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Preface

Who, what, where, why, when and how – the elementary prescription for a news
squib is also appropriate for a preface.

Who? The book is intended primarily as a text for advanced undergraduates and
graduate students. It can also serve the needs of research workers in the wide area of
nanochemistry, as molecular clusters and extended solid-state materials constitute
the structural “bookends” of nanoparticles: species that are not large enough to
be treated with solid-state concepts but too large to follow the simple rules of
molecular clusters. Those interested in a wide-ranging introduction to models of
electronic structure applicable to delocalized, three-dimensional systems will also
find it useful.

What? This text circumscribes a non-traditional area of inorganic chemistry.
The focus is on a class of compound that exhibits cluster bonding. Emphasis is
on connections between the problems of small molecular clusters, where the vast
majority of atoms are found at the surface, to large crystals, where most atoms
are found in the bulk. A review of bonding in molecular compounds (Chapter 1) is
followed by the fundamentals of cluster bonding in p-block clusters (Chapter 2) and
transition-metal clusters (Chapter 3). After making connections with organometal-
lic chemistry (Chapter 4), mixed p–d-block clusters are developed (Chapter 5). A
bonding model for periodic extended structures (Chapter 6) is developed in the
style of Chapter 1. Chapter 7 then illustrates some of the similarities and differ-
ences between the bonding of clusters and related solid-state structures. The finale
(Chapter 8) abstracts a selection of recent research to illustrate real connections
between clusters and solid-state systems.

Where? Time will tell where this text will fit in the curricula of relevant depart-
ments. Presently, there is no common course in chemistry that it could serve as
a primary text. However, since the mid-1990s a first-year graduate course along
the lines of the material contained within this text has been offered at Notre Dame.

ix



x Preface

Drafts of the present text have been used twice in Chem 616 “Solid-state and cluster
chemistry” further developing the material herein.

Why? In inorganic texts solid-state chemistry appears ancillary to the main
emphasis of molecular chemistry. The title of one first-year chemistry text pro-
claims chemistry a “molecular science.” Clusters fare less well. Service on standard
inorganic exam committees reveals many teachers of inorganic chemistry who are
uncomfortable with both solid-state and cluster chemistries. The conceptual bar-
rier involves the delocalized bonding networks required for an understanding of
electronic structure. This book attempts to smooth the transition between sim-
ple localized bonding models and the delocalized ones by using clusters to bridge
molecular and solid-state chemistries. From the localized two-center bonds of three-
connect clusters to the band structure of metals, cluster bonding provides a unifying
paradigm.

When? Both solid-state chemistry and main-group cluster chemistry can be con-
sidered mature areas. Transition-metal cluster chemistry is of more recent origin;
however, it too has been well defined in a number of edited works. There are
texts on solid-state chemistry and one on cluster chemistry but there is no text that
exploits connections between the two using simple models. Simplified models are
the tools of the working chemist but the power of the simple models within an
area also creates barriers to inter-area understanding. The time is right to show that
the molecular and solid-state boundary conditions on clusters reveals the exciting
problems of structure and properties that remain to be discovered in the region lying
between small clusters and bulk materials – nanoparticles.

How? The text is representative, not comprehensive, and we attempt to balance
simplification and detail. Additional sources are gathered at the end of each chapter
but this list is far from complete. Literature is cited when it is felt the reader
might benefit from following the original arguments or when a more comprehensive
monograph provides access to the details of a given topic or area. For non-chemists
the Appendix contains an outline of the fundamental concepts of chemistry prerequ-
isite to the body of the text. With the exception of Chapter 8, each chapter includes
worked exercises and homework problems at the end of the chapter. A number of
problems are drawn from the research literature to illustrate the approach advocated.
They are challenging by design and a few of the solutions are not published.

Caveats. Those familiar with cluster chemistry will mark the absence of cluster
synthesis, framework dynamics and reactivity. Considerable information exists and
these topics for selected cluster types are well developed in cluster reviews and
edited volumes. However, our focus on electronic structure is deliberate. We wished
to compare and contrast geometric and electronic structure across the large sweep
of element composition and cluster size up to and including bulk materials. To keep
the book of manageable size relative to a typical one-semester advanced course yet
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still bridge the disparate areas encompassed in “cluster chemistry” we chose a focus
consistent with our scope. The approach is unabashedly qualitative but we hope the
reader finds the material an hors d’oeuvre leading to more satisfying entrées in the
literature of the many broad topics touched upon.

Thank yous. First, we owe an intellectual debt to the masters of both cluster and
solid-state chemistries from whom the models presented arose. Some are acknowl-
edged by name in the text where appropriate. Many others, unacknowledged, created
and described the magnificent bodies of chemistry, experimental and theoretical,
which constitute the foundations of this work. That is the nature of science – most
of us are ants piling our grains of chemistry so that those with longer sight can see
even farther.

One of us (TF) held a Leverhulme Visiting Professorship at the University of
Bath in the spring of 2004 during which the writing of this book was begun. Dr.
Andrew S. Weller made this happen. Many thanks to Andy and his department
for both a productive and pleasant sojourn in England. We are also grateful to the
CNRS and the NSF for the support of our independent research as well as a joint
project of cooperative research which facilitated our writing efforts. Our thanks go
to Nancy Fehlner who read the entire manuscript in its final form as well as Dr.
Mouna Ben Yahia who kindly performed some theoretical calculations to check
qualitative (sometimes not) ideas we had in mind. Still, it is highly unlikely we
have produced an error-free book – entropy rules – and the errors that remain are
ours.
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Introduction

A modern chemist has access to good computational methods that generate numer-
ically useful information on molecules, e.g., energy, geometry and vibrational fre-
quencies. But we also have a collection of models based on orbital ideas incorpo-
rating concepts of symmetry, overlap and electronegativity. In this text we focus
on the latter as these ideas have been a huge aid in understanding the connections
between stoichiometry, geometry and electronic structure. The connections can be
as simple as an electron count yielding user-friendly “rules.” Our problem here, the
electronic structure of a cluster or a more extended structure of the type encountered
in solid-state chemistry, requires the application of models beyond those reviewed
in the Appendix. Models are like tools – they permit us to disassemble and assemble
the electronic structure of molecules. For each problem we choose a model that
will accomplish the task with minimum effort and maximum understanding. Just as
one would not use a screwdriver to remove a hex nut, so too we cannot use highly
localized models to usefully describe the electronic structures of many clusters and
extended bonding systems. We must use a method that is capable of producing a
sensible solution as well as one that is sufficiently versatile to treat both the bonding
in small clusters and bulk materials.

The proven method we will use is one that generates solutions based on the
orbitals and electrons that the atoms or molecular fragments bring to the problem.
For molecules, it is the linear combination of atomic orbitals molecular orbital
(LCAO-MO) method. Hence, as a prelude to subsequent chapters on clusters and
extended structures, a qualitative review of the application of this model to simple
molecules is presented. In all cases the intrinsically complex results are pruned
to the essentials according to the guidance of several prize-winning chemists. In
certain cases the ultimate simplification generates the familiar, easy-to-apply and
handy electron-counting rules. We assume the reader has a strong background in
the descriptive chemistry that is outlined in the Appendix. The Appendix or an
inorganic text should be used as needed to refresh the memory of the chemical facts
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2 Introduction

as well as the popular localized descriptions of the bonding of simple molecules. If
more is needed, general texts of inorganic or organometallic chemistry should be
consulted.

1.1 Molecular orbitals without the nasty bits

The Appendix includes a few examples of non-cluster systems where the intrinsic
limitations of the two-center–two-electron bond are revealed. By and large, how-
ever, the model is a good one. Many cluster systems demand a more flexible model to
explain even less complex aspects like stoichiometry and geometry. The model that
chemists have adopted is that of molecular orbitals with a Hoffmann-style approach,
i.e., an approach in which the essence of the problem is identified with a small subset
of molecular orbitals describing the system. This conceptual, essentially qualita-
tive, approach has become the language of modern experimental chemistry. In the
following, some of the essential aspects of the model are described utilizing exper-
imental results of valence-level photoelectron spectroscopy for selected empirical
support. In essence, the ionization energies of molecules are used in the same way
as the ionization energies of atoms are used to justify the H atom model for the
electronic structure of atoms.

In Section A1.3 the united atom model for H2 is described. As a consequence,
molecules may be viewed as “atoms” that contain multiple nuclei at different posi-
tions in space. Molecular orbitals (MOs) are thus “atomic orbitals” (AOs) distorted
by a complex “nucleus.” These modified “atomic orbitals” can be correlated with
the real atomic orbitals of the united atom as well as with linear combinations of
the atomic orbitals of the separated atoms from which the molecule is constructed.
Once one goes beyond simple diatomics, the united atom model rapidly loses its
usefulness; however, the linear combination of atomic orbitals approach does not.
It constitutes a productive approach to the generation of MOs. There are several
good texts that present molecular orbital ideas for the experimental chemist, e.g.,
Albright, Burdett and Whangbo, and here a pragmatic approach to the utilization of
MO models is presented. The examples and exercises given will produce sufficient
familiarity that application of the approach to clusters and extended systems in
successive chapters will produce understanding rather than confusion.

1.1.1 The H2 model

Let’s begin with H2. As shown in Figure 1.1, the combination of two H 1s orbitals
yields two molecular orbitals – one bonding and one antibonding. For an elec-
tron in the bonding combination, additional electron density is placed between the
nuclei (more than would be present if two non-bonding H atoms were placed at the
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same positions). For an electron in the antibonding combination, electron density is
removed from the region between the nuclei relative to two non-interacting H atoms
separated by the same distance. In the former case, the nuclei are better shielded
from each other and the electrons between the nuclei experience the attraction of two
nuclei. This net attractive interaction is just balanced at the equilibrium internuclear
distance of H2 by electron–electron and nucleus–nucleus repulsions. The energy
of the bonding MO is lower than that of the AOs for the non-interacting atoms.
The opposite is true of the antibonding orbital. The ground state is represented by
placing two electrons of opposite spin in the bonding MO. In this one-electron MO
approach electrons are added after MO formation in the manner of the hydrogen
atom model of heavier atoms.

Ionization of H2 can be described as removing an electron from the bonding MO
and Koopmans’ theorem states that the ionization energy IE = −εMO. The MO
model suggests that IE(H2) should be larger than IE(H) = 13.6 eV. As shown by its
photoelectron spectrum, IE(H2) = 15.4 eV. The photoelectron spectrum gives us
additional information about the nature of the occupied molecular orbital from the
fine structure observed in the photoelectron band. This fine structure corresponds to
vibrational excitation of the molecular ion H2

+ and reports on the role of the electron
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removed in the bonding of the molecule H2. The H–H stretching frequency in the
molecule is 4820 cm−1 whereas in the molecular ion it is 2260 cm−1. Removing
the electron generates a more loosely bound ion; therefore the electron removed
was a bonding electron and the MO from which it was removed is H–H bonding.
The fact that a long vibrational progression is observed in the ion confirms that
the structure (H–H distance) is considerably different in the ion vs. the molecule.
The qualitative agreement of experiment and model suggest that even though MOs
have no more real existence than AOs, they serve as a powerful tool for discussing
electronic structure in meaningful terms.

We can use the hypothetical molecule LiH to gain an idea of how electronegativity
enters into the MO model. In Figure 1.2 the calculated MOs of LiH are illustrated.
Note that there are still two MOs as we have not included the 2p functions of Li for
simplicity. One is bonding and filled and one is antibonding and empty. However,
neither is symmetrical relative to the amplitude of the MO at the two different
atomic centers. The bonding MO contains a higher proportion of H character, the
more electronegative atom, whereas electropositive Li has a higher amplitude in
the empty antibonding MO. The distribution of electron density in the molecule is
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given by the square of the absolute magnitude of the wave function (empty orbitals
do not contribute). Hence, the H end of the molecule will be more electron rich
than the Li end and the molecule will have a dipole moment. How much? Mulliken
devised a simple measure of charge distribution by assigning charge to a given atom
center according to its AO contributions to filled MOs. Called a Mulliken population
analysis, it provides a relative measure of charge distribution. For LiH the Mulliken
charges are 0.46 on Li and −0.46 on H; however, quantitative agreement with a
measured dipole moment cannot be expected.

Suppose we consider the excitation of an electron from the bonding to the anti-
bonding MO. The net result is to transfer electron density from the H end to the
Li end of LiH thereby reducing the strength of the Li–H interaction. The effects
of differing electronegativities in polyatomic molecules on MO characters are less
easily anticipated; however, the changes result from the same factors illustrated by
LiH.

Exercise 1.1. Sketch out the MO energies and wavefunction for the molecular ion
[HeH]+. Do you expect the H atom to have positive or negative character relative
to He? Does the MO picture agree with your intuition?

Answer. The He 1s function is at lower energy that the H 1s function; hence, the
qualitative MO diagram is that of Figure 1.2 with He in the position of H and H in
the position of Li. In the ground state, H shares less of the bond pair than He and,
hence, more of the positive charge of the molecule.

1.1.2 Extension of the H2 model to p-block elements

H2 only requires 1s functions for an MO description. Next we have to consider
atoms with p functions as well. So let’s look at B2. The results of a Fenske–Hall
MO calculation on B2 are shown in Figure 1.3 and Table 1.1. For clarity, the dashed
correlation lines to each of the manifolds are only shown for one B atom each.
Now, the MOs are represented by energies and linear combinations of the 2s and 2p
functions of the two B atoms. The 2s and 2p functions are called the basis functions
and the number of basis functions in any problem equals the number of MOs, i.e.,
here are four basis functions on each B atom so there are eight MOs. In the absence
of any symmetry, each MO can contain a contribution from every basis function.
But note that there are four MOs (counting from the lowest energy MO 3 and 5,
each doubly degenerate) that contain only 2px and 2py functions (the z axis is the
B–B axis). The reason is that functions with � symmetry relative to the B–B axis
(no change in sign on rotation about the B–B axis) are orthogonal to functions
with � symmetry (one change in sign on 180◦ rotation about the B–B axis). As
they do not mix, bonding MOs 3 and antibonding MOs 5 can be generated by a
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2 × 2 scheme just like the one used for H2 above. Make yourself a little structure
diagram with a coordinate system taking the molecular axis as the z axis. Then look
at the table of eigenvectors (signs only) with AO %s for each eigenvector. Mark
out the � MOs and draw MO pictures showing AO contributions to verify those
in Figure 1.3. The eigenvectors give you the signs and the AO %s give the relative
size of the AOs you draw. These are easy as each atom only contributes one AO.

The remaining four MOs, 1, 2, 4 and 6, formed from the 2s and 2pz functions of
� symmetry require a 4 × 4 scheme. Take a closer look at these four orbitals and
note in Table 1.1 that the lower ones have larger 2s character and the higher ones
larger 2p character. Draw a picture of the lowest energy one. You should find it of
predominantly 2s character and symmetric (no nodes). The 2s AO energy is lower
than the 2p AO energy so the lowest energy orbital will be mainly of 2s character.
Thus, the highest energy MO will have large 2pz character. Check it the same way.
It has a more complex 2s and 2p mixture so at the side add a 2s orbital to a 2p orbital
and then subtract the two. What do you get? Yes, you get something that looks like
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Table 1.1. Eigenvalues and eigenvectors for B2 from a Fenske–Hall calculation

MOa 1 2 3 4

Energies (eV) −21.6 −13.3 −12.1 −12.1
1B 2s (%) +(40) −(25) (0) (0)
1B 2px (%) (0) (0) +(50) (0)
1B 2py (%) (0) (0) (0) +(50)
1B 2pz (%) +(11) +(25) (0) (0)
2B 2s (%) +(40) +(25) (0) (0)
2B 2px (%) (0) (0) +(50) (0)
2B 2py (%) (0) (0) (0) +(50)
2B 2pz (%) −(11) +(25) (0) (0)

MOa 5 6 7 8

Energies −7.1 0.7 0.7 80
1B 2s (%) +(10) (0) (0) −(25)
1B 2px (%) (0) +(50) (0) (0)
1B 2py (%) (0) (0) +(50) (0)
1B 2pz (%) −(40) (0) (0) −(25)
2B 2s (%) +(10) (0) (0) +(25)
2B 2px (%) (0) −(50) (0) (0)
2B 2py (%) (0) (0) −(50) (0)
2B 2pz (%) +(40) (0) (0) −(25)

a To simplify the table only the sign of the AO coefficients in the MOs are given along with
the % characters in parentheses.

a hybridized orbital. But this happens automatically, when you turn the crank of the
computer. It’s not something you somehow should know. The highest energy MO
is strongly B–B antibonding and has three nodes. Look at the remaining two MOs.
They have one and two nodes, respectively, and the net bonding and antibonding
characters are hard to judge from the drawings. Why? If the MO places electron
density between the nuclei it has bonding character but if it places it outside it
has antibonding character. Look at the � MO with two nodes – this orbital places
density both between the nuclei and outside. The photoelectron spectra discussed
below show that this MO, when filled, is in fact nearly non-bonding in charac-
ter. Note that in these rough drawings one only sketches out the major contribu-
tions plus the nodal and bonding/antibonding characters. One must pay attention to
Table 1.1. Alternatively, plotting programs are available for precise MO drawings if
desired.

In a one-electron model the electrons are added after the MOs are formed. Thus,
the eight MOs of B2 provide a qualitative description of any diatomic molecule
with s and p valence functions only. Electrons are added using the same rules we
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use for filling AOs of atoms. However, the placement of the � and � manifolds
relative to each other will depend on the relative 2s and 2p energies which, in turn,
depend on the atom identities. For a given electron count, the measured multiplicity
of the ground state provides information on the relative energy ordering. Figure 1.4
presents the accepted MO level diagrams of the first row diatomics and one sees,
for example, that the paramagnetism of O2, which is a problem for the two-center–
two-electron bond model, can now be explained. The model also explains nicely
why IE (O2) < IE (N2) even though the electronegativity of O > N.

The next step is to look at heterodiatomics, e.g., CO. One expects the same
number and type of MOs as found with the homonuclear molecules and the number
and symmetry types of basis functions are the same. However, the energies and
compositions are distorted by the differing electronegativities of the two atoms
just as they were for H2 vs. LiH above. In Figure 1.5 the MO diagrams of N2

and CO are compared as are the photoelectron spectra. The spectra clearly show
that the highest occupied MOs (HOMOs) are nearly non-bonding. Both are sharp
bands (little change in inter-nuclear distance on ionization) and the vibrational
frequencies in the ion states are nearly the same as those in the molecules; 2191 vs.
2345 cm−1 for N2 and 2200 vs. 2157 cm−1 for CO. Perhaps this is a problem for the
reader as in the Appendix we describe these molecules as triply bonded and a triple
bond is often represented by one filled �-bonding orbital and two filled �-bonding
orbitals. In the MO description the filled �-bonding MOs are obvious; however,
the �-bonding orbital is not. If it’s not the highest lying filled � MO where is it?
In the MO model the � bonding character is spread over all three filled � orbitals!
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In contrast to the nice, neat two-center–two-electron bond model, it is not so easy
to determine the overall bonding character from MO orbital drawings alone. We
need another measure. This comes from the Mulliken overlap population which is
a numerical indicator of bonding (positive) and antibonding (negative) character
between a pair of atoms within a molecule. For N2 in an approximate calculation
the overall overlap populations are +0.68 for the three � filled MOs and +0.54
each for the � MOs. If one considers each � interaction of bond order one then the
overall bond order is clearly three.

1.1.3 Importance of frontier orbitals

One more elementary MO concept needs to be mentioned. Fukui shared in a Nobel
award for his effective use of the frontier orbitals of a molecule (the highest occupied
MO, HOMO, and lowest unoccupied MO, LUMO) to correlate and predict chemical
behavior. Good Lewis bases are expected to have high lying HOMOs and good
Lewis acids are expected to have low lying LUMOs. For CO the HOMO is a �

orbital, C–O non-bonding, with the highest amplitude on C, which is the more
electropositive atom. This justifies carbon-bound CO when found as a ligand to a
transition metal such as Fe (see Appendix): a fact that is counterintuitive based on a
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simple interpretation of the effect of electronegativities on charge distribution. The
LUMO of CO has � symmetry and is CO antibonding but it, too, has its highest
amplitude on C. To act as a Lewis acid when bound through the C atom, CO
must interact with a metal center that has filled orbitals with � symmetry relative
to the M–C axis. The later transition metals, such as Fe, possess the requisite
filled orbtals. Thus, the primary CO donor interaction to the metal is buttressed
by secondary � back donation to the CO ligand leading to a robust Fe–CO bond.
Note that depopulation of the non-bonding � MO of CO combined with population
of the antibonding � MOs of CO leads to a net weakening of C–O bonding on
coordination. In fact, the CO frequency decreases on binding to a transition metal
Lewis acid, e.g., Fe, whereas it remains about the same if bound to a Lewis acid
incapable of acting as a � acceptor, e.g., BH3.

Walsh showed that the properties of the HOMO could be used to rationalize the
shapes of polyatomic molecules. A good example is the O–E–O series of triatomic
molecules, E = C, N and O. In Figure 1.6 the HOMO energy is plotted as a function
of the O–E–O angle. It correlates with one component of the degenerate LUMO of
CO2 and decreases in energy because of the increasing O–O bonding interaction as
the angle decreases. Consideration of the properties of a single MO neatly correlates
with the observed O–E–O angles of 180◦, 134◦ and 117◦, respectively, for E =
C, [C]− and [C]2− isoelectronic with the known series E = C, N and O. The
importance of HOMO/LUMO properties provides a gratifying simplification of
the MO approach.

1.1.4 Polyatomic molecules

An excursion into polyatomic molecules is next. An informative series from the
point of view of two-center bonds is CH4, NH3, OH2, FH, Ne. In Figure 1.7 a
representation of the photoelectron spectroscopic bands (IEs) illustrate how the
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spherical symmetry of the filled AOs of Ne is broken for this series of isoelectronic
and isoprotonic species. Moving protons from the nucleus into the valence region
introduces structure into the former Ne 2p ionization feature. For example, consider
FH as [F]− (isoelectronic with Ne but with a reduced nuclear charge) as perturbed
by a proton on the z axis. The 2p ionization will no longer be a single feature as
the 2pz ionization will be stabilized relative to the 2px and 2py ionizations as seen
in Figure 1.7. This correlation again harks back to the united atom model in which
these H derivatives become pimply versions of Ne with modified “AOs” to match.
All the trends in orbital and ionization energies for atoms learned in your first year
of chemistry carry over nicely to these molecules. The connection becomes more
obscure as the molecules become even more complex but it is still there.

The isoelectronic series in Figure 1.7 involve pretty small molecules yet the MOs
of, e.g., H2O, are considerably more complex than the simple Lewis dot structure.
Hence, one anticipates that molecules of respectable size will be even more so. For
example, beginning with atoms, the MO approach to P3H5 yields 17 MOs from
the 17 basis functions of which 10 are filled – not something that one can dash off
on the back of an envelope. Hence, we need ways of abstracting the essence of a
problem from the large set of MOs describing a real system. That is, we don’t need
MO theory to discuss CH4 at the level we are interested in here. Two ways have
already been described: the emphasis on frontier orbitals as a guide to reactivity,
e.g., Lewis acid–base interactions; and the HOMO as a guide to structure.

Another fruitful approach, employed to great effect by Hoffmann and members
of his school of chemists, is to divide a molecule into fragments and examine the
MO description of the fragment–fragment orbital interactions as the molecule is
formed. If necessary, review in the Appendix how to easily generate a reasonable
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structure for P3H5 from that of PH3 by replacing two H with two PH2 groups.
Fragment analysis applied to MO descriptions of complex electronic structures is
an analogous procedure for simplifying the problem. In some cases, e.g., formation
of a coordination compound, the fragments are obvious and, for the formation of
a single bond type, no more difficult than the diatomic problem discussed above.
In other cases, the choice of fragments requires considerable insight and/or work.
Very helpful is the careful definition of the question one desires answered and the
specification of the molecules which will provide the answer by inter-comparison
of MO changes. For simple MO approaches a given MO is a rather crude entity
and of little value in any absolute sense. However, the manner in which it varies as
one changes, e.g., a substitutent, more often than not is of value in understanding
what makes the electronic structure tick.

Let’s apply the fragment approach to the simple Lewis donor–acceptor complex
H3BNH3 which is isoelectronic with C2H6. Both have 14 MOs, 7 of which are
filled. The obvious fragment analysis is to break H3BNH3 into BH3 and NH3.
Borane is primarily an acceptor and ammonia is primarily a donor; hence, one need
only consider the LUMO of the former and the HOMO of the latter to generate a
description of H3BNH3 (Figure 1.8). This problem is no more difficult than that of
LiH discussed above, i.e., we have reduced a 14 MO, seven-electron pair problem
to a two MO, one-electron pair problem. With an MO program one can crank out
the MO energies and compositions and then transform these AO basis results into
a fragment orbital basis set generated by calculating the MOs of each fragment
separately. Inspection of the results summarized in Figure 1.8 shows a diatomic-
like model. We have not discovered anything new in this problem. It is simply a
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method of simplification which will be used in Section 1.2 to isolate and describe
interactions that cannot be reduced to a diatomic-like description, e.g., multicenter
two-electron bonds.

Exercise 1.2. In the discussion of Lewis acids and bases in the Appendix, the
compound [I3]− is analyzed as an adduct of the base I− with the acid I2. It probably
is not clear how I2, a diatomic that perfectly fits the two-center–two-electron bond
model and the eight electron rule, can act as a Lewis acid. Show how a HOMO–
LUMO analysis of the acid–base interaction rationalizes the interaction and predicts
a linear structure.

Answer. The HOMO of I− is a filled 5p AO whereas the LUMO of I2 is the
highest lying �-antibonding MO shown in Figure 1.3. Best overlap of the donor
and acceptor orbitals will be achieved in a linear structure. As [I3]− is a homonuclear
compound this HOMO–LUMO analysis cannot be pushed too far and we will defer
presentation of the MOs of a species like [I3]− until we develop a model for three-
center bonds later in the chapter.

A word of caution here is in order. Like all approximate descriptions, the sim-
plifications permitted depend on the question asked. No such model should be
extrapolated outside of its range of applicability. Unfortunately, disregard of this
caution has led to some famous chemical contretemps lasting literally years, e.g.,
the “non-classical” carbonium ion controversy. For some reason, despite living in
the age of quantum mechanics where electronic structure is described in terms of
electron distributions, chemists just love to argue about “where the electrons are.”
Like nervous parents worrying about their teenagers, they want to put electrons
on the ligands rather than the metal, between two nuclei but not three, and so on.
Perhaps some feel wandering electrons might get into trouble! This conceptual
problem is not a joke, however, when one has to teach about cluster bonding and
extended systems like metals to students brainwashed to believe that localized ideas
of oxidation state, hybridization and two-center–two-electron bonds are some sort
of fundamental, inviolate tenets of chemistry.

1.1.5 Coordination compounds

To continue this introduction to MO models, we look next at a coordination com-
pound. Consider the 18-electron complex Cr(CO)6 which has octahedral geometry
(Figure 1.9). Here the metal acts as a Lewis acid but now one that can accommodate
more than a single pair of electrons. How does this factor complicate the analysis? A
chemically informative fragment analysis generates a Cr atom and six CO ligands.
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To produce an interaction diagram we need the frontier orbitals of Cr and CO. The
former are 3d, 4s and 4p whereas the latter are 5� and 2�* and Cr possesses six
valence electrons whereas each CO has two in the HOMO. For simplicity we will
first consider only the CO donor orbitals and then add the acceptor orbital interac-
tions later. For the first problem then we have nine metal functions and six ligand
functions plus 18 electrons total. Thus, we must generate 15 MOs of which 9 will
be filled. Is this a simplification? The full problem requires nine metal functions and
6 × (4 + 4) ligand functions for a total of 57 MOs! Of course, in a real calculation,
the fragment analysis is done by the computer on the MO solutions of the complete
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problem. Hence, the fragment analysis generates energies and MO compositions
that are as valid as the original calculation.

We can use symmetry to simplify the conceptual problem (keep in mind that
you don’t need to know any symmetry to do the calculation on a computer but it
does simplify sorting out the MOs that the computer spews out) but we need to
go beyond � and � and classify the orbitals according to their symmetry in the
octahedral point group. Here we will just do it – many sources for learning how are
available in standard inorganic texts. All we have to remember is that orbitals of
like symmetry interact whereas those of unlike symmetry do not. Six low-energy
filled MOs (a1g, t1u, eg) result from the bonding interactions of the central metal
AOs with the symmetry-adapted linear combinations of the ligand � functions and
six high-energy unfilled MOs result from their antibonding partners. There is no
combination of ligand � functions that has t2g symmetry so the metal d set of t2g

symmetry (xy, xz, yz) retain their pure AO character and for Cr are filled.
This result is a MO description that could equally well be applied to a Werner

complex, e.g., [Co(NH3)6]3+, with 18 electrons. But the chloride salt of the latter is
an orange solid whereas Cr(CO)6 is a white solid. Why the difference in absorption
properties? Absorption in the visible can be crudely associated with the magnitude
of the HOMO–LUMO gap. Empirically it is found that, for the same geometry,
the splitting increases with increasing metal oxidation number and nature of the
ligands as reflected by position in the spectrochemical series. The first factor leads
to a larger gap for Co(III) vs. Cr(0); hence the difference must be associated with
ligand properties. The concensus is that NH3 acts primarily as a Lewis base and the
MO description at the top of Figure 1.9 is an adequate description. As mentioned
more than once already, CO is both a Lewis base and a Lewis acid as the LUMO
is of low enough energy and has the proper symmetry to interact with the filled
t2g metal orbitals on the metal center. Including this donor–acceptor interaction in
our MO diagram (bottom of Figure 1.9) leads to a lowering of the filled t2g orbitals
thereby increasing the M–C bond strength as well as increasing the HOMO–LUMO
gap for Cr(CO)6. In the language of coordination chemistry, CO is a strong field
ligand (high in the spectrochemical series) because it is a strong � acceptor.

Exercise 1.3. Consider a coordination compound formed from BH3 and C2H4.
From the HOMO–LUMO properties of each species predict the geometric structure
of the Lewis acid–base adduct. Now predict the structure of a compound formed
by replacing one CO ligand of Fe(CO)5 with C2H4. Note the parallelism between
the main group and transition metal examples. The second compound is a stable
and isolatable compound, whereas the first is a transient intermediate in the hydro-
boration of ethylene to ethyl borane and has only been characterized as a transient
intermediate in a fast-flow system by modulated mass spectrometry.
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Exercise 1.3

Answer. The frontier orbitals of BH3 and C2H4 are shown in the figure and the
most favorable interaction between the � acceptor orbital of BH3 and the HOMO
of C2H4 can only take place if BH3 is placed on the symmetry axis bisecting the
C–C bond and perpendicular to the plane of the C2H4 molecule. Do not be confused
by the fact that it is the � bonding orbital of C2H4 that is the donor orbital. This is a
consequence of treating complex molecules as if they were diatomics. The replace-
ment of CO with C2H4 is also shown but now both the HOMO and LUMO of C2H4

participate in the same fashion as the HOMO and LUMO of CO. The interaction of
the HOMO of C2H4 with the LUMO of the Fe(CO)4 fragment is analogous to that
of BH3; however, the secondary interaction between the “t2g-like” metal orbitals on
the iron fragment and the LUMO of C2H4 distinguishes the metal system from the
non-metal one. This two-part interaction constitutes the Dewar model and covers
metal–olefin bonding situations ranging from a � complex (small participation of
the LUMO and little pyramidalization at carbon) to a metallacyclopropane (large
participation of the LUMO and considerable pyramidalization at carbon).

In the review of main-group diatomic molecules in the Appendix, we mention
that C2 is not expected to generate a quadruple bond. Now we are in a position
to understand why. From the MO diagram for E2 above it should be clear that in
addition to the � bonding interaction, only two �-type interactions are possible.
We are also in a position to understand what would be required for a compound
to possess a quadruple bond. It is worthwhile doing so as a final exercise. Cotton
provided this analysis and the subsequent manipulation of this bonding feature in
dinuclear complexes by changing metal type and/or oxidation state. We will analyze
the bonding in [Re2Cl8]2− with the geometric structure shown in Figure 1.11. Key
features of the structure are the short Re–Re bond distance (2.24 Å vs. 3.18 Å = sum
of covalent radii) and the eclipsed conformation of the Cl ligands. Obviously, this
complex is not a diatomic molecule but a fragment analysis that mimics a diatomic
molecule can be used to explain these properties and show them to be characteristic
of a M–M quadruple bond.



