhedron. � = origin in k space. (c) Outer surface
of the second Brillouin zone (Wigner–Seitz cell in k space) of an HCP crystal. � = origin in k space. Reproduced with permission from
W. Hume-Rothery and B. R. Coles, Atomic Theory for Students of Metallurgy. (Published by the Institute of Metals, 1969.) now © W. S.
Maney & Son Ltd.

Energy Distribution of Electrons in the Energy States of the Brillouin Zones

Principle of Electron Distribution in Metals
Above we have defined the concept of Brillouin zones and concentrated on finding their shape and size. The reason why we pay
such attention to Brillouin zones is that they are closely related to the energies of the free electrons and the energy distribution
of the free electrons in crystal lattices. The electron energy distribution controls the lattice structure and is responsible for the
properties of metals.

Below we will discuss the relationship between the Brillouin zones and the electron distribution. The outstanding and only
principle for the electron distribution and structure of crystals is the lowest possible total energy.
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Available Energy States Far from the Brillouin Zones
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Figure 3.32 Energy levels in a linear periodic lattice as a function of the wavenumber k. a = the lattice constant. Reproduced with
permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

The kinetic energy of a free electron, which moves in a linear crystal lattice with a periodically varying electric potential,
as a function of the wavenumber k is shown in Figure 3.32 on page 128. The abrupt changes of energy at certain k values
occur in three dimensions at the planar Brillouin zone boundaries discussed above.

We will use the same representation as in Figure 3.22a on page 120 to show the k points in the three-dimensional reciprocal
lattice. Points with the constant energy EF lie on a surface called the Fermi surface.

In the three-dimensional case, the energy of a free electron, which moves in a constant electric potential, is shown in
Figure 3.23 on page 121. This is a good approximation if the Fermi surface is far from the Brillouin zone boundaries. In this
case the Fermi surfaces are spheres and the energy can roughly be represented by Equation (3.56) on page 120.

The function is shown in Figure 3.47, which shows a number of Fermi surfaces in k space inside the cube which represents
the first Brillouin zone of a simple cubic crystal lattice. The figure shows a cross-section of the spheres.

Available Energy States Close to the Brillouin Zones
Figure 3.48 shows the deformation of the spheres in Figure 3.47 close to the Brillouin zone boundary. The figure can be
regarded as a ‘topographic map’ where the height lines correspond to Fermi surfaces.

kx

kz

Figure 3.47 Approximately spherical Fermi surfaces in k space
within and far from the first Brillouin zone boundary of a simple
cubic crystal lattice. It has the shape of a cube.

kz

kx

Figure 3.48 Real Fermi surfaces in k space within the first
Brillouin zone of a simple cubic crystal lattice, which has the shape
of a cube (in the figure the shape of a square).
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In can be concluded from Figure 3.32 that deviations from the spherical shape of the Fermi surfaces are to be expected
close to the Brillouin zone boundaries.

With increasing energies the spheres approach the Brillouin zone boundary and become distorted. At still higher energies
the Fermi surfaces lose their spherical character completely. Figure 3.48 shows that these Fermi surfaces always intersect the
Brillouin zone boundary perpendicularly.

Occupied Energy Levels Within and Close to the Brillouin Zone Boundaries
We know that each Brillouin zone in a metal crystal with Ntotal atoms can accommodate a maximum of 2Ntotal electrons
(page 129). The number of free electrons equals the number of atoms times the valence of the metal.

The shapes of the Brillouin zones and the values of the energies in the energy bands in the metal control the energy distribution
of the free electrons. For this reason, it is important to study the energies of the Fermi surfaces more closely and the ways they are
occupied by the free electrons in the crystal. The principle is that the electrons always fill the lowest energy states first.

The normal energy distribution in a metal with FCC structure and only one free electron per atom is that the electrons can
only fill half of the available energy states in the first Brillouin zone (Figure 3.49a). In this case the outer occupied Fermi
surface is far from the Brillouin zone boundary and has a nearly spherical shape. In Figure 3.49b, the number of occupied
energy states is much larger and the Fermi surface has reached the Brillouin zone boundary along the flat circular areas.

(a) (b)

Figure 3.49 (a) First Brillouin zone of an FCC metal with one free electron per atom and the Fermi surface of the occupied energy levels
far from the Brillouin zone boundaries.
(b) First Brillouin zone of an FCC metal with several electrons per atom and the Fermi surface of the occupied energy levels close to the
Brillouin zone boundaries. Reproduced with permission from W. Hume-Rothery and B. R. Coles, Atomic Theory for Students of Metallurgy.
(Published by the Institute of Metals, 1969.) now © W. S. Maney & Son Ltd.

The exact shapes of the Fermi surfaces are characteristic for each metal. As a real example we choose copper, which has
the configuration 1s2 2s2 2p6 3s2 3p6 3d10 4s. Copper has one valence electron per atom. Even at this low electron density, when
the Brillouin zone is only half filled, contact is established between the Fermi surface and the Brillouin zone boundaries in
the <111> directions (Figure 3.50). These contact areas correspond to the maximum energy at the zone boundary (point A
in Figure 3.25 on page 122).

Figure 3.50 Fermi surfaces and the first Brillouin zone boundary of Cu (FCC structure). Reproduced with permission from W. Hume-
Rothery and B. R. Coles, Atomic Theory for Students of Metallurgy. (Published by the Institute of Metals, 1969.) now © W. S. Maney &
Son Ltd.

For most other metals, the Fermi surface is much more complicated. Accurate calculations have been performed only in a
few cases.
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Occupied Energy Levels Close to the Brillouin Zones
Inside the Brillouin zones the energy increases smoothly with increasing wavenumber k. At each Brillouin zone boundary
there is an abrupt and discontinuous increase of the electron energy.

• The magnitudes of the abrupt energy changes at the Brillouin zone boundaries depend on direction.

This is shown for a simple cubic structure in Figure 3.51, which can be used to derive the energy distribution of the free electrons
if the energies of consecutive Fermi surfaces are known. The figures inside the Brillouin zone are the k values. Figure 3.51 shows
that the abrupt energy change at the zone boundary occurs for a lower k value in the perpendicular directions than in the diagonal
direction. The lowest energy states are found by use of the two energy diagrams. The lowest energy states always become filled
first. The result is given in Table 3.8.
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Figure 3.51 First Brillouin zone of a simple cubic structure. Energy as a function of wavenumber k in two different directions. Reproduced
with permission from W. Hume-Rothery and B. R. Coles, Atomic Theory for Students of Metallurgy. (Published by the Institute of Metals,
1969.) now © W. S. Maney & Son Ltd.

The energy states in the interval 0–6.5 energy units in both the kxky and the diagonal directions become filled first. In the
interval 6.5–10 energy units, only energy states in the diagonal directions, corresponding to corner points, are available and
become filled next. In the energy interval 10–13 energy units, the remaining k points in the corners of the first Brillouin zone
in the diagonal directions and lowest k points of the second zone in the kxky directions become filled. At 13 energy units the
first zone is completely filled and additional electrons with energies >13 energy units have to go to the second zone in the
kxky directions.
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Table 3.8 Lowest energy levels derived from Figure 3.51.

Energy interval
Arbitrary units

Direction in k space

0–6.5 kxky 1st zone+
diagonal 1st zone

6.5–10 diagonal 1st zone
10–13 diagonal 1st zone

+kxky 2nd zone
13–19 kxky 2nd zone

Table 3.8 relates to the maximum and minimum directions in k space. All directions between these two are also possible.
This leads to a series of energy gaps at different k values as shown in Figure 3.52.

E

k

Figure 3.52 Small energy gaps between the first and second Brillouin zones of a simple cubic structure in the directions which correspond
to kx and ky in Figure 3.51.

For other structures, the situation is even more complicated when the Brillouin zone boundaries consist of different types of
faces, for example octahedral and cube faces. These lie at different distances from origin and give another variety of positions
and sizes of the energy gaps. Each type of face causes a top in the N�E� curve. Figure 3.53a shows an example with two
types of faces and three types of corners.

It is possible to calculate the density N�E� of electron energy states when the electron energy as a function of k is known. If
the energy gap between the first two Brillouin zone is small (Figure 3.52), some of the energy states of the second Brillouin
zone are lower than the energy states which correspond to the outer parts of the corners in Figure 3.51. In this case, electrons
are located in the second band before the first energy band is completely filled and the curves of the first and second bands
overlap (Figure 3.53b). The overlapping effects have been discussed here only for the simple cubic crystal structure but also
occur for other crystal structures. Overlapping of energy bands is very common in metals.

N(E)

E

(a)

N(E )

E

Bottom of second band

(b)

Figure 3.53 (a) Electron distribution (number of electrons per unit volume with energies between E and E +dE) in the first and second
Brillouin zones as function of the energy E.
(b) If the energy gaps in Figure 3.52 are small enough, the energy states of the first and second Brillouin zones overlap and there will be
no forbidden energy gap.
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E

k

Figure 3.54 Large energy gaps between the first and second
Brillouin zones of a simple cubic structure in different directions.

N (E )

E

Top of first band Second band

Figure 3.55 Density of available energy states in the lowest
energy band, i.e. in the first Brillouin zone of a simple cubic struc-
ture. The energy bands do not overlap. There is only one type of
face and one type of corner.

If the energy gaps in different directions are large (Figure 3.54), the energy states in the corners, i.e. at the top of the
first zone, are lower than all the energy states at the bottom of the second zone, independent of direction. Consequently, the
corners, i.e. the first Brillouin zone as a whole, will be filled with electrons before any electrons go to the second Brillouin
zone. In this case the N�E� curve has a forbidden energy interval such as that in Figure 3.55.

The corner states are rather few and these energy states become filled fairly quickly. Hence the N�E� curve decreases
rapidly to zero. This part of the curve corresponds to the top A of the band in Figure 3.25 on page 122, which now has
obtained an explanation.

Above we considered the energy distribution in pure metals of a given number of valence electrons. In Section 3.7.2 on
page 153 we will consider the valence electron distribution in alloys and particularly the influence of an increasing electron
concentration on the positions of the electron bands and the crystal structure.

The Effective Electron Mass as a Function of k

On page 112, it was mentioned that the mass of a valence electron in a metal is not the same as the mass m of an electron
in free space. The effective mass of a valence electron in a metal depend on its energy, i.e. m∗ must be a function of the
wavevector k of the matter wave of the electron. It is beyond of the scope of this book to penetrate this question more closely.
On the other hand, it cannot be omitted.

By studying the energy increase of a valence electron when it is accelerated in an electric field, it can be shown theoretically
that the relationship in the one-dimensional case between the effective mass, the kinetic energy and the wavenumber k can be
written as

m∗ = �
2

d2E

dk2

(3.108)

The relationship between m∗ and k is shown in Figure 3.56. Figure 3.56a shows the kinetic energy E as a function of the
wavenumber k of the matter wave of the electron. Equation (3.108) shows that the second derivative of E and especially
its values on the curve at the points of inflection are very important. The effective mass becomes infinite at these points
(d2E/dk2 = 0 at k = ±�/2a).

Another startling result is that the effective mass, defined by Equation (3.108), is negative at the upper half of the first
Brillouin zone. The practical effect of this is that electrons with wavenumbers within the intervals −�/a < k < −�/2a and
�/2a < k < �/a behave like positively charged particles when they are accelerated in an electric field, otherwise like negative
particles.

In the three-dimensional case, Brillouin zones in three dimensions, m∗ is far more complicated. In the general case 1/m∗ is
a tensor with nine components.
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Figure 3.56 (a) Kinetic energy of a valence electron within the first Brillouin zone (one-dimensional case) as a function of k.
(b) The effective mass m∗ of a valence electron as a function of k. Reproduced with permission from A. J. Dekker, Solid State Physics. ©
1962 Macmillan & Co. Ltd.

3.6 Elastic Vibrations in Solids

So far the theory of solids has dealt entirely with the valence electrons in solids. Owing to the positions of the valence
electrons, the bonds in nonmetallic solids are mainly ionic or covalent. The quantum mechanical model of the electron gas,
which has been extensively discussed above, explains many of the properties of metals.

In addition, for a more complete and general theory of solids, we have to consider the elastic vibrations in the crystal lattice.
These elastic vibrations are of great importance when thermal properties of solids, e.g. heat capacity and heat conduction, are
treated.

In Chapter 2, Section 2.7.3 we discussed harmonic vibrations in diatomic molecules. We found that the vibrations are
quantized and that the molecules always have a zero point vibrational energy.

A crystal is a regular lattice of atoms which are held in their equilibrium average positions by strong cohesive forces. The
atoms are in continuous motion and perform vibrations with small amplitudes around their equilibrium positions. Owing to the
strong cohesive forces between neighbouring atoms, there is strong coupling between the atoms in the lattice. It is impossible
to set one atom into vibration without disturbing nearby atoms and indirectly the whole crystal. Collective vibrations arise
which travel through the whole lattice.

The collective vibrations move back and forth through the crystal and form travelling waves. Vibrations of many different
frequencies and energies are present. The frequencies depend on the shape and size of the solid and are in some respects
analogous to electromagnetic waves in a cavity.

3.6.1 Phonons

Properties of Phonons

We remember from Chapter 2 that the study of the radiation inside a cavity led to the first assumption of quantization of
energy, the introduction of the concept of photon E = h� and Planck’s radiation law.

In the case of elastic waves, the duality between waves and particles has led to the introduction of the concept of phonon.
Phonons are quasi-particles associated with the elastic waves in solids. The vibrations inside a solid may be regarded as
manifold phonons with different frequencies and energies.

• Phonons have quantized energies just like photons.
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(a)

(b)

Figure 3.57 Two perpendicular transverse modes of vibration in a linear crystal lattice with two kinds of atoms: (a) transverse optical
mode; (b) transverse acoustic mode.

Elastic waves have three different modes of vibration: two perpendicular transverse modes (Figure 3.57) and one longitudinal
mode. The energy of a phonon can not have an arbitrary value but is quantized according to quantum mechanics. In analogy
with the vibrations in diatomic molecules, the vibrational energy of each elastic mode can be written as

G�n� = ���n+ 1/2� (3.114)

where
G�n� = energy of the elastic wave in vibrational mode n
� = angular frequency of the elastic wave
n = integer quantum number of the mode of vibration.

Two or more phonons may interact, which results in permanent changes of both the wavelength and direction of propagation
of the phonons. The process can be regarded as a collision, where the total momentum and energy are conserved. The
interaction between phonons increases with increasing amplitude of vibration.

Phonons may interfere constructively in a localized region of the lattice and cause a large displacement of one or two atoms.
Phonons carry momentum and energy and interact with other types of primary imperfections in crystals. In all such processes
the total momentum and energy are conserved.

The phonon energy distribution will be discussed in Section 5.2.2 and applied in Section 5.
A striking difference between photons and phonons concerns their speed of propagation. Photons move with the velocity

of light, c0/ncrystal, where c0 = 3×108 m/s and ncrystal is the refractive index of the crystal.
Phonons propagate with velocities which vary with their frequencies. Their velocities are much lower than that of electro-

magnetic waves. Phonons are elastic waves of the same kind as sound waves and have the same velocity as sound waves
within the frequency range of sound. For sound waves we have

v =
√

E



(3.115)

where
v = velocity of the wave
E = modulus of elasticity of the crystal

 = density of the crystal.

The velocity of sound and phonons of sound frequencies in metals is of the magnitude �2–5�×103 m/s.

Phonon Statistics

We remember that the discrepancy between the classical and the quantum mechanical models of the electron gas is caused by
the difference between classical Maxwell–Boltzmann statistics and Fermi–Dirac statistics, which is valid for electrons. The
phonons and photons obey none of these statistics. Instead, they obey the so-called Bose–Einstein statistics.



148 Physics of Functional Materials

• The classical Maxwell–Boltzmann statistics is valid for particles which are identical and distinguishable.

fMB = 1

e
E−E0
kBT

• The Bose–Einstein statistical distribution is valid for particles which are identical but indistinguishable and belong to
such a system where the Pauli exclusion principle is not valid.

fBE = 1

e
E−E0
kBT −1

• The Fermi–Dirac statistics is valid for particles which are identical and indistinguishable and belong to such a system
where the Pauli exclusion principle is valid.

fFD = 1

e
E−E0
kBT +1

The Fermi–Dirac statistics was used in Section 3.4.3 on page 117 in connection with the quantum mechanical model of the
electron gas in a metal. Figure 3.58 shows a comparison between the three statistics.
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Figure 3.58 Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac statistics. Reproduced with permission from I. Lindgren et al., © 1971,
Almqist & Wiksell.

In the Fermi–Dirac statistics, E0 = EF. In Bose–Einstein statistics we have the restriction E > E0 otherwise fBE becomes
negative.

The differences between the three statistics are very large for small energy values. At high energy values they coincide and
both the Bose–Einstein and Fermi–Dirac statistics can be approximated by the mathematically simpler Maxwell–Boltzmann
statistics.
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A crystal at equilibrium at a given temperature contains a variety of phonons of different frequencies. The energy distribution
of the phonons is identical with Planck’s distribution law because both phonons and photons obey Bose–Einstein statistics.
We will discuss this topic in Chapter 6 in connection with the heat capacity of solids.

Angular Frequency of Phonons as a Function of Wavenumber

Just as for matter waves of electrons, it is very convenient to introduce the wavenumber k of the phonon and express its total
energy E and its momentum p as functions of the wavenumber k and the wavevector k, respectively:

E = ���k� (3.116)

p = �k (3.117)

where the angular frequency � = 2��.
For simplicity, we will first study the deviation of an atom or ion from its equilibrium position in a one-dimensional crystal

lattice which consists of only one type of atom with mass M in terms of change of distance to the two nearest neighbours
(Figure 3.59).

a

Figure 3.59 One-dimensional crystal lattice.

If we solve the differential wave equation and disregard all end effects, we obtain the following relationship between the
angular frequency � and the wavenumber k of the phonon (Figure 3.60):

� = 2

√
�

M
sin

ka

2
(3.118)

where
� = angular frequency of the phonon motion
� = elastic constant of the adjacent atoms in the lattice
M = mass of the atom
k = wavenumber of the phonon
a = lattice constant, i.e. distance between consecutive atoms in the lattice.
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Figure 3.60 Angular frequency of lattice vibrations of equal atoms as a function of the wavenumber. Reproduced with permission from
M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

Obviously there is an upper limit of the angular frequency of the phonon [Equation (3.118)]. This cut-off frequency is of
magnitude 1015 Hz for most substances, which is beyond the ultrasonic frequencies.
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a

2 a

Figure 3.61 One-dimensional crystal lattice with two kinds of atoms.

It should be pointed out that k is quantized because the phonon energy has discrete values. The energy levels are very close
and the curve in Figure 3.60 appears to be continuous. It is said to be quasi-continuous.

For a one-dimensional crystal lattice consisting of two kinds of atoms (Figure 3.61) with masses M1 and M2, for example
an ionic crystal, the angular frequency will be

�2 = �

(
1

M1

+ 1
M2

)
±�

[(
1

M1

+ 1
M2

)2

− 4 sin2 ka

M1M2

] 1
2

(3.119)

If the third term is small compared with the second term, the angular frequency becomes approximately constant:

�0
2 = 2�

(
1

M1

+ 1
M2

)
(3.120)

The angular frequency �0 belongs to the infrared region (Figure 3.62). Hence ionic crystals have absorption maxima in this
region.

Equation (3.119) expresses the relationship between � and k. Elastic lattice vibrations have several different modes of
vibration: two perpendicular transverse vibration modes (page 147) and one longitudinal mode of vibration. Two opposite
directions are possible in each case. Hence for each value of k there are six different values of ��k�, three for each sign in
Equation (3.119).

At wavelengths that correspond to acoustic waves or sound waves, the angular frequency is inversely proportional to 1/	
and the velocity of the elastic wave is constant.

The average energy and the total number of phonons increase with temperature. The number of phonons can be increased
in several ways. The crystal can, for example, be attached to a piezoelectric oscillator or put into contact with a heat source.
The phonons will flow from the mechanical or thermal source into the crystal.
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Figure 3.62 Angular frequency of phonons as a function of the wavenumber k in a linear lattice of an ionic crystal. Reproduced with
permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.
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3.7 Influence of Lattice Defects on Electronic Structures in Crystals

Lattice defects have been introduced and briefly discussed in Chapter 1. It is easy to realize that if the regular order of the
atoms or ions in a crystal lattice is disturbed in one way or an other, this must necessarily affect the energy levels of the
valence electrons in the solid.

In this section, we will study the influence of the most important lattice defects, vacancies, interstitials and foreign atoms,
on the electron structure of both nonmetallic and metallic solids.

3.7.1 Influence of Lattice Defects on Electronic Structures in Nonmetallic Crystals

Vacancies and Interstitials
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Figure 3.63 Vacancies and interstitials in a crystal lattice.

A missing ion or atom in a crystal lattice is called a vacancy. It is customary to illustrate a vacancy as a square in a crystal
lattice (Figure 3.63). An interstitial is an excess atom or ion outside the normal sites in the lattice.

A certain number of vacancies and interstitials are always present in a crystal lattice at a given temperature. They are
generated by phonons. The density of the vacancies depends strongly on the temperature and increases rapidly with increase in
temperature. The upper limit is of magnitude ≥0�1 at-% close to the melting point temperature for most solids. The vacancies
cause an expansion of the crystal lattice. This is one of the reasons for thermal expansion of solids.

Both vacancies and interstitials can move within the crystal lattice. This process, which implies mass transport and is called
diffusion, plays a very important role in the solidification of metals. The mobility of interstitials is a matter of space and
energy. The smaller the interstitials are, the more easily they can move if the necessary energy for the process is available.

Normally vacancies and interstitials are generated in equal numbers. The migration of these imperfections explains the
electrolytic conductivity in pure salts. In ion crystals there are two different types of defects, named Schottky defects and
Frenkel defects.

A Schottky defect is a vacancy in a crystal lattice where the ion has been removed from its site to the surface of the lattice
(Figure 3.65). The vacancy is not coupled to any interstitial.
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Figure 3.64 A Schottky defect is a vacancy which is not coupled
to any interstitial in the crystal lattice.
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Figure 3.65 A Frenkel defect consists of a vacancy and a nearby
interstitial in a crystal lattice.
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A Frenkel defect is formed by excitation and migration of an ion from its normal site in the lattice, which is left empty.
The ion becomes an interstitial. Each process results in a vacancy–interstitial pair (Figure 3.65).
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Figure 3.66 Coupled pair of vacancies of opposite signs.

Interstitial atoms may interact and form stable clusters of two or more interstitials. Similarly, vacancies can combine to
form clusters of two or more vacancies. In extreme cases they can form large voids in the crystal lattice. Pairs of vacancies of
opposite signs may form a unit and move within the lattice. The may also annihilate, i.e. both types of imperfections disappear
and the energy released is transferred to the phonons in the lattice.

Figure 3.66 shows a coupled pair of vacancies of opposite signs in alkali metal halides. The coupling energy has been
estimated to be of magnitude 1 eV.

Trapping of Charged Particles in a Crystal Lattice

All charged particles in asymmetric positions in crystal lattices may be trapped. The concept of trapping implies that the
electric field caused by the charged particle induces slight displacements of neighbouring ions (Figure 3.67). Ions of the same
type of charge are repelled and their distances to the charged particle are increased. Similarly, particles with unlike charges
are attracted by each other and decrease their distances to the charged particle. The displacements of the ions produce a local
polarized region.
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Figure 3.67 A trapped electron (circle near a positive ion) in the vicinity of a positive ion in the crystal lattice causes small displacements
of both the positive and negative neighbouring ions.

Hence the charged particle is situated at the centre of the polarized region. At larger distances weak forces from the polarized
centre are acting, which result in a potential well with some discrete energy levels (see below). The depth of such a potential
well, where the charged particle is trapped, is normally of the magnitude a few tenths of an electronvolt.

Examples of trapped particles are electrons, holes and also interstitial ions. Examples and effects of trapped particles will
be discussed below in connection with colour centres.

Colour Centres in Ion Crystals
A colour centre is a lattice defect that is able to absorb visible light. Crystals absorb electromagnetic radiation and vacancies
may be formed, but the required energy quanta have energies which correspond to ultraviolet radiation.

Experience shows that there are several methods for colouring crystals, for example by introduction of chemical impurities,
by X-ray or �-radiation or by heating them in an atmosphere of metal vapour.
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An example of the first method is aluminium oxide. Pure Al2O3 crystals are transparent. If small amounts of chromium are
added, the crystals acquire an intense red colour. If pure alkali metal halide crystals, which are uncoloured, are heated in an
atmosphere of the metal vapour in question they become coloured. In both cases crystal defects are introduced.
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Figure 3.68 Absorption process in (a) a perfect crystal and
(b) a crystal with lattice defects.
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Figure 3.69 Absorption spectrum of a crystal with energy levels
due to crystal defects.

Photons in the visible region have energies roughly between 1.6 and 3.2 eV. Transparent crystals do not absorb light quanta
in the visible region of spectrum if the energy gap is >3�2 eV (Figure 3.68a). In presence of crystal defects there are additional
energy levels above the valence band (Figure 3.68b). If the crystals are exposed to white light and the absorption spectrum is
recorded, its appearance will in principle be that in Figure 3.69. There is a strong absorption band in the visible region.

When such crystals are exposed to white light, they absorb the wavelengths which correspond to the absorption band and
the reflected and/or transmitted light has the complementary colour.

Aluminium oxide with small amounts of chromium has an absorption band in the green part of the spectrum, resulting in
a red colour of the solid when exposed to white light. Similarly, NaCl has a blue absorption band and emits yellow reflected
light when it is illuminated with white light.
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Figure 3.70 F centre.

The simplest type of colour centre is the so-called F centre (F stands for Farbe, the German word for colour). An F centre
consists of a negative vacancy, which is equivalent to a positive ion, and an excess electron bound to the vacancy.

The symbol of an F centre is a hexagon (instead of a square for the vacant negative ion) with a minus sign in the middle
for the bound electron (Figure 3.70).

An M centre consists of two adjacent F centres. A so-called V centre consists of a trapped hole, bound to a pair of negative
ions. Such centres have been observed in metal oxides.

3.7.2 Influence of Lattice Defects on Electronic Structures in Metals and Semiconductors

A defect, which is of particular importance in metals, is foreign atoms in crystal lattices. Foreign atoms may be present in
crystals, either as impurities or added on purpose. When large amounts of foreign metal atoms are added to a base metal on
purpose, an alloy is formed. Alloys are of great technical and practical importance.
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When small amounts of foreign atoms are added to a semiconductor, the material is said to be doped. This is of great
importance for the electrical conductivity of the material. This topic will be treated in Chapter 7.

Foreign Atoms as Interstitials and Substitutionals

Foreign atoms can either appear as interstitials in the crystal lattice or as a substitute for regular atoms in the crystal lattice,
so-called substitutionals (Figure 3.71). In metals only a few elements, such as C, N and O, appear as interstitials whereas
metal atoms normally appear as substitutionals for space reasons.

Figure 3.71 Substitutionals in a metal lattice.

Even small amounts of foreign atoms change the properties of the solid dramatically. They may introduce new electronic
energy levels in an insulator. Such levels may permit absorption of light in a previously transparent part of the spectrum.

In metals, the foreign atoms alter the density of free electrons in the crystal lattice and cause extensive changes to the
electron distribution and the energy levels. New energy levels, such as acceptor and donor levels in semiconductors, may
appear.

Electron Structures in Alloys

When foreign atoms are introduced in a metal, the number of free electrons in the crystal changes and the electron concentration,
i.e. the average number of free electrons per atom, changes. When alloying atoms with more or fewer valence electrons
than the host atoms are added, the average number of free electrons per atom changes. The crystal as a whole is, of course,
electrically neutral as the positive charges of the foreign nuclei in the crystal lattice balance the increased number of free
electrons. There is clear experimental evidence that

• The electron density distribution and the energy levels of the Brillouin zones, i.e. the positions of the energy bands, in
metals change when alloying elements are introduced.

These changes may cause a total change in the structure of the crystal lattice even if they are extremely small.
A change in the electron concentration of a metal also leads to a change in its properties. One example is the solubility

of hydrogen in solid copper, which is considerably reduced by alloying copper with zinc. Copper has one and zinc has two
valence electrons per atom. The use of zinc as an alloying element increases the average electron concentration. The same
effect has been observed in copper for other alloying elements. The solubility of hydrogen in liquid copper is significantly
reduced by addition of tin or aluminium.
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Example 3.2

An alloy consist of 70 at-% Cu and 30 at-% Zn. Calculate the electron concentration, i.e. the average number of valence
electron per atom in the alloy.

Solution:

Consider 100 alloy molecules: 70 of them are Cu atoms with one valence electron per atom and 30 of them are Zn atoms
with two valence electrons per atom. Hence we obtain the average number of valence electrons per atom:

�70×1�+ �30×2�

100
= 1�3 electrons/atom

Answer:

The average electron concentration in the alloy is 1.3 valence electrons per atom.

Generally, the energy of an alloy crystal depends on many factors, such as the sizes and chemical nature of the atoms and
the number of electrons per atom. In some cases the dominant factor seems to be the electron concentration. This fact was
first discovered empirically and was later treated theoretically by Jones. He assumed that the specific characteristics of the
atoms can be neglected and considered the alloy as a simple mixture of atoms and free electrons. He stated the principle that

• An alloy adopts the structure which accommodates the valence electrons with the lowest possible energy.

This principle is illustrated in Figure 3.72. The steeper the N�E� curve is, the lower will be the energy with which a given
number of electrons can be accommodated. Obviously the structure in Figure 3.72b gives the lowest total energy of the crystal.

A necessary condition for the conclusion above is the assumption that the excess electrons introduced into the lattice with the
alloying element do not change the N(E) function of the solvent. This simple theory represents the rigid band approximation.
It holds in some cases but not in the general case. For this so-called flexible band approximation, a more sophisticated theory
has been developed that is built on the Brillouin zone theory.

Jones’s principle is valid provided that the number of free electrons can be accommodated within the first Brillouin zone and
the N�E� curve is as simple as Figure 3.72 shows, i.e. until the Fermi surface approaches the first Brillouin zone boundary and
ceases to be spherical (Figure 3.48 on page 141). As an example, we will discuss the FCC and BCC structures by comparing
their N�E� curves.
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Figure 3.72 Energy distribution of valence electrons. Reproduced with permission from W. Hume-Rothery and B. R. Coles, Atomic Theory
for Students of Metallurgy. (Published by the Institute of Metals, 1969.) now © W. S. Maney & Son Ltd.

The shapes of the N�E� curves of FCC and BCC structures are drawn in Figure 3.73. Peak A, which corresponds to the
situation when the Fermi surface approaches the closest face of the first Brillouin zone, is reached at an electron concentration
of 1.36 electrons per atom for the FCC structure and 1.48 electrons per atom for the BCC structure. The N�E� curve of the
BCC structure continues to rise within the interval 1.36–1.48 electrons per atom whereas the N�E� curve of the FCC structure
decreases rapidly and the Fermi surface becomes strongly distorted.
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Figure 3.73 Change of structure of Cu–Zn alloys due to change in electron density caused by modification of composition.

The conclusion is that electrons can be accommodated most favourably if the crystal structure is FCC for electron
concentrations ≤1�36 electrons per atom. At electron concentrations in the interval 1.36–1.48 electrons per atom a BCC
structure corresponds to the lowest possible total energy of the crystal. In excellent agreement with this prediction, it has been
found experimentally that Cu–Zn alloys change structure from FCC (� brass) to BCC (� brass) at an electron concentration
of 1.4 electrons per atom.

When the electron concentration has reached the upper limit which corresponds to point B in Figure 3.73, the first Brillouin
zone is completely filled and additional electrons would have to be accommodated in the second Brillouin zone at a high
energy because of the energy gap at the zone boundary. Instead, the alloy changes structure as this process requires less energy
than excitation of valence electrons up to the second Brillouin zone.

However, further investigations show deviations from the developed theory which accounts for the distortion of the Fermi
surface. These discrepancies can be understood with the aid of the Brillouin zone theory. The Brillouin zones in k space result
from the Bragg condition of the electronic matter waves (page 135). The same general Brillouin zone relationships will hold
even if a few atoms drop out of the lattice and leave a defect structure with some vacant sites. The conclusion is that in the
general case the number of valence electrons per unit cell is a more significant quantity than the number of electrons per
atom when the crystal structures of metals are discussed.

In most normal structures, all lattice points are occupied and the number of valence electrons per unit cell is simply a
multiple of the number of electrons per atom. In a structure with vacancies this is no longer the case. Even if atoms drop
out, the number of electrons per unit cell may be constant. When the electron concentration increases in such an alloy, the
structure does not necessarily change as indicated above. An example of this is given below.

In Cu–Al alloys, the electron concentration increases when the Al fraction is increased. It is found that the predicted ‘� brass’
type of structure is formed at the electron concentration predicted by the theory. When the fraction of Al is increased, the
structure of the � phase remains stable up to the full complement of the unit cell. A further increase in the proportion of Al
results in atoms dropping out by vacancy formation in such a way that the number of electrons per unit cell remains constant
and the structure of the lattice remains intact.

In this case, the crystal ‘prefers’ to give up some atoms to solve the energy problem rather than change its structure or
place additional electrons in the second Brillouin zone. Both of the latter alternatives require more energy than the first one.

Intermediate Phases
So far we have implicitly assumed that interstitial and substitutional atoms in alloys have random distributions. Normally
it is possible to change the composition of an alloy almost continuously by varying the addition of alloying elements.
This is not the case in the so-called intermediate phases. If either A or B atoms in a binary alloy AB attract electrons
more strongly than each other, then characteristic chemical compounds AxBy with bonds of ionic character are formed. An
intermediate phase of two or more metals has an approximately integral stoichiometric composition and shows a low ability
to solve additional atoms of either component. Compounds of such intermediate phases still exist to a certain extent in
a melt.

Examples of intermediate phases are Mg2Pb, Cd3Sb2 and Mg3Bi2. The simplest and most reasonable explanation of the
observations is that the valence electrons are distributed in such a way in intermediate phases that ions are formed. In the
cases mentioned above, the ions would be �Mg2+�2�Pb4−�, �Cd2+�3�Sb3−�2 and �Mg2+�3�Bi3−�2. Ion formation leads to a
strongly reduced electrical conductivity as there are no free valence electrons in ionic crystals. This reduces the number of
free electrons and the electrical conductivity considerably. This topic will be discussed further in Chapter 7.
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Vacancies in Metals and Alloys

Vacancies of the Schottky defect and Frenkel defect types (page 151) also appear in metals and alloys. A vacancy can be
regarded and treated as a special case of foreign atoms, i.e. absence of a foreign atom.

When a vacancy is formed in a perfect crystal lattice, two energy changes appear. The potential energy of the valence
electrons increases as the negative contribution of the missing positive ion in the empty site disappears. In addition, the
average kinetic energy of the valence electrons decreases slightly because the enlargement of the crystal volume from Ntotal

sites to Ntotal +1 sites requires energy, which is taken from the kinetic energy of the electron gas.
Fumi estimated the total energy change, i.e. the energy required to form a vacancy in a monovalent metal, to be EF/6,

where EF is the Fermi energy of the metal. The agreement between the theoretical and experimental values is good for most
metals.

Vacancies become trapped when pure metals and alloys solidify from metal vapours and metal melts.

Summary

� Definitions

Ionization Energy

The energy required to move an electron from its orbit in the atom to infinity.

Electron Affinity

The energy which is released when an electron is moved from infinity to lowest possible orbit in an atom and a stable negative
ion is formed.

Sublimation Energy

The energy required to move an atom from its position in the solid to infinity.

Cohesion Energy

The energy which has to be added to one unit of a crystal to separate its components into neutral free atoms at rest at infinite
distance from each other.

Lattice Energy

The energy which has to be added to one unit of a crystal to separate its component ions into free ions at rest at infinite
distance from each other.

� Bonds in Solids

Crystalline solids can be classified according to the predominant type of bonds between the atoms in the crystal lattice. The
main types of bonds are

• molecular bonds
• ionic bonds
• covalent bonds
• metallic bonds.

The three first types of bonds occur in nonmetallic solids.
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Molecular Bonds in Nonmetallic Solids

Solids with molecular bonds are soft and fragile. The forces between the molecules are van der Waals forces between
permanent, fluctuating or induced dipoles in the solid. The weak, attractive van der Waals forces are inversely proportional to
the seventh power of the distance between the molecules:

Ionic Bonds in Nonmetallic Solids

Ionic crystals are hard and brittle and have high melting points. The ionic bonds are very strong.
The dominant contribution to the potential energy is due to the strong attractive electrostatic forces between the ions but

four additional energy terms are also involved:

Etotal = Eattr +Erep +Ecovalent +Evib +Epol�Eion −Eaff�

Eattr = A

4��0

−e

R0

�eV� (3.9b)

A is the Madelung constant.
The second term is caused by the short-range repulsive forces between the outer filled electron shells. It balances the

attraction forces between the ions. The covalent contribution can often be neglected.

Covalent bonds in Nonmetallic Solids

Covalent bonds occur in nonionic solids. The bonds are very strong. Covalent solids are characterized by high melting points
and high mechanical strength.

This type of bond is called covalent bonds or electron pair bonds or homopolar bonds. Two atoms share an electron pair,
which gives the lowest possible energy of the system.

Covalent bonds between equal atoms are strengthened by the presence of exchange energy, which is a quantum mechanical
effect.

Hybridization in Carbon

The C atom has the electron configuration 1s2 2s2 2p2 in its ground state. If energy is added, a 2s electron can be excited
to a 2p orbital. The wave functions of the 2s electron and the three 2p electrons are combined to give four wave
functions which are symmetrical in space. This results in four tetrahedral bonds and the lowest possible energy of the
system.

Such a process is called hybridization. Examples of sp3 hybridization in carbon are the CH4 molecule and diamond.
Examples of sp2 hybridization are benzene and other organic aromatic compounds and graphite. The consecutive layers of
carbon rings in graphite act as macromolecules which are held together by molecular bonds (van der Waals forces).

� Metallic Bonds

Most metallic solids have good mechanical strengths, high melting points and excellent thermal and electrical conductivities.
They have relatively low ionization energies and are opaque.

The explanation of the strong bonds in metals and their thermal and electrical properties is the free electron model.
Metals have high coordination numbers and not enough valence electrons to form electron pair bonds. Instead,

all the valence electrons belong to the whole crystal lattice. The valence electrons can move within the lattice like
the molecules in a gas. In ionic and covalent crystals the valence electrons are bound and cannot move within the
crystal.

The mobility of the electron varies with its energy, which is considered by replacing the electron mass m by the effective
mass m∗, which is a function of the kinetic energy of the electron.
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Simple Quantum Mechanical Model of the Electron Gas

The Schrödinger equation for a valence electron:

�2�

�x2
+ �2�

�y2
+ �2�

�z2
+ 2m∗

�2
�E −0�� = 0

where the potential function is approximately constant and is set to zero.

Solution in one dimension
Eigenvalue:

E = �
2

2m∗ k2
x

Amplitude of standing matter wave:

� = A sin �kxx� = A sin

(√
2m∗E
�2

x

)
0 < x < L

Wave vector and wave numbers

k = kxx̂+kyŷ +kzẑ

�k� = 2�

	

Solution in three dimensions
Eigenvalue:

E = �
2

2m∗
(
kx

2 +ky
2 +kz

2
)

Amplitude of the standing matter wave:

� = C sin
(

1
�

√
2m∗Ex

)
sin
(

1
�

√
2m∗Ey

)
sin
(

1
�

√
2m∗Ez

)

or

� = C sin �kxx� sin
(
kyy
)

sin �kzz�

where

kx = ky = kz = 1
�

√
2m∗E

• The wavenumbers of the valence electron are quantized.
• The energy levels of the valence electron are quantized.

� Energy States of Free Electrons in a Metal

The whole metal represents one system with a large number of free electrons and a large number of different energy states.
Each electron supplies one eigenfunction and its associated eigenvalue to the pool.

• The number of collective electron energy states in a metal crystal is equal to the total number of valence electrons, i.e. the
valence number times the number of atoms.
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The Pauli principle is valid for the valence electrons:

• Each energy state, defined by the quantum numbers nx, ny and nz, can only accommodate two electrons with opposite spins.

If the total number of free electrons is equal to the number of energy states, only half of the available sites are occupied.
In the absence of thermal excitation, the lowest-lying energy states are filled and the rest are empty.

The Fermi level EF represents the energy of the most energetic valence electrons in the metal at T = 0 K. At higher
temperatures some electrons become excited above the Fermi level and leave an equal number of empty sites below the
Fermi level.

Fermi–Dirac Distribution

The Fermi factor fFD represents the probability at temperature T that the energy state E will accommodate an electron:

fFD = 1

e
E−EF
kBT +1

Representation of Electron Energies in k Space

Kinetic energy of an electron:

Ekin = �
2

2m

(
kx

2 +ky
2 +kz

2
)

Allowed energy states are represented by points in k space. Electron states with a given energy correspond to points on a
spherical surface, the so-called Fermi surface, in k space.

Density of Electron Energy States as a Function of Energy

Density of available electron energy states:

N�E� = �2m∗�
3
2

4�2�3
E

1
2

Fermi factor:

fFD = 1

e
E−EF
kBT +1

Density of occupied electron energy states:

N�E�fFD = �2m∗�
3
2

4�2�3
E

1
2

1

e
E−EF
kBT +1

Each electron state can accommodate two electrons (spin up and spin down). Electron density:

n�E� = 2N�E�

Fermi Level

Total number of free electrons per unit volume:

ntotal = �2m∗�3/2

2�2�3

2
3

EF
3/2
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Fermi level:

EF = the maximum energy of the free electrons at T = 0 K�

EF = �
2

2m∗
(
3�2ntotal

)2/3

‘Radius’ of the Fermi sphere (Fermi level) in reciprocal space:

kF = 1
�

√
2m∗EF

� Energy Bands in Solids

The quantum mechanical free electron model was very successful compared with the classical theory of the electron gas in a
metal. The theory has been developed further, as it obviously is a rough approximation to assume a constant potential energy
of the electron inside the metal.

The positive ions in the lattice give a periodic potential energy of the same type as in atoms and molecules. Kronig and
Penney suggested a three-dimensional square function as a reasonable approximation.

The Kronig–Penney Model. Brillouin Zones in One Dimension

In the case of a linear lattice with spacing a, for the solution of the Schrödinger equation the wavefunction can be written as

��x� = eikxUk �x�

where Uk�x� is a so-called Bloch function. In addition, Uk�x� must be periodic, i.e. satisfy the condition

Uk �x� = Uk �x+a�

Both the eigenfunction and the wave vector are quantized just as for a free electron. A very important difference, caused
by the Bloch function Uk�x�, is that

For the values of k which are given by the conditions

k = p
�

a
p = ±1�±2� � � �

the Schrödinger equation has no unique solution. For each of these k values there are two eigenvalues, separated by an
energy gap.

The Kronig–Penney energy curve shows discontinuities. Bands of allowed energy values are interrupted by energy gaps,
i.e. regions of forbidden energy values. The eigenvalues and the k vectors are quantized. The broken curve is not continuous
but consists of closely spaced points.

The k zones of allowed energies are called Brillouin zones. The construction and shape of Brillouin zones in two and three
dimensions are discussed extensively in the text. The Brillouin zones correspond to the k values which are multiples of �/a.

The Brillouin zones represent electron energy bands, interrupted by forbidden energy gaps. The widths of the energy bands,
which correspond to the k zones, increase with increasing energy.

Number of Possible Eigenfunctions and Energy States per Band

The number of energy states in each Brillouin zone is equal to Ntotal, the total number of atoms. Each Brillouin zone (energy
band) can accommodate a maximum of 2Ntotal electrons.

Energy Distribution of Electrons in the Energy States in the Brillouin Zones

The theory of Brillouin zones in three dimensions in the so-called k space or reciprocal space is closely coupled to the energy
distribution in the energy bands of the valence electrons in metals. It can be used to understand how the energy bands in
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metals are successively filled. The simplest Brillouin zones belong to crystals with a cubic structure. Initially the electrons fill
the bottom of the first Brillouin zone and are represented by spheres in the reciprocal space. When the number of electrons
increases, the radius (a k value) of the so-called Fermi sphere increases, i.e. the energy of the most energetic electrons
increases. As long as the spheres are undisturbed, i.e. are far from the upper Brillouin zone boundary, the energy density in
the energy band follows the relationship

N�E� = �2m∗�
3
2

4�2�3
E

1
2

When the Fermi surface approaches the first Brillouin zone, the maximum of N�E� is reached and the relationship is no longer
valid for higher E values.

Each point in k space represents an energy state. When the Fermi surface approaches the Brillouin zone there are still empty
energy levels or points outside the maximum sphere which represents the Fermi level EF. If the energy gap up to the second
Brillouin zone is large enough, the empty levels become filled before electrons occupy energy levels in the second Brillouin
zone. The points in the Brillouin zone corners are rather few and the band soon becomes filled. This is the explanation of the
electron distribution of the upper part of the first energy band.

Electrons always go to the energy states with the lowest possible energy. If the energy gap between the first and second
zones is small, electrons may go to the second Brilloin zone before the corners in the first zone become filled. This results in
a complicated energy distribution where the two energy bands overlap.

� Effective Mass of Electron in a Metal

The effective mass of a valence electron in a metal depends on its energy, i.e. m∗ must be a function of the wavevector k of
the matter wave of the electron.

By studying the energy increase of a valence electron when it is accelerated in an electric field, it can be shown theoretically
that the relationship in the one-dimensional case between the effective mass, the kinetic energy and the wavenumber k can be
written as

m∗ = �
2

d2E

dk2

� Elastic Vibrations in Solids

Elastic vibrations in solids are of great importance for the thermal properties of solids. Collective vibrations, which move
back and forth through the crystal, form travelling waves. Vibrations of many different frequencies and energies are present.
Three modes of vibration appear: one longitudinal mode and two perpendicular modes of transverse waves. Elastic energy is
quantizised:

G�n� = constant × �n+ 1/2�

Phonons

Phonons can be regarded as particles associated with elastic waves in solids. Phonons and photons both obey Bose–Einstein
statistics. Phonons have quantized energies just like photons:

E = ���k� p = �k

� Influence of Lattice Defects on Electronic Structures in Nonmetallic Crystals

Vacancies and Interstitials

A vacancy is a missing atom or ion in a crystal lattice. An interstitial is an excess atom or ion in a site between the lattice
atoms. Vacancies and interstitial occur in all sorts of crystals.
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A Schottky defect is a vacancy in a crystal lattice where the ion has been removed from its site to the surface of the lattice.
The vacancy is not coupled to any interstitial.

A Frenkel defect is formed by excitation and migration of an ion from its normal site in the lattice, which is left empty.
The ion becomes an interstitial. Each process results in a vacancy–interstitial pair.

Trapping of Charged Particles in a Crystal Lattice

All charged particles in asymmetric positions in crystal lattices may be trapped. The electrostatic interaction between the ions
cause displacements of neighbouring atoms, which produces a local polarized region and a shallow potential well, i.e. energy
states in the forbidden zone.

Colour Centres in Ion Crystals

A colour centre is a lattice defect which is able to absorb visible light.
In presence of crystal defects, there are additional energy states above the valence band. If the crystals are exposed to white

light and the absorption spectrum is recorded, there is a strong absorption band in the visible region. When such crystals are
exposed to white light, they absorb the wavelengths which correspond to the absorption band and the reflected light has the
complementary colour.

An F centre is a negative vacancy, which is equivalent to a positive ion, and a trapped excess electron bound to the vacancy.

� Influence of Lattice Defects on Electronic Structures in Metals and Semiconductors

Foreign Atoms

Foreign or impurity atoms can either appear as interstitials in the crystal lattice or as substitute regular atoms in the crystal
lattice, so-called substitutionals. In metals only a few elements, such as C, N and O, appear as interstitials whereas metal
atoms normally appear as substitutionals for space reasons.

Small amounts of foreign atoms are used to dope semiconductors. Large amounts of foreign atoms added to a base metal
give an alloy.

Electron Structures in Alloys

The electron density distribution and the positions of the energy bands in metals change when alloying elements are introduced.
Addition of foreign atoms changes the electron concentration, i.e. the number of valence electrons per atom.

An alloy adopts the structure which accommodates the valence electrons with the lowest possible energy.

Exercises

3.1 What is the difference between cohesive energy and lattice energy?

3.2 The distance r0 between two neighbouring atoms in NaCl is 0.281 nm. Each ion is influenced by electrostatic attractive
forces from ions with opposite charge and repulsive forces from ions of equal charge. The potential energy of an ion in
the crystal, due to Coulomb interaction with the rest of the crystal, is

Eattr = − A

4��0

e2

r0

The Madelung constant A is 1.75 for NaCl.

(a) Calculate the energy (eV) required to release an ion from the interior of the crystal, due to the Coulomb interaction.
Owing to a certain overlap of filled electron shells between neighbouring ions there are also repulsive forces between

the ions. Assume that the repulsive energy term can be written as Erep = Brn, where B and n are positive constants.
The experimental value of the binding energy of an ion is EB = 7�93 eV.

(b) Calculate the value of n, provided that the difference between EB and the Coulomb energy, given above, depends
entirely on Erep.
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3.3 There are three types of strong bonds in solids.

(a) Discuss briefly the theoretical basis and nature of the forces in each case. Give examples.
(b) Explain the concept of hybrid formation and give an example.

3.4 Carbon appears in several crystallographic shapes, the most common being diamond and graphite. The lattice constant
of diamond is a = 0�3567 nm. The graphite structure can be described as a hexagonal lattice with four atoms in the base.
The lattice constants of graphite are a = 0�2461 nm and c = 0�6709 nm. Calculate the density of

(a) diamond
(b) graphite.

3.5 (a) Describe the main features of the free electron model or quantum mechanical model of the electron gas in a metal.
Define the work function and the Fermi level. Explain why the energy levels of the free electrons in a metal are
much higher than expected from the classical point of view.

(b) Define the wavevector and give its relationship to the eigenfunction � of the free electron in one dimension.
(c) Give the kinetic energy of a free electron as a function of the wavevector. Illustrate the function graphically. Is the

curve continuous?

3.6 A hot metal filament emits electrons. The number of electrons emitted per second and unit area of the metal surface
depends on the temperature of the filament and the work function of the metal. The electrons can be absorbed by an anode
and measured as an emission current. The relationship between the saturation current Is and the absolute temperature T
is given by Richardson–Dushman’s law:

Is = constant ×T 2e− �
kBT

where � is the work function of the metal.
A series of measurements on a molybdenum cathode resulted in the following measurements:

Is(�A) 1.31 4.11 12.00 32.90 85.18
T (K): 1500 1550 1600 1650 1700

Determine the work function of Mo graphically and expressed in eV.

3.7 (a) Define the Fermi factor and show graphically how it depends on temperature.
(b) Give the expressions of the Fermi distribution of energies in the electron gas, i.e. the densities of available and

occupied energy states as a function of the electron energy.
(c) Why is the mass of the electron designated m∗ instead of m?
(d) Calculate the total number of valence electrons per unit volume in the metal when the answer in (a) is known.
(e) Give the Fermi energy as a function of ntotal (the total number of valence electrons per unit volume).

3.8 The Fermi energy of copper is known to be 7.04 eV.

(a) What is the maximum velocity of the conduction electrons in copper?
(b) Calculate the average velocity of the conduction electrons.

Assume that the temperature is 0 K and that the free electron model is valid.

3.9 Calculate the change in Fermi energy of sodium when the temperature increases from −30 to 70 �C. Assume that the
free electron model can be applied and that the energy change depends only on the expansion of the crystal.

3.10 Calculate the Fermi energies of Na, Li and Al with the aid of convenient information from a standard table. The valences
of the metals are normal.

3.11 The band theory of solids is based on and represents an improvement of the free electron model.

(a) Describe this improvement.
(b) Is the Kronig–Penney curve continuous? Give a motivation to your answer.
(c) Draw the Kronig–Penney curve, i.e. the electron energies as a function of the wavevector k. Which k values give

energy gaps, i.e. discontinuities in the curve?
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3.12 (a) Define the concepts of unit cell and primitive cell.
(b) Consider a linear crystal of length L, which consists of Ntotal primitive cells. Calculate the lattice constant a. Which

k values are allowed?
(c) What is a Wigner–Seitz cell? How is it constructed? Wigner–Seitz cells are used when Brillouin zones are constructed.

Explain.
(d) Consider a three-dimensional crystal which contains Ntotal atoms. What is the total number of energy states in each

Brillouin zone?
(e) What is the maximum number of electrons that can be accommodated in each Brillouin zone? Motivate your

answer.

3.13 (a) The Brillouin zones in a one-dimensional crystal are shown in Figure 3.32 on page 128 in Chapter 3. The band
theory can be extended to two- and three-dimensional lattices. Why is the reciprocal space such a useful concept in
the general theory of Brillouin zones?

(b) It can be shown that the normal vector of a set of parallel planes (hkl) in r space is

n̂ = dhkl

2�
�ha∗ +kb∗ + lc∗� (1)

The set of parallel planes (hkl) in real space corresponds to a point in reciprocal space, defined by the vector G[hkl]
in reciprocal space:

G�hkl� = ha∗ +kb∗ + lc∗ (2)

Give the size and direction of the lattice vector G[hkl] in reciprocal space in the case of Cartesian coordinates.
(c) Calculate the distance dhkl from the origin in r space to the first parallel plane (hkl) outside the origin.
(d) Consider a cubic crystal lattice �a� = �b� = �c� = a. Determine the values of �a∗� = �b∗� = �c∗� and dhkl in terms of the

lattice constant a.

3.14 The well-known Bragg diffraction condition for constructive interference is

θ θ

dhkl

Plane of diffraction

2dhkl sin � = p	 (1)

or, applied to matter waves of free electrons:

�k = p�ha∗ +kb∗ + lc∗� (2)

(a) Define Laue indices.
(b) Write Equation (2) in terms of Laue indices instead of Miller indices.
(c) In addition to Equation (2), another condition must be fulfilled for constructive interference. Which one?

3.15 Find the plane in the FCC structure that has the maximum atomic density.

3.16 (a) What is the condition for Brillouin zone boundaries?
(b) Introduce the wavelength 	 of the matter wave instead of the wavenumber k in the condition in (a) and give the

physical interpretation of the result.
(c) Describe how the Brillouin zone boundaries can be constructed in k space when the structure of a two- dimensional

(flat) crystal in r space is known.

3.17 Construct the reciprocal lattice, the first and second Brillouin zones of a two-dimensional crystal of a primitive, regular
lattice with the axes a and 2a, respectively. Calculate the ‘areas’ (in k space) of the first and second Brillouin zones.
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3.18 (a) List the two conditions which are used to find the Brillouin zones of a three-dimensional crystal with a given
structure.

(b) Describe the process of finding the first and second Brillouin zones that correspond to a crystal lattice of a simple
cubic structure.

3.19 (a) Determine the first Brillouin zone of a simple cubic lattice.
(b) A simple cubic crystal has N 3

total primitive unit cells. Prove that the number of independent values of the wavevector
k can have within the first Brillouin zone is exactly N 3

total.

3.20 (a) Discuss the number and types of planes which enclose the first Brillouin zone of a BCC crystal.
Hint: Consider the condition for X-ray reflections (page 19 in Chapter 1).

(b) Verify that kmax�100� = 2�/a, kmax �110� = �
√

2/a and kmax �111� = �
√

3/a for the first Brillouin zone of a BCC
crystal lattice.

3.21 (a) Discuss the number and types of planes which enclose the first Brillouin zone of an FCC crystal.
Hint: Consider the conditions for X-ray reflections (page 19 in Chapter 1).

(b) Verify that kmax�100� = 2�/a, kmax �110� = 3�/�a
√

2� and kmax �111� = �
√

3/a for the first Brillouin zone of an
FCC crystal lattice.

3.22 (a) Define the concepts of Fermi sphere and Fermi radius.
(b) Consider a metal. Give the relationship between the Fermi radius, the number of electrons per unit volume and the

number of electrons per metal atom.
Calculate the Fermi radius for a univalent metal with

(c) BCC structure
(d) FCC structure

as a function of the lattice constant a.

3.23 Calculate the shortest distance from the origin in k space to the surface of the first Brillouin zone in

(a) a BCC crystal lattice
(b) an FCC crystal lattice

as a function of the lattice constant a for a univalent metal.

3.24 Calculate the ‘volume’ of the first Brillouin zone of a univalent metal with

(a) SC structure
(b) BCC structure
(c) FCC structure

as a function of the lattice constant a of the crystal.
Hint: Compare the volumes of the primitive cells and not those of the unit cells, which do not correspond to each other.

3.25 (a) Find the minimum ‘distance’ from the origin to a first Brillouin zone surface in a potassium crystal (BCC structure).
Its lattice constant is 0.5225 nm.

(b) What fraction of this ‘distance’ in reciprocal space is located inside the Fermi sphere?

3.26 Lattice defects in a general sense, such as vacancies, interstitials and substitutionals, influence the electronic structure in
both non-metallic and metallic solids.

(a) Two examples are Schottky defects and Frenkel defects. Define these two types of defects.
(b) What is a colour centre? In which type of crystals do colour centres appear? Explain the mechanism behind the

phenomenon.

3.27 Generally, the energy of an alloy crystal depends on many factors, such as size, chemical nature of the atoms and number
of electrons per atom. In some cases the dominant factor seems to be the concentration of valence electrons. Addition
of alloying elements causes a change of the electron concentration.

(a) What is the general rule concerning the structure of the alloy?
(b) What is an intermediate phase? What are the conditions for formation of an intermediate phase?

3.28 Show that the whole Fermi sphere is located inside the first Brillouin zone of copper (FCC). Explain the physical
signification of this statement.
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3.29 Suppose that a piece of pure copper metal is successively alloyed with zinc, i.e. Cu atoms are gradually replaced by Zn
atoms and the number of free electrons increases. When the electron concentration increases, the Fermi sphere expands.

(a) Show that this sphere just touches the first Brillouin zone when the free electron concentration (number of electrons
per atom) equals 1.36 and calculate the concentration of Zn atoms (at-%) in the corresponding alloy.

(b) Show that the Fermi sphere just touches the first Brillouin zone of a BCC lattice when the free electron concentration
reaches the value 1.48.

3.30 Assume that a univalent metal crystallizes into a simple cubic lattice.

(a) Calculate the atom percent of a divalent metal that has to be added to bring the Fermi sphere and the first Brillouin
zone in touch with each other. The free electron model is assumed to be valid.

(b) What fraction of the lowest band of the alloy is occupied by free electrons in this case?

3.31 Characterize a phonon (energy, momentum, statistics, formation and annihilation).

3.32 A photon with the wavelength 500 nm is diffracted in a crystal with refractive index 1.5. The diffraction angle is 29�.
On diffraction, a phonon with the frequency � = 3�0 × 109 Hz is created. Calculate the wavevector of the phonon. The
diffraction is supposed to be regular.
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4.1 Introduction

Democritos in ancient Greece claimed that matter consists of atoms. In the absence of experimental verifications, it took a
long time before this incredible idea was generally accepted in science. At the end of the 17th century, the idea that a gas
consists of atoms or molecules in random motion was presented for the first time. This hypothesis was further developed by
Clausius and especially by Maxwell and Boltzmann about 200 years later, when they presented their kinetic theory of gases,
one of the cornerstones of classical physics.

4.2 Kinetic Theory of Gases

The fundamental postulates of the kinetic theory of gases are:

1. Gas molecules behave like hard elastic spheres.
2. Gas molecules do not attract each other.
3. Gas molecules are in permanent random motion. The higher the temperature, the more violent will be the motion.
4. The space occupied by the molecules is very small compared with the available volume of the gas.

These postulates will be used below in our brief discussion of the kinetic theory of gases and the properties of gases which
can be derived on this basis.

4.2.1 Pressure

Figure 4.1 Model of molecules in a gas.

Consider a gas containing N0 molecules, included in a container of volume V . The gas consists of a great number of molecules,
which are in incessant random motion with high speeds in all directions (Figure 4.1). The molecules collide with each other
and the wall of the container and change directions and sizes of their velocities very frequently.

We assume that the gas is ideal, i.e. the extension of the gas molecules is negligible and the forces between them are zero.
This is a good model if the temperature is far above the condensation temperature of the gas.

As a first rough approximation, we assume that all the molecules have the same velocity. By studying the total momentum of
the gas molecules we can derive a relationship between the pressure of the gas and the velocity of the molecules, independent
of direction.

Consider a particular molecule with the velocity components vx� vy and vz in a cubic container. As the velocity v is constant
for all the molecules independent of direction, we have

v2 = v2
x + v2

y + v2
z (4.1)

All directions are equivalent, which can be expressed as

v2
x = v2

y = v2
z (4.2)

and we obtain

v2 = 3v2
x (4.3)
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mνx
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L

L

Figure 4.2 Momentum of a molecule before and after collision with the yz plane.

When a molecule with mass m collides with the yz plane (Figure 4.2), the net change in momentum before and after the
impact will be mvx − �−mvx� = 2mvx. If we assume that the container is cubic and has a length L, the molecule can traverse
its length in a time L/vx. The time interval between two successive collisions with the yz plane will be 2L/vx and the number
of collisions per unit time will be vx/2L.

According to Newton’s second law, the force f exerted by the molecule on the yz plane equals the net change in momentum
per unit time:

f = 2mvx

vx

2L
= mvx

2

L
(4.4)

The total force F of all the N0 molecules in the cubic container on the surface with area A = L2 is

F = N0f = N0m

L
vx

2 (4.5)

However, as we will see in Section 4.2.2, the molecules in the gas do not have the same velocity. On the contrary, they
are distributed from zero up to very high velocities. If we take this into consideration, the proper force exerted by all the
molecules on the surface A is obtained if we replace the square of the velocity by its mean value:

F = N0m

L
vx

2

The pressure which the molecular collisions exert on the surface A is equal to the force per unit area F/L2, which gives

p = N0m

L3
vx

2 or p = N0m

V
vx

2

Next we introduce mean values into Equation (4.3), i.e. v2 = 3vx
2, and obtain

p = N0m

3V
v2 (4.6)

where
p = pressure of the gas
N0 = number of molecules in the gas
m = mass of a molecule
V = volume of the gas
v2 = mean value of the squared molecular velocities.

Equation (4.6) is generally valid as the pressure does not depend on the shape of the container.
The concept of mean free path is closely related to pressure and collisions between molecules. It is defined as the average

distance between two random collisions of a molecule with other molecules in a gas. Mean free path will be treated in
Section 4.6 in connection with viscosity, thermal conduction and diffusion.
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4.2.2 Thermal Velocity Distribution in a Gas

Maxwell’s Velocity Distribution Law

N (ν )

O2 N2

νH

Figure 4.3 Velocity distribution curves of some gases at T = constant. Reproduced from P. W. Atkin, Atkin’s Physical Chemistry. ©
Oxford University Press.

The velocity of an individual molecule changes continuously owing to collisions with other molecules and with the wall.
Because of the great number of molecules there is, however, a constant statistical distribution of velocities in the gas. The
velocity distribution, independent of velocity direction, is a result of the Maxwell–Boltzmann kinetic theory of gases, derived
at the end of the 19th century. The well-known Maxwell distribution law for the velocities of the molecules in a gas can be
written as

dN = N�v�dv = N0 ×4�

(
m

2�kBT

)3/2

e−
mv2

2
kBT v2dv (4.7)

where
v = velocity of a molecule
dN = number of molecules per unit volume that have velocities in the interval v to v+dv, independent of direction
N0 = total number of molecules per unit volume
m = mass of a molecule
kB = Boltzmann’s constant
T = absolute temperature.

Maxwell’s velocity distribution law has been confirmed by experiments of the type described on page 174. The agreement
between experiment and theory is excellent.

The function is shown in Figures 4.3–4.5. The influence of mass is shown in Figure 4.3. Figure 4.5 shows that the higher
the temperature, the wider will be the distribution curve and the more it will be displaced towards higher velocities.

N (ν)

ν

Most probable velocity

Mean velocity

Root mean square velocity

Figure 4.4 The distribution function N�v� as a function of
the molecular velocity v. The calculated mean velocities are
marked.

N (ν )

T = 300 K

T = 1000 K

T = 2000 K

ν

ν ν + dν

Figure 4.5 Distribution curves at various temperatures. The
number of molecules within the velocity interval marked
increases strongly with decrease in temperature.

The area under part of the curve in Figure 4.5 represents the number of molecules per unit volume which have velocities
within the marked interval v to v +dv, independent of direction. Figure 4.5 shows that it varies strongly with temperature.
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In Figure 4.4, three different velocities are marked: the most probable velocity, the mean velocity and the root mean square
velocity.

The most probable velocity vmp is the velocity which corresponds to the maximum value of N�v�. It is obtained by taking
the derivative of Equation (4.7) with respect to v. The derivative equal to zero gives

vmp =
√

2kBT

m
=
√

2RT

M
(4.8)

where M is the mass of 1 kmol of the gas.
The mean velocity can be calculated from the Maxwell distribution of velocities in a gas:

v =

�∫
0

vN�v� dv

�∫
0

N �v� dv
(4.9)

The result is

v =
√

8kBT

�m
=
√

8RT

�M
(4.10)

The root mean square velocity vrms =
√

v2 can be calculated analogously if we replace the factor v by v2 in the numerator
of Equation (4.9). The calculation gives

vrms = v2 =

�∫
0

v2N �v� dv

�∫
0

N �v� dv
= 3kBT

m
= 3RT

M
(4.11)

and we obtain

vrms =
√

3kBT

m
=
√

3RT

M
(4.12)

Equation (4.11) can be used to calculate the average kinetic energy of the molecules. The average kinetic energy per molecule is

u = mv2

2
= 3

2
kBT (4.13)

where u is the average kinetic energy per molecule.
The kinetic energy U per kmol is

U = NA

mv2

2
= 3

2
RT (4.14)

where NA is Avogadro’s number = the number of molecules per kmol = 6�022×1026 kmol−1.

Experimental Determination of Molecular Velocities in a Gas

The velocity distribution in the gas discussed above can be verified by direct ‘counting’ of the number of molecules in a gas
which have velocities between v and v +dv. One method is illustrated in Figure 4.6.
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Collimated beam
of gas molecules

Velocity-selected
beam of gas molecules

θ
Furnace

Detector

Slit

Rotating disks on a common axis

s

Gas

Slit

Figure 4.6 Equipment for determination of molecular velocities in a gas. Adapted with permission from O. Beckman, B. Kjollerstrom and
T. Sundstrom, Energi Lara.

The gas is kept at a constant temperature in a furnace. Some gas molecules escape through a small hole and pass through
two slits and then a velocity selector consisting of two disks which rotate with known angular frequency �. The disks are
equipped with two slots, displaced relative each other by an angle 	. Molecules can pass through both slots only if their
velocity is

v = s�/	 (4.15)

As the slots have a finite width, the number of transmitted molecules with velocities between v and v + dv is registered
by the detector. By changing either 	 or � the velocity of the transmitted molecules can be varied and the whole velocity
distribution can be obtained. In complete agreement with the theory, it was found that

• Molecules in a gas have velocities which vary in principle between zero and infinity with a maximum number at a certain
velocity.

• The maximum number and the corresponding velocity are functions of temperature.

4.3 Energy Distribution in Particle Systems: Maxwell–Boltzmann Distribution Law

4.3.1 Maxwell–Boltzmann Distribution

In Section 4.2.2 we used Maxwell’s velocity distribution law for molecules in a gas. Boltzmann treated the more general
problem of a large number of particles distributed among a number of different available energy states. This topic will be
discussed in this section for future use in this and later chapters.

Consider a particle system of a fixed volume and temperature T containing N0 identical, but distinguishable, and non-
interacting particles. Their total energy is U . The energy can be distributed among the particles in many different ways. The
energy distribution will be described by specification of the number Ni of the particles which have the energy ui. The problem
is to find the most likely distribution, i.e. to derive Ni as a function of ui.

Suppose that N1 particles have the energy u1, N2 particles have the energy u2� 
 
 
 �Ni particles have the energy ui. This
partition N1� N2� 
 
 
 � Ni represents a so-called macrostate of the system. For the macrostate the following subconditions are
valid:

∑
i

Ni = N0 (4.16)

∑
i

Niui = U (4.17)

Boltzmann assumed that the probability of each partition is proportional to the number of different ways in which the
particular partition can be obtained. Permutations of particles within each energy level produce no new distribution and
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consequently no new macrostate. Only if the number of particles within two or more energy levels is changed is a new
macrostate obtained.

Boltzmann deduced the probability for an arbitrary partition, which is proportional to the total number of distinguishable
different ways to obtain the partition. The equilibrium of the particle system corresponds to the most probable partition, i.e. the
partition which can be obtained in the maximum number of distinguishable different ways. By use of this maximum condition,
he found the equilibrium distribution:

Ni =
N0

e
− u1

kBT + e
− u2

kBT + 
 
 
 + e
− ui

kBT

e
− ui

kBT (4.18)

where
ui = energy of particle i
Ni = number of particles which have the energy ui

N0 = total number of particles
kB = Boltzmann’s constant
T = absolute temperature of the system.

We have assumed that all energy levels are equally probable. If this is not the case, we have to introduce the statistical
weight gi of energy level ui and the Maxwell–Boltzmann distribution law in its general form becomes

Ni =
N0

Z
gie

− ui
kBT (4.19)

where Z is called the partition function, given by

Z = g1e
− u1

kBT +g2e
− u2

kBT + 
 
 
 +gie
− ui

kBT =∑
i

gie
− ui

kBT (4.20)

The fraction fi is defined as the fraction of the N0 particles which has the energy ui:

fi = Ni
N0

= gie
− ui

kBT

g1e
− u1

kBT +g2e
− u2

kBT + 
 
 
 +gie
− ui

kBT

(4.21)

The Maxwell–Boltzmann distribution function can be applied to all sorts of thermal equilibrium distributions. Depending
on the circumstances, ui may be potential energy, kinetic energy or other types of energy.

The distribution is also very useful for calculating average values. In analogy with Equation (4.9) on page 173, we obtain
the average value of the quantity X:

X =
∑

i
Xigie

− ui
kBT

∑
i

gie
− ui

kBT

(4.22)

Some examples are the velocity distribution in a gas, energy distribution in a gas, distribution of vacancies in a solid and
distribution of atoms and molecules in different energy levels. Here we will restrict the discussion to the thermal equilibrium
distribution of velocities and energies in gases.

4.3.2 Thermal Energy Distribution in a Gas

The number of molecules in a gas is so large that the energy distribution can be regarded as continuous rather than discrete.
In this case, integrals instead of sums are involved in the Maxwell–Boltzmann distribution. By replacing Ni by N�u�du and
gi by g�u�du we obtain
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dN = N�u�du = N0

Z
g�u�e

− u
kBT du = N0g�u�e

− u
kBT du

�∫
0

g�u�e
− u

kBT du

(4.23)

where
dN = the number of molecules which have energies between u and u+du
g�u�du = statistical weight within the energy interval u to u+du.

In the present case, u is the kinetic energy of a molecule. By calculations of g�u� and Z, which will be omitted here, it can
be shown that the Maxwell–Boltzmann energy distribution will be

dN = N �u� du = 2�N0

��kBT�
3/2

u
1/2 e

− u
kBT du (4.24)

The distribution N�u� is shown in Figure 4.7 for two different temperatures. The distribution is independent of molecular
mass and consequently the same for all ideal gases.

N (u )

100 K

300 K

u

0 1.0 2.0 3.0 4.0 6.0 7.0 8.05.0 10−2 eV

Figure 4.7 Maxwell–Boltzmann energy distribution in a gas. Reproduced with permission from M. Alonso and E. Finn, Fundamental
University Physics. © Addison-Wesley.

The velocity distribution in an ideal gas can also be derived by use of the Maxwell–Boltzmann distribution function. This
is done in a simple way in Example 4.1 below. The energy distribution and the velocity distributions are related but not
identical.

Example 4.1

Show that Maxwell’s distribution law for the velocities of the molecules in a gas is a special case of the general Maxwell–
Boltzmann distribution law.

The Maxwell–Boltzmann energy distribution is assumed to be known.

Solution:

The energy distribution function can be written as [Equation (4.24)]

N �u� = dN

du
= 2�N0

��kBT�
3/2

u
1/2 e

− u
kBT (1′)
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We want to derive N�v� = dN/dv. The relationship between the two distributions is

dN

dv
= dN

du

du

dv
(2′)

By taking the derivative of u = mv2/2 with respect to v, we obtain

du

dv
= mv (3′)

We insert dN/du [Equation (1′)] and du/dv [Equation (3′)] into Equation (2′):

dN

dv
= 2�N0

��kBT�
3/2

u
1/2 e

− u
kBT mv (4′)

We use the relationship u = mv2/2 and obtain after reduction of Equation (4′)

N �v� = dN

dv
= N0 ×4�

(
m

2�kBT

)3/2
e

−
mv2

2
kBT v2 (5′)

Answer:

Equation (5′) is the same as the Maxwell velocity distribution law [Equation (4.7) on page 172 divided by dv], which had
been derived earlier by Maxwell on the basis of the kinetic theory of gases. Obviously this equation can also be derived from
the Maxwell–Boltzmann distribution law.

Example 4.2

Monoatomic gas(a)

The Maxwell–Boltzmann statistical thermodynamics including the distribution law, derived at the end of the 19th century,
was regarded as one of the most successful and fundamental parts of classical physics. No more important discoveries were
to be expected. Over 100 years later we know that this was completely wrong. The beginning of the 20th century was the
most fruitful and exciting period in the history of physics.

Photon gas(b)

The key to modern physics was quantization, introduced by Max Planck and applied for the first time to the theory of
blackbody radiation (Chapter 2, Section 2.3.1 on page 48).

Consider the Maxwell–Boltzmann distribution law, applied to the energy distribution of the molecules in a gas, and Planck’s
blackbody radiation law as a link between classical and modern physics. Compare the two laws and describe similarities and
dissimilarities between the two energy distributions.
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Solution and Answer:

E (ν)

T2 > T1

T2

T1
hν

(c)

Intensity distribution of blackbody radiation from the inte-
rior of a sphere of temperature T :

E ��� d� = 8��2

c3

h�d�

e
h�

kBT −1

N(u)

u

T2 > T1

T1

T2

(d)

Distribution of the kinetic energies of the molecules in a
gas of temperature T :

N�u�du = 2�N0

��kBT�
3/2

u
1/2 e

− u
kBT du

Similarities
• If the electromagnetic radiation is considered as photons, both distributions deal with energy distribution of particles included

in a given volume.
• Both functions are zero at the energies zero and infinity and have an intermediate maximum.
• The maxima of both curves are displaced towards higher energy values when the temperature T increases.

Dissimilarities
• The gas molecules are classical particles, which obey Boltzmann statistics. The photons are quantum particles which obey

the so-called Bose–Einstein statistics.
• The energy of the molecules is kinetic energy, which varies continuously. The energy of the photons is the total energy. It

is quantized.
• The area under the curve increases with T 4 for blackbody radiation. The area under the gas molecules curve is constant

(= number of molecules).

At small values of the photon energy (h� � kBT ), the quantization of the photon energy makes no sense because the
number of energy levels within an energy range of the magnitude kBT is very large or approximately an energy continuum.

4.4 Gas Laws

4.4.1 General Law of Ideal Gases

A gas phase is characterized by three quantities: pressure, volume and temperature. We want to find a relationship between
them and use Equations (4.6) on page 171 p = N0m

3V
v2 and Equation (4.11) on page 173 v2 = 3RT

M
in combination with the

relationship

M = NAm (4.25)

where

M = mass of 1 kmol of the gas
NA = Avogadro’s number (page 173)
m = mass of a single gas molecule.
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We eliminate v2 with the aid of Equations (4.6), (4.11) and (4.25):

pV = N0m

3
v2 = N0m

3
3RT

M
= N0m

3
3RT

NAm
= N0

NA

RT

The ratio N0/NA equals n, the number of kilomoles of the gas, and we obtain the well-known general law of ideal gases:

pV = nRT (4.26)

where R is the general gas constant. Its value in SI units is 8.314 kJ/kmol K.

Experimental Relationships. Absolute Temperature

p

1/V
0

0

Figure 4.8 Pressure of a gas as a function of its volume.

Experiments on gases were performed as early as at the end of the 17th century. A gas always fills the whole available
volume. It is also easy to measure the pressure and temperature of a gas. The English physicist Boyle varied the volume of
the gas and measured carefully the corresponding pressures while the temperature of the gas was kept constant (Figure 4.8).
He found the relationship

pV = constant Boyle’s law (4.27)

Boyle’s law is valid if the temperature of the gas is constant and far from the condensation temperature.

p

T

−273.16 °C
0

0
273.16 K

Figure 4.9 Pressure of a gas as a function of its temperature. Both the Celsius scale (�C) and the absolute temperature scale (K) are used
in the diagram.

At the end of the 18th century, the French physicist Charles kept the volume of the gas constant, varied its temperature
and measured the corresponding pressures (Figure 4.9). He found that there is a linear relationship between the pressure and
temperature of the gas. In a graphical representation the line seemed to intersect the temperature axis at the same value,
roughly −273�C, for different gases. This has been confirmed by careful and numerous experiments on many gases, for
example hydrogen and nitrogen. The temperature −273 �C was called the absolute zero point and was used as the basis of
the absolute temperature scale.1

Today the absolute temperature scale is defined by the triple-point of water, 273.16 K, i.e. the only temperature when ice,
water and water vapour are in equilibrium with each other, and the absolute zero point = 0 K. The temperature unit of the

1 Usually Celsius temperatures are denoted by t and Kelvin temperatures by T . Unfortunately, this distinction has not been possible everywhere in this book
as time may also be involved; t is then used for time and T for temperature even if it is expressed in degrees Celsius. Hopefully no severe misunderstandings
will appear for this reason.
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absolute temperature scale is called the kelvin; 1 K = 1 �C and 273.16 K is the fixed point of the absolute temperature
scale.

If the absolute temperature scale is used, Charles’s results can be written in a simple and compact form:

p = constant ×T Charles’s law (4.28)

p

p1

p2

V

V1 V 2

T

Figure 4.10 Isotherm of an ideal gas. p1V1 = p2V2 = nRT .

By combination of Equations (4.27) and (4.28), the general gas law can be derived:

pV = nRT (4.26)

It was found to be strictly valid only for ideal gases. In real gases the interaction between the molecules has to be considered.

4.4.2 Interaction Between Molecules in Gases. Lennard-Jones Potential Energy

Dipole–Dipole Interaction

In Chapter 2, Sections 2.6 and 2.7, we have seen in a pure mathematical and abstract way that two atoms may form a stable
molecule. The potential energy of the molecule as a function of the interatomic distance was derived and the dissociation
energy for such a diatomic molecule was found to be of the magnitude of a few electronvolts.

In this section, we will discuss the nature of the acting forces and describe qualitatively and in more physical terms how
the potential energy changes when two molecules in a gas approach each other.

−q 

r

p

+q

Figure 4.11 The electric dipole moment of a dipole is a vector defined as p = qr, where q is the electric charge and r a vector directed
from the negative towards the positive charge.

The interaction between the molecules in a real gas consists of an electric dipole–dipole interaction, which is called the
van der Waals interaction. This topic has been discussed in Chapter 3 on page 101. A molecule is a permanent dipole if the
centre of its orbital electrons does not coincide with the centre of its positive charges (Figure 4.11). The dipole moment is
often zero for symmetry reasons, i.e. the centres of the positive and negative charges coincide.

Hence the electric dipole moments of the molecules are zero in many gases. This is the case in gases such as H2, N2

and O2 and the inert gases. The inert gases consist of monoatomic molecules with filled shells resulting in zero dipole
moment.

Consider two molecules in a gas at an infinite distance r from each other. The forces between the molecules are zero and
we use this state to define the zero level of the potential energy, Ep = 0.

When the two molecules at an infinite distance are brought closer to each other, they will be influenced by electrostatic
forces. Even if a molecule has an average dipole moment equal to zero, it may become a temporary dipole if the vibrations in



Properties of Gases 181

the molecule result in fluctuations of the positions of the positive and negative electrical centres. In the vicinity of a permanent
or temporary dipole the orbitals of other neighbouring molecules become slightly displaced and the molecules become induced
dipoles.

The mutual interaction between different types of dipoles is the origin of the van der Waals forces between the molecules in
a real gas. As has been mentioned in Chapter 3 on page 101, the attractive van der Waals forces are assumed to be inversely
proportional to the seventh power of the distance between the molecules.

When the molecules approach still further, a new type of force appears. When the molecules come so close to each other
that their filled electron shells begin to overlap, very strong short-range repulsive forces appear. In the Lennard-Jones potential
model (page 182), the repulsive forces are supposed to be inversely proportional to the thirteenth power of the distance
between the molecules. When the forces are known it is possible to calculate the total potential energy of the van der Waals
forces as a function of the intermolecular distance.

− +

r F

Figure 4.12 The force F marked in the figure is repulsive and positive. r is also a vector. It is directed from the negative charge towards
the positive charge of the dipole.

The general relationship between force and potential energy is

F = −dEpot

dr
or dEpot = −Fdr (4.29)

which gives

Epot =
Epot∫
0

dEpot =
r∫

�
−Fdr (4.30)

where
F = force acting on one of the molecules
r = distance between the molecules.

Figure 4.12 shows that a repulsive force is positive and an attractive force is negative. The potential energy corresponding
to each of two forces is calculated separately in the box below by applying Equation (4.30).

Forces Between Dipole Molecules and Their Corresponding Potential Energies

Repulsive force: Attractive force:

F r = C1

r13
F a = −C2

r7

Repulsive potential energy: Attractive potential energy:

Er
pot =

r∫
�

− C1

r13
dr = Cr

r12
Ea

pot =
r∫

�
−
(

−C2

r7

)
dr = −Ca

r6

The total potential energy of the molecules is equal to the algebraic sum of the repulsive and attractive potential energies.
This relationship can be expressed as
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Epot = 4Ee

[( r0

r

)12 −
( r0

r

)6
]

(4.31)

where
Epot = total potential energy
Ee = depth of potential well
r = intermolecular distance
r0 = the r value when Epot = 0.

Equation (4.31) is the Lennard-Jones potential energy.
According to Equation (4.29), the force is the negative derivative of the potential energy. This will be kept in mind when

we consider and compare Figure 4.14a and b.
At small r values, the strong repulsive, positive force dominates over the attractive, negative force and results in a strong

repulsive net force (Figure 4.14a) and a very steep potential curve (Figure 4.14b). Much energy is required to reduce the
distance between the molecules.

At the equilibrium distance re, the resulting force between the two molecules is zero, which corresponds to a minimum of
the potential energy. The net force F can be calculated with the aid of the potential energy in Equation (4.31):

F = −dEpot

dr
= −4Ee

(
12r0

12

r13
− 6r0

6

r7

)
(4.32)

The minimum condition F = 0 gives the relationship re = r0
6
√

2 between re and r0.
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Figure 4.13 Lennard-Jones potential for some common
molecules without permanent electric dipole moments.
Reproduced with permission from W. J. Moore, Physical
Chemistry, 5th edn. © Pearson Education.
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Figure 4.14 (a) The force between two molecules as a function of the
intermolecular distance.
(b) Potential energy of dipole–dipole interaction between molecules as a
function of the intermolecular distance. Reproduced with permission from
W. J. Moore, Physical Chemistry, 5th edn. © Pearson Education.

When r increases beyond re, the net force becomes attractive and negative, as the attractive force dominates over the
repulsive force. The attractive force passes through a minimum (maximum attraction force) at a certain r value and approaches
zero at infinity (Figure 4.14a). The corresponding potential energy increases slowly and becomes zero at infinity (Figure 4.14b).
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The interaction between molecular dipoles is very reminiscent of the interaction between atoms and molecule formation,
which has been treated in Chapter 2, Section 2.6. A comparison between the energy scales in Figure 2.35 in Chapter 2 on page
74 and Figure 4.13 shows that the potential energy is much smaller for the van der Waals interaction than for the interaction
between atoms in molecules. The van der Waals forces are very weak.

4.4.3 Laws of Real Gases. Van der Waals Equation

Law of Real Gases Based on Lennard-Jones Potential Energy

The Lennard-Jones potential can be used to derive a gas law for real gases:

p = nRT

V

[
1+B �T�

n

V
+ 
 
 


]
(4.33a)

where B�T� can be calculated with the aid of statistical mechanics. The result is

B �T� = 2�N0

�∫
0

[
1− e− Epot �r�

kBT

]
r2dr (4.33b)

where
N0 = number of gas molecules in volume V
Epot = Lennard-Jones potential energy [Equation (4.31)].

Equation (4.33a) has the advantage of being based on an analysis of the nature of the forces between the molecules.
However, it is not so easy to handle and it is less used than the simpler and well-established empirical relationship suggested
by van der Waals on the basis of qualitative arguments.

Van der Waals Equation for Real Gases

The general gas law is not valid for nonideal gases. It must be replaced by some other relationship between p, V and T . Many
attempts have been made to find an adequate model. The simplest and most frequently used equation was suggested by van
der Waals in 1873:

(
p+ n2a

V 2

)
�V −nb� = nRT (4.34)

where
a, b = two constants, specific for each type of gas
n = number of kilomoles of the gas.

The term n2a/V 2 is introduced in order to take the influence of the attraction forces between the molecules into consideration.
The pressure p has been derived by discussing the collisions between a wall and the molecules in the absence of intermolecular
forces (Figure 4.15). If this interaction is taken into consideration, the pressure at the wall will no longer be the same as that
in the interior of the gas. Owing to attractive forces between the molecules there is a resulting force acting on molecules close
to the wall which reduces the pressure. The true pressure inside the gas is higher and a positive correction term has to be
added.

The smaller the volume V is, the closer the molecules will be to each other and the stronger the intermolecular forces
will be. The term nb is a correction due to the volume of the molecules, which no longer can be neglected. Two molecules
cannot come closer to each other than the distance 2r if we assume that the molecules are spheres with radius r. Each pair
of molecules results in an excluded volume equal to 4� �2r�3/3. Hence the excluded volume per molecule is 4 × 4�r3/3
(Figure 4.16). The total excluded volume will be four times the sum of the molecular volumes.

The van der Waals equation can be visualized by a p–V diagram with the absolute temperature as a parameter. This is done
in Figure 4.17.
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Figure 4.15 Intermolecular forces on some molecules inside a gas
and close to the wall. Reproduced with permission from W. J. Moore,
Physical Chemistry, 5th edn. © Pearson Education.

Excluded volume

3
π(2r )34

2r

Figure 4.16 Excluded volume due to molecule size.

At high temperatures the isotherm approaches the appearance of a branch of a hyperbola and the general gas law may be
approximately valid. The lower the temperature, the more extensive will be the deviations from Boyle’s law.

