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PREFACE

This book is about atomic charges, chemical bonds, and bond energy additivity.
However, nuclear magnetic resonance, inductive effects, zero-point and heat
content energies, and other topics are an integral part of this study, to achieve
our goals.

The electronic charges, the bond energies, and—way down the line—the energy
of atomization and the enthalpy of formation of organic molecules are what we
shall calculate with chemical accuracy, in a simple manner.

Of course, new ideas have to be implemented, in terms of both bond energies and
the calculation of atomic charges; the formula describing the energy of a chemical
bond in a ground-state molecule—the “intrinsic” bond energy—translates intuitive
expectations, namely, that the energy of a bond formed by atoms k and l should
depend on the amount of electronic charge carried by these atoms. The all-important
relationship between the intrinsic bond energies—which apply for bonds in mole-
cules at equilibrium—and the corresponding familiar bond dissociation energies—
which refer specifically to the process of bond breaking—is also described.

Intrinsic bond energies and bond dissociation energies meet different practical
needs. The former play an important role in the description of ground-state molecules.
Dissociation energies, on the other hand, come into play when molecules undergo
reactions. Now, any interaction between a molecule and its environment (such as
complex formation or the adsorption onto a metallic surface, or hydrogen bonding,
for example) affects its electron distribution and thus the energies of its chemical
bonds. If we figure out the relationship between dissociation and intrinsic bond ener-
gies, we could begin to understand how the environment of a molecule can promote
or retard the dissociation of one or another bond of particular interest in that molecule.
This outlook hints at a rich potential of future research exploiting charge analyses to
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gain insight into local molecular properties, specifically, into bond energies, first,
and, going from there, into matters of great import regarding the dissociation of
chemical bonds.

Our methods, like many others, do not answer all possible questions; plain
quantum chemistry is undeniably the procedure of choice. But what our methods
do, they surely do it with great accuracy and with a chemical insight that is not
offered by traditional approaches and, moreover, in an extremely inexpensive
manner, in regard to computational resources and costs. Applications are presented
for saturated acyclic and cyclic hydrocarbons, amines, alcohols, ethers, aldehydes
and ketones, and ethylenic and aromatic hydrocarbons. The results surely are
impressive. Beyond offering new perspectives to old problems, the wealth of
details given here hopefully lays fertile grounds for future breakthroughs along the
simple lines advocated in this work. And while keeping the text as accessible as poss-
ible, the bibliography is richly designed, to assist interested readers in going more and
more deeply into the wheelwork of the matter. With that goal in mind, a compendium
of user-friendly final formulas is offered in the Appendix.

A few words about this book are in order. It is about chemistry (or, should I say
physical organic chemistry?) that exploits quantum-mechanical methods. First-year
graduate and advanced undergraduate introductory courses in quantum chemistry
offer the required background. A most concise presentation—not an explanation—
of the required quantum-mechanical techniques is offered, but a large part of this
book is accessible without mastering them. The physics are given with sufficient
details, which, I hope, are easy to follow. The whole thing—hopefully with the
future aid of interested readers—adds powerful new investigative tools in areas of
great import that help the reader understand chemical principles and predict
properties.

This is the present for the future.

SÁNDOR FLISZÁR
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CHARGE DISTRIBUTIONS





CHAPTER 1

INTRODUCTION

1.1 THE BOND ENERGY MODEL

This book is about electronic charge distributions, chemical bonds, bond energy
additivity in organic molecules, and the description of their relevant thermochemical
properties, such as the energy of atomization, the enthalpy of formation, and the like,
using computer-friendly methods.

Additivity schemes with fixed bond energy (or enthalpy) parameters plus a host
of corrective factors reflecting nonbonded steric interactions have a long history
in the prediction of thermochemical properties, such as the classical enthalpy of
formation of organic molecules. Allen-type methods, for example, nicely illustrate
the usefulness of empirical bond additivity approaches [1,2].

But theory tells a different story.
Immutable bond energy terms tacitly imply never-changing internuclear distances

between atoms whose electron populations would never change. But the point is
that invariable local electron populations cannot describe a set of electroneutral
molecules. Unless the net atomic charges of all atoms in all molecules always exactly
equal zero, any additivity scheme postulating fixed atomic charges obviously violates
all requirements of molecular electroneutrality; for example, if the same carbon
net charges and the same hydrogen net charges (=0) are assigned to the carbon and
hydrogen atoms of methane and ethane, simple charge normalization indicates that
molecular electroneutrality cannot be satisfied for both molecules. Finally, unless we
stipulate that atomic charges have no bearing on bond energies or else, that

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
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any change in atomic charge is perfectly counteracted by appropriate changes in
internuclear distances in order to prevent changes of bond energy, we are led to the
concept of bond energies depending on the charges of the bond-forming atoms.1

But quantum chemistry hic et nunc does not know about chemical bonds, unless
we say so. The approach chosen here is centered on the potentials at the nuclei found
in a molecule.

The Hellmann–Feynman theorem tells us that all forces in a molecule can be
understood on purely classical grounds, provided that the exact electron density (or
at least a density derived from a wave function satisfying this theorem) is known
for that molecule [3]. We have exploited this vein. The description of atomization
energies, on the one hand, and that of bond energies, on the other, were reduced to
purely electrostatic problems involving only nuclear–electronic and nuclear–
nuclear interactions. There is a price to be paid for this simplification—the mechan-
ism of bond formation cannot be understood in purely electrostatic terms [4,5]. The
kinetic energy of the electrons plays a decisive role because the electronic
Hamiltonian of an atom or a molecule is bounded from below only if the kinetic
energy is duly accounted for. This decisive role deeply reflects the theory explaining
why chemical bonds are formed in the first place [4,5]. In short, our electrostatic
approach allows no inquiry into the origin of chemical bonds. In contrast, it is well
suited for describing chemical bonds as they are found in molecules at equilibrium.

This is so because the Hellmann–Feynman theorem offers a most convenient way
to bring out the main features of chemical binding. By taking the nuclear charges as
parameters, the binding of each individual atom in a molecule can be defined without
having recourse to an a priori real-space partitioning of that molecule into atomic sub-
spaces. This binding is determined entirely by the potentials at the atomic nuclei. In
short, our definition of bond energies does not involve virtual boundaries that delimit
the space assigned to the individual atoms in a molecule with intent to subsequently
describe the chemical bonds linking them. We know, of course, that powerful and
realistic methods describe a useful partitioning of molecules into “atoms in a
molecule” [6]—an approach that certainly offers much chemistry. The methods
developped here simply represent another perspective of the same problem.
Important arguments concern a real-space core–valence charge partitioning, a
topic that resists the approach [6] leading to the concept of “atoms in the molecule.”
Moreover, our approach involves the use of Gauss’ theorem and a sensible
application of the Thomas–Fermi model [7,8], which is known to give reasonably
accurate atomic energies with the use of Hartree–Fock densities [9–12].

However, direct calculations of accurate bond energies represent a major challenge.
Examples are given [13,14] where the ratios of carbon–carbon bond energies, relative
to that of ethane, were successfully calculated for ethylene, acetylene, benzene, and

1Empirical bond additivity methods circumvent the problems linked to charge normalization constraints
because they modify the genuine “bond energies” by tacit inclusion of extra terms that have nothing to
do with bond energy itself. Still, a number of additional “steric factors” must be introduced in order to
achieve what fixed bond energy terms alone cannot do: an agreement with experimental results (see
Chapter 10).
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cyclopropane (Table 1.1). For ethane itself, the calculated CC bond energy amounts to
�70 kcal/mol from Hartree–Fock calculations [13] or 68.3+0.4 kcal/mol, as given
by density functional calculations [14]. The best fit with experimental data is obtained
with 69.633 kcal/mol for that bond, which is satisfactory.

1.2 SCOPE

The difficulties encountered in the direct calculation of bond energies can be
overcome—with hard labor and some approximations—in only a few cases,
but the good news is that only a few reference bond energies need to be calculated
for model systems. Those determined for the CC and CH bonds of ethane, for
example, are sufficient for the description of saturated hydrocarbons; the addition
of the reference bond energy describing the double bond of ethene extends the
range of applications to olefinic molecules, including polyenic material. It is thus
well worth the trouble to calculate a few reference bond energies—and this can be
done with reasonable accuracy—because the rest follows as explained here. That is
where atomic charges come into the picture and solve the problem presented here.

The description of bond energies that depend explicitly on the charges of the
bond-forming atoms is attractive for the concepts it applies and for its usefulness
in the prediction of important thermochemical quantities, such as the energy of
atomization or the enthalpy of formation of organic molecules. But its success
critically depends on the availability of accurate charge results.

Now, the problems associated with the search for meaningful atomic charges, such
as those required in applications of our bond energy formulas, are manifold. One

TABLE 1.1. CC Bond Energies Relative to That of Ethane

Ratio of CC Bond Energies

Basisa C2H4 C2H2 C6H6 c-C3H6

1 6231 G(d,p) 1.846 2.828 1.590 1.002
2 62311 G(d,p) 1.938 3.048 1.601 0.993
3 62311 G(2df,2p) 1.955 2.908 1.603 0.972
4 62311 G(2df,2pd) 1.972 2.960 1.621 0.977
5 vD(2d,2p) BLYP 1.991 3.094 1.615 0.951
6 vD(2d,2p) B3LYP 1.915 2.980 1.581 0.958
7 vD(2df,2pd) BLYP 2.020 3.154 1.634 0.959
8 vD(2df,2pd) B3LYP 1.943 3.036 1.597 0.962

Semiempirical 2.000 1.640

aThe basis set of 1 is from Ref. 15, that of 2 from Ref. 16, and those of 3 and 4 are from Ref. 17. In 5–8 we
used van Dujneveldt’s bases [18], also adding a set of f functions on C and of d functions on H [17] (7,8),
Becke’s gradient correction to exchange [19], and the Lee–Yang–Parr (LYP) potential [20]. The B3LYP
functional involves a fully coherent implementation, whereby the self-consistent field (SCF) process, the
optimized geometry, and the analytic second derivatives are computed with the complete density func-
tional, including gradient corrections and exchange.
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concerns the selection of the population analysis. As is well known, Mulliken charges
represent only one of the possible definitions of atomic net charges [21–29]; widely
different values are produced with comparatively small changes in a basis set, even in
ab initio SCF calculations. Since trends within similar series are generally little
affected by the computational scheme, this has seldom received significant attention
in applications to chemical problems. But the present situation is one where the
choice of the basis set could play a very important role, as does inclusion of basis
superposition effects [30]. While Mulliken’s population analysis [31] is probably
the most widely used one, Löwdin’s method [32] or Jug’s approach [33] could
also be envisaged with success. Selection of the method does greatly affect the
final numerical results, as vividly exemplified by the SCF net charges obtained
with a minimal basis set for the nitrogen of methylamine, namely, 2374, þ47,
and 2291 millielectron (1 me ¼ 1023 e units), respectively, depending on whether
Mulliken’s, Löwdin’s, or Jug’s definition is implemented. So, under these circum-
stances, things do not seem encouraging. Fortunately, they are not really as bad as
suggested by these examples. We shall learn about charge variations suited for
bond energy calculations that withstand comparison with experiment. A promising
example is offered by the calculated charge variations DqN of the nitrogen atoms
of a series of amines, relative to that of methylamine, as given by the Mulliken,
Löwdin, and Jug methods (Table 1.2). The examples shown in Table 1.2 are
meant to illustrate how different ways of partitioning overlap populations do affect
calculated atomic charge variations accompanying structural modifications; admit-
tedly, the differences can be relatively minor, but the absolute values of the same
charges defy any reasonable expectation. Evidently, one should not rely too
heavily on numbers calculated by population analysis. Mulliken’s assignment of
half the overlap probability density to each atomic orbital (AO) is rather arbitrary
and occasionally leads to unphysical results. Still, we shall see that the Mulliken
scheme offers a valid starting point. To get useful charges, however, we must
rethink the problem of assigning overlap populations—a topic highlighted in
Chapter 8.

At first, it may seem surprising that many methods give results in semiquantitative
agreement with Mulliken population analysis values, but it now appears that it is rather
what one should expect from any sensible method. This holds true for the simplest

TABLE 1.2. Calculation of DqN in Amines

Molecule

DqN (me)

Mulliken Löwdin Jug

CH3NH2 0 0 0
C2H5NH2 25.16 24.86 25.01
n-C3H7NH2 24.96 24.65 24.86
iso-C3H7NH2 29.00 28.90 29.20
iso-C4H9NH2 23.59 23.84 24.10
tert-C4H9NH2 211.58 211.94 212.49
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possible one [29]: Del Re’s approach is based on rough semiempirical approximations
of simplemolecular orbital–linear combination of atomic orbitals (MO-LCAO) theory
of localized bonds. The original, extremely simple parameterization that reproduced
electric dipole moments [29] and a more recent one [34–36] for charges that correlate
with nuclear magnetic resonance (NMR) shifts and that are fit for accurate energy
calculations, turn out to correspond to solutions of MO-LCAO Mulliken-type
population analyses differing from one another by the mode of partitioning overlap
terms [37]. The link between Del Re’s simple semiempirical approach and the more
familiar MO-LCAO charge analyses is clearly established.

While the charges for use in our description of bond energies were originally
obtained from accurate SCF computations using a variant of Mulliken’s population
analysis, the observation [38–44] that the 13C, 15N, and 17O nuclear magnetic
resonance (NMR) shifts are linearly related to these charges permitted rapid progress
in the application of the charge-dependent bond energy formulas to thermochemical
problems since NMR results are more readily available than are good-quality
population analyses. Of course, this strategy presumes not only a justification for
assumed correlations between NMR shifts and net atomic charges (which is described
in Chapter 6) but also a solid knowledge of well-justified charge analyses. This is no
minor task.

The original definition of atomic charges found in the CH backbone of organic
molecules is rooted in the idea that the carbon charges vary as little as possible on
structural modification. This has triggered inductive reasoning, which maintains
that if a situation holds in all observed cases, then the situation holds in all cases.
Indeed, detailed tests involving 13C chemical shifts, the ionization potentials of
selected alkanes, and, most importantly, thermochemical data, unmistakably point
to identical sets of charge values. Now, of course, the problem of induction is one
of considerable controversy (and importance) in the philosophy of science; we
must thus be extremely cautious in attributing physical meaning to atomic charges.
In the approach known as instrumentalism, one could as well consider them as
convenient ideas, useful instruments to explain, predict, and control our experiences;
the empirical method is there to do no more than show that theories are consistent
with observation. With these ideas in mind, atomic charges that are now widely
used in molecular dynamics calculations and in the evaluation of solvation energies
within the generalized Born approach also deserve renewed attention.

Admittedly, things have not been easy. But now we can benefit from the
beauty of simplicity and learn about one unique kind of atomic charge rooted in
quantum theory: the only ones that satisfy highly accurate correlations with
experimental NMR shift results and that are at the same time directly applicable to
bond energy calculations.

But the key to the theory of bond energy is in the description of real-space core
and valence regions in atoms and molecules: therein lies the basic idea that gives
rise to the notion of molecular chemical binding, expressed as a sum of atomlike
terms. That marks the beginning of our story.
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CHAPTER 2

THEORETICAL BACKGROUND

The electron, discovered by J. J. Thomson in 1895, was first considered as a
corpuscule, a piece of matter with a mass and a charge. Nowadays things are
viewed differently. We rather speak of a “wave–particle duality” whereby electrons
exhibit a wavelike behavior. But, in Levine’s own words [45], quantum mechanics
does not say that an electron is distributed over a large region of space as a
wave is distributed; it is the probability patterns (wavefunctions) used to describe
the electron’s motion that behave like waves and satisfy a wave equation.

Here we benefit from the notion of stationary electron density. The particles are
not at rest, but the probability density does not change with time.

2.1 THE HARTREE–FOCK APPROXIMATION

The Hartree–Fock self-consistent field (SCF) method is the primary tool used in this
chapter. It is rooted in the time-independent one-electron Schrödinger equation
(in atomic units):

� 1
2
r2(1)þ V(r1)

� �
fi(1) ¼ ei(1)fi(1) (2:1)

The effective one-electron operator indicated in brackets includes the kinetic energy
operator �1

2r2 and an effective potential energy V(r1) taken as an averaged function
of r1—the distance of electron 1 from the nucleus. In this approximation, electron 1
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moves in the field created by both the nuclear charge Z and a smeared-out static dis-
tribution of electric charge due to electrons 2, 3, . . . , n. The eigenfunction fi(1) is a
one-electron orbital and e i(1) is the corresponding energy.

The Hartree–Fock equation

F̂fi ¼ eifi (2:2)

has the same form as (2.1) but introduces spin explicitly in the description of the
wavefunction. The fi terms are now spin orbitals, and e i is the eigenvalue of spin
orbital i. The effective Hartree–Fock Hamiltonian F̂ contains 2 one-electron oper-
ators, namely, the kinetic energy operator

T̂ ¼ � 1
2
r2 (2:3)

and the potential energy for the attraction between the electron and the nucleus of
charge Z:

V̂ne ¼ �Z

r
(2:4)

In addition, F̂ contains two bielectronic operators. They describe the interaction
between the electron occupying spin orbital i and the other electrons found in the
atom. So, for the interaction between electrons 1 and 2 at a distance r12, we have
the Coulomb operator Ĵj and the exchange operator K̂j defined by

Ĵ j(1)fi(1) ¼ fi(1)
ð
jfj(2)j2

1
r12

dt2 (2:5)

K̂j(1)fi(1) ¼ fj(1)
ð
f�
j (2)fi(2)

r12
dt2 (2:6)

where dt is the volume element

dt ¼ r2 sinu du dw dr (2:7)

and the subscript 2 refers to electron 2. Of course, similar Coulomb and exchange
operators for electrons 3, . . . , n are also part of F̂. The Coulomb integralÐ
f�
i (1)Ĵ j(1)fi(1) dt1 represents the repulsion between electron 1 and a smeared-out

electron with density jfj(2)j2. The exchange integral
Ð
f�
i (1)K̂j(1)fi(1) dt1 arises

from the requirement that the wavefunction be antisymmetric with respect to electron
exchange in order to satisfy Pauli’s indistinguishability principle of identical par-
ticles. Because of the occurrence of fj terms in the Coulomb and exchange operators
and, thus, in F̂, Eq. (2.2) must be solved iteratively until self-consistency is achieved,
resulting in a set of self-consistent field (SCF) eigenfunctions f1s, f2s, . . . , with
orbital eigenvalues e1s, e2s, . . .

10 THEORETICAL BACKGROUND



These Hartree–Fock energies are reasonably good approximations to the orbital
energies of an atom, as determined by X-ray and optical spectroscopy term values.
We take them as the energies of the individual electrons, knowing, of course, that
each of these orbital energies is computed over the entire atom and that no localiz-
ation of the individual electrons in certain regions of space should be attempted.
The energy e i of an electron in orbital fi consists of its kinetic energy

Ti ¼
ð
f�
i T̂fi dt (2:8)

and of its potential energy. The interaction between that electron and the nucleus is as
follows, from Eq. (2.4):

Vne, i ¼ �Z

ð jfi(r)j2

r
dt (2:9)

On the other hand, the interaction between that electron, denoted here as electron 1,
and electrons 2, 3, . . . , n is given by the appropriate sums of Coulomb and exchange
integrals, for example, for electron 2 interacting with electron 1:

Jij ¼
ð ð

jfi(1)j2
1
r12

jfj(2)j2 dt1 dt2 (2:10)

Kij ¼
ð ð

f�
i (1)fj(1)f

�
j (2)fi(2)

r12
dt1 dt2 (2:11)

These integrals are most conveniently carried out using the following expansion [46]
of 1/r12 in terms of spherical harmonics

1
r12

¼
X1
l¼0

Xl

m¼�l

4p
2lþ 1

� rl,
rlþ1
.

[Ym
l (ui, wi)]

�Ym
l (uj, wj) (2:12)

where r. is the larger and r, is the smaller of r1 and r2. The total repulsive potential
energy experienced by electron 1 in orbital fi is thus computed from a sum of
Coulomb integrals, J12 þ J13 þ � � � , from which we subtract the exchange integrals
involving the electrons with the same spin as electron 1. Briefly, e i consists of the
kinetic energy [Eq. (2.8)] of an electron in orbital fi, plus the potential energy of
interaction between that electron and the nucleus and all the other electrons.

Now consider the normalized Hartree–Fock spatial orbitals, namely, f1s, f2s, . . . ,
with energies e1s, e2s, . . . , respectively, occupied by ni (¼ 0, 1, or 2) electrons. The
potential energy of an electron with energy e i includes, on average, the repulsion
between this electron and all the other electrons. The sum of the orbital energiesP

i nie i thus counts each interelectronic repulsion twice. The Hartree–Fock energy
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of the atom E is therefore

E ¼
X
i

niei � Vee (2:13)

where Vee is the interelectronic repulsion computed over the entire atom.
It is understood that all the integrals considered in this section are definite integrals

over the full range of all the coordinates.

2.2 HARTREE–FOCK–ROOTHAAN ORBITALS

Following Roothaan’s proposal, the Hartree–Fock orbitals are usually represented as
linear combinations of a set of known basis functions x lm

k :

fi ¼
X
k

ckix
lm
k (2:14)

This representation permits analytic calculations, as opposed to fully numerical
solutions [47,48] of the Hartree–Fock equation. Variational SCF methods using
finite expansions [Eq. (2.14)] yield optimal analytic Hartree–Fock–Roothaan
orbitals, and their corresponding eigenvalues, within the subspace spanned by the
finite set of basis functions.

Commonly, one uses normalized Slater-type orbitals

x lm ¼ (2z)nþ1=2

[(2n)!]1=2
r n�1e�zrYm

l (u, w) (2:15)

where n is the principal quantum number and z is the orbital exponent. Alternatively,
one can use large linear combinations of Gaussian functions

Nrle�zr2Ym
l (u, w) (2:16)

which are particularly efficient in molecular calculations in that they require less
computer time than do Slater integral evaluations. In atomic calculations, Slater
functions are preferred because one-center integrals are no more difficult for
Slater-type than for Gaussian-type orbitals and relatively few well-chosen Slater
functions yield accurate results.

2.3 CONFIGURATION INTERACTION CALCULATIONS

To get true Hartree–Fock orbitals, an infinite set of basis functions should be
included in the expansion (2.14). The question is: How can we improve our
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calculations using finite sets? In Hartree–Fock theory, the wavefunction of an
n-electron atom that satisfies the antisymmetry requirement is a normalized Slater
determinant D

D ¼ 1ffiffiffiffi
n!

p

f1(1) f2(1) � � � fn(1)
f1(2) f2(2) � � � fn(2)

..

. ..
. ..

.

f1(n) f2(n) � � � fn(n)

����������

����������
(2:17)

where f1, f2, . . . , fn are the orthonormal Hartree–Fock spin orbitals of that atom.
Configuration interaction (CI) is conceptually the simplest procedure for

improving on the Hartree–Fock approximation. Consider the determinant formed
from the n lowest-energy occupied spin orbitals; this determinant is jC0l and rep-
resents the appropriate SCF reference state. In addition, consider the determinants
formed by promoting one electron from an orbital k to an orbital v that is unoccupied
in jC0l; these are the singly excited determinants jCv

kl. Similarly, consider doubly
excited (k, l ! v, t) determinants jCvt

kll and so on up to n-tuply excited determinants.
Then use these many-electron wavefunctions in an expansion describing the CI
many-electron wavefunction jF0l:

jF0l ¼ c0jC0lþ
X
k,v

cvkjCv
klþ

X
k�l,v�t

cvtkljCvt
kllþ � � � (2:18)

Equation (2.18) is a linear variation function. (The summation indices prevent
double-counting of excited configurations.) The expansion coefficients c0, cvk, c

vt
kl,

and so on are varied to minimize the variational integral. jF0l is a better approxi-
mation than jC0l. In principle, if the basis were complete, CI would provide
an exact solution. Here we use a truncated expansion retaining only determinants
D0 that differ from jC0l by at most two spin orbitals; this is a singly–doubly
excited CI (SDCI).

The presence of excited determinants in jF0l introduces integrals of the
type

Ð
D0 Â D dt, where Â is an operator. Following the Condon–Slater rules, the

n-electron integrals can be reduced to sums of one- and two-electron integrals
[49]. Consider two determinants D and D0, written as in (2.17), arranged so that as
many as possible of their left-hand columns match. A one-electron operator f̂i
(viz., �1

2r2
i or 2Z/ri) introduces the new integral

ð
f0
n(1) f̂ 1fn(1) dt1 (2:19)

whenD and D0 differ by one spin orbital, f0
n=fn. No contribution arises when D and

D0 differ by two or more spin orbitals. The two-electron operator j1=r12j introduces
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the following new integrals

Xn�1

j¼1

ð ð
f0
n(1)fj(2)

1
r12

fn(1)fj(2)dt1dt2�
ð ð

f0
n(1)fj(2)

1
r12

fj(1)fn(2)dt1dt2

� �

(2:20)

when D and D0 differ by only one spin orbital, f0
n=fn, or

ð ð
f0
n(1)f

0
n�1(2)

1
r12

fn(1)fn�1(2)dt1dt2�
ð ð

f0
n(1)f

0
n�1(2)

1
r12

fn�1(1)fn(2)dt1dt2

(2:21)

when D and D0 differ by two spin orbitals: f0
n=fn and f

0
n�1=fn�1. No contribution

arises when D and D0 differ by three or more spin orbitals. The integrals (2.19)–
(2.21) involve summation over the appropriate spin coordinates and integration
over spatial coordinates.

Inspection of these integrals indicates that they are amenable to a space partitioning—
like that involved in the atomic real-space core–valence separation described in
Chapter 3—simply by selecting the appropriate limits of integration. Briefly, we can
approach the study of core and valence regions with the help of CI wavefunctions.

Inclusion of the simply excited configurations is obviously needed for a proper
description of one-electron properties such as charge densities and, hence, for
properties that are sensitive to this quantity (dipole, quadrupole, etc. moments).
The doubly excited configurations, on the other hand, are required for two reasons:
(1) they allow us to indirectly introduce the single excitations by a coupling with
the SCF reference state, as direct coupling is forbidden by the Brillouin theorem;
and (2) they can lead to nonnegligible contributions to charge density corrections
through a direct coupling with the reference state.

Examples

As one would expect, improvements are achieved for the energies, but, as usual in this
type of work where the rate of convergence is rather slow, it is obvious that many
configurations are required to approach accurate nonrelativistic solutions.

Regarding other properties, the influence of CI catches the eye. It is well known
that the theoretical energy of ground-state molecules is only slightly improved by
the inclusion of single excitations in CI calculations. In contrast, the important role
of single excitations is revealed [50] by the erroneous dipole moment predicted for
CO when only multiple excitations are retained; inclusion of single excitations
restores the correct sign and order of magnitude of mCO. The main correction to
the density arises from the interactions between single and double excitations and
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between single excitations themselves, which reflects in essence the one-electron
nature of the density operator.

The corrections are far more important for sp2 than for sp3 carbons. The charge
analysis of ethylene offers a good example [51]. The results obtained by means of
an optimized double-zeta 4-31G basis indicate that the SCF Mulliken carbon net
charge of 2346.4 me becomes 2269.9 me in the SDCI calculation (see Fig. 2.1).

A core of two MOs was kept doubly occupied, namely, the 1ag,1b1u orbitals
corresponding to carbon K shells (g and u denote gerade and ungerade, respectively).
The remaining 12 electrons were left available for fractional occupation of the 24MOs.

In order to ensure the best possible wavefunction [Eq. (2.18)] while keeping
the required computer space at an acceptable level, the configurations were selected
by (1) retaining all singly excited symmetry- and spin-adapted configurations in the
CI process and (2) selecting in order of preference those double excitations that mix
more efficiently with single excitations and the SCF reference state. The latter rule
introduces a new constraint, namely, that one-electron properties are thus expected
to converge more rapidly than the correlation energy, subject only to the constraint
embodied in the construction of ck. Hence, a selection of configurations that may be
appropriate in charge calculations does not necessarily represent the best choice in
problems of correlation energies. Briefly, we approach convergence of the charge
results well before achieving that of the energy. Convergence appears to be reached
when all the single excitations are included in the configuration interaction and when
the CI dimension reaches 400 determinants. (Similar remarks apply to acetylene as
well. A selection of 17 single and 340 double excitations ensures convergence of the
charge results. Three singly excited configurations of the s ! s� type account for
�83% of the net charge correction, while the p ! p� excitations are weak.)

Figure 2.1. Contribution of single excitations, in decreasing order of their weight in the CI
wavefunction, to the carbon net charge of ethylene.
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As revealed by Fig. 2.1, four configurations are responsible for �76% of the
charge correction: 1b3g ! 2b3g, 3ag ! 4ag, 1b2u ! 2b2u, and 2b1u ! 3b1u. The
improvement due to p ! p� excitations is minor. Additional information is
offered in Table 2.1. The contribution of single excitations is important in unsaturated
molecules. For alkanes, however, the SDCI corrections are minor, but not negligible.

The message is clear—the results are important. But we must await Chapter 5
before discussing them.

Calculations like those reported here—charge densities and dipole moments—are
nowadays almost routine for relatively small molecules. The work involved to obtain
the results displayed in Table 2.1 reveals that a good description of charges in highly
symmetric molecules does not necessarily involve very large CI calculations. It is
also clear, however, that atomic charges would be plagued by serious errors if CI
corrections were left out. This being said, it is important to be aware that the
charge results presented at this point should not be taken at face value; they still
require additional corrections, as indicated in Chapters 5 and 8.

The SDCI calculations are somewhat more involved in calculations of atomic
real-space core–valence partitioning models because of the two-center integrals
(2.10) and (2.11) that require definite integration limits to cover the appropriate
core and valence subspaces. Fortunately, these calculations are greatly aided by
most efficient standard techniques.

TABLE 2.1. Contribution of Excited Configurations to Correlation Energy DEcorr

and Mulliken Net Charges

Molecule Level c20 DEcorr (au) DqC (me) qC (me)

Methane SCF 1.0 0 0.0 2523.2
SDCI .0.99 20.07303 7.5 2515.7

Ethane SCF 1.0 0 0.0 2382.7
SDCI .0.99 20.05717 4.5 2378.2

Ethylene SCF 1.0 0 0.0 2346.4
DCI 0.93443 20.10505 6.7 2339.7
SDCI 0.93053 20.10677 76.5 2269.9
SCa — 20.00172 69.8 —

Acetylene SCF 1.0 0 0.0 2335.3
DCI 0.92472 20.13468 2.0 2333.3
SDCI 0.92084 20.13678 64.1 2271.2
SC — 20.00209 62.1 —

aSC¼ single contribution.
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CHAPTER 3

CORE AND VALENCE ELECTRONS

3.1 INTRODUCTION

The partitioning of ground-state atoms, ions, and molecules into core and valence
regions reflects the old idea that the chemical properties are largely governed by
the outer (or valence) electronic regions, that is, by what we shall call valence
electrons. Although intuitively appealing, this partitioning is not cast in formal
theory. The question as to whether a core–valence separation can be defined in a
physically meaningful way is thus sensible. Undoubtedly, introduction of a suitable
criterion is required to provide an acceptable operational definition.

A familiar way of handling this question is offered by the notion of electronic
shells. By definition, an electronic shell collects all the electrons with the same
principal quantum number. The K shell, for example, consists of 1s electrons, the
L shell collects the 2s and 2p electrons, and so on. The valence shell thus consists
of the last occupied electronic shell, while the core consists of all the inner shells.
This segregation into electronic shells is justified by the well-known order of the
successive ionization potentials of the atoms.

Now, in what is called Hartree–Fock orbital space—or simply orbital space—the
total energy is partitioned from the outset into orbital energies, ei ¼ e1s, e2s, . . .
Hence we can always consider a collection of electrons and deduce their total
energy from the appropriate sum of their orbital energies, remembering, however,
that one must also correct for the interelectronic repulsions which are doubly
counted in any sum of Hartree–Fock eigenvalues. No special problem arises with

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
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core–valence separations in the orbital space, but it is still up to us to select the core
(or valence) electrons as seems appropriate. It appears reasonable to use the order of
orbital energies as a guideline and thus consider the 1s2 electrons as the core of the
first-row elements or the 1s2, 2s2, 2p6 electrons for the second row. Briefly, we reen-
counter the familiar shell model.

Incidentally, let us mention that the essence of the “pseudopotential” methods [52]
is to replace core electrons by an appropriate operator. The point is that the
core–valence partitioning involved in these methods refers to the same orbital
space as the corresponding all-electron calculations.

Now, what if we abandon the orbital-by-orbital electron partitioning in favor of a
description based on the stationary ground-state electron density r(r)? Clearly, this
will oblige us to redefine the core–valence separation. In sharp contrast with what was
done in orbital space, we need a partitioning in real space. Let us begin with
isolated atoms.

3.2 ATOMIC CORE AND VALENCE REGIONS

Here we consider an inner spherical core, centered at the nucleus, with radius rb, and an
outer valence region extending from rb to infinity. The numberof core electronsNc is then

Nc ¼ 4p
ðrb
0

r2r(r)dr (3:1)

where r(r) is the electron density at a distance r from the nucleus with charge Z.
[We write r(r) ¼ r(r) because of the spherical symmetry of the electronic density; see
Ref. 53.] The definition of Nc now rests with the definition of the proper boundary rb.

A number of suggestions were offered to that effect [54–61]. Let us briefly
examine them.

Politzer [54–56] defines the average ionization potential at the point r

�I ¼
X
i

ri(r)jeij
r(r)

where ri(r) is the electron density of the orbital with energy e i and r(r) ¼
P

i ri(r) is
the total electron density at the point r. We can interpret Ī as the average energy
required for the removal of one electron from the point r of an atom or a molecule.
In ground-state atoms, Ī decreases in a piecewise manner along the coordinate r [56],
and the regions between the inflexion points may be taken as electron shells. Indeed,
the number of electrons contained in the sphere with radius rb [Eq. (3.1)] are close to
2 for the first-row elements (e.g., 2.033 e for carbon and 2.030 e for neon) or close to
2 and 10 e for the larger atoms (e.g., 2.011 and 10.068 e for argon). These results are
well substantiated for the atoms Li22Ca but less clear for atoms with d electrons,
probably because of the interpenetration of subshells in the heavier atoms [55].
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The “average local electrostatic potential” V(r)/r(r), introduced by Politzer [57],
led Sen and coworkers [58] to conjecture that the global maximum in V(r)/r(r)
defines the location of the core–valence separation in ground-state atoms. Using
this criterion, one finds Nc values [Eq. (3.1)] of 2.065 and 2.112 e for carbon and
neon, respectively, and 10.073 e for argon, which are reasonable estimates in light
of what we know about the electronic shell structure. Politzer [57] also made the sig-
nificant observation that V(r)/r(r) has a maximum any time the radial distribution
function D(r) ¼ 4pr2r(r) is found to have a minimum.

The minimum of this function, namely, D(r), plays a major role in the Politzer–
Parr approximation1 [61] for the valence region energy of ground-state atoms

Ev ¼ � 3
7
(Z � Nc)

ð1
rb

4prr(r)dr (3:2)

where the boundary surface separating the inner core and the outer valence regions is
taken at rb ¼ rmin, that is, at the minimum of the radial distribution function. In
Hartree–Fock calculations, minima of D(r) occur approximately at the “right
places” (in terms of the shell model), specifically, at Nc � 2 e for the first-row and
at Nc � 2 and Nc � 10 e for the second-row elements. This result sheds light on
the physical involvement of the electronic shell structure in a meaningful separation
of an atom or ion into core and valence regions but should evidently not be taken too
literally with Hartree–Fock wavefunctions.

The true merits of this approximation are discussed further below.
With reference to the minima of the radial distribution function D(r), SCF analyses

[61] using the near-Hartree–Fock wavefunctions of Clementi [64] indicate that the
numbers of electrons found in the inner shell extending up to the minimum of
D(r) amount to Nc ¼ 2.054 e (Be), 2.131 (C), 2.186 (O), 2.199 (F) and 2.205 electron
(Ne). The results of Smith et al. [65] bearing on the boundaries in position space that
enclose the exact number given by the Aufbau principle support the idea of “phy-
sical” shells compatible with that principle. The maxima of D(r), on the other
hand, also appear to be topological features indicative of shells, their positions
correlate well with the shell radii from the Bohr–Schrödinger theory of an atom
[66]. The critical points in r2r(r), in contrast, although highly indicative of atomic
shells in a qualitative sense, are not suitable for defining meaningful shell boundaries
[67]. So, on the basis of these results, we shall keep in mind that the radial distribution
function offers a vivid pictorial reference suggesting an involvement of the electronic

1In Thomas–Fermi theory, the ground-state energy of a neutral atom with nuclear charge Z is [62,63]
E ¼ 3

7 Z
2f0

0, with

f0
0 ¼

df(r)
dr

� �
r¼0

¼ d(rV=Z)
dr

� �
r¼0

where V(r) is the total electrostatic potential at the distance r from the nucleus. Politzer and Parr applied this
Thomas–Fermi formula to a hypothetical neutral atom containing (Z2 Nc) electrons in the field of an
expanded effective nucleus of radius rb ¼ rmin to get Eq. (3.2).
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shell structure in the separation of core and valence regions in atoms, but also that one
should definitely not attempt to carry this picture too far.

In comparison with experimental data, the inconvenience arising from fractional
electron populations was compensated by interpolation [61]; the penultimate
ionization potential (IP) was included with the 1s population in the valence region.
Similarly, the 2s and 2p contributions were subtracted from the valence region by
including the corresponding fractions of the larger IPs in the core. The same approxi-
mation was used for 3s and 3p electrons.

At long last, we are ready for an approach that is not based on the radial
distribution function. With reference to the partitioning surface defined by rb, the
numbers of core electrons Nc and of valence electrons Nv are readily obtained by
adequately integrating the electron density r(r) between 0 and rb or between rb
and 1, respectively, using dN ¼ r dt ¼ 4pr2r(r) dr. Accordingly, the nuclear–
electronic potential energies, �Z

Ð
[r(r)=r] dt, are V c

ne for the Nc core electrons
and Vv

ne for the Nv valence electrons with kinetic energies Tc and Tv, respectively,
obtained by appropriate selections of the integration limits. Now we come to the
two-electron integrals. The interelectronic repulsion, Vee, is split into three parts:
(1) V cc

ee ¼ electron–electron repulsion concerning only the charges of the core
region; (2) Vvv

ee , the repulsion between valence electrons; and (3) V cv
ee , the repulsion

between the Nc core and the Nv valence electrons, with Vee ¼ V cc
ee þ Vvv

ee þ V cv
ee .

Now, the appropriate integration limits used in the calculation of j1/r12j interactions
between electrons assigned to the core region tc and electrons associated with the
valence space tv concern both Coulomb and exchange integrals. The latter are of par-
ticular interest, namely, the exchange that participates in the evaluation of V cv

ee .
Consider the sum Kcv, which collects all the relevant exchange terms between the

core electrons found in tc and the valence electrons found in tv. This sum can vanish;
that is Kcv ¼ 0 is possible. [The function 1s(1)2s(1)1s(2)2s(2), for example, can be
positive or negative depending on whether r1 and r2 are on the same side or on oppo-
site sides of the nodal surface. The final sign of this contribution thus depends on the
locations of the boundary and nodal surfaces.]

Kcv depends on the radius selected for the inner core region and so does Nc, of
course [68,69]. Thus we can represent Kcv as a function of Nc. Two examples are
offered in Figs. 3.1 and 3.2. The contribution of the SDCI correction, although
small, is clearly recognizable.

The results for neon are typical for first-row atoms, while those of argon are
representative of second-row elements [69]; for the first-row elements, Kc � 0 for
Nc ¼ 2 e, whereas for the second-row atoms, Kcv � 0 for Nc ¼ 2 and Nc ¼ 10 e.2

It is certainly reassuring to find recognizable, nonarbitrary features suggesting a
meaningful definition of boundary surfaces in real space. Nonzero exchange
integrals between individual electrons are a well-known corollary of their
indistinguishability. It thus seems natural to argue that a group of electrons should

2Self-consistent field results obtainedwith near-Hartree–Fockwavefunctions of Clementi and Roetti [70] indi-
cate similar patterns for Ti, Cr, Fe, Ni, Zn, Ge, Se, and Kr, namely, “almost” vanishingKcv integrals forNc ¼ 2
and Nc ¼ 10 e [69]. A third point exists for krypton, for Nc ¼ 28 e, where Kcv reaches a minimum [44].
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not be distinguished from another group of electrons if the total exchange between
these groups is nonzero and that a vanishing Kcv should thus accompany a
discrimination between core and valence electrons, as it is clearly illustrated in
Figs. 3.1 and 3.2.3

Figure 3.2. Argon. Kcv vs. Nc (au): 6-311G� SCF and SDCI results.

Figure 3.1. Neon. Kcv vs. Nc (au): (13s 8p 2d 1f ) SCF and SDCI results.

3From nickel onward, however, no boundary can be detected for Nc ¼ 28 e—an observation that is con-
sistent with a relatively significant degree of interpenetration, for third-row atoms, between the 3d, 4s, or
4p electrons and the 3s or 3p electrons, as shown by Politzer and Daiker [71].
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Table 3.1 examines this point a little more in detail. For comparison, we offer the
SCF results obtained with the near-Hartree–Fock wavefunctions of Clementi and
Roetti [70] and the SDCI results obtained [69] with the 6-311G�, atomic natural
orbital (ANO), and (13s 8p 2d 1f ) bases. It is clear that the Kcv integrals closely
approach zero when Nc ¼ 2 and Nc ¼ 10 e. To appraise the significance of this
result, we must compare it with the total exchange Ktotal calculated for the entire
atom. Ktotal is small, of course, for lithium (0.0220 au) but increases rapidly with
the size of the atom: 0.0587 (Be), 0.6396 (C), 1.2801 (O), and 2.3758 au (Ne) in
the (13s 8p 2d 1f ) basis, with CI. Briefly, Ktotal is certainly sufficiently large to
brand Kcv (for Nc ¼ 2, viz., 10 e) as a negligible quantity, in comparison. Surely,
this argument applies a fortiori also to the second-row elements where the total
exchange integrals are still larger, up to �7.2 au for argon.

It is difficult to ascertain conclusively whether small differences between Kcv and
0 stem from the incompleteness of our CI wavefunctions or whether they are (at least
partly) genuine. So, while a small departure from 0 cannot be entirely ruled out for
Kcv in situations where Nc is exactly 2 or 10 e, depending on what atom (or ion)
we are talking about, it seems fair to claim that the criterion resting on vanishing
core–valence exchange integrals clearly establishes the identity of the core and
valence regions despite the possibly approximate nature of our numerical verifications.
The following should also be considered.

TABLE 3.1. Kcv Exchange Integrals (Atomic Units)

Atom Nc Near-HF SCF 6-311G� ANO (13s 8p 2d 1f )

Li 2 20.0027 20.0024 20.0021 20.0017
Be 2 20.0148 20.0136 20.0130 20.0127
B 2 20.0254 20.0229 20.0215 20.0116
C 2 20.0347 20.0303 20.0282 20.0155
N 2 20.0404 20.0327 20.0308 20.0167
O 2 20.0471 20.0401 20.0363 20.0206
F 2 20.0488 20.0397 20.0363 20.0142
Ne 2 20.0449 20.0297 20.0019 20.0003
Na 10 0.0050 0.0064 0.0053 —
Mg 10 0.0118 0.0128 0.0124 —
Al 10 0.0158 0.0183 0.0204 —
Si 10 0.0171 0.0211 0.0204 —
P 10 0.0138 0.0182 0.0189 —
S 10 0.0019 0.0275 0.0077 —
Cl 10 20.0186 20.0111 20.0098 —
Ar 10 20.0450 20.0075 20.0358 —

Sources: Results taken from Ref. 69; the near-HF SCF Slater bases are from Ref. 70. The 6-311G� basis is
that of Ref. 16. The contracted ANO (atomic natural orbital) bases [72] are indicated in [69], as well as the
(13s 8p 2d 1f ) basis constructed with the help of van Duijneveldt’s (13s 8p) basis [18] augmented with d
and f functions taken from Ref. 17.
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Thus far we have dealt with the exchange between the Nc core and the Nv valence
electrons, but did not consider the valence region energy Ev, the energy required for
the removal of all the valence region electrons, thus leaving the 2-electron (or 10-
electron) ion behind, with energy Eion. From what we have learned here, only
integer Nc and Nv populations need be considered, which makes comparisons with
experimental data straightforward.

The appropriate formulas for Ev and Ecore will be derived with these constraints in
mind. But let us first clarify some points.

Computational Details

So far we have obtained a result regarding the boundary between core and valence
regions in atoms, but little was said about the calculation of the relevant quantities.
Useful information is given below.

Consider the partitioning of an atom (or ion) into two regions of space: a spherical
inner region of radius rb, centered at the nucleus, and an outer region, extending from
rb to infinity. The Hartree–Fock equation (2.2) is our starting point. Multiplication
from the left by f�

i , integration from rb to 1, and summation over all occupied
orbitals i leads to

X
i

ð1
rb

nif
�
i F̂fi dt ¼

X
i

ð1
rb

nif
�
i eifi dt (3:3)

where ni is the occupation of the normalized orbital with eigenvalue e i. Until now, no
constraint has been attached to the radius rb defining the boundary surface separating
the inner and outer regions. [The validity of (3.3) for all values of rb depends on
whether the fi values are true Hartree–Fock orbitals [73].]

Now we transform Eq. (3.3) into something more practical. Let us begin with its
right-hand side. The integral

N v
i ¼ ni

ð1
rb

f�
i fi dt (3:4)

represents the number of electrons of orbital i found in the outer region (which we call
for simplicity, but admittedly somewhat sketchily, the valence region). Equation (3.3)
thus becomes

X
i

ð1
rb

nif
�
i F̂fi dt ¼

X
i

N v
i ei (3:5)

Next, we proceed with the left-hand side of Eq. (3.5). Evaluation of the monoelec-
tronic integrals occurring in it is straightforward. From Eq. (2.9), the nuclear–
electronic potential energy of the

P
i N

v
i outer electrons in the field of the nuclear
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charge Z is

V v
ne ¼ �Z

X
i

ni

ð1
rb

4pr jfi(r)j2 dr (3:6)

and from Eq. (2.8), their kinetic energy is,

T v ¼
X
i

ni

ð1
rb

f�
i T̂fi dt: (3:7)

Now we turn to the bielectronic integrals contained in the left-hand side of
Eq. (3.5). They require a little attention. Consider the Coulomb operator Ĵj from
Eq. (2.5). The integral

Ð
� � � dt2 is over all space, but can be split into two

contributions, namely, in short-hand notation, as

ðtc2
� � � dt2 þ

ðtv2
� � � dt2

where the first integral (from 0 to rb) covers the inner (core) region t c
2 , whereas the

second one (from rb to 1) represents the outer (valence) space tv2. Using Eq. (2.5),
the integration between rb and 1 required by (3.5) thus gives the following
Coulomb repulsion:

ðtv1
f�
i (1)Ĵj(1)fi(1) dt1 ¼

ðtv1ðt c2
� � � dt2 dt1 þ

ðtv1ðtv2
� � � dt2 dt1 (3:8)

These integrals describe a potential energy of interaction involving the part of
electron 1 assigned to the valence space tv and a smeared-out electron with

density jfj(2)j2. The two terms on the right-hand side of Eq. (3.8) differ from one

another because the first integrals “sees” only the part of jfj(2)j2 found in the core

space tc, whereas the second integral concerns only the part of jfj(2)j2 confined
within the valence region tv.

At last, we can carry out the sum indicated in Eq. (3.5). This sum also includes a
term arising from Ĵj(1)fi(1):

ðtv2
f�
j (2)Ĵi(2)fj(2) dt2 ¼

ðtv2ðt c1
� � � dt1 dt2 þ

ðtv2ðtv1
� � � dt1 dt2:

As a consequence, the summation over all occupied orbitals counts once again
the 1–2 Coulomb interaction confined within the valence space, specifically, theÐ tv1 Ð tv2 � � � dt2 dt1 term already found in (3.8), and adds the new integral

ðtv2ðt c1
� � � dt1 dt2
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describing the interaction between the part of electron 2 found in tv and the part of
electron 1 found in the core region. Briefly, all interactions involving exclu-
sively electron densities assigned to the outer space tv are counted twice
in the sum (3.5), whereas the cross-interactions between electrons assigned
to tv and those assigned to tc, represented by the appropriateÐ tv1 Ð t c

2 � � � dt2 dt1 þ
Ð tv2 Ð t c

1 � � � dt1 dt2 integrals, are counted only once. The same
reasoning applies to the exchange operator (2.6) and to its integral

Ð
� � � dt1, followed

by summation over i. Down the line, taking now all the appropriate Coulomb and
exchange integrals into account, it is seen that Vvv

ee , that is, the interelectronic
repulsion involving only the electrons of the valence region, is counted twice in
the left-hand side of Eq. (3.5) whereas V cv

ee , namely, the repulsion between the core
and the valence electrons, is counted only once.

The final result, including now Vv
ne and Tv, Eqs. (3.6) and (3.7), respectively, is

therefore

X
i

Nv
i ei ¼ Tv þ Vv

ne þ 2Vvv
ee þ V cv

ee (3:9)

This equation [68,69,73] is a handy form of Eq. (3.3). All the terms can be evaluated
by standard SCF and SDCI procedures, simply by paying attention to the appro-
priate limits of integration. (Full details are given in Refs. 68 and 69.) Evidently,
all the quantities (except the e is) are functions of the rb of our choice
[Nv

i ¼ Nv
i (rb), Tv ¼ Tv(rb), etc.]. A similar equation can be written for the core

region by carrying out the integration of f�
i F̂ fi between 0 and rb, namely

X
i

Nc
i ei ¼ Tc þ V c

ne þ 2V cc
ee þ V cv

ee (3:10)

where Tc, V c
ne, and V cc

ee are, respectively, the kinetic, the nuclear–electronic, and the
interelectronic energies of the

P
i N

c
i core electrons.

This concludes the presentation of the necessary formulas. Numerical examples
are presented shortly.

3.3 THE VALENCE REGION ENERGY OF ATOMS

At last we can proceed with the derivation of the appropriate formulas for the core and
valence region energies for both atoms and molecules. The atoms and their ions come
first. This is another way of solving the question about the boundary separating the
core and valence regions.

The valence region energy we are looking for, Ev, is not simply the sum of the
kinetic and potential energies of the electrons in the outer (valence) region, as one
would infer from their stationary densities. The valence energy described here accounts
for any relaxation that accompanies an actual removal of the appropriate number of
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valence electrons. This energy should be a measure of the energy required to remove
them. It carries the notion of integer numbers of electrons.

Relationship between Core and Valence Region Energies

Using Eq. (3.9), we can define a virtual valence region energy

X
i

Nv
i ei � Vvv

ee ¼ Tv þ Vv
ne þ Vvv

ee þ V cv
ee

which is just the sum of the kinetic and potential energies associated with the valence
region defined by rb:

Ev
virtual ¼ Tv þ Vv

ne þ Vvv
ee þ V cv

ee (3:11)

Similarly, we can define a virtual core energy:

Ec
virtual ¼ Tc þ V c

ne þ V cc
ee þ V cv

ee (3:12)

Remembering that E ¼ T þ Vne þ Vee is the energy of the entire atom, it follows from
Eqs. (3.11) and (3.12) that

E ¼ Ev
virtual þ Ec

virtual � V cv
ee (3:13)

The valence energy (3.11) corresponds to a hypothetical ionization in which the
valence electrons would be simply skimmed off as they are in the ground-state
atom, with no relaxation of the core. This does not occur, of course, because electrons
cannot be removed in fractional amounts. For that reason, Ev

virtual is not an observable
quantity.

An observable energy for a selected set of electrons follows in a straightforward
manner from the sum of their orbital energies less the electron–electron interactions,
which are counted twice in this sum. This procedure, reflecting the spirit of
Koopman’s theorem, is nothing new in Hartree–Fock theory.

So we go back and determine whether a valence energy other than (3.11) can be
derived, complying with the requirement that it should represent a physical quantity.
The problem at hand is best explained by an example. Suppose that there is some
reason to assume that the core of carbon is adequately represented by a two-electron
inner shell. In Hartree–Fock theory this core cannot consist of two pure 1s electrons;
some 2s and 2p electron densities are found in this core, with some 1s density in the
outer region. However, on ionization of the two 2s and the two 2p electrons, a C4þ

ion is left behind with two pure 1s electrons. In other words, a relaxation is part of this
process and is thus part of the description of the physical valence energy. Briefly, we
have to look for a valence energy Ev by studying the general properties of an atom in
which the core and valence regions are interdependent.
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In this vein, we reexamine the problem with the understanding that in the event of
an actual ionization, one region benefits at the expense of the other from the occur-
rence of relaxation. The valence and core energies modified by this relaxation are no
longer those appearing in Eq. (3.13), but the modified valence region energy Ev and
its core counterpart Ec are still tied by this general energy balance, that is

E ¼ Ev þ Ec � V cv
ee (3:14)

where Ev corresponds to the energy required for removal of the valence electrons, that
is, to minus the sum of the relevant ionization potentials. When n valence electrons
are removed from a neutral atom A, an ion with charge þn is left behind. The same
ion is formed on removal of n þ 1 electrons from a negative ion A2, or on removal of
n2 1 electrons from Aþ. Briefly, the valence energies of A2, A, Aþ, and so on are
always expressed by reference to the same final ion. Inspection of Eq. (3.14) indicates
that the ground-state energy of this ion is

Eion ¼ Ec � V cv
ee (3:15)

Energies Ev and Ec are the unknowns of our problem. Equation (3.14) is part of the
solution.

Energy Formulas for Core and Valence Electrons

In the following we derive an expression for Ev without bothering about a physically
valid core–valence separation, treating Ev as if it were a continuous function of rb.
The acceptable discrete solutions of Ev are selected afterward.

Consider first the electronic energy E ¼ hCjĤjCi of a ground-state atom or ion
with nuclear charge Z and apply the Hellmann–Feynman theorem [74] taking the
nuclear charge Z as a parameter. This gives, in conventional notation, at constant elec-
tron density r

@E

@Z

� �
r

¼ hCj@Ĥ=@ZjCi ¼ C �
X
i

r�1
i

�����
�����C

* +

where the sum over i runs over all electrons. The well-known result is

@E

@Z

� �
r

¼ Vne

Z
(3:16)

On the other hand, the virial theorem (2E ¼ Vne þ Vee) and the Hartree–Fock
formula (2.13) combine to give

3E ¼ Vne þ
X
i

niei (3:17)
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This result and Eq. (3.16) lead to

3E � Z
@E

@Z

� �
r

¼
X
i

niei (3:18)

We now define

g ¼ Z

E

@E

@Z

� �
r

(3:19)

and rewrite Eq. (3.18) as follows:

(3� g)E ¼
X
i

niei (3:20)

Finally, combining (3.16) and (3.19), we get

E ¼ 1
g
Vne (3:21)

Equations (3.20) and (3.21) represent an identity in Hartree–Fock theory. (The
Hellmann–Feynman and virial theorems are satisfied by Hartree–Fock wavefunc-
tions.) The particular interest offered by (3.21) lies in the fact that g ¼ 7

3 appears to
be the characteristic homogeneity of both Thomas–Fermi [62,75,76] and local
density functional theory [77], in which case (3.20) gives the Ruedenberg approxi-
mation [78], E ¼ 3

2

P
i niei, while (3.21) gives the Politzer formula [79], E ¼ 3

7Vne.
Equations (3.14), (3.20) and (3.21) are our working formulas.

We pick up things where we left them with Eq. (3.14) and write

gE ¼ gvEv þ gc(Ec � V cv
ee ) (3:22)

This equation is more general than what would follow from a simple multiplication
by g. It is noncommittal as to whether the atomic g suits the individual core and
valence parts; in writing (3.22), g is taken as the average of gv (with a weight of
Ev) and gc (weighted by Ec � V cv

ee ):

g ¼ gvEv þ gc(Ec � Vcv
ee )

Ev þ Ec � V cv
ee

Next we consider Vne ¼ Vv
ne þ V c

ne, which we write as

Vne ¼ (Vv
ne þ V cv

ee )þ (V c
ne � V cv

ee )

The reason for this association of terms is physical. In a central-force problem, Vv
ne

and V cv
ee play roles that are similar in nature because Vv

ne measures the attraction of
the valence electrons by the nucleus and V cv

ee the accompanying repulsion by the
core electrons. This formulation is directly linked to the model adopted here, that
of a charged inner sphere of radius rb surrounded by valence electrons. With
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Eq. (3.21) in mind, we now write

1
g
Vne ¼

1
gv

(Vv
ne þ V cv

ee )þ
1
gc

(Vc
ne � V cv

ee ) (3:23)

In this case 1/g is the weighted average of 1/gv (with a weight of Vv
ne þ V cv

ee ) and of
1/gc (with a weight of V c

ne � V cv
ee ).

At this point we use Eqs. (3.22) and (3.23) and solve for gv. After some algebra
one obtains (gv)2 þ bgv þ c ¼ 0 with b ¼ �[(Vv

ne þ V cv
ee )=E

v þ g] and b2 � 4c ¼
[(Vv

ne þ V cv
ee )=E

v � g]2. The trivial root is gv ¼ g. The other root gives

Ev ¼ 1
gv

(Vv
ne þ V cv

ee ) (3:24)

So far we have exploited Eq. (3.21). We have one more step to go. Using (3.14)
and (3.22), we write

(3� g)E ¼ (3� gv)Ev þ (3� gc)(Ec � V cv
ee )

and compare this expression with
P

i niei ¼
P

i N
v
i ei þ

P
i N

c
i ei. Equation (3.20)

tells us that

(3� gv)Ev �
X
i

Nv
i ei

" #
þ (3� gc)(Ec � V cv

ee )�
X
i

Nc
i ei

" #
¼ 0

This equation achieves a core–valence separation. The terms in brackets are certainly
individually zero at the limits Nc ¼ 0 and Nv ¼ 0, but this does not warrant that these
terms are individually zero for other values of Nc, that is, that there is an Nc satisfying
a meaningful core–valence separation. We shall tentatively proceed with

(3� gv)Ev ¼
X
i

Nv
i ei (3:25)

and postpone momentarily the question about acceptable Nc values. Equation (3.25)
defines Ev; it is the “valence counterpart” of Eq. (3.20).

Comparison with Eq. (3.24) yields the energy formula [68]

Ev ¼ 1
3

Vv
ne þ V cv

ee þ
X
i

Nv
i ei

 !
(3:26)

which is visibly the valence counterpart of (3.17). Ev expresses a valence region
energy that takes the relaxation of the core into proper account. It corresponds to
the appropriate sum of ionization potentials.
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The final formula is thus obtained with the help of Eq. (3.9), namely

Ev ¼ 1
3
(Tv þ 2Vv) (3:27)

Vv ¼ Vv
ne þ Vvv

ee þ V cv
ee (3:28)

where Vv is the total potential energy of the
P

i N
v
i electrons associated with the outer

(valence) region. For the entire atom, that is, letting Nc ¼ 0, Eq. (3.27) reduces to
E ¼ 2T because V/T ¼ 22 (virial theorem). While Eq. (3.9) is valid for any rb of
our choice, Ev is meaningful only for discrete values of Nc.