1.1 Molecular orbitals without the nasty bits 17

Re
Cl

Cl Cl

Cl

4 ML antibonding
1 M non-bonding (p)

4 M non-bonding (d)

4 ML bonding8 "ligand electrons"

4 "metal electrons"

13 MOs12 total electrons

−

eg
b2g

a1g

b1g

a2u

x
y

z

(σ)
(π)
(δ)

Figure 1.10

The appropriate fragment analysis is one in which we generate the Re–Re inter-
action from two D4h [ReCl4]− fragments shown in Figure 1.10. First, we form the
frontier orbitals of [ReCl4]− using an analysis similar to that employed for stable
Cr(CO)6. If we use a single donor orbital from each of the four Cl and the nine
Re valence functions, 13 MOs will be produced (crudely: four M–L bonding, four
M–L antibonding and five non-bonding M functions). The available electrons (four
from four Cl, seven from Re and one from the negative charge) fill the four M–Cl
bonding orbitals with the remaining four going into the M d functions, i.e., z2 (a1g),
xz and yz (eg), xy (b2g) which have �, � and � symmetry relative to the Re–Re
bond axis (z axis) of [Re2Cl8]2− (Figure 1.11). One metal p function (out of plane
a2u) is at high energy. Now bring the two square planar Re fragments together face
to face in an eclipsed conformation as shown in Figure 1.11. Because functions
of different symmetry do not mix, the �, � and � functions combine two by two
(four H2 problems, if you wish) to yield bonding and antibonding combinations.
Note that for the � functions this can only happen in the eclipsed structure – in the
staggered structure the � overlap is zero by symmetry. Eight electrons are available
and they fill the four bonding combinations generating a formal quadruple bond
and thereby rationalizing the short Re–Re distance and eclipsed conformation. The
model is a simple one but it originates from an insightful fragment analysis of an
ostensibly complex molecule. This is exactly what we must do in the upcoming
chapters in order to understand cluster bonding as well as bonding in the solid state.
The trick, and not an easy one to learn, is to simplify just the “right” amount! It’s
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like the instruction found in old recipes – “cook until done.” One learns by doing
it, not by reading about it.

1.2 Three-center bonds

Boron chemists reading this text will know that the story of the boranes starts long
before the cluster electron-counting rule, which will be developed in Chapter 2, was
formulated. The place of the boron hydrides in the fabric of our understanding of
chemical bonding has a long history. Those interested can find fascinating accounts
in the literature of the struggles to accommodate molecules that just didn’t seem
to fit the perceived wisdom of the time. An essential part of this struggle was the
development of the concept of the three-center–two-electron bond. It is a Nobel-
quality concept that impacts on more than borane chemistry. But it was with the
polyhedral borane structures that Lipscomb used it so effectively in generating the
first useful descriptions of the electronic structures of the boranes. Application of
the concept to clusters allows us to probe cluster electronic structure for features
hidden by the simplicity of the electron counting rule. Hence, we go back now and
look at some of this history.

1.2.1 Diborane

The story begins with the problem of the structure of diborane, B2H6, shown in
Figure 1.12. Long a molecule of uncertain structure that caused much angst among
the chemical community, the history of its development says much about the eager-
ness of chemists to apply models with gay abandon. All well and good: this is
how one always begins. But when strange descriptions arise of shoe-horning the
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stoichiometry of B2H6 (eight nuclei, 12 valence electrons) into the structure of
C2H6, it’s time to review the model. Once the structure of diborane was settled
experimentally, firm boundary conditions were established. As shown in Figure
1.12, each B atom is in a near tetrahedral environment of H atoms even though it
does not have the geometric structure of ethane. Ignoring the bridges for a moment,
it should be clear that each of the four non-bridging H atoms can be connected
to the nearest B atom by a two-center–two-electron bond. Four equivalent B–H
bonds utilize 8 of the 12 available electrons. Two B–H–B bridges are left but
only four electrons or two per bridging interaction remain. Based on distances, the
bridging H is bonded to both boron atoms. Hence, the bonding of diborane is said
to be partitioned into four B–H two-center–two-electron bonds and two B–H–B
three-center–two-electron bonds. The “electron-poor” borane monomer solves its
electronic problem by dimerization and formation of two three-center bonds.

How good is a three-center–two-electron B–H–B bond? The chemistry and ener-
getics tell the story. Each B atom in diborane is associated with eight electrons;
hence, the eight-electron rule is obeyed. However, in the presence of Lewis bases
such as PMe3 it is symmetrically cleaved into two BH3 base adducts as shown in
Figure 1.12 ([BH4]− isoelectronic with CH4 for base = [H]−). Shore showed that
bases like NH3 result in unsymmetrical cleavage into the salt [BH2(base)2][BH4]
in which both cation and anion are eight-electron species. Clearly, two three-center
bonds are not as energetically favorable as two base–B donor–acceptor bonds. The
energetics of the cleavage of diborane into two monoboranes provides a different
view. Cleavage requires 163 kJ mol−1, which is about half the energy necessary to
cleave a B–B single bond (Figure 1.12). Another way to express this result is that
one three-center–two-electron bond is better than a two-center–two-electron B–H
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bond plus an empty orbital by about 84 kJ mol−1 – a chemically significant energy
relative to kT at ordinary temperatures.

Exercise 1.4. Look up in a table of average bond energies the C–C single-bond
energy. Compare it with the dissociation energy of diborane. A famous experiment
in the history of organic chemistry is the detection of triphenyl methyl radicals on
the attempted synthesis of hexaphenyl ethane in 1900 by Gomberg. The dissociation
constant, Kdiss, of hexaphenyl ethane at 25 ◦C measured in benzene is 2 × 10−4.
On this basis would you predict (C6H5)2BH to be monomeric or dimeric?

Answer. The C–C bond energy is 335 kJ mol−1 compared with 163 kJ mol−1 for
B2H6. To get a ball-park answer assume the entropy of reaction is the same for
the two dissociation processes and that the steric effect of two Ph groups on the
bridging interaction in diborane is the same as three Ph on the C–C bond in ethane.
Then as Kdiss is proportional to e−E(X)/RT where X = B or C, at the same temperature
Kdiss(B) = Kdiss(C) e−E(B) − E(C)/RT = 2 × 10−4 × 8 × 1029 = 2 × 1026. Monomeric
(C6H5)2BH, however, is reported to disproportionate into (C6H5)3B and (C6H5)BH2

with the latter found as a dimeric species in solution.

One early and insightful model for diborane is the protonated double-bond model
shown in Figure 1.12. Symmetrical protonation of the � bond of ethylene above
and below the molecular plane leads to the structure of diborane. Replacement of
each C in ethylene with [B]− leads to [B2H4]2−. In fact Li2B2R4, where R is a
bulky substituent, has been structurally characterized and shown to possess B–B
multiple-bond character.

We are talking boron hydrides here – compounds with BH bonds polarized with
positive B and negative H. What is the nature of the bridging hydrogen atom? Is it
protonic as the protonated double-bond model might suggest or is it still hydridic?
The three-center bond provides a ready explanation. In the B–H–B bond two elec-
trons are shared between three nuclei; hence, assuming equal electronegativities for
simplicity, each has a 2/3 share and picks up a formal charge of +1/3 for the bond.
As the bridging H forms no other bonds, its charge is +1/3. This formal charge is
large enough to counter the electronegativity difference and the bridging hydrogens
pick up a distinctly protonic character. The protonated double-bond model is more
than a bedtime story! This counterintuitive feature of the three-center bridge bond
lies behind a significant fraction of the borane chemistry developed over the last few
decades in that the removal of a bridging H from a cluster as a proton generates a
site of nucleophilic reactivity. This type of H bridge is found both in organometallic
chemistry (C–H–M) as well as metal-cluster chemistry (M–H–M). As the model
presented is a general one and independent of the identity of the bridged atoms, the
fundamental properties associated with this bonding feature transfer as well.
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1.2.2 Trihydrogen cation: linear and ring structures

In terms of electronic structure, what are the characteristics of a three-center bond?
A simple, but effective, model is that of [H3]+, a prominent ion in the mass spectrum
of H2 formed by an ion–molecule reaction. There are two limiting geometries for
[H3]+, linear and triangular, and the results of a Fenske–Hall calculation are shown
in Figure 1.13. By now you should be able to see how the MOs are generated from
the three H 1s functions. Both linear and triangular [H3]+ are bonded by one filled
MO distributed over three nuclei; hence, three-center–two-electron bond. These are
the two types of bonds developed by Lipscomb to describe the bonding in polyhedral
boranes which will be discussed in detail in the next chapter. Note that the linear
(and bent) three-atom MO manifold consists of one bonding, one non-bonding and
one antibonding MO. Hence, [H3]− with four electrons should be a closed shell
bonded species in the linear form. This is a model for a three-center–four-electron
bond which will be explored briefly below. For yourselves you can show via an
application of Walsh’s approach that [H3]+ is predicted to be triangular whereas
[H3]− should be linear.

An understanding of [H3]+ permits the bent B–H–B three-center bond to be
easily described as shown in Figure 1.14. The main difference is that two of the
H 1s functions are replaced by hybrid B orbitals thereby generating bonding, non-
bonding and antibonding MOs in the same manner.

Perhaps you will have noted that the three-center bond is a method for utilizing
all the valence electrons and valence orbitals when the latter exceeds the former,
e.g., diborane has 12 valence electrons and 14 valence orbitals. Each of the two
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three-center bonds uses three orbitals and two electrons. It should then be clear that
a three-center–four-electron bond can also be useful when there are insufficient
valence orbitals to accommodate the valence electrons. The problem of [I3]− is
considered a Lewis acid–base adduct in the Appendix. It has 22 electrons and 12
orbitals. If each I atom uses three orbitals to accommodate three lone pairs one is
left with four electrons and one orbital on each I atom. If we then use these three
orbitals to form a three-center bond containing four electrons we not only use all the
available orbitals and electrons but also there is no need to invoke an expanded octet
at the central I atom. That is, the filled non-bonding MO has a node at this atom.
The actual MO structure is more complex but this approach provides a reasonable
alternative to the usual treatment.

1.3 An orbital explanation of electron-counting rules

There is a connection between an orbital description of electronic structure and the
more elementary bonding discussions such as those reviewed in the Appendix. In
this section we describe the connection of the 8- and 18-electron rules in order to
provide a basis for understanding how the cluster electron-counting rules emerge
from and are connected to molecular orbital descriptions of cluster bonding.

1.3.1 The electron-counting rules as consequences of the closed-shell principle

It is extremely important to keep in mind that any electron-counting rule is under-
lined by an orbital requirement which is called the closed-shell principle. This prin-
ciple states that a stable molecule should have all its low energy MOs fully occupied
and separated from the vacant high energy ones by a significant HOMO–LUMO
gap (Figure 1.15). The larger this gap, the more stable the molecule. Indeed, the
existence of this gap provides the molecule with Jahn–Teller stability (Jahn–Teller
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stability is nothing more than thermodynamic stability). A HOMO–LUMO degen-
eracy corresponds to the well-known first-order, i.e., real, Jahn–Teller instability. A
small but non-zero HOMO/LUMO gap corresponds to the so-called second-order,
i.e., pseudo, Jahn–Teller instability. For a molecule in some specified geometry,
first- or second-order Jahn–Teller instability means that the molecule is unlikely to
exist in the specified geometry and another geometry that minimizes the molecular
energy will result from a structural modification which increases the HOMO–
LUMO gap.

Three important points must be emphasized:

(i) In general, the occupied MOs of a molecule, which satisfy the closed-shell principle, are
all bonding and non-bonding MOs whereas the empty MOs are all antibonding. Thus,
in the most general case, the closed-shell principle can be reformulated as follows:
a stable molecule should have all its bonding and non-bonding MOs fully occupied
and separated by a significant HOMO–LUMO gap from the vacant antibonding MOs.
There will be exceptions. We will see later that sometimes stability is achieved where
some non-bonding orbitals are empty. In other cases, weakly antibonding orbitals can
be occupied.

(ii) Consider now a stable molecule which satisfies the closed-shell principle as defined in
(i). Let’s assume that we can change its electron count by adding or removing an electron
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pair without any change in geometry. With its new electron count and its frozen geom-
etry, the molecule is very likely to no longer satisfy the closed-shell principle. The first-
or second-order Jahn–Teller instability which arises tells us that the molecular geome-
try has to change. If an electron pair is added, it must occupy an antibonding MO and to
achieve greater stability, the molecule must somehow cancel the antibonding character
of this new HOMO. Often this is accomplished by breaking a bond thereby changing the
character of the HOMO from antibonding to non-bonding. It follows that adding elec-
trons changes a molecular structure into a more open one. On the other hand, removal
of an electron pair leads to a more compact structure. Thus, there is a close connection
between electron count and geometric structure and conversely. But this oversimplifies
real life. Think of isomers, for example, which have different structures but the same
composition and electron count. Nevertheless, there are strong relationships between
structure and valence-electron count in the whole area of chemistry, especially when
one is dealing with stable compounds. These relationships are described by electron-
counting rules such as the eight- and 18-electron rules. Each electron-counting rule
applies to a particular family of compounds. None is universal but remember that all
are based on the closed-shell principle. Application of such rules to molecules with
small or no HOMO/LUMO gap is a dangerous business – thus, the third point.

(iii) Although a huge number of stable covalent compounds obey the closed-shell principle,
there are many that do not. There are examples of closed-shell molecules with small
HOMO/LUMO gaps and examples of paramagnetic open-shell molecules, e.g., O2

and odd electron radicals, which are stable enough to be isolated. Such is the case,
for example, with some transition-metal clusters whose electronic structure tends to
look like that of bulk metals or of certain electron-conducting solid-state compounds
(Chapter 3). For many of these molecular and extended compounds a particular struc-
ture is not associated with a single valence-electron count but with a range of allowed
electron counts. This is a situation that will be the subject of further analysis later in
the book.

1.3.2 The orbital explanation of the 8- and 18-electron rules

The 8-electron rule relies on the closed-shell principle and customarily assumes
localized two-center–two-electron bonding between all atoms. Turned into orbital
language, two-center–two-electron bonding means that each atom uses one valence
AO (or a linear combination of AOs) per bonding electron pair. It follows that H, with
one valence AO (1s), cannot participate in more than one localized bond and a main-
group atom with four valence AOs (ns, npx, npy, npz) cannot participate in more than
four localized bonds (of course, less than four bonds is possible). Thus, two AOs, one
on each center, combine to give a bonding and an antibonding MO with the former
occupied by an electron pair. Consider a molecule of general formula AHn, where A
is a main-group atom. Assuming that all the A–H bonds are localized two-center–
two-electron bonds means that n should be lower than or equal to four. Moreover,
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the number of bonding MOs should be equal to the number of antibonding MOs
and equal to the number of A–H bonds, i.e., n. The simple MO diagram in Figure
1.16 easily follows. Now, to satisfy the closed-shell principle in its general form, all
the bonding and non-bonding MOs have to be filled. This leads to the occupation
of n bonding MOs + (4 − n) non-bonding MOs = 4 MOs for 0 ≤ n ≤ 4. Thus,
the combination of the closed-shell principle with a localized bonding mode tells
us that the number of valence electrons lying in MOs in which A has significant
participation should be equal to eight. The same demonstration can be made for the
18-electron rule which holds for many transition-metal compounds. For a transition
metal having nine valence AOs just change four into nine in the diagram of AHn in
Figure 1.16.

Exercise 1.5. What is an electron-counting rule derived from application of the
closed-shell principle to H or He? Why don’t you find this rule in textbooks?
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Answer. As both have a single valence function, n = 1 and the number of valence
electrons lying in MOs in which a single H or He atom participate should be equal to
two. A two-electron rule for two atoms seems unnecessary and counterproductive
in the long run.

1.3.3 Limitations of the 8- and 18-electron rule:
localized electron-deficient compounds

In Figure 1.16 we assumed that the closed-shell principle is satisfied when all the
non-bonding MOs are occupied. In point (i) in Section 1.3.1 above, the reader
was warned that in some cases the closed-shell principle can be satisfied without
all the non-bonding MOs being occupied. This is actually the fact in main-group
chemistry when non-bonding orbitals are pure np AOs of electropositive atoms
such as B or Be. Indeed, the energy of the np shell of such atoms is naturally
high in energy rendering these AOs less accessible to the electrons. Thus, a sub-
stantial energy gap can be created between non-bonding np AOs and the other
non-bonding (if any) and bonding lower-lying orbitals. Viewed in this sense, the
compound appears electron deficient with respect to the octet rule. This is the case
with six-electron boron in trigonal planar BF3 or BMe3, for example. Although
BH3 is unstable with respect to dimerization, it provides a simplified model for
further consideration. View it with the trigonal plane as the xy plane. By symmetry,
this molecule has a non-bonding 2pz AO which lies at too high energy to be occu-
pied normally (the spectroscopic characterization of [BH3]2− has been reported,
however). In a diagram equivalent to Figure 1.16, one non-bonding AO would be
vacant. Two electrons are missing with respect to the normal eight-electron require-
ment even though in this particular case there is a substantial HOMO/LUMO
gap. Trigonal planar six-electron boron is not uncommon and the so-called sex-
tet rule is often invoked for this element. Similarly, the linear BeH2 molecule
has two non-bonding 2p� AOs which are empty thus leading to a count of four
electrons.

One should note that the number and occupation of the bonding and antibonding
MOs have not changed in the cases of BH3 and BeH2 as compared to the general
case sketched in Figure 1.16. They are still equal to the number of B–H or Be–
H bonds. Thus, we are still within a localized two-center–two-electron bonding
mode and simple Lewis structures can be drawn for BH3 and BeH2 reflecting their
electron deficiency relative to the eight-electron rule.

Finally, note that a very similar situation obtains for transition-metal complexes –
the favored electron count of tetracoordinate square-planar complexes is 18 − 2 =
16 and the favored electron count of dicoordinate linear complexes is 18 − 4 = 14.
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1.3.4 Limitations of the eight- and 18-electron rule: delocalized bonding

The development of these n electron rules, n = 8, 18, assumes a localized bonding
mode. As simple Lewis structures cannot be drawn when the number of bonding
contacts afforded by an atom with its neighbors is larger than its number of valence
AOs, the rules will not apply in such a situation. Atoms in such a bonding situation
have been called hypercoordinated and the number of bonding MOs either will not
equal the number of antibonding MOs or are equal but lower than the number of
bonding contacts. Hence, the points demonstrated above do not hold any more.
Typical examples of hypercoordinate molecules are triangular [H3]+, B2H6 (see
Section 1.2) and SF6 (see Problem 2). This is also the case for many borane and
heteroborane clusters which will be treated in detail in Chapter 2. For such com-
pounds it is not possible to draw a Lewis structure which would obey the two- and
eight-electron rules.

There are also compounds with main-group atoms which are not hypercoordi-
nated, i.e., which have less than five bonds, but which appear to have more than
eight electrons. XeF2 and SF4 are typical examples. Drawing simple Lewis struc-
tures of these molecules leads to the conclusion that the Xe and S are ten-electron
atoms. With more than eight electrons in their surroundings, they have been called
hypervalent. This is also the case for S in SF6 (12 electrons). Thus hypercoordi-
nated compounds can be hypervalent (SF6) if electron rich or hypovalent ([H3]+

and B2H6) if electron poor. Always remember that the terms “electron rich” and
“electron poor” are defined relative to the Lewis model for bonding. They lose
relevance when multicentered bonding is introduced.

In earlier days it was believed that hypervalency was due to participation of the
high-lying nd orbitals of the hypervalent atom in bonding. Today, it is clear from
very accurate theoretical calculations that this participation is small and should be
neglected in any qualitative description of the bonding in these molecules. The
(unfortunately) still-popular idea of significant nd participation in the bonding in
hypervalent molecules comes from the fact that it allows a very appealing (but
wrong!) localized two-center–two-electron description of these molecules. One
should realize that localized two-center–two-electron bonding is not a common
feature of chemistry as a whole. As shown in Section 1.2, three-center (delo-
calized) bonding is the maximum simplification possible for molecules such as
B2H6. There are many stable electron-poor and electron-rich compounds which
do not obey the eight- or 18-electron rules if a localized two-center–two-electron
bond model (Lewis model) is applied but none the less satisfy the closed-shell
principle. The same is true of the electron-poor cluster compounds discussed in
Chapter 2.
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1.3.5 The 8- and 18-electron rule in the context of multicentered bonds

It is reasonable to ask at this point whether hypercoordinated molecules obey the
eight- and 18-electron rules if multicentered rather than two-centered bonding is
used. After all we touted three-center bonding in Section 1.2 as the answer to the
problem posed by molecules such as B2H6. Consider the B atom in B2H6. As
shown in Section 1.2, we need four two-center–two-electron bonds and two three-
center–two-electron bonds to utilize all of the available valence orbitals (8 + 6 =
14) and electrons (6 + 6 = 12), i.e., each three-center bond “consumes” three
orbitals and holds two electrons. The B atom participates in two two-center–two-
electron B–H interactions and two three-center–two-electron B–H–B interactions
or it is associated with eight electrons! The terminal H is obviously associated with
two electrons and the bridging H, being involved in one three-center–two-electron
bond, is also associated with two electrons. What about SF6? If you succeed in
solving Problem 2 (SH6) you will find that one needs two two-center–two-electron
bonds and two three-center–four-electron bonds to utilize all the available valence
orbitals (4 + 6 = 10) and electrons (6 + 6 = 12), i.e., each three-center bond in
this case “consumes” three orbitals and holds four electrons. Now in the latter case,
two electrons are in the bonding orbital and two electrons are in the non-bonding
orbital. Look carefully at Figures 1.13 and 1.14. Do you see that by symmetry the
non-bonding orbital has no contribution from the central atom? Thus, the three-
center–four-electron bond only places two, not four, electrons on the S atom of SH6.
The S is associated with only eight electrons and therefore obeys the eight-electron
rule.

There is no contradiction here – the eight-electron rule only fails if one insists
on applying a localized two-center–two-electron bond model where it is not valid.
Basically this is the tail (bonding model) wagging the dog (electronic structure)
and any such dog is bound to be hyper(valent)! Even for the electron-poor cluster
compounds, construction of a bonding description with an appropriate set of two-
and n-center–two-electron bonds will satisfy the eight-electron rule for the cluster
atoms. Thus, it has been bandied about that there is no such thing as an electron-
deficient (poor) compound, only theory-deficient chemists!

Exercise 1.6. Use three-center bond ideas to show that Xe in hypervalent linear
XeF2 obeys the eight-electron rule.

Answer. As a crude approximation, let the Xe atom in XeF2 use one np AO to
form one three-center–four-electron bond with one p orbital from each of the F
atoms. The other nine ns and np AOs contain 18 of the 22 valence electrons as lone
pairs. Figure 1.14 with the remaining four electrons occupying the bonding and
non-bonding three-center orbitals applies. Thus, at the Xe center, we have three
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lone pairs (six electrons) and one three-center–four-electron bond (two electrons in
the only orbital with Xe character) giving a total of eight electrons associated with
the Xe atom.

1.3.6 Why count?

In the chapters that follow you will find numerous exercises in counting electrons
for clusters – elaborations of the eight- and 18-electron rules for these complex
structures. The same factors that cause the eight- and 18-electron rules to fail will
similarly limit cluster-counting rules based upon them. Like these fundamental
rules, even when satisfied, the cluster-counting rules yield no detailed information
on electronic structure. Hence, the bolder student occasionally asks, “Why count?”
by which he or she means “Of what real value are these counting exercises if little
is learned about where the electrons really are?”

Let’s address the question now as it equally applies to the 8- and 18-electron
rules. Compounds that follow the rules are classified as “normal” and define the
electronic “accounting” favored when no other factors are of overriding importance.
The rules give the experimental chemist a simple method to rationalize and predict
compound stoichiometry and connectivity. The rules permit logical categorization
of the myriad of compounds via similarities in an electron count. Both facilitate
more rapid development of a field such as cluster chemistry where both structure
and composition can seem intimidating in the absence of an organizing principle.

But it is also important to appreciate the fact that all rules have a limited domain
in which they are valid. Compounds that do not follow the rules become objects of
interest often because they are associated with properties of value, e.g., the Lewis
acidity of six-electron BF3. But, as we will discover, very large clusters cannot
follow the existing counting rules as they lie outside the domain of validity. Yet
these large clusters, nanoparticles, must have a “drummer” to which they march.
A shadowy outline of this presently unknown “drummer” appears in the context of
the existing rules. That is, counting is a place to start!

Problems

1. (a) Using paper chemistry and the 18-electron rule, “make” three compounds for each
of the metals Cr, Mn and Fe using one or more of the ligands, H, CO and �5-C5H5.
Restrict yourself to neutral, mono- and dinuclear complexes. Check some of them out in
the Dictionary of Organometallic Compounds to see if they have been isolated and what
their properties are. (b) Chances are you chose compounds with two-center–two-electron
bonding only. Hence, try your hand at explaining the bonding in [(CO)5Cr–H–Cr(CO)5]−,
which has a linear Cr–H–Cr interaction.
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Table 1.2. Coordinates

1B 0.000 0 0.000 0 0.000 0
2F 0.000 0 0.000 0 1.400 0

Table 1.3. Mulliken atomic charges

1B 0.024
2F −0.024

Table 1.4. Net orbital populations (diagonal) and overlap populations
(off-diagonal)

1B 2s 1B 2px 1B 2py 1B 2pz 2F 2s 2F 2px 2F 2py 2F 2pz

1 B 2 s 1.465 96
1 B 2 px 0.000 00 0.138 73
1 B 2 py 0.000 00 0.000 00 0.138 72
1 B 2 pz 0.000 00 0.000 00 0.000 00 0.778 98
2 F 2 s 0.07830 0.000 00 0.000 00 0.167 02 1.656 24
2 F 2 px 0.000 00 0.218 71 0.000 00 0.000 00 0.000 00 1.642 57
2 F 2 py 0.000 00 0.000 00 0.218 71 0.000 00 0.000 00 0.000 00 1.642 56
2 F 2 pz 0.035 37 0.000 00 0.000 00 0.187 33 0.000 00 0.000 00 0.000 00 1.630 80

2. To test your understanding of the MO model for a typical octahedral coordination com-
plex, construct an appropriate, qualitative MO diagram for Oh SH6 (a model for known
SF6). Hint: first calculate the total number of MOs you should end up with from the
number of available basis functions (AOs). Second, compare the valence AO functions
of S with those of a transition metal (refer to Figure 1.9 and realize that, for a coordinate
system with the H atoms on the x, y and z axes, the AO functions of the central atom and
the symmetry-adapted linear combinations of ligand functions transform as: s, a1g; p,
t1u; dxy dxz dyz, t2g; dx2−y2 dz2 , eg in the Oh point group). Now count the number of filled
MOs and the number of S–H bonding interactions.

3. Tables 1.2–1.6 contain the results of an approximate MO calculation (Fenske–Hall) on
the BF molecule. From this output: (a) construct a MO diagram showing MO energy
levels and qualitative AO compositions in MO drawings; (b) examine the HOMO and
LUMO relative to Lewis acid/base behavior and compare it with CO. Would BF be
suitable for coordination to, e.g., a Cr center?; (c) use the Mulliken charges to predict
the direction of the dipole moment; (d) examine the Mulliken overlap populations and
decide whether it is proper to describe the B–F bond as a single, double or triple bond.
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Table 1.5. Eigenvalues and eigenvectors

1−( ) 2−( ) 3−( ) 4−( ) 5−( ) 6−( ) 7−( ) 8−( )

Energy = −44.926 50 −22.329 90 −20.480 10 −20.480 10 −11.347 80 −4.707 40 −4.707 40 33.099 80
1 B 2 s 0.138 92 −0.312 11 0.000 00 0.000 00 0.785 03 0.000 00 0.000 00 −0.722 30
1 B 2 px 0.000 00 0.000 00 0.263 37 0.000 00 0.000 00 0.992 99 0.000 00 0.000 00
1 B 2 py 0.000 00 0.000 00 0.000 00 0.263 37 0.000 00 0.000 00 0.992 99 0.000 00
1 B 2 pz 0.153 09 −0.088 05 0.000 00 0.000 00 −0.598 58 0.000 00 0.000 00 −0.973 98
2 F 2 s 0.876 95 0.241 76 0.000 00 0.000 00 0.02 520 0.000 00 0.000 00 0.77 236
2 F 2 px 0.000 00 0.000 00 0.906 25 0.000 00 0.000 00 −0.483 84 0.000 00 0.000 00
2 F 2 py 0.000 00 0.000 00 −0.000 01 0.906 25 0.000 00 0.000 00 −0.483 84 0.000 00
2 F 2 pz −0.011 08 0.851 75 0.000 00 0.000 00 0.299 66 0.000 00 0.000 00 −0.593 94

Table 1.6. % Character of molecular orbitals

1( ) 2( ) 3( ) 4( ) 5( ) 6( ) 7( ) 8( )

Energy = −44.93 −22.33 −20.48 −20.48 −11.35 −4.71 −4.71 33.10
1B 2s 5.58 14.82 0.00 0.00 55.74 0.00 0.00 23.86
1B 2px 0.00 0.00 12.40 0.00 0.00 87.60 0.00 0.00
1B 2py 0.00 0.00 0.00 12.40 0.00 0.00 87.60 0.00
1B 2pz 8.10 1.24 0.00 0.00 38.47 0.00 0.00 52.19
2F 2s 86.24 2.70 0.00 0.00 .01 0.00 0.00 11.05
2F 2px 0.00 0.00 87.60 0.00 0.00 12.40 0.00 0.00
2F 2py 0.00 0.00 0.00 87.60 0.00 0.00 12.40 0.00
2F 2pz 0.09 81.23 0.00 0.00 5.79 0.00 0.00 12.89

In case you are wondering BF is a known species – an example of a high-temperature
molecule.

4. There are substantial numbers of small molecular species that are important species at
high temperatures that are not normally discussed in standard inorganic courses. For
example, the vapor over solid NaCl contains diatomic NaCl molecules as well as NaCl
dimers. Does the stoichiometry NaCl fit with the simple ideas of valence derived from
molecules like SiCl4? Explain. Construct a qualitative MO diagram with orbital drawings
for the NaCl diatomic molecule and compare it with that for a homonuclear, isoelectronic
diatomic molecule. Does this help in answering the first question?

5. (a) Draw the HOMO and LUMO of H2. (b) Consider the interaction of H2 with the
Lewis acid BH3 and predict the structure of the initial acid–base adduct. (c) Consider
the replacement of one CO of Cr(CO)6 with H2 coordinated in the same manner as with
BH3. Can the LUMO of H2 interact with any of the filled Cr functions? See (Kubas
2001) for a discussion of the importance of this model in explaining the coordination of
dihydrogen.

6. In Figure A1.20 a complex of Cp2Zr and 2,3-dimethyl-1,3-butadiene is shown and in
the accompanying text it is stated that on coordination the outer formal C=C dis-
tances increase whereas that between the central carbon atoms (formal C–C single bond)
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decreases. Show that these structural changes are consistent with depopulation of the
butadiene HOMO and population of the butadiene LUMO on coordination to the metal
fragment.

Additional reading

Section 1.1

Albright, T. A., Burdett, J. K. and Whangbo, M.-H. (1985). Orbital Interactions in
Chemistry. New York: Wiley.

Hoffmann, R. (1981). Science, 211, 995.
Cotton, F. A. and Walton, R. A. (1993). Multiple Bonds Between Metal Atoms. Oxford:

Oxford University Press.

Section 1.2

Lipscomb, W. N. (1963). Boron Hydrides. New York: Benjamin.
Muetterties, E. L. (Ed.) (1975). Boron Hydride Chemistry. New York: Academic Press.
Moezzi, A., Olmstead, M. M. and Power, P. P. (1992). J. Am. Chem. Soc., 114, 2715.
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Main-group clusters: geometric and
electronic structure

Clusters – a form of matter with structure and properties lying somewhere between
those of atoms and solid-state substances – impact a substantial fraction of chem-
istry, drawing the attention of both inorganic and physical chemists. The larger
the cluster the stronger the connection with solid-state chemistry and the greater
the ramifications for modern materials science in the area of nanochemistry. The
term cluster is used to designate a three-dimensional assembly of atoms and cluster
structures may be found in s-, p-, and d-block element chemistries. When com-
posed of a single element, the cluster motif complements the chains and rings of
molecular catenates and the chains, sheets and networks of solid substances. Clus-
ters are found with external ligands as well as without. Cluster structure is the
focus of this text and we intend to show that cluster electronic structure serves as a
bridge between molecular compounds and non-molecular solid-state compounds.
These connections will become more readily apparent as the structural properties
of clusters are developed.

The story begins in this chapter with the clusters of simplest geometric and elec-
tronic structure. These are clusters of p-block elements with defined stoichiometry
and structure in which the cluster surface-atom valences are “terminated” with lig-
ands. The large number known provide the factual base from which clever people
have derived models that connect atomic composition with structure. In turn, these
p-block models provide a foundation on which to build an understanding of more
complex clusters such as condensed clusters, bare clusters and transition-metal
clusters. A more comprehensive account of the structural chemistry will be found
in older books and reviews, a selection of which will be found in the reading list at
the end of each chapter.

2.1 Definition of a cluster

Definitions are useful if they permit a body of information to be organized around a
model. The more information organized the better the model. But a caution must be

33
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raised. The better the model the greater the temptation to give it authority beyond
the system upon which it is based. Obviously, when new “square pegs” are forced
into the “round holes” of an inadequate model, nothing is learned. But, unlike a
child learning shapes, it is not always easy to see that the model has “round holes.”
Recognition is the key, and understanding the model the first step. Hence, although
the models discussed below are firmly established, they are not by any means
inclusive of all cluster chemistry and clusters yet to be discovered may require
additional models.

Figure 2.1 illustrates schematically an idealized cluster which is spherical and
surrounded by a ligand envelope. The surface atoms of the cluster are bound to the
external ligands. If a surface atom does not have a ligand, it usually possesses a
lone pair. As size and nuclearity increase, the cluster may contain internal atoms
not directly bound to the ligands. A cluster possesses a geometric structure or shape
which in many cases can be directly related to core stoichiometry and ligand number
and type. Shape is an important property as it is directly measurable and reflects the
connection between geometric and electronic structure. Similar to the fundamental
bonding models of Chapter 1, successful cluster models permit stoichiometry and
shape to be predicted. The entire cluster can carry a positive or negative charge
and, if charged, will be associated with appropriate counterions. This chapter deals
with covalently bonded (strong bonds relative to thermal energy) clusters of the
p-block elements with and without external ligands. Most contain no internal atoms;
however, clusters with internal atoms will be introduced towards the end of the
chapter.