At lower temperatures, for example T4, the isotherm contains a horizontal part, which corresponds to the condensation
process. Within this region gas and condensed liquid exist in equilibrium with each other and the van der Waals equation has
no physical relevance. The higher the temperature, the shorter will be the horizontal line. Finally, the critical point (p∗�V ∗� T ∗)
is reached (Figure 4.17). The critical temperature T ∗ is the highest temperature at which it is possible to condense the gas into
a liquid. At the critical point there is no difference between gas and liquid.

Table 4.1 shows the values of a and b for some common gases. The constants are based on experimental data.

Table 4.1 Experimental values of constants a and b in the van
der Waals equation.

Type of gas a
(N m4/kmol2)

b
(m2/kmol)

He 3�4×103 24×10−3

H2 24�7×103 26×10−3

N2 140×103 39×10−3

O2 137×103 32×10−3

H2O 552×103 30×10−3

The van der Waals equation [Equation (4.34)] describes the conditions of the gas very well in most cases.

p

Critical point

Liquid L G

p*

L + G

L                                        G 

L + G

V *

T1

T2

T3 = T *

T4 V

G Gas

Figure 4.17 Isotherms of a van der Waals gas. Reproduced with permission from O. Beckman.
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Example 4.3

If the forces between the molecules in a real gas are unknown, the most general equation of state can be expressed as a power
series development of the pressure p as a function of n/V :

p = nRT

V

[
1+B �T�

n

V
+C �T�

( n

V

)2

 
 


]

where the so-called virial coefficients B and C are specific for each gas and functions of temperature only. B�T� and C�T�
are determined from experimental data.

(a) Transform the van der Waals empirical equation into such a power series and identify the virial coefficients B�T� and
C�T� as functions of a, b and T .

(b) Find the condition for the minimum deviation of the gas from the ideal gas law.

Solution:

The van der Waals equation [Equation (4.34)] can be written as

p = nRT

V

(
1− nb

V

) −a
( n

V

)2
(1′)

Series development of the first term on the right-hand side is allowed because nb<<V . Rearrangement of the second term
and series development of the first term gives

p = nRT

V

[
1+ nb

V
+
(

nb

V

)2

+ 
 
 


]
− an

RTV

nRT

V
(2′)

Equation (2′) is compared with the equation given in the text:

p = nRT

V

[
1+B �T�

n

V
+C �T�

( n

V

)2

 
 


]
(3′)

Identification of terms gives

B �T� = b− a

RT
and C �T� = b2

Answer:

(a) The virial coefficients are B �T� = b− a

RT
and C �T� = b2.

(b) Minimum deviation from an ideal gas behavior is obtained if B�T� = 0, i.e. at the so-called Boyle temperature, TBoyle =
a/bR.

4.5 Heat Capacity

The internal energy U of a system of molecules is defined as the sum of the kinetic energy, vibrational energy, rotational
energy and potential energy of all the molecules:

U = Ekin +Evibr +Erot +Epot (4.35)

This concept of internal energy, which can be applied on gas molecules, is very useful when the heat capacity of a gas is to
be derived.
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4.5.1 Heat Capacities of Ideal Monoatomic Gases

Internal Energy

Consider 1 kmol of a monoatomic gas, which contains NA molecules, where NA is Avogadro’s number = 6�022×1026 kmol−1.
In the case of an ideal monoatomic gas, the potential energy is constant in the absence of forces between the atoms. We
choose the value of the potential energy equal to zero. As atoms have neither vibrational nor rotational energies, the only
internal energy is the kinetic energy:

U = NA

mv2

2
(4.36)

Equation (4.6) on page 171 can be applied:

pV = NAm

3
v2 = 2

3

(
NA

mv2

2

)
(4.37)

If we combine Equations (4.36) and (4.37) with the general gas law, applied to 1 kmol (n = 1), we obtain

pV = 2
3

(
NA

mv2

2

)
= 2

3
U = 1×RT

which gives

U = 3
RT

2
(4.38)

in agreement with Equation (4.14) on page 173. Equation (4.13) on page 173 gives the mean kinetic energy per atom:

u = mv2

2
= 3

kBT

2
(4.39)

The same relationship can be obtained by dividing Equation (4.38) by Avogadro’s number NA and use of the relationship
kB = R/NA.

The internal energy U of a gas depends on its number of degrees of freedom. A monoatomic gas has three degrees of
freedom, i.e. the molecules can move in the x, y and z directions. For symmetry reasons, each of them has the internal energy
RT /2. From Equation (4.38) we can conclude that

• The internal energy per kmol and degree of freedom = 1/2RT .

Heat Capacity

The first law of thermodynamics can be written as

Q = U +W (4.40)

where
Q = heat absorbed by the system
U = increase in the internal energy of the system
W = external work done by the system.

The heat capacity per kilomol CV of a gas at constant volume is defined as

CV =
(

dQ

dT

)
V

(4.41)
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If the volume is constant, no external work is done and we obtain by combining Equations (4.38), (4.40) and (4.41).

CV =
(

dQ

dT

)
V

= dU

dT
= 3

R

2
(4.42)

The heat capacity per kilomol of a gas at constant pressure Cp is defined analogously as

Cp =
(

dQ

dT

)
p

(4.43)

In this case external work is done because the volume changes. It is equal to pdV . For an ideal gas, this work can be obtained
by differentiating the general gas law. As dp = 0 we obtain

dW = d�pV� = pdV +Vdp = pdV = RdT (4.44)

By combining Equations (4.38), (4.40), (4.43) and (4.44), we obtain

Cp =
(

dQ

dT

)
p

= dU

dT
+ dW

dT
= 3

R

2
+R = 5

R

2
(4.45)

or, in general terms,

Cp = CV +R (4.46)

Measurements of heat capacities of inert gases show excellent agreement between experiment and theory (Table 4.2).

Table 4.2 Heat capacity of He as a
function of temperature.

T (K) No. of degrees
of freedom

CV

20 3 1�5R
300 3 1�5R
600 3 1�5R

4000 3 1�5R

4.5.2 Heat Capacities of Diatomic Gases

In addition to kinetic energy, i.e. translational motion in the x, y and z directions, diatomic molecules also have other modes
of motion.

Rotational motions around three perpendicular axes are possible in principle. However, for diatomic molecules the moment
of inertia I is zero in the axial direction and the energy associated with rotation around this axis is zero. Hence only two
rotational directions remain.

The vibrational energy of a diatomic molecule consists of kinetic energy and potential energy of the nuclei (Chapter 2,
pages 80–81).

The relationship Cp = CV +R holds strictly for both ideal monoatomic and diatomic gases. Hence the ratio Cp/CV can be
written as

Cp

CV

= CV +R

CV

(4.47)

The heat capacity at constant volume equals the number of degrees of freedom times R/2. The maximum number of degrees
of freedom is 3 for translation, 2 for rotation and 2 for vibration, or maximum 7 in all. However, as we shall see below, not
all the degrees of freedom are normally developed.
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Heat Capacities of Diatomic Gases as a Function of Temperature

The variation of the heat capacities of diatomic molecules with temperature can be explained in terms of the kinetic theory of
gases and quantum mechanics. The internal energy of a diatomic molecule can be written as

U = Ekin +Erot +Evibr (4.48)

Each of these quantities is a function of temperature. As before, we consider 1 kmol of the gas, i.e. NA molecules.

Kinetic Energy and Its Contribution to the Heat Capacity
The kinetic motion of the diatomic molcules in the gas follows exactly the same law as monoatomic molecules [Equation (4.38)].

• The kinetic energy of the NA molecules is a continuous function of temperature. The energy distribution of the molecules
follows the Maxwell–Boltzmann distribution law and the average energy has been calculated as [Equation (4.38) on page 186]

U = 3
RT

2
(4.38)

which gives CV = 3R/2. This value is valid at all temperatures except in the vicinity of the absolute zero point. At T = 0
there is no translation motion at all in a diatomic gas.

Rotational Energy and Its Contribution to the Heat Capacity
In order to calculate the internal rotational energy, we have to take into consideration that the rotational energy is quantized.
The population of molecules in the different energy levels is a function of temperature and follows the Maxwell–Boltzmann
distribution law (page 175):

Ni =
N0

Z
gie

− ui
kBT (4.19)

where
ui = energy of particle i
Ni = number of particles which have the energy ui

N0 = total number of particles
Z = the partition function (Equation (4.20), page 175)
kB = Boltzmann’s constant.

If we apply Equation (4.19) to the rotational energy levels of NA molecules and assume that the levels are equally probable
(gi = 1), we obtain

NJ = NA

Z
e

− Erot
kBT (4.49)

where NA/Z is a constant. NJ represents the number of molecules which have the rotational energy Erot and correspond to a
particular rotational quantum number J according to Equation (2.64) in Chapter 2 on page 78.

Erot = hc×BJ �J +1� (4.50)

Hence Equation (4.49) can be written as

NJ = NA

Z
e

− hc×BJ�J+1�

kBT (4.51)
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The energy levels are shown in Figure 2.41 on page 77 in Chapter 2 and here in Figure 4.18.

hc × F (J )
J = 5

0

J = 4

J = 3

J = 2

J = 1
J = 0

Figure 4.18 Rotational energy levels of a diatomic molecule.

• At very low temperatures, i.e. when kBT � hc ×BJ �J +1�, very few molecules are excited to higher rotational energy
levels, even for the lowest J values. The reason for this is that all NJ values in Equation (4.51) are approximately zero because
the exponential factor is approximately zero (e−� = 0). In this case, practically all molecules are in the lowest energy level
J = 0 and do not rotate at all. Their contributions to the heat capacity are close to zero.

• When the temperature increases, the number of excited molecules increases gradually and these molecules begin to
contribute to the heat capacity. At a certain temperature T1 the contribution increases rapidly until practically all molecules
are excited to higher rotational energy states The rotation is fully developed for all temperatures > T1 and contribute to the
molar heat capacity by R (2 times R/2).

Figure 4.21 on page 191 shows the contribution of rotation to the heat capacity at various temperatures.

Vibrational Energy and Its Contribution to the Heat Capacity

Evibr ν

5
4
3
2
1
0

Figure 4.19 Vibrational energy levels in a potential well of a diatomic molecule (compare Chapter 2).

Just like the rotational energy levels, the vibrational energy levels of diatomic molecules are quantized and the distribution
of molecules on different energy levels is found by the Maxwell–Boltzmann distribution law. In analogy with Equation (4.49),
we obtain

Nv = NA

Z
e

− Evibr
kBT (4.52)

where NA/Z is a constant and Nv represents the number of molecules which have the vibrational energy Evibr and correspond
to a particular vibrational quantum number v.
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Figure 4.20 Sketch of the energy levels of a diatomic molecule with simultaneous rotation and vibration.

According to Equation (2.76) on page 81 we have

Evibr = hc×�e �v + 1/2� (4.53)

Hence Equation (4.52) can be written as

Nv = NA

Z
e

− hc×�e�v+1/2�

kBT (4.54)

The vibrational energy levels, are shown by Figure 2.43 on page 80 and by Figure 4.19 here. Figure 4.20 shows schematically
the added energy levels of simultaneous rotational and vibrational motion.

• At low and medium or even rather high temperatures, i.e. kBT << hc × �e �v + 1/2�, very few molecules are excited to
higher vibrational energy levels, even for the lowest v values. The reason for this is that all Nv values in Equation (4.52) are
approximately zero because the exponential factor is approximately zero (e−� = 0). In this case, practically all molecules
are in the lowest energy level v = 0 and their vibrational energies are not zero but constant. Their contributions to the heat
capacitivity are close to zero.

• When the temperature increases, the number of excited molecules increases gradually and these molecules begin to contribute
to the heat capacitivity. At a certain temperature T2 the contribution increases rapidly until practically all molecules are
excited to higher vibrational energy states. The vibration is fully developed for all temperatures > T2 and contribute to the
molar heat capacity by R (2 times R/2).

Figure 4.21 shows the contribution of vibration to the heat capacity at various temperatures.

Temperature Depencence of Heat Capacities of Diatomic Gases
The number of degrees of freedom of diatomic gases depends on the temperature of the gas. As an example, the
number of degrees of freedom of H2 as a function of temperature, obtained from measurement of CV, are listed in
Table 4.3.

• At extremely low temperatures, the rotational and vibrational motions are not developed and only three degrees of freedom
are active.

• At room temperature and temperatures of several hundred degrees Celsius, the rotational motion is developed in hydrogen
while the vibrational motion is still ‘frozen’. The number of active degrees of freedom is then 3+2 = 5.

• At very high temperatures, the vibrational motion is also developed and the number of active degrees of freedom
becomes 7.
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Table 4.3 Degrees of freedom of H2 as a
function of temperature.

T (K) Active Number of
degrees of freedom

CV

20 3 1.5R
300 5 2.5R
600 5 2.5R
4000 7 3.5R

The same is true for other gases with the restriction that the temperatures at which rotational and vibrational motion of the
molecules develop are specific for each gas. The most common gases, such as N2 and O2, have five degrees of freedom at
room temperature. Hence we normally have for diatomic gases

CV = 5
R

2
(4.55)

Cp and CV can be determined experimentally. The results agree well with the theory given above. The Cp/CV ratios for
monoatomic and diatomic molecules are given in Table 4.4.

Table 4.4 Cp/CV for monoatomic and diatomic gases.

Type of gas CV Cp/CV Remarks

Monoatomic 1.5R 5/3 = 1�67 All temperatures
Diatomic 1.5R 5/3 = 1�67 At very low temperatures
Diatomic 2.5R 7/5 = 1�40 At medium temperatures

(50 K < T < 1000 K for most
gases)

Diatomic 3.5R 9/7 = 1�29 At very high temperatures

Figure 4.21 shows the contributions to the heat capacity of the gas of simultaneous translation, rotation and vibration of the
diatomic molecules at various temperatures.

The reason why the vibrational degrees of freedom are ‘frozen’ at much higher temperatures than the rotational ones is that
Evibr is much larger than Erot. This is shown in Figure 4.20. Consequently, T2 >> T1 as shown in Figure 4.21.

C V

3.5 R

Vibrational contribution
2.5 R

Rotational contribution
1.5 R

Translational
contribution

T

0 T1 T2

0

Figure 4.21 Sketch of CV of a diatomic molecule as a function of temperature T .
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4.5.3 Heat Capacities of Polyatomic Gases

Molecules with more than two atoms have many more degrees of freedom due to several different rotational and vibrational
modes. Consequently, the Cp/CV ratios of polyatomic molecules have even lower values than those given in Table 4.4. It is
difficult to predict the values of Cp/CV or use the model for conclusions concerning the pattern of motion of the molecules.

Even if the pattern of motion is complicated and varies with temperature, the relationship Cp = CV +R is always strictly
valid.

4.6 Mean Free Path

The random motion of the molecules in a gas can indirectly be observed by the study of the so-called Brownian motion under
a microscope, i.e. the random motion of small, visible particles in liquids or gases. In analogy with the discussion of the van
der Waals equation, we will assume that the gas molecules have a finite extension.

If smoke is enclosed in a transparent box and illuminated from the side with laser light, the irregular motion of the smoke
particles can be observed using a microscope. Their motion reveals indirectly the random motion of the gas molecules.

d r

Figure 4.22 Collisions between molecules.

The gas molecules travel in a zigzag manner owing to collisions with each other and the walls of the container. The average
distance between two successive collisions is called the mean free path, l. To find the mean free path we will examine the
collisions between the molecules. Let the radius of each molecule be r . Collisions occur when the distance d between two
molecules is ≤2r (Figure 4.22).

L

4πr 
2

Figure 4.23 The zigzag paths have been added, independent of direction, to a straight tube. It makes no difference for the resultant value
of the mean free path.

Consider one selected molecule with radius 2r and treat all the others as stationary points with no extension (Figure 4.23).
When the selected molecule travels a zigzag path of total length L, it sweeps over a volume equal to L×4�r2 and is exposed
to x collisions within this volume. If the number of molecules per volume unit is N , we obtain two expressions for the number
of molecules within the volume

x = L×4�r2N

According to the definition of mean free path, the average distance l between two collisions is

l = L

x
= 1

4�r2N
(4.56)
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If the motion of all the molecules is taken into account, a more adequate calculation shows that the number of collisions
within the volume 4�r2L becomes x

√
2 instead of x. Hence the average path between two collisions will decrease by a factor

of
√

2 and the expression for the mean free path will be

l = 1

4
√

2�r2N
(4.57)

where

l = mean free path
N = number of molecules per unit volume
r = radius of the atom or molecule.
Some examples of the mean free paths of gases are given in Table 4.5.

Table 4.5 Mean free path at
STP of some common gases.

Gas l (m)

H2 112×10−9

N2 60×10−9

O2 65×10−9

Ar 64×10−9

The mean free path can alternatively be expressed as a function of pressure p instead of molecule density N . The general
gas law pV = nRT gives the number of kilomoles per unit volume. The number of molecules per unit volume is obtained by
multiplying n/V (the number of kilomoles per unit volume) by Avogadro’s number, NA = 6�022×1026 kmol−1:

N = n

V
NA = p

RT
NA (4.58)

This expression for N is introduced into Equation (4.57), which gives

l = RT

4
√

2�r2pNA

(4.59)

The mean free path in a gas is an important quantity when transport phenomena in gases are studied. It will be used later
when we discuss viscosity, thermal conduction and diffusion in gases.

Example 4.4

The densities of all gases decrease with increasing altitude above sea level. With decreasing density the collisions in a gas
become more and more rare and the mean free path becomes longer and longer. The critical height zcr is defined as the height
above sea level where the density of the gas is so low that the fraction 1/e of the molecules moving upwards experience no
collisions with other molecules. Hence these molecules are able to leave Earth if they have sufficient kinetic energy. The
region z > zcr is called the exosphere.

At high altitudes, gases dissociate into atoms owing to the ultraviolet radiation emitted by the Sun. The critical level zcr for
atomic oxygen is ∼54 km and that for atomic hydrogen is ∼850 km.

The average temperature of the upper atmosphere as a function of altitude is shown in the figure (a). It can be seen that the
temperature in the upper atmosphere is fairly constant at a given solar activity. The figure (b) shows the temperature variation
over the equator at the exospheric level as a function of local time.

Hydrogen appear in the upper atmosphere as hydrogen atoms. They originate from molecules of water vapour and methane
which are dissociated by the ultraviolet radiation from the Sun.

Discuss whether the Earth’s atmosphere may contain hydrogen permanently or not, on the basis of reasonable approximations,
simple calculations, known facts and the information given above.
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Reproduced with permission from J. Houghton, The Physics of Atmospheres. © Cambridge University Press.

Solution:

The atmosphere of the Earth at sea level consists of approximately 21% O2, 78% N2 and 1% other gases. In the upper
atmosphere at the critical level zcr, O atoms are present in equilibrium with O2 molecules and indirectly with the O2 molecules
at sea level.

We will initially calculate the root mean square (rms) velocities of O and H atoms at their zcr levels at two temperatures,
1000 K and an upper temperature, which corresponds to very high solar activity and a maximum of the exospheric temperature
during the day, which is roughly at least 2000 K.

A comparison between the rms velocities of the two types of molecules and the escape velocity may result in an answer to
the above question.

Escape Velocity
In the absence of collisions with other atoms, the escape velocity from the Earth of an atom can be calculated.

Rearth + zcr

Rearth

(c)

The kinetic energy of the atom must exceed or at least be equal to the potential graviational energy of the atom with
mass m:

mv2
esc

2
= GmMEarth

REarth + zcr

(1′)

where G is the general gravitation constant and MEarth and REarth are the mass and radius of the Earth, respectively.
At sea level, we have the relationship

mg = GmMEarth

REarth
2 (2′)
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Equations (1′) and (2′) gives the escape velocity, which is independent of the atomic mass:

vesc =
√

2gREarth
2

REarth + zcr

(3′)

Root Mean Square (RMS) Velocity
The rms velocity of the atoms in a gas can be calculated from Equation (4.12) on page 173:

√
v2 =

√
3kBT

m
(4′)

where the Bolzmann constant kB = 1�38×10−23 J/K.

Results of Calculations and Discussion
The lower and the upper atmosphere are in equilibrium with each other. Consequently, oxygen atoms must be present in
the upper atmosphere as the lower atmosphere contains 21% O2 at sea level. Oxygen is used to check the results of our
calculations. They are given in the table below.

Atom M
(kg)

zcr

(km)
vesc

(km/s)
at zcr

RMS velocity
at T = 1000 K
(km/s)

RMS velocity
at T = 2000 K
(km/s)

O 16 54 11�1 1�3 1�8
H 1 850 10�5 5�0 7�0

For O atoms at T = 1000 K, the escape velocity is 11�1/1�3 ≈ 8�5 times larger than the rms velocity. The Maxwell velocity
distribution curve in the figure (a) shows that the fraction of atoms with such velocities is practically zero. At T = 2000 K,
roughly six times the rms velocity is required for escape. The figure shows that the fraction of atoms with this velocity is
small. Hence very few oxygen atoms escape from the Earth and oxygen is a part of its atmosphere.

N (v ) Oxygen
1000 K

2000 K

(d) 11 km/s

ν

N (v ) Hydrogen
1000 K 

2000 K

(e)
10.5 km/s

ν

For H atoms at T = 1000 K the escape velocity is roughly twice the rms velocity. At T = 2000 K only 10�5/7 = 1�5 times
the rms velocity is required for escape. The Maxwell velocity distribution curve [figure (b)] shows that in both cases there
is a considerable fraction of H atoms which fulfils this requirement. When the high-speed H atoms escape, a new velocity
distribution is established and new high-speed H atoms escape and so on.

Hence hydrogen atoms escape from Earth and hydrogen is not a part of its atmosphere.

Answer:

The Earth’s atmosphere does not contain hydrogen because H atoms in the upper atmosphere escape.
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4.7 Viscosity

Viscosity, which also is called internal friction, is a measure of the frictional resistance which appears between layers of fluid,
which move with different velocities relative to each other. The theory given below is valid provided that the flow is laminar
and not turbulent.

y

 ν + dν

 ν

 

dy

Figure 4.24 Laminar fluid flow with a constant velocity gradient.

Consider a fluid which flows along a stationary plane surface at rest. The fluid layer close to the plate is stagnant while
higher layers move with linearly increasing velocities parallel to the plate (Figure 4.24).

Some of the molecules in a layer, which move with velocity v, diffuse into the next layer, which moves with velocity
v+dv, and retard the fluid flow there. The retardation is equivalent to a frictional force, acting in the opposite direction to the
velocity on the upper layer at the interface between the two layers. The frictional force is proportional to the interface area A
and the velocity gradient dv/dy:

F = −�A
dv

dy
(4.60)

where � is the dynamic coefficient of viscosity. The higher the value of �, the more viscous the fluid will be.
The aim of this section is to derive an expression for � as a function of atomistic quantities and to find the temperature

dependence of �. For this purpose we will use the concept of mean free path in a gas.

4.7.1 Kinetic Theory of Viscosity in Gases

In order to find the influence of temperature on the viscosity coefficient, we will use one of the concepts of the kinetic theory
of gases, i.e. the mean free path.

We consider two parallel layers in a stream line gas flow (Figure 4.25). The flow is laminar but the random kinetic motion in
the gas is always present. We assume that the mean free path l represents the average distance for the jumps of the molecules. When
a molecule jumps from a layer with velocity v to the adjacent layer with velocity v +dv the momentum mldv/dy is transferred.

The number of molecules which cross the area A per unit time on their way upwards is NvkinA/6, where N is the number
of molecules per unit volume in the gas and vkin

1 is the average velocity of the molecules in their random kinetic motion at
the cross-sectional area A [Equation (4.10) on page 173]. The same number of molecules cross the area A per unit time on
their way downwards. We assume that the Maxwell distribution law is valid in spite of the mass flow.

y

ν + l
dy
dν

ν

l

Figure 4.25 Laminar flow.

1 The designation may seem odd – all velocities are kinetic. The subscript ‘kin’ refers to the disordered thermal motion of particles (or molecules or phonons)
and is introduced to distinguish this velocity from v, the velocity of the gas layer.
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The momentum transported across the area A per unit time can be written as

F = ml
dv

dy
×
[

N v kinA

6
− N�−v kin�A

6

]
= Nml v kinA

3
dv

dy
Momentum transfer Number of jumping molecules
per jump of molecule across the area A per unit time

where m is the mass of a gas molecule. The momentum transfer across the area A per unit time is equal to the frictional force
on the area A. The expression above in combination with Equation (4.60) gives

F

A
= −�

dv

dy
= −1

3
Nm vkinl

dv

dy
(4.61)

where v is the velocity of the gas at position y.
Equation (4.61) gives

� =  vkinl

3
(4.62)

where  = Nm is the density of the gas. If we introduce the value of l [Equation (4.57) on page 193] into Equation (4.62), we
obtain

� = m vkin

12
√

2 �r2
(4.63)

Temperature Dependence of Viscosity of Gases

Next we introduce the expression for vkin [Equation (4.10) on page 173] into Equation (4.63). The result is

� = m
√

RT

6�r2
√

�M
(4.64)

where
� = viscosity coefficient of the gas
m = mass of a gas molecule
T = absolute temperature
r = radius of a gas molecule
M = mass of 1 kmol of the gas.

If we introduce the relationship m = M/NA, the viscosity coefficient can be written as

� = constant × 1
r2

√
TM (4.65)

The viscosity coefficients at STP of some common gases are given in Table 4.6.

Table 4.6 Viscosity coefficients of
some gases at STP.

Gas � �kg/ms�

H2 8�4×10−6

N2 16�7×10−6

O2 18�1×10−6

CO2 13�8×10−6

Ar 21�0×10−6
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4.8 Thermal Conduction

We have seen that gas viscosity can be explained in terms of transport of momentum under the influence of a momentum
(velocity) gradient. Analogously, thermal conduction depends on transport of kinetic energy under the influence of a temperature
gradient.

The amount of heat transported across an area A per unit time is proportional to the area and to the temperature gradient,
perpendicular to the area:

dQ

dt
= −�A

dT

dy
(4.66)

where
dQ/dt = heat flow
� = thermal conductivity
A = cross-sectional area
dT/dy = temperature gradient.

4.8.1 Kinetic Theory of Thermal Conduction in Gases

The mechanism of transport of heat is analogous to that of momentum. The difference is that kinetic energy is transported in
the case of thermal conduction instead of momentum in the case of viscosity.

The kinetic energy transported across the area A per unit time can be written as

dQ

dt
= mcvl

dT

dy
×
[

NvkinA

6
− N�−vkin�A

6

]
= Nmcvl vkinA

3
dT

dy
Transfer of kinetic Number of jumping molecules
energy per jump across the area A per unit time
of molecule

where
m = mass of a gas molecule
cV = heat capacitivity (J/kg K)
T = temperature at cross-sectional area A.
l = mean free path of the gas molecules at temperature T
N = number of gas molecules per unit volume
vkin = average velocity of the molecules in their random kinetic motion at the cross-sectional area A (pages 196 and 173).

The transfer of kinetic energy across the area A per unit time is equal to the heat flow through the area A. The expression
above in combination with Equation (4.66) gives the heat flux:

1
A

dQ

dt
= −�

dT

dy
= −1

3
NmcVvkinl

dT

dy
(4.67)

As Nm is equal to the density , Equation (4.67) gives

� = cv vkinl

3
(4.68)

Equation (4.68) in combination with Equation (4.62) gives

� = �cV (4.69)

Instead of cV, we want to introduce the molar heat capacity CV = 3R/2 into Equation (4.69). We use the relationship CV = McV

and obtain

cV = CV

M
= 3R

2M
(4.70)
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Hence Equation (4.69) can alternatively be written as

� = �
3R

2M
(4.71)

where
� = viscosity coefficient of the gas
M = mass of 1 kmol of the gas.

Temperature Dependence of Thermal Conductivity in Gases

From Equations (4.65) and (4.71), we can conclude that the rate of thermal conduction varies with T , M and r according to
the relationship

� = constant × 1
r2

√
T

M
(4.72)

The thermal conductivity at STP of some common gases are given in Table 4.7.

Table 4.7 Coefficients of thermal
conductivity of some gases at STP.

Gas � (J/ms K)

H2 170×10−3

N2 24�3×10−3

O2 24�6×10−3

CO2 14�4×10−3

Ar 16�2×10−3

4.9 Diffusion

If a gas volume with a uniform pressure is included in a space capsule, external influences on the gas molecules, i.e. pressure
differences and gravitation, are completely eliminated. In this case the random kinetic motion of the gas molecules results in
no net motion.

In other cases, the random kinetic motion of the molecules may be overlapped by a systematic motion in a particular
direction. This phenomenon, which is called diffusion, results in mass transport. The diffusion flux of molecules is in most
cases caused by a concentration difference in the direction of the flux.

As an example we will study a pure gas when radioactive tracer molecules of the same kind are added (page 208). The
tracer molecules will diffuse into the gas. The diffusion process does not stop until the concentration gradient is zero and the
tracer molecules are uniformly distributed.

The mass transport of tracer molecules per unit time across a surface is proportional to the concentration gradient and
the cross-sectional area. The molecules always move from higher to lower concentration, which gives the minus sign in
Equation (4.73).

dm

dt
= −DA

dc

dy
Fick’s first law (4.73)

where
dm/dt = mass transported per unit time (kg/s) (See also page 254 in Chapter 5 for other units in Fick’s law)
D = diffusitivity or diffusion coefficient of the diffusing gas component (m2/s)
A = cross-sectional area (m2)
c = concentration of the diffusing gas component expressed as mass per unit volume (kg/m3)
dc/dy = concentration gradient of the diffusing gas component (kg/m4).
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Equation (4.73), which is known as Fick’s first law, is the basic law of diffusion. It is generally valid for diffusion in gases,
liquids and solids.

The concept of diffusion is more relevant in systems with two or more components. This topic will be discussed in
Section 4.11.4 on page 206, where diffusion in gas mixtures and mixing of two separate gases are treated.

4.9.1 Kinetic Theory of Diffusion in Gases

A
y = l

y = –l

y = 0

νkindt

–νkindt

0

y

dN*

                     A                    dy

Figure 4.26 Diffusing atoms within the volume A×2��kindt. Figure 4.27 Concentration gradient of gas molecules.

Consider the dark volume element in Figure 4.26 with N ∗
total tracer molecules of a gas with a tracer concentration gradient

dN ∗/dy in the y direction (Figure 4.27). N ∗ is the number of molecules per unit volume. The tracer molecules, which cross
the area A at y = 0 in both vertical directions, will on average have travelled one mean free path l between two successive
collisions (page 193).

One-sixth of the tracer molecules in the upper half of the volume element move in the downwards direction for symmetry
reasons. Only the molecules within the y interval vkindt to 0 will pass the plane y = 0, where dt is the time between two
successive collisions. vkin is defined on page 196.

Analogously, one-sixth of the tracer molecules within the y interval −vkindt to 0 move upwards and pass the plane y = 0.
Only these molecules have to be taken into account during the time dt.

The net number dN ∗
total of tracer molecules which pass the area A in the plane y = 0 in the upwards direction during the

time dt can be written as

dN ∗
total = N ∗ �−l�

6
Avkindt − N ∗ �l�

6
Avkindt

or

dN ∗
total

dt
= −vkinA

6
�N ∗ �l�−N ∗ �−l�� (4.74)

where N ∗ is the number of tracer atoms per unit volume.
The mean free path l is small and with the aid of series development we can write

N ∗ �l� = N ∗
0 + dN ∗

dy
l and N ∗ �−l� = N ∗

0 + dN ∗

dy
�−l�

These expressions are introduced into Equation (4.74):

dN ∗
total

dt
= −vkinA

6
dN ∗

dy
×2l

and we obtain

dN ∗
total

dt
= −vkinAl

3
dN ∗

dy
(4.75)
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If Fick’s first law [Equation (4.73)] is applied to the tracer molecule diffusion above and divided by the mass per molecule,
m0 �dm = m0dN ∗

total [kg] and dc = m0dN ∗�kg/m3��, it will be transformed into

dN ∗
total

dt
= −DA

dN ∗

dy
(4.76)

Identification of Equations (4.75) and (4.76) gives

D = vkinl

3
(4.77)

A comparison between Equation (4.77) and Equation (4.62) on page 197 gives the simple relationship

D = �


(4.78)

Light molecules diffuse more rapidly than heavy molecules. The diffusion constants at STP of some common gases are
given in Table 4.8.

Table 4.8 Coefficients of diffusion of some
gases at STP, calculated from Table 4.6 and
Equation (4.78).

Gas D�m2/s�

H2 93×10−6

N2 13�4×10−6

O2 12�7×10−6

CO2 7�0×10−6

Ar 11�7×10−6

Temperature Dependence of Diffusion in Gases

The expressions for mean free path [Equation (4.59) on page 193] and the mean velocity (Equation (4.10) on page 173) can
be introduced into Equation (4.77). The result is

D = RT

6�r2pNA

√
RT

�M
(4.79)

The diffusion rate depends on the pressure of the gas, the temperature, the molar weight and the radius of the molecules:

D = constant × 1
pr2

√
T 3

M
(4.80)

where M is the mass of 1 kmol and p is the gas pressure.

4.9.2 Fick’s Laws

Fick’s first law, introduced on page 199, can be used to derive the second fundamental equation of diffusion.
Consider a gas with a tracer concentration gradient dc/dy, directed upwards in Figure 4.28. The concentration of gas

molecules increases upwards and the molecules diffuse downwards. The concentration c of gas molecules is a function of
both position y and time t.
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y

A = 1 m2 y

dc 

dy

y = 0

y + dy

Figure 4.28 Concentration gradient of tracer atoms in a gas.

If we consider a small volume element with a cross-sectional area A equal to 1 unit area and thickness dy (Figure 4.28),
the diffusive flux J can be written as

J = −D
�c

�y
(4.81)

The concentration c inside the volume element changes with time. The change can be written in two ways:

�c

�t
× �1×dy� = J�y�− J�y +dy�

Increase in the number Net number of molecules
of tracer molecules per which enter and leave the
unit time within the two end cross-sections
volume�1×dy� during the time dt

(4.82)

The right-hand side of Equation (4.82) can be written with the aid of series development of the last term:

J�y�− J�y +dy� = J�y�−
[
J�y�+ �J

�y
dy

]
= −�J

�y
dy (4.83)

Taking the partial derivatives of Equation (4.81) with respect to y and inserting the result into Equation (4.83) gives, in
combination with Equation (4.82), after division with dy

�c

�t
= D

�2c

�y2
Fick’s second law (4.84)

This equation will be used in several of the following chapters. Fick’s first and second laws are the tools which are used to
study diffusion processes and calculate diffusion rates and concentration distributions.

In most cases, but not always, a concentration gradient leads to diffusion. In Example 4.5 below the gravitational field
is the cause of a concentration gradient, which is maintained at equilibrium. The concentration gradient is balanced by the
gravitational field and no net diffusion occurs in the system.

Example 4.5

Consider a mixture of two gases, a heavy one with molar weight M and a light one with molar weight M ′. The gas mixture
is included in a container of considerable height z.

Show that the gravitational field roughly separates the two gases, i.e. at equilibrium the heavier gas (black circles) is mainly
found in the lower part of the container whereas the lighter gas (open circles) is concentrated to the upper part of the container
if the condition �M −M ′� gz � RT is valid.

Solution:

Consider the volume element Adz in the figure. The gravitational force is balanced by the net force on the volume element
of the pressure from outside:

−pA+ �p−dp�A = Adzg (1′)
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z +  dz p − dp 

A

z p

or

−dp = gdz (2′)

The density of the gas can be calculated with the aid of the general gas law:

pV = m

M
RT ⇒  = m

V
= pM

RT
(3′)

This expression for  is introduced into Equation (2′):

−dp = pM

RT
gdz (4′)

The variables are separated and the equation is integrated:

p∫
p0

−dp

p
=

z∫
0

Mg

RT
dz (5′)

which gives the pressure as a function of the height:

p = p0e− Mgz

RT the hydrostatic equation (6′)

Equation (6′) is applied on the two gases. We use the following nomenclature:

1. subscript 0 refers to the lower part of the container
2. subscript 1 refers to the upper part of the container
3. no superscript refers to the heavy gas
4. a prime (′) refers to the lighter gas.

p1 = p0e− Mgz

RT heavy gas (7′)

p′
1 = p′

0e− M ′gz

RT light gas (8′)

The two equations are divided, which gives

p1/p0

p′
1/p′

0

= e− Mgz

RT

e− M ′gz

RT

= e−�M−M ′� gz

RT (9′)
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Because �M −M ′� gz � RT , we can conclude that

�M −M ′� gz

RT
� 1 and e−�M−M ′� gz

RT � 1 (10′)

The latter relationship is applied to Equation (9′), which gives

p1/p0

p′
1/p′

0

� 1 (11′)

which can be written as

p1

p′
1

� p0

p′
0

or
p′

1

p1

� p′
0

p0

(12′)

Equations (12′) can be transformed mathematically into

p1

p′
1 +p1

� p0

p′
0 +p0

or
p′

1

p′
1 +p1

� p′
0

p′
0 +p0

(13′)

The ratios in Equations (13′) represent the partial pressures of the two gases.

Answer:

The partial pressure of the heavier gas is much lower at height z than at the bottom of the container. The partial pressure of
the lighter gas is much higher at height z than at the bottom of the container. This is equivalent with the description of the
gas distribution in the text.

The process in Example 4.5 leads to a certain degree of gas separation. A better method to separate gases is diffusion in
several steps. Unequal diffusion coefficients lead to a difference in the diffusion rates of the gases. The degree of separation
of the gases, i.e. the composition of the gas mixture, varies with the number of diffusion steps.

4.10 Molecular Sizes

The molar weights and the radii of some common gas molecules are listed in Table 4.9. The data show that measurements of
the radii of the gas molecules differ, depending on the method of measurement. Obviously, the theoretical models that are the
basis of the calculations are not accurate enough for total agreement.

Table 4.9 Molar weights and radii of some common gas molecules.

Molecule Molar
weight

Radius
measured from
gas viscosity
(nm)

Radius
measured from
van der Waals
constant b (nm)

Radius
measured from
closest packing
(nm)

H2 2 0�218 0�276
N2 28 0�316 0�314 0�400
O2 32 0�296 0�290 0�375
Ar 40 0�286 0�286 0�383
CO2 44 0�460 0�324
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4.11 Properties of Gas Mixtures

4.11.1 Nonmolecular-specific Properties

Some properties of ideal gases are independent of the mass and radius of the molecules. In these cases, pure gases and gas
mixtures show no observable differences. Examples of such properties, which we call nonspecific, are energy distribution, heat
capacity, kinetic energy and pressure. None of them depend on the type of gas. As an example we will discuss Dalton’s law.

4.11.2 Dalton’s Law

Ideal Gases

The pressure, for example, depends only on the volume and the temperature of the gas and the number of kilomoles. The total
pressure of a gas mixture is equal to the sum of the partial pressures. This statement is called Dalton’s law. It can be derived
by introduction of the mole fractions xi and use of the gas law:

∑
i

pi =
∑

i

ni

RT

V
=∑

i

xin
RT

V
= n

RT

V

∑
i

xi = n
RT

V
= ptotal (4.85)

where
ptotal = total pressure of the gas mixture
pi = partial pressure of gas component I
n = total number of kilomoles in gas volume V
ni = total number of kilomoles of gas component i in volume V
xi = mole fraction of gas component i
V = volume of the gas mixture.

Dalton’s law can be verified experimentally with the aid of semipermeable membranes, which are composed of substances
which transmit some gases much more readily than others. Iron, for example, is more permeable to H2 than to other gases.
At high temperature iron is quite permeable to N2 but impermeable to inert gases. Silver transmits O2 at high temperatures.
Gases are generally transmitted through metals in which they dissolve readily. Rubber is very permeable to CO2 and more
permeable to O2 than to N2.

Deviations from Dalton’s law occur if a chemical reaction between different components in the gas results in a change in
the total number of kilomoles before and after the reaction.

Deviation from the gas laws may occur both in pure gases and gas mixtures, owing to dissociation of one or more of the
gas components, if the total number of kilomoles in the pure gas or gas mixture changes during the dissociation process.

Relationship Between Pressure and Kinetic Energy

The partial pressures can also be related to the kinetic energy of the gases in a gas mixture. For each gas we have, according
to Equation (4.6) on page 171,

pi =
Nimi

3V
vkin i

2

where
Ni = total number of component molecules i
mi = mass of component molecule i
vkin i

2 = mean value of the squared molecular velocities of component molecules i.

This form of Equation (4.6) can be combined with an expression for the total kinetic energy of the component molecules i:

Ui = Ni

mivkin i
2

2
(4.86)
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Elimination of Nimivkin i
2 between Equations (4.6) and (4.86) gives

pi =
2
3

Ui

V
(4.87)

This relationship is generally valid. For a pure gas or a gas mixture we have

ptotal = 2
3

U

V
(4.88)

The energy law requires that the total kinetic energy of the gas mixture is the sum of the kinetic energy of the component
molecules:

U =∑
i

Ui (4.89)

which gives Dalton’s law as

ptotal =∑
i

pi (4.85)

Real Gases

Dalton’s law is strictly valid only for ideal gases. The forces between the molecules in real gases lead to interaction and
energy exchange between the molecules and deviations from Dalton’s law.

4.11.3 Molecular-specific Properties

Velocity distribution, mean free path, viscosity, thermal conduction and diffusion are examples of properties which differ in
pure gases and gas mixtures. These quantities depend on the molar weight and/or the radius of the gas molecules.

No general equation, valid for all properties, can be offered to take all molecular differences between the components in
a gas mixture into consideration. In each case equations have to be set up for each gas component and for the gas mixture.
Additional equations of the type representing Daltons’s law are also introduced.

Different types of mean values may help to simplify a problem. An example of a constructive mean value which simplifies
the treatment of the harmonic oscillator in molecular physics is the introduction of the reduced mass �, which is the harmonic
mean value of two masses m1 and m2 (Chapter 2, page 80):

1
�

= 1
m1

+ 1
m2

⇒ � = m1m2

m1 +m2

(4.90)

As an example of special interest we will discuss diffusion in a gas mixture.

4.11.4 Diffusion in Gas Mixtures

Mean Free Path of Molecules in a Gas Mixture

Figure 4.29 When the wall that separates two gases B and C is removed, the two gases diffuse into each other. A steady state is achieved
when the gas mixture becomes homogeneous.
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Consider a binary gas mixture of two gases B and C (Figure 4.29). The mean free path of component B can be found
by a derivation analogous to that given in Section 4.6 on page 192. A mobile molecule with radius rB + rC moves among
other stationary molecules with no extension and the number of collisions per unit time is studied. If the motion of the other
molecules and their different molecular weights are taken into consideration, the mean free path of gas B can be described by
the relationship

lB = 1

� �rB + rC�2 NC

√
MC

MB +MC

(4.91)

where
lB� C = mean free path of molecules B and C in the gas mixture
rB� C = radius of molecules B and C
MB� C = molar weight of molecules B and C
NB� C = number of molecules B and C per unit volume in the gas mixture.

The mean free path of gas C can be calculated by exchanging indices B and C in Equation (4.91):

lC = 1

� �rC + rB�2 NB

√
MB

MC +MB

(4.92)

If the molecules B and C are of the same kind, Equations (4.91) and (4.92) become identical with the expression of the
mean free path [Equation (4.57)] given on page 193.

Diffusion Coefficient of a Two-component Gas Mixture

According to the kinetic theory of diffusion in gases, the diffusion coefficient was calculated on page 201 as

D = vkinl

3
(4.77)

The same equation can be used to calculate the diffusion coefficient of each gas in the gas mixture if l is replaced by the
weighted average value of the mean free paths of the molecules B and C in proportion to their concentrations in the gas
mixture. The diffusion coefficient of gas B becomes

DB = 1
3

NBlCvkin C +NClBvkin B

NB +NC

(4.93)

DC can be calculated by exchanging indices B and C. The symmetry of Equation (4.93) shows that the diffusion coefficients
of the two gases are equal:

DB = DC (4.94)

which gives

D = DB = DC = xBlCvkin C +xClBvkin B

3
(4.95)

where xB and xC are the mole fractions of the two components.

• The diffusion coefficients of the two gases in a two component gas mixture are equal for any composition of the gas
mixture.

• The value of the diffusion coefficient depends on the composition of the gas mixture.
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Tracer Diffusion in a Two-component Gas Mixture

A smart and frequently used approach to study diffusion processes in gases is to use radioactive tracer methods. A small
amount of an isotope B∗ of component B is added to a mixture of gases B and C and its diffusion is studied by measuring the
activity of the isotope as a function of time and position by detectors. The diffusion coefficient D∗

B can be calculated from the
measurements. D∗

B is defined by a relationship analogous to Equation (4.81) on page 202:

J ∗
B = −D∗

B

dc∗
B

dy
(4.96)

where J ∗
B is the diffusive flux of B∗.

The diffusion coefficient D∗
C can be determined in the same way by adding a small amount of C∗ molecules to the gas

mixture:

JC
∗ = −D∗

C

dc∗
C

dy
(4.97)

We have seen above that in a mixture of two gas components the diffusion coefficients of gas B and gas C are equal
for any composition of the gas. This is valid only in binary mixtures and not in mixtures with more than two components.
Equations (4.93) and (4.94) show that D∗

B = D∗
C. If the number of components is >2, D∗

B = D∗
C.

In the ideal case, valid for gases at moderate pressures, the diffusion coefficient D of the main components B and C in the
gas mixture is a weighted average of D∗

B and D∗
C:

D = xBD0∗
B +xCD0∗

C (4.98)

where D0∗
B and D0∗

C are the diffusion coefficients of the pure gases B and C, respectively. They can easily be derived from
Equation (4.93). When D∗

B and D∗
C have been determined experimentally, the diffusion coefficient D can be calculated.

4.12 Plasma – The Fourth State of Matter

So far we have discussed the properties of ordinary gases at temperatures within the temperature interval 0–4000 K.
At the end of the 1920s, Langmuir and co-workers studied ionized gases. Such gases proved to have very divergent

properties, compared with ordinary gases, which justifies the designation ‘fourth state of matter’. Langmuir gave the new state
of matter the name plasma, which is the Greek word for jelly.

Plasma is a completely or partially ionized gas, which consists of electrons and highly ionized atoms or even naked nuclei.
There is a strong electrical interaction between the adjacent charged particles in dense plasmas, which means that strong
electrical fields are present. Particle motion in a plasma gives rise to currents and results in magnetic fields. The presence of
electrical and magnetic interactions is responsible for the extraordinary properties of plasmas.

4.12.1 Plasmas in Nature

Figure 4.30 The corona around the Sun is the source of the solar wind which sweeps over the planetary system with a velocity of
300–900 km/s.

Plasmas appear in Nature. The most striking and nearby example is the Sun, which consists of several layers of plasmas, the
corona with a temperature of roughly 106 K (Figure 4.30), the ‘surface’ with a temperature of approximately 6000 K and the
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interior with extremely high temperatures and pressures. Other cosmic plasmas are all the different types of stars and the thin
interstellar gas.

Examples on Earth are the van Allen belts, which are permanent layers of trapped charged particles around the Earth
(Figure 4.31). The so-called solar wind is a thin plasma stream, emitted by the Sun, which fills the solar system and
continuously strikes the Earth.

Figure 4.31 Part of the van Allen belts. The belts and the Earth are not drawn to the same scale.

At heights of 80 km above sea level and upwards the air is strongly ionized owing to the ultraviolet radiation from the Sun.
This layer is called the ionosphere, which among other levels contains the so-called E layer (Heaviside layer, 100 km above
sea level) and F layer (Appleton layer, 240 km above sea level), which reflect radio waves back to Earth. They consist mainly
of protons and electrons, which move in screwed orbits back and forth, trapped by the magnetic field of the Earth.

4.12.2 Laboratory Plasmas

Production of Plasmas

The transformation from one state of matter to another requires a supply of energy. When a solid is heated enough, the thermal
motion of the atoms becomes so violent that the crystal structure breaks and the solid becomes a liquid. Additional energy
supply increases the thermal motion of the atoms and leads to vaporization, i.e. the liquid becomes a gas (Figure 4.32).

Solid → Liquid → Gas → Plasma

↑ ↑ ↑
heat heat heat

Figure 4.32 Survey of aggregation state changes.

Two main methods are used to produce plasmas in the laboratory:

• thermal excitation
• electrical excitation.

At increasing temperature the molecules of the gas dissociate into atoms. The kinetic motion of the atoms becomes more
and more violent as the temperature increases, leading to frequent collisions and ionization of the atoms. However, it is hard
to reach the high temperatures required to form a plasma with the aid of thermal energy. Other sources of excitation are used.
A common way is to use an electrical discharge in a tube or an electrical arc discharge or induction methods.

Electrical excitation is achieved by running an electric current through the gas, exposing it to radio waves or using induction
primarily to excite the electrons in the gas. By collisions with the ions, energy will be transferred from the electrons to the
ions and the plasma obtains a reasonably homogeneous temperature.

The easiest way to produce a plasma is to use an electrical arc discharge. Such a device definitely does not behave like an
ordinary resistor. With increasing voltage the current may even decrease, which corresponds to a negative resistance.

Electron Temperature in Plasmas

The properties of the plasma are determined preferably by two variables, the particle density and the temperature of the
plasma. The particle density is the number of particles per unit volume.
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Electron Temperature
The temperature is not measured in kelvin, the SI unit of temperature. Electrons play a very important role in a plasma and
the ‘temperature of the electrons’, Te, is expressed in electronvolts (eV).

It is convenient to define a phase-space particle density f of the particles in the plasma:

f = number of particles per unit of a six-dimensional phase-space
(volume element = dx dy dz dvx dvy dvz,)

where v is the velocity of the particles.

v
dv

Figure 4.33 The ‘volume element’ in velocity space is a spherical shell with an area 4��2 and a thickness d�.

If we integrate f over a ‘volume element’ in velocity space, independent of direction, we obtain the fraction dN of the
normal particle density which has velocities between v and v + dv, expressed as the number of particles per unit volume
(Figure 4.33):

dN =
∫

fdvxdvydvz = f
∫

dvxdvydvz = f ×4�v2dv (4.99)

The Maxwell-Boltzmann statistics is certainly not valid for relativistic electrons (mv2/2 is not correct and electrons obey
the so-called Fermi-Dirac statistics). However, it is a ‘short cut’ to introduce the concepts ‘thermal velocity’ and ‘electron
temperature’. If dN were given by Maxwell’s velocity distribution law [Equation (4.7) on page 172]. Elimination of dN by
combining Equations (4.7) and (4.99) gives

f = N0

(
m

2�kBT

)3/2
e

−
mv2

2
kBT = N0(√

2�vthermal

)3 e
− v2

2vthermal
2 (4.100)

where vthermal is called the thermal velocity, defined as

vthermal =√
kBT/m (4.101)

where
kB = Boltzmann’s constant
T = temperature (K)
m = electron mass.

In plasma physics, it is convenient to express temperature in energy units. To do this we take the bold step of dropping the
factor kB in Equation (4.101) and introduce the electron temperature:

Te = kBT (4.102)

which gives

vthermal =√
Te/m (4.103)

Equation (4.103) shows that the dimension of the electron temperature Te has the dimension of energy.
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Example 4.6

Consider an electron in a plasma which has a kinetic energy of 1 eV. The temperature of the plasma is said to have the electron
temperature Te = 1 eV. What temperature in kelvin corresponds to an electron temperature of 1 eV?

Solution:

The temperature 1 eV, expressed in kelvin, is obtained from the relationship kBT = 1 eV = 1�60×10−19 J:

T = Te

kB

= 1�60×10−19 J
1�38×10−19 J/K

= 11 600 K

Answer:

The electron temperature 1 eV corresponds to ∼11 600 K.

4.12.3 Applications

Figure 4.34 and Table 4.10. present a rough survey of natural and laboratory-produced plasmas as a function
of their particle densities and electron temperatures. They show that the electron temperatures and particularly the
particle densities of plasmas vary within wide limits. Some examples of applications of plasmas are illustrated in
Figure 4.34.

Density 

eV

K

Fusion
research 

Fusion
reactor

Process
plasmas  

Gas
discharges 

Solar
corona  

Ionosphere

van Allen
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Solar wind
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1019
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Figure 4.34 Schematic survey of natural and laboratory-produced plasmas as a function of their densities and electron temperatures.
Reproduced with permission from R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics. © 1995 IOP Publishing Ltd (now
Taylor & Francis Group).
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Table 4.10 Characteristic properties of some natural and laboratory–produced plasmas.

Type of plasma Magnitude of particle
density in the plasma
(m−3�

Magnitude of electron
temperapture of the
plasma plasma (eV)

Magnitude of
corresponding plasma
temperature (K)

Solar wind 107 10 105

Van Allen belts 109 102 106

Ionosphere of earth 1011 0.1 103

Solar corona 1013 102 106

Gas discharges 1018 2 2×104

Process Plasmas 1018 2 2×104

Plasmas used in fusion experiments 1019–1020 103–104 107–108

Calculated plasma in a tentative
future fusion reactor

1020 104 108

The method for generating the population inversion in highly excited atomic states necessary for laser action in a gas laser
(Figure 4.35) is to run a discharge through the gas, which becomes a plasma. The excited electrons collide with atoms in the
gas and excite them to highly excited energy states.

Parallel  and
coherent  photons

hν

Figure 4.35 A great number of excited atoms (inverted population compared with Boltzmann distribution) is a necessary condition for
stimulated emission.

Highly excited atomic states in a gas may supply the energy necessary to initiate chemical processes. Plasmas used for these
purposes are called process plasmas in Figure 4.34 and Table 4.10. Plasma etching and plasma deposition in semiconductors
are important applications.

Thermonuclear Reactions

The dream of humans is unlimited access to inexpensive energy, free from environmental disadvantages. The energy of the
Sun and the stars originate from thermonuclear fusion reactions, which are possible at the extreme density and temperature
conditions in the stars. An example of such a thermonuclear reaction is the reaction between a deuterium nucleus and a tritium
nucleus:

H2
1 +H3

1 → He4
2 +n1

0 +17�6 MeV

As a comparison, it can be mentioned that the corresponding amount of heat at a chemical combustion reaction is of the
magnitude of eV instead of MeV.

The problem is to create the necessary conditions for a thermonuclear reaction in the laboratory. A temperature of at least
108 K is necessary. At this temperature, the nuclei come so close to each other that a reaction can occur. A high particle
density is necessary to obtain a high collision probability.

The production of thermonuclear energy is associated with enormous experimental difficulties. The major problems are

• to create the necessary conditions for a thermonuclear reaction and keep them during a sufficiently long time
• to insulate the extremely hot and dense plasma thermally form the walls of the container.
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If the latter condition is not fulfilled, the plasma will never reach the necessary high temperature. The plasma is usually kept
away from the walls by magnetic fields which force the plasma to move in helical orbits. So far no breakthrough in fusion
research has occurred even though promising advances have been made. Unlimited and inexpensive energy is still a dream.

Summary

� Kinetic Theory of Gases

Pressure: p = N0m

3V
v2

Thermal Velocity Distribution

Maxwell Velocity Distribution Law

dN = N �v� dv = N0 ×4�

(
m

2�kBT

)3/2

e
−

mv2

2
kBT

v2dv

Most probable velocity: vmp =
√

2kBT

m
=
√

2RT

M

Mean velocity: v =
√

8kBT

�m
=
√

8RT

�M

RMS velocity:
√

v2 =
√

3kBT

m
=
√

3RT

M

Average kinetic energy per molecule: u = mv2

2
= 3

2kBT

Kinetic energy per kilomol: U = NA

mv2

2
= 3

2
RT

� Energy Distribution in a Gas

Maxwell–Boltzmann Energy Distribution Law

dN = N �u� du = 2�N0

��kBT�
3/2

u
1/2 e

− u
kBT du

� Gas Laws

Ideal gas

pV = nRT

Real gases

The interaction between the molecules in a real gas consists of dipole–dipole interaction or van der Waals interaction.
The repulsive force due to overlap of electron clouds of diatomic molecules is proportional to r−13.
The attractive force due to dipole–dipole interaction is proportional to r−7.

Lennard-Jones potential: Epot = 4Ee

[( r0

r

)12 −
( r0

r

)6
]

van der Waals law:
(

p+ n2a

V 2

)
�V −nb� = nRT
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� Heat Capacity

General Relationship

Cp = CV +R

Internal energy per kilomol and degree of freedom = RT

2

Heat Capacities of Ideal Monoatomic Gases

CV = 3
R

2
�three degrees of freedom� Cp = 5

R

2

Heat Capacities of Ideal Diatomic Gases

The heat capacities depend on temperature. The energy distribution of the molecules follows the Maxwell–Boltzmann
distribution law. At low temperature some degrees of freedom are not developed, owing to a lack of population of vibrational
or both rotational and vibrational energy states.

Nv = NA

Z
e

−
hc×�e�v+ 1

2 �
kBT

NJ = NA

Z
e

− hc×BJ�J+1�

kBT

Diatomic Molecules

Very low temperature: CV = 1�5R (translation)
Medium temperatures: CV = 2�5R (translation+ rotation)
High temperatures: CV = 3�5R (translation+ rotation+vibration)

� Mean Free Path

l = 1

4
√

2N�r2
= RT

4
√

2�r2pNA

� Viscosity. Transport of Momentum

F = −�A
dv

dy

� = vkin l

3

� = constant ×
√

TM

r2
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� Thermal Conductivity. Transport of Kinetic Energy

dQ

dt
= −�A

dT

dy

� = cvvkinl

3

� = �cV

� = constant × 1
r2

√
T

M

� Diffusion. Transport of Mass

dm

dt
= −DA

dc

dy

D = vkinl

3

D = �



D = constant× 1
pr2

√
T 3

M

� Fick’s Laws

dm

dt
= −DA

dc

dy
Fick’s first law

�c

�t
= D

�2c

�y2
Fick’s second law

� Properties of Gas Mixtures

Dalton’s law � ptotal =∑
i

pi

Diffusion in Gas Mixtures

D = DB = DC = xBlCvkin C +xClBvkin B

3

The diffusion coefficients of the two gases in a two-component gas mixture are equal for any composition of the gas mixture.

Tracer Diffusion in a Two-component Gas Mixture
The value of the diffusion coefficient depends on the composition of the gas mixture:

D = xBD0∗
B +xCD0∗

C
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� The Four States of Matter

The four states of matter are

1. solid
2. liquid
3. gas
4. plasma.

Plasma is a completely or partly ionized gas, which consists of a mixture of electrons and often highly ionized atoms.

Exercises

4.1 Use Boltzmann’s distribution law to calculate the temperature at which 1% of the molecules in a container with
hydrogen gas are excited up to the first rotational level above the ground state. The remaining 99% of the molecules
are assumed to be in the ground state. The distance between the protons in the H2 molecule is 0.074 nm.

4.2
(a) Consider Equation (4.24) and Figure 4.7 on page 176. Calculate the particular kinetic energy of the molecules which

corresponds to the maximum of the Maxwell–Boltzmann energy distribution curve. Use kBT as the energy unit.
(b) Use the result in (a) to calculate the u value (energy unit eV) for the maximum point of the Maxwell–Boltzmann

energy distribution curve when T = 100 K. Compare your result with Figure 4.7.
(c) What fraction of N2 molecules has kinetic energies within the interval 0�95 kBT ≤ u ≤ 1�05 kBT at 300 and 1500 K,

respectively?

Hint: Integration is not necessary. Choose �u = 0�10 kBT .

4.3 What fraction of the molecules in an ideal gas have velocities between v and
√

v2 ?

Hint: Choose vave = v+
√

v2

2
and �v =

√
v2 −v.

4.4 A gas mixture consists of two gases A and B. The mole fractions of the gas mixture are xA and xB.

(a) Calculate the weight percent cA and cB of the two gases in terms of xA and xB and the molar weights of the two
gases. Use air as an example (xA = 0�80 and xB = 0�20).

(b) Calculate xA and xB if cA and cB are known. Use air to check the result.
(c) What are the partial pressures of A and B in terms of xA and xB and the total pressure p of the gas?
(d) What is the average molar weight of a gas mixture when xA, xB, MA and MB are known? Use air as an example.
(e) Calculate the density of helium at STP.
(f) Calculate the number of He molecules per cubic metre at STP.

4.5

An air balloon consists of a large silicone rubber balloon with a vent and a cover, which limits its maximum diameter
to 15 m. The total weight of balloon, ropes, equipment and basket with passengers is 900 kg.

To keep the balloon and its passengers floating in the air, a combustion aggregate is used (dark box in the figure).
When the air inside the balloon is heated, it rises.
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On one occasion the height of the balloon above the ground was 100 m and the temperature outside the balloon was
0 �C. The balloon was kept at an excess pressure of 10% compared with the STP pressure in order to balance the surface
tension and reach its maximum volume.

What minimum temperature of the air inside the balloon is required to keep the height of the balloon unchanged?

4.6 The general gas law does not hold for gases close to their condensation temperature. For nonideal gases the van der
Waals equation often is a good model:

(
p+ n2a

V 2

)
�V −nb� = nRT

where n is the number of kilomoles of the gas. It is illustrated in a p–V diagram in Figure 4.17 on page 184.

(a) What is the physical significance of the critical point?
(b) An amount of gas at temperature T4 is compressed at constant temperature. Follow the isotherm in Figure 4.17 and

describe the physical process and the ratio of the liquid and gas amounts during the compression.

4.7 A nonideal gas at STP is compressed isothermally at 0 �C to one-hundredth of its original volume. Calculate the final
pressure of the gas provided that the van der Waals equation is valid, and compare the result with that for an ideal gas.
Tcr of the gas is 130 K and pcr = 40 atm.
Hint: The relations between the constants a and b and the coordinates of the critical point can be found by taking
the derivative of the pressure p in the van der Waals equation twice with respect to the volume V . The derivatives
dp/dV and d2p/dV 2 at the critical point are both zero, as it is an inflection point with a horizontal tangent to the curve
(Figure 4.17 on page 184). The constants a and b can be calculated from these equations. The result is

b = RTcr/8pcr and a = pcr ×27b2�

4.8 The Lennard-Jones potential can be written as

Epot = 4Ee

[( r0

r

)12 −
( r0

r

)6
]

where Ee is the depth of the potential well (Figure 4.14 b on page 182).

(a) The equation describes the potential energy of a system. What type of system? Give examples of such systems.
(b) List the expressions for the forces associated with this potential energy, discuss their nature and origin and explain

the significance of all the quantities in the equations.
(c) Compare the energy required to separate two H2 molecules from each other, shown in Figure 4.13 on page 182, with

the dissociation energy of the H2 molecule found in Figure 2.37 on page 75. Comment on the result.

4.9 (a) Prove that Cp −CV = R for an ideal gas.
(b) Analyse and explain Figure 4.21 on page 191, which concerns Cp/CV for diatomic molecules as a function of

temperature.

4.10 The ratio Cp/CV has been determined for three pure transparent gases at room temperature. The result was (a) 1.42,
(b) 1.32 and (c) 1.70. What types of molecules do the three gases consist of?

4.11 (a) The mean free path at STP of Ar is 64 nm (Table 4.5 on page 193). Use this information to calculate a value of the
radius of the Ar atom.

(b) The mean free path at STP of hydrogen is 112 nm. Calculate the mean free path of hydrogen gas at standard
temperature and pressures of 106 and 10−6 atm.

4.12 In the determination of the coefficient of thermal conduction of a gas, the equipment consisted of a straight vertical
resistance filament (1.5 ohm/m) along the axis of a narrow tube, which was kept at constant temperature. When the tube
was evacuated a current of 90 mA through the filament was required to keep maintain a temperature difference of 1�0 �C
between the filament and the tube constant. When the gas was present in the tube, the current had to be increased to
270 mA to maintain the same temperature difference as before. Calculate the thermal conductivity of the gas at the given
pressure. The inner diameter of the tube was 10 mm and the thickness of the filament was 0.50 mm.
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4.13 A methane molecule, CH4, can be regarded as spherical with a volume five times the volume of an argon atom. What
are the (CH4/Ar) ratios of

(a) the viscosity coefficients
(b) the thermal conductivities

of the two gases, when measured at the same temperature?

4.14 (a) Define the self-diffusion constant of a pure gas. How can it be measured?
(b) Prove the relationship D = �


.

(c) Which are the two basic equations of diffusion?

4.15 Diffusion of isotope gases has proved to be a possible way to separate them or at least concentrate one of the components
in a mixture of several isotope gases. Calculate the ratio of the diffusion constants of

(a) H2/D2 and U235F6/U238F6. Careful motivations of equations are required.
(b) Compare the results in (a).
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5.1 Introduction

In Chapter 4 the properties of gases were discussed. The properties of solids, which represent an extensive subject, will be
discussed in Chapters 5, 6 and 7.

This chapter starts with some essential thermodynamic concepts and relationships and a general section on transformation
kinetics. These sections form the basis for the subsequent treatment of diffusion in solids. This topic can be regarded as an
important application of transformation kinetics.

Diffusion is one of the three transport properties of solids. The other two transport properties of solids will be discussed in
Chapter 7.

Diffusion during and after solidification processes is extremely important for the material properties of alloys and semicon-
ductors.

5.2 Thermodynamics

5.2.1 First Law of Thermodynamics

The most fundamental law of physics is the law of energy conservation or the principle of conservation of energy.

• The total energy of a closed system is conserved.

This is one of the most fundamental laws of physics. No exceptions of this law have ever been found so far.
When the law of energy conservation is applied in thermodynamics, it is called the first law of thermodynamics and deals

with thermal energy.
If an amount of heat Q is added to a a closed system and no heat leaves the system, the added energy is used to increase

the internal energy of the system and to do work, done by the system. Internal energy U 1 of a system is defined as the sum
of its kinetic and potential energy:

U = Ukin +Upot (5.1)

The principle of conservation of energy, applied to a closed system, can be written as

Q = U +W (5.2)

where
Q = energy added to a closed system
U = internal energy of the system
W = work done by the system.

If the volume V of the system is extended by an amount dV , the work done by the system against the external pressure p
is pdV .

Taking the derivative of Equation (5.2) gives the relationship

dQ = dU +dW = dU +pdV (5.3)

1 Terminology: 1 kmol of all the thermodynamic quantities are usually designated by capital letters. In addition, capital letters with the subscript ‘a’ are used
to designate thermodynamic quantities of a single atom.
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5.2.2 Enthalpy

The enthalpy of a system is defined as

H = U +pV (5.4)

Enthalpy is closely related to heat and is frequently used in chemistry, for example in connection with chemical reactions.
Taking the derivative of Equation (5.4) gives

dH = dU +pdV +Vdp (5.5)

Using Equation (5.3), we obtain

dH = dQ+Vdp

• At constant pressure the enthalpy increase of a system is equal to the heat absorbed by the system:

�dH�p = �dQ�p (5.6)

As an example of enthalpy change we will discuss exothermic and endothermic chemical reactions. The molar enthalpy of
a chemical reaction is the heat per kilomol developed in the reaction.
If the reaction is exothermic, heat is emitted by the system and the enthalpy increase is negative.
If the enthalpy increase is positive, heat is absorbed by the system and the chemical reaction is said to be endothermic.

5.2.3 Second Law of Thermodynamics

Heat Engines

As the name thermodynamics indicates, this field of physics deals with the dynamics of heat. Examples are transfer of heat
and transformation of heat into work and vice versa. As an introduction to the second law of thermodynamics, we will briefly
discuss heat engines of two types.

W

Q2 Heat
engine

T2

Q1

T1

Figure 5.1 Energy balance.

In the first type of heat engine pumps heat is transferred from a lower to a higher temperature. It is described in Figures 5.1
and 5.2a. Work is done by a compressor on an enclosed gas at A. Its pressure and temperature increase. At B the medium is
condensed. The energy Q1 is emitted to the surroundings at the high temperature T1. The pressure of the liquid is reduced by
the expansion valve. On the low-pressure side the liquid boils and evaporates to a gas at D. The required heat is taken from
the cold surroundings and the heat Q2 is absorbed from the heat source at the low temperature T2 (Figure 5.1).

The first law of thermodynamics gives the relationship

W +Q2 = Q1 (5.7)

if heat losses are disregarded. The machine does not work unless the compressor work is supplied.
When the engine is a freezer or a refrigerator, the latter is located at the evaporator D. The interior of the refrigerator is the

heat source. T2 is the interior temperature of the refrigerator and T1 is the surrounding room temperature (Figure 5.2a).
In the case of a heat pump D corresponds to the evaporator and a heat exchanger, coupled to a secondary loop including

the evaporator and the heat source, from which heat is withdrawn. It can be the air, a lake, the ground or a 100–200 m deep
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Figure 5.2 (a) The essential part of a heat pump or a refrigerator consists of a volatile medium in a closed loop. (1) At A the medium is
compressed from a cold, low-pressure gas to a warm, high-pressure gas. Both the pressure and temperature of the gas increase. (2) At B
heat is withdrawn from the gas by the colder surroundings. The warm gas is condensed. Its temperature decreases and the medium becomes
a liquid. (3) The expansion valve reduces the pressure of the liquid. (4) Owing to the low pressure, the boiling point of the medium is low
and the liquid boils in the evaporator and becomes gaseous. The heat required for the evaporation is taken from the heat source, which is
cold but warmer than the boiling liquid.
(b) The medium loop and two heat exchangers are included in the white heat pump box in the house. The volatile medium may be propane
or other freon- or chlorine-free substance for environmental reasons. The three loops are not drawn to scale.

hole drilled in rocky ground. The compressor A, the condenser B, the expansion valve and the evaporator D and the closed
medium loop are located inside the heat pump box in the house. The medium loop is coupled to another heat exchanger at B.
This secondary loop is a separate water loop, which transports heat to different parts of the house.

The second type of heat engine transforms heat to work. Steam engines and combustion engines, for example a car engine,
belong to this type. The principle of a car engine is shown and described in Figure 5.3a and b.

(a)

A

Hot heat reservoir of temperature T1

Cold heat reservoir of temperature T2

Q1

Q2

Heat
engine W

(b)

Figure 5.3 (a) Combustion phase in a car engine. (b) A mixture of gaseous fuel and air is ignited by an electric spark in section A (a).
Q1 is the developed combustion heat. A minor part of Q1 is transformed to the work W done by the combustion gases when they expand
and move the piston to the dotted position. The rest Q2 of the energy Q1 is transferred to the surroundings.

The first law of thermodynamics, applied to the second type of heat engines, gives

Q1 = W +Q2 (5.8)

This is identical with Equation (5.7).

Second Law of Thermodynamics

The second law of thermodynamics deals with the direction of spontaneous thermodynamic processes. There are many ways
to express this law, based on experience from heat engines and everyday evidence. Some of them are listed below.
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• Heat is transferred spontaneously from a warmer to a colder body, never the contrary.
• Heat can be transferred from a colder to a warmer body only if work is supplied. This is not a spontaneous process.
• Heat can be transformed spontaneously to work but never 100%.

The last statement induces the question of the efficiency of thermodynamic processes. For this reason, we will discuss the ideal
Carnot cycle (Figure 5.4):

1. A gas absorbs the amount of heat Q1 at temperature T1 and expands isothermally, i.e. at constant temperature.
2. The gas expands adiabatically, which means that dQ is zero. The energy required for the expansion is taken from the

internal energy of the gas. Its temperature decreases from T1 to T2.
3. The gas is compressed isothermally at temperature T2 and emits an amount of heat Q2 to the surroundings.
4. The gas is compressed adiabatically. Its temperature increases from T2 back to T1.

p

4   
2

V1 V2

T2

T1

V

3

(a)

1
Q1

Q2
Heat engine

(b)

Useful work = Q1 
−Q2

Figure 5.4 (a) The Carnot cycle. The enclosed area represents the work done by the heat engine.
(b) Efficiency of the Carnot cycle.

Q1 is calculated with the aid of the ideal gas law (n kmol):

Q1 =
∫

�dU +pdV� = 0+
V2∫

V1

nRT1

V
dV = nRT1 ln

V2

V1

(5.9)

Similarly we obtain

Q2 =
∫

�dU +pdV� =
V1∫

V2

nRT2

V
dV = −nRT2 ln

V2

V1

(5.10)

The minus sign in Equation (5.10) indicates that Q2 is emitted and not absorbed. Equations (5.9) and (5.10) are divided,
which gives ∣∣∣∣Q1

Q2

∣∣∣∣= T1

T2

(5.11)

The efficiency � of a thermodynamic process is defined as

� = useful energy or work done by the system
delivered energy to the system

(5.12)

The efficiency � of the Carnot cycle will be

� = Q1 −Q2

Q
1

= T1 −T2

T
1

(5.13)
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where
� = efficiency of the Carnot engine
Q1 = combustion heat
T1 = combustion temperature
Q2 = heat absorbed by the surroundings
T2 = temperature of the surroundings.

The definition of � and Equation (5.11) can also be applied to other thermodynamic processes.
Owing to heat losses to the surroundings, friction and other reasons, real engines always have lower efficiencies than the

Carnot engine.

5.2.4 Entropy. Third Law of Thermodynamics

Entropy Change in Reversible Processes

As mentioned above, the second law of thermodynamics deals with the direction of spontaneous processes. In order to describe
the direction of a process, a quantity called entropy, denoted by S, has been introduced. The change of entropy of a process
is defined by the relationship

dS = dQ

T
(5.14)

As an application we will apply the entropy concept on the Carnot cycle discussed above. The total change of entropy
during a cycle is the sum of four terms:

�S = ��S�1 + ��S�2 + ��S�3 + ��S�4

each of them referring to the partial processes described above.

�S = Q1

T1

+
∫ dQ

T
+ −Q2

T2

+
∫ dQ

T
= Q1

T1

+0+ −Q2

T2

+0

The second and fourth partial processes are adiabatic, which means that dQ = 0 and the value of the integrals is zero. Hence
the total entropy change of each cycle is

�S = Q1

T1

− Q2

T2

(5.15)

S

1 3

T

T1 T2

2

4

Figure 5.5 The Carnot cycle in a T–S diagram.

The first term in Equation (5.15) represents the entropy change at the isothermal expansion at temperature T1. The entropy
change is positive, which means that the process occurs spontaneously. The second term in Equation (5.15) is negative. This
part of the cycle is not spontaneous: work is done on the gas to compress it.

The Carnot cycle can be represented in a T–S diagram. The isothermal expansion 1 and compression 3 are represented by
vertical lines. The horizontal lines 2 and 4 illustrate the adiabatic steps of the cycle.

The Carnot cycle is reversible, which means that the gas is in equilibrium at every stage and the process can proceed in
either direction. In all reversible processes the entropy will be the same when the system returns to the starting point. Hence
the total entropy change will be zero and Equation (5.15) becomes be identical with Equation (5.11).
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Entropy Change in Irreversible Processes

Below we will consider two examples of isothermal, irreversible processes and calculate the entropy change. In both cases
the process in question is expansion of ideal gases.

Example 5.1

Calculate the change in entropy when nA kmol of an ideal gas A with pressure p and volume V1 expands irreversibly to the
volume V1 +V2 in the way shown in the figure. The final pressure is pA.

n A p V  1

 tap

0  0 V  2

(a)

p  A V  1

tap

p  A  V  2

(b)

Solution:

There are no forces between the molecules in an ideal gas and therefore there is no change in internal energy when the gas
expands.

When the tap shown in figure (a) is opened, the gas expands from volume V1 to V1 +V2 and the pressure p becomes the
same in the whole volume.

The first law of thermodynamics and the definition of entropy give the entropy change of the gas:

�S =
∫ dQ

T
=
∫ 0+pdV

T
=

V1+V2∫
V1

pdV

T
�1′�

Using the ideal gas law pV = nRT to eliminate p/T , we obtain

�S =
V1+V2∫
V1

nRdV

V
= nR ln

V1 +V2

V1

�2′�

Boyles’s law gives

pV1 = pA �V1 +V2� �or�
V1 +V2

V1

= p

pA

�3′�

Answer:

The entropy increase is nAR ln
p

pA

.

As a second example of deriving entropy changes, we will calculate the entropy change when two gases mix.
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Example 5.2

Two ideal gases A and B of equal pressures, each in a separate closed container, are connected by a short tube and
a closed tap. When the tap is opened the two gases mix irreversibly. No changes in pressure and temperature are
observed.

Calculate the total change of entropy as a function of the initial pressure p and the final partial pressures when
the two gases mix. The data for the gases are given in the figure. nA and nB are the number of kmol of the gases
A and B.

n A p V  1

 tap

n B p V  2

Solution:

When the tap is opened the two gases mix by diffusion. The diffusion goes on until the composition of the gas is homogeneous.
It is far more likely that the gase will mix by diffusion than remain separate. Therefore, the total entropy change is expected
to be positive.

In a gas, the distances between the molecules are large and the interaction between them can be neglected. Consequently,
the diffusion of each gas is independent of the other. The total entropy change can be regarded as the sum of the entropy
change of each gas after its separate diffusion from one container into the other:

�Smix = �SA +�SB �1′�

Gas A changes its pressure from p to pA, where pA is its final partial pressure. In the same way, gas B changes its pressure
from p to pB.

p A + p B

tap

p A + p B

The initial pressure and the final total pressure are equal as no pressure change is observed:

p = pA +pB �2′�

Using the result in Example 5.1, we obtain

�SA = nAR ln
p

pA

�3′�

and

�SB = nBR ln
p

pB

�4′�

The total entropy change is

�Smix = �SA +�SB = nAR ln
p

pA

+nBR ln
p

pB

�5′�

The ratio of the pressures is >1 and the entropy change is therefore positive, as predicted above.
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Answer:

The total entropy change when the gases mix is nAR ln
pA +pB

pA

+nBR ln
pA +pB

pB

�

Comparison of the Entropy Changes in Reversible and Irreversible Processes

On page 224, we found that the total entropy change of the ideal reversible Carnot cycle is zero. The entropy changes
in the irreversible processes in Examples 5.1 and 5.2 were found to be positive in both cases. Experience shows that
the results concerning reversible and irreversible processes are true in all other cases also. The following statements are
generally valid:

• If a process is reversible, the entropy change is zero: �S = 0.
• The entropy increases in all irreversible spontaneous processes: �S > 0.

The final states in Examples 5.1 and 5.2 are far more likely than the initial states. When the tap in Example 5.1 is opened,
the molecules move into the empty container until the pressures in the two containers are equal rather than that no change at
all occurs. In Example 5.2, the molecules of each gas spontaneously distribute in such a way that the final partial pressure
becomes the same in both containers.

In the case of reversible processes, both directions of the process are equally probable at equilibrium.
In both cases, the system changes spontaneously from one state to another more likely state and the entropy

increases. Entropy seems to be connected with probability in one way or an other. This topic will be discussed on
page 228.

Third Law of Thermodynamics

So far we have only dealt with entropy changes �S and not with the absolute value of entropy S. To obtain an absolute
entropy scale we start with a fixed value S0 of the entropy of a pure crystalline substance at absolute zero temperature.

To find the entropy of the substance at an arbitrary temperature T we will calculate the entropy change by starting with S0

and integrating the definition equation

dS = dQ

T
(5.14)

We consider a reversible process of the substance at constant pressure and integrate Equation (5.14) from temperature 0 K
to T . The corresponding integration limits are S0 and S.

S∫
S0

dS =
T∫

0

dQ

T
=

T∫
0

n0CpdT

T
(5.16)

where
n0 = number of kilomol of pure crystalline substance
S = entropy of the system (n0 kmol of the substance)
S0 = entropy of the system at absolute zero temperature
Cp = molar heat capacity of the element at constant pressure
T = absolute temperature.

Cp varies strongly with temperature at low temperatures (Chapter 6) and approaches zero at T = 0 K and the integral can be
written as

S = S0 +
T∫

0

n0CpdT

T
(5.17)
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The constant S0 is the zero point of the entropy scale. The German chemist Nernst made extensive studies to determine S0 for
pure elements. His result is called Nernst’s theorem.

• The entropy at absolute zero temperature of a pure crystalline substance is zero.

Nernst’s theorem was regarded as so important that it is called the third law of thermodynamics.
As it is impossible to reach the absolute zero point, it is not possible to verify Nernst’s theorem by direct measurements.

However, entropy values calculated from measurements of heat capacities at constant pressure at very low temperatures agree
well with entropy values based on theoretical calculations (statistical mechanics, Section 5.2.5) if the value of S0 is zero.

The entropy of any closed system can be built up by starting with pure crystalline substances and Equation (5.17) and
adding entropy contributions due to mixing of substances.

5.2.5 Entropy and Probability

The discussion on page 227 indicates that the entropy change of a process is related in some way to its probability. The
probability function can be found by the following arguments.

Consider N molecules in a container of volume V . The molecules do not interact at all; each molecule is free to move
within the volume V and the probability of finding it within a unit volume is the same everywhere. Hence the probability of
finding a molecule within a volume V1 is V1/V . The probability of finding two molecules within the same volume V1 equals
the product of their probabilities �V1/V�2. The probability of finding N molecules within a particular volume V1 is �V1/V�N .

V

V 1

Figure 5.6 Volume element.

Equation �2′� in Example 5.1 on page 225 and Equation �5′� in Example 5.2 on page 226 give us the clue to relating entropy
and probability. We have seen above that the overall probability is the product of the probabilities of independent events
(here particle distributions). We also know that the total entropy change of partial systems equals the sum of their entropy
changes. It is striking that the logarithmic function converts the multiplicative property of probability to the additive property
of entropy.

These arguments led the Austrian physicist Ludwig Boltzmann in 1877 to suggest a relationship between entropy and
probability. The entropy S was assumed to be a function of the probability of the system:

S = F�P� (5.18)

The function F�P� can be derived in the following way. Consider two partial systems A and B at the same temperature and
pressure. The two systems are joined together to a single system AB. As temperature and pressure are constant, the entropy
of the united system equals the sum of the entropies of the partial systems:

SA +SB = SAB (5.19)

which can be written with the aid of Equation (5.18) as

F�PA�+F�PB� = F�PAB� (5.20)

Assume that the most probable distributions of two partial systems A and B are PA and PB. The most probable distribution
of the united system must be the product of PA and PB:

PAB = PAPB (5.21)
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This expression is introduced into Equation (5.20):

F�PA�+F�PB� = F�PAPB� (5.22)

By taking the derivative of Equation (5.22) with respect to each of the two independent variables PA and PB, we obtain two
relationships which after multiplication with PA and PB, respectively, are found to be equal:

PA

dF�PA�

dPA

= PB

dF�PB�

dPB

(
= PAPB

dF�PAPB�

dPAPB

)
(5.23)

Because PA and PB are independent of each other, the expressions in Equation (5.23) must be constant:

PA

dF �PA�

dPA

= constant or dF �PA� = constant × dPA

PA

(5.24)

Hence, we have for an arbitrary system

dF �P� = constant × dP

P
(5.25)

The function F�P� can be replaced by S in Equation (5.25), which gives

dS = constant × dP

P
(5.26)

Equation (5.26) is integrated and the solution can be written as

S = S0 +kB ln P (5.27)

where
S = entropy of the system
S0 = integration constant
kB = Boltzmann’s constant
P = probability of the system.

Equation (5.27) is the fundamental relationship between entropy and probability.
The integration constant S0 can be determined with the aid of Nernst’s theorem. The entropy S of a pure crystalline substance

is zero at absolute zero temperature. At this temperature the system is in its ground state and the probability P = 1. If we
insert these values of S and P into Equation (5.27), we obtain S0 = 0. Hence the entropy of a pure crystalline substance can
be written as

S = kB ln P (5.28)

Boltzmann interpreted entropy as a measure of the order, or rather disorder, of a system. The more probable a state of a
system is and the greater its disorder, the higher will be its entropy.

Entropy Change on Mixing Two Components

As a test of the probability expression of entropy, we will use Equation (5.28) for calculation of the entropy change when two
components are mixed.

Consider a binary system, a liquid or a solid, of two components B and C. NB atoms of B are arranged at random among
N = NB +NC sites. This can be done in many different ways and is equivalent to mixing the two components. The probability
P is defined as the number of independent alternative ways of arranging the B and C atoms among the N sites which gives
the same energy of the system. Statistical considerations give the result

P = N !
NB!NC! = N !

NB! �N −NB�! (5.29)
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We use Stirling’s equation:

lim
N→�

N ! → √
2�N N+ 1

2 e−N

for the very large numbers N� NB and NC and obtain

P = N N+ 1
2

√
2�N

NB+ 1
2

B �N −NB�N−NB+ 1
2

e−N

e−NB e−�N−NB�
(5.30)

The last factor in Equation (5.30) is equal to 1. The term 1/2 can be neglected in comparison with N and NB in the exponents
of the first factor. Taking the logarithm of both sides of Equation (5.30), we obtain

ln P = N ln N −NB ln NB − �N −NB� ln �N −NB�− ln
√

2� (5.31)

The last term can be neglected in comparison with the others. If we introduce the mole fractions

xB = NB

N
and xC = N −NB

N

and the relationship xB +xC = 1, Equation (5.31) can, after some calculation, be transformed into

ln P = N �−xB ln xB −xC ln xC� (5.32)

Instead of N we introduce n = the number of kilomol in the container:

N = nNA (5.33)

where NA is Avogadro’s number, i.e. the number of atoms or molecules in 1 kmol. Hence we obtain

ln P = nNA �−xB ln xB −xC ln xC� (5.34)

Instead of NA we introduce R/kB, where kB is Boltzmann’s constant:

kB ln P = nR�−xB ln xB −xC ln xC� (5.35)

According to Equation (5.28), kB ln P equals the entropy change �Smix when the two components B and C mix:

�Smix = −nR�xB ln xB +xC ln xC� (5.36)

Equation (5.36) is valid for homogeneously mixed solids and liquids. It becomes identical with the answer in Example 5.2 on
page 226 if the partial pressures pB and pC are replaced by the mole fractions xB and xC (this has been done on page 232).
The derivation of Equation (5.36) is based on S = kB ln P whereas Example 5.2 is deduced from the thermodynamic definition
of entropy, dS = dQ/T .

Hence �Smix has been calculated in two entirely different and independent ways, which give identical results. The conclusion
must be that the concept of entropy as a function of probability is in complete agreement with the classical definition of
entropy and does not lead to any contradictions.

In fact, Equation (5.28) can alternatively be used as the definition of entropy and the old definition of entropy can be
derived from the new definition with the aid of the Maxwell–Boltzmann distribution law.
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5.2.6 Thermodynamics of Ideal and Nonideal Solutions

Ideal and Nonideal Solutions

An ideal solution is defined as a solution in which

• The homogeneous attractive forces (A–A and B–B) and the heterogeneous attractive forces (A–B) are equal.
• The heat of mixing is zero. The solubility is complete.

Solutions which do not fulfil the conditions above are nonideal. Nonideal solutions can deviate from ideal solutions in two
different ways.

When the forces between the A and B atoms are stronger than the forces between A–A atoms and B–B atoms, the heat of
mixing is negative. Heat is released and given to the surroundings when the two components mix or the temperature of the
system increases.