In closing, let us compare this physically observable Ev with Ev
virtual, Eq. (3.11),

describing the “virtual” valence region of an unperturbed Hartree–Fock atom. We
eliminate Vvv

ee from (3.11) with the help of (3.9) and compare the result with
(3.26). This gives

Ev
virtual ¼

1
2
(3Ev þ Tv) (3:29)

Undoubtedly, Ev
= Ev

virtual. Equation (3.29) indicates that the virial theorem,
�Tv ¼ Ev, and thus �Tv ¼ Ev

virtual, is not obeyed in the valence region.
Finally, one can also deduce the energy Eion of the ion left behind on removal of

the valence electrons (e.g., C4þ from C, Cþ, or C2) from the ground-state properties
of its parent atom or ion. Using Eq. (3.10) and combining Eqs. (3.14), (3.15), and
(3.22)–(3.25), we have

Eion ¼ 1
3

V c
ne � V cv

ee þ
X
i

Nc
i ei

 !
(3:30)

Eion ¼ 1
3

Tc þ 2(V c
ne þ V cc

ee )
� �

(3:31)

Equations (3.26)–(3.29) still describe Ev as if it were a continuous function of rb.
There are restrictions, however, if Ev is meant to represent a physical quantity,
namely, a valence energy that measures the energy actually required for the
removal of integer numbers of outer electrons.

Examples: Meaningful Core–Valence Partitioning

The analysis presented earlier for the exchange integrals (Table 3.1 and Figs. 3.1 and
3.2) carries a strong conjecture regarding the uniqueness attached to the constraint
Kcv ¼ 0, namely, concerning the validity of Eqs. (3.27) and (3.31) for appropriately
selected core populations.

Typical examples, such as carbon, fluorine, and neon, nicely complete this argu-
ment. Table 3.2 lists their kinetic and potential valence region energy components for
Nc ¼ 1, 2, 3, . . . electron and the corresponding Ev values given by Eq. (3.27);
experimental data unmistakably pick Nc ¼ 2 e as the correct solution. Similar tests
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select both Nc ¼ 2 and Nc ¼ 10 e for the second-row elements [68]. These constraints
are now part of the definition of “effective” nuclear charges, Z 2 Nc.

Table 3.3 lists the relevant energy components of the first- and second-row
atoms, for use in Eqs. (3.27) and (3.31). These are SDCI results obtained with the

TABLE 3.2. Selected Kinetic and Potential Valence Region Energies
of C, F, and Ne (au)a

Atom Nc Vvv
ee V cv

ee Vv
ne Tv

Ev

Calculated Experimentalb

C 1 6.4902 4.5741 236.1302 4.2833 215.283 219.849
2 2.9648 5.7358 218.0060 2.4073 25.401 25.440
3 1.3611 4.6819 210.4404 1.1533 22.547 23.070

F 1 26.0057 10.9725 2119.1931 20.9946 247.812 259.268
2 16.8157 16.1570 276.1107 13.4101 224.289 224.212
3 10.9430 16.9484 254.3146 8.7695 214.692 217.406
4 6.8605 16.0133 239.6055 4.6120 29.617 211.631

Ne 1 37.0049 13.7487 2163.0250 30.8793 264.554 278.991
2 25.3052 20.8567 2109.1037 20.3326 235.184 235.045
3 17.4010 22.8145 280.7045 13.8571 222.374 226.258
4 11.6797 22.5013 261.1987 8.0261 215.336 218.641
5 7.3925 20.6915 245.6632 4.2586 210.300 212.837

aSDCI results in the (13s 8p 2d 1f ) basis (from [69]).
bTaken as the appropriate sum of ionization potentials [80], with a change in sign, using 1 au ¼ 27.2106 eV.

TABLE 3.3. Kinetic and Potential Energies of First-Row Atoms (Nc 5 2)
and Second-Row Atoms (Nc 5 10 e) (au)

Atom Vcc
ee Vvv

ee V cv
ee Vc

ne Vv
ne Tc Tv

Li 1.617 0.008 0.578 216.239 20.910 7.432 0.039
Be 2.333 0.303 1.752 230.052 23.649 14.372 0.283
B 3.072 1.183 3.436 248.001 28.968 23.649 0.990
C 3.848 2.965 5.736 270.191 218.006 35.415 2.407
N 4.654 5.955 8.653 296.652 231.728 49.734 4.819
O 5.484 10.466 12.089 2127.439 250.646 66.674 8.343
F 6.337 16.816 16.157 2162.543 276.111 86.255 13.410
Ne 7.212 25.305 20.857 2201.991 2109.104 108.521 20.333
Na 63.016 0.017 2.616 2386.486 22.941 161.804 20.002
Mg 72.414 0.276 6.824 2470.516 28.352 199.500 0.093
Al 81.798 0.880 11.855 2562.875 215.682 241.579 0.411
Si 91.237 2.004 18.275 2663.560 225.996 288.028 0.987
P 100.785 3.771 25.990 2772.811 239.572 339.054 1.883
S 110.425 6.389 34.798 2890.621 256.465 394.672 3.093
Cl 120.233 9.943 44.917 21016.857 277.389 454.789 4.720
Ar 130.077 14.633 56.421 21152.114 2102.854 519.993 6.832

SDCI results in the (13s 8p 2d 1f ) basis for Li22Ne and with the 6-311G� basis for the series Na22Ar.
Source: Ref. 69.

3.3 THE VALENCE REGION ENERGY OF ATOMS 31



(13s 8p 2d 1f ) basis taking Nc ¼ 2 e for the atoms Li22Ne and with Pople’s 6-311G�

basis for the second row, with Nc ¼ 10 e. The latter basis was also used for the first-
row atoms.

While the relatively modest 6-311G� set gives acceptable results for the first-row
elements, things understandably deteriorate in the second row, particularly for the
larger atoms. Our results are just fair for atoms larger than aluminum but nonetheless
sufficiently clear to support the basic tenets underlying Eqs. (3.27) and (3.31) and our
criterion defining core and valence regions. Of course, part of the problem is with the
relatively modest size of the basis sets that were employed, but relativistic effects and
size consistency certainly should be considered at this point. Relativistic corrections
to the total energy are always negative for the ground-state configurations of atoms. In
Datta’s calculations [81] they amount to 20.01634 au for carbon, 20.05577 au for
oxygen, and 20.14482 au for neon, to cite only a few examples. These corrections
grow rapidly with the size of the atoms, for instance, 20.409 (Al), 20.771 (P),
21.024 (S), 21.339 (Cl), and 21.722 hartree for argon [82] and become numeri-
cally more important than possible improvements in CI calculations, a fact well
worth remembering.

The results displayed in Tables 3.1–3.4 are self-explanatory: Ev and Eion are
meaningful only for discrete numbers Nc of electrons assigned to the core, namely,
when the exchange integrals Kcv between Nc and Nv total (or at least closely
approach) 0, that is, for Nc ¼ 2 e or Nc ¼ 2 and 10 e for the first- or second-row
elements, respectively.

But the formulation (3.27) for Ev is not the most practical one for our
intended applications to bond energy theory. A good approximation can be used
instead.

TABLE 3.4. Calculateda and Experimental Energies of Valence Electrons Ev

and Two-Electron Ions Eion (au)

Atom

6-311G� (13s 8p 2d 1f ) Experimentalb

Ev Eion Ev Eion Ev Eion

Li 20.201 27.242 20.202 27.270 20.198 27.280
Be 20.965 213.662 20.969 213.688 21.012 213.657
B 22.560 222.047 22.570 222.070 22.623 222.035
C 25.381 232.404 25.401 232.424 25.440 232.416
N 29.774 244.735 29.807 244.754 29.810 244.802
O 215.893 259.056 215.946 259.079 215.916 259.194
F 224.219 275.358 224.289 275.386 224.212 275.595
Ne 235.098 293.642 235.184 293.679 235.045 294.006

aResults obtained from Eqs. (3.27) and (3.31) for Ev and Eion, respectively, using the input data given in
Table 3.3 and similar data deduced with the help of Pople’s 6-311G� basis set.
bTaken as the appropriate sums of experimental ionization potentials [80], with a change in sign, using the
conversion factor 1 au = 27.2106 eV.
Source: Ref. 69.
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Alternate Energy Formula

Consider Eq. (3.24) and examine the physical nature of its V cv
ee part. This potential

energy describes the repulsion between an outer electron cloud (the valence electrons)
and the Nc core electrons. A considerable simplification can be achieved with the help
of Gauss’ theorem, which offers a simple solution: Gauss’ theorem tells us that if the
charge of a subshell is rigorously spherically symmetric about a nucleus, the effect
felt by a point charge “outside” such a subshell would be as though all the “inner”
charge were concentrated at the nucleus to form a positively charged core that acts
as a point charge.

Hence, with the
Ð1
rb
[r(r)=r] dr integrals the same in the evaluation of V cv

ee and Vv
ne,

and accounting for the fact that the nuclear charge Z has been replaced by Nc, it
follows that

Vcv
ee ¼ �Nc

Z
Vv
ne (3:32)

It is now clear that

Vv
ne þ V cv

ee ¼ �(Z � Nc)
ð1
rb

r(r)
r

dr (3:33)

represents the nuclear–electronic potential energy of the outer electrons in the field of
an expanded “effective nucleus” (Z2 Nc). This is an approximation, of course,
because it does not consider the spin of the core electrons. Now we know that the
exchange part Kcv of the core–valence interactions is certainly very small for the
rb that defines the boundary between core and valence regions. These results,
which are in general agreement with those of Politzer and Daiker [71], suggest that
(3.33), although approximate, is not bad at all. Note that because of Eq. (3.32), we
can also write

Vv
ne þ V cv

ee ¼ Z � Nc

Z
Vv
ne (3:34)

In defense of Eqs. (3.33) and (3.34), one can add that monoelectronic properties are
better reproduced in Hartree–Fock theory than are bielectronic properties.

The simplification introduced with the use of Gauss’ theorem is most valuable for
the physical picture it conveys, that of a valence electron cloud in the field of a
nucleus partially screened by its core electrons. Using it in Eq. (3.24), we get

Ev ¼ � 1
gv

(Z � Nc)
ð1
rb

r(r)
r

dr (3:35)

Remembering that, given spherical symmetry, it is dr ¼ 4pr2 dr, we see that
Eq. (3.35) is our counterpart of the Politzer–Parr Thomas–Fermi-like formula
(3.2) describing the valence region of atoms. Here we must stress that Eq. (3.35)
represents a valence energy in which relaxation effects are included. It was
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derived from Eq. (3.24) and cannot be mistaken for Ev
virtual—an important aspect

which was not recognizable in earlier derivations of energy formulas like (3.35) in
the spirit of Thomas–Fermi theory.

This derivation foreshadows a similar one for molecules.

3.4 SUMMARY

The formula for the valence region energy in real space, namely, Ev ¼ 1
3 (T

v þ 2Vv),
sharply differs from that applicable in the orbital space where the valence energy is
just the simple sum of the pertinent electronic kinetic and potential energies. The rel-
evant kinetic and potential energies are evidently not the same in the orbital space and
in real space. They proceed from integrations over the full coordinate space in the
former, thus contrasting with integrals spanning appropriate portions of the total
space for use in Ev ¼ 1

3 (T
v þ 2Vv).

In orbital space, the core–valence separation of electrons is made with reference to
some property (orbital energy or principal quantum number), but in real space this
segregation is made solely with reference to the admissible number Nc of core elec-
trons. The uniqueness of this partitioning in real space (which carries over in orbital
space where the valence energies are the same) goes back to Ev, which accepts only
discrete solutions, namely, with Nc ¼ 2 e for the first-row elements or Nc ¼ 2 and
10 e for the second row, that is, whenever the exchange integrals between the core
and the valence region electrons are down to zero. For any other Nc, large discrepan-
cies are found between the calculated Ev values and the corresponding ionization
potential sums; the agreement between Ev and the sum of the ionization potentials
provides strong support for the contention that physically meaningful cores are
defined in real space by taking Nc ¼ 2 e for the first-row atoms and Nc ¼ 2 or 10 e
for the larger elements.

Finally, this valence region energy can be expressed, with the help of Gauss’
theorem, by an equivalent, considerably simplified approximation that features
only the nuclear–electronic potential energy of the valence electrons in the field of
an expanded nucleus partially screened by its core electrons.
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CHAPTER 4

THE VALENCE REGION
OF MOLECULES

4.1 MODEL

This chapter is about molecules. A molecule is a collection of nuclei Zk,Zl, . . . at rest
(in the Born–Oppenheimer approximation) in a sea of fast-moving electrons. The
nuclei can be identified and thus provide convenient reference marks. Each nucleus
found in the molecule, say, Zk, can be viewed as the nucleus of a “giant atom” extend-
ing over the entire molecule: Zk is surrounded by charges, just as in an ordinary atom,
with the difference that motionless positive point charges are now part of its environ-
ment. Of course, the electronic content is still described by its stationary density.

This abridged description hints at the strategy adopted in our work but requires
clarification. When an atom becomes part of a molecule, it is clear that both its
nucleus and its electrons are incorporated. So, when we say that Zk is in a molecule,
we refer more precisely to what we shall call “atom k in the molecule,” meaning that
(1) Zk has entered the molecule together with its electrons—those of the isolated
atom k—and (2) that the incorporated atom k differs from the isolated atom k.
This vision of an atom in a molecule does not introduce any physical constraint.
The molecule is still taken as a whole, as described above. No spatial partitioning of
the molecule is considered, carrying the picture of subspaces defined by boundaries
enclosing one nucleus and a share of the electronic charge entirely distributed among
the subspaces. The only charge partitioning contemplated here concerns a separation
into core and valence regions along the lines described for the isolated atoms.

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
Copyright # 2009 John Wiley & Sons, Inc.
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The argument is developed in three steps:

1. The bare nucleus, Zk, of atom k in the molecule is considered in the field of all
the electrons and of all the other nuclei found in the molecule. This introduces
the notion of binding.

2. Zk is considered together with its core electrons Nc
k . This amounts to a core–

valence partitioning of “atom k in the molecule”; its valence region now
consists of all the electrons except Nc

k and of all the other nuclei. At this
stage it is not taken into account that the other nuclei—those embedded in
the valence region of atom k—may possess core electrons of their own.

3. The final step considers all the nuclei with their own core electrons, meaning
that all the remaining electrons shall be regarded as the valence electrons of
the molecule. The idea is to find an expression for the energy of a molecule
featuring the role of its electronic valence region.

The valence region energy of ground-state atoms or ions—that is, with a change
in sign, the energy required to remove the valence electrons—is given by Eq. (3.27),
and for the ion left behind after removal of the valence electronic charge, we write
Eq. (3.31).

Here we wish to show that the same real-space formulas apply to molecules as
well, but Vv has to be redefined because it must now incorporate the internuclear
repulsion energy Vnn and also accommodate more than one single core.
Concerning Eion and the terms appearing in Eq. (3.31), however, they need not be
redefined. With Eion

k for the energy of the kth ionic core (say, Hþ, C4þ, N5þ, O6þ)
and E for the molecule—all energies referring to ground states—the valence
energy Ev under consideration satisfies the important constraint

E ¼ Ev þ
X
k

Eion
k (4:1)

Sowe begin with Ev, in real space. Then, for the purpose of setting our approach in per-
spective, we discuss its relation to the familiar methods in orbital space. Finally, we
examine the relative merits of the two models. Motivation is drawn from the fact that
real-space philosophy largely governs atom-by-atom and bond-by-bond descriptions
of molecules, while current core–valence separation schemes for molecules are
rooted in orbital space theory, with no provision whatsoever for real-space applications.

That should be remedied.

4.2 THE CORE–VALENCE SEPARATION IN REAL SPACE

In writing Eq. (4.1), we assume that all particles, the molecule and the ions, are at
rest and that the molecule is in its equilibrium geometry. The total energy of the
latter, E ¼ kCjĤjCl, is expressed in the Born–Oppenheimer approximation. The
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Hamiltonian Ĥ is for an n-electron molecule, in atomic units

Ĥ ¼ � 1
2

X
i

r2
i �

X
k

X
i

Zk
rik

þ
X
j

X
i.j

1
rij

þ
X
k

X
l.k

ZkZl
Rkl

where i and j refer to electrons and k and l refer to nuclei. The first term is the operator
for the kinetic energy of the electrons, where r2

i is the familiar Laplacian operator

r2
i ;

@2

@x2i
þ @2

@y2i
þ @2

@z2i

The second term represents the attraction between the nuclei and the electrons, where
rik is the distance between electron i and nucleus k. The third term represents
the repulsion between electrons i and j at a distance rij. The last term represents the
repulsion between the nuclei, where Rkl is the distance between nuclei with
charges Zk and Zl.

The derivative (@E=@Z)r at constant electron density r with respect to the nuclear
charge of one of the nuclei is obtained with the help of the Hellmann–Feynman
theorem [74]. So we get the potential at the center k, namely, Vk=Zk ¼ (@E=@Zk)r,
and the corresponding potential energy

Vk ¼ Zk
@E

@Zk

� �
r

¼ �Zk

ð
r(r)

jr� Rkj
drþ Zk

X
l=k

Zk
Rkl

(4:2)

where r(r) is the electron density in the volume element dr at the point r and R k

defines the position of nucleus Zk. Summation over all centers k gives

X
k

Vk ¼ Vne þ 2Vnn (4:3)

Vnn ¼
X
k

X
l.k

ZkZl
Rkl

(4:4)

where Vnn is the familiar internuclear repulsion and

Vne ¼ �
X
k

Zk

ð
r(r)

jr� Rkj
dr (4:5)

measures the nuclear–electronic attraction energy.
The molecule is taken in its equilibrium geometry. So we apply the molecular

virial theorem, 2E ¼ Vne þ Vee þ Vnn, where Vee is the interelectronic repulsion.
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Using Eqs. (4.2) and (4.3), we get

2E �
X
k

Zk
@E

@Zk

� �
r

¼ Vee � Vnn (4:6)

On the other hand, in Hartree–Fock theory the total energy is E ¼P
i niei � (Vee � Vnn), where ni is the occupation (0, 1, or 2) of orbital i with eigen-

value e i. Combining this result with (4.6) to get rid of its (Vee 2 Vnn) part, we write

(3� g)E ¼
X
i

niei (4:7)

where g has been defined as

g ;
1
E

X
k

Zk
@E

@Zk

� �
r

(4:8)

Equations (4.2), (4.3), and (4.8) indicate that

E ¼ 1
g
(Vne þ 2Vnn) (4:9)

for a molecule. For isolated atoms, this equation reduces to Eq. (3.21).
Finally, for an atom k embedded in a ground-state molecule, the corresponding

expression is

Ek ¼
1
gk

Vk (4:10)

subject to the constraint that the average of the (1/gk) values, weighted by Vk, must
restore the 1/g of Eq. (4.8):

1
g
¼
P

k (1=gk)VkP
k Vk

(4:11)

This definition of gk leads to

E ¼
X
k

Ek (4:12)

and thus also to the result (4.9) indicated above.

Binding

What is Ek? It is tempting to call it the energy of an atom in a molecule. We do so for
the sake of simplicity, but shall not forget that the subscript k associates Ek with an
atom that is identified solely by its nucleus Zk. There is one Ek for each nucleus. These
Ek values have the desirable property that their sum is the total energy of the
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molecule. Therein lies their usefulness, unabated by the fact that the individual Ek

terms are not amenable to direct measurements [9].
The energy Ek differs, in principle, from the energy of the isolated ground-state

atom k, which is Eatom
k . The difference

DEk ¼ Eatom
k � Ek (4:13)

contains part of the molecular binding energy. A good insight into the meaning of
DEk is offered by the atomization energy DE�

a , defined as

DE�
a ¼ energy of all the isolated ground-state atoms

minus the ground-state energy of the molecule

¼
X
k

Eatom
k � Emol (4:14)

where Emol ; E. It follows immediately from Eqs. (4.12)–(4.14) that

X
k

DEk ¼ DE�
a (4:15)

Equation (4.15) is important, it offers an atom-by-atom partitioning of the molecular
binding energy. The nice thing about (4.15) is that it does not imply any spatial
partitioning of the molecule. Equation (4.13) is instrumental in the theory of bond
energies. DE�

a is convenient for comparisons with experimental results.

The Real-Space Core–Valence Partitioning

Now we can proceed with this topic.
The potential energy to be used in Eq. (4.10) is that given in Eq. (4.2). Now we

rewrite Eq. (4.2) but introduce two modifications:

1. First we separate the nuclear–electronic potential energy contributed by the
core electrons associated with Zk, which we call V c

ne,k, from that due to all
the electronic charge found outside the core region of atom k.

2. Next we consider that the core electrons associated with Zk do interact with the
charges found outside that core. On one hand, they repel these “external” elec-
trons and thus reduce their effective attraction by nucleus Zk. This attraction by
Zk and the concurrent repulsion by Nc

k play similar roles, one interaction oppos-
ing the other, and are considered jointly. On the other hand, the core electrons
Nc
k attract the nuclei Zl . . . and thus counteract the repulsion between Zk and the

other nuclei. These repulsions and counteracting attractions also belong
together. In short, the core electrons screen not only the attraction between
Zk and the outer electrons but also the internuclear repulsion involving Zk.
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The total screening imputable to Nc
k is written

V cv
k ¼ interaction energy between Nc

k core electrons
and electronic and nuclear charges found outside
kth core containing Zk and Nc

k

The form of Eq. (4.2) that reflects this model is

Vk ¼ �Zk

ð1
rb,k

r(r)
jr� Rkj

drþ Zk
X
l=k

Zk
Rkl

þ V cv
k

" #
þ (V c

ne,k � V cv
k ) (4:16)

So we go back to Eq. (4.10), use Eq. (4.16), and write Ek as

Ek ¼
1
gvk

�Zk

ð1
rb,k

r(r)
jr� Rkj

drþ Zk
X
l=k

Zl
Rkl

þ V cv
k

" #
þ 1

g c
k

(V c
ne,k � V cv

k ) (4:17)

where the (1/gk) parameter of Eq. (4.10) is treated as the average of 1=gvk (weighted
by the term in brackets) and of 1=g c

k (with a weight of V c
ne,k � V cv

k ). This description
of Ek is noncommital as to whether the gk of Eq. (4.10) suits the individual core and
valence parts.

The first part of the right-hand side (RHS) of Eq. (4.17) represents the valence
region energy of atom k embedded in the molecule, and the second term is the
energy Eion

k ¼ (V c
ne,k � V cv

k )=g c
k of the ionic core k. The total energy E ¼

P
k Ek

is thus

E ¼ 1
gv

X
k

�Zk

ð1
rb,k

r(r)
jr� Rkj

drþ Zk
X
l=k

Zl
Rkl

þ V cv
k

" #
þ
X
k

Eion
k (4:18)

where 1/gv is the appropriate average of the individual (1=gvk ) values, weighted by
the terms in brackets in Eq. (4.18). The first RHS term of Eq. (4.18) describes the
valence region energy of a molecule: Ev. Equation (4.18) is a form of Eq. (4.1)
and highlights the role of potential energies. It is instrumental in the derivation of
the final energy formulas that lead to practical bond energy formulas. But let us
first complete the derivation of the appropriate formula for Ev.

4.3 FORMULA FOR THE VALENCE REGION ENERGY

At this point we have all the required tools for deriving Ev.
Up to now, potential energies were at the center of our arguments. Little attention

was paid to the electronic kinetic energy. This situation arose from our application
of the Hellmann–Feynman theorem with intent to stress the role of the potential
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energies—a role made explicit in Eq. (4.18)—while the kinetic energy component
was seemingly neglected. In fact, it is somehow hidden in gv. We shall now calculate
gv and thus reintroduce explicitly the appropriate valence electronic kinetic energy Tv

into the formula describing Ev.
We begin with Eq. (4.1) and write, with Eqs. (4.16)–(4.18) in mind, the following

equation:

gE ¼ gvEv þ g c
X
k

Eion
k (4:19)

[The RHS of Eq. (4.19) is, from Eqs. (4.17) and (4.18) and comparison with
Eq. (4.3), equal to Vne þ 2Vnn, which is gE.] Now use Eqs. (4.1) and (4.19) and write

(3� g)E ¼ (3� gv)Ev þ (3� g c)
X
k

Eion
k (4:20)

The (3 2 g)E term is well known [see Eq. (4.7)]. In the latter, ni is the occupation
of the orbital whose energy is e i. Here we use ni ¼ Nc

i þ Nv
i , so that

(3� g)E ¼
P

i N
v
i ei þ

P
i N

c
i ei. Consequently, we deduce from Eq. (4.20) that

(3� gv)Ev �
X
i

Nv
i ei

" #
þ (3� g c)

X
k

Eion
k �

X
i

Nc
i ei

" #
¼ 0 (4:21)

The latter equation achieves a separation of the core and valence contributions.
The terms in brackets are individually zero at the limits Nc ¼ 0 and Nv ¼ 0. Here
we postulate that physically meaningful core populations exist that allow such a
core–valence separation and proceed with

(3� gv)Ev ¼
X
i

Nv
i ei (4:22)

for the valence region. Now we compare this expression with the Ev appearing in
Eq. (4.18), eliminate gv, and obtain

Ev ¼ 1
3

X
k

�Zk

ð1
rb,k

r(r)
jr� Rkj

drþ Zk
X
l=k

Zl
Rkl

þ V cv
k

 !
þ
X
i

Nv
i ei

" #
(4:23)

This formula can be simplified. The first term on its RHS is Vv
ne ¼ Vne �

P
k V

c
ne,k,

specifically, the total nuclear–electronic potential energy of the molecule
[Eq. (4.5)] stripped of all the individual core nuclear–electronic interactions V c

ne,k.
Next, we decompose

P
k V

cv
k :

X
k

V cv
k ¼ V cv

ee þ 2V inter
ee þ V inter

ne (4:24)

where V cv
ee is the repulsion between core and valence electrons. V inter

ee is the core–
other core interelectronic repulsion and V inter

ne is the core–other nucleus attraction.
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So we get from (4.23) that

Ev ¼ 1
3

Vv
ne þ V inter

ne þ V cv
ee þ 2V inter

ee þ
X
i

Nv
i ei

 !
(4:25)

where Ev is almost in its final form. The last step concerns
P

i N
v
i ei.

We start with the Hartree–Fock formula (2.2) as indicated earlier and proceed
from Eq. (3.3) to Eq. (3.5), which is now written

X
i

ðval
nif

�
i F̂fi dt ¼

X
i

Nv
i ei (4:26)

The left-hand side (LHS) of Eq. (4.26) will tell us what to use in Eq. (4.25) instead ofP
i N

v
i ei. Concerning the one-electron terms, the integrals carried out solely over the

valence space yield the nuclear–electronic potential energy Vv
ne � V inter

ne of the Nv

valence electrons plus the kinetic energy Tv of the same. For the two-electron
integrals, the LHS of (4.26) collects all the pertinent Coulomb and exchange terms
between the valence electrons and those assigned to the cores in V cv

ee , as well as
the repulsions involving exclusively valence electrons, Vvv

ee . A double-counting of
the latter occurs in the summation over all i values:

X
i

Nv
i ei ¼ Tv þ Vv

ne � V inter
ne þ V cv

ee þ 2Vvv
ee (4:27)

Finally, we use this expression in Eq. (4.25) and obtain

Ev ¼ 1
3
[Tv þ 2(Vv

ne þ Vvv
ee þ V cv

ee þ V inter
ee þ Vnn)] (4:28)

The sum Vv
ee ¼ Vvv

ee þ V cv
ee þ V inter

ee represents the total interelectronic repulsion
stripped of all core contributions: Vee �

P
k V

cc
ee,k. Thus we obtain the final result

from Eq. (4.28), [83]:

Ev ¼ 1
3
(Tv þ 2Vv)

Vv ¼ Vv
ne þ Vv

ee þ Vnn

(4:29)

The valence region of molecules and of the isolated ground-state atoms or ions are
described by the same formula, Eq. (3.27). For isolated atoms, of course, we use
V inter
ee ¼ 0, V inter

ne ¼ 0, and Vnn ¼ 0. The description presented here for the molecules
is a generalization of that offered earlier for the atoms and contains the latter as a
special case.
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Our formula for Eion [Eq. (3.31)] proceeds from the same general approach, using
(3� g c)

P
k E

ion
k ¼

P
i N

c
i ei, from Eq. (4.21), along the lines outlined for the calcu-

lation of Ev.

4.4 INTERFACE WITH THE ORBITAL MODEL

In the valence molecular calculations, the total molecular energy can be decomposed
as follows:

E ¼ Evalence þ Ecore þ
XX

k.l

ZkZl
jRk � Rlj

(4:30)

Here, Ecore is the energy contribution from the core orbitals. If the latter are classified
according to the nuclear center on which they are located (e.g., on nucleus k), the set
of core orbitals belonging to this center is ffc, c[ kg. Moreover, if these core orbi-
tals are assumed to be nonoverlapping, the core energy may be partitioned into two
terms [84]:

Ecore ¼ E(1)
core þ E(2)

core (4:31)

The one-center term
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core ¼

X
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(4:32)

is the sum of the Hartree–Fock core energies associated with each center k, so that we
can identify E(1)

core ¼
P

k E
ion
k . The two-center term

E(2)
core ¼ 2

XX
k=l

X
c[l

kfcj �
Zk

jr� Rkj
jfclþ

XX
k=l

X
c[k

X
c0[l

(2Jcc0 � Kcc0 ) (4:33)

collects the core–other nucleus attraction terms as well as the core–other core
repulsions. E(2)

core vanishes when the cores are infinitely separated. At this point, a
comparison of Eq. (4.1) with Eq. (4.30) shows that

Ev ¼ Evalence þ E(2)
core þ

XX
k.l

ZkZl
jRk � Rlj

(4:34)

Now we go along with an argument offered by Truhlar et al. [84]. In the evaluation
of Eq. (4.33), and consistent with the nonoverlapping core orbitals assumption,
we can neglect the core–other core exchange interactions. Because the core
charge densities rk(r) ¼ 2

P
c[k f

�
c(r)fc(r) are spherically symmetric about their
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nuclear centers and the cores are assumed to be nonoverlapping, one obtains the
approximation [84]

E(2)
core þ

XX
k.l

ZkZl
jRk � Rlj

ffi
XX

k.l

(Zk � Nc
k )(Zl � Nc

l )
jRk � Rlj

(4:35)

and thus

Ev ffi Evalence þ
XX

k.l

(Zk � Nc
k )(Zl � Nc

l )
jRk � Rlj

(4:36)

In this approximation, the net effect of the core interaction energy stands for the
shielding of the nuclear charges in the internuclear repulsion.

Let us briefly state where we stand. Evalence denotes occupied valence orbitals only
and is simply represented by the straight sum of their pertinent kinetic and potential
energies computed over the entire coordinate space. Ev, in contrast, described by
1
3 (T

v þ 2Vv), represents all occupied orbitals but integrated only over specified
(core and valence) regions of space. The relationship between the two, Eq. (4.36),
is surprisingly simple considering the basic differences between the two models.

Numerical Examples

Table 4.1 lists selected CI results showing that addition or withdrawal of one electron
to or from an electroneutral atom has little effect on the energy components of its
electronic cores. It thus seems a reasonable approximation to consider the neutral
atom values as reference for the forthcoming calculations. Table 4.2 lists the pertinent
GTO[5s 3p] results used in conjunction with molecular calculations carried out with

TABLE 4.1. Kinetic and Potential Energiesa of Core Electrons of Selected Atoms
and Ions, A, A1, and A2, for Use in Eq. (3.31) (au)

Atom (Ion) T c Vcc
ee V c

ne Eion Calculated Eion Experimentalb

Cþ 35.4638 3.8308 270.3472 232.523 232.416
C 35.3696 3.8513 270.1708 232.423
C2 35.2478 3.8510 270.0409 232.377
Nþ 49.8039 4.6395 296.8377 244.864 244.802
N 49.6647 4.6572 296.6275 244.759
N2 49.5478 4.6568 296.5146 244.723
Oþ 66.7254 5.44741 2127.6279 259.194 259.194
O 66.5554 5.4863 2127.4102 259.098
O2 66.4056 5.4861 2127.2674 259.052

aSDCI results obtained [69] with the ANO (atomic natural orbital) [7s 6p 3d ] basis given in Ref. 86.
bTaken as minus the appropriate sum of ionization potentials [80].
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Dunning’s GTO[5s 3pj3s] basis [85] to get Eion. The corresponding E(1)
core energies,

deduced from Eq. (4.32), are also indicated.
Numerical Hartree–Fock calculations of E(1)

core [87], on the other hand, convin-
cingly show that our results in real space are the same as those of the orbital
space model [Eq. (4.32)] and that we are thus justified to write

Eion
k ¼ E(1)

core(k) (4:37)

for each individual center k. Pertinent E(1)
core values from Eq. (4.32) [87] are indicated

in Table 4.2. These Hartree–Fock results are indeed close to those given by
Eq. (3.31). Additional Hartree–Fock results are [87] 275.4797 au (F) and
2444.7455 au (Cl), compared with 275.386 au and 2446.153 au, respectively,
from SDCI calculations of Eion using Eq. (3.31) [69], and experimental values
of 275.595 au and 2446.356 au, respectively, from the appropriate sums of ioniz-
ation potentials.

The identification of Eq. (4.37) is important because it suffices to establish the link
between Ev and Evalence [Eq. (4.34)], deduced from Eqs. (4.1), (4.30), and (4.31).
Moreover, if these numerical results are now taken as a validation—without expla-
nation, of course—of our formula for Eion [Eq. (3.31)], it follows from Eq. (4.1)
that Ev must have the form given in Eq. (3.27), with E ¼ 1

3 (T þ 2V) for the total
energy, which reverts to the standard formula E ¼ T þ V with the use of the virial
theorem. (Note, however, that the virial theorem is not satisfied for the core and
valence subsystems taken individually, i.e., Ev

= 2Tv and Ec
= 2T c.)

The valence region kinetic energy Tv is readily obtained by subtracting all the
appropriate core kinetic energies from the calculated total kinetic energy. Similarly,
one obtains Vv

ne from the total nuclear–electronic potential energy from which we
subtract all the pertinent core V c

ne terms. Finally, we deduce Vv
ee from the total inter-

electronic repulsion energy, from which we subtract the pertinent V cc
ee terms. The

internuclear repulsion Vnn, of course, is that obtained by carrying out the usual optim-
izations of the total molecular energy. The final results are displayed in Table 4.3.

These are SCF results obtained with the GTO(9s 5pj6s) ! [5s 3pj3s] basis using
Dunning’s exponents [85] and optimum contraction vectors [85]. The “error” (DE)
represents the difference between our calculation using Eqs. (4.1) and (3.27)
and the genuine SCF result; it is positive whenever jV/Tj . 2 and negative when
jV/Tj, 2.

TABLE 4.2. Core Energies of Selected Atoms (au)a

Atom T c V cc
ee Vc

ne Eion Eð1Þ
core

C 35.3844 3.9253 270.1985 232.3873 232.3602
N 49.6513 4.7353 296.6647 244.7358 244.7339
O 66.6077 5.5665 2127.4352 259.0432 259.1071

aSCF results obtained with Dunning’s GTO[5s 3pj3s] basis [85]. The E(1)
core energies are numerical HF

evaluations of Eq. (4.32), from Ref. 87.
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4.5 APPROXIMATION FOR THE VALENCE ENERGY

The evaluation of Ev presents no difficulty, but there is another, simplified, and most
useful form that catches our attention.

In Thomas–Fermi theory, adoption of the simple central field model for neutral
molecules at equilibrium leads to simple energy relations—well supported by SCF
calculations [12]—such as E ¼ 3

7 (Vne þ 2Vnn). Evidently, nothing of the like
applies to Evalence, but we may well inquire how things are with Ev.

The key is in the treatment of core–other core and core–other nucleus interactions.
Simple approximations were presented in that matter to get Eq. (4.35). Assuming
Gauss’ theorem—the V cv

ee potential is just as though all the core electronic charge
were lumped at the nuclear position—the same arguments are now invoked for
V cv
k , approximated as follows:

V cv
k ¼ Nc

k

ð1
rb,k

r(r)
jr� Rkj

dr� Nc
k

X
l=k

Zl
Rkl

(4:38)

Direct calculations [89] made for 1s electrons confirm the validity of Eq. (4.38).

TABLE 4.3. Application of Eqs. (3.27) and (4.1) for Selected Molecules (au)

Molecule Tv Vv
ne Vv

ee Vnn Ev DEa

C2 4.6357 265.3522 32.0608 15.0712 210.6015 20.0140
CH4 4.8390 249.8395 22.1775 13.5245 27.8120 20.0120
C2H4 7.3098 2108.0649 50.8928 33.6233 213.2626 20.0182
C2H6 8.4502 2127.7946 59.6461 42.2663 214.4380 20.0030
C3H8 12.0952 2228.8817 108.6595 82.5597 221.0765 20.0047
i-C4H10 15.7683 2353.4116 169.3705 134.5693 227.7250 20.0155
i-C4H8 14.5551 2320.7158 154.1553 119.4861 226.5311 20.0059
C6H6 18.3307 2522.1176 255.1082 203.3607 236.3221 0.0047
N2 9.3840 2107.7574 51.1787 22.8683 219.3456 0.0654
NH3 6.4401 258.4697 26.4138 11.7185 211.4116 0.0280
N2H2 10.7276 2129.8096 61.2135 32.4678 220.5070 20.0257
N2H4 11.6968 2149.7488 70.3847 41.0728 221.6286 0.0505
HCN 7.7719 298.2720 46.9096 23.9108 215.7104 0.0131
CH2N2 13.1203 2204.4055 97.6572 61.2808 225.9382 20.0049
NH2CN 13.3304 2202.4348 96.8968 59.7849 226.0586 20.0498
CH3CN 11.3545 2186.4146 89.3394 57.8880 222.3400 0.0380
O2 16.2673 2155.1460 72.2121 27.6771 231.4155 0.0098
H2O 9.4319 271.5823 32.2030 9.1950 216.9789 20.0087
CO 10.6469 2112.1393 52.8103 22.1348 221.2472 0.0194
CO2 19.0035 2234.4352 110.8640 58.4157 237.1025 20.0134
H2CO 11.8005 2132.6016 62.1461 30.9690 222.3908 0.0145
CH3OH 13.0380 2153.8342 71.7371 40.1893 223.5925 20.0034
(CH3)2O 16.6620 2261.2893 123.8250 83.8112 230.2148 20.0028
(C2H5)2O 24.0549 2515.2101 247.6725 190.2076 243.5350 20.0361
N2O 17.3578 2226.8735 107.8693 57.8640 234.9742 0.1106

aDE is taken as the difference Ev þ
P

k E
ion
k � Emol

SCF.
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The first RHS term of Eq. (4.38) describes the repulsion between Nc
k , located at the

point Rk, and all the outer electrons. The second term describes the attraction between
Nc
k and all the nuclei other than Zk. Equation (4.18) now becomes

Ev ¼ 1
gv

X
k

�Zeff
k

ð1
rb,k

r(r)
jr� Rkj

drþ Zeff
k

X
l=k

Zl
Rkl

" #
(4:39)

where Zk � Nc
k defines the effective nuclear charge Zeff

k . The integral appearing
in Eq. (4.39) runs over the entire space outside the boundary rb,k, hence also over
regions containing the core electrons of the other nuclei. Consider instead a “trun-

cated” integral
Ð val � � � dr that avoids systematically the core electrons of all atoms,

including Nc
k , as ð1

rb,k

r(r)
jr� Rkj

dr ¼
ðval r(r)

jr� Rkj
drþ

X
l=k

Nc
l

Rkl

and rewrite Eq. (4.39) as follows:

Ev ¼ 1
gv

X
k

�Zeff
k

ðval r(r)
jr� Rkj

drþ Zeff
k

X
l=k

Zeff
l

Rkl

" #
(4:40)

Then note that

X
k

Zeff
k

ðval r(r)
jr� Rkj

dr ¼ V eff
ne (4:41)

appropriately describes the total effective nuclear–electronic potential energy of the
molecule, that is, the potential energy of its valence electrons—and only those—in
the field of the effective nuclear charges Zeff

k , Zeff
l , and so forth. The summation

of the nuclear repulsion terms in Eq. (4.40) gives 2V eff
nn , where V eff

nn ¼P
k

P
l.k Z

eff
k Zeff

l =Rkl is the total repulsion between Zeff
k , Zeff

l , . . . . The final result
is thus

Ev ¼ 1
gv

V eff
ne þ 2V eff

nn

� �
(4:42)

This equation describes chemical binding in the simplest possible way, in terms of
effective potentials at the nuclei. Therein lies the importance of this approximation,
as shown in the next section. It lays the foundation of the bond energy theory,
which will be developed shortly.

Numerical Examples

Let us now turn to Eq. (4.42). The nuclear and electronic potentials at the nuclei and
the appropriate V c

ne values give access to Vcv
k through the approximation expressed in

Eq. (4.38). So, as the required internuclear repulsion energies are known, we can
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evaluate V eff
ne þ 2V eff

nn for use in Eq. (4.42). Finally, comparison with the correspond-
ing Ev values obtained from Eq. (3.27) enables the evaluation of the gv parameters of
Eq. (4.42). [The calculation of

P
k V

cv
k is practical if we proceed as indicated in

Eq. (4.18). Alternatively, we can skip this step and use Eq. (4.39), which is a form
of Eq. (4.42).] Selected results are given in Table 4.4.

The 1/gv parameters introduced with Eq. (4.18) represent averages of individual
“atomic” 1/gv parameters weighted by effective electronic and nuclear potential ener-
gies, namely, the terms in brackets shown in Eq. (4.39) or (4.40)—a situation similar
to that prevailing in all-electron applications of E ¼ (1=g)(Vne þ 2Vnn). In the latter
case, 1/g (�3/7) is the average of “atomic” 1/gk terms weighted by the total
potential energies Vk, Eq. (4.2), with 1/gk ¼ 0.500 (H), 0.429 (C), 0.426 (N), and
0.422 (O) [90].

TABLE 4.4. Calculation of
P

k

P
Vcv and Veff

ne þ 2Veff
nn, to Obtain

gv from (4.42) (au)a

Molecule
P

k V cv
k V eff

ne þ 2Veff
nn gv

C2 11.7366 223.4732 2.2141
CH4 6.1128 216.6772 2.1349
C2H6 12.1784 231.0835 2.1529
C3H8 18.2606 245.5017 2.1589
i-C4H10 24.3511 259.9218 2.1613
C2H4 12.1455 228.6721 2.1623
i-C4H8 24.2924 257.4512 2.1654
C2H2 12.0906 226.2128 2.1823
C6H6 36.2814 279.1149 2.1781
N2 17.7202 244.3006 2.2900
NH3 9.1173 225.9155 2.2710
N2H4 18.1233 249.4800 2.2877
N2H2 17.9593 246.9107 2.2875
HCN 14.9936 235.4568 2.2569
CH2N2 23.6326 258.2112 2.2442
NH2CN 23.9638 258.9012 2.2603
CH3CN 20.9833 249.6553 2.2227
O2 24.9479 223.4732 2.3824
H2O 12.8120 240.3821 2.3784
CO 18.4241 249.4456 2.3272
CO2 30.7941 286.8096 2.3397
H2CO 18.6000 252.0636 2.3252
CH3OH 18.7830 254.6725 2.3174
H2CCO 24.4384 263.6231 2.2834
(CH3)2O 24.7477 268.9192 2.2810
(C2H5)2O 36.9388 297.8560 2.2478
N2O 29.9487 281.1968 2.3216

aSCF results obtained with the (9s 5pj6s) ! [5s 3pj3s] basis [85,88].

48 THE VALENCE REGION OF MOLECULES



Here, in our valence region applications, we find “atomic” 1/gv terms of 0.500
(H), 0.455 (C), 0.436 (N), and 0.421 (O). On the basis of the present [5s 3pj3s]
SCF results alone, it is difficult to judge conclusively how accurate our approxi-
mations are, namely, that proposed for V cv

k , Eq. (4.38), but backcalculations using
these 1/gv parameters and the appropriate SCF potential energies shown in Eq.
(4.39) reproduce the results given by Eq. (3.27) typically within +0.15% or
better, which seems acceptable. The gv values of Table 4.4 show that while hydrogen
tends to lower them because of the nonnegligible contribution of 1=gvk ¼ 0:500, the
observed values are generally of the order anticipated from Thomas–Fermi theory.
This situation parallels that encountered in all-electron calculations of g [90].

We shall now proceed with Eq. (4.42) and show the importance of this
approximation.

4.6 PERTURBATION OF THE VALENCE REGION

The formula for the ground-state energy of a molecule follows from Eq. (4.42):

Emol ¼ 1
gv

V eff
ne þ 2V eff

nn

� �
þ
X
k

Eion
k (4:43)

Consider also the valence region energy Ev,atom
k of the isolated ground-state atoms k,l,

. . . and rearrange Eq. (4.43) as follows:

X
k

Eion
k þ

X
k

Ev,atom
k � Emol ¼

X
k

Ev,atom
k � 1

gv
Veff
ne þ 2Veff

nn

� �
(4:44)

The total energy of an isolated ground-state atom k is Eatom
k ¼ Eion

k þ Ev,atom
k .

Equation (4.14) thus tells us that the LHS of (4.44) is DE�
a , the energy of atomization

of the molecule. So we write

DE�
a ¼

X
k

Ev,atom
k � 1

gv
V eff
ne þ 2V eff

nn

� �
(4:45)

where DE�
a is the central quantity involved in any comparison with thermochemical

data, such as enthalpies of formation, enthalpies of atomization, and the like, and
gives the total ground-state energy of the molecule with the help of Eq. (4.14).
DE�

a is what we want to calculate.
Suppose that we solve Eq. (4.45) by making some assumptions—namely, regard-

ing “model” electron densities, r8(r) and internuclear distances Rkl8 taken from a
suitable reference system—and write

DE�
a 8 ¼

X
k

Ev,atom
k � 1

gv
V eff
ne þ 2V eff

nn

� �
8 (4:46)
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The superscript “8” identifies quantities computed for the model. Hence, combining

now Eqs. (4.45) and (4.46), we deduce the important formula

DE�
a ¼ DE�

a 8�
1
gv

D V eff
ne þ 2V eff

nn

� �
(4:47)

The perturbationD(V eff
ne þ 2V eff

nn ) describes the replacement of model densities and inter-
nuclear distances by the values that are appropriate for the molecule under scrutiny.
Similarly, appropriate “reference” atomic energies must be used in the atomic-like
formula (4.15) to get DE�

a 8. Ingeniously selected references require small corrections.
Nature helps a lot in that matter by keeping the changes of r(r) as small as possible.

The bond energy theory is rooted in Eq. (4.47).

4.7 SUMMARY

The partitioning of the electronic charge of ground-state molecules into core and
valence parts unfolds as a straightforward extension of the methods applied to
ground-state atoms. In real space the valence region energy Ev satisfies the condition
E ¼ Ev þ

P
k E

ion
k , where E is the total ground-state energy of the molecule (or atom)

under scrutiny and Eion
k is that of the ion k (such as Hþ, C4þ, N5þ, etc.) left behind on

removal of the entire valence region electronic charge of atom k. Ev thus includes
relaxation, that is, whatever energy changes occur when the “valence electrons” are
added to the ions k forced into adopting the equilibrium geometry of an incipient
ground-state molecule. So it justifies, albeit in an unconventional way, its designation
“valence energy.”

For ion k it is shown that Eion
k ¼ 1

3 [T
c þ 2(V c

ne þ V cc
ee )], where T c is the kinetic

energy of its Nc core electrons, V c
ne their nuclear–electronic potential energy,

and V cc
ee their interelectronic repulsion. In orbital-space SCF theory, on the other

hand, Eion is identified with the appropriate sum of its Hartree–Fock core orbital
energies, that is, Eion ¼ E(1)

core, a result supported by independent direct numerical
HF calculations.

As a direct consequence, the familiar orbital-space valence energy Evalence and the
present real-space Ev energy are related to one another in a straightforward manner,
namely, by the approximation Ev ¼ Evalence þ V eff

nn , which highlights the role of the
repulsions between nuclei partially screened by their core electrons. Evalence is the
usual straight sum of the kinetic and potential energies of the pertinent occupied
“valence orbitals” computed over the entire coordinate space, whereas Ev denotes
all occupied orbitals, but integrated only over specified (core and valence) regions
of real space. The relationship between Ev and Evalence offers nothing beyond what
seems obvious on simple physical grounds; the novelty is in the formulation,
Ev ¼ 1

3 (T
v þ 2Vv), of the valence energy in the present real-space partitioning

scheme, where Tv and Vv are, respectively, the relevant kinetic and potential energies.
The present description means that Ev accounts for chemical binding, which

makes it particularly attractive in real-space applications to molecules. Indeed, any
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atom-by-atom or bond-by-bond partitioning of a molecule, such as Bader’s “atom-in-
the-molecule” model, is by its very nature treated in real space. In this particular
context, we benefit from the fact that the present real-space core–valence partitioning
correctly reflects chemical binding, as indicated by the atomic-like formulaP

k DEk ¼ DE�
a for the atomization energy DE�

a , where DEk is the energy difference
between a free atom and a bonded atom k. The atoms-in-a-molecule concept is
compulsively needed in chemistry, but ambiguous and subject to personal choice,
as seen here.

One cannot but adhere to the conclusion of Parr et al. [91]:

The term “noumenon” (in the sense of Kantian philosophy) is deadly correct for describ-
ing atoms-in-a-molecule as a conceptual construct ultimately unknowable by obser-
vation or unique definition, but conceivable by reason. Chemical science is built
upon the atom, and the atom in a molecule is a vital, central concept, yet forever
elusive: there are multiple ways to partition molecules into atoms that are consistent
with various observed chemical trends and experimental data.

Our strategy was dictated by the specificity of the bond energy problem to be
solved and the considerable simplification thus achieved; it is just one facet of the
reality. We owe the model to the work of Politzer and Parr [9]. In a nutshell:

The Politzer–Parr partitioning of molecular energies in terms of “atomic-like contri-
butions” results in an exact formula for the nonrelativistic ground-state energy of a
molecule as a sum of atomic terms that emphasizes the dependence of atomic
and molecular energies on the electrostatic potentials at the nuclei.

This peculiar approach [9,61,79] with no overlap or cross-terms, made the present
bond energy theory possible.

In contrast, schemes that result in “nonatomiclike” descriptions meet with the
usual difficulties that are encountered when it comes down to fairly distributing inter-
electronic and internuclear repulsion terms among chemical bonds or “atoms in the
molecule”; these terms are not simply separable into atomic or bond contributions.
And yet, with the help of the Thomas–Fermi-like approximation Ev ¼
(1=gv)(V eff

ne þ 2V eff
nn ), we avoid this sort of partitioning problem, as Ev is expressed

solely in terms of the effective potentials at the individual nuclei, which raise no
partitioning-related problems. The new problem—that brought up by 1/gv—can be
solved (in principle) by remembering that this parameter is a weighted average of
atomic 1=gvk terms that can be treated, at least to a good approximation, as constants
for each type of atom k.

In short, the core–valence partitioning in real space offers the great advantage of
being naturally best suited in problems concerned with real-space atom-by-atom
decompositions of molecules. Yet, although serving different purposes, and however
different they may seem, real-space and orbital-space core–valence separations
appear for what they are: two facets of the same reality. The route to this result was
not overly exciting, I am afraid, but the final result certainly justifies our patience.

4.7 SUMMARY 51



The role of atomic charges—or, more precisely, of charge variations—manifests
itself in the term D(V eff

ne þ 2V eff
nn ) that will be used in the derivation of the bond

energy formulas. Now, the main object of this book—the description of bond
energies—is more than a declared goal; it turns out to represent a formidable
simplification in the utilization of the D(V eff

ne þ 2V eff
nn ) term. The nuclear–electronic

potential energy V eff
ne,k (or its variation DV eff

ne,k) at nucleus k depends on the valence
electrons associated with all the nuclei found in a molecule. In the study of bond ener-
gies, however, only the contribution of atom k and those of atoms l bonded to k are
retained in the evaluation of the kl bond energies, while all contributions of the more
distant centers, not bonded to k or l, are collected in what will finally be treated as
“nonbonded interactions.” The simplification thus introduced by our bond energy
approach is valid; it covers over 99.9% of all interactions that keep the atoms
united in a molecule. Hence our interest in local atomic charges—the energy of
the bond formed by atoms k and l depends on their charges.

Let us now examine the nature of the appropriate atomic charges. The notion of
atomic charge evidently carries the idea of a mental subdivision of the molecule
into atomic regions, but without altering our basic approach—the nature of the
problem (and of its solution) is still a matter of electrostatic potentials at the nuclei.

The definition of meaningful atomic charges is certainly not without difficulty.
But it does not involve the definitely more severe ones linked to a fair apportioning
of interaction energies between subspaces among the same subspaces. This is to our
advantage, because the distribution of all interatomic interaction energies, as required
in “nonatomiclike” descriptions, is considerably more difficult than the sole distri-
bution of electronic charge.

Hence the approach privileged here, based on Eq. (4.47), that uses the variations of
effective nuclear–electronic potential energies DV eff

ne dictated by local atomic elec-
tron populations. Regarding the latter, they are deduced along classical lines,
rooted in molecular wavefunctions that determine the electron density at any given
point in space.
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CHAPTER 5

INDUCTIVE EFFECTS; ATOMIC
CHARGES

5.1 INTRODUCTION

One of the most popular concepts in chemistry is that of charge distributions in
molecules. Pictorial presentations of charge densities can be offered in a number of
ways. In the familiar contour map type [24], for example, contours corresponding to
various values of the charge density (or of its difference with respect to the super-
position of the free atoms) are plotted for different points in a specified plane of the
molecule [21,23,92–95]. This type of presentation is certainly a realistic one,
namely, with electron densities calculated from Hartree–Fock wavefunctions, which
are generally known to be reasonably accurate. Contour maps alone, however, do not
tell us how much charge can be assigned in a meaningful way to the individual
atoms of a molecule. Hence our problem: selection of the right atomic charges.

Many attempts have been made, but the numbers do not seem to come out right,
assuming that one knows what “right” means in this context. As long as atomic
charges are taken as byproducts of molecular calculations and used as an interpret-
ative adjuvant in semiquantitative discussions of chemical problems, the lack of
well-justified numerical results may be perceived as an annoyance but does not rep-
resent an acute problem in itself. In that vein, arguments in defense of calculated
charges often invoke their (at least rough) agreement with the chemist’s familiar
inductive effects, but tell little about the quality of the results.

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
Copyright # 2009 John Wiley & Sons, Inc.
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5.2 THE INDUCTIVE EFFECTS

The chemist’s ideas pertaining to changes of electron densities induced by substi-
tutions include the familiar order of electron-releasing ability of alkyl groups, that
is, the inductive order:

CH3 , CH3CH2 , (CH3)2CH , � � � , (CH3)3C

In general, calculated charges are known to agree with the usually accepted
variations of inductive effects, although arguments of this sort were often kept at a
very prudent, noncommittal semiquantitative level. So far, so good, meaning that
we could turn things the other way around; since theoretical charges seem to fill
expectations on the basis of the inductive order, we might as well start with the
latter and examine what kind of charges would fit the expectations.

Long ago, we have indeed carried the argument one decisive step further, also
giving great attention to the quality of the charge distributions used for comparison
[27,96]. Correlations involving experimental (kinetic and equilibrium) data clearly
suggest a linear numerical ordering of the inductive effects. In Taft’s scale of polar
s� constants (Table 5.1), the s� parameters are increasingly negative as the groups
they describe are better electron donors [96,97].

Our analysis considers an alkane as an alkyl group R attached to either CH3 or H.
Tentatively assuming the validity of the current interpretation of the inductive effects
described by Taft’s scale, we write

qCH3 ¼ as�
R (5:1)

qH ¼ as�
R þ b (5:2)

Equation (5.1) applies for alkanes described as R22CH3, and qCH3 is the net charge of
a methyl group attached to R. Similarly, Eq. (5.2) pertains to alkanes written as R22H
and qH is the net charge of H. The validity of these equations is convincingly demon-
strated by SCF Mulliken net charges: Mulliken SCF charges given by every basis set
satisfy Eqs. (5.1) and (5.2) [27,44,96]. (See Fig. 5.1.)

Thus we could use the charges given by any LCAO basis of our choice to create an
arbitrary set of scaling parameters (as a replacement for the s� constants) and proceed
with Eqs. (5.1) and (5.2) without invoking Taft’s inductive effects. For convenience,
however, we shall go along with the s� constants of Table 5.1.

Atomic charges obtained from different bases are very bewildering. Equations
(5.1) and (5.2) epitomize what they have in common and the reason why they

TABLE 5.1. Polar s� Constants

Group R s�(R) Group R s�(R)

CH3 0 neo-C5H11 20.151
C2H5 20.100 iso-C3H7 20.190
n-C3H7 20.115 sec-C4H9 20.210
n-C4H9 20.124 (C2H5)2CH 20.225
i-C4H9 20.129 tert-C4H9 20.300
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differ: discussion of their basis set dependence now comes down to discussing the
parameters a and b. This is where we can turn things to our advantage.

The idea is simple. Since SCF Mulliken charges satisfy Eqs. (5.1) and (5.2), we
reverse the argument and deduce an internally consistent set of charges starting off
with (5.1) and (5.2) and the s� constants of Table 5.1. Charge normalization

X
k

qk ¼ 0 (5:3)

is part of this calculation. Now we proceed with Eqs.(5.1) and (5.2), using Taft’s
polar s� constants.

The general outline of this backcalculation of charges can be illustrated as follows,
taking propane as an example. In this molecule there are four unknown charges: those
of the primary and secondary carbon atoms and of two different hydrogens (the
weighted average of the primary H atoms is considered in this case). Because of
(5.3), three equations are required for solving the problem of the three remaining
unknowns. One of these equations is (5.1), considering propane as C2H522CH3;
the other two are given by (5.2), considering propane as n-C3H722H (for the calcu-
lation of the primary H atoms) or as iso-C3H722H (for the secondary H atoms). Hence
we can solve the problem.

Of course, this approach is by no means a general way of obtaining charges, but
the fact that it can be applied to an adequate collection of molecules is sufficient for
our intended purpose.

Figure 5.1. Verification of Eqs. (5.1) and (5.2) by means of Mulliken charges deduced from
STO-3G calculations involving complete optimizations of geometry and orbital exponents. The
net charge q is qCH3 of (5.1) for the lower line and qH of Eq. (5.2) for R22H [44].

5.2 THE INDUCTIVE EFFECTS 55



To begin with, let the carbon net charge of ethane ¼ 1 arbitrary unit and express
the other charges with respect to that reference. Then write

a ¼ � 10
3n

(5:4)

because this expression for the slope a in terms of a new variable n is convenient in
the presentation of the final results. Eq. (5.1) thus becomes

qCH3 ¼ � 10
3n

� �
s�
R (5:5)

On the other hand, (5.2) shows that the ethane-H net charge, � 1
3 q

C2H6
C , is

� 1
3 ¼ b� 0:1a (in arbitrary units); hence we get from (5.4) that

b ¼ � nþ 1
3n

(5:6)

We know from (5.2) that b is the hydrogen net charge in methane because s� ¼ 0 for
R ¼ CH3. Using (5.4) and (5.6), we can rewrite (5.2) as follows

qH ¼ � 10s�
R þ nþ 1
3n

(5:7)

Finally, Eqs. (5.3), (5.5), (5.7), and the s �
R constants of Table 5.1 give the results

listed in Table 5.2 by reference to the unit charge defined by qC2H6
C ¼ 1.