2.2 Three-connect clusters

The surface atoms of three-connect clusters have three nearest neighbors within
bonding distance (Figure 2.2). Many clusters formed from p-block elements are
three-connect clusters. No new bonding ideas outside of the localized two-center–
two-electron bond and the eight-electron rule are required to understand most
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clusters of this type. Why? We know a p-block element has four valence functions
and can form four localized electron-pair bonds pointed at the corners of a tetrahe-
dron. For the chosen atom the spherical geometry of an ideal cluster illustrated in
Figure 2.2 requires one pair to be directed outwards in a radial direction leaving
three pairs to form bonds in the cluster surface. Thus, as long as the number of
cluster atoms within covalent bonding distance is no larger than three, two-center
bonds suffice. Note that the out-pointing orbital can accommodate a lone pair, the
donor pair of a Lewis base, or a bonding pair to a one-electron ligand, e.g., CH3.

2.2.1 Two-center bonding

For this reason cluster shapes defined by polyhedra with three or less vertices of
connectivity can often be described by a set of two-center–two-electron bonds
and are no more complicated than many simple molecules, e.g., CH4. Thus, the
trigonal prismatic and “butterfly” clusters shown in Figure 2.3 fit into this category
whereas a square pyramidal shape with one vertex of connectivity four would not
(see Figure 2.6). Because the bonding can be described with two-center bonds,
these cluster types are sometimes called “electron precise.” The number of cluster
bonding electrons is precisely two times the number of edges of the polyhedron that
defines its shape. As found with other simple molecules, the lines that define the
shapes also express a localized version of the electronic structure. The frameworks
in Figure 2.3 also illustrate connections between three-connect clusters and complex
ring systems.

2.2.2 Electron-counting rules

In the common three-connect cluster shapes illustrated in Figure 2.3 the number
of electrons that can be associated with the closed clusters is 5n, where n is the
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nuclearity of the cluster. The origin of this electron-counting rule is easily seen from
a consideration of the number of filled and unfilled molecular orbitals (Figure 2.4).
As each two-center–two-electron bond generates one bonding and one antibonding
orbital, it follows that precisely half of the 3n skeletal orbitals are bonding and
filled. The external cluster orbitals must also be filled to satisfy the eight-electron
rule adding 2n additional electrons. This electron count, 5n, is defined as the number
of cluster valence electrons (cve).

Another way to count the electrons in clusters restricts the count to only those
associated with cluster bonding: hence, skeletal-electron pairs (sep). For three-
connect clusters sep = 3/2n. The assumption that orbitals associated with cluster
ligand bonding can be considered independently of orbitals associated with cluster
framework bonding results in an important simplification for more complex sys-
tems. However, it is a separation that is convenient rather than rigorous. We will see
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later that mixing between external and internal cluster orbitals can have interesting
consequences.

Some readers will be mumbling that this electron-counting rule for electron-
precise clusters is pretty useless. And they are perfectly correct! When two-center–
two-electron bonds are sufficient, the bonding analysis is so simple that an electron-
counting rule adds a frustrating layer of algebraic complexity and can inhibit
understanding. However, the development of the 5n cluster valence-electron count
(and its equivalent 3/2n skeletal-electron pair count) for three-connect clusters
illustrates a point – it is possible to express the relationship of cluster shape to com-
pound stoichiometry as a valence-electron sum. In systems in which the cluster
bonding is more complex and where a higher-level treatment is necessary to obtain
even a qualitatively correct description, the existence of an algebraic expression
connecting valence-electron count and stoichiometry is desirable. It reveals rela-
tionships between known clusters (shape rationalization and correlations between
compounds of disparate elemental composition) as well as predicting cluster shape
from an electron count easily derived from cluster composition and charge.

2.2.3 Three-center bonding

R4E4, E=Al, Ga, In, also exhibit tetrahedral cluster shapes even though they possess
only four sep and 16 cve. We still have 12 orbitals to utilize but only eight electrons
contributed by four R–E fragments to fill them. We encountered a similar situation
in Chapter 1 with B2H6 and three-center–two-electron bonding was introduced to
solve the problem. A similar approach provides a solution to the R4Ga4 problem.
Each R–Ga fragment contributes three orbitals and two electrons from which we
can construct four three-center–two-electron Ga–Ga–Ga bonds lying in the four
triangular faces of the cluster. Thus, as shown in the right-hand side of Figure 2.5,
each Ga atom is associated with eight electrons: two from the R–Ga bond and two
from each of the three-center Ga–Ga–Ga bonds it participates in. The same analysis
can be used to describe B4Cl4.

2.2.4 MO models

Let us compare the MO descriptions of six and four sep R4E4 tetrahedral clusters.
In Figure 2.5 the cluster MO energies for E = C and E = Ga are shown alongside
the localized descriptions discussed above. The number of filled and unfilled MOs
is equal for E = C: a consequence of the two-center–two-electron bond model.
Conversely, the number of filled MOs is less than the number of empty MOs for
E = Ga: a consequence of the three-center–two-electron bond model. Note also
that an e symmetry pair of orbitals lies in between lower-energy filled orbitals and
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higher-energy unfilled orbitals. This is a situation we will encounter later in the
text and is one which often leads to multiple electron counts for the same shape
depending on the properties of the atoms that make up the cluster.

2.2.5 Model choice

Before going further we need to make a point concerning the usefulness of simple
models vs. the validity of the electronic-structure model upon which they are based.
Tetrahedral P4 can be easily considered as being bonded by four two-center–two-
electron bonds just like tetrahedral R4C4. The stability of tetrahedrane is reduced by
its steric strain energy of about 502 kJ mol−1. Hence its synthesis was an experimen-
tal achievement of note. In contrast, P4 is a common form of elemental phosphorus
and has an estimated strain of only 67 kJ mol−1 even though both molecules have
60◦ E–E–E angles. Clearly the electronic structures must be significantly different.
On this basis it has been argued that although the localized two-center–two-electron
bond model “works” for P4, its electronic structure is better represented as a highly
delocalized one.

This point may appear to be semantics to one interested primarily in the con-
nection between stoichiometry and geometric structure; however, for more detailed
considerations the model used matters. For example, the two-center–two-electron
bond model with a lone pair on P suggests electrophilic attack at a single P atom,
e.g., protonation leading to a P–H terminal bond. On the other hand, in the delo-
calized MO model the degenerate e symmetry HOMOs of P4 are centered on the
P–P edges. Frontier-orbital considerations, then, suggest electrophilic attack would
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take place at a P–P edge. Indeed the structure of [HP4]+ in the gas phase exhibits a
P–H–P edge bridging H. The lesson is that the success of an electron-counting rule
does not imply deep understanding of the electronic structure, i.e., electron-density
distribution over the nuclear framework.

2.3 Four-connect and higher clusters

Look at the ligated cluster atom X on the surface of the spherical cluster shown in
Figure 2.6. Positioned within bonding distance of four other surface cluster atoms, it
is said to reside on a four-connect cluster vertex. In common with the three-connect
cluster, an outward-pointing two-center–two-electron bond to an external ligand
or an outward-pointing lone pair is assumed. Thus, the 8-electron rule restricts to
six the number of electrons associated with the remaining bonding connections to
the four adjacent atoms. Hence, partitioning the valence electrons exclusively into
two-center–two-electron bonds is not possible. Multicentered bonding is required.
To do so a general MO model of closed clusters with at least one four-connect
vertex is introduced now. Later, more localized bonding representations with two-
and three-center–two-electron bonds will be discussed. Historically, the latter came
first.

2.3.1 Deltahedra

The polyhedral shapes pertinent to this class of clusters are the deltahedra shown in
Figure 2.7. Deltahedra are polyhedra containing exclusively triangular faces. The
vertex connectivities are shown on the drawings. Those for n = 4 (not shown), 6
and 12 have uniform connectivities of three, four and five; hence, the cluster atom
centers lie on a sphere. The others with less uniform connectivities are less spherical
in shape if all edge lengths are equal. As it is a three-connect cluster, the tetrahedron
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need not be considered a member of this group of clusters. Others do include it but
we will not.

The trigonal bipyramid, n = 5, contains two three-connect and three four-connect
vertices and the interested reader will find that its electronic structure has spawned
considerable discussion in the literature concerning the nature of the atom–atom
bonding in the equatorial triangle. Only one of the deltahedra in Figure 2.7 has a
vertex of connectivity larger than five and that occurs for n=11 where a single vertex
has connectivity six. Those with n = 5, 7 and 10 are known as polar deltahedra and
the cluster atoms lying on the highest-order rotational axes (the poles) possess equal
connectivities, whereas the remaining atoms lie in an equatorial belt on vertices also
of equal connectivities although differing from those of the poles.

2.3.2 Electronic requirements

Historically, the first general insight into the electronic structures of deltahedra
came from Longuet-Higgins’ theoretical considerations of boron compounds. He
predicted the stoichiometry of boron hydrides produced conceptually from solid-
state borides containing six-vertex octahedral clusters and from elemental B con-
taining 12-vertex icosahedral clusters by rupture of inter-cluster bonding followed
by terminating the dangling B bonds with H. The generalized result of these con-
siderations for an n-vertex deltahedron is shown in Figure 2.8 in the same style
as that of three-connect clusters in Figure 2.3. Consider specifically the 12-vertex
icosahedron made up of BH fragments. There will be 5 × 12 = 60 MOs, 2 × 12 =
24 of which will be associated with the external B–H bonding. Recall that the
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qualitative MO criterion for stability is a large HOMO–LUMO energy gap. B12H12

possesses 48 valence electrons; however, the large gap was found between the 25th
and 26th MOs. Hence, the 25th MO was designated as HOMO and [B12H12]2− was
predicted to be the stable stoichiometry and charge for an icosahedral molecular
borane. Subtraction of the 12 external filled B–H MOs leaves 13 or n + 1 skeletal-
bonding MOs. Subsequent to this work [B12H12]2− was synthesized and shown to
have a high barrier to decomposition dramatically confirming the stability of this
structure and composition. Why dramatic? The contrast between the reactivity of
B2H6 and [B12H12]2− is enormous.

If we compare Figures 2.4 and 2.8 we see that the number of filled and unfilled
radial external cluster orbitals, n, is identical to that of a three-connect cluster
of the same order. However, the remaining 3n orbitals associated with the skeletal
bonding are no longer divided equally between filled and empty. In fact, the number
of high-lying cluster core MOs is n − 2 larger (2n − 1 − n −1) than the number
of low-lying cluster core orbitals. As only the latter are filled, the number of sep is
n + 1 vs. 3/2n for three-connect clusters whereas the number of cve is 4n + 2 vs.
5n for three-connect clusters.

For the n = 6 and 12 clusters with 12 and 20 bonding edges the cluster bonding
is accomplished with 7 and 13 bonding pairs, respectively. Because the number
of occupied cluster orbitals is less than the number generated by treating each
cluster edge as a two-center–two-electron bond, these compounds have been called
“electron-deficient” compounds. As noted in Chapter 1, some have taken strong
exception to the use of the term; however, it does contain an element of truth in the
sense that many borane clusters are prone to add Lewis bases thereby increasing
the average number of electrons per B center.

Consider the example of [B12H12]2−, n = 12. There are 12 filled BH bonding
orbitals and 12 empty BH antibonding orbitals. In addition, there are 13 filled cluster
bonding orbitals and 23 unfilled cluster non-bonding and antibonding orbitals.
Alternatively, if no external–internal cluster-orbital separation is made 50 cve fill
the 25 bonding orbitals leaving 35 high-lying unfilled orbitals.
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In order for each vertex to satisfy the eight-electron rule, it must be associated
with six cluster bonding electrons to supplement the external B–H bonding pair.
Hence, some complex sharing must be taking place. This is another way of saying
the cluster valence electrons are delocalized throughout the cluster bonding net-
work. An important corollary is that, in general, the lines drawn to define shapes of
high connectivity clusters do NOT correspond to two-center–two-electron bonds.
The idea of expressing both geometry and bonding with straight lines is so conve-
nient for the chemistry of C and the elements to the right of C that the separation of
the two constitutes a conceptual problem for many students and those not familiar
with cluster bonding concepts.

The fact that the lines between cluster atoms do not in general represent two-
center–two-electron bonds is reflected empirically in the distances between cluster
atoms which are longer and vary more than they do for non-cluster compounds.
For example, in tricapped trigonal prismatic [B9H9]2− the B–B edge distances
range from 1.68 Å to 1.93 Å compared to twice the covalent radius of boron of
1.64 Å. Of course in the clusters of higher symmetry, the variation is much less,
e.g., [B12H12]2−, 1.76 Å to 1.78 Å.

2.4 The Wade–Mingos electron-counting rule

The conclusions presented above were formulated into a rule which is sufficiently
general to be useful. The implications of the results were described nearly contem-
poraneously by Wade and Mingos with emphasis on main-group and transition-
metal clusters, respectively. They saw that the principle, based on the series of
deltahedra in Figure 2.7, also applied to open clusters. Both recognized that the
idea forged a link between main-group and metal clusters. Once the initial concept
was published in the early 1970s, ramifications rapidly followed, culminating in the
definitive monograph of Mingos and Wales. However, developments leading up to
the formulation of this rule took many years as the structural data were generated
one piece at a time and the initial attempts to fit patterns were based on insufficient
structural data. It wasn’t until the geometric patterns were put together in the correct
way by Williams that the puzzle was solved. The picture painted is a pretty one!
Let’s take a look.

Cast in terms of cve, the rule for a main group cluster is:

For a deltahedron of order n, there are 4n + 2 cve associated with cluster bonding.

In terms of sep, the rule is:

For a deltahedron of order n, there are n + 1 sep associated with cluster bonding.
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Some may protest a rule based on approximate calculations may not reflect
anything “real” in nature. Others will counter with the argument that it works, that
is, other rules and explanations of chemistry stand on spongy physical support
but chemists still use them for convenience. Here, on the contrary, work by Stone
subsequent to the publication and use of the cluster electron-counting rules provides
strong theoretical support. Application of the theory of tensor surface harmonics to
the analysis of the bonding problem presented by closed spherical clusters verified
the n + 1 sep rule. The theory provides strong physical justification for the counting
rule, and it has been used effectively in the discussion of selected cluster problems.
Elegant though the theory be, it adds little more understanding to the beginning
student. Hence, it will not be dealt with further in this text. In fact, for discussions
of the detailed electronic structure of a real cluster going beyond electron counting,
explicit calculations rather than idealized general theory should be used.

2.5 Closed-cluster composition and structure

Both versions of the rule are easy to use for closed clusters. There is no restriction
to element type, external-ligand type or even number of occupied vertices of a
deltahedron – only the number of sep associated with a deltahedral shape is fixed.
However, in terms of sep count, one cannot stray too far from an average of two
electrons per cluster fragment for closed-cluster shapes without having to deal with
large charges. Hence, the B–H fragment is an ideal cluster fragment. Thus, it is no
surprise that the canonical deltahedral shapes in Figure 2.7 are illustrated by the
homologous series of closo-boranes [BnHn]2−, n = 6–12. (Closo refers to a fully
closed deltahedral cluster.)

In Figure 2.9 a variety of closo-heteroborane clusters are illustrated for n = 10
and 12. The extra numbers preceding the compound formula designate the positions
of the heteroatoms. The accepted numbering scheme is shown by the numbered
framework in the figure. Position one is taken to be an atom on the axis of highest
symmetry (C4 for n = 10) and numbering is clockwise around this axis proceeding
layer by layer.

The deltahedron for n = 10, a bicapped square antiprism, exhibits two four-
connect and eight five-connect vertices. Hence, for one heteroatom in a ten vertex
closo-cluster we have 1- and 2-isomers and two heteroatoms in 1,10-, 1,6- 1,2-, 2,3-,
2,4-, 2,6- 2,8-isomers. Different placements generate different cluster stabilities. A
rule of thumb is that the more electronegative element prefers the lower-connectivity
vertex. Multiple heteroatoms more electronegative than B prefer non-adjacent posi-
tions as far apart as possible. Rearrangement to the most stable isomeric form need
not be fast. In the case of icosahedral clusters, for example, the barrier to rearrange-
ment is large and isomers can be isolated.
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Exercise 2.1. Verify the cluster electron counts for the closed clusters in Figure
2.9. NB11H12 is an interesting one. Can you think of a reasonable composition that
would correspond to a 12-vertex closed cluster containing one bare N atom and 11
B atoms?

Answer. [B10H10]2−: The number of valence electrons for B is three, H ligands
are one-electron ligands, and the cluster charge is 2. cve = 10 × 3 + 10 × 1 + 2 =
42 = 4n +2. Consistent with the discussion above, the B–H external cluster bond
is taken to involve one electron from H and one from B; hence, the B–H fragment
contributes two electrons to cluster bonding. sep = (10 × 2 + 2)/ 2 = 22/2 = 11 =
n + 1.

1,10-C2B8H10: cve = 2 × 4 + 8 × 3 + 10 × 1 = 42; sep = (2 × 3 + 8 × 2)/
2 = 11. The C–H fragment contributes three electrons to cluster bonding – C is one
step to the right of B.

1,10-B10H8(N2)2: cve = 10 × 3 + 8 × 1 + 2 × 2 = 42. The end-on bound
dinitrogen ligand is a two-electron ligand to the cluster. sep = (8 × 2 + 2 × 3)/
2 = 11. The B–H are two-electron fragments but the two B–N≡N fragments are
three-electron fragments as its two-electron donor ligand allows the B atom to use
all three valence electrons in cluster bonding.

[CB11H12]−: cve = 1 × 4 + 11 × 3 + 12 × 1 + 1 = 50 = 4n + 2. sep = (1 ×
3 + 11 × 2 + 1) = 26/2 = 13 = n + 1.

C2B10H12: cve = 2 × 4 + 10 × 3 + 12 × 1 = 50 = 4n + 2. sep = (2 × 3 +
10 × 2) = 26/2 = 13 = n + 1.
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NB11H12: cve = 1 × 5 + 11 × 3 + 12 × 1 = 50 = 4n + 2. sep = (1 × 4 +
11 × 2) = 26/2 = 13 = n + 1.

B12H10(CO)2: cve = 12 × 3 + 10 × 1 + 2 × 2 = 50 = 4n + 2. sep = (2 × 3 +
10 × 2) = 26/2 = 13 = n + 1.

A 12-vertex cluster with a bare N atom is NB11H11: cve = 1 × 5 + 11 × 3 +
11 × 1 = 49; thus, one more electron is needed giving [NB11H11]−.

Rationalization of known compounds provides a level of usefulness that justifies
the rule. But the rule also permits observed molecular stoichiometries of newly syn-
thesized compounds to be translated into a cluster shape. For example, [Al12

tBu12]2−

has cve = 50 or sep = 13 consistent with n = 12 and a deltahedral structure. The
compound has been synthesized and an X-ray diffraction study reveals an icosahe-
dral shape. The ability to suggest reasonable structures based on knowledge of a
molecular formula generated by a technique like mass spectrometry accelerated the
development of cluster chemistry simply because rapid spectroscopic methods can
be more productively applied. Although efficient X-ray crystallographic structure
determination reduces its importance for compounds that can be isolated in pure
crystalline forms, transient intermediates detected in a reaction mixture can now
be given reasonable structures.

2.6 Open nido-clusters

Open clusters add some complexity to the cluster structure problem. These clusters
are considered to be incomplete spherical clusters. Those that can be completed by
the addition of a single fragment are called nido-clusters (net-like).

2.6.1 nido-Clusters without bridging hydrogens

Consider the problem posed by the known molecular compound with the formula
C4B2H6. First do the electron count. The sep = 8 = n + 1: n = 7. This suggests
a structure based on a pentagonal bipyramid. OK, but there are only six cluster
fragments (four C–H and two B–H) so if this rule applies, one vertex must remain
empty. Is this correct? The observed structure, shown in Figure 2.10, shows it
is. As expected from the relative electronegativities and our rule of thumb, a B–H
rather than C–H fragment is found in the five-connect vertex. Heteroatom positional
placement is not the only way of generating isomers in this open cluster. Isomerism
can also be generated from the choice of whether a five- or four-connectivity vertex
of the bicapped pentagon is left vacant. The rule of thumb for borane-based clusters
is that the higher connectivity vertex is left vacant.

Many texts specify the sep count for a nido-cluster as 2n + 4 where n is the
number of cluster atoms rather than the order of the deltahedron upon which the
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structure is based. As one must go back to the parent deltahedron to generate all
the possible open shapes anyway, this refinement will NOT be used here. Unless
specifically noted otherwise, the parameter n will always be used to refer to the
number of vertices of the parent deltahedron – with thoughtful application, one
rule, the n + 1 rule, suffices for both closed and open clusters.

Why have we ignored the cve count. Naively applied, the cve = 28 = 4n + 2:
n = 6.5! This is not very helpful. What went wrong? If a vertex is vacant there is one
missing radial external cluster orbital containing a pair of electrons. Hence, the cve
for a cluster with one vacant vertex is (external cluster electrons) + (cluster bonding
electrons) = (2n − 2) + (2n + 2) = 28 for n = 7. This is the same answer obtained
by the sep method. Note that two electrons were subtracted from the 2n normally
associated with a closed cluster of order n. In general, then, the cve count can be
written as 4n + 2 − 2x where x is the number of vacant vertices. It is easy to see that
n = 7 and x = 1 is a solution for cve = 28; however, the sep approach avoids the
headaches of keeping track of those pesky external bonds. Hence, for open clusters
the sep approach exhibits a greater ease of application. In mixed metal–main-group
clusters, considered in Chapter 5, we will see that there are some advantages to the
cve count simply because it does not force a division of the valence electrons into
external and core cluster bonding electrons. The method used is a personal choice.
Both are found in the literature.

Exercise 2.2. Justify the shape of [C2B9H11]2− shown in Figure 2.10.

Answer. With two C–H fragments, nine B–H fragments and a charge of −2, the
cluster has (2 × 3 + 9 × 2 + 2)/2 = 13 sep. Thus, the structure must be derived
from an icosahedron (12-vertex deltahedron) but there are only 11 fragments. One
vertex (all are equivalent in an icosahedron) is left vacant (a nido-structure). Show
for yourself that the cve count of 48 gives the same result.

[C2B9H11]2− is prepared from 1,2-C2B10H12 (Figure 2.9) by vertex “decapitation”
with base. The B–H vertex preferentially removed is that situated adjacent to two C–
H fragments (the position 3-vertex as shown in Figure 2.9) and its removal generates
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an open face with the C atoms in adjacent positions. This open cluster [C2B9H11]2−

is an important one as it presents a pentagonal face with five orbitals containing six
valence electrons to a binding partner. The latter point will not be obvious now but
later in this chapter you will see how it comes about. If this point is just accepted
for now, [C2B9H11]2− constitutes an analog of [C5H5]−, that ubiquitous ligand
of organometallic chemistry that binds �5- (all five C atoms bound to the metal
center) to transition metal centers. Indeed, Hawthorne has developed the metal
chemistry of [C2B9H11]2− into a sub-area to rival that of metal-cyclopentadiene
chemistry. More examples of this “ligand” chemistry will be described in
Chapter 4.

2.6.2 nido-Clusters with bridging H atoms

In the examples considered thus far utilizing a sep count, it was possible to partition
the molecular formula into E–L fragments, E = main-group atom, L = ligand, with
nothing left over. Life would be boring if simple, so let’s see what composition
nature gives us for an all-B analog of C4B2H6. [B]− is isoelectronic with C and
substitution of all four C atoms with [B]− yields [B6H6]4−. This anion has not been
synthesized but B6H10 and [B6H9]− have been and possess the structures shown
in Figure 2.11. Both species exhibit pentagonal pyramidal, nido-cluster cores like
that of C4B2H6. They also exhibit B–H–B bridging H atoms on the pentagonal
faces. This structural feature is characteristic of open boranes. The identical cve
counts of C4B2H6 and B6H10 immediately tell the story – they have the same
cluster shapes. In a comparison of known compound with unknown, the cve count
rules. To do a sep count, on the other hand, we partition B6H10 into six B–H
fragments (six sep) and are forced to use the four “extra” H bridging atoms to provide
the remaining two sep needed to make the required eight sep. Bridging H atoms,
which we will refer to as endo-cluster H atoms, contribute one electron each to the
sep count. Hence, careful partitioning of a molecular formula must precede a sep
count.
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Let’s test our understanding by working a problem the other way around. Con-
sider the molecular formula of the known compound C2B4H8. We partition it into
two C–H, four B–H and two endo-H giving sep = (6 + 8 + 2)/2 = 8. The struc-
ture should be based on an n = 7 deltahedron (pentagonal bipyramid) with one
missing vertex. If we follow the rule of thumb and leave one connectivity-five
vertex vacant, a pentagonal pyramidal core structure results for which a number
of positional isomers are possible. The C atoms with higher electronegativity go
to lower-connectivity vertices in basal positions. Electronegativity considerations
suggest the C-apart isomer would be more stable. But note that the 2,4-isomer
would force an endo-hydrogen to bridge a C–B edge which is not as favorable
as bridging a B–B edge. The 2,3-isomer is the one observed (Figure 2.11). A cve
count of 28 requires no partitioning into fragments (cve = 4n + 2 − 2x = 28; x = 1
gives n = 7). In this discussion we blithely assume that the observed isomer is the
most stable one. This, of course, need not be true as a less stable isomer might
be formed in the synthetic reaction and, if the barrier to rearrangement to a more
stable arrangement is large relative to thermal energy, the less stable isomer will
be isolated. Many of the smaller carboranes have been synthesized under forcing
conditions so at least for the open systems, the product observed is most likely the
most stable one.

2.7 Open arachno-clusters

Incomplete spherical clusters that require the addition of two fragments to be closed
are called arachno-clusters (spider web-like). As the shape is based on a deltahedron
of order n but with only n − 2 vertices occupied, the number of cluster bonding
electrons per cluster fragment is larger than that for closo- and nido-clusters. It
follows that a continuation of the closo-, nido-, arachno- progression eventually
leads to “electron precise” rings or chains.

2.7.1 An arachno-borane

Consider the known compound B5H11 shown in Figure 2.12. Partitioning gives
five B–H and six endo-H for sep = 16/2 = 8; thus, n = 7 and the structure is
based on a pentagonal bipyramid with two vacant vertices. The four possibilities
are shown in Figure 2.12. Based on our rule of thumb (leave the highest connec-
tivity vertex vacant), a planar five-membered ring would be chosen! Indeed eight
sep [C5H5]−, which is isoelectronic with B5H11, is planar. However, the observed
structure for the borane is based on a pentagonal bipyramid with one five- and one
four-connect vertex vacant. Why? Known structures show us that the nearest neigh-
bor environment of a given B atom is approximately tetrahedral. Try to place eleven
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H atoms aound a five-membered planar ring. The other three structures are much
better in this regard. And of the three, the one generated by removal of adjacent
five- and four-connect vertices of the parent bicapped pentagon is the observed one.
Note that each two-connect vertex contains a BH2 group and that one H of each
BH2 must be considered an endo-H atom in order to get the right sep count. Once
again no such assumption is necessary for the cve count as we have cve = 4n +
2 − 2x = 26 for x = 2 and n = 7.

If B5H11 were a new compound, 1H and 11B NMR spectroscopy would be used to
distinguish between the possibilities generated by the counting rule. The importance
of the rule is that it provides a limited set of satisfactory structures from which to
choose.

2.7.2 Role of endo-H atoms

The discussion above suggests endo-H atoms are not just contributors to the cluster
electron count. They have a role in determining which of the possible cluster core
structures will be observed. Another characteristic of these skeletal H atoms is
evident from NMR studies. Movement of endo-H atoms on a cluster framework
can be quite facile relative to the timescales on which one does bench chemistry.
Hence, in contrast to the movement of heteroatoms in many cluster frameworks,
endo-H atoms are found in their most stable positions.

endo-H atoms are important to other stability considerations as well. Although
[B5H10]− is known and even some dianions have been isolated by Shore, it is highly
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unlikely that [B5H5]6− will be synthesized in solution. On the other side of the
coin, protonation of closo-borane anions, e.g., [B6H6]2− generates face-protonated
[B6H7]−, but all attempts to produce the neutral B6H8 have failed. Theoretical
studies suggest the cluster framework bonding is perturbed on face protonation
forcing localization in the vicinity of the proton. Do not ignore the fact the proton
has non-trivial structural demands often hidden by the electron-counting rule.

Like unbridged B–B distances in closo-clusters, there is a range of B–B distances
when H bridged. For boranes it is 1.71–1.86 Å. B–H distances in symmetrical
bridges are about 1.35 Å; however, many bridging H atoms are unsymmetrically
placed between the B atoms.

2.7.3 Ambiguities in open clusters

One implication of Figure 2.12 presages complications to come. The arachno-
structure in Figure 2.12 generated by removal of two adjacent four-connect vertices
is a distorted square pyramid – very much like a nido-structure! With the electron
count of an arachno-cluster, but the apparent shape of a nido-cluster, you can see the
potential for heated discussion. A clear implication is that cluster shape distortions
can accomplish the same effect as qualitative shape changes. On the other hand, a
cluster with a heterogeneous cage composition will not have an ideal cluster shape.
You see the problem. Hence, a simple categorization by qualitative geometry with
no attention to electronic structure can be misleading.

A final observation brings us back to the earlier discussion of three-connect
clusters. Note that the electronic structures of the planar ring and the “butter-
fly” shape with a handle (removal of two non-adjacent four-connect vertices) in
Figure 2.12 can also be described with two-center–two-electron bonds (think of
the latter as C5H6). Considering how many valence isomers there are for a simple
organic formula like C5H6, then it should come as no surprise that the same is
true for clusters. The bridged butterfly structure has not been seen for pure boranes
but we will encounter it in metal cluster chemistry. These electron-precise struc-
tures, sometimes called classical structures, are higher-energy alternatives for the
boranes. If barriers for inter-conversion are high, they may well be generated by
proper choice of synthetic route. Indeed in a few cases this has been accomplished
both by judicious choice of B/C cluster content as well as external ligand choice
(F for H).

Exercise 2.3. Work out possible structures for the compositions [B10H10]6− and
[B10H10]4−. Consider only structures where the vertex of highest connectivity plus
an adjacent vertex are removed. Discuss any ambiguities discovered. Nido-B10H14

is a known compound.



2.8 The closo-, nido-, arachno-borane paradigm 51

rotate

(a) (b)

Exercise 2.3

Answer. Use the sep method. [B10H10]6− has 13 sep and ten cluster fragments;
hence the structure should be based on a deltahedron of order 12 with 2 adjacent
vertices vacant. All the vertices of an icosahedron are identical and the shape
produced is arachno as shown in (a) above. [B10H10]4− has 12 sep and ten cluster
fragments; hence the structure should be based on a deltahedron of order 11 with 1
vertex vacant. Removing the connectivity-six vertex (see Figure 2.7 for the shape)
generates (b). The two clusters possess the same qualitative shape! Electron count,
not geometry, defines B10H14 as nido.

2.8 The closo-, nido-, arachno-borane structural paradigm

Figure 2.13 reflects the breakthrough structural correlation of Williams. For sim-
plicity the B–H–B and BH2 groups on the open faces of the nido- and arachno-
frameworks are not shown. As already discussed these have a role in determining
which of the possible open structures is most stable. In the form due to Rudolph,
the chart may be found in many inorganic texts. It stands as a structural paradigm
for stable main-group clusters containing external ligands. The closo-boranes, the
embodiment of the shapes of the canonical deltahedra, are shown in the first col-
umn, the nido-boranes in the second, and the arachno-boranes in the third. The
horizontal lines connecting the three structures of fixed value of n (n is the number
of vertices in the parent deltahedron and NOT the number of atoms in the cluster)
and identical sep and cve express and summarize the discussion of open clusters
presented immediately above. Effectively, a B–H vertex is removed from a parent
deltahedron and replaced with an electron pair. This is equivalent to removing a
[BH]2+ fragment and is often referred to as a debor process.

The diagonal lines connecting clusters of equal nuclearity reveal another impor-
tant relationship – as the number of cluster electron pairs increases in a step-wise
fashion the cluster opens up into a “net” and then a “web.” As was pointed out
in Chapter 1, this is a recurring motif – the more electron rich, the more open the
structure. One can continue. Addition of three pairs of electrons to a closo-borane
generates an even more open shape albeit a less well-accepted nomenclature. The
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term hypho-boranes is often used to describe the relatively few examples known
arising, e.g., from addition of Lewis bases to a framework. As we saw above,
a B–CO fragment is a three-electron fragment like C–H. Hence, coordination of
two PMe3 ligands to two of the boron atoms of B5H9 yields hypho-B5H9(PMe3)2

with a very open structure. The trend is clear. As more electron pairs are
added to a cluster the electronic situation approaches that of a hydrocarbon.
Vertex connectivities decrease and eventually multicentered bonding is no longer
required.

The correlations illustrated in Figure 2.13 should not be considered a fence
excluding other possibilities. Recall the earlier discussions of the possibilities of
nido-isomers for deltahedra with more than a single type of vertex connectivity. In
the last section we saw that the geometric possibilities for arachno-clusters are even
larger. Later we will see that heteronuclear clusters permit access to some of these
structure varients. Factors, such as electronegativity, charge and number of endo-H
atoms, can be important contributors to the net stability of a given shape. Variations
from the borane structural paradigm contained in Figure 2.13 are expected and will
be illustrated in succeeding chapters.