When the forces between the A and B atoms are weaker than the forces between A–A atoms and B–B atoms, the heat of
mixing is positive. The solution process to break strong A–A and B–B bonds and replace them with weaker A–B bonds requires
additional energy. Heat is consumed and taken from the surroundings when the two components mix or the temperature of
the system decreases.

Enthalpy Change on Mixing of Two Components. Heat of Mixing of Ideal and Nonideal Solutions

Consider a system of two components, for example a binary alloy with randomly distributed atoms. If the attractive forces
between the atoms are known, one can easily calculate the change in enthalpy �−�Hmix� or the molar heat of mixing �−�Hmix�
released when the components A and B mix:

−�Hmix = NAB

[
EAB − 1

2
�EAA +EBB�

]
(5.37)

where
NAB = the number of atom pairs AB
Eij = bonding energy between specified types of atoms.

The number of mixed atom pairs NAB is proportional to the presence of the two types of atoms, i.e. the concentrations of
A and B. The heat of mixing −�Hmix, based on the forces between neighbouring atoms, can then be written as

−�Hmix = LmixxAxB (5.38)

where Lmix is a constant, which can be derived by identification of Equations (5.37) and (5.38). Lmix includes both the
proportionality constant and the brackets factor, as the binding energies of the three molecule types are constant.

For ideal solutions, Lmix and the heat of mixing are zero. The components A and B mix at all proportions:

−�H ideal
mix = 0 (5.39)

For nonideal solutions the constant Lmix and hence the heat of mixing −�Hmix can be either positive or negative. The sign of
Lmix depends on the interatomic forces and the sign of the brackets factor in Equation (5.37).

The enthalpy of mixing of a nonideal solution can be defined as an excess quantity, i.e. the excess enthalpy of
mixing:

−�Hnonideal
mix = HEx

mix (5.40)

The excess enthalpy is simply the heat of mixing −�Hmix of the nonideal solution. The excess enthalpy of mixing is zero for
an ideal solution.
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Entropy Change on Mixing Two Components. Entropy Change of Ideal and Nonideal Solutions

In Example 5.2 on page 226 we found an expression for the entropy change when two different gases mix by diffusion.
Diffusion occurs not only in gases but also in liquids and solids. The entropy change �Smix due to mixing of two compounds
in a melt or a solid to give an ideal solution can be calculated if we make a minor modification of Equation �5′� in
Example 5.2 on page 226. Instead of the partial pressures of the two gases, we introduce the mole fractions xA and xB:

xA = pA

pA +pB

and xB = pA

pA +pB

If we introduce the mole fractions, Equation (5′) on page 226 can be written as

�Smix = −nAR ln xA −nBR ln xB (5.41)

or using the relationship n = nA +nB, where n is the total number of kilomol:

�Smix = −nR�xA ln xA +xB ln xB� (5.42)

In agreement with Equation (5.36), Equation (5.42) is directly applicable to mixtures of gases but also to liquids and solids
in general, which form ideal solutions. Such applications will be discussed later in this chapter.

In analogy with the enthalpy above, we define the excess entropy of a nonideal solution as

SEx
mix = Snonideal

mix −Sideal
mix (5.43)

Sideal
mix is equal to the entropy change when two pure components, both with S = 0, are mixed. According to Equation (5.42),

the entropy change equals �Smix and Sideal
mix = �Smix. For an ideal solution, the excess entropy SEx

mix is zero.

The entropy of an ideal solid solution consists of two terms, one due to lattice vibrations and the other originating from the
binding energy of the component atoms.

The vibrational entropy of an ideal solution is approximately the same as that of pure components and does not contribute
to the excess entropy.

For nonideal solutions, the entropy can be regarded as the sum of two terms, the entropy of the ideal solution plus the
excess entropy:

Snonideal
mix = Sideal

mix +SEx
mix = �Smix +SEx

mix (5.44)

where �Smix is defined by Equation (5.42).

5.2.7 Thermodynamics of Phase Transformations

Phase Transformations

Figure 5.7 shows a survey of the phase transformations in a pure substance.

 Liquid Vapour

Solid

Vaporisation

Condensation

Solidification Condensation

SublimationMelting

Figure 5.7 Survey of phase transformations in a pure substance.
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Melting
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Evaporation curve
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Figure 5.8 Phase diagram of a pure substance.

Figure 5.8 shows the phase diagram of a pure substance. The three areas represent solid phase, liquid phase and vapour phase.
The curve AB is called the sublimation curve. At the pressures and temperatures along the curve, solid phase and vapour
phase exist in equilibrium with each other, otherwise either as a solid or a vapour. Along the sublimation curve, solid phase
can be transformed into vapour or vice versa.

The point B is called the triple point. It represents the only temperature and pressure where solid phase, liquid phase and
vapour phase can exist at equilibrium with each other. It is an important fixed point of a substance. The triple point of water
(273.16 K) is used for definition of the thermodynamic temperature scale.

The steep curve BC is the melting curve. It represents the temperatures and pressures where the solid and liquid phases
are in equilibrium with each other. Very high pressure changes are required for changing the melting point of the substance.
Normally the slope of the curve is positive but some substances, for example the melting curve of water, have a negative
derivative. In the latter cases the melting point decreases with increasing pressure.

The curve BD is the evaporation curve. At the pressures and temperatures along the curve, liquid phase and vapour phase
exist in equilibrium with each other. The slope of the curve is not as steep as that of the melting curve. For this reason, the
boiling point of the liquid varies strongly with the external pressure. At low pressures, for example at high altitudes, water
boils at temperatures considerably below 100 �C.

p

Critical point

Liquid L G

p*
L + G

L G

L + G

V *

T1
T2

T4

T3 = T *
V

GasG

Figure 5.9 Isotherms of a van der Waals gas. Reproduced with permission from Fysik I, © O. Beckman.

At point D in Figure 5.8, the evaporation curve stops abruptly. Point D corresponds to the critical point, where there is no
difference between the liquid and the vapour. Above the critical temperature, the vapour cannot be compressed to a liquid,
even at extremely high pressures (Figure 5.9). This topic has been discussed in connection with real gases on pages 183–184
in Chapter 4.

Enthalpy and Entropy Changes in Phase Transformations

When heat is added continuously to a solid body, its temperature increases until the melting point is reached (Figure 5.10).
During the melting time the temperature remains constant. The temperature of the liquid rises until the boiling point is
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T

TB

TM

time

Figure 5.10 Temperature versus time during heating of a substance. The melting and boiling points are marked.

reached. During the boiling, the temperature is constant. When all the liquid has been transferred into vapour, the temperature
increases again.

Melting – Solidification and Evaporation – Condensation
At phase transformations the system is in equilibrium and the temperature and pressure are constant. Heat is transferred
reversibly and isothermally between the system and the surroundings.

At constant pressure, the heat absorbed by a system equals its enthalpy increase [Equation (5.6) on page 221]. Phase
changes cause changes in the molecular order of the substance and are therefore expected to lead to changes in entropy. As
the temperature is constant during the transformation, the entropy change will be

�Str = �Htr

Ttr

(5.45)

On melting and evaporation the system absorbs heat and the phase transition is endothermic. In this case the enthalpy
change is positive. The system changes from an ordered state to a more disordered state (solid to liquid and liquid to vapour,
respectively). Heat has to be added to the system and its disorder increases. The entropy change is positive.

In the case of solidification and condensation, the opposite is true. The phase transition is exothermic. Heat is emitted by
the system to the surroundings and the enthalpy change is negative. The system changes from a disordered to a more ordered
state (liquid to solid and vapour to liquid, respectively). The entropy change is negative.

The heat required to melt 1 kmol of a substance is called the molar enthalpy of melting, LM (M = melting). The same
amount of heat is released when the substance solidifies:

�HM = LM (5.46)

The molar entropy of melting is

�SM = LM

TM

(5.47)

where TM is the melting point.
The heat required to evaporate 1 kmol of a substance is called the molar enthalpy of evaporation, LB (B = boiling). The

same amount of heat is released when the substance condenses:

�HB = LB (5.48)

The molar entropy of evaporation is

�SB = LB

TB

(5.49)

where TB is the boiling point.
A survey of the transformations is given in Table 5.1. The phase transformations are accompanied by discontinuous changes

of volume and entropy (Figure 5.11).
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Figure 5.11 (a) Volume as a function of temperature. (b) Entropy as a function of temperature.

Table 5.1 Survey of phase transformations.

Process Molar enthalpy
change �H

Molar entropy
change

Melting �HM =LM �SM =LM/TM

Solidification �Hs = −LM �Ss =−LM/TM

Evaporation �Hv =LB �Sv =LB/TB

Condensation �Hc = −LB �Sc =−LB/TB

5.2.8 Gibbs Free Energy. Chemical Potential

Consider a system in thermal equilibrium with its surroundings at temperature T . An irreversible spontaneous change of state
of the system always leads to an increase in the entropy of the system. This can be expressed mathematically by Clausius’s
inequality:

dS − dQirreversible

T
> 0 (5.50)

If the process is reversible, the inequality is replaced by an equality:

dS − dQreversible

T
= 0 (5.51)

Heat transfer at constant pressure is of special interest in chemistry and metallurgy. If there is no work other than expansion
work, dQ = dH (page 221) and Equations (5.50) and (5.51) can be summarized as

dS − dQ

T
≥ 0

which can be written as

TdS −dH ≥ 0 (5.52)

Equation (5.52) is valid if either of the following two conditions is fulfilled:

1. The enthapy of the system is constant:

dSH�p ≥ 0 (5.53)

2. The entropy of the system is constant:

dHS�p ≤ 0 (5.54)

Conditions 1 and 2 can be expressed in a simpler and more understandable way by introduction of another thermodynamic
function, the molar Gibbs free energy, defined as

G = H −TS (5.55)
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When the state of the system changes at constant temperature, the change in G is given by

dG = dH −TdS (5.56)

Equations (5.53) and (5.54) can be expressed in terms of the Gibbs free energy as

dGT�p ≤ 0 (5.57)

At equilibrium G has a minimum and dGT�p = 0. The change in the thermodynamic function G can be regarded as driving
force (page 239) in chemical and metallurgical reactions. The general rule is

• At constant temperature and pressure processes always occur spontaneously in the direction of decreasing G.

The Gibbs free energy is a most useful device for studying the driving forces of various processes, for example chemical
reactions, solution processes, melting/solidification and evaporation/condensation processes.

Chemical Potential

Chemical potential is a very useful and important concept, widely used in chemistry. It is closely related to the Gibbs free
energy. It will be defined below.

Consider a binary solution of two elements A and B. The solution is characterized by its composition, given in mole
fractions xA and xB. The chemical potential of a pure element A is defined as the Gibbs free energy of the element:

	0
A = G0

A (5.58)

The chemical potential of A varies with the concentration of A in the solution as

	A = 	0
A +RT ln�xA
A� (5.59)

where �A is the activity coefficient. If the mole fraction xA is small, �A ≈ 1, otherwise <1. The last term in Equation (5.59)
can be split into two terms. One of them, RT ln�A, describes the deviation of the solution from an ideal solution.

Hildebrand proposed in 1929 the so-called regular solution model, which means that

RT ln 
 = Lmixx
2
B (5.60)

where Lmix is given by Equation (5.38) on page 231.
Chemical potential will be used in connection with diffusion in binary alloys later in this chapter.

5.3 Transformation Kinetics

One of the most important aims of material science is to develop materials with suitable properties for various purposes. By
using various types of production methods, alloying and heat treatment are applied to cause changes in the structure of the
materials to promote the desired properties. Changes in the microstructure may, for example, concern composition, crystal
structure and grain size.

The structure changes occur as a result of rearrangements of atoms in the material, for example phase changes, diffusion
and chemical reactions. However, very few products are thermodynamically stable. It is necessary to examine the stability of
the new materials to make sure that they retain their optimal properties.

Hence it is of great interest to study the thermodynamic conditions of transformations, the transformation rates and the
stability of the desired structure of the material. These topics will be discussed in Sections 5.3, 5.4 and 5.5, mainly in terms
of chemical reactions. The derived equations and other statements are valid also for other kinds of transformations. The
introductory general parts are followed by some specific applications to gases.
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5.3.1 Reactions and Transformations

Chemical reactions can be either homogeneous or heterogeneous. Homogeneous reactions occur, as the name indicates, at the
same time over a volume of a single phase. This is the case when two gas components react with each other, giving a third
gas component or several gas components.

Heterogeneous reactions occur when two phases are involved. The reaction occurs at the interface between the two phases.
The reaction rate is influenced by the transport rate of the reactants to the interface.

In metallurgy, most reactions are heterogeneous. However, the theory of heterogeneous reactions is developed from the
theory of homogeneous reactions. Hence it is natural to start with a short review of homogeneous reactions. The sections
include the theory of homogeneous reactions and applications on chemical reactions in gases.

5.3.2 Thermodynamic Condition for Equilibrium

Most transformations occur at constant temperature and pressure. On page 236 we found that:

• At constant temperature and pressure processes always occur spontaneously in the direction of decreasing Gibbs free
energy.

Or in other words:

• A system is in equilibrium when the Gibbs free energy of the system is a minimum.

The equilibrium condition can also be written as

dGT�p = 0 (5.61)

where dG is the change in Gibbs free energy as a result of an infinitesimal change in the system. If we differentiate the
definition of Gibbs free energy G = H −TS we obtain

dG = dH −TdS (5.62)

where

dH = dU +pdV (5.63)

In liquids and solids the change in volume associated with a change in the system is normally very small and can be
neglected. Then dH ≈ dU and Equation (5.62) can be replaced by

dG ≈ dU −TdS (5.64)

5.3.3 Stable and Metastable States

There are two types of equilibrium. They are best understood by a mechanical analogy.
Consider the block in Figure 5.12. Figure 5.12a represents an unstable state of the system. The slightest deviation means

that the system does not return to its former position.
In Figure 5.12b, the centre of gravity of the block has its lowest possible position. The system is in a stable state. After a

slight deviation in position the system goes back to its original position spontaneously.
In Figure 5.12c, the centre of gravity is higher than in Figure 5.12b. An infinitesimal deviation makes the system return to

its former position. If the centre of mass is moved to its highest position, it may turn over into the stable state in Figure 5.12b.
Figure 5.12c does not represent a true stable state but is locally stable. Such a state is called metastable. It is necessary to add
energy to a metastable state to transform it into a stable state.
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(a) (b) (c)

Figure 5.12 Mechanical equilibria. (a) Unstable state; (b) stable state; (c) metastable state. Reproduced from J. W. Martin and
R. D. Doherty, Stability of Microstructures in Metallic Systems, 1st edn. © 1976 Cambridge University Press.

Example 5.3

A block with the dimensions 10 × 10 × 20 cm is transferred from position c in Figure 5.12 to position b. Its mass is 16 kg.
The gravity constant g ≈ 10 m/s2. Calculate

(a) the difference in potential energy between the initial state and the final state
(b) the energy which has to be added to transfer the block from position c to position b.

Solution:

(a) The energy difference equals the change in potential energy of the centre of mass of the block:

Upot i −Upot f = mg�hi −hf� = 16×10×
(

0�20
2

− 0�10
2

)
= 8�0 J

(b) It is necessary to add enough energy to move the block into its highest position (Figure 5.12c) before it can spontaneously
move into its stable state.

�U = mg�hmax −hi� = 16×10×
(

0�10
√

5
2

−0�10

)
= 1�9 J

Answer:

(a) The difference in energy is 8 J.
(b) The energy barrier that has to be overcome is ∼2 J.

The additional energy which has to be added to a metastable state to transform it into a stable state is called activation
energy.

5.3.4 Activation Energy

Metastable states are very common in material science. Energy is required to bring an atom from one site to another in the
case of diffusion, for instance. In chemical reactions the bonds existing between the atoms must be broken before new ones
can be formed.

In general, there exists an energy barrier which has to be overcome before a transformation of a system can occur, in
analogy with Figure 5.12 and Example 5.3. This is shown in Figure 5.13.

Initially the system is in a metastable state and has the Gibbs free energy Gi. In the final stable state the free energy is Gf .
A transformation of the system from the metastable to the stable state requires addition of energy to overcome the energy
barrier and ‘lift’ the system into the activated state or transition state.
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Ga

Gf

Gi

G a act

Initial state

Final state

Reaction Coordinate

Transition state

−ΔG =  Driving force

G*

Figure 5.13 Variation of Gibbs free energy Ga act during a transformation of a system. The reaction coordinate can be anything which
defines the progress of the transformation, i.e. time or concentration of a component. Reproduced with permission from J. Burke, The
Kinetics of Phase Transformations in Metals. © 1965 Pergamon Press (now with Elsevier).

The necessary additional energy is called the activation energy. It is defined as the height of the energy barrier and is
denoted Ga act,

2 where the subscript ‘a’ refers to ‘atom’.
The activation energy represents an energy difference and could be denoted �Ga act. However, we restrict the use of � to

energy differences between final and initial states in order to avoid confusion.

5.3.5 Driving Force

The total change in free energy associated with the transformation is

�G =
final∫

initial

dG = Gf −Gi (5.65)

�G is always negative for a spontaneous process.
As a measure of the probability of the transformation, the concept of driving force is used. It is defined as

Driving force = −�G = −
final∫

initial

dG = −�Gf −Gi� (5.66)

This term is not very suitable as the driving force has the dimension of energy, but it is so established and generally accepted
that it is difficult to alter.

The driving force of a spontaneous process is always a positive quantity. The larger the driving force is, the more likely
will be the transformation.

5.3.6 Endothermic and Exothermic Reactions and Transformations

Figures 5.14 and 5.15 show the variation of the internal energy U during a reaction or transformation. They appear very
similar to Figure 5.13, but there is a very important difference:

2 If the activation energy refers to l kmol it is designated Gact without the subscript ‘a’. Compare page 220.
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U

Transition state

U* 

U 0 U act

U initial

Reaction Coordinate

Vibrational
levels

Final state

Initial state

Ufinal

Figure 5.14 Endothermic reaction. The variation of the
internal energy during an endothermic transformation. Vibra-
tional energy (indicated schematically) should be included in U .
�U = Uf −Ui > 0. Energy is absorbed during the transformation.
Reproduced with permission from J. Burke, The Kinetics of Phase
Transformations in Metals. © 1965 Pergamon Press (now with
Elsevier).

U

Vibrational
levels

U *

U 0 act U act

Uinitial

Ufinal

Reaction Coordinate

Initial state

Final state

Transition state

Figure 5.15 Exothermic reaction. The variation of the
internal energy during an exothermic transformation. Vibra-
tional energy (indicated schematically) should be included in U .
�U = Uf −Ui < 0. Energy is released during the transformation.
Reproduced with permission from J. Burke, The Kinetics of Phase
Transformations in Metals. © 1965 Pergamon Press (now with
Elsevier).

• �G is always <0 whereas �U can be positive or negative.
• If Uf > Ui the transformation is endothermic.
• If Uf < Ui the transformation is exothermic.

Vibrational energy has to be included in the total energy. It depends on the vibrational quantum number v. It can, as a first
approximation, be written as (Chapter 2)

Vibrational energy = constant× �v + 1/2� (5.67)

Equation (5.67) shows that vibrational energy is present even at the lowest vibrational quantum number v = 0. This is in
agreement with quantum mechanics but a deviation from classical physics.

5.3.7 Thermal Energy Distribution in Particle Systems

In connection with the kinetic theory of gases, the energy distribution of noninteracting particles in a gas as a function of
temperature was discussed in Chapter 4.

The distribution of particles in different available energy states influences the reaction rates of thermally activated reactions
and transformations. The fraction of particles with energies above a given energy is of particular interest and will be
considered below.

Maxwell–Boltzmann Distribution Law

The Maxwell–Boltzmann distribution law in its general form can be written as [Equations (4.19) and (4.20) on page 175]

Ni =
N0

Z
gie

− ui
kBT (5.68)

Z is called the partition function and is given by

Z = g1e
− u1

kBT +g2e
− u2

kBT + � � � +gie
− ui

kBT =∑
i

gie
− ui

kBT (5.69)
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where
ui = energy of particle i
Ni = number of particles which have the energy ui

N0 = total number of particles
gi = statistical weight of energy level ui

kB = Boltzmann’s constant
T = absolute temperature of the system.

If all the energy levels have equal statistical weight, the distribution function will be simplified to

Ni =
N0

e− u1
kBT + e− u2

kBT + � � � + e− ui
kBT

e
− ui

kBT (5.70)

Thermal Energy Distribution in a Gas

In a gas, the mean kinetic energy of the particles is a function of the temperature T :

ui =
3
2

kBT (5.71)

The Maxwell–Boltzmann distribution law applied to a gas at temperature T can be written as

Ni = constant × e
− ui

kBT (5.72)

The constant can be determined by use of the relationship

N0 =∑
Ni = constant ×∑

i

e
− ui

kBT (5.73)

Fraction of Particles with Energies Equal to or Greater than a Given Energy
The fraction fi of the N0 particles which have the thermal energy ui per particle is then

fi =
Ni

N0

= e
− ui

kBT

∑
e

− ui
kBT

(5.74)

where
fi = the fraction of the N0 particles which has the kinetic energy ui per particle.

The high-energy part of the Maxwell–Boltzmann distribution function is shown in Figure 5.16. The larger ui is, the smaller
will be the fraction fi.

The denominator of the expression in Equation (5.74) is the partition function Z:

Z =∑
e

− ui
kBT (5.75)

Application to Reactions and Transformations

Equation (5.74) can be applied to reactions and transformations. For better agreement with the terminology in this chapter,
we will replace ui from the statistical derivation in Chapter 4 by Ua i. Both designations mean the internal energy
per atom.

The fraction f ∗ of atoms which have enough thermal energy to overcome the energy barrier, i.e. the activation energy
Ga act, discussed in Section 5.3.4 (Figure 5.13 page 239), is found if we insert ui = Ua act into Equation (5.74). Ua act is the
internal energy related to Ga act by the relationship (Ha act ≈ Ua act)

Ga act = Ua act −TSa act (5.76)
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f i

f*

U a act

U a

Figure 5.16 The fraction fi as a function of the energy u. The dark area under the curve (extrapolated to infinity) is proportional to the
total number of atoms with a thermal energy Ua > Ua act .

The total number of atoms which have a thermal energy ≥Ua act is represented by the black area under the curve in Figure 5.16.
The critical fraction f ∗ can be written as

f ∗ = e
− Ua act

kBT

Z
(5.77)

where Z is the partition function [Equation (5.75)]. If Ua act >> kBT the fraction is very small and the transformation rate will
be very low. This case will be discussed in the next section.

5.4 Reaction Rates

5.4.1 Reaction Rates of Thermally Activated Reactions and Transformations

A necessary but not sufficient condition for a transformation is a positive driving force. Another condition is that energy
corresponding to the activation energy must be added.

The available energy for this is the random thermal energies of the atoms. If the activation energy is comparatively low and
the temperature is high, many atoms have kinetic energies high enough to overcome the energy barrier and the transformation
occurs readily. The reaction rate is high. The definition of reaction rate will be given below.

If the activation energy is high compared with the thermal energies of the atoms, very few of them have energies high
enough to overcome the barrier. The reaction rate becomes very low and the transformation or reaction will be prohibited in
practice.

Obviously the thermal energy distribution among the atoms is essential for the reaction rate. This will be discussed below.
The result will be used to derive a mathematical model for the reaction rate.

5.4.2 Definition of Reaction Rate

The reaction rate at the time t of a transformation is defined as

k = dftrans�t�

dt
(5.78)

where the fractional transformation ftrans�t� is defined as

ftrans�t� = number of atoms per unit volume in the final state at the time t

total number of atoms per unit volume available for transformation at t = 0

The reaction rate k can also be expressed as the fraction of the total number of particles which reach the final state per
unit time.

The reaction rate is normally a function of time.

5.4.3 Reaction Rates of Simple Reactions and Transformations

Consider a transformation which involves only one basic atomic process associated with the internal activation energy Ua act.
The reaction rate is proportional to three factors:
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• the frequency  with which the atoms have the opportunity of reaction or transformation
• the fraction f ∗ of the total number of atoms in the initial state, which has enough thermal energy to overcome the energy

barrier
• a probability factor associated with the activation entropy term in the relationship �Ha act ≈ Ua act�:

Ga act = Ua act −TSa act (5.76)

For a gas, the frequency factor  equals the collision frequency between the atoms. In a solid it equals the vibration
frequency vibr of the atoms in the crystal lattice.

The fraction factor f ∗ is that given in Equation (5.77) on page 242.
The probability factor Pa act is given by the relationship

Sa act = kBlnPa act

or

Pa act = e
Sa act

kB (5.79)

where Sa act is the entropy and kB is Boltzmann’s constant. The probability can be related to concrete matters depending of
the type of transformation.

Hence the reaction rate can be written as

k = Pa act

Z
e

− Ua act
kBT (5.80)

or

k = 

Z
e

− Sa act
kB e

− Ua act
kBT = 

Z
e

− Ua act−Sa actT

kBT = 

Z
e

− Ga act
kBT (5.81)

where
k = reaction rate
 = the frequency with which the atoms have the opportunity of reaction or transformation
Z = partition function (page 175 in Chapter 4)
kB = Boltzmann’s constant
Ua act = activation energy of the reaction
Ga act = free activation energy of the reaction.

The entropy factor and /Z are often combined into one factor A and Equation (5.81) can be written as

k = Ae
− Ua act

kBT (5.82)

Equation (5.82) is known as the Arrhenius equation.

5.4.4 Determination of Reaction Rates

Model Restrictions

The theory of reaction rates given above is simplified in the following respects:

1. No attention has been paid to the thermal activation of the atom in the initial and activated states. This changes the
activation free energy Ga act and the internal activation energy Ua act.

2. The transformation process may not occur in a single well-defined way. There may be alternative ways with different
activation energies.

3. The transformation process may consist of several consecutive steps with several atoms involved. Each step has its own
activation energy.
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The first objection is not serious. In most cases it is most reasonable to neglect the thermal excitation as we have done
above.

Concerning the second objection, it is true that a transformation process can occur in many different ways. One
example is diffusion where the atoms move from one site to another. Two common diffusion mechanisms (pages
255–256) are

• interstitial motion of the atom in the crystal lattice from one site to another
• exchange of an atom and a vacant site (substitutional motion).

Each alternative transformation process has its own activation energy, which does not affect the final result. One example is
the use of catalysts which promote chemical reactions by lowering the activation energy without changing the final products
at all.

Each alternative transformation is associated with a free energy curve like that in Figure 5.13 on page 239. All the curves
form a free energy surface. The alternative with the lowest possible activation energy is that which is the most probable. It
corresponds to the curve in Figure 5.13, which can be described as a path on the free energy surface leading from the initial
state over the pass down to the final state. The activated state corresponds to a saddle point on the free energy surface as
shown in Figure 5.17.

Energy

Activated state

Reaction coordinateInitial state

Figure 5.17 Free energy surface with a saddle point.

The third objection against the simple theory is that a transformation may be a multiple-step process with several atoms
involved. This objection is serious. Equations (5.79)–(5.82) in Section 5.4.3 are not valid in such cases.

Determination of Reaction Rates

Calculation of theoretical values of reaction rates requires estimation of the internal activation energy Ua act and the frequency
factor A.

The calculation of Ua act is no easy mathematical task. It is necessary to know the binding forces of the atom or group of
atoms in the initial state and the interaction forces when the atoms move from their initial sites to the saddle point position,
corresponding to the activated state. Very approximate calculations have been performed only in a few cases referring to
relatively simple atomic processes.

By studying the reaction rate as a function of temperature, it is possible and easy to derive experimental values of Ua act

and A. The Arrhenius equation (page 243) can be written as

ln k = ln A− Ua act

kBT
(5.83)

The reaction rate is measured as a function of temperature. If both A and Ua act are independent of temperature, Equa-
tion (5.83) gives a straight line when the experimental values of ln k are plotted versus 1/kBT . The graph can be used for
calculation of the constants A and Ua act, as shown in Figure 5.18.



Transformation Kinetics: Diffusion in Solids 245

ln k
ln A

slope = −Ua act

1/ kBT

Figure 5.18 Graphical derivation of the reaction rate of a transformation or a chemical reaction.

Numerous chemical reactions and other transformation processes follow the Arrhenius equation.
A discrepancy between theoretical and experimental values is likely if the reaction or transformation involves several

consecutive steps. In this case, the simple theory is not valid and the corresponding curve in Figure 5.18 will be bent.
The free activation energy [Equation (5.76) on page 241] can be calculated if the entropy Sa act can be estimated. Such

calculations require a detailed knowledge of the atomic configuration in the initial and activated states. Only semiempirical
methods are available as Sa act cannot be measured separately by experiments.

5.5 Kinetics of Homogeneous Reactions in Gases

The basic theories and general results in the preceding sections will be applied to the concrete case of reactions in gases.
Reactions in gases are always homogeneous.

5.5.1 Collision Theory of Homogeneous Chemical Reactions

Consider, for example, two gas components A and B, which react with each other and form a third component AB. A normal
assumption is that the rate of formation of AB is proportional to the concentrations of A and B:

A +B → AB

− dx′
A

dt
= −dx′

B

dt
= dx′

AB

dt
= k1xAxB (5.84)

where
xi = mole fraction of component i (A, B, AB)
t = time
k1 = reaction rate in the forward direction.

However, a chemical reaction is always proceeding in both directions as soon as some AB molecules have been formed.
The reaction is reversible.

A +B ← AB

A and B are formed at a rate proportional to the concentration of AB. This can be written in the following way:

dx′′
A

dt
= dx′′

B

dt
= −dx′′

AB

dt
= k2xAB (5.85)

where k2 is the reaction rate in the backward direction.
The total change of each component �i = A� B� AB� can be written as

dxi

dt
= dx′

i

dt
+ dx′′

i

dt
(5.86)

By combining Equations (5.84)–(5.86), the total change of components can be described by

dxA

dt
= dxB

dt
= −dxAB

dt
= −k1xAxB +k2xAB (5.87)
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Equation (5.87) contains two different rate constants. It can be written as

dxA

dt
= dxB

dt
= −dxAB

dt
= −k1xAxB

(
1− k2

k1

xAB

xAxB

)
(5.88)

By applying the basic thermodynamic relationship between free energy and concentration �G = G0 +RT ln x� we can derive
an expression for the driving force of the reaction:

−�G = Gi −Gf = GAB −GA −GB

or

−�G = G0
AB −G0

A −G0
B +RT ln xAB −RT ln xA −RT ln xB

which gives the driving force of the reaction:

−�G = −�G0 +RT ln
xAB

xAxB

(5.89)

where
−�G = driving force of the reaction
�G0 = free energy difference of the standard state.

After transformation of Equation (5.89), we have at any time during the reaction

xAB

xAxB

= e
−�G+�G0

RT (5.90)

At equilibrium −�G = 0 and the time derivatives in Equation (5.88) are zero, which gives

k2

k1

= xAxB

xAB

= e
−�G+�G0

RT = e− �G0

RT (5.91)

Inserting the expression for k2/k1 from Equation (5.91) and that for xAB/xA xB from Equation (5.90) into Equation (5.88),
we obtain after reduction

dxA

dt
= dxB

dt
= −dxAB

dt
= −k1xAxB

(
1− e− �G

RT

)
(5.92)

Hence it is sufficient to determine only one rate constant to describe the dynamics of the chemical reaction.
If the exponent −�G/RT is small, series expansion of the exponential function gives a simplified expression for the

reaction rate:

dxA

dt
= dxB

dt
= −dxAB

dt
= −k1xAxB

−�G

RT
(5.93)

The study of reaction rates is performed far from equilibrium, often in the initial stage. Real time analysis means that the
composition of the gas mixture is followed as a function of time during the reaction, for example by registering the absorption
spectra of each component. Another method is quenching, when the reaction is stopped for example by sudden cooling and
the composition is analysed.

There are many types of homogeneous chemical reaction. For each component the reaction rate can generally be written as

Reaction rate = kx
p
Ax

q
B

where p is the order in component A, q the order of component B and p + q the overall order of the reaction.
It is not the aim of this section to discuss the overall reaction rates of the various types of reactions. Instead, we concentrate

on studying the basic rate constant k, its temperature dependence and the possibility of expressing k as a function of
thermodynamic quantities.



Transformation Kinetics: Diffusion in Solids 247

5.5.2 Temperature Dependence of the Rate Constant

It has been known since the end of the 19th century that there is a very strong temperature dependence of the reaction rate of
a chemical reaction. Arrhenius showed that the temperature dependence of the rate constant can be described empirically by
Equation (5.83) on page 244, where A and Ua act are two constants. They can easily be derived from experimental values by
plotting ln k against 1/kBT (Figure 5.18 on page 245). The slope of the straight line is −Ua act. The constant A can be derived
from the intersection of the line and the ln k axis.

Arrhenius claimed that

1. A is proportional to the total number of atomic collisions in the gas per unit time and unit volume.
2. Ua act is the minimum kinetic energy of the atoms necessary for a reaction to occur.

Collisions between two atoms result in a chemical reaction only if the available energy exceeds the activation energy Ua act.

• The reaction rate k is proportional to the number of collisions per unit time and unit volume which result in a chemical
reaction.

The reaction can be described by the empirical equation

I = colle
− Ua act

kBT (5.94)

where
Ua act = activation energy of the reaction
I = number of collisions per unit time and unit volume which lead to a chemical reaction
coll = total number of collisions per unit time and unit volume
T = absolute temperature.

5.5.3 Rate Constant as a Function of Thermodynamic Quantities

The basic rate constant of a reaction can be expressed in terms of thermodynamic quantities. It is also possible to evaluate the
overall reaction rate in terms of concentrations and thermodynamic quantities.

According to the kinetic theory of gases, the collision frequency equals the mean velocity divided by the mean free path.
Using Equation (4.10) on page 173 and Equation (4.57) on page 193, we obtain

coll = kin

l
= 16Nr2

√
�RT

M
(5.95)

where
coll = total number of collisions per unit time and unit volume
vkin = mean velocity of the molecules
l = mean free path
N = number of molecules per unit volume
r = radius of the molecules
R = gas constant
T = absolute temperature
M = molar weight of the molecules.

If Equation (5.95) is applied to a homogenous chemical reaction of the first order, it will be identical with empirical
Equation (5.94) if k = constant × I and A = constant ×coll and we obtain

k = 16Nr2

√
�RT

M
e

− Ua act
kBT (5.96)
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Figure 5.19 According to Eyring the activation energy = Ga act . Reproduced with permission from J. Burke, The Kinetics of Phase
Transformations in Metals. © 1965 Pergamon Press (now with Elsevier).

where the right-hand side represents the number of collisions per unit time and unit volume times the fraction of intermediate
activated complex �AB�∗.

The calculated pre-exponential factor coll in Equation (5.94) turns out to be too large compared with experimental values.
In order to obtain a better description of experiments, Eyring among others suggested that the activation energy Ua act could
be replaced by and identical with the change in Gibbs free activation energy, which is shown in Figure 5.19:

Ga act = Ha act −TSa act (5.76)

If this expression for Ga act is introduced into Equation (5.96) instead of Ua act, we obtain

k = 16Nr2

√
�RT

M
e

− Ga act
kBT (5.97)

or

k = 16Nr2

√
�RT

M
e

Sa act
kB e

− Ha act
kBT (5.98)

As before (Figure 5.18 on page 245), the pre-exponential factor

k = 16Nr2

√
�RT

M
e

Sa act
kB

and also the activation enthalpy �−Ha act� can easily be determined experimentally. The calculated values agree better with
reality than the pure value of coll in Equation (5.96) as the activation entropy Sa act is negative. We will come back to the
important quantities Ha act and Sa act in Section 5.5.5.

−Ha act is often designated Q and is identical with the activation energy of the reaction. Ha act = Ua act if the volume is
constant.

5.5.4 Driving Force and Reaction Rate of Homogeneous Chemical Reactions

A chemical reaction always occurs under the influence of a driving force.

Reaction A+B → AB

First we consider the reaction of formation of component AB by collision of A and B:

A +B → AB

The driving force is the difference between the free energy in the initial state and the final state:

Driving force = −�GAB = −
final∫

initial

dG = −�Gf −Gi� = GA +GB −GAB (5.99)
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−ΔGAB

Figure 5.20 Driving force −�GAB of a chemical reaction. Reproduced with permission from J. Burke, The Kinetics of Phase Transfor-
mations in Metals. © 1965 Pergamon Press (now with Elsevier).

where −�GAB is the driving force for formation of component AB. The driving force is always >0 for spontaneous processes.
The driving force is a thermodynamic quantity. It is only a function of the final and initial states and is independent of the
activation energy Ga act (Figure 5.20).

As we have seen in Section 5.4.3, the rate of the reaction is strongly influenced by the activation energy. The rate constant
can be written as

k1 = 16Nr2

√
�RT

M
e

− Ga act
kBT (5.100)

Reaction AB → A+B

The driving force of the reverse reaction, the reaction of formation of components A and B:

AB → A +B

is

Driving force =−�GA+B = −
final∫

initial

dG = −�Gf −Gi� = GAB − �GA +GB� (5.101)

The driving force has the same size in the two cases but opposite sign, depending on the direction of the reaction.

G

G*

GA+GB

GAB

Reaction Coordinate

Activated state

A+B –

AB

 G a act

ΔGA+B

 G a act+ΔGA+B

Figure 5.21 Driving force −�GA+B of the chemical reaction AB → A +B. Reproduced with permission from J. Burke, The Kinetics of
Phase Transformations in Metals. © 1965 Pergamon Press (now with Elsevier).

Figure 5.21 shows that the activation energy of formation of A +B by decay of AB can be written as Ga act +�GA+B. The
energy is supplied either by collisions or by loss of vibrational energy of the AB molecule. Hence the rate constant can be
written as
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k2 = 16Nr2

√
�RT

M
e

− Ga act+�GA +B

kBT (5.102)

where −�GA +B is the driving force for formation of components A and B. It is independent of the activation energy
Ga act +�GA +B.

Reaction AB � A+B

If we introduce the rate constants in Equations (5.100) and (5.102) into Equation (5.87) on page 245, the reaction rate can
finally be written as

dxA

dt
= dxB

dt
= −dxAB

dt
= 16Nr2

√
�RT

M
e

Sa act
kB e

− Ha act
kBT

(
−xAxB +xABe

− �GA +B

kBT

)
(5.103)

where
xi = mole fraction of component i �i = A� B� AB�
t = time
N = number of molecules per unit volume
M = molecular weight of component
r = radius of the molecules
Sa act = activation entropy related to the activation free energy Ga act

−Ha act = activation enthalpy related to the activation free energy Ga act

−�GA+B = driving force of the reaction AB → A +B.

5.5.5 Activated Complex Theory

The simple hard-sphere collision theory (Section 5.5.1) on page 245 as a model for homogeneous gas reactions often gives
poor agreement between theoretical and experimental values of the frequency factor A of the reaction rate [Equation (5.82)
on page 243]. The theoretically calculated values are in most cases considerably higher than the experimental values. The
calculated values for different reactions become essentially the same, independent of the structure of the reactants.

As we have mentioned on page 248, better agreement is obtained if the internal activation energy Ua act is replaced by the
free energy difference Ga act.

A still better method is to apply the so-called activated complex theory. The problem is mainly to calculate the quantities
Sa act and Ha act with sufficient accuracy. This is best done by the activated complex theory, which is alternatively called the
transition state theory.

Activated Complex Theory

An approach to improve the agreement between theoretical and experimental values of the reaction rate is to abandon the
simple collision theory and apply the activated complex theory on homogeneous gas reactions.

The theory is based on accurate calculation of the total energy of the system. It includes the interactions between the
nuclei, their potential and kinetic energies and their interaction with the electrons and the interaction between the electrons.
The calculations cannot be performed without some simplifying assumptions. The motions of the nuclei and of the electrons
are treated independently of each other. The methods of quantum chemistry and high-capacity computers are necessary for
the calculations.

An energy surface can be constructed which gives a detailed description of the reaction from beginning to end. Initially the
reacting atoms A and B are far from each other. The reaction process is described by a path along the energy surface. The
reaction follows the path of lowest possible energy as shown in Figure 5.22.

The reactants A and B initially are in the reactant valley. During the reaction they have to move across a ‘mountain pass’
or a col on their way to the product valley.



Transformation Kinetics: Diffusion in Solids 251
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(AB)*
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Figure 5.22 Energy surface illustrating a homogeneous gas reaction. The reactant valley is on the nearest side of the ‘mountain chain’.
The product valley is on the other side of the ridge.

At the saddle point, a so-called activated complex �AB�∗ is formed. The activated complex is similar to a molecule except
that it has no stable state. It can either form a product, i.e. move on into the product valley, or decay, i.e. go back into the
reactant valley.

The lowest point of the mountain pass represents the transition state. At the same time it is the highest point on the
‘minimum energy path’ �A +B�− �AB�∗ − �AB�.

The energy of the activated complex is a function of the structures of the reactants and the product or products.

Calculation of the Rate Constant

Rate Constant in Terms of Statistical Mechanics Functions
According to the activated complex theory, the reaction rate can be written as

−dA
dt

= k1 �A� �B� = v∗ [�AB�∗] (5.104)

where
�� = concentration
k1 = rate constant of formation of AB∗ from A and B
v∗ = frequency of passage of the activated complex over the ‘mountain’ pass.

The reaction rate equals the frequency v∗ times the number of activated complex. v∗ also represents the frequency with
which a complex splits apart into products or forms a stable product.

k1 can be expressed as a function of the partition functions Z of the particles in their energy levels at the bottom of the
energy curves (Figures 5.14 and 5.15 on page 240):

k1 = �
kBT

h

Z�AB�∗
ZAZB

e
− U 0

kBT (5.105)

where
k1 = rate constant of formation of �AB�∗ from A and B
� = transmission coefficient
kB = Boltzmann’s constant
Z�AB�∗ = partition function of the activated complex in its lowest vibrational level
ZA = partition function of particles A in their lowest vibrational level
ZB = partition function of particles B in their lowest vibrational level
U0 = U0�AB�∗ − �U0A +U0B� = the difference between the lowest energy level of the activated complex and the sum of the

lowest energy levels of particles A +B
h = Planck’s constant
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The transmission coefficient is the probability that the activated complex will form products instead of going back to
reactants.

The second factor in Equation (5.105) represents the frequency v∗:

v∗ = kBT

h
(5.106)

Equation (5.105) is the final theoretical expression of the bimolecular rate constant given by the activated complex theory. It
includes factors which depend on the properties of the reactants and the activated complex.

Rate Constant in Terms of Thermodynamic Functions
The rate constant of formation of an activated complex can be expressed with the aid of thermodynamic functions instead of
partition functions:

A +B → �AB�∗ → products

The chemical equilibrium constant K∗ can be written as

K∗ = ��AB� ∗�
�A� �B�

(5.107)

Combining equations (5.104), (5.106) and (5.107), we obtain

k1 = kBT

h
K∗ (5.108)

Using thermodynamic relationships we obtain for the transition state

G∗ = −RT ln K∗ (5.109)

and

G∗
a act = H∗

a act −TS∗
a act (5.110)

where G∗ = G∗
a actNA (NA = Avogadro’s number).

The final expression will be

k1 = kBT

h
e

− G∗
a act

kBT = kBT

h
e

S∗
a act
kB e

− H∗
a act

kBT (5.111)

where
k1 = rate constant
G∗

a act = free energy of activation
kB = Boltzmann’s constant
S∗

a act = activation entropy
H∗

a act = activation enthalpy.

S∗
a act and H∗

a act, which depend on the structure, shape and other properties of the reactants and the activated complex, can
be calculated theoretically.

Comparison Between the Collision Model and the Activated Complex Model of Reaction Rates

The hard-sphere model [Equation (5.103) on page 250] will be compared with the activated complex model [Equation (5.105)
on page 251 and Equation (5.111) above].

The activated complex theory gives much better agreement with experimental values of the frequency factor A than the
simple hard-sphere collision theory. In the latter case, the model gives values which are practically constant, independent of
reaction.
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The reason is that the activated complex theory involves the properties of the reactants and products. Its disadvantage is the
complex and extensive calculations.

Sections 5.3–5.5 may give the impression that reaction kinetics concern only chemical reactions. This is not the case. The
laws of reaction kinetics are valid for many other types of time-dependent processes, for example solidification and diffusion.
The rest of this chapter will be devoted to diffusion in solids, which is of great importance in many phase transformation
processes in alloys.

5.6 Diffusion in Solids

In most crystal growth and solidifications processes, mass transport by diffusion is very important. Detailed descriptions of
various crystallization processes require knowledge of the mechanisms of diffusion in gases, liquids and solids.

The origin of diffusion is the random motion of atoms, ions or molecules in a medium. An example of a pure random
motion is the motion of the molecules in a gas, where the net transfer of molecules is zero. Even if the mobilities of atoms
and ions in liquids and solids are much lower than those in gases, diffusion occurs in the latter cases also. Diffusion in liquids
will be treated briefly in Chapter 8. The mechanism of diffusion in solids will be discussed below.

* *

* *
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* *

* *

* *

* *

* *

* *

* *

* *

* *

Figure 5.23 In the absence of a concentration gradient the tracer
atoms are uniformly distributed on average. The number of radioac-
tive atoms is greatly exaggerated in Figures 5.23 and 5.24 compared
with the number of ordinary atoms. Reproduced with permission from
A. G. Guy, Elements of Physical Metallurgy, 2nd edn. © Addison-
Wesley Publishing Company, Inc. (now under Pearson Education).
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Figure 5.24 The diffusion of the radioactive atoms occurs
in both directions but is larger from left to right than in
the opposite direction owing to the horizontal concentra-
tion gradient. Reproduced with permission from A. G. Guy,
Elements of Physical Metallurgy, 2nd edn. © Addison-Wesley
Publishing Company, Inc. (now under Pearson Education).

In a pure solid, self-diffusion, i.e. random motion of the atoms, which is always present, is hard to observe as all atoms
are identical. As mentioned in Chapter 4 on page 208, diffusion in a pure medium can be studied by the use of radioactive
atoms of the same kind, so-called tracer atoms. At equilibrium the tracer atoms are uniformly distributed (Figure 5.23) and
the numbers of jumps per unit time of atoms across an arbitrary plane in opposite directions are equal.

If the distribution of tracer atoms in a pure solid is made uneven (Figure 5.24) or the alloying atoms in a binary alloy are
not uniformly distributed, the random motion of the atoms is overlapped by a systematic net motion of the atoms, in a special
direction. Such a combined motion is called diffusion and results in mass transport.

The systematic motion is always caused by a driving force, which in most cases is a concentration difference. Mass transport
caused by concentration gradients is very common in crystal growth and solidification processes. Diffusion occurs from higher
towards lower concentration.
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The diffusion phenomena in solids have been studied from atomic and statistical points of view. The results of such analyses
can be related to the macroscopic diffusion equations and quantities. This topic will be discussed in this chapter as a basis for
applications to crystallization and other processes.

5.6.1 Basic Theory of Diffusion. Diffusion Coefficient

The basic law of diffusion relates the net flux of diffusing atoms to the concentration gradient of the atoms in the medium,
which can be a gas, a solid or a liquid.

The diffusion coefficient or diffusivity is defined with the aid of Fick’s first law (Chapter 4 on page 199), provided that we
use numbers/unit volume or kmol/unit volume as the concentration unit. If mole fraction x is used as the concentration unit,
a factor 1/Vm (molar volume) has to be inserted on the right-hand side of the equation.

Fick’s law can alternatively be written as

J = −D grad c Fick’s first law (5.112)

In one dimension (y axis), we obtain

J = −D
dc

dy
(5.113)

where
J = flux or net amount of diffusing atoms passing a cross-section per unit area and unit time (kg/m2 s or number of

atoms/m2 s or kmol/m2 s)
D = diffusion coefficient or diffusivity �m2/s�
c = concentration of diffusing atoms (kg/m3 or number of atoms/m3 or kmol/m3)
y = coordinate in the diffusion direction.

The minus sign in Equations (5.112) and (5.113) indicates that the atoms diffuse from higher towards lower concentration.
The flux and the concentration gradient always have opposite signs. If mole fraction x is used as the concentration unit instead
of c, a factor 1/Vm (molar volume) has to be introduced on the right-hand side of Equation (5.113).

Experimental determination of diffusion coefficients is described on pages 273–274.

5.6.2 Diffusion Mechanisms

Diffusion in solids differs strongly from diffusion in gases, which was treated in Chapter 4. The gas molecules are free to
move in any direction at random and the forces between them can be neglected.

In a solid the atoms are bound to their positions in the crystal lattice. The forces between the atoms are strong in a solid.
However, the system is not rigid as the atoms vibrate with high frequencies around their equilibrium positions. This motion,
which enables the atoms to move if they have enough energy, makes diffusion within the solid possible.

When an atom moves from one site to another in a crystal lattice it has to overcome an energy barrier of the kind which
has been sketched in the preceding sections of transformation kinetics. Diffusion is a typical example of a process to which
the theory of transformation kinetics can be applied.

The Diffusion Process

Each atom in a crystal lattice is incessantly exposed to vibrations of various, very high frequencies. In most cases the atoms
return to their original sites. Occasionally, but seldom, there will be an opportunity for an atom to change its site from one
position to another. Lucky circumstances, which all must coincide in time, are the following:

• The atom must gain enough energy due to random interference of phonons to overcome the energy barrier.
• Simultaneously the neighbouring atoms must be in such vibrational positions that there is enough space for the jumping

atom to pass.

The probability of a jump is very low for each single atom but the number of atoms in a crystal is very large. Hence
diffusion does occur in solids (compare pages 261–262 for a concrete example).



Transformation Kinetics: Diffusion in Solids 255

Diffusion Mechanisms

Diffusion of atoms in the interior of a crystalline solid can occur in many different ways. The eight mechanisms, presented in
three subgroups below, are explained briefly in Figure 5.25a–h:

• exchange mechanism
• ring mechanism
• interstitial mechanism
• indirect interstitial mechanism
• crowdion mechanism

• single vacancy mechanism
• divacancy mechanism
• relaxation mechanism

The most common diffusion mechanisms in solids are the interstitial mechanism and the vacancy mechanism.

In addition to the ‘volume’ diffusion mechanisms described above, there are other mechanisms such as dislocation diffusion
pipe mechanisms, grain boundary mechanisms and surface diffusion mechanisms. These mechanisms appear in open regions
where the regular lattice structure no longer exists and where diffusion occur more easily than in the interior of a crystal.

These diffusion mechanisms are difficult to analyse because the detailed atomic paths at grain boundaries, surfaces and
dislocations are difficult to calculate. However, the numbers of dislocations, grain boundaries and surfaces are relatively
independent of temperature while the volume effects increase rapidly with temperature. Hence the volume mechanisms
dominate at high temperatures and the others are in most cases of minor importance in solids. They may be of importance in
liquids (Chapter 8).

Below we will restrict the discussion to the interstitial and vacancy mechanisms, which are the most common. The former
is important for interstitially dissolved alloying elements in metals. The latter is applied in connection with substitutionally
dissolved alloying elements in metals.

5.6.3 Theory of Diffusion

All diffusion mechanisms are accompanied by displacements of neighbouring atoms. In this section we will study the diffusion
process from an atomistic point of view and relate the diffusion coefficient D to thermodynamic and atomic quantities.

Concentration of Point Defects in a Crystalline Solid at Equilibrium

All crystals contain defects to a smaller or greater extent. At a given temperature there is an equilibrium number of defects
per unit volume. The equilibrium concentration of defects depends on the temperature.

Addition of a point defect, for example a vacancy or an interstitial, always increases the total energy of a crystal. We will
calculate the equilibrium concentration of defects as a function of temperature. For this purpose we will use the condition
given on page 236:

• At constant temperature and pressure processes always occur spontaneously in the direction of decreasing G.

At equilibrium the Gibbs free energy G has a minimum, which corresponds to the condition

dGT�p = 0 (5.57)

Equilibrium Vacancy Concentration as a Function of Temperature
We consider a system consisting of 1 kmol of a pure element. The free energy of the system (page 235) is

G = H −TS (5.55)

where H is the molar enthalpy (page 221) and S the molar entropy.
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Figure 5.25 (a) Direct exchange of two adjacent atoms. Unlikely process in close-packed crystal structures. (b) Direct exchange of three
or more adjacent atoms. Complex and unlikely mechanism in solids but likely in liquids.
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Figure 5.25 (c) An atom moves from one interstitial site to an adjacent interstitial site. Very frequent mechanism in imperfect crystal
lattices especially for small interstitial atoms. (d) An interstitial atom of nearly the size of a lattice atom replaces a lattice atom which
moves to an interstitial site, either by a collinear impact (case 1) or by a non-collinear impact (case 2). Two successive indirect interstitial
mechanisms are required to move the interstitial atom from one interstitial site to another. (e) Crowdion mechanism is a third type of
interstitial diffusion. The additional atom is included in the crowdion configuration, a row of up to 10 atoms. Each atom in the configuration
is slightly displaced from its equilibrium lattice position. The entire crowdion configuration can move along the row. After passing one
configuration length, each atom is displaced one atomic distance. The centre of the configuration is marked by a circle.

Group 3:

Vacancy Mechanism 

(f)

→

Divacancy Mechanism 

(g )

→

→
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Figure 5.25 (f) A lattice atom moves from its position to a vacant lattice site. The vacancy moves in the opposite direction. The vacancy
mechanism is very frequent in imperfect crystal lattices, especially at high temperatures. (g) If bound vacancy pairs are present in a crystal,
lattice diffusion by divacancies may be appreciable, especially at high temperatures. The mechanisms of single and double vacancies are
similar but there are differences owing to the vacancy binding and the lack of symmetry. (h) If the atoms in the region of a vacancy relax
inwards into a vacant site the lattice structure in the region may disappear. The region behaves like a liquid. The atoms in the region
of ‘localized melting’ can diffuse relatively freely. Figures 5.25 a–h are reproduced from J. R. Manning, Diffusion Kinetics for Atoms in
Crystals. © D. Van Nostrand Company, Inc., Princeton, NJ.
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The condition (5.57) on page 236 will be used to find the equilibrium vacancy concentration as a function of temperature.
When a small amount, nvac kmol, of vacancies are formed at constant temperature, the Gibbs free energy of the system

increases by the amount

�G = �H −TdS = �Hvac formnvac −T�S (5.114)

where �Hvac form is the molar formation enthalpy of vacancies.
Provided that the number of vacancies is small, the vacancies do not interact, which means that the vacancy enthalpy dH

increases linearly with nvac. This fact has been used in Equation (5.114).
The entropy change dS is the sum of two terms:

dS = �Svac formnvac +�Smix (5.115)

where �Svac form is the molar formation entropy of vacancies.
The first term corresponds to the entropy increase, related to the molar formation energy, when nvac kmol of vacancies are

formed.
The second entropy term, �Smix, is due to the mixing of 1 kmol of the pure element and nvac kmol of vacancies. This term

can be found by application of Equation (5.42) on page 232, n = 1+nvac� xA = nvac/�1+nvac� and xB = 1/�1+nvac� and we
obtain

�Smix = −R

[
nvac

1+nvac

ln
(

nvac

1+nvac

)
+ 1

1+nvac

ln
(

1
1+nvac

)]
(5.116)

As nvac << 1 we may use �1+nvac� ≈ 1 and the second term in Equation (5.116) can be neglected. Hence we obtain

�Smix = −Rnvac ln nvac (5.117)

Combinination of Equations (5.114), (5.115) and (5.117) gives

�G = ��Hvac formnvac −T�Svac formnvac +RTnvac ln nvac� (5.118)

As nvac = 0, the equilibrium condition (5.57) above gives

�Hvac form −T�Svac form +RT ln nvac = 0 (5.119)

We solve for nvac in Equation (5.119):

nvac = e− �Hvac form−T�Svac form

RT = e
− �Ha vac form−T�Sa vac form

kBT (5.120)

or

nvac = e− �Gvac form

RT = e
− �Ga vac form

kBT (5.121)

where �Gvac form is the Gibbs free energy of formation of 1 kmol of vacancies and �Ga vac form the free energy of forming one
vacancy.

The concentration of vacancies can be expressed as the fraction xvac form of the total number of atoms in the crystal. It is
equal to nvac:

xvac = e− �Gvac form

RT = e
− �Ga vac form

kBT (5.122)

Equation (5.122) is the equilibrium fraction of vacancies as a function of temperature.
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Equilibrium Concentration of Large Interstitials as a Function of Temperature
Large Interstitials
The same type of equation can be derived in the same way for large interstitials as Equations (5.120)–(5.122) for vacancies:

xi form = ni = e− �Hi form−T�Si form

RT = e− �Gi form

RT (5.123)

or in terms of one interstitial atom instead of 1 kmol of interstitial atoms:

xi form = ni = e
− �Ha i form−T�Sa i form

kBT = e
− �Ga i form

kB T (5.124)

where xi form is the fraction of interstitials of the total number of atoms of the same kind in the crystal. The subscript ‘i’ stands
for interstitial.

If we insert reasonable values of �Hvac� �Svac� �Hi and �Si into Equations (5.120) and (5.123) or (5.124) for metals, we
find that the heat of formation of a large interstitial is much higher than that of a vacancy. Calculations show that the fraction
of large interstitials is very much lower than the fraction of vacancies and can be neglected in comparison with the vacancy
fraction, which normally is of the magnitude 10−3–10−4 at the melting point of the metal.

Energy Barrier of a Jumping Atom

A necessary condition for a jump of an atom is that the atom must have enough energy to overcome the energy barrier between
the initial and final sites.

(a)

G

1
(b)

2 3
Position

Figure 5.26 (a) Sequence of configurations involved when an interstitial atom moves from one normal site to an adjacent one. At a normal
site, which represents an equilibrium position, the free energy has a minimum value. If the interstitial atoms are smaller than the solvent
atoms the diffusion is greatly facilitated.
(b) Variation of the free energy of the entire crystal lattice when a diffusion atom is reversibly moved from position 1 (the initial state)
to 2 (the intermediate state) to 3 [the final state in (a)]. Reproduced from P. Shewmon, Diffusion in Solids. © 1963 McGraw-Hill Book
Company, Inc.

In Figure 5.26b, the free energy of a jumping interstitial atom is plotted as a function of its position. The curve has a
maximum corresponding to the saddle point in Figure 5.22 on page 251. The free energy difference �Gi barrier between the
saddle point and the normal sites of the interstitial atom is the energy barrier which has to be overcome by the jumping atom.

The fraction of the available interstitials which occasionally have sufficient energy from phonon collisions to pass the
energy barrier can be written as

fi barrier = e
− �Ga i barrier

kB T (5.125)

where �Ga i barrier is the energy barrier for an interstitial atom.
Analogously, we obtain the fraction of atoms nearby a vacancy which have sufficient energy to jump:

xvac barrier = e
− �Ga vac barrier

kBT (5.126)

where Ga vac barrier is the energy barrier for a lattice atom jump.
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The lower the energy barrier is, the more frequent will be the atom jumps. A high-energy barrier corresponds to infrequent
atom jumps.

Interstitials and vacancies must be treated separately during calculations as their energy barriers differ. As the fraction of
large interstitials is very small compared with the fraction of vacancies, we will concentrate on jumps of lattice atoms to
vacancies below.

Jump Frequency of Lattice Atoms to Vacancies. Activation Energy

The influence of an energy barrier, i.e. activation energy Ua act, on reaction rates has been treated in Section 5.4.3 on page
242. It resulted in the Arrhenius equation [Equation (5.82) on page 243]. Eyring has shown that if the internal energy Ua act

is replaced by the Gibbs free energy Ga act, better agreement with experiments is obtained (Section 5.5.3 on page 247).
The transformation kinetics of homogeneous chemical reactions and diffusion in a solid are analogous. The collision

frequency of reacting atoms corresponds to the vibrational frequency of the atoms in the crystal lattice. Activation energy is
present in both cases. The reaction rate corresponds to the jump frequency of the diffusing atoms. Below we will derive an
expression for the jump frequency and analyse the origin of the activation energy.

The number of lattice atom jumps per unit volume and unit time is a function of three factors:

1. the number of tentative jumping atoms per unit volume, i.e. atoms which have a vacancy as nearest neighbour
2. the fraction of the number of atoms in the initial state which have enough energy to overcome the energy barrier
3. the frequency with which the atoms have the opportunity to jump.

Considering the conditions above, we can write the number of atom jumps per unit volume and unit time as a product of five
factors:

Fjump = N0xvacZcoordfbarriervibr (5.127)

where
Fjump = number of atom jumps per unit volume and unit time
N0 = number of atoms per unit volume
xvac = fraction of vacancies
Zcoord = number of adjacent equivalent sites per atom, i.e. number of nearest neighbours per atom
fbarrier = fraction of atoms with a vacancy as nearest neighbour which have enough energy to overcome the energy barrier
vibr = vibration frequency of the lattice atoms.

The number of vacancies per unit volume is N0xvac. The number of tentative jumping atoms per unit volume which surround
the vacancies is N0xvacZcoord. Of these, only N0xvacZcoordfbarrier have enough energy to pass the energy barrier between the
initial and final sites. This is the number of atoms which fulfil conditions 1–3 above. Each of them has vibr chances per
second to jump as the number of vibrations per second is equal to the vibration frequency vibr.

The number of atom jumps per unit volume and unit time equals the number of atoms which fulfil conditions 1–3 times
the vibration frequency of the atoms.

Using Equations (5.122) and (5.126), we can rewrite Equation (5.127) as

Fjump = N0e
− �Ga form

kBT Zcoorde
− �Ga barrier

kBT vibr (5.128)

If we divide Equation (5.128) by N0 and introduce the jump frequency of an atom or for short the jump frequency fjump:

fjump = Fjump

N0

(5.129)

we obtain

fjump = Zcoordvibre
− Ga form +Ga barrier

kBT (5.130)
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If we apply the relationship G = H −TS to both exponential terms, we obtain

fjump = Zcoordvvibre
Sa form

kB e
− Ha form

kBT e
Sa barrier

kB e
− Ha barrier

kBT (5.131)

In Equation (5.131), the two entropy factors can be included in a constant.
The sum of the formation energy of a vacancy and the energy barrier is called the activation energy of diffusion. Using an

analogous designation of the activation energy as in earlier sections of transformation kinetics, we can write

Ha act = Ha form +Ha barrier (5.132)

In solids the product pV is small compared with H and U . Hence the enthalpy H can be replaced by the internal energy U
and the activation energy is also given by the expression

Ua act = Ua form +Ua barrier (5.133)

The jump frequency can be written as

fjump = Zcoordvvibre
− Ua act

kBT (5.134)

where Ua act = activation energy of diffusion.
Equation (5.134) has the same form as Equation (5.82) on page 243 but should rather be compared with Equation (5.97)

on page 248.

Jump Frequency of Small Interstitial Atoms

In the case of small interstitials, the conditions are different compared with vacancies. Vacancies are formed in the crystal
lattice and their concentration varies strongly with temperature. Small interstitials such as H and C are solved foreign atoms
with a given concentration independent of temperature and there is no formation energy. The interstitial sites exist in excess
and the majority of them are empty.

The same equation as for lattice atom jumps to vacancies:

fjump = Zcoordvvibre
− Ua act

kBT (5.134)

is valid for small interstitials, but with an important modification: the jump frequency depends on the activation energy but
Ua act = Ua barrier as Ua form = 0.

Small interstitals jump if they have energy enough to overcome the energy barrier between adjacent sites. The interstitials
become activated by phonon collisions.

The Diffusion Coefficient of Lattice Atoms as a Function of Atomic Quantities and Temperature

The atoms in all crystal lattices vibrate around their equilibrium positions. Owing to the Maxwell–Boltzmann distribution of
their thermal energies (Section 5.3.7 on page 240), some atoms have energies large enough to leave their lattice site and jump
to an adjacent site. Diffusion in crystals occurs by atom jumps by means of some of the mechanisms mentioned on pages
255–258, preferably the vacancy and interstitial mechanisms.

Therefore, the diffusion coefficient is related to atomic quantities and to the atom motion in the lattice. In this section we
will derive such relationships. We start with the simplest case, a one-dimensional random walk in a crystal with a single jump
distance.

One-dimensional Random Walk in a Crystal with a Single Jump Distance
Consider a bar of a binary crystalline material with a cubic structure. It has a concentration gradient of the solute along the y
axis. The solute atoms are assumed to jump only upwards and downwards. When they change position, they jump a distance
±dj along the y axis.
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Figure 5.27 Parallel planes in a cubic crystal structure.

Consider two adjacent (010) lattice planes 1 and 2 in a crystal with cubic structure (Figure 5.27). The following assumptions
are made:

n1 = number of diffusing atoms per unit area and unit time which jump from plane 1 to plane 2
f12 = jump frequency of an atom from plane 1 to plane 2
n2 = number of diffusing atoms per unit area and unit time which jump from plane 2 to plane 1
f21 = jump frequency of an atom from plane 2 to plane 1.

The net flux J in the diffusion direction, i.e. from plane 1 to plane 2, will be

J = n1f12 −n2f21 (5.135)

To obtain a relationship between the diffusion coefficient D and atomic quantities we must find a relationship between
the surface concentration n of atoms and the volume concentration c of atoms in the crystal lattice. Consider the slice of the
crystal in Figure 5.28.

c atoms/unit volume

A

dj A

n  atoms per unit area

Figure 5.28 Part of a crystal with cubic structure.

The number of diffusing atoms included in the slice with a thickness dj, equal to the distance between planes 1 and 2, and
a cross-section of A can be written in two ways:

nA = djAc (5.136)

where dj is the jump distance. n depends on position. For small changes of y we have

n2 = n1 +dj

dn

dy

or

n1 −n2 = −dj

dn

dy
= −dj

dn

dc

dc

dy
= −djdj

dc

dy
(5.137)

where the relationship dn/dc = dj is obtained if Equation (5.136) is divided by A and we take the derivative of Equation (5.136)
with respect to c.

The expression

n1 −n2 = −d2
j

dc

dy
(5.137)
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is introduced into Equation (5.135) and we obtain for f12 = f21 = fj because of the symmetry of a cubic structure

J = −d2
j fj

dc

dy
(5.138)

This equation can be identified with Fick’s first law [Equation (5.113) on page 254], which gives an expression of the
coefficient of diffusion in one direction. In Figure 5.27 we have chosen the y direction. In the general case we choose an
arbitrary direction [uvw] (Chapter 1, pages 15–16) and obtain

D = d2
j fj (5.139)

where
dj = jump distance in the diffusion direction
fj = jump frequency.

Equation (5.139) has been derived for a single atom jump only in a diffusion direction along one of the x, y or z axes.

Cubic Crystals
In the three-dimensional cubic crystal the jump distances are equal and the atoms can jump to any vacant nearest neighbour
site (Figure 5.29 on page 263). Hence there are six equivalent nearest neighbour directions: [100], �1̄00�, [010], �01̄0�, [001]
and �001̄�. The total jump frequency (compare pages 259–260) will be

fj total = Zcoordfj = 6fj =
∑
uvw

fuvw (5.140)

where Zcoord is the number of adjacent sites (nearest neighbours) and the subscript uvw indicates the six jump directions.
The relationship fj = fj total/6 is introduced into Equation (5.139). Equation (5.139) corresponds to two jump directions,

i.e. jumps along one axis (x� y or z). The diffusion coefficient for diffusion in a cubic crystal along three axes and six jump
directions will be three times higher. As the effective jump distance in the direction of the diffusion direction varies for the
six jump directions, D must be written as a sum, extended over the six directions:

D = 3
6

∑
uvw

duvw
2fj =

1
2

∑
uvw

duvw
2fj (5.141)

The effective jump distance duvw is equal to dj in the direction of the diffusion and zero for perpendicular jumps. The jump
frequency is assumed to be the same in all the jump directions.

Equation (5.141) is valid for crystals with simple cubic structure, FCC structure and BCC structure. An example of the
calculation of D with the aid of Equation (5.141) will be given in the next section.

To obtain an idea of the magnitudes of the quantities involved, we realize that dj must be of the same magnitude as the
inter-atomic distances, 10−10 m. Near their melting point most FCC metals have diffusion coefficients of magnitude 10−12 m2/s.
Using Equation (5.140) we obtain a magnitude of fjump equal to 108 s−1.

Hence the atoms jump from one site to another in the lattice 100 million times per second. This seems to be incredibly
high, but the figure should be compared with the vibration frequencies of the atoms in the lattice. From measurements of
the vibration energies one knows that the vibration frequency equals 1012–1013 s−1. That means that only 0.01–0.001% of the
vibrations lead to a jump.

General Case
Most crystals have more complicated structures than the cubic structure. The diffusion coefficient is not necessarily the same
in different crystallographic directions as both fuvw and duvw may vary. In the general case, the diffusion coefficient can be
calculated from the relationship

D = 1
2

∑
uvw

fuvwd2
uvw (5.142)

where
fuvw = jump frequency of possible atom jumps to neighbouring sites in the jump direction [uvw]
duvw = effective jump distance, i.e. its projection on the direction of diffusion.

Equation (5.142) is very useful for the calculation of the diffusion coefficient in various directions of crystals. To show its
practical use we will apply the general equation to a cubic structure and a hexagonal close-packed structure.
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Simple Cubic Structure

O

d

Figure 5.29 Simple cubic crystal structure.

Consider a simple cubic crystal where the diffusion is directed along the x axis. Equation (5.142) can be checked by applying
it to a simple cubic structure (Figure 5.29). Consider an atom in position (0, 0, 0) and let the frequency subscripts refer to the
nearest neighbouring sites of possible jumps. Equation (5.142) gives

D = 1
2

[
f100 d2

j +f100

(−dj

)2 + �f010 +f010 +f001 +f001�×02
]

(5.143)

It may seem confusing that the jump distances are set to zero for jumps perpendicularly to the diffusion direction, but it is
important to observe that it is only the projections on these directions that count and contribute to the diffusion. The frequency
is the same.

For symmetry reasons, all the frequencies are equal and Equation (5.143) can be reduced to

D = 1
2

[
fjdj

2 +fj

(−dj

)2
]

= fjdj
2 = 1

6
fj total dj

2 (5.144)

in agreement with Equation (5.141) and Equation (5.140), which give

D = 1
2

∑
uvw

duvw
2fj =

1
2

×2dj
2 × fj total

6
= 1

6
fj total dj

2

Hexagonal Close-packed Structure

b
a

c

O
AA

Figure 5.30 HCP crystal structure. See pages 23–24 in Chapter 1. Reproduced with permission from B. D. Cullity, Elements of X-Ray
Diffraction, © Addison-Wesley Publishing Company, Inc. (now under Pearson Education).

Consider the central atom O in the upper horizontal plane in Figure 5.30. The diffusion occurs along the vertical c axis and
we want to find the coefficient of diffusion in this direction. Jumps to the six symmetrical adjacent sites in the horizontal
plane at distances a and the three sites in horizontal planes above and below the central atom are the nearest neighbour sites
which have to be taken into consideration.

Equation (5.142) is applied to the 12 possible jumps from O to each of the 12 sites:

Dc = 1
2

[
6fc

(c

2

)2 +6fa ×02

]
= 3

4
fcc

2 (5.145)

where
fc = jump frequency from O to the six ‘middle’ sites
fa = fb = jump frequency from O to the six symmetrical sites.
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The jumps from O to the symmetrical sites in the upper horizontal plane are perpendicular to the diffusion direction and do
not contribute to the diffusion. The jumps to the middle sites have jump distance projections equal to �dj� = c/2.

Example 5.4

Find the diffusion coefficient in an HCP crystal in terms of jump frequencies and jump distances provided that the diffusion
has the direction AA′ shown in Figure 5.30.

Solution:

The diffusion coefficient along the axis AA′ in the horizontal plane will be

DAA′ = 1
2

fa

[
a2 + �−a�2 +2

(a

2

)2 +2
(
−a

2

)2
]

+ 1
2

fc

[
2
(a

2

)2 +2×0+2
(
−a

2

)2
]

The 6 atoms in the horizontal plane The 2×3 ‘middle’ atoms

where the projections of the jump distances from O to the middle atoms on the axis AA′ are −a/2, 0 and a/2, respectively.
After reduction, we obtain

DAA′ = 3
2

faa
2 + 1

2
fca

2

Answer:

The diffusion coefficient in the direction AA′ is

DAA′ = 3
2

faa
2 + 1

2
fca

2

A comparison between Equation (5.145) and the result above confirms that

• The diffusion coefficient varies with the direction in noncubic crystals.

Diffusion Coefficient as a Function of Activation Energy and Temperature

In the preceding sections we found that the diffusion coefficient is proportional to the jump frequency and a function of the
square of the jump distance. The latter is substantially independent of temperature whereas the jump frequency varies strongly
with temperature. According to Equation (5.134) on page 260, we have

fjump = f0e
− Ua act

kBT (5.134)

Hence the diffusion coefficient can be written as

D = D0e
− Ua act

kBT (5.146)

where D0 is a material constant, which includes f0 and the influence of the jump distance.
Equation (5.146) is the important relationship between the diffusion coefficient and the activation energy of diffusion. The

higher the activation energy is, the lower will be the diffusion coefficient. The diffusion coefficient increases with increase in
temperature.



Transformation Kinetics: Diffusion in Solids 265

Self-diffusion

The theory of diffusion, which we have discussed so far in Sections 5.6.1–5.6.3, includes only one type of diffusing atoms.
It is strictly valid only for diffusion in pure solids and valid to a good approximation for dilute binary alloys, where only the
solute atoms diffuse. In these cases the diffusion coefficient is defined by

JA = −DA

dcA

dy
(5.147)

where
JA = flux of diffusing atoms A relative to the crystal lattice
DA = diffusion coefficient of atoms A
cA = concentration of atoms A in terms of number of atoms per unit volume
y = coordinate.

In the case of diffusion of radioactive tracer atoms A∗ in a metal of pure A atoms, the diffusion coefficient in Equation (5.147)
is called the self-diffusion coefficient or intrinsic diffusion coefficient.

As we shall see in Section 5.6.4, this quantity is of minor interest in systems with more than one diffusing component.

5.6.4 Diffusion in Alloys

So far we have only discussed diffusion in solids with a single diffusing component, for example self-diffusion by the vacancy
mechanism. In these cases the theory given in the preceding sections is valid.

In alloys with two or more components, diffusion is in most cases more complicated, mainly for two reasons:

• There are several diffusing components.
• Atoms of different kinds interact, which influences the diffusion and cannot be neglected.

The treatment of diffusion with several diffusing components requires an extension of the theory of diffusion and a new
interpretation of the concept of diffusion coefficient. We shall mainly discuss binary alloys.

To extend the theory of diffusion we need both thermodynamics and the theory of transformation kinetics. A more general
condition for the driving force of diffusion will be introduced. The diffusion rates of the components in an alloy are different.
Each component has its own driving force. This leads to an equation system, one equation for each component, where the
interactions between atoms of different kinds are considered.

Driving Force of Diffusion

Fick’s first law on page 254 is the common law of diffusion. It gives the impression that the driving force of diffusion is
the concentration gradient of the diffusing element. This is true in most cases, but there are rare cases of diffusion when the
diffusing element diffuses from lower to higher concentrations or diffuses with no concentration difference at all. An example
is given on page 274.

This is a contradiction of Fick’s first law but not to the general physical laws. Diffusion is a spontaneous process and at
constant pressure and temperature the general condition for spontaneous processes, given on page 236, must be valid.

• At constant temperature and pressure, processes always occur spontaneously in the direction of decreasing G:

dGT�p < 0 (5.57)

To be able to use this condition to derive an expression for the driving force of diffusion, we must relate the Gibbs free
energy and the concentration of the diffusing element. This can be done by using the concept of chemical potential, which
we introduced on page 236:

The chemical potential of a pure element A is defined as the Gibbs free energy of the element:

	0
A = G0

A (5.58)



266 Physics of Functional Materials

The chemical potential of A varies with the concentration of A in the solution as

	A = 	0
A +RT ln xA
A (5.59)

The activity coefficient 
A is a function of concentration. In solutions with a composition close to the pure element A, the
activity coefficient approaches the value 1.

We assume that the chemical potential is a function of no other quantities than the concentration distribution of the solution.
In this case the driving force of diffusion can be written as

−�Gdiff = grad G = grad 	 (5.148)

The rigorous condition for the driving force of diffusion is obtained by replacing the concentration gradient by grad 	 in
Equation (5.112) on page 254. Instead of Equation (5.113) on page 254, we obtain the proper basic diffusion condition in one
dimension:

J = −L
d	

dy
(5.149)

where L is the diffusion coefficient related to the gradient of the chemical potential.
In the absence of external influences, Equations (5.149) and (5.113) never contradict each other in cases with a single

diffusion component or in binary alloys. The diffusing atoms move from higher towards lower concentration.
If the solid is exposed to electrical fields or other influences and in ternary alloys there are cases when diffusing atoms

move from lower towards higher concentration. In these cases, Equations (5.149) and (5.113) contradict each other and
Equation (5.149) determines the direction of the diffusion flow.

Calculation of the Diffusion Coefficient D as a Function of the Diffusion Coefficient L in Solid Binary Alloys
Equation (5.149) can be applied on the diffusing A atoms:

JA = −LA

d	A

dy
(5.150)

We take the derivative of Equation (5.59) on page 236 is with respect to y, which gives

d	A

dy
= RT

(
1
xA

dxA

dy
+ d ln
A

dy

)
(5.151)

Combination of Equations (5.149) and (5.151) gives

JA = −LA

d	A

dy
= −LART

(
1
xA

dxA

dy
+ d ln
A

dy

)
(5.152)

Alternatively, the diffusion flux can be written, based on Equation (5.113) on page 254 as

JA = −DA

dcA

dy
(5.113)

We want to identify Equations (5.113) and (5.152). Hence we must introduce cA instead of xA into Equation (5.152). The
relationship between the xA and cA can be written as

xA = cA

c0

(5.153)

where
xA = mole fraction of A atoms in the alloy
cA = number of A atoms per unit volume of the alloy
c0 = total number of atoms per unit volume of the alloy.
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Taking the derivative of Equation (5.153) with respect to y gives

dxA

dy
= dcA

c0dy
(5.154)

The expressions in Equations (5.153) and (5.154) are introduced into Equation (5.152):

JA = −LART

(
c0

cA

dcA

c0dy
+ d ln
A

dy

)
= −LA

RT

cA

dcA

dy

(
1+ cAd ln
A

dcA

)

or, as d ln cA = 1/cA

JA = −LA

RT

cA

dcA

dy

(
1+ d ln 
A

d ln cA

)
(5.155)

Identification of Equations (5.113) and (5.155) gives

DA = LA

RT

cA

(
1+ d ln 
A

d ln cA

)
(5.156)

Equation (5.156) is the desired relationship, which holds for all values of cA. In a dilute solution 
A = 1 and Equation (5.151)
can be replaced by

DA = LA

RT

cA

(5.157)

As an example, we will apply the theory to a binary alloy consisting of two pure elements A and B. Their concentrations
can be expressed either as cA and cB (number of atoms per unit volume) or as mole fractions xA and xB.

The total chemical potential of the solution can be written as

	total = xA	A +xB	B (5.158)

where

	A = 	0
A +RT ln xA
A (5.159)

	B = 	0
B +RT ln xB
B (5.160)

In the absence of all external gradients and negligible strain energy, the fluxes of the solute and solvent are functions of the
chemical potential gradients. In a one-dimensional flow in an isotropic binary material there are two concentration gradients,
one for each component.

The two fluxes JA and JB depend on the two gradients of chemical potentials 	A and 	B. In the case of one-dimensional
diffusion we obtain

JA = −LAA

d	A

dy
−LAB

d	B

dy
(5.161)

JB = −LBA

d	A

dy
−LBB

d	B

dy
(5.162)

where
JA� JB = fluxes of components A and B
Lij = constants
	A� 	B = chemical potentials of A and B
y = coordinate along the diffusion direction.

Owing to the interaction between the A and B atoms, ‘mixed’ terms appear in Equations (5.161) and (5.162). The second
term in Equation (5.161) describes how the B atoms affect the diffusion rate of A atoms. The first term in Equation (5.162)
is a measure of the influence of the A atoms on the diffusion rate of the B atoms.
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By use of the relationship between D and L [identification of Equations (5.150) and (5.113)], the equation system can be
replaced by

JA = −DAA

dcA

dy
−DAB

dcB

dy
(5.163)

JB = −DBA

dcA

dy
−DBB

dcB

dy
(5.164)

Equations (5.163) and (5.164), valid for binary alloys, are the equations which correspond to Fick’s first law in systems with
only one diffusing agent.

Diffusion in Binary Alloys

The diffusion in binary alloys depends strongly on the diffusion mechanisms in the alloy. On pages 255–258 we mentioned
that the dominant diffusion mechanisms are the vacancy mechanism and the interstitial mechanism.

The vacancy mechanism occurs in substitutional alloys, where a fraction of the lattice atoms are replaced by other atoms of
similar size. The interstitial mechanism dominates in binary alloys with lighter alloying elements than the lattice atoms. The
diffusion differs widely in the two cases and completely different models of the diffusion have to be applied.

Interstitial Diffusion

O

Interstitial
Mechanism

(c)

Figure 5.25 (c) Interstitial mechanism of diffusion.

Interstitial atoms are normally much smaller than the lattice atoms for simple space reasons. The most typical example of
interstitials in binary alloys is carbon atoms in steel and cast iron. The number of interstitials is small compared with the
number of lattice atoms. Hence the interstitial atoms are normally surrounded by lattice atoms and empty interstitial sites
(Figure 5.25c).

The interstitials and the great number of empty interstitial sites can be regarded as a sublattice of their own and the diffusion
of the interstitials occurs in this sublattice as single-component diffusion. The interaction with the crystal lattice can be entirely
neglected. The crystal lattice behaves like a rigid body and the lattice atoms do not diffuse.

This model of interstitial diffusion works very well. This is the reason why the theory in the preceding sections is valid for
diffusion by the interstitial mechanism. An example is impurity diffusion on solidification, which results in microsegregation
in the solidified product.

Substitutional Diffusion

Vacancy Mechanism 

(f)

→

Figure 5.25 (f) Vacancy mechanism of diffusion.
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The dominant diffusion mechanism of lattice atoms and substitutional atoms is the vacancy mechanism (Figure 5.25f). Each
lattice point is occupied by a substitutional atom A, a lattice atom B or a vacancy. The fact that two types of atoms diffuse
makes substitutional diffusion much more complicated than self-diffusion and interstitial diffusion. The theory, given in the
preceding sections, is not directly applicable.

Below we will discuss the theory of substitutional diffusion in binary alloys and consider the simultaneous diffusion of both
components.

Theory of Substitutional Diffusion in Binary Alloys

Analysis of the Fluxes on Substitutional Diffusion
We consider two bars of metals A and B which are welded together along a cross-section plane (weld plane in Figure 5.31).
The A and B atoms have in most cases different jump frequencies and different diffusion rates. Consequently the atom fluxes
will also be different. As we have mentioned above and will see later, there is a strong interaction between the two types of
atoms. The consequence is that the diffusion coefficients of atoms A and B vary with the composition of the alloy.

We consider the flux of atoms across an arbitrary plane in the alloy, perpendicular to the diffusion direction (Figure 5.31).
We assume that

1. The solute atoms A are smaller than the solvent atoms B.
2. The diffusion rate of the A atoms is larger than that of the B atoms.

As both A and B atoms are assumed to diffuse by the vacancy mechanism, it is reasonable to study the net vacancy flux
in particular. Each atom jump across the plane is connected with the movement of a vacancy across the plane in the opposite
direction. Three driving forces are present, one for the A atoms, one for the B atoms and one for the vacancies.

    Flux of A atoms                                           AJ

    Flux of B atoms                                           BJ

  Resultant flux of atoms                                 AJ + BJ

  Net flux of vacancies                                     vacJ  = − ( AJ + BJ )

            Arbitrary plane, perpendicular to the direction of diffusion

Figure 5.31 Fluxes of A atoms, B atoms and vacancies at substitutional diffusion in the absence of edge dislocations. Driving forces act
on the A atoms, the B atoms and the vacancies. Reproduced with permission from P. Shewmon, Diffusion in Solids. © 1963 McGraw-Hill
Book Company, Inc.

Hence the resultant flux of atoms across the plane is associated with a net flux of vacancies of the same size and opposite
direction. This can be expressed by the ‘material balance’:

JA +JB +J vac = 0 (5.165)

This relationship holds provided that there are no sources and sinks of vacancies in the alloy. In the presence of edge
dislocations (page 26 in Chapter 1) the vector sum of the fluxes is no longer zero. Zero has to be replaced by the rate of
vacancy production or annihilation at the edge dislocations.

The diffusion process and Equation (5.165) correspond to local conservation of vacancies, which is a necessary condition.
It leads to an uneven distribution of vacancies in the alloy. The region to the left of the plane receives an excess of vacancies
whereas the region to the right obtains a vacancy concentration below the average (Figure 5.31).
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Rate of vacancy production / annihilation

Vacancy production

Vacancy annihilation

Position y

− l                          0                           l

Figure 5.32 Excess of vacancies (to the right) is reduced by annihilation at edge dislocations. Lack of vacancies is reduced by vacancy
creation at edge dislocations (to the left). Edge dislocations can act both as sinks and sources of vacancies. For position scale, see Figure 5.34
on page 271. Reproduced with permission from P. G. Shewnon, Transformations in Metals. © 1969 McGraw-Hill Book Company, Inc.

There must be a mechanism which brings the vacancy concentration back to its average value in both regions. The only
realistic and energetically possible means is vacancy annihilation at edge dislocations in excess regions and vacancy production
at edge dislocations in low-vacancy regions (Figure 5.32).

These processes involve deposition of new atomic planes in one region and removal of atomic planes in other regions.
It has been possible to check the theory by observing markers, i.e. insoluble inclusions at the weld plane, and study their
displacement of the weld plane and hence indirectly study the rate at which vacancies are created or annihilated in the alloy to
maintain the equilibrium concentration xvac. The positions of the markers are studied as a function of time. Figure 5.33 shows
the result. A small displacement of the position of the weld plane is observed.

o o o

0                                          o o o

o o o                          B
o o o

o o B o A o A
o o o A

t         A                          o o B A o A                        B
o B o o o A

Figure 5.33 Kirkendall effect. Fast A atoms diffuse to the right and slow B atoms diffuse in the opposite direction. They cause: a vacancy
concentration, lower than the average, in part B; an excess of vacancies in part A; more A atoms in part B than B atoms in part A.
Reproduced with permission from P. Shewmon, Diffusion in Solids. © 1963 McGraw-Hill Book Company, Inc.

Experimental measurements of marker displacements have been performed for many alloys with DA = DB. The effect was
first discovered and interpreted by Kirkendall and Smigelskas in the middle of the 20th century and is called the Kirkendall
effect. It appears in all binary alloys with substitutional structure and different diffusion rates of the solute and solvent atoms.