TABLE 5.2. Net Charges (Relative Units)

Molecule Atom Net Charge

Methane C 4(n þ 1)/3n
Ethane C 1.000
Propane Cprim (3n þ 0.55)/3n

Csec (2n 2 3.8)/3n
Hprim (0.152 n)/3n
Hsec (0.92 n)/3n

Butane Cprim (3n þ 0.43)/3n
Csec (2n 2 3.35)/3n
Hprim (0.242 n)/3n
Hsec (1.12 n)/3n

Pentane Ccentr (2n 2 2.8)/3n
Hcentr (1.252 n)/3n

Isobutane Cprim (3n þ 1.03)/3n
Ctert (n 2 7.7)/3n
Hprim (0.292 n)/3n
Htert (22 n)/3n

Neopentane Cprim (n þ 0.49)/n
Cquat 24/n
H (0.512 n)/3n
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Table 5.2 is a compact presentation of charge results given by any LCAO-MO
method. Tests are straightforward. The quality of the agreement depends on the
precision of calculated SCF charges. Results are consistently improved by careful
geometry optimizations and, most importantly, when all exponents, including those
of the carbon K shells, are optimized individually for each molecule and each non-
equivalent atom in the same molecule until stable charges (say, within +0.01 me)
are obtained [38,98]. Practically, this is feasible only with small basis sets. On the
other hand, the requirement for this sort of detailed z-optimizations is somewhat
less stringent with the use of extended basis sets.

The following example is worked out for Mulliken charges calculated from
optimized STO-3G wavefunctions. Using the C charges of methane and ethane,
242.92 and 220.96 me, respectively, (248.92)/(220.96) is 4(n þ 1)/3n, which
gives n ¼ 1.3325. We apply this n in Table 5.2 and obtain the charges in relative
units, which must be multiplied by 220.96 to give the results in me (millielectron)
units (Table 5.3). Tests of this sort are equally conclusive for semiempirical
(e.g., INDO [99], PCILO [100], and extended Hückel [101]) as for large Gaussian
basis set calculations [27,96]. What differs from one method to another are n
and the ethane carbon net charge. A GTO(6s 3pj3s) basis, for example, leads to
n ¼ 14.11 and qC2H6

C ¼ �232:5 me [102], whereas Leroy’s (7s 3pj3s) calculations
[103] correspond to n ¼ 42.3 and qC2H6

C ¼ �573 me.
Comparisons between STO-3G, GTO (6s 3p j 3s), and SCF-Xa-SW net charges

with those of Table 5.2 are presented in Tables 5.3 and 5.4.
The tests presented in Tables 5.3 and 5.4—and many others of the same kind

[27]—are certainly convincing. If we feel confortable with population analyses that
mirror our understanding of electron-releasing (or -withdrawing) abilities of alkyl
groups, we should learn the lesson: bluntly stated, we should reject charge analyses
that fail to agree with the inductive order.

This brings up the obvious question: What are the “true” values of n and of the net
carbon charge in ethane?

TABLE 5.3. Optimized STO-3G Mulliken Net Charges
and Charges Deduced for n5 1.3325

Molecule Atom STO-3G n ¼ 1.3325

Methane C 248.92 248.92
Ethane C 220.96 220.96
Propane Cprim 223.81 223.84

Csec 5.94 5.95
Hprim 6.23 6.20
Hsec 2.20 2.27

Isobutane Cprim 226.39 226.36
Ctert 33.36 33.39
Hprim 5.50 5.47
Htert 23.53 23.50

Neopentane Cprim 228.66 228.67
Cquat 62.92 62.92

5.2 THE INDUCTIVE EFFECTS 57



5.3 MEANINGFUL ATOMIC CHARGES

The meaning of n can be inferred from Eq. (5.4) where a measures, in a way, the
sensitivity of charge variations to substituent effects. Small jnj values indicate
strong substituent effects. If inductive effects did no exist, the charges would be
those corresponding to jnj ¼ 1 (i.e., a ¼ 0), and all H atoms would carry the
same charge. No theoretical method leads to this extreme result.

The sign of a is of utmost importance. Equation (5.2) shows that amust be positive
in order to reflect the usual order of electron-releasing abilities tert-C4H9. . . ..
CH3 because only then will a hydrogen atom attached to a tert-butyl group be elec-
tron-richer than that of methane. Similarly, as indicated by Eq. (5.1), only then will
the methyl group in propane carry a net negative charge, which is an important con-
straint; pertinent experimental evidence for the (CH3)

22 (C2H5)
þ polarity is offered

in Ref. 105. Equation (5.4) expresses a in arbitrary units. The corresponding
expression in charge units is

a ¼ � 10
3n

� �
qC2H6
C (5:8)

so that qC2H6
C and n must be of opposite signs in order to satisfy the constraint a . 0.

Ab initio Mulliken charges usually1 correspond to n. 0 and qC2H6
C , 0, as is the

case with most semiempirical results; INDO is the notable exception with n ¼ 22

TABLE 5.4. Theoretical Net Atomic Chargesa and Charges Deduced
from Formulas in Table 5.2 (au)

Molecule Atom GTO(6s 3pj3s) n ¼ 14.11 SCF-Xa-SW n ¼ 24.4293

Methane C 20.335 20.332 0.630 0.632
Ethane C 20.234 20.233 0.610 0.612
Propane Cprim 20.237 20.236 0.595 0.587

Csec 20.133 20.135 0.591 0.583
Hprim

b 0.076 0.077 20.214 20.211
Hsec 0.075 0.073 20.247 20.246

Isobutane Cprim 20.238 20.238 0.561 0.565
Ctert 20.028 20.036 0.557 0.559
Hprim

b 0.075 0.076 20.216 20.217
Htert 0.072 0.067 20.295 20.296

Neopentane Cprim 20.237 20.240 0.539 0.544
Cquat 0.060 0.064 0.550 0.553
H 0.074 0.075 20.226 20.228

aThe GTO(6s 3pj3s) results are from Ref. 102; the SCF-X-a-SW results are from Ref. 104. The SW-Xa
population analysis is discussed in Chapter 8.
bWeighted average of nonequivalent H atoms.

1Addition of diffuse functions to the basis may result in n, 0 and qC2H6
C . 0 [106].
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and qC2H6
c ¼ þ71 me [27]. It is worth remembering that any LCAO-MO method

leading to an n value with the same sign as the carbon net charge of ethane is
bound to describe charge variations in the wrong order. There is no point in
closing the eyes on this—it would only make things darker. The test is easy; it
suffices to calculate methane and ethane and get n.

Charge–NMR Shift Correlations

Our interest in correlations between NMR shifts and atomic electron populations
originates in the quest of practical means for obtaining atomic charges. Chapter 6
covers this subject in detail, but there is one aspect of immediate interest. A most
instructive comparison using the STO-3G Mulliken net charges of alkanes
(Table 5.3) is shown in Fig. 5.2. The points for the CH3, CH2, and CH carbon
atoms, including also those of cyclohexane [107] and adamantane [39], lie on paral-
lel, equidistant lines shifted from one another by �30 me. This figure suggests how
the three lines can be made to merge into one single correlation line. Indeed, consid-
ering a linear relationship for the chemical shifts d, namely, d ¼ a� qC þ d8, we can
rewrite it as follows

d ¼ a qMull
C þ NCH p

� �
þ d8 (5:9)

where NCH is the number of hydrogen atoms attached to a given carbon atom and p
stands for the correction required for each hydrogen attached to that carbon, so that

qC ¼ qMull
C þ NCH p (5:10)

represents the appropriately “corrected” atomic charges of the carbons.

Figure 5.2. Comparison between the carbon-13 NMR shifts (ppm from TMS) of selected
primary, secondary, and tertiary sp3 carbon atoms and Mulliken net atomic charges (in me
units).
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The corresponding correction for hydrogen is as follows, from obvious charge
normalization considerations:

qH ¼ qMull
H � p (5:11)

The parameter p is deduced from a multiple regression analysis using Mulliken
charges and the appropriate experimental NMR shifts. For the STO-3G charges
used in this example, it is p ¼ 30:12 me.

Energy calculations [108], on the other hand, offer an empirical but quite reliable
evaluation: qC2H6

C � 35:1 me, which is henceforth adopted. Similar considerations
apply to sp2 carbons as well.

The comparison between the net atomic charges (qMull
C ), deduced from optimized

STO-3G computations, and the experimental shifts of olefinic sp2 carbon atoms [40]
yields a result similar to that observed for sp3 carbons; again we have three equi-
distant parallel regression lines, depending on the number of H atoms attached to
the olefinic carbon. The analysis by means of Eq. (5.9), on the other hand, leads to
p ¼ 31:8+ 4 me, that is, in essence, the value found for the sp3 carbons, 30.12 me
[40]. Energy calculations [109] led to the empirical result qC2H4

C ¼ 7:7 me for the
ethylene carbon atom.

The bottom line is that comparisons of SCF Mulliken net charges with NMR shifts
suggest that the alkane and alkene carbon and hydrogen net charges should be cor-
rected as shown in Eqs. (5.10) and (5.11), respectively, using the same p value.

Auxiliary Relationships

We can now ask how the modified charges qC and qH of Eqs. (5.10) and (5.11)
compare with their original (Mulliken) counterparts. Let us define qC2H6,Mull

C ¼
ethane-C Mulliken net charge, with n ¼ nMull and qC2H6

C ¼ modified ethane-C net
charge, corresponding to n ¼ n. Equations (5.8) and (5.11) tell us that the slopes
of the hydrogen net charges versus s� are �10qC2H6

C =3n for the modified charges

and �10qC2H6,Mull
C =3nMull for the original Mulliken charges. It is clear, however,

that the transformation shown in Eq. (5.11) leaves the slope of the hydrogen net
charge versus s� unaffected, thus indicating that

qC2H6
C

n
¼ qC2H6,Mull

C

nMull
(5:12)

Finally, according to Eq. (5.10), we have

p ¼ 1
3

qC2H6
C � qC2H6,Mull

C

� �
(5:13)

p ¼ n� nMull

3nMull
qC2H6,Mull
C (5:14)
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For example, the charge–NMR shift correlation [Eq.(5.9)] gives n ¼2 4.4122 for
p ¼ 30.12 me. Using this result and the formula given for the methane carbon
atom (Table 5.2), we get the useful formula

p ¼ 3:4122
3

qC2H6,Mull
C � 4:4122

4
qCH4,Mull
C (5:15)

which facilitates the proper rescaling of Mulliken net charges.

Selection of n

There is one particular n that merits special attention. It reflects simple customary
ideas: “The electron-attracting power of otherwise similar atoms decreases as their
electron populations increase, thus opposing charge separation.” This concept
views local charge variations as events occurring “most reluctantly,” suggesting
that the carbon atoms found in alkanes should be very similar to one another, concei-
vably differing as little as possible from one another.

For a set of alkanes, each one containing two different carbons with net charges qr
and qs, this constraint amounts to minimizing the sum

P
(qr � qs)2 over the set.

Using the formulas of Table 5.2, it is found that

d
P

(qr � qs)2

dn
¼ 0

is satified by n � 24.4. Of course, this result for n does not depend on the particular
set of charges used in this type of calculation; only p is basis-set-dependent, not the n
deduced from this minimization of charge variations. Empirical evaluations of n (like
that reported for NMR shifts) consistently show that n is of the order of �24.4.

The negative n value means that the alkane carbon net charges are positive. This
relatively important Cþ–H2 polarity is in line with the view that hydrogen is
certainly more electronegative than carbon, as Mulliken and Roothaan [110] and
others [111–113] have pointed out.

Now it is a consequence of postulating minimal charge variations.

5.4 SELECTED REFERENCE NET ATOMIC CHARGES

Here we examine the carbon net charges of ethane and ethylene, obtained from SCF
and configuration interaction calculations, corrected by means of the appropriate p,
determined for n ¼ 24.4122. Remember that the same value of p applies to both
ethane and ethylene, as n is solely determined by the effectiveness of the inductive
effects. Equation (5.15) is used to get p, namely, p ¼ 138.68 me in 4-31G þ CI
calculations and thus, from Eq. (5.10), the corresponding carbon charges of ethane
and ethylene (see Table 5.5).
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The SDCI calculations are self-explanatory; a glance at the results reveals that the
4-31G þ CI charges [51] are indeed remarkably close to their empirical counterparts,
which are optimum values deduced from statistical best fits in energy calculations
[108,109].

No such SDCI results are presently available for benzene, but taking advantage of
the fact that the carbon atoms are evidently electroneutral in graphite and not so in
benzenoid hydrocarbons, the results obtained for graphite support the approximate
validity of bond energies deduced for polynuclear benzenoid hydrocarbons and of
the net charge, 13.2 me (probably +1 me), deduced for the carbon atom of
benzene [44].

Selected empirical “best fit” reference charges are reported in Table 5.6. The
results for nitrogen and oxygen are described in Part III, as are the relevant, highly
accurate charge–NMR shift correlations.

In summary, the charges suited for our energy calculations are clearly identified
with those that correlate to NMR chemical shifts. They closely reflect the expected
familiar inductive effects. This observation should not come as a surprise if we
think of atomic charges as part of the description of nature at the molecular level
and hence reject the idea that each phenomenon or property demands its very own
definition of atomic charge. But it must also be made clear that we think here first
and foremost of point charges allowing the interpretation of properties for which
they are an admissible simplified representation of integrated charge densities. If
not, our picture of point charges no longer holds.

TABLE 5.5. Mulliken Net Charges and Final Net Charges [Eq. (5.10)] (me)

Calculation

Mulliken Net Charge of Carbon Final C Net Charge

Methane Ethane Ethylene Ethane Ethylene

STO-3G 248.92 220.96 2128.4 69.40 268.2
þCI 246.37 222.28 — 55.14 —
4-31G 2523.2 2382.7 2346.4 42.8 262.7
þCI 2515.7 2378.2 2269.9 37.8 7.5
Empirical — — — 35.1 7.7

TABLE 5.6. Selected Reference Net Charges

Atom k Host qk (me) Reference

C C2H6 35.1 Chapter 13 [108]
C2H4 7.7 Chapter 14 [109]
C6H6 13.2 Chapter 14 [44]

N CH3NH2 29.00 Chapter 15 [34]
O (C2H5)2O 5.18 Chapter 16 [44]

CH3OH 10.53 Chapter 16
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As it is, it should be remembered that Fig. 5.2 has become a sort of Rosetta stone
whose deciphering paves the way toward a better understanding of what falsely seems
to be an inherent intricacy of Mulliken’s population analysis.

But before getting there, let us discuss charge–shift correlations, as well as
another instructive topic, one that defines charges in light of measured adiabatic
ionization potentials.
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CHAPTER 6

ATOMIC CHARGES AND NMR SHIFTS

6.1 SCOPE

Carefully established correlations between nuclear magnetic resonance (NMR) shifts
and atomic electron populations in well-defined series of closely related compounds
can prove valuable for the evaluation of atomic charges in similar systems that are at,
or beyond, the limits of practical computational feasibility. We certainly could make
good use of them. [Also remember the insight gained with the help of Fig. 5.2; it led
to Eq. (5.10).]

This sort of approach postulates that one of the major factors governing the shield-
ing of a specific nucleus is its local electron density. Now, chemical shift is a property
of the interaction of the charge density with an external magnetic field. It depends
therefore on the value of the integrated charge density (or “charge”) in the neighbor-
hood of a nucleus (as well as on other factors, of course, e.g., the magnetic suscep-
tibility of that charge density), but a formal relationship between NMR chemical
shifts and atomic charges is not part of the rigorous theory of nuclear magnetic
resonance.

Under these circumstances, it seems preferable to develop arguments in favor of
charge–shift correlations from within the theory of magnetic shielding with no refer-
ence to any particular population analysis, rather than proceeding with brute-force
attempts at correlating observed NMR shifts with atomic charges, assuming that
one knows how to define them.

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
Copyright # 2009 John Wiley & Sons, Inc.
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6.2 INTRODUCTION

Following the convention adopted for 13C and 17O (but not for 15N) nuclei, in writing
a linear relationship

d ¼ a� qþ d8 (6:1)

between chemical shifts d and net (i.e., nuclear minus electronic) charges q, we must
keep in mind that

† Increasingly positive d values correspond to downfield shifts.
† q becomes more negative as the corresponding electron population increases.

Hence, a positive slope a indicates that an increase of electronic charge at an atom
results in a high-field shift, reflected by a lowering of d. Conversely, a negative
slope a indicates that an increase in local electron population (more negative q)
results in a downfield shift. The puzzling point is that both positive and negative
slopes are met in applications of Eq. (6.1), such as a. 0 for ethylenic carbon [40]
and carbonyl oxygen atoms [41] and a, 0 for paraffinic carbon [38] and ether
oxygen atoms [41]. This is a problem well worth looking into. Before doing so,
however, let us examine a few general aspects regarding the postulated validity of
charge–shift relationships.

The main conceptual difficulty stems from the fact that the attemps at correlating
NMR shifts with atomic electron populations are rooted in one’s intuition rather than
being based on a rigorous formalism.

6.3 MERITS OF CHARGE–SHIFT RELATIONSHIPS

Fortunately, we can take advantage of an indirect way of assessing the merits of
charge–shift correlations by examining the average diamagnetic and paramagnetic
contributions, sd and sp, respectively, to the total average magnetic shielding:

s ¼ sd þ s p

The rigorous theory is well known [114], but approximations for sd and sp are
used in the following discussion of results derived by means of the formalism
given by Vauthier et al. [115].

This approach, based on Pople’s finite perturbation theory [116], involves the
INDO approximations [117] on a gauge-invariant GIAO basis [118] and London’s
approximation. Moreover, it satisfies the Hermitian requirement for the first-order
perturbation matrix reflecting the effect of an applied external magnetic field. The
latter condition results in a significant improvement of calculated 13C magnetic
shieldings, the average precision being �5 ppm [115].

The point is that this formalism for s permits a separation into mono-, di-, and
triatomic contributions, thus revealing the relative weight of “local” and “distant”
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electron densities in the magnetic shielding of a given nucleus. In this manner, it
becomes possible to gain a reasonable estimate about the chances that chemicals
shifts do, indeed, depend primarily on local electronic populations, at least in
series of closely related compounds. The most detailed results are those derived for
ethylenic and acetylenic sp2 and sp carbon atoms, respectively.

To begin with, it appears that the local diamagnetic contribution to the magnetic
shielding is practically the same for all sp3, sp2, and sp carbon nuclei (57.85+
0.6 ppm). Moreover, the results for sp2 carbons indicate that the total diamagnetic
part (including all contributions from distant atoms) plus the paramagnetic part due
to the distant atoms is nearly constant (82.7 ppm), within �0.4 ppm. The gap
between this sum and the total magnetic shielding represents the paramagnetic con-
tribution excluding that of distant atoms, that is, the local paramagnetic shielding plus
the paramagnetic part contributed by the neighbors of the nucleus under scrutiny. It is
this gap that reflects the total variation in magnetic shielding (or, at least, its major
part by far) for a given nucleus in a series of closely related compounds; it is now
at the center of our attention. The effects of the neighboring atoms that are included
in this paramagnetic shielding are listed in Table 6.1. The results reflect the smallness
of these effects.

For ethylenic and acetylenic carbon atoms, one can consider the neighbors’
contributions as being constant, or nearly so (within �1.5 ppm). The corresponding
uncertainty introduced by assuming constant neighbors’ contributions for sp3 carbon
atoms probably does not exceed �0.3 ppm. As a consequence, in a series of closely
related compounds, the variations of the local paramagnetic shielding appear to rep-
resent the largest part, by far, of the total changes in shielding experienced by a given
nucleus, for example, by sp2 carbons in a series of ethylenes or sp3-hybridized carbon
atoms in paraffins.

Similar conclusions are also reached for the magnetic shielding of 15N atoms, as
revealed by a detailed study of a series of amines, nitriles, ammonia, pyridine, pyra-
zine, pyrimidine, and pyridazine [119]. Their local diamagnetic shielding is virtually

TABLE 6.1. Paramagnetic Shielding Contributed by Neighboring Atoms (ppm)a

Molecule (Atom�) Shielding Molecule (Atom�) Shielding

C�H4 0.17 (CH3)2C55C�HCH3 0.38
CH3C�H3 20.11 (CH3)2C�55CH2 21.15
CH255C�H2 21.21 (CH3)2C�55CHCH3 1.22
CH3CH55C�H2 0.70 (CH3)2C�55C(CH3)2 1.52
(CH3)2C55C�H2 1.52 CH;;C�H 1.65
CH3C�H55CH2 22.15 CH3C;;C�H 3.79
CH3C�H55CHCH3 cis 0.62 CH3C�;;CH 1.15
CH3C�H55CHCH3 trans 0.67 CH3C�;;CCH3 3.09

aThese results were deduced from those indicated in Ref. 115 and represent s p(KK)þ s p
8
(MK), as defined

in this reference. The local paramagnetic shielding discussed in the text is sp(M) (Eq. 9 of Ref. 115).
Source: Ref. 115.
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constant (�88.2+1.2 ppm), and so are the sums of all the contributions other than
the local (dia- and paramagnetic) ones (�33.1+ 4 ppm), in a range of �400 ppm.

Therefore, within the precision of the present type of analysis, it seems quite
reasonable to anticipate correlations between NMR shifts and atomic charges,
which, of course, are strictly local properties. Following this analysis of the individual
nonlocal effects revealing, namely, the small participation of tricentric integrals invol-
ving distant atoms, the practical validity of charge–shift relationships rests largely
with cancellation effects of a number of terms that, to begin with, are small or rela-
tively constant. The importance of the nonlocal contributions is further reduced with
the selection of a scale tailored for comparisons between atoms of the same type, with
reference to an appropriately chosen member of that series. (The fact that “distant”
atoms have only a minor, if any, effect on the shielding of heavy nuclei justifies in
part the solvaton model [120] discussed by Jallah-Heravi and Webb [121] and the
smallness of solvent effects on 13C shifts.) For hydrogen atoms, however, the situ-
ation is different because of the large weight of the three-center integrals in the cal-
culation of their magnetic shielding.

So far we have learned that, in certain series of related compounds, it is the local
paramagnetic shielding that governs the changes in total shielding

Dstotal ’ Ds
p
local (6:2)

and, hence, that under these circumstances it may well be justified to expect corre-
lations between NMR shifts and local electron populations. It remains, however,
that charge–shift correlations are essentially empirical in nature; while the definition
of “closely related compounds” may be linked to the approximate validity of Eq.
(6.2), the practical answer stems ultimately from the actual examination of shift–
charge results.

6.4 AROMATIC HYDROCARBONS

To begin with, let us examine the probably most quoted plot, that of the familiar
Spiesecke–Schneider work [122] relating the 13C NMR shifts of tropylium ion,
benzene, cyclopentadienyl anion, and cyclooctatetraene dianion to the corresponding
carbon atomic charges. The latter were deduced by assuming the local p-electron
density to be known from the number of p electrons and the number of carbon
atoms over which the p cloud was distributed. The estimated shift, �160 ppm per
electron, has become an almost unerasable part of our grammar. The linear correlation
between 13C chemical shifts and p charge density was later extended to 2p electron
systems [123–125] as well as to the 10p cyclononatetraene anion [126]. A plot of
this correlation for the whole series was presented by Olah and Mateescu [123],
who used, where appropriate, simple Hückel molecular orbital theory for deducing
charge distributions.

At a quite different level of approximation, this class of compounds was investi-
gated by means of STO-3G calculations involving a detailed optimization of all the
geometric and z exponent parameters [42]. The Mulliken net atomic charges and the
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corresponding chemical shifts (Table 6.2) yield the correlation presented in Fig. 6.1.
In spite of some scatter about the regression line, a point that is discussed below, it
appears that Eq. (6.1) is reasonably well satisfied with the use of total (s þ p) net
atomic charges, with a ’ 300 ppm/electron.

The behavior of the para carbon atoms of substituted benzenes is similar. Using
STO-3G Mulliken s þ p net charges, the correlation with NMR shifts resembles
that shown in Fig. 6.1, with a ’ 384 ppm/e [127].

TABLE 6.2. Carbon Net Charges and NMR Shifts of Selected Aromatic
Hydrocarbonsa (me)

Compound qs qp qtotal db

1 Cyclopropenium cation, C3H3
þ 2223.5 333.3 109.8 176.8

2 Cycloheptatriene cation, C7H7
þ 2120.5 142.9 22.4 155.4

3 Benzene, C6H6 247.4 0 247.4 128.7
4 Cyclononatetraenide anion, C9H9

2 5.1 2111.1 2106.0 108.8
5 Cyclopentadienide anion, C5H5

2 26.5 2200.0 2173.5 102.1
6 Cyclooctatetraenide dianion, C8H8

22 75.0 2250.0 2175.0 85.3

aResults expressed relative to 1, 5, and 6 electrons, respectively, for the p, s, and total net charges. A nega-
tive sign indicates an increase in electron population.
bSpecifically, ppm, from Me4Si.
Source: Ref. 42.

Figure 6.1. 13C chemical shifts of the aromatic compounds shown in Table 6.2 versus total
(s þ p) net charges (ppm from TMS, viz., me).
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A similar study on meta carbons [127], while giving results of the same type, is
perhaps somewhat less conclusive because of the very limited range of variation of
the meta-carbon NMR shifts (�1.5 ppm). It remains, however, that the major con-
clusions drawn for the para carbons apply to the meta carbons as well.

As one would anticipate from the similarity in the chemical nature of these sub-
stituted benzenes and the compounds indicated in Table 6.2, the gross features are
quite similar, namely, in terms of the increase in electron population at carbon result-
ing in a high-field shift.

Not too much importance should be given to the difference between the slopes a
calculated for the two series of compounds. Part of the difference is possibly due to
the fact that the substituted benzenes were calculated using the “standard” STO-3G
method, which is certainly a reasonable approach for this class of molecules,
whereas the STO-3G remake of the Spiesecke–Schneider correlation has involved
extensive geometry and scale factor optimizations, dictated by the diversity of the
members of this series. In addition, one should consider that the Spiesecke–
Schneider correlation involves cycles of different size, a circumstance that introduces
an uncertainty regarding the validity (or lack of it) of interpreting chemical shift
differences as a function of Mulliken charge density only, disregarding possible
effects linked to its shape. An indication about the overall influence of ring size on
the quality of simple charge–shift correlations in this class of compounds revealed
[42] that this effect is relatively modest when transposed on the scale of the corre-
lation given in Fig. 6.1.

The charge–shift correlation presented in Fig. 6.1 is, on the whole, reasonably
good, mainly because it covers an important range of shift and charge results. The
results [127] for the substituted benzenes are more significant because they do not
suffer from possible drawbacks linked to ring size. Indeed, their correlation is
superior in quality to that given in Fig. 6.1.

Charge–Shift Correlations of Aromatic Hydrocarbons

Traditionally, much of the discussion reported in the literature about 13C NMR shifts
and electronic structure has related to aromatic systems, following Lauterbur’s
suggestion [128] that in these systems the shielding is governed primarily by the
p-electron density at the carbon nuclei. Although the analysis presented here has
emphasized relationships with total (s þ p) atomic charges, there is no doubt that
correlations with p-electron populations have their merit. For example, the 13C
shifts of the aromatics described in Table 6.2 yield an excellent linear correlation
with p charges, showing that any increase of p-electron population at carbon pro-
vokes a high-field shift [42]. But it is also true that an equally good linear correlation
is obtained if s charges are used instead; note, however, that any increase of
s-electron population is accompanied by an important downfield shift. This obser-
vation suffices to warn us that for aromatic (and, more generally, sp2 carbon)
systems the evaluation of the dependence of NMR shifts on electronic charges
should not be restricted to p electrons only, disregarding s charges. The study of
s systems would otherwise come to an abrupt end before it has started.
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The reason why s, p, and total (s þ p) charges yield correlations of similar
quality for the aromatics is due to the linear decrease in s population accompanying
any increase in p electronic charge. Figure 6.2 illustrates this behavior for the com-
pounds described in Table 6.2.

Similarly, in the series of monosubstituted benzenes, the calculated changes in s

and p populations at the para-carbon atom are accurately inversly related to one
another, as convincingly demonstrated elsewhere [127]. The p population shows
the greater change, and the s population seems to be altered by approximately
55% in the opposite direction. The results obtained for the p and s populations at
the meta-carbon atom are similar, but these points show some scatter from linearity.
However, most of the meta points fall close to the correlation line drawn for the
para-carbon atoms.

Describing now, where appropriate, the observed changes in s and p populations
by the equation

Dqs ¼ mDqp (6:3)

with D q ¼ Dqs þ Dqp, it appears that Eq. (6.1) can be written as follows

Dd ¼ asDqs þ apDqp (6:4)

¼ mas þ ap

mþ 1
� Dq (6:5)

Figure 6.2. Comparison between the s and p net atomic charges of the aromatic compounds
shown in Table 6.2 (me) [42].
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where mas þ ap ¼ (mþ 1)a represents the apparent slope of d vs. qp (e.g.,
�160 ppm/e), which is now seen to also account for the fact that s and p charges
vary in opposite directions. Note that when Eq. (6.3) applies, the individual
as and ap parameters cannot be obtained from simple regression analyses using
Eq. (6.4) because Dqs and Dqp are not independent variables.

Formula for the Charge–Shift Correlation

STO-3G charge analyses of benzenoid hydrocarbons [129] indicated that
d ¼ 0.835q þ 178.66 ppm from TMS, where q is the calculated net charge of carbon.
Taking the s–p separation into account, Eqs. (6.3) and (6.4), with m ¼ 20.814 and
(dd/dqp) ¼ 157 ppm/e, it was thus deduced that

q ¼ 1:2 (d� dC6H6)þ 13:2me (6:6)

where dC6H6 ¼ 128:5 ppm is the chemical shift of benzene, from TMS. This result is
admittedly crude. But extensive numerical analyses, such as those reported in energy
calculations of benzenoid hydrocarbons using 13C NMR shifts, gave no reason
for revision.

6.5 RELATIONSHIPS INVOLVING sp3 CARBON ATOMS

The validity of Eq. (6.1) has been carefully established for linear and branched
paraffins, cyclohexane and methylated cyclohexanes, including molecules consisting
of several cyclohexane rings in the chair conformation (e.g., cis- and trans-decalin,
bicyclo[3.3.1]nonane, adamantane, and methylated adamantanes) as well as in boat
conformation (e.g., iceane and bicyclo[2.2.2]octane) [44]. No special effect seems
to contribute to the chemical shift because of the presence of cyclic structures.

A multiple regression analysis using Eq. (5.9) and carbon charges “corrected”
according to Eq. (5.10) leads to [38,44]

d ¼ �237:1
qC
q8C

þ 242:64 ppm from TMS (6:7)

with a standard error of 0.3 ppm. Using ethane as reference, where q8C ¼ qC2H6
C is its

carbon net charge, we get

d� dC2H6 ¼ �237:1
(qC � qC2H6

C )

qC2H6
C

ppm from ethane

Note that at this point the carbon charges are expressed in a convenient dimensionless
way or, if we prefer, in “relative units,” taking the ethane carbon atom as reference by
setting its charge at one arbitrary unit.

Now, using familiar charge units, with q8C ¼ 35:1 me (Chapter 5), we deduce that

qC � 35:1 ¼ �0:148 (d� dC2H6) me (6:8)

72 ATOMIC CHARGES AND NMR SHIFTS



This is probably the most accurate charge–shift correlation presently known.
Figure 6.3 illustrates the quality of this correlation.

Incidentally, in sharp contrast with the results obtained for aromatic molecules,
note that any increase in electron population at a carbon atom is accompanied by
an important downfield shift. This is a result that we shall keep in mind when discuss-
ing carbon atoms in typical s systems.

Equation (6.8) is accurate for acyclic and six-membered cyclic saturated hydrocar-
bons. Smaller or larger cycles are not described by this equation [44,107,130]. Simple
charge–shift correlations fail because of the changes in local geometry affecting the
hybridization of carbon.

Del Re and coworkers [131] were concerned with the relation of s character in
hybrids to bond angles and have considered hybridization as described by local orbi-
tals, determined by requiring that hybrids on different atoms have minimal overlap
unless they participate in the same bond. Alternate approaches are provided by the
bond index of Wiberg [132] and by the Trindle–Sinanoğlu procedure [133] for the
application of the physical criterion of Lennard-Jones and Pople [134,135], requiring
that an electron in a localized orbital interact maximally with the electron sharing
that orbital.

Figure 6.3. Correlation between 13C NMR shifts (ppm from TMS) of sp3 carbon atoms and
net charges from Eq. (5.10) using optimized STO-3G charges with p ¼ 30.12 me. The charges
are expressed in terms of qC=q8C, that is, in relative units, for n ¼ 24.4122. This figure now
includes the points of Fig. 5.2 plus that of methane and the quaternary carbon of neopentane.
(Reproduced with permission from Ref. 44.)
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A good insight into the problems related to, and the possibilities offered by, the
local orbital and bond index characterization of hybridization has been offered by
Trindle and Sinanoğlu [136]; when a localized description of the wavefunction is
possible—a situation that allows unambiguous definition of hybridization—the two
methods give undistinguishable results. Calculated p characters are in good agree-
ment with estimates (rooted in a work by Juan and Gutowsky [137]) derived from
NMR coupling constants between carbon-13 nuclei and directly bound protons
[132,136].

Theoretical evaluations of hybridization, as well as estimates from NMR coupling
constants J(13CH), are anticipated to assist in future work on charge–shift corre-
lations in cases suspected of presenting local geometry changes invalidating simple
charge–shift relationships.

A more general form of Eq. (6.8) is

DqC ¼ �0:148DdC (6:9)

where DqC ¼ qC � qref:C and DdC ¼ dC � dref:C are defined with respect to appropri-
ately selected reference values, qref:C for the carbon charge, corresponding to dref:C
for its chemical shift.

6.6 RELATIONSHIPS INVOLVING OLEFINIC CARBONS

Selected results are presented in Table 6.3 for typical olefinic carbon atoms. The
Mulliken net charges were obtained [40] from full (geometry and z exponents) optim-
izations in the STO-3G basis.

TABLE 6.3. Atomic Charges (me) and NMR Shiftsa of Olefinic Carbon Atoms

Molecule Atom qMull
C,s qMull

C,p qtotalC (5.10)b d

Ethylene C (4) 2128.4 0.0 2128.4 268.2 122.8
Propene C-1 (2) 2120.4 234.2 2154.6 294.4 115.0

C-2 (9) 283.5 25.2 258.3 228.2 133.1
Isobutene C-1 (1) 2112.2 261.7 2173.9 2113.7 109.8

C-2 (10) 255.2 47.6 27.6 27.6 141.2
trans-Butene C-2 (7) 278.6 27.7 286.3 256.2 125.8
cis-Butene C-2 (6) 277.6 28.8 286.4 256.3 124.3
2-Methyl-2-butene C-2 (8) 249.8 12.3 237.5 237.5 131.4

C-3 (3) 273.8 232.6 2106.4 276.3 118.7
2,3-Dimethyl-2-butene C-2 (5) 250.2 211.0 261.2 261.2 123.2

aValues of A. J. Jones and D. M. Grant, reported in Ref. 138.
bCorrected carbon charge, Eq. (5.10), using p ¼ 30.12 me.
Source: Ref. 40.
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The analysis by means of Eq. (5.9) leads to p ¼ 31.8+ 4 me, which is in essence
the value found for the sp3 carbons, 30.12 me. The correlation between NMR shifts
and the SCF carbon charges corrected using p ¼ 30.12 me is convincing (Fig. 6.4).

Here again, s and p populations vary in opposite directions. Using now Eqs. (6.3)
and (6.5), that is, the slope

a ¼ mas þ ap

mþ 1
(6:10)

a crude indirect estimate of a can be obtained from m ’ 20.955 and
(ddC=dqp) ’ 300 ppm/e, giving

qC � 7:7 ’ 0:15 (dC � 122:8) me (6:11)

This rough estimate is to be taken cum grano salis (with a grain of salt)—it follows
from energy calculations and brute-force fits with experimental energy data [44]. It is
probably not precise, because the contributions of the sp2-carbon charge variations
are rather small and likely to be blurred by uncertainties of the experimental
energy data.

Figure 6.4. Comparison of 13C NMR shifts, ppm from TMS, with the corrected carbon total
(s þp) net charges [Eq. (5.10)] reported in Table 6.3 for selected olefins. The atom numbering
is that indicated in Table 6.3. The radius of the circles represents an uncertainty of 0.7 ppm or
3.5 me. (From Ref. 40.)
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6.7 CARBON BONDED TO NITROGEN OR OXYGEN

The charge–shift correlations for carbon atoms bonded to nitrogen or oxygen are
described by Eq. (6.9), namely

DqC ¼ �0:148DdC

with DqC ¼ qC � qref:C and DdC ¼ dC � dref:C .
For the C22N bonds of amines, the analysis presented in Section 15.1 validates

this result with the usual reference values qref:C ¼ 35:1 me and dref:C ¼ 5:8 ppm from
TMS, which are exactly those of the paraffins. The presence of nitrogen next to
carbon does not seem to require any ad hoc revision; this is certainly an acceptable
approximation [139], at least within the limits of the energy calculations involved
in this evaluation.

Not so when oxygen is the neighboring atom—oxygen introduces an “extra”
downfield shift at its bonded a-carbon, estimated [140] at �41.7 ppm in the case
of the ethers. Assuming that this shift, which could be due in part to the electric
field of the oxygen dipole, is not primarily a carbon charge effect, we estimate the
latter by subtracting 41.7 ppm from the observed a-carbon shifts (60.1, viz., 199.1
ppm from ethane for diethylether and acetone, respectively) giving, with the
help of Eq. (6.9), the following reference values for the carbon net charges:
qref:C ’ 32:4 me for diethylether and qref:C ’ 11:8 me for acetone.1 A refinement based
on energy calculations [141] led to the following results, to be used with Eq. (6.9):

Ethers: qref:C ¼ 31:26 me, dref:C ¼ 65:9 ppm from TMS
Ketones: qref:C ¼ 14:0 me, dref:C ¼ 204:9 ppm from TMS

The carbons of the alcohols are calculated just like those of the ethers.
Interestingly, the comparison of the carbonyl-13C NMR shifts with their net

charges (Table 6.4, Fig. 6.5) indicates the same trend as that observed for the sp3

carbon atoms in paraffins, namely, a high-field shift with increasing positive
net charge.

The slope a ¼ 20.148 me/ppm assumed for sp3 carbons attached to nitrogen is
plausible because, at least to a good approximation, these carbons are very similar to
those of the paraffins. Regarding the a-carbons of the ethers, the only support in favor
of this a comes from energy calculations using it to obtain the required charges;
calculated and experimental energies agree within 0.20 kcal/mol (root-mean-
square deviation). The selection of a ¼20.148 me/ppm seems reasonable, though
perhaps not very accurate. The same conclusion is reached for the carbonyl
a-carbons, although this a seems less credible. It must be added, however, that the

1In a nutshell: for the diethylether a-carbon, remembering that 60.1 ppm is its shift relative to ethane, the
difference DdC ¼ 60.12 47.1 measures the carbon charge effect, namely, what is due to qC 2 35.1 ¼
20.148DdC, which gives, in this approximation, qref:C ¼ qC (a-C of diethylether) ’ 32.4 me.
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contributions of these a-carbons vary so little that they conceal the flaw regarding the
validity of the assumed a.

6.8 CORRELATIONS INVOLVING N-15 NMR SHIFTS

This section considers alkylamines, nitroalkanes, isonitriles, pyridines, and diazines
and offers comparisons between NMR shifts and calculated atomic charges. Most of

TABLE 6.4. Net Charges (me) and NMR Shiftsa

of Carbonyl Carbon Atoms

Molecule qC dC

1 (CH3)2CO 259.7 204.9
2 CH3COC2H5 253.6 207.0
3 CH3COiC3H7 244.9 210.0
4 (C2H5)2CO 247.4 209.4
5 C2H5COi3H7 238.8 212.3
6 (iC3H7)2CO 233.8 215.5

aReported in Ref. 142.

Source: Ref. 41.

Figure 6.5. Comparison of 13C NMR shifts, ppm from TMS, of ketone carbonyl–carbon
atoms with the corresponding atomic charges, reported in Table 6.4. The atom numbering is
that indicated in this Table. (Reproduced with permission from Ref. 41.)
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the charge results used here were obtained from fully optimized STO-3G calculations
[43], but in this peculiar situation it must be made clear that charge analyses are
plagued at the outset by an imbalance in the hydrogen basis sets currently used in
ab initio calculations [30,143–146], which significantly alters the description of
nitrogen itself.

Basis set superposition errors were evaluated [30] by replacing a standard 6-31G�

basis by an extended form in which the basis of ammonia H atoms and that of the
methyl groups of trimethylamine were retained in the treatment of each alkylamine
(i.e., mono-, di-, and trimethylamine) and of ammonia itself. The results indicated
that the quality of the treatment of amine nitrogen atoms is strongly dependent on
the number of methyl groups because the replacement of alkyl groups by hydrogens
greatly impoverishes the basis. This and related studies [144–146] warn against
reaching hasty conclusions concerning direct comparisons between mono-, di-, and
trialkylamines.

Alkylamines

Here we are concerned mainly with alkylamines. Detailed SCF charge analyses [43]
indicate that any gain in total charge translates into a downfield 15N shift, which is the
trend exhibited by alkylamines, but also by nitroalkanes and isonitriles. Examples
are offered in Table 6.5 (see also Fig. 6.6), along with pertinent ionization potentials,
indicated in kcal/mol21.

The comparison with adiabatic ionization potentials [147] indicates that the latter
decrease as electronic charge builds up on nitrogen, as one would normally expect,
thus suggesting that the charges calculated here are in the right order. (These ioniz-
ation potentials correspond to the suppression of an electron of the lone pair on

TABLE 6.5. Nitrogen Net Charges and 15N NMR Shifts

Moleculea qN (me) d(15N)b IP (kcal/mol)

1 CH3NH2 2374.4 371.1 206.8
2 iso-C4H9NH2 2381.5 356.5 —
3 n-C3H7NH2 2384.2 353.4 202.5
4 C2H5NH2 2384.6 349.2 204.3
5 iso-C3H7NH2 2392.2 331.9 201.1
6 tert-C4H9NH2 2397.3 318.1 199.2
7 (CH3)2NH 2308.5 363.3 190.0
8 (CH3)(C2H5)NH 2316.6 345.8 —
9 (n-C3H7)2NH 2323.3 334.3 —
10 (C2H5)2NH 2325.4 327.5 184.7
11 (CH3)3N 2255.1 356.9 180.3
12 (CH3)2(C2H5)N 2268.0 345.1 —
13 (C2H5)2(CH3)N 2280.8 334.3 —

aThe numbering corresponds to that of Fig. 6.6.
bd(15N) in ppm from HNO3, in methanol, from Ref. 149.
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nitrogen [148].) On the other hand, a gain in electronic charge also appears to come
with a concurring downfield 15N chemical shift. [In the convention adopted here for
the 15N resonance shifts [149] (ppm from HNO3, in methanol), increasingly larger
d (15N) values indicate upfield resonance shifts.]

The charges reported in Table 6.5 are STO-3G results. They require a rescaling;
that described by DqrescaledC � (35:1=69:4)DqSTO�3G

C is a reasonable approximation
for paraffins [44] and—tentatively adopted for the alkylamines [139]—proved
adequate.

Separate correlation lines are observed for mono-, di-, and trialkyl-amines;
namely, after proper rescaling [139], we obtain

qN ¼ 0:218 d(15N)� 371:1
� �

� 9:00 (me) (primary amines) (6:12)

qN ¼ 0:247 d(15N)� 363:3
� �

� 23:35 (me) (secondary amines) (6:13)

qN ¼ 0:168 d(15N)� 356:9
� �

� 29:50 (me) (tertiary amines): (6:14)

Adding to the theoretical difficulties, there is also the problem of assessing the
appropriateness of the NMR data selected for use in comparisons like those described
here, because solvent and concentration effects are often much larger for nitrogen-15
than for carbon-13 NMR spectra [150]. Litchman and coworkers [151], for example,
investigated in detail the effects of binding of the solvent protons to the nitrogen lone
pair and (or) influences of solvent lone pairs binding with the protons on nitrogen,

Figure 6.6. Alkylamines: 15N resonance shifts versus net charges.
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concluding that different solvent effects are generally to be expected for primary and
tertiary amines, and probably for secondary amines as well. Besides hydrogen
bonding, other possible causes for the solvent effects on 15N chemical shifts
include polarization of solute molecules in a very polar medium and conformational
changes resulting from strong solvent–solute interactions. The importance of these
interactions is revealed by the correlations observed for the 15N NMR shifts of the
saturated amines with the 13C shifts of the corresponding carbons in analogous hydro-
carbons [149,152–154], namely, by the very existence of separate, solvent-sensitive,
linear correlations for primary, secondary, and closely related groups of tertiary
amines. Results of this sort, obtained with great care for a large variety of compounds
and interpreted in detail by Roberts and coworkers [149,152–154], are instrumental
in a more balanced assessment of the charge–shift correlations [Eqs. (6.12)–(6.14)].
It appears, indeed, that the charges to be used in this type of correlation should not be
those of the isolated amines but rather those of the (still poorly known) aggregates as
they are physically present in shift measurements. However, the linearity of the
15N/13C correlations, as well as the corresponding ones between atomic charges,
supports the overall validity of correlations involving 15N shifts and nitrogen
charges of model isolated amines, at least in terms of general charge–shift trends
within series of closely related compounds.

Hence, despite the theoretical and solvent-related difficulties outlined above, it
may be concluded that any increase in electronic charge at amine nitrogen atoms
translates into a downfield chemical shift.

The (at least approximate) validity of Eqs. (6.12)–(6.14) is clearly demonstrated
by the remarkable quality of intrinsic CN bond energies and of bond dissociation
energies calculated by means of nitrogen net atomic charges deduced in this manner.

Nitroalkanes

In nitroalkanes, R22NO2, a regular upfield shift of the nitrogen resonance with
increasing electronegativity of R is observed and obeys simple additivity rules
[155]. Upon replacing hydrogen atoms in CH3NO2 with alkyl groups, a downfield
shift of �10 ppm takes place—a trend similar to that encountered with amine
nitrogen resonances. This trend visibly reflects the usual electron-releasing ability
of alkyl groups, in the order tert-C4H9 . iso-C3H7 . � � �. CH3.

STO-3Gcharge analyses [43] and the appropriate 15NNMRshifts [156] indicate that
a gain in electronic charge at nitrogen translates linearly into a downfield NMR shift.
Interestingly, the slope is similar to those found for mono- and dialkylamines [139]:

qN � qCH3NO2
N ¼ 0:253 dN � dCH3NO2

N

� �
(6:15)

Isonitriles

The nitrogen resonance signal of isonitriles moves to higher fields [157] with increas-
ing electronegativity of the group R in R22NC. The shift is very regular, about
15 ppm downfield for each H atom in CH322NC replaced with an alkyl group.
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This resembles the trends observed for amines and nitro groups. STO-3G charges [43]
show that the nitrogen signal [157] is farther downfield as electronic charge increases
at this atom.

Substituted Pyridines and Diazines

Using the experimental geometry of pyridine [158], the STO-3G optimization of its
scale factors was performed until charges were stable to within �0.01 me. Taking
advantage of Del Bene’s work [159] showing that the pyridine ring is essentially
unchanged in the equilibrium structures of 4-R-pyridines, only the geometries and
the scale factors of the substituents were subsequently optimized for the 4-substituted
derivatives, under the appropriate symmetry constraints (C2v for NO2 and NH2, Cs

otherwise). The results are indicated in Table 6.6.
Electron-releasing substituents (NH2, OH, OCH3, CH3) appear to increase thep (and

total) charge of the ring nitrogen atom, whereas the opposite is true for electron-
withdrawing groups (NO2, CHO, CN, COCH3), in accord with common views. These
results match those of Hehre et al. [127], showing that carbon-4 in substituted benzenes
gains or loses charge depending on whether the substituent donates or withdraws
electrons. Earlier studies by Pople and coworkers [160] on related systems similarly
concluded that theoretical SCF charge distributions do, indeed, support many of the
ideas of classical organic chemistry.

The parallelism between the behavior of nitrogen in 4-substituted pyridines and
that of the corresponding carbon in substituted benzenes is well illustrated in
Fig. 6.7. The results of Table 6.6 reveal another important similarity between

TABLE 6.6. Nitrogen s, p, and Total s1 p Net Charges (me) and 15N NMR Shifts
of 4-Substituted Pyridines and Selected Azines

Moleculea qs qp qtotal d(15N)b

1 HO-pyr 2175.5 295.3 2270.8 2138
2 NH2-pyr 2176.2 296.6 2272.8 242
3 OCH3-pyr 2189.0 269.9 2258.9 227
4 CH3-pyr 2190.6 269.7 2260.3 211
5 H-pyr 2195.5 259.6 2225.1 0
6 CN-pyr 2200.5 239.7 2240.2 9
7 COCH3-pyr 2199.0 251.2 2250.2 25
8 NO2-pyr 2204.4 228.8 2233.1 28
9 CHO-pyr 2199.4 249.3 2248.7 29
10 1,4-Diazine 2196.0 218.8 2214.8 46.1
11 Pyridine 2186.6 253.8 2240.4 63.5
12 1,3-Diazine 2180.8 284.1 2264.9 84.5
13 1,3,5-Triazine 2183.3 2101.3 2284.6 98.5

aMolecules 1–9 were partially optimized as described in the text; the results for 10–13 were derived with
full (geometry and scale factor) optimization.
bd(15N) in ppm from pyridine for 1–9; ppm from external MeNO2 for 10–13.

Source: Ref. 150.
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4-pyridine nitrogens and aromatic carbons. As is the case for the latter, s and p

populations of the ring nitrogens vary in inverse manner; the changes in p charge
predominate [43]. Finally, the correlation between resonance shifts and atomic
charges of the pyridine nitrogen atom reveals an upfield shift accompanying a gain
in total s þ p population, just like their aromatic carbon analogs.

Of course, because of the linear inverse relationship between s and p charges, the
correlation with total charges also implies the existence of individual linear corre-
lations with s and p populations, namely, upfield shifts for increasing p-electron
densities, just as in the case of aromatic hydrocarbons. The latter result also
follows from Pariser–Parr–Pople calculations of p charge densities reported by
Witanowski et al. [161]. All of these considerations apply equally well to the
series including pyridine, 1,3-diazine, 1,4-diazine, and 1,3,5-triazine, as revealed
by their 15N spectra in DMSO solution [162] (Fig. 6.8).

Solvent and concentration effects should obviously not be disregarded in the
present evaluation of charge–shift correlations. Shielding solvent effect affecting
the 15N resonances of pyridines, and (more generally) of sp2-hybridized nitrogens,
are associated with hydrogen bonding to the nitrogen unshared pairs. Such hydrogen
bonding modifies the p ! p� transition energies and, hence, the paramagnetic
screening that appears to be the dominant influence on the chemical shifts of these

Figure 6.7. Comparison between the nitrogen net charges of selected 4-R-pyridines and those
of C-4 in the analogous substituted benzenes. (A similar correlation holds for the corresponding
p charges.) The numbering is reported in Table 6.6. (Reproduced with permission from
Ref. 43.)
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compounds [163]. Because of a careful selection of suitable “standard” experimental
conditions, however, these solvent effects should not impair the overall validity of the
present conclusions, namely, that any gain in total electronic charge at azine nitrogens
translates into an upfield shift—in sharp contrast with the results obtained for amines,
nitroalkanes, and isonitriles.

6.9 CORRELATIONS INVOLVING O-17 ATOMS

This section is about dialkylethers, aldehydes, ketones and alcohols. Oxygen net
charges deduced from standard STO-3G calculations are indicated in Table 6.7
(see also Fig. 6.9), along with their NMR shifts (ppm from water) for dialkylethers
[140] and carbonyl compounds [140], as well as selected ionization potentials [147].

A comparison of the ionization potentials of selected ethers with their oxygen net
charges2 yields a correlation, IP ¼ 0.0274 qOþ18.16 eV (with an average error of
0.040 eV and a correlation coefficient of 0.9914), and reflects the expectation that
electron withdrawal becomes easier as the oxygen atom becomes electron-richer.
This result illustrates the ordering of the oxygen charges in agreement with all
known aspects related to the inductive effects of alkyl groups. Thus it can be

Figure 6.8. Comparison between the net charges and resonance shifts of nitrogen in pyridine,
1,3-diazine, 1,4-diazine, and 1,3,5-triazine (me). (Reproduced with permission from Ref. 43.)

2Optimized STO-3G Mulliken net charges were used.
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TABLE 6.7. 17O NMR Shifts and Net Charges (me) of Oxygen Atoms

Moleculea qO (me) dO IP (eV)b

1 (CH3)2O 2297.1 252.5 10.00
2 CH3OC2H5 2306.0 222.5 —
3 CH3Oiso-C3H7 2313.3 22.0 —
4 CH3Otert-C4H9 2316.6 8.5 —
5 (C2H5)2O 2314.9 6.5 9.53
6 C2H5Otert-C4H9 2325.3 40.5 —
7 (iso-C3H7)2O 2330.1 52.5 9.20
8 iso-C3H7Otert-C4H9 2333.4 62.5 —
9 (tert-C4H9)2O 2334.1 76.0 —

CH3CHO 2228.9 592.0 —
C2H5CHO 2229.6 579.5 —
iso-C3H7CHO 2230.1 574.5 —
(CH3)2CO 2266.7 569.0 —
CH3COC2H5 2269.5 557.5 —
CH3COiso-C3H7 2268.1 557.0 —
(C2H5)2CO 2272.1 547.0 —
C2H5COiso-C3H7 2270.7 543.5 —
(iso-C3H7)2CO 2273.8 535.0 —

aThe numbering corresponds to the points in Fig. 6.9.
bFor di-n-propylether, it is IP ¼ 9.27 eV.

Figure 6.9. Comparison between the net charges and resonance shifts of oxygen in selected
dialkylethers. (Reproduced with permission from Ref. 41.)
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assumed with confidence that the oxygen atom in, say, di-tert-butylether is electron-
richer than that of dimethylether.

The results indicate that any gain in electronic charge at the oxygen atom of
dialkylethers is accompanied by a downfield 17O NMR shift.

It is clear that the trends in electron populations at the ROR0 ether oxygen atoms
reflect the electron-releasing (or withdrawing) abilities of the R,R0 alkyl groups, just
as is the case with the methylene carbons in RCH2R0 hydrocarbons. Since for the
ether oxygen and the sp3 carbons it now appears that chemical shifts and atomic
charges are linearly related to one another, it follows that the 17O NMR shifts of
the ROR0 ethers are expected to correlate with the methylene 13C shifts of the corre-
sponding RCH2R0 hydrocarbons. This is, indeed, the case, as demonstrated convin-
cingly by Delseth and Kintzinger [140]. Moreover, similar correlations [140]
between the 13C shifts of the carbon atoms in ROR0 ethers and those of the “parent”
RCH2R0 hydrocarbons clearly reflect the close correspondence in the structure-
related effects that govern electron distributions indicating, namely, that the individual
C atoms of the alkyl part of the ethers behave quite like hydrocarbon C atoms.

Equation (6.9) describes the shift–charge correlation for paraffins. In order to
derive an expression for 17O nuclei on the same footing as (6.9), an extensive geo-
metry and exponent optimization was carried out for the dimethyl-, diethyl-, and
diisopropylethers. Under these conditions, the oxygen STO-3G Mulliken charges
of dimethylether (2267 me), diethylether (2295 me), and diisopropylether
(2322 me) indicate that the dO/qO slope is about (1/1.8)th that of the corresponding
dC/qC slope, obtained from the same basis set, i.e.

DdO

DqO
’ DdC=DqC

1:8

Consequently, we deduce from Eq. (6.9) that

qO � q(C2H5)2O
O ¼ �0:267 dO � d

(C2H5)2O
O

� �
(me) (6:16)

where q(C2H5)2O
O ’ 5:18 me [44], as revealed by energy calculations, with the

diethylether 17O shift at 6.5 ppm from water.
Finally, regarding the carbonyl oxygen atoms, the lack of precision (1–2 me)

accompanying standard STO-3G calculations and, above all, the narrow range of
DqO variations, makes it difficult to assess how accurately carbonyl-17O NMR
shifts and atomic charges are related to one another. Energy analyses [141] suggest
the following formula

DqO ’ 2:7 dO � dacetoneO

� �
(6:17)

which is tentative and could well be subject to future revisions. (Note, however, that
the calculated and experimental atomization energies of carbonyl compounds thus far
agree within 0.20 kcal/mol (root-mean-square deviation).
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Finally, energy analyses of a collection of alcohols [35] suggest the following
formula

qO � qH2O
O ’ �0:165 dO (6:18)

where dO is the
17O shift relative to external water. Again, this must be considered as a

tentative proposal, advocated by its applications in energy calculations.

6.10 SUMMARY

In series of closely related compounds, the change in total (diaþpara)magnetic
shielding of atomic nuclei is nearly that of the local paramagnetic term, because of
important cancellation effects involving nonlocal dia- and paramagnetic contri-
butions. This offers a justification for relationships between nuclear magnetic reson-
ance shifts and local atomic populations that are observed. It is important, however, to
consider the type (2s, 2p, s, or p) of electrons that are responsible for the variations in
atomic charges. Correlations between 13C NMR shifts and atomic populations of aro-
matic compounds, for example, should not be interpreted in terms of p electrons only,
because the slope of shift versus p charge (i.e., the �160 ppm/electron value that is
usually invoked) does not describe an intrinsic effect of p charges on magnetic
shielding but accounts for the fact that s and p charges vary in opposite directions
in this class of compounds. The explicit consideration of the inverse variations of
s and p charges, where appropriate, offers an explanation for the observation that
charge–shift correlations can have positive or negative slopes. It appears, indeed,
that an increase in total electronic population is accompanied by (1) a high-field
shift when the electron enrichment results from a gain in p charge prevailing over
the concurrent loss in s electrons (aromatic and olefinic C, carbonyl O atoms, and
sp2 N atoms) or (2) a downfield shift when the increase in charge is dictated by
that of the s population (sp3 C, dialkyl ether O atoms, and nitrogen of amines,
for example).

So, on the face of things, correlations of NMR shifts with atomic charges look
like a settled argument. Yet, because of the LCAO-MO Mulliken charges which
were used, it stands to reason that the numbers should not be taken as they come.
But thanks to the intrinsic qualities of these SCF analyses, all of which systematically
and not unexpectedly reproduce the same general trends familiar to chemists
[27,38,96], the essence of charge–shift correlations is not at stake; it is the
numbers that require attention. An important clue, embodied in Eq. (6.7), is offered
by the alkanes; supporting evidence include CI charge analyses (described in
Chapter 5) and extensive verifications by means of energy calculations
(Chapter 13). The latter now play a major role in the appropriate definition of other
charges, such as those of oxygen and nitrogen, fit for correlations with NMR shifts.