2.9 Localized bonds in clusters

The electronic structures of borane clusters were first successfully described using
localized three-center– and two-center–two-electron bonds. These treatments have
been replaced by the cluster electron-counting rule based on MO methods; hence,
why bother with the three-center bond model in a book about clusters? Let’s consider
why there is value in a more localized approach.

The electron-counting rule abstracts from the MO results an essential aspect
of the composition–structure problem important for understanding a fundamental
aspect of the area – the relationship between structure and stoichiometry. In doing so
the finer details of structure relevant to reaction properties and physical properties
are ignored, e.g., the frontier-orbital characteristics. Counting electrons says little
about properties or reactivities. In addition, the simplicity associated with localized
bonding models is missing. For example, we have already seen that the H atom in a
three-center B–H–B bond in a cluster has Brønsted acidic character. Deprotonation
can generate a site of nucleophilic activity. Hence, when we see a compound with
an H bridge, activation by deprotonation comes to mind. It is these kinds of simple
considerations that aid chemical understanding and lead to new ideas. When do
localized cluster model three-center bonds suffice? Alternatively, when should one
restrict consideration to full MO methods even for qualitative considerations? Let’s
look at a few examples.
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2.9.1 Ring-cap analysis of B5H9

Much has been written about three-center bond models in cluster structure analysis
including the modern treatments of metallaboranes by King. Here the single exam-
ple of B5H9 is sufficient to address our questions. For simplicity, we begin with
[B5H5]4− which is made up of atoms possessing a total of 25 valence orbitals and
24 valence electrons. The resulting MOs are divided as shown in Figure 2.14(a):
five external cluster bonding plus five antibonding; seven internal cluster bonding
orbitals and eight antibonding. How do we get this result from that for the par-
ent octahedron [B6H6]2−? It has 30 valence orbitals and 26 valence electrons. In
forming the nido-square pyramid a B–H fragment is lost (five valence orbitals and
four electrons) and the negative charge is increased by two (adding two electrons).
This results in the loss of two external B–H MOs (one filled and one unfilled) and
three unfilled internal MOs – the number of framework bonding orbitals remains
the same.

Now let us fragment the square pyramid into a planar [B4H4]4− ring and a capping
B–H fragment (Figure 2.14(b)). The square [B4H4]4− fragment is isoelectronic with
cyclo-butadiene. Hence its frontier orbitals are the four � MOs populated with four
electrons. Both of these fragments are satisfactorily described with two-center–
two-electron bonds so the multicenter bonding must be localized in the interaction
between the ring- and capping-fragment frontier orbitals found within the box
in the scheme. This should not be a surprise as it is the capping (apical) vertex
which is of connectivity four and a difficulty for the two-center bond model. The
bonding between the ring and the capping B–H, Figure 2.14(c), is derived from the
� and � symmetry-adapted linear combinations of the out-of-plane ring 2p orbitals.
These form three bonding and antibonding MOs with the orbitals of corresponding
symmetry on the B–H fragment whereas the � ring combination remains non-
bonding. The three bonding combinations are filled with the six available electrons
to generate a five-center–six-electron ring–cap bond.

The final step is the addition of four protons (four empty orbitals) that stabilize
four of the seven filled internal orbitals and generate four more empty orbitals
(each B–H–B bond is a three-center–two-electron bond generating one filled and
two unfilled MOs) giving the total of 29 MOs for the neutral compound (Figure
2.14(d)). We can also see now that it is the multicenter bonding, ring–cap and B–H–
B, that generates the imbalance between filled internal cluster orbitals and unfilled
internal cluster orbitals. It is this feature that distinguishes these clusters from most
three-connect clusters.

It should be no surprise that in a full MO treatment, the HOMO of B5H9 is the
degenerate ring–cap � MO set and the LUMO is the non-bonding ring � orbital. For
the binary boron hydrides, the frontier orbitals and, by implication, the reactivity
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will be connected with the multicenter framework bonding. The central idea here,
ring–cap analysis, was described very early by Hoffmann and Lipscomb and it
has been used effectively recently by Jemmis to analyze a related set of cluster
problems.

2.9.2 Cluster analog of the cyclopentadienyl ligand

Recall that in Section 2.6 we mentioned that the open cluster [C2B9H11]2− presents
five orbitals containing six electrons to a potential bonding partner. Now we can
understand why. Consider the removal of the capping B–H vertex from B5H9 as
[BH2]2+. What remains is a four-membered ring with a set of four out-of-plane
orbitals containing six electrons. Now a ring-capping interaction is not restricted
to a four-membered ring and works equally well for a five-membered ring (see
Problem 9). Hence, the generation of [C2B9H11]2− from C2B10H12 by the removal
of a [BH2]2+ fragment generates a five-membered open face possessing an out-
pointing set of � and � orbitals containing six electrons.

2.9.3 Three-center bond model for B5H9

A systematic treatment of B5H9 as well as the rest of the boranes by Lipscomb
employed two- and three-center–two-electron bonds – no five-center bonds. Let’s
see how to generate a three-center description of the ring–cap interaction. Go back
to [B5H5]4− in Figure 2.14. The ring–cap interaction shown in Figure 2.14(c) gen-
erates four empty orbitals over three filled ones so a description in terms of two-
and three-center bonds requires two two-center and one three-center bond. The
difficulty is how to place them on the framework without losing the C4v symmetry.
It is the same problem faced when trying to describe benzene with three dou-
ble bonds and three single bonds yet retain D6h symmetry. Resonance structures
rear their ugly heads. Figure 2.15 illustrates a set of four resonance structures
describing the ring–cap interaction with two B–B bonds and one “closed” B–B–B
bond thereby retaining the C4v symmetry of B5H9. In these resonance structures the
lines now DO designate two-center– or three-center–two-electron bonds. Pleasingly
each B center has near tetrahedral bond coordination (but not connectivity) and is
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associated with four electron pairs. Resonance structures that fail this test are less
favored.

The triangular B–B–B three-center–two-electron bond represented in
Figure 2.15 (two equal-energy empty orbitals over one filled – Figure 1.13) is
related to the B–H–B bond. It was introduced by Lipscomb to treat the framework
bonding problem. The numerical generalization of the accounting process we have
just gone through was formalized in the styx rule – parameters that specify the
numbers of two- (x B–H and y B–B) and three-center bonds (s B–H–B and t B–
B–B) necessary to describe a borane of specified stoichiometry. As with the sep
cluster count, the external B–H two-center–two-electron bonds are not considered
in the styx count so B–H refers to “extra” terminal H as found in the BH2 groups
of B5H11 for example (Figure 2.12). The styx rule suffers from the fact that more
than a single styx configuration can be generated for a single composition and even
though rationalization of structure is possible, prediction is difficult. The styx rule
actually works better for open structures of low symmetry. A symmetrical closo-
borane cluster requires more resonance structures (Exercise 2.5). But it is exactly
these closed borane structures that are least flexible in terms of available shapes.
They are the canonical structures from which the open ones are derived. Hence, the
styx rule never revealed the underlying geometric and electronic correlations sum-
marized in the cluster electron-counting rule. As already described, the deltahedral
geometries of the closo-frameworks plus MO analyses pointed to the heart of the
problem.

Exercise 2.4. Use the localized-bond model to rationalize the dipole moment exhib-
ited by B5H9 (1.7 D).

Answer. Recall that in a three-center bond, the two electrons are now shared by
three atomic centers. For simplicity ignore the differences in the electronegativities
of B and H and assume they are shared equally, i.e., all the terminal H atoms will
bear zero charge. The unique apical B shares three two-center and one three-center
bonds; hence, the charge is +3 − (3 × 1+ 1 × 2/3) = −2/3. The charges on the
four basal B atoms in any one bonding representation (Figure 2.15) is averaged by
resonance among the four; hence the charge is + 3 − (2 × 1 + 2 × 2/3 + 1 × 1 +
3 × 2/3)/2 = −1/6. Finally the charge on each bridging H atom is +1 − 2/3 =
+ 1/3. The total charge on the molecule is zero (−2/3 − 4/6 + 4/3). The dipole
moment lies along the C4 symmetry axis with the negative end pointing towards
the apical B atom.

Exercise 2.5. Develop a three-center bond description of one resonance structure
for [B6H6]2− and show that each B atom satisfies the eight-electron rule (review
Section 1.3.5).
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Exercise 2.5

Answer. There are a total of 30 orbitals and 26 electrons to be utilized in bonding.
The external B–H bonds utilize 12 orbitals and 12 electrons leaving 18 orbitals and
14 electrons for cluster bonding. Four three-center B–B–B and three two-center B–
B bonds utilize 12 + 6 = 18 orbitals and 8 + 6 = 14 electrons. They may be placed
on the framework as shown in the diagram above where the top and the bottom
of the octahedron are shown separately. By counting you can find that B(1) and
B(2) are associated with three three-center–two-electron bonds (and a B–H bond),
B(3) and B(4) with two three-center and one two-center bonds (and a B–H), and
B(5) and B(6) with one three-center and two two-center bonds (and a B–H), i.e.,
eight electrons around each B. Notice that one would need to draw a considerable
number of resonance structures to give all the boron atoms the same electronic
environment.

2.9.4 Elemental B

Now we are in a position to show that the structure of the simplest allotrope of
elemental B can be considered as a covalently bonded solid related to diamond
(review Section A1.3 in the Appendix). The two geometric structures (Figures
A1.9 and A1.11) look very different and if one’s bonding repertoire is limited
to the two-center–two-electron bond, it is hard to reconcile the available valence
electrons with the number of bonding interactions based on geometry. Yours should
not be so limited by this point. So let’s count electrons. Each icosahedral B12 cluster
requires 13 sep or 26 electrons. Each icosahedral cluster unit is bound externally
by a total of six two-center–two-electron bonds to the layers above and below its
layer. It is also bound by six three-center–two-electron bonds within its layer. The
former requires six electrons (six two-electron bonds shared by two B atoms each)
and the latter four electrons (six two-electron bonds shared by three B atoms each).
For the 12 B atoms 26 + 6 + 4 = 36 electrons are required or exactly the three per B
atom available. All this covalent bond model requires are two-center, three-center
and cluster network bond models to make it work. With strong cluster bonding
and strong inter-cluster bonding it is no surprise then that elemental B is a high
melting-point solid (2300 ◦C) like diamond.
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2.10 Clusters with nuclearity greater than 12

The set of deltahedra used to describe the geometries of the boranes and closely
related compounds stop at the icosahedron with nuclearity 12. But even in the early
days of the structural characterization of the boranes higher-nuclearity clusters
were known, e.g., B18H22. However, these clusters can be described as linked or
fused deltahedra with nuclearities 12 or lower. For many years no single main-
group cluster with n > 12 was found and a barrier to higher-nuclearity main-group
clusters was thought to exist.

2.10.1 Supra-icosahedral clusters

For many years researchers looked beyond the icosahedron wondering about the
possibilities of single p-block clusters with greater than 12 atoms in the cluster
framework. Calculations suggested a combination of the high stability of the 12-
vertex icosahedral cluster combined with poor stability of the 13-vertex deltahedron
that requires a vertex of connectivity 6 creates an energy barrier to the higher
nuclearities. But in 2003 a 13-vertex carborane (Figure 2.16) was generated by
Welch in a masterful cluster-expansion reaction sequence. The framework structure
found is shown in Figure 2.16 where it is compared with icosahedral [B12H12]2−

and the lowest energy structure of a 13-vertex closo-borane from calculations. The
carborane has trapezoidal faces, i.e., it does not have a deltahedral shape. The
calculations show that the observed structure of the carborane is favored over the
borane structure type by 29 kJ mol−1. However, if the two CR fragments are replaced
with [BH]− fragments, the fully triangulated structure is more stable by 16 kJ mol−1.
The key point is that energy differences are small and the established preference of C
for lower-over higher-connectivity vertices is expressed in the observed geometric
structure. Clearly, if Figure 2.13 is to be extended to nuclearity 13, it is the calculated
deltahedral shape appropriate for the borane that should be added. But we must also
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expect that non-deltahedral shapes are likely on replacement of BH fragments with
heteroatom fragments.

In 2005, Xie showed that it is differing reducing properties of the reductively
opened C2B10 framework isomers, C-apart vs. C-adjacent, rather than framework
energetics of BH addition that inhibit cluster expansion beyond the icosahedral
closo-framework. In an elegant synthetic accomplishment, he showed that, with
an external ring holding the C2 cluster unit in the C-adjacent position, not only
was the 13-vertex cluster accessible but also two isomeric forms of a 14-vertex
cluster (Figure 2.17). The latter two species do not inter-convert thermally but
can be inter-converted under reducing conditions. Further, the more symmetrical
isomer has been crystallographically characterized and it exhibits a true deltahedral
shape, a bicapped hexagonal antiprism, as predicted for [B14H14]2− by calculations.
Interestingly the known arachno-hexacarborane with 15 sep shown at the right is
based on the same shape with the two six-connect vertices unoccupied.

2.10.2 Linked and fused clusters

Examples of linked and fused clusters are illustrated in Figure 2.18. The develop-
ment of the transition-metal cluster fusion reaction by Grimes generated a variety
of fused boranes as well as carboranes. The electronic structural problem posed by
these compounds ranges from trivial to complex. The isomers of the dimer of B5H9

shown in Figure 2.18(a) lie in the former category. They are named 1,1′-, 2,2′- and
1,2′-conjuncto-[B5H8]2. One B–H terminal bond of each framework is replaced by
a B–B two-center–two-electron bond. The sep and cve counts of each cluster are
unaffected as each individual cluster acts as a one-electron ligand to the other.

The problem presented by the fused cluster B20H16 with 76 cve is a more difficult
one to analyze. Look at B20H16 and note the four atoms held in common. Take
it apart at the points of fusion with each fragment retaining the four common
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atoms. Two icosahedra are generated each of which requires 50 cve. By sharing
vertices, somehow the electronic requirements of each icosahedron are satisfied.
Jemmis provided a simple analysis, the mno rule, which is useful even though it
shields the user from the intimate electronic details. In developing his rule Jemmis
recognized similarities between fused clusters and fused aromatic systems, e.g.,
benzene vs. naphthalene in which two carbon atoms are shared in the � system.
Mingos and Wales have analyzed the problem in detail for transition-metal clusters
and the interested reader is referred to their book in the reading list at the end
of this chapter. Likewise Burdett has treated some of the difficult cases of fused
main-group clusters.

In the mno rule, m is the number of clusters, n the number of vertices in the
fused cluster and o the number of single-vertex shared atoms. Unfortunately n does
not have the same meaning we have given it above where n defines the number
of vertices in the deltahedron upon which the cluster structure is based, thus for
open clusters parameter p must be added, where p is the total number of missing
vertices. The sum of m, n and o (and p if there are missing vertices) is the total
number of cluster bonding electron pairs needed for a stable, condensed fused
cluster. Applying this rule to B20H16 we have, from the molecular formula, a total
count of 22 pairs (16 B–H and 4 B giving (16 × 2 + 4 × 3)/2 = 22). The mno
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rule gives: m = 2, n = 20, o = 0 for m + n + o = 22. Note that all three electrons
from the shared B atoms are contributed to the cluster electron count. We will find
a similar situation with interstitial atoms in metal clusters in the next chapter. The
facile nature of the rule makes it a simple job to work out the stoichiometry of four-
vertex sharing dimers like B20H16 as well as face, edge and single-vertex sharing.
The analysis has also been used to suggest trimeric species presently unknown and
the possibility of cationic as well as anionic clusters, e.g., [B28H24]2+, a four-vertex
sharing trimer of three fused icosahedra.

If there is only one atom shared between two clusters (an unknown situation for B)
then o = 1. Thus, [(R2C2B4H4)2E], E = Ga−, Ge, (Figure 2.19) exhibits a structure
consisting of two pentagonal pyramids fused at one apical vertex occupied by the
atom E. There are 16 pairs in the isoelectronic clusters (2 R2C2B4H4 fragments =
14 pairs + E = 2 pairs) and m + n + o = 2 + 13 + 1 = 16. The need for parameter
o is discussed in the Jemmis article in the reading list.

Fused metal clusters are much more abundant than fused main-group clusters
and Mingos developed an effective approach to their description (Section 3.3.3).
His rule is that in fusing two clusters, the fragment formally eliminated must obey
normal valence rules. Thus we have:

B20H16(cve = 76) → 2[B12H12]2−(cve = 100) − [B4H8]4−(cve = 24)

Note that the common fragment appears to be a 22 cve butterfly fragment (like
B4H10) rather than a ring isoelectronic with C4H8. We will encounter this ambiguity
for metal clusters as well when cluster fusion involves four common atoms.

The fused deltahedra need not be connected at four vertices, nor closed, nor
of the same size. Thus, the number of fused compounds possible is large and the
number of “macropolyhedral” clusters, as they are sometimes described, is growing.
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Considering the fact that the number of polyaromatic compounds known is large,
this result should be no surprise. Of course neither the mno rule nor the cluster-
fusion rule by itself gives any insight on the synthesis of the compounds. But they
do suggest many such fused systems should be possible to make and that is added
justification for seeking their syntheses.

Exercise 2.6. In Figure 2.20(a) the structure of one of the two known isomers of
B18H22 is shown in stick form as well as its “retro-construction” from two B10H14

clusters. Schematic representations of this isomer as well as the other known isomer
are shown in Figure 2.20 (a and b). Justify the compositions as well as the isomerism.
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Answer. The mno rule gives 2 + 18 = 20: sep = 18 B–H + 4 H = (36 + 4)/2
= 20. Application of the cluster-fusion analysis is also straightforward. Inspection
shows that B18H22 can be thought of as derived from two nido-B10H14 clusters as
shown in Figure 2.20(a). Hence, B18H22 (cve = 76) → 2 B10H14 (cve = 88) –
B2H6 (cve = 12). The isomer shown in detail is centrosymmetric (“normal”) and
results from fusion of the 5,6-edge of one B10H14 with the 6,7-edge of the other (see
numbering diagram). The non-centrosymmetric isomer (“iso”) results from fusion
of two 6,7-edges of two B10H14 as shown in Figure 2.20(b). When the geometry
is known the electron count is easy to rationalize. If not known, the spectroscopic
data must be used to limit the possibilities.

2.11 Ligand-free clusters

Hypothetical [C6]2− with Oh symmetry should exhibit the same cluster bonding
orbitals as [B6H6]2− and approximate MO calculations (Figure 2.21) show that
this is true. There are significant differences. Specifically, in going to [B6H6]2−

the highest six occupied MOs of [C6]2− (t1u, a1g, eg) are stabilized in that largely
non-bonding orbitals become B–H bonding MOs. A smaller HOMO–LUMO gap
and lower ionization energy is found for [C6]2− even though C has a higher elec-
tronegativity than B. As the validity of electron-counting rules in general depend on
large HOMO–LUMO gaps, bare clusters will have a greater likelihood of adopting
cluster shapes that do not follow the cluster electron-counting rule or exhibiting
cluster electron counts less than that specified for the observed shape.

Let us look at bare clusters from a different point of view. What would a naked
[B6]2− octahedral cluster be like? It has 20 cve, 6 short of the requirement. This
number of electrons is sufficient to serve as the required seven sep and provide three
external lone pairs; however, three of the out-pointing external cluster orbitals would
be empty and a structural rearrangement would be required to create a significant
gap between MO 10 and the t1u set 11–13 (left side of Figure 2.21). Hence, in the
same way that BH3 is only found as base adducts, so too octahedral [B6]2− would
be expected to be found coordinated to bases.

2.11.1 Oxidative coupling

How strong is the tendency to fill an empty external cluster orbital? The linked
cluster pair shown in Figure 2.22 is instructive. Oxidation of [B10H10]2− results in
the loss of two electrons and a proton (effectively H− is lost). The shape remains the
same so the 11 sep associated with cluster bonding are unaffected. Hence, an exter-
nal outward-pointing empty orbital is generated. Dimerization to form [B20H18]2−

arises by formation of two three-center–two-electron bonds between the clusters.
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This linked cluster is similar to that formed from two [B5H8] radicals (Figure 2.18)
except three-center instead of two-center bonding joins the clusters. This dimeriza-
tion also parallels that of diborane in which two B–H–B three-center interactions
are formed from two B–H bonds and two empty orbitals. In fact photoexcitation
leads to the generation of an isomeric species in which the cluster linkage now
consists precisely of two three-center B–H–B bonds rather than B–B–B bonds.
Conversion back to the more stable B–B–B linked form takes place on heating.
The message from this experiment is that external vacant orbitals on a cluster need
to be satisfied in some fashion. Thus, alternative structures become energetically
competitive.

2.11.2 Zintl clusters

Bare clusters bearing negative charges are known and these species are derived
from the pioneering work of Zintl. Solid-state polar intermetallics, known as Zintl
phases, when dissolved in liquid NH3, provide solutions with properties consistent
with the existence of multiply charged cluster ions. These species are known as
Zintl ions. Once structurally characterized, it was clear that the Zintl phases did not
contain the cluster species postulated to exist in solution; hence, cluster formation
took place on dissolution. In addition, clusters, e.g., tetrahedral, found in the solid
state were not found in solution. Eventually, with the availability of ligands for
alkali metal such as the crown ethers, isolation and structural characterization was
achieved. Recently, known Zintl cluster anions have been found in Zintl phases
thereby forging a link between solution and solid-state structural chemistry. This
connection is amplified in Chapter 8. Here we consider the alkali metal–p-block
element compounds as p-block element anions in a “sea” of alkali-metal cations
with or without the presence of amines or crown ethers. Keep in mind that the
compounds are made from the elements and retain the high sensitivity to moisture
that the alkali metals exhibit. In the case of solid-state systems we will ignore for
the time being the sometimes non-trivial task of sorting the contents of the unit
cell into clusters and other less interesting bits. It’s not the atom positions that
are a problem as these are defined precisely by the X-ray diffraction experiment,
but rather the assignment of charges. That is, if some of the alkali-metal atoms
retain their valence electrons, the compound will exhibit metallic character and the
assignment of cluster charge can be difficult.

Let us focus on Ge and begin with three-connect clusters. A compound containing
[Ge4]4− tetrahedra has been prepared from Na and Ge (Figure 2.23). [Ge]− is
isoelectronic with As. In the sep count it is a three-electron cluster fragment like
C–H. So the cluster is analogous to P4 with six two-center Ge–Ge bonds and four
external lone pairs. One can see the power of the Zintl idea: ME is equivalent to E′

where E′ is a p-block element one column to the right.
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Things become more interesting when larger clusters are addressed. Consider
the clusters shown in Figure 2.24. [Ge5]2− with six sep has the deltahedral shape
expected from the borane paradigm. Neutral Ge atoms are now behaving like B–H
fragments. The phase Na12Ge17 contains a 2:1 ratio of [Ge4]4− and [Ge9]4− clusters.
The former are tetrahedral whereas the latter are often represented as capped square
antiprisms (Figure 2.24). That is, in conformance with 11 sep the structure is based
on a deltahedron of order 10 (Figure 2.13) with one four-connect vertex vacant.
Direct connections with ligated clusters arise when sufficient ligands are added to
alleviate the need for an overall cluster charge. Ge6R2, where R is a bulky ligand,
is neutral and exhibits an octahedral cluster shape in accord with its sep count of
seven (Figure 2.24).

Exercise 2.7. A Zintl ion with the formula [TlSn9]3− has been synthesized and
characterized. Suggest a structure.

Answer. A count of 42 cve or 11 sep yields n = 10 so a bicapped square antipris-
matic closo-cluster shape is predicted and was found in a solid-state structure
determination.

2.11.3 Localized bonding analyses

Mixed species such as Ge6R2 can generate interesting bonding puzzles that are
often effectively described by localized models. The key to solving the puzzles is to
utilize all the valence electrons and orbitals. Take the structure of [Ge10(SitBu3)6I]+

shown in Figure 2.25(a). Analyze the problem. There are 47 valence AOs and
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46 electrons, all of which must be used. Viewed as a three-connect cluster (ignore
the long Ge–Ge distances indicated by dashed lines), 5n = 50 electrons would
be required. Clearly, some delocalization is necessary. R–Ge is a three-orbital–
three-electron fragment and you should now be able to recognize that the triangular
Ge3R3 fragment on the top and the irregular Ge4R3R′ fragment on the bottom can
be viewed as three-connect networks (electron precise) that require 44 AOs and 44
electrons. Thus, the essence of the problem can be abstracted as a triangle of three
(RGe)3Ge fragments one of which carries a single positive charge (Figure 2.25(b)).
As shown in Figure 2.25(c) the three radial orbitals of the three X3Ge fragments
combine to form two antibonding MOs over one bonding MO. The latter contains
the two available electrons leading to a net three-center bonding interaction. Recall
triangular [H3]+. Consistent with the model, the Ge–Ge distances in this triangular
fragment are longer than a Ge–Ge single bond but somewhat shorter than expected
if non-bonding. This set of three orbitals is expected to be the HOMO/LUMO set
and good calculations verify this point.

The three-center Ge–Ge–Ge bond is similar to the B–B–B three-center bond
used in a localized model of borane clusters. In fact, we can view this Ge cluster as
a hybrid of an electron-precise, three-connect cluster and an electron-poor borane
cluster. A difference is that the filled orbital also has lone-pair character. As pointed
out in the comparison of [C6]2− and [B6H6]2−, the presence of high-lying lone-
pair orbitals enhances mixing with cluster bonding orbitals. One implication of the
result is that one cannot assume a bare atom at a cluster vertex has an external lone
pair removed from the cluster bonding network. As emphasized in the introduction
of Section 2.11, the electron-counting rules developed for ligated clusters must be
applied to clusters containing bare atoms with caution. We will return to this point
in considering larger clusters with ligand-free atoms below.

A facility with the use of multicenter bond models is very helpful in thinking
about problems of this type. Insight into new structure types arises more rapidly
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if one is able to break down the problem in an approximate fashion with partially
localized bonding models. Let us return now to the electron-counting rules and
examine some systems where the connection between stoichiometry and structure
is less precise than one might desire.

Exercise 2.8. The structure of Ga10R6 is shown below. Consider the cluster as made
up of edge-fused octahedra and compare the observed cve with the calculated one.
Now apply the mno rule to this fused cluster system and calculate the number of
cluster electrons required from each of the bare Ga atoms in order to satisfy the
rule.

Ga

Ga
R

GaR
GaR

Ga

Ga

Ga

RGa
RGa

RGa

Exercise 2.8

Answer. For two octahedral clusters fused on an edge, the cve count is (2 × 26 −
14) = 38 whereas the observed count is (10 Ga + 6 R) = 30 + 6 = 36. Thus,
we cannot assume non-cluster bonding lone pairs on the bare Ga atoms. With the
mno rule, m = 2, n = 10 and o = 0 giving m + n = 12 sep. Each of the two Ga
atoms shared between the clusters contributes all three valence electrons. Hence,
we have 6 RGa + 2 Ga(shared) + 2 Ga(unshared) = (12 + 6 + 2x)/2 = 12 sep,
where x is the contribution of the unshared cluster Ga atoms. Clearly x = 3 in this
cluster, which suggests there are no formal lone pairs on these two Ga vertices.
Indeed, the structure shows the Ga–Ga distances between the apical RGa and Ga
centers (broken lines in the drawing) are about 0.2 Å shorter than the other Ga–Ga
distances. Electron counting identifies the cluster bonding problem but does not
solve it. We will have more to say about this cluster type below.

2.12 When the rules fail

There are some cluster shapes in which the energy difference between two geometric
shapes for the same composition is relatively small. We have already encountered
a 13-vertex closed cluster where two shapes differ little in energy and factors other
than electron counting determine the shape observed (Figure 2.16). Two other
sources of non-conformity are pathological features of a particular shape and the
difficulties of accommodating high charge. Very large clusters with internal atoms
do not follow the simple rules and these are considered separately below and later
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in the text. Examples illustrate the problems and a more comprehensive discussion
will be found in Mingos and Wales.

2.12.1 Three-fold axes

Recall the situation encountered for the tetrahedral cluster earlier in the chapter
where the e set lies in the gap between the t2 cluster bonding and antibonding sets
(Figure 2.5). Two counts, four and six sep, are observed. The presence of a C3

axis in other cluster shapes leads to a similar situation. For example, in the closo-
nine-vertex deltahedron (tricapped trigonal prism) there is no clear-cut separation
between the energies of the n + 1 cluster bonding orbitals and the 2n−1 antibonding
orbitals. In fact, this cluster shape possesses three high-lying cluster orbitals as
potential HOMOs and examples of this cluster shape are known for sep counts of n,
n + 1 and n + 2, i.e., 9, 10 and 11 sep (Figure 2.26). [B9H9]2− exhibits a tricapped
trigonal prismatic shape and contains 10 sep in accord with the “normal” counting
rule. However, both B9Cl9 and Ga9R9 exhibit the same shape but only possess
nine sep. Likewise [Bi9]5+ exhibits a tricapped trigonal prismatic shape but contains
11 sep. The fact that six sep [Bi5]3+ exhibits the expected trigonal bipyramidal shape
suggests that the varied counts for the nine-atom cluster is characteristic of the
shape rather than the atom type. The structural distortions observed in the [Bi9]5+

framework relative to that of [B9H9]2− correlate nicely with the Bi–Bi bonding
and antibonding character of the n + 1 and n + 2 frontier cluster orbitals. Cluster
distortion, rather than cluster opening, accompanies the addition of one sep.

A nine-fragment Zintl system with 11 sep reinforces this point. The structure of
[Sn9]4−with 11 sep has a short diagonal on the lower square face (dashed line, Figure
2.26). Note that opening this edge, which connects two five-connect vertices of the
tricapped trigonal prism, generates a capped square antiprism. So is it a distorted
closo-cluster with n + 2 sep or a distorted nido-cluster with n + 2 sep? Good
calculations or geometric parameters are needed to go beyond an electron-counting
description. That is, debate of the question nido vs. closo is not a productive one.
We are only talking rules here, not commandments!
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2.12.2 High charge

Cluster shapes with no obvious connection to the borane paradigm are observed. For
example, the [In11]7− cluster is observed in the metallic phase K8In11. The cluster
is formulated as [In11]7− rather than [In11]8− as the material is metallic and one of
the eight K atoms retains its electron which is “delocalized.” The observed shape
(shown at the right in Figure 2.27) can be derived from the pentacapped trigonal
prism shown to the left by six diamond–square–diamond, dsd, rearrangements. In a
dsd rearrangement a cross–diamond connection is broken to produce a square and
then the alternative cross–diamond connection formed to regenerate a diamond. The
net result is a change in the relative connectivities of the four corners but no change
in overall connectivity. In this case, the six edges of the two triangular faces of the
tricapped trigonal prism are broken (bold lines of the left-hand structure missing in
the right-hand structure). As a result the two In atoms capping these faces (these two
indium atoms are shown in bold in the right-hand structure) go from three-connect
to six-connect. To retain In–In bonding, compression of the cluster accompanies
the rearrangement. We will learn in Section 3.3.2 that capped clusters only require
the sep count of the uncapped central cluster, i.e., in this case only ten sep are
required for a bicapped tricapped trigonal prism. [In11]7− has nine sep and we saw
in the very last section this count is one possibility for a tricapped trigonal prism.
So why the different structure? Notice that the vertex connectivities of the left-hand
structure are: two three-connect, three four-connect, and six six-connect (total =
54); whereas those for the right-hand structure are: six four-connect and five six-
connect, i.e., the observed structure is more spherical. As vertex connectivity is
related to cluster charge distribution the more spherical shape will be favored.

2.12.3 Boron wheels

A spectacular example of the unusual shapes possible for bare clusters is the recent
development of naked B “wheels” and other planar shapes generated by calcula-
tional chemistry and supported by quantitative fits to experimental photoelectron
spectroscopic data. Two examples, [B8]2− and [B9]−, are shown in Figure 2.28
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where it is seen that planar rings of seven or eight B atoms surround a central B
atom to generate a wheel-like shape – quite the antithesis of the closed deltahedral
clusters [BnHn]2−! The lines that create the spokes are bonding interactions but the
reader will now appreciate that they are not two-center–two-electron bonds. In fact
the stability is described as arising from the combined effects of � aromaticity (as
found in benzene) and � aromaticity (derived from delocalization of the � bonding
network which constitutes another way of describing multicenter bonding).

Exercise 2.9. The cluster [Al14R6I6]2−, with two bare Al atoms, exhibits the
unusual shape shown below and has been called a “nano-wheel.” In light of the
discussion above of rule-breakers, consider its electronic structure at the level of
electron counting and suggest a reasonable analysis.