For the special case that DA ≈ DB, the diffusion process will be much simpler. There will be no flux of vacancies and no
production or annihilation of vacancies at edge dislocations. The concentration of atoms will be constant:

cA + cB = c0

and Equation (5.165) will be simplified to

JA +JB = 0 (5.166)

An analysis of the motion of the diffusing atoms A and atoms B offers a possibility of a better understanding the diffusion
in a binary alloy. For this reason we will discuss the theory of the Kirkendall effect below.
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Chemical Diffusion Coefficient
The simplest possible description of the total diffusion process in a substitutional alloy is obtained if the concept of chemical
diffusion coefficient is introduced. For this purpose we will discuss the simultaneous diffusion of atoms A, atoms B and
vacancies from a mathematical point of view.

Chemical diffusion coefficients are marked with a special sign. The reason for this will be explained on page 272.

Theory of the Kirkendall Effect
Assume as before that the A atoms have a higher diffusion rate than the B atoms. Therefore, an excess of A atoms arises to the
right of the interface (weld plane). This excess is balanced by an excess of vacancies to the left of the interface (Figure 5.34).

Owing to the mass transport, the B part expands (greatly exaggerated in the figure) at the expense of the A part. This leads
to the Kirkendall shift, indicated in Figure 5.34 by short arrows.

We introduce a coordinate system with ỹ connected with the left end of the A part and set up an expression of the B flux
through the interface at time t:

JB�ỹ = l� t� = −DB

�cB

�ỹ
+ vcB�ỹ = l� t� (5.167)

where v is the velocity of the interface in the coordinate system ỹ. The first term on the right-hand side is the usual diffusion
term. The second term has to be added owing to the motion of the interface relative to the origin (the left-hand end of the
A part).

An analogous expression can be set up for atoms A:

JA�ỹ = l� t� = −DA

�cA

�ỹ
+vcA�ỹ = l� t� (5.168)

The total density of atoms is c = cA + cB (5.169)

J A

J B                         B

→ →

A     o   o         +  +  +   +       B       b

← ← ←
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y~

a

B       A

0 l

Figure 5.34 (a) The diffusion in (a) leads to the situation in (b), i.e. an excess of A atoms in part B and an excess of vacancies in part A.
(b) Part B swells and part A shrinks slightly.
(c) This does not result in a displacement of the whole piece of metal as indicated in (b). Instead, the volume changes result in a displacement
of the weld plane as indicated in by small arrows in (c). Reproduced with permission from P. Haasen, Physical Metallurgy, 3rd edn. ©
1996 Cambridge University Press.

In Chapter 4 [Equation (4.84) on page 202] we derived Fick’s second law. We will use it here with concentrations c instead
of mole fractions x and the additional vc term included. We take the partial derivatives of Equation (5.169) with respect to
t and the partial derivatives of Equations (5.167) and (5.168) with respect to y and introduce them into Equation (4.84) The
result is

�c

�t
= �cA

�t
+ �cB

�t
=
(

D̃A

�2cA

�ỹ2
− v

�cA

�ỹ

)
+
(

D̃B

�2cB

�ỹ2
− v

�cB

�ỹ

)
(5.170)
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or, if we assume that the total density c remains constant, we obtain

�c

�t
= �

�ỹ

(
D̃A

�cA

�ỹ
+ D̃B

�cB

�ỹ
− vc

)
= 0 (5.171)

Hence the expression inside the parentheses in Equation (5.171) must be constant. The value of the constant can be determined
from the conditions at ỹ = 0. It is far from the diffusion region and the gradients and v are zero. Hence the expression
inside the parentheses must be zero also at ỹ = l. This condition can be used to solve the velocity v. As c is constant,
xA = cA/c� xB = cB/c and xB = 1−xA, we obtain from Equation (5.171)

v = 1
c

(
D̃A

�cA

�ỹ
+ D̃B

�cB

�ỹ

)
= D̃A

�xA

�ỹ
+ D̃B

�xB

�ỹ
= (

D̃B − D̃A

) �xB

�ỹ
(5.172)

Equation (5.170) is valid for arbitrary compositions. The only possibility then is that Equation (5.170) is divided into two
equations of equal shape, one for each component. One of these equations is Equation (5.173), where v has been replaced by
the expression (5.172):

�cB

�t
= D̃B

�2cB

�ỹ2
− v

�cB

�ỹ
= D̃B

�2cB

�ỹ2
+ (D̃A − D̃B

) �xB

�ỹ

�cB

�ỹ
(5.173)

or

�cB

�t
= �

�ỹ

[
D̃B

�cB

�ỹ
+ (D̃A − D̃B

)
xB

�cB

�ỹ

]

which can be transformed into

�cB

�t
= [

D̃B + (D̃A − D̃B

)
xB

] �2cB

�ỹ2

or

�cB

�t
= (

xAD̃B +xBD̃A

) �2cB

�ỹ2
= D̃

�2cB

�ỹ2
(5.174)

where D̃ is the chemical diffusion coefficient. By identical calculations for the A atoms we obtain (A and B are exchanged)

�cA

�t
= (

xBD̃A +xAD̃B

) �2cA

�ỹ2
= D̃

�2cA

�ỹ2
(5.175)

The differential Equations (5.174) and (5.175) are the versions of Fick’s second law which are used to solve cA and cB as
functions of time and position.

Chemical Diffusion Coefficient or Interdiffusion Coefficient
Equations (5.174) and (5.175) are identical. This means that it is possible to describe the diffusion of both components in
the binary alloy by a single diffusion coefficient, which depends on the diffusion coefficients of the A and B atoms and the
composition of the alloy. The diffusion coefficient is called the chemical diffusion coefficient:

D̃ = xAD̃B +xBD̃A (5.176)

where
D̃ = chemical diffusion coefficient of the binary alloy
xA� xB = mole fraction of element A and B of the alloy
D̃A = diffusion coefficient of A atoms at the given composition of the alloy
D̃B = diffusion coefficient of B atoms at the given composition of the alloy.
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The diffusion coefficients D̃A and D̃B are marked with a special sign (tilde) to indicate very clearly that they vary with the
composition of the alloy (Figure 5.35). They must be distinguished from DA and DB, the self-diffusion coefficients of A and
B (page 265).

If the solution is dilute, xA ≈ 0 and xB ≈ 1, and Equation (5.176) gives

D̃ = DA (5.177)

If the solution is dilute, xB ≈ 0 and xA ≈ 1, and Equation (5.176) gives similarly

D̃ = DB (5.178)

This can be summarized as follows:

• In a dilute solution, the chemical diffusion coefficient is equal to the intrinsic diffusion coefficient of the solute and not the
solvent.

The diffusion coefficients of the two components of a solid binary alloy vary strongly with the composition of the alloy.
This is shown in Figure 5.35 for solid CuNi alloys. For each alloy, for example the one defined by the dotted vertical line in
the figure, the diffusion coefficients for Cu and Ni have been measured by tracer methods (see below). As the corresponding
composition is known, the chemical diffusion coefficient can be calculated from Equation (5.176). In this way, D̃ as a function
of composition can be derived.

m 2/s       D
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NiNi
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DD =

Cu
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10 −15 
Ni

~
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NiD

   Ni

        xNi

10 −16

  0         0.2        0.4       0.6        0.8        1.0
     Cu                                                            Ni

Figure 5.35 The diffusion coefficients of Cu and Ni and the chemical diffusion coefficient D̃ of CuNi alloys as functions of the alloy
composition. Reproduced with permission from A. G. Guy, Elements of Physical Metallurgy, 2nd edn. © Addison-Wesley Publishing
Company, Inc. (now under Pearson Education).

This is not true for alloy melts. The diffusion coefficients in pure metal melts and in binary alloy melts are approximately
equal and of magnitude 10−9 m2/s. As the forces between the atoms are weaker in a melt than in a crystal, it is easy to
understand that the diffusion coefficients of metal melts are much larger than those of the corresponding solid metals.

Experimental Determination of Diffusion Coefficients by Tracer Methods
Diffusion coefficients in solids can in principle be determined in the following way.

The self diffusion coefficient of a metal can be measured with the aid of radioactive atoms in question. At t = 0 a small
amount of tracer atoms are added to one end of a bar of the metal �y = 0�. The times t1� t2� t3� � � � when the tracer atoms
reach the distances y1� y2� y3 from the radioactive end of the bar are measured.
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The atoms start to diffuse towards the other end of the bar at t = 0 under the influence of a concentration gradient of the
tracer atoms. Einstein’s law of random walk gives

y2 = 2Dt (5.179)

y2 is plotted as a function of t and the self diffusion coefficient can be derived from the slope of the straight line.
The tracer atoms have exactly the same properties as the ordinary atoms because their electron orbits are identical. Hence

the diffusion coefficient D̃A∗ will be equal to D̃A.
In this way, the diffusion coefficient D̃A can be measured for AB alloys of arbitrary compositions. By analogous measure-

ments on radioactive B∗ atoms, the diffusion coefficient D̃B can be determined for the same alloys.
For the special case that the alloy consists of pure element A, tracer measurements on A∗ atoms give the self-diffusion

coefficient DA or the intrinsic diffusion coefficient of A.
The self-diffusion coefficient DB can be determined by analogous tracer measurements on B∗ atoms in pure element B

gives the self-diffusion coefficient DB or the intrinsic diffusion coefficient of B.

Example 5.5

Consider Figure 5.35.

(a) Read the self-diffusion coefficients for Ni and Cu from Figure 5.35.
(b) What type of measurements have been done to find the values at the endpoints of the chemical diffusion coefficient curve?

Solution:

(a) We apply the ‘theorem’ on page 273:
In a dilute solution, the chemical diffusion coefficient is equal to the intrinsic diffusion coefficient of the solute and

not the solvent. Hence the intrinsic diffusion coefficient DNi is read where the D̃ curve intersects the line xNi = 0, and the
intrinsic diffusion coefficient DCu is read where the D̃ curve intersects the line xNi = 1.

(b) A small amount of radioactive Cu∗ atoms is added to pure nickel. Measurements of the Cu∗ distribution as a function
of time are performed and the intrinsic diffusion coefficient DCu can be derived from the measurements. Analogous
measurements on radioactive Ni∗ atoms in pure copper give the intrinsic diffusion coefficient DNi.

Answer:

(a) The intrinsic diffusion coefficients are DNi = 5×10−14 m2/s and DCu = 2×10−15 m2/s.
(b) Measurements on small amounts of radioactive Ni∗ atoms in pure copper and measurements on small amounts of radioactive

Cu∗ atoms in pure nickel.

Diffusion in Ternary Alloys

Diffusion in alloys with two or more alloying elements is much more complex than diffusion in binary alloys. The mutual
interaction between the two alloying elements and between each of them and the solvent in ternary alloys influences the
diffusion of the components strongly.

It is difficult to give a mathematical description of the diffusion process. We will restrict the discussion to a concrete
example and choose the Fe–C–Si system (Figure 5.36).

Two properties of the ternary alloy are of special importance:

1. The diffusion coefficient of carbon in iron is about 105 times larger than that of silicon in iron. The diffusion of the Si
atoms is consequently much slower than the diffusion of the C atoms.

2. The carbon atoms are remarkably repelled by silicon atoms.
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Figure 5.36a shows two pieces of steel. The left one contains about 0.45% C and 3.8% Si. The right one has the same size,
shape and cross-sectional area, but it contains about 0.45% C and no Si at all. The two pieces are brought into close contact
with each other and are annealed for 13 days.

At t = 0, before the steel pieces have been brought together, both steel pieces are at equilibrium and their alloying
elements are evenly distributed. Figure 5.36b shows the concentration profile of Si and C before the annealing
starts at t = 0.

When the pieces are brought into close contact with each other, the diffusion of the alloying elements starts. The concentration
profile of C and Si at the end of the annealing time is shown in Figure 5.36c. By that time, considerable diffusion of the carbon
atoms has occurred. C atoms have moved from the left, across the interface, into the right piece of steel. The distribution of
the Si atoms in Figure 5.36c is essentially the same as the dotted profile in Figure 5.36b because the Si diffusion is so slow
that it can hardly be noticed after the annealing time.

a

(a)

 c Si c C

 0.45%                                                                         0.45 % C                      b

Distance from interface

− 2           − 1             0             1              2           cm
(b)

3.8 % Si

cSi cC

0.45% 0.45% C

3.8 % Si

c

  Distance from interface

− 2           − 1             0              1              2           cm
(c)

Figure 5.36 (a) The two pieces of steel are brought into close contact with each other at t = 0.
(b) Concentration distribution of C and Si in two pieces of steel before annealing starts.
(c) Concentration distribution of C and Si after annealing at 1050 �C for 13 days. Reproduced with permission from P. G. Shewmon,
Transformations in Metals. © 1969 McGraw-Hill Book Company, Inc.

The carbon concentration in Figure 5.36c is perturbed about 1.5 cm on each side of the interface during the same time. The
effect is entirely due to the influence of the Si atoms. In the absence of Si in the left bar, no net diffusion of C atoms at all
would have occurred as the pieces would have had the same C concentration.

The explanation is that the chemical potential of carbon is not the same in the two alloys. The difference depends
on the interaction between the Si and C atoms on the left side. The system is not in equilibrium. The uneven chemical
potential causes a driving force of diffusion. The system tries to achieve equilibrium �	1 = 	2� by diffusion in order to
change the carbon concentrations in both alloys. After the annealing time there is still no equilibrium except near the
interface.

This is a typical case when grad 	 and not the concentration gradient represents the driving force of diffusion. At equilibrium
there will be a permanent difference in carbon concentration of the two alloys.
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Summary

� Basic Laws of Thermodynamics

First Law of Thermodynamics

Q = U +A

Some Basic Concepts

Enthalpy: H = U +pV �dH�p = �dQ�p

Entropy: dS = dQ

T
S = kB ln P

Gibbs free energy: G = H −TS

Second Law of Thermodynamics

Reversible processes: �S = 0
Irreversible processes: �S > 0

At constant temperature and pressure processes always occur spontaneously in the direction of decreasing G:

dGT�p ≤ 0

Third Law of Thermodynamics

Nernst’s theorem: the entropy at absolute zero temperature of a pure crystalline substance is zero.

Chemical Potential

The chemical potential of a pure element A is defined as the Gibbs free energy of the element:

	0
A = G0

A

The chemical potential of A varies with the concentration (activity) of A in the solution as

	A = 	0
A +RT ln xA
A

� Thermodynamic Condition for Equilibrium

A system is in equilibrium when its Gibbs free energy is a minimum. The equilibrium condition at constant temperature and
pressure is dGT�p = 0.

The driving force in chemical and metallurgical reactions is

−�G = −
final∫

initial

dG = −�Gf −Gi�

In liquids and solids pV and pdV are small compared with other terms and can be often neglected:

H = U +pV ⇒ H ≈ U

dH = dU +pdV ⇒ dH ≈ dU

dG = dH −TdS ⇒ dG ≈ dU −TdS
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� Ideal and Nonideal Solutions

Ideal Solutions

Homogeneous forces (A–A, B–B) and heterogeneous forces (A–B) are equal. The heat of mixing is zero. The solubility is
complete at all proportions.

Heat of mixing:
−�Hmix = 0

Entropy change of mixing (solids, liquids and gases):

�Smix = −nR�xA ln xA +xB ln xB�

Nonideal Solutions

All other solutions than ideal solutions are nonideal.

−�Hnonideal
mix = HEx

mix = LmixXAXB

Snonideal
mix = Sideal

mix +SEx
mix = �Smix +SEx

mix

� Basic Concepts and Fundamental Relationships of Transformation Kinetics

Activation Energy of a Reaction or a Transformation

The activation energy Uact is the energy barrier which has to be overcome before a transformation of a system can occur.

Driving Force of a Reaction or a Transformation

As a measure of the probability of the transformation, the concept of driving force is used:

Driving force = −�G = −�Gf −Gi�

The driving force of a spontaneous process is always a positive quantity. The larger the driving force is, the more probable
and rapid will be the transformation.

Endothermic and Exothermic Reactions

�G is always <0 whereas �U can be positive or negative.
If Uf > Ui the transformation is endothermic; heat has to be added to the system.
If Uf < Ui the transformation is exothermic; heat is released and transferred to the surroundings.

� Maxwell–Boltzmann Distribution Law

Ni = N0

Z
gie

− ui
kBT

where

Z = g1e
− u1

kBT +g2e
− u2

kBT + � � � +gie
− ui

kBT =∑
i

gie
− ui

kBT

The Maxwell–Boltzmann law can be used to calculate the fraction of thermally excited atoms and vacancies.
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� Reaction Rates of Thermally Activated Reactions and Transformations

The reaction rate is the fraction of the total number of particles which reach the final state per unit time.
The reaction rate of simple reactions and transformations is proportional to three factors:

• the frequency with which the atoms have the opportunity to transform, i.e. the collision frequency between the particles in
a gas or the vibration frequency in a solid;

• the fraction of the total number of atoms in the initial state, which has sufficient thermal energy to overcome the energy
barrier:

f ∗ = e
− Ua act

kBT

Z

where Z is the partition function;
• a probability factor associated with the entropy term in the relationship

Ga act = Ua act −TSa act

Sa act = kB ln Pa act or Pa act = e
Sa act

kB

The reaction rate can be written as

k = 

Z
e

Sa act
kB e

− Ua act
kBT = 

Z
e

− Ua act−Sa actT

kBT = 
Z

e
− Ga act

kBT

or if the entropy factor is included in the constant

k = Ae
− Ua act

kBT Arrhenius equation

The Arrhenius equation can be written as

ln k = ln A− Ua act

kBT

In the case of simple reactions and transformations, this equation can be used to determine reaction and transformation rates
as a function of temperature by plotting ln k as a function of 1/kBT . The activation energy Ua act and the frequency factor A
can be derived graphically.

� Kinetics of Homogeneous Reactions in Gases

A homogeneous reaction occurs simultaneous in the whole available volume.

Collision Theory of Homogeneous Chemical Reactions

A+B → AB

− dxA
′

dt
= −dxB

′

dt
= dxAB

′

dt
= k1xAxB

A+B ← AB

dxA
′′

dt
= dxB

′′

dt
= −dxAB

′′

dt
= k2xAB

which can be summarized as

dxA

dt
= dxB

dt
= −dxAB

dt
= −k1xAxB

(
1− k2

k1

xAB

xAxB

)

or

dxA

dt
= dxB

dt
= −dxAB

dt
= −k1xAxB

(
1− e− �G

RT

)
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Temperature Dependence of the Rate Constant

k = Ae
− Ua act

kBT

A is proportional to the total number of atomic collisions in the gas per unit time and unit volume. Ua act is the minimum
kinetic energy of the atoms necessary for a reaction to occur.

Rate Constant as a Function of Thermodynamic Quantities

According to the kinetic theory of gases, the collision frequency equals the mean velocity divided by the mean free path:

coll = vkin

l
= 16Nr2

√
�RT

M

Arrhenius model: k = 16Nr2

√
�RT

M
e

− Ua act
kBT

Eyring’s model: k = 16Nr2

√
�RT

M
e

− Ga act
kBT

The rate constant is proportional to the number of collisions per unit time and unit volume which results in a chemical reaction:

k = colle
− Ua act

kBT

It is possible to evaluate the overall reaction rate in terms of concentrations and thermodynamic quantities.

� Driving Force and Reaction Rate of Homogeneous Chemical Reactions

A+B → AB

Drivingforce =−�GAB = −
final∫

initial

dG = −�Gf −Gi� = GA +GB −GAB

k1 = 16Nr2

√
�RT

M
e

− Ga act
kBT

AB → A+B

Drivingforce =−�GA+B = −
final∫

initial

dG = −�Gf −Gi� = GAB − �GA +GB�

k2 = 16Nr2

√
�RT

M
e

− Ga AB+�Ga�A+B�

kBT

The total reaction rate is given in the text.

� Activated Complex Theory

The theory is built on the accurate calculation of the total energy of the system. It includes the interactions between the
nuclei, their potential and kinetic energies and their interaction with the electrons and the interaction between the electrons.
The calculations cannot be performed without some simplifying assumptions. The motions of the nuclei and of the electrons
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are treated independently of each other. The methods of quantum chemistry and high-capacity computers are used for the
calculations.

The energy surface gives a detailed description of the reaction from beginning to end. Initially the reacting atoms A and B
are far from each other. The reaction process is described by a path along the energy surface. It follows the path of lowest
possible energy:

k1 = �
kBT

h

Z�AB�∗
ZAZB

e
− U0

kBT

or

k1 = kBT

h
e

− Ga act∗
kBT = kBT

h
e

Sa act∗
kB e

− Ha act∗
kBT

The activated complex theory gives much better agreement with experimental values of the frequency factor A than the
simple hard-sphere collision theory. The reason is that the activated complex theory involves the properties of the reactants
and products. Its disadvantage is the complex and extensive calculations.

� Diffusion in Solids

Diffusion is a systematic motion of the atoms. It overlaps the random motion, which is always present. Diffusion is caused
by a driving force, which normally is a concentration gradient, and implies mass transport

Basic Law of Diffusion

Fick’s first law: J = −D grad c

Diffusion along the y axis: J = −D
dc

dy

The concentration c is measured in numbers or kilomol per unit volume. If mole fraction is used, a factor 1/Vm has to be
included on the right-hand side of the diffusion equation.

� Diffusion Mechanisms

Diffusion of atoms in the interior of a crystalline solid can occur in many different ways. The most common are the vacancy
mechanism and the interstitial mechanism.

� Theory of Diffusion in Solids

Substitutional diffusion of lattice atoms is performed with the aid of the vacancy mechanism. Both the atom and the vacancy
move within the lattice when a lattice atom jumps to a vacancy.

In interstitial diffusion only small atoms can jump from site to site within a solid for space reasons (interstitial mechanism).
Vacancies and interstitials are point defects.

Formation Energy of Point Defects

The formation of point defects requires thermal energy. The fraction of available point defects depends strongly on the
temperature and the formation energy.

Equilibrium fraction of vacancies: xvac form = e
−�Gvac form

RT

Equilibrium fraction of interstitials: xi form = e
−�Gi form

RT

The formation energy is considerably lower for vacancies than for lattice atom interstitials. The formation energy for small
interstitials is practically zero.
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Energy Barrier for Atom Jumps

The atoms in the crystal lattice vibrate around their equilibrium positions. On rare occasions an atom gains enough phonon
energy to overcome the energy barrier.

A lattice atom jump corresponds to diffusion by the vacancy mechanism. An interstitial atom jump corresponds to diffusion
by the interstitial mechanism.

Fraction of available vacancies with enough energy to overcome the energy barrier:

fvac barrier = e
−�Gvac barrier

RT

Fraction of available interstitials with enough energy to overcome the energy barrier:

fi barrier = e
−�Gi barrier

RT

� Activation Energy. Jump Frequency

Activation Energy

The total energy required for a jump of an atom is the sum of the formation energy and the energy barrier. It is called the
activation energy of diffusion:

Ha act = Ha form +Ha barrier

or

Ua act = Ua form +Ua barrier

Jump Frequency of Atoms

Substitutional Diffusion

fjump = Fjump

N0

= xvacZcoordfbarriervibr

or

fjump = Zcoordvibre
−�Ga form+Ga barrier �

kBT

In solids the product pV is small compared with H and U and can be neglected. Hence H ∼ U and G ∼ U −TS and

fjump = f0e
− Ua act

kBT

Interstitial Diffusion
Large interstitials (lattice atoms or foreign atoms) have higher formation energy than vacancies and consequently higher
activation energy. Small interstitials are small dissolved foreign atoms with a given concentration, independent of temperature.
The activation energy equals the energy barrier as the formation energy is zero. Interstitials may be activated by phonon
collisions. Otherwise the same theory is valid for interstitial and substitutional diffusion.

Temperature Dependence of Diffusion Coefficient

D = D0e
− Ua act

kBT
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Relationship Between Diffusion Coefficient, Jump Distance and Jump Frequency

For cubic crystal structures:

D = 1
6

d2
j fj total

The general case is discussed in the text:

D = 1
2

∑
uvw

fuvwduvw
2

Driving Force of Diffusion

−�Gdiff = grad G = grad 	

Rigorous condition for diffusion:

J = −L
d	

dy

A relationship between the diffusion constants L and D is derived in the text.

� Self-diffusion

Radioactive atoms A∗ diffusing in pure element A:

JA = −DA

dcA

dy

The intrinsic diffusion or self-diffusion coefficient DA can be measured experimentally by tracer methods.

� Diffusion in Alloys

In alloys with two or more components, diffusion is in most cases more complicated than in single-component diffusion. The
reasons are several diffusing components and interaction between atoms of different kinds.

� Diffusion in Binary Alloys

Interstitial Alloys

The interstitials and the great number of empty interstitial sites can be regarded as a sublattice of their own. The diffusion of
the interstitials occurs in this sublattice as single-component diffusion. The interaction with the crystal lattice can be entirely
neglected. The crystal lattice behaves like a rigid body and the lattice atoms do not diffuse.

Substitutional Alloys

In substitutional alloys, both components diffuse. In most cases the diffusion coefficients of the two components differ.

Fluxes in Substitutional Diffusion

The diffusion of atoms in opposite directions and at different rates leads to a lack or an excess of atoms in different regions
of the alloy. Fast A atoms and slow B atoms diffusing across a weld surface results in an excess of A atoms and a lack of
vacancies in the B region and an excess of vacancies in the A region.
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The mass transport leads to a slight displacement of the weld plane. This displacement can be observed experimentally
by inclusions in the alloy at the weld plane. This phenomenon, called the Kirkendall effect, appears in substitutional alloys
because the diffusion rates and the diffusion constants of A atoms and B atoms differ.

The deviations from the equilibrium concentration of vacancies disappear successively with time by annihilation or produc-
tion of vacancies at edge dislocations in the A and B regions.

� Chemical Diffusion Coefficient

D̃ = xAD̃B +xBD̃A

D̃� D̃A and D̃B vary strongly with the composition of the alloy.
The diffusion coefficients D̃A and D̃B are marked with a special sign (tilde) to indicate very clearly that they vary with the

composition of the alloy.
The chemical diffusion coefficient appears in Fick’s second law, which can be applied on both components of the binary alloy:

�cB

�t
= D̃

�2cB

�ỹ2
and

�cA

�t
= D̃

�2cA

�ỹ2

� Diffusion in Ternary Alloys

Diffusion in ternary alloys is strongly influenced by the interaction between the components. The diffusion depends on
grad 	 and not on concentration gradients.

Exercises

5.1 The temperature inside a refrigerator is kept at 4 �C. The temperature of the surroundings is 24 �C. The amount of heat
per hour which has to be removed from the interior of the refrigerator is 1�0×106 J/h.

The refrigerator is supposed to work like an ideal Carnot engine. What is the average minimum electrical power which
is required to run it? The answer should be given both in SI units and in kWh/year, which is a common technical unit.

5.2 To keep an indoor temperature of 20 �C in a house on a cold January day in a northern country, a heat pump is used. It
consists of a closed liquid–vapour system including two heat exchangers and a compressor.

The heat pump extracts heat from a lake with a water temperature of 5 �C via a heat exchanger (evaporation
of the liquid and expansion of the gas require energy). When the gas is compressed and condenses to a liquid,
heat is delivered via another heat exchanger to the water-filled radiator system of the house. The temperature of
the ‘radiator water’ is 50 �C at the heat exchanger. To maintain the indoor temperature a power of ∼ 20 MJ/h is
required. The overall efficiency of the heat pump is about 40% of the theoretical efficiency of an ideal Carnot engine.
Calculate

(a) the average electrical power which is required to run the heat pump (in SI units and in kWh per 24 hours);
(b) the power required to heat the house by direct electrical heating (in SI units and in kWh per 24 hours);
(c) the ratio of the answers in (b) and (a).

5.3 A 1 kg amount of water of temperature 20 �C is mixed by an adiabatic and isobaric process with 1 kg of water of
temperature 100 �C. Calculate the entropy change of the system.

5.4 A 1 kmol amount of ice of temperature 0 �C is heated and transferred at constant pressure (1 atm) to water vapour of
temperature 100 �C. Calculate the energy required for the process and the entropy change. Material constants can be
found in a standard table.
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5.5 Two equal, insulated cylinders �V1 = V2 = 4�0 l� are connected with a short tube with a closed tap. One of them contains
nitrogen gas of 400 mm Hg pressure and the other is evacuated. When the tap is opened the gas pressure becomes equal
in both cylinders. No temperature change is observed. The temperature is constant and equal to 20 �C.

Calculate the entropy change of the system.

5.6 Define
(a) the enthalpy of a system
(b) ideal and nonideal solutions of two components A and B
(c) molar heat of mixing of pure substances A and B.

5.7 The heat of fusion of aluminium is 390 kJ/kg.

(a) Calculate the entropy change when 1 kmol of Al is molten. Material constants can be found in a standard table.
(b) The result in (a) can be interpreted in statistical terms. When solid Al is transformed into liquid Al, the number of

possible distributions of the molecules in available energy states becomes much higher in the liquid than in the solid
state. Calculate the ratio of the numbers of possible distributions in liquid Al and in solid Al.

5.8 Define
(a) the concept of Gibbs free energy of a system and the condition for equilibrium of a system
(b) driving force of a reaction or transformation in the case of non- equilibrium
(c) chemical potential of a pure substance.
(d) Why is the Gibbs free energy such an important thermodynamic quantity?

5.9 (a) Define the concepts of reaction rate and activation energy and give the relationship between them. Draw a figure
and mark the activation energy and the driving force of the reaction.

(b) The reaction rate depends on three factors. Which ones?

5.10 All the components in the chemical reaction 2NO2 � 2NO+O2 are gases, moving at random in the available volume.
When two NO2 molecules collide, decomposition may occur. Therefore, it is reasonable to assume that the initial rate
of decomposition of NO2 is proportional to the square of the NO2 concentration:

d �NO2�

dt
= −k �NO2�

2

The rate constant depends on the temperature as is shown from the measured values below:

T (K) 610 620 630 640 650 660
k�m3/s kmol� 0.82 1.30 1.86 2.72 3.60 4.95

(a) What is the initial decomposition rate of NO2 at T = 650 K if the concentration of NO2 at t = 0 is 0�060 kmol/m3?
(b) Calculate the activation energy of the decomposition reaction.

5.11 In a chemical reaction an A atom reacts with two B atoms:

A�g�+2 B�g� → products

The reaction kinetics were studied and resulted in the data given in the table.

Experiment No. Initial concentration �kmol/dm3� Initial reaction rate �kmol/dm3s�

�A�t=0 �B�t=0

1 5�0×10−4 4�0×10−4 18�7×10−3

2 2�0×10−4 4�0×10−4 7�5×10−3

3 4�0×10−4 2�0×10−4 3�7×10−3

4 3�0×10−4 3�2×10−4
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(a) What is the order of the reaction with respect to each reactant and the overall order of the reaction?
(b) Determine the rate constant of the reaction.
(c) Predict the initial reaction rate for experiment 4.

5.12 (a) Describe the two most common diffusion mechanisms in pure crystalline materials.
(b) What is the basic equation of diffusion in solids? Define the concept of the self-diffusion constant.
(c) Define the concepts of jump frequency and jump distance. Give the relationship between these quantities and the

diffusion constant in one direction.
(d) Give D as a function of temperature and activation energy. How can the activation energy be derived experimentally?

5.13 Even in a dense-packed FCC crystal structure it is possible to introduce small interstitial atoms between the normal sites
of the lattice atoms.

(a) Calculate the maximum size of such a foreign atom (radius r expressed as a function of the radius of the lattice
atoms) in an interstitial position, for the two possible alternatives. On interstitial diffusion these holes form vacant
sites for the jumping atoms.

(b) How many neighbour atoms does the foreign atom touch in each case?

The lattice atoms can be regarded as hard spheres with equal radius R.

5.14 Commercial hydrogen is stored at high pressure in tubes, made of a special type of hardened steel with very low hydrogen
solubility. Consider such a tube with an internal volume of 50 dm3 and a total internal area of 80 dm2. The thickness of
the tube walls is 5.0 mm. Owing to the pressure of 200 atm inside the wall, hydrogen gas dissolves slightly in the metal.
At steady state the concentration of hydrogen atoms is 8×10−8 mol/kmol steel at the inner surface. The concentration
of H in the steel at the outer surface is zero. The diffusion constant of H in steel at room temperature is 10−8 m2/s.
Occasionally the tube happened to be left unopened for 10 years. Calculate

(a) the number of H atoms which escape from the tube during 10 years
(b) the amount of hydrogen (kg) which leaks from the tube during 10 years
(c) the pressure decrease (atm) due to diffusion of H through the steel tube during 10 years.

5.15 The temperature dependence of the self-diffusion constant of iron has been studied experimentally, which resulted in the
following data:

T (K) 700 900 1100 1300

D�m2/s� 10−15 10−14 10−13 10−12

Derive the constant D0 and the activation energy Ua act graphically.

5.16 Diffusion of an atom consists of numerous jumps from one site to another in a medium (magnitude 108 jumps per
second). The jumps are irregular with respect to length and direction as shown in the figure.

Such a motion pattern is called a random walk. Another example is Brownian motion, which can be observed in
colloidal suspensions or in air, polluted by floating small particles, for example smoke. The kinetic motion of the solvent
molecules or the nitrogen and oxygen molecules results in irregular macroscopic pushes of the bigger particles. Their
motions can be observed and filmed through a microscope.
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The jump distances are measured, independent of direction, and the average distance L can be calculated by the
following equation:

nL2 =
i∑
1

d2
i

where n is the number of jumps. In such an experiment, the following jump distances were measured (the unit is
irrelevant here):

2, 6, 3, 8, 5, 1, 4, 9, 2, 6, 7, 2, 8, 5, 2, 6, 3, 1, 7, 12, 3, 6, 2, 5, 4, 7

Calculate the average jump distance.

5.17 The self diffusion constant of Cu is 1 × 10−12 m2/s at 600 K. The jump distance has been estimated as 2 × 10−9 m.
Calculate the magnitude of the total jump frequency in Cu at this temperature.
Hint: Cu has an FCC crystal structure.

5.18 The diffusion in a material with substitutional diffusion is described by a temperature-dependent diffusion constant:

D = D0e
− Ua act

kBT

(a) What factors are included in D0?
(b) Discuss the effect of the vacancy concentration on the diffusion coefficient.
(c) Suppose that the material is heated to a high temperature and then rapidly quenched to the original temperature. Will

the diffusion constant be the same after this process? If the answer is no, give the reason and give the new equation.
(d) In the case of interstitial diffusion of small atoms, the diffusion constant is described by an equation which formally

appears to be identical with that valid for substitutional diffusion. What is the fundamental difference between the
two equations?

5.19 Diffusion in alloys is more complicated than that in pure metals.

(a) Analyse the fluxes of atoms and vacancies on substitutional diffusion in a binary alloy. Explain the influence of
vacancies.

(b) Define the concept of the chemical diffusion coefficient of a binary alloy AB with a given composition. Describe
graphically how the chemical diffusion coefficient and the diffusion coefficients of A and B atoms vary with the
composition of the alloy.

5.20 A diffusion couple is made by welding pure Cu to an alloy of the composition Cu, 20%Zn with inert markers in the
joined surface. Zinc diffuses much faster than copper.

(a) In what direction do the markers move? Motivate your answer.
(b) Describe how the fractions of vacancies vary on both sides of the joined interface.

5.21 Consider Figure 5.35 on page 273.

(a) Verify that Equation (5.176) on page 272 is valid for the D̃ curve in Figure 5.35.
(b) Describe the diffusion which corresponds to the four values where D̃Cu and D̃Ni intersect the axes.
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6.1 Introduction

Space limitations in this book make it necessary to select only a few mechanical and thermal properties of crystalline matter
of special interest. They are analysed from the atomic point of view.

We have selected elasticity and compressibility (Section 6.3) and expansion (Section 6.4), which are of special interest and
will be used later.
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Temperature is one of the most important parameters in material processes. Thermal properties such as heat capacity
(Section 6.5) and thermal conduction for solid materials are very important. Heat capacity is treated in this chapter. Owing
to the close relationship between thermal and electrical conduction, thermal conduction is treated together with electrical
conduction, which is the basis of the classification of the materials in conductors, semiconductors and insulators. The band
theory of solids is applied in the theories of both thermal and electrical conductions in Chapter 7.

Diffusion is extremely important in alloys and doped semiconductors. The basic laws and the theory of diffusion have been
treated in Chapter 5.

The magnetic properties of solids, particularly ferromagnetic metals, are closely related to the band theory of solids, which
has been treated in Chapter 3. The magnetic properties of these materials and the theoretical background of these properties
are discussed in Section 6.6.

In Chapter 4 we used the general law of gases to describe most of the properties of gases. It would be desirable to use an
analogous equation of state for solids. Unfortunately, there is no such equation. Solids are much more complex than gases
owing to the presence of strong interatomic forces.

To understand some of the properties of metallic solids, it is useful to consider the total energy of metallic crystals. The
outlines of this topic, which is not included in Chapter 3, will be discussed below.

6.2 Total Energy of Metallic Crystals

The total energy of a crystal is closely related to the bonds between the particles which constitute the crystal. In Chapter 3,
Section 3.3.1, we discussed the total energy per crystal unit in ionic crystals. In Section 3.3.2, we discussed covalent bonds
starting with the energy conditions in this type of crystals. Ionic and covalent bonds in solids are very strong. Metallic bonds
are also very strong and it would be desirable to find an expression for the total energy per crystal unit even in metals.

The total energy per metal crystal unit consists of several contributions. The main contributions are the formation energy
of the crystal lattice, the energy of the free electrons and the phonon energy owing to vibrations in the crystal lattice:

Etotal = Eformation +Eelectron +Ephonon (6.1)

The last two terms are very important for the properties of solids and will be discussed below.

6.2.1 Electron Energy

The quantum mechanical model of electrons in metals and the band theory of solids were discussed extensively in Chapter 3.

e                   + 2e

+2e                    + 2e                  + 2e

+ 2e                   + 2e

    +2e                    + 2e                  + 2e

Figure 6.1 Structure of a metal with two valence electrons per atom. Reproduced with permission from W. Schatt (ed.), Einfuhrung in
die Werkstoffwissenschaft, 7th edn. © 1991 Deutscher Verlag für Grundstoffindustrie, Leipzig.

Metals have crystalline structures. An example of such a structure is given in Chapter 1. A metal consists of a crystal lattice
of positive ions surrounded by a ‘cloud’ of valence electrons common to the whole crystal. Each ion consists of the positive
atom nucleus plus all the shell electrons except the valence electrons. The whole crystal is electrically neutral. The dark area
in Figure 6.1 illustrates the valence electrons or free electrons, which can move fairly freely inside the crystal.
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There are several sorts of electrical forces between the particles in the metal, attractive forces between the ions and the
surrounding valence electrons and repulsive forces between the positive ions and also between the valence electrons themselves.
So far it has not been possible to find a simple general expression for the total energy of a unit of a metallic crystal.

Here we will restrict the treatment to a qualitative discussion of the relationship between the energy levels and the interatomic
distances in the crystal. As an example we choose monovalent Na metal to illustrate the formation of a metallic bond.

E

(a)

E
3s

(b)

E

A number of N  Na atoms 

(c)

E F

φ
E = 0

(d)

Figure 6.2 Potential energy of (a) a single Na atom, (b) two Na atoms and (c) N Na atoms. (d) Enlargement of part of (c). Reproduced
with permission from W. Schatt (ed.), Einfuhrung in die Werkstoffwissenschaft, 7th edn. © 1991 Deutscher Verlag für Grundstoffindustrie,
Leipzig.

Figure 6.2a shows the potential energy around an Na atom and the sharp energy levels of the valence electron of an
Na atom. The inner electrons are tightly bound to the Na nucleus and we will concentrate on the energy level of the 3s
electron.

In Figure 6.2b, the corresponding potential energy around a pair of Na atoms is shown. The 3s energy state of the valence
electron in each atom has split up into two levels owing to exchange energy (pages 72–73 in Chapter 2).

In Figure 6.2c, many Na atoms are present and the sharp energy states form energy bands with many narrow electron energy
states. Each energy band contains N energy states per unit volume, equal to the number of Na atoms. Each energy state can
accommodate two electrons, i.e. 2N electrons per unit volume (Chapter 3, page 129). The 3s band contains only N valence
electrons and is therefore only half filled. The electrons occupy the lowest energy states in consistency with the Pauli
principle.

If we choose Epot = 0 at infinity the strong bonds between the Na nucleus and the inner electrons result in large negative
values of the narrow 1s band (not shown in the figure) and the 2s and 2p subbands. The wide half-filled 3s band has the
smallest negative energy and the 3s valence electrons are relatively mobile. Part of Figure 6.2c is enlarged and shown in
Figure 6.2d on a smaller energy scale (eV instead of keV). This is the familiar potential well with the work function, i.e. the
energy required to remove an electron from the metal.

It is easy to realize that

• The electron energy states depend on the interatomic distance a

Expansion and compression represent deviations from the equilibrium state, which corresponds to an energy
minimum. Such processes require energy addition and will be studied here from a macroscopic point of view in
Section 6.3.

The energy levels of the electrons of a free atom are independent of temperature. This is not true for the electrons in a
crystal. On the contrary:

• The energies of the electron bands in a solid vary with temperature and other properties which change the interatomic
distance.

This is true for all sorts of crystals, not only metals. As in ionic crystals and solids with covalent bonds there is an
interatomic distance which corresponds to equilibrium, i.e. minimum energy of the crystal.

So far it has not been possible to find a quantitative expression for the complex electron energy in terms of interatomic
distances, temperature and other parameters which influence the electron energy of a crystal, e.g. the structure of the
crystal.



290 Physics of Functional Materials

6.2.2 Phonon Energy

The internal energy of the positive metal ions in the crystal lattice of a metal is the sum of their potential and kinetic energies.
This fact offers no feasible way to find a satisfactory model of the phonon energy in metals. The reason is the difficulty of
finding a simple and convenient function for description of the potential energy of the metal ions, surrounded by the ‘Fermi
sea’ of valence electrons. The only possible way to find a successful model for the description of the internal energy is to
concentrate on the vibrational motion of the ions in the lattice. The total vibrational energy of the lattice or the phonon energy
represents the internal energy of the metal.

In Section 3.6 in Chapter 3 we discussed elastic waves in solids. Like electromagnetic waves, elastic waves are quantized.
The energy of the phonon in vibrational mode n can be written as

G�n� = ���n+ 1/2� (6.2)

Just as for matter waves of electrons, it is very convenient to introduce the wavenumber k of the phonon and express its total
energy E and its momentum p as functions of the wavenumber k and the wavevector k:

E = ���k� (6.3)

p = �k (6.4)

where the angular frequency ��k� = 2��.

Energy distribution function of photons and phonons
Average energy per oscillator:

u = h�

e
h�

kBT −1

Both phonons and photons obey Bose–Einstein statistics (Chapter 3, pages 148–149). For this reason, the distribution
functions for phonons and photons are the same.

The internal energy of the metal is well described as phonon energy provided that the volume of the crystal is kept constant.
The model is no longer satisfactory when the volume changes.

Materials expand or contract with temperature changes or under the influence of external forces. When the average
interatomic distances within the metal change, it is necessary to consider the change in potential energy of the lattice ions as
a function of the interatomic distances. The positions of the electron bands also change in a way that is difficult to predict
theoretically.

These circumstances make the theories of elasticity, expansion and heat capacity at constant pressure and other properties,
which depend on the interatomic distances, most complicated. There is no simple, convenient and generally accepted model
of the internal energy of a solid so far.

6.3 Elasticity and Compressibility

6.3.1 Elasticity

Origin of Elastic Forces

If a solid body is exposed to a mechanical load it will be deformed. Energy is required to deform the body.
The stable state of a crystal is achieved at the distance between the atoms or ions where the attraction forces balance the

repulsion forces. This occurs at the equilibrium distance which corresponds to a minimum of the total potential energy of the
crystal (Figure 6.3a). Changing the distance between the atoms or ions requires energy and restoring forces appear which try
to carry the system back to equilibrium. The steeper the energy curve is, the stronger will be the restoring forces.

Crystals are much more complex than molecules. Figure 6.3b gives a better description than Figure 6.3a of the energy
levels in metallic crystals. When the interatomic distances change, a large number of energy levels will change.

The restoring forces are the tensile or compressive forces which appear in solid matter as soon as the distance between the
atoms is changed.
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Figure 6.3 (a) Potential energy of a diatomic molecule as a function of the distance between the two atoms.
(b) One-dimensional row of metal atoms. The energy bands of the free electrons are indicated. Reproduced with permission from W. Schatt
(ed.), Einfuhrung in die Werkstoffwissenschaft, 7th edn. © 1991 Deutscher Verlag für Grundstoffindustrie, Leipzig.

Some Basic Concepts and Definitions

Stress is defined as force per unit area. If the force F is perpendicular to the surface with area A the stress is called normal
stress, which is designated by �:

� = F

A
(6.5)

The normal stress refers to the surface of a section of the material. Its sign is determined by its direction relative to the normal
of the surface which is directed outwards. � < 0 means that the stress is directed inwards and � > 0 means that the stress is
directed outwards.

The deformation of a solid under the influence of stress is expressed as strain. Strain is defined as the relative length
change, i.e. the ratio of the length change �l and the length l:

	 = �l

l
(6.6)

where the strain 	 is a dimensionless quantity.

N/m 2    Stress             Breakage
limit

Strain

Figure 6.4 Stress as a function of strain.

If the deformation of the solid is small, it will disappear completely when the stress is removed. The deformation is elastic.
If the stress is increased, the deformation will no longer be elastic. It remains more or less when the stress is removed. Such

a deformation is said to be plastic.
A further increase in the stress leads to the breakage limit when the material is ruptured (Figure 6.4).

Hooke’s Law

If the relative length change or strain 	, which arises in a rod due to the tensile stress � , is small then the tensile stress is
proportional to the strain (Figure 6.5):

� = Y	 Hooke’s law (6.7)
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l Δ l

→ F

0

Figure 6.5 Tensile stress.

where the constant Y is a material constant, which is called the modulus of elasticity or Young’s modulus. The magnitude of
Y is 1010–1011 N/m2 for metals.

� is positive for tensile forces and negative for compressive forces. Both are normal stresses. 	 is positive in case of
elongation and negative at contraction.

Lateral Contraction

When the bar in Figure 6.6 a is stretched owing to the tensile stress in its length direction, its cross-section will shrink.
At small tensile stresses the relative transverse contraction 	trans is proportional to the strain 	 in the length direction. The
proportionality constant is called Poisson’s ratio:

l z

l y

l x
(a)

l y

0                    l x l x +Δl x

l y +Δl y

(b)

l z

0

0                    l x l x + Δl x

l z +Δl z

(c)

Figure 6.6 (a) Initial box before straining. The strain is applied in the x direction, 	x = �lx/lx where �lx is positive. It is not shown in
(a) but in (b) and (c).
(b) Strain in the y direction. 	y = �ly/ly where �ly is negative. (c) Strain in the z direction. 	z = �lz/lz where �lz is negative.

	trans = −�	 (6.8)

where
	 = strain in the length direction
	trans = strain in a perpendicular direction
� = Poisson’s ratio.

In Figure 6.6, the length direction is chosen as the x axis. If the material is isotropic the strains in the y and z directions,
which both are negative, are equal:

	y = 	z = −�	x (6.9)

An extension of the bar in the x direction corresponds to contractions, i.e. negative strain, in the y and z directions, and
vice versa. Hence �y and �z always have opposite signs compared with �x. This is the explanation of the minus sign in
Equations (6.8) and (6.9).

For metals, Poisson’s ratio usually has a value of approximately 0.3.

Hooke’s Generalized Law

Consider a parallelepiped with the volume V = xyz, which is exposed to the stresses �x, �y, �z and shown in Figure 6.7. We
want to calculate the resulting strains 	x, 	y and 	z of this mechanical load at constant temperature.

As the body is exposed to stress from all sides, 
x can no longer be calculated from Equation (6.7) only. The stresses in the
y and z directions, due to lateral contraction, must also be taken into consideration.
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Figure 6.7 The stress �y on the rear surface exists but is not shown.

This can be done by application of Equation (6.9) twice. The total strain in the x direction will be

	x = �x

Y
−�

�y

Y
−�

�z

Y
(6.10)

We obtain analogous equations for 	y and 	z by permutation of the indices x, y and z. The three equations

	x = 1
Y

[
�x −�

(
�y +�z

)]
(6.10)

	y = 1
Y

[
�y −� ��z +�x�

]
(6.11)

	z = 1
Y

[
�z −�

(
�x +�y

)]
(6.12)

represent Hooke’s generalized law, valid for isotropic solids exposed to pure tensile stresses. It is valid in case of a general
stress in a body. Equations (6.10)–(6.12) can be used for calculation of the volume change associated with the strains. This
will be discussed in connection with compression of solids below.

6.3.2 Compressibility

When a solid body is exposed to an external pressure �p, it becomes slightly compressed. �p > 0 when it is directed towards
the surface. At constant temperature the volume change is negative and proportional to the applied pressure change. This can
be written as

z

y

z            σ

σσ
σ

σ

z

x →

→
→

y ← x

x

Figure 6.8 The stress �y on the rear surface exists but is not shown.

V +�V = V �1−��p� (6.13)

where
V = volume of the body
�p = applied all-round pressure on the body
�V = volume change (<0) due to the pressure �p�>0)
� = compressibility coefficient of the solid at constant temperature.

� is a material constant. The proper definition of � is

�T = − 1
V

(
�V

�p

)
T

(6.14)

but we will exclude the subscript for simplicity as no confusion will arise.
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A positive external pressure, directed towards the surface of the body, results in a decrease in volume. For this reason,
there is a minus sign in Equation (6.14) to give a positive value of �. The compressibility coefficient is generally small for
liquids and even smaller for solids, owing to strong repulsive forces between the atoms in the crystal lattice when the distance
between the atoms is forced to decrease. For metals it is of the magnitude 10−11 Pa−1 (1 Pa = 1 N/m2).

1/� is called the modulus of compressibility or bulk modulus and is denoted by B:

B = 1
�

(6.15)

The SI unit of the bulk modulus is pascal.

Relative Volume Change as a Function of Pressure Change

The volume change of the body in Figure 6.8 under the influence of pressure �p can be written as

�V = �lx +�lx�
(
ly +�ly

)
�lz +�lz�− lxlylz (6.16)

where �V , �lx, �ly and �lz are negative quantities.
If Equation (6.16) is divided by V = lxlylz, the right-hand side is reduced and second- and third-order terms of small

quantities are neglected, we obtain the relationship

�V

V
= �lx

lx
+ �ly

ly
+ �lz

lz
(6.17)

or, according to Equation (6.6)

�V

V
= 	x +	y +	z (6.18)

This relationship is generally valid, independent of the shape of the body.
Addition of Equations (6.10)–(6.12) for the special case �x = �y = �z = −�p gives the relative volume decrease:

�V

V
= − 3

Y
�1−2���p (6.19)

where �V < 0 and �p > 0.

Example 6.1
Derive a relationship between the compressibility coefficient and the modulus of elasticity.

Solution and Answer:

If we divide Equation (6.19) by −�p, we obtain

−�V

V�p
= 3

Y
�1−2�� (1′)

The left-hand side of this equation is identical with Equation (6.14) for the definition of � and we obtain

� = 3
Y

�1−2�� (2′)

Equation (2′) is the desired relationship between � and Y .
Alternatively Equation (2′) is often written as a relationship between the modulus of compressibility and elasticity:

B = Y

3 �1−2��
(3′)
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6.3.3 Deformation Energy

Deformation energy or strain energy is the work required to change the shape of a solid body.

One-dimensional Deformation

      Compression               ←

l Δ l

Extension →

l Δ l

x

F

F

0

Figure 6.9 Deformation of a bar.

For a small deformation, compression or extension, in one dimension, of a bar made of an elastic material (Figure 6.9), the
work to deform the body can be written with the aid of Equations (6.6) and (6.7):

W =
�l∫

0

Fdx =
�l∫

0

�Adx =
�l∫

0

Y	Ald	 = Al
Y	2

2

where
W = deformation work
l = length of the bar
A = cross-section of the bar.

The deformation energy per unit volume Edeform = W/Al can in this case be written as

Edeform = Y	2

2
= �	

2
= �2

2Y
(6.20)

where Y is the modulus of elasticity. Equation (6.20) is valid independent of the shape of the body.

Three-dimensional Deformation

In the case of a small general deformation and in the absence of shear stresses, the energy per unit volume of an isotropic
elastic material is obtained if Equation (6.20) is replaced by the expression

Edeform =
(
�x +�y +�z

)2

18B
(6.21)

where B is the bulk modulus.
Equation (6.21) can be transformed with the aid of Equation (3′) in Example 6.1:

Edeform =
(
�x +�y +�z

)2

18
Y

3 �1−2��
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which can be reduced to

Edeform = 1−2�
6Y

(
�x +�y +�z

)2
(6.22)

If we add Equations (6.10)–(6.12), we obtain

	x +	y +	z = �x +�y +�z

Y
�1−2�� (6.23)

We express �x +�y +�z in terms of 	x +	y +	z and introduce this expression into Equation (6.22). The deformation energy
per unit volume will then be

Edeform = Y

6 �1−2��
�	x +	y +	z�

2 (6.24)

The deformation energy is independent of the way in which the deformation has been achieved.
Equations (6.22) and (6.24) show that the maximum value of Poisson’s ratio is 0.5:

� < 05 (6.25)

The maximum value, which never is reached by any material, corresponds to an incompressible material.
In anisotropic materials, Equations (6.22) and (6.24) are not valid and have to be replaced by other equations which contain

the components of both tensile and shear stresses.

6.3.4 Temperature Dependence of the Modulus of Elasticity

Empirical Results

Experimental studies of oxides in the 1960s showed that the temperature dependence of Young’s modulus Y can be described
by the empirical relationship

Y �T� = Y �0�
(

1−bTe− T0
T

)
(6.26)

where
Y = modulus of elasticity
b, T0 = constants
Y (0) = value of Y at T = 0 K.

If T >> T0, series development of the exponential factor gives

Y �T� ≈ Y �0� �1−b �T −T0�� (6.27)

Since then temperature dependence of elastic constants has been observed and confirmed for many other solids and for
elastic constants other than Young’s modulus.

Efforts have been made to understand the empirical relationships on a theoretical basis. These theories will not be
discussed here.

6.4 Expansion

6.4.1 Length and Volume Expansions

In the absence of change in structure, most solid materials expand when temperature increases and shrink with decreasing
temperature. This can be described by the empirical relationship



Mechanical, Thermal and Magnetic Properties of Solids 297

Figure 6.10 A bimetallic thermometer consists of two thin metal bars with different expansion coefficients, firmly attached to each other.
At a given temperature the bar is straight and at all other temperatures it is bent.

l+�l = l �1+��T� (6.28)

where
l = length of specimen at temperature T
l+�l = length of specimen at temperature T +�T
� = linear thermal expansion coefficient at constant pressure.

The linear thermal expansion coefficient � at constant pressure varies with the temperature of the solid. Hence it must be
defined at a specified temperature. The proper definition is

� = 1
l

(
�l

�T

)
p

(6.29)

where p is the pressure. The temperature dependence can be used for temperature measurements (Figure 6.10).

K− 1 α or β

T

K

Figure 6.11 Linear expansion or volume expansion coefficient as a function of temperature.

Linear expansion is closely related to the thermal volume expansion of solids. In analogy with the one-dimensional case
we have

V +�V = V �1+��T� (6.30)

where
V = volume of the specimen at temperature T
V +�V = volume of the specimen at temperature T +�T
� = thermal volume expansion coefficient at constant pressure.

The thermal volume expansion coefficient � at constant pressure varies with the temperature of the solid (Figure 6.11). The
definition of � is

� = 1
V

(
�V

�T

)
p

(6.31)

where p is the pressure.
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Table 6.1 Length expansion
coefficients of some metals.
Temperature interval 0–100 �C.

Metal � (K−1)

Ag 19×10−5

Cu 17×10−5

Al 23×10−5

Mg 26×10−5

Fe 12×10−5

Some � values are given in Table 6.1.
In the absence of phase transformations, the expansion coefficient � increases with temperature. In the temperature interval

from about −200 �C to the melting point of the metal � is proportional to the heat capacity of the metal. At temperatures
close to T = 0 K � drops rapidly and approaches zero.

Relationship between � and �

� and � are normally of the magnitude 10−5 K−1. In this case there is an approximate relationship between � and �. Table 6.2
shows that the relationship depends of the structure of the crystalline solid.

Table 6.2 Relationship between length and volume expansion coefficients in
crystals.

Type of crystal structure Relationship between � and �

Cubic structures � ≈ 3�
Hexagonal, trigonal and tetragonal structures � ≈ �x +2�y

Rhombic, mono- and triclinic structures � ≈ �x +�y +�z

Average Volume Expansion Coefficient in Metals

The temperature dependence of the volume expansion coefficient is normally not especially strong. For this reason, it is a
reasonable approximation to use an average value of � over an extended temperature interval. The average value of � can be
written as

� = 1
V0

�V

�T
(6.32)

where
V0 = volume of the solid at temperature T0

�T = change of temperature = T −T0

�V = change of volume = V −V0.

As an application we will consider a number of metals with cubic structures (BCC and FCC). If we choose temperature T
equal to the melting point TM of the metal and T0 = 0 K, the temperature interval �T will be equal to TM. It has been found
empirically that the average volume expansion coefficient within the temperature interval from 0 K to TM times the melting
temperature (K):

�TM = 1
V0

�V

�T
TM = �V

V0

is practically constant (values between 0.06 and 0.07) for metals with cubic structure, independent of the kind of metal.
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As � is approximately one-third of �, the conclusion is that

�TM = �l

l0

= constant ≈ 002 (6.33)

The average relative length expansion between 0 K and the melting point of any metal is approximately 2%.
Equation (6.33) is called Grüneisen’s rule. It can be verified directly from experimental data for some metals in Figure 6.12.

From Equation (6.33), we can conclude that

• Metals with cubic structures and high melting points have low linear expansion coefficients and vice versa.

This statement is verified by the hyperbolic curve in Figure 6.13, which is based on experimental data.
A group of FeNi alloys, known as Invar alloys, show practically no expansion at all close to room temperature. These

alloys are ferromagnetic and the magnetic effect, the so-called magnetostriction or change of length in a magnetic field, can
be either positive or negative.

In the case of Invar alloys, the magnetostriction happens to be practically equal to the thermal expansion and of opposite
sign. Hence the two effects cancel and the net effect is nearly zero.

Such alloys do not change their length when the temperature changes. The term Invar comes from the word invariance.

10−2

l
lΔ

T/θ
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0
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Figure 6.12 Average value of the relative length
expansion coefficient within the interval 0 K–TM

as a function of the absolute temperature divided
by the Debye temperature for some metals.
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Figure 6.13 The linear expansion coefficient of some metals with cubic crystal
structures as a function of their melting points. Reproduced with permission
from W. Schatt (ed.), Einfuhrung in die Werkstoffwissenschaft, 7th edn. © 1991
Deutscher Verlag für Grundstoffindustrie, Leipzig.

6.4.2 Thermal Expansion

Figure 6.14 shows the average volume per atom of iron crystals as a function of temperature, and indicates that two structure
transformations occur in iron within the temperature interval 0–1500 �C: from �-Fe to �-Fe at 910 �C and from �-Fe to �-Fe
at 1390 �C. A change from one structure of a crystal to another must necessarily result in a considerable and discontinuous
volume change as different crystal structures have different packings of the atoms.

Below we will discuss the reasons for the continuous volume change of crystals, due to temperature changes, from an
atomic point of view.
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Figure 6.14 Average volume per atom in iron crystals as a function of temperature. Reproduced with permission from W. Schatt (ed.),
Einfuhrung in die Werkstoffwissenschaft, 7th edn. © 1991 Deutscher Verlag für Grundstoffindustrie, Leipzig.

Influence of Lattice Constant

When a crystal is heated its length L increases. An explanation is that the expansion is due to a slight increase in the lattice
constant a with increase in temperature.
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Figure 6.15 Potential energy of an Na+ Cl− crystal as a function of interionic distance. Compare Figure 3.6 on page 108 in Chapter 3.
Reproduced with permission. © E. Lindholm (Deceased).

In Chapter 3 we found that the potential well of a crystal unit in a lattice is asymmetric. The atoms in the lattice vibrate
around their equilibrium positions. With increasing temperature, the lattice atoms become excited to higher vibration energy
levels with slightly increased average distances between the atoms (Figure 6.15). On page 289 we found that the same is
likely to be true for metals too, even if the potential energy curve is not known in detail.

This hypothesis can be checked by simultaneous measurements of the change of length and lattice constant of a crystal
at various temperatures. The lattice constant can be measured by X-ray methods (see Chapter 1). An example of such
measurements is shown in Figure 6.16.
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Figure 6.16 Relative length change and relative lattice parameter change for aluminium as functions of temperature. Reproduced with
permission from P. Shewmon, Diffusion in Solids. © 1963 McGraw-Hill Book Company.
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Simmons and Balluffi carried out careful experimental studies of the relative changes in length L and the lattice constant a for
different metals over a wide range of temperatures. Their results for aluminium are plotted in Figure 6.16, which shows clearly that
stretching of the distance between the atoms in the crystal lattice is the dominant but not only explanation of the length expansion.

Influence of Vacancies in the Crystal Lattice

The increasing discrepancy between relative length change and relative change of the lattice constant at higher temperatures
is due to the formation of vacancies in the crystal lattice.

Consider a crystal with a cubic structure and lattice constant a at temperature T . If the crystal contains Ntotal atoms, we can
write its volume as

V = L3 = Ntotala
3 (6.34)

After logarithmic taking the derivative of Equation (6.34), we obtain

3�L

L
= �Ntotal

Ntotal

+ 3�a

a
(6.35)

which can be written as

�Ntotal

Ntotal

= 3
(

�L

L
− �a

a

)
(6.36)

Equation (6.36) gives the relative increase in the number of atom sites independent of the type of crystal defect. Vacancies
increase the number of sites, i.e. the length L and hence also the volume of the crystal.

Interstitials are not expected to influence the lattice constant but there is some experimental evidence (e.g. C atoms in FCC
iron at constant temperature) which indicates that they may increase the crystal volume and hence the lattice constant slightly
[Ntotal is constant in Equation (6.34) at constant temperature].

For metals, �Ntotal/Ntotal is positive and we can neglect the formation of interstitials. In this case, �Ntotal/Ntotal depends mainly
on vacancy formation. The number of vacancies increases rapidly (exponentially) with temperature. At each temperature there
is an equilibrium concentration of vacancies in the metal.

If the metal is heated, the equilibrium concentration of vacancies increases. New vacancies are formed first at dislocations
and boundaries, which act as sources. The vacancies become distributed homogeneously by diffusion. When the metal is
cooled, the vacancies diffuse to the dislocations and boundaries, which act as sinks.

Hence length expansion at constant pressure and variable temperature consists of two parts:

• a contribution due to change of the lattice constant a
• a contribution due to vacancies.

The dominant effect originates from the change of the interatomic distances in the crystal lattice. The fraction of vacancies
is comparatively small but increases with increase in temperature (Figure 6.16). The maximum influence of vacancies occurs
close to the melting point of the metal.

Theory of Thermal Expansion

It is well known that thermal expansion of solids is caused by a change in the interatomic distances in the crystal lattice and
to a minor extent vacancy formation at higher temperatures below the melting point of the solid.

A very reasonable explanation of length expansion is the anharmonicity of the vibrations of the atoms around their
equilibrium positions in the lattice, which corresponds to increasing distances between the atoms with increase in temperature.
This effect is not sufficient to explain the magnitude of the length expansion. The increase in the lattice constant a is larger
than the anharmonicity effect on the interatomic distance.

In classical mechanics, the equilibrium is found by minimizing the total energy, which is the sum of the kinetic and potential
energy, and the temperature is not involved. This approach is not possible here. The potential energy is a complex function
of all the atoms with many variables as many distances are involved. A more feasible way is to use thermodynamics. In
Chapter 5 we defined the internal energy U , which is the sum of the kinetic and potential energy of the system.
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At constant temperature and pressure, the equilibrium condition of a nonmechanical system is a minimum of Gibbs free
energy (Chapter 5 on page 237). This condition is widely used in chemistry and is also applied to, for example, diffusion and
solidification processes. The Gibbs free energy is defined as [Equation (5.55) on page 235 in Chapter 5]

G = H −TS (6.37)

which can be written as

G = U +pV −TS (6.38)

where
G = Gibbs free energy of the system (J/kmol)
H = enthalpy of the system
U = internal energy of the system
p = pressure of the system
V = volume of the system
T = temperature of the system
S = entropy of the system (J/kmol K).

Thermodynamic Explanation of Thermal Expansion
When the temperature increases the lattice constant increases and the whole crystal expands. Each temperature corresponds
to a certain value of the lattice constant a. When the temperature increases or decreases, a new equilibrium with a different
value of a is developed. The equilibrium condition is that the function G�V�T� has a minimum.

The volume of a solid is small. Normal pressures, for example 1 atm, can be regarded as small and the product pV can be
neglected in comparison with U . In this case, we can instead minimize the Helmholtz free energy F , which is defined as

F = U −TS (6.39)

F is a function of V and T . The equilibrium volume at a given temperature (when T no longer is a variable) is given by the
condition (

�F

�V

)
T

= 0 (6.40)

The equilibrium volume V depends on the temperature only if F contains a term which is a function of both V and T . If,
for example, the vibrations around the equilibrium positions of the atoms were completely harmonic, the equilibrium positions
would not change with temperature changes and V would be independent of T . Consequently, there would be no expansion.

Hence anharmonicity of the atom vibrations in the lattice is a necessary but not sufficient condition for expansion. Without
going into details, the explanation of expansion, in terms of thermodynamics, can be expressed as follows:

• The whole crystal expands or contracts until it finds the volume for which the total free energy is a minimum.

or, more precisely, the expansion depends on the term TS in Equation (6.39). The entropy S is also a function of V and T .
At a certain change of T a new equilibrium value of V is developed. The volume change stops and the equilibrium volume is
achieved when the term TS acquires such a value that the condition (6.40) is fulfilled.

The equilibrium value of the interatomic distance, obtained from the condition (6.40), does not coincide with the average
distance caused by the anharmonicity of the potential well.

Grüneisen’s Rule
In the absence of safe information about the anharmonic terms of the lattice vibrations, we will assume that the frequency of
the vibrations is a function of the volume of the crystal. We assume that the relative change in the frequency is proportional
to the relative change in the volume. When the volume increases the frequency decreases, which gives

��

�
= −�

�V

V
(6.41)

where � is a constant.
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The total free energy F can is obtained by addition of two terms:

1. the deformation energy due to the volume change of the crystal
2. the sum of the free energies of the phonons, calculated by Bose–Einstein statistics of the Einstein oscillators , i.e. the

phonon distribution in the lattice.

When the derivative of the total free energy F with respect to V is set to zero, the minimum condition for F can be
written as

1
�

(
�V

V

)
= �Evibr �T� (6.42)

where
� = compressibility coefficient of the crystal
� = a constant
Evibr �T� = average energy of the lattice vibration mode per unit volume.

Equation (6.42) can be written as

�V

V
= ��Evibr �T� (6.43)

• The volume expansion at temperature T is proportional to the average thermal energy density.

Taking the derivative of Equation (6.43) with respect to T gives

d
(

�V

V

)

dT
= ��

d
(
Evibr �T�

)
dT

(6.44)

or

� = constant ×CV (6.45)

• The thermal volume expansion coefficient is proportional to the molar heat capacity at constant volume.

Equation (6.45) is known as Grüneisen’s rule. We will come back to these topics in connection with heat capacity and find
a third Grüneisen’s rule.

6.5 Heat Capacity

6.5.1 Heat Capacity at Constant Volume and at Constant Pressure

If an amount of heat dQ is added to a system, the heat is used to increase the internal energy U of the system and to perform
work, according to the first law of thermodynamics:

dQ = dU +pdV (6.46)

The internal energy is a function of the temperature T and the volume V of the system:

dU =
(

�U

�T

)
V

dT +
(

�U

�V

)
T

dV (6.47)
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This expression for dU is introduced into Equation (6.46):

dQ =
(

�U

�T

)
V

dT +
[(

�U

�V

)
T

+p

]
dV (6.48)

We consider 1 kmol of the solid and use Equation (6.48) as the basis for definition of the molar heat capacity at constant
volume CV and the molar heat capacity at constant pressure Cp:

CV =
(

�Q

�T

)
V

=
(

�U

�T

)
V

(6.49)

Cp =
(

�Q

�T

)
p

(6.50)

For gases and at higher temperatures even for liquids and solids it is necessary to distinguish between CV and Cp.
The heat capacity of 1 mass unit (1 kg instead of 1 kmol) is called the specific heat capacity or heat capacitivity and is

denoted by cV and cp. Generally we have

dQ = cmdT (6.51)

6.5.2 Models of Heat Capacity

Classical Model

From the kinetic theory of gases (Chapter 4), it is well known that CV = 3R/2 and Cp = 5R/2 for a monoatomic gas.
According to the equipartition principle, each degree of freedom corresponds to an energy equal to RT /2 per kilomol. The
three degrees of freedom are, in the case of a monoatomic gas, the translation motion of the molecules in three directions, x, y
and z.

In the case of a crystalline solid, the atoms in the lattice have no translation movement but vibrate incessantly around their
equilibrium positions. Each atom can be regarded as an oscillator. Its total vibrational energy is the sum of its potential energy
and its kinetic energy, which corresponds to two degrees of freedom for each vibration direction. The total internal energy u
per atom equals the sum of the vibrational energy in all three directions:

u = 3
(

kBT

2
+ kBT

2

)
= 3kBT

The total internal energy U of 1 kmol is obtained if u is multiplied by Avogadro’s number NA. Remembering that kBNA = R,
we obtain

U = 3RT (6.52)

We know that ��U/�T�V = CV, and differentiate Equation (6.52) with respect to T , which gives the Dulong–Petit law, named
after the scientists who discovered it:

CV = 3R (6.53)

The classical model of molar heat capacity of solids agrees well with experiments at high temperatures. At low temperatures
the model is a disaster, as is shown in Figure 6.17. CV decreases with temperature at low temperatures and becomes zero at
T = 0 K.
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Figure 6.17 The molar heat capacities at constant volume of some solids as a function of temperature. Reproduced with permission from
D. R. Gaskell, Introduction to Metallurgical Thermodynamics, 2nd edn. © 1981 Hemisphere Publishing Corporation (with Taylor & Francis)
Taylor & Francis Group are the rightsholder.

Einstein’s Model

Einstein developed a new model of the heat capacity of solids, which agreed much better with experiments than the classical
model.

Einstein’s Model of Phonon Energy
Einstein considered a crystal consisting of Ntotal atoms. He assumed that the Ntotal atoms can be regarded as 3Ntotal linear
harmonic oscillators, i.e. each atom corresponds to three harmonic oscillators, which vibrate in the three perpendicular
directions x, y and z, with a single basic frequency � around their average positions independently of all their neighbours.

Einstein realised that even if the basic frequency of the vibrations is the same, the energies of the oscillators can differ. This is
best understood in terms of vibrations of a string with a given length. In such a system overtones of various intensities occur. The
frequencies of these overtones are multiples of the basic frequency and correspond to higher energies than the basic frequency.

Einstein applied Planck’s famous proposal, used in the derivation of his radiation law, and assumed that the energies of the
oscillators are not continuous but quantized. He assumed that the allowed phonon energies ui are integer multiples of h�:

ui = ih� i = 1�2�3� � � � �� (6.54)

where
u = energy of oscillator i
h = Planck’s constant
� = frequency of the basic oscillation.

The integer quantum number i is analogous with the vibrational quantum number of the harmonic oscillator according to older
quantum mechanics. In Chapter 3, the quantum number was denoted n instead of i, which is used in this special case.

Energy Distribution Function
The energy distribution of the oscillators depends on the temperature. The fraction of the atoms Ni/Ntotal which have the energy
ui can be calculated statistically with the same approach as in Chapter 4, page 175. The fraction decreases exponentially with
increasing energy ih�:

Ni

Ntotal

= e
− ih�

kBT

�∑
i=1

e
− ih�

kBT

(6.55)

where
Ni = number of atoms which have the energy ui

Ntotal = total number of atoms in the crystal
kB = Boltzmann’s constant
T = absolute temperature
�∑
i=1

e
− ih�

kBT = the partition function (Chapter 4, page 175).
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The energy distribution functions for phonons and photons are identical as both types of particles obey Bose–Einstein statistics
(Chapter 3, pages 148–149).

Average Oscillator Energy
When the energy distribution function is known, the average oscillator energy can be calculated with the aid of Equation (6.55):

u =
�∑
i=1

uiNi

�∑
i=1

Ni

=
�∑
i=1

ih�e
− ih�

kBT

�∑
i=1

e
− ih�

kBT

= h�

�∑
i=1

ie
− ih�

kBT

�∑
i=1

e
− ih�

kBT

(6.56)

For simplicity, we introduce the parameter p = e
− h�

kBT into equation (6.56). For small values of p, the exponential function
can be developed in series:

u = h�
p�1+2p+3p2 +4p3 + � � � �

p+p2 +p3 + � � �
= h�

p
d
dp

(
p+p2 +p3 + � � �

)
p

1−p
or

u = h�

p
d
dp

(
1

1−p

)

p
1−p

= h�

p2

�1−p�2

p
1−p

= h�
p

1−p
= h�

p−1 −1

or, if we replace p with the exponential expression

u = h�

e
h�
kBT −1

(6.57)

Equation (6.57) is valid for both phonons and photons and closely related to Planck’s radiation law, which describes the
density of electromagnetic radiation at temperature T (Chapter 2, page 49).

In Chapter 3 on page 148 we mentioned that phonons obey Bose–Einstein statistics. This statement is in agreement with
Equation (6.57), which can be written as

u = h�fBE (6.58)

Total Phonon Energy
The total phonon energy is calculated as the product of the number of oscillators and the average oscillator energy per atom.
It represents the internal energy of the crystal. If we let U represent the internal energy of 1 kmol, the number of oscillators
will be equal to three times Avogadro’s number NA:

U = 3NAu = 3NAh�

e
h�
kBT −1

(6.59)

Modification of Einstein’s Model with Respect to Quantum Mechanics
Einstein’s model for the internal energy and the heat capacity of solids was published in 1906. If his assumption of the
quantized phonon energies, Equation (6.54), is modified with respect to quantum mechanics (1920s), we obtain

ui = �i+ 1/2�h� i = 1�2�3� � � � �� (6.60)

If we add 1/2 h� to each phonon energy, then the average energy per oscillator must also increase with the same amount and
we obtain

u = h�

2
+ h�

e
h�
kBT −1

(6.61)

and

U = 3NAu = 3NA

(
h�

2
+ h�

e
h�
kBT −1

)
(6.62)
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Molar Heat Capacity at Constant Volume
The molar heat capacity is by definition the derivative of U with respect to T . It can be calculated by differentiating
Equation (6.59) or Equation (6.62) with respect to T :

CV = 3NA

−h�

�eh�/kBT −1�2 e
h�
kBT

h�

kB

−1
T 2

= 3NAkB

(
h�

kBT

)2 e
h�
kBT

�eh�/kBT −1�2

or

CV = 3R
x2ex

�ex −1�2 (6.63)

where

x = h�

kBT
= �E

T

The temperature �E = h�/kB is called the Einstein temperature.

At high temperatures (x → 0), Einstein’s model gives the classical value Cv = 3R, in good agreement with experiments. At
low temperatures, i.e. for large values of x, ex >> 1 and Equation (6.63) can be written as

CV = constant×x2e−x = constant×
(

1
T

)2

e
−h�
kBT (6.64)

in fairly good agreement with experimental observations, much better than the classical model. This was a great success for
Einstein.

The frequency of the basic oscillation � is a material constant. It can be estimated experimentally from measurements of
CV as a function of temperature.

Debye’s Model

Einstein’s model of the heat capacity of solids was a great improvement compared with the classical model. However, at
extremely low temperatures there was a marked discrepancy between Einstein’s theory and the experimental evidence. The
latter showed that CV is proportional to T 3 in this temperature region, whereas Einstein’s theory gave a too rapid decrease of
CV due to the exponential factor in Equation (6.64), which dominates over the factor T−2.

An improved model was suggested by Debye. He modified Einstein’s theory in two respects:

1. Einstein assumed that all the atoms in the crystal were vibrating with the same frequency and that the vibrations of each
atom or harmonic oscillator were independent of all the others.

Debye included all the phonons in the whole crystal in his calculations, i.e. all the elastic waves with a manifold of
frequencies. He realized that each atom is influenced by all the others, as the crystal can be regarded as a three-dimensional
system of mass points connected by ‘elastic springs’. It is impossible to set a single atom into motion without transferring
kinetic energy to all the others via the ‘elastic springs’ between the atoms.

2. Einstein assumed, in analogy with Planck’s photon theory of blackbody radiation, that there is no upper limit of the
oscillators or the phonon energies [Equation (6.54) with i = � on page 305]. This is correct for photons but not for
phonons.

Debye realized that there must be a maximum phonon energy h�max. The shortest possible wavelength that makes sense
is of the same magnitude as the interatomic distances or 3×10−10 m. This condition implied that the range of vibrational
frequences must be cut off at a maximum frequency, called the Debye frequency �D. The upper limit of the phonon
frequencies is equal to the Debye frequency �D. The magnitude of �D is 1013 Hz (velocity of sound in the crystal divided
by the minimum wavelength).

In Chapter 3, Section 3.6, we discussed briefly elastic waves in solids and some of the properties of phonons. We found
(Chapter 3, pages 147 and 150–151) that for each wave of frequency � there are three possible vibrational modes, one
longitudinal mode (acoustic mode) and two transversal modes (optical modes).
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Debye made the approximation that the wavelengths of all the phonons are large compared with the interatomic distances
and treated the crystal as continuous rather than as a crystal lattice. He found an expression for the number of vibrational
modes within the crystal. The Debye frequency is derived from the condition that this number equals 3Ntotal, where Ntotal is
the total number of atoms in the crystal. This condition can be written as

4�V

[
1

c3
l

+ 2

c3
t

]� D∫
0

�2d� = 3Ntotal (6.65)

where
V = volume of the crystal
cl = velocity of the longitudinal elastic wave
ct = velocity of the transversal elastic waves
� = frequency
�D = Debye frequency
Ntotal = number of atoms in the crystal lattice.

The Debye frequency can be derived from Equation (6.65). The result is

�D = 3

√
9Ntotal

4�V

(
1

c3
l

+ 2

c3
t

)−1

(6.66)

The Debye frequency depends on the velocities of the longitudinal and transversal elastic waves and the number of atoms per
unit volume (Ntotal/V ) of the crystal.

Debye used the same energy distribution of phonons as Einstein. Integration over all occurring frequencies (up to �D) and
vibration modes gave Debye’s modified expression for the total internal vibrational energy of 1 kmol (Ntotal = NA), which
corresponds to Equation (6.59) in Einstein’s model:

U = 9NAkBT

(
T

�D

)3

�D
T∫

0

x3

ex −1
dx (6.67)

where

�D = h�D

kB

(6.68)

is the Debye temperature of the crystal.
We obtain the molar heat capacity at constant volume by taking the derivative of Equation (6.67) with respect to T . After

reduction we obtain

CV = 9R
(

T

�D

)3

�D
T∫

0

x4ex

�ex −1�2 dx (6.69)

Equation (6.69) is the Debye equation for the molar heat capacity at constant volume. It gives excellent agreement between
theory and experiments for both high and low temperatures.

An example of this is given in Figure 6.18. As a comparison, Einstein’s theoretical curve has also been included.
At low temperatures, the molar heat capacity at constant volume can approximately be written as

CV = 12�4

5
R

(
T

�D

)3

T << �D (6.70)

The values of �D of some metals are given in Table 6.3. Varying values of the same metal are given in the literature.
One reason for this may be that �D, and consequently �D, varies slightly with temperature and is slightly anisotropic, i.e. has
different values along different crystal axes.

Figure 6.11 on page 297 shows a striking resemblance with Figure 6.18. The length expansion coefficient is proportional
to the molar heat capacity at low temperatures. The mechanism behind the phenomenon is the lattice vibrations in both cases.
At higher temperatures the mechanisms differ.
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Figure 6.18 The molar heat capacity at constant volume of Al as a function of T/�D. Reproduced with permission from D. R. Gaskell,
Introduction to Metallurgical Thermodynamics, 2nd edn. © 1981 Hemisphere Publishing Corporation (with Taylor & Francis) Taylor &
Francis Group are the rightsholder.

Table 6.3 Debye temperatures
of some metals.

Metal �D �K�

Ag 225
Al 428
Au 165
Be 1460
Cu 345
Fe (�) 462
K 91
Mg 400
Mn 410
Ni 453
Zn 327

6.5.3 Molar Heat Capacity at Constant Volume

In Section 6.5.2, we discussed three models of the heat capacity of solids: the classical theory and Einstein’s and Debye’s
models. Debye’s model shows the best agreement with experimental values at both low and high temperatures:

CV = 9R
(

T

�D

)3

�D
T∫

0

x4ex

�ex −1�2 dx (6.69)

where

x = h�

kBT

and the Debye temperature

�D = h�D

kB

All three models deal only with the energy of the lattice vibrations. If the solid is a metal it also contains free electrons.
Below we will examine the contribution of the electrons to the heat capacity.
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Heat Capacity of the Free Electrons in a Metal

According to classical theories, the lattice vibrations represent six degrees of freedom and contribute 6 ×R/2 to the molar
heat capacity at constant volume of the metal (Dulong–Petit rule).

Similarly, one would expect the free electrons, which can move freely in three directions in the metal, to contribute 3R/2
to the molar heat capacity. No contribution of such a magnitude has ever been observed. This can be explained with the aid
of the electron theory of solids, which was discussed in Chapter 3 and by use of Figure 6.19.

The reason why the free electrons do not contribute significantly to the molar heat capacity is that they obey the Pauli
exclusion principle.

fFD N (E)
f FD

1

N(E)

N(E)

2kBT E

0

E F − k BT E F E F + k BT

E

f

d

d FD

Ed
dfFD

E

f

d

d FD

Figure 6.19 Three diagrams in one: (1) the electron energy density N�E� as a function of E (dashed curve); (2) the Fermi factor fFD as
a function of E; (3) the derivative of fFD with respect to the energy E as a function of E. Reproduced from F. Blatt, Modern Physics. ©
McGraw-Hill Inc (1992).

The electron gas is in thermal equilibrium with the crystal lattice. At temperature T = 0 all energy states up to the Fermi
level EF = 0 are filled. At temperatures T > 0 some electrons with energies close to EF become excited to higher energy
levels above EF. Since the thermal excitation energy is of the magnitude kBT , only the electrons within the energy range from
EF − kBT to EF can become excited. Thermal excitation of electrons with lower energies << EF is impossible because no
unoccupied energy levels are available.

Hence only electrons within the narrow energy region EF ± kBT are able to contribute to the molar heat capacity. The
number of electrons that can be thermally excited is the integral of the density of energy states over the energy interval when
the energy distribution function fFD changes from 1 to 0. This number is small and can be approximated by the product of
the density of energy states at EF and the energy interval 2kBT .

The number of electrons per unit volume �N which can be thermally excited can be written as

�N =
∫

N�E�fFDdE ≈ N�EF�×2kBT (6.71)

If all the N electrons per unit volume had contributed to the molar heat capacity as in the classical theory, the contribution
would have been 3×R/2. As only the fraction �N/N contributes, the molar capacity of heat of the electrons will be

Ce = 2kBT N�EF�

N

3R
2

= 9kBT

2EF

R

More exact calculations result in the expression

Ce = �2kBT

2EF

R (6.72)

The magnitude of EF is 5 eV and at room temperature kBT ≈ 002 eV. Hence the electronic contribution to the molar heat
capacity is negligible at higher temperatures compared with 3R/2. At very low temperatures, when the vibrations of the lattice
are not developed, the electronic contribution dominates.
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Total Molar Heat Capacity at Low Temperatures

The total molar heat capacity at low temperatures, which includes the phonon contribution [Equation (6.70) on page 308] and
the electron contribution [Equation (6.72)], can be written as

C ≈ Cp ≈ CV = 12�4R

5�3
D

T 3 + �2kBR

2EF

T (6.73)

Equation (6.73) is the total molar heat capacity at low temperatures. At temperatures below 1 K the linear term dominates.
Measurements of the molar heat capacity at very low temperatures as a function of temperature are of special interest as

they allow the determination of the Fermi energy EF, the Debye temperature �D and indirectly the effective mass m∗ of the
free electrons in the metal (Chapter 3, page 146).

If C/T is plotted as a function of T 2, a straight line is obtained. The coefficients of T and T 3 can be determined graphically
as the intercept and the slope of the line. By use of these values, the quantities mentioned above can be derived. An example
of such calculations is given below.

Example 6.2

The plot in the figure is based on experimental data for the molar heat capacity of potassium in the temperature region
0.25–1.35 K (W. H. Lien and N. E. Phillips, Phys. Rev. 1964, 133, A1370). The equation of the line was found to be

C

T
= 21×10−6 +26×10−6 ×T 2

Calculate (a) the Debye temperature of potassium, (b) the Fermi energy and (c) the effective mass of the free electrons of
potassium.

Solution:

Equation (6.73) can be written as

C

T
= �2kBR

2EF

+ 12�4R

5�3
D

T 2 (1′)

Identification gives

(a)
12�4R

5�D
3 = 26×10−6 ⇒ �D =

(
12�4R

5×26×10−6

) 1
3

= 91 K

(b)
�2kBR

2EF

= 21×10−6 ⇒ EF = �2kBR

2×21×10−6 × e
= 17 eV

(c) Equation (3.67) on page 124 can be used for calculation of m∗ when EF is known:

m∗ = h2

8EF

(
3ntotal

�

) 2
3

(2′)
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where ntotal is the number of valence electrons in potassium per unit volume. It can be calculated from known data for 1 kmol:

ntotal = Ntotal

V
= NA�

M
= 602×1026 ×087×103

391
= 134×1028 m−3

Hence we obtain

m∗ = h2

8EF

(
3ntotal

�

) 2
3

=
(
662×10−34

)2

8×17×160×10−19

(
3×134×10

�

28) 2
3

= 11×10−30 kg = 12m

Answer:

(a) �D = 91 K, (b) EF = 17 eV and (c) m∗ = 12 m.

6.5.4 Molar Heat Capacity at Constant Pressure

Generally it is the molar heat capacity at constant pressure which is of practical interest. The difference Cp −CV is constant
and equal to R for gases but this relationship is not valid for solids (Figure 6.20).

R C                        C p

C V

2

3

1

T
0

0       400    800     1200   K
θD

Figure 6.20 Molar heat capacities Cp and CV for copper as functions of temperature. Reproduced with permission from A. J. Dekker,
Solid State Physics. © 1962 Macmillan & Co Ltd.

If the temperature is below the Debye temperature, Cp and CV are approximately equal. At temperatures higher than �D,
the difference is roughly proportional to the temperature interval T −�D and the volume of the crystal.