Correlations between the shifts of atoms in analogous positions highlight the
persistent role of the inductive effects. So, for example, the nitrogen charges of
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4-R-pyridines correlate with those of C-4 in the analogous substituted benzenes
(Fig. 6.7); similarly, the 17O shifts of ethers correlate with the methylene 13C shifts
of the corresponding hydrocarbons. Roberts et al. [164] have shown that a simple
linear correlation exists between the chemical shifts of carbon atoms in alcohols
and the corresponding hydrocarbon wherein a methyl group replaces the oxygen
function. In this vein, Eggert and Djerassi [165] showed that a similar correlation
exists for amines; as a consequence, it is possible to predict the chemical shifts
of amines, since the shifts of the C atoms of alkanes can be calculated using the
parameter set of Lindeman and Adams [166].

Of course, this list is by no means exhaustive. Additional correlations of this nature
would not only broaden our views in the field of charge–shift relationships but also
enhance our ability of predicting bond and molecular energies with chemical accu-
racy by means of charges deduced from NMR shifts.

Therein lies the merit of charge–shift correlations.
We could take advantage of them.
Ecce tempus: nunc aut nunquam!
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CHAPTER 7

CHARGES AND IONIZATION
POTENTIALS

This inroad into the study of the adiabatic ionization potentials (IPs) of paraffins and a
hypothetical correlation with atomic charges is to determine (1) whether such a cor-
relation exists in a first place and (2) if so, what sort of charges would satisfy it.

A crude justification for such a study can be found in the work of Widing and
Levitt [167], who described numerous correlations between adiabatic ionization
potentials and Taft’s inductive substituent constants (an indirect way of correlating
IPs with charges) and in a note by Streitwieser [168], who justified to some extent
a dependence of IPs on local charge densities.

Here attention focuses primarily on the charges to be used in such a correlation.
Rather than involving SCF atomic charges, advantage is taken from the general
formulation described earlier (Chapter 5), using a set defined by letting qC2H6

C ¼ 1
arbitrary unit for the ethane carbon atom, specifically, a set defined in the so-called
relative (dimensionless) scale. These charges are given in Table 7.1 in their general
form, with (3n þ x)/3n (for primary C atoms), (2n þ x)/3n (secondary C), (n þ
x)/3n (tertiary C), and 2x/n (quaternary C atom); the numerical values of x were
verified by means of the qC/qC8 charges predicted by Eq. (6.7) and the 13C shifts
determined by Grant and Paul [169]. Thus we have the appropriate expressions for
the carbon atomic charges required for the comparison with the adiabatic ionization
potentials given in Ref. 147. The formulas correspond to the atoms identified as C̈.

Two issues now need be addressed: (1) which atom(s) of each molecule should be
considered for the correlation with the IPs and (2) what is the “proper” n value associ-
ated with the equations of Table 7.1. The form of the correlation (linear or other) is
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not of any particular interest at this stage; all that is required is that the dependence be
monotonic.

Several attempts were made, including attempts to correlate the IPs with the net
charge of the electron-richest C atom of each molecule or with a combination of
the electron-richest carbon–hydrogen pair of each molecule, all of which failed
in giving any monotonic dependence of the IPs on these quantities. The only solution
is that resulting from comparisons of ionization potentials with the electron-richest
pair of bonded C atoms in each molecule. This correlation turns out to be linear
(Fig. 7.1), although such a linearity had not been postulated a priori. The least-square

TABLE 7.1. Carbon Atomic Charges and Ionization Potentials

Moleculea q(C-1) q(C-2) IP (eV)

CH4 4(n þ 1)/3n — 12.98
1 C̈H3C̈H3 1.000 1.000 11.65
2 C̈H3C̈H2CH3 (3n þ 0.55)/3n (2n2 3.8)/3n 11.07
3 CH3C̈H2C̈H2CH3 (2n2 3.35)/3n (2n2 3.35)/3n 10.63
4 C̈H3C̈H(CH3)2 (3n þ 1.03)/3n (n2 7.7)/3n 10.57
5 CH3C̈H2C̈H2CH2CH3 (2n2 3.46)/3n (2n2 2.8)/3n 10.35
6 C̈H3C̈(CH3)3 (n þ 0.49)/n 24/n 10.35
7 CH3C̈H2C̈(CH3)2 (2n2 2.95)/3n (n2 7.46)/3n 10.32
8 CH3CH2C̈H2C̈H2CH2CH3 (2n2 2.94)/3n (2n2 2.94)/3n 10.18
9 (CH3)2C̈HC̈H2CH2CH3 (n2 7.58)/3n (2n2 2.39)/3n 10.12
10 CH3C̈H2C̈H(CH3)CH2CH3 (2n2 3.09)/3n (n2 7.08)/3n 10.08
11 (CH3)3C̈C̈H2CH3 211.85/3n (2n2 2.67)/3n 10.06
12 (CH3)2C̈HC̈H(CH3)2 (n2 7.23)/3n (n2 7.23)/3n 10.02

aThe numbering corresponds to the points in Fig. 7.1.

Figure 7.1. Verification of Eq. (7.1) for n ¼ 24.4083. (Reproduced with permission from
Ref. 170.)
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analysis of the data, using the equations of Table 7.1, indicates that

n ¼ �4:4083

IP ¼ 13:15 �q� 1:50 eV (7:1)

with a standard deviation of 0.040 eV [170].
In this equation, �q ¼ 1

2[q(C̈1)þ q(C̈2)] is one-half the sum of the charges of the
electron-richest bonded C atoms in each alkane molecule, expressed by means of
the appropriate formulas given in Table 7.1. The net atomic charges qC and q8C are
both positive because n , 0. A decreasing ratio qC/q8C thus means that a carbon
atom gains electronic charge with respect to that of ethane. Figure 7.1 indicates
that the IPs of the alkanes are lowered as the joint electron population of the
electron-richest pair of atoms increases.

This result is similar to that obtained by Widing and Levitt for the normal alkanes
and to that observed for alkyl-substituted ethylenes [171]; in the latter case, linear cor-
relations were obtained between the IPs and the sum of charges of the unsaturated
carbon atoms, whereby any increase of their electron density due to substituent
effects leads to a lowering of the molecular ionization potential.

7.1 CONCLUSION

It must now be made clear that in performing this least-square fitting of the ionization
potentials (also considering possible contributions of quadratic charge terms), n was
allowed to assume freely any value that would give the best result. In this respect,
n ¼ 24.4083 can be regarded as a truly independent “experimental” n value: it is
virtually the value determined from correlations with 13C NMR shifts. This result
is certainly significant.

The obvious advantage of the present analysis derives from the use of the charges
indicated in Table 7.1, which are equivalent to those given by most theoretical
methods—or, should we say, by practically any method—namely, by the familiar
ab initio techniques using Mulliken’s population analysis, except for the character-
istic value of n, which differs from method to method. In that, the most general
approach was used for studying a property–charge relationship by letting n be a
quantity to be calibrated by experiment without being bothered by specifics in the cal-
culation of atomic charges, such as those pertaining to the pertinence of Mulliken’s
population analysis, or the selection of basis sets, including the aleas following from
basis set superposition errors.

Let us now adopt the more conventional perspective of theoretical charge
analyses.
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CHAPTER 8

POPULATION ANALYSIS

Knowledge of the molecular wavefunction enables us to determine the electron
density at any given point in space. Here we inquire about the amount of electronic
charge that can be associated in a meaningful way with each individual atom of a
N-electron system. Our analysis covers Mulliken’s celebrated population analysis
[31], as well as a similar, closely related method.

8.1 THE STANDARD MULLIKEN FORMULA

Mulliken’s population analysis is rooted in the LCAO (linear combination of atomic
orbitals) formulation; it is not directly applicable to other types of wavefunctions.
With crki representing the coefficient of the r th type of atomic orbital (1s, 2s, etc.)
of atom k in the ith molecular orbital, we describe the latter by

fi ¼
X
rk

crkixrk (8:1)

where the summation extends over all the appropriate normalized basis functions xrk
and the subindex k labels the different nuclei in the system. The corresponding
overlap population associated with atoms k and l due to atomic orbitals of type
r and s, respectively, is then

2nicrkicsliSrksl (8:2)
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with Srksl ¼ kxrk jxsll, where ni is the occupation number of that MO. Finally,
Mulliken’s analysis yields the population Nk on atom k from the appropriate sums
over all doubly occupied molecular orbitals i and over all types of basis functions:

Nk ¼
X
i

X
r

ni c2rk i þ
X
l=k

crkicsliSrksl

 !
(8:3)

The problem with this analysis is that the selection of one or another basis set dramati-
cally affects the calculated charges and occasionally leads to unphysical results [44].
Overlap populations (8.2) are largely responsible for this situation.

Mulliken’s formula for Nk implies the half-and-half (50/50) partitioning of
all overlap populations among the centers k, l, . . . involved. On one hand, this dis-
tribution is perhaps arbitrary, which invites alternative modes of handling overlap
populations. On the other hand, Mayer’s analysis [172,173] vindicates Mulliken’s
procedure. So we may suggest a nuance in the interpretation [44]: departures from
the usual halving of overlap terms could be regarded as ad hoc corrections for an
imbalance of the basis sets used for different atoms. But one way or another, the
outcome is the same. It is clear that the partitioning problem should not be discussed
without explicit reference to the bases that are used in the LCAO expansions.

A modified partitioning procedure is considered in the next section.

8.2 MODIFIED POPULATION ANALYSIS

The population Nk on atom k is now defined as follows [21,44,108]

Nk ¼
X
i

X
r

ni c2rki þ
X
l=k

crkicsliSrksllrksl

 !
(8:4)

where the weighting factor lrksl causes the departure from the usual halving of the
overlap terms. Mulliken’s charges correspond to lrksl ¼ 1. In terms of the difference

X
i

X
r

X
l=k

nicrkicsliSrksl (1� lrksl ) ¼
X
l=k

pkl (8:5)

between Mulliken charges [Eq. (8.3)] and those given by Eq. (8.4), one obtains for
the net atomic charge, qk ¼ Zk 2 Nk, of atom k that

qk ¼ qMull
k þ

X
l=k

pkl (8:6)

where Zk is the nuclear charge of atom k and Nk its electron population. We know of
no general recipe permitting the calculation of

P
l=k pkl but can benefit from the fact

that SCF charge analyses given by Eq. (8.4) always reproduce the familiar inductive
effects, no matter what lrksl is used [44].
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8.3 AN ADEQUATE APPROXIMATION

A simple strategy has been developed for saturated hydrocarbons [44,96]. Assume
p ¼ 0 for any carbon–carbon bond and p ¼ constant for any carbon–hydrogen bond.

Hence

qC ¼ qMull
C þ NCH � p (8:7)

qH ¼ qMull
H � p (8:8)

where NCH represents the number of hydrogen atoms attached to any given carbon.
The idea is simple; if p ¼ pCH ¼2pHC is the error made by assuming Mulliken’s
half-and-half partitioning of any CH overlap population (i.e., l ¼ 1), the error
made in the computation of the net charge on carbon depends on the number of
hydrogens attached to it. In other words, we come back to Eqs. (5.10) and (5.11),
but with an interpretation attached to them.

These corrections mean that n changes as well [Eq. (5.14)]. Hence, after the cor-
rection of an original set of Mulliken charges to ensure the proper scaling represented
by n, a second correction is in order to ensure the proper “absolute” values of these
charges. Finally, we shall use the following corrected carbon and hydrogen net
charges, based on a set of Mulliken results, in lieu of the original ones indicated in
Eqs. (8.7) and (8.8):

qC ¼ L(qMull
C þ NCHp) (8:9)

qH ¼ L(qMull
H � p) (8:10)

In this form, it becomes possible to analyze the merits of Mulliken charge distri-
butions in comparisons with physical observables. Namely, we want to learn the
“true” value of n and the appropriate value of L for given choices of basis sets.

Three approaches were followed to this end:

† Comparison of adiabatic ionization potentials (IP) of normal and branched
alkanes with carbon net charges, which indicates a lowering of the IPs with
increasing electron population of the electron-richest bonded pair of carbon
atoms in the molecule [170]. A monotonic correlation (which turns out to be
linear and remarkably accurate) is possible only with atomic charges adjusted
for n ¼24.4083 and the corresponding p given by Eq. (5.14).

† Comparison of carbon-13 NMR shifts with charges of saturated carbons, as
defined in Eq. (8.9), showing that a highly accurate linear correlation exists,
but only with charges adjusted for n ¼24.4122, corresponding to p ¼ 30.12 me
for the fully optimized STO-3G Mulliken charges that were used [38,39].
Practically the same p correction applies to ethylenic carbon atoms calculated
with the same STO-3G basis, in comparisons with their 13C NMR shifts [40].

† Direct calculations of atomization energies, DE�
a (see Chapter 13), using for-

mulas (8.9) and (8.10) with Mulliken charges obtained from the fully optimized
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STO-3G basis and experimental results for DE�
a . A least-square regression

led to p ¼ 30.3+ 0.3 me and n ¼24.446+ 0.057 [108]. Concurrently it
became possible to estimate the value of the reference charge, that of the
ethane carbon atom: 35.1 me. Similar work for ethylenic molecules led to
qC (C2H4) ¼ 7.7 me. For comparison, calculations using a carefully optimized
4-31G basis and configuration interaction gave 37.8 me for the carbon net
charge of ethane, and 7.5 me for that of ethylene [51]. In short, L ! 1 with
CI wavefunctions.

The nature of the charges to be used in our bond energy formula is thus unmistak-
ably identified. Our best estimate is probably that offered by the most accurate NMR
chemical shift correlations, n ¼24.4122. This result is attractive for its physical
content; any set of Mulliken charges (i.e., irrespective of what basis set is used), cor-
rected with the p value that produces carbon charges corresponding to n �24.41,
does in fact end up with carbon atomic charges that are as similar as possible to
one another. “Almost nothing” really seems to happen with the alkyl carbon and
hydrogen atoms in going from one molecule to another—Nature resists changes—
but that little bit is precisely what matters.

The modified population analysis [Eq. (8.4)] appears to be adequate. The correc-
tion suggested by Fig. 5.2 is now readily understood in terms of Eqs. (8.4)–(8.6) as a
basis set effect.

The arguments presented so far can be extended with reasonable confidence to
other bonds, such as carbon–nitrogen bonds, where an original net charge on k,
qk, is rescaled as follows to give qk

rescaled:

qrescaledk ¼ qk �
X
l=k

pkl (8:11)

This is as far as we get with Mulliken-type methods.
Let us briefly comment on the Xa scattered-wave (SW) method [174,175] which

does not involve Mulliken’s population analysis.
In contrast to ab initio methods, SCF–Xa–SW theory approximates the exchange

potential by a local exchange potential [175] that greatly simplifies the computations
of many-electron systems. Furthermore, the one-electron (nuclear attraction þ
Coulomb þ exchange) potential is treated by the “muffin-tin approximation.”
Briefly, this means that each atom in the molecule is surrounded by a sphere, and
that in each such atomic sphere the exact one-electron potential is replaced by a
spherical average. The atomic sphere regions are designated as regions I. The
region between the spheres is the so-called intersphere region II where the potential
is assumed to be constant. Finally, the whole molecule is surrounded by a sphere, the
extramolecular region III, where the potential is replaced by a spherical average. One
of the main advantages of the SW model is that the MO wavefunctions are described
as rapidly converging multicenter partial wave expansions, whose radial parts are
given by numerical integration. Hence the method is independent of basis set pro-
blems, avoiding thus the difficulties encountered in the LCAO approach with the

96 POPULATION ANALYSIS



choice of the proper basis functions. But things are not that simple. The charge
in each atomic region is considered as the net atomic population, and the charge
in region III is distributed among only those atoms that touch the outer sphere. In
the intersphere region, however, there is no distinctive way of assigning charges,
which results in some arbitrariness in their partitioning and, hence, in describing
charge distributions. (For example, one particular partitioning technique [176] was
implemented [104] with some modifications related to its more detailed utilization
to get the results of Table 5.4.) Thus, despite the inherent merits of the method, it
is unfortunately of little help in producing reliable charge distributions.

8.4 CONCLUSIONS

We have learned about the unique ordering of the carbon net charges relative to one
another. All methods using Mulliken’s population analysis, both ab initio and
semiempirical, no matter what basis sets are used to construct the wavefunctions,
reproduce the following sequence of inductive effects:

CH3 , CH3CH2 , (CH3)2CH , � � � , (CH3)3C

The converse message is clear and devoid of circumlocution; all methods that
reproduce the inductive order are equivalent—they all give the same answer after
an appropriate rescaling of overlap terms [27].

This rescaling reflects the idea that any increase of electronic charge at a center,
as a consequence of an enrichment of the basis functions describing it, is unphysical
if, lacking equipoise, atoms bonded to it suffer from poorer basis set descriptions.
The parameter lrksl introduced in Eq. (8.4) is there to correct this imbalance if we
follow Mayer’s claim [172,173] that Mulliken’s half-and-half partitioning of
overlap terms between the concerned atoms should not be tampered with. It is felt
that the way lrksl depends on the basis sets used for describing atoms k and l deserves
attention as part of an effort aimed at letting lrksl approach Mulliken’s limit l ¼ 1 as
closely as possible.

This observation offers a way of reconciling such disparate sets of charge results
as they are obtained either from different basis sets in SCF ab initio calculations or
else in comparisons involving semiempirical results. Equation (8.11) represents an
adequate description.
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PART II

CHEMICAL BONDS: ENERGY
CALCULATIONS





CHAPTER 9

THERMOCHEMICAL FORMULAS

This chapter offers pertinent information facilitating the comparison between theory
and experiment using thermochemical data, such as the standard enthalpies of for-
mation, and spectroscopic information that serve our purpose. Special attention is
given to zero-point and heat-content energies which are often not as readily available
as desired.

9.1 BASIC FORMULAS

The atomization

Molecule �! n1A1 þ n2A2 þ � � � þ nkAk

of a given molecule into its constituent n1 atoms A1, n2 atoms A2, and so on provides
a measure for chemical binding. The relevant thermochemical information is usually
expressed in terms of enthalpy of formation DHf or enthalpy of atomization DHa of
the molecule under consideration

DHa ¼
X
k

nkDHf (Ak)� DHf (9:1)
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where the DHf (Ak) terms are the enthalpies of formation of the gaseous atoms Ak.
But for an isolated molecule we refer more appropriately to the energy of
atomization, DEa:

DEa ¼ DHa �
X
k

nk � 1

 !
RT (9:2)

The values DEa and DHa are considered at some temperature, usually 258C,
specifically, under working conditions of practical interest. These quantities
include contributions from internal rotations that are more or less free in some
cases and hindered in others, but need not be considered at 0 K. Zero-point vibrational
energies are to be taken into proper account, as these energies, like the thermal ones,
cannot be fairly apportioned among bonds or atoms in a molecule since they are not
truly additive properties, nor can they be regarded as a part of chemical binding.
These reasons prompt us to study a molecule in its hypothetical vibrationless state
at 0 K, whose atomization energy is DEa

�.
The relationship between DEa

� and DEa is given by Eq. (9.3)

DEa ¼ DE�
a �

X
i

f (ni, T)þ
3
2

X
k

nk � 2

 !
RT (9:3)

which states that the energy of atomization at, say, 258C is that of the hypothetical
vibrationless molecule at 0 K less the sum

P
i f (ni, T) (over 3

P
k nk � 6 degrees

of freedom) of vibrational energy corresponding to the fundamental frequencies ni,
which is already present in the molecule at 258C. The term 3

P
k nk � 2

� �
RT=2

now accounts for the formation of
P

k nk atoms with translational energy and the dis-
appearance of one nonlinear molecule with three translational and three rotational
contributions of RT/2 each. It follows from Eqs. (9.1)–(9.3) that

DE�
a ¼

X
k

nk DHf8(Ak)�
5
2
RT

� �
þ
X
i

f (ni, T)þ 4RT � DHf8 (9:4)

where all enthalpies are now referred to standard conditions (gas, 298.15 K).
The vibrational energy may be separated into a zero-point energy (ZPE) term and
a thermal vibrational energy term Etherm. HenceX

i

f (ni, T)þ 4RT ¼ ZPEþ Etherm þ 4RT (9:5)

On the other hand, Etherm þ 4RT is the increase in enthalpy (HT 2 H0) of nonlinear
molecules due to their warming up from T ¼ 0 to T ¼ T. Consequently, Eq. (9.4) can
now be written as follows:

DE�
a ¼

X
k

nk DHf8(Ak)�
5
2
RT

� �
þ ZPEþ (HT � H0)� DHf8 (9:6)

102 THERMOCHEMICAL FORMULAS



The same formula applies to linear molecules, except for HT 2 H0, which is now
Etherm þ 7

2RT.
Equation (9.6) is now the basic formula permitting the comparison between calcu-

lated DEa
� results and thermochemical information. The appropriate standard enthal-

pies of formation of the atoms, DHf8(Ak), are [177] DHf8 (C) ¼ 170.89, DHf8(H) ¼
52.09, DHf8(N) ¼ 113.0, and DHf8(O) ¼ 59.54 kcal/mol (gas, 298.15 K).

9.2 ZERO-POINT AND HEAT CONTENT ENERGIES

Zero-point energies are obtained from vibrational spectra using experimental frequen-
cies whenever available, while the inactive frequencies are extracted from data calcu-
lated by means of an appropriate force-field model. In the harmonic oscillator
approximation, the zero-point energy is

ZPE ¼ 1
2

X
i

hni (9:7)

and the thermal vibrational energy is given by Einstein’s formula

Etherm ¼
X
i

hni
exp (hni=kT)� 1

(9:8)

from which HT 2 H0 ¼ Etherm þ 4RT is readily deduced.
The infrared and Raman fundamental frequencies ni are usually expressed as

wavenumbers, in cm21 units (reciprocal centimeters). Taking Planck’s constant at
h ¼ 6.6256� 10227 erg . s, Boltzmann’s constant at k ¼ 1.38054 � 10216 erg . K21

and c ¼ 2.997925 � 1010 cm/s for the speed of light, it is for wavenumbers vi

expressed in cm21:

1
2
hni ¼ 1:42956� 10�3vi kcal mol�1

hni
kT

¼ 4:82572� 10�3vi at 298:15K

The zero-point plus heat content energies can be calculated from the complete set
of fundamental frequencies. Everything seems fine, except for the fact that resolved
complete vibrational spectra are seldom as readily available as desired, thus rendering
bona fide comparisons between theory en experiment difficult. Hence our interest
in alternate rules permitting the construction of reliable vibrational energies in a
simple manner. It is fortunate that ZPE þ HT � H0 energies obey, to a good
approximation, a number of additivity rules [27,44]. A theoretical foundation for
this additivity, which has a long history [178], has been established [27,179].
Useful formulas follow.
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Alkanes

A detailed study [180] of acyclic alkanes has revealed that the following formula, in
kcal/mol, is accurate

ZPEþ (HT � H0) ¼ 11:479þ 18:213nC � 0:343nbr (9:9)

where nC is the number of carbon atoms and nbr the number of branchings. The
average deviation between the results deduced in this manner and their spectroscopic
counterparts is 0.125 kcal/mol (�80 cm21). The change in ZPE þ (HT 2 H0)
associated with methyl substitutions giving quaternary carbon atoms, however, can
be estimated only as a rough average, �17.55+ 0.25 kcal/mol.

Cycloalkanes constructed from six-membered rings behave in essence like acyclic
alkanes, provided that the suppression of internal rotations is adequately taken into
account [180] by subtracting RT/2 ¼ 0.296 kcal/mol (at 298.15 K) for each CC
bond in the cycle. Most detailed calculations have dealt with six-membered cyclo-
alkanes [36,181].

They were conducted at two levels of theory using both a conventional uncorre-
lated ab initio Hartree–Fock procedure with a 6-31G(d) basis and a density functional
approach. The HF/6-31G(d) results could have served the purpose [182], as, indeed,
it turned out in retrospective, but it was decided from the outset to go as far as
possible in the effort to catch any nuance that could differentiate one situation
from another. The advent of density functional theory (DFT) provides an alternative
means of including electron correlation. A method of choice in the study of
vibrational frequencies is the hybrid B3LYP [183] procedure that uses Becke’s
three-parameter exchange functional (B3) [184,185] coupled with the correlation
functional of Lee, Yang, and Parr (LYP) [20], in conjunction with the standard
6-311G(d,p) basis. Calculations are best carried out with the GAUSSIAN 94/DFT
package of ab initio programs [186]. They include geometry optimizations. The
appropriate scaling factors for estimating fundamental frequencies from theoretical
harmonic frequencies are readily determined on the basis of the results given for
cyclohexane and methylcyclohexane [187]. They are 0.90343 for the HF/6-31G(d)
theoretical frequencies and 0.9725 for those obtained from B3LYP/6-311G(d,p)
calculations. The scaled ZPE and HT 2 H0 results are reported in Table 9.1 for the
HF/6-31G(d) set. (There is no significant difference between the present scaled
DFT and HF results, particularly in regard to the sum ZPE þ HT 2 H0.) The
present HT 2 H0 results do agree with the experimental ones [188], with a root-
mean-square deviation of 0.06 kcal/mol in the HF/6-31G(d) set.

The important result is that the comparison of isomerides differing in the number
of gauche interactions (e.g., 6 vs. 7, 8 vs. 9, or 10 vs. 11) reveals no dependence on
the number of gauche interactions.

In other words, the ZPE þ HT 2 H0 energies have no saying in the interpretation
of gauche effects. Another important point is that the theoretical ZPE þ HT 2 H0
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results satisfy the most useful approximation:

ZPEþ HT � H0 ¼ 11:850(1� m)þ 18:249n� 0:322ntert � (ncycle þ m� 1)
RT

2

(9:10)

where n is the total number of carbon atoms and m is the number of cycles; ntert is the
number of tertiary carbon atoms and ncycle the number of carbons in the cycle(s).

TABLE 9.1. Theoretical Zero-Point and Heat Content Energies of Cycloalkanes,
at 298.15 K (kcal/mol)

Molecule

HF/6-31G(d)

ZPE HT 2 H0

1 Cyclohexane 103.42 4.16
2 Methylcyclohexanea 120.36 5.19
3 1,1-Dimethylcyclohexane 137.39 6.01
4 trans-1,2-Dimethylcyclohexane 137.40 6.10
5 cis-1,2-Dimethylcyclohexane 137.61 6.05
6 cis-1,3-Dimethylcyclohexane 137.26 6.12
7 trans-1,3-Dimethylcyclohexane 137.47 6.09
8 trans-1,4-Dimethylcyclohexane 137.28 6.13
9 cis-1,4-Dimethylcyclohexane 137.47 6.08
10 1-cis-3-cis-5-Trimethylcyclohexane 154.19 7.07
11 1-cis-3-trans-5-Trimethylcyclohexane 154.39 7.03
12 Ethylcyclohexane 137.70 6.08
13 n-Propylcyclohexane 154.98 6.97
14 n-Butylcyclohexane 172.25 7.84
15 Bicyclo[2.2.2]octane 125.18 4.98
16 trans-Decalin 160.45 6.35
17 cis-Decalin 160.74 6.28
18 Adamantane 148.15 5.15
19 Twistane 148.19 5.20
20 trans–syn– trans-Perhydroanthracene 217.37 8.51
21 trans–anti– trans-Perhydroanthracene 216.52 9.06
22 1-trans-2-cis-3-Trimethylcyclohexane 154.46 7.04
23 Isopropylcyclohexane 154.85 6.95
24 1-Methyl-4-isopropylcyclohexane 171.75 7.90
25 n-Pentylcyclohexane 189.53 8.72
26 n-Hexylcyclohexane 206.81 9.60
27 n-Heptylcyclohexane 224.09 10.48
28 n-Octylcyclohexane 241.37 11.36
29 n-Decylcyclohexane 275.92 13.12
30 n-Dodecylcyclohexane 310.48 14.88

aNearly the same result is obtained for the axial form, namely, ZPE¼ 120.53 andHT 2 H0 ¼ 5.18 kcal/mol.
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It should also be noted that ZPE þ HT 2H0 increases by only �18.16 kcal/mol for
each CH2 group inserted in the linear alkyl chain carried by a cyclohexyl ring.

The comparison of the genuine theoretical results with those predicted by this
approximation shows a root-mean-square (rms) deviation of �0.2 kcal/mol with
those obtained in the HF/6-31G(d) calculations reported in Table 9.1. This result is
all themore remarkable as it includes polycyclicmolecules (15–21), boat-cyclohexane
structures (15, 21), as well as a twist–boat structure (19, twistane ¼ tricyclo
[4.4.003,8]decane). The use of this approximation for ZPE þ HT 2 H0 in problems
of thermochemistry is certainly justified. It is noted that Eq. (9.10) occasionally
predicts results that are closer to experiment than B3LYP or HF results. Pertinent
comparisons are offered by experimental estimates of ZPE þ HT 2 H0, namely, in
kcal/mol, that of bicyclo[2.2.2]octane (130.83) [189] and those of cyclohexane
(107.54), methylcyclohexane (125.73), trans-decalin (166.90), and adamantane
(153.54), reported in Ref. 190, which were deduced from the spectroscopic data of
Ref. 187 and the HT 2 H0 values given in Ref. 188.

The (ncycle þ m 2 1)RT/2 term of Eq. (9.10) accounts for the fact that internal
rotations are hindered in cyclic structures [44,180]: it was found that an amount of
1
2RT should be subtracted from ZPE þ HT 2 H0 for each of the (ncycle þ m 2 1)
carbon–carbon bonds making up the cycle(s). A test carried out for 1-trans-2-cis-
3-trimethylcyclohexane does not suggest that the rotation of the methyl group on
C-2 is hindered, according to the present results.

Alkenes

For the simple olefins, CnH2n, Eq. (9.11) (in kcal/mol)

ZPEþ (HT � H0) ¼ 33:35þ 18:213(nC � 2)� 0:343nbr (9:11)

represents a valid approximation [44]. (Situations of extreme crowding, such as
those arising with two tert-butyl groups attached to the same carbon, do not obey
this equation.)

Let us now proceed with conjugated and nonconjugated polyenic hydrocarbons.
Their ZPE þ (HT 2 H0) energies (Table 9.2) can be estimated [191] from those of
their olefinic fragments [Eq. (9.11)] simply by subtracting 11.56 kcal/mol for each
pair of hydrogen atoms eliminated in condensation of the fragments. For example,
the result predicted for 1,3-pentadiene follows from the values of ethene and
propene less 11.56 kcal/mol. Similarly, the result for 1,3,5-hexatriene corresponds
to 3 times that of ethene less twice 11.56 kcal/mol or, alternatively, to the sum
obtained from ethene and butadiene less 11.56 kcal/mol. Now, taking the experimen-
tal value of butadiene (55.19 kcal/mol) as reference, we can describe the dienes as
follows [192], in kcal/mol:

ZPEþ (HT � H0) ¼ 55:19þ 18:213(nC � 4)� 0:343nbr (9:12)

While this type of estimate usually carries an uncertainty not exceeding �0.2 kcal/
mol, it remains that for the dienes (as for the monoolefins) no spectroscopic
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information is presently available that discriminates between ZPE þ (HT 2 H0) ener-
gies of cis and trans isomers in a reliable manner.

Aromatic Hydrocarbons

Spectroscopic vibrational data of benzenoid hydrocarbons are scarce. Fortunately, it is
now justifiable to take advantage of the regularities of the ZPE þ (HT 2 H0) energies
observed during the buildup of alkyl chains, namely, the gain of 18.213 kcal/mol
for each added CH2 group. Hence it appears safe to use the following formula for alkyl
substitution, based on the experimental ZPE þ (HT 2 H0) value (66.22 kcal/mol)
deduced for benzene in the harmonic oscillator approximation [27,193]

ZPEþ (HT � H0) ¼ 66:22þ 18:21n� 0:343nbr (9:13)

where n is the number of the alkyl carbon atoms. One can proceed in similar fashion with
molecules like 1,2,3,4-tetrahydronaphthalene 1, or 9,10-dihydroanthracene 2:

TABLE 9.2. Zero-Point and Heat Content Energies of
Olefins and Polyenes, at 298.15 K (kcal/mol)

Molecule

ZPE þ (HT 2 H0)

Predicted Experimental

Ethene 33.35 33.36
Propene 51.56 51.82
1-Butene 69.78 69.73
cis-2-Butene 69.78 69.91
trans-2-Butene 69.78 69.70
Isobutene 69.44 69.57
1,3-Butadiene 55.14 55.19
trans-1,3-Pentadiene 73.35 73.28
cis-1,3-Pentadiene 73.35 73.32
Isoprene 73.01 72.85
Dimethyl-1,3-butadiene 90.88 91.08
trans-1,3,5-Hexatriene 76.93 76.70
cis-1,3,5-Hexatriene 76.93 76.99
trans,trans-1,3,5,7-Octatetraene 98.72 99.97

Source: Ref. 44, which cites the sources of the frequencies used in the
evaluation of the experimental values.
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However, in these situations one must account for the lowering of ZPE þ (HT 2 H0) by
11.5 kcal/mol accompanying the loss of two hydrogen atoms and by RT/2 ¼ 0.296
kcal/mol for each hindered internal rotation in cyclic structures. 1,2,3,4-
Tetrahydronaphthalene, for example, gives 66.22þ 4 � 18.212 11.52 5 �
0.296 ¼ 126.1 kcal/mol. The addition of two fragments involves a correction of
4 � RT¼ 2.37 kcal/mol because this term is included in the (HT 2 H0) part of
each molecule used as fragment and should not be counted twice in the final sum.
For example, the ZPE þ (HT 2 H0) value of 9,10-dihydroanthracene is estimated
from two benzene molecules plus two CH2 groups (2� 66.22 þ 2 � 18.21) less
2 � 11.5, less 4RT, and less 4 � RT/2. These estimates are considered to carry an
uncertainty not exceeding 0.2 kcal/mol [129].

The additivity rules described in Ref. 129 can be applied with confidence to
construct the ZPE þ (HT 2 H0) energies of polycyclic aromatic hydrocarbons. For
example, using the result ZPE þ (HT 2 H0) ¼ 94.90 kcal/mol for naphthalene,
deduced from its vibrational spectrum [194], we add to it the difference 28.68
kcal/mol between naphthalene and benzene, thus obtaining 123.6 kcal/mol for
anthracene. The same procedure is used for the higher homologs. Finally, using
the fundamental frequencies of pyrene [195], it is found that ZPE þ (HT 2 H0) ¼
133.05 kcal/mol. For styrene, one obtains 85.80 kcal/mol from its vibrational spec-
trum [196]; estimated, 85.71 kcal/mol.

As for graphite, its zero-point energy, ZPE ¼ 2
3Ruk þ 1

4Ru?, is most conveniently
deduced from Debye’s theory [197,198] by separating the lattice vibrations into two
approximately independent parts, with Debye temperatures uk (in plane) and u? (per-
pendicular). A balanced evaluation gives ZPE ’ 3.68 kcal/mol [199].

Amines and Hydrazines

The ZPE þ (HT 2 H0) energies of amines and hydrazines also obey simple additivity
rules [191] (Table 9.3). For the amines, one can predict their ZPE þ (HT 2 H0) ener-
gies from that of NH3 (22.94 kcal/mol) and the appropriate alkane, Eq. (9.9), by sub-
tracting 11.55 kcal/mol for each pair of H atoms lost during the condensation, giving
the amine. Dimethylamine, for example, is estimated by taking twice the value of
CH4 plus that of NH3, less twice 11.55 kcal/mol. We proceed in similar fashion
with the alkyl-substituted hydrazines.

Carbonyl Compounds and Ethers

Complete vibrational analyses of carbonyl compounds are scarce. Data obtained from
experimental and calculated fundamental frequencies of acetaldehyde, acetone, and
diethylketone are indicated in Table 9.4, in the harmonic oscillator approximation,
for T ¼ 298.15 K.

An extensive analysis [27] involving theoretical DEa
� energies and experimental

enthalpies of formation [cf. Eq. (9.6)] indicates that an increment of �18.3 kcal/mol
can be associated with each added CH2 group, with respect to the closest
parent compound whose spectroscopic ZPE þ (HT 2 H0) result is known—which
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seems reasonable. For example, the value for propanal (36.65 þ 18.3) is estimated
from that of ethanal (36.65 kcal/mol), and the value for butanone (72.89) is estimated
from that of propanone (54.59 kcal/mol). Energy calculations, namely, those of
standard enthalpies of formation, carried out with the help of these estimates are in
excellent agreement with experimental results.

TABLE 9.4. ZPE1 (HT 2 H0) Energies of Carbonyl
Compounds and Ethers, at 298.15 K (kcal/mol)

Molecule

ZPE þ (HT 2 H0)

Estimated Experimental

CH3CHO — 36.65
(CH3)2CO — 54.59
(C2H5)2CO — 91.52
(CH3)2O 52.55 52.65
CH3OC2H5 70.19 69.86
CH3O i-C3H7 87.83 87.66
(C2H5)2O 87.83 87.76
C2H5O i-C3H7 105.47 105.40
(i-C3H7)2O 123.11 123.32

TABLE 9.3. Zero-Point and Heat Content Energiesa of
Amines and Hydrazines, at 298.15 K (kcal/mol)

Molecule

ZPE þ (HT 2 H0)

Predicted Experimental

Ammonia (22.94) 22.94
Methylamine 41.08 41.48
Ethylamine 59.30 59.41
Propylamine 77.51 77.62
Isopropylamine 77.17 77.20
tert-Butylamine 95.38 95.21
Dimethylamine 59.22 59.44
Diethylamineb 95.65 94.94
Trimethylamine 77.37 77.76
Hydrazine (33.94) 33.94
Methylhydrazine 52.08 52.00
1,1-Dimethylhydrazine 69.88 69.98
1,2-Dimethylhydrazine 70.22 70.20

aFrom Ref. 44, which cites the sources of the frequencies used in the
evaluation of the experimental values.
bNo provision was made for the (at least partial) hindrance of internal
rotations in the ethyl groups as a result of steric crowding, suggesting that
our estimate is therefore too high by �0.6 kcal/mol.

9.2 ZERO-POINT AND HEAT CONTENT ENERGIES 109



The dialkylethers are adequately described by the approximation [27] (in kcal/mol)

ZPEþ (HT � H0) ¼ 52:55þ 17:64(nC � 2) (9:14)

with an average deviation between predicted and experimental results of �0.16 kcal/
mol (Table 9.4).

Free Radicals

Regarding the ZPE þ HT 2 H0 energies, little is presently known for the free
radicals, except for a few alkyl radicals. Relevant ZPE þ HT 2 H0 energies,
deduced from both experimental and calculated fundamental frequencies
[200–202], are 20.74 (CH3†), 39.15 (C2H5†), and 74.97 kcal/mol (tert-C4H9†).
These results suggest that the ZPE þ HT 2 H0 energies of alkyl radicals R† are
systematically lower by �8.85 kcal/mol than those of the parent hydrocarbons
RH. Additional results were obtained by standard methods in the harmonic oscillator
approximation. Selected values for ZPE þ HT 2 H0 are, in kcal/mol, 12.52
(CH2 [203]), 13.83 (NH2† [204]), 23.20 (CH255CH† [205]), 31.78 (CH3NH†

[139]), and 32.63 (NH2CH2† [139]).

9.3 CONCLUDING REMARKS

Simple additivity rules relating ZPE þ (HT 2 H0) energies to structural features have
proved their usefulness in the past.

Here they are examined primarily because they greatly facilitate the comparison
between thermochemical results and calculations made for molecules in their
hypothetical vibrationless state at 0 K. While, of course, preference is given to
verifications involving only genuine experimental data, well-established structure-
dependent regularities of zero-point plus heat content energies considerably augments
the number of molecules that can be tested.

At times, the quality of the correlations obtained from bona fide spectral analyses
surpasses what one would normally expect. In cycloalkanes, for example, any shrink-
ing of a cycle accompanying the removal of one CH2 group translates into a regular
decrease of ZPE þ (HT 2 H0) by 18.545 kcal/mol; it is truly remarkable that this
regularity includes the shrinking of cyclopropane to give the “two-membered
cycle” ethylene.1

In general, things are simpler than that, much to our advantage. Within the limits
set by the precision of the present estimates, structural features like the chair, boat, or
twist–boat conformations of cyclohexane rings, as well as the butane-gauche effects
or the cis– trans isomerism of ethylenic compounds leave no recognizable distinctive
trace in zero-point plus heat content energies. Indeed, whatever residual, presently

1The predicted ZPE þ (HT 2 H0) values are, in kcal/mol (those derived from experimental frequencies are
in parentheses), cycloheptane, 126.09 (124.15); cyclohexane, (107.54); cyclopentane, 89.00 (89.0); cyclo-
butane, 70.45 (70.4); cyclopropane, 57.91 (57.9); and ethylene, 33.36 (33.36) [44].
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unavoidable uncertainties remain attached to these quantities, they could hardly be
blamed for anything as they are unlikely to impair the validity of comparisons
between theory and experimental values, which, by the way, are also affected by
well-known margins of errors.

Finally, it is unfortunate that the poor harvest of pertinent data for free radicals
limits our means in an important area of chemistry, that concerned with the
making and breaking of chemical bonds, because the way the ZPE þ (HT 2 H0)
energy changes in going from a molecule to its fragments (or in the reverse
process) is a relevant part of the energy balance accompanying chemical reactions.
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CHAPTER 10

THE CHEMICAL BOND: THEORY (I)

10.1 SYNOPSIS

Let us first sketch out the conceptual content of our bond energy method [44,108].
For a fair discussion of chemical binding, molecules are best considered in their
hypothetical vibrationless state at 0 K when entering the reaction

Molecule �! ground-state atoms

The energy of this atomization (in conventional notation)

DE�
a ¼

X
k

kCkjĤat
k jCkl� kCmoljĤmoljCmoll (10:1)

¼
X
k,l

1kl � Enb (10:2)

is taken as a sum of bond energy contributions 1kl between atoms k and l, and a
change of nonbonded energy terms DEnb ¼ 2Enb, which accompanies atomization.
The latter part is very small, indeed, say, of the order of 0.01–0.05% of DE�

a and is
adequately evaluated in the point charge approximation [206]

Enb ¼
1
2

Xnb
r,s

qrqs
Rrs

(10:3)

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
Copyright # 2009 John Wiley & Sons, Inc.
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which suffices in our intended applications. Leaving this subject momentarily, we
focus attention on the bonded part,

P
k,l 1kl.

The mental decomposition of DE�
a into bond energy terms and the description

of the latter featuring the atomic charges of the bond-forming atoms rests on three
main ideas:

† Using Eq. (10.1) to obtain, with the help of the Hellmann–Feynman theorem
[74], the derivative of DE�

a at constant electron density r, taking the nuclear
charge Zk as variable, namely

@DE�
a

@Zk

� �
r

¼ Vne,k

Zk
� Vk

Zk
(10:4)

where Vne,k/Zk is the potential at the nuclear position in the isolated atom and
Vk/Zk is the potential at the nucleus Zk in the molecule. The problem has thus
evolved into a simple electrostatic problem of potential energies where the inter-
electronic repulsions, as well as the kinetic energy, which are not functions of
Zk, have disappeared.

† Using the Thomas–Fermi approximation

Emolecule ¼ 1
g

X
k

Vk

which is well documented [44,79,207]. This formula enables us to account for
both the interelectronic repulsion terms and the electronic kinetic energy
although only nuclear–electronic and internuclear potential energies are con-
sidered explicitly in Vk.

† Applying Gauss’ theorem, leading to the Politzer–Parr core–valence separation
in atoms [61]

Evalence ¼ � 1
gv

Zeff
ð1
rb

r(r)
r

dr (10:5)

where Zeff ¼ Z2 Nc is the effective nuclear charge (e.g., 4 for carbon, 5 for
nitrogen [44]), that is, the nuclear charge minus the number of core electrons.
The integral is carried out beyond the boundary rb that delimits the region con-
taining the Nc core electrons. This simplification conveys the physical picture of
a valence electron cloud in the field of a nucleus partially screened by its core
electrons and is a form of the Thomas–Fermi approximation. The integral can
be written Nkr21l, where N is the number of valence electrons and kr21l is the
expectation value of r21. Hence,

Evalence ¼ � 1
gv

ZeffNkr�1l (10:6)
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Note that g and gv usually approach the Thomas–Fermi limit 7
3

� �
(Table 4.4)

except for hydrogen, where g ¼ 2 because of the virial theorem, E ¼ T þ Vne, with
E ¼ 2T.

Recall that the core–valence separation in molecules is described in real space
[83], as any atom-by atom or bond-by-bond partitioning of a molecule is inherently
a real-space problem. Equation (10.6) does indeed refer to a partitioning in real
space (as opposed to the usual Hartree–Fock orbital space), both for ground-state
isolated atoms or ions and for atoms embedded in a molecule, with Nc ¼ 2 e for
first-row elements.

This concludes the enumeration of the concepts involved in our bond energy
theory.

Now we turn our attention to the intrinsic bond energies, 1kl. Two approaches will
be considered: (1) a derivation making use of Eq. (10.2) and (2) a derivation rooted in
Eq. (4.47). But first, we deal with the nonbonded part, Eq. (10.3), and examine future
possible simplifications regarding this energy contribution.

10.2 NONBONDED INTERACTIONS

The idea behind this survey of nonbonded interactions is to get rid of them elegantly
as explicit terms requiring separate calculations by means of Eq. (10.3). We shall
examine to what extent nonbonded Coulomb-type interactions are at least approxi-
mately additive. The formulation of additivity is presented here for CnH2nþ222m

hydrocarbons [208], where m is the number of six-membered cycles.
Let X be a molecular property (e.g., Enb), and let XC2H6 , XCH4 be the correspond-

ing values for ethane and methane, respectively. If X is exactly additive, then

X ¼ (1� m)XC2H6 þ (n� 2þ 2m) XC2H6 � XCH4
� �

(10:7)

where XC2H6 � XCH4 is the change in X on going from methane to ethane, namely, the
contribution of one CH2 group. The meaning of Eq. (10.7) is obvious for acyclic
molecules (m ¼ 0). For example, theX value for propane is that of ethane plus the incre-
ment corresponding to one addedCH2 group. For cyclohexane (m ¼ 1), which consists
of n2 2 þ 2m ¼ 6 CH2 groups, the (1� m)XC2H6 term of (10.7) cancels.

Decalin is constructed from two cyclohexane units. In this case the second RHS
term of Eq. (10.7), (n� 2þ 2m)(XC2H6 � XCH4), accounts for 12 CH2 groups, but
one additional XC2H6 contribution (i.e., that of two CH2 and two H atoms) is sub-
tracted with respect to cyclohexane, that is, a total of two XC2H6 contributions with
respect to acyclic alkanes. Similar arguments applied to other polycyclic saturated
hydrocarbons verify the validity of Eq. (10.7) as a formulation of exact additivity.

The results indicated in Table 10.1 were deduced from Eq. (10.3) using charges
corresponding to the scale defined by qethaneC ¼ 35:1 me. Attractive (i.e., stabilizing)
interactions are negative. Of course, it is not surprising that branching favors
repulsive contributions.
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It turns out that the nonbonded terms of saturated hydrocarbons are approximately
additive. From Eq. (10.7), the appropriate formulation is thus

Enb ’ (1� m)EC2H6
nb þ (n� 2þ 2m)

�
EC2H6
nb � ECH4

nb

�
(10:8)

if we agree on accepting errors of �0.1 kcal/mol due to the neglect of differences
between isomers. This equation, applied to the energies given in Table 10.1, yields
the result presented in Fig. 10.1. This result is self-explanatory.

It appears, indeed, that nonbonded Coulomb interactions behave in general in a
“quasiadditive” manner in terms of Eq. (10.7) as long as we neglect the (minor)
differences between isomers. Branching causes a systematic trend toward higher ener-
gies (repulsive destabilization), but situations of extreme crowding are required, such
as those encountered in 2,2,3,3-tetramethylbutane (12) and, to a lesser extent, in
2,2,3-trimethylbutane (11), in order to produce sizeable departures from “quasiaddi-
tivity,” that is, from Eq. (10.8).

With these reservations in mind, a simple way of taking advantage of the “quasi-
additivity” of nonbonded interactions in saturated hydrocarbons is implemented in
Section 10.6. The unimportant loss in precision is largely justified by the considerable
simplification thus achieved in calculations of atomization energies.

TABLE 10.1. Nonbonded Coulomb Interactions

Molecule Enb (kcal/mol)

1 Methane 0.09
2 Ethane 20.07
3 Propane 20.20
4 Butane 20.32
5 Isobutane 20.28
6 Pentane 20.44
7 Isopentane 20.39
8 Neopentane 20.32
9 2,2-Dimethylbutane 20.43
10 2,3-Dimethylbutanea 20.39
11 2,2,3-Trimethylbutane 20.46
12 2,2,3,3-Tetramethylbutane 20.44
13 Cyclohexane 20.73
14 Bicyclo[2.2.2]octane 21.03
15 Bicyclo[3.3.1]nonane 21.13
16 trans-Decalin 21.26
17 cis-Decalin 21.23
18 Adamantane 21.31
19 Iceane 21.61

aCalculated for the statistical average of one anti (20.40) and two
gauche (20.39) forms, as discussed in Ref. 209.
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10.3 REFERENCE BONDS

Equation (10.2) is our starting point. Applying the Hellmann–Feynman theorem,
we get

@DE�
a

@Zk

� �
r

¼
X
l

@1kl
@Zk

� �
r

� @Enb

@Zk

� �
r

(10:9)

Hence, with the help of Eq. (10.4), we obtain

Vk ¼ Vne,k � Zk
X
l

@1kl
@Zk

� �
r

þZk
@Enb

@Zk

� �
r

(10:10)

Now we use Eq. (3.21) with the appropriate labels (k, l, etc.), for instance,
Eat
k ¼ (1=g at

k )Vne,k, as well as (4.10), Emol
k ¼ (1=gmol

k )Vk, and calculate DEk with
the help of Eq. (4.13). This gives

DEk ¼
Zk
gmol
k

Xbd
l

@1kl
@Zk

� �
r

þ gmol
k � g at

k

gmol
k

Eat
k � Zk

gmol
k

@Enb

@Zk

� �
r

(10:11)

Figure 10.1. Additivity test for Coulomb nonbonded interaction energies, Eq. (10.8). The
radii of the degles represent an uncertainty of �0.03 kcal/mol. The points correspond to the
numbering used in Table 10.1. (From Ref. 207.)
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DEk measures the binding of atom k in the molecule. It is obvious that the last term of
the right-hand side of Eq. (10.11) has nothing to do with the chemical bonds formed
by that atom. Only the first and second terms are involved in the decomposition of
DEk among the bonds formed by atom k. The “extraction” from the host molecule
of atom k forming vk bonds requires an energy

1
vk

:
gmol
k � g at

k

gmol
k

Eat
k

for each individual atom, meaning that in the suppression of a kl bond this type of
contribution must be counted once for atom k and once for atom l. In addition, the
suppression of the kl bond requires an energy (1=gmol

k )Zk(@1kl=@Zk)r and a similar
energy for the partner l engaged in that bond. Consequently, the portion of the
total atomization energy associated with the kl bond is

1kl ¼
Zk
gmol
k

@1kl
@Zk

� �
r

þ Zl
gmol
l

@1kl
@Zl

� �
r

þ 1
vk

:
gmol
k � g at

k

gmol
k

Eat
k þ 1

vl
:
gmol
l � g at

l

gmol
l

Eat
l (10:12)

which is the sought-after expression for the intrinsic energy of a chemical bond [108].
Bond energies given by Eq. (10.12) satisfy exactly Eq. (10.2).

Direct applications of Eq. (10.12) are generally difficult to handle—this is why the
more efficient charge-dependent energy formulas were developed in the first place.
Most thorough tests were made for selected carbon–carbon bonds [13,14,44,108]
(Table 1.1).

But there are ways to circumvent the difficulty of solving Eq. (10.12), at least in
an approximate manner. Consider the Hellmann–Feynman derivative (10.4) for a
hydrogen atom bonded to atom l

VH ¼ Vne,k � Zk
@1Hl
@Zk

� �
r

(10:13)

with Vne,k ¼ 21 au for the isolated H atom and where VH is (for k ¼ hydrogen) the
classical electrostatic potential energy

Vk ¼ �Zk

ð
r(r)

jr� Rkj
dr þ Zk

X
l=k

Zl
Rkl

(10:14)

A small change of 1kl, written D1kl, can be evaluated in an approximate manner by
replacing the first term of Eq. (10.12) with a modified one, leaving the rest of
Eq. (10.12) unchanged, so that (with gmol

H ¼ 2)

D1kl ¼
Zk
gmol
k

@1kl
@Zk

� �modified

r

� @1kl
@Zk

� �original
r

" #
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Thus, with the help of Eq. (10.13), for hydrogen linked to atom l, we have

D1Hl ¼ � 1
2

Vmodified
H � Voriginal

H

� �
(10:15)

This is one of our working formulas. It is an approximation, of course, but we are
presently unable to do better: evidently, by implementing this approximation, we
possibly transfer additional contingent variations of the 1Hl bond energy to other
bonds formed by atom l in the molecule. With this reservation in mind, we shall illus-
trate the use of Eq. (10.15) in Chapter 15, thus revealing instructive bond properties.

Summa summarum, Eq. (10.12) is certainly not the most efficient one for routine
calculations of intrinsic bond energies. The reason is obvious—it lies with the partial
derivatives (@1kl=@Zk)r, which must be carried out at constant electron density
r, meaning that this difficult calculation has to be made for each new 1kl, which
is unpractical.

Fortunately, we have something better in store. First we calculate a few reference
bond energies 18kl, using Eq. (10.12), and subsequently modify these bond energies as
the electron densities r are varied.

Example 10.1: The CC and CH Bonds of Ethane. Approximate solutions can be
found in some favorable cases with the help of Eq. (10.10), as indicated in the follow-
ing example worked out for ethane.

First we apply Eq. (10.14). SCF results for methane and ethane are1 VCH4
C ¼

�88:52015, VCH4
H ¼ �1:12634, VC2H6

C ¼ �88:45999, and VC2H6
H ¼ �1:13355 au,

with total energies Emol ¼ 240.2090 and 279.2513 au, respectively. Next we apply
Emol ¼

P
k (1=gk)Vk, from Eqs. (4.10)–(4.12), assuming that the SCF gmol

k parameters
are valid for real molecule and rescale the SCF potential energies to reproduce the cor-
responding energies of atomization; so we get the rescaled values VCH4

C ¼�89:2305,

VCH4
H ¼�1:1354, VC2H6

C ¼�89:1270, and VC2H6
H ¼�1:1421 au. At last we can esti-

mate the CH and CC bond energies of ethane. This can be done in two ways.

Method 1. Remembering that Vne ¼ 21 au for the H atom, Eq. (10.10) tells us
that, to a good approximation, (@1CH=@ZH) is 0.1354 au for methane and
0.1421 au for ethane. Now consider Eq. (10.12) and suppose that (@1CH=@ZC)
is at least approximately the same in both molecules.2 In this approximation,
Eq. (10.12) tells us that the 1CH energy of ethane is larger than that
of methane by � 1

2 (0:1421� 0:1354) au ¼ 2.10 kcal/mol. Since the latter
is �104.81 kcal/mol, we find for ethane that 18CH ’ 106:91 and thus
1W

CC ’ 69:1 kcal=mol, with reference to the experimental energies of methane
and ethane, DE �

a ¼ 419:24 and 710.54 kcal/mol, respectively.

1Pople’s 6-311G�� basis [210] and experimental geometries [211] of methane (RCH ¼ 1.085 Å) and ethane
(RCC ¼ 1.531 Å, RCH ¼ 1.096 Å, and /HCH ¼ 107.88) were used.
2This unavoidable hypothesis, under the present degumstances, seems justifiable because the charge differ-
ence between these carbons is very small.
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Method 2. Here we use V at
C ¼ �88:5307 au for carbon, deduced from its exper-

imental energy, 237.8558 au and g at
C ¼ 2:33863 (see Table 10.2). Equation

(10.10) gives, in atomic units, �89:2305 ¼ �88:5307� ZC[4(@1CH=@ZC)]
for methane and �89:1270 ¼ �88:5307� ZC[3(@1CH=@ZC)þ (@1CC=@ZC)]
for ethane. Now, assuming as before the same value of (@1CH=@ZC) for the
two molecules, we get (@1CH=@ZC) ¼ 0:02916 and (@1CC=@ZC)¼ 0:0119 au.
Equation (10.12) thus gives 18CC ¼ 69:0 kcal/mol.

Note that the first calculation uses only the difference between the potential ener-
gies VC2H6

H and VCH4
H to get the CH bond energy of ethane from that of methane,

which is known. The second calculation involves VC2H6
C , VCH4

C , and V atom
C and,

most importantly, depends strongly on the g parameters required for solving
(10.12). Under these difficult circumstances, it is gratifying that both methods give
approximately the same result for 18CC. The calculations of 18CH and 18CC using
Eq. (10.12) suffer from imprecisions and can do no better than suggesting an approxi-
mate value, �69 kcal/mol for the CC bond energy in ethane. The final selection
is described in Section 10.6.

10.4 BOND ENERGY: WORKING FORMULAS

Now we go back to Eq. (4.47), namely

DE�
a ¼ DE�

a 8�
1
gv

D
�
V eff
ne þ 2V eff

nn

�

and write 18kl for a reference bond energy corresponding to the electron density r8
for that reference, while 1kl corresponds to a modified density. From now on, the
electron densities r and the electron populations N refer to valence electrons.
The (1=gv)D(V eff

ne þ 2V eff
nn ) term concerns only the interactions between bonded

atoms.3 We shall momentarily assume (and this is quite an assumption) that we
know how to assign the electron populations Nk, Nl, . . . to the individual “atoms in
a molecule,” k, l, and so on.

TABLE 10.2. Selected SCF g at
k and gmol

k Parameters

Atom g at
k gmol

k

H 2 2
B 2.31965 2.31428
C 2.33863 2.33263
N 2.35905 2.34742
O 2.38039 2.37361
F 2.40096 2.39866

3Of course, any modification of Veff
ne þ 2Veff

nn affects the nonbonded part as well, but this effect is automati-
cally included in the nonbonded contribution calculated for the density r: no problem arises, owing to the
almost negligible weight of Enb.