Al

Al

= Al–R or Al–I

Exercise 2.9

Answer. [Al14R6I6]2− possesses (14 × 3 + 12 × 1 + 2) = 56 cve. However,
considered as a borane analog we expect cve =4n+2=58 as found for R2C2B12H12

(Figure 2.17). Note that the shape of [Al14R6I6]2− is compressed relative to a
spherical cluster so that there can be a cross-cage Al–Al interaction. Hence, if the
two bare Al atoms utilize one electron each to form a cross-cage Al–Al bond it
leaves two per Al atom for cluster bonding. In fact, the Al–Al distance is 2.73 Å
which falls in the range observed for these Al cluster types and, thus, is consistent
with a bonding interaction. Hence, in terms of sep count we have (12 AlR + 2 Al
+ 2(−)) = (24 + 4 + 2)/2 = 15 sep appropriate for a 14-vertex closo-cluster –
the bare Al atoms do not have lone pairs. A similar mechanism is adopted by some
ReB clusters we will encounter in Section 5.2.2. See also the discussion below in
Section 2.12.5 on the electronic behavior of a bare atom E nearly coplanar with
ER fragments. Contrary to the statement contained in the original publication, the
counting rules do provide a rationale of observed composition and shape.
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Figure 2.29

2.12.4 Buckyball

And what about C60 and its larger siblings? How are these attention-getting bare
clusters related to our discussion? Inspect its structure shown in Figure 2.29. It is
a naked three-connect cluster made up of five- and six-membered rings, i.e., it is
not deltahedral. If we construct a two-center–two-electron bonding network using
the three C sp2 orbitals lying in the surface of the cluster we are left with one out-
pointing p orbital per C atom containing one electron. This is a similar situation to a
polyaromatic albeit we are not dealing with a planar species. On the other hand, the
size of C60 means the curvature at any atom is less than that for an icosahedron, for
example. It is not too much of a stretch to conclude that C60 contains an aromatic
system related to that in graphite. That is, C60 does not have external lone pairs
but rather an external delocalized aromatic system, i.e., one external electron per C
atom. Like the bare Al atoms in [Al14R6I6]2− (Exercise 2.9) only one electron is not
used in skeletal bonding. C60 is to the prismanes (Figure 2.3) what polyaromatics
are to aliphatic compounds.

The reactivity of C60 with metal fragments appears to correlate more closely
with that of dienes than aromatics, however. This suggests that localization to form,
e.g., organometallic complexes does not involve large destabilization energies due
to loss of aromaticity. We will come back to the interesting properties of C60 in
Chapter 7.

2.12.5 Elementoid clusters

Mixed ligated/naked-atom clusters, which Schnöckel has depicted as elementoid
or metalloid, are clusters with internal as well as surface atoms. They illustrate the
generalized cluster shown in Figure 2.1 and follow neither the borane paradigm nor
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a localized bond treatment. For the large ones the structures of the central cores have
connections with the solid-state element structures – hence, the term elementoid.
They form a bridge between this chapter and those on solid-state systems (Chapters
6 and 7).

We begin with mid-sized clusters with a single internal atom (called “interstitial”
for metal clusters, Section 3.3.1) that are deltahedral clusters but exhibit irregular
surfaces. For example, [Ga19R6]− with 64 cve has the shape shown in Figure 2.30.
It can be imagined to be constructed by capping each of the six rectangular faces
of a 12-vertex cubooctahedron with a GaR fragment and adding a centering Ga
atom. Approached as a borane we expect 4n + 2 = 74 cve to be required. Treated
as a capped metal cluster (see Section 2.10.2 and the more extended discussion in
Sections 3.3.2 and 3.3.3 in the next chapter) we have 4n + 2 = 50 (n = 12) plus 12
for the 6 caps for a predicted cve count of 62. The observed cve of 64 is bracketed to
be sure but can we do better? There is a smell of the [Ge10R7]+ problem analyzed
in Section 2.11.3, where we found the triangle of bare Ga atoms involved in a
three-center–two-electron bond that incorporated lone-pair character. The result of
Exercise 2.8 is also pertinent. Perhaps the same factors are important in [Ga19R6]−

and we need to break it down into more localized building blocks. How?
A way was suggested by Schleyer in a discussion of a set of calculated clus-

ters whimsically described as a “sea urchin” family of boranes and carboranes. In
essence he suggests that an organic polyhedrane atomic framework with triangular,
rectangular, pentagonal and hexagonal faces, capped on all faces larger than trian-
gular with ER fragments, yields a stable cluster for a specific electron count. From
the compositions and charges observed to be stable minima by theoretical calcula-
tions, the number of cluster bonding electrons (cve less the pairs associated with
the R groups) was reproduced by twice the number of triangles in the original poly-
hedrane skeleton plus six times the number of larger faces capped. The rationale is
simple: as we saw from the [Ge10R7]+ problem the number of electrons associated
with bonding the Ga3 triangle is two. Further, as we saw from the ring-cap model of
Section 2.9.1 and Problem 8 the number of electrons associated with apical–basal
bonding in capping a rectangular or pentagonal ring is six. The total number of
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electrons associated with the cluster (cve) is then the sum associated with all the
polygons that make up the framework plus those that serve to bond the external R
groups. Excluding the external R group bonds, Schleyer called the 6m + 2n sum a
new skeletal electron-counting rule!

To our knowledge this approach has not been applied to experimentally deter-
mined cluster compositions/shapes but let’s try it on [Ga19R6]−. As shown in
Figure 2.30 we have eight triangles and six capped rectangles plus six R groups
giving us: 8 × 2 (triangles) + 6 × 6 (capped faces) + 6 × 2 (R groups) = 64
exactly as observed. Now there is a difference between this count and that for the
Schleyer molecules as here the polyhedrane is made up of Ga atoms not C atoms.
For example, in Schleyer’s approach C atoms were replaced with BH to generate
borane cluster structures. Hence, our count for [Ga19R6]− effectively assumes each
Ga has no defined lone pair. This should no longer be a surprise for EmRn clusters
where m > n.

This approach also works for [Ga26R8]2− (88 cve) which has a more complex
structure built from a centered 13-vertex polyhedron (8 triangles, 4 rectangles, 2
pentagons shown in Figure 2.31). Two of the rectangles and the two pentagons are
capped with single GaR groups. The other two rectangles are fused to bicapped
trigonal prismatic fragments – more complexity! But the latter can be treated the
same way, i.e., the trigonal prism has three rectangles and two triangles – cap two
rectangles (one is reserved for fusion to the 13-vertex polyhedron) giving a count
of 2 × 2 + 2 × 6 = 16. The total count is then: 8 × 2 (triangles) + 4 × 6 (capped
faces) + 2 × 16 (complex caps) + 8 × 2 (R groups) = 88. It remains to be seen if
this approach has generality. The greatest difficulty for more complex examples is
in determining the uncapped polyhedron as well as the various appendages.

Despite these difficulties, the success of this simple analysis suggests that com-
plex cluster species can be built up utilizing partially delocalized (� aromatic)
building blocks. The approach of Section 2.9, that probably seemed extraneous to
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you, now becomes a useful tool. Perhaps also you can see a connection with the
completely delocalized external orbital system of C60. A corollary is that these clus-
ters, like C60, will not, in general, follow the rules established for the near spherical
borane clusters. Note particularly that in this method all of the bare Ga atoms con-
tribute three valence electrons to the cluster count. There are no formal lone pairs.
To test your understanding, try Problem 12 on Sn8R4. It is another example where
an assumption of lone pairs on bare atoms leads one astray.

The obvious question arises: when does a bare atom exhibit a lone pair and
when doesn’t it? We have already seen that many bare clusters behave as expected
with lone pairs, whereas it is the clusters with a mix of E and ER fragments that
sometimes do not. An important paper by Burdett and Canadell suggests a rationale.
To summarize their argument briefly, they suggest that as the radius of curvature
of a cluster increases, i.e., cluster nuclearity increases, the occupation of cluster
lone-pair orbitals becomes less likely. The origin of this effect is an antibonding
(repulsive) interaction between the E lone pair orbitals and ER bonding orbitals
leading to destabilization of the former. Thus, for Ge6R2 (Figure 2.24) the low
radius of curvature leads to filled lone-pair orbitals whereas for the larger [Ga19R6]−

the bare Ga centers act effectively as trigonal planar six-electron fragments. The
almost flat top and bottom of [Al14R6I6]2− (Exercise 2.9) is also consistent with no
lone pairs on the two Al atoms.

Now we come to the even larger clusters such as [Al69R18]3− (Figure 2.32) with
many internal atoms. The geometry of [Al69R18]3− may be described as an Al atom
(indicated with an open circle containing a “c” in the drawing) centered polyhedron
of 12 nearest neighbor Al atoms surrounded by a polyhedron of 38 next-nearest
neighbor Al atoms and completed by a still larger and more open polyhedron of 18
AlR fragments. To emphasize the layers, Figure 2.32 only defines the polyhedron
of the nearest neighbors of the central Al atom (after all the lines between atoms
are imaginary). The 12-vertex polyhedron approximates a bicapped pentagonal
prism with 5-fold symmetry – a symmetry only found in so-called quasi-crystalline
materials (one cannot tile a floor with pentagons). The distinct layered structure
sometimes described as “onion-like” or “stuffed” has its own nomenclature, i.e.,
Al@Al12@Al38@(AlR)18 for [Al69R18]3−.

Note that the cluster surface layer is not fully formed and that Al atoms of the
second layer are exposed. In this sense the outer shells are reminiscent of [Ga19R6]−

discussed above. Hence, one expects that the exposed atoms in the Al38 shell will
be engaged in complex multicentered bonding and the presence of “lone pairs”
cannot be assumed (see discussion immediately above). The structural parameters
of [Al69R18]3− are revealing. The coordination numbers of the Al atoms decrease
in going from the center to the surface of the cluster. Correspondingly, the Al–Al
distances decrease from the center out suggesting an increase in bond localization in
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the same direction. The internal packing is sensitive to cluster size as well as cluster
surface changes, i.e., [Al77R20]2− has an Al@Al12@Al44@(AlR)20 layer structure
but the geometry of the Al13 core is a distorted, centered icosahedron. All these
observations are consistent with viewing these clusters as hybrids lying between
molecular main-group clusters of the types already described and elemental crystal-
lites. The connection between these metalloid clusters and the bulk pure elements
is clear – they are nanoparticles of the bulk element preserved from further conden-
sation by the ligands bound to the external surface of the particle. These ligands
are not innocent but perturb the internal structure. Although only two examples
are discussed here, other similarly large clusters of Ga establish the generality of
the observations. We will revisit these interesting molecules in Chapters 3 and 6 as
these nanoparticles truly constitute a bridge between small molecular derivatives
of an element and the bulk element itself.

Exercise 2.10. The content of this chapter shows us that no single counting rule
serves for all main-group clusters. This exercise illustrates how a reasoned analysis
of a problem at the level of counting can tease out the core of the problem. The
cubic Al clusters including “carbaalanes” have been cited as examples that “do not
fit.” Consider the three shown below and provide an analysis in the spirit of this
chapter.

Answer. SiAl8(AlCp*)6 is a capped cube of Al atoms centered with Si. With a
mix of bare and ligated atoms, a cve count is the best approach (no assumption
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Exercise 2.10

concerning the existence of an Al lone pair is required). Observed cve = Si + 14
Al + 6 Cp* = 4 + 42 + 30 = 76. Three models are suggested by the structure:
a closo-deltahedral borane-like cluster, a capped polyhedrane and a capped three-
connect cube. A variation is that the external bond to the capping Al atoms involves
six electrons not the usual two. Hence, for the first model we have 4(14) + 2 + 6 ×
4 = 82 cve. For the second, we have six capped squares plus the electrons in the
Al–Cp* bonding giving 6 × 6 + 6 × 6 = 72 cve. Finally, for a three-connect cube
with Al–Cp* caps we have 5 × 8 + 6 × 6 = 76 cve and a match. It seems there are
lone pairs on the Al atoms presumably because the radius of curvature is small.

(CR)6(AlH)6(AlNMe3)2 is also a capped cube but now the Al atoms that make up
the cube are ligated and the capping atoms are the more electronegative C atoms.
We have 8 Al + 6 H + 2 NR3 + 6 C + 6 R = 24 + 6 + 4 + 24 + 6 = 64 cve.
On your own apply the first two models used above for SiAl8(AlCp*)6 (58 and
48 cve). Here we go directly to the model that worked – a capped three-connect
cube. We have 5 × 8 + 6 × 2 = 52! Three strikes and you’re out. But look, we
have 12 “extra” electrons to break Al–Al bonds incorporated in the model applied.
This suggests the compound is bonded together mainly through the electronega-
tive C caps. In essence, there are six CAl4 five-center–six-electron bonds plus the
6 + 8 external bonding pairs (= 64 cve). Indeed, good calculations show that there
are no Al–Al bonds and that the proper description of this cluster is a 14-vertex shape
with 12 quadrilateral faces. Beware of associating all lines that show geometry with
bonds.

(H)(CR)5(AlMe)8 is very similar to the second example in that one CR cap is
replaced with an H atom. We have: H + 5 C + 5 R + 8 Al + 8 Me = 1 + 20 +
5 + 24 + 8 = 58 cve. With 5 × 6 = 30 electrons associated with the five CR
caps plus 2(8 + 5) for the external bonding pairs on Al and C we have a total of
56 cve. Hence, the H cap can be reasonably considered a five-center–two-electron
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bond, i.e., H has no p functions to form the other two bonding interactions (review
Figure 2.14.).

Problems

1. The structure of B4H10 is shown below at the left. Adjacent to it is one structure proposed
earlier which is a dimer of diborane. Generate and compare isoelectronic hydrocarbon
analogs of the two valence isomers.

H2B

H
B BH

BH2

H

H

H

H

H2B

B
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H

H

H

H

Problem 2.1

2. The compounds [SnnRn], n = 6, 8 and 10, where R is a bulky one-electron ligand, are
known. Postulate a cluster structure for each.

3. Use the electron-counting rule to propose a structure for each of the following closed
cluster compounds. Indicate which will possess a non-zero electric dipole moment:
1,2-C2B3H5, 1,6-C2B4H6, 2-Cl-1,6-C2B4H5, 2,4-C2B5H7, 1,2-Me2-1,2-Si2B10H10,
SB11H11 and [AsB11H11]−.

4. (a) Use the electron-counting rule to generate an open or closed structure for the follow-
ing known cluster compounds: 2,3-C2B4H8, 1,2-C2B4H6, 1,5-C2B3H5, B4H10, C3B3H7.
(b) Design a neutral open cluster that contains Si, P, H and B that exhibits a pentagonal
pyramidal shape.

5. The structure of B6H12 (Gaines and Schaeffer, 1964) was derived from the NMR data.
The 11B NMR data show the presence of three types of B in the ratio of 1:1:1. B–
H coupling suggests one is a BH2 group (dd) and the other two are BH groups (d).
The 1H spectrum shows four types of BH terminal protons and two types of BHB
bridging protons in the ratio of 1:1:1:1:1:1. Suggest a structure. Analyze the structure
and determine how many three-center bonds are required to describe the electronic
structure with a localized model.

6. As part of a larger research project, closed clusters are proposed as corner units in
the construction of molecular cluster rings utilizing Lewis acid–base interactions to
make the connections. A cluster building block containing both a Lewis-basic site and
a Lewis-acidic site (protected with a weak base such as THF) in the proper geometrical
relationship for the ring size is required. Use the electron-counting rules and the geo-
metrical relationships between cluster vertices to design the stoichiometry and shape
of a cluster that would be a suitable building block for a square.

7. A bicapped hexagon is a deltahedral shape with the same total connectivity as a dodeca-
hedron. The latter is shown in Figure 2.7. (a) Write down the set of vertex connectivities
for each shape and compare. (b) If the B–B bonding distance is taken to be 1.9 Å and
constant, is a bicapped hexagonal shape possible for [B8H8]2−? (c) Even given a range
of allowed B–B bonding distances, which of the two shapes is most spherical?
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8. Work out a localized bonding model for B6H10 using the ring–cap model described.
Hint: planar [B5H5]4− is analogous to planar [C5H5]− with two fewer electrons.

9. The nido-[2,3-C2B4H6]2− anion formed by the double deprotonation of 2,3-C2B4H8

has been shown to be an analog of the pentahapto [C5H5]− ligand (Grimes, 1992). Use
the debor concept to justify this analogy.

10. The structure of [Ga9R6]− is shown below (Kehrwald et al., 2001). It contains three bare
Ga centers which are problematical for a simple cluster electron-counting approach.
Apply an electron-counting rule and describe any unusual aspects of the cluster’s elec-
tronic structure.

RGa Ga

Ga
R

Ga

RGa Ga

R
Ga

GaR

GaR

Problem 2.10

11. Both As7(SiMe3)3 and [As7]3− are known and exhibit the same cluster structure
(Schmettow and Schnering, 1977). The observed structures have three types of As
atoms in the ratio of 1:3:3. Suggest possible cluster structures.

12. The compound Sn8R4, where R is a bulky, one-electron external ligand, exhibits the
cubane structure shown below (Eichler and Power, 2001). The dashed lines correspond
to Sn–Sn distances of 3.1 Å (sum of Sn covalent and van der Waal’s radii are 2.8 and
4.3 Å, respectively) whereas the other Sn–Sn distances lie between 2.9 and 3.0 Å. (a)
Calculate the total number of valence electrons and valence orbitals available from
which to construct a bonding model. How many molecular orbitals will be formed?
How many will be filled? Is a localized two-center bond model possible or is some
multicenter bonding required? (b) Keeping in mind the fundamental idea of using all
valence electrons and orbitals, develop a bonding model for the interaction between the
two Sn2 fragments. Hint: review the analysis of [Ge10R7]+ (Figure 2.25) and that of
Ga10R6 (Exercise 2.7).

Sn

Sn

Sn

RSn

RSn

Sn

SnR

SnR

Problem 2.12
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13. The compound [(�5-Me5C5)Si]+ has been described in a communication as “a stable
derivative of HSi+” (Jutzi et al., 2004). Show that it is better described as a nido-
cluster.

14. The cluster [Ga13R6]− has the structure shown below (see citation in Problem 10). It
may be described as an incomplete cube (bold lines) of seven Ga atoms (solid circles)
capped on the three complete faces by GaR fragments (open circles) and with a Ga3R3

fragment occupying the missing corner of the cube. Discuss its electronic structure at
the level of electron counting.

= Ga
= GaR

Problem 2.14

15. In a recent communication, the cluster [Sn15R6] has been shown to have the structure
below (Brynda et al., 2006). Described as a metalloid cluster and an advance in the
quest for a “bottoms up” synthesis of Sn nanoparticles, the electronic structure of this
compound in terms of electron counting was not addressed. Do so.

R
R

R
R

Sn

Problem 2.15
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3

Transition-metal clusters: geometric and
electronic structure

To a large extent, we expect the cluster bonding principles established for main-
group clusters in Chapter 2 to carry over to transition-metal clusters. However, the
AO basis sets for building MOs differ for transition metals which means that the
expression of the cluster bonding principles in geometric and electronic structure
will also differ. That is, the observed cluster compositions and shapes differ and
these differences can be associated with the participation of the metal d functions
in cluster bonding. The d functions are the “wild cards” that make transition-metal
chemistry so interestingly different from main-group chemistry. In writing Chapter
3 we have assumed that the reader has a basic understanding of the principles of
cluster bonding as expressed by p-block clusters (Chapter 2). Emphasis here is
placed on the varied expression of d-block metal character within a cluster context.
A number of monographs on metal clusters are suggested at the end of this chapter
as additional reading for those interested in pursuing a topic in more depth.

3.1 Three-connect clusters

Main-group clusters that exhibit three-connect shapes can often be described using
localized two-center bonds. What is the situation for metal clusters?

3.1.1 Localized two-center bonds

Two-center–two-electron bonding and the eight-electron rule adequately rationalize
three-connect clusters like P4; hence, we expect the 18-electron rule to suffice for
three-connect transition-metal clusters like tetrahedral Ir4(CO)12 (Figure 3.1) with
12 terminal carbonyl ligands. Indeed it does. Each of the four Ir(CO)3 fragments
is a 15-electron fragment (9 from Ir and 6 from 3 CO ligands) analogous to a five-
electron P atom in terms of bonding requirements, i.e., three frontier orbitals with
three electrons. Four such fragments can form six two-center–two-electron edge
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Figure 3.1

bonds. Note that the cobalt analog, Co4(CO)12, possesses a structure with three
bridging CO ligands. This feature certainly affects the nature of the Co–Co bonding
but, in terms of counting electrons for core structure predictions, the differences
caused by bridging vs. terminal CO ligands can be ignored (see the discussion
of [CpFe(CO)2]2 in the Appendix). Hence, in discussions of structure based on
counting electrons the disposition of carbonyl ligands on the cluster framework is
ignored and in some cases will not even be shown.

3.1.2 Localized three-center bonds

There are two significant differences between the structures of tetrahedral
H4Re4(CO)12 and Ir4(CO)12. First, the former has four face-bridging H atoms and
the three CO ligands on each metal center eclipse the three adjacent tetrahedral
edges rather than being staggered and lying over the three faces. The Re cluster
has four fewer valence electrons and was originally described with metal bond
orders greater than one. Indeed the Re–Re distances are about 0.1 Å shorter than
that in Re2(CO)10 with a single bond. However, the fact that the three valence
orbitals of each Re(CO)3 fragment point to the adjacent faces rather than edges
as well as the presence of three triply bridging H atoms suggests a more accept-
able explanation. In the manner of a borane cluster with bridging H atoms, we
can simplify by removing the four triply bridging H atoms as protons to generate
[Re4(CO)12]4−. A [Re(CO)3]− fragment is a 14-electron fragment – one electron
less than Ir(CO)3. If the Ir(CO)3 fragment behaves as a three-orbital–three-electron
fragment, a [Re(CO)3]− fragment should behave as a three-orbital–two-electron
fragment. Multicenter bonding is required to generate the Re–Re bonding network
and utilize all orbitals and electrons. Four three-center Re–Re–Re face bonds utilize
all the valence electrons as well as valence orbitals. Each Re center shares in three
three-center–two-electron bonds and satisfies the 18-electron rule. This localized
bonding model is shown at the far right in Figure 3.1. The short Re–Re distances
in the protonated cluster are explained by the necessity of good overlap with the
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triply bridging protons. Can you see that the bonding is analogous to that found for
R4Ga4 discussed in Section 2.2.3?

Exercise 3.1. The cluster [Cp*4Rh4H4]2+, where Cp* is the five-electron �5-C5H5

ligand, exhibits the same structure as H4Re4(CO)12 shown in Figure 3.1. Propose
a localized cluster bonding model based on two- and three-center bonds.

Exercise 3.1

Answer. Simplify the problem by considering [Cp*4Rh4]2− with four 14-electron
Cp*Rh fragments analogous to the [Re(CO)3]− fragments. Hence, we have 12
orbitals and ten electrons (don’t forget the charge of 2−) to utilize in cluster bonding.
This is accomplished by forming two three-center–two-electron bonds (six orbitals
and four electrons) and three two-center–two-electron bonds (six orbitals and six
electrons). They may be placed on the tetrahedral framework as shown above. As
you might expect, the measured Rh–Rh distances are not equal – two are short
(2.66 Å) and four are long (2.83 Å).

3.1.3 Skeletal electron pair (sep) count

Above we separated the cluster framework bonding from the external bonding so
we now look at the metal-cluster skeletal electron counts. Doing so highlights an
ambiguity arising from the metal d functions and electrons which is an important
feature of metal clusters and, thus, must be understood. Recall that for a main-
group electron-precise cluster the sep count was 3/2 n where n is the order of the
three-connect cluster, e.g., six sep for n = 4, P4. What is the sep for Ir4(CO)12?
Now think! There is the same number of Ir–Ir two-center–two-electron bonds, but
what do we do with the remaining three filled orbitals on the metal? Clearly, if
a five-electron P fragment (or CH) indeed is analogous to a 15-electron Ir(CO)3

fragment, we have to ignore them as far as cluster bonding is concerned, i.e.,
they are cluster non-bonding. This set of three filled orbitals is often viewed as a
vestige of the t2g metal set in a classical octahedral metal coordination complex.
Isolobal fragments, as they have been called, will be investigated more thoroughly in
Chapter 4.
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The designation of a set of metal valence electrons as cluster non-bonding has
significant consequences. Recall that in order to do a sep count for a main-group
cluster the external cluster bonding network is considered separately from the inter-
nal cluster bonding network. In a totally pragmatic sense, this separation causes
little or no problem in a majority of cluster systems treated. Likewise, treating the
t2g metal set as cluster non-bonding works in many cases. But later in the chapter
we will encounter a significant number of cluster systems where it doesn’t.

The division of the metal valence electrons into cluster bonding and non-bonding
electrons is not universally accepted. Woolley argues that it is not possible to sep-
arate a set of metal non-bonding d orbitals from the remaining s, p and d AOs.
He contends that there are major differences between the electronic structures of
metal and main-group clusters and any success in correlating structures and electron
counts in the manner described in this chapter is fortuitous. We concede the possi-
bility, but the assumption behind sep counts is so useful in describing and thinking
about mixed main-group–transition-metal clusters of the later metals (Chapter 5)
that there is ample justification for using it. Further, the whole question is one
lacking an effective empirical test; hence, Woolley’s position has been of little
consequence to date.

3.1.4 Cluster valence electron (cve) count

An alternative approach which avoids d orbital/electron separation is that of cluster
valence electron counts. Here the observed geometries along with models of the
electronic structures define characteristic cve counts for two- and three-connect
clusters (Table 3.1). We have seen that for a main group cluster of order n the counts
are 6n and 5n, respectively. Hence, it follows from the eight-eighteen-electron rules
that for analogous transition metal clusters the counts are 16n and 15n. For example,
for C3H6 cve = 18, whereas for Os3(CO)12 cve = 48; 6 × 3 vs. 16 × 3. Likewise, the
cve = 20 for P4 and 60 for Ir4(CO)12; 5 × 4 vs. 15 × 4. In Figure 3.2 cve counts are
shown for other geometries. Verify a couple of them and find main-group analogs
in Chapter 2. The larger three-connect clusters have ligands bridging rectangular or
square faces and can equally well be considered as mixed main-group–transition-
metal clusters of higher nuclearity (Chapter 5).

3.1.5 Shape change with cluster count

For three-connect (and lower) main-group clusters, we concluded in Chapter 2
that a cve count is not particularly useful. However, metal cluster structures are
not always easily analyzed in terms of metal connectivity. Bond distance criteria
for the existence of a M–M bond are not as precise as those for an E–E bond.
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Table 3.1. Cluster valence electron counts for representative
metal-cluster geometries

Geometry No. atoms cve count

Monomer 1 18
Dimer 2 34
Trimer 3 48
Tetrahedron 4 60
Butterfly 4 62
Square Plane 4 64
Trigonal Bypyramid 5 72
Square Pyramid 5 74
Bicapped Tetrahedron 6 84
Octahedron 6 86
Pentagonal Pyramid 6 88
Trigonal Prism 6 90
Triangular Dodecahedron 8 112
Square Antiprism 8 114
Bicapped Trigonal Prism 8 114
Cube 8 120
Icosahedron 12 170
Cube Octahedron 12 170
Truncated Hexagonal Bipyramid 12 170

Os3(CO)12 Pt4(CH3CO2)8Ir4(CO)12 Re6(CO)18(PCH3)3

48 cve

Ni8(CO)8(PPh)6
64 cve60 cve 90 cve 120 cve

Figure 3.2

Hence, the pioneering papers of Lauher contain cve counts as a function of cluster
nuclearity. Table 3.1 in effect is the metal cluster analog of Figure 2.13. We can use
these results to illustrate a difference between main-group and metal clusters. Thus,
octahedral (four-connect vertices, cve = 86, derived below) and trigonal prismatic
(three-connect vertices, cve = 90) clusters (Figure 3.3) are found in Table 3.1. With
four more electrons, a cve = 90 count should correspond to a six-atom “arachno-”
cluster. The “arachno-” borane cluster has the shape shown to the left in Figure 3.3
whereas the three-connect trigonal prismatic cluster is the common shape for the
metal system. We must be prepared for the fact that different shapes are possible in
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+ 2 sep + 2 sep

arachno arachnocloso

Figure 3.3

metal-cluster systems. But more about this aspect of the problem after we have
dealt with four-connect clusters below.

In summary, three-connect clusters require no electron-counting rule to simplify
analysis of the bonding but one is available and it can be useful for comparative
purposes. The cve count includes all the metal d electrons without specifying to
what extent they are involved in cluster bonding. On the other hand, the sep count
requires explicit assignment of the d electrons in terms of their possible roles in
cluster electronic structure. Appreciation of ambiguities in the role of the metal d
electrons in cluster bonding is important because confusion on this point can lead
to misunderstanding.

Exercise 3.2. Consider a trigonal prismatic cluster formed from six Co(CO)3 frag-
ments. Do the metal centers obey the 18-electron rule. Does the cve count for
the cluster follow Lauher’s prediction? Although no such compound exists, is it a
reasonable target molecule? As this is a three-connect cluster, in principle, other
three-connect clusters could be constructed with 15-electron Co(CO)3 fragments.
Use Figure 2.3 to design another three-connect metal cluster that might constitute
a synthetic target.

Answer. The Co(CO)3 fragment is a 15-electron fragment analogous to a five-
electron main-group fragment, e.g. CH. If it forms three two-center–two-electron
bonds it obeys the 18-electron rule (6 electrons from the 3 CO ligands, 9 electrons
from the metal itself and 3 electrons from the three two-center–two electron bonds
to the three nearest-neighbor metal atoms). The cve count is 6 Co + 18 CO = 54 +
36 = 90 which agrees with the value in Table 3.1. Any of the three-connect structures
shown in Figure 2.3 are, in principle, viable at this elementary level of structure.

3.2 Small four-connect metal-carbonyl clusters and the 14n + 2 rule

Four-connect vertices and the limited valence functions of a main-group fragment
demanded a delocalized bond model. Here we explore the same situation but with
metal fragments where there is no similar orbital restriction. Each metal has nine
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Figure 3.4

rather than four valence functions and coordination numbers greater than four are
easily accommodated.

3.2.1 Geometry

Many main-group and metal clusters exhibit the same nuclearities but there are
differences in the preferred geometries for a given nuclearity. Main-group element
clusters with nuclearities from four to 12 display single cluster structures but, with
rare exception, clusters of higher nuclearity require cluster fusion of some type.
Single metal clusters are found with five and six cluster atoms (Figure 3.4), but
there are no examples of single, metal deltahedral clusters of orders 7–12. Higher
nuclearities either involve face-capping fragments, cluster fusion or the presence
of internal cluster atoms. The most common geometry exhibited for nuclearities
between six and ten is a face-capped deltahedron of nuclearity six or lower. The
absence of icosahedral clusters for metals and the absence of capped clusters for
boranes reflect metal vs. main-group bonding properties. A satisfactory description
of the bonding of these systems should justify these characteristic differences.

3.2.2 Electronic structure: a localized approach

We begin with an obvious question. Given that a metal atom can accommodate
larger coordination numbers than main-group atoms, why cannot clusters contain-
ing vertex connectivities greater than three be accommodated with two-center–two-
electron bonding plus application of the 18-electron rule? Consider an octahedral
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cluster formed from six 14-electron Ru(CO)3 fragments. Of the nine orbitals, we
use three Ru orbitals for the six CO electrons and four orbitals plus four electrons
to form four nearest-neighbor Ru–Ru two-center–two-electron interactions. This
leaves two filled Ru orbitals unused. Hence, [Ru6(CO)18] obeys the 18-electron
rule and has a cve count of 84 (6 × 14). So, it is possible to generate a satisfactory
bonding model without multicenter bonding. But models don’t dictate chemistry.
What does Nature tell us? Nature says that [Ru6(CO)18]2− (Figure 3.5) is isolated
as an anion WITH a negative charge of −2. It has 86 cve (6 × 8 + 18 × 2 + 2 =
86) not 84. More importantly Os6(CO)18 (Figure 3.4) with 84 cve does NOT exhibit
an octahedral structure as predicted by the 18-electron rule and two-center–two-
electron bonding. Although a localized model does not work for these late metal-
carbonyl clusters, we will encounter examples of different cluster types later in the
chapter where it does.

3.2.3 Electronic structure: a delocalized approach

What model does provide a valence electron/composition connection for
[Ru6(CO)18]2−? Let’s try this. Limit the metal to three orbitals for ligand binding
and three orbitals for cluster bonding. Thus, we force it to act like a six rather
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than seven-coordinate metal center in a cluster environment. In effect we make
14-electron Ru(CO)3 behave like four-electron BH in the manner of Section 3.1
and reserve three metal orbitals for a cluster non-bonding t2g metal set. This is
tantamount to regenerating the main-group octahedral cluster problem in that the
B–H fragment is strictly limited to three orbitals for cluster bonding. We know
the solution. Octahedral [B6H6]2− possesses seven cluster bonding orbitals and six
external BH bonding orbitals. So how can we partition the electrons suitably in the
case of the metal? Each Ru(CO)3 fragment has three filled Ru–CO bonding orbitals
and three filled non-bonding t2g-type orbitals. Six fragments contribute six pairs
and the 2− charge one pair to cluster bonding. This metal fragment behavior is
consistent with that found for three-connect metal clusters.

An obvious question is why metal-carbonyl clusters do not utilize more d orbitals
in cluster bonding. Later in the chapter we will see that early metal clusters with
�-donor ligands do adopt a localized model whereas these later metal clusters with
�-acceptor ligands do not (Section 3.3.5). In the meantime, we can take pleasure
in the similarities between the group 8/9 transition-metal and borane clusters. Even
though the metal has sufficient orbitals to handle seven coordination, it still hews
to a main-group party line. To review, the borane solution to the problem of accom-
modating a mono-ligated, four-coordinate, tetrahedral fragment to a four-connect
vertex is mimicked in the transition-metal system as a response to the problem of
accommodating a tri-ligated, six-coordinate, octahedral fragment to a four-connect
vertex. Remember, in the case of the metal this solution is not required by the
geometry alone. Although we can observe atom nearest-neighbor geometry, atom
valence (orbitals utilized) must be inferred with the aid of calculations.