Cp −CV = �2V
�D
A

�
�T −�D� Grüneisen’s rule (6.74)

where
Cp = heat capacity of 1 kmol of the crystal at constant pressure
CV = heat capacity of 1 kmol of the crystal at constant volume
� = thermal volume expansion coefficient at constant pressure (Section 6.4.1, page 296)
� = coefficient of compressibility (Section 6.3.2, page 293)
V

�D
A = molar volume of the crystal at the Debye temperature

T = absolute temperature.

Equation (6.74) is a relationship between heat capacity, expansion and compressibility, which all depend on the interatomic
distance in the solid. It is derived in Example 6.3 below. Grüneisen derived Equation (6.74), which also is called Grüneisen’s
rule (compare pages 299 and 303).
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Example 6.3

Verify Grüneisen’s rule:

Cp −Cv = �2V
�D
A

�
�T −�D�

for isotropic cubic crystals.

Solution and Answer:

Consider a 1 kmol crystal with a cubic crystal structure with the molar volume VA
�D at the Debye temperature �D. The

temperature of the crystal is increased by an amount �T at constant pressure.
The internal energy U is a function of the volume V of the crystal and the temperature T :

dU =
(

�U

�V

)
T

dV +
(

�U

�T

)
V

dT (1′)

The first law of thermodynamics (Equation (5.3) on page 220 in Chapter 5) is applied to the crystal. In combination with
Equation (1′) we obtain

dQ =
(

�U

�T

)
V

dT +
[(

�U

�V

)
T

+p

]
dV (2′)

By definition [Equations (6.49) and (6.50)] on page 304, we obtain

CpdT = CVdT +
[(

�U

�V

)
T

+p

]
dV (3′)

At normal pressures p can be neglected in comparison with the term ��U/�V�T and Equation (3′) can be written as

CpdT = CVdT +
(

�U

�V

)
T

dV (4′)

The second term on the right-hand side of Equation (4′) is equal to the deformation energy change dEdeform associated with an
infinitesimal volume change dV. According to Equation (6.24) on page 296, the deformation energy of 1 kmol of an isotropic
cubic crystal can be written as

Edeform = Y

6 �1−2��
�3	�2V

�D
A (5′)

where 	 = �a/a and a is the interatomic distance.
The infinitesimal change dEdeform can be obtained by taking the derivative of Equation (5′):

dEdeform = Y

6 �1−2��
×2×3	×d�3	�×V

�D
A

or

dEdeform = Y

�1−2��
V

�D
A ×3	d	 (6′)

The expression in Equation (6′) is introduced into Equation (4′):

(
Cp −CV

)
dT = Y

�1−2��
V

�D
A ×3	d	 (7′)
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We use Equation (2′) between EY and � in Example 6.1 on page 294:

� = 3
Y

�1−2�� ⇒ Y

1−2�
= 3

�
(8′)

Equation (8′) is introduced into Equation (7′), which gives

(
Cp −CV

)
dT = 3

�
V

�D
A ×3	d	

or

(
Cp −CV

)
dT = V

�D
A

9	d	
�

(9′)

The strain 	 is equal to the relative lattice constant of the crystal:

	 = �a

a
(10′)

One way to verify Grüneisen’s rule is to express 	 as a function of T and use the method of identification to express
Cp −CV in terms of � and �.

The total length change �a would corresponds to the temperature change �T if the expansion were caused by thermal
expansion. Similarly, an infinitesimal length change da would require a temperature change dT . We have

a+�a = a�1+��T� and a+da = a�1+�dT�

which give

	 = �a

a
= ��T and d	 = da

a
= �dT (11′)

If we replace 	 and d	 by the expressions (11′) in Equation (9′) and use the relationship 3� = � between the length and
volume dilatation coefficients (page 298) twice, we obtain

(
Cp −CV

)
dT = ��T�dT

�
V

�D
A (12′)

�T corresponds to T − �D. If this value is introduced into Equation (12′), we obtain the desired relationship after division
with dT :

Cp −CV = �2

�
V

�D
A �T −�D�

The difference Cp −CV increases linearly with T − �D, which is shown in Figure 6.20 on page 312. The values of the
coefficients � and � are difficult to derive theoretically but values derived from experiments may be available.

Heat Capacity at Constant Pressure in Various Temperature Intervals

Low-temperature Region, T < �D/10

Cp = CV =12�4R

5

(
T

�D

)3

+ �2kBR

2EF

T (6.75)

lattice (phonon) free electron
contribution contribution

At very low temperatures, practically all phonons have the lowest possible energy and very few become excited to higher
energies when the temperature is slightly increased. Hence the phonon contribution [Equation (6.70), page 308] to the heat
capacity is negligible at extremely low temperatures and the free electron contribution [Equation (6.72), page 310] dominates.

When the temperature increases, the phonon contribution to the heat capacity gradually grows and becomes part of the
molar heat capacity.
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Intermediate-temperature Region, �D/10 <T < �D

Cp = CV = 9R
(

T

�D

)3

�D
T∫

0

x4ex

�ex −1�2 dx (6.69)

In this region the free electron contribution can be neglected in comparison with the phonon contribution [Debye Equation (6.69)
on page 309].

Equation (6.23) represents the molar heat capacity approximately up to the temperature �D. It approaches asymptotically
the value 3R at high temperatures, which corresponds to the Dulong–Petits law.

High-temperature Region, T > �D

In this region Cp and CV differ. Approximately we have

CV = 3R (6.53)

Cp = 3R+ �2V
�D
A

�
�T −�D� (6.76)

Equation (6.76) is valid only if no structural transformations occur in the solid. We will discuss the shape of the Cp–T curve
in the presence of phase transformations below.

6.5.5 Influence of Order–Disorder Transformations on Heat Capacity

The heat capacity at constant pressure Cp depends, like other material properties, on the structure of the material. Typical
structure changes are melting and phase changes, i.e. changes of the structure of the crystal lattice.

Even if the structure of a crystal lattice of a solid remains unchanged, discontinuous changes in its Cp–T curve may appear.
Such changes are due to transformations from an ordered to a disordered state or vice versa.

Order and disorder refer to the distribution of atoms in a crystal lattice. It is important to realize that the lattice structure
remains unchanged. It is only the occupancy of the sites which is concerned. A and B atoms can be ordered or distributed at
random in the sites.

The matter of order and disorder will be discussed further in connection with the theory of ferromagnetism in Section 6.6.3.
Here we will discuss order–disorder transformations and give two examples, which are manifested by an abrupt change in the
heat capacity at a specific critical temperature.

Order–Disorder Transformations in Binary Alloys

Ordered and Disordered Binary Alloys
Consider a crystal lattice which consists of two types of atoms, A and B. At low temperature the alloy has an ordered
structure, i.e. the atoms are arranged in a regular pattern and the atoms can only vibrate around their equilibrium
positions.

If the temperature is increased to a certain critical temperature, the kinetic motion will be violent enough to break
the ordered structure in the sense that the atoms A and B can exchange lattice sites at random. A completely disor-
dered structure is characterized by the equal probability of finding, for example, an A atom at any lattice site. Similarly,
there is an equal probability of finding an atom B at any site. If the alloy has the composition AB, both probabilities
are 1/2.

Measure of the Degree of Order–Disorder of a Binary Alloy
Figures 6.21a and b and 6.22 represent the two extremes: complete order and complete disorder. Intermediate cases are
possible.

The degree of order is described by the long-range order parameter S:

S = fA −xA

1−xA

(6.77)
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(a)

Figure 6.21 (a) Ordered structure. Black
sphere = atom A. White spheres = atoms B.

(b)

Figure 6.21 (b) The same ordered
structure as in (a) Black spheres = atoms
A. White sphere = atom B.

Figure 6.22 The same structure as
in Figure 6.21a but disordered. Grey
spheres = average ‘AB’ atoms.

where
S = long-range order parameter
fA = fraction of A sites occupied by A atoms
xA = mole fraction of A atoms.

In the completely ordered state, all A atoms are in their proper positions, which means thatfA = 1. HenceS = 1 for the completely
ordered state. In the disordered state, the probability of finding an A atom in an A site equals xA. Hence S = 0 for the completely
disordered state. For intermediate cases, 0 ≤ S ≤ 1. The degree of order is manifested by the intensities of the X-ray superlattice
lines. The X-ray lines have maximum intensity for S = 1, fade away with decreasing S values and disappear completely at S = 0.

Order–Disorder Transformations in CuZn
As the properties of solids depend strongly on their structure, a sudden transformation from one structure to another will result
in abrupt changes of the properties of the solid, for example its heat capacity and its thermal and electrical conductivity. As
a concrete example we will discuss the alloy � brass, which consist of 46–50% Zn dissolved in Cu. Its chemical composition
is close to CuZn.

At room temperature, � brass is an ordered alloy. The unit cell corners are occupied by Cu atoms and the centre by a Zn
atom (Figure 6.21b) or reversed (Figure 6.21a). The structure can be described as two simple cubic structures of either type
of atoms. The structures are displaced relative each other by a/2, where a is the lattice constant.

The order is maintained when the temperature changes and the properties, for example the heat capacity, change gradually
until the temperature reaches a critical value Tcr. At the critical temperature the kinetic motion is violent enough to let the
atoms change sites fairly freely and the structure becomes disordered. It can be described as a BCC structure with a completely
random distribution of the Cu and Zn atoms (Figure 6.22).

The critical temperature Tcr when the order–disorder transformation occurs is approximately 740 K. The change in heat
capacity is shown in Figure 6.23. Energy is required to change the system from an ordered to a disordered state. The increased

R Cp                                                   CuZn
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5.76
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Figure 6.23 Molar heat capacity at constant pressure as a function
of temperature for � brass (CuZn). The critical transformation temper-
ature from an ordered to a disordered structure occurs at Tcr = 740 K.
Reproduced with permission from C. Kittel, Introduction to Solid State
Physics, 6th edn. © 1986 John Wiley & Sons, Inc.
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Figure 6.24 Long-range order parameter S as a function of
the ratio T/Tcr for � brass (CuZn). Reproduced with permis-
sion from B. D. Cullity, Elements of X-Ray Diffraction. ©
Addison-Wesley Publishing Company, Inc. (now under Pearson
Education).
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need for energy appears as an abrupt increase in Cp in the vicinity of the critical temperature. When the transformation is
carried through, the Cp value decreases rapidly to the ‘normal’ value of the disordered state.

A plot of the variation of the long-range parameter S as a function of T/Tcr is given in Figure 6.24. S was obtained from
X-ray measurements of the type described above, performed within the temperature range 300–740 K (04Tcr − Tcr). The
resemblance between Figure 6.24 and Figure 6.38 on page 328, which concerns the Curie point in ferromagnetic materials, is
striking.

Theoretical Background of Order–Disorder Transformations
Heat capacity is closely related to elastic vibrations in solids. In Chapter 3 (page 149) we found that elastic waves in a
one-dimensional row of equal atoms have an upper angular frequency limit equal to

�max = 2

√
�

M
(6.78)

where � is a material constant. The phonons obey Bose–Einstein statistics. This is the background to Debye’s model of heat
capacity which results in Equations (6.67) and (6.69):

U = 9NAkBT

(
T

�D

)3

�D
T∫

0

x3

ex −1
dx (6.67)

Cp = CV = 9R
(

T

�D

)3

�D
T∫

0

x4ex

�ex −1�2 dx (6.69)

where x = h�/kBT and the Debye temperature �D = h�D/kB.
As � is a material constant, the Debye temperature �D, which is a function of the maximum frequency of the elastic waves,

must be specific for each type of atom.
In the ordered structure, the Cu atoms form their own simple cubic crystal lattice and the Zn atoms form another simple

cubic crystal lattice, which is displaced half an atomic distance relative to the Cu lattice. The Cu and Zn atoms lie in different
planes. As a rough approximation, we will neglect the interaction between the two lattices.

In the ordered structure, we can approximately describe the average phonon energy as the average of the phonon energies
of the two lattices:

U = UCu +UZn

2
(6.79)

Referring to Equations (6.67), (6.69) and (6.79), we can conclude that the heat capacity of the ordered structure is a function
of both �Cu

D and �Zn
D .

When the temperature increases, the number of phonons and their average energy increase and the phonons collide with
electrons and atoms. Some of the atoms gain sufficient energy for an exchange of position with neighbouring atoms. When
the temperature increases further, the collisions become more and more frequent. At the critical temperature a great number
of atoms change place and the ordered distribution in the two lattices collapses. When the completely disordered structure is
a fact, the frequent collisions give no macroscopic changes.

In the disordered state, the Cu and Zn atoms are distributed at random in the crystal lattices and �Cu
D and �Zn

D are no longer
defined as the Cu and Zn planes do not exist. They are replaced by another value of �D related to the elastic waves in a single
and denser crystal structure.

6.6 Magnetism

6.6.1 Magnetic Moments of Atoms

Magnetism has been discussed in Chapter 2, where the origin and basis of magnetism were briefly discussed in connection
with the theory of atoms, particularly the Zeeman effect.

In Chapter 2 (page 60), we found that the angular momentum of an electron in an atom is always firmly coupled to a magnetic
moment. The same is true for all orbital electrons in an atom and also for their resultant, the total orbital angular momentum
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Total orbital angular momentum
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Total orbital magnetic moment
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Figure 6.25 Total orbital angular momentum L of an atom and its corresponding magnetic moment �L.

L. The vector L is rigidly coupled to the total magnetic moment �L. L and �L have opposite directions (Figure 6.25). In
analogy with Equation (7′) in the box on page 70 in Chapter 2, we have


�L
 = �B

√
L�L+1� (6.80)

The constant �B [Equation (2.47) on page 71] is called the Bohr magneton and has the value

�B = e�

2m
(6.81)

It is a very useful ‘unit’ for magnetic moments.
According to quantum mechanics, L and its corresponding magnetic moment �L are space quantized. In the general case,

L is coupled to the resulting electron spin vector S, which gives a resulting vector J. Its resulting magnetic moment can be
written as


�J
 = �B

√
J�J +1� (6.82)

J and �J are also space quantized and the corresponding energy state splits into 2J +1 energy levels with different energies
in a magnetic field. The reason is the space quantization of the magnetic moment (page 60 in Chapter 2).

(a) (b)

Figure 6.26 Splitting of a 1D state in a magnetic field. (a) Space quantization of J in the magnetic field. (b) Splitting of energy levels
without and with a magnetic field B in the z direction.

The components of �J on the z axis of a coordinate system can be written as

�J�z = −�BMJ (6.83)

where MJ is the magnetic quantum number.
In connection with the treatment of the normal Zeeman effect on pages 69–71 in Chapter 2, it was shown that the energy

levels in the presence of a magnetic field B in the z direction can be written as [Equation (2.48) on page 71]

Epot = �BBMJ (6.84)
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where MJ is the component of the J vector on the direction of the B field (z axis). A concrete example of the energy splitting
of a 1D state (S = 0 and L = J = 2) is given in Figure 6.26.

It was clearly pointed out in Chapter 2 that the splitting described by Equation (6.84) is valid only for singlet states, i.e.
when the quantum number S = 0 and J = L. The reason for this will be explained below.

Electron Spin and Intrinsic Magnetic Moment of Electrons

In addition to the orbital angular momentum and the orbital magnetic moment, the electron also has an intrinsic angular
momentum s and an intrinsic magnetic moment �s (Chapter 2, page 61).

The z component of the magnetic moment is twice the size which might be expected from an analogy with Equation (6.83):

�sz = −2�Bms (6.85)

As ms = ±1/2, we obtain

�sz = ±�B (6.86)

According to Figure 2.19 on page 61, we have


�s
 = 2�B
s
 = 2�B

√
s �s+1� = √

3�B (6.87)

The resulting angular momentum L of all the electrons is obtained by vector addition of all the li vectors. Similarly, all
the si vectors give the resultant S. The corresponding magnetic moments also form a resultant. In the general case it can be
written as


�S
 = 2�B

√
S�S +1� (6.88)

The vectors L and S are coupled to each other. The corresponding magnetic moments also form a resultant which in the
general case can be written as

�total = �L +�S (6.89)

which is the total magnetic moment of the atom.
The factor 2 on the right-hand side in Equation (6.88) is responsible for the anomalous Zeeman effect (page 71 in Chapter 2).
J and �total are not antiparallel unless S = 0. In all other cases the upper and lower energy levels no longer have the same

splitting as in Figure 2.30a on page 71, which results in many more lines than three when the selection rules are applied in
the general case.

6.6.2 Dia- and Paramagnetism

The net magnetic moment of an atom depends on the orientation of its electron orbits. If L and S are zero, for example for
symmetry reasons in filled shells or subshells (Chapter 2, Section 2.7.1), the atomic magnetic moment will be zero. Even if the
atom possesses a net magnetic moment, the magnetization of the solid is zero for most materials owing to random orientation
of the atoms in the absence of an external magnetic field.

HI I

Figure 6.27 Magnetizing field.
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In the presence of an external magnetic field, all materials become influenced. Consider a long current-carrying solenoid
which gives a fairly homogeneous magnetic field (Figure 6.27). If it contains a solid cylinder the material becomes magnetized.
The magnetizing field H is defined by the relationship

H = nI (6.90)

where
H = magnetizing field (A/m)
n = the number of coils per unit length of the solenoid
I = current through the coils.

The magnetization of the solid is described by the magnetization vector M, which is defined as the magnetic moment per
unit volume of the solid.

The magnetization vector of a solid is proportional to the magnetizing field:

M = �H (6.91)

where

M = magnetic moment per unit volume (Am2/m3)
� = magnetic susceptibility of the solid
H = magnetizing field (A/m).

The magnetic susceptibility � of the solid is a dimensionless material constant.
Owing to their behavior in a magnetic field, solids are classified as

• diamagnetic
• paramagnetic
• ferromagnetic
• antiferromagnetic
• ferrimagnetic.

The influence of a magnetic field on the atoms of all materials depends on the interaction between the magnetic field and
the atoms. There are two effects. One is the influence of the field on the orbits of the electrons. This effect, which is described
below under the heading Diamagnetism, appears in all atoms. The other effect is an orientation effect, which appears in such
atoms that have a permanent magnetic moment.

The magnetic phenomena have been the object of much research in theoretical physics. It is beyond the scope of this book
to penetrate the theories of dia-, para- and ferromagnetism but some brief outlines will be given without demands upon either
derivation or completeness.

Ferromagnetism, antiferromagnetism and ferrimagnetism belong to the same type of magnetic materials. They will be
discussed in Section 6.6.3.

Diamagnetism

When a diamagnetic substance is exposed to a magnetizing field, it obtains a weak magnetization in a direction opposite
to the magnetizing field. The magnetic susceptibility of diamagnetic solids is negative and << 1. In most cases it is of the
magnitude 10−5.

M = �H � < 0 (6.92)

Diamagnetic effects appear in all solids but are generally completely screened by other magnetic effects unless the resulting
magnetic moment of the atoms is zero.



Mechanical, Thermal and Magnetic Properties of Solids 321

Theory of Diamagnetism
The electrons in the shells and subshells of the atoms appear in pairs. Consider a pair of electrons with equal angular
momentum l. The two electrons ‘rotate’ in opposite directions, i.e. their magnetic quantum numbers are ±ml. Their electron
spins have opposite directions (spin up and spin down), which can be expressed as ms = ±1/2. Such electron pairs have no
resulting magnetic moment. All filled shells and subshells consist of such electron pairs and have no resulting magnetic
moment.

The atoms of all diamagnetic solids have a resultant magnetic moment equal to zero. Hence diamagnetic solids have filled
electron shells or subshells. Diamagnetic metals are, for example, Zn, Cd and Hg, all with an electron structure with no
unpaired electron spins.

Under the influence of a magnetizing field, the electron orbits become distorted in such a way that a resulting magnetic
moment arises, opposite to the H field. It is maintained as long as the H field is present.

The negative direction of the magnetization can be understood as follows. Consider a single closed coil which suddenly is
exposed to a perpendicular magnetic field. An electric field is induced which causes an induction current in the coil in such
a direction that it gives a magnetic field opposite to the external magnetic field (Lentz’s law). If the electric resistance in
the coil is zero, the current continues to flow. The coil corresponds to a magnet with its magnetic moment in the opposite
direction to the magnetizing field.

Alternatively, we can say that the time-dependent magnetic field induces an electric field, which accelerates or retards the
electrons in their orbits slightly. The result is that their magnetic moments no longer cancel but have a resultant in the direction
opposite to the magnetizing field.

The susceptibility of diamagnetic solids, which consist of atoms or ions with filled electron shells, can be written as

� = −Ze2N

6m
r2 (6.93)

where
� = magnetic susceptibility of the solid
Z = number of electrons of the atom
e = charge of the electron
m = mass of the electron
N = number of atoms per unit volume
r2 = root mean square radius of the electron cloud around the atom.

Owing to its origin, it can be named orbital magnetic susceptibility. It should be noted that � is independent of temperature
for diamagnetic substances.

Paramagnetism

When a paramagnetic substance is exposed to a magnetizing field, it obtains a weak magnetization in the same direction as
the magnetizing field. The magnetic susceptibility (page 320) of paramagnetic solids is positive and � 1. It is proportional to
1/T . In most cases it is of magnitude 10−4 for solids at room temperature.

M = �H � > 0 (6.94)

The atoms of paramagnetic solids have a resulting magnetic moment. It originates partly from the orbital motion of the
electrons and partly from their spins.

The interaction between paramagnetic atoms is negligible.

Theory of Paramagnetism

The paramagnetism in solids consists of two effects. One of them originates from the orbital electrons of all lattice atoms.
The other emanates from the free electrons which are common for the crystal lattice in metals.
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Paramagnetism of the Permanent Resultant Atomic Orbital Magnetic Dipole Moment
Atoms with a resulting magnetic moment behave like small magnets. Under the influence of the external magnetic field, they
orient themselves in directions closer to the magnetic field than their original positions.

The reorientation is counteracted by the scattering of the atoms and their magnetic moments, owing to interaction with the
electron gas and electron–phonon collisions, until equilibrium is achieved. The stronger the external magnetic field is, the
stronger will be the orientation of the small magnets in the direction of the external field. Hence the weak total magnetic
moment of a piece of paramagnetic material is proportional to the external magnetizing field.

The diamagnetic effect appears in all materials. If the induced magnetic moment and the permanent magnetic moment of
the atoms are equal, a magnetically indifferent substance is obtained.

Figure 6.28 Susceptibility of paramagnetic solids versus temperature. A negative values of � means that the diamagnetic effect, which is
always present, dominates over the paramagnetic effect.

The alignment of the permanent magnetic moments of the atoms is counteracted by the kinetic motion of the atoms. Hence
the paramagnetic susceptibility depends on temperature. The higher the temperature is, the smaller will be � (Figure 6.28).

Only those materials in which the paramagnetic effects dominate over the diamagnetic effects are called paramagnetic and
show paramagnetic properties. Examples of such paramagnetic solids are the alkali metals with single electrons in their outer
shells and rare earth metals with unfilled shells.

In Chapter 2, we discussed the orbital electrons with a magnetic spin quantum number ms (page 61). In a magnetic field,
space quantization of the electron spin occurs.

In a magnetic field, the degeneracy between the orbital electrons, which share the same orbital state but have opposite spins,
is broken and the electrons have slightly different energy levels (Figure 6.29).

The orbital electrons with positive spin relative to the direction of the magnetic field B lower their energy in the magnetizing
field by the amount −� ·B, where � is the total magnetic moment of the electron, which includes both �L and �S [Equation (6.89)
on page 319]. Orbital electrons with negative spin relative to B increase their energy by the amount � ·B in the magnetic field.

Paramagnetism of the Free Conduction Electrons in Metals
The Fermi distribution of valence electrons has been discussed extensively in Chapter 3 (pages 121–124). If we exchange
the axes of Figure 3.26c on page 123 and draw two distribution functions, one for electrons with spin up and the other for
electrons spin down, we obtain the dotted curves in Figure 6.29.

Figure 6.29 Density of electron energy states of spin-up and spin-down electrons of paramagnetic atoms in a magnetic field. The tops of
the energy bands have the same energy. The energy difference between the bottoms of the electron bands is 2�BB. Adapted with permission
from J. M. Ziman, Principles of the Theory of Solids, 2nd edn. © Cambridge University Press.
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The shaded areas in Figure 6.29 represent the number of spin-down (n↓) and spin-up electrons (n↑) per unit volume.
Obviously there are more spin-up than spin-down electrons. The excess spin gives rise to a resulting magnetic moment. This
is the explanation of paramagnetism of the conduction electrons.

A necessary condition for equilibrium is that the maximum energy level is the same for both spin-down and spin-up
electrons. This is achieved by transfer of some spin-down electrons to the spin-up side.

In analogy with Equation (6.86) on page 319, the magnetic moment of a free electron is 2�B × 1/2 = �B. Hence the net
magnetic moment of the free electrons per unit volume will be

M = �B

(
n↑ −n↓

)
(6.95)

where
M = net magnetic moment per unit volume due to the free electrons
�B = magnetic moment of a free electron, i.e. the Bohr magneton
n↑ = number of electrons per unit volume with spin up
n↓ = number of electrons per unit volume with spin down.

The positions of the spin-up and spin-down electron energy bands depend, of course, on the type of metal and are also
strongly influenced by alloying or impurity atoms, which change the total number of free electrons in the solid.

6.6.3 Ferromagnetism

Ferromagnetism, Antiferromagnetism and Ferrimagnetism

A characteristic and common feature of ferromagnetic, antiferromagnetic and ferrimagnetic materials is that there exists strong
coupling between the magnetic moments of neighbouring atoms, which is strong enough to persist in spite of thermal excitation.
The nature of this coupling will be discussed below.

In ferromagnetic materials, the atomic magnetic moments of equal size are oriented roughly in the same direction
(Figure 6.30a). In antiferromagnetic materials the atomic magnetic moments are coupled roughly in opposite directions
(Figure 6.30b) and cancel, which makes the material unmagnetic. Ferrimagnetic materials are a type of antiferromagnetic
material where the two types of magnetic moments have different sizes and do not cancel (Figure 6.30c). Consequently, such
materials are magnetic.

(a) (b) (c)

Figure 6.30 Coupling between the magnetic moments in case of (a) ferromagnetism, (b) antiferromagnetism and (c) ferrimagnetism.

Below we will restrict the discussion to ferromagnetism and the dominating ferromagntic materials.

Ferromagnetism. Spin Interaction

The difference between paramagnetic and ferromagnetic solids is that that the ferromagnetic materials have much higher
values of the magnetic susceptibility (page 320), which is of magnitude 1000.

M = �H � >> 0 (6.96)

Examples of ferromagnetic solids are Fe, Ni, Co, some of their alloys and some alloys which contain Mn and Cr.
The magnetic moments of ferromagnetic atoms are of the same magnitude as those of paramagnetic atoms. Another

similarity is that the magnetic susceptibility depends on temperature in both paramagnetic and ferromagnetic solids. Above a
certain temperature, characteristic for each material, the ferromagnetism disappears and the material becomes paramagnetic.
This temperature is called the Curie point or Curie temperature (page 328).



324 Physics of Functional Materials

Electron Configurations and Magnetic Moments of Ferromagnetic Atoms

It is striking that ferromagnetic solids consist of atoms with unfilled shells or subshells (the 3d subshell can accommodate a
maximum of 10 electrons) and high resulting angular momentum and spin vectors. This is shown in Table 6.4.

Table 6.4 Electron configurations and ground states of Fe, Co and Ni atoms.

Element Electron configuration of atoms Ground state L S

Fe 1s22s22p63s23p63d64s2 5D4 2 2
Co 1s22s22p63s23p63d74s2 4F9/2 3 3/2
Ni 1s22s22p63s23p63d84s2 3F4 3 1

However, reality is more complex than Table 6.4 indicates. The magnetic moments of the ferromagnetic atoms have been
measured carefully and turn out to be non-integer instead of integer numbers of the Bohr magneton [Equation (6.81) on page
318]. The unavoidable conclusion is that the numbers of electrons in the subshells are also non-integers. The explanation
is hybridization of the 4s and 3d electrons in ferromagnetic atoms. This phenomenon, which is a consequence of quantum
mechanics, was discussed in Chapter 3 in connection with covalent bonds in diamond.

Therefore, it is in fact not correct to keep the names 3d and 4s for the bands of the outer electrons in the transitions metals.
Instead we have hybrid bands. However, for the sake of simplicity and tradition, the notations are retained.

                            1.46 holes 

                            0.54 holes 

↓ ↑

0.54 electrons     4.46 electrons       5 electrons

             4s ↑↓            3d ↓            3d ↑

Figure 6.31 Schematic electron distribution in the 4s and 3d subbands in Ni at absolute zero temperature. The figure is not drawn to scale.
Reproduced with permission from C. Kittel, Introduction to Solid State Physics, 6th edn. © 1986 John Wiley & Sons, Inc.

According to Table 6.4, a nickel atom has two electrons in the 4s and eight electrons in the 3d subshell. It can accommodate
a maximum of 10 electrons, five with spin up and five with spin down. In Figure 6.31 we have schematically separated the
3d sub-band with respect to the spin direction (compare Figure 6.29 on page 322). Owing to quantum mechanical interaction
between the wave functions of the electrons, the two sub-bands have different energies, as indicated in Figure 6.31 (exchange
energy, compare the H2

+ molecule in Chapter 2, page 73).
The 3d sub-band with spin up is assumed to be filled, i.e. contains five electrons, whereas the sub-band with spin down

on average contains 4.46 electrons and the 4s subband 0.54 electrons. This electron configuration corresponds to the lowest
possible energy of the Ni atom.

Alternatively, we can plot the density of electron energy states as a function of energy to show the electron distribution in
the crystal. This type of diagram was frequently used in Chapter 3 (page 123). It is used in Figure 6.32.

Figure 6.32 shows that the density of electron states in the 4s band is low and that the band is very wide. The band can
accommodate 2N electrons per unit volume but is only filled with electrons up to the Fermi level. The number of electrons
with spin up is equal to the number of spin-down electrons and the net magnetic moment of the 4s electrons is zero.

The total number of electrons in the 4s and 3d shells equals 10. Hence the resulting magnetic moment of all the 3d electrons
is �50 − 446��B = 054�B (Bohr magnetons). The measured value is 060�B. The deviation 006�B can be explained by
other effects.
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Figure 6.32 Density of the electron energy states in the 4s and 3d bands as a function of the energy E in Ni at absolute zero temperature.
The shaded areas of the 4s and 3d bands between E = 0 and E = EF represent the number of electrons per unit volume in the 4s and 3d
bands (0.54 and 9.46 electrons, respectively). The figure is not drawn to scale. Reproduced with permission from A. G. Guy, Elements of
Physical Metallurgy, 2nd edn. © Addison-Wesley Publishing Company, Inc. (now under Pearson Education).

The 3d band is narrow compared with the 4s band and the density of electron states per energy unit is much higher in the
3d band than in the 4s band. The two 3d bands overlap strongly. The peak at lower energy corresponds to spin up. Both the
spin-up and spin-down electrons contribute to the second peak.

On the whole, the spin-up electrons have lower energy than the spin-down electrons. As the lowest energy states always
become filled first there is an excess of spin-up electrons. The 3d band is not completely filled, which gives a resulting
magnetic moment. The distribution represents the lowest possible total energy.

2.55 holes            0.35 holes

↓ ↑

↓                     3d ↑

↑↓

3d

Figure 6.33 Electron distribution in the 4s and 3d subbands in Fe at absolute zero temperature. The total number of electrons in the 4s
and 3d subbands is eight. The figure is not drawn to scale. Reproduced with permission from C. Kittel, Introduction to Solid State Physics,
6th edn. © 1986 John Wiley & Sons, Inc.

The conditions are analogous in iron (Figure 6.33). Iron has two electrons in the 4s and six electrons in the 3d subband
according to Table 6.4. Owing to hybridization, the electron distribution can roughly be described by 4.65 electrons with
spin up, 2.45 electrons with spin down in the 3d subband and 0.90 electrons in the 4s subband, which do not contribute
to the magnetic moment. This distribution corresponds to a resulting magnetic moment of all the 3d electrons equal to
�465−245��B = 220�B, in good agreement with the measured value 222�B.
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Theory of Ferromagnetism

In the preceding section, the magnetic moments per atom of the ferromagnetic elements Ni and Fe were derived. As there
is no difference in the magnitude of the magnetic moments per atom between paramagnetic and ferromagnetic elements, the
reason for the strong magnetism of ferromagnetic materials must be an alignment of the magnetic moments in ferromagnetic
solids, which is absent in paramagnetic solids.

Much effort has been devoted by many physicists to finding a theory which can explain the puzzling phenomenon
of ferromagnetism. The magnetic dipole moment of an atom is firmly coupled to its spin (Chapter 2). It is generally
accepted that

• The strong coupling of the magnetic moments of neighbouring atoms in ferromagnetic materials is caused by the coupling
of the spin vectors of neighbouring atoms.

Spin coupling has been discussed in Chapter 2. Electrons within the same atom with equal values of the quantum numbers
n, l and ml must have antiparallel spins owing to the Pauli principle.

An example of coupling of electron spins in different atoms is the H2 molecule. Quantum mechanical calculations show
that the two electrons have antiparallel spins in the ground state (Figure 2.37 on page 75). This leads to a binding state.

The coupling of electron spins is described by the so-called exchange integral, which is a function of the symmetric and
antisymmetric combinations of the wave functions of the two electrons. The exchange integral represents the difference
between the two energy states which correspond to parallel and antiparallel spins. Conclusions regarding the equilibrium state
can be drawn from the sign and magnitude of the exchange integral.

The unpaired electrons in an atom form a resultant spin vector S. The study of the exchange integral shows that

• The energy state with lowest possible energy is that with highest possible value of S.

This statement (Hund’s rule) explains why atoms with incompletely filled d shells, for example the ferromagnetic transition
metals, have high resulting spins and consequently large magnetic moments.

Two entirely different models have been used to give a theoretical explanation of ferromagnetism. One is the quantum
mechanical approach and the other is a statistical model.

Quantum Mechanical Model of Ferromagnetism
In contrast to the H2 molecule, the strong interaction between adjacent ferromagnetic atoms is caused by electron spins with
parallel orientation. To explain this, the band structure of ferromagnetic metals, including the Fermi–Dirac distribution of
electrons, must be considered. The matter is further complicated by the fact that the electrons in the 4s and 3d bands are
hybridized (Figures 6.29, 6.31 and 6.33).

Figure 6.34 Density of electron energy states in a ferromagnetic metal as a function of energy. Adapted with permission from J. M. Ziman,
Principles of the Theory of Solids, 2nd edn. © Cambridge University Press.

Stoner set up a collective electron model of the ‘magnetic’ electrons. The energies of the electrons were expressed with
the aid of Bloch functions. The density of electron energy states per unit volume of the ferromagnetic metal as a function of
energy is shown in Figure 6.34, which is analogous to Figure 6.32 on page 325. Expressions for the energy of an electron
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with spin up and spin down are set up. The total energy is calculated and an expression for the susceptibility is derived. This
expression contains the temperature T .

The Ising Model
A totally different approach was introduced by Ising in the middle of the 20th century. He suggested a general statistical
‘digital’ model with two alternatives at each site. This is shown in Figure 6.35. The same model was used in connection
with discussion of the influence of order–disorder transformations on heat capacity in Section 6.5.5 (page 315) and will be
discussed in more general terms below.

Figure 6.35 The Ising model. Figure 6.36 Atoms with spin-up and spin-down
electrons in a ferromagnetic material.

Figure 6.37 Atoms A and B in a binary
alloy.

The Ising model has several applications. It can be used to study and explain ferromagnetism (Figure 6.36) and can
also be applied to alloys (Figure 6.37). There is one fundamental difference in the two cases, however. Spin-up electrons
can be converted into spin-down electrons and vice versa. A corresponding transformation of an A atom into a B atom
or vice versa in an alloy is impossible. In spite of this, some analogous properties of the two types of systems have been
found.

The advantage of the Ising model is that the difficult problem of finding the exact eigenfunctions of a given assembly of
spins is avoided. The Ising model concentrates on finding the statistical distribution of energy states of such a system. It is no
longer a quantum mechanical problem but a statistical problem and concerns order–disorder transformations.

The interaction between neighbouring atoms in a binary alloy has been studied experimentally. At low temperature the alloy
tends to be ordered, i.e. with a regular pattern of A and B atoms. At a certain transition temperature the order was found to
be broken and the distribution of atoms to be random.

Application of the Ising Model to Ferromagnetism
N atoms per unit volume of a ferromagnetic material are considered and all the number of different configurations of spin-up
and spin-down atoms of the N sites per unit volume of the crystal lattice are counted. An energy function that corresponds to
the exchange integral is set up and the condition for minimum free energy is derived. From this condition, it can be concluded
that the minimum energy corresponds to a strong coupling of parallel spins in neighbouring atoms.

We can also make a comparison between alloys and ferromagnetic materials. We assume, according to the Ising model and
Figures 6.36 and 6.37, that A atoms correspond to spin-up atoms and B atoms to spin-down atoms. Just as in alloys:

• There is a certain specific transition temperature when all order disappears. This transition temperature in ferromagnetic
materials corresponds to the temperature, when they suddenly lose their ferromagnetic properties, the so-called Curie point
(page 328).

• There is a sudden change in the heat capacity of alloys at the transition temperature from an ordered to a disordered state (for
example the CuZn alloy, Section 6.5.5 on page 316) and also a sudden change in heat capacity of ferromagnetic materials
at the Curie point (page 328).

These properties of ferromagnetic materials will be discussed more extensively below.
The assumptions connected with the quantum mechanical theory of ferromagnetism are very rough but the results agree on

the whole with those derived from the Ising model. Hence it seems reasonable to accept the idea of alignment of the spins
of neighbouring atoms. A large number of atoms with parallel spins are supposed to be coupled strongly to each other in
ferromagnetic materials.
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Weiss Domains
The alignment of the spins of a large number of neighbouring atoms, predicted by theory, can easily be verified experimentally.
When a ferromagnetic material is studied under a microscope, small grains, so-called Weiss domains, can be observed. The
Weiss domains consist of a 1012–1020 atoms with parallel magnetic moments. The extension of the domains are of magnitude
10−3–10−4 cm. Each crystal may contain a number of domains of magnitude 105.

6.6.4 Properties of Ferromagnetic Materials

Curie Point

The properties of ferromagnetic and paramagnetic solids depend on temperature. At higher temperatures, the thermal motion
in a ferromagnetic solid becomes more and more violent. At a certain temperature characteristic for each ferromagnetic
material, the domain structure breaks up, the strong coupling between the magnetic moments of the atoms disappears and the
ferromagnetic material becomes paramagnetic (Figure 6.38). A concrete example of the energy changes in Ni at the Curie
point is given in Figure 6.39.

Figure 6.38 Saturation magnetization as a function of temperature for a ferromagnetic material.

Figure 6.39 The 3d energy band in Ni at temperatures above the Curie point. The figure should be compared with Figure 6.31 on page
324. Above the Curie point the energy difference between the 3d↓ and 3d↑ electron bands in the Ni crystal, which is identical with the
exchange energy, has disappeared. The 3d↓ and 3d↑ bands have the same energy independent of spin direction. The figure is not drawn to
scale. Reproduced with permission from C. Kittel, Introduction to Solid State Physics, 6th edn. © 1986 John Wiley & Sons, Inc.

The transition temperature Tcr is called the Curie point. Some values for ferromagnetic metals are given in Table 6.5.

Table 6.5 Curie points of some
common ferromagnetic metals.

Metal Curie point (K)

Fe 1043
Co 1390
Ni 631
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It should also be remembered that the positions of the energy bands are functions of the lattice constant, i.e. of the
interatomic distances.

Order–Disorder Transformations in Ferromagnetic Materials

Transformations in ferromagnetic solids at the Curie point represent a special type of order–disorder transformation. Two
examples of such transformations will be discussed below.

Figure 6.40 shows Cp for nickel as a function of T . The curve has a typical anomaly at the Curie point of Ni, 627 K. The
discontinuity of Cp appears at the transition from an ordered structure with Weiss domains to a random, disordered structure
without coupling between the spins of the atoms.

Figure 6.40 The molar heat capacity at constant pressure of Ni
as a function of temperature. Reproduced with permission from
A. J. Dekker, Solid State Physics. © 1962 Macmillan & Co Ltd.

Figure 6.41 The molar heat capacity at constant pressure of
Fe as a function of temperature within the interval 0–1800 K.

Figure 6.41 shows experimental values of Cp for iron as a function of T . The upper curve corresponds to �-Fe, which has
a BCC structure (Chapter 1, page 21). The lower curve corresponds to �-Fe, which has an FCC structure. At temperatures up
to 1183 K the stable form of iron is the �-phase. In the temperature interval 1183–1673 K the stable form with lowest energy
is �-Fe.
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Figure 6.42 Low-carbon part of the phase diagram of the Fe–C system. Reproduced with permission from M. Hansen and K. Anderko,
Constitution of Binary Alloys, 2nd edn. © 1958, McGraw-Hill Book Company, Inc.
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Figure 6.41 shows that discontinuities appear in the transitions � → � (1183 K) and � → � (1673 K). These transformations
are true structure changes of the crystal lattice and cause an abrupt change in the heat capacity of Fe but no peak in the curve.

The anomalous peak in the �-curve at 1043 K corresponds to the transformation from an ordered magnetic structure of
�-Fe to a disordered nonmagnetic structure, the Curie point of �-Fe. The disorder depends on random orientation in space of
the magnetic moments of the atoms when the Weiss domains disappear.

Ferromagnetic Materials in Magnetic Fields

Magnetization of Ferromagnetic Materials
If ferromagnetic materials are exposed to a magnetizing field H they become magnetized, i.e. the Weiss domains align
themselves more or less in the direction of the H field and contribute to the magnetic B field. The magnetic B field is defined
by the relationship

B = �1+���0H = ��0H (6.97)

where
H = magnetizing field (A/m)
� = magnetic susceptibility (of magnitude 103 for ferromagnetic materials)
� = relative permeability of the material = 1+�
�0 = permeability in vacuum
B = magnetic field caused by the magnetizing field and the varying polarization in the material (ferromagnetic material).

As is seen from Equation (6.97), B is a measure of the strength of the magnetization of the material. It is not proportional to
H because the relative permeability varies strongly with the magnetizing field.

→ →

↑ ↓ ↑ ↓ ↑

← ←

B ↑ B1 ↑ B2

(a) (b) (c)

Figure 6.43 Magnetizing a ferromagnetic crystal in the direction of one of the crystal axes. The arrows represent the directions of the
magnetic moments of the Weiss domains.

Consider a single crystal of a ferromagnetic solid where the Weiss domains have random orientations (Figure 6.43a).
For simplicity only a few of them are shown in Figure 6.43. If a weak magnetizing field (B = ��0H) is applied
in a direction that coincides with one of the crystal axes, the block walls of the Weiss domains become displaced.
The domains in the field direction grow at the expense of the others (Figure 6.43b). The process is reversible
for small displacements. When the magnetic field decreases, the domain walls become displaced in the reverse
directions.

The magnetic order of the domains is counteracted by the thermal motion. The equilibrium depends on the strength of the
magnetic B field.

When the magnetic field is increased, the domains in the field direction continue to grow by domain wall displacements. If
the magnetic field is strong enough, the domains in the field direction dominate completely (Figure 6.43c).

If a weak magnetic B field is applied in a direction that does not coincide with one of the crystal axes, the directions of
magnetic domains first change from the random state (Figure 6.44 a) to a state as close as possible to the magnetic field
direction (Figure 6.44 b) by domain wall displacements. This process is the same as that described above and reversible for
small displacements.

When the magnetic field is further increased, the aligned domains change direction discontinuously by sudden rotation in
steps. This process is irreversible. If the magnetic field is strong enough, the directions of the magnetic moments and the B
field coincide (Figure 6.44 c). The magnetization is said to be saturated.
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(a) (b) (c)

Figure 6.44 Magnetizing a ferromagnetic crystal in an arbitrary direction other than the crystal axes. The arrows represent the directions
of the magnetic moments of the Weiss domains.

Figure 6.45 Magnetization of a single crystal of Fe in three different crystallographic directions. Reproduced with permission from
A. G. Guy, Elements of Physical Metallurgy, 2nd edn. © Addison-Wesley Publishing Company, Inc. (now under Pearson Education).

It is easier to magnetize ferromagnetic crystals in the directions of some of its crystallographic axes than in other directions.
This is shown in Figure 6.45, which shows that full magnetization is easily obtained in the <100> direction in iron.

Hysteresis
The easiest way to magnetize a ferromagnetic specimen is to place it in a homogeneous magnetizing field H caused by a coil
(see Figure 6.27 on page 319). The H field is easily changed by varying the current I in the coil (H = nI , where n = number
of turns per unit length).

The specimen is magnetized by increasing the H field from zero until saturation magnetization has been achieved, i.e.
becomes constant. The process is shown in Figure 6.46. B and H are no longer proportional.

Figure 6.46 Virgin curve. The parallel lines inside the Weiss domains indicate the directions of their magnetic moments. Reproduced with
permission from A. G. Guy, Elements of Physical Metallurgy, 2nd edn. © Addison-Wesley Publishing Company, Inc. (now under Pearson
Education).
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At H = 0 the specimen is unmagnetized, i.e. the Weiss domains have random orientations. Region I in Figure 6.46 of
the curve represents the process of reversible displacements of the domain boundaries. Further displacements of the domain
boundaries are irreversible (region II). The third region represents rotation of Weiss domains from easy directions to the
direction of the H field. The curve is called the virgin curve.

Hysteresis Loop
If the coil is fed with alternating current, the magnetizing field H also alternates with the same frequency as the current.
The specimen has to alter its direction of saturation magnetization over and over again. The remagnetization is shown in
Figure 6.47.

Figure 6.47 Hysteresis loop of a ferro-magnetic material. Br = residual magnetization; Hc = coercitive force. Reproduced with permission
from A. G. Guy, Elements of Physical Metallurgy, 2nd edn. © Addison-Wesley Publishing Company, Inc. (now under Pearson Education).

The dashed curve represents the virgin curve discussed above. At point A the specimen is fully magnetized in the direction
of the H field. When the H field decreases, becomes zero and then negative, the B field does not follow the virgin curve but
the ABrHcC curve. When the H field decreases again and changes direction once more, the B field follows the curve CC′A
back to the starting point. The closed curve is known as the hysteresis loop.

Bmax is the saturation magnetization. The curve intersects the B axis at B = Br when H = 0 and B decreases from Bmax. Br

is the residual magnetization. For negative H values B continues to decrease. The value of H which corresponds to B = 0 is
Hc, which is called the coercitive force. If the magnetic material is exposed to Hc the residual magnetization Br disappears.

The area inside the hysteresis loop represents the heat losses or hysteresis losses. So-called eddy currents are induced in
the metal by the incessant changes of the magnetic field during the magnetization–remagnetization cycles. The eddy currents
generate heat in the metal. The heat is emitted to the surroundings.

Depending on their magnetic properties, i.e. relative permeability �, saturation magnetization Bmax, residual magnetization Br ,
coercitive force Hc and the area of the hysteresis loop, ferromagnetic materials are characterized as hard or soft.

Hard magnetic materials have high resistant magnetizations and high coercitive forces and large hysteresis losses
(Figure 6.48). Much energy is required to magnetize and remagnetize them, i.e. the hysteresis losses are large. Examples of
such materials are carbon steels and various Fe alloys with Mn, W, Co and also special non-iron alloys based on rare earth
metals.

Permanent magnets are made of hard magnetic materials. Clusters of coupled ferromagnetic atoms form tiny domains,
so-called single domains, separated from each other by non-ferromagnetic atoms.

Soft magnetic materials are easy to magnetize and remagnetize, have high permeabilities and low coercitive forces and,
particularly, small hysteresis losses (Figure 6.49). They are technically important.

Pure iron is often used. To reduce the eddy current losses Fe is alloyed with 3–4.5% Si. Such alloys are very convenient
for use in iron cores in power transformers, generators and motors.

Undesired residual magnetism in specimens, for example iron ships, can be removed by surrounding the specimen with
coils and running an alternating current through the coils, with an amplitude which gradually decreases to zero. The process
causes smaller and smaller hysteresis loops, which finally end at the origin.
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Figure 6.48 Hysteresis loop for a magnetically hard material. Repro-
duced with permission from A. G. Guy, Elements of Physical Metal-
lurgy, 2nd edn. © Addison-Wesley Publishing Company, Inc. (now
under Pearson Education).

B

H

Figure 6.49 Hysteresis loop for a magnetically soft mate-
rial. In the ideal case the enclosed area of the loop is zero.
Reproduced with permission from A. G. Guy, Elements of
Physical Metallurgy, 2nd edn. © Addison-Wesley Publishing
Company, Inc. (now under Pearson Education).

Summary

� Elasticity and Compressibility

Origin of elastic forces:
Restoring forces in the atoms and their electron shells when the equilibrium in the crystal lattice is disturbed.

Basic Concepts

Stress � � = F

A

Strain � 	 = �l

l

Lateral contraction:

	trans = −v	

where � = Poisson’s ratio

Elasticity

Hookes’s law � � = Y	

Hooke’s general law is given in the text.

Compressibility

V +�V = V �1+��p�

� = − 1
V

(
�V

�p

)
T
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where � is the compressibility coefficient.

B = 1
�

= bulk modulus

Relationship between the compressibility coefficient and the modulus of elasticity:

� = 3
Y

�1−2��

Deformation Energy

Linear deformation energy per unit volume: Ecom = Y	2

2
= �	

2
= �2

2Y
Three-dimensional deformation energy per unit volume: Edeform = Y

6 �1−2��
�	x +	y +	z�

2

� Expansion

Length expansion � l+�l = l �1+��T�

� = 1
l

(
�l

�T

)
p

Volume expansion � V +�V = V �1+��T�

� = 1
V

(
�V

�T

)
p

Relationship between � and � for cubic structures: � ≈ 3�

Origin of Length and Volume Expansion

One contribution is due to the lattice vibrations. One contribution is due to vacancies. The dominant effect comes from the
vibrational lattice part. The fraction of vacancies is comparatively small at room temperature but increases with increase in
temperature.

Full agreement with experiments is achieved when the following thermodynamic principle is applied:

The whole crystal expands or contracts until it finds the volume for which the total free energy is a minimum.

� Heat Capacity

dQ = cmdT

where c is the specific heat capacity.

Molar heat capacity at constant volume:

CV =
(

�Q

�T

)
V

=
(

�U

�T

)
V

Molar heat capacity at constant pressure:

Cp =
(

�Q

�T

)
p
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Debye’s Model of Heat Capacity

In analogy with Planck’s radiation law, Einstein calculated the energy of the elastic waves in a crystal lattice and derived CV

by taking the derivative of U with respect to T . Einstein’s model was improved by Debye:

U = 9NAkBT

(
T

�D

)3

�D
T∫

0

x3

ex −1
dx

where �D = Debye temperature and �D = Debye frequency.

CV = 9R
(

T

�D

)3

�D
T∫

0

x4ex

�ex −1�2 dx

�D = h�D

kB

At high temperature both models give CV = 3R (Dulong–Petit law).
At low temperatures Debye’s model gives

CV = 12�4

5
R

(
T

�D

)3

T � �D

� Heat Capacity of Electrons

At high temperatures the heat capacity of the valence electrons can be neglected in comparison with the phonon contribution.
Molar heat capacity of electrons at low temperatures:

Ce = �2kBT

2EF

R

Total molar heat capacity at low temperatures:

C ≈ Cp ≈ CV = 12�4R

5�D
3 T 3 + �2kBR

2EF

T

The electron contribution dominates at very low temperatures.

Molar Heat Capacity at Constant Pressure at High Temperatures

Grüneisen’s rule:

Cp −CV = �2V
�D
A

�
�T −�D�

Influence of Order–Disorder Transformations on Heat Capacity

Order and disorder refer to the distribution of atoms in a crystal lattice. Its structure remains unchanged. It is only the
occupancy of the sites which is concerned. A and B atoms can be ordered or distributed at random in the sites

An order–disorder transformation influences many properties of a solid, among them the heat capacity.
Order–disorder transformations occur at the transformation temperature and require energy. A steep increase in Cp is

followed by an even more rapid decrease after the transformation.
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� Magnetism

Magnetic Moment of Atoms

Orbital magnetic moment of an atom:


�L
 = �B

√
L�L+1�

Bohr magneton: �B = e�

2m

Component of the total magnetic moment of an atom:

�J�z = −�BMJ

Component of the total spin magnetic moment of an atom:


�S
 = 2�B

√
S�S +1�

Total magnetic moment of an atom:

�total = �L +�s

� Dia- and Paramagnetism

All solids become magnetized in a magnetizing field:

H = nI

Magnetization vector:

M = magnetic moment per unit volume
M = � H

where � is the magnetic susceptibility

� < 0 diamagnetic solid magnitude10−5

� > 0 paramagnetic solid magnitude10−4

� � 0 ferromagnetic solid magnitude1000

Diamagnetic atoms have no resulting spin and no magnetic moment. Paramagnetic atoms have a resulting spin and a
magnetic moment, firmly coupled to the spin.

� Ferromagnetism

Ferromagnetic atoms have unfilled 3d shells and hybridization of their 3d and 4s electrons. The atoms have a resulting spin
owing to the unfilled 3d shell. The resulting spin is firmly coupled to a magnetic moment of the atom, just as for paramagnetic
atoms.

The two groups of 3d bands with spin-up and spin-down electrons in ferromagnetic solids have different energies owing to
exchange energy.

Theory of Ferromagnetism

The reason for the strong magnetism of ferromagnetic materials is an alignment of the magnetic moments in ferromagnetic
solids, which is absent in paramagnetic solids.

The strong coupling between the magnetic moments of neighbouring atoms in ferromagnetic materials is caused by the
coupling of the spin vectors of neighbouring atoms.

A large number of atoms with parallel spins are coupled strongly to each other in ferromagnetic materials and form so-called
Weiss domains.
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Curie Point

The structures of both ferromagnetic and paramagnetic solids depend on temperature. At a certain temperature characteristic
for each ferromagnetic material, the domain structure breaks up, the strong coupling between the atoms disappears and the
ferromagnetic material becomes paramagnetic. The transition temperature is called the Curie point.

Order–Disorder Transformations in Magnetic Materials

Ferromagnetic materials have an ordered structure owing to interaction of the spins of the atoms. Above the Curie point the
ferromagnetism disappears and the materials become disordered.

The magnetic order–disorder transformation at the Curie point in ferromagnetic materials is accompanied by a similar
anomalous maximum of the molar heat capacity Cp at the transition temperature. The order–disorder transformation is the
reason in both cases.

Magnetization of Ferromagnetic Materials

B = �1+���0H = ��0H

where � is the relative permeability.
If a weak magnetizing field �B = ��0H� is applied in a direction that coincides with one of the crystal axes, the domain

walls become displaced. The domains in the field directions grow at the expense of the others. The process is reversible for
small displacements, i.e. the domain walls become displaced in the reverse directions when the magnetic field decreases.

The magnetic order is counteracted by the thermal motion. The equilibrium depends on the strength of the magnetic B field.
When the magnetic field is increased the domains in the field direction continue to grow by domain wall displacements. If

the magnetic field is strong enough, the domains in the field direction dominate completely.

If a weak magnetic B field is applied in a direction that does not coincide with one of the crystal axes, the sizes the magnetic
domains first change from the random state to a state as close as possible to the magnetic field direction by domain wall
displacements. The process is reversible for small displacements.

When the magnetic field is further increased, the aligned domains change direction discontinuously by sudden rotation in
steps. This process is irreversible. If the field is strong enough, the magnetization becomes saturated.

Hysteresis

Ferromagnetic materials can be magnetized and remagnetized. Then B and H are no longer proportional but follow the
so-called hysteresis loop.

Soft magnetic materials have narrow hysteresis loops and are easy to magnetize. The heat losses are small. Hard magnetic
materials have broad hysteresis loops. The heat losses are large.

Exercises

6.1 A steel bar is heated to 200 �C and fixed safely at both ends at this temperature. Calculate the stress in the bar when it has
been cooled to room temperature, 20 �C. Material constants for steel are � = 115×10−5 K−1 and Y = 20×1011 N/m2.

6.2 A homogeneous metal tube has a length of 2.0 m and an external diameter of 8.0 mm. The thickness of the metal is
2.0 mm. When the tube was exposed to a pulling force of 147 × 103 N in its length direction, the internal volume was
increased by 40 mm3 and the length of the tube by 0.80 mm.

8.0 mm

2.0 mm

Calculate Poisson’s ratio of the metal.
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6.3 A steel spring is compressed 0.10 m and is kept in this compressed mode by the force of 10×104 N.

(a) What is the increase in internal energy of the spring in its compressed mode?
(b) What happens with the potential energy of the spring when the force suddenly is removed and the spring rapidly

returns to its initial equilibrium position?
(c) Does the temperature of the spring change? If the answer is yes, calculate the initial temperature change. The mass

of the spring is 10 kg. The specific heat capacity of steel is 046×103 J/kg K.

6.4 An elastic body floats on a water surface. To what depth under the water surface must the body at least be moved to
sink by itself?

The modulus of elasticity of the body is 70×105 Pa �N/m2� and its Poisson’s ratio is 0.30. The density of the water
is assumed to be 10 kg/dm3, independent of the depth. The thermal expansion of the body can be neglected. The density
of the elastic body in air is 700 kg/m3.
Hint: Calculate the modulus of compressibility with the aid of the modulus of elasticity (page 294).

6.5 A sphere of solid brass has a radius of 1.0 cm when exposed to atmospheric pressure.

(a) When the sphere is placed in vacuum it expands. Calculate the increase in its radius.
(b) Calculate the decrease in the radius when the sphere is placed in a liquid in which the pressure is 10 atm.
(c) Calculate the deformation energy required for the compression in (b).

Poisson’s ratio for brass is 0.22. The modulus of elasticity for brass is 105×1010 Pa�N/m2�.
Hint: Calculate the modulus of compressibility with the aid of the modulus of elasticity.

6.6 Consider a metal with length expansion coefficient � within a medium temperature interval (∼20–200 �C). What is the
relative change of the density of the metal (in %) when the temperature is changed by 1 K?

6.7 (a) Mention two effects that contribute to thermal expansion in crystals.
(b) Discuss briefly the thermodynamic explanation of thermal expansion in crystals.

6.8 (a) Describe briefly the Debye model of heat capacity for solids and define the concept of Debye temperature.
(b) Give the relationship between the thermal volume expansion coefficient, the compressibility coefficient and the

molar heat capacities at constant pressure and constant volume, respectively.

6.9 Test the validity of the Dulong–Petit law for some common metals, for example Be, Ag, Zn, Fe, Cu and Al. One of
these metals shows a striking deviation from the classical rule. Explain why this particular metal deviates so strongly
from the other ones.

Heat capacities of the metals can be found in standard tables. The Debye temperatures are listed in Table 6.3 on page
309.

6.10 The heat capacities at constant volume CV of diamond at different temperatures are

T (K) 100 150 200
CV (kJ/kmol K) 0.29 1.06 2.34

(a) Verify that Debye’s T 3 law is valid for diamond within this temperature range.
(b) Calculate the Debye temperature �D and compare it with those of other elements.

6.11 Calculate the electron contribution to the heat capacity of copper at 750 K. What fraction of the total heat capacity is
this contribution? The Debye temperature of Cu is 343 K and the Fermi level of Cu is 7.04 eV.

6.12 (a) In what way does an order–disorder transition in a solid influence its heat capacity?
(b) Define the long-range order parameter S. Sketch S as a function of T/Tcr for a transformation from an ordered to a

completely disordered state of a system.

6.13 (a) Discuss the origin of magnetism. What is a Bohr magneton?
(b) What circumstances make a material diamagnetic, paramagnetic or ferromagnetic?

6.14 Give a short review of modern theories of ferromagnetism. What is a Weiss domain?

6.15 (a) Explain the concept of Curie point.
(b) Explain the anomalous Cp values of ferromagnetic materials at their Curie points.
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6.16 Consider Figures 6.31 on page 324 and Figure 6.39 on page 328 [shown below as Figures (a) and (b), respectively].

(a) How can the number of electrons in each energy state be non-integer?
(b) Describe the two mechanisms behind the electron distributions in the figures.
(c) Explain the numerical electron and hole distributions in the 4s and 3d bands in Figure (a).
(d) Explain the numerical electron and hole distributions in the 4s and 3d bands in Figure (b) and the reason why the

two figures differ.

1.46 holes

0.54 holes

↓ ↑

0.54 electrons   4.46 electrons    5 electrons

 4s ↑↓ 3d ↓       3d ↑

Ni

Sub-bands 4s, 3d ↑ and 3d ↓ of Ni at (a) T = 0 K and (b) above the Curie point temperature.

6.17 Ferromagnetic materials can be magnetized in various crystallographic directions by an external magnetic field. Verify
the statement that the [100] direction is the easiest direction in iron.

6.18 When a ferromagnetic specimen is exposed to an alternating magnetizing field from an alternating current in a coil it
becomes magnetized and remagnetized periodically. This is illustrated by the hysteresis loop, which is a relationship
between the magnetizing field H and the resulting magnetic field B. Describe the ‘micro-changes’ in the material during
the hysteresis loop.
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7.1 Introduction

The phenomena, that are called transport phenomena as a common name involve the transport of one or several physical
quantities simultaneously. Table 7.1 gives a survey of these processes.

Table 7.1 Transport phenomena in solids.

Property Involves transport of

Diffusion Mass
Thermal conduction Energy
Electrical conduction Charge

Diffusion has been discussed in Chapter 5. The mechanisms of thermal and electrical conductivities of solids will be treated in
this chapter. The basis of the theories is the band theory of solids and the phonon theory, of both which have been discussed
in Chapter 3.

As mentioned in Chapter 6, heat conduction is one of the properties which is very important for control of the rate of
crystallization processes and hence for the quality and properties of the solidified products.

The electrical properties of solids are determined by their electrical conductivities, which decide the applications of the
solidified products, for example insulating materials, metals, alloys and semiconductors.

7.2 Thermal Conduction

Thermal conduction plays a very important role in crystallization processes. The heat which is developed during the solidifi-
cation must be transported away with the same rate as it is produced, otherwise the process stops.

 T0              T    T + dT 

 

0              x   x + dx 

Figure 7.1 Heat conduction in a bar.

Thermal conduction implies transport of heat, i.e. kinetic energy. Consider a bar in which the temperature changes linearly
(Figure 7.1). The amount of heat dQ which passes a cross-sectional area A in time dt is proportional to the cross-sectional
area A and the temperature gradient dT/dx:

dQ

dt
= −�A

dT

dx
(7.1)

Heat flows from higher to lower temperature (dT < 0). As the temperature decreases with increasing distance x, a minus sign
has to be included in Equation (7.1). We divide the equation by A and introduce the heat flux dq/dt instead of dQ/Adt into
Equation (7.1), which results in Equation (7.2). The thermal conductivity coefficient � is defined by the equation

dq

dt
= −�

dT

dx
(7.2)

where
dq/dt = thermal flux (amount of heat per unit area and unit time)
� = thermal conductivity
T = temperature.

There are two possibilities to carry heat in a crystalline solid, by free electrons or by phonons (lattice vibrations) of the
crystal lattice:

� = �e +�lattice (7.3)
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The number of available free electrons and the phonon transport through the crystal lattice control the thermal conduction
in all solid materials.

It has been known for a long time that conduction of electricity and heat in pure metals are related. Pure metals such as
copper and silver are excellent conductors of both electricity and heat. Lead conducts both electricity and heat rather poorly.
These facts indicate that the mechanisms of conduction in metals are the same in the two cases.

Pure metals conduct electricity excellently or very well compared with non-metallic solids. Pure metals have many free
electrons. As the phonon contribution to the electrical conduction in pure metals is negligible compared with the contribution
from the free electrons, we can conclude that this it is true also for thermal conduction.

• The phonon contribution to the thermal conduction in a pure metal is small in comparison with that of the free electrons.

Other solids except pure metals, such as semiconductors, insulators and alloys, show no correlation between heat conduction
and electrical conduction. Some materials are good thermal conductors but transport electricity poorly. This is true for diamond,
for example (page 345).

Ionic crystals and solids with covalent bonds have practically no free electrons. As the free electron contribution is close
to zero, we can conclude that

• The phonon contribution is responsible for the total thermal conduction in ionic crystals and solids with covalent bonds.

In other cases, for example in alloys, both the free electrons and the phonons contribute to the total thermal conduction.
The theory of thermal conduction in nonmetallic solids will be discussed in Section 7.2.1 and the theory of thermal

conduction in metals in Section 7.2.2.

7.2.1 Thermal Conductivities of Nonmetals

In Chapter 3, Section 3.6, we discussed lattice vibrations in crystals and introduced phonons, particles associated with the
lattice vibrations. In a crystal lattice of homogeneous constant temperature, the phonons move at random within the solid.
The phonons collide with each other and the crystal faces. They change directions and energies incessantly in the lattice. If
there is a temperature gradient in the crystal, the irregular motion of the phonons is overlapped by a systematic resulting
motion in the direction from higher towards lower temperature.

The phonons in the crystal can be regarded as particles in a phonon gas container. One difference is that phonons, but not
gas molecules, can be created or disappear in collisions. The phonon gas model will be used to derive an expression of the
thermal conductivity �lattice in terms of atomic quantities.

Theory of Thermal Conductivity in Nonmetals

T T + ΔT

Qx

A A

Δ x x

→ → Qx + Δx

x + Δ x

Figure 7.2 Heat balance.

Consider the heat balance of the volume element A�x in Figure 7.2. If the heat capacity (J/kg K)of the crystal is c, the heat
capacity (J/K) of the volume element will be cV�A�x. A change in temperature from T to T +�T corresponds to the energy
change cV�A�x�T . This energy is equal to the net amount of heat into and out from the volume element:

�Q = −Qx+dx +Qx = cV�A�x�T
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or by use of the relationships �x = vxdt and �q = �Q/A we obtain (minus sign because �q is positive and �T is negative)

�q = −cV�vx�t�T (7.4)

where
�q = heat amount per unit cross-sectional area
�x = length of volume element
cV = heat capacity per unit mass of the crystal (J/kg K)
� = density of the crystal (kg/m3�
cV� = heat capacity per unit volume of the crystal (J/m3 K)
vx = phonon velocity in the x direction
�t = time interval
�T = temperature difference.

After division by dt and a limit transformation, we obtain

dq

dt
= −cV�vx�T (7.5)

We choose the length of the volume element equal to the mean free path l of the phonons. The temperature difference �T
can be expressed in terms of the temperature gradient and the mean free path:

�T = T�x+�x�−T�x� = T�x�+ dT

dx
�x−T�x� = dT

dx
�x = dT

dx
l

Inserting this expression of �T into Equation (7.4) gives

dq

dt
= −cV�vx

dT

dx
l

or with l = vx�

dq

dt
= −cV�vx

dT

dx
vx� = −cV�v2

x

dT

dx
� (7.6)

where
l = mean free path of the phonons
� = average time interval between two consecutive phonon collisions.

Equation (4.1) on page 170 is valid for the phonons both in the solid and for molecules in an ideal gas.

v2 = vx
2 + vy

2 + vz
2

As vx
2 = vy

2 = vz
2 for symmetry reasons we can replace the average of v2

x of all the phonons by v2/3 in Equation (7.6). v2 is
the average value of the sum of the squared particle velocities. The result is

dq

dt
= −cV�

v2

3
�

dT

dx

If we assume that all the phonons have approximately equal velocities, the root mean square velocity equals this velocity.
We can replace v� by the mean free path of the particles and obtain

dq

dt
=− cV�vl

3
dT

dx
(7.7)

Equation (7.7) can be compared with the definition Equation (7.2) of thermal conductivity on page 342. Identification gives

� = cV�vl

3
(7.8)
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where
� = thermal conductivity of the solid
cV = heat capacity per unit mass of the solid (J/kg K)
� = density of the solid (kg/m3)
cV� = heat capacity per unit volume of the solid (J/m3 K)
v = phonon velocity, independent of direction
l = mean free path of the phonons.

Equation (7.8) is the total thermal conductivity in nonmetals such as ionic crystals and solids with covalent bonds because
there are no free electrons in such solids.

Equation (7.8) formally has the same shape as Equation (4.68) on page 198 in Chapter 4, which represents the thermal
conductivity for gases. From a more atomistic point of view, a different but equivalent expression for the thermal conductivity
in nonmetal solids can be derived. The heat capacity per unit volume can be written in two ways:

cV ×� = n× ca
V

Heat capacity per unit mass × density number of atoms per unit volume ×
heat capacity per atom in the solid

J/kg K ×kg/m3 = J/m3K m−3 × J/K = J/m3 K

Hence the thermal conductivity of the nonmetal solid can alternatively be written as

� = �lattice = nca
Vvl

3
(7.9)

The expression in Equation (7.9) will be used in Section 7.2.2 on page 346.
Table 7.2 gives the thermal conductivities for some different materials.

Table 7.2 Thermal conductivities of some nonmetallic materials.

Material Conductivity (W/m K)

Mica 0.5
Fused SiO2(∼ sand) 0.2
Dry concrete 0.4–1.7
Brick 0.6–0.8
Diamond 1000
Graphite 150

7.2.2 Thermal Conductivities of Metals and Alloys

Thermal Conductivities of Metals

The earliest theory of metallic conduction is ascribed to Drude. He considered the metal as a box filled with ne electrons
per unit volume in a homogeneous distribution of positive charge of equal total amount. As the Pauli principle was unknown
at that time, he treated the conduction electrons of the metal as a classical gas, which gave puzzling discrepancies between
theory and experiments.

In Chapter 6, Section 6.5.2 [Equation (6.63) on page 307], we found that the molar heat capacity at temperatures above
the Debye temperature equals 3R owing to the lattice vibrations. The electron gas has three degrees of freedom and would
therefore give a contribution of 3R/2. No such contribution has ever been observed.

The explanation is that quantum mechanics has to be taken into account:

1. The conduction electrons of the metal have to obey the Pauli exclusion principle.
2. The electrons do not obey the classical Maxwell–Boltzmann distribution law. An electron has a half-integer spin and all

particles with half-integer spin obey the Fermi–Dirac distribution law, which is based on the assumption that the particles
are indistinguishable (Chapter 3, pages 117 and 148–149).
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Figure 7.3 Electron–hole pair created in the valence band by thermal excitation. The valence band is only half filled for metal atoms with
the valence 1.

At T > 0 and with the electron gas in thermal equilibrium with the crystal lattice, the valence electrons easily gain enough
kinetic energy to be excited to the empty part of the valence band (Figure 7.3). It leaves a vacancy in the occupied part of the
band.

Such vacancies are called holes. They can be treated as positive particles with an effective mass of the same magnitude as
the electrons. Both electrons and holes can easily move and both contribute to the transport of electrical charge and heat.

Theory of Thermal Conductivity in Pure Metals

In metals, the phonon contribution can be neglected in comparison with the electron contribution. If we assume that the
relationship between the thermal conductivity and the heat capacity is the same in nonmetals as in metals, we can easily
calculate the thermal conductivity of a metal.

In Chapter 6 on page 310 we found that the molar heat capacity of the free electrons is

Ce = �2kBT

2EF

R (7.10)

where
kB = Boltzmann’s constant
EF = the Fermi energy.

We obtain the heat capacity per atom by dividing Equation (7.10) by Avogadro’s number, NA, and replacing R/NA by
Boltzmann’s constant, kB:

ce = �2kB
2T

2EF

(7.11)

We let Equation (7.11) replace c in Equation (7.9) and obtain the thermal conductivity of the metal:

�e = necevl

3
= nevl

3
�2kB

2T

2EF

(7.12)

In addition, the velocity v of the electrons in Equation (7.12) has to be replaced by the velocity vF of those electrons of the
Fermi–Dirac distribution which contribute to the heat conduction. We also replace the Fermi energy EF by m∗vF

2/2 and the
mean free path l of the electrons by vF�. After reduction we obtain

�e = ne�
2kB

2T�

3m∗
e

(7.13)

where
�e = contribution to the thermal conductivity from the free electrons of the metal
kB = Boltzmann’s constant
ne = number of free electrons per unit volume of the metal
T = temperature (K)
� = average time interval between two consecutive particle collisions (mean free path divided by the average velocity of

the particles)
m∗ = effective mass of the electron in the conduction band.
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The thermal conductivities of some metals are given in Table 7.3.

Table 7.3 Thermal conductivities of some metals at 293 K.

Metal Conductivity (W/m K)

Ag 4	2×102

Cu 4	0×102

Fe 0	82×102

Pb 0	35×102

Sn 0	65×102

Zn 1	2×102

Thermal Conductivities of Alloys

In pure metals, the electronic contribution to the total thermal conductivity dominates at all temperatures. In impure metals
and disordered alloys, collisions with vacancies or impurity atoms occur. This reduces the electron contribution considerably
(Figure 7.4) and the phonon and electron contributions may be of the same magnitude. In this case the total thermal conductivity
has to be written as

�alloy = �lattice +�e = nca
Avl

3
+ ne�

2kB
2T�

3m∗
e

(7.14)
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Figure 7.4 Influence of alloying elements on the thermal conductivity of iron at room temperature. Reproduced with permission from
W. Schatt (ed.), Einfuhrung in die Werkstoffwissensc (7th edn). © 1991 Deutscher Verlag für Grundstoffindustrie, Leipzig.

7.3 Electrical Conduction

In Section 7.2 we showed that thermal energy in solids is transported by the free valence electrons of the atoms and by
phonons in the crystal lattice. The mechanism of the transport and the contributions of the two sources depend strongly on
the structure and composition of the solid.

In Sections 7.3–7.6 we will analyse the electrical conductivities of different types of solids, especially metals and semicon-
ductors.

7.3.1 Resistivity and Conductivity

The electrical properties of matter can be described in two ways, either by resistivity or by conductivity.
If a voltage U is applied to a solid in a closed circuit (Figure 7.5), an electric current I starts in the circuit. It is customary

to introduce the resistance R of the solid and write the relationship between the three quantities as

U = RI (7.15)
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I ↓ ↑  I
R

U

Figure 7.5 Simple electrical circuit.

The resistance R of the solid body depends of its shape. In order to extract the material property electrical conductivity and
eliminate the influence of the shape of the solid body, we introduce the resistivity � of the solid (Figure 7.6):

A

→ I

 l

Figure 7.6 Rectangular bar of length l and cross-sectional area A.

R = �
l

A
(7.16)

where
� = resistivity of the solid
R = resistance of the solid body
l = length of the bar
A = cross-sectional area of the bar perpendicular to the current I	

The conductivity 
 of a solid is defined as the inverse of the resistivity:


 = 1
�

(7.17)

The better the solid conducts the electric current, the larger will be the conductivity 
 and the smaller will be the resistivity �.
If we eliminate R between Equations (7.15) and (7.16), we obtain

U = �
l

A
I (7.18)

Equation (7.18) can be written as

j = 
E (7.19)

where
j = current density I/A through the solid
E = electric field U/l in the solid.

7.3.2 Conductors, Insulators and Semiconductors

The classification of solids is based on their electrical conductivities. No other property shows such an enormous variation
in magnitude as electrical conductivity. The ratio of the resistivities of the best insulators to the best conductors is more
than 1040.

A material is characterized as an insulator if its resistivity � > 109 � m. The electric current through a solid is transported
by the valence electrons. Hence the conductivity of a solid is closely related to the widths and positions of the energy bands
of the solid. Metallic conductors have resistivities within the interval 10−12 < � < 10−5 � m (Table 7.4).
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Table 7.4 Resistivities of some materials.

Type of material Resistivity (� m)

Conductors 10−12 −10−5

Semiconductors 10−5 −109

Insulators > 109

As the name indicates, pure semiconductors have resistivities within the intermediate interval 10−5 < � < 109 � m. The
boundaries between the three groups are not sharp and the values given above are to be regarded as merely representative for
the three types of materials.

The resistivity of a solid varies with its temperature. Experiments show that

• The resistivity of metals increases with increase in temperature.
• The resistivities of insulators and semiconductors decrease with increase in temperature.

The resistivity variations of metals and semiconductors are shown in Figures 7.7 and 7.8.

ρ

Metal

T

Figure 7.7 Resistivity of a metal as a function of temperature.
At low temperatures � = constant (Ohm’s law). Reproduced with
permission from H. Benson, University Physics. © John Wiley &
Sons, Inc.

ρ

Semiconductor

T

Figure 7.8 Restistivity of a semiconductor as a function of temper-
ature. Reproduced with permission from H. Benson, University
Physics. © John Wiley & Sons, Inc.

These properties can easily be explained in terms of the band theory of solids, which was discussed in Chapter 3. The lowest
energy band, which is the ground state, is called the valence band.The first excited non-filled band is called the conduction
band (Figure 7.9).

                          Conduction band

(a)

                                Valence band

                                        Conduction band

(b)

                                             Valence band

Conduction band

Energy gap

(c)

Valence band

Figure 7.9 (a) Conductor. In monovalent atoms the valence band is only half filled. The conduction band is close to the valence band or
overlaps the valence band. Hence the electrons can move rather freely within the metal.
(b) Semiconductor. In a semiconductor the valence band is filled. The energy gap is of the magnitude ≤ 1 eV. Thermal excitation of electrons
across the energy gap is possible.
(c) Insulator. In an insulator the valence band is filled. The energy gap between the conduction band and the valence band is very high
(magnitude 5 eV). Very few electrons have enough thermal energies to reach the conduction band.
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7.4 Metallic Conductors

The main reason why metals and alloys are good conductors is the presence of free electrons. Their conductivities varies
considerably (by a factor of 107), depending on the size of the energy gap between the valence band and the conduction band,
the structure of the crystal lattice and the number of valence electrons per atom.

The shape and energies of the Brillouin zones and the way in which they become filled with electrons, according to the
general principle of lowest possible total energy of the system, influence the conductivity strongly. These topics have been
discussed in Chapter 3 on pages 140–145 and in Section 3.7.2 on page 153.

In most cases there is no energy gap between occupied and empty energy states, as is shown in Figures 7.9a and 7.10a.
This is particularly evident in monovalent metals, where the valence band is only half filled.Hence the empty sites are easily
available and the excited electrons can easily move through the metal.

E

3p band

3s band

2p band

2s band

1s
(a)

N(E)

 E

3p band                                        3p

3s band                                         3s

2p band

(b)

N(E)

Figure 7.10 (a) Energy bands in a conductor. (b) Overlapping energy bands in a conductor. Reproduced with permission from M. Alonso
and E. Finn, Fundamental University Physics. © Addison-Wesley.

In addition, the energy gap is often small between the valence and conduction bands (Figure 7.10b), which may result in
overlapping of these bands due to the corners of the Brillouin zones (Chapter 3, pages 142–145).

7.4.1 Resistivities of Pure Metals

Monovalent metals usually are better conductors than divalent metals. This is explained in Table 7.5 by use of discussion in
Chapter 3 (pages 121–124) on the energy distribution in the electron gas in a metal and the effective mass of the free electrons
(Chapter 3, pages 145–146).

The monovalent metals Cu and Ag are excellent conductors, in agreement with the conclusions in Table 7.5. Tin and lead
are comparatively poor conductors. Sn and Pb belong to the same column in the periodic table as Si and Ge and have larger
interatomic distances than the semiconducting elements.

Table 7.5 Comparison between the conductivities of monovalent and divalent metals.

Monovalent metals Divalent metals

1. The single free electron per atom makes the valence
band half filled. The density of available energy states
N�E� is high in the middle of the band and all the
states there are occupied. When an electric field is
applied, large number of electrons become excited
above their equilibrium states.

2. The most energetic electrons have an effective mass
m∗ approximately equal to m, the mass of an electron
in free space. Compare pages 145–146 in Chapter 3.

1. The two valence electrons nearly fill the valence band
and only a few of them go to the overlapping conduc-
tion band. The upper part of the valence band and
the bottom of the conduction band have low densities
of available energy states N�E�, which, in addition,
may not be fully occupied.

2. In the upper part of the valence band the electrons
have effective masses m∗ which are considerably
larger than m. Compare pages 145–146 in Chapter 3.

Normally the conductivity of a metal decreases when it melts owing to the disappearance of the regular crystal lattice. One
exception is Bi, due to its special Brillouin zone structure.
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The resistivity of a single crystal of a noncubic metal varies with the direction of the current. For example, in a crystal with
HCP structure (Chapter 1) the resistivities parallel to the c axis and perpendicular to this axis are different.

Table 7.6 gives the resistivities of some common metals.

Table 7.6 Resistivities of some common metals at 300 K.

Metal Resisistivity (10−8� m)

Ag 1	59
Cu 1	67
Fe (�) 9	7
Pb 21
Sn 11

7.4.2 Temperature Dependence of Resistivity

The resistivities of metals and alloys vary with temperature. Figure 7.11 shows the resistivity of Al and some of its alloys as
an example.

Figure 7.11 The resistivity of Al and some Al alloys as a function of temperature (double logarithmic scales). At low temperatures
��T� = �r + AT 2 + BT 5, where the T 2 term describes the electron–electron collisions and the T 5 term describes the electron–phonon
collisions. Reproduced with permission from J. E. Hatch (ed.), Aluminum: Properties and Physical Metallurgy.© 1984 American Society
for Metals.

At room temperature and over a wide temperature range, the resistivity can be described empirically by a linear function of
the type

� = �293 1+��T −293�� (7.20)

where
�293 = resistivity at 20� C (293 K)
� = temperature coefficient of resistivity
T = absolute temperature.
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The temperature coefficients are of the magnitude 10−3 K−1.

ρ
ρ T

ρ r

T

Figure 7.12 Resistivity of an alloy as a function of temperature. Reproduced with permission from A. G. Guy, Elements of Physical
Metallurgy, 2nd edn. © Addission-Wesley Publishing Company, Inc. (now under Pearson Education).

Alternatively, it is convenient to write the resistivity of an alloy as a sum of two terms (Figure 7.12):

� = �T +�r (7.21)

where
�T = temperature-dependent part of the resistivity
�r = residual part of the resistivity.

At T = 0, �T is practically zero. At higher temperatures, the increase of �T or the thermal disturbance of the crystal lattice
can be described in terms of electron–phonon collisions.

In the presence of impurities, �r is always >0. The residual part of resistivity is due to disturbances in the crystal lattice. It
is extremely sensitive to the presence of foreign atoms. Addition of alloying elements to a pure metal increases the value of
�r strongly.

At extremely low temperatures, the free valence electrons can move through extremely pure crystal lattices containing
few defects (vacancies) without collisions with the ions of the lattice. Instead they experience collisions against the walls
of the solid. For this reason, the resistivity of a thin, flat crystal is larger than that of such a crystal with a thicker
shape.

A number of pure metals are superconducting below a specific critical temperature near absolute zero. The resistance drops
to zero and strong electric currents can keep running through a closed circuit with negligible effect losses. Efforts are made
to find materials which are superconducting at higher temperatures.

7.4.3 Resistivities of Alloys

Influence of Foreign Atoms and Crystal Defects on Resistivity

The conductivity 
 varies with temperature and also with composition (Figures 7.13 and 7.14), i.e. it depends on foreign
atoms, alloying elements or impurities, in the crystal lattice and crystal defects, for example vacancies or interstitials.

Resistivities of Alloys

Foreign atoms and crystal defects increase the scattering of the electrons and reduce the time � between consecutive collisions,
which increases the resistivity. The higher the disorder in the crystal lattice is, the higher will be the resistivity. This is
demonstrated in Figure 7.13.

The resistivity of an alloy increases with concentration of the alloying element. An example is given in Figure 7.13, which
shows the resistivities of Cu and Cu–Ni alloys as functions of temperature. The time � between two collisions decreases with
increase in temperature. This is the reason for the inclination of the curves. The dominant reason for the change in � is the
concentration of the alloying element.

Another example is Cu–Au alloys, which show four deep resistivity minima for the ‘ordered’ structures of pure Cu,
Cu3Au, CuAu and pure Au and resistivity peaks for maximum disordered structure for intermediate concentration values
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Figure 7.13 Resistivities of Cu–Ni alloys as functions of temper-
ature. Reproduced with permission from A. J. Dekker, Solid State
Physics. © 1962 Macmillan & Co. Ltd.

Figure 7.14 Resistivities of Cu–Au alloys as functions of compo-
sition. Reproduced with permission from A. J. Dekker, Solid State
Physics. © 1962 Macmillan & Co. Ltd.

(Figure 7.14). Compare also Chapter 3, page 154. Disordered structures have been discussed in Chapter 6, Section 6.5.5
(page 315).

The resistivities of some common alloys are given in Table 7.7. Some of them have low temperature coefficients. Such
alloys are used in resistors.

Table 7.7 Resistivities of some alloys at 293 K.

Alloy Resistivity (10−8� m) Temperature coefficient (10−3 K−1)

Kanthal 145 0	03
Constantan 50 0	03
Manganin 43 0	02
Ni–Cr 80:20 105 0	18
Brass 6	5 1	5
Invar 10 2
Steel 16 3	3

Some alloys, for example manganin (84% Cu, 12% Mn, 4% Ni) constantan (55% Cu, 45% Ni) and others have very low
temperature coefficients and the variations of their resistances with temperature are very small.

7.4.4 Theory of Electrical Conduction in Metals. Mobility

Classical Theory

As a first coarse and classical approximation, we regard the free conduction electrons in a metal as an electron gas in the
volume occupied by the metal. The electrons are supposed to have a random motion just like the molecules in a gas. They
seldom collide with each other because of the mutual electrostatic repulsion. Owing to electrostatic attraction, the electrons
collide with the positive metal ions in the crystal lattice.

Drift Velocity and Current Density
The average velocity of the free electrons is high and their kinetic energy is considerable but the resulting random motion is
zero. An external electric field changes the velocity distribution slightly as each free electron is accelerated in the field. In the
frequent collisions, the electrons change both the direction and magnitude of their high velocities incessantly.

The collisions are equivalent to a friction force and the resulting motion is an average constant velocity in the opposite
direction to the electric field. This velocity is the so-called drift velocity ve of the electrons. The current in a metal wire is
related to the drift velocity.
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v eΔt
I ←o 

v e A
←o
v e

Figure 7.15 Electron motion in a metal wire with the current I .

�Q is the sum of the charges of all the conduction electrons which have passed the cross-sectional area A during the time
�t (Figure 7.15). They are included in the volume Ave�t:

�Q = I�t = neeAve�t (7.22)

where
ve = drift velocity of the conduction electrons
ne = number of conduction electrons per unit volume
e = charge of the electron
A = cross-section area of the wire.

If Equation (7.22) is divided by �t, we obtain

I = neeAve (7.23)

The current density j is defined as the current per unit area:

j = I

A
(7.24)

Relationship Between Drift Velocity and Current Density
Equation (7.23) is divided by A and Equation (7.24) is applied. The result is

j = neeve (7.25)

Example 7.1

The current density in a pure copper wire is 10 A/mm2. The density of Cu is 8	93×103 kg/m3. Its molar weight is 63.6.