120 THE CHEMICAL BOND: THEORY (I)



The contribution to DV eff
ne involving Zeff

k consists of the interactions between Zeff
k

and the electrons with density rk that are assigned to atom k in the molecule, namely

� Zeff
k

ðtk rk(r)
jr� Rkj

dr (10:16)

where the integration is carried out over the volume tk containing the Nk electrons
allocated to k:

Nk ¼
ðtk

rk(r) dr

On the other hand, Zk interacts with the Nl electrons of each atom l bonded to k

� Zeff
k

ðtl rl(r)
jr� Rkj

dr (10:17)

with

Nl ¼
ðtl

rl(r) dr

The integrals in (10.16) and (10.17) are conveniently written

ðtk rk(r)
jr� Rkj

dr ¼ Nkkr�1
k l (10:18)

ðtl rl(r)
jr� Rkj

dr ¼ Nlkr�1
kl l (10:19)

where kr�1
k l and kr�1

kl l are the average inverse distances from Zeff
k to Nk and Nl,

respectively. The contribution involving Zeff
k and its “own” electrons Nk, on one

hand, and the electrons Nl of every atom l forming a bond with k, on the other
hand, is as follows, using (10.16)–(10.19):

V eff
ne,k ¼ �Zeff

k Nkkr�1
k lþ

X
l

Nlkr�1
kl l

" #
(10:20)

Here we specify that this expression holds for the true densities of the system under
scrutiny. Similar expressions are written for the reference model with atomic
populations Nk8 and Nl8 and average inverse distances kr�1

k l8 and kr�1
kl l8. This

gives an equation like (10.20), but for model densities r8(r). Hence we obtain the
difference DV eff

ne,k ¼ V eff
ne,k � V eff

ne,k(r8) for nucleus Zeff
k . Summation over all nuclei

and inclusion of the 2DVeff
nn term gives

D(V eff
ne þ 2V eff

nn ) ¼ �
X
k

Zeff
k

h
Nkkr�1

k l� Nk8kr�1
k l8þ

X
l

Nlkr�1
kl l� Nl8kr�1

kl l8
� �i

þ
X
k

X
l

Zeff
k Zeff

l

h
R�1
kl � (R�1

kl )8
i

(10:21)
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What this equation says is simply that the addition of a small amount of electronic
charge to an atom k modifies its “own” atomic nuclear–electronic interaction
energy, namely, that involving Zk, and, moreover, also changes the nuclear–
electronic interactions with the nuclei of all atoms l bonded to k. The effects involving
the remaining atoms of the molecule are, of course, included in the small nonbonded
interaction term, Enb. Note that this presentation of D(V eff

ne þ 2V eff
nn ) does not imply

acceptance of the point-charge model, although Enb itself will ultimately be evaluated
in the point-charge approximation.

Let us transform Eq. (10.21) into something more practical. First, we replace kr�1
kl l

by kr�1
kl l8 where it occurs in (10.21) and restore the correct result in the following

manner:

D(V eff
ne þ 2V eff

nn ) ¼ �
X
k

Zeff
k

h
Nkkr�1

k l� Nk8kr�1
k l8þ

X
l

�
Nlkr�1

kl l8� Nl8kr�1
kl l8

�i

þ
X
k

X
l

Zeff
k Zeff

l

h
R�1
kl � (R�1

kl )8
i

�
X
k

X
l

Zeff
k

�
Nlkr�1

kl l� Nlkr�1
kl l8

�
(10:22)

At this point we rewrite Eq. (4.47) as follows:
X
k,l

1kl ¼
X
k,l

1kl8�
1
gv

D
�
V eff
ne þ 2V eff

nn

�
(10:23)

This means that the reference bond energies, 1kl8 corresponding to a reference electron
density r8(r) have been modified by the change D(V eff

ne þ 2V eff
nn ) to give the energies

1kl corresponding to r(r). We also define

Nl ¼ Nl8þ DNl (10:24)

for use in Eq. (10.22) and thus obtain from Eq. (10.23) that

X
k,l

1kl ¼
X
k,l

1kl8þ F þ 1
gv

X
k

Zeff
k

h�
Nkkr�1

k l� Nk8kr�1
k l8

�
þ
X
l

DNlkr�1
kl l8

i

(10:25)

The function F consists of the last two terms of (10.22) divided by gv, with a change
in sign. It is convenient to rewrite F using the definition of net atomic charge,
Zeff
l � Nl ¼ ql. After some algebra one obtains

F ¼ � 1
g v

X
k

X
l

Zeff
k Zeff

l

h
R�1
kl � R�1

kl

� �
8�

�
kr�1

kl l� kr�1
kl l8

�i

� 1
g v

X
k

X
l

Zeff
k ql

�
kr�1

kl l� kr�1
kl l8

�
(10:26)

F represents the contribution due to variations of internuclear distances, say, Rkl

instead of the reference value Rkl8, and to changes of electronic centers of charge
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(i.e., of the distance from Zeff
k to Nl) from rkl8 to rkl. F ¼ 0 proves accurate in most

applications to s systems.
The first part, in square brackets, is obviously 0 for spherically symmetric electron

clouds and, more generally, if the centers of electronic charge move along with
the nuclei during small changes in internuclear distances. The last part is small
because atomic charges are small in the first place (e.g., �0.0351 e for carbon)
and because small changes of electron populations are unlikely to modify their
center of charge to any significant extent. The function F no longer equals zero
when C(sp2)22C(sp3) and C(sp2)22H bonds are found in a molecule: F will be
used to obtain the energies of these bonds from those of the parent saturated mole-
cule. It gives means to deal sensibly with situations departing from the simple
point-charge approximation.

Let us now consider the difference Nkkr�1
k l� Nk8kr�1

k l8 appearing in Eq. (10.25)
and expand Nkkr�1

k l as follows in a Taylor series:

Nkkr�1
k l ¼ Nk8kr�1

k l8þ @Nkkr�1
k l

@Nk

� �
8
DNk

þ 1
2!

@2Nkkr�1
k l

@N2
k

� �
8
(DNk)

2 þ � � � (10:27)

We then define the energy

Evs
k ¼ � 1

gmol
k

Z eff
k Nkkr�1

k l (10:28)

of atom k in its valence state, in the current acceptation of this term, chosen so as to
ensure the same interaction between the electrons of the atom as occurs when the
atom is part of a molecule. The valence state is considered as being formed from a
molecule by removing all the other atoms without allowing any electronic rearrange-
ment in the atom of interest. All the interactions due to particles outside the volume
occupied by this atom are “turned off” in Evs

k . Now, taking the successive derivatives
of Evs

k evaluated for Nk ¼ Nk8, namely

@Evs
k

@Nk

� �
8 ¼ � Zeff

k

gmol
k

@Nkkr�1
k l

@Nk

� �
8

@2Evs
k

@N2
k

� �
8 ¼ � Zeff

k

gmol
k

@2Nkkr�1
k l

@N2
k

� �
8
, . . .

it follows from Eq. (10.27) that

Nkkr�1
k l� Nk8kr�1

k l8 ¼ � gmol
k

Zeff
k

� @Evs
k

@Nk

� �
8
DNk þ

1
2!

@2Evs
k

@N2
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� �
8
(DNk)
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� �

(10:29)
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Up to here, it was convenient to carry out the calculations using the valence–electron
populations Nk,Nl, and so on as variables. For the final step, however, it is more practical
to express the results using net (i.e., nuclear minus electronic) charges, so that

Dq ¼ �DN (10:30)

In this manner, one obtains from Eqs. (10.25), (10.29) and (10.30) that

X
k,l

1kl ¼
X
k,l

1kl8þ
1
gv

X
k

gmol
k

@Evs
k

@Nk

� �
8
Dqk �

1
2!

@2Evs
k

@N2
k

� �
8
(Dqk)
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� �	

� Zeff
k

X
l

kr�1
kl l8Dql

)
þ F (10:31)

This equation contains the required information featuring the role of atomic charges in
energy calculations. Molecular electroneutrality, namely,

P
k qk ¼ 0, is ensured with the

use of the appropriate Dqk terms.
Now we want to write Eq. (10.31) in a more instructive fashion, in a form that

highlights the properties of the individual bonds.

Final Energy Formulas

Let us define

akl ¼
1
vk

� g
mol
k

g v

@Evs
k

@Nk

� �
8
� 1
2!

@2Evs
k

@N2
k

� �
8
Dqk þ � � �

� �
� 1
gv

Zeff
l kr�1

kl l8 (10:32)

where vk ¼ number of atoms attached to k. Multiply akl by Dqk and carry out the
double sum

P
k

P
l aklDqk. Comparison with Eq. (10.31) shows that

X
k,l

1kl ¼
X
k,l

1kl8þ
X
k

X
l

aklDqk þ F (10:33)

or, for just the bond formed by atoms k and l

1kl ¼ 1kl8þ aklDqk þ alkDql þ Fkl (10:34)

Fkl ¼ � 1
gv

Zeff
k Zeff

l

h
R�1
kl � R�1

kl

� �
8� kr�1

kl l� kr�1
kl l8

� �i

� 1
gv

Zeff
k ql

�
kr�1

kl l� kr�1
kl l8

�
(10:35)

Equation (10.34) indicates how the intrinsic energy of a chemical bond linking atoms
k and l depends on the electronic charges carried by the bond-forming atoms: 1kl8 is
for a reference bond with net charges qk8 and ql8 at atoms k and l, respectively,
whereas 1kl corresponds to modified charges qk ¼ qk8þ Dqk and ql ¼ ql8þ Dql. Fkl

follows from Eq. (10.26). These formulas are the basics of this theory. From here
on, we focus on simplifications and application.
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Convenient Simplifications

It turns to our advantage to consider 1kl8 and Fkl jointly. The idea is best explained by
an example. Suppose that the CC and CH bond of ethane were selected as reference
bonds, with energies 18CC and 18CH, respectively, and F ¼ 0. New references are
required for olefins, specifically tailored for C(sp2)22C(sp3) and C(sp2)22H bonds:
the reference for C(sp2)–C(sp3) bonds is deduced from that representing
C(sp3)22C(sp3) while C(sp2)22H is derived from C(sp3)22H by incorporating the
appropriate parts of F into the new reference energies:

18klð Þoriginal þFkl ¼ 18klð Þmodified (10:36)

If we stipulate that 18kl includes Fkl by design, which makes sense because chemists
know how to discriminate between different types of bonds, we can write the
energy formula for a chemical bond in the following simple manner:

1kl ¼ 18kl þ aklDqk þ alkDql (10:37)

Another simplification facilitates things because it saves tedious work to satisfy
charge normalization constraints. We write Eq. (10.37) as follows

1kl ¼ 18kl þ akl(qk � qk8)þ alk(ql � ql8)

¼ (18kl � aklqk8� alkql8)þ aklqk þ alkql
¼ 180kl þ aklqk þ alkql (10:38)

where

180kl ¼ 18kl � aklqk8� alkql8 (10:39)

defines a new reference, for a hypothetical kl bond between electroneutral atoms k
and l. With this modification, featuring net charges qk, ql, . . . rather than their
variations Dqk, Dql, . . . , our basic energy formula, Eq. (10.2), is written [44,108]

DE�
a ¼

X
k,l

180kl þ
X
k

X
l

aklqk � Enb (10:40)

While most convenient in computations, the 1kl8
0 reference energy does not embrace

an actual physical situation. The true physical reference bond, as it is found in an
appropriately selected reference molecule, is 1kl8, with reference atomic charges qk8
and ql8 at the bond-forming atoms k and l, respectively: 1kl8 is amenable to direct
calculations; 1kl8

0 is not.
Finally, regarding the akl parameters, Eq. (10.32) is our working formula, but in

most cases one can do with the simpler form

akl ¼
1
vk

@Evs
k

@Nk

� �
8
� 3
7
� Z

eff
l

Rkl
(10:41)

where the second-order derivatives are omitted, with gv ’ gmol
k set to 7

3 for atoms
other than hydrogen.
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The quantity
P

l aklDqk reduced to essentials by means of Eq. (10.41) reveals its
simple physical content. When the total energy of atom k in the molecule is varied by
(@Evs

k =@Nk)8Dqk, this Dqk concurrently modifies the total energy of atom k by
� 3

7

P
l (Z

eff
l � Dqk)=Rkl.

This concludes the presentation of bond energy formulas.

10.5 BASIC THEORETICAL PARAMETERS

This section describes the evaluation of the basic parameters g at
k , g

mol
k , gv,

(@Evs
k =@Nk)8, and (@2Evs

k =@N
2
k )8, ready for use in Eqs. (10.12) and (10.32).

The g Parameters

The g parameters of the isolated atoms g at
k are readily obtained from Eqs. (3.20) or

(3.21). Selected SCF results4 are indicated in Table 10.2. For hydrogen, of course,
g ¼ 2 because of the virial theorem.

For atoms in a molecule, we use Eq. (4.10) and rewrite it as follows

Ek ¼
1

gmol
k

Vne,k þ Zk
X
l=k

Zl
Rkl

 !
(10:42)

with the help of Eq. (4.2), where Vne,k ¼ �Zk
Ð
[r(r)=(jr� Rkj)]dr. These g values

are obtained [90,213] from the SCF potentials at the individual nuclei k, l, . . . and
from their fit with total energies using Eqs. (4.12) and (10.42), assuming a constant
gmol
k for each atomic species. The latter point merits attention because, as seen in

Eq. (10.42), 1=gmol
k multiplies a potential energy consisting of two distinct contri-

butions, namely, a nuclear–electronic and a nuclear–nuclear part. Now, one can
imagine to use two independent multipliers, 1=g el

k and 1=g nucl
k , and write

Ek ¼
1

g el
k

Vne,k þ
1

g nucl
k

Zk
X
l=k

Zl
Rkl

(10:43)

by letting

1

gmol
k

¼ 1

g el
k

Vne,k þ
1

g nucl
k

Zk
X
l=k

Zl
Rkl

 !
1
Vk

(10:44)

that is, by taking 1=gmol
k as the weighted average of 1=g el

k (for the nuclear–electronic
part) and 1=g nucl

k (for the nuclear–nuclear part). Detailed SCF computations indicate
that g el

k ¼ g nucl
k , at least within the precision permitted by this type of analysis. This

result settles an important question regarding the constancy of the gmol
k parameter

introduced in the defining equation (4.10). Indeed, if it were g el
k = g nucl

k , then

4The atomic wavefunctions are from Ref. 212. Additional results are reported in Refs. 27 and 213.
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gmol
k would change to some extent from molecule to molecule, depending on the

relative weights of Vne,k and Zk
P

l=k Zl=Rkl in Eq. (10.44). The results are included
in Table 10.2.

In closing, let us examine the g values for molecules using Eq. (4.11). It is clear
that the average 1/g depends on the gmol

k values of Table 10.2 and on the weights of
the potential energies Vk of the individual atoms. Now, the weights of the heavy
atoms, of the order of 288 au for carbon and 2175 au for oxygen, for example,
are considerably larger than that of hydrogen, �21 au. As a consequence, the final
result for g is in most cases close to 7

3. This is a well-known fact: SCF calculations
made for a great variety of organic molecules indicate that g ’ 7

3 within approxi-
mately +1%. We use this approximation for gv, keeping in mind that it affects
only a small portion of the total energy of atomization.

Calculation of (@@@@@Evs
k /@@@@@Nk)88888 and (@@@@@2Evs

k /@@@@@N2
k)88888

We now direct our attention to the calculation of the akl parameters. The first and
second derivatives, (@Evs

k =@Nk)8 and (@2Evs
k =@N

2
k )8, are most conveniently obtained

from SCF–Xa theory [174], which offers the advantage of permitting calculations
for any desired integer or fractional electron population. It is, indeed, important to
account for the fact that these derivatives depend on Nk. The difficulty is that calcu-
lations of this sort cannot be performed directly for atoms that are actually part of a
molecule. So one resorts to model free-atom calculations to mimic the behavior of
atoms that are in a molecule but do not experience interactions with the other
atoms in the host molecule (Table 10.3).

For hydrogen, a ¼ 0.686 is appropriate for a partially negative atom, like that of
ethane, qH ¼ 211.7 me, and reproduces its electron affinity.

TABLE 10.3. Selected First and Second Energy Derivatives (au)

Atom Orbital Population (@Ek=@Nk)8 ð@2Ek=@N2
k Þ8

H 1s 1.0117 20.195 0.40
1sa 1.000 20.200 —

C 2s 1.44 20.735 0.45
2p 1.97 20.200 —
s 3.00 20.375 —

C(C2H4) p 1.00 20.246 —
C(C6H6) p 1.00 20.262 —
N 2p 3 20.28 —
O (ethers) 2p 3.990 20.333 0.50
O (alcohols) — — 20.80 —

aFor aHO we have used (@E=@N)8H ¼ �0:200 au, corresponding to an approximately null hydrogen net
charge. This derivative follows from spin-restricted Xa calculations (with a ¼ 0.686) indicating that
EH ¼ 20.72650N þ 0.324525N2 2 0.040833N3 hartree, with N ¼ number of electrons. For the ether
oxygen atom we have used (@E=@N)8O ¼ �0:333 au, but 20.80 for the hydroxyl oxygen in the evaluation
of aOH and aOC this value was suggested by accurate energy calculations of alcohols.
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Optimized SCF computations indicate that for the carbon atoms of saturated
hydrocarbons any gain in electronic charge, with respect to the ethane carbon,
occurs at the 2s level [44]. Further, (9s 5pj6s) ! [5s 3pj3s] calculations of methane
and ethane, using Dunning’s exponents [85] and optimum contraction vectors,
reveal C(2s) populations of 1.42–1.46 e. Finally, SCF–Xa computations give
(@Ek/@Nk) values of 220.29, 219.87, and 219.26 eV for C(2s) populations of
1.40, 1.45, and 1.50 e, respectively, by using the a ¼ 0.75928 value recommended
by Schwarz [214]. These results suggest that the appropriate (@Ek/@Nk) derivative
can be reasonably estimated at 20.735 au (220 eV) for sp3 carbon atoms. The
results for sp2 carbons [129] follow from similar SCF–Xa calculations.
The result for O(2p) was deduced using the “frozen core” a value given by
Schwarz, a ¼ 0.74447. The result indicated for nitrogen is from Ref. 215.

10.6 SATURATED MOLECULES

Any application of Eqs. (10.37)–(10.40) requires a solid knowledge of the appropri-
ate set of reference bond energies 1kl8, of the bond energy parameters akl and, finally,
of the appropriate atomic charges.

The data of Tables 10.2 and 10.3 give access to the akl parameters listed in
Table 10.4. Concerning the 1kl80 energies, we are henceforth in a position to benefit
from detailed solutions obtained for the alkane molecules, but for the details regard-
ing nitrogen- and oxygen-containing molecules we must refer to Chapters 15 and 16,
respectively.

With the second-order derivatives being usually omitted in Eq. (10.32) owing to
the smallness of the Dqk values, the akl terms can be treated as constants.

Calculation of Reference Bond Energies [Eq. (10.39)]. The akl parameters
indicated in Table 10.4 are ready for use in the bond energy formula, Eq. (10.39).
The following examples, in part based on detailed results given in Chapters 15 and
16 for nitrogen- and oxygen-containing molecules, illustrate the procedure and
report the input data.

TABLE 10.4. Reference Bond Energies (kcal/mol) and akl Parameters

Bond Rkl (Å) Occurrence 1kl8
0 akl (kcal mol21 me21)a

C22C 1.531 Alkanes 103.891 aCC ¼ 20.488 —
N22N 1.446 Hydrazine 29.25 aNN ¼ 20.551 —
C22N 1.46 Amines 75.56 aCN ¼ 20.603 aNC ¼ 20.448
C22O 1.43 Ethers 104.635 aCO ¼ 20.712 aOC ¼ 20.501
C22O 1.43 Alcohols 104.635 aCO ¼ 20.712 aOC ¼ 20.649
C22H 1.08 Alkanes 108.081 aCH ¼ 20.247 aHC ¼ 20.632
N22H 1.032 Amines 101.36 aNH ¼ 20.197 aHN ¼ 20.794
O22H 0.957 Alcohols 115.678 aOH ¼ 20.400 aHO ¼ 21.000

aConversion factors: 1 hartree ¼ 627.51 kcal/mol; 1 bohr ¼ 0.52917 Å.

128 THE CHEMICAL BOND: THEORY (I)



For the CC bond in ethane (see below), we find 18CC ¼ 69:633 kcal=mol, with
atomic charges of 35.1 me at the carbon atoms; for its CH bonds, we find
18CH ¼ 106:806 kcal=mol, with qC ¼ 35.1 and qH ¼ 211.7 me. Similarly, we have
18CO ¼ 79:78 kcal=mol for the CO bond in diethylether, with qC8 ¼ 31:26 and
qO8 ¼ 5:18 me for the bond-forming atoms. For the CN bond in methylamine, we
have 18CN ¼ 60:44 kcal=mol, with qC8 ¼ 31:77 and qN8 ¼ �9:00 me, and
18NH ¼ 100:99 kcal=mol for qH8 ¼ 0:10 me [139]. This leads to 1NH ¼ 101.362
0.197qN 2 0.794qH. Next, assuming 1NN ¼ 36.30 kcal/mol ( ¼ 1NN8 ) for hydrazine
(deduced from DE�

a ¼ 436:62 kcal=mol, with DHf8(gas) ¼ 22:79 kcal=mol [216]
and ZPE þ HT 2 H0 ¼ 34.14 kcal/mol [217]), we get qN(hydrazine) ¼ 26.40 me
and thus 1NN8

0 ¼ 29:25 kcal=mol. Finally, taking water as reference molecule, calcu-
lations indicate 1OH8

0 ¼ 115:678 kcal=mol (Chapter 16.2).

Saturated Hydrocarbons

To help develop a familiarity with Eq. (10.37), we examine a general formula for
saturated hydrocarbons, CnH2nþ222m, containing n carbon atoms and m chair or
boat six-membered cycles. These alkanes contain (n 2 1 þ m) CC bonds and
(2n þ 2 2 2m) CH bonds; hence

X
k,l

18kl ¼ (n� 1þ m)18CC þ (2nþ 2� 2m)18CH (10:45)

Each carbon forms NCC bonds with other carbon atoms and 4 2 NCC bonds
with hydrogen atoms. The part of

P
l aklDqk due to that C atom is

NCCaCCDqC þ (4� NCC)aCHDqC. On the other hand, each H atom contributes
aHCDqH. Summation over all C and H atoms gives

X
k

X
l

aklDqk ¼ (aCC � aCH)
X

NCCDqC þ 4aCH
X

DqC

þ aHC
X

DqH (10:46)

Using these results in Eq. (10.2), one obtains, with A1 ¼ aCC 2 aCH and A2 ¼

4aCH 2 aHC, the following equation:

DE�
a ¼ (n� 1þ m) 18CC þ (2nþ 2� 2m) 18CH þ A1

X
NCCDqC

þ A2

X
DqC þ (n� 2þ 2m) aHCqH8� Enb (10:47)

Equation (10.47) lends itself to three instructive tests.
The first test regards the atomic charges. We write Eq. (10.47) for a representative

selection of molecules using explicitly the net charges given by Eqs. (8.7) and (8.8),
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that is (where superscript “Mull” denotes Mulliken)

qC ¼ qMull
C þ NCH � p

qH ¼ qMull
H � p

and determine the unknown p by a least-square analysis with the help of
experimental DE�

a data. For fully optimized STO-3G charges, one obtains [108] p ¼
(30.3+ 0.3) � 1023 e. Therefore, from what we have learned in Chapters 6–8,
we can use the 13C NMR shifts for deriving the required DqC charges
and write A1

P
NCCdC instead of A1

P
NCCDqC and A2

P
dC instead of

A2
P

DqC. The “chemical definition” of atomic charges offered in Chapter 5—a
clear case of chemical prejudice that led to Eqs. (5.10) and (6.7)—is unmistakably
confirmed.

The second test concerns the parameters A1 and A2. They are readily obtained from
least-square fittings of experimental DE�

a data with Eq. (10.47). The empirical ratio
A2/A1 ¼ 1.486 thus determined equals that anticipated from the theoretical values,
aCC ¼ 20.777, aCH ¼ 20.394 and aHC ¼ 21.007 au. So we have A1 ¼ 20.383
and A2 ¼ 20.569 au, which are conveniently expressed in kcal mol21 ppm21 units
as A1 ¼ 0:383(627, 51=237:1) qC8 and A2 ¼ 0:569(627:51=237:1) qC8 .

The final test uses these A1 and A2 parameters in applications of Eq. (10.47).
Solving it for ethane, we find for its bonded part that DE�C2H6

a,bonded ¼ 18CC þ 618CH.
Similarly, we get for methane that DE�CH4

a,bonded ¼ 418CH þ A2d
CH4
C � aHCqH8, where

dCH4
C (¼28 ppm) is the NMR shift of the methane carbon in ppm from ethane.
Now we rearrange Eq. (10.47):

2n18CC ¼ DE�
a þ Enb þ n DE�C2H6

a,bonded � 2DE�CH4
a,bonded þ 2A2d

CH4
C þ aHCqC8

� �

þ (1� m) DE�C2H6
a,bonded � 2DE�CH4

a,bonded þ 2A2d
CH4
C

� �

� A1

X
NCCdC � A2

X
dC (10:48)

and take advantage of the fact that 18CC is constant by definition. Note the presence
of qC8 in the right-hand side of (10.48), namely, in A1 and A2. Application of
Eq. (10.48) to a selection of molecules indicates that the constraint of a constant
18CC is satisfied for q8C ’ 0:035 e, with 18CC ’ 69:7 kcal=mol [108]. Our optimum
choice, qC8 ¼ 35:1 me, yields A1 ¼ 0.0356 and A2 ¼ 0.0529 kcal/mol21 ppm21

with 18CC ¼ 69:633 kcal=mol.

Empirical Feigned Bond Additivity. Let us put our results in perspective with
respect to brute-force empirical fits intended to define “best possible” sets of transfer-
able bond energies, 1empir:

kl . Remembering that for ethane qC8þ 3qH8 ¼ 0, we can write
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the following identity:

(n� 2þ 2m) qH8 ¼ � 1
2
(n� 1þ m) qC8�

1
4
(2nþ 2� 2m) qH8

Combining this identity with Eq. (10.47), it appears that

X
k,l

1kl ¼ Aþ (n� 1þ m)(18CC � 1
2
aHCqC8)þ (2nþ 2� 2m)(18CH � 1

4
aHCqH8 )

with A ¼ A1
P

NCCDqC þ A2
P

DqC.
A multiple regression analysis that uses experimental DE�

a �
P

k,l 1kl values
and simply counts the (n 2 1 þ m) CC bonds and the (2n þ 2 2 2m) CH bonds

would view 18CC � 1
2 aHCqC8 ¼ 80:7 kcal=mol as the CC bond energy, 1empir:

CC , and

18CH � 1
4 aHCqH8 ¼ 105:0 kcal=mol as the CH bond energy, 1

empir:
CH , in lieu of

18CC ¼ 69:633 and 18CH ¼ 106:806 kcal=mol. Charge normalization terms are inad-

vertently treated as part of bond energy! Both 1
empir:
CC and 1

empir:
CH are metaphors, not

physical entities. In the final count, A, which is usually interpreted as being due to
“steric effects,” is simply a function of local charge variations.

Formula for Alkanes Including Nonbonded Interactions. Consider
Eq. (10.47) and rewrite it as follows:

DE�
a ¼ (1� m)(18CC þ 618CH)

þ (n� 2þ 2m)(18CC þ 618CH � 418CH þ aHCq8H � A2d
CH4
C )

þ (n� 2þ 2m)A2d
CH4
C þ A1

X
NCCdC þ A2

X
dC � Enb

Using the quantities DE�C2H6
a,bond: and DE�CH4

a,bond: defined above, we get

DE�
a ¼ (1� m)DE�C2H6

a,bond: þ (n� 2þ 2m) DE�C2H6
a,bond: � DE�CH4

a,bond:

� �

þ (n� 2þ 2m)A2d
CH4
C þ A1

X
NCCdC þ A2

X
dC � Enb

Finally, using the approximation (10.8) for Enb and applying Eq. (10.2), we
deduce that

DE�
a ’ (1� m)DE�C2H6

a þ (n� 2þ 2m) DE�C2H6
a � DE�CH4

a

� �
þ (n� 2þ 2m)A2d

CH4
C þ A1

X
NCCdC þ A2

X
dC (10:49)

Now we know that nonbonded energies differ somewhat from case to case in
comparisons between structural isomers. On the other hand, the

P
NCCdC andP

dC terms are also structure-dependent. For these reasons, a minor readjustment
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of the parameters A1 and A2 succeeds in compensating part of the error introduced by
assuming exact additivity for the nonbonded Coulomb contributions. The
recommended values are [190], in kcal mol21 ppm21 units, A1 ¼ 0.03244 and
A2 ¼ 0.05728. With DE�C2H6

a ¼ 710:54, DE�CH4
a ¼ 419:27 kcal=mol and 13C shifts

in ppm from ethane, Eq. (10.49) becomes, in kcal/mol units

DE �
a ’ 710:54(1� m)þ 290:812(n� 2þ 2m)

þ 0:03244
X

NCCdC þ 0:05728
X

dC (10:50)

This handy energy formula requires only the 13C NMR spectra of the molecules
under scrutiny. A comparison made for a group of 19 molecules indicated a root-
mean-square deviation of 0.25 kcal/mol relative to experimental data, whereas the
rms deviation amounts to 0.21 kcal/mol for calculations made with the theoretical
A1 and A2 parameters, with nonbonded energies deduced directly from Eq. (10.3).

This concludes the derivation of our bond energy formula and the presentation of
simple examples pertaining to saturated systems, namely, the alkanes, including their
numerical parameterization.

Unsaturated hydrocarbons are our next target.
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CHAPTER 11

THE CHEMICAL BOND: THEORY (II)

Chapter 10 has taught us that this theory is that of a simple formula for bond energies,
namely, Eq. (10.37)

1kl ¼ 1kl8 þ aklDqk þ alkDql

or its companion, Eq. (10.38), featuring net charges qk and ql rather than their
variations, Dqk and Dql. Formulas are given for 1kl8 and akl, as well as selected numeri-
cal values, namely, all those required for the alkanes, as they were deduced from the
appropriate theoretical data.

Tests are convincing both because they were entirely based on these theoretical
parameters and because they were conducted with atomic charges that are supported
by strong arguments suggested by a number of independent sources, including SDCI
charge analyses, and satisfy a most accurate correlation with 13C NMR shifts [Eq.
(6.8)]. Moreover, they are uncomplicated: the calculation of bond energies and
hence of atomization energies, DE�

a ¼
P

k<l 1kl � Enb, are straightforward, although
most of the work involved is in the evaluation of the very small nonbonded part, Enb.

A considerable simplification is achieved with a general formula [Eq. (10.50)],
which incorporates these nonbonded contributions in an approximate manner. The
unsigned average deviation with respect to the experimental results of seventyone
saturated hydrocarbons, 0.19 kcal/mol, certainly supports this simplified formula
(see Part III).

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
Copyright # 2009 John Wiley & Sons, Inc.

133



In order to extend the applicability of the same simple methods to olefinic,
polyenic, and aromatic unsaturated hydrocarbons, additional parameters are required:
those for the bonds involving sp2 carbons. One must thus consider

† The modification of reference charges that involve readjustments of reference
bond energies, evaluated by the function aklDqk

† The description of s and p charge centroids in unsaturated systems, and their
role in energy calculations, evaluated by means of the function Fkl, Eq. (10.35)

† The inverse variations of s and p electron populations in aromatic and olefinic
sp2 systems and their incidence in the calculation of the appropriate akl
parameters

† Conjugation and its inclusion in the relevant bond energies 1kl8

Accordingly, 10 new reference bond energies must be defined. This is done with
respect to the well-known bonds of ethane. In addition, seven additional akl
parameters are to be evaluated by means of our standard formulas, Eqs. (10.41)
and (11.16), with proper consideration of s- and p-electron populations. All these
transformations, including those dictated by changes of internuclear distances, are
straightforward but require attention.

The nice thing worth mentioning here is that they need be done only once. The
appropriate transformations are presented in detail in order to illustrate in what
manner they are tightly interrelated. But then, the newly defined 1kl8 and akl
parameters serve most simply in our basic formulas (10.37) or (10.38), whose use
is quick, easy, and accurate.

11.1 VALENCE ATOMIC ORBITAL CENTROIDS

The description presented so far has dealt primarily with the numbers of electrons
associated with the individual atoms in a molecule. Now we examine the shape of
these electron populations. The electron densities r and electron populations N are
those of the valence region.

The external electrostatic potential at atom k is

Vk ¼ �
X
l

ð
rl(r)

jr� Rkj
dr� Zeff

l R�1
kl

� �

where rl(r) is the density of the Nl valence electrons assigned to atom l = k, and Zeff
l

is its effective nuclear charge, at a distance Rkl from k.
Using Eq. (10.19), we write

Vk ¼ �
X
l

(Nlkr�1
kl l� Zeff

l R�1
kl ) (11:1)
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Let us also introduce the corresponding expression obtained when the electron
populations are kept at their proper values in the molecule under study, but the
inverse-distance terms are replaced by their values (indicated by the superscript
“8”) of a model reference molecule:

Vnr
k ¼ �

X
l

[Nlkr�1
kl l8� Zeff

l (R�1
kl )8] (11:2)

The difference Vk � Vnr
k describes a change in electrostatic potential at atom k. The

corresponding change in potential energy, summed over all atoms, is

f ¼
X
k

Zeff
k (Vk � V nr

k ) (11:3)

This is the quantity we shall use for our discussion. It is a convenient way of gaining
insight into the function F [Eq. (10.26)] because

f ¼ �gvF (11:4)

Extensive numerical calculations indicate that f is (1) negligible (say,,0.3 kcal/
mol) for saturated hydrocarbons but (2) significant for olefinic molecules (e.g., �40
kcal/mol for tetramethylethylene). The condition that f should vanish can be satisfied
either because the various atomic contributions to f cancel or because the individual
terms in the summation over k vanish. Since it seems unlikely that cancellation of
terms associated to different atoms would take place systematically in a large
number of molecules, we shall assume that, to a good approximation

Vk ’ Vnr
k (11:5)

for any atom of any saturated hydrocarbon.
Now, the most direct interpretation of Eq. (11.5) follows from the observation,

suggested by Eqs. (11.1) and (11.2), that f is essentially a “relaxation” term. In
fact, Vk � Vnr

k represents the difference between the electrostatic potential at the kth
nucleus in the given molecule and the potential that the same nucleus would feel if
the atomic orbitals and the equilibrium distances remained the same as in the refer-
ence molecule in spite of the change in electron populations.

With this picture in mind, Eq. (11.5) reads:

Whenever the atoms under consideration in a given molecule are in the same valence
states as in the reference molecule, the relaxation process is such that the potential
created by the other atoms at the kth nucleus is the same as would be predicted by
leaving the pertinent internuclear distances and the shapes of atomic electron densities
as they are in the reference molecule, with the electron populations changed as required
by the new situation.

This may mean that changes in the nuclear positions and in the centroids of the
atomic orbitals always take place so as to leave the ratio between the expectation
value kr�1

kl l and R�1
kl the same as in the reference molecule or, at least, that the
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changes are insignificant. It is impossible to decide which alternative applies from a
study of the paraffins, since their bond distances and atomic orbitals are expected to
be practically constant.

A simple way of satisfying Eq. (11.5) consists in assuming that

kr�1
kl l ’ R�1

kl (11:6)

when all bonds are s bonds at their equilibrium geometries, as in the alkanes. This
simplifying hypothesis is supported by examination of SCF potentials at the
nuclei, showing that Eq. (11.6) holds to within �5%, for both CH and CC bonds.
It is especially useful here because it permits us to isolate the relevant conceptual
points in a straightforward manner within the simple framework of the point-
charge approximation. Defining a density rml and an electron population Nml associ-
ated with each atomic orbital m of atom l, so that

ð
rml(r)

jr� Rkj
dr ¼ Nmlkr�1

kl l (11:7)

we can write1

X
m

Nml

Nl
kr�1

mkll ¼ 1=Rkl (11:8)

Equation (11.8) reads: “The average of the expectation values of jr� Rkj�1 for the
various valence AOs of atom l, weighted by the rations of the orbital populations
to the total atomic population of atom l equals the inverse of the k2 l distance.”

For all their their simplicity, Eqs. (11.7) and (11.8) cannot be tested numerically
by direct calculation. The reason is linked to the difficulty of partitioning the total
electron density into atomic contributions, in spite of an important conceptual step
forward due to Parr [219]. A practical step in the same direction is in the construction
of suitable in situ valence atomic orbitals (VAO) from accurate ab initio computations
[143], as advocated long ago by Mulliken [220] and discussed by Del Re [221]. As
will be seen, such in situ VAOs do provide useful information, but they are of no help
in solving the additional problem of assigning suitable populations to the orbitals and
of dividing overlap populations into atomic contributions. In view of this situation,
we take Eqs. (11.5) and (11.8) as statements whose validity rests on experimental
evidence, at least for saturated hydrocarbons.

Check Test: The Olefins

In paraffins, the bonds formed by carbon are either CH or CC single bonds; of course,
the electron density around C is not exactly spherical, but special multipole

1Equation (11.7) implies that orbital products can well be approximated in the average by some Mulliken-
type expansion [206,218].
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contributions appear to vanish to the extent that one can assume that the CH electron
density adjusts to that of CC, and conversely, so that the electrostatic effects are ade-
quately described by a point charge located at C. Now suppose that one bond to
hydrogen is removed and replaced by a p bond of the same atom to another
carbon atom. Changes in geometry and hybridization will, of course, occur, but, at
least to first order, the resulting p atomic orbital will not be able to participate in a
possible mutual readjustment of the AO centroids, due to its different symmetry.
Thus we have to expect that condition (11.8) also applies to olefins, with the restric-
tion that it concerns only s orbitals. In other words, ethylenic carbon atoms will obey
a “principle” of s-bond electrostatic balancing [222]:

Nlkr�1
kl l ¼

ð
rl(r)

jr� Rkj
dr ¼

X
m

ð
rml(r)

jr� Rkj
dr

¼ Nl � Npl

Rkl
þ Nplkr�1

pkll (11:9)

Let us now consider kr�1
pkll. A p atomic orbital is essentially a pure p orbital. If

there is any polarization (as will be discussed below), this will involve a very
small displacement Drpl of the centroid of the orbital. Then a monopole approxi-
mation of the p term of Eq. (11.9) suffices, giving

kr�1
kl l ¼

1� Npl=Nl

Rkl
þ Npl=Nl

jrl þ Drpl � Rkj
(11:10)

If this simple expression is sufficient to account for the discrepancies observed in
calculations of olefins based on alkane reference bonds [i.e., calculations using
Eq. (10.33) with F ¼ 0], we can claim that the “principle” (11.8) is, indeed, satisfied
by ethylenic hydrocarbons.

Turning now to direct theoretical evaluations, we consider jDrplj as the displace-
ment (on the C55C axis) of the centroid of the p orbital with respect to the center l. Of
course, such a displacement can differ from zero only if some hybridization is
allowed, which, in the case of a p orbital, must consist in admixture of the suitable
dp orbital. The hybrid in question was determined [222] from 4-31G calculations
with d polarization functions for carbon and optimization of all scale factors, followed
by a calculation of in situ valence orbitals, and of their characteristics, according to
Del Re and Barbier [143]. The inward shifts (on the C55C axis) of the p orbital cen-
troids are close to 0.03 Å (Table 11.1).

Applications of Eq. (11.10) are straightforward, using

jrl þ Drpl � Rkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ (Drpl)

2 � 2RDrpl cosw
q

(11:11)

where R is the length of the C(sp2)22k bond (k ¼ H or C(sp3)) and w is the angle it
forms with the axis of the carbon–carbon double bond. Experimental geometries and
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the ethylene reference populations Npl ¼ 1 and Nl ¼ 3:9923 e were used [222] to
solve (11.10) with the help of (11.11). Thus we deduce F from Eq. (10.35), given
here for gv ¼ 7

3:

Fkl ¼ � 3
7
Zeff
k Zeff

l

h
R�1
kl � (R�1

kl )8�
�
kr�1

kl l� kr�1
kl l8

�i

� 3
7
Zeff
k ql

�
kr�1

kl l� kr�1
kl l8

�
: (11:12)

For all their simplicity, the ideas embodied in Eq. (11.10) offer a realistic interpret-
ation explaining the essence of the modifications taking place in CC and CH bonds
due to the replacement of an sp3-hybridized carbon by an sp2 carbon atom.

Despite the marked differences in both geometric parameters and the SCF Dr
values between the molecules involved in this comparison, there are striking regu-
larities: the F value calculated for propene is, for all practical reasons, 3

4th that of
ethylene (which takes care of 3 CH bonds) plus 1

4th that of tetramethylethylene (for
the CC bond). Capitalizing on this idea, we may well consider transferable bond con-
tributions modeled after Eq. (11.12) and use them to generate new reference bond
energies satisfying Eq. (10.36).

This considerably simplified approach works extremely well in molecular calcu-
lations. The bottom line is that we can safely proceed with Eq. (10.37) as long as
we use the appropriate reference bond energies 1kl8, because these reference energies
enjoy a high degree of transferability.

Geometry Changes and Displacements of Charge Centroids

The problems to be solved are best illustrated by a typical example. Take 118, the
carbon–carbon bond energy in ethane with RCC8 ¼ 1:531Å; calculate the energy of a
C(sp3)22C(sp2) bond like that found in olefins. The latter is for reference charges,
which are 35.1 me for the sp3 carbon (as in ethane) and 7.7 me for the sp2 carbon
(as in ethylene). This transformation is schematically represented in Fig. 11.1.

This transformation involves (1) a change of charge, (2) a change of the bond
length, and (3) the displacement Dr of the p-orbital centroid, on the C55C axis,
with respect to the nuclear position of the sp2 atom (identified here as atom l ).
Before considering the change of charge, we concentrate on topics 2 and 3 with
the help of Eqs. (11.10)–(11.12).

TABLE 11.1. Inward Shifts, Drpl on the C55C Axis,
of p-Orbital Centroids

Molecule Bond kl Dr (Å)

Ethylene H22C(sp2) 0.0292
Propene H22C1(sp

2) 0.0281
H22C2(sp

2) 0.0299
Tetrametylethylene C(sp3)22C(sp2) 0.0280
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As regards the latter topics, attention must be given to the indices: Fkl mirrors, so
to speak, how nucleus k “sees” the electrons of atom l, but Flk represents nucleus l
in the field of the electrons of atom k. The sum Fkl þ Flk gives the total F for that k22l
bond.

The relevant bond distance Rkl8 of the initial molecule and the geometry of the final
product, namely, RCC and w (see Fig. 11.1), are known from the problem. The actual
calculation involves four steps: (1) calculating Dr as indicated earlier; (2) applying
the theorem (11.11), calculate the distance between the centroid of the p orbital on
atom l and the nucleus k; (3) then using the monopole approximation (11.10) to
obtain kr�1

kl l, the average inverse distance between the electrons on l and nucleus k;
and finally (4) using this kr�1

kl l result in Eq. (11.12) and finding Fkl. kr�1
kl l8 is

usually known from the context of the problem [as in the example depicted in
Fig. 11.1, where kr�1

kl l8 ¼ (R�1
kl )8] or must be calculated following steps 1–3. Note

that step 3 amounts to writing

kr�1
kl l ’

1
4

3
Rkl

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
kl þ (Drpl)

2 � 2Rkl Drpl cosw
q

2
64

3
75 (11:13)

Regarding step 1, we approach the problem by observing the following guidelines
suggested by direct computations of Dr.

For s systems (sp3 carbons and hydrogen), the charges are taken at their respective
nuclear positions. This is part of the monopole approximation (11.10). For the aryl
carbon atoms, we have Dr ¼ 0 for obvious symmetry reasons. This leaves us with
the olefinic double bonds. They are dealt with in the following manner.

The idea is to find representative C(sp2)22C(sp3) and C(sp2)22H bonds for general
use in applications to olefins, that is, to find an acceptable approximation that bypasses
lengthy computations of Dr for each molecule of interest. Let us first evaluate the
risks. Consider the C(sp2)22C(sp3) bond of tetramethylethylene, with Dr ¼ 0.0280
Å, formed from that of ethane (Fig. 11.1) with F ¼ 24.30 kcal/mol (details are
given in Example 11.1). Consider also a standard C(sp2)22H bond, calculated for
Dr ¼ 0.0290 Å and w ¼ 121:78, formed from that of ethane with F ¼ 21.87 kcal/
mol21 (Example 11.2). Now consider propene. On the side of the sp2 carbon carrying

Figure 11.1. The bond transformation C(sp3)22C(sp3) ! C(sp3)22C(sp2).
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the methyl substituent, direct calculations indicate that Dr ¼ 0.0299 Å. This
C(sp2)22C(sp3) bond is formed from that of ethane with F ¼ 24.53 kcal/mol,
which is 0.23 kcal/mol more negative than that of tetramethylethylene. At the
other end of the double bond of propene, in turn, the displacement is reduced to
0.0281 Å and the total F of the two hydrogens at that end is 23.53 kcal/mol.
For the third CH bond, that formed by the carbon bearing the methyl group F is
21.76 kcal/mol. The total F for the three CH bonds is thus 25.29 kcal/mol, which
is 0.32 kcal/mol less negative than 3 times the assumed reference,
3(21.87) ¼ 25.61 kcal/mol. Briefly, the price paid for this approximation is a discre-
pancy of 0.09 kcal/mol between the approximated and the direct results obtained for
propene. The selection of a standard value of 0.0290 Å, for the calculation of
C(sp2)22H bonds seem reasonable—that of ethylene itself is 0.0292 Å—as well as
the selection of the symmetric tetramethylethylene molecule, with Dr ¼ 0.0280 Å,
for the evaluation of a model C(sp2)22C(sp3) bond. These rules are applied in all
the following calculations of olefins.

Examples. Let us now work out some examples. The energies are given in
kcal/mol using the conversion factor 1 hartree ¼ 627.51 kcal/mol. Distances
and inverse distances are indicated in Å and Å21, respectively, with 1 bohr ¼
0.52917 Å. The angles w are reported in degrees. The calculations are made for refer-
ence charges, namely, 35.1, 7.7, and 13.2 me for sp3, ethylenic, and aryl carbons,
respectively.

Example 11.1. We begin with the CC bond of ethane, Rkl8 ¼ 1:531, assuming
kr�1

kl l8 ¼ (R�1
kl )8 for this s system. This bond is transformed into the

C(sp3)22C(sp2) bond of tetramethylethylene, with R ¼ 1.505, w ¼ 125.0 (exper-
imental geometry) and Dr ¼ 0.0280 (from a direct computation of Dr). The cosine
theorem (11.11) tells us that the centroid of the p orbital is at a distance of
1.521233 from the nucleus of the sp3 carbon. Using this result in (11.10), we get
kr�1

kl l ¼ 0:66268. Finally, Eq. (11.12) gives Fkl ¼ 24.076. For the calculation
of Flk (i.e., for the electrons of the methyl carbon in the field of the nuclear charge
of the sp2 carbon), we have kr�1

kl l8 ¼ (R�1
kl )8, kr

�1
kl l ¼ R�1

kl and Flk ¼ �0:225. The
total F for this transformation is thus F ¼ 24.30.

Example 11.2. We transform a H22C(sp3) bond, Rkl8 ¼ 1:08, into a H22C(sp2) bond,
Rkl ¼ 1.08. with Dr ¼ 0.0290. (The sp2 carbon is atom l.) For ethylene and, more
generally, for CH bonds in trans-olefins, w ’ 121.7. Using this angle, we get
kr�1

kl l ¼ 0:92264. For the original CH bond it is kr�1
kl l8 ¼ (R�1

kl )8. Thus we obtain
Fkl ¼ F ¼ 21.87 because Flk ¼ 0. For cis-olefins, we use w ¼ 117.4, the angle
calculated for cis-butene, and get F ¼ 21.67.

Example 11.3. To make things a little more interesting, we transform the
C(sp3)22C(sp2) bond of tetramethylethylene (Example 11.1) into a C(sp2)22C(sp2)
single bond like that found in 1,3-butadiene, assuming R ¼ 1.49, w ¼ 123, and
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Dr ¼ 0.028. The latter three entries give kr�1
kl l ¼ 0:66942. Now we calculate Fkl,

where l is the sp2 carbon of Example 11.1; thus we use R8 ¼ 1.505 and
kr�1

kl l8 ¼ 0:66268 here. Equation (11.12) gives Fkl ¼ 0.086. Flk represents the sp3

carbon of the original bond that is transformed into an sp2 carbon, again with
kr�1

kl l ¼ 0:66942, but with kr�1
kl l8 ¼ (R�1

kl )8. So we obtain Flk ¼ 23.940 and F ¼

Fkl þ Flk ¼ 23.85.

Example 11.4. Here we use the C(sp3)22C(sp2) bond of tetramethylethylene
and transform it into a C(Ar)22C(sp2) bond like that found in styrene, R ¼ 1.445,
w ¼ 126 (calculated geometry) with Dr ¼ 0.028. Let l be the C(sp2) atom of the orig-
inal bond, with Rkl8 ¼ 1:505 and kr�1

kl l8 ¼ 0:66268 (see Example 11.1). For styrene we
get kr�1

kl l ¼ 0:69007 and Fkl ¼ �0:575. For the aryl carbon atom and its electrons, it
is kr�1

kl l8 ¼ (R�1
kl )8 and kr�1

kl l ¼ R�1
kl . Remembering that qk ¼ 13.2 � 1023 e, we get

Flk ¼ 20.207 and, finally, F ¼ 20.78 for this transformation.

It is clear that some information is lost as a result of our approximation, specifi-
cally regarding the individual bonds formed by sp2 carbon atoms, but the total of
the F values in a molecule is expected to be generally reasonably accurate. The
salient feature of ethylenic double bonds, namely, the inward displacement of p

orbital centroids on the C55C axis revealed by direct calculations, and its important
role in energy calculations, can now be put in a clear perspective and efficiently tested
for large collections of molecules.

11.2 UNSATURATED SYSTEMS

Unsaturated hydrocarbons, such as alkenes, polyenic material, as well as aromatic
molecules, are our target. Carbonyl compounds are considered in Chapter 16.

The akl parameters are deduced from Eq. (10.41), but attention must be given to
the fact that s and p populations vary in inverse directions, Eq. (6.3), a circumstance
that affects akl and thus aklDqk.

The CC and CH bonds of ethane (Example 10.1), and the final selection
1CC8 ¼ 69:633 and 1CH8 ¼ 106:806 kcal=mol, are used to get the CC and CH bonds
found in unsaturated hydrocarbons by retaining both the contribution of Fkl, Eq.
(11.12), and the effect of charge variations described by Eq. (10.37). The reference
CC double bond of ethylene and the reference CC bonds of benzene, however,
roughly estimated along the lines described in Example 10.1, are deduced from the
appropriate CH bond energies and the energy of atomization of the corresponding
molecule, DE�

a , obtained from experimental data.
Examples 10.1 and 11.1–11.4 are used, along with a number of similar examples

presented below, to generate all the required C(sp2)22C(sp3), C(sp2)22C(sp2), and
C(sp2)22H bonds, including those formed by aryl carbons. Conjugation must there-
fore also be considered.

These topics are developed as follows.
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Calculation of p Systems

Consider the exact definition of akl from Eq. (10.32). When atom k is a sp2 carbon, we
can safely neglect the second- and higher-order terms because the Dqk values are
small, in favor of the simple approximation, Eq. (10.41). However, we must consider
both s- and p-electron densities and their variations. The appropriate first derivatives
(@Evs

k =@Nk)8 are indicated in Table 10.3.
Moreover, considering the shift of the p-orbital centroid, kr�1

kl l8 also depends on
whether we are describing s or p electrons. Briefly, two akl occur in unsaturated
systems, namely, askl and apkl for the s and p electrons, respectively.

Separating the variations of the s charges Dqsk from those of the p charges Dqpk ,
we write

aklDqk ¼ asklDq
s
k þ apklDq

p
k (11:14)

On the other hand, we have Dqk ¼ Dqsk þ Dqpk , meaning that the akl of Eq. (11.14) is
simply the weighted average of askl and apkl:

akl ¼
asklDq

s
k þ apklDq

p
k

Dqsk þ Dqpk
(11:15)

It turns out that the variations of s and p charges are not independent variables. They
obey, at least to a good approximation, a simple relationship [Eq. (6.3)]:

Dqsk ¼ mDqpk

where m (,0) describes how s populations at atom k increase when p populations
decrease, and vice versa. Combining the latter equation with (11.15), we find

akl ¼
maskl þ apkl
mþ 1

(11:16)

The technical difficulty encountered in applications of Eq. (11.16) comes from the
fact that calculated s charges appear to be considerably more basis-set-dependent
than are p charges, rendering the evaluation of m uncertain. Presently, the best esti-
mates are m ’ 20.955 for ethylenic molecules and m ’ 20.814 for benzenoid
hydrocarbons [129], but these estimates should be taken with a grain of salt. It
would be welcome if someone could figure out how to get better results.

Conjugation

The modifications taking place in CC and CH bonds due to the replacement of an
sp3-hybridized carbon by an sp2 carbon atom and the explicit introduction of the
s–p separation are important in applications of the energy formula (10.33) to
cover olefins.

At this point we have considered the merits of the function F and dealt with
monoolefins applying the same scheme as used for paraffins. In applications to
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polyunsaturated systems, such as 1,3-butadiene and aromatic hydrocarbons, it
appears that the function F does not translate all possible geometry-related effects.
Attention must be given to an important property of p systems—conjugation—
which is introduced as follows, taking butadiene as an example.

The electron diffraction investigation of the molecular structure of 1,3-butadiene
indicates that the planar trans form is predominating; in fact, no sign of other confor-
mations was observed [223], a result that is convincingly supported by ab initio MO
theory [224], at the level of minimal (STO-3G) and extended [4-31G, 6-31G, 6-31G�,
(7s 3pj3s) and larger] basis set calculations. Structural parameters were determined
[223,225] namely, R(C22C) ¼ 1.463+ 0.003, R(C55C) ¼ 1.341+ 0.002, and
R(C22H) ¼ 1.090+ 0.004 Å. While the double bond is, in essence, that of ethylene
itself (a fact that prompts us to treat all double bonds on the same footing), the single
CC bond of 1,3-butadiene is significantly shorter than the “usual” single bonds, that
is, those formed by two sp3 carbon atoms. The short single bond and the planar equi-
librium conformation have been attributed to p-electron delocalization, which gives
the single bond some amount of double-bond character and is most effective in the
planar molecule [226]. It became apparent, however, that delocalization was less
than predicted by the simple Hückel method [227]; the CC bond shortening was
then attributed to the change in hybridization of the bond-forming atoms [228].
These points merit consideration in the interpretation of anticipated energy effects
resulting from steric constraints that would force noncoplanarity of the double-
bond system.

Extended basis set MO calculations indicate that, indeed, resonance is the main
factor responsible for the shortening of the CC single bond in the planar s-trans
conformation of 1,3-butadiene [229,230]. In this conformation the distinction
between s and p electrons is evident. For the perpendicular case, on the other hand,
it is always possible to define one localized p MO on each C55C fragment. The SCF
localized p MO located on one of the C55C moieties has s tails on the other C55C
fragment and the s MOs of each C55C moiety have components on the 2py atomic
orbitals associated with the other fragment. This effect, known as hyperconjugation,
has been found to stabilize the perpendicular form, largely compensating for the
lack of p conjugation, and leads to a similar shortening of the central CC bond [230].

Ab initio analyses thus substantiate the concept of p conjugation in the planar
conformation and extend it to hyperconjugation in perpendicular forms. Direct calcu-
lations of resonance energies lead to estimates in the neighborhood of �10 kcal/mol
[224,230]. Resonance energy is now defined in its original sense as the energy differ-
ence between the conjugated system and its reference state without resonance; the
latter is represented by a model wavefunction consisting of strictly localized nonreso-
nating p molecular orbitals. Hyperconjugation energy is defined in a similar manner
[230]. The hyperconjugative stabilization in the perpendicular form at its SCF
optimum distance (�1.5 Å) turns out to be almost as large (�8.0 kcal/mol) as the
p conjugation energy in the equilibrium planar conformation (�10.4 kcal/mol at
�1.48 Å) [230]. This change from resonance to hyperconjugative stabilization of
the central CC bond, however, is not reflected in the function F, nor is it in theP

k

P
l aklDqk term because the latter considers only the effects of changing electron
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populations at the bond-forming atoms under otherwise identical conditions. Rather,
the change in geometry from a nonplanar to a planar form that is at the origin of the
gain in conjugation at the expense of a hyperconjugative stabilization should be
accounted for and accommodated by an appropriate change of the reference bond
energy 18CC of the central CC single bond.

The extent of the change in 18CC, however, is difficult to evaluate theoretically. A
valuable rough estimate is offered by the SCF results discussed above [230] indicating
that hyperconjugative stabilization is less effective (by �2.4 kcal/mol) than p conju-
gation. This estimate is similar to the familiar thermochemical resonance energy of
some 3 kcal/mol [231] and suggests that the reference bond energy 18CC in a planar
resonating arrangement should be larger by approximately that amount relative to that
applicable in a markedly nonplanar situation. In practical applications, a uniform
value of �2.8 kcal/mol seems a reasonable, but perforce approximate, compromise.

While p conjugation and hyperconjugation are certainly important contributions to
the thermochemical stability of CC single bonds embedded in double-bond systems,
molecules featuring this arrangement still appear to be strongly localized (i.e., poorly
conjugated). Of course, this fact is well known from simple Hückel theory with
equal CC resonance integrals leading to alternating p-bond orders. In this sense,
keeping in mind the features linked to p conjugation versus hyperconjugation revealed
by SCF theory, it remains valid to apply our energy formula (10.33) to conjugated
systems with the understanding that resonance effects must be taken into consideration.

Reference Bonds

Here we start off with the CC and CH reference bond energies of ethane and use them
to get the CC and CH bonds occurring in unsaturated hydrocarbons by considering
both the contribution of F [Eq. (11.12)] and the change of charge given by alkDql
[Eq. (10.37)]. The new reference bonds thus obtained are indicated in Table 11.2.

The appropriate transformations are described by Examples 11.5–11.11. The units
are those used for Examples 10.1 and 11.1–11.4. The alk parameters, in kcal mol21

TABLE 11.2. Selected Reference Bonds and Their Energies (kcal/mol)

Bond Type Occurrence Rkl (Å) qk8 (me) ql8 (me) Energy

118 C(sp3)22C(sp3) Ethane 1.531 35.1 35.1 69.63
128 C(sp2)22C(sp2) Ethene 1.34 7.7 7.7 139.37
138 C(Ar)<:C(Ar) Benzene 1.397 13.2 13.2 115.39
148 C(sp3)22C(sp2) Olefins 1.505 35.1 7.7 77.67
158 C(sp2)22C(sp2) Butadiene 1.49 7.7 7.7 89.14
168 C(Ar)22C(sp3) Toluene 1.48 13.2 35.1 79.33
178 C(Ar)22C(sp2) Styrene 1.445 13.2 7.7 89.69
188 C(Ar)22C(Ar) Aromatics, conjugated 1.397 13.2 13.2 91.21
198 C(Ar)22C(Ar) Biphenyl 1.49 13.2 13.2 88.89
1108 C(sp3)22H Ethane 1.08 35.1 211.7 106.81
1118 C(sp2)22H Ethene 1.08 7.7 211.7 110.69
1128 C(Ar)22H Benzene 1.08 13.2 211.7 111.41
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me21 units, are for the interatomic distance specified in parentheses, in Å. This dis-
tance is that of the initial bond because the change in geometry is part of F. The
derivative (@El/@Nl)8 ¼ 20.375 au, on the other hand, is that of the newly formed
sp2 carbon (¼carbon l ). This approach implicitly maximizes the association of all
energy changes resulting from the rehybridization of a carbon atom with the multiple
bond created during this rehybridization. In this scheme, the gain in electronic charge
(e.g., 227.4 me) in going from the ethane to the ethylene carbon atom, is considered
to take place at the s level; the fact that a p orbital “separates out” with a concurrent
change of the atom’s “own” energy is regarded as part of the newly formed multiple
bond and its energy. The alk parameters are easily obtained from Eq. (10.41) remem-
bering that v ¼ 3 for the sp2 carbon atoms.