3.2.4 cve counts: closed clusters

With these preliminaries out of the way we are now prepared to take a look at
the counting rules for the large class of metal clusters formed from group 8 and 9
metals with good acceptor ligands, e.g., CO, for which the bonding–non-bonding
separation just discussed holds. A transition-metal deltahedral cluster of order n has
a cve count of 14n + 2 as per the discussion immediately above. This is pleasing as
the cve count is just the main-group cluster rule (4n + 2) plus 10n. The qualitative
MO block diagram for a closed deltahedral transition-metal cluster made up of n
M(CO)3 fragments is shown in Figure 3.6. Compare it with the one for a p-block
cluster made up of EH fragments (Figure 2.8). The total number of orbitals in each
case is 5n and 12n. In the main-group cluster there are 2n + 1 filled and 3n − 1
empty orbitals whereas in the transition-metal cluster there are 7n + 1 filled and
5n − 1 empty orbitals. If one removes the external cluster bonding orbitals in both
cases, we have n + 1 filled, 2n − 1 empty vs. 4n + 1 filled, 2n − 1 empty. Notice that
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the number of empty orbitals is the same for the main-group and transition-metal
clusters. Indeed, Mingos made this significant point early on. It is only when 3n
metal orbitals are designated non-participants in cluster bonding that the numbers
of filled cluster bonding orbitals become the same in p- and d-block clusters of the
same shape.

3.2.5 cve counts: open clusters

For open metal clusters we encounter the same complication with the cve count as
with main-group clusters – one vertex is empty and the metal non-bonding d elec-
trons as well as ligand electrons must be subtracted from the 14n + 2 count. So for
a nido-cluster the count is 14n + 2 − 12 and for an arachno-cluster the count is
14n + 2 − 24 where n is the dimension of the closed deltahedron upon which
the cluster geometry is based. Thus, for Ru5(CO)15(PPh), Figure 3.5, with 74 cve
(5 Ru + 15 CO + 1 PPh = 40 + 30 + 4) and a square pyramidal structure, we
obtain 14(6) + 2 −12 = 74 cve from the rule. Later in Chapter 5 we will see that
the PPh ligand can also be considered as a cluster fragment and that Ru5(CO)15PPh
is, alternatively, a closo-octahedral mixed main-group–transition-metal cluster. In
fact there are no known square-pyramidal metal clusters without multisite bridging
atoms or interstitial atoms (see below). This constitutes another significant differ-
ence between main-group and transition-metal systems.

For the compound Os4(CO)13S (Figure 3.5) with 62 cve (4 Os + 13 CO + 1 S =
32+26+4) and an arachno-butterfly structure, we obtain 14(6)+2−24=62 from
the rule. A source of possible confusion are clusters like [Re4(CO)16]2− (Figure 3.5)
with 62 cve but its structure has a planar metal core rather than the butterfly structure
expected. This is attributed to a very small energy change involved in flattening a
butterfly structure and other factors, e.g., steric factors, becoming dominant. That
is, we have now moved to group 7 metals and the number of CO ligands required to
make the electron count is four per metal occupying considerable space above and
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below the two wings of the butterfly. Indeed, twisting of the “wing-tip” Re(CO)4

fragments is observed in the solid state and attributed to ligand–ligand repulsions.
Hence, it may well be that the 180◦ dihedral angle rather than the expected dihedral
angle of an arachno-cluster (108◦ is typical) is caused by external-ligand steric
effects. External-ligand steric requirements in metal-cluster chemistry affect both
structure and accessible stoichiometries. These factors will be dealt with more
generally below.

A possible source of confusion for the initiate is the practice of transition-metal
chemists to sometimes denote a transition-metal cluster such as Ru4(CO)12(C2Ph2)
as a 60 cve M4 butterfly cluster with a four-electron alkyne ligand rather than a
66 cve octahedral E2M4 main-group–transition-metal cluster with delocalized
bonding that fits the counting rule. If interested in more information on the metal
complex vs. main-group–metal cluster problem right now, look ahead to Chapter 4
where you will find the Ru(CO)3 fragment isolobal to BH and Ru4(CO)12(C2Ph2)
analogous to 1,2-C2B4H6.

3.2.6 Cluster isomers

With the open clusters one finds situations where more than a single count exists
for the same shape. For example, the simple square shape can be derived from an
octahedron by removing two non-adjacent vertices. Thus, the cve count is 14n +
2 − 24 = 62, e.g., Fe4(CO)11(PPh)2 (Figure 3.5) where �4-PPh is considered a
four-electron donor. But a square is also possible with four two-center–two-electron
bonds formed from four 16-electron metal fragments giving a cve count of 64, e.g.,
Fe4(CO)12(PPh)2 which counts like Fe4(CO)16 = 4{Fe(CO)4}, i.e., a ring with two-
connect metal centers. See Chapter 5, Section 5.2 for a more complete analysis of
this cluster type.

3.2.7 sep counts

The cve count is straightforward but what about the sep count? The sep count, you
remember, requires a separation of the external cluster ligand bonding or lone-pair
orbitals from the framework orbitals. For metal clusters we must, of necessity,
also deal with the “extra” metal d orbitals. For these group 8/9 clusters we now
see that three filled metal d orbitals can be designated cluster non-bonding such
that the 14-electron Ru(CO)3 behaves like the four-electron BH fragment as far as
cluster bonding is concerned. Hence, both fragments are three-orbital–two-electron
fragments for cluster bonding purposes and the sep count is 7 for both [B6H6]2− and
[Ru6(CO)18]2−. The same process can be used to generate nido- and arachno-cluster
counts, e.g., sep = 7 for both five-atom square pyramid and four-atom “butterfly”
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clusters. Once one defines the metal fragment contribution then the cluster count
follows the main-group cluster paradigm.

As with main-group clusters either type of count can be used to rationalize
existing structures and to suggest structures based on composition data. There are
advantages and disadvantages to both. The cve count is more easily obtained as
one need only define ligand counts as one would in a mononuclear coordination
compound. The cve count for open clusters suffers from having to deal with the
empty vertices, but, on the other hand, there are fewer open metal clusters and
those that do exist can often be advantageously described as mixed main-group–
transition-metal clusters (Chapter 5). The sep count is easier to correlate with cluster
geometry (n + 1 pairs for a deltahedron of order n) as ligand contributions are
removed. This advantage is balanced by the need to determine the effective number
of orbitals and electrons contributed by the metal fragment to cluster bonding. We
will see in Chapter 5 that in mixed main-group–transition-metal clusters this need
can cause problems.

Exercise 3.3. The compound Os5(CO)16 has the structure shown in Figure 3.4.
Justify the cluster shape using both the cve count and the sep count.

Answer. The cve count is 5 Os + 16 CO = 40 + 32 = 72 = 14n + 2 for a
closo-cluster; thus, n = 5 as observed. The cluster can be divided into five Os(CO)3

fragments and one extra CO. The former are 14-electron fragments and the fragment
is equivalent to a four-electron BH fragment, i.e., it is a three-orbital–two-electron
cluster fragment. The sep count, then, is 5 Os(CO)3 fragments + 1 CO = 1/2 (5 ×
2 + 2) = 6 which is appropriate for the trigonal bipyramidal shape observed.

3.3 Variations characteristic of metal clusters

Although the principles of cluster bonding developed for main-group clusters carry
over to transition-metal clusters of the group 8/9 metals with carbonyl ligands, we
fully expect transition metals to exhibit variations on this cluster bonding theme as
well as novel behavior not seen in main-group systems. In this section we introduce
those aspects of cluster chemistry characteristic of transition-metal clusters.

3.3.1 Interstitial atoms

In Figure 3.7, a selection of metal clusters containing interstitial atoms is shown.
Examples with interstitial H atoms as well as transition-metal atoms are also known.
Addition of an interstitial metal atom is the first step towards extended metal struc-
tures. The term “interstitial” derives from its use in solid-state chemistry where
atoms are found in the interstices of metal lattices, e.g., the tetrahedral or octahedral



3.3 Variations characteristic of metal clusters 97

C
C N

Fe5C(CO)15 Ru6C(CO)17 [Rh6N(CO)15]− [Ni12Ge(CO)22]2 −

Ge

Figure 3.7

holes of a close-packed lattice. These atoms have extraordinary effects on properties.
For example, the diffusion of H2 into the metal walls of high-pressure H2 cylinders
causes metal embrittlement and can lead to eventual catastrophic failure. “Intersti-
tial” in the case of metal clusters refers to atoms inside the metal-cluster framework
that serve to stabilize the clusters. The icosahedral cluster [Ni12Ge(CO)22]2− pro-
vides an example of the stabilization of a single cage system with a nuclearity
greater than six by the presence of an interstitial atom.

Incorporation of interstitial atoms into the electron-counting rule is as simple
as their effect on electronic structure and properties is profound. Take the first
example Fe5C(CO)15 (Figure 3.7). This is one precedent-setting structure of many
originating in the laboratory of Dahl who is one of the pioneers of metal-cluster
structure. It has the 74 cve required for a nido-square pyramidal geometry if all of
the valence electrons of the interstitial C atom are included (5 Fe + 15 CO + C =
40 + 30 + 4). Likewise, we only obtain seven pairs by including four electrons
of the C atom (5 Fe(CO)3 + C = 5 × 2 + 4). Fe5C(CO)15 is thus a metal analog
of B5H9 (Chapter 2) in terms of counting electrons where the interstitial C atom of
the metal cluster serves the same role as the four B–H–B bridging H atoms of the
borane.

Similarities in the electron counts between clusters do not equate to similarities
in electronic structure. This is easily appreciated in the case of a closo-octahedral
cluster in terms of the block MO diagram in Figure 3.8 for [Ru6(CO)18]2− and
Ru6C(CO)17 (structures in Figures 3.5 and 3.7). For simplicity we assume ideal
Oh symmetry and show only the cluster bonding orbitals, i.e., the sep approach is
taken. The seven cluster bonding orbitals of the empty octahedral cluster have t2g,
t1u and a1g symmetries whereas the AOs of the interstitial atom have t1u (2p) and a1g

(2s) symmetries. Hence, on placing the interstitial atom into the ruthenium cluster,
four of the cluster bonding orbitals are significantly stabilized relative to the t2g set.

A cluster with an interstitial atom requires fewer external ligands. The total num-
ber of external ligands are limited by the space available on a cluster surface. Hence,
although [Fe6C(CO)16]2− is known, [Fe6(CO)18]2− is not. On the other hand, the
larger surface of the Ru analog permits both [Ru6C(CO)17] and [Ru6(CO)18]2− to be
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isolated. A more detailed consideration of external-ligand steric effects will be found
in Section 3.3.4. The increase in stability imparted by an interstitial atom is also
easy to appreciate. Octahedral [Fe6(CO)18]2−, in the structure of [Ru6(CO)18]2−,
would be held together by relatively weak carbonyl bridged and unbridged Fe–Fe
interactions whereas the known [Fe6C(CO)16]2− cluster has similar interactions,
but supplemented by the six internal Fe–C interactions.

Perhaps you are thinking that the metal atoms in [Fe6C(CO)16]2− are now using
more than three orbitals for cluster bonding. How else can they interact effectively
with the interstitial atom? But notice that the interaction described in Figure 3.8 is
no different in principle than the addition of four H atoms to a square pyramidal
B5H5 cluster or the addition of 4 H+ to [B5H5]4− as in the one electron MO method
the electrons are added last. For the iron cluster, then, the equivalent model would
be the insertion of a C4+ ion into the center of a [Fe6(CO)16]6− cluster. No additional
metal orbitals are needed.

Exercise 3.4. Predict the cluster geometries for the following, using both cve and
sep counts: [Co6N(CO)15]−, [Fe4RhC(CO)14]−, [Fe4C(CO)12]2−, [Ru5N(CO)14]−,
[Rh6C(CO)13]2− and [Rh2Fe4B(CO)16]−.

Answer. cve count. [Co6N(CO)15]−: 6 Co + N + 15 CO + (−) = 90 (trigonal
prismatic, interstitial N, 15n, n = 6); [Fe4RhC(CO)14]−: 4 Fe + 1 Rh + C +
14 CO + (−) = 74 (nido-square pyramid, interstitial C, 14n +2 − 12, n = 6);
[Fe4C(CO)12]2−: 4 Fe + C + 12 CO + 2 (−) = 62 (arachno-butterfly, interstitial
C, 14n + 2 − 24, n = 6); [Ru5N(CO)14]−: 5 Ru + N + 14 CO + (−) = 74 (nido-
square pyramid, interstitial N, 14n +2 −12, n = 6); [Rh6C(CO)13]2−: 6 Rh + C +



3.3 Variations characteristic of metal clusters 99

13 CO + 2 (−) = 86 (closo-octahedral, interstitial C, 14n +2, n = 6):
[Rh2Fe4B(CO)16]−: 2 Rh + 4 Fe + B + 16 CO + (−) = 86 (closo-octahedral,
interstitial B, 14n +2, n = 6).

sep count. [Co6N(CO)15]−: N− equivalent to three CO so counts like six Co(CO)3

= 1/2(6 × 3) = 9 sep consistent with dodecahedron with two vacant vertices or a
three-connect polyhedron of order six, i.e., trigonal prism; [Fe4RhC(CO)14]−: C
is equivalent to two CO so counts like 4 Fe(CO)3 + 1 Rh(CO)3 + CO + (−) =
1/2(4 × 2 + 3 + 2 + 1) = 7 sep consistent with deltahedron of order six with one
vertex unoccupied (nido-square pyramid); [Fe4C(CO)12]2−: 4 Fe(CO)3 + C + 2
(−) = 1/2(4 × 2 + 4 + 2) = 7 sep consistent with n = 6 and two vertices unoccupied
(arachno-butterfly, interstitial C, note that if non-adjacent vertices are unoccupied a
square shape is predicted but is unlikely with an interstitial atom); [Ru5N(CO)14]−:
N− is equivalent to three CO so counts like 5 Ru(CO)3 + 2 CO = 1/2(5 × 2 + 4) =
7 sep (nido-square pyramid, interstitial N); [Rh6C(CO)13]2−: C is equivalent to two
CO so counts like 4 Rh(CO)3 + 2 Rh(CO)2 = 1/2(4 × 3 + 2 × 1) = 7 sep, n = 6,
all vertices occupied (closo-octahedral, interstitial C); [Rh2Fe4B(CO)16]−: B− is
equivalent to two CO so counts like 2 Rh(CO)3 + 4 Fe(CO)3 = 1/2(2 × 3 + 4 × 2) =
7 sep, n = 6, all vertices occupied (closo-octahedral, interstitial B).

Life is not always simple in cluster chemistry. Consider Os5S(CO)15 with a
square pyramidal metal-cluster atom geometry. The S atom is centered in the open
square face albeit not coplanar with the four metal atoms much like the structure of
Fe5C(CO)15 in Figure 3.7. If S behaves as an interstitial atom, we obtain a cve count
of 76 which is two higher than the expected number in Table 3.1. If S behaves as a
four-electron ligand bridging the four-metal square face, we obtain a cve count of
74 appropriate for its geometry. Hence, the latter interpretation is correct, but such
electronic information is not obvious from geometry alone. In Chapter 5 we will find
that this cluster can also be considered as a M5E mixed metal–main-group cluster
with a distorted octahedral geometry for which a cve count of 76 is appropriate (for
those of you who can’t wait, replace one 18-electron rule M of a cve 86 M6 cluster
with one eight-electron rule E to generate 86 − 10 = 76 cve). Counting electrons
must be done intelligently.

3.3.2 Face-capping

A second structural feature common to metal clusters, but very rare with main-group
clusters, is face-capping. Examples of face-capped clusters are shown in Figure 3.4.
Look at a couple. You should be able to see that each can be considered to be formed
from a primary cluster by capping a triangular face. Mingos showed that the number
of skeletal bonding electron pairs associated with a capped cluster is the same as
the number associated with the primary cluster. Thus, a capped octahedral cluster
like Os7(CO)21 has seven sep, i.e., 7 Os(CO)3 = 1/2(7 × 2) = 7, which is the same
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as that of an uncapped octahedral cluster such as [Os6(CO)18]2−. The reasoning
used to justify this result is similar to that used in Chapter 2 in the discussion of
fused clusters. As shown in Figure 3.9, cluster capping can be considered to be a
variation of cluster fusion. This particular fusion scheme, as well as others, will be
more fully treated below.

The cve count, which includes the external ligands, hides the similarity in cluster
bonding counts that exists for capped and uncapped clusters. The simple octahedral
cluster has 14n + 2 = 86 cve whereas the capped octahedral cluster possesses
98 cve, i.e., 14 × 6 + 2 + 12. The “correction” is numerically the same but in
the opposite sense to that necessary when a single vertex of a closed cluster is left
vacant, i.e., in the case of capping one adds the non-bonding and ligand electrons
associated with the added vertex. It follows that one adds 12 electrons to the cve
count of the primary cluster for each cap present.

Exercise 3.5. We have already shown that for late transition-metal carbonyl clus-
ters, the metal fragments utilize only three orbitals in cluster bonding. Thus, we can
use a main-group analog to explore the origins of the capping rule thereby minimiz-
ing the complexity of the MO picture. By referring to the analysis of [B5H5]4− given
in Figure 2.14, show that capping one triangular face with a [BH]2+ fragment does
not increase the number of cluster bonding orbitals, i.e., seven sep are required for
square pyramidal [B5H5]4− and seven sep are required for capped square pyramidal
[B6H6]2−.

Answer. As shown in the diagram below, the highest three filled MOs of [B5H5]4−

can interact with the three frontier orbitals of a capping [BH]2+ fragment. As the
three are the highest filled orbitals, the bonding interaction will result in three
stabilized, filled MOs and three destabilized, empty MOs thereby leaving the clus-
ter electron count unchanged. A rare example of a capped main-group cluster is
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In8R6 which consists of a In6R4 octahedron (bare In atoms trans) capped by two
RIn fragments in a transoid geometry. Formally the RIn fragments contribute two
electrons each and the In contribute one if a lone pair is assumed, yielding sep = 7.

For the beautiful tetracapped octahedral Os cluster, [Os10C(CO)24]2− with an
interstitial C atom in the octahedral core, shown in Figure 3.10, the predicted
cve count is 14(6) + 2 + 4(12) = 134, which agrees with that of the observed
stoichiometry. It’s a little bit harder to count the sep but give it a try. Each tetrahedral
cap consists of an Os(CO)3 fragment and the other six fragments are Os(CO)2 so
we have (4 × 2 + 6 × 0 + 4 + 2)/2 = 7 appropriate for an octahedron. If you
look ahead in Chapter 6 (Exercise 6.1), you will find that this trigonal bipyramidal
ten-atom core can be excised from a cubic close-packed metal lattice (ABC layers).
[Os10C(CO)24]2− can be considered a nano-sized metal particle stabilized by the
ligands in the same manner as Ni atoms are stabilized when removed from Ni metal
by CO as Ni(CO)4 in the Mond process.

Capping permits a type of cluster isomerism not seen in main-group systems.
Thus, for example, a six-atom capped square pyramidal cluster will have seven sep
or 86 cve which are exactly the same counts observed for an octahedral cluster.
If you have to deal with a metal-cluster system with this electron count, both
structure possibilities must be considered. An example of a capped square pyramid,
H2Os6(CO)18, is shown in Figure 3.11. H2Os6(CO)18 is prepared by protonation of
octahedral [Os6(CO)18]2−. Clearly the energies of these two shapes must be similar
as it is the specific requirements of the bridging H atoms and/or lack of counterions
that tips the balance in favor of the capped form. This example emphasizes another
difference between metal and main-group systems. The weaker M–M vs. E–E
bonding results in smaller energy differences between structural isomers and lower
barriers for inter-conversions between them.

Different ways of fragmenting a capped cluster cause little problem. For example,
Os6(CO)18 (cve = 84, sep = 6) possesses the cluster geometry shown in Figure 3.4.
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It may equally well be considered as a monocapped trigonal bypyramidal cluster
(cve = 14(5) + 2 +12 = 84, sep = 5 + 1 = 6) or a bicapped tetrahedral cluster
(cve = 15(4) + 24 = 84, sep = 6). The latter description seems to be more popular.

Exercise 3.6. A cluster is found to have the molecular formula [Os8(CO)22]2−.
Generate a set of likely cluster geometries.

"para" "meta"

Exercise 3.6

Answer. Let’s stick with cve counts for this problem. The new cluster has a cve =
110. A single closed cluster of order eight would require a count of 14(8) + 2 =
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114 and an open cluster based on a deltahedron of n = 9 would require 14(9) + 2 −
12 = 116. A three-connect cluster would require 15(8) = 120. So we try capping. A
capped closed cluster of order seven requires a count of 14(7) + 2 + 12 = 112 and
a bicapped closed cluster of order six requires a count of 14(6) + 2 + 24 = 110.
Bingo! Now consider the isomeric possibilities. In the scheme above two known
structural possibilities, sometimes labeled “meta” and “para”, are shown. The one
observed for this particular compound is the para-isomer. Much of this beautiful
Os chemistry came from the Cambridge laboratory of Lewis and Johnson.

3.3.3 Cluster fusion

As already shown in Figure 3.9, H2Os6(CO)18 can be generated by fusing a tetra-
hedron to a square pyramid. The counting analysis of Mingos shows that the cve
count of the fused cluster is equal to the sum of the two fused clusters minus the
count associated with the common fragment, which in this case is a metal triangle
(3 × 16 = 48 cve). So we have cve = cve (square pyramid) + cve (tetrahedron) −
48 = 74 + 60 − 48 = 86. How many ways can one skin a cat, you are probably
wondering? But the beauty of the idea is illustrated in Figure 3.12. The common
fragment eliminated is not limited to a triangle and can be a single vertex (− 18),
an edge (− 34), a triangular face (− 48 or 50), or even a butterfly or square face
(− 62 or 64). Examples of all are known in metal-cluster chemistry. The fact that
two counts are possible for elimination of triangular or square faces reflects the fact
that more than a single count is possible for these two-connect rings. The examples
shown and broken down in Figure 3.12 illustrate a selection of known condensed
clusters. Many more exist. Cluster fusion provides a mechanism for the construc-
tion of large, complex clusters. For example, we will have occasion to use the 90
cve raft cluster formed from four metal triangles later in discussing a 59-metal
cluster.

Exercise 3.7. Show that the cve count associated with a bicapped tetrahedron
sharing an edge with another tetrahedron (eight atoms in the final cluster) is 110.

+

2 x 48 cve60 cve

+ +

[HOs8(CO)22]−

110 cve

34 cve3 x 60 cve

3 2

Exercise 3.7
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Answer. As shown in the scheme below the structure can be generated from four
tetrahedra by eliminating two triangles and one edge (4 × 60 − 2 × 48 − 34 = 110).
In fact, this is the geometry observed on protonating a bicapped octahedral dian-
ionic cluster (Exercise 3.6) to produce [HOs8(CO)22]−. In metal-cluster chemistry,
protonation is not a small structural perturbation.

+ +

48 cve60 cve74 cve H2Os6(CO)18
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+ +

48 cve H2Os5(CO)16
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Figure 3.12
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Exercise 3.8. Justify the composition and structure (shown above) of the compound
[Rh14(CO)26]2−.

Answer. The first step is to analyze the geometry and break the cluster down
into smaller clusters from which it may be reassembled using the cluster fusion
principle of Mingos. As shown in the second drawing above, the cluster can be
viewed as a pentacapped Rh-centered cube: hence, it may be assembled from a cube
(120 cve, Table 3.1) and five square pyramids (74 cve). As shown above, the com-
mon fragment is a square and consultation of Table 3.1 indicates 64 cve. However,
recall that a square can also be obtained from an octahedron by removing two non-
adjacent vertices: hence, it has 62 cve, which is the same as for a butterfly (removal
of two adjacent vertices from an octahedron). So there are two possibilities; 64 and
62 cve adding another variable to the mix. As shown below this leads to a prediction
of cve = 170 or 180. The actual count is 180 (14 Rh + 26 CO + 2− = 126 + 52 +
2 = 180).

3.3.4 Ligand steric effects

A majority of main-group clusters exhibit single, one-electron external ligands,
e.g., H, although clusters containing two-electron donors as well as naked clusters
were discussed in Sections 2.5 and 2.11. The metal atoms in metal clusters often
are coordinated by three two-electron ligands like CO or a polyhapto ligand like
[C5H5]−. But the possibilities for ligand variation and, therefore, metal and cluster
properties are enormous. The electronic characters of transition metals change
significantly in moving above and below groups 8/9 and the ancillary metal ligands
play an important role in metal-fragment properties. In addition, the space occupied
by the set of metal ligands is large and steric considerations play a role in determining
accessible stoichiometries.
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Although steric effects were appreciated earlier, it was Mingos who gave a sys-
tematic analysis of the situation and pointed out instances where steric effects
appear to control observed geometry. Basically the cone angle argument, devel-
oped by Tolman to describe the steric bulk of phosphines, was adapted to describe
the steric bulk of a cluster fragment. The essential ideas are sketched out in
Figure 3.13. In this case the vertex of the cone containing the metal atom and
its external ligands is centered at the cluster core. Hence, the cluster cone angle is
more acute than an equivalent Tolman cone angle which would be centered at the
metal atom itself. There is also a dependence on the nuclearity of the cluster.

The cluster cone angles for a M(CO)3 fragment in four-atom tetrahedral, six-atom
octahedral and twelve-atom icosahedral cluster geometries serve to illustrate the
idea. For a M–M distance typical of a first-row transition metal, the respective clus-
ter cone angles are 114◦, 108◦ and 96◦, whereas for a second-row metal with a longer
M–M distance the same angles are 108◦, 102◦ and 90◦. As expected the space avail-
able for ligands is larger for second- and third-row metals. The cluster cone angles
can be compared with ideal cone angles of 109◦, 90◦ and 64◦ for the three geome-
tries to estimate whether a steric problem exists for a given geometry. For example,
one immediately sees that icosahedral [Fe(CO)3]12 is not going to be feasible.

An idea of the maximum number of ligands that a metal-cluster geometry can
tolerate on steric grounds can be estimated from the ideal cone angle of the cluster
shape times the number of metal atoms divided by the M(CO) cone angle. For the
four-atom tetrahedron made of first-row metal atoms, this angle is 36◦ yielding
12.2 CO ligands. This is the limiting stoichiometry found for, e.g., Co4(CO)12

(Figure 3.1). Corresponding numbers for the octahedron and icosahedron are 15.8
and 25.3 for first-row metals. For second-row metals the numbers are 13.2, 17.2
and 27.8 in the three geometries.
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Some of the structural complexities presented earlier have their origin in lig-
and steric effects. For example, Co4(CO)12 possesses three bridging CO ligands
whereas Ir4(CO)12 (Figure 3.1), with more room, exhibits 12 terminal CO ligands.
[Fe4(CO)13]2− with a tetrahedral core and one triply bridging CO has no extra space
for ligands. Hence, the addition of a relatively small ligand, H, formed by mono-
protonation generates [Fe4H(CO)13]− with an open butterfly structure and a CO
ligand curiously coordinated between the wing-tip metal atoms (Figure 3.14). The
same type of steric factor may well lie behind the rearrangement of [Os6(CO)18]2−

to H2Os6(CO)18 by protonation (Exercise 3.7). Of course, it is always difficult to
distinguish steric from electronic factors in driving structural change; however, the
significant point of this section is that steric effects in metal clusters are real and
need be considered for certain problems.

3.3.5 Metal effects: early transition metals with donor ligands

Metal and ligand variation can produce changes in electron count for a given struc-
ture. This fact is illustrated by a class of group 5/6 metal clusters bearing halogen
or alkoxide ligands. They are of considerable significance in themselves but also
can be seen in solid-state systems containing similar cluster units (Chapter 7).

In Figure 3.15 the structures of octahedral [Mo6Cl8L6]4+ and [Ta6Cl12L6]2+,
where L represents a neutral two-electron terminal ligand, are illustrated. The former
has eight face-bridging Cl ligands, whereas the latter has 12 edge-bridging Cl
ligands. The two clusters illustrate two classes of compounds with electron-rich
donor ligands. In order to count the cve for each, recall that these halide ligands
act as four-(edge-bridged) and six-electron donors (face-bridged) when considered
as anionic ligands. Thus we have a cve of 84 and 76 for the Mo and Ta clusters,
respectively, neither of which is the value 86 found in Table 3.1.

But recall in Section 3.2 that if each metal fragment uses four valence functions
and four electrons for M–M bonding, the octahedron can be bonded with 12 two-
center–two-electron bonds. For the example considered, [Ru6(CO)18] with 84 cve
is the predicted composition. But it is the dianion [Ru6(CO)18]2− with 86 cve
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analogous to [B6H6]2− that is observed. From the experimental stoichiometry we
are forced to conclude that the Ru(CO)3 fragment utilizes only three orbitals and two
electrons in cluster bonding and mimics a main-group fragment, i.e., a fourth metal
orbital is not available for bonding. Below we will show that it is the combination of
a later transition metal with acceptor ligands that leads to the observed behavior. But
for now, 84 cve [Mo6Cl8L6]4+ is an example of a cluster that would fit a localized
cluster bonding model. Does it? Let’s see.

Consider each Mo center of [Mo6Cl8L6]4+ to be a square pyramidal MLCl4

fragment. Of the nine metal orbitals, five are used for the Cl− and L ligands leaving
four available for framework bonding. The Mo6

12+ core contains 24 electrons.
Hence, there are sufficient metal orbitals and electrons to form 12 two-center–two-
electron Mo–Mo edge bonds. Can we approach [Ta6Cl12]2+ the same way? Again
we can consider the cluster as made up of MLCl4 fragments; however, now with
edge-bridging Cl− ligands. Now we have a Ta14+ core with 16 electrons. With four
metal orbitals per fragment, we have more orbitals than electrons. The solution?
Eight three-center–two-electron face bonds perfectly utilize all the orbitals and
electrons. The metal centers in these two clusters appear to utilize four valence
orbitals in cluster bonding. Quite a difference from the metal-carbonyl clusters
discussed earlier. These two metal clusters are analogous to tetrahedral clusters
with edge vs. face bonding discussed in Section 3.1

So how can we justify using more metal d orbitals for earlier transition-metal
clusters? An important aspect of the problem concerns the nature of the ligands.
In a group 8/9 metal carbonyl the empty �* orbital of the CO ligand serves an
important role in delocalization of metal d electrons away from the metal center. In
the process, selected metal d orbitals are stabilized by the �-acceptor ligands and are
less likely to participate in cluster bonding. In the case of a �-donor ligand like Cl−,
interaction of the ligand with the metal d functions leads to a destabilization. It is
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CO π∗ [Cl]− πM t2gcomplex complex

Figure 3.16

the same electronic mechanism used to explain why CO is high in the spectro-
chemical series whereas halogens are low, relative to a ligand like NH3 (Appendix).
Thus, both the �-donor ligand set as well as the lower nuclear charge of the earlier
metals push the d set up into the valence energy region. The MO block diagram
in Figure 3.16 illustrates the point. The net result is more filled metal orbitals in
the valence region. A situation is created not unlike that for naked main-group
clusters where some of the high-lying external lone-pair orbitals are able to mix
more effectively with skeletal orbitals leading to unusual (relative to the borane
paradigm) compositions and shapes.

Of course an MO approach is also possible just as it is for the tetrahedral main-
group cluster. Consider the example of metal-alkoxide clusters, [M6(�3-L)8(L)6]n−.
As illustrated in Figure 3.17 for M = Co, L = CO, n = 4, whereas for M = Mo,
L = OR, n = 2, i.e., cve counts of 86 for M = Co and 84 for M = Mo if the face-
bridging OR ligands are considered five-electron donors. Both clusters possess 16
�-acceptor or donor orbitals that stabilize or destabilize an equal number of metal-
based orbitals, respectively. However, in Oh symmetry there is one metal orbital that
is neither stabilized nor destabilized as there is no ligand combination of the proper
symmetry to interact with it. Its energy relative to the other filled orbitals differs
for �-acceptors or donors leading to its filling in the case of the late metal-carbonyl
cluster and its remaining empty in the case of the earlier metal-alkoxide cluster.

The versatility of transition-metal–ligand combinations in stabilizing localized,
partially localized and delocalized cluster bonding is evident in the three examples
discussed to this point. But we still have no analog of a late metal-carbonyl cluster
that follows the main-group counting paradigm for an octahedral shape. Centered
zirconium chloride clusters provide an example of an octahedral cluster with seven
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sep albeit not 86 cve. Take the cluster [Zr6Cl18B]5− which has the structure shown
in Figure 3.18. It is of the structure type of the Ta cluster with which we began
Section 3.3.5 but contains 74 rather than 76 cve. However, if we consider the
interstitial atom as B3+, then we have an octahedral [Zr6]10+ core with 14 electrons.
But why not 86 cve? Recall that the cve count of 14n + 2 includes 12n electrons
associated with external bonding. If this assumption is not correct then the rule
breaks down. Note that we can obtain the correct count here from 2n + 2 for the
core bonding + 10n for external bonding; however, the value of doing so is limited.

In this cluster type, the external terminal Cl− ligands can be used to bridge adja-
cent clusters, i.e., they are shared between clusters. Hence, the M: Cl ratio can be
increased from the 1: 3 ratio found in Rb5Zr6Cl18B. If the electronic requirements
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of the octahedral building block are invariant to whether or not the external cluster
ligands bridge, then the stoichiometry will be determined by the cluster core require-
ment of 14 electrons. This is most easily expressed in terms of the [Zr6Cl12X]m+

core as 6 × 4 − 12 + vx − m = 12 + vx − m = 14, where vx is the valence
electron count of the main-group interstitial atom. As an example, consider the
series of known compounds at fixed Zr:Cl ratio of 6:15:K3Zr6Cl15Be, CsKZr6Cl15B,
KZr6Cl15C, Zr6Cl15N, all of which possess a [Zr6Cl12X]m+ core where m = 0, 1, 2
and 3, respectively. So we have for, e.g., N, 12 + 5 − 3 = 14. Note that the role of
the interstitial atom appears to be the same as found in group 8/9 transition-metal
clusters (Figures 3.7 and 3.8).