(a) Calculate the density of conduction electrons in the metal if we assume that there is one conduction electron per Cu atom.
(b) Calculate the drift velocity at the given current density.

Solution:

(a) Consider 1 kmol of Cu and calculate the volume of 63.6 kg of Cu.

V = M

�
(1′)

1 kmol contains NA = 6	02×1026 Cu atoms. Hence the electron density will be

ne = NA

V
= NA

M

�

= NA�

M
(2′)

or in this case

ne = 6	02×1026 ×8	93×103

63	6
= 8	5×1028 m−3
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(b) Equation (7.25) can be written as

ve = j

nee
= 10×106

8	5×1028 ×1	60×10−19
= 0	7×10−3 m/s

Answer:

(a) The electron density is 8	5×1028 electrons/m3.
(b) The drift velocity is 0.7 mm/s.

Example 7.1 shows that the drift velocity is surprisingly low. The reason is that the number of charge carriers is very high.

Conductivity
The electric field accelerates the conduction electrons between the collisions. The electrons are retarded by the collisions,
which can be regarded as a friction force. A force balance for the electron motion can be set up:

m
dv

dt
= eE − mv −0

�
Resulting Electrical Retarding
force accelerating friction

force force

(7.26)

The friction force balances the electric force exactly, because the average velocity is constant, i.e. the net acceleration must
be zero. In this case the velocity is equal to the drift velocity:

eE = mve

�
(7.27)

or

ve = eE�

m
(7.28)

If we combine this equation with Equation (7.25), we obtain

j = nee
2�

m
E (7.29)

It is obvious from Equation (7.26) that � is the average time between two collisions. Ohm’s law (page 348) can be written as

j = �E (7.30)

where 
 is the electric conductivity. Identification of Equations (7.29) and (7.30) gives

� = nee
2�

m
(7.31)

The conductivity can easily be found experimentally and Equation (7.31) can be used for the calculation of �. In the case
discussed in Example 7.1, the time between two collisions is of the magnitude 10−14 s.

Relaxation Time
The time � also has another significance. If the electric field is suddenly switched off [insert E = 0 in Equation (7.26)], the
friction force gradually retards the electrons from their average velocity to zero:

dv

dt
= − v

�
(7.32)
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or after integration:

v∫
ve

dv

v
=

t∫
0

−dt

�

which can be written as

v = vee
−t/� (7.33)

where

v = velocity at time t
ve = drift velocity, i.e. velocity at time t = 0
� = average time between two consecutive collisions or relaxation time, the time constant in Equation (7.33).

Mobility
If we divide Equation (7.25) with the electric field E, we obtain

j

E
= nee

ve

E

which can be written (page 348) as


 = nee�e (7.34)

where �e is the mobility of the conduction electrons. It is defined as the drift velocity per unit electric field:

�e = ve

E
(7.35)

Equation (7.34) is a very useful and central equation, which will be frequently used in the rest of this chapter. It can be
used to determine the mobility for different metals. Mobility is a material constant, i.e. it has a characteristic value for each
metal.

Mean Free Path
If the time � between two collisions and the average kinetic velocity of the conduction electrons are known, the mean free
path can be calculated from the relationship

l = �v (7.36)

where
l = mean free path of the conduction electrons
� = average time between two collisions
v = average kinetic velocity of the conduction electrons.

The magnitude of the mean free path is of the magnitude 100 distances between the atoms in the lattice. For Cu the value is
about 40 nm.

Band Theory
However, there are serious discrepancies between the theoretical and experimental values of 
 and the classical theory has to
be modified.

The error lies in the fact that the conduction electrons cannot be treated like a classical gas. Instead, we have to take the
band theory of metals into account.
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The band theory requires the introduction of the ‘effective mass’ of the electron (Chapter 3, pages 145–146) and the resulting
equation will be, in analogy with Equation (7.31):


 = nee
2�

m∗
e

(7.37)

The resistivity is equal to the inverted conductivity:

� = m∗
e

nee
2�

(7.38)

These equations agree well with experimental values.

7.4.5 Ratio of Thermal and Electrical Conductivities in Pure Metals. Wiedemann–Franz Law

The theory of thermal conductivity of a pure metal shows that the thermal conductivity can be written as Equation (7.13) on
page 346. Equation (7.37) above is the analogous expression for the electrical conductivity of a pure metal. We form the ratio
�e/
 by dividing the Equations (7.13) and (7.37):

�e



= ne�

2kB
2T�

3m∗
e

/nee
2�

m∗
e

⇒ �e



= �2k2

B

3e2
T = constant ×T (7.39)

The value of the constant is 2	45×10−8 W�/K2. Equation (7.39) is Wiedemann–Franz law, which states that

• The ratio of the thermal and electrical conductivities of a pure metal is proportional to the absolute temperature.

The law is illustrated in Table 7.8, where the values of �e/
T are given for some metals at T = 273 K.

Table 7.8 The ratio �e/
T of some metals at 273 K.

Metal �e/�T �W�/K2�

Ag 2	31×10−8

Au 2	35×10−8

Cd 2	42×10−8

Cu 2	23×10−8

Mo 2	61×10−8

Pb 2	47×10−8

Sn 2	52×10−8

Zn 2	31×10−8

The fact that the ratio of the thermal and electrical conductivities has almost the same value for all pure metals and is
independent of their material constants strongly supports the theory that the carriers of energy and charge are the free electrons of
the metals in both cases. The phonon energy transport represents only a minor contribution to the thermal conductivity in metals.

It should be strongly emphasized that the Wiedemann–Franz law is valid only for pure metals. A striking example of the
contrary is diamond, which is a good thermal conductor (page 345) and an excellent insulator (page 358), e.g. a very poor
electrical conductor. The reason is that the phonon contribution to the thermal conductivity of diamond is large.

7.5 Insulators

The characteristic features of insulatorsare that they have

• filled valence bands
• empty conduction bands
• large energy gaps.
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The electrons in a filled band cannot move as it contains no empty states (Figure 7.9 c on page 349). If the energy gap is
large, few electrons have energies enough to jump to the empty conduction band with plenty of available energy states. The
resulting current will be very low.

As an example of a good insulator we will choose carbon in the configuration of diamond. The four covalent bonds of
carbon are symmetrical in space and end in the corners of a tetrahedron due to sp3 hybridization (Chapter 3, page 109).

Figure 7.16 Energy bands of diamond (C). The large energy gap between the valence band and the conduction band makes diamond to a
very good electrical insulator. Reproduced with permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley
Publishing Company, Inc. (now Pearson Education).

Figure 7.16 shows the simplified band scheme of diamond. One s electron and three p electrons per C atom result in two
binding states and two anti-binding states per atom in diamond in analogy with Si and Ge (Figure 3.8 on page 110). The
binding states, i.e. the valence band, are filled with electrons whereas the upper band, the conduction band, is empty. At the
equilibrium distance between the atoms the energy gap is about 5 eV, which makes diamond to a very good insulator.

Most covalent solids which are composed of atoms that have an even number of valence electrons are insulators.

7.5.1 Theory of Electrical Conduction in Insulators

In Chapter 3, Section 3.4.3, Sommerfeld’s quantum mechanical model of the electron gas was treated extensively. It is the
basis for the band theory of solids. The theory, which includes concepts such as Fermi level and Fermi distribution of electrons,
was successfully applied to metals. Of special interest here is the calculation of the density of available electron energy states
per energy unit in a solid [Equation (3.62) on page 122]:

N�E� = �2m∗�3/2

4�2�3
E1/2 (7.40)

and the density of occupied electron energy states per energy unit [Equation (3.64) on page 123]:

N�E�fFD = �2m∗�3/2

4�2�3
E1/2fFD (7.41)

These concepts and equations will be most useful when we discuss a simple model for the electrical conductivity of
insulators below and later an improved model for semiconductors.

Simple Model of Electrical Conductivity in Insulators

We want to calculate the electron density, i.e. the number of electrons per unit volume in the conduction band and the valence
band, respectively, in order to find an expression for the conductivity of an insulator. For this purpose we must know the
position of the Fermi level.

The distribution laws (7.40) and (7.41) have been applied to metals and cannot be used uncritically for the electron energy
distribution in all types of solids. The Fermi level (Chapter 3, page 116) has a very specific physical significance for metals.
In insulators and semiconductors there is no corresponding meaning. The Fermi level EF is located in the energy gap between
the valence and the conduction bands in these types of solids and cannot accommodate any electrons.
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According to the theory given in Chapter 3, the electron concentration n�E�dE (the number of electrons per unit volume
within the energy range E and E +dE) is equal to twice the number of occupied energy levels N�E�fFDdE within the energy
interval:

n�E� dE = 2N �E�fFDdE (7.42)

where
n�E�dE =concentration of electrons (number of electrons per unit volume) with energies between E and E +dE
N�E�dE =number of available energy states per unit volume with energies between E and E +dE
fFD =Fermi factor (Fermi–Dirac distribution function).

According to Equation (3.43) on page 117 in Chapter 3, we have

fFD = 1

e
E−EF
kBT +1

(7.43)

The Fermi level EF can be calculated by integration of Equation (7.42). According to Equation (3.65) on page 123, we have

n =
∫

n�E� dE =
∫

2N �E�fFDdE (7.44)

provided that EF and the function N�E� are known. The electron energy distribution function N�E�dE of an insulator is a
more complicated function of E than that for a metal. n is the concentration of valence electrons (number of electrons per
unit volume), which often is known or can be calculated from known data.

Calculation of the Electron Concentration in the Valence and Conduction Bands

To simplify the calculations, we will make the approximation that the widths of all inner bands, the valence band and the
conduction band are small compared with the energy gap between the latter bands. If this condition is fulfilled, the valence
band can be assumed to have a single energy Ev and the conduction band the single energy Ec (Figure 7.17).

Figure 7.17 Energy levels in an insulator together with the Fermi distribution function. �Ec << Eg and �Ev << Eg. Reproduced with
permission from A. J. Dekker, Solid State Physics. © 1962 Macmillan & Co. Ltd.

In Chapter 3 on page 129, we found that the total number of energy states in each band (Brillouin zone) in a solid equals
Ntotal, where Ntotal is the number of atoms in the crystal lattice. The total number of available energy levels per unit volume in
a band is obtained by dividing Ntotal by the volume of the crystal:

N = Ntotal

V
(7.45)

Each energy state can accommodate two electrons (one with spin up and one with spin down). Hence the total number of
electrons per unit volume which can be accommodated in each band (Brillouin zone) is 2N .
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At temperature T = 0, the valence band and all lower bands are completely filled (fFD = 1) and the conduction band is
completely empty (fFD = 0).

At temperature T , some electrons in the valence band are excited up to the conduction band. The electron concentration
(number of electrons per unit volume) in the conduction band can be written as [Equations (7.42) and (7.43)]

nc = 2NfFD = 2N

e
Ec−EF

kBT +1
(7.46)

The number of electrons per unit volume in the valence band is

nv = 2NfFD = 2N

e
Ev−EF

kBT +1
(7.47)

where
nc = concentration of electrons (number of electrons per unit volume) with energy Ec in the conduction band
nv = concentration of electrons (number of electrons per unit volume) with energy Ev in the valence band
N = number of energy levels per unit volume in each of the valence and conduction bands
kB = Boltzmann’s constant
T = absolute temperature.

When the temperature approaches T = 0 K no electrons can be thermally excited, i.e. the conduction band is empty and all
the electrons are in the filled valence band, i.e. nv = 2N . This is in agreement with Equations (7.46) and (7.47).

Calculation of the Position of the Fermi Level

It is reasonable to assume that all free electrons per unit volume in the conduction band come from the valence band and that
no valence electrons disappear elsewhere. This condition can be written as

nv +nc = 2N (7.48)

By combining equations (7.46)–(7.48), we obtain after division by 2N

1

e
Ev−EF

kBT +1
+ 1

e
Ec−EF

kBT +1
= 1 (7.49)

Reduction of Equation (7.49) gives without further approximations

EF = Ev +Ec

2
(7.50)

• The Fermi level is located half way between the valence and the conduction bands in an insulator, independent of the
temperature

according to the simple model we have used.
If we introduce the value of EF [Equation (7.50)] into Equations (7.46) and (7.47), we obtain

• the number of electrons in the conduction band at temperature T :

nc = 2N

e
Ec−Ev
2kBT +1

= 2N

e
Eg

2kBT +1
(7.51)

• the number of electrons in the valence band at temperature T :

nv = 2N

e− Ec−Ev
2kBT +1

= 2N

e− Eg
2kBT +1

(7.52)

where Eg is the width of the energy gap between the conduction and valence bands.
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7.5.2 Conductivities of Insulators

Classical Theory of Conductivity in Metals

The classical theory of electrical conductivity in metals has been treated on page 356. The concept of mobility was introduced
and defined as the drift velocity per unit electric field in Equation (7.35). The relationship between the conductivity � and
the mobility was found to be according to Equation (7.34).

Band Theory of Conductivity in Insulators

The classical theory derived for metals is not valid for pure insulators and pure semiconductors. It is only valid for metals
with plenty of free electrons.

Insulators have filled valence bands, which cannot transport charge, have very few free electrons and are poor conductors.
The charge transport is performed by excited electrons and holes.

Another objection to the classical theory is that no consideration is taken of the effective masses of the electrons and holes
when they move within the lattice environment.

Conductivity of Insulators
The transport of charge is performed not only by electrons in the conduction band but also to the same extent by holes, which
move in the direction of the electric field in the valence band. Therefore, Equation (7.34) on page 356 has to be replaced by
the general equation


 = nee�e +nhe�h (7.53)

where
� = conductivity of the insulator
ne = concentration of electrons (number of electrons per unit volume) in the conduction band
�e = mobility of electrons, i.e. their drift velocity per unit electric field
nh = concentration of holes (number of missing electrons per unit volume) in the valence band
�h = mobility of holes, i.e. their drift velocity per unit electric field.

The theory of electrical conductivity for pure insulators is the same as that of pure semiconductors. The only difference is the
magnitude of the energy gap Eg. Hence the Equations derived for pure semiconductors in Section 7.6.2 on pages 364–368
are also valid for pure insulators. The revised band theory is more accurate than the simple model given in Section 7.5.1 on
pages 358–360.

An adequate expression for ne (number of electrons in the conduction band per unit volume) is given by Equation (7.59)
on page 366:

ne = �2�m∗
ekBT�3/2

4�3�3
e− Ec−EF

kBT (7.59)

The corresponding expression for nh (the number of holes in the valence band per unit volume) in given by Equation (7.67)
on page 367:

nh = �2�m∗
hkBT�3/2

4�3�3
e− EF−Ev

kBT (7.67)

For an insulator, ne = nc and nh = 2N – nv. From now on ne and nh will be used instead of nc and 2N – nv in most cases
for both insulators and semiconductors.

On page 368, it is shown that the conductivity for an intrinsic insulator can be written as


 = nie��e +�h� (7.73)

where

ni = √
nhne = �2�mkBT�3/2

4�3�3

(
m∗

e

m

m∗
h

m

)3/4

e− Eg
2kBT (7.71)
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The revised theory implies that the Fermi level no longer is the average of energies of the conduction and valence bands
[Equation (7.70) on page 368].

Determination of the Energy Gap of an Insulator

Equations (7.73) and (7.71) show that the conductivity is proportional to T
3/2 × exp�−Eg/2kBT�. The other factors are not

very strongly temperature dependent.
If we plot ln 
 as a function of 1/T , we can therefore derive −Eg/2kB from the slope of the straight line as ln T

3/2 changes
fairly slowly.

7.6 Semiconductors

Semiconductors are a very special and important group of solids. Owing to a rather small energy gap between the valence and
conduction bands (magnitude 1 eV), their electrical conductivity is higher than that of the insulators but lower than the metals.

Semiconducting solids acquired enormous technical and industrial importance during the last part of the 20th century. The
reason is that it is possible to control the conductivity of semiconducting materials and produce large amounts of cheap
complex components. Two technical processes have made this development possible:

• production of extremely pure semiconducting materials
• doping of extremely pure semiconducting materials.

Without these vital premises, the development would never have been possible. Refining methods, originally invented by
Pfann at Bell Telephone Laboratories at the end of the 1950s, have been developed nearly to perfection. Semiconducting
layers are designed for innumerable special purposes and produced simultaneously as multicopies at low cost.

The properties and the basic theory of pure and doped semiconductors are given in this section.

7.6.1 Pure Semiconductors

The dominant semiconductors are silicon and germanium. For this reason, Si and Ge have been extensively studied and are
among the best understood solid elements.

Figure 7.18 shows a sketch of the energy levels of an Si or Ge atom in the crystal lattice and its correlation with the energy
levels of the orbitals of a free Si or Ge atom.

A free Si or Ge atom has two s electrons and two p electrons. Owing to hybridization in the solid state, one of the s
electrons is excited up to a p state (Chapter 3, page 109). Each of the four sp3 orbitals can accommodate two electrons, i.e.
a total of eight electrons, due to opposite spins. Si and Ge have only four outer electrons. They all occupy the lowest energy
states in the crystal lattice, which is the valence band with four electrons per atom.

Figure 7.18 Correlation between energy levels in a free Si or Ge atom and a corresponding atom in the crystal lattice of Si or Ge.
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The conduction band can also accommodate four electrons. The valence band is filled and the conduction band is empty
at T = 0.

When the influence of all the valence electrons and the lattice atoms in the Si or Ge crystals is taken into consideration, it is
easy to understand that the energy levels become wide bands in analogy with diamond, which has the same crystal structure
as Si and Ge.

The interatomic distances in Si and Ge are larger and the energy gaps are considerably smaller than that in diamond
(Table 7.9). Characteristics of all semiconductors are

• small energy gaps
• nearly filled valence bands at room temperature
• nearly empty conduction bands at room temperature.

Table 7.9 Energy gaps of some solids.

Material Energy gap (eV)

Diamond 5.3
Si 1.1
Ge 0.7

Figure 7.19 Energy bands and electron distribution in a pure semiconductor. Reproduced with permission from M. Alonso and E. Finn,
Fundamental University Physics. © Addison-Wesley Publishing Company, Inc. (now Pearson Education).

At T = 0, all semiconductors are insulators. At temperatures T > 0, some electrons are excited up to the conduction band
due to thermal excitation (Figure 7.19). In the conduction band many empty energy states are available for the electrons, which
can easily move through the metal. They leave vacancies in the valence band that are called holes. The holes are also mobile
and contribute to the current. They can be regarded as particles with a positive charge +e and an effective mass similar but
not equal to that of the electron.

Figure 7.20 
 as a function of T and 1/T for silicon and germanium. Logarithmic scale. The resistivity of a semiconductor, which is the inverse
of the conductivity, decreases with increasing temperature (Figure 7.8, page 349). C. Wehrt, Physics of solids, © McGraw-Hill, 1964.
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The conductivity of an extremely pure semiconductor increases strongly with temperature (Figure 7.20). The reason is
that the number of electrons in the conduction band and the corresponding vacancies or holes in the valence band increase
exponentially as many electrons become thermally excited up to the conduction band at higher temperatures.

Pure semiconductors with the same number of electrons in the conduction band and holes in the valence band are called
intrinsic semiconductors.

When semiconducting materials are doped, their electrical conductivities change. The possibility of controlling the conduc-
tivity is one of the two main conditions for the technical importance of semiconductors. Doped semiconductors will be
discussed on page 369.

7.6.2 Theory of Electrical Conduction in Pure Semiconductors

Figure 7.21 Valence band and conduction band in an intrinsic semiconductor. ne = nh.

The theory of the conductivity of insulators has much in common with the corresponding theory of semiconductors, but the
simple model for insulators cannot be uncritically applied to semiconductors.

The reason is that the assumption we made on page 359 that the widths of the valence and conduction bands are much
smaller than the width of the energy gap is not valid for a semiconductor. The theory has to be modified with respect to this
fact in order to be applicable on an intrinsic semiconductor (Figure 7.21).

Calculation of Density Distribution of Electron Energy States and Electron Concentration in the Conduction Band

According to Equation (7.40) on page 358, the number of available energy states with energies between E and E +dE at the
bottom of a band can be written as

N�E� = �2m∗
e�

3/2

4�2�3
E

1/2 (7.40)

where
E = energy of the electron above the bottom of the energy band
N�E� = number of available energy states per unit volume of electrons with energies between E and E +dE
m∗

e = effective electron mass
h = Planck’s constant.

The effective mass m∗
e (Chapter 3, pages 145–146) has to be used because the mass of the free electrons in the solid is not

the same as the mass of a single electron in free space.
N�E� represents the number of available energy states per unit volume within the energy interval dE. The number of

occupied energy states per unit volume within the interval dE is obtained by multiplying N�E� by the Fermi factor fFD.
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The total number of electrons per unit volume in the conduction band is obtained by integration over an energy range equal
to the width of the conduction band:

ne =
Etop∫

Ec

2N �E�fFDdE ≈

∫

Ec

2N �E�
1

e
E−EF
kBT +1

dE (7.54)

Near the bottom of the conduction band (marked in the right-hand part of Figure 7.22), N�E� is proportional to (E −Ec�
1/2.

In Equation (7.54), we have replaced Etop with infinity as the upper integration limit. This is a reasonable approximation
as the integrand is very small because the Fermi factor rapidly approaches zero in the upper part of the band, as shown in
Figure 7.23. Combining Equations (7.40) and (7.54), we obtain

ne =

∫

Ec

2
�2m∗

e�
3/2

4�2�3
�E −Ec�

1/2 1

e
E−EF
kBT +1

dE (7.55)

The Fermi level EF is roughly half way between Ec and Ev. Hence it is reasonable to assume that E −EF > 4kBT . In this case,
the second term in the denominator of the Fermi factor can be neglected in comparison with the exponential term and we obtain

ne =

∫

Ec

2
�2m∗

e�
3/2

4�2�3
�E −Ec�

1/2e− E−EF
kBT dE (7.56)

If we replace −�E −EF� by −�E −Ec�− �Ec −EF� and place constant factors outside the integral sign, Equation (7.56) can
be written as

ne = 2
�2m∗

e�
3/2

4�2�3
e− Ec−EF

kBT


∫
Ec

�E −Ec�
1/2e− E−Ec

kBT dE (7.57)

E
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E c

N (E)
  E = 0
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   E v

Figure 7.22 Sketch of the density of energy states in a semi-
conductor. Near the bottom of the conduction band N�E� is
proportional to (E −Ec�

1/2.

Figure 7.23 Valence and conduction bands of a semicon-
ductor together with the Fermi factor fFD as a function of E	

A change of dE to d(E −Ec) gives

ne = 2
�2m∗

e�
3/2

4�2�3
e− Ec−EF

kBT


∫
0

�E −Ec�
1/2e− E−Ec

kBT d�E −Ec� (7.58)
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The integral in Equation (7.58) is of the type


∫
0

x
1/2e−xdx =

√
�

2

We introduce x = �E − Ec�/kBT and dx = d�E − Ec�/kBT into the integral in Equation (7.58). Its value is calculated as
(kBT�

3/2�
1/2/2 and after reduction we obtain the electron concentration(number of electrons per unit volume) in the conduction

band:

ne = �2�m∗
ekBT�

3/2

4�3�3
e− Ec−EF

kBT (7.59)

The larger the difference (Ee −EF) is, the smaller will be ne.

Calculation of Density Distribution of Hole Energy States and Hole Concentration in the Valence Band

To find the density distribution of hole energy states and the hole concentration in the valence band, we will perform analogous
calculations to those for the electron concentration in the conduction band.

The holes can be regarded as missing electrons in the filled valence band and can be calculated as the difference between the
available electron energy levels and the occupied electron energy levels within the valence band. If the electron distribution
in the top of the valence band is denoted N ′�E�, we obtain

dnh = 2N ′�E�dE −2N ′�E�fFDdE = 2N ′�E� �1−fFD� dE (7.60)

Figure 7.24 Sketch of the density of the electron energy states
in a semiconductor. Near the top of the valence band N ′�E� is
proportional to (Ev −E�

1/2.

Figure 7.25 Valence and conduction bands of a semicon-
ductor together with the factor (1−fFD) as a function of E.

The electron distribution is not the same at the top and bottom of the valence band (Figure 7.24). Most of the holes are
located to the top of the band, where the distribution of electron energy states per unit volume N ′�E� is proportional to√

Ev −E, in analogy with the corresponding value for the conduction band �E −Ec�
1/2 for symmetry reasons. Hence the total

number of holes per unit volume in the valence band is obtained from the integral

nh = 2

Ev∫
Ebottom

N ′�E��1−fFD�dE ≈ 2

Ev∫
Ebottom

N ′�E�

(
1− 1

e
E−EF
kBT +1

)
dE (7.61)

The number of holes decreases rapidly towards the bottom of the band. Hence a change of the lower integral limit
from Ebottom to −
 is a reasonable approximation as the integrand is very small because the factor 1 − fFD rapidly
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approaches zero in the lower part of the band, as can be seen in Figure 7.25. Hence Equation (7.61) can be written approxi-
mately as

nh = 2

Ev∫
−


�2m∗
h�

3/2

4�2�3
�Ev −E�

1/2

(
1− 1

e
E−EF
kBT +1

)
dE (7.62)

A change of dE to −d�Ev −E� gives

nh = 2

0∫



�2m∗
h�

3/2

4�2�3
�Ev −E�

1/2 e
E−EF
kBT

1+ e
E−EF
kBT

−d�Ev −E�� (7.63)

As (E −EF�T < −4kBT , the second term in the denominator of the ‘Fermi factor’ is very small in comparison with the first
term and can be neglected. The minus sign is cancelled by change of the integration limits:

nh = 2


∫
0

�2m∗
h�

3/2

4�2�3
�Ev −E�

1/2e
E−EF
kBT d�Ev −E� (7.64)

If we replace E −EF by −�EF −Ev�− �Ev −E� and place constant factors outside the integral sign, Equation (7.64) can be
written as

nh = 2
�2m∗

h�
3/2

4�2�3
e− EF−Ev

kBT


∫
0

�Ev −E�
1/2e− Ev−E

kBT d�Ev −E� (7.65)

We introduce x = �Ev −E�/kBT and dx = d �Ev −E�/kBT , which gives

nh = 2
�2m∗

h�
3/2

4�2�3
e− EF−Ev

kBT �kBT�
3/2


∫
0

�x�1/2e−xdx (7.66)

The integral in Equation (7.66) is the same as that in Equation (7.58). It has the value
√

�/2 and after reduction the final
result, i.e. the concentration of holes (number of holes per unit volume) in the valence band can be written as

nh = �2�m∗
hkBT�

3/2

4�3�3
e− EF−Ev

kBT (7.67)

The larger the difference EF −Ev is the smaller will be nh.

Calculation of the Fermi Level in an Intrinsic Semiconductor

In an intrinsic semiconductor, the number of holes in the valence band and excited electrons in the conduction band are equal:

ne = nh (7.68)

When the expressions in Equations (7.59) and (7.67) are introduced into Equation (7.68), we obtain

�2�m∗
ekBT�

3/2

4�3�3
e− Ec−EF

kBT = �2�m∗
hkBT�

3/2

4�3�3
e− EF−Ev

kBT (7.69)

After division with common factors and taking the logarithm of both sides of Equation (7.69), we obtain

3
2

ln m∗
e − Ec −EF

kBT
= 3

2
ln m∗

h − EF −Ev

kBT
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EF is solved from the last equation:

Figure 7.26 Energy levels in an intrinsic semiconductor. m∗
h > m∗

e and EF > �Ev +Eg�/2.

EF = Ec +Ev

2
+ 3

4
kBT ln

m∗
h

m∗
e

(7.70)

If the effective masses of the electrons and holes are equal, the last term in Equation (7.70) will be zero and the Fermi level
lies exactly half way between the top of the valence band and the bottom of the conduction band, i.e. in the middle of the
energy gap Eg = �Ec −Ev�/2.

In general, the effective mass of the holes in the valence bands is larger than that of the electrons in the conduction band
and EF is somewhat higher than half way between Ec and Ev (Figure 7.26).

Electrical Conductivities of Intrinsic Semiconductors

A comparison between Equations (7.59) and (7.67) shows, that the expressions for ne and nh are not exactly equal. If we form
the expression ni = √

nhne and insert the expressions (7.59) and (7.67), we obtain after reduction

ni = √
nhne = �2�kBTm�3/2

4�3�3

(
m∗

e

m

m∗
h

m

)3/4

e
− Eg

2kBT (7.71)

where m is the mass of a free electron outside the metal.
Provided that m∗

e ≈ m∗
h, then

ne ≈ nh ≈ ni (7.72)

and it is reasonable to replace ne and nh by ni in the general expression for 
 [Equation (7.53) on page 361]:


 = nie��e +�h� (7.73)

This theory is valid for both pure semiconductors and pure insulators and has to be used when the widths of the valence and
conduction bands cannot be neglected in comparison with the energy gap. Equations (7.73) and (7.71) are very useful for the
calculation of electron and hole concentrations from measurements of conductivities.

Calculation of the Energy Gap of an Intrinsic Semiconductor

Figure 7.27 Derivation of Eg.

If the expression (7.71) for ni is inserted into Equation (7.73), we obtain


 = constant × ��e +�h�T
3/2e

− Eg

2kBT (7.74)

If ln � is plotted as a function of 1/T , a straight line will probably be obtained as ln T 3/2 changes slowly in comparison with
the function 1/T and the mobilities are not very temperature dependent. Eg can be derived from the slope of the straight line.
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7.6.3 Doped Semiconductors

Extremely pure semiconductors are called intrinsic semiconductors because their electrical properties are a consequence of
the inherent nature of the elements themselves.

If impurities are added to intrinsic semiconductors, their electrical properties change radically. Semiconductors which
contain impurities are called extrinsic semiconductors because their electrical properties are controlled by the nature and
amounts of impurities added.

For this reason, is is necessary that the basic semiconductor is extremely free from impurities. If this condition is fulfilled
then controlled amounts of impurities can be added to the semiconductor in order to design its electrical properties in a desired
way. The semiconductor is said to be doped and the impurity is called dopant.

If the semiconductor is doped with elements in group 5 in the periodic table there will be an excess of valence elec-
trons. The semiconductor is said to be n-doped (n = negative). If the dopant comes from group 3 it is said to be p-
doped. In this case there will be a lack of valence electrons, which we call holes. The holes behave like positive charges
(p = positive).

7.6.4 Theory of Electrical Conductivity in Doped Semiconductors

Even if the amounts of dopants added to a pure semiconductor are very small the concentrations of the excess electrons ne or
excess holes nh will be much larger than the concentration ni in a pure semiconductor. Hence the intrinsic contribution to the
electrical conductivity can normally be neglected. In this case the general Equation (7.53) on page 361 is valid.

The concentrations of electrons and holes are not equal in a doped semiconductor but obey the relationship

nenh = n2
i (7.75)

Normally the concentration of the dopant, for example ne, in a doped semiconductor is known. Then the concentration of holes
can be calculated with the aid of Equation (7.75). The higher the dopant concentration is, the lower will be the concentration
of the holes.

Provided that ne >> nh, the latter can be neglected and Equation (7.53) will be simplified to

� = nee�e +nhe�h =⇒ � = nee�e (7.76)

If the indices e and h are exchanged we realize that the same arguments are valid for a p-doped semiconductor, which gives

� = nee�e +nhe�h =⇒ � = nhe�h (7.77)

If the condition ne >> nh or the reverse is not fulfilled, both contributions must be included and Equation (7.53) has to
be used.

Influence of Temperature and Dopant Concentration on the Number of Charge Carriers

Temperature and dopant concentration have a strong influence on the number of current carriers, i.e. the sum of free electrons
and holes, in a doped semiconductor. To illustrate this, we choose B-doped Si semiconductors with various degrees of doping
as an example.

Figure 7.28 shows the total number of current carriers as a function of 1/T for silicon doped with boron. The B concentrations
are given in at-%. From Figure 7.28, we can conclude that

1. The number of charge carriers per unit volume is remarkably even at very low temperatures. Even extremely pure
semiconductors contain impurities.

2. The steep line of the lowest curve above 300 �C corresponds to an intrinsic excitation of electrons. The energy gap can be
derived from the slope of the line. It amounts to about 1.1 eV.

3. At low dopant concentrations, all the electrons and holes are not excited at low temperatures. When the temperature
increases, more and more electrons become excited into the conduction band and leave holes in the valence band. Hence
the number of charge carriers that contribute to the current increases strongly.
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Figure 7.28 Number of charge carriers per m3 as a function of temperature in a B-doped Si semiconductor. The percentages on the curves
represent the degree of doping in at-%. The lowest curve shows that impurities are present even in pure Si. C. Wehrt, Physics of Solids,
© McGraw-Hill, 1964.

4. At high temperatures, all the charge carriers are activated and the curves becomes horisontal, i.e. independent of the
temperature.

5. At high degrees of doping, the number of dopants is much greater than the number of intrinsic, thermally activated pairs of
electrons and holes. The number of current carriers depends only on the dopant concentration and not on the temperature.
The number of charge carriers is roughly proportional to the dopant concentration.

7.6.5 Types of Doped Semiconductors. Acceptor and Donor Energy Levels

n-Doped or n-Type Semiconductors

If the semiconductor is doped with very small amounts of an element in group 5 of the periodic table, the conductivity
increases drastically because the dopant supplies additional electrons in the conduction band of the semiconductor in addition
to the available thermally excited electrons. Simultaneously the lattice becomes ionized to some extent when the dopant atoms
are dissolved substitutionally, i.e. replace semiconductor atoms. An example is given in Figure 7.29.

Elements in group 5 in the periodic table have five outer electrons. If an Si atom, for example, is replaced by a
P atom, four of its outer electrons replace the normal valence electrons of the missing Si atom and the fifth electron
is excited up to the conduction band and is able to move freely within the lattice if the available thermal energy is
large enough. If the energy is too low, the fifth electron is instead trapped in an orbit around the site with the P atom
(Figure 7.29a). At very low temperatures the fifth electrons of the impurity atoms do not increase the conductivity of the
semiconductor.
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Figure 7.29 (a) The covalent bonds in an Si lattice are indicated schematically by electron pairs. The P site in the crystal lattice has a
charge +e compared with the Si sites. Four of the five outer electrons of the P atom are involved in covalent bonds and the fifth electron
is bound to the P site (as in the figure) or excited into the conduction band as a free electron.
(b) Donor level in an n-doped semiconductor. The donor level has excited states but these are not indicated in the figure for the sake of simplicity.

The excitation energy required for exciting the fifth electron has been found to be much lower than that which corresponds
to the energy gap in the semiconductor. The extra electrons obviously stay in a special energy level close to the lower part of
the conduction band (Figure 7.29b). This energy level is called donor level.

p-Doped or p-Type Semiconductors

If the semiconductor is doped with very small amounts of an element in group 3 in the periodic table, the element dissolves
substitutionally in the crystal lattice of the semiconductor.

In an intrinsic semiconductor, the number of thermally excited electrons in the conduction band is equal to the number
of holes in the valence band. In an n-doped semiconductor there are many more mobile electrons than holes; in a p-doped
semiconductor the opposite is true. Elements in group 3 in the periodic table have three outer electrons. If an Si atom, for
example, is replaced by a B atom the three outer electrons replace the normal valence electrons of the missing Si atom and
the absent fourth electron corresponds is a lack of an electron and behaves as a hole with a charge +e (Figure 7.30a).

−

+

(a) (b)

Figure 7.30 (a) The covalent bonds in an Si lattice are indicated schematically by electron pairs. The B site in the crystal lattice has a
charge −e compared with the Si sites. The three outer electrons of the B atom are involved in covalent bonds and the hole is bound to the
B site (as in the figure) or excited down into the valence band as a free hole.
(b) Acceptor level in a p-doped semiconductor. The acceptor level has excited states but these are not indicated in the figure for the sake of
simplicity.

The holes can be excited down to the valence band and be able to move freely within the lattice if the available thermal
energy is large enough. If the energy is too low, the hole is instead trapped in an orbit around the site with the B atom which
has a lower charge (−e) than the surrounding Si atoms. At very low temperatures, the holes of the impurity atoms do not
increase the conductivity of the semiconductor.

The excitation energy required for exciting a hole in a p-doped semiconductor into the valence band has been found to be of
the same magnitude as the energy required to excite an electron from the donor level into the conduction band in an n-doped
semiconductor. Hence the holes obviously stay in a special energy level close to the valence band (Figure 7.30b). This energy
level is called acceptor level. Electrons in the upper part of the valence band become exited into the acceptor level and leave
mobile holes in the valence band.



372 Physics of Functional Materials

Compound Semiconductors

Some semiconductors are chemical compounds, usually of one component from group 3 and one element from group 5 in
the periodic table. Common examples are InSb and GaAs. Such semiconductors are ionized as is shown in Figure 7.31a.
Figure 7.32 gives a comparison with an ordinary semiconductor.

(a) (b)

Figure 7.31 (a) Compound semiconductor. 50% of the sites are positive
and 50% are negative. (b) Energy levels in a compound semiconductor. Both
acceptor and donor levels are present.

Figure 7.32 Intrinsic Si or Ge semiconductor.

Compound semiconductors have both donor levels and acceptor levels (Figure 7.31b). If GaAs is doped with Si, a Si atom
can occupy a Ga site and act as an n-dopant. On the other hand, if a Si atom ocupies an As site, it is a p-dopant.

Calculation of Donor and Acceptor Energy Levels in Doped Semiconductors

Consider an impurity atom in a semiconductor, for example a P atom in a Ge lattice. Phosphorus has five outer electrons and
four of them contribute to the covalent bonds to four neighbouring Ge atoms. The fifth outer electron is bound to the P+ ion
at low temperatures.

In order to study the interaction between the electron and the P+ ion with the charge +e, we have to make considerable
and rough simplifications of the complicated system with of thousands of atoms and electrons closely involved.

−

+

Figure 7.33 A bound phosphorus–electron system.

1. The bound system is analogous with the hydrogen atom. The simple Bohr model will be used as an approximation for
calculation of its energy levels. The only difference is that the space within the bound system is filled with a dielectric
medium.

2. The Ge sites in the lattice and the electron pair bonds are considered as an electrically neutral continuum with a relative
dielectric capacitivity �r . The value of �r is specific for the semiconductor material.
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The Bohr Model of the Hydrogen Atom

Derivation of the Radius of the Electron Orbit
The attraction force between the electron and the proton is

1
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= mv2

rn
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The quantization condition of the orbital angular momentum can be written as
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Combining Equations (1′) and (2′), we obtain
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Kinetic, Potential and Total Energy of the Hydrogen Atom
The proton is supposed to be at rest. The kinetic energy of the electron can be written [from Equation (1)] as

Ekin = mv2

2
= 1

4��0

e2

2rn

(5′)

The potential energy of the system is

Epot = �−e�
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4��0

e

rn

(6′)

The total energy of the electron–proton system is equal to the sum of Equations (5′) and (6′). In combination with
Equations (3′) and (4′), we obtain
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Analogous calculations to those for the hydrogen atom (given in the box) give the following equations of the energy levels
and the smallest radius of the bound system:

E∗
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(7.79)

where En and rn refer to the energy level n and the Bohr radius n of the hydrogen atom, which have been derived in
the box.

The relative dielectric capacity �r for the semiconductor is given in Table 7.10. It is more complicated to find an adequate
value of the effective mass of the electron m∗

e because it is not a constant but depends on the direction in space. All directions
in solids are not equivalent. An example is graphite, where �-binding electrons are free to move along the planar layer of
carbon rings but not perpendicular to them. In this case the orbit of the electron is an ellipsis rather than a circle.

Numerical calculations of the ground state, which involve the anisotropic mass of the electron, have been performed for
both Si and Ge. The obtained values of the binding energies correspond to weighted scalar average values of the longitudinal
and transverse effective masses of the electron in Si and Ge. These values are also used for the calculation of the radius of
the ground state orbit. The values obtained are given in Table 7.10.

Table 7.10 Data for a bound H-like system of P atoms in a semiconductor.

Semiconductor Relative dielectric
constant �r = �/�0

Ratio m∗
e/m Energy of ground

state (eV)
Radius of ground
state orbit (nm)

Si 12 0	31 −0	0092 2	3
Ge 16 0	17 −0	029 5	4

The radius of the electron in its ground state is surprisingly large. Within the orbit thousands of semiconductor sites are
included. The model of the semiconductor as a continuous dielectric medium instead of a point lattice is obviously very
reasonable.

The binding energies, which represent the energy of the donor level in Si and Ge, close to the bottom of the conduction
band in the semiconductor, are very small. The calculated values agree comparatively well with experimental values.

The values of the experimental binding energies are similar for all group 5 impurity atoms, for example P, As and, Sb. For
Si, the values are about 0.011 eV and for Ge about 0.045 eV (Tables 7.11 and 7.12).

Table 7.11 Parameters of doped silicon.

Semiconductor Dopant Experimental binding energy (eV)

Si Donors (group 5):
P 0	0120
As 0	0127
Sb 0	0096

�r = 12 Acceptors (group 3):
B 0	0104
Al 0	0102
Ga 0	0108
In 0	0112

Similar calculations have been performed for group 3 elements as dopants in semiconductors with similar results (Tables 7.11
and 7.12). In this case the H-like bound system consists of a negative nucleus, for example B, Ga or In, and a hole
(Figure 7.34). The binding energies correspond to the energies of the acceptor levels close to the top of the valence band in
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Table 7.12 Parameters of doped germanium.

Semiconductor Dopant Experimental binding energy (eV)

Ge Donors (group 5):
P 0	044
As 0	049
Sb 0	039

�r = 16 Acceptors (group 3):
B 0	045
Al 0	057
Ga 0	065
In 0	160

−

+

Figure 7.34 A bound boron–hole system.

the semiconductor. The experimental values for group 3 dopants in silicon are about 0.050 eV for B, Ga and higher for In
(0.16 eV). The experimental acceptor levels for B, Al, Ga and In in germanium are all close to 0.011 eV.

The experimental values are derived from measurements of the temperature dependence of the conductivity of doped
semiconductors at low temperatures or by optical absorption methods.

The binding energies of the bound systems are very small and hence the donor and acceptor levels are very close to the
allowed conduction and valence bands.

The conductivity of a semiconductor varies strongly with the concentration of the dopants, as was shown in Figure 7.28 on
page 370.

7.7 Optical Properties of Solids

The optical properties of solids vary considerably depending on the type of solid. The reason is that the properties of a solid
depend entirely of its structure. This statement has already been shown in this and earlier chapters, for example when magnetic
properties were discussed in Chapter 6 and when the colour centres in ionic crystals were treated in Chapter 3.

Below we will briefly discuss the properties of different types of solids when they are exposed to light or other electromag-
netic radiation. The solids will be classified according to their electrical conduction properties, i.e. as metals, insulators and
semiconductors. The section ends with a discussion about the interaction between polarized light and insulators.

7.7.1 Optical Properties of Metals

Metals are opaque and many metals reflect light very well. These topics can be explained with the aid of the properties of
metals which have been discussed in earlier chapters.

Transparency and Absorption

In Section 7.4 on page 350, the positions of the valence and conduction bands of solid metals were discussed. Figures 7.9a
and 7.10b show sketches of the positions of some of the outer energy bands in a metal. Each metal is characterized by its
own widths and positions of the energy bands, but for a general discussion the figures are sufficient.
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Figure 7.9a shows that in monovalent metals the valence band is only half filled and that the nearest conduction band is
very close to the valence band or the two bands overlap. Figure 7.10b shows that the conduction bands become wider and
wider with increasing energy and often overlap.

In addition, the figures show that photons of many energies can be absorbed, extending from the top of the valence band
to the bottom of the conduction band, from the bottom of the valence band to the top of the conduction band and all energies
between the two.

The photons of visible light have energies of 1.8–3.2 eV, which is of the magnitude of the gap between the energy bands
in all metals. Hence it is easy to realize that all photons within this energy interval can be absorbed. This is the reason why
metals are opaque and not transparent.

Reflection

Most metals reflect a shiny or grayish non-coloured light. Exceptions are the monovalent metals copper and gold, which show
a selective reflection in red and yellow. Obviously the intensity of the reflected light depends on the wavelength.

The most useful model in this case is that light consists of electromagnetic waves. As is discussed in next section on page
379, the fraction of the radiation which is reflected at a surface is a function of the angle of incidence and the refractive
index of the material, which depends on the dielectric constant of the transparent material. These equations are not valid for
conductors. As no light is transmitted in metals, a much higher fraction of the incident light is reflected than for transparent
materials.

The reflection of light at a metal surface is a function the relative dielectric constant �r , which varies with the wavelength
of the light. This variation and the positions of the valence and conduction bands are the reasons why the reflected light has
different composition for different metals. Copper has an intensity maximum in the red spectral region. The dominant yellow
region gives gold its colour. Most metals reflect all colours and the reflected light has no specific colour.

7.7.2 Optical Properties of Semiconductors

Like metals, semiconductors have a wide valence band and a still wider conduction band. The difference is that the conduction
band is separated from the valence band by an energy gap of the magnitude 1 eV (Figure 7.9b on page 349) without the
overlap that is common in metals.

Different types of semiconductors have been described in Sections 7.6.3 and 7.6.5. Semiconductors such as Si and Ge
doped with elements in groups 3 and 5 and many semiconductors of combined group 3 and 5 elements in the periodical table
are used in industry.

Transparency and Absorption

Many semiconductors are transparent in the visible region of the electromagnetic spectrum but show absorption in the infrared
region.

Determination of the Energy Gap of a Semiconductor

The energy gap of a semiconductor can be determined experimentally by studying its electrical conductivity as a function
of temperature (page 368). One of the best methods for accurate determination of the energy gaps of semiconductors is
measurement of the absorption coefficient as a function of wavelength or photon energy.

A semiconductor specimen is exposed to monochromatic infrared radiation and intensity measurements of the light before
and after the passage through the specimen are performed:

I = I0e−�x (7.80)

where
I = intensity after passage of the specimen
I0 = intensity before passage of the specimen
� = absorption coefficient
x = thickness of the specimen.
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The wavelength is varied and for each value of photon energy the absorption coefficient � is calculated from the experimental
measurements and plotted as a function of �. Figure 7.35b gives an example of such a diagram. Obviously � varies strongly
with the wavelength of the radiation. The temperature is kept low to avoid thermal excitation.

The appearance of the resulting diagrams depends on the positions and shape of the bands. Two examples of band shapes
are shown in Figures 7.35a and 7.36a. Figures 7.35b, 7.36b and 7.37 show some typical examples of absorption curves. The
band shapes and the absorption curves depend strongly on the temperature.
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Figure 7.35 (a) Sketch of the valence and conduction bands of a semiconductor with a direct energy gap.
(b) Absorption coefficient as a function of the photon energy for InSb at 5 K (after G. W. Gobeli and H. Y Fan). Adapted with permission
from C. Kittel, Introduction to Solid State Physics, 6th edn. © 1986 John Wiley & Sons, Inc.

In the simplest case (Figure 7.35a), the energy gap Eg is the minimum energy and the transition is vertical, i.e. involves no
change of the k vector at the excitation of the electron. Figure 7.35b shows the absorption curve for InSb, which has a direct
energy gap, i.e. is of the type shown in Figure 7.35a.
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Figure 7.36 (a) Sketch of the valence and conduction band in a semiconductor with an indirect energy gap.
(b) The absorption constant as a function of the photon energy in case of an indirect energy gap. Adapted with permission from C. Kittel,
Introduction to Solid State Physics, 6th edn. © 1986 John Wiley & Sons, Inc.

A type of absorption curve of a semiconductor with an indirect energy gap is sketched in Figure 7.36a. Transitions with
lower energy than Eg are possible only if the electron changes its k value, i.e. an electron, a photon � and a phonon � are
involved and the energy and momentum (right part of Figure 7.36a) are conserved at the excitation of the electron. Such
absorption processes result in energy absorption at lower energies than Eg. The energy and momentum of the phonon are
much smaller than those of the photon.
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The value of the energy gap can be extrapolated from the photon absorption part of the curve. Germanium belongs to this
type of semiconductor with an indirect energy gap.

Photon energy hν (eV)

Exciton absorption

α (106 m−1)
1.2

0.0

1.0

0.8

Eg 1.551.531.51

GaAs
at 21 K

0.6

Figure 7.37 The absorption constant of GaAs as a function of the photon energy near the band gap region, measured at 21 K. Reproduced
with permission from H. Ibach and H. Luth, Solid-State Physics – An Introduction to Theory and Experiment. © Springer-Verlag, Berlin
Heidelberg 1991.

Figure 7.37 shows an absorption curve of GaAs at 21 K. The curve has an absorption maximum, at lower energy than Eg,
before it decreases steeply to zero. The electron in the conduction band and the hole in the valence band form a bound system,
an exciton, bound together by electrostatic attraction forces. The exciton can absorb energy and become excited. Excitons are
identical with the bound systems which have been described on pages 371–375.

If the effect of the exciton absorption is subtracted, the normal photon absorption remains (the dashed curve in Figure 7.37)
from which Eg can be determined. GaAs is a semiconductor with an indirect energy gap.

All absorption curves are influenced by the temperature. The derived Eg values become smaller when the temperature
increases. An example is given in Table 7.13.

Table 7.13 Values of the energy gap for some semiconductors at T = 0 and 300 K.

Semiconductor Energy gap at T = 0 K (eV) Energy gap at T = 300 K (eV)

Si 1	17 1.11
Ge 0	74 0.66

7.7.3 Optical Properties of Insulators

Insulators conduct electricity very poorly. The reason is that they have hardly any free electrons in their lattices and that the
energy gap is very high (Figure 7.9c on page 349). Hence thermal excitation is impossible.

The main groups of insulators are ionic crystals and solids with covalent bonds. Here we will concentrate on ionic crystals
and discuss their transparency below and their properties connected with the polarization of light in Section 7.7.4.

Transparency and Absorption

Ionic crystals are transparent in the visible and infrared regions of the electromagnetic spectrum. This is fully explained by
their high energy gaps between the valence band and empty conduction band. As no absorption is possible in the visible
region, all crystals ought to be colourless, but this is not always the case.

The observed intense colours of some types of crystals can easily be explained. They are caused by lattice defects. Special
wavelengths in the visible region, characteristic of each type of crystals, are absorbed by so-called colour centres, which
results in strongly coloured crystals (page 152–153 in Chapter 3).
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7.7.4 Polarized Light and Insulators

Reflection of Light at a Planar Surface

When electromagnetic radiation strikes the surface of a solid material, part of it will be reflected and the rest enters the interior
of the solid. The fraction of the radiation which is reflected depends on the material properties and the angle of incidence.

E

Non-polarized light

(a) (b)
Polarization plane

Polarized light

Oscillation plane

Figure 7.38 (a) Nonpolarized light: The E vector oscillates in all directions perpendicularly to the propagation direction.
(b) The E vector oscillates in the oscillation plane. The polarization plane is perpendicular to the oscillation plane. Reproduced with
permission. © O. Beckman.

The intensity of the incident non-polarized beam (Figures 7.38 and 7.39) is I0. The intensity of the reflected light is given
by the so-called Fresnel’s equations

The intensity of the components of the reflected light is

Ir⊥ = I0

2
sin2�i−b�

sin2�i+b�
(7.81)

Irll = I0

2
tan2�i−b�

tan2�i+b�
(7.82)

where
I0 = intensity of the incident beam
Ir⊥ = intensity of the part of the light which (the E vector) oscillates perpendicularly to the plane of incidence (Figure 7.39)
Ir�� = intensity of the part of the light which (the E vector) oscillates in the plane of incidence (Figure 7.39)
i = angle of incidence (Figure 7.39)
b = angle of refraction (Figure 7.39).
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Figure 7.39 Reflection and refraction of an incident beam. E0 = E vector of incident beam; Er = E vector of reflected beam; Et = E
vector of transmitted (refracted) beam. Symbols ⊥ and �� refer to the plane of incidence. Reproduced with permission. © O. Beckman.
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Special Case 1: Angle of Incidence = 0
If the incident beam is perpendicular to the surface i = b = 0. In this case sin i ∼ i and sin b ∼ b (the angles are measured in
radians) and we obtain

I⊥ = Ill = I0

2
�i−b�2

�i+b�2
= I0

2

(
i−b

i+b

)2

(7.83)

Provided that light in vacuum or air is reflected towards the surface of a medium with a refractive index n, Snell’s law of
refraction can be written: sin i = n sin b. If the angle i is small, the angle b is also small, and the relationship can be written
i = nb. The total intensity of the fraction R of the incident light which is reflected can be written as

R = Ir⊥ + Ir ll

I0

=
(

i−b

i+b

)2

=
(

n−1
n+1

)2

(7.84)

where n is the refractive index.

Special Case 2: Angle of Incidence = Polarizing Angle
If the reflected and the refracted beams are perpendicular, i.e. i+b = �/2, Equations (7.81) and (7.82) can be written as

Ir⊥ = I0

2
sin2�i−b� (7.85)

Ir ll = 0 (7.86)

as sin�i+b� = sin �/2 = 1 and tan�i+b� = tan �/2 = 
.
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Figure 7.40 Oscillation directions of the reflected and refracted (transmitted) beams when i is the polarizing angle. Reproduced with
permission. © O. Beckman.

Hence the reflected beam is plane polarized or linearly polarized perpendicularly to the plane of incidence, which is shown
in Figure 7.40. If we introduce the value b = �/2− i into the law of refraction, we obtain

n = sin i

sin b
= sin i

sin
(

�
2 − i

) = tan i (7.87)

This special angle of incidence is called the polarizing angle. Fresnel’s equations for the refracted beam (not given here)
show that the refracted beam is only partly polarized, i.e. both the parallel and perpendicular components are present. This is
indicated in Figure 7.40.

Double Refraction

We have seen above that a nonpolarized beam of light gives a plane-polarized reflected beam if the angle of incidence is
equal to the polarizing angle. Plane-polarized light can be obtained in simpler and better ways, for example with the aid of
double-refracting crystals or with so-called polaroids.
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Double refraction means that an incident beam of light is separated into two transmitted beams, one ordinary and one
extraordinary, in all crystalline media except those with a cubic structure. The two beams are plane polarized and their E
vectors oscillate in perpendicular planes:

• the ‘extraordinary’ E vector in a plane through the optical axis and the extraordinary beam
• the ‘ordinary’ E vector in a plane perpendicular to the plane through the optical axis and the ‘ordinary’ beam.

The direction where the ordinary and extraordinary beams have the same velocity (vertical in Figure 7.41) is called the
optical axis. It is in fact a direction and not an axis, but the name is traditional and it is difficult to change it.

The origin of double refraction is an anisotropic velocity of light. The ordinary beam has the same velocity in all directions
whereas for the extraordinary beam the velocity varies with the direction. The wave fronts propagate as is shown in Figure 7.41a
and b. The ordinary beam has a spherical wave front and the extraordinary wave front is a rotation ellipsoid.

Optical axis
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Figure 7.41 (a) Propagation of light in a negative crystal, e.g. Iceland spar (CaCO3).
(b) Propagation of light in a positive crystal, e.g. quartz (SiO2). Reproduced with permission. © O. Beckman.

If the velocity of light in air (or rather vacuum) is c0, the velocity of the ordinary beam in the crystal is c0/no, where no is
the refractive index in the crystal (the subscript ‘o’ stands for ‘ordinary’). The radius of the sphere in the crystal will then be
c0dt/no, where dt is the propagation time from the origin (at t = 0) to the spherical wave front at time t = dt.

Analogously, the ellipse has the axes c0dt/no and c0dt/neo, where the subscripts ‘o’ and ‘eo’ stand for ‘ordinary’ and
‘extraordinary’, respectively:

• If neo < no the sphere is included in the ellipsoid and the crystal is said to be negative.
• If neo > no the ellipsoid is included in the sphere and the crystal is said to be positive.

All crystal structures except the cubic structures are double refracting. A review of the crystal systems is given on pages
13–14 in Chapter 1. Hexagonal, tetragonal and trigonal crystals have only one optical axis. Iceland spar and quartz are both
trigonal crystals. Orthorombic, monoclinic and triclinic crystals are more complicated and have two optical axes. They will
not be discussed here.

Refraction in Double-refracting Crystals

When parallel beams of light reach a planar surface, they are refracted and the angle of refraction can be constructed if the
angle of incidence is known or calculated from the law of refraction.

The law of refraction, sin i = n sin b, is valid only for the ordinary beam and is not valid for the extraordinary beam. In the
latter case, it is necessary to construct the angle b with the aid of wave fronts and perform calculations to find the tangent
of the ellipse in the plane of incidence. The calculations will be omitted here but the construction of the wave front of the
extraordinary beam is shown below for two special cases. The direction of the beam is then the direction of the line between
the origin of the ellipse and the tangential point.
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1. The optical axis is in the plane of incidence. The angle of incidence > 0 (Figure 7.42).
The E vector of the ordinary beam is always perpendicular to the plane of incidence. The E vector of the extraordinary

beam lies in the plane of incidence and its oscillation plane varies with the direction of the beam.
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Figure 7.42 Construction of the refracted beams after refraction in a double-refracting crystal. Reproduced with permission.
© O. Beckman.

2. The angle of incidence = 0 (Figure 7.43).
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Figure 7.43 Construction of the refracted beams after refraction in a double-refracting crystal. Reproduced with permission.
© O. Beckman.

This case shows very clearly that the law of refraction is not valid for the extraordinary beam. It is refracted in spite of normal
incidence.

Methods to Produce Plane-polarized Light

Three methods are used in practice to produce plane-polarized light: double refraction, dichroism and alignment of
crystals.

Double Refraction
If a prism of Iceland spar is made in such a way that the optical axis is parallel with the refracting edge of the prism
(Figure 7.44a), it can be used to separate the ordinary beam and the extraordinary beam (Figure 7.44b).

Two such prisms are glued together with a substance called Canada balsam, which has a refractive index between no

and neo. The ordinary beam will be totally reflected and only the plane-polarized extraordinary beam will be transmitted. Such
a kit is called a Nicol prism or just a Nicol.
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Figure 7.44 (a) Iceland spar prism. (b) A Nicol prism consists of two prisms of Iceland spar. Reproduced with permission. © O. Beckman.

Dichroism
Dichroism occurs in some double-refracting materials and means that one of the plane-polarized beams is strongly absorbed
whereas the other is transmitted. The most common example is tourmaline (Figure 7.45).
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Figure 7.45 Dichroism in tourmaline. Reproduced with permission. © O. Beckman.

Alignment of Crystals
Another way to produce plane-polarized light is to use a polariod film, which consists of microscopic parallel ‘needle’ crystals,
which only transmits light oscillating in a plane parallel with the crystals. The most common example is herepatite.
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Figure 7.46 Relationship between E and E0. Reproduced with permission. © O. Beckman.

Consider an incident plane-polarized wave with the amplitude E0 which passes through a Nicol prism. After passage through
the Nicol prism, the leaving wave is plane polarized and has the amplitude E. The angle between the oscillation planes of the
incident and leaving waves is �. Figure 7.46 shows that the relationship between E and E0 will be

E = E0 cos � (7.88)
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The intensity is proportional to the square of the amplitude.
If the losses at the entrance and exit surfaces are neglected, the intensity of the beam as a function of the angle � will be

I = I0 cos2 � (7.89)

where
I0 = intensity of the incident plane-polarized wave
I = intensity of the plane-polarized wave after passage through the Nicol prism.

As will be shown in Figure 7.47 in next section, a Nicol prism or a polariod film can be used for the production of
plane-polarized light (polarizer) or for analysis of light (analyser).

Analysis of Polarized Light

Polarizer Analyser

Optical axis

Plate

Incident
unpolarized

light

Figure 7.47 Polarizer and analyser for examination of polarized light. Reproduced with permission. © O. Beckman.

Figure 7.47 shows an experimental set-up for the analysis of polarized light. If nonpolarized light passes through a polarizer,
it becomes plane polarized and its intensity is reduced to half the initial value.

In the absence of the plate, the light then passes through an analyser and its intensity depends on the relative directions of the
polarization planes of the polarizer and the analyser. If they are crossed, the intensity will be zero as � = �/2. If they are parallel,
the intensity will be unchanged as � = 0. In the general case, the intensity has to be calculated with the aid of Equation (7.89).

If a double-refracting plate with the optical axis in the ‘paper’ plane is inserted between the crossed polarizer and analyser in
Figure 7.47, the propagation direction of monochromatic light is perpendicular to the optical axis. In this case, the propagation
velocities of the ordinary and extraordinary beams are c0/no and c0/neo, respectively, as is mentioned on page 381.

If the optical axis lies in the plane of the crystal surface (Figure 7.48), the ordinary and extraordinary beams propagate with
different velocities. A phase difference arises successively in the plate and remains after the exit of the plate.

λ /2 plate
45o

45o

45o
Optical axis

Polarizer

e o

o

Figure 7.48 Change of the direction of plane-polarized light with the aid of a �/2 plate. Reproduced with permission. © O. Beckman.

If monochromatic light is used and the plate is a so-called �/2 plate, i.e. has a suitable thickness, there will be a displacement
of half a wavelength between the ordinary and extraordinary beam, as shown in Figure 7.48. The light is still plane polarized
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but the oscillation plane is changed. Hence light will be transmitted in spite of the crossed Nicols. The analyser has to be
turned 90� to obtain zero intensity after the analyser.

If the plate has another thickness, the light will normally be elliptically polarized and the intensity of the light will not be
zero after the analyser. This property is used for the control of normally isotropic materials which are exposed to mechanical
stress and is briefly discussed on page 387.

Rotation of the Plane of Polarization. Optical Activity

Rotation of the Plane of Polarization
If a quartz plate with the optical axis in the direction of propagation of the light is inserted between the crossed polarizer
and analyser (Figure 7.49), the velocities of the ordinary and extraordinary monochromatic beams will be the same. Hence no
displacement effect as in the case of a �/2 plate (Figure 7.48) is to be expected.

Optical axis

Polarizer Analyser

Tank or plate

Incident
non-polarized

light

Figure 7.49 Equipment for analysis of optical activity in solid and liquid materials.

Left-hand
quartz

Right-hand
quartz

Figure 7.50 Mirror crystals of quartz. Reproduced by permission. © Ulf Ringström.

However, some materials show so-called optical activity, i.e. a plate of those materials turns the plane of polarization and
light is transmitted through the crossed Nicols. The analyser has to be turned through the same angle to achieve darkness.

Many optically active materials have been found. Quartz is one of them. Some turn the polarization plane to the left, others
to the right. There are two types of quartz: left-hand quartz and right-hand quartz (Figure 7.50). The same mirror optical
activity has been found for other materials.

The angle of rotation of the polarization plane is proportional to the thickness of the optically active plate:

� = �0d (7.90)

where
� = angle of rotation of the polarization plane (degrees)
�0 = angle of rotation of the polarization plane caused by a plate of thickness 1 mm
d = thickness of the optically active plate (mm).

The proportionality constant �0 varies with the wavelength of the light. For quartz it is about twice as large for violet light
as for yellow Na light. If white light is used instead of monochromatic light, the exit light will be coloured because of the
different rotation angles of the polarization plane for different wavelengths.
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Optical Activity
The phenomenon of optical activity can be described as follows. After passage through the polarizer, the monochromatic light
is plane polarized. The plane-polarized light can be regarded as composed of two simultaneous circular polarized waves, one
with an E vector rotating clockwise and the other with an E vector rotating counterclockwise (Figure 7.51). The two rotating
vectors have the same angular velocity but not the same propagation velocities. As the frequency is the same, different
propagation velocities correspond to different wavelengths of the two components.

E 1

E

E 2

E 2 E 1

E 1 E 2

E

E = 0
E 1

E 2

E

E 1 E 2

E

t = 0        t = T/8        t = T/4        t =3T/8        t = T/2

Figure 7.51 Cooperation of two circular-polarized waves. The propagation velocity is directed perpendicularly to the plane of the paper
towards the reader. The tops of the two E vectors move along two helical paths (right- and left-hand paths), i.e. in a circular motion at the same
time as they move forwards with slightly different propagation velocities. The time for a round is T . The figure describes the resulting E vector,
projected on the paper plane, as a function of time during half a period (T/2) of the motion or half a round. Obviously the resulting E vector is a
plane-polarized wave.

The two wave fronts move with different velocities within the plate, which results in a phase difference between the rotating
vectors at the exit of the plate. They give a resulting plane-polarized wave with a changed direction compared with the
entrance wave. This phase difference is the origin of the optical activity. Depending on the sign of the phase difference, the
plane of polarization rotates either to the right or to the left compared with its initial direction (Figures 7.52).

Figure 7.52 shows the positions of the E1 and E2 vectors of the two circular-polarized waves and their resultant E at the entrance
and exit of the optically active plate. The condition for these ‘snapshots’ of the vector positions is given in the caption.
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E 1 E 2

E

E 1

E 2

Right-hand rotation of the
oscillation and polarization planes

Figure 7.52 Positions of the E1 and E2 vectors of the two circular-polarized waves and their resultant E at the beginning and at the end
of the optically active plate, provided that the length of the plate is a multiple of the wavelength �2 of one of the circular-polarized waves.

The oscillation plane and the perpendicular polarization plane are firmly connected to each other. Therefore, the oscillation
plane (the E vector plane) and the polarization plane rotate the same angle in an optically active medium. It is customary to
draw figures with the E vector and always talk of the rotation of the polarization plane, which is inconsequent but not wrong.

Symmetry
Optical activity seems to be coupled to symmetry, or rather asymmetry. Quartz with the mirror configurations is an example
when crystals are involved. In organic chemistry, asymmetric carbon atoms are closely related to optical activity.

Optical activity occurs in many organic compounds. A common feature is that these compounds have an asymmetric carbon
atom, i.e. a C atom with bonds to four different atoms or groups of atoms.
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The four atom groups can be arranged in two ways, which gives two different configurations. They are mirror images of
each other and cause rotation of the polarization plane to the left and right, respectively, independent of the orientation in
space of the molecules in the solution. Molecules of one configuration can never be brought to coincidence with molecules
of the other configuration by translation and/or rotation.

In Nature, both right- and left-hand quartz crystals are found. The SiO2 molecule is not asymmetric. This is the reason why
fused quartz with its disordered molecules is optically inactive. In Nature, both right- and left-hand organic molecules are
present with dominance of the latter.

Applications of Polarized Light

Polarized light has a manifold of applications in many different fields. Some examples will be mentioned here.
Polaroid sunglasses are available for car drivers who want to eliminate or reduce the reflected light from wet roads.

Figure 7.40 shows that the reflected beam is plane polarized in special case 2. The glasses have a ‘crossed’ polarization
direction, which reduces the risk of dazzle and increases safety and may save lives.

The equipment described on page 384 offers an important method for testing the stress distribution in transparent materials.
The specimen is inserted between two crossed Nicols. If the specimen is free from stresses, no light will be transmitted.

Figure 7.53 Interference pattern of light around an adjustable plastic spanner which has been exposed to external stress and is placed
between crossed Nicols. Reproduced by permission. © ulf Ringström.

If the specimen contains stressed regions, the light becomes more or less elliptically polarized and part of the light passes
through the analyser. Regions with a phase difference of 2� will remain dark. A striped pattern such as that in Figure 7.53
gives an idea of the stress distribution in the material.

Optically active organic materials can be studied with the aid of the equipment shown in Figure 7.49. Examples are
qualitative and quantitative measurements of concentrations of optically active compounds, identification of the type of rotation
of the polarization plane (left or right) of compounds and determination of reaction rates.

A classical example (1850) of the last application is the hydrolysis of sugar (saccharose) into glucose and fructose in a
diluted acid solution when each molecule of saccharose splits into one molecule of glucose and one molecule of fructose with
the same chemical formula but different configurations:

C12H22O11 → C6H12O6 + C6H12O6
saccharose glucose + fructose

strong right- weak right- strong left-
hand rotation hand rotation hand rotation

Initially the solution turns the polarization plane to the right as the water solution contains only saccharose (t = 0). During
the reaction, a mixture of glucose and fructose, which rotates the polarization plane to the left as the fructose component
dominates, is formed. Hence the total angle of rotation decreases with time during the reaction.
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The angle of rotation is measured as a function of time. The reaction continues until an equilibrium state has been established.
The reaction rate can be calculated with the aid of the relationship

k = 1
t

ln
(

�0 −�0

�−�0

)
(7.91)

where
k = reaction rate
�0 = angle of rotation at time t = 0
� = angle of rotation at time t
�0 = angle at of rotation at equilibrium (time t = 
).

Summary

� Thermal Conductivity

dq

dt
= −�

dT

dx
� = thermal conductivity

Total thermal conductivity:

� = �e +�lattice

Thermal Conductivity of Nonmetals

Ionic crystals and solids with covalent bonds have no free electrons. The phonon contribution is responsible for the total
thermal conductivity. The total thermal conductivity is small in most cases.

� = �lattice = nca
Vvl

3

Thermal Conductivity of Metals and Alloys

Metals have many free electrons. Metals conduct heat and electricity excellently or very well compared with nonmetallic
solids.

The phonon contribution to the thermal conductivity in a metal can be neglected in comparison with that of the free
electrons. The free electron contribution is responsible for the total thermal conductivity.

Thermal conductivity of pure metals�

�e = ne�
2k2

BT�

3m∗
e

Thermal conductivity of alloys:

�alloy = �lattice +�e = nca
Vvl

3
+ ne�

2k2
BT�

3m∗
e

� Electrical Conductivity

Resistivity:

R = �
l

A

Electrical conductivity:

� = 1
�

� increases with temperature for metals and � decreases with temperature for pure semiconductors.
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Relationship between current density and electric field:

j = �E

Conductors, Insulators and Semiconductors

In a metal, the energy gap between the empty conduction band and the valence band is small or zero. The free electrons can
move easily within the metal.

In a semiconductor, the energy gap is of the magnitude 1 eV. Electrons can be excited fairly easily up to the empty
conduction band and leave holes in the valence band.

In an insulator, there are practically no free electrons. The valence band is filled and the energy gap is large. Few electrons
are excited up to the conduction band.

� Metallic Conductors

The shape and energies of the electron bands determine the conductivities of metals.
The valence and conduction bands may overlap. The valence of a monovalent metal is half-filled.
Monovalent metals are normally better electrical conductors than divalent metals.

Temperature Dependence of Resistivity

The resistivity of metals and alloys varies with temperature. At room temperature and over a wide temperature range, the
resistivity can be described empirically by a linear function:

� = �293 1+��T −293��

Influence of Foreign Atoms and Crystal Defects on Resistivity. Resistivity of Alloys

� varies with temperature and also depends on foreign atoms (alloying elements or impurities in the crystal lattice) and crystal
defects, for example vacancies or interstitials.

Foreign atoms and crystal defects increase the scattering of the electrons and reduces the time � between collisions, which
increases the resistivity. The higher the disorder in the crystal lattice is, the higher will be the resistivity.

Some alloys have very low temperature coefficients and the variation of their resistances with temperature is very small.

Theory of Electrical Conductivity in Metals

The charge carriers are electrons. Drift velocity ve is the systematic average velocity of the free electrons in a metal exposed to
an electric field.

Current density:

j = neeve

Mobility:

�e = ve

E

Conductivity:

� = nee�e

Classical expression:

� = ne2�

m
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Band theory:

� = ne2�

m∗

Wiedemann–Franz law:

The ratio of the thermal and electrical conductivity of a pure metal is proportional to the absolute temperature.
This law strongly supports the idea that heat and charge both are transported through a pure metal by the same mechanism,

i.e. by valence electrons.

� Pure Insulators

Insulators are characterized by filled valence bands, empty conduction bands and large energy gaps.
Density of available electron energy states per energy unit:

N�E� = �2m∗�3/2

4�2�3
E1/2

Density of occupied electron energy states (number of states per energy unit and volume unit:

N�E�fFD = �2m∗�3/2

4�2�3
E1/2fFD

Fermi factor:

fFD = 1

e
E−EF
kBT +1

� Simple Model of Electrical Conduction in Pure Insulators

The widths of the valence and conduction bands are much less than the forbidden gap. Ev and Ec are constant.
Electron concentration:

n =
∫

2N �E�fFDdE =
∫

2N �E�
1

e
E−EF
kBT +1

dE

Electron concentration in the valence band:

nv = 2N

e− Ec−Ev
2kBT +1

= 2N

e− Eg
2kBT +1

Electron concentration in the conduction band:

nc = 2N

e
Ec−Ev
2kBT +1

= 2N

e
Eg

2kBT +1

Relationship between the hole and electron concentrations per unit volume and the number of atoms per unit volume:

nv +nc = 2N

Fermi level:

EF = Ev +Ec

2
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� More Accurate Theory of Electrical Conduction in Pure Insulators and Pure Semiconductors

In the case of semiconductors, the valence and conduction bands are not narrow compared with the forbidden gap. It is not
possible to make similar simplifications of the calculations as in the case of insulators.
Electron concentration in the conduction band:

ne = �2�m∗
ekBT�3/2

4�3�3
e− Ec−EF

kBT

Hole concentration in the valence band:

nh = �2�m∗
hkBT�3/2

4�3�3
e− EF−Ev

kBT

Fermi level of an intrinsic semiconductor:

EF = Ec +Ev

2
+ 3

4
kBT ln

m∗
h

m∗
e

� Conductivity of Pure Insulators and Pure Semiconductors

The following relationships have to be used when the widths of the bands cannot be neglected in comparison with the
forbidden gap.

Concentrations of Electrons in the Conduction Band and Holes in the Valence Band

ne = nh = ni = √
nenh

ne = nh = ni =
�2�mkBT�3/2

4�3�3

(
m∗

e

m

m∗
h

m

)3/4

e
− Eg

2kBT

General relationship:

� = nee�e +nhe�h

For intrinsic semiconductors and insulators:

� = nie ��e +�h�

Determination of the Energy Gap of an Insulator

ln � is plotted as a function of 1/T , giving a straight line. The slope of this line is – Eg/2kB.

� Conductivity of Doped Semiconductors

nenh = n2
i

General relationship:

� = nee�e +nhe�h

n-Doped semiconductor when ne >> nh:

� = nee�e

p-Doped semiconductor when nh >> ne:

� = nhe�h
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� Doped Semiconductors

Semiconductors are a very special and important group of solids	 Due to a rather small forbidden gap between the valence and
conduction bands (magnitude 1 eV), their electrical conductivity is higher than that of the insulators but lower than that of the
metals. Semiconducting solids acquired enormous technical and industrial importance during the last part of the 20th century.

Two technical processes that have made this development possible are the production of extremely pure semiconducting
materials and doping of extremely pure semiconducting materials.

The dominant semiconductors are Si and Ge. They are characterized by small energy gaps, nearly filled valence bands and
nearly empty conduction bands.

n-Doped Semiconductors

If the semiconductor is doped with elements in group 5 in the periodic table, there will be an excess of valence electrons it is
said to be n-doped (n = negative). In an n-doped semiconductor, there are many more mobile electrons than holes. The extra
electrons obviously stays in a special energy level close to the lower part of the conduction band. This energy level is called
the donor level.

p-Doped Semiconductors

If the dopant comes from group 3 in the periodic table, the semiconductor is said to be p-doped. In this case there will be a lack
of valence electrons, which we call holes. The holes behave like positive charges (p = positive). In a p-doped semiconductor,
there are many more mobile holes than electrons. The excess holes stay in a special energy level close to the valence band.
This energy level is called the acceptor level.

Compound Semiconductors

Some semiconductors are chemical compounds, usually of one component from group 3 and one element from group 5.
Common examples are InSb and GaAs. Such semiconductors are ionized.

Compound semiconductors have both donor levels and acceptor levels. If GaAs is doped with Si, an Si atom can occupy a
Ga site and act as an n-dopant. On the other hand, if an Si atom ocupies an As site, it is a p-dopant.

Donor and Acceptor Energy Levels in Doped Semiconductors

The bound system of a positive group 5 ion and an excess electron is roughly analogous with the hydrogen atom. The simple
Bohr model is used as an approximation for calculation of its energy levels. The only difference is that the space within the
bound system is filled with a dielectric medium with the relative dielectric capacity �r .
Donor energy level in doped semiconductors:

E∗
n = − m∗

ee
4

8 h2�2
r �

2
o

1
n2

= −En

m∗
e/m

�2
r

Radius of excess electron orbit:

r∗
n = 4��r�0

m∗
ee

2

(
h

2�

)2

n2 = rn

�r

m∗
e/m

Analogous calculations can be performed for acceptor levels. In this case the H-like bound system consists of a negative
nucleus and a hole. The binding energies correspond to the energies of the acceptor levels close to the top of the valence band
in the semiconductor.

The binding energies of the bound systems are very small and hence the donor and acceptor levels are very close to the
allowed conduction and valence bands.
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� Optical Properties of Solids

Optical Properties of Metals

Metals are opaque owing to absorption of valence electrons up to the empty conduction band. The absorption covers the
visible part of the electromagnetic spectrum.

Metals reflect light. The intensity of the reflected light depends on the shapes and positions of the energy bands and on the
dielectric constant, which varies with the wavelength of the light. The light is in most cases greyish. Exceptions are copper
and gold.

Optical Properties of Semiconductors

Many semiconductors are transparent to visible light but show absorption in the infrared region.
The energy gap is of the magnitude 1 eV. It can be calculated from absorption measurements:

I = I0e−�x

Semiconductors have a direct or indirect energy gap. In the latter case, a phonon is involved in the absorption process. In
some cases an exciton may absorb energy.

Optical Properties of Insulators

Ionic crystals have hardly any free electrons and high energy gaps. They are transparent and do not absorb visible and infrared
electromagnetic radiation.

Pure ionic crystals are normally uncoloured. The intense colour of some types of crystals is caused by lattice defects,
so-called colour centres.

� Polarized Light and Insulators

Reflection

Fresnel’s equations for reflected light:

Ir⊥ = I0

2
sin2�i−b�

sin2�i+b�

Ir ll = I0

2
tan2�i−b�

tan2�i+b�

Special case 1: i = b = 0
Fraction of reflected light:

R = Ir⊥ + Ir ll

I0

=
(

i−b

i+b

)2

=
(

n−1
n+1

)2

Special case 2: if i+b = �/2 the reflected beam is plane polarized perpendicularly to the plane of incidence.
Relationship between the angle of incidence i (polarizing angle) and the refractive index:

n = tan i

Double Refraction

Double refraction means that an incident beam of light is separated into two beams, one ordinary and one extraordinary, in
all crystalline media except those with a cubic structure. The two beams are plane polarized and their E vectors oscillate in
perpendicular planes.

Optical axis: direction in a crystal where the ordinary and extraordinary beams move with the same velocities.
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The wave front of the ordinary beam is a sphere. The law of refraction is valid for the ordinary beam. The wave front of
the extraordinary beam is a rotation ellipsoid. The law of refraction is not valid.

The directions of the refracted ordinary and extraordinary beams are constructed with the aid of the wave fronts in the
crystal.

If neo < no, the sphere is included in the ellipsoid and the crystal is said to be negative. If neo > no, the ellipsoid is included
in the sphere and the crystal is said to be positive.

Methods to Produce Plane-polarized Light

Double Refraction
A Nicol consists of two Iceland spars glued together with Canada balsam.

Dichroism
The ordinary or extraordinary beam is strongly absorbed in the material and the other is transmitted.

Alignment of Crystals
Use of polaroid film, i.e. parallel needle crystals. Only light parallel with the needle crystals can pass the polaroid.

Analysis of Polarized Light

If the optical axis lies in the plane of the crystal surface, the ordinary and extraordinary beams propagate with different
velocities perpendicular to the surface. A phase difference arises successively in the plate and remains after the exit of the plate.

Stress distribution in transparent materials can be examined with a plate with the material in the shape of a plate located
between two crossed Nicols used as polarizer and analyser.

Optical Activity

Optical activity is the property of a material to rotate the plane of polarization when it is passed by plane-polarized light.
Optical activity occurs in crystals with mirror configuration and in organic compounds with asymmetric carbon atoms, i.e.

C atoms bound to four different atoms or groups of atoms. Optical activity is independent of the orientation in space of the
crystals or molecules.

Optical activity can be examined with the specimen located between two crossed Nicols used as polarizer and analyser.

Exercises

7.1 Solids are divided into two main groups with respect to their thermal and electrical conductivity properties – insulators
and conductors.

(a) What is the main difference in structure between insulators and conductors?
(b) Discuss the theory of thermal conductivity in insulators.
(c) Discuss the theory of thermal conductivity in pure metals and alloys.

7.2 In order to determine the thermal conductivity of glass, a thick spherical shell with an inner radius of 90 mm and a
thickness of 12 mm was made of the material. A small electric heater with a power of 150 W was placed in the centre of
the sphere. The heater was switched on and the temperatures at the inner and outer surface of the sphere were measured
with the aid of thermo-elements at regular time intervals. When a steady state had been established, the temperature
difference between the inner and outer glass surfaces was measured to 17 �C.
Calculate the thermal conductivity of the glass material.

7.3 Electrical conductivity has the widest variation in magnitude of all material properties. The ratio of the resistivities of the
best insulators to the best conductors is more than 1040.

(a) Solids are divided into three groups – conductors, semiconductors and insulators. Characterize them by means of
their valence and conduction bands and the magnitude of the energy gap between them.

(b) Relate the valence and the conduction band of a pure metal or an alloy to the theory of solids in Chapter 3.
(c) The resistivities of solids vary with temperature. Describe in what way for the three groups of solids.
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7.4 (a) Discuss the theory of electrical conductivity in metals. Define the concepts drift velocity, relaxation time and mobility
and give the relationships between them.

(b) Explain the significance of the Wiedemann–Franz law.

7.5 (a) Calculate of the thermal conductivity of Al at 150 �C. Required material constants can be found in a standard table.
(b) How does the thermal conductivity change if Al is alloyed with Si?

Hint: Compare the thermal conductivities of Al and silumin listed in a standard table.

7.6 (a) The Fermi energy of copper is 7.04 eV. Calculate the maximum velocity of the conduction electrons in Cu.
(b) A current of 10 A is sent through a copper wire of cross-sectional area 1.0 mm2. Calculate the drift velocity of the

free electrons in the wire.
(c) The electrical conductivity of Cu is 5	8×107 �� m�−1. Calculate the mobility of the electrons in the metal.

7.7 The resistivity of silver is 0	016 � mm2/m. The Fermi energy of Ag is 5.51 eV. Assume that m∗ = m.

(a) Calculate the relaxation time of the free electrons.
(b) Calculate the free mean path of the conduction electrons in the metal.

7.8 Discuss the simple theory of electrical conductivity in insulators and calculate the approximate position of the Fermi level.
Give also the expressions for ne, nh and � resulting from a more accurate theory.

7.9 The experimental value of the conductivity � of diamond at room temperature (T = 300 K) is 1×10−12 �� m�−1.

(a) Calculate a theoretical value of � for pure diamond by use of the following data: Eg = 5	3 eV, �e = 0	18 m2/V s
and �h = 0	12 m2/V s. Assume that m∗

e = m∗
h = m.

(b) Does this value agree with the experimental value for intrinsic diamond? If not, what concentration of an impurity
with the valence 5, which is completely ionized, is required to give the experimental value. Is the calculated impurity
concentration reasonable?

7.10 (a) Compare the properties of an intrinsic semiconductor and a doped semiconductor.
(b) Prove the relationship between the effective mass of the valence electrons in a metal and their kinetic energy Ekin

[Equation (3.108) on page 145].

m∗ = �
2

d2Ekin

dk2

where k is the wavevector of a valence electron.
Hint: Look for a relationship between k and Ekin in Chapter 3.

(c) Sketch the energy levels of an n-doped and a p-doped semiconductor.

E 0

Specimen          R
V

A

7.11 The energy gap of a pure semiconductor can be determined by measurement of the voltage U over a specimen at constant
current as a function of the temperature. At such an experiment the following values were obtained:

T (K) 237.0 250.0 263.0 275.0 287.0 300.0
U (mV) 14.30 10.28 7.77 6.30 5.00 4.10

Calculate the energy gap of the semiconductor in eV.
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7.12 (a) Calculate the concentration of holes and electrons in intrinsic silicon at 20 �C by use of the following data: Eg = 1	1 eV,
m∗

e = 0	70 m and m∗
h = m.

(b) Calculate the fraction of occupied energy levels in the conduction band. The density of crystalline silicon at 20 �C
is 2	42×103kg/m3.

7.13 The electrical resistivity of an intrinsic semiconductor is 0	5 �m at 300 K. Determine the band gap by use of the following
data: �e = 0	40 m2/Vs, �h = 0	20 m2/Vs, m∗

e = 0	10 m and m∗
h = 0	50 m.

7.14 Consider an intrinsic semiconductor with the following properties: Eg = 1	30 eV, m∗
e = 0	070 m and m∗

h = 0	69 m. Calculate

(a) the position of the Fermi level at T = 0 and 300 K
(b) the electron concentration in the conduction band and the hole concentration in the valence band at T = 0 and 300 K.

7.15 A single crystal of germanium, with a mass of 0.100 kg, has been doped with 2	0 �g of Sb. All impurity atoms are ionized
and the mobility of the electrons is 0	36 m2/V s. A bar has been cut out of the single crystal with a length of 20 mm and
a cross-sectional area of 4	0 mm2. Calculate the resistance of the bar. The density of Ge is 5	35×103 kg/m3.

7.16 Germanium of n-type contains 1	0 × 1023 ionized donors per m3. Calculate the ratio of the conductivity of this doped
crystal and the conductivity of extremely pure Ge at 300 K based on the following data for Ge: Eg = 0	67 eV, m∗

e = 0	60 m,
m∗

h = 0	30 m, �e = 0	39 m2/Vs and �h = 0	19 m2/Vs.

7.17 Germanium is doped with 0.01 at-% aluminium. Calculate the resistivity at 300 K of the doped crystal by use of the following
data for Ge: the lattice constant a = 0	5658 nm, Eg = 0	67 eV, the mobilities �e = 0	39 m2/Vs and �h = 0	19 m2/Vs and the
intrinsic carrier concentration ni = 1	0×1019 m−3. The impurity atoms are completely ionized at 300 K.

7.18 Calculate the concentrations of electrons and holes in a p-doped semiconductor if its conductivity � is 10 �� m�−1, the
intrinsic charge carrier concentration ni is 2	2×1019 m−3 and the mobilities are �e = 0	40 m2/Vs and �h = 0	20 m2/Vs.

7.19 In order to give an idea of how weakly bound the ‘fifth’ valence electron is in a phosphorus atom, which is included in a
silicon crystal, you can perform the following calculations. Calculate

(a) the binding energy E∗
B of the orbit of the fifth electron in a P atom and compare it with the energy gap 1.1 eV of Si

(b) the radius r∗
0 of the orbit of the fifth electron in a P atom and compare it with the lattice constant 0.54 nm of Si.

Use the following data: the dielectric constant of Si is 11.8 and the effective mass m∗ of the free electrons in the Si lattice
is 0.19 m. The binding energy and radius of the ground-state orbit in the hydrogen atom are 13.6 eV and 5	29×10−11 m,
respectively.