Example 11.5. 148 is obtained from 118 as 148 ¼ 118þ asC0C(7:7� 35:1)þ F, with
asC0C(1:531) ¼ �0:4503 and F ¼ 24.30, calculated in Example 11.1.

Example 11.6. 158 follows from 148, i.e. 158 ¼ 148þ asC0C(7:7� 35:1)þ F þ
conjugation, with asC0C(1:505) ¼ �0:4567 and F ¼ 23.85 (see Example 11.3).
Conjugation is accounted for as indicated earlier and is tentatively estimated at
2.8 kcal/mol.

Example 11.7. The C(Ar)22C(sp3) bond like that found in toluene is given by
168 ¼ 118þ asC0C(13:2� 35:1)þ F, with asC0C(1:531) ¼ �0:4503. F is calculated by
observing that kr�1

kl l8 ¼ (R�1
kl )8 for ethane and kr�1

kl l ¼ R�1
kl for toluene, with

rC0C ¼ 1:48 (calculated geometry), which gives F ¼ 20.169 and 168 ¼ 79:33.

Example 11.8. The conjugated CC single bond like that of styrene is deduced from 148
as 178 ¼ 148þ asC0C(13:2� 35:1)þ F þ conjugation, where asC0C(1:505) ¼ �0:4567.
F ¼ 20.78 (Example 11.4), and conjugation adds 2.8 kcal/mol.

Example 11.9. 188 denotes a conjugated carbon–carbon single bond formed by
two aryl sp2 carbon atoms, at a distance 1.397 (which is the experimental distance
in benzene [232]). This bond is calculated from 118, that is, 188 ¼ 118þ 2asC0C�
(13:2� 35:1)þ F þ conjugation, with asC0C(1:531) ¼ �0:4503. Finally, F ¼ 20.942
is obtained by observing that kr�1

kl l8 ¼ (R�1
kl )8 and kr�1

kl l ¼ R�1
kl , with Rkl8 ¼ 1:531 and

Rkl ¼ 1:397.

Example 11.10. 198 represents a nonconjugated CC bond between aryl carbon
atoms, like that of biphenyl, with R ¼ 1.49 [233], F ¼ 20.14. Remembering that
168 was obtained from 118 by replacing one CH3 of ethane by a phenyl group, the
central CC bond of biphenyl is approximated as 2(168� 118)þ 118þ F ¼ 88:89.

Example 11.11. The reference energies of C(sp2)22H bonds are deduced from 1108,
namely, 1118 ¼ 1108þ asC0H(7:7� 35:1)þ F with asC0H(1:08) ¼ �0:2102 and F ¼

21.87 (Example 11.2), whereas F ¼ 0 for 1128 ¼ 1108þ asC0H (13:2� 35:1) ¼ 111:41.
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The reference bond energies reported in Table 11.2 faithfully mirror the con-
straints specified by Eq. (10.34) and described in Examples 10.1 and 11.1–11.11.
Although covering a wide range of possible situations, their interrelations turn out
to be very simple in the end; clearly established, they are shown to advantage
through straightforward uncomplicated applications of Eqs. (10.36), (10.37), and
(11.12). They could perhaps be improved for general use. But we take them as
indicated, for a good reason—as they are, they lead to atomization energies and
standard enthalpies of formation that are in excellent agreement with their experi-
mental counterparts, usually within experimental uncertainties.

The akl Parameters

Let us now develop the akl parameters of Eq. (10.37).
With sp2 carbons, whose charges vary concurrently at the s and p levels,

Dqsk ¼ mDqpk , the aklDqk term becomes asklDq
s
k þ apklDq

p
k ; that is, according to

Eq. (11.16), we obtain

akl ¼
maskl þ apkl
mþ 1

Present knowledge about atomic charges of sp2 systems is unfortunately insufficient;
it does not permit direct evaluations of m. Extensive numerical analyses, namely,
comparisons of experimental atomization energies with their all-theoretical formu-
lation leaving m as the only unknown parameter, were thus carried out. They indi-
cated that [109,129,192]

m ’ �0:955 for olefins
’ �0:814 for nonsubstituted aromatic C atoms
’ �0:90 for substituted aromatic C atoms

(By “nonsubstituted aromatic carbons,” we mean C atoms not engaged in a bond with
a nonaromatic carbon, as in toluene, for example.)

Now we turn to Eq. (10.41) for akl. The derivatives (@Ek/@Nk)8 are listed in
Table 10.3.

The average inverse distance between the electrons on k and nucleus Zl (tran-
scribed here by Rkl, in Å) were taken at RCH ¼ 1.08 (s electrons of sp3 or sp2 C),
RCH ¼ 1.10 (p electrons of sp2 carbon), RCC ¼ 1.53 (sp3–sp3 bonds), RCC ¼ 1.34
(sp2 s electrons), and 1.30 Å (sp2 p electrons) for carbon–carbon double bonds;
RCC ¼ 1.46 (sp2–sp2 single bond) for s electrons, and, 1.48 Å for the p electrons
of that bond. Finally, RCC(sp

2–sp3) ¼ 1.53 for s electrons and 1.552 for the p elec-
trons of the sp2 carbon atom. For the aromatic carbons, RCC ¼ 1.40 for the distance
between aryl carbons and RCH ¼ 1.08 for C(Ar)22H.

Example 11.12. Typical values are asCC(1:40) ¼ �0:4850 and apCC(1:40) ¼
�0:4614 kcal mol�1 me�1 for the aromatic CC bonds, asCH(1:08) ¼ �0:2102, and
apCH(1:08) ¼ �0:1866 kcal mol�1 me�1 for the CH bonds. Using Eq. (11.16) with
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m ¼ 20.8137, one finds aspCC ¼ �0:3583 and aspCH ¼ �0:0835 kcal mol�1 me�1 for
these bonds. On the other hand, for the C(Ar)22C(sp3) bond like that occurring in
toluene, we have for the aryl carbon asCC(1:48) ¼ �0:4631, apCC(1:48) ¼ �0:4394
and hence aspCC ¼ �0:226 kcal mol�1 me�1 for m ¼ 20.9.

Although admittedly rough, these approximations turn out to give reasonably
accurate final results in comparisons of energy calculations with experimental data.
The final akl data are listed in Table 11.3.

Calculation of m ’2 0.90. For an aromatic carbon linked to a nonaromatic C,P
l akl is 2aCC

sp(Ar) þ aCC
sp(nAr), where aCC

sp(Ar) is used for benzenic bonds and
aCC
sp(nAr) is for the bond formed with the nonaromatic carbon. The change in
charge at the aromatic C is DqC (relative to benzene), contributing DqC

P
lakl to

DEa
�. On the other hand, this DqC is also part of

P
qC, hence of

P
DqH, and contri-

butes 2DqC � aHC. The total contribution of DqC is thus

[2aspCC(Ar)þ aspCC(nAr)� aHC]DqC

Of course, in this calculation, DqC must not be included in the evaluation of DqH.
Using Eq. (11.16), as well as DqC ¼ (m þ 1)DqC

p and d ¼ 157 DqC
p, we find that

the energy contributed by DqC is (in au),

m[2asCC(Ar)þ asCC(nAr)� aHC]
d

157
þ [2apCC(Ar)þ apCC(nAr)� aHC]

d

157

where d is the 13C shift relative to benzene. Inserting here the appropriate akl’s (in au)
one obtains the energy contributed by DqC, namely (in kcal/mol)

�(1:2766mþ 1:1636)
627:51
157

� �
d ¼ �0:060 d (11:17)

TABLE 11.3. Selected akl Parameters (kcal mol21 me21)

Bond kl m akl
sp

C(sp3)22C(sp3) — 20.488
C(sp3)22C(sp2) — 20.488
C(sp2)22C(sp3) 20.955 0.275
C(sp2)22C(sp2) 20.955 0.258
C(sp2)55C(sp2) 20.955 20.183
C(Ar)22C(Ar) 20.814 20.358
C(Ar)22C(sp3) 20.90 20.226
C(sp3)22H — 20.247
C(sp2)22H 20.955 0.454
C(Ar)22H 20.814 20.083
H22C(sp3, sp2) — 20.632
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for m ¼ 20.8997. It is clear that the final result depends heavily on m, far beyond the
precision of present SCF charge analyses. Inspection of molecules corresponding to
this situation has consistently led to this 20.060 parameter; hence our choice
m ¼ 20.90. The selection of RCC ¼ 1.397 for aCC(Ar) and RCC ¼ 1.48 for
aCC(nAr) offers the best results overall.

Additional features need be considered in actual numerical calculations of benze-
noid hydrocarbons, such as questions pertaining to the planarity (or lack of it) of
complex structures. They are presented in Chapter 14.

11.3 RECAPITULATION

The Hellmann–Feynman theorem offers a convenient way to highlight the main fea-
tures of chemical binding. By choosing the nuclear charges as parameters, it becomes
possible to define the binding of each individual atom in a molecule without having
recourse to an explicit partitioning of that molecule into atomic subspaces.

Thus we know about “atoms in a molecule” uniquely defined by the potentials at
their nuclei. By the same token, explicit calculations of the electronic kinetic energies
and of all two-electron integrals are avoided.

Consideration of the valence region of a ground-state molecule leads to a formula
for the energy of atomization in an approximation akin to the Thomas-Fermi model.
The final result, from Eq. (10.33), is

DE�
a ¼

X
k, l

1kl8 þ
X
k

X
l

aklDqk þ F � Enb

No set of invariant, empirically determined bond energies 1kl
empir. can ever describe

electroneutral molecules. But electroneutrality must be preserved. This is achieved
by the

P
k

P
lakl Dqk term. In passing, we should keep in mind that these bond ener-

gies are extremely sensitive to the atomic electronic charges; as revealed by the akl
parameters of Table 10.4, a gain of �1 me at the ends of a sigma bond augments
its energy by �1 kcal/mol, which is a lot to reckon with. On the other hand, only
most precise charge results are of any use in bond energy calculations. One
may thus rightfully wonder whether the akl parameters propounded here are suffi-
ciently accurate. A few words about this matter are in order.

The aklDqk term describes how the nuclear–electronic, interelectronic, and elec-
tronic kinetic energies change along with the charge on atom k bonded to atom l.
Its (1=vk)[(@Ek=@Nk)8Dqk þ � � � ] part pertains solely to atom k. The accompanying
change of nuclear–electronic attraction due to the presence of nucleus Zl is Zl

eff �
Dqk/Rkl, which, after multiplication by 3

7, accounts for the corresponding changes
of interelectronic and kinetic energies as well. Any departure from constancy of
the Thomas–Fermi ratio 3

7, which is unlikely to exceed +3%, affects just that
part of aklDqk. On the other hand,

P
k

P
laklDqk represents only a small part,

approximately 3–4% of DEa
�. This explains that, all things considered, our present
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use of the Thomas–Fermi approximation is no cause of concern in terms of the
accuracy of the method.

The reason for F is not too far to seek. In the general context of charge
distributions, the role of an atom cannot be described solely by reference to the
number of electrons it contributes to the molecular fabric. The centroid of its
integrated charge density is equally important.

This is where F [Eq. (11.12)] comes in. The approximations that were introduced
partly to gain physical insight and partly to facilitate numerical applications rest on a
simplifying assumption, namely, the point-charge model for the saturated hydro-
carbons or, more precisely, on the approximate validity of Eq. (11.5). These
approximations cannot be proved a priori to be of minor import. However, the
contamination introduced with their use is certainly minimal because they affect
only a minor part (,5%) of the dissociation energies to be calculated. The final
results, namely, comparisons between calculated and experimental energies,
provide an a posteriori argument for claiming that these approximations are in fact
very good ones. But then they must be interpreted as general rules that the partitioning
of electron densities obtained from accurate electronic wavefunctions must obey. This
is especially important in any extension of an energy theory to cover olefins as well as
paraffins; for that extension requires explicit introduction of the s–p separation. As a
consequence, the point-charge approximation must be reformulated as a “principle”
valid for the averages of electrostatic potentials of the s orbitals of any given atom in
a hydrocarbon molecule. This has two distinct practical advantages. It suggests a
simple numerical correction that allows applications to ethylenic hydrocarbons of
the same scheme (in terms of local charges) as used for paraffins and assigns that
correction an extremely simple physical interpretation (that of a p centroid displace-
ment) amenable to numerical evaluation from accurate ab initio computations. On the
other hand, it involves three important conceptual features: (1) the notion of in situ
atomic orbitals, which must now be introduced explicitly, (2) the postulate that
there is a Mulliken-type partitioning of the molecular electron density into atomic
orbital contributions that obey the “principle of orbital balancing,” and (3) the impli-
cation that a CH bond or a CC bond in an olefin posseses the same basic properties as
in paraffins, except for the effective net charges of the atoms involved. The remark-
ably effective orbital balancing described here signals a general propensity of the
local electronic structures to resist modifications and suggests the idea that
atomic charge variations should perhaps also be regarded as events occurring
most reluctantly.

Coming now to conjugation, results like those due to Malrieu et al. play an import-
ant role in the discussion of polyunsaturated systems. They offer the theoretical back-
ground for the well-known thermochemical stabilization of a chemical bond due to
conjugation. This stabilization is not reflected in the

P
k

P
l aklDqk þ F part of

Eq. (10.33). It must be included in the definition of the relevant reference bond
energy. This formulation, which is the simplest possible one, is adequate because
it turns out that, for all practical purposes, the amount of conjugation associated
with a given bond can be treated as a constant (representing a rough but acceptable
approximation) unless, of course, changes of molecular structure force a disruption
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of conjugation. This causes no difficulties in applications of (10.33), but requires
some advance knowledge about molecular structure.

The flexibility and internal consistency of the present theory are well illustrated by
the transformations that generate the sets of parameters required for the unsaturated
hydrocarbons from those of their saturated models. But most importantly they
preserve the original form and great simplicity of the basic bond energy formula,
1kl ¼ 1kl8 þ aklDqk þ alkDql, as well as its accuracy.

This bond energy theory is to some extent a further step toward solving a persistent
problem of theoretical chemistry; bridging the gap between the apparent simplicity of
observed molecular behavior and the intricacies and ambiguities that plague the trans-
lation of accurate quantum-mechanical results into simple chemical concepts and
rules. The remarkable accuracy with which our formulas allow prediction of atomiza-
tion energies is a strong indication that hidden regularities can be discovered as a
result of patient processing of general theory, but the price to be paid is that the
use of final equations like our bond energy formula often rests on simplifying
assumptions that, as mentioned before, cannot be proved a priori to be of minor
import. The agreement within experimental accuracy of many predicted and exper-
imental results provides an a posteriori argument for claiming that these approxi-
mations are satisfactory. The internally coherent picture thus obtained provides a
strong indication that the analysis of accurate ab initio computations into models,
rules, properties, and interpretations meaningful to chemists should be carried out
along the lines emerging from this work.
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CHAPTER 12

BOND DISSOCIATION ENERGIES

12.1 SCOPE

Consider a polyatomic molecule and focus attention on a particular atom pair, k and l,
forming a bond with intrinsic energy 1kl. This energy cannot be observed in isolation.
What can be measured (in principle) is Dkl, the bond dissociation energy, that is, the
energy required to break up that bond. Now, Dkl depends on a number of events
accompanying bond breaking, including possible geometry and hybridization
changes affecting the fragments. Briefly, Dkl=1kl in polyatomic molecules.1 It is
understood that Dkl, like 1kl, refers to molecules at their potential minimum.

Intrinsic bond energies and bond dissociation energies meet different practical
needs. The former play an important role in the description of ground-state molecules.
Dissociation energies come into play when molecules undergo reactions. Now, any
interaction between a molecule and its environment (such as complex formation or
adsorption onto a metallic surface, for example, or hydrogen bonding) affects its
electron distribution and thus the energies of its chemical bonds. If we figure out
the relationship between dissociation and intrinsic bond energies, we could begin
to understand how the environment of a molecule can promote or retard the

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
Copyright # 2009 John Wiley & Sons, Inc.

1For diatomic molecules, of course, DE�
a ¼ 1kl ¼ Dkl. In polyatomic molecules, consideration of a stepwise

cleavage of all the bonds gives DE�
a ¼

P
k,l Dkl, which does not mean that the individual dissociation

energies are the same as the intrinsic bond energies of the original molecule. In methane, for example,
1CH ¼ 104.86 kcal/mol, but the dissociation energy accompanying the cleavage CH4 ! CH3† þ H is
DCH ¼ 111.4 kcal/mol.
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dissociation of one or another bond of particular interest in that molecule. This
outlook hints at a rich potential of future research exploiting charge analyses to
gain insight into bond energies, first, and, going from there, into matters of great
import regarding the dissociation of chemical bonds.

The energy required to break up a molecule at equilibrium, say, K–L, into
fragments K† and L†

K� L �! K� þ L�
with atoms k[ K and l [ L, is defined by

Dkl ¼ DE�
a (KL)� DE�

a (K�)� DE�
a (L�) (12:1)

where DE�
a (KL), DE

�
a (K�), and DE�

a (L�) are the appropriate ground-state atomization
energies of the reactant K–L and of the fragments K† and L†, respectively, in their
hypothetical vibrationless state at 0 K. (One or both reaction products could be
atoms, depending on what K–L is.)

The atoms k[ K† and l [ L† form the bond with intrinsic energy 1kl that keeps the
fragments K and L united in the original molecule. We want to determine how Dkl

and 1kl are related to one another.

12.2 THEORY

Consider the bond-by-bond partitioning of DE�
a (KL) shown in Eq. (10.2), but rename

the bonds as follows

DE�
a ¼

X
t,v

1tv � Enb (12:2)

to avoid confusion with the k22l bond under scrutiny. When we calculate DE�
a (KL),

the summation in (12.2) obviously collects all existing bonds, including the k22l
bond. Here we focus on the k22l bond. So we subdivide the right-hand side of
Eq. (12.2) and consider only the bonds found in the molecular subunit K and the non-
bonded interactions involving only the atoms belonging to K. The sum of all these
contributions is DE�

a (K). This is the part of DE�
a (KL) that is associated with

the group of atoms of K as it exists in that particular molecule KL prior to its dis-
sociation. We proceed similarly with the subunit L and obtain DE�

a (L). The sum
DE�

a (K)þ DE�
a (L) thus collects the intrinsic energies of all the bonds found in the

original molecule except one, 1kl, and all the nonbonded interactions, except those
between the atoms of the subunit K and those of the subunit L, represented by
Enb(K †† L). The energy balance satisfying exactly Eq. (12.2) for the original
molecule KL is therefore

DE�
a (KL) ¼ DE�

a (K)þ DE�
a (L)þ 1kl � Enb(K† †L) (12:3)

When K and L are identical in the molecule (as in CH322CH3, for example, but not
in HOH ††† OH2), each of these groups is necessarily electroneutral. Electroneutral
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subunits in a molecule, taken exactly as they are in molecules such as KK and LL,
are identified by the superscript “8” Under these conditions, it follows from
Eq. (12.3) that

DE�
a (K8) ¼

1
2
[DE�

a (KK)� (1kl � Enb(K † †K))] (12:4)

which is useful in numerical applications.
The energy formulas [Eqs. (12.1)–(12.3)] translate straightforward applications of

first-principle energy conservation. No hypothesis is made, other than that regarding
the assumed validity of separating the molecular binding energy into bonded
and nonbonded contributions [Eq. (12.2)]. Equation (12.1) features the dissociation
energy Dkl and Eq. (12.3), the corresponding intrinsic bond energy 1kl. At last we
can examine how these bond terms are related to one another.

The key argument is rooted in a simple observation concerning any dissociation
KL! K† þ L†. The individual subunits K and L are in general not electroneutral
while they are part of the original host molecule, whereas the corresponding
radicals certainly satisfy electroneutrality. A charge neutralization accompanies
the transformations K ! K† and L ! L†. This constraint solves our problem. A
few examples2 (Table 12.1) help us understand why this argument is important.

TABLE 12.1. Net Charges (me) and DE�
a (K) Energies

(kcal/mol) of Methyl, Ethyl, and Isopropyl Groups in Selected
Host Molecules

K Host Molecule Charge DE�
a (K)

CH3 CH4 9.05 314.53
CH3COCH3 3.60 318.45
CH3CH3 0.00 320.34
CH3C2H5 22.65 322.15
CH3i-C3H7 25.02 323.80
CH3OCH3 210.47 327.50

C2H5 C2H5COC2H5 33.60 591.50
C2H5CH3 2.65 610.81
C2H5C2H5 0.00 612.78
C2H5OC2H5 22.59 615.09

i-C3H7 i-C3H7COi,C3H7 50.30 875.00
i-C3H7CH3 5.02 903.63
i-C3H7Oi-C3H7 3.55 904.50
i-C3H7i-C3H7 0.00 906.67

2The DE�
a (K) energies were derived from Eq. (12.2) by means of bond-by-bond calculations [Eq. (10.37)]

and Del Re’s approximation [Eq. (10.3)] for the nonbonded contributions [234,235]. Atomization energies
of the host molecules, calculated in precisely the same manner, agree within �0.2 kcal/mol (average
deviation) with their experimental counterparts.
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These examples indicate (1) the net charge of K (i.e., to what extent K departs from
exact electroneutrality as long as it is part of its host molecule) and (2) the corres-
ponding response in DE�

a (K) energy (i.e., how K “feels” this departure from
electroneutrality).

This response is surely significant, even for small departures from electroneutral-
ity. A fragment K increases its thermochemical stability when it gains electronic
charge from its environment: DE�

a (K) becomes larger.
Let us now profit by what we have learned from these results and develop our

strategy with the help of the examples worked out for the methyl groups. These
groups differ from one another in DE�

a (K) energy, and we know by how much.
Therefore, it suffices to know how any one of them differs from the true CH3†

radical in order to gain the same information for the other CH3 groups. A convenient
reference is the neutral CH3 of ethane because it is isoelectronic with CH3†. Its
DE�

a (K) value is deduced from (12.4) and is written DE�
a (K8). This choice is

convenient because it associates energy changes DE�
a (K)� DE�

a (K8) with charge
neutralization—hence the term charge neutralization energy (CNE).

The idea embodied in the concept of charge neutralization is simple: molecular
subunits that are not individually electroneutral in the host molecule must impera-
tively restore their correct numbers of electrons when dissociation takes place.

Electrons come in whole numbers.
The methyl group of CH4, for example, is electron-deficient by 9.05 me. When

recovering this charge during the cleavage CH4 ! CH3
† þ H, its energy decreases

by CNE ¼ 25.81 kcal/mol, meaning that DE�
a (CH3) increases by that amount.

Similarly, during the dissociation C2H522CH3 ! C2H5† þ CH3†, when the CH3 of
propane restores its electroneutrality by losing its excess electronic charge, 22.65
me, its energy increases by CNE ¼ 1.81 kcal/mol. At the same time, the energy of
the C2H5 moiety that recovers that electronic charge decreases by 1.97 kcal/mol.
The total CNE accompanying this bond cleavage is thus 20.16 kcal/mol.

The generalization of these arguments is straightforward. CNE is a pivotal concept
that permits us to relate any K in a molecule, described by DE�

a (K), to the correspond-
ing electroneutral K8, described by DE�

a (K8). In order to learn how any K embedded
in its host molecule differs in energy from the ground-state radical K†, it suffices to
know once and for all how K8 differs from K†.

This is the so-called reorganizational energy

RE ¼ DE�
a (K8)� DE�

a (K�) (12:5)

which reflects all possible geometry and hybridization changes accompanied, of
course, by significant redistributions of electronic charge. The selection of DE�

a (K8)
as a reference is only one of the possible choices. It is arbitrary but convenient
because it makes good sense to first get the number of electrons right, then relax every-
thing else. Having now secured this idea, there is an easy way of exploiting it.

Two radicals are formed in any bond dissociation KL ! K† þ L†. For the problem
at hand, it is more convenient to consider them jointly rather than proceeding with
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separate calculations of the individual CNE contributions, which are DE�
a (K)�

DE�
a (K8) on one hand and DE�

a (L)� DE�
a (L8) on the other hand. The sum

DE�
a (K)þ DE�

a (L) differs in principle from that of the corresponding electroneutral
fragments, DE�

a (K8)þ DE�
a (L8). The difference between these sums is CNE:

CNE ¼ DE�
a (K)� DE�

a (K8)
� �

þ DE�
a (L)� DE�

a (L8)
� �

(12:6)

Now, using Eq. (12.3), it follows that

CNE ¼ DE�
a (KL)� 1kl þ Enb(K † †L)� DE�

a (K8)� DE�
a (L8) (12:7)

Equation (12.7) is exact.
It is important in another way—it is the key for the description of bond disso-

ciation energies.
Indeed, using here the definition of Dkl [Eq. (12.1)] and also that of reorganiza-

tional energy [Eq. (12.5)], we deduce from (12.7) that

Dkl ¼ 1kl � Enb(K † †L)þ CNEþ RE(K)þ RE(L) (12:8)

This energy formula [234,235] is general and suffers from no approximations in
that all the appropriate bonded and nonbonded contributions are formally accommo-
dated and because the electroneutrality requirements are met in the definition of
reorganizational energy. Only dissociations yielding electroneutral products need
be considered as the formation of ions, KL! Kþ þ L2, require no more than
final corrections involving the ionization potential of K and the electron affinity of L.

The formula for Dkl contains energy terms, namely, 1kl and Enb(K †† L), which
depend only on the properties of the reactant KL. The calculation of CNE,
however, requires additional information for use in Eq. (12.4). Finally, this
formula also contains information about the products, which is included in the reor-
ganizational energy terms. In other words, there is no way that dissociation energies
could be predicted exclusively in terms of the reactant’s groud-state properties.
Although unfortunate, this point must be clear in our minds: Eq. (12.8) is only
capable of telling why Dkl and 1kl are different. Yet again, this is instructive,
because all the terms appearing in (12.8) are understood on physical grounds.

The true merits of this equation are revealed by a survey of the leading terms
governing bond dissociations when the cleavage occurs (1) in the “interior” of the
molecule (i.e., when both K and L are polyatomic groups), (2) in its peripheral
region [i.e., when K (or L) is an atom], or (3) when it concerns “exterior”
bonds formed by a molecule, such as hydrogen bonds. These topics shall be
discussed shortly.

The application of (12.8) to diatomic molecules merits a few words, to help develop
familiarity with this equation. Evidently, Enb ¼ 0 for these molecules. Eq. (12.5)
gives RE(K) ¼ DE�

a (K8) because DE�
a (K�) ¼ DE�

a (atom K) ¼ 0. Equation (12.2)
becomes DE�

a (KL) ¼ 1kl. Using it in Eq. (12.7), we get CNE þ RE(K) þ RE(L) ¼
0 for any diatomic molecule. Finally, Eq. (12.8) yields the well-known result
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Dkl ¼ 1kl. On the other hand, Eq. (12.4) shows that DE�
a (K8) ¼ 0, meaning that

RE(K) ¼ 0 when K is an atom. This means that CNE ¼ 0 for diatomic molecules.
Now, CNE accounts for the fact that any charge imbalance affects the chemical
bonds and the nonbonded terms making up the energies of the subunits K and L.
For that reason it concerns only polyatomic subunits. In writing CNE ¼ 0 for hetero-
nuclear diatomic molecules, it is understood that the charge neutralization accompa-
nying their cleavage is part of 1kl.

12.3 NONBONDED INTERACTIONS

Although small, the nonbonded interactions Enb(K †† L) play a role in accurate appli-
cations of Eq. (12.8). Selected results are presented in Table 12.2, for future use.

The approach is that adopted earlier for Enb [Eq. (10.3)], using the point-charge
model, which seems reasonable for describing interactions between distant atoms,
at least in sigma systems. The charges and the geometries are the same as those
used earlier for the total nonbonded interactions represented by Eq. (10.3).

Calculations of this sort are tedious, but still require some attention. The reward
is found in the fact that we are now satisfied with the idea that these terms are,
indeed, very small and unlikely to distort in any way the overall picture offered by
this theory.

TABLE 12.2. Nonbonded Interactions (kcal/mol)

R1 R2 Enb(R1 †† R2) Enb(R1 †† H)

CH3 CH3 20.225 0.046
CH3 C2H5 20.196 —
CH3 n-C3H7 20.189 —
CH3 i-C3H7 20.175 —
CH3 n-C4H9 20.196 —
CH3 i-C4H9 20.181 —
CH3 s-C4H9 20.171 —
CH3 t-C4H9 20.164 —
C2H5 C2H5 20.167 0.039
C2H5 n-C3H7 20.159 —
C2H5 i-C3H7 20.133 —
n-C3H7 n-C3H7 20.152 0.036
i-C3H7 i-C3H7 20.107 0.018
n-C4H9 n-C4H9 20.167 0.038
i-C4H9 i-C4H9 20.138 0.028
s-C4H9 s-C4H9 20.116 0.008
t-C4H9 t-C4H9 20.06 20.019

The atoms are positioned as in the parent hydrocarbons, using experimental
or calculated (STO-3G) geometries. The charges correspond to the refer-
ence atomic charge, qC ¼ 35.1 me for ethane.

Source: Reproduced from Ref. 234.
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12.4 SELECTED REORGANIZATIONAL ENERGIES

The heats of formation of alkyl radicals are comprehensively reviewed [236]. In
our calculations [234], two sets were considered: those of Castelhano and Griller
[237] and a set of DHf(R†) values given in a critical selection [238]. Although
some measurements were carried out in solution, they can be regarded as being equiv-
alent to gas-phase data to a good approximation, for reasons given in detail elsewhere
[237,239]. Our “balanced” selection of DHf(R†) values [234] is supported by
more recent experimental data [237,240] and a critical review of earlier work
[241]. The atomization energies of these radicals, DE�

a (K†), reported in Table 12.3
were deduced from Eq. (9.6), valid for nonlinear molecules. The reorganizational
energies were then calculated by means of Eq. (12.5), using the appropriate
DE�

a (K8) energies reported in Ref. 234. The zero-pointþheat content energies
required for solving Eq. (9.6) are indicated in Chapter 9.

[The DE�
a (K�) and the corresponding RE values are indicated with a precision that

is not warranted by our actual knowledge. They are used as indicated primarily in
order to facilitate recalculations without being continually bothered by roundoff
errors.]

The easiest route to RE is by means of Eq. (12.5), provided, of course, that we
have access to both DE�

a (K8) and DE�
a (K�). Unfortunately, this is not often the

case. Example 12.1 presents such a simple situation. More involved situations will
be considered at a later stage.

TABLE 12.3. Radical Atomization
and Reorganizational Energies (kcal/mol)

Radical K† DE�
a (K�) REa

1 CH3† 307.89 12.45
2 C2H5† 602.73 10.05
3 n-C3H7† 896.88 9.19
4 iso-C3H7† 899.68 6.99
5 n-C4H9† 1191.05 8.94
6 iso-C4H9† 1193.26 7.62
7 sec-C4H9† 1194.85 4.71
8 tert-C4H9† 1199.16 2.45
9 cyclo-C6H11† 1657.22 5.81
10 CH255CH† 450.40 9.53
11 CH2† 190.85 20.57
12 NH2† 181.06 19.10
13 CH3NH† 471.54 9.19
14 NH2CH2† 478.00 4.70

Items 1–9 are from Refs. 44, 234, and 235. Items 9–14 are
explained in the text. (Chapter 15 explains the theoretical
results obtained for 12 and 13.)
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Example 12.1. For the CH255CH† radical, consider the central C222C3 bond of 1,3-
butadiene and its bond energy, 1CC ¼ 90.25 kcal/mol (qC ¼ 9.86 me). With
DE�

a (butadiene) ¼ 1010:1 kcal=mol (from DHf8 ¼ 26:33 kcal=mol [242]) it is thus
DE�

a (K8) ’ 459:93 kcal=mol for the electroneutral CH255CH group while it still is
part of butadiene. Finally, knowing that DE�

a (K�) ¼ 450:40 kcal=mol for the
radical (DHf8 ¼ 63:45 kcal=mol [203] and ZPE þ HT 2 H0 ¼ 23.20 kcal/mol
[205]), we get RE(CH255CH†) ¼ 9.53 kcal/mol.

Likewise, RE(CH2) follows from the energy of CH2, DE�
a (CH2) ¼

190:85 kcal=mol (from DHf8 ¼ 92:35 kcal=mol [203] and ZPE þ HT 2 H0 ¼ 12.58
kcal/mol [203]. The C55C bond energy of ethylene, 1CC ¼ 139.37 kcal/mol
(Table 12.2), and its atomization energy, DE�

a (C2H4) ¼ 562:22 kcal=mol,
Chapter 14, give DE�

a (K8) ¼ 211:42 kcal=mol and thus the RE of Table 12.3.

12.5 APPLICATIONS

The hydrocarbons are good candidates for highlighting the merits of our master
equation (12.8), its salient features and some intricacies plaguing the interpretation
of trends observed for the breaking of chemical bonds. The use of Eq. (12.8) requires
the appropriate RE energies (Table 12.3) as well as the charge neutralization energies,
CNE [Eq. (12.7)].

Now we come to the interesting part: the skeleton of carbon–carbon bonds, which
represents a typical example of “interior bonds.”

The Carbon Skeleton of Alkanes

The first thing to do is to calculate the charge neutralization energy, CNE, by means
of Eq. (12.7). The appropriate DE�

a (KL) results (which are described in Chapter 13)
are indicated in Table 12.5 along with the corresponding CC bond energies.

The nonbonded contributions are those of Table 12.2. The DE�
a (K8)’s are

displayed in Table 12.4.

TABLE 12.4. Calculation of DE�
a(K8) (kcal/mol)

K DE�
a (KK) 1CC DE�

a (K8)

1 CH3 710.54 69.63 320.34
2 C2H5 1298.10 72.38 612.78
3 n-C3H7 1885.69 73.39 906.07
4 iso-C3H7 1887.16 73.71 906.67
5 n-C4H9 2473.21 73.06 1199.99
6 iso-C4H9 2476.03 74.14 1200.88
7 sec-C4H9 2473.55 74.44 1199.50
8 tert-C4H9 2477.09 73.87 1201.61
9 cyclo-C6H11 3401.42 75.27 1663.03
10 CH255CH 1010.1 90.25 459.93
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The important point is that the CNE contributions are small in comparison with
the significant changes of the 1CC bond energies. This was to be expected because
charge neutralization between alkyl groups benefits from important compensations.
In simple words, what one group looses when dissociation occurs is largely recovered
by its partner because both groups consist of similar CC and CH bonds.

Nonzero CNEs should be generally expected when K=L, but their smallness
and the almost negligible variations of the nonbonded part suggests that CNE 2

Enb(K † †L) ’ constant should represent a valid approximation, that is

DCC ’ 1CC þ RE(K)þ RE(L)þ 0:33 kcal=mol (12:9)

where the constant (0.33) represents the average of the CNE plus the nonbonded
contributions evaluated for 36 molecules constructed from the eight alkyl groups
considered here. The error made in this manner (standard deviation ¼ 0.26 kcal/
mol) is certainly acceptable.3

Table 12.5 lists the results obtained with this approximation. [There is no point
in showing those given by Eq. (12.8) as they duplicate the experimental results
deduced from Eq. (12.1) with the DE�

a (K�) data of Table 12.3 and the appropriate
DE�

a (KL) data.]
The approximate validity of Eq. (12.9) highlights the leading role played by the

reorganizational energies but also vividly demonstrates the importance of using the
correct intrinsic bond energies, whose values range from 69.63 to �89.1 kcal/mol
in these examples.

The merit of Eqs. (12.8) and (12.9) is that they allow us to probe into individual
chemical bonds and their intrinsic energies 1kl—which cannot be observed exper-
imentally—through their link with the corresponding dissociation energies that can
be measured. In other words, beyond knowing that the 1kl energies add up correctly,
we can also check that the right energy is associated with the right bond.

The link between dissociation and intrinsic bond energies evidently transcends
academic curiosity because of its important down-to-earth practical aspects:
chemistry, after all, is an exercise of making and breaking chemical bonds, more
often than not influenced by the environment in which the reactions occur. 1kl is
observation, Dkl is action.

This brings us to examine the formal resemblance and the conceptual difference
between Eq. (12.9) and Sanderson’s approximation [244,245]. The latter can be
deduced from Eqs. (12.1) and (12.3) by redefining the reorganizational energies as
DE�

a (K)� DE�
a (K�)—an approach oblivious of the fact that K and K† are not isoelec-

tronic in most cases, but approximately valid as long as the CNE terms remain suffi-
ciently small. The point is that Sanderson’s formula, DCC ¼ 1CC þ RE(K)þ RE(L),
treats 1CC as a constant, which is not true. This simplifying hypothesis did not appear

3This conclusion also holds for dissociation enthalpies DH(KL) ¼ DHf(K†) þ DHf(L†)2 DHf(KL), where
the DHf terms are the appropriate enthalpies of formation. This is due to structure-related regularities char-
acterizing zero-point and heat content energies. Equation (12.9) thus gives DHCC ’ 1CC þ RE(K) þ
RE(L)2 5.9 kcal/mol.
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TABLE 12.5. Dissociation of Selected CC Bonds (kcal/mol)

Bond DE�
a (KL) 1CC CNE

DCC
a

Eq. (12.9) Experimental

CH322CH3 710.54 69.63 0.00 94.86 94.76

CH322C2H5 1004.29 71.14 20.16 93.97 93.67

CH322nC3H7 1298.10 71.56 20.06 93.53 93.33

CH322iC3H7 1300.02 72.42 0.42 92.19 92.45

CH322nC4H9 1591.90 71.41 20.04 93.13 92.96

CH322iC4H9 1593.17 71.91 20.13 92.31 92.02

CH322sC4H9 1593.17 72.53 0.63 90.02 90.43

CH322tC4H9 1596.06 73.14 0.81 88.37 89.01

C2H522C2H5 1298.10 72.38 0.00 92.81 92.64

C2H522nC3H7 1591.90 72.89 0.00 92.46 92.29

C2H522iC3H7 1593.17 73.23 0.36 90.60 90.76

C2H522nC4H9 1885.69 72.74 0.01 92.06 91.91

C2H522iC4H9 1887.00 73.23 20.03 91.23 91.01

C2H522sC4H9 1886.33 73.55 0.36 88.64 88.75

C2H522tC4H9 1888.41 73.63 0.31 86.46 86.52

nC3H722nC3H7 1885.75 73.40 0.00 92.11 91.93

nC3H722iC3H7 1887.00 73.81 0.32 90.32 90.44

nC3H722sC4H9 2180.15 74.10 0.34 88.33 88.42

iC3H722iC3H7 1887.16 73.71 0.00 88.02 87.80

iC3H722sC4H9 2180.32 74.05 20.01 86.08 85.79

iC3H722tC4H9 2182.36 73.88 0.15 83.65 83.52

iC4H922sC4H9 2475.21 74.49 0.22 87.15 87.10

sC4H922sC4H9 2473.55 74.44 0.00 84.19 83.85

sC4H922tC4H9 2476.04 74.47 0.40 81.96 82.03

tC4H922tC4H9 2477.09 73.87 0.00 79.10 78.77

cC6H1122CH3 2056.94 72.96 — 91.55 91.83

cC6H1122C2H5 2350.24 73.95 — 90.14 90.29

cC6H1122nC4H9 2937.50 74.27 — 89.35 89.23

cC6H1122tC4H9 2939.05 74.67 — 83.26 82.67

cC6H1122cC6H11 3401.43 75.27 0.00 87.22 86.99

NH2CH222CH3 875.36 72.83 — 90.31 89.47

NH2CH222C2H5 1169.62 73.99 — 89.07 88.89

NH2CH222nC3H7 1463.68 74.51 — 88.73 88.80

NH2CH222CH2NH2 1041.54 75.41 0.00 85.14 85.54

CH2:CH22CH:CH2 1010.1 90.25 0.00 109.64 109.30

The experimental results were deduced from Eq. (12.1). Those given under the heading Eq. (12.9) were
calculated using carbon atomic charges deduced from 13C NMR shifts reported in Ref. 243 (for C2H6),
in Ref. 169 (for the C3H822C6H14 hydrocarbons) and in Ref. 166 for the larger molecules. For the
amines, see Chapter 15.

160 BOND DISSOCIATION ENERGIES



as a conceptual stumbling block at that time—and, indeed, many interesting results
were obtained in this fashion—but, as we now know, any scheme postulating constant
bond energies conflicts in principle with the basics demanding conservation of mol-
ecular electroneutrality. The quality of the theoretical intrinsic bond energies is
clearly reflected in the quality of the bond dissociation energies given by Eq. (12.9).

Carbon–Hydrogen Bonds

The carbon–hydrogen bonds are the prototype of “peripheral bonds.” In the perspec-
tive of the CNE effect, the extraction of an atom that was partially charged in the host

TABLE 12.6. Dissociation and Intrinsic Energies
of Selected CH Bonds (kcal/mol)

CH Bond DCH 1CH

CH322H 111.42 104.86

C2H522H 107.81 106.81

n-C3H722H 107.41 107.13

i-C3H722H 104.61 108.72

n-C4H922H 107.05 107.23

i-C4H922H 106.76 107.59

s-C4H922H 103.25 109.35

t-C4H922H 100.86 110.89

Figure 12.1. A comparison between CH dissociation and intrinsic CH bond energies (kcal/
mol) [Eq. (12.10)] [233].
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molecule affects only the bond energies of the polyatomic fragment left behind
because the extracted atom forms no bonds and cannot compensate for energy
changes induced in the other fragment. Briefly, any cleavage of this sort is expected
to involve a significant charge neutralization energy. CH bonds fall in with this
description. But the outcome is surprising (Table 12.6).

The comparison between dissociation and intrinsic bond energies is intriguing, to
say the least. It suggests (Fig. 12.1) that those bonds that contribute more to thermo-
chemical stability are the ones that break up more easily. This is certainly a point
requiring clarification:

DCH ’ 295:91� 1:76 1CH (12:10)

Sanderson’s claim that all contributing CH bond energies are equal also merits scru-
tiny, although it contradicts the very basics of our description of charge-dependent
bond energies satisfying charge normalization.

It turns out that the CNE part accompanying CH dissociations not only is quanti-
tatively important but also produces a remarkable effect (Table 12.7). Indeed, CNE
compensates the major part, if not all, of the differences existing between 1CH
energies: 1CH þ CNE is nearly constant for all the C(sp3)22H bonds, on one hand,
and also for the C(sp2)22H bonds, on the other hand. Hence, incorporating now
the small (,0.05 kcal/mol) nonbonded interactions into this approximation, we
rewrite Eq. (12.8) as follows

DCH ’ constantþ RE(K) (12:11)

TABLE 12.7. CNE Energies for C(sp3)22H and C(sp2)22H bond
dissociations (kcal/mol)

Bond 1CH CNE 1CH þ CNE

CH322H 104.86 25.81 99.05
C2H522H 106.81 29.01 97.80
n-C3H722H 107.42 28.87 98.55
i-C3H722H 108.71 211.08 97.63
n-C4H922H 107.49 29.08 98.41
i-C4H922H 107.98 28.42 99.56
s-C4H922H 109.35 210.74 98.61
t-C4H922H 110.86 212.50 98.36
c-C6H1122H 110.28 211.50 98.78
CH2:CHCH222H 107.3 28.6 98.69
CH2:CHCH2CH222H 107.4 28.9 98.52
C6H5CH222H 108.0 29.0 99.0
CH2:CH22H 105.72 23.11 102.61
CH3CH:CH22H 106.0 23.9 102.1
(CH3)2C:CH22H 104.6 21.3 103.3
CH2:C(CH3)22H 109.9 27.1 102.8
C6H522H 112.36 29.79 102.57
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where the constant, �98.40 or 102.65 kcal/mol for C(sp3)22H and C(sp2)22H bonds,
respectively, indicate the appropriate average value of 1CH þ CNE2 Enb(K † † H).

The 1CH energies are genuine CH bond energies. CNE disguises them in such a
way that, when viewed from the perspective of dissociation energies, all CH bonds
involving the same type of carbon are perceived as if they were equal in energy, to
a good approximation.

This echoes Sanderson’s claim [244,245] that all contributing CH bond energies
are equal. The behavior observed here for the CH bonds is typical for peripheral
bonds. Indeed, it holds true also for CX bonds (X ¼ Cl,Br,I), where 1CX þ CNE
’ constant [44].

The approximate linear decrease of reorganizational energies with increasingly
larger 1CH energies (Fig. 12.2) and Eq. (12.11) explain the existence of a correlation
between DCH and 1CH.

Applications

The approximations (12.10) and (12.11) can be used to obtain information about reor-
ganizational energies, as shown in the following two examples.

Example 12.2. Here we deduce the RE of the NH2CH2† radical.

Method 1. This method follows from Eq. (12.5). For NH2CH2† we use DE�
a ¼

478:00 kcal=mol, corresponding to DHf8 ¼ 38+ 2 kcal=mol [246] and ZPE þ
HT 2 H0 ¼ 32.62 kcal/mol [44]. For NH2CH222CH2NH2, on the other hand,
we find DE�

a ¼ 1041:54 kcal=mol (from DHf8 ¼ �4:07+ 0:14 kcal=mol [247])

Figure 12.2. A comparison between reorganizational energies and theoretical bond energies
of alkane CH bonds (kcal/mol). The numbering refers to that shown in Table 12.3 [233].
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and ZPE þ HT 2 H0 ¼ 70.80 kcal/mol [34]. For the central CC bond of
this molecule, it is 1CC ¼ 75.41 kcal/mol (with qC ¼ 29.18 me, from its 13C
NMR spectrum [165]). Assuming Enb ’ 20.23 kcal/mol, Eq. (12.4) gives
DE�

a (K8) ’ 482:95 kcal=mol and thus RE ’ 4.95 kcal/mol, from Eq. (12.5).

Method 2. For CH3NH2 we use DE�
a ¼ 580:95 kcal=mol (deduced from

DHf8 ¼ �5:50+ 0:12 kcal=mol [248] and ZPE þ HT 2 H0 ¼ 41.48 kcal/mol,
from the spectra of Ref. 249). For NH2CH2† we just found DE�

a ¼
478:00 kcal=mol. Hence DCH ¼ 102.95 kcal/mol, from Eq. (12.1). Knowing
that 1CH þ CNE range from �98.0 to �98.6 kcal/mol in Eq. (12.11), one can
estimate RE(NH2CH2†) at �4.70 kcal/mol.

Example 12.3. For 1,10-bicyclohexyl, DE�
a (KK) ¼ 3401:43 and DE�

a (K†) ¼
1657:22 kcal=mol; 1CC ¼ 75.27 and Enb ¼ 20.1 kcal/mol give RE ¼ 5.81 kcal/
mol. With 1CH ¼ 109.28 kcal/mol for cyclohexane, Eq. (12.10) gives DCH ’
103.6 kcal/mol; thus RE ’ 5.3 kcal/mol from (12.11) [234].

Carbon–Nitrogen Bonds

A test resembling those given for the alkanes is offered in Table 12.8 for CN bonds.
Straightforward general bond energy theory is applied in the calculation of

intrinsic CN bond energies by means of the equation

1CN ¼ 1CN8 þ aCNDqC þ aNCDqN (12:12)

¼ 60:44� 0:603� DqC � 0:448� DqN (12:13)

with charges deduced from the appropriate carbon–13 and nitrogen–15 chemical
shifts. The corresponding dissociation energies follow from Sanderson’s approxi-
mation [244,245]

Dkl ’ 1kl þ RE(K)þ RE(L) (12:14)

and the use of the reorganizational energies of Table 12.3. These results are in
satisfactory agreement with their counterparts given by Eq. (12.1) and the relevant
thermochemical data, namely, the atomization energies deduced from experimental
enthalpies of formation and the relevant ZPE þ HT 2 H0 energies.

The relatively modest changes observed for DCN in this series should not obscure
the fact that the corresponding intrinsic bond energies (1CN) cover a range of
�10 kcal/mol. It so happens that when a bond energy increases, the reorganizational
energy of the corresponding alkyl radical diminishes, one effect largely compensating
for the other.

Similar conclusions hold for nitroalkanes as well; they were calculated by means
of Eq. (12.12), with 1CN8 ¼ 53:00 kcal=mol. The NMR shifts reported in Ref. 138
were used for the carbons; those of nitrogen are from [156]. The conclusions are
in no way affected by the simplifying assumption RE ¼ 0 for NO2, which may
well be revised in the future.
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The following examples also illustrate the insight one can gain into the way bond
dissociation Dkl reacts on modifications affecting 1kl.

Example 12.4: Influence of the Environment on Dkl. Nitromethane is interesting
to some people because it explodes. The reason is, of course, in the cleavage
of the carbon–nitrogen bond. The monomer, compared to its trimer (taken as
a model for the crystal), reveals that the C and N net charges change by
DqC ’ 28.7 and DqN ’ 1.1 me, respectively, on “crystallization.” Our bond
energy formula and the appropriate akl parameters thus indicate that the crystalline
environment reinforces the CN bond by �4.7 kcal/mol, which is significant at the
local point of rupture, responsible for the reaction [251].

A more attractive example is offered by the C1022N9 bonds of deoxyadenosine and
deoxyguanosine and their response to electrophilic attacks on the purinic N atoms
[252]. Cleavage of these bonds leads to depurination, and its physics is relevant in
the understanding of the depurination of DNA structures by radical cations.
Among other results, in terms of the attack on N7 of the adenine or guanine base,
applications of our bond energy methods point to a significant weakening of the
glycosyl CN bond. Now, most of the substituents whose attack on N7 has been

TABLE 12.8. CN Bond Dissociation Energies of Selected Alkylamines
and Nitroalkanes (kcal/mol)

Molecule DqN DqC 1CN

DCN

Calculated Experimental

CH3NH2 0 0 60.44 91.99 92.00
C2H5NH2 24.72 21.27 63.32 92.47 91.57
n-C3H7NH2 23.81 22.41 63.60 91.89 91.68
iso-C3H7NH2 28.55 22.17 65.58 91.67 91.70
n-C4H9NH2 23.90 22.08 63.44 91.48 91.57
iso-C4H9NH2 23.18 23.30 63.86 90.58 90.62
sec-C4H9NH2 27.65 23.03 65.70 89.45 89.97
tert-C4H9NH2 211.55 22.80 67.30 88.85 89.74
cyclo-C6H11NH2 28.04 23.36a 66.07 90.98 91.50
(CH3)2NH 214.35 21.33b 67.67 89.31 89.27
(CH3)(C2H5)NH 218.67 22.52b 70.32c 89.56 89.32
CH3NO2 0 0 53.00d 65.45 65.05
C2H5NO2 23.03 21.94 55.53 65.58 65.58
iso-C3H7NO2 26.07 23.23 57.67 64.66 65.25

Calculated from the 13C shift of methylcyclohexane [250], following the rules given in Ref. 165 to obtain
the shift of the a-carbon of the cyclohexyl ring.
From the 13C shift of the parent alkane [169] and the rules given in Ref. 165.
This result is for the bond formed with the ethyl group. With DqC ¼ 20.95 me for the CH3 carbon, it is
1CN ¼ 69.38 kcal/mol for the CH322NH bond.
RE(NO2) is expected to be small, judging by the smallness of the dissociation energy of O2N22NO2 (�16
kcal/mol), and has been included in this entry.
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studied [253] were found to provoke rapid cleavage of the CN bond, resulting
in instantaneous depurination. It seems reasonable to argue that at least part of the
explanation addressing the depurination of DNA has something to do with the
bond weakening due to local charge effects. It is true that electrophiles like Hþ,
CH3

þ, . . . come to stick on the purinic base, thus lowering its RE and DCN by the
same small amount, but this still leaves us with DDCN ’ D1CN as a reasonable first
estimate. Any lowering of RE (and of DCN) would indeed only add to the effect
triggered by the thinning of the electronic charge at the bond-forming atoms.

These examples are rough estimates, of course, with no pretention to rigor, but
they illustrate vividly the merits of Eq. (12.8). Through this formula, a solid knowl-
edge of modifications suffered by the charges of individual bonds as a result of exter-
nal influences has the potential of guiding the interpretation of bond ruptures
enhanced (or triggered) by events at a distance from the place where the reaction
takes place—or explain the opposite response if that should be the case.

Equation (12.8) offers promising new fields of applications regarding the
dissociation of chemical bonds.

12.6 CONCLUSION

The formula describing bond dissociation [Eq. (12.8)] establishes an exact relation-
ship between dissociation and intrinsic bond energies. The former are amenable to
experimental (thermochemical) measurements and thus validate the intrinsic bond
energies given by Eq. (10.37) and their one-to-one correspondence with them; in
other words, appropriate experimental verifications confirm that the right energy is
associated with the right bond and that our bond energy formula (10.37) does,
indeed, correctly describe the intrinsic energies of chemical bonds.

Conversely, a consideration of possible changes affecting intrinsic bond energies
due to modifications of electron densities induced by the environment of a molecule
suggests—with the help of Eq. (12.8)—how this environment can promote or retard
the dissociation of one or another bond of particular interest in that molecule. This
outlook hints at a rich potential of future research exploiting charge analyses to
gain a fresh insight into local molecular properties, say, into bond energies, first,
and, going from there, into matters of great import regarding the making and breaking
of chemical bonds.
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PART III

APPLICATIONS





CHAPTER 13

SATURATED HYDROCARBONS

13.1 ACYCLIC ALKANES

The comparison between theoretical and experimental results presented here for
acyclic alkanes is made with the help of Eq. (10.50), repeated here for convenience
(kcal/mol):

DE�
a ’ 710:54þ 290:812(n� 2)þ 0:03244

X
k

NCkCdCk þ 0:05728
X
k

dCk

This approximation includes the small nonbonded term and is most handy because it
requires only the appropriate set of NMR shifts dCk (ppm) from ethane. The loss in
precision in very small, with respect to calculations including explicit nonbonded
terms, but the economy in effort is major. Remember that NCkC is the number of
CC bonds formed by the C atom whose 13C shift is dCk. The formula (6.8)

qC ¼ 35:1� 0:148 dC (me)

converts the dC variable into its equivalent charge result.
The present selection of experimental DH8f values is not intended to represent a

critical collection of “best values.” Slightly different results are reported for some
molecules in Refs. 255–257, but experimental uncertainties of this magnitude do
not affect the general conclusions drawn in this work. Regarding our calculations,
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TABLE 13.1. Standard Enthalpy of Formation of Alkanes (kcal/mol)

Molecule DE�
a ZPE þ DH

DHf8

Calculated Experimentala

1 Methane 419.27 26.69 217.73 217.89+ 0.07
2 Ethane 710.54 47.91 220.15 220.24+ 0.12
3 Propane 1004.34 66.12 225.11 225.02+ 0.12
4 n-Butane 1298.14 84.33 230.07 230.03+ 0.16
5 Isobutane 1300.13 83.99 232.40 232.42+ 0.13
6 n-Pentane 1591.95 102.54 235.05 235.16+ 0.24
7 Isopentane 1593.24 102.20 236.68 236.73+ 0.14
8 2,2-Dimethylpropane 1596.28 101.86 240.07 240.14+ 0.15
9 n-Hexane 1885.75 120.76 239.98 239.96+ 0.19
10 2-Methylpentane 1887.11 120.41 241.72 241.66+ 0.25
11 3-Methylpentane 1886.38 120.41 240.99 241.02+ 0.23
12 2,2-Dimethylbutane 1888.66 120.07 243.61 244.35+ 0.23
13 2,3-Dimethylbutane 1887.38 120.07 242.33 242.49+ 0.24
14 n-Heptane 2179.28 138.97 244.85 244.89+ 0.22
15 2-Methylhexane 2180.87 138.63 246.63 246.60+ 0.30
16 3-Methylhexane 2180.15 138.63 245.91 245.96+ 0.30
17 3-Ethylpentane 2178.79 138.63 244.55 245.29+ 0.32
18 2,2-Dimethylpentane 2183.10 138.28 249.21 249.20+ 0.37
19 2,3-Dimethylpentane 2180.38 138.28 246.50 247.33+ 0.20
20 2,4-Dimethylpentane 2182.17 138.28 248.28 248.21+ 0.29
21 2,2,3-Trimethylbutane 2182.36 137.94 248.81 248.87+ 0.33
22 n-Octane 2473.22 157.18 249.81 249.86+ 0.25
23 2-Methylheptane 2474.68 156.84 251.61 251.47+ 0.36
24 3-Methylheptane 2474.15 156.84 251.08 250.79+ 0.33
25 4-Methylheptane 2474.05 156.84 250.98 250.66+ 0.33
26 2,2-Dimethylhexane 2476.53 156.50 253.80 253.68+ 0.32
27 2,3-Dimethylhexane 2474.25 156.50 251.52 251.10+ 0.40
28 2,4-Dimethylhexane 2475.21 156.50 252.48 252.40+ 0.33
29 2,5-Dimethylhexane 2476.05 156.50 253.32 253.18+ 0.40
30 3,3-Dimethylhexane 2474.87 156.50 252.14 252.58+ 0.32
31 3,4-Dimethylhexane 2473.57 156.50 250.84 250.87+ 0.40
32 2,2,3-Trimethylpentane 2475.85 156.15 253.47 252.58+ 0.40
33 2,2,4-Trimethylpentane 2476.72 156.15 254.34 253.54+ 0.37
34 2,3,3-Trimethylpentane 2474.11 156.15 251.73 251.69+ 0.38
35 2,3,4-Trimethylpentane 2474.45 156.15 252.07 251.94+ 0.43
36 n-Nonane 2766.97 175.40 254.71 254.66+ 0.25
37 4-Methyloctane 2767.76 175.05 255.85 256.19
38 235-Trimethlhexane 2769.11 174.37 257.88 257.97

aThe experimental values of 1–16 are reported in Ref. 247. The results for 37 and 38 are from Ref. 254.
All other results are given in Ref. 248.
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they were systematically carried out with maximum precision, so as to avoid irritating
roundoff errors.

The results are reported in Table 13.1. The zero-point plus heat content energies,
abbreviated as ZPE þ DH, are those described in Chapter 9, Eq. (9.9). The 13C shifts
are from Refs. 166, 169, and 243.

The fine-tuning of molecular DE�
a energies, responsible for the differences

between structural isomers, rests entirely with small but extremely important
modifications of charge distributions affecting

P
k

P
l akl Dqk. Because the sum of

the
P

l akl values is always larger for sp
3 carbons than for hydrogen, it follows that

in comparisons between isomers or conformers, the more stable form is the one
with the electron-richest carbon skeleton, reflected by larger (downfield) dC values.

13.2 CYCLOALKANES

This section is about alkylcyclohexanes and related polycyclic molecules consisting
of chair six-membered rings. Our work must thus accommodate conformational
features such as those commonly described as butane-gauche interactions.