Interestingly, members of this series of compounds are found containing
transition-metal interstitial atoms as well. We can consider the effects of the
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metal d functions of an interstitial atom in the manner of Figure 3.8, as shown in
Figure 3.19, where for simplicity only the 3d and 4s valence functions are shown.
The t2g and a1g metal functions find symmetry matches with four of the cluster
bonding orbitals; however, there is no symmetry match for the metal eg pair. As
they are low enough in energy to be filled, the cluster electron count becomes
14 + 4 = 18. Hence, we have 12 + vx − m = 18 for the relationship between iden-
tity of the interstitial atom and the charge on the [Zr6Cl12X]m+ core. This permits
us to explain three additional known compositions for 6:15 M:Cl ratio compounds:
Li2Zr6Cl15Mn, LiZr6Cl15Fe, Zr6Cl15Co. In the manner of the main-group example
we have m = 1, 2, 3, respectively, and for, e.g., Co, 12 + 9 −3 = 18. The amazing
result is that in some fashion B, C and N are behaving analogously to Mn, Fe and
Co. Without this model of cluster electronic structure, a compositional mapping of
this type would not be obvious.

Exercise 3.9. The compound Ba2Zr6Cl17X possesses a structure based on an octa-
hedral cluster Zr6Cl12X core with four terminal Cl ligands and trans-bridging Cl
ligands such that linear chains are formed in the solid state (see drawing below).
Assuming its composition is dominated by the electronic requirements of the cluster
unit, suggest two possible identities for the interstitial atom X.
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Exercise 3.9

Answer. The [Zr6Cl12X]m+ core charge is −4 − (−5) = +1. If X is a main-group
atom then we have 12 + vx − 1 = 14. vx = 3 = B. If X is a transition metal the
same sum = 18 and vx = 7 = Mn. The utilization of these cluster building blocks
to generate nets and three-dimensional networks should be evident.

It should be clear that extension of these models for octahedral clusters to all early
metal clusters with �-donor ligands is not possible. However, when one deals with
a single metal and shape then the cluster electron count followed can be a useful
tool. For example, it provides a ready rationalization of stoichiometry as well as
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prediction of target stoichiometries. This information is particularly useful when
dealing with compounds synthesized by high-temperature methods.

Recently, evidence has been produced for the existence of clusters with electronic
structures lying between the earlier transition-metal systems with �-donating lig-
ands and the later transition-metal systems with �-accepting ligands. The precedent
setting compound, [(iPr3P)6Rh6H12]2+, shown at the left in Figure 3.20, exhibits
an octahedral metal-cluster core with 12 edge-bridging H ligands and six termi-
nal phosphines. It has an unambiguous cve count of 76, ten less than the count
expected for an octahedral metal cluster of late transition metals. Its geometric
structure, including the ligands, is the same as that of 76 cve [Ta6Cl12L6]2+, shown
in Figure 3.15. The Rh cluster takes up two molecules of H2 reversibly suggesting
electronic unsaturation of the cluster bonding.

This Rh cluster provides an interesting counterpoint to our discussion of the
Ta cluster at the beginning of this section. To review, the [Ta6]14+ cluster core
provides 16 electrons, the 12 bridging Cl− ligands provide 48 electrons and the six
L ligands another 12 leading to 76 cve. In the Rh cluster, the [Rh6]14+ core provides
40 electrons, the 12 bridging H− ligands 24 electrons and the six phosphines 12
electrons for a total of 76 cve. This would imply that 24 cve electrons provided by
the bridging Cl ligands in the Ta cluster are supplied by the metal atoms in the Rh
cluster, i.e., by moving from a group 5 metal to a group 9 metal, four additional
electrons are contributed for each of the six metal atoms. So it’s an interesting
question then. What exactly is the role of these 24 ligand-derived or metal-derived
electrons? Electron counting defines the problem but does not provide the answer –
good calculations are required.

Another example of a new type of cluster that fits in this section is the C-centered,
trigonal prismatic cluster [W6CCl18]2− (Figure 3.20) with 84 cve. High-quality
calculation on the diamagnetic cluster generates multiple closely spaced levels in
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the frontier-orbital region. Consistent with these results the electrochemistry shows
a total of five redox states: two on oxidation and two on reduction of the dianion
(cve = 82, 83, 84, 85, 86). Chemical oxidation and reduction allow the monoanion
and trianion to be isolated and structurally characterized. The structural distortions
observed on one-electron oxidation and reduction correlate nicely with the bonding
properties of the frontier orbitals which lose or gain an electron. Clearly this is a
case where the electron-counting rule approach will not be useful as such rules are
based on the existence of a large HOMO–LUMO gap for a characteristic electron
population (Chapter 1). However, such compounds should not be shunned as their
properties may well be of considerable value in selected applications. The downside
of variability in electron count is balanced by an upside of rich redox behavior.

Exercise 3.10. The octahedral W cluster shown below has the formula W6S8(PR3)6

with the eight S atoms capping faces and the six phosphine ligands (represented by
L) bound terminally to the metal atoms. Analyze the nature of the M–M bonding
of the cluster core in the manner used for [Mo6Cl8L6]4+ and [Ta6Cl12L6]2+ and
propose a bonding model using two-center and three-center bonds.
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Exercise 3.10

Answer. With a cve count of 80, W6S8(PR3)6 fits neither the model proposed for
84 cve [Mo6Cl8L6]4+ nor that for 76 cve [Ta6Cl12L6]2+. Considering the capping S
atoms as [S]2− ligands we have a [W6]16+ core with 20 valence electrons. Assuming
that, like [Mo6Cl8L6]4+ and [Ta6Cl12L6]2+, four orbitals are used per metal atom for
cluster bonding, we have 24 AOs to utilize. Hence, four three-center–two-electron
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bonds (using 12 AOs and eight electrons) and six two-center–two-electron bonds
(using 12 AOs and 12 electrons) satisfy these conditions. The final problem is to
determine how to place them on the octahedral surface such that each metal center
is associated with four bonding connections. Refer back to Exercise 2.5 where the
analogous problem was dealt with for [B6H6]2− and you will see that the following
placement of two- and three-center bonds meets the requirements. Clearly this is
only one of several resonance structures.

[Pt6(CO)12]2−

86 cve
Pt5(CO)(PR3)4

70 cve

Figure 3.21

3.3.6 Late transition metals

Group 10 metal clusters with carbonyl and phosphine ligands sometimes fail to
follow the counting paradigm, but the reason for this failure differs from those
discussed up to now. The situation is illustrated by the two Pt carbonyl clusters
shown in Figure 3.21 where the cve counts are four less than those obtained for
group 8/9 metal clusters for the same cluster shapes. What is the origin of these
lower electron counts?

In coordination chemistry you learned that d8 metal centers stabilize four-
coordinate 16-electron square planar metal complexes – a coordination geometry
favored by neither number of M–L bonds nor steric factors. In moving from Ti to Ni
the separation between the 3d and 4p orbital energies increases. Hence, for Ni, and
particularly for its heavier congeners, not all of the nine metal valence functions
need be energetically accessible. Indeed, in a square planar complex, one of the
p orbitals, the out of plane pz orbital, is unused in primary bonding. Relative to a
typical six-coordinate, octahedral complex, a square planar complex has an addi-
tional empty metal orbital in the metal–ligand antibonding orbital energy regime
(Figure 1.10). Although unused in primary coordination, remember that the orbital
has an important role in, e.g., facilitating higher coordination number intermediates
in associative ligand substitution reactions.

How is this electronic feature of the metal atom incorporated into cluster bonding
models? We need a little more cluster bonding theory to answer this question as well
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as to provide a basis for consideration of the gold clusters that follow. The MOs of a
spherical cluster can be divided into radial and tangential orbitals loosely analogous
to the � and � systems in benzene. For our work horse model cluster, [B6H6]2−,
the a1g, t1u and eg symmetry orbitals are radial (analogous to s, px, py, pz, dx2−y2 and
dz2) whereas the t2g orbitals are tangential (Figure 2.21). The HOMO set consists
of tangential MOs that lie in the surface of the cluster sphere. In the case of a Pt
cluster, not only are there 2n − 1 inaccessible cluster antibonding orbitals as found
for boranes and group 8/9 clusters, but also a small number (often two) tangential
cluster bonding orbitals lying at high energy and empty. However, this conclusion is
not sufficiently firm to justify a rule and approximate MO calculations are required
to rationalize the electronic structure of new cluster systems of the late metals.

Exercise 3.11. Late transition-metal clusters can exhibit unusual properties. For
example, trigonal bipyramidal 1,5-{Re(CO)3}2Pt3(PtBu3)3 is found to add three
moles of dihydrogen at room temperature to yield 1,5-{Re(CO)3}2Pt3(PtBu3)3 (�-
H)6 where the H atoms bridge the six Pt–Re edges (Adams and Captain, 2005).
Use an argument based on cluster electron count to rationalize facile H addition.
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Exercise 3.11

Answer. 1,5-{Re(CO)3}2Pt3(PtBu3)3 has a cve = 62 (2Re + 6 CO + 3 Pt + 3
PR3 = 14 + 12 + 30 + 6 = 62 whereas a “normal” trigonal bipyramid exhibits
72. Even taking into account the two to four lower cve count of many late metal
clusters, this mixed metal cluster is distinctly electronically unsaturated. Addition
of six H atoms to the framework adds six electrons for a cve count of 68, four less
that the “normal” count but acceptable for a Pt cluster. This hydrogenation reaction
is formal reduction of an electronically unsaturated cluster by the addition of three
moles of H2.
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Figure 3.22

If some of the important tangential cluster orbitals, those that generate bonding
within the surface of the cluster, are pushed to higher energy and emptied in mov-
ing to group 10 metals, can one empty even more cluster orbitals by moving to
group 11? The answer is yes, as the farther one moves to the right in a transition
metal series, the greater the energy gap between the (n − 1)d, ns functions and np
functions. In fact, Au clusters appear to be dominated by radial bonding as the d
functions are now of low energy and contracted and the p functions of high energy
and diffuse. Hence, M–M bonding takes place largely through the s functions. A
consequence is that Au clusters have much in common with alkali-metal clusters.
Let’s take a brief look at some representative systems.

In Figure 3.22 a selection of Au clusters with or without an interstitial gold atom
is shown each with its cve count. Mingos and Wales divide those with interstitial
atoms into two groups in terms of gross structure – pseudospherical and toroidal
(ring of atoms around the central atom), whereas the empty clusters are considered
pseudospherical, prolate (elongated sphere) or oblate (squashed sphere) with only
the latter two shown at the right in Figure 3.22. The building blocks are AuL
fragments which are well known empirically to be isolobal replacements of, e.g.,
H atoms in M–H–M bridges. That is, structurally they appear to utilize a single
valence orbital.

If we take the point of view that bonding in these clusters is essentially radial
due to the limited valence set available to the metal atom, then the pseudospherical
centered clusters can be considered as a central, bare gold atom using some or all its
valence functions to bind ns AuL fragments as “ligands.” Provided all the valence
functions of the central gold atom are used, this supra-coordination compound will
exhibit an electron count of 18 + 12ns, i.e., 18 for the central atom plus the cluster
non-bonding Au–L fragment electrons for ns metal fragments. Thus, icosahedral
[Au13Cl2(PR3)10]3+ (Figure 3.22), has a calculated cve count of 162 (18 + 12 ×
12) vs. observed of 162 (13 Au + 2 Cl + 10 L − 3 = 13 × 11 + 2 + 20 −3). It
is noteworthy that this analysis was used to predict the composition and structure
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of this icosahedral gold cluster in advance of its synthesis. Note carefully that the
icosahedral shape, and the lines associated with it, do not denote any kind of bonding
connection with icosahedral boranes or heteroboranes in which radial as well as
tangential MOs are filled (13 in all). In essence, then, this analysis suggests that the
electronic structure of icosahedral [Au13Cl2(PR3)10]3+ makes it a closer relative to
a mononuclear metal complex than a cluster – it is a coordination compound of Au
with coordination number 12! In terms of the theme of this text, observe that the
central Au atom resides in an environment approaching that of an atom in bulk Au
metal.

Moving to the toroidal Au clusters we find a ring-like array of AuL fragments
surrounding a central Au atom with the axial positions vacant. These are to the
pseudospherical clusters above as square planar complexes are to octahedral com-
plexes. One p orbital of the centering Au atom, the one in the axial direction, remains
unused and empty. Hence, if radial bonding alone suffices, the clusters count as
16 + 12ns, i.e., [Au9(PR3)8]3+, 16 + 12 × 8 = 112 vs. 9 Au + 8 L − 3 = 9 × 11 +
16 − 3 = 112. As already illustrated by the Pt clusters, this is an electronic option
for late metal clusters and one that has compositional and structural consequences.

The counts of the non-centered prolate and oblate clusters, relative to spherical
clusters, reflect shape-dependent electronic structure in a manner related to that of
the toroidal clusters. The splitting of the degeneracy of the t1u radial orbitals of the
octahedral spherical cluster differs in the prolate and oblate geometries. As shown
in Figure 3.23, stretching out the cluster reduces one cross-cluster antibonding
axial interaction and increases two, whereas flattening the cluster decreases two
and increases one. Hence, we have two over one splitting vs. one over two. If the
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splitting is large enough, the prolate cluster will accommodate two cluster bonding
electrons less than the oblate. To verify this, separate out the external ligand and
metal cluster non-bonding electrons. Thus, [Au6(PR3)6]2+, which has 76 cve, has
four cluster bonding electrons (76 − 6 × 12 = 4) so that the stabilized orbital from
the t1u set and the lower lying a1g (not shown in Figure 3.23) orbitals are filled,
whereas oblate [Au7(PR3)7]+ with cve 90 has six cluster bonding electrons so that
two stabilized orbitals from the t1u set and the a1g orbitals are filled. Note that the
eg (like dx2−y2 and dz2 ) are not used and presumably lie at higher energy.

Although examples are limited, it is clear that the accommodation of composi-
tion and structure for a stable late group-11 cluster species marches to a different
drummer than that of p-block clusters and late metal-carbonyl clusters. But there
is a connecting theme in that geometry does change with electron count. A fine
example is the demonstration that the addition of a pair of electrons to a toroidal
cluster generates a pseudospherical cluster in a reversible process, e.g., the reduc-
tion of [Au9(PR3)8]3+ to [Au9(PR3)8]+ generates the cluster shape change shown
in Figure 3.24.

Information on related alkali-metal clusters comes mainly from composition and
abundance data from laser evaporation experiments. Geometric information comes
from quantitative calculations, which give energies and structures corresponding
to minima. A question sometimes raised is whether or not the complex potential
energy surface has been sufficiently well explored to uncover the minimum of lowest
energy (global minimum). Like the clusters formed from AuL fragments, alkali-
metal atoms utilize a single valence orbital. Hence, clusters formed from these
building blocks should exhibit similar cluster tectonics. The published calculations
suggest as much.

To summarize this long section on metal effects, we can state: metal clusters can
mimic main-group clusters (late-metal clusters with acceptor ligands); metal clus-
ters with four-connect or higher vertices can be described with localized bond mod-
els (early-metal clusters with donor ligands); and metal clusters can have reduced
(Pt clusters) or no tangential bonding (Au clusters). The characteristically more
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varied bonding modes available to the transition metals vs. main-group elements
produce a rich structural chemistry.

Exercise 3.12. The Au cluster, [Au6C(PR3)6]2+ exhibits an octahedral metal-
cluster structure and contains an interstitial C atom. Justify composition and cluster
geometry.

Answer. The observed cve count is 6 Au + C + 6 L −2 = 66 + 4 + 12 − 2 =
80. If the AuL fragments are considered “ligands” on a C atom that obeys the eight-
electron rule, we have a predicted cve count of 8 + 12 ns = 8 + 72 = 80. Note that
the 14n + 2 rule gives 86 cve.

3.4 Naked clusters

In Section 2.11 naked and partially ligated main-group clusters were examined. Our
development of fully ligated metal clusters up to this point with frequent compari-
son to the behavior of fully ligated main-group clusters suggests that naked main-
group clusters will also provide the baseline behavior for the metal systems. This is
important because the high reactivity of transition-metal clusters and the absence
of naked transition metal Zintl ions make structural information difficult to obtain.
These species are often “isolated” in, e.g., gas-phase beams or low-temperature
matrices. Often the primary observation is mass and composition of ions and geo-
metric structure is deduced from models or quantitative calculations. However,
we have seen that transition-metal clusters have structural options not available to
the main-group systems. Hence, idealized models based on non-transition-metal
systems, e.g., rare-gas clusters, have little relevance. It has been stated that naked
transition-metal clusters adopt shapes that maximize coordination numbers of sur-
face atoms leading to spherical shapes. Rare-gas clusters, in contrast, maximize the
number of interatomic distances optimal for pairwise atom–atom interactions. The
bottom line is that naked metal-cluster structures need not correspond to those of
fully ligated metal clusters, fragments of crystalline bulk metal, or rare-gas clusters.

So where can we get information on the problem of structure and properties?
In the case of naked main-group clusters, modern quantum chemical treatments
provide a means of generating structures at global energy minima and accessing
energetics. In principle, the same is true of metal systems but, except for the very
light metals, the size of the computing problem is much larger. There are indirect
experimental methods that provide useful information. One measureable property,
related to structure, is reactivity. Thus, cluster ions in a beam can be reacted with
another gas, e.g., CO, and the addition products as well as fragmentation products
can be identified by mass measurements. A single measurement is of little use but
an advantage of the beam techniques is that one can often study a series of clusters
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of the same type going from small to large in single atom steps. In some cases,
not all cluster sizes are observed suggesting that certain cluster atom numbers have
special stability (“magic numbers”). Clusters without experimentally determined
structures should not be dismissed out of hand. Recall that the first report of C60

was based on the dominant intensity of the [C60]+ ion in laser evaporated C vapor.
Reactivity as a function of size contains significant information.

A systematic treatment of existing research on naked clusters, including naked-
atom chemistry, is contained in a recent monograph by Klabunde. Sufficient for
our purposes is a single study in which Nin+, n = 2–13 were mass selected and
reacted with CO gas in situ. The maximum number of CO ligands bound as a
function of n was measured. In addition, the mass of fragmentation products gave
maximum CO attachment numbers for Ni clusters that degraded under the reaction
conditions. For the first set of data the total cve count of the Nin(CO)max clusters
was compared to closo-cve counts (14n + 2). For n = 4, 6 and 7 observed and
calculated counts agreed. For n = 5, a nido-cve count was observed whereas for
n = 13 a count appropriate for a centered icosahedral cluster was found. For n =
8−12, however, the count was 2, 4, 6, 8 and 10 electrons below that appropriate for
a single closed-cluster framework, i.e., 1, 2, 3, 4 and 5 CO ligands were missing.

The authors attributed the discrepancy to an unspecified structural difference
(perhaps “metal crystallites” rather than molecular clusters). However, as we have
seen, ligated metal clusters do not adopt the structure of closo-boranes for n > 6
largely because alternatives are available, e.g., face-capping. A subsequent inter-
pretation of the data (Exercise 3.13 below) generates the cluster sequence shown
in Figure 3.25. From nuclearity six and seven, the standard deltahedral shapes are
observed followed by sequential face-capping until reaching nuclearity 12. Addition
of the last Ni atom generates a centered icosahedral shape. Corroborative support
for this interpretation comes from a similar analysis of the cluster-fragmentation
results wherein the limiting Nin(CO)max stoichiometries can be accommodated by
a series of open capped clusters systematically related to the closed series shown
in Figure 3.25. Although the data and its interpretation is satisfying, it does not
necessarily provide definition of the cluster shapes of the naked clusters. Nor does
it prove that a given cluster size exhibits a single shape.

Exercise 3.13. The limiting stoichiometries observed for Nin+ clusters after reac-
tion with CO are: Ni6CO13, Ni7CO15, Ni8CO16, Ni9CO17, Ni10CO18, Ni11CO19,
Ni12CO20 and Ni13CO20. Show that the cve counts are compatible with the geo-
metric cluster shapes shown in Figure 3.25 (Mingos and Wales, 1990).

Answer. The cve counts for the cluster stoichiometries are: 86, 100, 112, 124, 136,
148, 160 and 170. For a closo-structure the cve count is 14n + 2 where n is the
cluster nuclearity. For a capped closo-structure the cve count is 14n + 2 + 12m
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n = 6, m = 0 n = 7, m = 0 n = 7, m = 1 n = 7, m = 2

n = 7, m = 3 n = 7, m = 4 n = 7, m = 5 n = 12, m = 0

Figure 3.25

where n is the nuclearity of the closo-structure and m is the number of caps. The
Ni6 and Ni7 compositions match six- and seven-vertex closo-cluster counts. The
Ni8–Ni12 do not, as the incremental increase in cve count is 12 rather than 14.
This is perfectly consistent with capping five faces of a pentagonal pyramid (the
Ni7 cluster shape) in a step-wise fashion as shown in Figure 3.25. For the Ni13

cluster, the observed cve count is 14 × 12 + 2, exactly that expected for a 12-vertex
icosahedron. Note from the discussion in Section 3.3.1 that a centered icosahedron
will have the cve count of an icosahedron as the interstitial atom does not create
any additional accessible MOs. It simply stabilizes a set of the cluster orbitals for
this cluster shape.

3.5 High-nuclearity clusters with internal metal atoms

It was inevitable that we would arrive at transition-metal clusters in the size regime
of the giant Al cluster [Al69R18]3− of Chapter 2. It is a problem we poked and
prodded a bit from the perspective of deltahedral main-group clusters. We got a feel
for the problem, but generated no connection between observed composition and
structure. At this point in our development of cluster structure, you should be able to
see why. These clusters lie somewhere in between small metal clusters (all surface
and significant HOMO–LUMO gap) and metal crystallites (negligible surface and
HOMO–LUMO gap less than kT). The HOMO–LUMO gap gets smaller as cluster
nuclearity increases, which translates into more geometries available for a given
composition. Indeed we have found that metal clusters exhibit more variations than
main-group clusters. Eventually we must reach a size where a simple rule fails to
encompass the possibilities. Does this mean we must give up attempts to understand
high-nuclearity systems?



3.5 High-nuclearity clusters with internal metal atoms 123

[Ni38Pt6(CO)48H(6−n)]
n−

ccp

Figure 3.26

Not so. Using the tools already developed, large transition-metal cluster sys-
tems can be analyzed. Useful generalizations, if not predictability, are forthcom-
ing. Beginning with the work of Chini and Dahl and their associates, many exam-
ples of large transition-metal clusters are available to us. Several are illustrated in
Figures 3.26–3.29. Most can be considered as close-packed metal cores with lig-
ands bound to the surface atoms. For example, consider [Ni38Pt6(CO)48H(6-n)]n−

illustrated in Figure 3.26. The cluster is “exploded” to the left. Can you see that it
has a ccp core structure?

The earlier discussions have given us more than one way to view a metal cluster.
The concept of an interstitial atom and its role in cluster bonding is particularly
important. For example, the possibility of larger interstitial fragments including
polyhedra comes to mind. Further, we know that cluster electronic structure ranges
from that analogous to deltahedral boranes with full radial and tangential (surface)
bonding modes, to that with only radial bonding modes (Au clusters). In addition,
the principles governing cluster fusion (vertex-, edge- and face-sharing) provide
a systematic method for constructing large metal-cluster shapes including close-
packed structures.

In this section we will attempt to dissect selected high-nuclearity transition-
metal clusters to see what combination of these observed bonding principles explain
composition and structure. We won’t come up with any universal rule. As already
stated, in going from small metal clusters to large metal clusters to bulk metal the
HOMO–LUMO gap disappears. Hence, at some size counting rules will lose their
usefulness. The analysis can still have value by emphasizing important differences
between larger clusters vs. small clusters on the one hand, and metal crystallites
on the other. In the process you should end up with a better understanding of the
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[Pt38(CO)44Hm]2−

ccp

−6 M

Figure 3.27

forms in which large metal clusters assemble. A more exhaustive development can
be found in the book by Mingos and Wales.

3.5.1 Central cluster with radial metal “ligands”

There are two limiting cases. The first, considered here, is analogous to the situa-
tion found with centered Au clusters where radial interactions account for cluster
bonding. The outer shell of metal fragments acts as a ligand envelope to the inner
atom and the cve count is 18 + 12ns, where ns is the number of metal atoms in
the outer shell. In the same way that we moved from mononuclear complexes to
dimers, trimers and clusters, so too we can envision a cluster made up of a centering
polyhedron surrounded by a shell of metal fragment “ligands.” In the manner of
the Au cluster paradigm, it follows that the electronic requirements of the central
polyhedron are determined by the 14n + 2 rule and those of the outer shell by
radial bonding only. Hence, the cve count is � + 12ns, where � is the cluster count
associated with the central polyhedron.

Let’s analyze a situation where this model obtains. In Figure 3.27 the clus-
ter geometry of [Pt38(CO)44Hm]2− is shown as derived from the structure of
[Ni38Pt6(CO)48H(6 − n)]n− by clipping the six corner metal atoms off. In the case
of this cluster the value of m is experimentally undetermined. Remember, the lines
only express geometry not bonds. The cve count is 38 Pt + 44 CO + m H + 2 =
380 + 88 + m + 2 = 470 + m. The cve count associated with the central octahedron
of metal atoms is 86 (14n + 2) and the radially bonded metal-carbonyl fragments
will add 12ns where ns is 32. So we have a predicted cve = 86 + 12 × 32 = 470.
It’s a match for m = 0, i.e., no H atoms in the structure.

Exercise 3.14. Treat the bonding in the [Ni38Pt6(CO)48H(6−n)]n− with the structure
shown in Figure 3.26 as a centered radial- and tangential-bonded cluster with radial
bonding alone to the outer shell of metal fragments and compare observed and
calculated cve counts.
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−34 M

Exercise 3.14

Answer. The observed cve = 44 × 10 + 48 × 2 + 6 = 542 for n = 0. The central
polyhedron is an octahedron (86) and it is surrounded by 38 metal fragments (12 ×
38) to give a calculated cve = 86 + 456 = 542. Notice from the drawing above that
if you strip off 34 metal atoms you can generate the structure of [Os10C(CO)24]2−, a
tetracapped octahedron (Figure 3.10). This suggests that the entire structure can be
built up by capping an octahedron with metal fragments. As each cap on the central
octahedron requires 12 additional electrons, the total cve count is again 542. The
metal caps serve to replace electrons supplied by the external ligands they replace
thereby reinforcing the analysis of the large cluster.

3.5.2 Fully bonded outer cluster with interstitial cluster

The second limiting case is modeled after the electronic situation that obtains
for a group 8/9 metal-carbonyl cluster with an interstitial main-group atom. In this
situation both radial and tangential bonding are fully utilized in the outer cluster and
the electron count is determined solely by the number and geometry of the outer
cluster atoms. For electron counting the interstitial atom contributes its valence
electrons to cluster bonding but is not counted as, e.g., occupying a vertex. A high
nuclearity cluster may be considered in which the electronic requirements of the
outer cluster shell determine the electron count and the inner cluster functions solely
to provide electrons to the cluster count.

Let’s analyze an example. The structure of Rh13(CO)24H5 with a cve count of
170 (12 × 9 + 24 × 2 + 9 + 5) is shown in Figure 3.28. It may be described as a
truncated hexagonal bipyramid with a single interstitial Rh atom. With a centering
metal atom, this shape corresponds to the fundamental coordination unit of a hcp
metal lattice. A centered cube octahedron has the corresponding relationship to a
ccp metal lattice. The cluster shell is a four-connect polyhedron and the cluster
building blocks are group 9 metal-carbonyl fragments. Hence, a good guess is that
the structure is governed by the 14n + 2 rule (14 × 12 + 2 = 170 cve) even though it
has square faces. Indeed, consultation of Table 3.1 will show that Lauher calculated
170 cve for this shape, which he rationalized in his article. Fine, but suppose we
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Rh13(CO)24H5 [Rh14(CO)26]2−

RhRh

Figure 3.28

analyzed it under the first limiting electronic structure model? The central moiety
is a single metal atom so the cve count predicted is 18 + 12 × 12 = 162 cve which
is too low.

Have we forgotten sep counts? Well, no, for Rh13(CO)24H5 the number of cluster
bonding orbitals is n + 1 (cluster bonding electrons is 14n + 2 − 12n assuming six
cluster non-bonding and six external ligand electrons per metal) which gives sep =
13. The geometry, however, is not icosahedral as the borane paradigm might suggest.
Various factors, e.g., CO ligand packing, could be invoked to justify the stabilization
of a non-deltahedral shape. Always keep in mind that there is a manifold of structures
available for a given cluster nuclearity and, when energy differences between them
are small, as is often the case for metal clusters with relatively weak M–M bonding,
cluster bonding alone is not necessarily the determining factor.

3.5.3 Application of the cluster fusion principle

If these are the two limiting cases then you are probably gritting your teeth knowing
that an example of a cluster lying in between is coming along. Let’s deal with it.
Consider the structure of [Rh14(CO)26]2− shown in Figure 3.28 with 180 cve and a
centering Rh atom. Treat it first with the two limiting models. In the model driven by
core valence requirements, we calculate 18 + 12 × 13 = 174. In the model driven by
outer-shell valence requirements we calculate (assuming 14n + 2 rule) 14 × 13 +
2 = 184. Equivalent ways of “making the cve count” are: (a) a model with three
tangential cluster bonding orbitals filled; or (b) a model with two cluster bonding
orbitals empty. But wake up! We satisfactorily treated this cluster in Exercise 3.8
as a cluster formed by fusing square pyramidal clusters on a centered cube. The
lesson is that we must examine these complex clusters from several perspectives
before deciding they are “strange.”

These principles have been used to good effect by Dahl and coworkers in their
work on very large metal clusters. In Figure 3.29, the complex geometric structure
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Figure 3.29

of the metal core of Pd59(CO)32(PMe3)21 is shown. At first sight it seems a struc-
ture one merely views in awe at the power of synthesis and crystallography. Even
more so when its D3 symmetry (C3 axis passing through the two “apical” atoms
of the two internal tetrahedra with dark spheres) and 11 internal atoms are fully
appreciated. However, it can be, and was, successfully analyzed using two of the
cluster principles we have discussed: (a) the large cluster model with a central poly-
hedral core with radial bonding alone to an outer shell of metals (cve count of � +
12ns); and (b) cluster fusion where the electron count of the common fragment is
subtracted from that of the two clusters fused. In the “retrosynthesis” of the cluster
in Figure 3.29 you can see that the cluster is considered a fused dimer of two 31-
atom clusters containing tetrahedral cluster cores (60 + 12 × 27 = 384 cve). The
fusion is complex. It consists of a shared six-atom triangular raft (90 cve, see Figure
3.12) between the two 31-atom clusters yielding a 56-atom dimer. The remaining
three atoms are the apical atoms of three additional square pyramidal clusters (74
cve) in which both basal pairs of atoms are shared (−2 × 34), one with each 31-
atom cluster, thereby bridging the two fused clusters. This gives a cluster count of
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2 × 384 − 90 + 3 × 74 − 3 × 68 = 696 vs. the measured composition 59 Pd +
53 L = 59 × 10 + 53 × 2 = 696. The presence or absence of H atoms in large
clusters is always a difficult problem experimentally and the negative proton NMR
experiments found support in the successful composition/electron count match. It
is success stories such as this one that make the efforts devoted to model develop-
ment worthwhile. But a cautionary reminder – an electron-counting match using a
symmetry-based concept should not be construed as understanding the electronic
charge distribution on the nuclear framework. As noted in Section 3.1.3 in the con-
sideration of the view of Woolley, the important details of the electronic structure
remain hidden and more rigorous approaches are required to reveal them.

3.5.4 Elementoid clusters

Does the discussion of large metal clusters help with our theme problem of
Chapter 2 – the large Al cluster [Al69R18]3− with 228 cve? The metal clusters
show how large numbers of internal atoms can be handled and just as we moved
from main-group clusters to metal clusters so too we can do the reverse. Let’s see
how close we come to the electron count. Recall that the large Al cluster structure
was described as [Al@Al12@Al38@(AlR)18]3−. One limiting model is to consider
the elementoid cluster as a centered 12-vertex deltahedron (50 cve) surrounded by
a 38-metal shell with radial bonding (38 × 2) surrounded in turn by an 18-metal
shell with radial bonding (18 × 2) to give a total of 162. Obviously, we cannot
neglect tangential bonding in the Al38 layer. To include full tangential bonding we
view the cluster as a centered 12-vertex deltahedron within a 38-vertex polyhedron
(4n + 2 in each case to give 50 + 154 = 204 cve). Considering the low density
of the 18 AlR fragments on the surface of the 38-vertex polyhedron, it is reason-
able to assume they are attached exclusively by radial bonding (2 × 18) to give a
total of 240 cve required for this model. A little high, but recall the discussion of
Section 2.12.5 and [Ga19R6]−. The above counts are based on assuming the eight-
electron rule is followed for all Al atoms. If adjacent Al and AlR repulsion empties
six of the lone-pair orbitals we also achieve the observed count.