7.20 Figure 7.35b on page 377 shows the absorption curve of pure InSb as a function of the photon energy at 5 K.

(a) Calculate the energy gap expressed in eV and the corresponding value of the wavelength of the photon.
(b) What happens if the photon energy is lower than 0.2 eV?
(c) Figure 7.37 on page 378 shows the absorption curve of pure GaAs as a function of the photon energy at 21 K.

Calculate an approximate value of the exciton energy.

7.21 The transmission curve of a silicon specimen, doped with boron, has a wavelength minimum at 31.2 �m.

(a) Calculate and sketch the position of the corresponding special energy level in relation to the nearest band edge.
(b) A necessary condition for observation of the absorption maximum is that the specimen must be cooled to an extremely

low temperature (liquid helium temperature) when the transmission is measured. Explain why.

7.22 Incident nonpolarized light with intensity I0 passes two crossed Nicols. What will the intensity of the light be

(a) after the passage of the first Nicol?
(b) after passage of both Nicols?
(c) Another Nicol is placed between the two crossed Nicols. What will the intensity of the exit light be after passage of

all the three Nicols if the oscillation plane of the middle Nicol forms an angle of 45� with the other two? Figures
and motivated equations are required.

Assume that the reflection losses can be neglected.
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7.23 Calculate the thickness of a so-called �/2 plate made of Iceland spar and made for monochromatic Na light of wavelength
589.3 nm. Iceland spar has the following material constants: neo = 1	4864 and no = 1	6584. The oscillation plane of the
incident plane-polarized light forms an angle of 45� with the vertical plane (see Figure 7.48 on page 384). Motivate your
equation.
Draw a figure that shows the ordinary and extraordinary wave fronts and the orientation of the optical axis.

7.24 Quartz shows optical activity and rotates the polarization plane of plane-polarized Na light when it passes a quartz plate.

(a) Draw a figure, that shows the equipment used for analysis of optical activity. What is the initial relative position of
the polarizer and the analyser before the quartz plate has been introduced?

What is the criterion for the final position of the analyser, i.e. how do you adjust it?
(b) Calculate the specific angle of rotation, i.e. the angle of rotation per mm, for quartz when you know that the angle

of rotation is 53� when the thickness of the plate is 2.4 mm.
(c) A quartz plate rotates the plane of plane-polarized light through 72�. What is the thickness of the plate?
(d) What difference does it make if the quartz plate is made of either of the two mirror types of quartz crystals?
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8.1 Introduction

The properties and structures of all substances are functions of the forces between their atoms. In a gas, the forces between
the atoms are very weak (Chapter 4), whereas they normally are very strong in solids (Chapter 5). In a melt, the average
forces between the atoms are strong but weaker than those in a solid.

The atoms or molecules in a gas move freely and have long mean free paths and low collision frequencies. A gas has no
given volume but fills the whole available space, independent of its shape.

In a solid, the atoms are located to permanent sites in a crystal lattice and are only able to vibrate around their equilibrium
positions with small amplitudes. A solid has a rigid shape.

The interatomic forces in liquids are more similar to the forces in a solid than in a gas, where they often can be totally
neglected. Unlike a gas, it does not fill the whole available space. Like a solid, a liquid or melt has a given volume but adapts
its shape to the shape of the container in which it is kept.

The properties of liquids are functions of the interatomic forces. It is extremely difficult to derive reliable expressions for
the dynamic properties of liquids as the atomic motion in a liquid cannot be accurately described as a function of time. This
makes it very hard to find satisfactory theories of transport phenomena in liquids. Viscosity implies transport of momentum.
Thermal conduction is accompanied by energy transport, electrical conduction transports electrical charge. Diffusion involves
mass transport. These phenomena will be discussed in this chapter.

Below we will discuss some models of melts which may help in understanding the properties of melts in comparison with
those of gases and solids. The boundary between a liquid and a gas of high density is uncertain. At the critical point (Chapter 4,
page 185) there is no difference between the gas and the corresponding liquid.

8.2 X-ray Spectra of Liquids and Melts

The fundamental experimental basis for knowledge of the structure of liquids and melts is their X-ray spectra. This topic has
been discussed in Section 1.2.2 on pages 4–9. Figures 1.8–1.12 indicate a short-range order of the atoms in pure metal melts.
This is also true for other liquids.

8.2.1 X-ray Analysis of Pure Liquids and Melts

As was described in Chapter 1, the interpretation of the X-ray spectra of pure metal melts permits the derivation the average
distances between the atoms and the coordination numbers, which are specific to the metal atoms in the melt. The short-range
order means that each atom is surrounded by a number of nearest neighbour atoms. These numbers have been derived from the
X-ray spectra for many metals. In Table 8.1, the coordination numbers for some common metal melts are given and compared
with the distances between the atoms in the solid metal.

The table shows that metals with close-packed structures (BCC, FCC and HCP) in the solid state change their nearest
neighbour distances only slightly on melting. Other metals with more complicated structures and several nearest neighbour
distances do not show the same behaviour.
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Table 8.1 Nearest neighbour distances for some pure solid and liquid metals at their melting points.

Metal Position in the
periodic table

Melting
point (�C)

Crystal
structure

Nearest neighbour
distance for the
solid metal (nm)

Nearest neighbour
distance for the
liquid metal (nm)

Na 1a 98 BCC 0�372 0�370
K 1a 64 BCC 0�452 0�470
Cu 1b 1083 FCC 0�256 0�257
Ag 1b 961 FCC 0�289 0�286
Au 1b 1063 FCC 0�288 0�285
Mg 2a 651 HCP 0�320 0�335
Hg 2b −39 Rhombohedral 0�301 or 0�347a 0�307
Al 3a 660 FCC 0�286 0�296
Ge 4a 959 Diamond (two FCC) 0�245 0�270
Sn 4a 232 Tetrahedral 0�302 or 0�318a 0�327
Pb 4a 327 FCC 0�350 0�340
Sb 5a 631 Rhombohedral 0�291 or 0�335a 0�312
Bi 5a 272 Rhombohedral 0�309 or 0�353a 0�332

a Different directions. The unit cell is asymmetric.

8.2.2 Temperature Dependence of the Atomic Distribution in Pure Metal Melts

The shapes of the atomic distribution diagrams of metal melt change with temperature. This is shown in Figures 8.1 and 8.2,
which show the diagrams for potassium and tin, respectively.

The temperature figures close to the curves in both diagrams represent the temperatures above the melting point. In both
cases the peaks become wider and lower when the temperature is increased. The area under the first peak also changes with
temperature. For potassium, the number of nearest neighbours decreases from approximately 9.5 to 9.0 when the temperature
increases from 70 to 395 �C above the melting point.
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Figure 8.1 Atomic distribution diagram for liquid
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Figure 8.2 shows the same effect for tin as for potassium in Figure 8.1: the number of nearest neighbours decreases with
increasing temperature. Solid tin has two different structures. Grey tin has a lattice of diamond type and the structure of white
tin is tetragonal. Figure 8.2 shows that the structure of liquid tin is more reminiscent of white than grey tin.

8.2.3 X-ray Spectra of Binary Alloys

X-ray spectra of binary liquid alloys have been discussed on pages 31–32 in Chapter 1. Normally the first peaks of both
components are seen. In some cases the X-ray spectrum reveals the existence of an intermediate chemical compound.

8.3 Models of Pure Liquids and Melts

As is evident from Chapters 4–7, there are good and generally accepted models for gases and solids. This is not the case for
melts and liquids. Attempts have been made, but unfortunately the search for a general model that can be successfully used
in practice has been unfruitful so far.

8.3.1 Early Models

In the 1930s, Eyring proposed the vacancy model of liquids and melts which could explain some of the properties of liquids
in a semiquantitatively way. Eyring and co-workers assumed that a liquid has the same structure as the corresponding solid
with the important distinction that the vacancy concentration in the liquid is much larger than that in the solid. This difference
in vacancy concentration between melts and solids was assumed to be responsible for the great differences in the properties
of the melt compared with the corresponding solid.

If Eyring’s model were true, the X-ray plots of melts should show the presence of long-range order structures in the liquid
states like those found in solids. A serious objection to the model is that no such effects have been found.

In the early 1960s, Bernal suggested a hard sphere model of liquids. He interpreted the structure of liquids as a random
distribution of close-packed spheres (atoms). The atoms were situated at the corners of five different types of rigid polyhedra.
The model is described in Section 1.3.2 on pages 11–12. This model involves the fact that there exists a short-range order in
liquids but it is static. The model with its fixed proportions of crystalline bodies describes a structure that does not vary with
temperature, in contradiction to the experimental results from X-ray diffractions of metal melts discussed in Section 8.2.1.

The theory of liquid structure, which is described below, is based on and closely related to the fundamental experimental
evidence described in Chapter 1 on the X-ray examination of liquids and melts. The theory was developed successively during
the last half of the 20th century and will be considered more closely below.

8.3.2 Theory of Liquid Structure. Pair Distribution Function. Pair Potential Models

Pair Distribution Function

The lack of a consistent and useful model of liquid structure and the need for a mathematical description of the structure led
to the introduction of the concept of the pair distribution function, which is of great importance for the description of the
structures and properties of liquids and melts.

The pair distribution function is closely related to the discussion on page 6 in Chapter 1, where we discussed X-ray plots of
metal melts and the interpretation of the experimental information in terms of an atomic distribution diagram and the radial
distribution function. The pair distribution function deals with the relationship between a pair of atoms, an arbitrary reference
atom and another atom.

In Chapter 1, we defined the following quantities:

wr = average probability of finding another atom in a unit volume at a distance r from the reference atom
w0 = probability of finding another atom in any randomly selected unit volume.

The pair distribution function g�r� is defined as the relative probability of finding another atom in a unit volume at a distance
r from the reference atom:

g�r� = wr

w0

(8.1)
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The probability of finding the second atom within the volume element dV equals wr times dV . If we choose the volume
element to be a spherical shell with radius r and thickness dr, we obtain the probability of finding the second atom at a
distance r from the reference atom (origin), independent of direction:

dW = wrdV = wr ×4�r2dr (8.2)

or

dW = g�r�dV = g�r�w0 ×4�r2dr (8.3)

where g�r�w0 ×4�r2 is the radial distribution function.
Each element has its own characteristic pair distribution and radial distribution functions. An example of a typical pair

distribution curve is given in Figure 8.3.
The shape of the g�r� value reveals interaction between the atoms. If there were no interaction at all, the probability would

be the same everywhere and g�r� would be equal to 1. This corresponds to the dotted line in Figure 8.4.
The deviations of the g�r� value from the average value indicate interaction between the atoms. The figure shows that this

interaction corresponds to a short-range order in the liquid as the curve approaches the value 1 after a few deviation cycles.
The g�r� curve intersects the r axis at a given r value and is zero for smaller r values. The intersection point corresponds

to the diameter of the atoms. The second atom cannot come closer to the reference atom than the double radius of the atoms.

Pair distribution function  g (r)

2.0

1.0

r
0

Figure 8.3 A typical pair distribution function curve for
a simple melt. Reproduced with permission from T. Iida
and R. I. L. Guthrie, The Physical Properties of Liquid
Metals. © 1988 (Clarendon Press/Oxford University Press,
NY-academic.permissions@oup.com)
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Figure 8.4 Radial distribution function g�r�w0 ×4�r2

as a function of r. Reproduced with permission from
T. Iida and R. I. L. Guthrie, The Physical Properties of
Liquid Metals. © 1988 (Clarendon Press/Oxford Univer-
sity Press, NY-academic.permissions@oup.com)

In principle it is possible to calculate the pair distribution function g�r� with the aid of statistical mechanics. In practice, it is
impossible in most cases as the calculations require knowledge of the total potential energy � of the system. This is a function
of all the pair potential functions �ij (pages 404–405). Approximate equations have been suggested, such as the Born–Green
equation and others, which connect the pair distribution function g�r� and the pair potential function ��r� (pages 404–405),
but mathematical complexity and poor information on the pair potential functions �ij have given unsatisfactory results so far.

In Chapter 1, we found that the g�r� curve could be determined experimentally. A considerable amount of experimental
structural information was obtained during the 1970s and 1980s.

Figure 8.4 shows a typical radial distribution function curve of a metal. It represents the product of the g�r� curve times
4�r2w0. The latter represents the dotted curve in Figure 8.4.

The area under the first peak of the curve represents the coordination number Zcoord:

Zcoord ≈ 2

rmax∫
r0

4�r2g�r�dr (8.4)
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Table 8.2 Coordination numbers for some pure solid and liquid metals at their melting points. Reproduced with permission from
F. D. Richardson, Physical Chemistry of Melts in Metallurgy, Vol. 1. © 1974 Academic Press Inc. (London), now Elsevier.

Metal Position in the
periodic table

Melting
point (�C)

Crystal
structure

Coordination
number for the
solid metal

Coordination
number for the
liquid metal

Na 1a 98 BCC 8 9�5
K 1a 64 BCC 8 9�5
Cu 1b 1083 FCC 12 11�5
Ag 1b 961 FCC 12 10�0
Au 1b 1063 FCC 12 8�5
Mg 2a 651 HCP 12 10�0
Hg 2b −39 Rhombohedral 6 or 6a 10�0
Al 3a 660 FCC 12 10�6
Ge 4a 959 Diamond (two

FCC)
4 8�0

Sn 4a 232 Tetrahedral 4 or2a 8�5
Pb 4a 327 FCC 12 8�0
Sb 5a 631 Rhombohedral 3 or 3a 6�1
Bi 5a 272 Rhombohedral 3 or 3a 7–8

a Different directions. The unit cell is asymmetric.

Table 8.2 shows that metals with close-packed structures and high coordination numbers in the solid state do not change
the coordination numbers very much. Metals with complicated crystal structures and low coordination numbers in the solid
state increase their coordination numbers considerably on melting.

Pair Potential Models

The pair potential �ij is defined as the potential energy between an atom and its surrounding neighbours. If we choose the
atom as the reference atom the pair potential is denoted ��r�.

The pair distribution function and the pair potential are very important quantities as all the properties of pure liquids
and melts are functions of g�r� and ��r�. Pair potentials can, in principle, be derived from quantum mechanics, but this is
practically impossible for all atoms except H and He so far. Instead various models of ��r� are used. The most frequent ones
are listed below and are shown in Figure 8.5.
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Figure 8.5 (a) Hard sphere potential; (b) Inverse power potential; (c) Lennard-Jones potential; (d) Ion–ion potential. Reproduced with
permission from T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals. © 1988 (Clarendon Press/Oxford University Press,
NY-academic.permissions@oup.com)
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Hard Sphere Potential

��r� = +� for r < r0 (radius of the hard spheres)
��r� = 0 for r ≥ r0

The hard sphere model of liquids has been briefly described in Chapter 1.

Inverse Power Potential

��r� = E
( r0

r

)n

(8.5)

where E, r0 and n are parameters. This model of ��r� is identical with the hard sphere model if n = �.

Lennard-Jones Potential
This model has been used to describe real gases in Chapter 4 (page 182):

��r� = 4Ee

[( r0

r

)n −
( r0

r

)m]
(8.6)

where Ee is the depth of the potential well. This model is used for insulating liquids

Ion–Ion Potential
This potential can be used for metals only.

� = A

r3
cos �2kFr� (8.7)

where
A = a parameter
r = distance between the atoms
kF = ‘radius’ of the Fermi sphere (Chapter 3, page 124).

Quasi-empirical Model
Alternatively, ��r� can be calculated from the approximate equations (page 403) which connect the pair distribution function
g�r� and the pair potential function ��r�. In this case an experimental g�r� curve is used for the numerical calculations.

Properties such as the total internal energy and the heat capacity of liquids depend on the functions g�r� and ��r�. Such
relationships will be treated in connection with the property in question.

The pair potential model discussed above has the disadvantage that it is practically impossible to calculate the function ��r�
and it is necessary to use experimental values instead of a mathematical function, which makes the model semiempirical and
limits its use considerably.

In addition, the model shows poor agreement between theory and experiments concerning the heat capacity for liquids. The
pair potential model is hardly the desired generally accepted model of liquids and melts. It is urgent to find another and better
model.

Need for a New Model for Liquids and Melts
The new model must be able to explain the known properties of liquids and melts, especially the short-range order observed
in the X-ray spectra, which implies stable nearest neighbours of the liquid atoms and their ability to move practically freely
relative to each other. This contradiction disappears if the liquid or melt is assumed to consist of a great number of molten
grains or droplets, which we will call clusters.

A cluster in a pure metal melt may be assumed to be a stable unit consisting of a central atom surrounded by the number of
atoms, which corresponds to the coordination number Zcoord, characteristic of the type of atoms in question. The interatomic
forces between the atoms inside a cluster may be strong but weaker than the forces between the atoms in the corresponding
solid metal. If the forces between the clusters are assumed to be weak, the ability of the melt to adapt its shape to the shape
of the container can easily be explained.
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However, no theory which discusses the properties of liquids and melts in terms of clusters has been developed yet and
there is no experimental evidence which proves the existence of clusters so far, other then the short-range order observed by
the X-ray analysis, especially in binary alloys.

The fundamental problem with the theory of liquids and melts is the difficulty of expressing the positions of the atoms as
a function of time. This topic is briefly discussed in connection with the theory of heat capacity of liquids on page 412.

8.4 Melting Points of Solid Metals

At a given pressure, the melting point of an element is the only temperature at which the element can exist in stable form
both as a solid and a liquid. Table 8.3 shows that the melting points of metals vary widely, and change slightly with pressure.
They depend on the structure of the crystal lattice of the metal and the strength of the interatomic forces.

All matter is in constant motion. In the solid state, the atoms are not fixed to their exact sites in the crystal lattice. The sites
are the centre of the atomic vibrations. At the melting point the vibration energy is larger than the binding energy and the
crystal structure splits up.

Table 8.3 Melting points of some metals.

Metal Melting point (�C) Metal Melting point (�C)

Ag 961 Mo 2607
Al 660 Na 98
Au 1063 Ni 1453
Be 1278 Pb 328
Co 1495 Pt 1769
Cr 1887 Si 1407
Cu 1083 Sn 232
Fe 1535 Ta 2996
Ga 30 Ti 1675
Ge 938 U 1132
Hg −39 V 1887
In 157 W 3380
Li 179 Zn 420
Mg 651 Zr 1852

In the melt there is still a short-range order but no long-range order. As was verified in Chapter 1, there remains a certain
short-range order in the melt between an atom and its nearest neighbours up to a distance of 3–4 interatomic distances.

8.4.1 Lindemann’s Melting Rule

In 1910, Lindemann suggested that crystals melt when the thermal vibrational amplitude of the atoms exceeds a certain fraction
of the average interatomic distance. When this fraction was chosen as 10% he obtained the relationship

	 = C

(
TM

MV
2/3
m

)1/2

(8.8)

where
C = constant, roughly 9×108 s−1kq1/2mk−1/2

TM = melting point of the solid
	 = average vibrational frequency of the atoms
M = molar weight
Vm = molar volume of the solid.
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The constant is approximately the same for all elements. Theoretical treatments of the equation in the 1970s indicated that
the constant depends on the crystal structure of the solid.

8.5 Density and Volume

Density is a very important parameter in the theory of liquids. It is easy to understand that the packing of atoms and the
interatomic distances influence the properties of liquids strongly.

The volume of a given amount of a solid is closely related to density. A change in volume implies a change in density.
Because mass is independent of temperature, there is a direct coupling between the relative density and volume changes of a
homogeneous melt via the relationship 
 = m/V :

d




= −dV

V
(8.9)

The hard sphere model has proved to be a useful tool to explain properties of liquids such as viscosity and diffusion. Model
experiments with computer simulations have been performed. Alder and Wainwright studied the motions of a great number
of particles as a function of the packing fraction p. The packing fraction is defined as the ratio of the total particle volume to
the total volume of the crystal. If we apply this definition to 1 kmol of atoms with equal radii r we obtain

p =
∑

i
Vi

Vtotal

=
NA × 4

3
�r3

Vm

(8.10)

where
p = packing fraction
Vi = volume of atom i
r = radius of atom
Vtotal = total volume of the crystal
Vm = volume of 1 kmol of the crystal.

As a result of their studies, Alder and Wainwright could predict accurate transport coefficients (page 415) of the ‘hard
sphere liquid’ as a function of packing fraction.

8.5.1 Volume Change on Fusion in Metals and Semiconductors

Wittenberg and DeWitt studied the melting points of metals and semiconductors in 1972 and identified some empirical rules,
which are roughly valid for metals and semiconductors:

• The volume changes of metals and semiconductors on fusion can be divided into two classes: class 1 elements increase and
classs 2 elements decrease their volume on melting.

• Close-packed class 1 metals with FCC and HCP structures increase their average volume by roughly 4.6%. Close-packed
metals with BCC structure show a lower relative volume increase, approximately 2.7%.
The rare earth metals with their configurations of nonfilled inner shells are not included in these observations.

• The semiconductors Ga, Si, Ge and Bi belong to class 2.

Some examples of metals in these classes are given in Table 8.4.
Wittenberg and DeWitt explained the anomalous contraction of the semiconductors on fusion in the following way. In

the solid state, these elements have strong tetrahedral space symmetrical covalent bonds (Chapter 3, page 109) owing to sp3

hybridization. On fusion, these bonds break and the orbitals become more spherical shaped and the structures become more
close-packed. This process results in a volume reduction.

Elements with more complex structures are not included in the simple rules given above.
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Table 8.4 Relative volume change of some pure metals
at their melting points and 1 atm.

Metal �V/V�%�

FCC or HCP structures:
Cu 4�0
Ag 3�5
Au 5�5
Al 6�9
Pb 3�8
Ni 6�3
Mg 3�0
Zn 4�1

BCC structures:
Na 2�6
K 2�5
Fe 3�6

Complex structures:
Sn 2�4
Ga −2�9
Si −9�5
Ge −5�1
Bi −3�9

8.5.2 Volume Change and Heat of Mixing on Mixing Metal Melts

The molar volume Vm is defined as the volume of 1 kmol of a substance. For a pure metal it equals the ratio of the molar
weight and the density:

Vm = M



(8.11)

Figure 8.6 shows the molar volumes for some metals at their melting points. The figure shows a striking periodicity and
relationship to the periodic table of the elements.
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Li

Be Cr Cu U

30
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0

As Cd Hg

0 10 20 30 40 50 60 70 80 90

Atomic number

Figure 8.6 Molar volumes of some liquid metals. �, experimental values; �, estimated values. Reproduced with permission from
T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals. © 1988 (Clarendon Press/Oxford University Press, NY-
academic.permissions@oup.com)
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The densities of pure ideal metal melts can be derived if the molar volumes (Figure 8.6) are known. Experimental evidence
shows that the real molar volumes of many binary alloys (no compound-forming alloys) are functions of the composition of
the alloy and can be described by the following relationship:

Vm alloy = x1M1


1

+ x2M2


2

(8.12)

where
Vm alloy = molar volume of alloy
x1�2 = mole fractions
M1�2 = molar weights

1�2 = alloy densities.

When two non-ideal liquids mix, their total volume changes. The mixing process is accompanied by a change in the energy
of the system. The volume change can be positive or negative. The heat of mixing can also be either positive or negative. All
combinations of signs occur (Table 8.5). The excess volume on mixing is defined by the relationship

V excess
m alloy = Vend −Vbeginning = x1M1 +x2M2


alloy

−
(

x1M1


1

+ x2M2


2

)
(8.13)

Table 8.5 Signs of excess volume and
heat of mixing.

V excess
m alloy Hexcess

m alloy

+ +
+ −
− +
− −

Efforts have been made to explain the volume change on mixing at constant pressure. In 1937, Scatchard presented qualitative
description of V excess based on thermodynamics. On this basis, Kleppa and co-workers (1960) suggested an approximate
relationship between the heat of mixing and the excess volume:

Hexcess
m alloy = T



�T

V excess
m alloy (8.14)

This relationship was later questioned. Several studies of alloy systems show the absence of correlation between the signs of
the excess volume and the heat of mixing. Studies of other alloy systems do show correlations between V excess

m alloy and Hexcess
m alloy.

Negative V excess
m alloy values indicate attractive interactions between dissimilar kinds of atoms and occur particularly in compound-

forming alloys. Positive excess volumes appear when there are repulsive interactions between the two kinds of atoms. Alloy
systems with an immiscibility gap seem to have positive V excess

m alloy and Hexcess
m alloy values.

At present there is neither enough reliable and systematic experimental data nor a general complete theory which can
explain the process of mixing metal melts in a satisfactory way.

8.6 Thermal Expansion

8.6.1 Thermal Volume Expansion

The definition of the volume thermal expansion coefficient at constant pressure is the same for liquids as for solids (Chapter 6,
page 297). The definition of � is

� = 1
V

(
�V

�T

)
p

(8.15)

where p is the pressure.
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In Chapter 6, we found that there are two reasons for thermal expansion in solids: an increase in interatomic distances with
temperature and vacancy formation, which increases rapidly with temperature. The latter is a minor effect (Figure 6.16 on
page 300), but is important close to the melting point.

In melts and liquids, the atoms move comparatively freely relative to each other. In both cases the interatomic distances are
not constant but the average interatomic distances increase with temperature. Melts normally have higher volume expansion
coefficients than solids.

Experimental evidence shows that � is practically constant within the temperature range from the melting point TM to the
boiling point Tb. In this case we can write

Vm �T� = V M
m �1+��T −TM�� (8.16)

where
Vm�T� = molar volume at temperature T
V M

m = molar volume at melting point
TM = melting point
T = temperature
� = volume thermal expansion coefficient at constant pressure.

8.6.2 Temperature Dependence of Density

The density 
 of a liquid or melt in the temperature range from the melting point TM to the boiling point Tb can be derived
from Equation (8.16):


 = M

Vm

= M

V M
m �1+��T −TM��

(8.17)

where M is the molar weight of the liquid. If � is small, Equation (8.17) can be transformed by series development to


 = M

Vm

= M

V M
m

�1−��T −TM�� (8.18)

or


 = 
M − M�

V M
m

�T −TM� (8.19)

where 
M = M/V M
m is the density at the melting point.

Empirically, it has been found that the temperature dependence at constant pressure of the density of most metal and alloy
melts is approximately linear, and can be written as


 = 
M +��T −TM� (8.20)

where � is a proportionality factor.
A thermal increase in the volume corresponds to a decrease of the density of a melt or a liquid. Consequently, the

proportionality factor � is negative. Identification of Equations (8.19) and (8.20) confirms this conclusion as � is positive:

� = −M�

V M
m

(8.21)

Experimental evidence shows that the factor � is constant over the whole liquid temperature range from melting point to
boiling point for most metals.

If � is not small enough for series development, � and � are no longer proportional and only one of them can be regarded
as a constant.
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Example 8.1

Based on careful measurements, the densities of pure liquid and solid Al are


L = 2380−0�35�T −660�


s = 2702−0�228�T −25�

where the temperatures are given in �C. The information comes from Recommended Values of Thermophysical Properties for
Selected Commercial Alloys (K. C. Mills, National Physical Laboratory).

(a) Calculate the molar volume at the melting point V M
m and the thermal expansion coefficient � for liquid Al from the given

relationship.
(b) Plot Vm as a function of T for liquid Al.

Solution:

(a) The given relationship is identical with Equation (8.20), i.e.


L = 
M +��T −TM� (1′)

Identification gives


M ≡ 2380 kg/m3 and � ≡ −M�

V M
m

= −0�35 kg/m3K

The molar volume at the melting point temperature is

V M
m = M


M

= 27
2380

= 0�0113 m3/kmol

� ≡ −M�

V M
m

gives � = −�V M
m

M
= 0�35×0�0113

27
= 1�7×10−4 K−1

(b) Equations (8.18) and (8.19) give

Vm = M



= M


m +��T −TM�

This function is plotted in the answer.

Answer:

(a) V M
m = 0�0113m3� � = 1�7×10−4 K−1.

(b) See the figure on next page.
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8.7 Heat Capacity

If an amount of heat dQ is added to a system, it is used to increase the internal energy U of the system and to perform
work according to the first law of thermodynamics. The increase in the internal energy dU of the system is manifested by an
increase dT in its temperature:

dU = cmdT (8.22)

where
c = heat capacitivity (J/kg)
m = mass of the system
T = temperature.

Equation (8.22) is valid both for solids and liquids but the values of c differs.
For gases and for liquids and solids at high temperatures it is necessary to distinguish between the molar heat capacities at

constant pressure and constant volume:

CV =
(

�Q

�T

)
V

=
(

�U

�T

)
V

and Cp =
(

�Q

�T

)
p

=
(

�H

�T

)
p

(8.23)

8.7.1 Theory of Heat Capacity of Liquids

Heat capacities of gases and solids have been treated in Chapters 4 and 6, respectively. In both cases, generally accepted
theories have been developed, which agree very well with extensive experimental evidence.

The situation is totally different concerning the heat capacity of liquids. The motion of the atoms in the liquid state is
extremely complex. It has not been possible to describe the motion of the atoms as a function of time. The reason is that the
atoms move and vibrate relative to each other simultaneously. Hence it is difficult to determine the frequency of the vibrations
since the distance between the atoms changes incessantly. The number of energy levels in a liquid is consequently larger than
that in a solid.

One common way to proceed is to use the theory of pair distribution function and some approximate model of the pair
potential and derive an expression for the internal energy expressed with the aid of these functions. Therefore we will use the
functions discussed in Section 8.3.2 on page 402.

Molar Internal Energy

The total internal energy of 1 kmol of a monoatomic liquid can be written as

U = 3

2
RT +� (8.24)
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where
R = general gas constant
T = absolute temperature
� = average total potential energy of the liquid.

The first term on the right-hand side of Equation (8.24) represents the total kinetic energy of the atoms in the liquid (three
degrees of freedom times R/2). The second term has to be derived.

Consider a reference atom at the origin. According to the theory in Section 2.6.1, the average number of atoms in a
spherical shell with radius r and thickness dr at distance r from origin is w0 ×4�r2drg�r� [Equation (8.3) on page 403]. The
average potential energy caused by the interaction between the reference atom and its neighbours in the spherical shell will
be w0 ×4�r2drg�r���r�. The function ��r� is assumed to be independent of temperature.

The total potential energy per kilomol in the liquid is obtained by integrating the average potential energy over r and
dividing the integral by two to avoid counting the interaction between each pair of atoms twice:

� = w0NA

2

�∫
0

g�r���r�×4�r2dr (8.25)

where
w0 = probability of finding another atom in any randomly selected unit volume
NA = Avogadro’s number (number of atoms per kilomol).

Inserting Equation (8.25) for the average total potential energy into Equation (8.24) and using the relationship w0 = NA/Vm,
where Vm is the molar volume, we obtain

U = 3
2

RT + 2�N 2
A

Vm

�∫
0

g�r���r� r2dr (8.26)

8.7.2 Heat Capacity at Constant Volume

Using Equation (8.26) and the definition of CV, we obtain the molar heat capacity at constant volume of the liquid:

CV =
(

�U

�T

)
V

= 3
2

RT + 2�N 2
A

Vm

�∫
0

[
�g�r�

�T

]
V

��r� r2dr (8.27)

where Vm is the molar volume (m3/kmol).
Since ��r� is assumed to be independent of temperature, the derivative of ��r� with respect to T is zero.
Various ��r� functions have been tested but the result has not been very successful so far. Nor has any empirical equation that

describes CV in a satisfactory way been found. Experimental results have to be reported in tables and diagrams. Unfortunately,
sufficient experimental data for heat capacities of liquids that are accurate enough for testing theoretical models are not available.

8.7.3 Heat Capacity at Constant Pressure

Most metallurgical and chemical processes occur at constant pressure and hence the molar heat capacity at constant pressure
Cp is of special interest.

The heat capacities of liquids resemble those of solids in some respects. The difference between Cp and CV is described by
the same relationship for both liquids and solids [Equation (6.74) on page 312], at least in the vicinity of the melting point:

Cp −CV = �2V
�D
A

�
�T −�D� Grüneisen’s rule (8.28)

where
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� = coefficient of volume expansion of the liquid
� = isothermal compressibility of the liquid
�D = Debye temperature of the liquid
V

�D
A = molar volume (kmol) of the liquid at the Debye temperature.

As �D = h	D/k [Equation (6.68) on page 308], Equation (8.28) is of limited interest because of the difficulty in estimating
vibrational frequencies in a liquid (page 408).

Temperature Dependence of Heat Capacities of Metal Melts

In general, the heat capacities of liquids vary with temperature. Experimental evidence, for example measurements by Hultgren,
indicates that the heat capacities decrease slightly with increase in temperatures. The temperature dependences of some metal
melts as functions of temperature are shown in Figure 8.7.

Al(L) Au(L)

40

35 Cu (L)
Al (s) Cu(s)

30

25 Au(s)

20

40

Cp

0 600 800 1000 1200 1400 1600 K

T

 kJ/kmol K

Figure 8.7 Molar heat capacities at constant pressure of solid and liquid Al, solid and liquid Cu, solid and liquid Au as functions
of temperature. The dashed curves represent the solid. Reproduced with permission from D. R. Gaskell, Introduction to Metallurgical
Thermodynamics, 2nd edn. © 1981 Hemisphere Publishing Corporation, now Taylor & Francis.

Figure 8.7 shows the heat capacities at constant pressure of some solid and liquid metals as functions of temperature. The
heat capacities of metal melts are of the same magnitude as those of the corresponding solids. Figure 8.7 shows clearly that
the structure of solid elements influences the heat capacity strongly. There is a discontinuous change in the heat capacities at
the melting points on the Al, Cu and Au curves. The heat capacities of the solid metals vary linearly with temperature.

The heat capacities at constant pressure of the corresponding metal melts seem to be constant over a considerable temperature
range. The temperature dependence is small and an average value is used within the given temperature intervals. The functions
of the three metals are given in Table 8.6. Other metals, for example iron, show a similar appearance.

Table 8.6 Molar heat capacities at constant pressure as a function of
temperature for some solid metals and metal melts.

Metal Cp (kJ/kmol K) Temperature range (K)

Al (solid) 20�7+12�4×10−3T 298–933
Al (liquid) 29.3 933–1273
Cu (solid) 22�6+6�28×10−3T 298–1356
Cu (liquid) 31.4 1356–1600
Au (solid) 23�7+5�19×10−3T 298–1336
Au (liquid) 29.3 1336–1600
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In other cases, especially for metals with low melting points, when the Cp–T curve is inclined or bent (Figures 8.8 and 8.9),
an empirical function is used to describe the temperature dependence of Cp:

Cp = a+bT + c

T 2
+dT 2 (8.29)

where a, b, c and d are parameters, which have to be determined from experimental data. Some examples of such empirical
functions are given in Table 8.7. They are shown in Figures 8.8 and 8.9.

Table 8.7 Molar heat capacities at constant pressure for some metal melts.

Metal a (kJ/kmol K) b (kJ/kmol K2) c (kJ K/kmol) d (kJ/kmol K3) Temperature range
TM −T (K)

Li 24�5 +5�5×10−3 8�7×105 454–1200
Na 37�5 −19�2×10−3 10�6×10−6 371–1200
K 37�2 −19�1×10−3 12�3×10−6 336–1037
Ga 26�4 1�3×105 303–1200
Hg 30�4 −11�5×10−3 10�1×10−6 298–630
In 30�3 −1�4×10−3 430–800
Pb 32�4 −3�1×10−3 600–1200
Bi 20�0 +6�1×10−3 21×105 544–820
Sn 34�7 −9�2×10−3 510–810

C p
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Li

Hg
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30 Na

28

26

24

200 400 600 800 1000 1200 K

 Ga

Figure 8.8 Molar heat capacities Cp of liquid Na, K, Li,
Hg and Ga as functions of temperature. The curves start at
the melting points of the metals, indicated by small circles.
Reproduced with permission from T. Iida and R. I. L.
Guthrie, The Physical Properties of Liquid Metals. © 1988
(Clarendon Press/Oxford University Press, NY-academic.
permissions@oup.com)
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Figure 8.9 Molar heat capacities Cp of some liquid
metals as functions of temperature. The curves start at
the melting points of the metals, indicated by small
circles. Reproduced with permission from T. Iida and
R. I. L. Guthrie, The Physical Properties of Liquid
Metals. © 1988 (Clarendon Press/Oxford University
Press, NY-academic. permissions@oup.com)

8.8 Transport Properties of Liquids

Chapter 7 deals with transport phenomena in solids. Corresponding phenomena appear also in liquids with an important
complement. In addition to diffusion, thermal and electrical conduction, viscosity or internal friction occurs in liquids and
melts but not in solids.

Viscosity appears in flowing liquids. Momentum is transported from one liquid layer to another.
A survey of the different types of transport phenomena in liquids and the transported physical quantities is given in Table 8.8.

They will be discussed in the remaining sections of this chapter.
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Table 8.8 Transport phenomena in liquids.

Transport phenomenon Involves transport of

Diffusion Mass
Viscosity Momentum
Thermal conduction Energy
Electrical conduction Charge

8.9 Diffusion

Diffusion in melts is a phenomenon that controls the microsegregation in solidifying metal melts and casting processes.
Diffusion is also important in other industrial processes. For this reason, it is of great interest to make efforts to understand
the mechanisms of diffusion in liquids.

The macroscopic laws of diffusion (Fick’s laws) in liquids are analogous to those in solids. The diffusion coefficient is
defined by Equation 5.112) on page 254:

J = −D grad c Fick’s first law (8.30)

In the one-dimensional case, Equation (8.30) can be written as

J = −D
dc

dy
(8.31)

where
J = flux or net amount of diffusing atoms passing a cross-section per unit time and unit area (kg/m2 s or kmol/m2 s or

numbers/m2 s)
D = diffusitivity or diffusion coefficient (m2/s)
c = concentration of diffusing atoms (kg/m3 or kmol/m3 or numbers/m3)
y = coordinate in diffusion direction.

The minus sign in Equations (8.30) and (8.31) indicates that the atoms diffuse from a higher towards a lower concentration.
The flux and the concentration gradient always have opposite signs.

The diffusion coefficients are generally larger for liquids than for solids.

8.9.1 Simple Model of Diffusion in Liquids. Diffusion in Metal Melts at Temperatures Close to
the Melting Point

Experimental evidence shows that the self-diffusion coefficient D is of the magnitude 10−9 m2/s for most pure metal melts at
temperatures close to the melting point of the metal. The values of D are of the same magnitude in spite of the fact that both
the strength and type of forces involved in the solidification processes vary widely between different metals.

In this respect, the behaviour of metal melts differs strongly from that of solid metals. In solid metals the self-diffusion
coefficient at temperatures close to the melting point varies considerably from one metal to another.

Diffusion Coefficient as a Function of Activation Energy and Temperature

The temperature dependence of the diffusion coefficient D in liquids is very strong and can, at constant pressure, be represented
by the same equation as in solids [Equation 5.146), page 264):

D = D0e
− U

diff
a act

kBT (8.32)
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where
D = diffusion coefficient
D0 = a temperature-independent constant
U diff

a act = average activation energy of diffusion per atom
kB = Boltzmann’s constant.

U diff
a act increases with the melting point for metal melts, which is shown in Figure 8.10 and Table 8.9.

kmol U
diff
act  = U a act

diff
NA

42
Cu
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Zn

1

K Na  In   Sn

Hg Ga

T M

kJ/

2

0

0 200 400 600 800 1000 1200 1400 K

Figure 8.10 Average activation energy of diffusion for some pure metal melts as a function of their melting points. Avogadro’s number
NA = 6�02×1026 kmol−1. Reproduced with permission from F. D. Richardson, Physical Chemistry of Melts in Metallurgy, Vol. 1. © 1974
Academic Press Inc. (London), now by Elsevier.

Table 8.9 Self-diffusion coefficients and related data for some pure liquid metals. Reproduced with permission from
F. D. Richardson, Physical Chemistry of Melts in Metallurgy, Vol. 1. © 1974 Academic Press Inc. (London), now Elsevier.

Metal Temperature
range (�C)

Melting
point (�C)

D0�m2/s� U diff
a actNA

(kJ/kmol)
Typical D
values (m2/s)

Measured at
temperature
T��C�

Hg 0–100 –38.9 1�0×10−8 4�2 0�92×10−9 30
Na 99–227 97.5 1�1×10−7 10�2 4�19×10−9 98
K 67–217 62.3 1�7×10−7 10�7 5�44×10−9 100
In 175–628 156.4 3�1×10−8 10�5 1�91×10−9 175
Sn 267–683 231.9 3�0×10−8 10�8 3�74×10−9 299
Pb 333–657 327.5 9�15×10−8 18�6 2�50×10−9 343
Zn 420–600 419.5 1�2×10−7 23�5 3�16×10−9 500
Ag 975–1350 960.5 5�8×10−8 32�1 3�22×10−9 1060
Cu 1140–1260 1083 1�46×10−7 40�7 4�16×10−9 1100
Fe 4.6%C 1240–1360 1535 (Fe) 4�3×10−7 51�1 10�0×10−9 1360
Fe 2.5%C 1340–1400 1535 (Fe) 1�0×10−6 65�8 9�0×10−9 1400

8.9.2 Theories of Diffusion in Liquids

Models of Diffusion in Liquids

In Chapter 5, Section 5.6, we discussed diffusion in solids and derived expressions for the diffusion coefficient in terms of
atomic quantities.
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The atomic theory of diffusion in liquids is far more complicated and less established than that in solids. It is difficult to
treat diffusion in liquids theoretically because the atoms in a liquid move easily relative to each other and there is no unique
activation energy for the atoms. The symptom of this is poor agreement between theoretical and experimental values of the
diffusion coefficient of melts and liquids.

Instead, there is a whole spectrum of activation energies and it is customary to use an average value of them all. This
corresponds to the simple model discussed above.

Because of the importance of diffusion in liquids, intensive efforts have been made to understand the diffusion process and
develop better theoretical models for the diffusion coefficient in disordered media than the simple one. Four models will be
mentioned and are discussed briefly below.

Fluctuation Theory of Diffusion in Metal Melts
Diffusion in liquids is assumed to result from the motion of atoms across small and variable distances in the liquid. These
movements are caused by random local density fluctuations. In 1959, Swalin published a model of diffusion in pure metal
melts, based on fluctuation theory.

From geometric considerations, he concluded that approximately four atoms in addition to the diffusing atom are involved
in a fluctuation. In Figure 8.11a the diffusing atom is marked by x. Two of the four accompanying atoms (marked 1 and 2)
are located in the plane of the paper and the other two above and below the plane (not shown in Figure 8.11).

1 1

2

(a) (b)

2
x x

Figure 8.11 (a) Schematic drawing of a liquid metal. (b) Schematic drawing of the same liquid metal showing a slight density fluctuation
after a jump of the diffusing atom. Reproduced with permission from R. A. Swain, On the theory of self-diffusion in liquid metals, Acta
Metall. 7, 736–740. © 1959 Elsevier.

In crystals, there are vacancies in the crystal lattice (used by substitutionally dissolved atoms) and empty spaces between
the lattice atoms (used by interstitially dissolved atoms). The vacancies and empty spaces enable a diffusing atom to jump
from one site into a vacant site if it has enough energy to overcome the energy barrier, e.g. the activation energy.

In liquids, the atoms can move fairly freely relative to each other and there is no energy barrier to overcome for the diffusing
atom. In liquid and melts, there are no vacancies such as those in a solid. Instead, holes or voids of variable size appear.
Energy is required to create these voids. The voids must exceed a certain critical size, big enough for the diffusing group of
atoms. The energy of void formation is assumed to be proportional to the heat of vaporization.

Swalin studied the probability forming voids and the size distribution of fluctuations. For the energy calculations of the
creation of voids he used the Morse function (Chapter 2, page 83), which represents the energy between two atoms in a
diatomic molecule as a function of the distance between them. It is reasonable to assume that the Morse function can be
applied to liquids also.

The calculations will be omitted here but the resulting diffusion coefficient was found to be

D = 3Zcoord
2NAk2

BT 2

96h�−�Hv�
2

(8.33)

where
Zcoord = coordination number of the atoms
NA = Avogadro’s number (number of atoms/kmol)
kB = Boltzmann’s constant
T = absolute temperature of the melt
h = Planck’s constant
−�Hvap = molar heat of vaporization of the melt
 = material constant.
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The material constant  is related to the force constant between the atoms and can be written as

 =
√

ZcoordNAk

4�−�Hvap�
(8.34)

where k is a force constant characteristic of the atoms of the melt.

Comparison between Theory and Experiments
Swalin compared self-diffusion data obtained for the metals Hg, Na, In, Sn and Ga. The experimental valued were compared
with values of the diffusion coefficient calculated for the five metals in question. The result is shown in Figure 8.12, where
log D is plotted as a function of the inverted absolute temperature.

If the universal constants are introduced into Equation (8.33), we can write

D = 1�29×10−10 × Zcoord
2T 2

�−�Hvap�
2

m2/s (8.35)

If we disregard the variation in coordination number for the five metals and regard Zcoord as a constant, we can derive an
expression for the slopes of the straight lines in Figure 8.12 as follows.
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Figure 8.12 Comparison between experimental and theoretical diffusion data (dashed lines) for Hg, Na, In (several experimental values),
Sn and Ga. Reproduced with permission from R. A. Swalin, On the theory of self-diffusion in liquid metals, Acta Metall. 7, 736–740. © 1959
Elsevier.

If we replace 1/T by x and take the logarithm of Equation (8.35), we obtain

log D = log constant −2 log x

or

log D = log constant −2 log eln x

or

log D = log constant −2 ln x log e (8.36)

Taking the derivative of Equation (8.36) with respect to x gives

d log D

dx
= −2 log e

x
= −2×0�4343T (8.37)
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If we extend the right-hand side of Equation (8.37) with the gas constant R, we obtain

d�log D�

d
(

1
T

) = − 2RT

2�3R
= − Q

2�3R
(8.38)

where Q = 2RT represents the formation energy of the voids.
The higher the temperature is, the higher will be the formation energy, i.e. the more difficult will be the formation of a void.
The Q values for the metal melts can be calculated from the slope of respective line. The value of the diffusion coefficient

extrapolated to 1/T = 0 in the diagram is called D0 and corresponds to the diffusion coefficient at very high temperature.
From the comparison between theoretical and experimental values in Figure 8.12, two conclusions can be drawn:

• The extrapolated values of D0 for the theoretical and experimental lines show surprisingly good agreement, especially when
the long extrapolation distance is taken into consideration.

• According to Equations (8.37) and (8.38), the slopes of the lines should be independent of the element and depend only on
the temperature. This statement agrees fairly well for the lines in Figure 8.12.

Significant Structure Theory
The base of Eyring’s theory (page 402) is the difference in specific volume. A liquid has a higher specific volume than the
corresponding solid. Eyring assumed that the excess volume was due to ‘fluidized vacancies’, with properties similar to those
of gas molecules, whereas the rest of the volume was assigned properties of a crystalline phase. Hence the liquid was regarded
as a mixture of gas and solid.

His model was further developed by Hicter, Durand and Bonnier. Their final expression for D can approximately be written
as (compare the corresponding expression for solids on page 264 in Chapter 5)

D = BT +D0e
− �Hdiff

a act
kBT (8.39)

where
−�Hdiff

a act = activation enthalpy of diffusion per atom
kB = Boltzmann’s constant
T = temperature.
D0 and B are material constants.

Random Barrier Theory
The effects of disorder in the liquid are considered by replacing it by a fictive ‘effective’ medium. Hörner assumed a statistical
distribution of the effective activation enthalpy (−�Heff

a act) from zero up to a maximum value (−�Hmax
a act). His final expression

of the diffusion coefficient is

D = 2D0

Zcoord −2
1− e

−
(

1− 2
Zcoord

)
�Hmax

a act
kBT

e
2�Hmax

a act
ZcoordkBT −1

(8.40)

where
Zcoord = number of nearest neighbours
D0 = a pre-exponential, temperature-independent factor
−�Hmax

a act = maximum activation enthalpy of diffusion
kB = Boltzmann’s constant
T = absolute temperature.
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The theory has been fairly successful and can among other results explain the self-diffusion in sodium, which deviates from
the simple Arrhenius equation.

Theory of Dense Gases
Diffusion in disordered media has been fairly successfully explained by Enskog. He treated the liquid particles as a number of
equal hard spheres with a temperature-dependent diameter �. His final expression for the hard sphere diffusion coefficient is

Dhardsphere = 3
8

V

�2

√
kBT

�m

1
g���

(8.41)

where
V = volume of a hard sphere
� = temperature-dependent diameter of a hard sphere
m = mass of a hard sphere
kB = Boltzmann’s constant
g��� = the pair distribution function.

8.9.3 Diffusion of Interstitially Dissolved Atoms in Metal Melts

Most metal melts contain impurities and dissolve gases when they are exposed to gases, for example air at high temperature.
Gases such as H2, O2 and N2 are interstitially solved as atoms in metal melts. The lighter the interstitial atoms are, the

easier they can move in the solvent and the larger will be their diffusion coefficients in the melt. This is confirmed by
Table 8.10.

Table 8.10 Diffusion coefficients of some gases dissolved at low
concentrations in metal melts.

Solvent Diffusing element T��C� D�m2/s�

Fe H 1600 132×10−9

Fe N 1600 �6–11�×10−9

Fe O 1560–1660 2�5×10−9

Ni H 1500 �66–320�×10−9

Ni O 1511 12�6×10−9

Cu H 1200 �126–525�×10−9

Cu O 1400 12×10−9

8.9.4 Diffusion in Alloys

Diffusion in solid alloys has been treated extensively in Section 5.6 in Chapter 5. Experiments on liquid alloys indicate that the
same final equations can be applied to liquid and solid alloys. By use of Equation (5.176) on page 272 and Equation (5.156)
on page 266, we obtain

D̃ = xAD̃B +xBD̃A (8.42)

and

D̃A = DA

(
1+ dln�A

dlnxA

)
(8.43)

D̃B = DB

(
1+ dln�B

dlnxB

)
(8.44)
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where
D̃ = chemical diffusion coefficient of the binary alloy
xi = mole fraction of element i of the alloy (i = A, B)
�i = activity coefficients of element i of the alloy
D̃i = diffusion coefficient of atoms i at the given composition of the alloy (i = A, B)
Di = self-diffusion coefficient of atoms i (i = A, B).
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Figure 8.13 Chemical diffusion coefficient and diffusion coefficients of the system Hg–Zn at 30 �C (after Schadler and Grace). The D̃Zn

curve intersects the D axis at DZn, the self-diffusion coefficient of Zn (not shown). Compare Figure 5.35 on page 273. Reproduced with
permission from F. D. Richardson, Physical Chemistry of Melts in Metallurgy, Vol. 1. © 1974 Academic Press Inc. (London), now by
Elsevier.

Figure 8.13 shows a simple example, the variation of D̃, D̃Zn and D̃Hg with composition of very dilute solutions of zinc in
mercury. In other cases D̃i can have a maximum or a minimum as a function of composition.

The ratio of the self-diffusion coefficients DZn and DHg is approximately 2. The corresponding ratio for any pair of liquid
metals lies approximately within the interval 0.5–2. It is very small compared with the ratio of the self-diffusion coefficients
of solid metals, which may be of the magnitude 102–103.

8.9.5 Experimental Methods of Diffusion Measurements on Metal Melts

Iida and Guthrie in 1988 gave a wide review of the theories and experimental methods to determine various properties of
metal melts in their book The Physical Properties of Liquid Metals, among them diffusion and viscosity. Theoretical models,
semiempirical theories and empirical descriptions of measurements are included, and also short descriptions of the experimental
methods. This book illustrates, among other things, the diverging experimental results and manifold of theories of diffusion
in metal melts.

There is no generally accepted theory of diffusion in liquid metals that is valid independent of experimental method. Lack
of high accuracy and varying experimental results, depending on experimental method, are a difficulty for the development
of the theories. The environment of the experiments influences not only the results but also the very laws of diffusion. This
is confirmed by space experiments performed by a Canadian research group during the 1990s, which will be discussed on
page 424.

Influence of Experimental Method on Diffusion Results

Figure 8.14 shows the diverging results of diffusion measurements close to the melting point of some metals reported by
many different authors. The line in the diagram corresponds to the empirical function

DM = 0�35×10−9

(
TM

M

)1/2

V 1/3
m
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There are several experimental values for some metals. Reproduced with permission from T. Iida and R. I. L. Guthrie, The Physical
Properties of Liquid Metals. © 1988 (Clarendon Press/Oxford University Press, NY-academic.permissions@oup.com)

Experimental Methods for Measurement of Diffusivities in Liquid Metals

There are several methods for measurements of diffusivities in metal melts, including capillary methods and neutron scattering
and nuclear magnetic resonance techniques. The latter methods give equivalent values within the frame of experimental errors.

Solvent bath

            Solute in a
capillary 
tube

Open top

Closed end

  Solvent bath

Figure 8.15 The capillary reservoir method. Reproduced with permission from T. Iida and R. I. L. Guthrie, The Physical Properties of
Liquid Metals. © 1988 (Clarendon Press/Oxford University Press, NY-academic.permissions@oup.com)

One of the most common methods is the long capillary reservoir method. A long, thin capillary tube, which is closed in
one end, is filled with the solute and placed in a large reservoir with solvent metal of a given constant temperature. The
solvent atoms diffuse into the capillary tube with solute. After a certain time t, before solvent atoms have reached the closed
end of the tube, the diffusion is interrupted when the tube is removed and quenched. The distribution of the solvent atoms in
the solid tube is measured as a function of the distance y from the top (Figure 8.15) with the aid of chemical analysis. The
diffusion coefficient can be derived from the equation of random walk:

y2 = 2Dt (8.45)

The advantage of a narrow capillary is that turbulence in the solute is avoided. The diameter of the tube must be >1 mm
otherwise the walls will influence the diffusion process.

The method described above is used for alloys. For measurements of self-diffusivities, the solute is replaced by solvent and
mixed with a low concentration of radioactive solvent atoms (see pages 272–273 for diffusion measurements in solids).
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Influence of Gravity on Measurements of Diffusivities

R. W. Smith and his research group measured the diffusivities of selected molten metals at various temperatures by using
MIM (Microgravity Isolation Mount, developed by CSA, the Canadian Space Agency) as service platform in low Earth
orbiting laboratories, first on NASA shuttle flights and more recently on the Russian MIR Space Station. The experiments
were performed at the beginning of this century.

Experimental
A variant of the long capillary method was used. The capillary tube had a diameter of 1.5–3.0 mm and a length of 40 mm
with a closed end. It was filled with solvent and placed in a furnace and kept at a given constant temperature. A 2 mm solute
slug was attached to the entrance of the tube and solute atoms were allowed to diffuse into the tube during a given time.
Quenching and chemical analysis of the specimen and calculation of D followed as described above.

Measurements were performed at different temperatures to give information on the diffusion coefficient as a function of
temperature and to allow comparison with corresponding results on Earth.

Gravitation Environment
The gravitation in space orbits is very low compared with the gravitation on the surface of the Earth, g0 = 9�81 m/s2, but is
not equal to zero.

The gravitation in the space laboratory consists of two terms, a d.c. component of magnitude 5 × 10−6 g0, which depends
on the orbit, and an a.c. component, which varies all the time and arises mainly from the momentum changes of the
space station, caused by the normal functioning of the control systems and the astronaut/cosmonaut activity. This a.c.
component may involve a short-period excitation which may amount to 10−3g0. The a.c. component is commonly named ‘g
jitter’.

The MIM facility could be used in three modes:

1. ‘Latched’, in which the platform is firmly attached to the spacecraft and exposed to the d.c. and a.c. gravitation fields.
2. ‘Isolating’, in which the g jitter is suppressed.
3. ‘Forcing’, in which a forced oscillation is superimposed upon the isolating condition on purpose.

Results
The diffusion of a number of binary alloys, mainly with at least one semiconductor component, has been examined. About
50 samples have been processed on the NASA shuttle and more than 200 samples on MIR during 2 years at the beginning of
this century. Figures 8.16–8.19 show some examples of the experimental results.

The results can be summarized as follows:

• The D value is much lower in a low earth orbit than on the surface of the earth. (Figures 8.16 and 8.19).
• The D value depends on the gravitational environment in space (Figure 8.17).
• A reduction in the g jitter reduces the measured D value considerably (Figures 8.16–8.19).
• All the experimental data on binary alloys indicate that the relationship between D and T is linear when the g jitter is

suppressed.

In addition, the latched experiments (Figures 8.17 and 8.19) indicate that D is proportional to T 2 in the presence of g jitter.
Hence the laws of the temperature dependence change with the gravitational environment:

• On Earth: D = D0e− A
T (constant A > 0)

• Microgravity in a low Earth orbit: D = constant ×T 2

• Microgravity in a low Earth orbit with suppressed g jitter: D = constant ×T .
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Figure 8.16 Diffusion coefficients of Au in Pb as a func-
tion of temperature. Space- and ground-based experiments.
Comparison between Earth and space measurements.
Reproduced with permission from R. W. Smith et al., The
influence of G. Jitter on the measurement of solute diffusion
in dilute liquid metals and metalloids in a low Earth orbiting
laboratory. Proc. Int. Conf. Spacebound 2000. © Canadian
Space Agency.
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Figure 8.17 Diffusion coefficients of Au in Pb as a function
of temperature. Measurements with the MIM facility in a
forced, two latched and an isolating mode.
Reproduced with permission from R. W. Smith et al., The
influence of G. Jitter on the measurement of solute diffusion
in dilute liquid metals and metalloids in a low Earth orbiting
laboratory. Proc. Int. Conf. Spacebound 2000. © Canadian
Space Agency.
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Figure 8.18 Diffusion coefficients of Sb in In as a function
of temperature.
Reproduced with permission from R. W. Smith et al., The
influence of G. Jitter on the measurement of solute diffusion
in dilute liquid metals and metalloids in a low Earth orbiting
laboratory. Proc. Int. Conf. Spacebound 2000. © Canadian
Space Agency.
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Figure 8.19 Diffusion coefficients of In in Sn as a func-
tion of temperature. Comparison between Earth and space
measurements.
Reproduced with permission from R. W. Smith et al., The
influence of G. Jitter on the measurement of solute diffusion
in dilute liquid metals and metalloids in a low Earth orbiting
laboratory. Proc. Int. Conf. Spacebound 2000. © Canadian
Space Agency.

8.10 Viscosity

Viscosity is of great importance in the metal industry. The viscosity in metal melts influences the flux of the molten metal,
for example during casting.

Viscosity also influences the solidification rates of metal melts indirectly and strongly. They are determined by the rate of
heat transport away from the solidifying metal. The heat flow depends on conduction, radiation and convection. The convection
in the melt depends strongly on its viscosity and influences many processes, among them all casting processes.
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8.10.1 Basic Theory of Viscosity

Viscosity is a dynamic property of liquids, which manifests itself only when the different parts of the liquid move relative to
each other, i.e. in the presence of a velocity gradient in the liquid. Viscosity can be described as a friction force which acts
on layers of the liquid, which move with different velocities.

The treatment will be restricted to laminar flow of liquids, i.e. at velocities when turbulence does not appear. Momentum
is transported across the layers in the liquid.

In addition to the general discussion of viscosity, the viscosities of metal melts will be discussed. Viscosity is of great
practical importance in metallurgical processes, for example when small bubbles rise through a metal melt or when nonmetallic
inclusions move through the melt.

Consider the two parallel plates in Figure 8.20. The intermediate space is filled with a liquid. The lower plate is at rest and
the upper one moves with a constant velocity v. As a liquid always sticks to a solid surface, the upper liquid layer also moves
with the velocity v and the lower layer is at rest when equilibrium has been established. Owing to viscosity, laminar flow and
a velocity gradient are developed in the liquid.

y                       v

τ →

← τ x

d

Figure 8.20 Laminar liquid flow between two parallel plates. The friction
forces exert shear stress on each layer in the liquid. Adapted with permission
from D. R. Gaskell, An Introduction to Transport Phenomena in Materials
Engineering. © 1992 Macmillan Publishing Company.

 τ = F/A
v + dv

→
dy              ←                 v

τ

Figure 8.21 The friction forces exert shear stress on
each layer in the liquid in Figure 8.20.

If we want to maintain a constant velocity v of the upper plate, a force F , acting on the contact area A, is required to
overcome the retarding friction force (Figure 8.21). The force per unit area is proportional to the velocity v and inversely
proportional to the distance d between the plates:

F

A
= −�

v

d

or, in terms of the tangential stress � = F/A:

� = −�
dv

dy
Newton’s viscosity law (8.46)

where
F = friction force
� = dynamic1 viscosity coefficient of the liquid
v = velocity
dv/dy = velocity gradient.

The dynamic viscosity coefficient is simply the coefficient of viscosity of the liquid.
Equation (8.46) can be written as

� = −� grad v (8.47)

The tangential stress, which is a shear stress, is proportional to the velocity gradient.

Equation (8.46) was proposed by Newton in 1687. Most liquids obey this law and are called Newtonian liquids.

1 The kinetic viscosity coefficient is defined as �/
.
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Nature of Friction Forces in Liquids

We discussed viscosity in gases in Chapter 4 on page 196. The basic law for gases is formally identical with Equation (8.46)
above. However,

• The nature of the friction forces between the layers is entirely different for gases and liquids.

In the case of gases, the intermolecular forces are zero and the friction forces are caused by molecules which jump between
the gas layers and become retarded or accelerated. In the case of liquids, the intermolecular forces in the liquid are responsible
for the frictional adhesion forces.

It is well known that the viscosity varies strongly with temperature. The higher the temperature is, the smaller will be the
coefficient of viscosity. This topic will be treated in Section 8.10.4 on page 432.

8.10.2 Newtonian and Non-Newtonian Fluids

Liquids that obey Newton’s viscosity law [Equation (8.46)], are called Newtonian liquids. They have been studied in the
preceding sections. Most liquids are Newtonian fluids but there are many liquids that do not belong to this group.

Liquids that do not obey Newton’s viscosity law are called non-Newtonian fluids with a common name. Examples of such
fluids are molten plastics, high polymers and slurries of clay and lime.

Below we will analyse and compare the fluid flows through a tube of given length under the influence of a pressure
difference for Newtonian fluids and one type of non-Newtonian fluid.

Newtonian Liquids

Stationary Fluid Flow in a Cylindrical Tube Under the Influence of a Pressure on the Newtonian Liquid
Consider a cylindrical tube of length L and a circular cross-section with radius R (Figure 8.22). A fluid flows through the
tube under the influence of a pressure difference:

�p = p2 −p1 (8.48)

We choose a volume element in the shape of a hollow cylinder with length L, radius r and thickness dr.

p2 p1

L

R
dr
r

Figure 8.22 Volume element.

The element is exposed to

1. Forces in the flow direction caused by the pressure acting on the flat circular cross-section areas. The net force is

Fp = �p2 −p1��r2 (8.49)

2. A friction force caused by the viscosity of the liquid acting along the cylindrical surface of the volume element:

Ff = −�
dv

dr
×2�rL (8.50)

The retarding friction force is equal to the pressure force and the net force is zero. This condition gives, after separation of
the variables and integration, the velocity of the cylindrical layers as a function of r:

v = �p

4�L
�R2 − r2� (8.51)
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Figure 8.23 Velocity profile in the tube. Velocity v as a function of r. Adapted with permission from D. R. Gaskell, An Introduction to
Transport Phenomena in Materials Engineering. © 1992 Macmillan Publishing Company.

The velocity is a parabolic function of the radius, which is shown in Figure 8.23.
It can also be shown that the total flux (m3/s) through the tube is

dV

dt
= �R4�p

8�L
Hagen–Poiseuille’s law (8.52)

Non-Newtonian Liquids

There are several subgroups of non-Newtonian fluids. The so-called Ostwald’s law deals with the relationship between the
shear stress � and the velocity gradient dv/dy:

� = constant ×
(

dv

dy

)n

(8.53)

where n is a constant.
Newton’s law [Equation (8.46) on page 426] is a special case of Ostwald’s law. It is obtained when the constant is replaced

by � and n = 1.
Fluids that obey Ostwald’s law are called generalized Newtonian fluids. Below we will discuss the case when n > 1. Such

liquids are called dilatant fluids.

Stationary Fluid Flow in a Cylindrical Tube under the Influence of a Pressure on a Non-Newtonian Dilatant Liquid
In the preceding section, we discussed the velocity profile at the stationary state in a Newtonian liquid. The parabolic velocity
profile is the same independent of time and position. This is shown in Figure 8.24a, which is representative for all Newtonian
liquids, i.e. liquids that obey Newton’s law of viscosity [Equation (8.46) on page 426].

0 Time

(a)

(b)

Figure 8.24 Velocity profiles of (a) a Newtonian liquid and (b) a non-Newtonian dilatant liquid flowing in a tube.

In the case of a so-called dilatant fluid, the velocity profile is as shown in Figure 8.24b. The velocity increases successively
with time and position. The increase in the velocity continues until the end of the tube is reached or until the velocity equals
the limit for laminar flow, e.g. the laminar flow collapses and becomes turbulent.

When the velocity increases, the velocity profile becomes extended in the direction of the flow. This is true also for the
volume element which is marked in Figure 8.24b. Its central parts become elongated as more liquid flows out from the front
surface than from the back surface per unit time. A lack of atoms arises in the interior of the volume element.

This lack of atoms does not result in pore formation in the fluid. Instead, the lack can be compensated by lateral diffusion
of atoms into the volume element from outside if that is possible. In this case, no supply of atoms is possible because of the
tube. The only possibility to keep the liquid volume constant without void formation is a deformation of the velocity profile.
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The deformation occurs in such a way that the velocity decreases in the outer parts of the tube. This is indicated schematically
in Figure 8.24b.

8.10.3 Viscosity in Pure Metal Melts

Theory of Viscosity in Pure Metal Melts

In Chapter 4, we found that the kinetic theory of gases provides a model of viscosity. The coefficient of viscosity for gases
was, for example, shown to be a function of the mean free path of the gas and the temperature dependence of � could be
derived.

It is desirable to find an analogous model for the viscosity of liquids for a similar analysis. This is extremely difficult, for
both theoretical and experimental reasons. The knowledge of the interatomic forces between the atoms in a liquid is poor as
the atomic motion in liquids cannot be exactly described as a function of time. The lack of a consistent single model for liquid
structure has been discussed on page 402. Approximate models have to be introduced. Many empirical and approximate,
semitheoretical models � have been suggested.

The predictions of the various theoretical models have to be compared with reliable experimental results. Experimental
methods are discussed briefly in Section 8.10.6 on page 437. Unfortunately, accurate viscosity experiments on metal melts
are very difficult to perform because of the high temperatures.

An illustration to this is shown in Figure 8.25, where Guthrie and Iida in 1988 reported experimental measurements of 21
different investigations of the coefficient of viscosity for iron as a function of temperature. It is obviously difficult to test
theoretical models on such diverging experimental evidence. For the same reason, the experimental values of coefficient of
viscosity, given in tables and figures in this chapter, cannot be taken for granted.

The reason for the manifold of models is the poor knowledge of the interatomic forces in liquids. A few of them will be
discussed below.
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Figure 8.25 The coefficient of viscosity for iron as a function of temperature. Guthrie and Iida collected the curves from 21 different
investigations and a few are shown here. The discrepancies may depend on different experimental methods and variation of the carbon
content of the specimen. (a) Barfield and Kitchener; (b) Romanow and Kochegarov; (c) Vatolin et al.; (d) Saito and Watanabe; (e) Thiele.
Reproduced with permission from T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals. © 1988 (Clarendon Press/Oxford
University Press, NY-academic.permissions@oup.com)
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Model Based on the Pair Distribution Function Theory
Using statistical mechanics, an expression for � can be derived if the pair distribution function g�r� (pages 402–403) and the
pair potential (page 404) are known. Born and Green derived an expression for the coefficient of viscosity, based on g�r�
and ��r�:

� = 2�

15

(
m

kBT

)1/2

w2
0

�∫
0

g �r�
���r�

�r
r4dr (8.54)

where
m = mass of atoms
kB = Boltzmann’s constant
T = absolute temperature
w0 = probability of finding another atom in addition to the reference atom in any randomly selected unit volume
g�r� = the pair distribution function.

The calculated values are compared with experimental values in Table 8.11.

Table 8.11 Comparison between calculated [Equation (8.54)]
and experimental values of viscosity of some metal melts.

Metal Temperature
(K)

Calculated values
Born–Green
(mPa s)

Experimental
values (mPa s)

Na 387 0�70 0�68
476 0�59 ∼0�40

K 343 0�68 ∼0�51
618 0�44 0�25

Hg 273 1�78 1�68
423 1�57 ∼1�1

Al 973 0�95 2�9
1123 0�88 ∼1�3

Pb 623 1�84 ∼2�2
823 1�60 1�7

Hard Sphere Model
The hard sphere model (Longuet-Higgins and Pople) is valid for a dense liquid of noninteracting hard spheres. If the model
is applied to metal melts at their melting points, it gives the following expression for the viscosity coefficient:

�M = 3�8×10−8 �MTM�1/2

�V M
m �2/3

p4/3
(

1− p

2

)

�1−p�3 (8.55)

where
�M = coefficient of viscosity at melting point
M = molar weight
TM = melting point
V M

m = molar volume at the melting point
p = packing fraction (page 407).

Longuet-Higgins and Pople used the value 0.45 for the packing fraction and obtained

�M = 0�6×10−7 �MTM�1/2

�V M
m �2/3

(8.56)
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A randomly packed ‘liquid’ of hard spheres of equal size has a packing fraction p = 0�66. If we replace the packing fraction
p by this value, we obtain

�M = 3�7×10−7 �MTM�1/2

�V M
m �2/3

(8.57)

It is reasonable to assume that the metal melt approximately can be regarded as a randomly packed liquid. Consequently,
the value 0.45 of the packing fraction seems to be far too low. On the other hand, a comparison with experimental values of
the viscosity coefficient at the melting point indicates that the real packing fraction probably is lower than 0.66.

Andrade’s Quasi-crystalline Model
Andrade’s model (1934) is based on the idea that the atoms in the liquid state vibrate about their equilibrium positions in
random directions and with a variety of frequencies, in analogy with Einstein’s oscillators in the solid state. According to his
theory, the viscosity of pure (monoatomic) metal melts close to their melting points can be written as

�M ≈ 4
3

	m

a
(8.58)

where
	 = characteristic frequency of vibration
m = atomic mass
a = average interatomic distance.

Andrade used Lindemann’s melting rule (page 406) to eliminate the frequency 	 and replaced the interatomic distance a by

a =
(

V M
m

NA

)1/3

(8.59)

where
V M

m = molar volume of the liquid
NA = Avogadro’s number.

In this way, he obtained (the original constant is slightly adjusted) the coefficient of viscosity at the melting point:

�M ≈ 1�8×10−7 �MTM�1/2

�V M
m �2/3

(8.60)

where
�M = dynamic viscosity coefficient of the melt at the melting point
TM = melting point
M = molar weight
V M

m = molar volume at the melting point.

A comparison between Equations (8.56), (8.57) and (8.60) shows that the hard sphere model and Andrade’s model, from
different starting points, give the same result, apart from the value of the constant.

Table 8.12 shows that Andrade’s equation in most cases agrees well with experimental data.
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Table 8.12 Comparison between calculated [Equation (8.60)] and experimental values
of viscosity at melting point of some metal melts.

Metal TM

(K)
Calculated values of �M.
Andrade’s model (mPa s)

Experimental values of
�M (mPa s)

Na 371 0�62 0�70
K 337 0�50 0�54
Al 933 1�79 1.2–4.2
Fe 1808 4�55 6�92
Cu 1356 4�20 4�34
Zn 693 2�63 3�5
Hg 234 2�06 2�04
Pb 600 2�78 2�61

Other Models
Eyring and co-workers in 1964 proposed the so-called theory of significant structures for viscosities in liquids. It is an
extension of Eyring’s vacancy model of a liquid. The viscosity of the liquid is supposed to be a linear function of solid-like
and gas-like structures.

Macedo and Litovitz considered the energy aspect of viscosity. The layers in the fluid slide relative to each others. All
atoms in one layer must pass periodic potential barriers between equilibrium positions when they move along the chain of
atoms in the neighbouring layer. The coefficient of viscosity can be expressed as a function of the height of the barrier, called
the activation energy of viscous flow.

In 1972, Pasternak suggested a theory of viscosity based on the so-called theorem of corresponding states for transport prop-
erties, i.e. viscosity and diffusion. At the melting point, his equation becomes similar to Andrade’s equation [Equation (8.60)].

8.10.4 Temperature Dependence of Viscosity of Pure Metal Melts. Relationship Between D and �

Relationship Between the Diffusion and Viscosity Coefficients

Diffusion and viscosity are related in the sense that both phenomena deal with atoms and layers of atoms, which move relative
to each other in a liquid. The relationship is derived in the box.

Relationship Between D and �
Consider a solution with a concentration gradient. The solute atoms, which are assumed to be spherical, diffuse under
the influence of the concentration gradient. According to Fick’s first law [Equation (8.31) on page 416], the flux J can
be written as

J = −D
dc

dy
�1′�

          1 m 2

v y

Alternatively, the flux is equal to the concentration c times the volume of the box in the figure:

J = c×1×vy = cvy �2′�

Equation (2′) is inserted into Equation (1′):

vy = −D

c

dc

dy
= −D

dlnc

dy
�3′�
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(Continued)

Each solute atom can be regarded as a sphere with radius r moving in a viscous solution. The force Fa, acting on an
atom, which is required to maintain the motion is given by Stokes’ law:

Fa = 6��rvy �4′�

For 1 kmol the force will be

F = NAFa = NA ×6��rvy �5′�

The work to move the NA atoms a distance dy against the friction force F is equal to the change in the free energy
�−�G� or the change d� in the chemical potential:

d� = −Fdy �6′�

provided that the temperature and pressure are constant. The chemical potential is a function of the activity a of the
solute:

� = �0 +RT ln a �7′�

In a dilute solution, the activity is approximately equal to the concentration:

� = �0 +RT ln c �8′�

Differentiation of Equation (8′) gives

d� = RTd�ln c� �9′�

Combining Equations (6′) and (9′) gives

−Fdy = RTd�ln c�

or

−F = RT
d�ln c�

dy
�10′�

With the aid of Equation (5′), we obtain

−NA ×6��rvy = RT
d�lnc�

dy
�11′�

or with the aid of Equation (3′)

−NA ×6��r

(
−D

dlnc

dy

)
= RT

d�lnc�

dy

which can be reduced to

6��rD = RT/NA �12′�

The relationship between D and � which is derived in the box can be written as

D = kBT

6��r
(8.61)

where kB is Boltzmann’s constant and r is the radius of the atoms. Equation (8.61) is called the Stokes–Einstein relationship.
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Temperature Dependence of Viscosity

The temperature dependence of the diffusion coefficient is given on page 416 [Equation (8.32)]. Equation (8.61) shows that
the viscosity coefficient is inversely proportional to the diffusion coefficient and the temperature dependence of � can be
expressed as

� = �0

T

T0

e
U visc

a act
kBT (8.62)

A comparison between Table 8.9 on page 417 and Table 8.13 below supports the assumption that Ua act is the same for D and
� for the metals in question when the poor accuracy of the measurements is taken into consideration.

Empirical Relationship of � and T

On page 432, the concept of the activation energy of viscous flow was introduced. This quantity appears in a frequently used
empirical function, which is often applied to describe the temperature dependence of viscosity:

� = �0e
U visc

a act
kBT (8.63)

Some values of U visc
act derived from plots of the function ln � versus 1/T are given in Table 8.13.

Table 8.13 Activation energy of viscous flow.

Metal U visc
act (kJ/kmol)

Hg 5�2
Na 10�2
Sn 12�2
Pb 16�4
Ag 31�4
Fe 2.5%C 71

Examples of the temperature dependence of the dynamic viscosity in pure metal melts at constant pressure are shown in
Figures 8.26 and 8.27. The figures show that most of the curves are straight lines.

 (10 − 3 Pa s)      10 log η

0.60

              0.50                        Zn

              0.40

              0.30                                                         Sn            In                       Ga

              0.20                   Pb           Cd                 Bi

              0.10

              0.00

−  0.10

−  0.20                                                                                                 1/ T

                         6      8     10    12    14   16    18    20    22    24    26    28  10
4 K− 1

 Sb

Figure 8.26 Temperature dependence of the dynamic coef-
ficient of viscosity at constant pressure of some metals.
Reproduced with permission from T. Iida and R. I. L.
Guthrie, The Physical Properties of Liquid Metals. © 1988
(Clarendon Press/Oxford University Press, NY-academic.
permissions@oup.com)
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Figure 8.27 Viscosities of Fe, Co and Ni above and below their
melting points as functions of temperature. Below the melting point
the melts are supercooled (dashed curves). Reproduced with permission
from F. D. Richardson, Physical Chemistry of Melts in Metallurgy,
Vol. 1. © 1974 Academic Press Inc. (London), now by Elsevier.
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Within a limited temperature interval, T can obviously be regarded as a constant because the exponential factor changes
much more rapidly than T in Equation (8.62). Hence it may be acceptable to use Equation (8.63) for the derivation of U visc

a act

instead of Equation (8.62).

8.10.5 Viscosity of Alloy Melts

Dilute Alloys

The viscosities of binary alloys vary in most cases with the composition of the alloy. In Figure 8.28, the influence of the
carbon concentration on the viscosity of Fe–C melts of various compositions and different temperatures is shown.

10−3 Pas        η at -% C
 5                10              15

8.0

1400 oC

7.0
1500 oC                           1450 oC

1550 oC

6.0

5.0

0 1.0 2.0 3.0 4.0 wt-% C

  1600 oC

Figure 8.28 Viscosities of Fe–C melts as a function of composition at different temperatures. Reproduced with permission from
J. F. Elliott, M. Coleiser and V. Ramakrishna, Thermochemistry for Steelmaking – Thermodynamics and Transport Properties, Vol. II. ©
1963 Addison-Wesley Publishing Company, Inc. (now under Pearson Education).

The difference between the coefficient of viscosity of a dilute alloy and that of a pure metal melt is often comparatively
small, especially at higher temperatures. It may amount to 1–5 % per at- % of solute.

So far, no reliable theoretical model for the viscosity of dilute liquid alloys exists as the knowledge of the forces between
unlike atoms is too poor.

Thermodynamic Model of Viscosity for Binary Alloy Melts

Most viscosity models involve the atomic masses and the sizes of the component atoms but there are also models which are
based entirely thermodynamic quantities. One of them is the following:

� = Ae
�G∗

act
RT A = hNA


M
(8.64)

where
h = Planck’s constant
NA = Avogadro’s number

 = density of the melt
M = molar mass of the alloy melt
�G∗

act = Gibbs molar free energy of activation
R = the general gas constant
T = absolute temperature.
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�G∗
act is a function of both composition and temperature of the alloy melt. It has been successfully applied to various metallic

and ionic systems.
The viscosity of liquids and melts depend on the motion of atoms, molecules or ions and on the mutual interaction, i.e. the

binding between the particles in the liquid or melt and their configurations. The same is true for other quantities, including
the heat of mixing of two components in a liquid or melt.

For this reason, it is reasonable to assume that there must exist a relationship between the Gibbs energy of activation and
the molar heat of mixing.

Seetharaman and co-workers derived a viscosity model based on the Gibbs free energy of mixing. For binary alloys it is
based on Equation (8.64) and the relationship

�G∗ =
2∑
1

xi�G∗
i act +�Gmix +3RTx1x2 (8.65)

where
�G∗

act = Gibbs molar free energy of activation for the alloy
xi = molar fraction of components 1 and 2
�G∗

i act = Gibbs molar free energy of activation for components 1 and 2
�Gmix = Gibbs molar heat of mixing of components 1 and 2.

The viscosities of substitutional metal alloys as a function of composition at a given temperature can be derived from
Equation (8.65) if the molar heat of mixing is known at the given temperature.

The model has been tested on eight binary alloys with very different properties and phase diagrams. One of them shows
complete miscibility in the solid state (the Ag–Au system). Another one is a system, that includes intermediate phases in the
solid state (Ag–Sn). The system Fe–Co was included to find out whether the unfilled d electron shells in the atoms influence
the viscosity. In some alloys the viscosities of the pure components were fairly similar (Sn–Bi), in other cases they differed
considerably (Cu–Bi).
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Figure 8.29 Experimental and calculated viscosities as a
function of composition for the alloy Ag–Au at 1473 K.
Reproduced with permission from S. Seetharaman and
D. Sichen, Estimation of the viscosities of binary metallic
melts using Gibbsevergies of mixing, Metall. Mater. Trans.
25B, 589–595. © 1994 Springer-Verlag.
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Figure 8.30 Experimental and calculated viscosities as a
function of composition for the alloy Co–Fe at 1813, 1913 and
2023 K. Reproduced with permission from S. Seetharaman
and D. Sichen, Estimation of the viscosities of binary metallic
melts using Gibbsevergies of mixing, Metall. Mater. Trans.
25B, 589–595. © 1994 Springer-Verlag.

A severe problem was to find reliable values of the viscosities of the components as the measured values differ considerably
and are inconsistent. The experimental values of the Gibbs free energies of mixing were taken from the SGTE Solution
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Database (Scientific Group Thermodata Europe) of Hultgren et al.: Selected values of the Thermodynamic Properties of Binary
Alloys. The densities of the pure liquid metals were assumed to be the same as those at the melting point.

Overall, the agreement between the measured and calculated values of the viscosities was found to be good. Figures 8.29
and 8.30 show the viscosity as a function of composition for two of the eight alloys.

8.10.6 Experimental Methods of Viscosity Measurements on Metal Melts

Influence of Gravity Forces and Walls on Viscosity

A striking and unfortunate feature of different experimental viscosity results on metal melts is that they often differ widely.
An example is given in Figure 8.25 on page 429, which shows some measurements of the viscosity of iron as a function of
temperature. Another puzzling feature of the measured viscosities in liquids is that they depend on the shape and position of
the flowing liquid.

Forces other than friction forces, which act on the atoms, are the gravity forces. They change the motions of the atoms after
a collision, which depends on the impact but also on the direction of the liquid flow, i.e. whether it is parallel, anti-parallel
or perpendicular to the gravity force. Consequently, the friction forces change, which affects the value of the viscosity
coefficient.

Another factor that affects the viscosity coefficient is whether the melt flows through a narrow passage or not. If the walls
are close to the flowing melt they will influence the result of the viscosity measurements. Experimental evidence shows that
this effect appears at dimensions of 1–2 mm.

The latter phenomenon is likely to be the reason why viscosity measurements of metal melts differ considerably.
Mainly three different methods are used for such measurements, the capillary tube method (r < 0�2 mm) (Figure 8.31), the

oscillating vessel method (Figure 8.32) and the oscillating plate method (Figure 8.33).

Mark 1

Mark 2

Liquid sample

Capillary tube

Figure 8.31 The time required for a
known amount of the melt to pass a
heat-resisting glass or a quartz tube
(r < 0�2 mm) of given length (l >
70 mm) is measured. � can be calcu-
lated from the measurements. Repro-
duced with permission from T. Iida
and R. I. L. Guthrie, The Physical
Properties of Liquid Metals. © 1988
Oxford University Press.
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Mirror
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Figure 8.32 A vessel containing a viscous
metal melt, hanging in a fibre with a mirror,
is set into oscillation about its vertical
axis. The motion is gradually damped.
The time period and the damping of the
decreasing oscillations are measured and �
can be calculated. Reproduced with permis-
sion from T. Iida and R. I. L. Guthrie,
The Physical Properties of Liquid Metals.
© 1988 Oxford University Press.
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Outer cylinder

Inner cylinder
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Figure 8.33 A planar plate is set into
harmonic linear motion by a driving force.
The amplitude of the motion is measured
when the plate is surrounded by air or
vacuum and a viscous metal melt. The
amplitude is reduced in the latter case and
� of the melt can be calculated. Reproduced
with permission from T. Iida and R. I. L.
Guthrie, The Physical Properties of Liquid
Metals. © 1988 Oxford University Press.

Hence the experimental method of viscosity measurements influences the result strongly. It is difficult to obtain accurate
values of �.
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8.11 Thermal Conduction

Thermal conductivites of solids has been extensively discussed in Chapter 7.
In pure metals, the free electrons are responsible for the heat transport through the metal and the phonon contribution can

be neglected.
In ionic crystals and nonmetals with covalent bonds, there are very few free electrons and the transport of heat is performed

by phonons (lattice vibrations) which move through the crystal lattice.
In other nonmetals, for example alloys, both free electrons and phonons contribute to the heat transport in various proportions.
Nonmetals normally have very high melting points, which are hard to achieve. Hence they are of little practical interest and

we will only study the thermal conductivity of metal melts below.
Thermal conduction in metal melts is of great importance, for example convection phenomena in furnaces and baths and in

casting processes and other industrial processes.

Thermal Conduction in Metal Melts

When a metal melts, its structure will be broken and the electron bands will be strongly changed. Again, it is the complex
conditions in the liquid concerning interatomic forces, potential energies and motion of the atoms and the free electrons which
have made theoretical studies of the transport phenomena extremely difficult, not to say impossible, so far.

In addition, accurate measurements of heat flow are experimentally difficult, owing to losses to the environment. Relatively
few experimental data on thermal conduction are available and there may be large discrepancies between different sets of
measurements and different authors.

For these reasons, no consistent theory of thermal conduction is known so far. Some experimental data will be discussed
below.

8.11.1 Thermal Conductivity of Pure Metal Melts

Figure 8.34 shows the thermal conductivities � of some pure metal melts at various temperatures.
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Figure 8.34 Thermal conductivities of some pure metal melts as functions of temperature. Reproduced with permission from T. Iida
and R. I. L. Guthrie, The Physical Properties of Liquid Metals. © 1988 (Clarendon Press/Oxford University Press, NY-academic.
permissions@oup.com).

From Figure 8.34, we can conclude that

• The curves start at different temperatures because the metals have different melting points.
• Copper is the outstanding liquid thermal conductor.

A comparison with Table 7.3 on page 347 shows that the thermal conductivities of solid metals are very much higher than
those of the corresponding liquid metals.
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Temperature Dependence of Thermal Conductivity

Figure 8.34 shows also the temperature dependence of the thermal conductivities of the metal melts.

• The temperature dependence is comparatively small for most metals.
• Some conductivities increase whereas others decrease with temperature.

As the complexity of the liquid state and the energy states of the free electrons in the melts are very high, no nearby explanation
for the latter observation can be given at present.

8.11.2 Thermal Conductivity of Alloy Melts

Figure 8.35 shows the thermal conductivity of some alloy melts as a function of temperature. A comparison between
Figures 8.34 and 8.35 indicates that

• The presence of solute atoms lowers the thermal conductivity of the alloy melt considerably compared with those of the
two pure metal if their values differ.