The latter are, indeed, of considerable interest. They have a long history in
conformational chemistry [258,259] and deserve attention for the major role they
play in the discussion and prediction of structural features. Typically, we refer
here to gauche interactions exemplified by one of the methyl protons of the axial
methylcyclohexane (for instance) interacting with the axial protons at C-3 and C-5
of the ring, or to the three gauche interactions occurring in cis-decalin.1

The occurrence of these interactions is not under dispute. The question lies with
the interpretation of gauche interactions—are they somehow related to the vibrational
energy content of the molecule, or should they rather be traced back to a particularity
in the chemical binding in the vibrationless state? The answer is given in Chapter 9.

Again we use Eq. (10.50) for our calculations. Here we write it as

DE�
a ’ 710:54(1� m)þ 290:812(n� 2þ 2m)

þ 0:03244
X
k

NCkCdCk þ 0:05728
X
k

dCk þ F (13:1)

where F depends on the number of gauche interactions. F is the function defined in
Eq. (10.26).

The Gauche Interactions

Butane-gauche effects do not manifest themselves in the vibrational part, ZPE þ
HT 2 H0. So we return to the atomization energy, DE�

a ¼
P

k,l1kl � Enb þ F, of

1A description and convenient counting of these interactions is offered in Ref. 250, along with a wealth of
useful information, namely, the 13C nuclear magnetic resonance (NMR) spectra that give access to the
atomic charges of the carbon atoms.
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the molecule at its potential minimum; the gauche contributions are necessarily part
of DE�

a . The nonbonded part, approximated as Coulomb interactions between net
atomic charges, Eq. (10.3) [206], is far too small to play a relevant role in that
matter. Attention is on the other two terms, the sum of intrinsic bond energies and
F; the latter, (10.26), measures what is due to variations of internuclear distances
and to changes of electronic centers of charge. No term for gauche interactions is
explicit in any of these parts, but the fact is that our energy formula (13.1) does
not work with F ¼ 0 in situations where gauche interactions are postulated.

Numerical evaluations reveal where we stand. Our strategy is simple—we apply
Eq. (13.1) using the appropriate 13C NMR shifts reported by Grant and coworkers
[250,260,261], then use these DE�

a terms in Eq. (9.6) and estimate the residual F
values attributed to gauche interaction with the help of experimental enthalpies of
formation. In the absence of gauche interactions, F ¼ 0. Otherwise F is associated
with gauche effects and is written Fg.

Now, the comparison of isomerides differing by the number of gauche inter-
actions, for example, cis-1,3-dimethylcyclohexane (no gauche interaction) versus
trans-1,3-dimethylcyclohexane (two interactions), or trans-decalin (no interaction)
versus cis-decalin (three interactions) reveals that DE�

a � Fg consistently decreases
by �1.9 kcal/mol for one gauche interaction (average value), which is about twice
the commonly accepted value for gauche effects [181].

On the other hand, looking at the enthalpies DHW

f , the same comparisons show that
one gauche interaction reduces the thermochemical stability by only �1.0 kcal/mol,
meaning that part of the loss in binding energy is “recovered” by Fg. These are rough
numbers, of course; they will be refined later on. Let us first examine the physical
content of Fg.

In line with the basic theory that leads to Eqs. (10.40) and (13.1), the func-
tion (11.12)

Fkl ¼ � 3
7
Zeff
k Zeff

l R�1
kl � R�1

kl

� �
8� kr�1

kl l� kr�1
kl l8

� �� �

� 3
7
Zeff
k ql kr�1

kl l� kr�1
kl l

W
� �

adequately represents the effect of varying internuclear distances and of changing
electronic charge centroids [44]. Fkl mirrors, so to speak, how nucleus k “sees” the
electrons of atom l. For the problem at hand, we consider CH bonds, where k ¼ C
and l ¼ H. The reference for alkanes is ethane, selected with (R�1

CH)
W ¼ kr�1

CHl
W. The

second right-hand-side (RHS) term of Eq. (11.12) is very small because hydrogen
net charges, ql, are quite small. Accordingly, we ought to consider only

Fkl � � 3
7
Zeff
k Zeff

l R�1
CH � kr�1

CHl
� �

(13:2)

What matters here is how R�1
CH � kr�1

CHl differs from (R�1
CH)

W � kr�1
CHl

W. The inter-
action under scrutiny involves the charges of three hydogen atoms: that of the
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axial methyl group overhanging the ring and the axial hydrogens on C-3 and C-5
(taking methylcyclohexane as a model). These are repulsive interactions, of course,
but simple Coulomb repulsions qr qs/Rrs of this kind are already included in Enb

and need not be singled out at this point. Here we argue that repulsions between
the hydrogen electron clouds affect their shape and thus kr�1

CHl. This change of
kr�1

CHl is certainly small, and we feel presently unable to evaluate it by direct calcu-
lations of the relevant charge centroids. But the effect is sizable, as shown by the fol-
lowing example. Consider RCH ¼ 1.093 Å, which is close to the theoretical value, and
assume that the charge centroid of the hydrogen electron is shifted by 0.001 Å, closer to
carbon: rCH ¼ 1.092 Å. With 1 bohr ¼ 0.52917 Å and 1 hartree ¼ 627.51 kcal/mol,
we thus obtain Fkl � 0.48 kcal/mol. Now, there are three CH bonds for two gauche
interactions, so that, in this example, we get a correction of 0.72 kcal/mol for one
gauche interaction. Although this matter must be held in abeyance until direct evalu-
ations of the relevant charge centroids can be performed, we tentatively submit this
model for explaining the nature of Fg—whose very existence is unmistakably
revealed by the numerical results—within the strict framework of the theory describ-
ing charge-dependent bond energies.

The final results obtained from the study [181] of molecules 3, 5, 7, 9, 11, and 17
of Table 9.1 indicate that Fg ¼ 0.822 kcal/mol for one gauche interaction, meaning
that we must use

F ¼ 0:822 ng (13:3)

in the calculation of DE�
a , where ng is the number of corrections required for gauche

interactions involving axial protons. (Note that ng ¼ 2 for molecules 3, 4, 7, 8, and 12
of Table 13.2 and ng ¼ 3 for 28.)

This closes the topic of gauche effects in energy calculations. All we have to do is
to use Eq. (13.3) in Eq. (13.1).

At long last, we can calculate DE�
a energies of cycloalkanes by means of

Eq. (13.1), regardless of whether butane-gauche effects intervene. The results
are given in Table 13.2. Enthalpies of formation calculated along these lines,
using charges inferred from NMR chemical shifts, agree within 0.24 kcal/mol
(root-mean-square deviation) with their experimental counterparts [44].

Note that the molecules selected here cover indiscriminately chair and boat, as well
as twist–boat six-membered ring structures. Here again, in comparisons between
structural isomers, the form with the electron-richer carbon skeleton is thermochemi-
cally favored. In other words, the more stable form is given away by the larger sum,P

kdCk , of its
13C shifts. In a way, the hydrogen atoms play the role of a reservoir of

electronic charge that, under appropriate circumstances depending on molecular
geometry, is called on to stabilize bonds other than CH bonds by injecting electronic
charge into the carbon skeleton, with a net gain in thermochemical stability. This
conclusion holds whenever the sum

P
l akl, measuring the stabilization of all the

bonds formed by atom k by an electronic charge added to it, is more negative than aHC.
Cyclohexane is the example par excellence. For its boat form one calculates

dC 10.7 for carbons 1 and 4 and dC 16.5 (ppm from ethane) for the other four
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TABLE 13.2. Standard Enthalpy of Formation of Cycloalkanes (kcal/mol)

Moleculea DE�
a ZPE þ DH

DHW

f

Calculated Experimentalb

1 Cyclohexane 1760.85 107.72 229.37 229.50+ 0.15
2 Methylcyclohexane 2056.75 125.64 236.72 236.98+ 0.25
3 1,1-Dimethylch. 2351.99 143.57 243.40 243.23+ 0.47
4 cis-1,2-Dimethylch. 2350.19 143.57 241.06 241.13+ 0.44
5 trans-1,2-Dimethylch. 2352.04 143.57 243.69 242.99+ 0.45
6 cis-1,3-Dimethylch. 2352.63 143.57 244.05 244.13+ 0.42
7 trans-1,3-Dimethylch. 2350.61 143.57 242.03 242.18+ 0.41
8 cis-1,4-Dimethylch. 2350.71 143.57 242.13 242.20+ 0.42
9 trans-1,4-Dimethylch. 2352.62 143.57 244.04 244.10+ 0.42
10 1-trans-2-cis-4-Me3ch. 2645.73 161.50 247.32 (250)
11 1-cis-3-cis-5-Me3ch. 2648.69 161.50 251.55 251.48
12 1-cis-3-trans-5-Me3ch. 2646.75 161.50 249.61 249.37
13 Ethylcyclohexane 2350.26 143.80 241.44 241.05+ 0.37
14 Propylcyclohexane 2644.08 161.96 246.48 246.20+ 0.30
15 Isopropylcyclohexane 2645.04 161.64 247.76 (247)
16 n-Butylcyclohexane 2937.50 180.12 251.11 250.95+ 0.33
17 1-Me-4-isopropylch. 2941.14 179.57 255.30 255.12+ 0.80
18 n-Pentylcyclohexane 3231.09 198.28 255.92 255.88+ 0.40
19 n-Hexylcyclohexane 3524.75 216.44 260.79 260.80+ 0.43
20 n-Heptylcyclohexane 3818.43 234.60 265.69 265.73+ 0.46
21 n-Octylcyclohexane 4112.14 252.76 270.61 270.65+ 0.49
22 n-Nonylcyclohexane 4405.85 270.92 275.54 275.58+ 0.54
23 n-Undecylcyclohexane 4993.28 307.24 285.40 285.43+ 0.63
24 n-Tridecylcyclohexane 5580.72 343.56 295.26 295.28+ 0.73
25 n-Pentadecylch. 6168.16 379.88 2105.12 2105.14+ 0.83
26 Bicyclo[2.2.2]octane 2218.74 130.83 224.09 223.75+ 0.30
27 trans-Decalin 2815.56 166.74 243.77 243.52+ 0.56
28 cis-Decalin 2812.11 166.74 240.32 240.43+ 0.56
29 Spiro[5.5]undecane 3103.70 183.20 244.82 244.81+ 0.75
30 1,10-Bicyclohexyl 3401.42 202.94 252.18 252.19+ 0.74
31 trans–anti– trans-PHA 3865.08 225.76 252.98 252.74+ 0.98
32 trans–syn– trans-PHA 3870.15 225.76 258.05 258.12+ 0.93
33 Twistane 2679.14 153.95 221.36 221.6+ 0.4
34 Adamantane 2688.15 153.95 230.34 230.65+ 0.98
35 Diamantane 3615.93 199.50 232.49 232.60+ 0.58

aThe abbreviation “ch.” stands for cyclohexane; PHA denotes perhydroanthracene.
bThe experimental values of 1–9, 17, 27, 28, and 32 are from Ref. 248; 34 is from Ref. 189, and 11 and 12
are from Ref. 262. The results for 13, 14, and 18–25 are in Ref. 263, 30 is from Ref. 264, and 33 is from
Ref. 265. The entries in parentheses are estimated values [266]. The ZPE þ DH energies are calculated as
indicated in Section 9.1. Calculated charges [36] were used for 15–25 as the 13C spectra were unavailable.
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C atoms, using Grant’s parameters [261]. Hence
P

kdCk ¼ 87:4,
P

kNCkCdCk ¼ 174:8
and [from Eq. (13.1)] DE�

a (boat) ¼ 1755:55 kcal=mol. For the chair form,
the experimental value is dC 21.8 ppm from ethane, for

P
kdCk ¼ 130:8,P

kNCkCdCk ¼ 261:6 and DE�
a (chair) ¼ 1760:86 kcal=mol, which is 5.31 kcal/mol

better than DE�
a (boat). This result agrees with the measured DE�

a energy incre-
ment (5.39 kcal/mol) between the trans–anti– trans- and trans–syn– trans-
perhydroanthracenes, which differ only because of the center boat in the former
compound, and with the difference, 5.23 kcal/mol, calculated from their 13C
spectra by means of Eq. (13.1).

A related example is offered by the cis and trans forms of 1,4-di-t-butyl-
cyclohexane. Using the 13C data of Roberts et al. [164] reported in Ref. 138,
one finds

P
kdCk¼ 359:8 and

P
kNCkCdCk¼ 778:6 for the trans form. For

the cis- form, on the other hand, it is
P

kdCk¼ 333:4 and
P

kNCkCdCk¼ 716:8.
Hence DE�

a (trans) ¼ 4117:24 kcal=mol for trans-1,4-di-t-butylcyclohexane and
DE�

a (cis) ¼ 4113:72 kcal=mol for the cis form. These two results are indicative
of ring conformation since cis-1,4-di-t-butylcyclohexane is undoubtedly in a
twist–boat form while the other is in chair conformation. The 13C spectra of
t-butylcyclohexane (in chair conformation) and of trans-1,4-di-t-butylcyclohexane
are indeed very similar, except, of course, for carbon 4, which is the same as
carbon 1 in the disubstituted molecule, whereas it is similar to the unsubstituted
carbons in the monosubstituted cyclohexane.

It is by now clear by now that Eq. (13.1) performs well for all sorts of six-
membered saturated carbon rings.

Smaller cycles, however, are definitely not described by this formula; the charge—
NMR shift relationship (6.8) no longer applies and the akl parameters would also
require modifications in order to adapt to the new situation. Of course, this does
not come as a surprise.

What seems intriguing under the circumstances is a detail in the interpretation of
ring strain. Present results (Table 1.1) suggest that the CC bond energy in cyclo-
propane is practically that of ethane—which seems odd, at first sight. Note that if
we construct cyclopropane with the CC and CH bond energies of ethane, 69.63
and 106.81 kcal/mol, respectively, we get an estimated DE�

a of 849.75 kcal/mol,
which is alsmost the experimental value: 851.0 kcal/mol.

Now, where has the ring strain gone?
The point is that ring strain is defined by reference to cyclohexane. Its CC and CH

bond energies are higher than those of ethane, by 3.15 and 3.47 kcal/mol, respect-
ively. (This is due to electronic charge rearrangements ensuring electroneutrality of
each CH2 group.) As a consequence, cyclohexane is more stable by as much as
60.6 kcal/mol than what one would predict by making a simple sum of ethane
bond energies, 6 � 69.63 þ 12 � 106.81 kcal/mol. If the same were true for
cyclopropane, it would be �30.3 kcal/mol more stable than 3 � 69.63 þ 6 �
106.81 kcal/mol, but this is precisely what does not happen. The bond energies
remain roughly as they are in ethane—hence the ring strain, with respect to cyclo-
hexane, of 29.4 kcal/mol.
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This being said, it is a fact that Eq. (13.1) permits highly accurate calculations of
molecular atomization energies, eventually leading to accurate evaluations of stan-
dard enthalpies of formation, DHW

f (298:15, gas). The point is that this approach
requires only 13C NMR shift results as substitutes for carbon atomic charges. This
means that accurate rules for predicting these shifts, like those of Grant et al., for
example, can be used as fast tracks to get access to reliable estimates of DHW

f energies.
This potential could serve as a pretext for, and renew interest in, future extensive
computer-assisted overhaulings and fine-tunings of all extant rules and proposals
aimed at predicting accurate 13C NMR shifts.
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CHAPTER 14

UNSATURATED HYDROCARBONS

14.1 OLEFINS

The following presentation uses Eq. (10.31)X
k,l

1kl ¼
X
k,l

1W

kl þ
X
k

X
l

aklDqk þ F

and the approximation DE�
a ’

P
k,l 1kl. The evaluation of nonbonded terms is not

contemplated because the straightforward use of Eq. (10.3) cannot be justified for
unsaturated hydrocarbons.

Reference Bond Energies

The
P

k,l1kl8 part is constructed from 1CC8 ¼ 69.633, 1CH8 ¼ 106.806 and 1C55C8 ¼

139.37 kcal/mol, which are the references defined in Table 11.2 for ethane and
ethylene, respectively.

Reference Charges

Both qC2H6
C ¼ 35:1 me and qC2H4

C ¼ 7:7 me are the selected net carbon charges of
ethane and ethylene, respectively. The difference between them is

DqW

C ¼ qC2H4
C � qC2H6

C ¼ �27:4 me (14:1)

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
Copyright # 2009 John Wiley & Sons, Inc.
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The sp3 carbons are simply written C. The sp2 carbons are identified as C(sp2). Hence

DqC ¼ qC � qC2H6
C for sp3 C atoms (14:2)

DqC(sp2) ¼ qC(sp2) � qC2H4
C for sp2 C atoms (14:3)

Finally, the difference

qC(sp2) � qC2H6
C ¼ (qC(sp2) � qC2H4

C )þ (qC2H4
C � qC2H6

C )

shows that

qC(sp2) � qC2H6
C ¼ DqC(sp2) þ DqW

C (14:4)

where DqW

C is the charge difference defined by Eq. (14.1).
For the hydrogen atoms, of course, DqH ¼ qH � qW

H, where q
W

H ¼ �11:7 me is the
hydrogen net charge of ethane, selected as reference for all the H atoms. Their
number is 2n, with n ¼ number of the C atoms in the molecule. Charge normaliza-
tion,

P
qH ¼ �

P
qC �

P
qC(sp2), and Eqs. (14.1)–(14.4) give

X
DqH ¼ �

X
DqC þ

X
DqC(sp2)

� �
� 2DqW

C þ nqW

H (14:5)

Equation (14.5) conveniently eliminates explicit calculations of hydrogen charges
from the general expression for

P
k

P
l aklDqk þ F.

General Formula for Olefins

In the following, NCC is the number of CC bonds and NCH is the number of CH bonds
formed by an sp3 carbon atom. NC(sp2)C and NC(sp2)H are the numbers of CC and CH
bonds, respectively, formed by an sp2 carbon atom. Also note that NCC þ NCH ¼ 4
and that NC(sp2)C þ NC(sp2)H ¼ 2. Now we use Eq. (10.31). For the carbons we
have the following equation, with C055C(sp2) and remembering that DqC0 ¼
DqsC0 þ DqpC0 (Chapter 11.2):

XCC
k

Xbonds
l

aklDqk ¼ aCC
X

NCCDqC þ aC55C
X

DqC0

þ aC0C

X
NC0C(DqC0 þ DqW

C) (14:6)

Similarly, we obtain for the CH bonds that

XCH
k

Xbonds
l

aklDqk ¼ aCH
X

NCHDqC þ aHC
X

DqH

þ aC0H

X
NC0H(DqC0 þ DqW

C) (14:7)
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For F, we use FCC (described as F in Example 11.1) and FCH (Example 11.2) and
obtain the simple result

F ¼ FCC

X
NC0C þ FCH

X
NC0H (14:8)

The final energy formula follows from Eqs. (11.14)–(11.16) and (14.3)–(14.8):
X
k

X
l

aklDqk þ F ¼ A1

X
NCkCDqC þ A2

X
DqCk þ aHCnq

W

H

þ Asp
1(C0)

X
NC0CDqC0 þ Asp

3

X
DqC0

þ asC0C � asC0H

� �
DqW

C þ FCC � FCH
� �X

NC0C

þ 4FCH þ 4asC0H � 2aHC
� �

DqW

C

� �
(14:9)

where

A1 ¼ aCC � aCH

A2 ¼ 4aCH � aHC
Asp
1(C0) ¼ aspC0C � aspC0H

Asp
3 ¼ aspC55C þ 2aspC0H � aHC

Equation (14.9) lends itself to numerical tests (see Table 14.1). The first two terms
are well known; they are those described for the saturated carbons (see Table 10.4);
hence A1 ¼ 0.0356 and A2 ¼ 0.0529 kcal mol21 ppm21. We also know that
aHC nqW

H ¼ 7:393 n kcal=mol. Using this theoretical input and the appropriate sums,P
k,l 1kl ’ DE�

a , in comparisons with experimental atomization energies, one
obtains Asp

1(C0) and Asp
3 and the empirical estimates of the two terms in brackets

given in Table 14.1. The latter can be evaluated theoretically using the FCC and
FCH results given in Examples 11.1 and 11.2, respectively, and the appropriate
asC0C(1:531) and asC0H(1:08) parameters described in Chapter 11 (Examples 11.5
and 11.11, respectively), with DqW

C ¼ �27:4 me [Eq. (14.1)]. Incidentally, note that
asC0C � asC0H ¼ aCC � aCH ¼ �0:241 kcal mol�1 me�1. The empirical results nicely
support the theoretical predictions. Also note that the latter cover the largest part,
by far, of all the energy terms occurring in DE�

a . It appears, indeed, that the
unresolved part of Eq. (14.9), Asp

1(C0)

P
NC0CDqC0 þ Asp

3

P
DqC0 , represents less

than 1 kcal/mol.

TABLE 14.1. Tests of Eq. (14.9) for trans- and cis-Olefins (kcal/mol)

Parameter

trans-Olefins cis-Olefins

Theoretical Empirical Theoretical Empirical

4FCH þ (4asC0H � 2aHC)DqW

C 219.08 219.16 218.27 218.22
(asC0C � asC0H)Dq

W

C þ FCC � FCH 4.17 4.19 3.97 4.0
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The empirical evaluation of this small residual quantity indicates that Asp
1(C0)DqC0 ’

�0:028dC0 and Asp
3 DqC0 ’ 0:20dC0 kcal=mol. Knowing that Asp

1(C0) ¼ �0:179
and Asp

3 ¼ 1:357 kcal mol�1 me�1 (from Table 11.3), one finds m ’ �0:955,
ddC0=dqp ’ 288 ppm=e and DqC0 ’ 0:15dC0 me [109].

Because of its little weight in the final results, we may as well simplify things
and replace Asp

1(C0)

P
NC0CDqC0 þ Asp

3

P
DqC0 by 0:18

P
dC0 to cover that part of

Eq. (14.9) [109]. The approximations (in kcal/mol units)

X
k

X
l

aklDqk ’ 0:0356
X

NCCdC þ 0:0529
X

dC þ 0:18
X

dC0

þ 7:393nþ 4:19
X

NC0C � 19:16 (14:10)

for ethylene, 1-alkenes, trans-alkenes, and tetramethylethylene, and

X
k

X
l

aklDqk ’ 0:0356
X

NCCdC þ 0:0529
X

dC þ 0:18
X

dC0

þ 7:393 nþ 4:0
X

NC0C � 18:22 (14:11)

for cis-olefins appear to be quite adequate in practical applications (see Table 14.2).
The idea of using approximate transferable FCC and FCH bond terms for general use
is justified by the present results.

Dienes

The underlying idea is simple. The sum 1W

kl is calculated (see Table 11.2) using 1
W

1 and
1W

10 for the C(sp
3)22C(sp3) and C(sp3)22H bonds, respectively, and 1W

2 for the double
bonds. For the C(sp2)22C(sp2) single bond, one takes 1W

5 and, finally, uses 1
W

4 and 1W

11
for the C(sp3)22C(sp2) and C(sp2)22H bonds, respectively. No separate calculation of
F is required, for it is included in the modified references 1W

4, 1
W

5, and 1W

11.
The calculation of

P
k

P
l aklDqk involves the following steps:

1. First, we form the sum
P

l akl for each individual carbon atom and calculate the
corresponding DqC. So we obtain DqC �

P
l akl ¼

P
l aklDqk for each Ck atom

of the molecule. The sum of all these
P

l aklDqk terms gives the total contri-
bution of all the C atoms to the final sum

P
k

P
l aklDqk.

2. Using the same DqC data, one forms their sum
P

DqC. Knowing the reference
charges, 35.1 me for the sp3 carbons and 7.7 me for the sp2 C atoms, one finds
the lump total net charge

P
qC of all the carbons.

3. Thus we have
P

qH ¼ �
P

qC and
P

DqH ¼
P

qH � nH qW

H, where nH is the
number of hydrogen atoms. So we get aHC

P
DqH, which is the total contri-

bution of all the hydrogen atoms to
P

k

P
l aklDqk.

180 UNSATURATED HYDROCARBONS



TABLE 14.2. Standard Enthalpy of Formation of Olefins (kcal/mol)

Moleculea
P

k

P
l aklDqk DE�

a

DH8f

Calculated Experimental

1 Ethene 24.37 562.22 12.38 12.50
2 Propene 8.80 858.64 4.80 4.88
3 1-Butene 19.47 1152.55 20.27 20.03
4 (Z)2-Butene 20.74 1153.83 21.54 21.67
5 (E)2-Butene 21.91 1154.99 22.71 22.67
6 2-Me-Propene 23.42 1156.51 24.22 24.04
7 1-Pentene 30.08 1446.41 25.28 25.00
8 (Z)2-Pentene 31.55 1447.88 26.75 26.71
9 (E)2-Pentene 32.39 1448.72 27.60 27.59
10 2-Me-1-Butene 33.84 1450.17 29.05 28.68
11 3-Me-1-Butene 31.33 1447.66 26.87 26.92
12 2-Me-2-Butene 34.98 1451.31 210.19 210.17
13 1-Hexene 40.18 1739.76 29.80 29.96
14 (Z)2-Hexene 42.02 1741.60 211.64 212.51
15 (E)2-Hexene 42.99 1742.57 212.61 212.88
16 (Z)3-Hexene 42.28 1741.86 211.90 211.38
17 (E)3-Hexene 43.00 1742.58 212.62 213.01
18 2-Me-1-Pentene 44.25 1743.82 213.86 214.19
19 3-Me-1-Pentene 41.65 1741.22 211.60 211.82
20 4-Me-1-Pentene 41.94 1741.52 211.90 212.24
21 (Z)3-Me-2-Pentene 45.71 1745.29 215.33 215.08
22 (E)3-Me-2-Pentene 45.14 1744.71 214.75 214.86
23 (Z)4-Me-2-Pentene 43.59 1743.16 213.54 213.73
24 (E)4-Me-2-Pentene 44.43 1744.00 214.38 214.69
25 2-Et-1-Butene 43.34 1742.91 212.95 213.38
26 2,3-diMe-1-Butene 45.37 1744.95 215.33 215.85
27 3,3-diMe-1-Butene 43.31 1742.89 213.61 214.70
28 2,3-diMe-2-Butene 47.17 1746.74 216.78 216.68
29 (Z)2-Heptene 52.47 2035.29 216.49 216.9
30 (E)2-Heptene 53.43 2036.25 217.44 217.6
31 (Z)3-Heptene 52.76 2035.58 216.77 216.90
32 (E)3-Heptene 53.59 2036.40 217.60 217.60
33 (Z)3-Me-3-Hexene 55.85 2038.66 219.86 218.60
34 (E)3-Me-3-Hexene 55.92 2038.74 219.93 219.22
35 2,4-diMe-1-Pentene 56.38 2039.19 220.74 220.27
36 4,4-diMe-1-Pentene 54.65 2037.47 219.55 219.20
37 (E)4,4-diMe-2-Pentene 56.98 2039.70 221.58 221.46
38 (E)2,2-diMe-3-Hexene 67.45 2333.52 226.56 226.16
39 2-Me-3-Et-1-Pentene 66.06 2332.12 224.82 224.40

aNote that the
P

k

P
l aklDqk results include F. The experimental DHW

f values are taken from Ref. 242. The
NMR data are from Refs. 138, 267, and 268.
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4. The final sum
P

k

P
l aklDqk is obtained by adding the contributions of the

carbon and the hydrogen atoms.

This approach is probably the most convenient one for general use. It could have
been applied to the saturated and ethylenic hydrocarbons examined earlier; as a rule,
one can always use the atom-by-atom method described here, with modifications, if
necessary, depending on the class of molecules investigated.

The final results are collected in Table 14.3.

14.2 AROMATIC MOLECULES

The calculations are best made following the strategy explained for the dienes, in the
atom-by-atom mode.

The
P

1W

kl part is constructed using the reference bond energies of Table 11.2.
A comment is in order regarding 1W

8, for a bond between aryl carbons at a distance
of 1.397 Å. Consider the aromatic CC bond, 1W

3. It represents, so to speak, the
“average” between a single bond and a double bond as they are found in benzenoid
structures; it is the CC bond of benzene. It is counted twice the number of double
bonds one can write using classical Kekulé structures, for instance, 10 times for
naphthalene and 14 times for anthracene. The remaining CC bonds (e.g., one in
naphthalene, two in anthracene) are treated as C(sp2)22C(sp2) single bonds; these
are the bonds described by 1W

8. Of course, no bond in particular is identified in this
manner; it is only the number of bonds that matters. It is now clear that one cannot
simply use 1W

3 for each CC bond found in aromatic cycles because there are not as
many “averages” as there are CC bonds, except in benzene itself.

All this is best illustrated by an example: 2-methylnaphthalene. The presence of
the CH3 group offers the opportunity of using Eq. (11.17). The charges of the

TABLE 14.3. Comparison between Calculated and Experimental Atomization
Energies of Selected Dienes (kcal/mol)

Moleculea DHW

f

P
k

P
l aklDqk

DE�
a

Calculated Experimental

1,3-Butadiene 26.33 221.57 1010.4 1010.1
(Z )1,3-Pentadiene 19.77 214.09 1305.3 1305.4
(E)1,3-Pentadiene 18.77 212.85 1306.6 1306.5
Isoprene 18.06 213.09 1306.3 1306.7
1,4-Pentadiene 25.25 211.61 1300.2 1300.1
1,5-Hexadiene 20.11 20.99 1594.1 1594.0
Dimethyl-1,3-butadiene 10.78 24.20 1602.6 1602.8
1,3-Cyclohexadiene 25.38 10.98 1473.8 1473.7

aThe sources of the experimental DHW

f values and of the NMR shifts used in these calculations are reported
in Ref. 192.
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carbon atoms are deduced from their NMR shifts, using Eq. (6.6) for the aromatic
carbons and (6.9) for the CH3 carbon.

Example 14.1: Atom-by-Atom Calculation of 2-Methylnaphthalene. Using the
DqC values calculated from the 13C shifts, counting 13.2 me for each aromatic
carbon and 35.1 me for the sp3 reference, we get SqC ¼ 162.88 me and SDqH ¼

2162.882 10 � (211.7) ¼245.88 me. Note the contribution of carbon-2,
20.060dC ¼ 20.408 kcal/mol. The sum over all the atoms k of all their SlaklDqk
terms yields 30.00 kcal/mol, ready for use in Eq. (10.37). The sum

P
k,l 1

W

kl is,
using the entries of Table 11.2, 101W

3 þ 1W

8 þ 1W

6 þ 71W

12 þ 31W

10 ¼ 2424:73 kcal/mol,
so that DE�

a 2454.73 kcal/mol. (See Table 14.4.)

The final results are reported in Table 14.5.
In the absence of experimental results, predicted DHW

f values are indicated in
parentheses. Two DE�

a results listed in the column reporting “experimental
values” are indicated in parentheses; these are theoretical results offered for
comparison, deduced from enthalpies of formation calculated by Dewar and de
Llano [269].

The unsigned average deviation between calculated and experimental energies is
0.36 kcal/mol for a collection of 35 benzenoid molecules. This result does not
include 7,12-dimethylbenz[a]anthracene (36): the discrepancy of �16 kcal/mol
between theory and experiment is in all likelyhood due in part to an error in the
latter. Although certainly real, steric interactions involving the methyl group in
position 12 are probably not so severe as to cause a destabilization exceeding that
found in 1,8-dimethylnaphthalene and 4,5-dimethylphenanthrene—molecules that
are discussed further below.

TABLE 14.4. Atom-by-Atom Evaluation of
PP

k,l aklDqk for 2-Methylnaphthalene
(kcal/mol)a

Atom k dC Dq (me) Sl akl DqkSl akl

1 21.5 21.80 20.799 1.438
2 6.8 — (20.060) 20.408
3 20.45 20.54 20.799 0.431
4 20.7 20.84 20.799 0.671
5 20.7 20.84 20.799 0.671
6 23.6 24.32 20.799 3.452
7 22.7 23.24 20.799 2.589
8 21.1 21.32 20.799 1.055
9 5.6 6.72 21.074 27.217
10 3.65 4.38 21.074 24.704
CH3 16.35 22.42 21.229 2.974P

DqH — 245.88 20.632 28.996

aThe dC data are relative to benzene (1–10) and to ethane for the methyl carbon.
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TABLE 14.5. Calculated and Experimental DE�
a Energies of Benzenoid

Hydrocarbons (kcal/mol)

Molecule DHW

f ZPE þ DH

DE�
a

Calculated Experimental

1 Benzene 19.81+0.13 66.22 1366.5 1366.5
2 Toluene 11.99+0.10 84.43 1663.4 1663.2
3 1,2-diMe-BZ 4.56+0.26 102.64 1959.8 1959.4
4 1,3-diMe-BZ 4.14+0.18 102.64 1960.1 1959.9
5 1,4-diMe-BZ 4.31+0.24 102.64 1959.3 1959.7
6 1,2,3-triMe-BZ 22.26+0.29 120.85 2256.4 2255.1
7 1,2,4-triMe-BZ 23.31+0.26 120.85 2255.7 2256.2
8 1,3,5-triMe-BZ 23.81+0.33 120.85 2256.6 2256.6
9 1,2,3,4-tetraMe-BZ 210.02 139.06 2552.5 2551.7
10 1,2,3,5-tetraMe-BZ 210.71 139.06 2552.1 2552.4
11 1,2,4,5-tetraMe-BZ 210.81 139.06 2551.4 2552.5
12 Pentamethyl-BZ 217.80 157.27 2847.9 2848.3
13 Hexamethyl-BZ 225.26 175.48 3144.6 3144.6
14 Ethylbenzene 7.15+0.19 102.64 1956.7 1956.9
15 n-Propylbenzene 1.89+0.19 120.85 2250.3 2250.9
16 Isopropylbenzene 0.96+0.26 120.50 2251.5 2251.5
17 sec-Butylbenzene 24.15+0.31 138.71 2545.0 2545.5
18 tert-Butylbenzene 25.40+0.31 138.71 2547.4 2546.7
19 1,2-Diphenylethane 32.4+0.3 155.0 3203.0 3202.9
20 Styrene 35.30+0.25 85.80 1811.5 1810.7
21 cis-Stilbene 60.31+0.42 138.05 3056.8 3056.8
22 trans-Stilbene 52.5 138.05 3064.0 3064.6
23 Biphenyl 43.53+0.60 118.27 2613.2 2613.7
24 Naphthalene 36.25+0.45 94.90 2157.7 2157.6
25 1-Me-naphthalene 27.93+0.64 113.11 2455.3 2454.8
26 2-Me-naphthalene 27.75+0.62 113.11 2454.7 2454.9
27 1,8-diMe-naphthalene See text 131.32 2745.0 2745.0
28 Anthracene 55.2+1.1 123.7 2946.4 2946.3
29 9-Methylanthracene (42.1) 141.8 3248.1 —
30 9,10-diMe-anthracene (31.6) 160.0 3547.5 —
31 Phenanthrene 49.5+1.1 123.7 2952.7 2952.0
32 Pyrene 53.94+0.31 133.05 3295.7 3295.7
33 Triphenylene 61.9+1.1 152.3 3746.5 3747.1
34 Benz[a]anthracene 65.97 152.3 3743.0 3743.0
35 7-Me-benz[a]AN (56.2) 170.5 4041.6 —
36 7,12-diMe-benz[a]AN 66.4+1.1 188.7 4336.0 4320.2
37 Dibenz[a,c]AN (77.2) 181.0 4539.3 (4540.5)
38 Dibenz[a,h]AN (79.6) 181.0 4536.9 (4538.0)
39 1,2,3,4-TetrahydroNA 7.3+1.3 126.1 2420.2 2420.2
40 9,10-DihydroAN 38.2+1.1 142.3 3082.8 3083.1
41 9,10-DihydroPHE (37.8) 142.3 3083.5 —

(Continued)

184 UNSATURATED HYDROCARBONS



The general ideas of our energy analysis are certainly supported by the results. On
the other hand, they should not hide the limitations of our approach due to geometry-
related problems. They are best revealed by the following examples.

TABLE 14.5. Continued

Molecule DHW

f ZPE þ DH

DE�
a

Calculated Experimental

42 (1–8)-OctahydroAN (24.3) 185.9 3472.9 —
43 (1–8)-OctahydroPHE (24.9) 185.9 3473.5 —
44 (1–12)-DodecaHTPH (216.4) 245.8 4526.2 —

Key: BZ ¼ benzene (3–13); AN ¼ anthracene (35–38, 40, 42); NA ¼ naphthalene (39); PHE ¼ phenan-
threne (41, 43); HTPH ¼ hydrotriphenylene (44).
Sources: The sources of the experimental DH8f and NMR data are indicated in Ref. 129.
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Example 14.2: The trans- and cis-Stilbenes. trans-Stilbene was treated as a planar
system. The C(sp2)22Ph bonds were accordingly derived on the basis of a conju-
gated sp2–sp2 single bond. For styrene (Example 11.8), we found 1W

7 ¼ 89:69
for its C(Ar)22C(sp2) bond, with F ¼ 20.78. For trans-stilbene (with
RCC ¼ 1:48 Å and w ¼ 125W), the same calculation gives F ¼20.28. Moreover,
the charge variation from 13.2 to 7.7 me required asCC(1:445) ¼ �0:472 in
styrene but asCC(1:48) ¼ �0:463 in trans-stilbene. Hence 1W

70 ¼ 1W

7 þ 0:78� 0:28�
0:05 ¼ 90:14 kcal=mol.

Now, while the molecular structure of trans-stilbene, C6H522CH55CH22C6H5,
apprears to be approximately planar in the solid state [270], its gas-phase structure
is found to be nonplanar [271]. However, the potential curve for energy versus the
dihedral angle is very shallow and the calculated energy barrier corresponding to
the Ci conformation is only about 0.5 kcal/mol [233]. Both these results and our
calculation suggest that in trans-stilbene there is no great energy difference
between conjugation and hyperconjugative stabilization of the sp2–sp2 single
bond, but it is also clear that in this particular situation it could not be assumed a
priori that our approach would lead to a valid result, as it did.

The case of cis-stilbene is clear-cut. Electron diffraction data [272] point to a C2

symmetry in the gas phase and a structure that may be described as having a propel-
lerlike conformation with phenyl groups rotated �458 about the C22Ph bonds. The
latter were thus treated as nonconjugated bonds, with RCC ¼ 1:49 Å [272],
Drpl ¼ 0:029 Å, and w ¼ 129W, for F ¼ 24.65, by reference to the nonconjugated
central CC bond of biphenyl. The charge variation from 13.2 to 7.7 me at the sp2

carbon of the olefinic part, calculated with asCC(1:49) ¼ �0:460, contributes 2.53
kcal/mol. Thus we deduce for the C22Ph bonds of cis-stilbene that
1W

700 ¼ 88:89þ 2:53� 4:65 ¼ 86:77 kcal=mol. Similarly, the gas-phase value [273]
for the tortional angle about the central bond of biphenyl, 41.68, and its bond
length, R ¼ 1.49 Å [233], suggest that the central bond should be treated like a non-
conjugated CC single bond, which led to 1W

9 ¼ 88:89 kcal=mol�1.

Example 14.3: Triphenylene. The same situation arises with triphenylene (33),
which is significantly nonplanar [274]. The bonds joinning the “external” rings to
one another were thus calculated at 1CC ¼ 88:45 kcal=mol for R ¼ 1.46 Å, following
the approach used for biphenyl. It is clear that some advance knowledge is necessary in
our calculations, namely, regarding planarity (or lack of it) of the benzenoid skeleton.

Example 14.4: 4,5-Dimethylphenanthrene. Using the 13C NMR spectrum
measured by Stothers et al. [275], we deduce DHW

f ¼ 36:8 kcal=mol assuming planar-
ity. Closely neighboring methyl groups that are separated by five bonds in the
molecular skeleton, however, result in chiral nonplanar conformations [276].
Modeling, where appropriate, the CC bonds on those described for biphenyl
and cis-stilbene, one predicts DHW

f ¼ 47:8 for the nonplanar form, in acceptable
accord with the reported value [248], 46.26+ 1.46 kcal/mol, a result that is self-
explanatory.
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Example 14.5: The Dimethylnaphthalene Isomers. For the isomer with the sub-
stituents in the 1,8 position, our calculation yields DE�

a ¼ 2748:6 kcal=mol for the
planar form, in error with respect to its experimental counterpart,1 2745.0 kcal/mol.
The thermochemical stability is overestimated by �3.6 kcal/mol, thus suggesting a
possible loss of conjugation in this molecule, which, in fact, is known to suffer con-
siderable distortion from the normal naphthalene geometry [278]. Indeed, a calculation
following the lines described above for biphenyl and non-planar 4,5-dimethylphenan-
threne agrees with experiment [129]. In contrast, 2,6-dimethylnaphthalene can safely
be assumed to retain the planar geometry of naphthalene. The result deduced for this
form, DE�

a ¼ 2751:3, agrees well with the experimental value, 2751.0 kcal/mol.

The examples illustrate possible applications of energy analyses based on 13C
spectra in problems regarding the origin of molecular stability, namely in terms of
a partial suppression of conjugation accompanying deformations of a benzenoid skel-
eton. The great diversity of bonds formed by sp3 and sp2 carbons and conjugation
have been dealt with efficiently. Chemical insight and accuracy reflect, and benefit
from, the simplicity embodied in Eqs. (10.35) and (11.13).

Beyond all complications that seem to accompany the multitude of possible
carbon–carbon bonds, simple familiar intuition is vindicated; it is not false, after
all, to consider the C(Ar)22C(Ar) bonds of benzene as a sort of average between
1W

2 (the double bond of ethylene) and a single CC bond, provided the latter is
chosen properly: namely, the conjugated sp2–sp2 single bond, 1W

8, between aromatic
carbons (in lieu of the CC single bond of ethane).

The proper use of the “average” aromatic bond 1W

3 coupled with that of the super-
numerary “aromatic single bonds.” 1W

8 is clearly illustrated in the following example.

Example 14.6: Graphite. Graphite has a layerlike structure. Each carbon is bonded
to three other carbons forming a framework of planar benzenoid rings, with bond
lengths of 1.42 Å [279]. Two of these bonds command the use of 1W

3, while 1W

8
must be used for the third one. Now we calculate aCC DqC. The graphite carbons
are electroneutral; hence DqC ¼ �13:2 me. Using aspCC(1:42) ¼ �0:352 kcal=mol�1

me21 (for m ¼ 20.814), one finds

DE�
a (graphite) ¼ 1

2
21W

3 þ 1W

8 þ 3� 9:29
� �

¼ 174:93 kcal=mol

The energy of atomization at T ¼ 298.15 K, namely DEa ¼ DHW

a � RT (where DHW

a
is the corresponding enthalpy), thus follows from DE�

a by subtracting the zero-
point and the gas-phase heat content (HT 2 H0) and by adding the translational
energy (32RT) of the carbon atoms formed during the atomization of graphite:

DHW

a ¼ DE�
a � ZPE� (HT � H0)þ 5

2RT . The standard enthalpy of atomization

DHW

a (graphite, 298:15K) ¼ 171:17 kcal=mol

1These results follow from thermochemical data at 350–370 K given in Ref. 277.
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is obtained with the help of the calculated ZPE and the recommended gas-phase heat
content, 3.68 [199] and 1.562+ 0.002 [280] kcal/mol, respectively. Our calculation
has neglected the interactions between the layers, of the order of �1.2 kcal/mol
[281], but is nonetheless in acceptable agreement with the experimental value,
DHW

a ¼ 171:29+ 0:11 kcal=mol (gas, 298.15 K) [280].

This calculation of graphite represents a severe test of the theory; because of
the large weight of aspCCDqC in the final results, �13.94 kcal/mol, it seems fair to con-
clude that the charge assigned to the benzene carbon, 13.2 me, should be correct at
least within +1 me.
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CHAPTER 15

NITROGEN-CONTAINING MOLECULES

15.1 AMINES: CHARGES OF THE CARBON ATOMS

For sp3 carbon atoms, the relationship (6.8) with 13C nuclear magnetic resonance
shifts is highly accurate [38]

qC ¼ �0:148(dC � dC2H6
C )þ 35:1 (me)

where dC and dC2H6
C , the shift of the ethane carbon, are relative to TMS. For the alkyl-

amines, we can use the 13C NMR shifts of Eggert and Djerassi [165]. This aspect has
been tested carefully [139].

Alkane carbon atoms satisfy the charge–NMR shift correlation [Eq. (6.8)]. With
the alkylamines, things could be different because of a possible “extra” effect due to
the presence of the nitrogen atom: a-carbons should perhaps be compared only
among themselves, and so should the b- and g-carbons. The d-carbons, in contrast,
which are sufficiently separated from the nitrogen center, could probably be treated as
if they were part of an alkane. This point has been examined as follows for the
22CbH222Ca H222NH2 motif, focusing on the dissociation and intrinsic bond ener-
gies, DCaCb

and 1CaCb
, respectively.

The first step regards the reorganizational energy of the NH2 CH2 . radical—it is
known (Table 12.3).

This reorganizational energy, the DE�
a energies deduced from experimental enthal-

pies [248], and the energies of the alkyl radicals (Table 12.3) now give the following

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
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dissociation energies, DCaCb
of the CaCb bonds (in kcal/mol): 89.47 (ethylamine),

88.89 (propylamine) and 88.80 (butylamine) (Table 12.5). Thus the corresponding
intrinsic energies, 1CaCb

, Eq. (12.9): 71.99, 73.81, and 74.58 kcal/mol, respectively.
A recalculation of the same CaCb bonds, using the

13C chemical shifts of Ref. 165 in
Eq. (6.8) to obtain the charges, gave 72.83, 73.99, and 74.51 kcal/mol, respectively.
A similar result is also obtained for 1,2-diaminoethane (see Table 12.5).

It is difficult to assess how close the two sets of results really are. The first one
evidently depends on the precision of the thermochemical data that have been
used, namely, DHf8 and ZPE þ HT 2 H0. Equation (6.8), on the other hand, is accu-
rate. It is perhaps our best means for testing sp3 carbon charges; an error of 1 me in
the evaluation of one of the carbons translates into an error of �0.5 kcal/mol in bond
energy. Now, the two sets are too close to warrant revision of the procedure, yet we
cannot endorse it for more than it is: an acceptable approximation. For our needs, and
for the time being, Eq. (6.8) solves the problem. Moreover, the reasoning is that if this
approximation holds in the close neighborhood of nitrogen, it should be all the more
acceptable for carbons in positions g, d, and so on.

15.2 NITROGEN CHARGES AND BOND ENERGIES

The electrostatic potentials VH at the nuclei of hydrogen atoms bonded to nitrogen
and carbon atoms offer much required information regarding a few key molecules,
namely, about the energies of their chemical bonds.

These potentials, for use in Eq. (10.15), are efficiently computed with the help of
density functional (DFT) methods, namely, Becke’s approach [282,184] with the
Lee–Yang–Parr (LYP) potential [20]. Here we adopt a fully coherent method in
which the SCF process, the geometry optimizations, and the computation of analytic
second derivatives are carried out with the complete density functional, including
gradient corrections and HF exchange. The performance of this three-parameter
density functional, hereafter referred to as B3LYP, was investigated earlier, namely
in thermochemistry [283,284]. We selected Pople’s 6-311G�� basis [16].

The thus computed potential energies, Vk (Eq. (10.14)), were rescaled with the
help of the experimental total energy, using the Politzer formula [79]

Emolecule ¼
X
k

Vk

g mol
k

and the appropriate g mol
k s determined from B3LYP/6-311G�� calculations, namely,

gH ¼ 2, gC ¼ 2.322864 and gN ¼ 2.343435 [207]. The rescaled values

V rescaled
k ¼

VB3LYP
k � Emolecule

experP
k (Vk=g

mol
k )

differ little from the original values (see Tables 15.1 and 15.3).
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Selected computed data are collected in Table 15.1. They are of great use in the
forthcoming examples, which illustrate the procedure.

Example 15.1. The NH bond energy in NH3, one-third of its atomization energy
DE�

a ¼ 297.31 kcal/mol, is 1NH ¼ 99.10 kcal/mol, with VH ¼ 21.070521 au
(Table 15.1). For the hydrogen atoms in NH2–NH2, we find VH ¼ 21.073657 au.
Equation (10.15) thus suggests that its NH bond energy differs by D1NH ¼

� 1
2(21.073657 þ 1.070521) au ¼ 0.984 kcal/mol from that of ammonia. Hence,

in this approximation, 1NH ¼ 100.08 kcal/mol in hydrazine, and finally, considering
its atomization energy DEa

� ¼ 436.62 kcal/mol, we find that 1NN ¼ 36.30 kcal/mol.

Example 15.2. The CH bond energy in C2H6 is 106.806 kcal/mol with
VH ¼ 21.133453 au. In CH3NH2, we find VH ¼ 21.131434 au (on average) for the
CH3 hydrogens and thus D1CH ¼20.633 kcal/mol and 1CH ¼ 106.17 kcal/mol in
methylamine.

TABLE 15.1. Electrostatic Potential at H Nuclei

Molecule

Potential at H, VH (au)

B3LYP/6-311G�� Rescaled

NH3 21.072288 21.070521
NH2–NH2 21.075520 21.073657
CH3–CH3 21.132693 21.133453
CH3–NH2 at CH3 21.132237 21.131434

at NH2 21.077308 21.076544
(CH3)2NH at CH3 21.128969 21.128862

at NH 21.077484 21.077382
(CH3)3N 21.127187 21.127573

TABLE 15.2. Energy Parameters of Selected
Molecules (kcal/mol)

Molecule DEa
� Bond Energy

NH3 297.31 1NH ¼ 99.10
NH222NH2 436.62 1NH ¼ 100.08

1NN ¼ 36.30
CH322NH2 580.95 1NH ¼ 100.99

1CH ¼ 106.17
1CN ¼ 60.44

(CH3)2NH 868.70 1NH ¼ 101.25
1CH ¼ 105.37
1CN ¼ 67.63

(CH3)3N 1158.66 1CH ¼ 104.96
1CN ¼ 71.34
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Additional results are reported in Table 15.2 for selected NH, NN, CN, and CH
bonds, and in Table 15.3 for CH bond energies in selected amines. These CH
bond energies, and those of the CN and CC bonds given by (10.37), with charges
deduced from NMR shifts [139], offer an estimate for DE�

a �
P

k,l 1kl.
Comparison with similar calculations, but using the lump charge of all the hydrogens
deduced from charge normalization [139], suggests that the CH bonds of Table 15.3
are (on the average) overestimated by �0.4 kcal/mol for the primary amines, and see-
mingly correct for the secondary amines. The bottom line is that Eq. (10.15) and the
results of Table 15.3 are reasonable estimates.

Table 15.1 offers pertinent information:

1. The result obtained for hydrazine indicates that 2 �100.08 ¼ 200.16 kcal/mol
is the DE�

a energy of each NH2 group in the ground-state molecule. On the other
hand, literature DHf8 data [285,286] and ZPE þ HT 2 H0 results [204] lead to
DEa

� ¼ 181.06 kcal/mol for the isolated NH2 molecule (Table 12.3); hence
RE ¼ 19.10 kcal/mol, from Eq. (12.5).

2. Hence the CN dissociation energy deduced for methylamine from Eq. (12.1),
namely, DCN ¼ 92.00 kcal/mol. Finally, Sanderson’s approximation (12.14)
leads to 1CN ¼ 60.45 kcal/mol for this molecule.

3. In a different approach, one obtains 1CN ¼ 60.44 kcal/mol for the CN bond
found in methylamine, from its total atomization energy and the energies of
its CH and NH bonds.

TABLE 15.3. Electrostatic Potential at Alkyl-H Nuclei (au) and CH Bond
Energies (kcal/mol)

Molecule Site

Potentiala at H, VH (au)

1CH EnergyB3LYP/6-311G�� Rescaled

C2H5NH2 a-CH2 21.134632 21.134240 107.05
b-CH3 21.125653 21.125264 104.24

C3H7NH2 a-CH2 21.133008 21.132833 106.61
b-CH2 21.131283 21.131108 106.07
g-CH3 21.128297 21.128123 105.13

n-C4H9NH2 a-CH2 21.135102 21.134904 107.26
b-CH2 21.132334 21.132137 106.39
g-CH2 21.133984 21.133786 106.91
d-CH3 21.129626 21.129429 105.54

tert-C4H9NH2 b-CH3 21.129094 21.128887 105.37
(CH3)(C2H5)NH a-CH3 21.129923 21.129834 105.67

a-CH2 21.137179 21.137090 107.95
b-CH3 21.128947 21.128858 105.36

(C2H5)2NH a-CH2 21.137195 21.137124 107.96
b-CH3 21.129042 21.128972 105.40

aWeighted average for nonequivalent hydrogens attached to the same carbon.
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The CN Bond Energy Formula

The first thing to do is to learn how to write the bond energy formula [Eq. (10.37)] for
carbon–nitrogen bonds

1CN ¼ 1CN8 þ aCNDqC þ aNCDqN (15:1)

namely, to find the appropriate 1CN8 parameter. Methylamine, CH3 NH2, is selected as
a convenient reference, with 1CN ¼ 60.44 kcal/mol as the sought-after reference
intrinsic bond energy 1CN8 , of Eq. (15.1). Hence

1CN ¼ 60:44þ aCNDqC þ aNCDqN kcal=mol (15:2)

where DqC and DqN are now expressed with respect to the carbon and nitrogen net
charges, respectively, of methylamine.

Net Charges of the Nitrogen Atoms

Let us begin with trimethylamine. Its 13C NMR shift, 47.56 ppm from TMS [165],
gives qC ¼ 28.92 me. With 1CH ¼ 104.96 kcal/mol (Table 15.1), we deduce
qH ¼ 26.364 me from the standard formula

1CH ¼ 108:081� 0:247qC � 0:632qH kcal=mol

and thus, from charge normalization, qN ¼ 229.50 me. (An uncertainty of+1 me on
qC translates into an uncertainty of +0.5 me on qN.) The same calculation also
indicates that 1CN ¼ 71.34 kcal/mol (Table 15.2). Next we compare the CN bond
energies of the two molecules, methylamine and trimethylamine, with the help of
Eq. (15.2), in kcal/mol:

60:44 ¼ 71:34� 0:603 qMeNH2
C � 28:92

� �
� 0:448 qMeNH2

N þ 29:50
� �

Using dC ¼ 28.3 ppm from TMS, we find the net charge of the methylamine carbon,
qMeNH2
C ¼ 31:77 me, and hence qN ¼ 29.00 me in the methylamine molecule. In
similar fashion, with qC ¼ 30.44 me for the carbon of dimethylamine, we deduce
from its CN bond energy (Table 15.2) that qN ¼ 223.35 me. This is as far as we
can go with our present means. The internal consistency of these results is more
important than their precise values, which could be refined, but energy calculations
will dispense the verdict.

The solutions proposed for the nitrogen atoms are probably not as accurate as those
given for the sp3 carbon atoms. Still, they offer a valid basis for approximate but
realistic energy calculations.
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Selected Nitrogen–Nitrogen Bonds

A few typical nitrogen–nitrogen bonds are briefly examined. The key is in the result
obtained from dimethylamine, leading to RE(CH3NH†) ¼ 9.19 kcal/mol. With DHf8
(CH3NH†) ¼ 43.6+ 3 kcal/mol [246] and ZPE þ HT 2 H0 ¼ 31.78 kcal/mol
[139], we get DEa

� ¼ 471.54 kcal/mol for this radical; hence DCN ¼ 89.27 kcal/
mol for dimethylamine, and thereby the reorganizational energy indicated above.

For methylhydrazine, one obtains DEa
� ¼ 725.50 kcal/mol from DHf8 ¼ 22.6+

0.1 kcal/mol [246] and ZPE þ HT 2 H0 ¼ 52.00 kcal/mol [44]. Thus we deduce
DNN ¼ 72.90 and 1NN ¼ 44.61 kcal/mol.

For 1,2-dimethylhydrazine, it is now DEa
� ¼ 1014.94 kcal/mol from DHf8 ¼

22.0+ 1 kcal/mol [246] and ZPE þ HT 2 H0 ¼ 70.20 kcal/mol. Thus we deduce
DNN ¼ 71.86 and 1NN ¼ 53.48 kcal/mol.

Finally, for hydrazine itself the results are DNN ¼ 74.70 and 1NN ¼ 36.30
kcal/mol.

The methyl groups visibly inject electrons into the NN linkage, raising its intrinsic
energy, but it is also clear that the relatively large reorganizational energies of the
reaction products protect the nitrogen–nitrogen bonds in some way.

15.3 RESULTS

Straightforward applications of the theory are presented in the atom-by-atom
approach, as exemplified in Table 15.4, using charges deduced from NMR shifts,
Eq. (6.8) for the carbon atoms, and Eqs. (6.12)–(6.14) for the nitrogen atoms. (CN
bond dissociation energies and comparisons with the corresponding intrinsic bond
energies are described in Chapter 12 for both alkylamines and selected nitroalkanes.)

In the calculation of atomization energies, however, we meet with a difficulty. The
hydrogen atoms, whose lump sums of atomic charges are deduced from charge nor-
malization using the charges of the carbon and nitrogen atoms, are attached both to
carbon and to nitrogen atoms, although the latter bonds concern only a small part of
all the hydrogen atomic charges. Thus we can propose an approximate solution.

TABLE 15.4. Isopropylamine (me and kcal/mol)

Atom k
P

l akl qk (me) qk
P

l akl
a

Ca 21.826 29.60 254.050
Ca 21.229 32.04 239.377
N 20.842 217.55 14.777
H(N) 20.794 1.30 21.032
H(C) 20.632 278.73 49.757

aThe sums
P

k,l 180kl ¼ 1242.63 kcal/mol and
P

k

P
l aklqk give

DEa
� ¼ 1172.30 kcal/mol, for DHf8 ¼ 219.87 kcal/mol.
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The charges of the amines considered here were calculated following a modified
Del Re approach [34] that duplicates within +0.35 me the carbon charges of alkanes
(root-mean-square deviation) and within 0.75 and �1.38 me those of the carbon and
nitrogen atoms of amines, which were deduced from NMR shifts. These results
indicate that the charges of the hydrogens attached to nitrogen vary little, say,
qH ’ 1:3+ 0:5 me, and suggest a simple approximation; we shall carry out our cal-
culations by letting qH ¼ 1.30 me, for an uncertainty of �0.12 kcal/mol.

The final results, presented in Table 15.5, are still reasonably accurate, as shown by
the unsigned average error of 0.68 kcal/mol.