• The temperature dependence of the thermal conductivity of alloy melts is comparatively small just as in pure metal melts.
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Figure 8.35 Thermal conductivities of some alloy melts as functions of temperature. Reproduced with permission from J. F. Elliott,
M. Coleiser and V. Ramakrishna, Thermochemistry for Steelmaking – Thermodynamics and Transport Properties, Vol. II. © 1963 Addison-
Wesley Publishing Company, Inc. (now under Pearson Education).

Foreign atoms change the average electron concentration of the free electrons in a solid metal. At special critical values
this may cause a total change of the crystal structure. It is not surprising that foreign atoms in alloy melts makes it more
difficult for the electrons to move through the alloy melt. This reduces the thermal conductivity as heat is transported by the
free electrons in metals and alloys.

8.12 Electrical Conduction

The theory of electrical conductivities of solids has been extensively discussed in Chapter 7. Substances with very few free
electrons, for example ionic crystals, are insulators at room temperature. When ionic crystals melt, the situation becomes
different. The ions become mobile and are able to transport electrical charge through the melt.

Most solid pure metals conduct electric charge very well. They contain one or more free electrons per atom. These electrons
are entirely responsible for the transport of electric charge through the metal. The theory of electrical conduction in solid
metals, which has taken the band theory of electrons into account, agrees very well with experimental data.
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Below we will discuss electrical conduction in metal melts, which is important in, for example, refining processes in metals,
electrical heating of metals and the production of aluminium.

Electrical Conduction in Metal Melts

The structure of metal melts is very complex. These circumstances have consequences for both thermal and electrical
conduction in metal melts. As electric currents are much easier to measure than heat flows, the accuracy of the available
experimental data of electrical conduction in liquid metals is much better than that of thermal conduction.

So far, no general and satisfactory theory of electrical conduction for metal melts has been developed. Electrical conductivity
is defined as the inverse of resistivity: � = 1/
.

8.12.1 Electrical Conductivity of Pure Metal Melts

Electrical conduction is normally discussed in terms of resistivity instead of conductivity (page 348 in Chapter 7). The electrical
resistivities of some pure solid and liquid metals and semiconductors at various temperatures are given in Table 8.14.

Table 8.14 Electrical resistivities of some liquid and solid metals and semiconductors at their
melting points together with the temperature dependence of the metal melt. 
 = 
M +�T −TM�.

Metal TM (K) 
s
M�10−8� m� 
L

M�10−8� m� 
L
M/
s

M �10−8� mK−1� TM–T (K)

Na 371 6�60 9�57 1�45 0�038 371–573
K 337 8�32 13�0 1�56 0�064 337–573

Cu 1356 10�3 21�1 2�04 0�0089 1356–1473

Ag 1234 8�2 17�2 2�09 0�0090 1234–1473

Au 1336 13�7 31�2 2�28 0�014 1336–1473

Zn 693 16�7 37�4 2�24 Not linear

Al 933 10�9 24�2 2�20 0�0145 933–1473

Si 1713 ∼2400 ∼81 0�034 0�113 1713–1820

Ge 1232 900 60 0�067

Sn 505 22�8 48�0 2�10 0�025 505–1473

Pb 600 49�0 95�0 1�94 0�048 600–1273
Fe 1808 122 110 0�90 0�033 1808–1973
Ni 1726 65�4 85 1�3 0�0127 1726–1973
Co 1768 97 102 1�05 0�0612 1768–1973

The following conclusions can be drawn from the table:

• The resistivities of most metals increase on melting. The mobilities of the lattice atoms increase, which makes it more
difficult for the valence electrons to pass.

• The resistivities of the semiconductors Si and Ge decrease considerably on melting because they loose their special
semiconductor character during the transformation.

• Ferromagnetic metals show little variation of resistivity on melting. The magnetic interaction between the atoms does not
change during the melting process.

Temperature Dependence of Resistivity of Metal Melts

The temperature dependence of many metal melts is linear. In this case the resistivity of the melt is a linear function of the
temperature:


L = 
L
M +�T −TM� (8.66)
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The constant  in sixth column in Table 8.14 is identical with the temperature coefficient  in Equation (8.66). The datas
are missing for some metals. The reason for this may be that the experimental data are insufficient or that the temperature
dependence is not linear. Table 8.14 shows that

• The resistivities of most metal melts increase linearly with increasing temperature.

The increased kinetic motion of the atoms in a metal melt obstructs the motion of the free electrons, which results in an
increase in resistivity. Figures 8.36 and 8.37 show the resistivities of some alloys and pure metals as functions of temperature.
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Figure 8.36 Resistivities of some liquid Fe–C alloys as functions of temperature. Reproduced with permission from T. Iida and R. I. L.
Guthrie, The Physical Properties of Liquid Metals. © 1988 (Clarendon Press/Oxford University Press, NY- academic.permissions@oup.com).
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Figure 8.37 Resistivities of some metal melts as functions of temperature. Reproduced with permission from J. F. Elliott, M. Coleiser
and V. Ramakrishna, Thermochemistry for Steelmaking – Thermodynamics and Transport Properties, Vol. II. © 1963 Addison-Wesley
Publishing Company, Inc. (now under Pearson Education).
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8.12.2 Electrical Conductivities of Alloy Melts

Metal products are often made of alloys to improve, for example, their mechanical strength, magnetic properties, wear
resistance, temperature resistance, oxidation resistance, corrosion resistance (stainless steel) and other properties. Hence it is
important to investigate the properties of alloys in addition to those of pure metals.

On page 154 in Chapter 3, the electron structures of solid alloys was discussed. The introduction of foreign atoms into a
crystal lattice of a pure metal changes strongly the ‘electrical environment’ in the crystal lattice. It was shown that the change
in electron concentration, i.e. changed composition of an alloy, may even result in a complete change in the crystal structure.
Another consequence is that the levels of the energy bands become distorted and the motion of the free electrons becomes
obstructed, which is manifested as increasing resistivities.

Analogously, it is reasonable to assume that the ‘electrical environment’ in metal melts also becomes distorted by the
introduction of alloying elements and makes it more difficult for the free electrons to move through the liquid.
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Figure 8.38 Resistivities of (a) Ag–Au liquid alloys, (b) Cu–Sn liquid alloys and (c) Pb–Sn liquid alloys as functions of composition.
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Figure 8.39 Resistivities of (a) Fe–Ni liquid alloys, (b) Fe–Co liquid alloys and (c) Ni–Co liquid alloys as functions of composition.
Reproduced with permission from T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals. © 1988 (Clarendon Press/Oxford
University Press, NY-academic.permissions@oup.com).

Figures 8.38 and 8.39 show the appearances of some typical binary alloy systems. From the figures and other experimental
evidence, it can be concluded that
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• The resistivity of an alloy, in most cases, cannot be obtained by linear interpolation (using mole fractions) of the resistivities
of the components. The resistivity of the alloy normally exceeds the interpolated value (dashed line in Figures 8.38a).

• The resistivity–composition curve seems to have a smooth convex shape with a maximum resistivity value for an intermediate
composition if the two component atoms have a similar electron configurations (Figure 8.38a and Figure 8.39a–c).

8.12.3 Ratio of Thermal and Electrical Conductivities in Pure Metal Melts

It is well known that the Wiedemann–Franz law (Section 7.4.5 on page 357) is valid for pure solid metals. It states that

• The ratio of the thermal and electrical conductivities of a pure metal is proportional to the absolute temperature.

�

�
= �2k2

B

3e2
T = constant ×T (8.67)

The value of the constant is 2�45×10−8 W�/K2.

The Wiedemann–Franz law can be regarded as confirmation of the fact that the transport mechanisms behind both thermal
and electrical conduction in a metal are the free electrons in metals.

Even if the theory of thermal and electrical conduction in metal melts is not developed, it is more than likely that the
Wiedemann–Franz law is also true for metal melts.

To check this assumption, the ratio of the thermal and electrical conductivities, measured separately but at the same
temperature, was calculated. The results were not very promising as deviations between 30 and 100% were obtained.

At the beginning of the 1970s, a new experimental method was developed and the measurements of the thermal and
electrical conductivities of some metal melts were repeated. The difference was that the two conductivities were measured
simultaneously and with much higher accuracy than in the earlier measurements. In this way, Busch et al. and Haller et al.
could show that the Wiedemann–Franz law is valid for liquid Ga, Hg and Sn.

The earlier failure can be ascribed to the poor accuracy of the measurements of the thermal conductivity. The method for
measuring the thermal and electrical conductivities simultaneously offers a possibility to obtain more accurate determinations
of thermal conductivities than with direct measurements. By experimental determination of �/� and � with good accuracies,
� can be calculated with satisfactory accuracy.

The method is analogous to the classical determination of the electron mass m. The charge e of the electron is determined
by Millikan’s oil drop method. The ratio e/m is determined by deviation of a beam of electrons in a magnetic field and the
mass m can be calculated with high accuracy.

Summary

� Models of Metal Melts

X-ray analysis shows that a short-range order exists in liquid metals.

Vacancy Model

The liquid is assumed to have the same structure as the corresponding solid, with the important distinction that the vacancy
concentration in the liquid is much larger than in the solid. This difference in vacancy concentration between melts and solids
is assumed to be responsible for the large difference in the properties of a melt compared with the corresponding solid.

The vacancy model of liquids can explain some of the properties of liquids in a semiquantitative way. If Eyring’s vacancy
model were true, the X-ray plots of melts should show the presence of longe-range order structures in the liquid states like
those found in solids. A serious objection to the model is that no such effects have been found.

� Modern Theory of Liquids

Liquids and melts have irregular structures and resemble amorphous solids, which can be regarded as an ‘instant picture’ of a
liquid. It differs only slightly from the liquid structure we obtain when we consider an average over time and over all atoms.
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Pair Distribution Function

The lack of a consistent and useful model of liquid structure and the necessity for a mathematical description of the structure
have led to the introduction of the concept of the pair distribution function, which is of great importance for the description
of the structures and properties of liquids and melts.

The pair distribution function g�r� deals with the relationship between a pair of atoms, an arbitrary reference atom and
another atom. It is defined as the relative probability of finding another atom in a unit volume at a distance r from the
reference atom:

g�r� = wr

w0

The probability of finding the second atom at a distance r from the reference atom (origin), independent of direction:

Radial distribution function = g�r�w0 ×4�r2.

Coordination number of an atom: Zcoord ≈ 2
rmax∫
r0

4�r2g�r�dr

Pair Potential

The pair potential �ij is defined as the potential energy between an atom and its surrounding neighbours. If we choose the
atom as the reference atom, the pair potential is denoted by ��r�.

The pair distribution function and the pair potential are very important quantities as all the properties of pure liquids
and melts are functions of g�r� and ��r�. Pair potentials can, in principle, be derived from quantum mechanics, but this is
practically impossible for all atoms except H and He so far. Instead, various models of ��r� are used:

Hard sphere potential:

��r� = +� for r < r0

��r� = 0 for r ≥ r0

Inverse power potential:

��r� = E
( r0

r

)n

Lennard-Jones potential:

��r� = 4Ee

[( r0

r

)n −
( r0

r

)m]

Ion–ion potential:

� = A

r3
cos �2kFr�

� Melting Points of Solid Metals
The melting points of metals vary widely. They depend on the structure of the crystal lattice of the metal and the strength of
the interatomic forces.

Lindemann’s Melting Rule

	 = C

(
TM

MV
2/3
m

)1/2
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� Volume Change and Heat of Mixing on Mixing Metal Melts

When two liquids mix, their total volume changes. The mixing process is accompanied by a change in energy of the system.
The volume change can be positive or negative. The heat of mixing can also be either positive or negative. All combinations
of signs occur.

V excess
m alloy = Vend −Vbeginning = x1M1 +x2M2


alloy

−
(

x1M1


1

+ x2M2


2

)

Heat of Mixing

Hexcess
m alloy = 

�T

TV excess
m alloy

� Thermal Expansion

Thermal Volume Expansion

� = 1
V

(
�V

�T

)
p

Melts normally have higher volume expansion coefficients than solids.
Experimental evidence shows that �liquid is practically constant within the temperature range from the melting point TM to

the boiling point Tb.

Vm �T� = V M
m �1+��T −TM��

Temperature Dependence of Density


 = M

Vm

= M

V M
m �1+��T −TM��

If � is small:


 = 
M − M�

V M
m

�T −TM�

� Heat Capacity

The motion of the atoms in the liquid state is extremely complex. It has not been possible to describe the motion of the atoms
as a function of time. Therefore, it is very difficult to develop a satisfactory theory of heat capacity for liquids.

The only way to proceed is to use the theory of the pair distribution function and some approximate model of the pair
potential and derive an expression for the internal energy expressed with the aid of these functions.

U = 3
2

RT +�

where

� = w0Na

2

�∫
0

g�r���r�×4�r2dr

or

U = 3
2

RT + 2� �Na�
2

Vm

�∫
0

g�r���r� r2dr
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Heat Capacity at Constant Volume

CV =
(

�U

�T

)
V

= 3
2

R+ 2� �Na�
2

Vm

�∫
0

[
�g�r�

�T

]
V

��r� r2dr

Heat Capacity at Constant Pressure

The difference between Cp and CV is described by the same relation for both liquids and solids:

Cp −CV = �2V
�D
A

�
�T −�D� Grüneisen’s rule

The heat capacities of metal melts are of the same magnitude as those of the corresponding solids. The heat capacities at
constant pressure of some metal melts seem to be constant over a considerable temperature range and a mean value can be used.

In other cases, when the Cp–T curve is inclined or bent, an empirical function is used to describe the temperature dependence
of Cp:

Cp = a+bT + c

T 2
+dT 2

� Transport Properties of Liquids

Transport phenomenon Involves transport of

Diffusion Mass
Viscosity Momentum
Thermal conduction Energy
Electrical conduction Charge

� Diffusion

Basic Theory of Diffusion

The macroscopic laws of diffusion in liquids are analogous to those in solids:

Fick’s first law: J = −D grad c

In one dimension: J = −D
dc

dy

Simple Model of Diffusion in Liquids

Diffusion constant as a function of activation energy and temperature:

D = D0e
− U diff

a act
kBT

Theories of Diffusion in Liquids

Better theoretical models for the diffusion constant in disordered media than the simple one have been developed. Four models
are discussed in the text.

• fluctuation theory
• significant structure theory
• random barrier theory
• Theory of dense gases.
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Diffusion of Interstitially Solved Atoms in Metal Melts

The lighter the interstitial atoms are, the more easily can they move in the solvent and the larger will be their diffusion
constants in the melt.

Influence of Gravity and Other Factors on Measurements of Diffusion Coefficients

Gravity and the influence of the walls of capillary tubes result in varying values of the diffusion coefficient when different
experimental methods are used. Space experiments show that even the laws change.

Diffusion in Alloys

Experiments on liquid alloys indicate that the same final equations can be applied to liquid and solid alloys:

D̃ = xAD̃B +xBD̃A

where

D̃A = DA

(
1+ dln�A

dlnxA

)
and D̃B = DB

(
1+ dln�B

d lnxB

)

� Viscosity

Basic Theory of Viscosity

F = −�A
dv

dy
� = −�

dv

dy

The nature of the friction forces between the layers is entirely different for gases and liquids. In the case of liquids the
intermolecular forces in the liquid are responsible for the frictional adhesion forces.

The lack of a consistent single model for liquid structure makes the theory of viscosity difficult. Approximate models have
to be introduced. Three of them are discussed in the text:

• model based on the pair distribution function theory
• hard sphere model
• Andrade’s quasi-crystalline model.

Andrade’s equation:

�M ≈ 1�8×10−7 �MTM�1/2

�V M
m �2/3

agrees well with experimental data in most cases.

Temperature Dependence of Viscosity of Pure Metal Melts

Viscosity decreases rapidly with increase in temperature. Empirical relationship:

� = �0e
U visc

a act
kBT

Influence of Gravity and Other Factors on Measurements of Viscosity Coefficients

Gravitation and influence of the walls result in varying values of the viscosity coefficient when different experimental methods
are used.
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Relationship Between D and �

D = kBT

6��r

which gives

U diff
a act = U visc

a act = Ua act

and

�

T
= constant × e

Ua
kBT

Viscosities of Alloy Melts

The viscosities of binary alloys vary in most cases with the composition of the alloy. So far no reliable theoretical model for
the viscosity of dilute liquid alloys exists as the knowledge of the forces between unlike atoms is too poor.

� Thermal Conduction

The complex conditions in the liquid concerning interatomic forces, potential energy and motion of the atoms and the free
electrons make theoretical studies of the transport phenomena extremely difficult. In addition, accurate measurements of heat
flow are experimentally difficult, due to losses to the environment.

For these reasons, no consistent theory of thermal conductivity is known so far. Conclusions are based on experimental evidence.

Thermal Conductivity in Pure Metal Melts

Thermal conductivities of solid metals are very much higher than those of the corresponding liquid metals. Copper is the
outstanding liquid thermal conductor.

Temperature Dependence of Thermal Conductivity

The temperature dependence is comparatively small for most liquid metals. Some conductivities increase and others decrease
with temperature.

Thermal Conductivity in Alloy Melts

The presence of solute atoms lowers the thermal conductivities of alloy melts considerably compared with those of the pure
metal. The temperature dependence of the thermal conductivities of alloy melts is comparatively small just as in pure metal melts.

� Electrical Conduction

As electrical currents are much easier to measure than heat flows, the accuracy of the available experimental data on electrical
conductivities in liquid metals is much better than those on thermal conductivities.

Owing to the complexity of a metal melt, no general and satisfactory theory of electrical conductivity for metal melts has
been found. Conclusions are based on experimental evidence.

Electrical Conductivities of Pure Metal Melts

• The resistivities of most metals increase on melting. The mobilities of the atoms increase, which makes it more difficult
for the valence electrons to pass.
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• The resistivities of the semiconductors Si and Ge decrease remarkably on melting because they change from solid semi-
conductors into metal melts.

• Ferromagnetic metals show little variation of resistivity on melting. The magnetic interaction between the atoms does not
change during the melting process.

Temperature Dependence of Resistivity of Metal Melts

The resistivities of most metal melts increase linearly with increase in temperature.

Electrical Conductivities of Alloy Melts

The ‘electrical environment’ in metal melts becomes distorted by the introduction of alloying elements and makes it more
difficult for the free electrons to move through the liquid. Therefore, the electrical conductivity is higher in alloys than in pure
metals.

The resistivity of an alloy, in most cases, cannot be obtained by linear interpolation of the resistivities of the components.
The resistivity of the alloy normally exceeds the interpolated value.

� Wiedemann–Franz Law

The ratio of the thermal and electrical conductivities of a pure solid metal is proportional to the absolute temperature:

�

�
= �2k2

B

3e2
T = constant ×T

The Wiedemann–Franz law can be regarded as a confirmation of the fact that the carriers behind both thermal and electrical
conduction in a metal are the free electrons in metals. It has been known for a long time that the law is valid for solid metals.
With the aid of a new technique, accurate measurements on metal melts were performed in the 1970s, which showed that the
Wiedemann–Franz law is also valid for pure metal melts.

Exercises

8.1 When metals solidify their volumes shrink. A measure of the shrinkage is the so-called solidification shrinkage �. It is
defined as

� = 
s −
L


s

where 
s and 
L are the densities of the solid and liquid metal, respectively.
Calculate � for Al, Cu and Fe from the diagrams shown.
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Figures (a), (b) and (c) are reproduced by permission of the Controller of HMSO (which is now The Office of Public Sector Information
(OPSI)). © 2002 Crown.

8.2 There is an empirical rule called Richards’s rule that says that the latent heat of fusion of an element divided by the
gas constant R is equal to the melting point temperature (K) of the metal.

Test the rule on the metals in the table and compare the result with Table 8.3 on page 406.

Element −�H fusion
m (kJ/kmol) Element −�H fusion

m (kJ/kmol)

Ag 10960 Hg 23240
Al 10560 Mg 87020
Au 12820 Na 26430
Cu 13010 Ni 17380
Fe 13670 Pb 49780
Ge 34870

8.3 The curves shown in the figure are the heat capacities Cp of solid and liquid Al (upper curve) and CV of liquid
Al (lower curve) as functions of temperature within the temperature interval from just above absolute zero to a
temperature close to the boiling point. The diagram is a result of Grimvall’s and Forsblom’s simulation calculations,
based on Ercolessi’s and Adams’ model of the forces between the Al atoms.

The melting process is an example of a transformation process from an ordered to a disordered state of the system.
Use the diagram to answer the following questions:
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Molar heat capacity (3R )

2.2

1.6

1.8

2.4

2.0

0.6

0.8

1.0

1.2

1.4

1000 500040002000 30000

Temperature  (K)

After Grimvall and Forsblom, Heat Capacity of Liquid Al.

(a) Which are the degrees of freedom in Al just before and after the melting process? Express CV in terms of R.
(b) Calculate an approximate value of the heat of fusion from the diagram. Compare your value with that in the table in

Exercise 8.2.
(c) Derive an average value of Cp −CV for Al for the temperature interval 1500–2000 K. Check your result by calculation

of a theoretical value of Cp −CV. Some material constants for solid Al are as follows:

Linear expansion coefficient  = 2�4×10−5 K−1 Density at 428 K = 2670 kg/m3.
Debye temperature = 428 K. Compressibility coefficient � = 15�7 m2/TN.

(d) Discuss the possible reasons for the changes in Cp and CV for liquid Al within the temperature interval 1500–2750 K
shown in the figure.

8.4
log  D / D

0
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Reproduced with Permission from M. Shimoji and T. Itami, Atomic Transport in Liquid Metals. © 1986 Trans Tech Publications Ltd,
Switzerland.
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The diagram shows log D/D0 as a function of the inverse of the absolute temperature 1/T for molten Na within the
temperature interval from 573 K down to the melting point of Na at constant pressure and constant volume, where D
is the self-diffusion coefficient of sodium and D0 is a constant.

D = D0e
− Ua act

kBT

(a) Use the diagram for calculation of the average activation energy of liquid sodium.
(b) Discuss the curve for constant volume and explain its shape, i.e. its position and the reason why the lower curve

deviates from a straight line.

8.5 The diffusion coefficient of antimony in bismuth was determined in a series of low Earth orbital space experiments at
different temperatures by a Canadian research group in the 1990s (Smith et al.). When the influence of the microgravity
was reduced to a minimum, the values in the table were obtained in one of the experiments.

Temperature (�C) D�m2/s�

390 5�00×10−9

592 8�36×10−9

785 11�82×10−9

(a) Plot the diffusion coefficient D as a function of temperature T��C�.
(b) What type of function does the curve represent?
(c) Calculate the increase in the diffusion coefficient per �C.

8.6 (a) A thin layer of lubricating oil separates two large parallel plates at a distance of 0.060 mm from each other. The
lower plate is a rest. A (tangential) shear stress of 4�8 × 103 N/m2 is required to keep the upper plate moving with a
constant velocity of 0.40 m/s relative to the lower plate. Calculate the coefficient of viscosity of the lubricating oil.

(b) The same lubricating oil is used as a lubricant in a bearing, which consists of a central axis at rest and a coaxial
rotating wheel (height 40 mm and inner radius 20 mm). The thickness d of the oil interface between the axis and
the wheel is 0.060 mm. The angular velocity of the wheel is 200 r.p.m.

Calculate the total friction force that acts along the inner surface of the wheel and the friction power that
is developed at the interface. The wheel is cooled and the temperature can be assumed to be equal to room
temperature.

(c) Describe the benefit of lubrication oil.

8.7 The figures show the viscosity of pure liquid copper and pure liquid iron as functions of temperature. The diagrams
were derived experimentally by Barfield and Kitchener.
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Both figures are reproduced with permission from J. F. Elliott, M. Coleiser and V. Ramakrishna, Thermochemistry for Steelmaking –
Thermodynamics and Transport Properties, Vol. II. © 1963 Addison-Wesley Publishing Company, Inc. (now under Pearson Education).
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(a) Assume that the simple empirical relationship

� = �0e
Ua

kBT �1′�

between � and T is valid. Is this equation adequate for derivation of the average activation energy? If so, derive
the values of Ua act for liquid copper and liquid iron.

(b) With the aid of the Stokes–Einstein relationship [Equation (8.61) on page 433], another, more accurate, relationship
[Equation (8.62) on page 434]:

� = �0

T

T0

e
Ua act
kBT �2′�

can be derived. Test this relationship by plotting log �/T as a function of 1/T for liquid copper and liquid iron.
Discuss the result and compare it with the result in (a).

8.8 Derive the thermal conductivity for the pure liquid and solid metals Cu, Ni and Fe at their melting points with the aid
of the Wiedemann–Franz law.
The electrical conductivities, which are easier to determine experimentally than the thermal conductivities, can be
derived from the figure. More accurate values of the melting points of the metals than those you can read from the
figure can be found in Table 8.3 on page 406.

Electrical resistivities of pure liquid metals
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Reproduced with permission from J. F. Elliott, M. Coleiser and V. Ramakrishna, Thermochemistry for Steelmaking – Thermodynamics and
Transport Properties, Vol. II. © 1963 Addison-Wesley Publishing Company, Inc. (now under Pearson Education).





Answers to Exercises

Chapter 1
1.1a A continuous spectrum, overlapped by a number of sharp discrete lines.
1.1b 11 kV.
1.1c No. Vacancies are formed in a number of Cu atoms, which results in K lines. All K lines appear simultaneously at constant intensity ratios. A filter,

which transmits the K� line but not the more energetic K lines, can be used if only the K� line is wanted.
1.2 0.280 nm.
1.3 There is no stationary structure in liquids but there exists a permanent short-range order.
1.4 0.154 nm. The K� line in the characteristic X-ray spectrum of copper.

1.5a �r = probability of finding another atom in a unit volume at a distance r from the origin; �0 = average probability of finding another atom in an
arbitrary unit volume.
Curve 1.11 = curve 1.10 multiplied by 4�r2. Integration will be a lot simpler when you use a volume element equal to a thin shell 4�r2dr than a
volume element in polar coordinates.

1.5b 0.22 nm (intersection between the curve and the r axis).
1.5c 0.28 nm (maximum of the first peak of the curve).
1.5d Coordination number = 12.

[The area under the curve (first peak) A= bh/2 = �0�40−0�22�×13/2 = 11�7�]
1.6a �/6 ≈ 0�52.
1.6b �

√
3/8 ≈ 0�68�

1.6c �
√

2/6 ≈ 0�74�
1.7a Hint: Express a and c in terms of the radius R of the atoms.
1.7b �

√
2/6 ≈ 0�74�

1.8 ∼ 10%�
1.9a 5�71×103 kg/m3�

1.9b Stacking faults, composition deviations.
The structure is close to HCP but not exactly ideal.
��c/a�ideal = √

8/3 ≈ 1�63 and �c/a�ZnO = 0�5195/0�3243 ≈ 1�60�	
1.9c 0.462 nm.
1.10 
Cu = 8�93×103 kg/m3 and MCu = 63�54 kg/kmol�

1.10a 0.362 nm
[
4/a3 = NA/�M/
�

]
.

1.10b 0.256 nm �a/
√

2�.
1.10c 12 (consider the unit cell).
1.11a S�hkl�= f

∑
j

e−2�i�ujh+vjk+wj l�

where uj, vj and wj are the components of a position vector r that successively describes the different basic positions of atoms in the unit cell of the
crystal which contribute to the sum S(hkl) and f is the atomic scattering factor.

Condition for constructive reflection in a BCC crystal:

h +k + l = even integer

Condition for constructive reflection in an FCC crystal:

hkl are all integers of the same kind, odd or even.
If hkl are mixed integers (odd and even) the intensity of the diffracted X-ray is zero in an FCC structure.

1.11b In a BCC structure the following lines appear: (110), (200), (211), (220), (222), (310), (321).
1.11c Reflections occur in the following planes in an FCC crystal: (111), (200), (220), (222) and (311).
1.12 �deB = 3�92×10−12 m. Relativistic calculations are necessary.

1.12a MgO shows FCC structure. The designations of the lattice planes are shown in the last column of the table.

Physics of Functional Materials Hasse Fredriksson and Ulla Åkerlind
© 2008 John Wiley & Sons, Ltd
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Exercise Table 1.12a

2Rj

Rj

�deBL

(
Rj

�deBL

)2
[

h2 +k2 + l2 = a2

(
Rj

�deBL

)2
]

hkl

19�9×10−3 4�169×109 17�38×1018 3 111
22�9×10−3 4�798×109 23�02×1018 4 200
32�4×10−3 6�790×109 46�10×1018 8 220
37�8×10−3 7�915×109 62�65×1018 11 311
39�7×10−3 8�315×109 69�14×1018 12 222
45�8×10−3 9�595×109 92�06×1018 16 400
49�9×10−3 10�455×109 109�31×1018 19 331
51�1×10−3 10�705×109 114�60×1018 20 420
56�0×10−3 11�730×109 137�59×1018 24 422

hkl are all integers of the same kind, odd or even. Hence MgO shows FCC structure.

1.12b 0.417 nm.

[
a2 = (

h2 +k2 + l2
)
/

(
Rj

�deBL

)2
]

1.13 Vacancies, interstitials, substitutionals. (pages 24–25 in Chapter 1.)
1.14 Line defects: dislocations (pages 26–27 in Chapter 1).

Interfacial defects: stacking faults, grain boundaries, twinned crystals (pages 28–30 in Chapter 1).
1.15 There are substitutional solutions and interstitial solutions.

1.15a Substitutional solutions. The foreign atoms are too large to be dissolved as interstitials.
1.15b See pages 33–34 in Chapter 1.
1.15c Interstitial solutions contain only small foreign atoms such as H, C, N and O for space reasons.
1.16 When a solution is saturated and more foreign atoms are added a new phase is precipitated. The new phase is called intermediate phase or secondary

phase.
1.17a A random solid solution is a substitutional solution where the substitutional atoms are distributed at random in the lattice sites.
1.17b An ordered solid solution is a substitutional solution where the substitutional atoms appear in a regular and repeated pattern.
1.17c A superlattice has a regular alternation of unlike atoms through the entire crystal.
1.17d Order is maintained locally but not at distant parts of the solution, i.e. there is no long-range order. This is often the situation in alloy melts.
1.17e �= �1−PA/xA�. See page 38 in Chapter 1.

� is a measure of the short-range order.
In a random solution PA = xA and �= 0.

1.17f A group of atoms or other particles (for example vacancies) held together by mutual internal forces.

Chapter 2
2.1 13.6 eV.
2.2 12.8 eV (n= 1 → n= 4).

2.3a 540 nm.
2.3b 3.9 eV.

2.4 6�61×10−34 J s.
2.5 1�91×10−11 m for electrons close to the target.
2.6 0�335×p2

i eV, where pi is a low integer.
2.7 Solutions of the Schrödinger wave equation, which includes a potential function Epot (x, y, z), are only possible for quantized eigenvalues. The solution

is the wave function . The wave function  is used for probability calculations. See page 53 in Chapter 2.
2.8a Set up an expression of the probability and differentiate it to find the maximum.
2.8b < r >=3a0/2 and < r2>=3a2

0.
2.9a Principal quantum number n= 1, 2, 3, � � � .

The azimuthal quantum number l= 0, 1, 2, � � � � �n−1�= (s, p, d electrons) represents the angular momentum l of the electron where � l� = �
√
l�l+1�.

Magnetic quantum number ml = 0, ±1, ±2� � � � , ±l gives the projection of the l vector in a special direction.
Electron spin �s� = 1/2. Two directions are possible.

2.9b All four quantum numbers (n, l, ml, ms) of two electrons within an atom cannot be equal. At least one of them must differ.
2.9c There is a resultant �L� = �

√
L�L+1� and a resultant �S� = �

√
S�S+1� of all the l and s vectors of the electrons in an atom. �L� and �S� have a

resultant �J � = �
√
J�J +1�. The resultants of filled shells are zero.

Nomenclature: the capital letter S, P, D, � � � symbolizes the L values. The principle is the same as for orbital electrons. Superscript = 2S+ 1.
Subscript = the J value.

2.9d No restrictions for �n, �L= 0, ±1, �ML = 0, ±1, �S = 0, �J = 0, ±1, with the exception that J′ = 0 does not combine with J′′ = 0.
2.9e Singlet states have S = 0. Triplet states have S = 1. This means that the resulting spin vector has different values, which is allowed and common.

Transitions from singlet to triplet states are forbidden. Singlet–singlet and triplet–triplet transitions occur provided that the other selection rules besides
�S = 0 are fulfilled.
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2.10a 254 nm.
2.10b 6�4×1016 photons/s.
2.11 The total energy required to remove both electrons in He is 79.0 eV.

Hint: The constant in Rydberg’s equation can be written Z2R, where Z is the charge of the nucleus of the atom.
2.12

Exercise Table 2.12

Atom Atomic number Electron configuration Electronic state

H 1 1s 2S
He 2 1s2 1S
Li 3 1s22s 2S
Be 4 1s22s2 1S
B 5 1s22s22p 2P
F 9 1s22s22p5 2P
Ne 10 1s22s22p6 1S
Na 11 1s22s22p63s 2S
Cl 17 1s22s22p63s23p5 2P
Ar 18 1s22s22p63s23p6 1S
K 19 1s22s22p63s23p64s 1S

2.13a The selection rules are:

�S = 0
�L= 0, ±1
�J = 0, ±1, except J ′ = 0 ↔ J ′′ = 0.

6 3 5 4 1 2
2p

2p

2 3P

S = 1  L = 1 

J ´ = 0, 1, 2 

2 3P

S = 1  L = 1 

J ´´ = 0, 1, 2 

2
3 P

1
3 P

0
3 P

2
3 P

1
3 P

0
3 P

Exercise 2.13a

The lines shown in the figure agree with the selection rules.

2.13b The intervals between the sublevels in the lower triplet help in the analysis.

�= 265�0454 nm = line 6
�= 265�0619 nm = line 3
� = 265�0550 nm = line 5
�= 265�0596 nm = line 4
�= 265�0760 nm = line 1
�= 265�0694 nm = line 2.

2.14 Spectral lines split up into components in a magnetic field (pages 69–71 in Chapter 2). For the normal Zeeman effect, �Epot = �B�MLB, where
�B = eh/�4�m�.

2.15 15 530�00 cm−1 and 15 530�00±0�47 cm−1. Compare Figure 2.30 on page 71.
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M L

+2
+1

0
–1
–2

+1
0

–1

ν 0 ν 0  –  Δν ν 0 ν 0  +  Δν

1D2

1P1

Exercise 2.15

2.16a −16�25 eV.

2.16b 10.95 eV.

2.16c 15.43 eV.

2.17a There are similar designations and symbols for resulting vectors in atoms and molecules.
�= the magnitude of the projection of the resulting L vector on the internuclear axis in a diatomic molecule (Figure 2.38 on page 75).
� is quantisized: �= 0, ±1� � � � ±L.

The resulting spin vector S is the same as for atoms. S is integer or half integer.

�S� = �

√
S�S+1�

Nomenclature for states:

�= 0 → � state
�= 1 →� state
�= 2 → � state.

The multiplicity of the state = 2S+1. It is written as a superscript.
2.17b ��= 0, ±1 and �S = 0.
2.17c L= 2, S = 1/2, J = 5/2 and 3/2. The components are 2�5/2 and 2�3/2.

Transitions to the 2� states do not occur because they violate the selection rule ��= 0, ±1. Transitions to 2� and 2� states are possible as they fulfil
the same selection rule.

2.18 Erot = I�2

2 = �I��2

2I = P2

2I = �
2

2I J�J +1��

2.19a Pure rotation (far-infrared or microwave region): �J = ±1.
Rotation+vibration near-infrared region: �J = ±1 and �v = ±1.
Rotation+vibration+ simultaneous electronic transition:
��= 0, ±1 and �S.
�J = ±1 if ��= 0 and no restriction on the vibration quantum number v.
�J = 0�±1 if ��= ±1 and no restriction on the vibration quantum number v.

2.19b The intensities are determined by the transition integral:
I = constant × ∫ �v′��v′′�∗dr. See pages 81–82 and 84–85.

2.20a 6�43×1013 Hz.
2.20b 2�13×10−20 J or 0.133 eV.
2.21a 3.75 eV.
2.21b 3.70 eV.
2.22a 2�64×10−47 kg m2.
2.22b 0.128 nm.

2.23 0.113 nm.
2.24 Polyatomic molecules have several vibrational frequencies and the moments of inertia for these molecules are 
= 0 for all axes. This increases the

number of transitions which are allowed and occur in the spectrum. Rotations around three axes are possible.
2.25 0.096 nm and 105�.
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Chapter 3
3.1 Cohesive energy refers to separation into neutral free atoms, whereas lattice energy refers to separation into free ions. See page 100.

3.2a 8.97 eV.
3.2b 8.6.
3.3a Ion bonds: electrostatic attraction between ions. Example: KCl.

Covalent bonds = homopolar bonds = electron pair bonds: exchange energy, i.e. a quantum-mechanical effect based on the fact that electrons are
indistinguishable. Example: H2.
Metallic bonds: a lattice of metal ions, surrounded by a common ‘electron cloud’ which is a very stable system. Examples: all metals.

3.3b Four sp3 wave functions combine to four symmetrical wave functions, which give four equivalent (half) electron pair bonds in tetrahedral directions.
Examples: diamond structure and the CH4 molecule.
sp2 hybridization is another example, which occurs in graphite and benzene rings.

3.4a 3�51×103 kg/m3.
3.4b 2�26×103 kg/m3.
3.5a The Schrödinger equation is solved for an electron in a box (the metal) with constant potential energy Epot = 0. The solution shows that the energy

of the electron is quantized. E = �
2/2m∗ (k2

x +k2
y +k2

z

)
where k = �kxkykz� is the wavevector of the matter wave of the electron. E and kxkykz are

quantized.
The number of occupied energy levels = number of atoms times the valence number.
The Pauli principle is valid for electrons. Hence much higher energy levels are occupied than that which a Boltzmann distribution would have

indicated, because of the Pauli principle. The upper limit of the electron energy of the free electrons is the Fermi energy EF. See Figure 3.18 on page
117. The work function (Figure 3.17 on page 116) is the energy required to release the most energetic free electrons from the metal surface.

3.5b E = �
2

2m∗ k
2
x  = A sin

(√
2m∗E
�2

x

)
kx = 1

�

√
2m∗E�

3.5c Ekin = �
2

2m∗
(
k2
x +k2

y +k2
z

)

or in one dimension E = �
2

2m∗ k
2
x

The curve (Figure 3.21 on page 120) is not continuous. It consists of numerous close and discrete energy levels, because kx is quantized.

                       E

kx

a
2π−

a
π−            

a
π

   
a
2π

0

Exercise 3.5c Reproduced with permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

3.6 4.3 eV.

5.8  6.0 6.2 6.4 6.6 6.8 10–4 K–1

1/T

10 log (I x10 5)/T 2

(5.825, 2.60)

(6.60, 0.92)

3.00

2.00

1.00

0.00

Exercise 3.6

3.7a fFD = 1

e
E−EF
kBT +1

See Figure 3.19a and b on page 118.
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3.7b The numbers of available and occupied electron energy states between E and E+dE are:

Available energy states � N�E�dE = �2m∗�3/2

4�2
�3

E1/2dE

Occupied energy states � N�E�fFDdE = �2m∗�3/2

4�2
�3

E1/2fFDdE

See Figure 3.26 on page 123.
3.7c m∗ = effective mass of an electron in the interior of the metal 
=m for an electron outside the metal. See page 112.

3.7d ntotal =
EF∫
0
N�E�fFDdE = �2m∗�3/2

3�2 �3
E

3/2
F

3.7e EF = �
2

2m∗
(
3�2ntotal

)2/3
�

3.8a 1�57×106 m/s.
3.8b 1�18×106 m/s.

3.9 −4�5×10−2 eV.
3.10 Na 3.2 eV, Li 4.7 eV and Al 11.6 eV.

3.11a A periodical potential energy Epot instead of Epot = 0.
3.11b No, both the k values and the kinetic energy of the matter wave of the electron are quantized.
3.11c kx = p×�/a, where p is a positive or negative integer.

E

a
2π−

a
π−               

a
π     

a
2π

kx

0

Exercise 3.11c Reproduced with permission from M. Alonso and E. Finn, Fundamental University Physics. © Addison-Wesley.

3.12a Unit cell = the volume in a space lattice, which by translation movements can fill the whole lattice without overlapping or leaving hollow space inside
the lattice.

Primitive cell = unit cell, which contains only one lattice point per cell.
3.12b a= L/Ntotal. Condition: k= p×2�/L, where p= ±1, ±2�…±Ntotal.
3.12c A Wigner–Seitz cell is a primitive cell. For construction, see pages 137–138. The Wigner–Seitz cell in reciprocal space is identical with the first

Brillouin zone.
3.12d Ntotal. Each atom represents a Wiegner–Seitz cell in r space.
3.12e Each band (Brillouin zone) can accommodate 2Ntotal electrons.
3.13a The theoretical calculations to find the Brillouin zones are greatly facilitated.
3.13b The G[hkl] vector has the same direction as the normal to the planes (hkl).

G�hkl�= 2�
dhkl

n̂ and �G�hkl�� =√
�ha∗�2 + �kb∗�2 + �lc∗�2

3.13c dhkl = 2�√
�ha∗�2 + �kb∗�2 + �lc∗�2

3.13d dhkl = a√
h2 +k2 + l2

3.14a The diffraction order is included in Laue indices. Laue indices = p× Miller indices.
3.14b �k = �ha∗ +kb∗ + lc∗�= G �hkl	 �
3.14c All lattice atoms must be included in the parallel planes (hkl) for constructive interference.

3.15 Volume density = area density × distance between parallel planes.
Maximum area density → minimum distance dhkl between the planes → maximum of

√
h2 +k2 + l2. The only plane that includes all the lattice atoms

and has a larger value of
√

h2 +k2 + l2 than all other planes with low hkl numbers is the (111) plane.
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3.16a The condition for Brillouin zone boundaries is �k� = kx = p×�/a, where p= ±1, ±2� � � � �±Ntotal.
3.16b k= 2�/�= p×�/a, which can be transformed into 2a= p�. The latter condition can be interpreted as total reflection of the matter wave towards a

set of parallel crystal planes. A standing matter wave is formed.
3.16c

G (010)

O

L1

G (–100)

Exercise 3.16c

Bisectors are drawn to the shortest, next shortest and so on G vectors from a k point. The enclosed areas represent Brillouin zone 1, Brillouin zone
1+2, Brillouin zone 1+2+3, etc.

3.17

•     a •          •
      

2a

•          •          •

•          •          •

Exercise 3.17a Crystal lattice in real space.

O            2π/a   O      Bisector to G 2    O
G 1

2π/2a Bisector to G 1

O                                O                                   O
G 2

O                                O                                   O

Exercise 3.17b Reciprocal space. The first Brillouin zone is bounded by
the bisectors to vectors of the type G1 and G2.

The first Brillouin zone is bounded by the bisectors to vectors of the type G1 and G2.The first Brillouin zone is shown in Figure Exercise 3.17b.
Figure Exercise 3.17c show the first and second Brillouin zones of the lattice in Figure Exercise 3.17a. The first Brillouin zone is bounded by

bisectors to vectors of the type G1 and G2. The second Brillouin zone is bounded by bisectors to vectors of the type G1, G2, G3 and G4. The ‘area’
of each Brillouin zone equals 2��/a�2.

k space

  o                        o                        o
G 1 G 3

  o                        o                     o
G 2

  o                      o                       o

2π /2a
G 4

  o           2π /a o                        o

Exercise 3.17c Reciprocal space. First and second Brillouin zones of the unit cell in real space in Figure Exercise 3.17a.

3.18a 1. k= p×�/a, where p= ±1, ±2� � � � �±Ntotal.
2. All atoms must be included in the parallel planes in r space.
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3.18b Parallel planes (hkl) in r space correspond to a point (hkl) in k space. When the reciprocal lattice has been derived, a Wigner–Seitz cell is constructed.
It is the first Brillouin zone with ‘volume V1’ and corresponds to some of the shortest G vectors. Similar constructions give a ‘volume V2’. The second
Brillouin zone is ‘V2’- ‘V1’.

3.19a The first Brillouin zone of an SC crystal structure with the lattice constant a is a SC cube with side length = 2�/a (reciprocal space).
3.19b Hint: Consider the interior lattice points in k space and add those on the surfaces, the edges and the corners, which are shared with other cells.
3.20a Twelve {110} planes.
3.20b Hint: The {110} planes give reflections and define a G [110] vector. Construct the first Brillouin zone. Plot k [100], k[110] and k[111] and calculate

their lengths in terms of 2�/a.
3.21a Eight {111} planes and six {200} planes.
3.21b Hint: The {111} and {200} planes give reflections and define G[111] and G[200] vectors. Construct the first Brillouin zone and plot k[111] and k[200]

and calculate their lengths in terms of 2�/a.
3.22a Fermi sphere: the k points at the surface of the sphere have the kinetic energy EF.

The definition equation of kF is EF = �
2

2m∗ k
2
F.

3.22b With the aid of Equation (3.67) on page 124, you obtain

kF =
(

3�2 × number of atoms per unit r cell ×number of valence electrons per atom
volume of a unit r cell

)1/3
�

3.22c kBCC
F = 2�

a
3

√
3

4�
�

3.22d kFCC
F = 2�

a
3

√
3

2�
�

3.23a
�

a

√
2� Hint � kmin = G

2
�

3.23b
�

a

√
3�

3.24a ′VBz
′ =

(
2�
a

)3

� Hint � V k
WS = �2��3

V r
WS

�

3.24b ′VBz
′ = 2

(
2�
a

)3

�

3.24c ′VBz
′ = 4

(
2�
a

)3

�

3.25a
�

a

√
2 = 0�85×1010 m−1 (compare Exercise 3.22)�

3.25b 88% (compare Exercise 3.21).
3.26a A Schottky defect is a vacancy which is not coupled to any interstitial in the crystal lattice. A Frenkel defect consists of a vacancy and a nearby

interstitial in a crystal lattice. See Figures 3.64 and 3.65 on page 151.
3.26b Colour centres appear in ion crystals. They are crystal defects, which absorb characteristic frequency regions of visible light and reflect and/or transmit

the complementary colours.
3.27a The alloy structure is the one that corresponds to the lowest possible energy.
3.27b An intermediate phase is a solution with stoichiometric proportions of the components and low ability to dissolve additional atoms of either kind.

3.28 Hint: Calculate the minimum distance from the origin to the first Brillouin zone and the Fermi radius (see Exercises 3.23 and 3.22).
The lowest energy band in the metal is far from filled.

3.29a 36 at-%. Hint: See Exercise 3.28.
3.29b Hint: See Exercise 3.28.
3.30a 5 at-%.
3.30b 52 %.

3.31 A phonon is an elastic wave quantum. Its energy and momentum are analogous with those of the photons. Phonons obey Bose–Einstein statistics
(identical and indistinguishable particles, which do not obey the Pauli principle). Their energy is quantized. They interact with other particles. In
collisions the total energy and total momentum are conserved. Phonons may be formed and disappear in collisions.

3.32 The magnitude of the wave vector is 9�4×106 m−1. It is perpendicular to the crystal surface and directed towards the interior of the crystal.

Chapter 4
4.1 38 K.

4.2a kBT/2.
4.2b 0�43×10−2 eV, in agreement with Figure 4.7.

The agreement between the figure and calculations is good.
4.2c 0.042 independent of temperature and molar weight.
4.3 ∼ 7�5 %�
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4.4a cA = xAMA ×100
xAMA +xBMB

cB = xBMB ×100
xAMA +xBMB

�cN2
= 78 %� cO2

= 22 %��

4.4b xA =
cA

MA
cA

MA
+ cB

MB

xB =
cB

MB
cA

MA
+ cB

MB

�xN2
= 0�80� xO2

= 0�20��

4.4c pA = xAp pB = xBp�

4.4d M = xAMA +xBMB�Mair = 28�8��

4.4e 0.179 kg/m3.
4.4f 0�269×1026 molecules/m3.
4.5 230 �C�225 �C�.

4.6a Gas and liquid have identical properties at the critical point. At T > Tcr it is impossible to compress the gas into a liquid.
4.6b Region III: the pressure of the gas increases.

Region II: condensation occurs along the horizontal part of the curve. The condensation starts at point G and ends at point L (the amounts of gas and
liquid are described by the lever rule).

Region I: compression of the liquid (which requires much energy).
4.7 94 atm� pideal = 100 atm.

4.8a Two molecules, both with zero electric dipole moment, e.g. diatomic molecules with equal atoms.

4.8b Ea
pot = −4Ee

( r0

r

)6
(van der Waals attraction)� Fa = − dEa

pot

dr
= −4Ee

6r6
0

r7

Er
pot = 4Ee

( r0

r

)12
(electron shell repulsion)� Fr = − dEr

pot

dr
= 4Ee

12r12
0

r13

E pot

12
0

pot e
r 4 ⎟

⎠
⎞⎜

⎝
⎛=

r
r

EE

r
0

E pot

6

4 0
e

a
pot ⎟⎟⎠

⎞
⎜⎜⎝

⎛−=
r

r
EE

2Ee

Ee

–Ee

–2Ee
r0

6
e 2

0
rr =

Exercise 4.8

where
r0 = the r value which corresponds to Epot = 0.
Ee = the depth of the potential well. The minimum of Epot = −Ee.
re = r0

6√2 = equilibrium value of r corresponding to the minimum of Epot .

4.8c The Lennard-Jones potential of H2 = 0�0024 eV. The dissociation energy of the H2 molecule = 4�48 eV. The interaction between the H2 molecules is
much weaker than that between the H atoms.

4.9a See pages 187–188.
4.9b At low temperatures, very few molecules are excited up to higher rotational and vibrational energy levels and only the translation motion contributes

to CV which is 3R/2. At increasing temperature, rotational excitation occurs and two additional degrees of freedom contribute to CV which is 5R/2.
At still higher temperatures, vibrational excitation occurs, which contributes with two additional degrees of freedom, i.e. CV = 7R/2. In many cases
the temperature is not high enough for a fully developed vibrational contribution.

4.10a Diatomic gas. Translation+ rotation around two axes contribute to CV.
4.10b Polyatomic gas (nonlinear molecules). Translation+ rotation around three axes contribute to CV.
4.10c Monoatomic gas. Translation contributes to CV.
4.11a 0.18 nm.
4.11b 1�12×10−15 m at p= 106 atm and 1�12×10−3 m at p= 10−6 atm.
4.12 0.046 W/m K. Comparison with a standard table indicates that the gas is neon.

4.13a 0.22.
4.13b 1.1. Hint: k= �cV.

4.14a
dm
dt

= −DA dc
dy

, where c is measured as number of atoms or mass per unit volume.

A concentration gradient of radioactive tracer atoms is formed and the radiation as a function of position and time is measured.
4.14b Compare Equation (4.62) on page 197 and Equation (4.77) on page 201.
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4.14c Fick’s first law:
dm
dt

= −DA dc
dy

(here in one dimension).

Fick’s second law:
�c

�t
=D

�2c

�y2
(here in one dimension).

See pages 199 and 202.

4.15a Hint: Use D = vkinl

3
and find expressions for �kin and l.

DH2

DD2

= 1�41 and
D235UF6

D238UF6
= 1�004�

4.15b It is very much easier to separate D2 and H2 than 235UF6 and 238UF6.

Chapter 5
5.1 20 W or 1�8×102 kWh/year. The real power is higher, mainly because the cooling device has a lower efficiency than the ideal Carnot cycle.

5.2a 2 kW or ∼ 50 kWh/24 hours.
5.2b 5.5 kW or ∼ 1�3×102 kWh/24 hours.
5.2c Direct heating requires about three times as much electric power as the heat pump.
5.3 �S = 2mc ln

[
�T1 +T2�/2

√
T1T2

]= 61 J/K�
5.4 54 MJ. 1�5×102 kJ/K.
5.5 5.0 J/K.

5.6a H = U +pV .
5.6b An ideal solution has equal forces between like (A–A and B–B) and unlike (A–B) atoms, total solubility at all proportions and heat of mixing = zero.

All other solutions are nonideal.
5.6c Molar heat of mixing �Hmix = the amount of net energy that has to be added to the system to mix two components into 1 kmol of the solution of

given composition. If heat is formed, �Hmix < 0. If heat is required, �Hmix > 0.
5.7a 11.3 kJ/kmol K.
5.7b PL/Ps ≈ 103�6×1026

(the number of Al atoms is 6×1026).
5.8a G=H−TS. Condition for equilibrium at constant pressure: G has a minimum, hence dGT�p = 0.

5.8b Driving force = −�G= −
final∫

initial
dG�

5.8c Chemical potential of a pure substance �=G0
A.

5.8d G is a most useful instrument for studies of various processes such as chemical reactions and other transformation processes.
5.9a k= the fraction of the total number of particles that reach the final state per unit time.

k= Constant × e
−
Ga act

kBT = Ae
−
Ua act

kBT

as Ga act =Ha act −TSa act ≈ Ua act −TSa act and the last term is included in the constant A.

G a 

 G a act ≈ U a act 

Initial state 

Final state 

Reaction Coordinate 

Transition state 

 − ΔG =  Driving force 
G i 

G f 

G* 

Exercise 5.9a

5.9b 1. The frequency with which the atoms have an opportunity to react.
2. The fraction of the total number of atoms which have enough energy to overcome the potential barrier (activation energy).
3. A probability factor of the process. See pages 242–243.

5.10a 1�3×10−2 kmol/m3s.
5.10b 2�0×10−19 J = 1�2 eV.
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1.60 1.70

1.00

0.00

1 / T

10 –3 K –1

(1.52, 1.58)

(1.64, – 0.16)

ln k

Exercise 5.10b

5.11a First order of A, second order of B, third overall order.
5.11b 2�3×102 m6/s (kmol)2.
5.11c 7.2 kmol/m3/s.
5.12a The interstitial mechanism: in the crystal lattice there are interstitial positions available for small foreign atoms. The activation energy is low enough

to be overcome by some interstitial atoms, which move from one site to another.
The vacancy mechanism: vacancies in the crystal lattice may exchange positions with lattice atoms. The activation energy includes vacancy formation

energy.
5.12b Fick’s first law: J = −D×dc/dy.

Self-diffusion constant: DA = diffusion constant of diffusion of atoms A in the pure substance A.
5.12c Jump frequency = the number of jumps per unit time.

Jump distance = distance between two adjacent positions of the jumping atom in the diffusion direction.D = d2
j f .

5.12d D =D0e
− Ua act

kBT �

Diffusion experiments at different temperatures give D as a function of T . ln D is plotted as a function of 1/T and the activation energy is derived
from the slope of the line.

5.13a The possible positions for the interstitial atoms:

1. Twelve positions at the middle of each edge and one position in the centre per unit cell or on average four positions per unit cell with a radius
≤ R�

√
2−1�≈ 0�414R.

2. Eight positions close to the corners per unit cell along the principal diagonals with a radius ≤ R

(√
3
2

−1

)
≈ 0�225R.

5.13b In case 1 each interstitial atom touches six lattice atoms (octahedral position).
In case 2 each interstitial atom touches four lattice atoms. Each of them is enclosed in a tetrahedron of one ‘corner atom’ and three ‘face centre atoms’
(tetrahedral position).

5.14a ∼ 3×1021 H atoms.
5.14b ∼ 6 mg.
5.14c The pressure loss is of the magnitude 10−3 atm, which cannot be detected in the pressure measurement.
5.15 D = 2×10−9 m2/s and Ua act = 1�5×10−19 J = 0�92 eV�

ln D

– 10

– 40

– 30

– 20

0.50 1.00

1/T

10 – 3  K –1

(0, –20)

(1.5, –36)

0

Exercise 5.15

5.16 5.5 length units.
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5.17 1–2 MHz at 600 K.
5.18a The solution shows that

D = dj
2Zcoord �vibre

�Sa form

kB e

�Sa barrier

kB e
−
�Ua act

kBT =D0e
−
�Ua act

kBT

where

D0 = dj
2Zcoord �vibre

�Sa form

kB e

�Sa barrier

kB

5.18b In substitutional diffusion, the concentration of vacancies is fundamental and can be shown more clearly:

D = dj
2Zcoord �vibrx

eq
vace

�Sa barrier

kB e
−
�Ua barrier

kBT =D0
′e

−
�Ua barrier

kBT

where

D0
′ = dj

2Zcoord �vibrx
eq
vace

�Sa barrier

kB

The diffusion constant D′
0 contains the factor xeq

vac, which is temperature dependent.
5.18c No. The vacancy concentration increases strongly at the higher temperature. The vacancies become ‘frozen’ on quenching.

D = dj
2Zcoord �vibrxvace

�Sa barrier

kB e
−
�Ua barrier

kBT =D0
′′e

−
�Ua barrier

kTB

where

D0
′′ = dj

2Zcoord �vibrxvace

�Sa barrier

kB or D0
′′ = xvac

x
eq
vac
D0

′

5.18d The interstitial sites are present in the crystal lattice from the beginning and the majority of them are empty. No formation energy is required.
The concentration of the small interstitial atoms determines the number of diffusing atoms which is independent of the temperature. The diffusivity is
influenced by the energy barrier.

D = dj
2Zcoord�vibre

�Sa barrier

kB e
−
�Ua barrier

kBT =D0e
−
�Ua barrier

kBT

where

D0 = dj
2Zcoord�vibre

�Sa barrier

kB

5.19a If there are no sinks and no sources of vacancies, JA + JB + Jvac = 0.
The vacancy flux Jvac = −�JA + JB	. The net flux of atoms has the same magnitude as the vacancy flux but opposite sign. This leads to an uneven

vacancy distribution, which does not accumulate but decays owing to annihilation or production of vacancies at edge dislocations.
5.19b D̃ = xAD̃B +xBD̃A

m 2/s       D

*
CuD Cu

10 −13

NiNi
* DD =

Cu

~
D

10 −14

D
~

CuCu
* DD =

10 −15 
Ni

~
D

*
CuD

   Ni

        x Ni

10 −16

  0         0.2        0.4       0.6        0.8        1.0

     Cu                                                            Ni

Exercise 5.19b
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5.20a The net flux of atoms is directed towards the Cu side. The Zn atoms move faster into the Cu side than the Cu atoms into the alloy side. Hence there
is a net flux of vacancies towards the alloy side. Excess of vacancies appears on the alloy side and a lack of vacancies on the Cu side. A steady state
is developed. The vacancies annihilate on the alloy side and are produced on the Cu side at edge dislocations.

5.20b Markers are insoluble inclusions at the weld plane. They follow the displacement of the weld plane, owing to diffusion. The weld plane and the
markers move towards the alloy side because the Cu side expands slightly.

5.21a

m 2/s       D

Cu
*
CuD

10 −13

*
NiD

Cu

~D

10 −14

D~

*
CuD

10 −15 
Ni

~D
*
NiD

                                                                       Ni

                                                                     x Ni
10 −16

              0         0.2        0.4       0.6        0.8        1.0

            Cu                                                            Ni

Exercise 5.21a

Choose for example xNi = 0�2 and 0.4 and read the quantities involved in Equation (5.176) from the diagram. Calculate the two D̃ values by means
of Equation (5.176) and compare the result with the values, which you have read from the diagram.
The agreement between the calculated values and the values of D̃ read from the diagram is satisfactory. The vertical scale is logarithmic which makes
readings more difficult than usual.

5.21b Along the line xNi = 0:
Upper point: Cu∗ diffuses in pure Cu (self-diffusion coefficient).
Lower point: Ni∗ diffuses in pure Cu.
Along the line xNi = 1:
Upper point: Cu∗ diffuses in pure Ni.
Lower point: Ni∗ diffuses in pure Ni (self-diffusion coefficient).

Chapter 6
6.1 4�1×108 N/m2.
6.2 0.30.

6.3a 5×102 J.
6.3b The potential energy is primarily transformed into kinetic energy (vibrational energy of the lattice atoms in the spring) and is successively transferred

as heat to the surroundings.
6.3c Yes, the temperature initially increases by 0.1 K.

6.4 22 m�
[
h= Y

3 �1−2��
ln�
/
0�


wg
where 
w = density of water, 
0 = density of the body in air and 
= density of the body at depth h.

]

6.5a r increases 5.4 nm.
6.5b r decreases 54 nm.
6.5c 8.2 J.
6.6 −300� %.
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6.7a 1. Anharmonicity of the potential well of the lattice atoms, i.e. the lattice constant a increases with increasing vibrational energy (vibration numbers).
See Figure 2.45 on page 83 in Chapter 2.
2. Increase of vacancy formation with increasing temperature.

6.7b The condition dG= 0 (equilibrium) and not primarily the increasing distances between the lattice atoms is the origin of thermal expansion of solids.
The entropy plays an important role in the theory of expansion in solids.

6.8a Einstein regarded each atom as three perpendicular oscillators, vibrating around their equilibrium positions with quantized frequencies, a single basic
frequency and multiples of this frequency up to infinity. Addition of all the oscillator energies gave the total energy U and CV could be derived by
taking the derivative of U with respect to temperature.

Debye modified the theory by introduction of a manifold of frequencies and an upper limit �D for the frequencies and introduced the Debye
temperature �D = h�D/kB. At temperatures considerably lower than �D the so-called T 3 law is valid:

Cv = 9R
(
T

�D

)3
�D
T∫
0

x4ex

�ex −1�2 dx or If T  �D� Cv = 12�4

5
R

(
T

�D

)3

6.8b Cp −CV =  2VA
�D

!
�T −�D� Grüneisen’s rule

where VA
�D = molar volume of crystal at the Debye temperature.

6.9 Dulong–Petit’s law: CV = 3R. CV =McV = 3×8�314×103 = 25 kJ/kmol K.
Beryllium deviates strongly from Dulong–Petit’s law because �D >> room temperature. The value for Be agrees well with the Debye model.

6.10a Graphical verification: CV plotted as a function of T 3 is a straight line.

2 864

T 3

10 6 K3

C VkJ/kmol K

2.00

1.00

0.00

0

(8.0, 2.38)

Exercise 6.10a

6.10b �D = 1870 K, which is high compared with the Debye temperatures of other elements. A high value of �D corresponds to strong interatomic forces.
6.11 ∼ 1�5%�

6.12a The transition from an ordered to a disordered state requires energy. At T = Tcr , Cp has a narrow characteristic maximum (Figure 6.23 on page 316).
6.12b S = �fA −xA� / �1−xA� �

Exercise 6.12b

6.13a Magnetism is associated with the magnetic moments and the angular momentum of the electrons in their orbits around the nucleus.
The Bohr magneton comes from the relationship �l = �Bml where �B = e

2m
�. See pages 70–71 in Chapter 2.

The resulting magnetic moment � = �L +�S of the atoms is the origin of the magnetic properties of materials.
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6.13b If the resultant magnetic moment = 0 the material is diamagnetic.
If the atom has a resultant magnetic moment 
= 0 the material is paramagnetic.
If the atom has a resulting magnetic moment 
= 0 and there is a strong coupling between the magnetic moments of the atoms leading to alignment, the
material is ferromagnetic.

6.14 There is no real difference between paramagnetic and ferromagnetic materials when the magnetic moments of the atoms are considered. The difference
in the strong alignment of the magnetic moments of a large number of atoms is due to the strong coupling between their spin vectors. A large number
of atoms with aligned magnetic moments form stable clusters of atoms called Weiss domains.

The observations have been confirmed by a quantum mechanical model and by the Ising model. The Ising model is statistical. It deals with atoms
with spin up or spin down. An energy function is set up and the condition for minimum free energy is derived. The minimum corresponds to a strong
coupling between parallel spins.

6.15a The Curie point is the transition temperature when ferromagnetic materials lose their ferromagnetic properties and become paramagnetic. The Curie
point temperature is a material constant.

6.15b Curie point is a typical example of an order to disorder transformation, due to violent kinetic motion of the atoms in the crystal lattice.
6.16a A single atom has an integer number of electrons in an energy state. Some Ni atoms have two electrons in 4s and eight in 3d whereas other atoms

may have one electron in 4s and nine in 3d. Hence the averagenumber of electrons is not necessarily an integer.
6.16b The electron distribution in 4s and 3d is a consequence of hybridization (pages 109–110 in Chapter 3). The difference in energy between 3d↑ and 3d↓

in the Figure (a) is due to exchange energy (pages 73–74 in Chapter 2). In both figures the electron distribution corresponds to the lowest possible
total energy.

6.16c Figure (a): the lowest 3d↑ sub-band is filled and the 4s and 3d↓ sub-bands share the remaining five electrons. This is done in such a way that that
the electrons with the highest energy in each sub-band have the same energy as the highest level in the 3d↑ sub-band.

6.16d Figure (b): The exchange energy, which results in different energies of the 3d↑ and 3d↓ sub-bands, disappears at the Curie point. Then the electrons
redistribute in such a way that the upper energy levels in 4s, 3d↑ and 3d↓ become equal and that the two 3d sub-bands accommodate an equal number
of electrons.

6.17 See Figure 6.45 on page 331. It shows that a small H field is sufficient to magnetize the material nearly up to saturation in the direction [100]. Much
stronger H fields are required to magnetize the material in other directions.

6.18 The periodical change of the magnetic field is in principle the same as that in the virgin curve. Consider Figure 6.47 on page 332.
Region I: reversible displacement of domain wall boundaries.
Region II: irreversible displacements of domain wall boundaries. The direction which is closest to the easiest crystallographic direction ‘wins’.
Region III: rotation of Weiss domains from the easiest direction to the direction of the H field until saturation.

These processes are repeated periodically in the hysteresis loop when the material is exposed to an alternating magnetizing field. Each loop leads
to heat losses.

Chapter 7
7.1a Insulators contain very few free electrons as Eg � 0. Conductors contain plenty of free electrons as Eg = 0.
7.1b In the absence of free electrons, heat is transported by phonons in insulators.

�= �lattice = ncvkinl/3�

7.1c In pure metals the electron contribution is much greater than the phonon contribution, which can be neglected.

�e = necevl/3 = �nevl/3×�2�2
BT�/2EF� which gives �e = ne�

2k2
BT"�/3m

∗�

In alloys the phonon contribution cannot be neglected: �= �lattice +�e.
7.2 0.9 W/m K.

7.3a Conductors: valence and conduction bands often overlap. Eg = 0. Electron–hole pairs. Semiconductors: valence and conduction bands are separated
by an energy gap of magnitude 1 eV. Thermal excitation is possible.

Insulators: Eg � 0, hence very few electrons in the conduction band.
7.3b The valence band corresponds to the first Brillouin zone and the conduction band corresponds to the second Brillouin zone. The energy levels of the

inner electron shells of the lattice ions are narrow. The valence and conduction bands are wide. The free electrons do not belong to any particular ions
but to the whole lattice.

7.3c 
metals increase with T . 
semiconductors decrease strongly with T . 
insulators decrease somewhat with T , owing to thermal excitation, but is still very high.
7.4a Classical theory (pages 353–355):

The conduction electrons collide frequently with lattice ions and move with a small constant net velocity in an electric field. The collisions are
equivalent with a friction force that balances the electrical force: mve/" = eE. This law, in combination with Ohm’s law, j = #E, and the relationship
j = neeve gives the relationship below between # and ".
Drift velocity = average velocity ve of the free electrons in an electrical field.

Relaxation time = average time " between two successive collisions and also time constant in the function v = vee
−
t

" .
Mobility = drift velocity per unit electric field.

# = nee
2"

m
# = nee� �= ve

E
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Band theory:
The band theory of conductivity is a modification of the classical theory.
# = ne2"/m∗,
where m∗ is the effective mass of the free electrons in the metal.

7.4b Wiedemann–Franz law: by introducing the expressions for the thermal and electrical conductivities for pure metals, the relationship �/# = constant ×T

can be derived. The conclusion is that the transport of heat and charge in both cases are performed entirely by the free electrons in pure metals.
7.5a 2�5×102 W/mK$�
�20 �C�= 2�7×102%mm2/m	&�= 4�3×10−3 K−1'�

Hint: # and � must be compared at the same temperature (150 �C).
7.5b � increases strongly owing to a dominant phonon contribution.
7.6a 1�6×106 m/s.
7.6b 0.74 mm/s.
7.6c 4�3×10−3 m2/Vs.
7.7a 3�8×10−14 s.
7.7b 53 nm.

7.8 At T > 0 some electrons are excited up to the conduction band and leave holes in the valence band. The electron concentrations in the bands are

nc = 2N

e
Ec−EF
kBT +1

and nv = 2N

e
Ev−EF
kBT +1

where N is the number of atoms per unit volume.

The condition nv +nc = 2N gives

EF = Ev +Ec

2
.

This value is introduced into the expressions for nc and nv, which gives

nc = 2N

e
Eg

2kBT +1
and nv = 2N −nc = 2N

e
− Eg

2kBT +1

# = nee�e +nhe�h�

where nc = ne and nh = 1−nv = nc

More accurate expressions are

ne = �2�m∗
ekBT�

3/2

4�2�3
e
− Ec−EF

kBT and nh =
(
2�m∗

hkBT
)3/2

4�2�3
e
− EF−Ev

kBT

ni = √
nenh = �2�mkBT�

3/2

4�2�3

(
m∗

e

m

m∗
h

m

)3/4

e
− Eg

2kBT

which gives

# = nie��e +�h�

7.9a #theor ≈ 4×10−39�%m�−1  #exp = 10−12�%m�−1�

7.9b No. The reason is presence of impurity atoms. The concentration is 3�5×107 atoms/m3, which is a low impurity concentration.
7.10a The conductivity of an intrinsic semiconductor depends strongly on the temperature (increases with increase in T ). Instead of ne and nh you use

ni = √
nenh and Equation (7.71) on page 368) for calculation of the conductivity: # = nie ��e +�h�.

The conductivity of a doped semiconductor depends strongly on the concentration of the dopant and the intrinsic conductivity can be neglected.
ne and nh are not equal.
For calculation of # you use the general relationship # = nee�e +nhe�h. Instead of ne and nh you use ne and n2

i /ne or nh and n2
i /nh, respectively. If

ne � nh or nh � ne, the minor term can be neglected and the general equation will be simplified to #dopant = ndopante�dopant .

7.10b Ekin = �
2

2m∗ k
2 [Equation (3.55) on page 120 in Chapter 3]. Taking the derivative of Ekin�k� twice with respect to k gives the desired expression.

Conduction band
Donor level

Valence band

Exercise 7.10c Donor level in an n-doped semiconductor, i.e.
with impurity atoms from group 5 in the periodic table.

Conduction band

Acceptor level
Valence band

Exercise 7.10c Acceptor level in a p-doped semiconductor,
i.e. with impurity atoms from group 3 in the periodic table.

7.11 0.24 eV.
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2.50

1.50

2.00

3.0 4.03.5

ln  U

10 – 3  K – 1

1/T

(4.20, 2.61)

(3.32, 1.40)

Exercise 7.11 ln U = lnC− ln# = constant+Eg/2kBT .

7.12a 6�6×1015 m−3.
7.12b Fraction occupied energy levels in the conduction band ≈ 6×10−14.

7.13 0.61 eV.
7.14a 0.65 eV at T = 0 K; 0.69 eV at T = 300 K.
7.14b ne = nh = 0 at T = 0 K; ne = nh ≈ 3�2×1013 m−3 at T = 300 K.

7.15 1�6×102 %.
7.16 #e/#i = 4×103.
7.17 7�4×10−6 % m.
7.18 ne = 1�5×1018 m−3; nh = 3�1×1020 m−3.

7.19a EB = 1�9×10−2 eV or about 2% of the band gap of Si.
7.19b r0 = 3�3 nm or about six times the lattice constant of Si.
7.20a 0.21 eV and 5�9×10−6 m.
7.20b The absorption is zero. The semiconductor is transparent.
7.20c The exciton energy equals approximately 8×10−3 eV.
7.21a The p-type semiconductor has its acceptor level 0.04 eV above the upper edge of the valence band.

• Acceptor level

Filled valence band

E

Exercise 7.21a

7.21b At room temperature, the thermal energy is of the magnitude kBT ≈ 0�025 eV. A considerable fraction of the free electrons have enough energy to
become excited up to the acceptor level. In this case the minimum cannot be observed. At very low temperature no thermal excitation is possible and
the minimum can be observed.

7.22a I0/2.
7.22b Zero.
7.22c I0/8.
7.23 1�7(m.

λ oλ λ

Optical axis

λ eo

d

Exercise 7.23

7.24a Without the plate, the polarizer and the analyser are initially crossed, i.e. have perpendicular polarization planes. No light is transmitted.
With the plate, the analyser is rotated until no light can pass. This angle is the angle of rotation of the polarization plane.
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Optical axis

Polarizer Analyser

Tank or plate

Incident
non-polarized

light

Exercise 7.24a

7.24b 22�/mm.
7.24c 3.3 mm.
7.24d The only difference is that the rotation occurs left- and right-handed, respectively.

Chapter 8
8.1  Al = 0�070,  Cu = 0�039 and  Cu = 0�043.
8.2 On average, the calculated values of the melting points are 10% higher than the experimental values for the metals. Richard’s rule is not valid for

semiconductors.
8.3a Solid Al: no translation motion is possible. There are six degrees of freedom due to vibrations (potential and kinetic energy) in three perpendicular

directions in the crystal lattice: CV = 2×3× r/2 = 3R�
Liquid Al: if the liquid is considered to lack shear resistance there are four degrees of freedom due to translational motion in three directions and one
degree of freedom that refers to the potential energy of compression and expansion motion. However, close to the melting point the liquid still has a
considerable shear resistance on the atomic level. This corresponds to two more degrees of freedom. The number of degrees of freedom will then be
six, which gives

CV = �3+1+2�×R/2 = 3R�

With increasing temperature the shear resistance is gradually lost and the value of CV decreases.
8.3b Assume that the curve is symmetrical around the line T = Tmax and calculate the area under the curve from T = 0 to 933 K. It is calculated as the sum

of a base rectangle minus a fourth of an ellipse plus a top triangle. The heat of fusion is twice this value.
The heat of fusion is calculated as the area under the curve. �H fusion = 9�9 × 106J/kmol or ∼ 370 kJ/kg. Correct value = 397 kJ/kg (391 kJ/kg in

Exercise 8.2). The agreement is acceptable as the accuracy of the diagram is not very high.
8.3c Cp −CV ≈ 0�6R= 5�0 kJ/kmolK. Grüneisen’s rule gives the value 4.4 kJ/kmolK. It is doubtful whether Grüneisen’s rule is valid at temperatures higher

than the melting point or not. The volume expansion coefficient  L� L >  s) would give a better agreement than  s.
8.3d The decrease in CV is probably due to loss of shear resistance with increase in temperature.

Cp is influenced by shear resistance (just as CV) and thermal expansion. The two effects counteract each other. The volume expansion dominates
over the loss of shear resistance at high temperatures.

8.4a 0.020 eV.
8.4b At constant pressure, the average distance between the atoms is constant, which means that the average activation U a act is constant. The upper curve

is a straight line.
At constant volume, the average distance between the atoms decreases when the temperature decreases. At decreasing temperatures the curve

becomes bent owing to gradual decrease in Ua act .
8.5a See figure.
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Exercise 8.5a
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8.5b The curve is a straight line: D = A+BT .
8.5c 1�7×10−11m2/sK�
8.6a 0�72 N s/m2 = 0�72 Pa s�
8.6b 26 N and 11 W.
8.6c The oil reduces the friction, the friction losses and the damage on the metal surfaces considerably.
8.7a The simple relationship between viscosity � and temperature T in Figure (a) can be written as

ln�= constant× Ua act

kB

1
T

In � is plotted here as a function of 1/T for copper and iron.
The diagrams show that the simple Equations (1′) and (2′) are not valid and no values of Ua act can be calculated.
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Exercise 8.7a Copper
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Exercise 8.7b Copper
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8.7b The relationship between � and T in Figure (b) can be written as

ln�/T = constant× Ua act

kB

1
T
�

In �/T is plotted here as a function of 1/T for copper and iron.
The diagrams show that Stokes–Einstein relationship is a much better approximation for the viscosity than the simple exponential function, especially
for Cu. Approximate values for Ua act can be calculated from the diagrams: Ua Cu ≈ 0�34 eV and Ua Fe ≈ 0�36 eV.

8.8 �Fe = 32 W/mK��Ni = 34 W/mK and �Cu = 1�5×102 W/mK at their melting points�
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Influence of lattice defects on electronic structures in metals and

semiconductors 153
Influence of lattice defects on electronic structures in non-metallic

crystals 151
Insulators 357

conductivities of insulators 361–2
band theory of electrical conductivity in insulators 361–2
determination of the energy gap of an insulator 362

simple model of electrical conduction in insulators 358–60
calculation of the electron concentration in the valence and

conduction bands 359
calculation the position of the Fermi level 360

Intensities of X-ray diffractions in crystal planes 18–19
Interaction between molecules in gases 180
Interfacial defects 24, 28
Intermediate phases 31, 35, 156
Interpretation of atomic distribution diagrams 6
Interstitial atoms 25, 152, 156
Intrinsic diffusion coefficient 265

Kinetics of homogeneous reactions in gases 245
activated complex theory 250
collision theory of homogeneous chemical reactions 245
driving force and reaction rate of homogeneous chemical

reactions 248
order of homogeneous chemical reactions 248
temperature dependence of the rate constant 247

Kinetic theory of gases 170
Kirkendall effect 270
Kronig–Penney model of periodically varying potential

energy 127
k space 115, 134
k vector 127, 134



478 Index

Lattice 13
Lattice directions 15
Lattice energy, see Bonds
Lattice planes 16
Lattice symbols 14–15
Laue indices 18, 134
Laue’s diffraction condition in k space 133
Laws of real gases 183
Laws of real gases based on Lennard-Jones potential 181–2
Lennard-Jones potential energy 180–3
Liquid structures, see Models of pure liquids and melts

Magnetic moment 59
Magnetism 317

B and H fields 330
Bohr magneton 70–1, 318
Curie point 328–30
eddy currents 332
electron spin and intrinsic magnetic moment of electrons 319
magnetic moments of atoms 317–19
magnetising field 319–20
magnetostriction 299
types of magnetic materials 320, 323
Weiss domains 328, 330

Matter waves 50
Maxwell–Boltzmanns distribution law 148–9, 172–3, 240
Maxwells velocity distribution law 172

mean velocity 173
most probable velocity 172
root mean square velocity 172

Mean free path in a gas 193
Mean free path in a gas mixture 206–7
Mean free path of electrons in solids 356
Melting points of solid metals 406

Lindemanns melting rule 406
Mendeleev 62
Metallic bonds 112

classical model of the electron gas 112
energy levels of free electrons in a metal 116
free electron model of a metal 112
quantum mechanical model of the electron gas 114
the Schrödinger equation of free electrons in a metal 114

Metallic conductors 350
band theory of electrical conduction in metals 356
classical theory of electrical conduction in metals 353

conductivity 355
current density 353–4
drift velocity 353–4, 356
mean free path 356
mobility 356

ratio of thermal and electrical conductivities in pure metals 357
resistivities of alloys 352
resistivities of pure metals 350

temperature dependence of resistivity 351
Methods of X-ray examination of solid materials 2
Miller indices 16–17
Millikan 112
Mobility 356

Models of pure liquids and melts 402
pair distribution function 402
pair potential models 402
theory of liquid structure 402

Morse function 83
Multiplicity 62

Nearest neighbour distances 6, 20
nearest neighbour distances of metals 21
relationship between nearest neighbour distance and lattice

parameter 20
Nernsts theorem 228
Nicol prism 382
Nomenclature of atomic electronic states 64
Nomenclature of electron orbitals 59
Nomenclature of molecular orbitals 72
Nomenclature of molecular states 76
Non-rigid rotator 84
Number of atoms per unit cell 15, 20

number of electrons per Brillouin zone 129
number of energy states per band 129

Octahedron 12
Optical properties of solids 375

of insulators 378
of metals 375
of semiconductors 376

Order-disorder transformations
degree of order, long range parameter 315
influence of order-disorder transformations on heat

capacity in solids 315
order–disorder transformations in binary alloys 315
order–disorder transformations in CuZn 316
order–disorder transformations in ferromagnetic

materials 329
Ordered solid solutions 37
Origin of energy bands in solids 125–6

Pair distribution function 402
Paramagnetism 319–20, 321

theory of paramagnetism 321–3
Particle in a box 55–7
Partition function 240
Pauli 51
Pauli principle 62, 116
Periodic table of elements 62
Permeability

permeability in vacuum 330
relative permeability 330

Phonons 146
angular frequency of phonons as a function of wave

number 149–50
phonon statistics 147–9
properties of phonons 146

phonon energies 147
phonon velocities 147–8

Photoelectric effect 48–9
Photons 49
Physical interpretation of the wave function 54
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Planck 48
Plancks quantum theory 48–9
Plancks radiation law 49
Plasma – the fourth state of matter 208
Polarized light 379

applications 387–8
dichroism 383
double refraction 380–2
Fresnels relationships for reflected light 379
linearly polarized light 380
methods to produce linearly polarized light 379
optical activity 385–7
plane-polarized light 380
reflection 380

Polyatomic molecules 88
Potential energy of a magnet in a B field 60
Pressure 170–1
Primitive cell 13, 137

Quantum mechanical model of atomic structure 48
Quantum mechanical model of molecular structure 72
Quantum mechanics 48, 51
Quantum mechanics and probability 65
Quantum numbers and their interpretation 58

azimuthal quantum number 58
magnetic quantum number 59
principal quantum number 58
spin quantum number 61

Quantum numbers of many-electron atoms 62
resulting vector J 62
total angular momentum L 62
total spin vector S 62

Quenching 246

Radial distribution function 8, 402
Reaction rates 242

definition 242
determination of reaction rates 243–5
reaction rates of simple reactions and transformations 242–3

Real space 130
Reciprocal lattices of crystals 130–1
Reciprocal lattice vector 132, 134
Reciprocal space 130–1, 134
Reduced mass 77, 80
Relativistic mechanics 51
Relaxation time 355–6
Representation of � and Ekin in k space 118

graphical representation of Ekin 120
graphical representation of � 119
kinetic energy of the free electron 120

Rigid rotator 76
Rutherford 44

Schottky defects 151–2
Schrödinger equation 52, 53

solutions of the Schrödinger equation 55
solutions of the Schrödinger equation for atoms 57

Selection rules for electronic transitions in
atoms 66–9

Selection rules in molecules
selection rules for electronic and vibrational

transitions 84
selection rules for electronic, rotational and vibrational

transitions 87
selection rules for electronic transitions 84
selection rules for pure rotational

transitions 87
selection rules for pure vibrational transitions 84

Semiconductors 362
doped semiconductors 369

theory of electrical conduction in doped
semiconductors 369

electrical conductivity of doped
semiconductors 369

influence of temperature and dopant concentration on the
number of charge carriers 369–70

pure semiconductors 362–4
theory of electrical conduction in pure semiconductors

364–8
calculation of density distribution of electron

energy states and electron concentration in the
conduction band 364

calculation of density distribution of hole energy states and
hole concentration in the valence band 366

calculation of the energy gap in intrinsic semiconductors
368

calculation of the Fermi level in an intrinsic semiconductor
367

electrical conductivities of intrinsic semiconductors 368
types of doped semiconductors 370

calculation of donor and acceptor levels in doped
semiconductors 372, 374–5

compound semiconductors 372
n-doped and n-type semiconductors 370
p-doped and p-type semiconductors 371

Short range order 6, 38
degree of short range order 38
degree of short range order coefficient 38

Solutions
interstitial solutions 31, 34
primary solid solutions 31
random solid solutions 30
secondary solid solution 31
substitutional solid solutions 31, 33

Sommerfeld 114, 118, 125
Space lattice 13, 120
Space lattice terms 14
Spectra of diatomic molecules 82
Splitting of energy levels in a magnetic

field 60
Stable and metastable states 237
Stacking faults 24, 28
Statistical weight 175
Stirlings equation 230
Structures of alloy melts and solids 30
Structures of liquid alloys 31
Structures of metal melts 4
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Structures of solid alloys 33
interstitial solid solutions 31
substitutional solid solutions 31
with interstitials atoms 25, 154
with substitutional atoms 25, 154

Superlattices 37
Susceptibility 320, 322

Terminology 220
Tetrahedron 12
Thermal conduction in gases

kinetic theory of thermal conduction in gases 198
thermal conductivity in gases 199

Thermal conduction in solids 342
thermal conductivities of alloys 347
thermal conductivities of metals 345
thermal conductivities of nonmetals 343
thermal conductivities of pure metals 346
thermal conductivity of diamond 345

Thermal conduction of liquids and melts 438
thermal conduction in metal melts 438
thermal conductivity in alloy melts 439
thermal conductivity in pure metal melts 438

Thermal energy distribution in a gas 175–8, 241
Thermal energy distribution in particle systems 240

application to reactions and transformations 241
Thermal expansion of liquids and melts 409

temperature dependence of density 410
thermal volume expansion 409

Thermal velocity distribution in a gas 172
Thermodynamics 220

first law of thermodynamics 220
second law of thermodynamics 221, 222–3
third law of thermodynamics 224, 227–8

Thermodynamics of ideal and non-ideal solutions 231
enthalpy change on mixing two components 231
entropy change of ideal and nonideal solutions 232
entropy change on mixing two components 232
heat of mixing of ideal and nonideal solutions 231
ideal and non-ideal solutions 231

Thermodynamics of phase transformations 232
enthalpy and entropy changes in phase transformations 233–4
survey of phase transformations 235

Thomson J. J. 112
Tracer diffusion in a two component gas mixture 208
Transformation kinetics 236–9

activation energy 238–9
driving force 239
endothermic and exothermic reactions and transformations

239–40
reactions and transformations 237

stable and metastable states 237
thermodynamic condition for equilibrium 237

Transport properties of liquids 415
Twinned crystals 29

Unit cell 13, 129

Vacancies 25, 151, 157, 258
Van der Waals equation for real gases 183–5
Van der Waals forces 101, 112
Van der Waals interaction 180–1
Viscosity of gases 197

dynamic coefficient of viscosity 196
kinetic coefficient of viscosity in gases 425

Viscosity of liquids and melts 429
basic theory of viscosity 426
experimental methods of viscosity measurements on

metal melts 437
influence of gravity forces and walls on viscosity 437
kinetic coefficient of viscosity 426
models of viscosity in liquids 429
newtonian and non-newtonian fluids 427
Ostwald’s law 428
relationship between D and � 432–5
temperature dependence of viscosity in pure metal

melts 432
thermodynamical model of viscosity for binary alloy

melts 435
viscosity in pure metal melts 429
viscosity of alloy melts 435

Wave mechanics 51
Weiss domains 328, 330
Wiedemann–Franz law 357, 443
Wigner–Seitz cell 137
Work function 49, 116–17

X-ray analysis of liquids and melts
temperature dependence of the atomic distribution in

pure metal melts 401
X-ray analysis of pure liquids and melts 400
X-ray spectra of binary alloy melts 402
X-ray spectra of liquids and melts 400

X-ray analysis of solids 2–4
X-ray diffraction 2–3
X-ray examination of metal melts 4–5
X-ray spectrometer 3

Youngs modulus 292

Zeeman effect 69, 318
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