TABLE 15.5. Standard Enthalpy of Formation of Amines (kcal/mol)

Molecule DE�
a ZPE þ DH

DHf8

Calculatedb Experimentala

1 CH3NH2 581.37 41.48 25.92 25.50+ 0.07
2 C2H5NH2 876.22 59.41 212.21 211.35+ 0.17
3 n-C3H7NH2 1169.75 77.62 216.90 216.77+ 0.13
4 iso-C3H7NH2 1172.30 77.20 219.87 220.02+ 0.17
5 n-C4H9NH2 1463.29 95.83 221.61 222.0+ 0.2
6 iso-C4H9NH2 1464.64 95.49 223.30 223.57+ 0.13
7 sec-C4H9NH2 1465.60 95.03 224.72 225.4+ 0.4
8 tert-C4H9NH2 1469.32 95.21 228.26 228.90+ 0.15
9 cyclo-C6H11NH2 1928.18 118.89 223.40 225.07+ 0.31
10 NH2(CH2)2NH2 1041.47 70.80 23.94 24.07+ 0.14
11 (CH3)2NH 868.18 59.44 24.14 24.43+ 0.12
12 (CH3)(C2H5)NH 1163.56 77.36 210.97 211+ 0.5
13 (C2H5)2NH 1459.54 94.94 218.75 217.16+ 0.31
14 (n-C3H7)2NH 2046.11 131.72 227.28 227.84+ 0.38
15 (iso-C3H7)2NH 2051.57 130.94 233.52 234.4+ 0.1
16 (n-C4H9)2NH 2633.22 168.60 236.26 237.4+ 0.3
17 (iso-C4H9)2NH 2635.73 167.13 240.07 243.21+ 0.65
18 (CH3)3N 1158.64 77.76 25.66 25.67+ 0.18
19 (CH3)2(C2H5)N 1452.23 95.91 210.47 211
20 (CH3)(C2H5)2N 1747.26 113.00 217.78 217
21 (CH3)2(tert-C4H9)N 2042.06 131.78 223.17 221
22 (C2H5)3N 2040.28 131.11 222.06 222.06+ 0.19

aThe results for 6, 9, 10, 14, and 17 are reported in Ref. 247. Those of 1–4, 7, 11, 13, 18, and 22 are from
Ref. 248. For 5, 12, 15, 16, and 19–21, see Ref. 246. The enthalpies of 12 and 19–21 are estimated values.
The ZPE þ HT 2 H0 results are reported in Ref. 139. Original experimental data were used for 1 [249],
2–4 [287], 11 [288], 13 [289], and 18 [290], as cited in Ref. 44. The other results were obtained in the
harmonic oscillator approximation using appropriately scaled fundamental frequencies deduced from
B3LYP/6-311G�� calculations [247], for T ¼ 298.15 K. The scale factor of 0.96852 was determined by
means of comparisons with the experimental frequencies of ammonia, methylamine, ethane, and propane.
bThe 13C NMR shifts are from Ref. 165; those of 15N are from Ref. 149. The rules of [165] were used for
the 13C shifts of (CH3)2NH and (CH3)2(C2H5)N, together with the NMR results given in 166.
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CHAPTER 16

OXYGEN–CONTAINING MOLECULES

16.1 ETHERS

A new reference bond energy must be introduced at this point: 1W

CO for the CO single
bond of diethylether, selected as reference:

1W

CO ¼ 79:78 kcal=mol for qW

Ca ¼ 31:26 me and qW

O ¼ 5:18 me

The subscript a identifies the carbons adjacent to oxygen. These parameters yield the
best fits with experimental energies [141]. Direct estimates using Eqs. (10.11) and
(10.12) and the appropriate SCF potentials at the nuclei do indeed suggest
1W

CO ’ 80 kcal=mol [141]. The CC and CH bonds are treated in the usual manner,
with reference to 1W

CC and 1W

CH, respectively. The corresponding 1W0
CO energy

[Eq. (10.39)] is 1W0
CO ¼ 104:635 kcal=mol (Table 10.4).

The charges are deduced from Eqs. (6.8) and (6.16):

qC ¼ �0:148(dC � dC2H6
C )þ 35:10 (me) C=a

¼ �0:148(dC � dEt2OC )þ 31:26 (me) C ¼ Ca

qO ¼ �0:267(dO � dEt2OO )þ 5:18 (me)

The energy calculations are most conveniently made using the atom-by-atom
approach, as illustrated by the examples given in Table 16.1. The 17O and 13C

Atomic Charges, Bond Properties, and Molecular Energies, by Sándor Fliszár
Copyright # 2009 John Wiley & Sons, Inc.
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NMR shift results of Ref. 140 were used, with dEt2OO ¼ 6:5 ppm from water and
dEt2OC ¼ 65:9, and dC2H6

C ¼ 5:8 ppm from TMS.
Alternatively, one can use the general formula for dialkylethers [44]

X
k

X
l

aklDqk ¼ A1

X
NCCdC þ A2

X
dC þ A3

X
dCa þ A4dO

þ DqW

C aCC
X

NCaC þ aCH
X

NCaH � 2aHC
� �

þ (nC � 2)aHCq
W

H � aHCq
W

O

which incorporates the appropriate charge–NMR shift relationships. NCC is the
number of CC bonds formed by the carbon whose shift is dC. The NCCdC term
includes both dCa (relative to the diethylether Ca atom) and dC (from ethane).
NCaC and NCaH are, respectively, the number of CC and CH bonds formed by the
Ca carbons. Moreover, A1 ¼ aCC 2 aCH; A2 ¼ 4aCH 2 aHC; A3 ¼ 3aCH þ aCO 2

aHC (see Table 10.4); DqW

C ¼ qW

Ca � qC2H6
C ¼ �3:84 me and qW

O ¼ 5:18 me.
Because of the large variations of qO, one may use A4 ¼ 0.1007 kcal mol21 ppm21

for aOC ¼20.804 au (dO, 0) or A4 ¼ 0.0994 for aOC ¼20.800 au (dO . 0).
The rms deviation between calculated and experimental enthalpies of formation

(see Table 16.2), 0.42 kcal/mol, illustrates the overall consistency of our charge

TABLE 16.1. Atom-by-Atom Calculation of Selected Ethers

Molecule Atom k dk
P

l akl qk (me) qk
P

l akl

CH3OiC3H7 CMe 55.6 21.453 32.78 247.63
Ca 72.9 21.935 30.22 258.48
Cb 21.8 21.229 32.73 240.23
O 22.0 21.002 7.45 27.46
H — 20.632 2135.91 85.90P

k,l aklqk 2108.13

iC3H7OtertC4H9 Ctb
a

72.7 22.176 30.25 265.82

Ctb
b

28.5 21.229 31.74 239.01

Cip
a

63.4 21.935 31.63 261.20

Cip
b

25.3 21.229 32.21 239.59

O 62.5 21.002 29.77 9.79
H — 20.632 2211.75 133.83P

k,l aklqk 2179.61

(sec C4H9)2O Ca 74.3 21.935 30.02 258.09
Cb 30.2 21.470 31.49 246.29
Cg 10.0 21.229 34.48 242.38
Cb0 20.3 21.229 32.95 240.50
O 41.5 21.002 24.17 4.17
H — 20.632 2253.71 160.34P

k,l aklqk 2210.01
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and energy calculations. Di-tert-butylether, however, fails in that respect. Using
the 13C and 17O shifts measured by Delseth et al. [140], one obtains DHW

f ¼
�95:6 kcal=mol for this molecule, which is in error by 8.5 kcal/mol with respect
to the experimental result, DHW

f ¼�87:1+ 0:4 kcal=mol. But an anomaly is detected
in the 17O charge–shift correlation (Fig. 6.9), suggesting that Eq. (6.16) would
predict too negative an oxygen atom. Thus we suspect that something fails with
the use of the Delseth results for this molecule in Eqs. (6.8) and (6.16) to get
charge results. Indeed, the use of calculated charges leads to the correct result,
DHW

f ¼�87:45 kcal=mol [35].

16.2 ALCOHOLS

Unfortunately, we cannot benefit from an a priori knowledge of the oxygen net
charges to assist our search. But a posteriori, with the 17O NMR results given in
Ref. 297, it appears appropriate to write

qO � �0:165dH2O
O þ 4:85 me (16:1)

TABLE 16.2. Standard Enthalpy of Formation of Ethersa (kcal/mol)

Molecule
P

1kl Enb ZPE þ DH

DHW

f

Calculated Experimentalb

1 (CH3)2O 796.09 20.05 52.55 244.06 243.99+ 0.12
2 CH3OC2H5 1093.23 20.09 70.19 251.97 251.72+ 0.16
3 CH3O-n-C3H7 1386.27 20.25 87.83 256.91 256.82+ 0.26
4 CH3O-iso-C3H7 1389.74 20.12 87.83 260.25 260.24+ 0.23
5 (C2H5)2O 1389.37 20.17 87.83 259.93 260.26+ 0.19
6 CH3O-n-C4H9 1679.72 20.37 105.47 262.21 261.68+ 0.27
7 CH3O-tert-C4H9 1684.26 20.17 105.15 266.87 267.68+ 0.31
8 C2H5O-n-C3H7 1682.34 20.32 105.47 264.78 265.05+ 0.30
9 C2H5O-t-C4H9 1980.86 20.30 123.11 275.01 275.0+ 0.5
10 (n-C3H7)2O 1975.34 20.47 123.11 269.66 269.85+ 0.40
11 (iso-C3H7)2O 1982.39 20.29 123.11 276.53 276.20+ 0.54
12 i-C3H7Ot-C4H9 2278.41 20.70 140.75 284.70 285.5+ 1.2
13 (n-C4H9)2O 2561.87 20.73 158.39 278.92 279.82+ 0.27
14 (sec-C4H9)2O 2568.14 20.58 158.39 286.04 286.26+ 0.41
15 Tetrahydropyran 1557.13 20.49 92.87 253.22 253.39+ 0.24
16 1,4-Dioxane 1352.45 20.29 78.48 275.63 275.65+ 0.22

aThe approximation ZPE þ DH (¼ZPE þHT 2 H0) ¼ 52.55 þ 17.64(nC 2 2) kcal/mol [44], based on
observed frequencies [291,292], was used for 1–14, where nC is the number of carbon atoms. For 15
and 16, see Ref. 27. The nonbonded parts, Enb [Eq. (10.3)], are reported in Ref. 35.
bThe experimental values are reported in Ref. 248, except those of 6–8 described in Ref. 293 and that of 9
given in Ref. 294. For 7, the result DHW

f ¼ �67:45+ 0:45 kcal=mol is reported in Ref. 295. That of 16 is
from Ref. 296. The 13C and 17O NMR shifts are from Ref. 140.
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where dH2O
O is the 17O NMR shift relative to external water. This formula is advocated

by applications to energy calculations and comparisons with experimental results.
The reference charge, 4.85 me, is roughly estimated within +0.5 me, along with
its corresponding OH reference bond energy, 1W0

OH ¼ 115:678 kcal=mol. It is under-
stood that this parameterization is tentative and amenable to future improvements;
the charges of the hydroxyl groups are not as firmly established as are those of the
carbon atoms. Energy calculations prove nonetheless satisfactory. They reveal

TABLE 16.3. 2-Butanol (kcal/mol)

Atom k dk
a P

l akl qk (me) qk
P

l akl

C-1 22.9 21.229 32.540 239.992
C-2 69.0 21.935 30.801 259.600
C-3 32.3 21.470 31.148 245.788
C-4 10.2 21.229 34.419 242.301
O 34.0 21.049 20.760 0.797
H — 20.632 2128.148 80.990

aFrom Refs. 138 (13C) and 297 for the 17O shifts. The 13C shifts are from TMS; that of 17O is from water.

TABLE 16.4. Standard Enthalpy of Formation of Alcoholsa,b (kcal/mol)

Molecule
P

1kl Enb ZPE þ DH

DHW

f

Calculated Experimentalc

1 H2O 232.33 15.25 257.80 257.80+0.04
2 CH3OH 512.31 20.02 33.69 248.74 248.07+0.05
3 C2H5OH 808.57 20.13 51.69 256.48 256.24+0.07
4 n-C3H7OH 1101.68 20.28 69.76 261.04 261.17+0.30
5 iso-C3H7OH 1105.81 20.23 69.39 265.49 265.12+0.13
6 n-C4H9OH 1395.17 20.41 87.87 265.92 265.79+0.14
7 iso-C4H9OH 1396.57 20.34 87.55 267.58 267.84+0.21
8 sec-C4H9OH 1398.82 20.30 87.46 269.88 269.98+0.23
9 tert-C4H9OH 1403.38 20.29 86.89 274.99 274.72+0.21
10 1-C5H11OH 1688.81 20.54 105.91 271.03 270.66+0.18
11 2-C5H11OH 1692.55 20.46 105.61 274.99 275.18+0.36
12 3-C5H11OH 1691.28 20.46 (105.61) 273.72 275.21+0.27
13 2-Me-1-Butanol 1689.21 20.50 105.69 271.61 272.19+0.35
14 3-Me-1-Butanol 1690.41 20.39 105.73 272.66 272.02+0.35
15 2-Me-2-Butanol 1695.44 20.36 (105.0) 278.39 279.07+0.35
16 HOCH2CH2OH 904.89 20.20 55.43 291.07 292.7+0.4
17 cyclo-C6H11OH 1861.01 20.75 (111.5) 268.44 268.38+0.42

aThe nonbonded contributions Enb [Eq. (10.3)] are from Ref. 35.
bThe results for ZPE þ DH (¼ZPE þ HT 2 H0) were obtained in the harmonic oscillator approximation
from appropriately scaled fundamental frequencies deduced from B3LYP/6-31G�� calculations [247],
for T ¼ 298.15 K. The result for 12 is based on that of 11; that of 15 is inferred from 3-Me-2-butanol
considering that in the presence of tert-butyl-like structures the ZPE þ HT 2 H0 energy is lowered by
�0.3–0.4 kcal/mol [44].
cThe experimental values are reported in Ref. 248.
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that (›E=›N)WO should be taken at�20.8 for hydroxyl oxygen atoms in the evaluation of
aOH and aOC [Eq. (10.41)]. The energies were calculated in the atom-by-atom approach
(as in the example given in Table 16.3) and are reported in Table 16.4. The carbons
are calculated as shown for the ethers, using, namely, qC ¼ �0:148(dC � dEt2OC )þ
31:26 me for the a-carbons and qC ¼�0:148(dC � dC2H6

C ) þ 35:1 me otherwise.
A drastic approximation had to be made for the hydrogens; their total charge was

deduced from charge normalization and was entirely treated as atomic charges of
hydrogens attached to carbon, i.e. as if qH was always null in the OH part, which
is wrong, of course.

This shortcut does not help improve the quality of our presentation. Indeed, one
single millielectron erroneously attributed to a hydrogen atom attached to carbon
(with aHC ¼20.632), rather than to a hydroxyl H atom (with aHO ¼21.000 kcal
mol21 me21), renders

P
k

P
l aklqk too negative by 0.368 kcal/mol and lowers

DE�
a by that amount, which renders DHW

f less negative than what it really should
be. The results of Table 16.4 suggest that the hydroxyl hydrogen of methanol
should have less, and that of 3-C5H11OH should have more, electronic charge than
what is produced by our brute-force approximation. These circumstances, and the
approximate nature of Eq. (16.1), are in part responsible for the unusually high
errors made for some alcohols, averaging �0.51 kcal/mol. Intramolecular hydrogen
bonding should probably be considered in 16.

The case of water is treated differently. It is correctly calculated as

1OH ¼ 1W0
OH þ aOHqO þ aHOqH

¼ 1W0
OH � 0:400qO � 1:000 qH

¼ 1W0
OH þ 0:100 qO

so that Eq. (16.1) gives 1OH ¼ 116.163 kcal/mol and thus the results quoted in
Table 16.4.

16.3 CARBONYL COMPOUNDS

The CO double bond of acetone introduces a new reference energy:

1W

C¼O ¼ 179:40 kcal=mol for qW

Ca ¼ 14:0 me and qW

O ¼ �21:2 me

Direct estimates using the appropriate SCF potentials at the nuclei suggest
1W

C¼O ’ 181 kcal=mol [141]. The CC and CH parameters are treated the usual way.
A general formula is developed as follows. The hydrogen charge variations are

expressed relative to qW

H ¼ �11:7 me. Charge normalization,
P

qH ¼ 2(
P

qC þP
qCa þ

P
qO), gives

DqH ¼ �
X

DqC þ
X

DqCa þ
X

DqO
� �

� nCq
WC2H6
C þ nCaq

W

Ca þ nOq
W

O þ nHq
W

H

� �
(16:2)
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where nCa, nO, nC, and nH are the numbers of C atoms adjacent to O, of the O atoms,
the C atoms not bonded to O, and of the H atoms, respectively. (This formula is also
valid for dialkylethers.)

Summation of the aklDqk terms and Eq. (16.2) gives the following general formula
describing carbonyl compounds RR0CO with R ¼ alkyl and R0 ¼ alkyl or H

X
k

X
l

aklDqk ¼ A1

X
NCCdC þ A2

X
dC þ A0

3dCa þ A0
4dO

þ DqW

Ca aCaCNCaC þ aCaHNCaH � aHCð Þ
þ nCaHCq

W

H � aHCq
W

O (16:3)
where

A0
3 ¼ 2aCaH þ aCO � aHC

A0
4 ¼ aOC � aHC

The other parameters of (16.3) are those explained for the dialkylethers. NCCdC
includes both dCa (from the acetone carbonyl-C atom) and dC (from ethane)
for the atoms not bonded to O. Selected akl values are aCaH(1.08) ¼ 20.276 and
aCO(1.22) ¼ 21.182 au. Hence A0

3 ¼ �0:727 au. Assuming DqC ¼ 20.148dC me,
we get A0

3 ¼ 0:0675 kcal mol�1 ppm�1.
Noting that NCaC þ NCaH ¼ 2, we rewrite Eq. (16.3) as follows

X
k

X
l

aklDqk ¼ 0:0356
X

NCCdC þ 0:0529
X

dC þ 0:0675dCa þ A0
4dO

þ 7:393nC þ 5:07NCaC � 19:42 kcal=mol (16:4)

where nC is the total number of C atoms. Here we cannot take aOC as a constant
because of the large variations of DqO. Using the g data of Table 10.2 and the appro-
priate first and second derivatives, (›EO/›NO)8 ¼ 20.316 and (›2EO/›NO

2 )8 ¼ 0.50
au, respectively, one obtains from Eq. (10.32) that aOC(1.22) ¼ 21.065 2

0.254 �DqO and A0
4 ¼ �(0:058þ 0:254 DqO). Using now DqO(carbonyl) ’2.7dO

me [Eq. (6.17)], we get

A0
4 ’ �(0:098þ 1:16� 10�3 � dO) kcal mol�1 ppm�1

The validity of this approximation is best illustrated by the results offered in
Table 16.5. Although Eq. (16.4) permits accurate calculations of atomization energies
and represents a simple and valuable tool, it must be made clear that the charge-NMR
shift correlations used for the atoms of the carbonyl group (i.e., those involved in the
A0
3dCa and A0

4dO terms) are empirical. On the other hand, it turns out that for
the ketones A0

3dCa þ A0
4dO amounts to less than 5% of

P
k

P
l aklDqk. Hence, with

some reservations in mind, it seems reasonable to claim that at least the main features
of the theory underlying these calculations withstand challenging tests like those
presented in Table 16.5 [44,141].
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With the
P

k

P
l aklDqk expressed as indicated in Eq. (16.3), one must use the

1W

kl bond energy references of Eq. (10.37), namely, in kcal/mol, 1W

CC ¼ 69:633,
1W

CH ¼ 106:806 (as in ethane), and 1W

C¼O ¼ 179:40 (like the CO bond in acetone).
The nonbonded contributions are taken from [44,141]; for carbonyl compounds,

they should be considered with some reservations and are used here on a tentative
basis. As concerns ZPE þ HT 2 H0, an increment of 18.3 kcal/mol was assumed
for each added CH2 group with respect to the closest “parent” compound
[27,44,141,180].

It seems fair to conclude that the charges used in these calculations, based on
13C and 17O NMR shifts, are adequate; the unsigned average deviation between
calculated and experimental enthalpies of formation, 0.22 kcal/mol, certainly
supports this view.

TABLE 16.5. Comparison between Calculated and Experimental Enthalpies
of Formation of Selected Carbonyl Compounds (kcal/mol)

Molecule
P

1kl Enb ZPE þ DH

DHW

f

Calculateda Experimentalb

1 CH3CHO 675.48 20.30 36.65 239.81 239.73+ 0.12
2 C2H5CHO 969.67 20.36 54.95 245.14 245.45+ 0.21
3 n-C3H7CHO 1262.01 20.75 73.25 248.94 248.98+ 0.34
4 (CH3)2CO 976.35 20.07 54.59 251.89 251.90+ 0.12
5 CH3COC2H5 1269.94 20.45 72.89 256.93 257.02+ 0.20
6 CH3COn-C3H7 1563.52 20.42 91.19 261.55 261.92+ 0.26
7 CH3COi-C3H7 1564.75 20.55 91.19 262.92 262.76+ 0.21
8 (C2H5)2CO 1563.42 20.92 91.52 261.63 261.65+ 0.21
9 CH3COn-C4H9 1858.07 20.55 109.49 267.31 266.96+ 0.21
10 CH3COt-C4H9 1860.69 20.6 109.5 270.0 269.28+ 0.25
11 C2H5COn-C3H7 1857.36 21.05 109.49 267.10 266.51+ 0.22
12 C2H5COi-C3H7 1858.65 21.05 109.49 268.39 268.38+ 0.27
13 C2H5COt-C4H9 2153.99 21.2 128.12 274.62 274.99+ 0.33
14 (i-C3H7)2CO 2153.10 21.85 128.12 274.38 274.40+ 0.28

aThe 13C NMR spectra are from Refs. 138 and 142; those of the 17O atoms are given in Ref. 142.
bThe experimental values are reported in Ref. 248.
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CHAPTER 17

PERSPECTIVES

This brings us to the question: and now?
The physics underlying this bond energy theory is attractive for the concepts it

carries into effect: the role of the electronic charge at the bond-forming atoms.
Abundant proof has taught us that given a good knowledge of the charge distribution
in a molecule (e.g., by means of 13C, 15N, 17O NMR chemical shift results),
calculations are not only extremely simple and quick but also very accurate for a
variety of both saturated and unsaturated molecules. So much for the past.

But difficulties exist. Although—so they say—everything started with a big bang,
it better be clear in our minds that Nature operates in delicate manner, with little
effort; small, sometimes very small causes (in our perception of life) have important
consequences. We should remember this rule of thumb: a charge variation of one sole
millielectron at the ends of a sigma bond translates into a change in the order of one
kcal/mol in bond energy, which is a lot. Indeed, we now know that the charge dis-
tributions of alkanes that correlate with carbon NMR shifts, adiabatic
ionization potentials, and molecular atomization energies are precisely those that
satisfy the so-called inductive effects by allowing the smallest possible variations.
In other words, maximum precision in the evaluation of atomic charges is required
for our intended calculations of bond energies. Simply said, most accurate tools
are a must.

Does this imply that it commands the use of complicated means? No! Not
necessarily. And this work should not be taken as the end of the affair. Quite on
the contrary, it is just the beginning—improvements are certainly upon us.
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One could perhaps think of an approach consisting of straightforward calculations
of the NMR shifts of the heavy atoms, a task that can be performed with accuracy
thanks to methods developed by a number of authors [165,169,250,298]. Evidently,
this would still leave us with the problem of assigning the charges of the hydrogen
atoms attached to the various atoms, paying particular attention to those attached to
atoms other than carbon; but that problem could surely be overcome. Alternative
examples exist for sigma systems [34–37]; they could perhaps offer useful hints,
but we prefer to keep an open mind on that matter and try harder for simpler solutions.

Still, we strongly feel that a patient processing of general theory, rather than an
accumulation of empirically generated data, should offer valid solutions permitting
to extend the present methods to cover most, if not all, of organic chemistry.

This work has also taught us—and this is a promising new field of applications—
how to get a fresh insight into individual bond dissociation energies and their depen-
dence on whatever events modify the electronic structures of the concerned reaction
sites. This area only awaits the inventiveness of our community, a community that
never lacks questions and ideas to get the answers. So much for the future.

Sure, in most instances simplifying assumptions cannot be proven a priori to be of
minor import, but this work is the story of a rough simple approximation in the trans-
lation of theory into models, rules, and properties that keep chemistry in the hands of
chemists. The concept of bond energies that depend on the charges of the bond-
forming atoms is not new, but the simple calculation of the required charges surely
calls for sustained inventive attention in the future.

All is quantum chemistry, but quantum chemistry is not all.

Goodbye, Dear Reader!
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APPENDIX: WORKING FORMULAS

A compendium of final working formulas is offered here with the intent to facilitate
numerical applications. All these formulas and the appropriate numerical parameters
are described in the text; this presentation simply inserts the parameters as required, as
they were used in our calculations.

A.1 CHARGE–NMR SHIFT CORRELATIONS

For any sp3 carbon bonded to carbon and hydrogen, use

qC ¼ �0:148(dC � dC2 H6
C )þ 35:1 me (A:1)

where dC � dC2 H6
C is the NMR shift relative to ethane. This formula also applies to the

carbon–nitrogen bonds of amines, but not to sp3 carbons attached to oxygen, as
oxygen introduces an “extra” downfield shift at its bonded a-carbon. For the sp3

carbons of ethers and alcohols attached to oxygen, use

qC ¼ �0:148(dC � 65:9)þ 31:26 me (A:2)

where dC is the carbon shift from TMS and 65.9 ppm is the carbon NMR shift of
diethylether, relative to TMS; the carbon net charge of that reference is 31.26 me.
For aldehydes and ketones, use

qC ¼ �0:148(dC � 204:9)þ 14:0 me (A:3)
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for the carbon attached to oxygen; dC ¼ 204.9 ppm is for acetone, from TMS, with a
carbonyl–carbon net charge of 14.0 me. For olefinic sp2 carbons, use

qC ¼ 0:15(dC � 122:8)þ 7:7 me (A:4)

where dC is expressed relative to tetramethylsilane (TMS), and dC2 H4
C ¼ 122:8 ppm.

For the benzenoid sp2 carbons, one must consider the variations of both the s and
p electronic charges, Dqs ¼ mDqp, so that DqC ¼ Dqs þ Dqp ¼ (m þ 1)Dqp, with
DdC ¼ 157Dqp; hence

DdC ¼ 157
mþ 1

DqC (A:5)

The slope (157) is expressed here in ppm/electron, with Dqp and DqC in electron
units. Reverting now to millielectron units, we get

qC ¼ 1:2(dC � dC6 H6
C )þ 13:2 me (A:6)

for any benzenoid carbon bonded only to other benzenoid carbons, with
m ¼ 20.814, whereas

qC ¼ 0:637(dC � dC6 H6
C )þ 13:2 me (A:7)

applies to substituted aromatic carbon atoms, with m ¼20.90, such as those found in
toluene, styrene, or biphenyl, for example.

The N-15 resonance shifts of alkylamines and nitroalkanes are expressed in ppm
from HNO3, in methanol. Separate correlation lines are observed for mono-, di- and
trialkylamines, namely

qN ¼ 0:218(dN � 371:1)� 9:00 me ( primary amines) (A:8)

qN ¼ 0:247(dN � 363:3)� 23:35 me (secondary amines) (A:9)

qN ¼ 0:168(dN � 356:9)� 29:50 me (tertiary amines) (A:10)

where 371.1 ppm is the shift of the methylamine nitrogen, and 29.00 me its net
charge; 363.3 ppm is the shift observed for dimethylamine, with qN ¼223.35 me,
and 356.9 ppm is that of trimethylamine, with qN ¼229.50 me. For nitroalkanes,
the formula is

qN ¼ 0:253(dN � dCH3NO2
N )þ qCH3NO2

N (A:11)

where the nitrogen net charge in nitromethane (qCH3NO2
N ) has yet to be determined.

The correlations involving O-17 atoms concern dialkylethers, alcohols, aldehydes,
and ketones. For the dialkylether oxygen atoms, the appropriate formula is

qO ¼ �0:267(dO � 6:5)þ 5:18 me (A:12)
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where 5.18 me is the assumed oxygen net charge in diethylether and 6.5 ppm is its
17O shift from water. For alcohols, we use

qO � �0:165(dO � dH2O
O )þ 4:85 me (A:13)

where dO � dH2O
O is the 17O NMR shift relative to external water. For the oxygens

occurring in carbonyl groups, our tentative formula is

qO � 2:7(dO � dacetoneO )� 21:2 me (A:14)

A.2 GENERAL ENERGY FORMULAS

For the normal and branched alkanes as well as for six-membered chair, boat,
and twist–boat cycloalkanes, the following formula for the energy of atomization,
DE�

a (in kcal/mol), includes the nonbonded interactions in an approximate, but
very accurate manner:

DE�
a ’ 710:54(1� m)þ 290:812(n� 2þ 2m)

þ 0:03244
X
k

NCkCdCk þ 0:05728
X
k

dCk þ 0:822ng (A:15)

where n ¼ number of carbon atoms, m ¼ number of cycles, dCk ¼ carbon NMR shift
relative to ethane, NCkC ¼ number of carbon–carbon bonds formed by atom Ck, and
ng ¼ number of gauche interactions (such as exemplified by one of the methyl
protons of the axial methylcyclohexane, for instance, interacting with the axial
protons at C-3 and C-5 of the cyclohexane ring).

Standard enthalpies of formation, DHW

f (gas, 298:15K), calculated along these
lines, using charges inferred from NMR chemical shifts and the standard formula

DE�
a ¼

X
k

nk DHW

f (Ak)�
5
2
RT

� �
þ ZPEþ (HT � H0)� DHW

f (A:16)

agree within 0.24 kcal/mol (root-mean-square deviation) with their experimental
counterparts. The enthalphy of formation DHW

f is thus
1

DHW

f ¼ ZPEþ HT � H0 � 20:185n� 27:698 (1� m)

� 0:03244
X
k

NCkCdCk � 0:05728
X
k

dCk � 0:822ng (A:17)

Taking advantage of the remarkable additive properties of the ZPE þ HT 2 H0 ener-
gies, it also becomes possible to integrate them in simple formulas for the calculation

1Smaller or larger cycles are not described by this formula; their appropriate charge–NMR shift corre-
lations are yet to be investigated in a systematic fashion, as well as other possible effects that may be
due to changes in hybridization.
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of DHW

f , namely, for linear and branched paraffins, CnH2nþ2, we obtain

DHW

f ¼ � 16:219þ 1:972nþ 0:343nbr þ 0:03244
X
k

NCkCdCk

 

þ 0:05728
X
k

dCk

!
(A:18)

where nbr is the number of branchings. Situations involving an extreme steric crowd-
ing (as with two tert-butyl groups attached to a same carbon) are not well represented
by this formula. (The suspected reasons are a possible breakdown of the simple
scheme for evaluating ZPE þ HT 2 H0 energies and/or a failure of the charge–
NMR shift relationship due to slight changes in hybridization.)

The undisputed success of these very simple and accurate formulas, in which
the 0:03244

P
k NCkCdCk þ 0:05728

P
k dCk part most adequately takes care of all

deviations with respect to what would result from a simple bond additivity scheme
involving assumed constant bond energy terms, surely illustrates the general validity
of the approach rooted in charge-dependent bond energy terms in the first place,
and of the concurrent theoretical parameterization of the method on top of it.

The same holds true for olefins, CnH2n, whose atomization energies

DE�
a ¼

X
k,l

1W

kl þ
X
k

X
l

aklDqk þ F (A:19)

are calculated using 1W

CC ¼ 69:633, 1W

CH ¼ 106:806 and 1W

C¼C ¼ 139:37 kcal=mol,
which are the references for ethane and ethylene, respectively. The point is that all
the effects due to the shifts of the p-orbital centroids along the ethylenic double
bond are duly accounted for by means of the appropriate transferable theoretical cor-
rections, in the following general formulas, also using the theoretical akl parameters,
namely, in kcal/mol units

X
k

X
l

aklDqk ’ 0:0356
X

NCCdC þ 0:0529
X

dC þ 0:18
X

dC0

þ 7:393nþ 4:19
X

NC0C � 19:16 (A:20)

for ethylene, 1-alkenes, trans-alkenes, and tetramethylethylene, and

X
k

X
l

aklDqk ’ 0:0356
X

NCCdC þ 0:0529
X

dC þ 0:18
X

dC0

þ 7:393nþ 4:00
X

NC0C � 18:22 (A:21)

for cis-olefins. Note that the 13C NMR shifts of the sp3 carbons dC are relative to ethane,
while those of the sp2 carbons dC0 are from ethylene. NCC is the number of carbon–
carbon bonds formed by an sp3 carbon with any other carbon atom, while NC0C is
the number of bonds formed by an sp2 carbon (marked C0) with sp3 carbon atoms.
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The term in
P

NC0C indicates an a priori gain in stability of �4 kcal/mol for each
CC bond formed by an sp2 carbon, although this gain is somewhat counteracted by
electronic charge redistributions. For example, in going from 2-methyl-1-pentene
(
P

NC0C ¼ 2) to 3-methyl-1-pentene (
P

NC0C ¼ 1), DE�
a does not decrease by �4,

but by only 2.6 kcal/mol, but the leading term is clearly determined by
�4
P

NC0C. On these grounds it is easy to predict that methylenecyclohexane
(with an exocyclic double bond and

P
NC0C ¼ 2 and DHW

f ¼ �7:2 kcal=mol)
should be less stable than 1-methylcyclohexene (

P
NC0C ¼ 3, DHW

f ¼
�10 kcal=mol). This rationale is relevant in the discussion of the relative thermo-
chemical stabilities of exo- vs. endocyclic double bonds. Of course, the fact alone
that a double bond is exocyclic does not necessarily imply a loss in stability. For
example, ethylidenecyclohexane [DHW

f (gas) ¼ �14:7 kcal=mol] and 1-ethylcyclo-
hexene (DHW

f ¼ �15:0 kcal=mol), for which
P

NC0C ¼ 3 in both cases, are visibly
similar in terms of their thermochemical stabilities. These theoretical expectations,
based on the �4

P
NC0C term, fully confirm similar views expressed by Fuchs and

Peacock [299] suggesting that the cyclic compounds differ in double-bond
substitution rather than conformational stability—an area certainly worth additional
investigations. The same trends are observed for the five-membered ring analogs,
as revealed by their heats of formation (gas, 298.15K, indicated in kcal/mol).
Indeed, 1-methylcyclopentene (20.86), with

P
NC0C ¼ 3, is more stable than methy-

lenecyclopentane (2.4), with
P

NC0C ¼ 2. In turn, 1-ethylcyclopentene (24.72) and
ethylidenecyclopentane (24.33), both with

P
NC0C ¼ 3, are quite similar in stability.

This similarity between five- and six-membered cyclic hydrocarbons is not surpris-
ing, but it is not any longer observed for the three-membered ring analogs, probably
because a considerable ring strain introduced by short endocyclic double bonds.

Dienes, Allenes, Alkynes and Benzene

So far, no general formulas have been worked out for these hydrocarbons, thus pre-
cluding the evaluation of the

P
k

P
l aklDqk terms for the allenes and alkynes, but the

results obtained for the alkanes and the alkenes offer interesting clues that permit
rough but (under the circumstances) acceptable back-of-the-envelope estimates: we
gain in “chemical understanding” what is lost in precision. The argument rests on
two circumstances:

† The selection of 1W

CH ¼ 106:806 and 1W

CC ¼ 69:633 kcal=mol as common bond
energy references and of 1W

C¼C ¼ 139:37 kcal=mol for the double bonds
† The fact that the

P
k

P
l aklDqk terms are quite similar for the alkanes and the

alkenes having the same number of carbon atoms, except for ethane versus
ethylene

If we decide not to be too critical about discrepencies of a few kcal/mol when exam-
ining the major trends in hydrocarbon chemistry, it appears that the difference in DE�

a
energy between a saturated CnH2nþ2 hydrocarbon and an unsaturated CnH2n hydro-
carbon is roughly due to the removal of two CH bonds (2 � 106.806 kcal/mol)
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and their replacement by a CC bond (69.633 kcal/mol), representing a decrease of
�144.0 kcal/mol in DE�

a energy for each newly created double bond.
With DE�

a in kcal/mol, a few examples are (experimental values are given in
parentheses): propane/propene, 860.1 (858.56); butane/butene, 1154.2 (1154.5);
pentane/pentene, 1448.2 (1447.6); cyclohexane/cyclohexene, 1616.8 (1616.1);
methylcyclohexane/1-methylcyclohexene, 1913.1 (1913.2); cyclohexane/1,4-cyclo-
hexadiene, 1472.8 (1472.8), and butane/butadiene, 1010.2 (1010.1). (Where
appropriate, the averages of the various alkene isomers were used.)

The carbon–carbon triple bond in acetylene is not far from being the triple of a
single-bond contribution; the factor suggested by Hartree–Fock calculations is
�2.9. Thus, subtracting four CH contributions from butane and adding 1.9 �
69.633 kcal/mol (i.e., by subtracting �295 kcal/mol from the DE�

a of butane)
we obtain, in this rough estimate, DE�

a (2-butyne) ’ 1003.1 kcal/mol. Under these
circumstances, the agreement with the experimental value, DE�

a ¼ 1001:5 kcal=mol
is certainly satisfactory. Similarly, using now the 1.6 factor deduced for benzene,
we estimate its atomization energy from that of cyclohexane by removing six
CH bonds and adding 6 times 0.6 � 69.633 kcal/mol. This estimate leads to
DE�

a (benzene) ’ 1370:6 kcal=mol, still in rough agreement with its experimental
value, namely, DE�

a ¼ 1366:5 kcal=mol. Finally, taking propane as a precursor for
allene, H2C55C55CH2, we replace four CH bonds by two CC bonds using the
128.5/66.7 ratio of carbon–carbon bond energies indicated by HF calculations.
The value thus deduced for allene, DE�

a ’ 705:9 kcal=mol, is reasonably close to
its experimental counterpart, 701.9 kcal/mol.

No claim for accuracy can be made for brute-force approaches of this sort. It
remains, however, that a most instructive link is created in this manner between
typical saturated, olefinic, acetylenic, and aromatic hydrocarbons. This is rewarding;
all the pieces seem to fall in place in a very orderly fashion.

The atomization energies of dialkylethers are conveniently deduced from the fol-
lowing general formula (in kcal/mol units):

DE�
a ¼

X
k,l

1W

kl þ 0:0356
X

NCCdC þ 0:0529
X

dC=a þ 0:1217
X

dCa

þ A4dO þ 7:393nþ 0:92
X

NCaC � 10:67� Enb (A:22)

The standard bond contributions 1W

kl are 69.633 for any CC, 106.806 for any CH and
79.78 kcal/mol for one CO bond. The dC=a shifts are relative to ethane (at 5.8 ppm
from TMS), and the dCa

shifts are relative to the a-carbon of diethylether (65.9 ppm
from TMS). The

P
NCC dC term includes both dCa

and dC=a. The
17O NMR shifts

are relative to that of diethylether (6.5 ppm from water). The parameter n is the
number of C atoms and

P
NCaC is the number of CC bonds formed by the two

a-carbons. One uses A4 ¼ 0.1007 when dO , 0 and A4 ¼ 0.0994 kcal mol21

ppm21 when dO . 0. Rough evaluations of the nonbonded part, Enb, can be made
as follows. For normal alkyl groups larger than C2H5, Enb becomes more negative
by �0.13 kcal/mol for each added CH2 group, but branching (e.g., for iso-C3H7
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instead of n-C3H7) makes Enb more positive by �0.08 kcal/mol. Acetals should not
be calculated in this manner because their charge-17O NMR shift relationship differs
from that of the simple ethers.

The energy formula describing noncyclic carbonyl compounds is (in kcal/mol units):

DE�
a ¼

X
k,l

1W

kl þ 0:0356
X

NCCdC þ 0:0529
X

dC=a þ 0:0675dCa

þ A0
4dO þ 7:393nþ 5:07NCaC � 19:42� Enb (A:23)

A0
4 ’ �(0:098þ 1:16� 10�3 � dO) kcal mol�1 ppm�1 (A:24)

where n is the number of carbon atoms. NCaC is the number of CC bonds formed by
the C atom attached to oxygen. NCCdC includes both dCa

(from the acetone carbonyl-
C atom) and dC=a (from ethane) for the atoms not bonded to O. The appropriate 1W

kl

bond parameters are, in kcal/mol units, 1W

CC ¼ 69:633, 1W

CH ¼ 106:806 (as in ethane),
and 1W

CO ¼ 179:40 (like the CO bond in acetone).
[To gain familiarity with Eqs. (A.15)–(A.18), (A.22), and (A.23), the input data

(
P

NCCdC,
P

dC, etc.) listed in Refs. 44, 27, and 141 are most useful. The 13C NMR
shifts of the dienes are reported in Ref. 192.]

A.3 BOND ENERGY FORMULAS

Any bond energy formula can be expressed either i) by reference to a selected bond with
reference net atomic charges qW

k and q
W

l at the bond-forming atoms k and l, or ii) by refer-
ence to hypothetical k– l bonds constructed with the assumption qW

k ¼ qW

l ¼ 0. The
former reflects a physical situation, but requires additional work in order to satify
charge normalization constraints; it is most useful in the construction of general energy
formulas for molecules that use chemical shifts espressed with respect to the appropriate
references. The latter method simplifies bond-by-bond calculations. The two forms are

1kl ¼ 1W

kl þ akl(qk � qW

k)þ alk(ql � qW

l ) (A:25)

¼ 1W0
kl þ aklqk þ alkql (A:26)

with

1W0
kl ¼ 1W

kl � aklq
W

k � alkq
W

l (A:27)

Where appropriate, 1W

kl and 1
W0
kl are corrected to include effects arising from possible shifts

of p orbitals and conjugation.
In the following, all energies are expressed in kcal/mol and the charges in me

(1023 electron) units.

† C(sp3)22C(sp3) Carbon–Carbon Bonds (alkanes)

1CC ¼ 69:633� 0:488(qCk � 35:1)� 0:488(qCl � 35:1) (A:28)

¼ 103:891� 0:488qCk � 0:488qCl (A:29)

APPENDIX 213



† C(sp3)22H Carbon–Hydrogen Bonds (alkanes)

1CH ¼ 106:806� 0:247(qCk � 35:1)� 0:632(qHl þ 11:7) (A:30)

¼ 108:081� 0:247qCk � 0:632qHl (A:31)

† C(sp3)22N Carbon–Nitrogen Bonds (amines)

1CN ¼ 60:44� 0:603(qCk � 31:77)� 0:448(qNl þ 9:00) (A:32)

¼ 75:56� 0:603qCk � 0:448qNl (A:33)

† C(sp3)22O Carbon–Oxygen Bonds (ethers)

1CO ¼ 79:78� 0:712(qCk � 31:26)� 0:501(qOl � 5:18) (A:34)

¼ 104:635� 0:712qCk � 0:501qOl (A:35)

† C(sp3)22O Carbon–Oxygen Bonds (alcohols)

1CO ¼ 104:635� 0:712qCk � 0:649qOl (A:36)

† N22H Nitrogen–Hydrogen Bonds (amines)

1NH ¼ 101:36� 0:197qNk � 0:794qHl (A:37)

† O22H Oxygen–Hydrogen Bonds (alcohols)

1OH ¼ 115:678� 0:400qOk � 1:000qHl (A:38)

Carbonyl carbon atoms form the following bonds:

† C55O Carbon–Oxygen Double Bonds (acetone)

1CO ¼ 179:40� 0:742(qC � 14:0)

� [0:6683 þ 1:59� 10�4(qO þ 21:2)](qO þ 21:2) (A:39)

¼ 175:55� 0:742qC � 0:675qO � 1:59� 10�4q2O (A:40)

† C(55O)22C(sp3) Carbonyl-C Bonded to sp3 Carbon (acetone)

1CC ¼ 69:633� 0:413(qCk � 35:1)� 0:488(qCl � 35:1) (A:41)

¼ 101:26� 0:413qCk � 0:488qCl (A:42)

† C(55O)22H Carbonyl-C Bonded to Hydrogen (aldehydes)

1CH ¼ 106:806� 0:173(qCk � 35:1)� 0:632(qHl þ 11:7) (A:43)

¼ 105:48� 0:173qCk � 0:632qHl (A:44)
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The following bonds occur in olefins:

† C(sp2)55C(sp2) Carbon–Carbon Double Bonds (ethylene)

1C¼C ¼ 139:37� 0:183(qCk � 7:7)� 0:183(qCl � 7:7) (A:45)

¼ 142:19� 0:183qCk � 0:183qCl (A:46)

† C(sp2)22C(sp2) Carbon–Carbon Single Bonds (butadiene)2

1CC ¼ 89:14þ 0:258(qCk � 7:7)þ 0:258(qCl � 7:7) (A:47)

¼ 85:17þ 0:258qCk þ 0:258qCl (A:48)

† C(sp3)22C(sp2) Carbon–Carbon Bonds (olefins)3

1CC ¼ 77:67� 0:488(qCk � 35:1)þ 0:275(qCl � 7:7) (A:49)

¼ 92:68� 0:488qCk þ 0:275qCl (A:50)

† C(sp2)22H Carbon–Hydrogen Bonds (olefins)

1CH ¼ 110:69þ 0:454(qCk � 7:7)� 0:632(qHl þ 11:7) (A:51)

¼ 99:80þ 0:454qCk � 0:632qHl (A:52)

The following bonds occur in benzenoid hydrocarbons. Consider first the endocyclic
carbon–carbon bonds, namely, those found in benzene, with 1W

CC ¼ 115:39 (or
1W0
CC ¼ 124:84) kcal/mol, which—in a sketchy way—are some kind of averages
between a single and a double sp2–sp2 bond. (Their number is double that of the
number of double bonds that can be written in classical Kekulé structures, e.g.,
2 � 5 in naphthalene, 2 � 7 in anthracene.) But in polynuclear benzenoid structures
there are not twice as many “averages” as there are Kekulé double bonds. Hence,
consider the “extra” single C(sp2)22C(sp2) bonds like the one found in naphthalene,
or the two “extra” single bonds found in anthracene. The appropriate bond energy
formulas are

† C(Ar):::C(Ar) (Endo) Carbon–Carbon Bonds (benzene)

1CC ¼ 115:39� 0:358(qCk � 13:2)� 0:358(qCl � 13:2) (A:53)

¼ 124:84� 0:358qCk � 0:358qCl (A:54)

† C(Ar)22C(Ar) (Endo) Carbon–Carbon “Single” Bonds

1CC ¼ 91:21� 0:358(qCk � 13:2)� 0:358(qCl � 13:2) (A:55)

¼ 100:66� 0:358qCk � 0:358qCl (A:56)

2aspCC ¼ 0:258 follows from asCC (1:463) ¼ �0:4675, apCC (1:485) ¼ �0:4348 kcal mol�1 me�1 and
m ¼ 20.955.
3aspC0C ¼ 0:275 follows from asC0C(1:53) ¼ �0:45055, apC0C(1:55) ¼ �0:41792 kcal mol�1 me�1 and
m ¼ 20.955.
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In Eqs. (A.53) and (A.55), for C(Ar) carbons engaged in exocyclic CC bonds, use
aspCC(1:40)¼�0:249, m¼�0:9, instead of 20.358 (m ¼ 20.814) kcal mol21 me21.

The carbon–hydrogen bonds formed by the arylcarbon atoms are

† C(Ar)22H Carbon–Hydrogen Bonds (aromatic molecules)

1CH ¼ 111:41� 0:083(qCk � 13:2)� 0:632(qHl þ 11:7) (A:57)

¼ 105:11� 0:083qCk � 0:632qHl (A:58)

All the akl parameters indicated in Eqs. (A.53)–(A.58) were calculated by means
of the general formula

aspkl ¼ maskl þ apkl
1þ m

(A:59)

with m ¼20.814. When the ring carbons are engaged in exocyclic carbon–
carbon bonds, as in toluene, styrene, or biphenyl, for example, one must use
asCC(1:48) ¼ �0:4631 and apCC(1:48) ¼ �0:4394 kcal mol�1 me�1, with m ¼ 20.9.
The appropriate formulas are

† C(Ar)22C(sp3) Exocyclic Carbon–Carbon Bonds (toluene)

1CC ¼ 79:33� 0:226(qCk � 13:2)� 0:488(qCl � 35:1) (A:60)

¼ 99:44� 0:226qCk � 0:488qCl (A:61)

† C(Ar)22C(Ar) Exocyclic Carbon–Carbon Bond (biphenyl)

1CC ¼ 88:89� 0:226(qCk � 13:2)� 0:226(qCl � 13:2) (A:62)

¼ 94:86� 0:226qCk � 0:226qCl (A:63)

† C(Ar)22C(sp2) Exocyclic C22C Bonds (styrene)

1CC ¼ 89:69� 0:226(qCk � 13:2)þ 0:275(qCl � 7:7) (A:64)

¼ 90:56� 0:226qCk þ 0:275qCl (A:65)

Similar formulas apply to the cis- and trans-stilbenes:

† C(Ar)22C(sp2) Exocyclic C22C Bonds (cis-stilbene)

1CC ¼ 86:77� 0:226(qCk � 13:2)þ 0:275(qCl � 7:7) (A:66)

¼ 87:64� 0:226qCk þ 0:275qCl (A:67)
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† C(Ar)22C(sp2) Exocyclic C22C Bonds (trans-stilbene)

1CC ¼ 90:14� 0:226(qCk � 13:2)þ 0:275(qCl � 7:7) (A:68)

¼ 91:01� 0:226qCk þ 0:275qCl (A:69)

Not unexpectedly, numerous different types of carbon–carbon bonds should
be considered in aromatic molecules, depending on the types of atoms involved
(aromatic sp2 carbons, olefinic sp2 carbons and sp3 carbon atoms) and the possible
occurrence of conjugation, as well as geometric features that possibly counteract
conjugation. It is thus clear that—contrasting with straightforward quantum chem-
istry—some advance knowledge is necessary in our calculations, for example,
about geometry and the appropriate atomic charges, which set the limits of our
methods.

But it is also true that the present use of transferable bond energy parameters, such
as those found in Eqs. (A.47)–(A.69), translate in a conceptually simple way the
logics associated with shifts of p-electron centroids, with bond lengths, and with
the appropriate charge redistributions. The results surely illustrate the flexibility of
the method capable of generating the parameters adapted to the various situations
that are encountered. Of course, this demands thought.

In turn, it also appears that “chemical insight” has been gained about the various
contributions to molecular stability, which can now be dealt with efficiently. In a way,
chemistry has been given back to chemists who look for general rules that may guide
them into the future. Considering the conceptual simplicity of the methods described
here, the quality of the tests involving experimental data is certainly encouraging.
No doubt, the proposed parameters could be improved in the future, but it also
seems wise to wait until forthcoming technical refinements improve on the quality
of the experimental results to be used in comparisons with theory.
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103. J. M. André, P. Degand, and G. Leroy, Bull. Soc. Chim. Belg. 80:585 (1971).

104. A. E. Foti, V. H. Smith, and S. Fliszár, J. Mol. Struct. (Theochem) 68:227 (1980).

105. V. W. Laurie and J. S. Muenter, J. Am. Chem. Soc. 88:2883 (1966).

222 BIBLIOGRAPHY



106. E. C. Vauthier and S. Fliszár, manuscript in preparation.

107. R. Roberge and S. Fliszár, Can. J. Chem. 53:2400 (1975).

108. S. Fliszár, J. Am. Chem. Soc. 102:6946 (1980).
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Alcohols
atomic charges, 86

and 17O NMR shifts, 86, 199
enthalpies of formation, 200
parameters, 128, 199
ZPE þ heat content, 200

Aldehydes
atomic charges, 86, 202

and 17O NMR shifts, 202
energy formula, 201, 202
enthalpies of formation, 203
parameters, 201, 202
ZPE þ heat content, 109, 203

Alkanes
atomic charges, 54–63, 90

and 13C NMR shifts, 72–74, 89,
169, 171

dissociation energies, 160–163
charge neutralization, 160–163

energy formula, 132, 171
enthalpies of formation, 170, 174
parameters, 128
ZPE þ DH, 104–106, 174

Amines
atomic charges of carbon, 76, 189, 190

and 13C NMR shifts, 87
atomic charges of nitrogen, 6, 62, 190,

193, 194
and 15N NMR shifts, 78–80, 87

carbon–nitrogen bonds, 192, 193
dissociation of, 164, 165

electrostatic potential at H,
191, 192

enthalpies of formation, 195
N–H bonds, 191, 192, 194
parameters, 128
ZPE þ heat content, 108, 109

Ammonia, 109, 191
electrostatic potential at H, 191

Aromatic hydrocarbons
atomic charges, 62, 144

and 13C NMR shifts, 68–72
parameters, 144–148, 186–188
enthalpies of formation, 184–188
ZPE þ DH, 107, 108, 184–185

Atom
core–valence separation, 18–33

in molecules, 4, 39–52
relativistic corrections, 32
enthalpies of formation, 103
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Atomic charges, 6, 7
Del Re approximation, 7, 195
and inductive effects, 53–62
and ionization potentials, 78, 84,

89–91, 95
Mulliken-type analysis, 6, 7, 93–97
and NMR shifts, 59, 65–87, 91,

132, 171
reference charges, 62

Atomization energy, 39, 49, 102, 113
formula for alcohols, 199–201

for alkanes, 132
for amines, 194, 195
for cycloalkanes, 132, 171–174
for carbonyl compounds, 201–203
for ethers, 198, 199
for olefins, 178–181

Benzene, 5, 46, 48, 69, 72, 144,
162, 184

Bond dissociation see Dissociation
Bond energy
basic formula, 117, 118, 124

alternative formula, 125
empirical formula, 130, 131

of carbon–carbon bonds, 5, 128
of C–H bonds, 128, 129, 161–163
of C–N bonds, 164, 165

of amines, 129, 165
of nitroalkanes, 165
of glycosyl CN bonds, 165

of carbon–oxygen bonds
of alcohols, 128
of aldehydes, 201
of ethers, 128, 129
of ketones, 201

of O–H bonds, 128, 129, 199–201
of N–H bonds, 128, 129
of N–N bonds, 128, 129
reference values, 128

Butane-gauche effects, 171–173
and ZPE þ DH, 104–106

Carbonyl compounds
atomic charges, 76, 77, 201, 202

and 17O NMR shifts, 84, 85, 202
enthalpies of formation, 203
parameters, 201, 202
ZPE þ heat content, 108, 109, 203

Cþ –H2 polarity, 58, 61
Charge neutralization energy, 154,

155, 159
Configuration interaction, 12–16,

20–22
Conjugation, 142–144
Core–valence separation, 17
core electrons

energy formula, 30
in molecules, 43–45

exchange integrals Kcv, 11, 20–25
separation criteria, 18–22
Politzer–Parr approximation, 18, 19,

33, 51
valence electrons

energy of, 30, 33, 43, 46, 47
Coulomb integrals, 10, 11
Cycloalkanes
atomic charges, 72–74
butane-gauche effects, 104,

171–173
enthalpy calculations, 171, 174
ZPE þ heat content, 104–106

Cyclopropane, 5, 175

Debye zero-point energy, 108
Dienes, 107, 142–144, 180, 182
Dipole moments, 7, 14
Dissociation energy
of carbon–carbon bonds, 160
of C–H bonds, 161–163
of C–N bonds, 164, 165
of glycosyl CN bonds, 165
of N–N bonds, 194
reorganizational energy, 154, 157
Sanderson formula, 159, 161–163

Electrostatic potential
at H nuclei, 118, 119, 191, 192

Empirical bond energies, 130, 131
Enthalpy of formation
atoms, 103
basic formula of, 101, 102
numerical results, 170, 174, 181–188,

195, 199, 200, 203
Ethers
atomic charges, 76, 85

and 13C NMR shifts, 76
and 17O NMR shifts, 83–86
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enthalpy of formation, 199
general formula, 198
parameters, 128, 129
ZPE þ heat content, 108–110, 199

Ethylene
carbon charge, 62, 74, 75, 95, 96
bond energy, 5, 141, 144, 147
p orbital centroid, 137–141

Exchange integrals Kcv, 11, 20–22

Gaussian bases, 12
Gauss’ theorem, 33, 46, 114
Graphite, 108, 187

Heat content, 103
of cycloalkanes, 104–106

Hellmann–Feynman theorem, 4, 27, 37,
114, 117

Hydrazine, 108, 109, 191, 192, 194

Inductive effects
and atomic charges, 54–59
and ionization potentials, 95
and nuclear magnetic resonance

shifts, 59–61
and polar s� constants, 54–57

Taft’s scale of, 54
Intrinsic bond energy
basic formula, 117, 118, 124, 125
alternative formula, 125

Ionization potentials
of alkanes, 89–91
of amines, 78
of ethers, 83, 84

Ketones
atomic charges, 76, 77, 84, 85
energy formula, 201, 202
enthalpies of formation, 203
ZPE þ heat content, 109

Mulliken population analysis, 6, 7, 93, 94
modified analysis, 7, 94–97
overlap population, 93, 94

Multiple carbon–carbon bonds
acetylene, 5
aromatics, 5, 144–147
ethylene, 5, 141, 144
graphite, 187, 188

Net charges see atomic charges
Nitrogen NMR shifts
of amines, 78–80

solvent effects, 80
of diazines, 81
of isonitriles, 80
of nitroalkanes, 80
of pyridines, 81, 82
of triazine, 81–83

Nitroalkanes, 164, 165
Nitromethane, 164, 165
Nitrogen–nitrogen bonds, 191, 194
Nonbonded interactions, 113, 115–117,

156, 199, 200, 203
Nuclear magnetic resonance
and atomic charges, 65–68

of sp2 carbons, 68–72, 74, 75
of sp3 carbons, 72–74, 76
of nitrogen, 77–83
of oxygen, 83–86

solvent effects, 79, 80, 82, 83

Olefins
atomic charges, 61, 62, 74

and 13C NMR shifts, 74, 75, 95, 96
energy formula, 178–181
parameters, 141, 142, 144, 147, 180
ZPE þ heat content, 106, 107

Parameters
alcohols, 128, 199–201
aldehydes, 201–203
alkanes, 128, 132, 147, 169, 171
amines, 128, 192, 193
aromatics, 144–147
ethers, 128, 197, 198
ketones, 201–203
olefins, 144–147, 178–180

Pi-orbital centroids, 134–141
Polar substituent constants, 54–56
Politzer formula, 28
Politzer–Parr formula, 19, 33, 51
Pyridines
N charges and NMR shifts, 81–83
solvent effects, 82

Radicals
atomization energy, 157, 158
ZPE þ heat content, 110
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Relativistic corrections, 32
Reorganizational energy, 157–159,

163
Ring strain, 175
Ruedenberg approximation, 28

Sanderson’s approximation, see
Dissociation energy

Single–double configuration interaction
calculations, 12–16

in charge analyses, 15, 16, 62
and core-valence exchange integrals,

21–23
and valence region energy, 30–32

Slater bases, 12
Solvaton model, 68

Taft’s polar constants, 54–56
Thomas–Fermi theory, 19, 28, 114
approximations of, 19, 33, 114

Valence electrons
in Hartree–Fock space, 17, 18
in real space, 20–23

in molecules, 46–49
real-space energy, 30, 33, 42, 46, 47

Valence orbitals, 17, 18, 134–136
Valence state, 123
Virial theorem, 28, 30, 37, 126

Water, 199–201

Xa calculations, 96, 127, 128

Zero-point energy, 103
ZPE þ heat content
of alcohols, 200
of aldehydes, 108, 109, 203
of alkanes, 104, 170
of amines, 108, 109, 195
of aromatics, 107, 108, 184, 185
of cycloalkanes, 104–106, 174
of ethers, 108, 109, 199
of graphite, 108, 187, 188
of ketones, 108, 109, 203
of olefins, 106, 107
of radicals, 110
and butane-gauche effects, 104–106
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