But all this neglects the fact that the HOMO–LUMO gap may be, and as we
will see in Chapter 6 is, small. One of the criteria for a valid electron-counting
rule is no longer valid. In addition, we will see that the cubic clusters discussed in
Section 5.2.5 exhibit highly variable electron counts suggestive of incipient metal-
like properties. By all these measures, [Al69R18]3− should not be viewed in the
same way as a small cluster. It has moved well along the bridge connecting clusters
to metal crystallites. The electron-counting rules established in Chapters 2 and 3
for smaller species constitute a firm foundation for one end of our bridge but their
utility decreases as cluster size increases.
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Exercise 3.15. Using metal cluster ideas, try various electron counts on [Al77R20]2−

with an Al@Al12@Al44@(AlR)20 shell structure (consult Chapter 2).

Answer. The cve count for [Al77R20]2− is 253 so it is an odd electron cluster.
Considering the inner two clusters with full radial and tangential bonding (the
smaller one with an interstitial Al atom) yields a count of 50 + 178 = 228. If the
outer AlR fragments are attached by radial bonding alone the total count is 228 +
20 × 2 = 268 which is 15 more than observed and perhaps 14 more than a probable
even electron species. Hence, one would have to assume seven tangential orbitals
empty.

3.6 Nanoscale particles

The studies on high-nuclearity main-group and transition-metal clusters, plus
the correlation of electron count with composition, have clear implications for
nanochemistry. Thus, for example, we do not expect nanoparticles of Au to follow
the same bonding paradigm as main-group or transition-metal nanoparticles. For the
latter two, substantial tangential bonding in the internal layers is expected. External
ligand effects, e.g., the surfactants used to isolate Au clusters, will be substantial as
will mutual nanoparticle–substrate modification on binding in, e.g., catalysis of a
reaction. The insight provided by our discussion of isolated and fully characterized
high-nuclearity clusters should be of value in understanding nanoparticles.

Thus, to conclude this chapter, we examine one example of a nanoparticle sys-
tem. The choice is an M55 ligand-stabilized colloid. This ligand-stabilized bare-
metal cluster is an unusual nanoparticle system but considerable evidence exists
to establish it as monodisperse. Although this cluster type has never been struc-
turally characterized by a classical single-crystal X-ray diffraction structure study,
other less direct methods have established its cluster structure to the satisfaction of
all but the purist demanding quantitative distances and angles. What makes it an
appropriate model study for this text is the fact that a single-sized species can be
discussed. Hence, the systematic spectroscopic and chemical studies apply to one
cluster size. The results of, e.g., external ligands in tuning properties for a specific
application can be directly compared with metal-cluster systems discussed above.

The M55L12Clx nanoparticles, where M = Rh, Ru, Pt, Au, L = PR3, AsR3, x =
6 (Figure 3.30), are formed by the reduction of the appropriate metal salt with
diborane in organic solvents. The structure shown in Figure 3.30 is a composite
result derived from high-resolution transmission electron microscopy (HRTEM),
scanning tunneling microscopy (STM) and extended X-ray absorption fine structure
(EXAFS) on Pt and Au systems. The first method reveals metal atoms with face-
centered cubic packing with size and shape consistent with the “two-shell” form
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Figure 3.30

shown in the scheme. This consists of a cuboctahedral outer shell centered with a
13-atom close-packed core. The EXAFS on a Au system confirms the cuboctahe-
dral structure and shows the Au–Au distance to be slightly less than that in bulk Au.
Why M55? Extra stability is attributed to the set of close-packed full shell clusters
with 10n2 + 2 atoms per shell where n is the number of the shell, e.g., 1 + 12 +
42 = 55. The STM experiments generate information on the external ligand enve-
lope which can be modeled by calculations. The phosphine and arsine ligands
coordinate to the 12 corners whereas the Cl ligands cover parts of the faces. In
the Au55(PR3)12Cl6 cluster the six Cl ligands are thought to occupy the six square
faces.

Exercise 3.16. Calculate the total number of atoms and the % surface atoms in
full-shell clusters of the type represented by two-shell Au55(PR3)12Cl6 for 3, 4 and
5 shells.
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Answer. From the 10n2 + 2 formula, the series beginning with the centering atom
is 1 + 12 + 42 + 92 + 162 + 252 + . . . yielding 147 (63 %), 309 (52 %) and 561
(45 %).

Other spectroscopy experiments are consistent with this picture and add detail.
197Au Mössbauer spectroscopy of Au55(PR3)12Cl6 shows four types of atoms: 13
inner atoms, 24 uncoordinated surface atoms, 12 atoms coordinated to PR3 and
6 coordinated to Cl. The phosphine ligands on this and the clusters of other met-
als are shown to be fluxional (mobile) in NMR experiments. These ligands are
also mobile in a dissociative sense which has permitted effective ligand exchange
reactions. Au55(PR3)12Cl6 is soluble in CH2Cl2. If the phosphines are replaced by
a monosulfonated triphenyl phosphine (Ph2PC6H4SO3Na) a water-soluble clus-
ter is generated. Several other ligand-exchange reactions have been carried out to
generate clusters with the same metal core but of different solubilities.

The electronic properties of these clusters and the magnitude of the perturbation
caused by the external ligands have been probed. A low-temperature, ultrahigh-
vacuum STM experiment on the Au55(PR3)12Cl6 cluster is representative. Discrete
energy levels with an average spacing of 170 mV are observed and attributed to
the Au55 core. The nature of the energy-level quantization and evidence for charge
quantization (Coulomb blockade) are used to argue for a cluster model consisting of
a metallic core extending slightly beyond the first close-packed shell of metal atoms.
The exclusion of the outer shell is attributed to covalent interactions with the external
ligands particularly electron depletion caused by the Cl ligands. Qualitatively this
is in accord with earlier discussions in this chapter. One important point from this
study is that this metal cluster exhibits different electronic transport properties than
a completely non-metallic cluster in that there appears to be a non-zero density
of states close to the Fermi level rather than a perfect gap (see Chapter 6 for a
description of density of states and Fermi level as well as other characteristics of
the electronic structure of metals). Other experiments with like objectives reveal
additional aspects of the change in a measured property during the transition from
small to large clusters.

The lability of the surface ligands leads to aggregation and, ultimately, metal
precipitation, so the reaction properties of Au55(PR3)12Cl6 are limited to reactions
involving the ligand envelope, e.g., ligand exchange mentioned above. This prob-
lem has been turned on its head by utilizing Au55(PR3)12Cl6 as a source of bare Au13

clusters that undergo controlled aggregation to [(Au13)13]n metals that in turn con-
vert into bulk metal between 400 and 500 ◦C. The scenario described, supported by
HRTEM experiments, is one in which voltage applied to a metal electrode immersed
in a solution of Au55(PR3)12Cl6 leads to removal of the outer layer of 42 Au atoms
plus the external ligands. The bare Au13 cores form (Au13)13 superclusters in a
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stepwise fashion and lead, in turn, to [(Au13)13]n particles. Results for Rh, Ru, Pt
and Co analogs support a similar mechanism.

The hypothesis, or principle, of full-shell clusters based on close-packed metal
arrays, and well illustrated by the Au55(PR3)12Cl6 work, has led to the study of
larger cluster systems along the lines already sketched out for the M55 system. One
example suffices for our purposes. The four-shell Pt309 cluster stabilized by 1,10-
phenanthroline ligands (phen*), which in turn are substituted in the 4,7-positions
by p-C6H4SO3Na moieties, has the formula Pt309phen*36O30±10. The surface is
partially covered with O2 molecules. The clusters are irradiated by thermal neutrons
thereby generating Pt309 clusters containing randomly distributed 197Pt nuclei that
can be observed in a Mössbauer experiment. The three different types of surface
atoms are distinguished from the core atoms. Both the isomer shift and quadrupole
splitting of the latter are the same as 197Au in bulk metallic platinum. Consistent with
the conclusion on the M55 clusters, it appears that the surface-ligand perturbation
is mainly confined to the 162 surface atoms, and the 147 core atoms behave in a
bulk-like manner at least in so far as measured by the 6s electron density.

This discussion brings us to the large area of nanoscale materials which goes
beyond the scope of this text. However, the student using this book can now take up
the chemical side of this area with a better understanding of the chemical principles
that underpin the larger and more complex assemblies of nanochemistry. One point
is clear. It is the inter-play between cluster surface atoms (with or without attached
ligands) and internal cluster atoms that give rise to the unique properties of nanopar-
ticles. We will return to this point from the perspective of extended structures in
Chapter 6. Two books that provide an entry to nanochemistry are included on the
reading list.

Problems

1. Justify the observed compositions and shapes for the clusters shown in the following
figure. Discuss the problem presented by any that do not obey the counting rules.

[HFe7B(CO)20]2− Os7(CO)21 [Ni9(CO)18]2− [Fe4Pt6(CO)22]2−

B

Problem 3.1

2. How many different cluster structures can you devise for the molecular formula
Os6(CO)21? You should be able generate more than a single shape. Four shapes are
known for six-atom metal clusters with the same electron count as this cluster.
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3. Suggest a reasonable cluster core structure for [Re8C(CO)24]2− that exhibits C2v sym-
metry with four types of metal positions. Suggest an isomer that has the same cluster
building blocks but only two types of metal positions.

4. Both of the cluster shapes shown below for six-atom metal clusters have cve counts of
90. Construct a concise explanation suitable for a chemist with a basic knowledge of
bonding (eight- and 18-electron rules, two-center–two-electron bonds) but unfamiliar
with cluster bonding ideas.

Problem 3.4

5. Discuss the following in terms of cluster bonding theory. The equilibrium shown below
has been established (Fumagalli et al., 1989). Both compounds have trigonal bipyra-
midal shapes with metal triangles of the same size. However, [PtIr4(CO)14]2− with the
Pt atom in an equatorial position is significantly elongated in an axial direction relative
to [PtIr4(CO)12]2− with the Pt atom in an apical position (the M–M distances in the
equatorial triangle are 2.7 Å in both compounds, whereas the M–M apical–equatorial
distances average 3.1 and 2.8 Å in the elongated vs. not elongated cluster).

[PtIr4(CO)14]2− = [PtIr4(CO)12]2− + 2CO

Pt

Pt

Problem 3.5

6. Count the electrons in [Pt24(CO)30]2− and justify its observed structure which is shown
below. Hint: note that it can be derived from the 44-M cluster discussed in the text
(Figure 3.26).

[Pt24(CO)30]2−

−20 M

Problem 3.6
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7. Consider the putative synthesis of a capped octahedral metal cluster shown in the
diagram below. Postulate a reasonable structure for each of the intermediate species 1
and 2 in the reaction scheme given the structures of the reactants and product. Briefly
justify your structures using established ideas of cluster bonding.

Rh
(CO)3

(OC)3Os
Os(CO)3

[Rh2Os4(CO)18]

Os(CO)3

(CO)3
Rh

(OC)3Os
+ Fe(CO)5

−CO −CO −CO

Rh
(CO)3

(OC)3Os
Os(CO)3

[FeRh2Os4(CO)20]

Os(CO)3

(CO)2
Rh

(OC)3Os

Fe(CO)3

1 2

Problem 3.7

8. The cluster [Re6Se8I6]4− has the face-capped octahedral structure shown below. Count
the cluster electrons and comment on the geometry–count relationship.

Se

Re

Re

Re

Se

I

I

I

I
I

Se Se

Re

ReSe
Se

Se
Se

I
Re

4−

Problem 3.8

9. Treat the metal cluster [Ru11H(CO)27]2−, with known metal core geometry shown
below: (a) as a cluster that obeys the counting rules for main-group clusters; (b) as
a fused cluster structure; and (c) as a radial- and surface-bonded core cluster with
external cluster fragments bound by radial bonds only. Which provides a satisfactory
“explanation” at the level of electron counting?

Problem 3.9

10. As shown below, the photolysis of the cluster HPtOs3(CO)10(dppm){Si(OMe)3} (1)
(dppm = bis-diphenylphosphinomethane) leads to a positional isomer (2) which can be
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converted back to the original isomer on mild heating. Heating of 1 does not produce
2. In the drawing, the lines correspond to CO ligands. The dihedral angles of the
butterfly structures 1 and 2 are 176◦ and 172◦, respectively, i.e., the metal atoms nearly
lie in a single plane. The authors of this work (Adams et al., 1993) propose that the
isomerization proceeds via a tetrahedral cluster intermediate or excited state also shown
below. Discuss the observations and the proposed mechanism in light of cluster bonding
principles for transition-metal systems. In other words, how would you write up this
work as a communication in terms of its relevance to cluster bonding?

Os

Pt Os

Os

Ph2
P

Ph2P

H

(MeO)3Si

∆
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Pt Os
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Ph2
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4

Isolobal relationships between main-group and
transition-metal fragments. Connections to

organometallic chemistry

The structural chemistry of main-group and transition-metal clusters has been set
forth in the last two chapters. What more can be said about molecular clusters?
Quite a bit, in fact. Although broad similarities between p-block and d-block cluster
chemistries exist, we have illustrated important differences in structural preferences.
The intriguing question, then, is what happens if p-block and d-block elements
compete in a single cluster environment? Will the preferences of one element type
dominate the other or will the merging of metal and main-group fragments generate
possibilities not accessible to main-group or transition-metal systems alone. Perhaps
clusters with novel hybrid properties will result.

But there is another perspective to mixed clusters. The transition-metal chemist
sees the main-group fragment as a complex “ligand” through which structure and
chemistry at the metal centers is perturbed. A p-block chemist may rather view
metals as tools to systematically vary the structure and reactivity of a coordinated
main-group moiety. Neither the cluster perspective nor the metal-complex view is
wrong: one chooses a perspective optimal for the problem at hand. In this chapter
we explore mixed p-block/d-block compounds as metal–ligand complexes with an
emphasis on connections to organometallic chemistry. In Chapter 5 the focus will
be the complementary cluster view.

4.1 Isolobal main-group and transition-metal fragments

In the first three chapters, instances were noted where the number, symmetry char-
acteristics and occupation numbers of the frontier orbitals of a transition-metal
fragment were similar to those of a main-group fragment. Such fragments are said
to be isolobal to emphasize similar bonding capabilities. Since its enunciation by
Hoffmann and Mingos, the concept has been used effectively for the analysis of both
organometallic and cluster problems. Let’s explore the idea in a more systematic

139
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fashion to illustrate both the strengths and limitations of this p-block/d-block con-
nection.

4.1.1 Fragment frontier orbitals

An effective way of presenting the isolobal concept is to begin with a main-group
or transition-metal molecule that obeys the eight- or 18-electron rule and system-
atically strip off the ligands. Variations are possible: obvious ones, e.g., molecules
not obeying the 8- or 18-electron rule, and subtle ones, e.g., � donor vs. accep-
tor ancillary ligands on a metal fragment. We have seen that one-electron ligands,
e.g., H, are predominant on main-group fragments, whereas multielectron ligands,
e.g., two-electron CO or five-electron �5-C5H5, are common for transition-metal
fragments.

Consider Figure 4.1 which illustrates the evolution of frontier-orbital sets begin-
ning with a main-group EH4 molecule where, for simplicity, E is a group-14 element.
The geometry of eight-electron EH4 is tetrahedral and fragments can be generated
by sequential removal of H without structural relaxation. In each step, one orbital
and one electron are removed and an EH bonding/antibonding MO pair collapses
to a single orbital in the HOMO–LUMO gap and is populated by one electron. The
orbitals generated constitute the frontier set. For any fragment, the frontier orbital
populations can be varied by a change in the identity of the E atom. For E = group
13 the population decreases by one, whereas moving to group 15 increases it by
one. Relative orbital energies (and sizes) also change as the atomic number changes.
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Take the EH2 fragment, for example. It contains 3, 2, 1 electrons in the two frontier
orbitals for E = N, C, B, respectively, with energies that increase in the order N <

C < B. We assume this partitioning of the valence electrons and orbitals remains
valid in the construction of molecules or clusters from these fragments.

Now consider application to a cluster. The main-group cluster, our structural
paradigm [B6H6]2−, can be generated from six three-orbital–two-electron B–H
fragments which provide 18 frontier orbitals containing 12 electrons plus 2 from
the negative charge. This results in 7 cluster bonding MOs (n + 1) containing 7
sep and 11 empty anti- or non-bonding MOs (2n − 1). The six (n) external B–H
bonding MOs and six (n) antibonding MOs have been removed from the problem.
As you know well, this is an approximation. The fragment analysis of this cluster is
straight forward and differs little from our earlier treatment. The isolobal principle
permits us to substitute one to six BH fragments with isolobal fragments. We will
explore below some of the consequences.

In order to explore whether isolobal main-group and transition-metal fragments
generate a simple description of mixed main-group and transition-element com-
pounds, we need to generate the frontier-orbital sets of transition-metal fragments.
In Figure 4.2 an octahedral complex with two-electron neutral ligands and a group-6
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metal (d6) is sequentially stripped of three ligands. In each step, one orbital and two
electrons are removed and an ML bonding/antibonding MO pair collapses to a sin-
gle, empty orbital in the HOMO–LUMO gap. As with the main-group fragments,
these orbitals constitute the frontier set.

There is a difference, however. The “t2g” orbitals remain uncomfortably close
in energy to the orbitals generated by the ligand removal process. Later transition
metals with �-acceptor ligands produce a larger energy gap between the frontier
set and the “t2g” set. Earlier metals with � donors reduce the gap (Section 3.35).
In the former case (group-8 and 9 metals with CO ligands) the frontier orbitals of
EHn fragments, n = 3, 2, 1, are isolobal with MLm fragments, m = 5, 4, 3. Thus,
a 16-electron C2v Fe(CO)4 fragment is isolobal with a six-electron C2v CH2 frag-
ment. Hence, Fe3(CO)12 is a metal analog of cyclopropane C3H6 in the sense that
both are constructed of three two-orbital–two-electron fragments. Cute, no? But
the best part is that now one can mix and match these fragments thereby generat-
ing (�-CH2)Fe2(CO)8 and (�2-C2H4)Fe(CO)4 all of which are known compounds
(Figure 4.3). Without an isolobal analysis, the relationship between the four com-
pounds would not be obvious.

Exercise 4.1. Fragment ethane into two CH3 radicals. Construct a neutral M(CO)m

fragment isolobal with CH3. Give the structures and compositions of all compounds
analogous to ethane that can be formed with these two isolobal main-group and
transition-metal fragments.

Answer. The CO ligand is a good � acceptor so it is likely that the t2g set will not
be involved in the principal bonding interactions. Hence we need a ML5 fragment
(Figure 4.2) with a single frontier orbital containing 6 + 1 electrons, i.e., a group-7
metal. Mn is one possibility thereby generating Mn2(CO)10 and (CH3)Mn(CO)5 as
the two metal compounds isolobal with C2H6.

4.1.2 Caveats

The effectiveness of a fragment analysis depends on the extent to which the per-
turbation of the fragment electronic structures is restricted to the frontier orbital
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set. To behave in the manner of a main-group fragment, an isolobal metal fragment
must present to a bonding partner the same number of orbitals containing the same
number of electrons as its main-group model does, e.g., to be isolobal with BH,
three orbitals and two electrons only must be used. However, these frontier orbitals
are not without contributions from the fragment ligands. Even with XH, the �-
symmetry frontier orbital contains H character. For the analogous ML3 fragment,
all three frontier orbitals contain M–L antibonding character. Considering the fact
that metal–ligand interactions depend on geometry, the frontier and “t2g” sets of a
MLm fragment will be sensitive to geometric changes on combining with another
fragment. This point is explored further below. Just keep in mind that the behavior
of a given metal fragment is more flexible than that of a main-group fragment.
Thus, we saw in Chapter 3 that octahedral clusters utilizing three (cve = 86) or four
(cve = 84) frontier orbitals per fragment are known.

These cautions are necessary because the isolobal idea works so well in many
cases that one can easily be seduced into giving it a greater generality than justified.
The message is that fragment analyses must be done thoughtfully. The saving feature
is that classes of metal clusters do follow a 15n or 14n + 2 cluster valence electron
count analogous to the 5n or 4n + 2 count for main-group clusters. It follows that
similar isolobal fragment analyses should be possible leading to the generation of all
the mixed main-group–transition-metal fragment possibilities. Thus, the isolobal
concept is of value in providing connections between mixed main-group–transition-
element clusters and their main-group and transition-metal parents provided it is
used with understanding.

4.1.3 Applications

We are now prepared to apply the isolobal concept to simple p-block/d-block clus-
ters. We begin with three-connect clusters amenable to localized bonding models.
Consider P4 to be constructed from four P fragments (Figure 4.4). We use four
three-orbital–three-electron fragments, i.e., an E fragment in Figure 4.1 where E
is a group-15 element and the lone-pair orbital is external to the cluster. From
Figure 4.2, only the ML3 fragment provides three orbitals if the t2g set is at
low energy. Hence, a metal with 6 + 3 = 9 valence electrons, e.g., Co from
group 9, is appropriate. A metal analog of P4 then is Co4(CO)12 (Figure 3.1).
Consequently, we predict mixed PnM4−n clusters to be tetrahedral with compo-
sitions Pn{Co(CO)3}4−n. Of these, PCo3(CO)9 is known. The others, however,
constitute reasonable synthetic targets. For a given framework containing 2, 3,
4, . . ., n fragments, the isolobal principle leads to ready prediction of 1, 2, 3, . . .,
n − 1 mixed compounds in terms of composition and structure. Hence, for large
clusters the number of possible mixed-group–transition-metal clusters becomes
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impressive. If one permits more than two different fragment types to be used,
then the number of possible compounds becomes huge. Most importantly, we need
no new bonding concepts in addition to those already discussed in Chapters 2
and 3.

Exercise 4.2. What hydrocarbon cluster is analogous to Co4(CO)12? Write the
main-group and metal isolobal fragments. Write out the compositions and draw the
structures of all the mixed Co/C clusters possible between these two homonuclear
Co and C clusters.
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Exercise 4.2

Answer. Co4(CO)12 is made up of three Co(CO)3 fragments which are three-
orbital–three-electron fragments. From Figure 4.1 we require an EH fragment
with three electrons populating the three frontier orbitals, i.e., E = C, Si, etc.
fit our requirements. Thus, CH is isolobal with Co(CO)3 and tetrahedrane, C4H4,
is analogous to Co4(CO)12. The mixed main-group–transition-metal clusters that
can be generated are: (CH)n{Co(CO)3}4−n which are shown above. As exempli-
fied by the work of Seyferth and Nicholas, the chemistries of RCCo3(CO)9 and
(C2R2)Co2(CO)6 are extensive ones.
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4.1.4 Variation of fragment ligands

The ancillary ligand variations possible for a main-group fragment are relatively
modest compared to the possibilities for a transition-metal fragment. Thus, for B
there are BR, R = H, CH3, etc., and BL, L = a Lewis base such as CO or PR3. BR is
a three-orbital–two-electron fragment whereas BL is a three-orbital–three-electron
fragment like CH. For a metal fragment, not only can the population of the frontier
orbitals change but the number can change as well. For example, distortion of a
group-8 C2v ML4 fragment into a C4v fragment results in a stabilization of one
frontier orbital leaving a single empty frontier orbital fragment (Figure 4.5). An
Fe(CO)4 fragment, then, can act either as a fragment isolobal with CH2 (Figure
4.3) or BH3 by simply adjusting geometry of the four ancillary ligands. So we
would describe the metal fragments differently in [(CO)4Fe(�2-C2H4)] (see also
Exercise 4.3.) vs. [(CO)4FeH]−. The latter is analogous to [BH4]−. It follows that
the steric requirements of the ancillary ligands can affect the electronic capabilities
of a given metal fragment.

Another way of appreciating the dependence of frontier-orbital character on
ancillary-ligand geometry is to repeat the exercise of generating MLm fragments
but begin with a square planar ML4 complex instead. There are now sets of four
ML strongly bonding and antibonding orbitals plus six M-based orbitals (five d
and one p), shown in Figure 4.6. In a d8 metal complex the lower four M orbitals
are populated. Removing two ligands one by one in the manner done previously
generates fragments that have one and two frontier orbitals. At this rather crude
level, a C4v ML5 fragment, M = Cr, is seen to be isolobal to a C2v ML3 fragment,
M = [Pt]2+, and a C2v ML4 fragment, M = Fe, is seen to be isolobal to a C2v ML2

fragment, M = Pt. However, the low-lying metal p orbital can become involved,
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and Mingos has discussed situations in which this orbital plays an important role.
For a more detailed analysis and discussion of ML3 and ML2 fragments including
orbital symmetries and correlation diagrams, see Albright, Burdett and Whangbo.

Exercise 4.3. Compare the coordination of C2H4 to Fe(CO)4 vs. Ni(PR3)2 using a
fragment analysis.

Answer. As shown in Figure 4.2, the frontier orbitals of a C2v Fe(CO)4 fragment
are a1 and b2 symmetry functions (two electrons) suitable for interacting with the
� and �* MOs of ethylene (two electrons). The former constitutes the primary
ligand donor–metal acceptor � interaction whereas the latter constitutes the sec-
ondary metal donor–ligand � acceptor interaction. In the d10 Ni(PR3)2 fragment
(Figure 4.6) with the five lowest-lying orbitals filled, the two frontier orbitals with
2 electrons are analogous to those of the iron fragment. Hence, the Ni–ethylene
interaction is qualitatively the same as the Fe–ethylene interaction.

An important ancillary ligand in organometallic chemistry is �5-C5R5 (Cp, R = H,
or Cp*, R = Me) which is usually considered to occupy three metal coordination
positions on a metal center, i.e., a “tridentate” ligand. We can generate fragments
containing CpMLn fragments beginning with the 18-electron pseudo-octahedral
CpML3 complex with a group-7 metal center (Figure 4.7). Note that the “t2g” set
only contains six of the seven metal valence electrons as one must be used in
binding the ancillary Cp ligand, i.e., a neutral Cp ligand brings only five elec-
trons to the molecular dance rather than the six electrons of the three monodentate
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two-electron ligands of a M(CO)3 fragment. If one considers the cyclopentadienyl
ligand as a monoanion, [Cp]−, it is a six-electron ligand; however, the metal oxida-
tion state must be adjusted accordingly (a monocationic group-7 metal center is d6).
Take your choice! In either case, the diagram in Figure 4.7 is analogous to that in
Figure 4.2.

Exercise 4.4. Suggest a CpM fragment isolobal with a BH fragment. Systematically
replace one and two BH fragments in B5H9 with this metal fragment and enumerate
all isomers.

Answer. A BH fragment possesses three orbitals (two of � and one of � symmetry)
containing two electrons. Hence, a CpM fragment with M = a group-9 metal is
the appropriate choice (Figure 4.7). This leads to metal derivatives of B5H9 of the
type (CpM)n(BH)n−5(H)4 for M = Co, Rh or Ir. The square pyramidal nido-cluster
possesses two types of vertices, one apical and four basal. Hence, for n = 1, two
isomers are possible whereas for n = 2, three isomers are possible. The structures
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are shown above and examples of all are known with selected group-9 metals – an
impressive example of the usefulness of the isolobal approach.

4.2 Metal variation with fixed ancillary-ligand set

We saw in Chapter 3 that the structures of small main-group clusters were repro-
duced in transition-metal clusters of the same nuclearity. This provided our first look
at metal-cluster bonding. However, we also saw that the more flexible bonding sys-
tem of a transition metal led to greater complexity. There was correspondingly
greater difficulty in evaluating a given cluster composition in terms of geometric
and electronic structure. In terms of fragment analyses, a transition-metal fragment
can adjust its frontier orbitals. This flexibility in bonding will be carried over to the
mixed compounds. The new feature – not found in metal clusters alone – is that
the preferred main-group tendencies will compete with the preferred transition-
metal preferences. To explore this idea in the context of isolobal fragments we
need to investigate how flexible electronic behavior of transition-metal fragments
is expressed in the language of isolobal fragments.

All of the compounds discussed to this point in this chapter are accommodated
by this assumption that the three filled “t2g” orbitals do not constitute part of the
frontier-orbital set. However, there are well-known organometallic examples where
these metal d functions do participate in bonding. Hoffmann labels this behavior
“into the t2g set.” Let’s take a look at some dinuclear metal complexes that provide
geometric evidence of the partial utilization of the “t2g” set in bonding.
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Consistent with our analyses above, CpMn(CO)3 is a known 18-electron com-
pound. The 17-electron CpMo(CO)3 fragment is found as a dimer with an M–M
single bond (Figure 4.8). In order to be isolobal with CH3, the latter must use
one “t2g” orbital plus one electron in bonding. Seventeen-electron CpFe(CO)2,
with an “unused,” filled “t2g” set, is also isolobal with CH3! Further, 15-electron
CpMo(CO)2 behaves as if it were isolobal with CH as it is found as a dimer with
a short Mo–Mo bond attributed to a Mo≡Mo triple bond. Hence, two of the “t2g”
orbitals and three electrons must be used in the bonding. The Fe analog, 15-electron
CpFe(CO) also forms a multiply bonded dimer which is isolated at low temper-
atures by photolysis of [CpFe(CO)2]2 in an inert matrix. It now must utilize one
orbital from the “t2g” set to be viewed as isolobal with CH.

In contrast to an E–H fragment, where variation in the main-group element E
simply changes the frontier orbital populations, changes in metal identity for a LnM
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fragment can generate changes in both the frontier-orbital set and population. We
must be prepared to deal with this behavior in main-group–transition-metal clusters
in spite of the fact that unambiguous geometric evidence for fragment electronic
structure is rarely available.

Exercise 4.5. Count the skeletal electron pairs (or cluster valence electrons) in
the organometallic complex shown below at the left. Is there a relationship to
cyclobutadiene iron tricarbonyl shown next to it?

(OC)3Ru C
R CRW

Cp(CO)2

Cp(CO)2
W

RC
R
C

CRC
R

(OC)3Fe

Exercise 4.5

Answer. A sep count approach is natural for an isolobal analysis. Taken as three
orbital fragments, the CR fragments count as three each and the Ru(CO)3 fragment
most likely counts as two. In view of the discussion above, the CpW(CO)2 fragment
can be counted as a three-orbital–three-electron fragment. The total is (6 + 2 +
6)/2 = 14/2 = 7 sep. The structure should be based on an octahedron with one
unoccupied vertex exactly as found. Viewed as a cluster analogous to B5H9, other
isomers are possible depending on how the three different fragments are distributed
over the framework. If the CpW(CO)2 fragments are converted into their isolobal CR
equivalents and the Ru(CO)3 fragment is moved to the apical position by exchange
with one CpW(CO)2 fragment then one sees a relationship to (CO)3Fe(�4-C4H4).

4.3 Metal–ligand complex vs. heteronuclear cluster

The ability to deconstruct a complex molecule into a set of fragments with com-
patible bonding properties along with an understanding of isolobal behavior places
us in a position to explore main-group–transition-metal clusters in some detail.
As described in the introduction to the chapter, the main-group entity can be
viewed either as a complex ligand or a part of a cluster network in which both
metal and main-group atoms participate. For example, isoelectronic CpCoC4H4

and CpCoB4H8 can be treated as mononuclear metal complexes or monometal-
lic analogs of B5H9 (Figure 4.9) in order to rationalize structure by counting
electrons. In terms of electronic structure, the metallaborane is better treated as
a heteroatom cluster as the electronegativities of the B and Fe centers are of com-
parable magnitude. One practical consequence of this is that 2-CpCoB4H8 and
2,4-{Cp*Co}2B3H7 are known (Exercise 4.4) whereas the C analogs are not. Of
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course, it is dangerous to base conclusions on negative evidence but approximate
calculations suggest that hypothetical 2-CpCoC4H4 has little or no barrier to re-
arrangement to 1-CpCoC4H8.

The metal–ligand perspective is easy to appreciate when there is a single
transition-metal center. How about multimetal clusters? In Chapter 3 we mentioned
that a metal cluster such as Ru5(CO)15(PPh) (Figure 3.5) can be equally well con-
sidered a homonuclear nido-pentametallic cluster containing a �4-PPh ligand or a
heteronuclear closo-hexanuclear cluster with five metal fragments and one main-
group fragment. Which is preferable? It depends on the situation. In the example
under consideration, the five metal atoms establish the identity of the compound as
a metal cluster and for the purposes of correlating compound stoichiometry with
electron count, neither method has an advantage. Certainly as the electronegativity
of the main-group fragment becomes larger, its treatment as a bridging or capping
ligand becomes more realistic than the cluster view.

Let’s compare the two views with the real example in Figure 4.10. Reaction of
CpRh(CO)2 with alkyne yields a trinuclear complex with the alkyne coordinated
parallel to a Rh–Rh bond (48 cve if the alkyne is a four-electron ligand). Shown
immediately beneath it is a representation of the compound as a nido-cluster with
sep = 7 and a square-pyramidal geometry analogous to that of, e.g., 2,3-C2B3H7.
Heating causes CO-ligand loss and formation of a trinuclear complex with �3-CPh
ligands capping opposite sides (48 cve with CR a three-electron ligand). Apparently
a C≡C triple bond has been cleaved. Again, a cluster representation is possible. This
is a closo-2,3,4-Rh3C2 cluster with sep = 6 and a trigonal-bipyramidal geometry
analogous to that of, e.g., 1,5-C2B3H5. In dicarbon carboranes (Chapter 2), clus-
ter isomers with non-adjacent carbon fragments are more stable than those with
adjacent fragments, i.e., stability is driven by charge distribution. As 1,2-C2B3H5

rearranges to 1,5-C2B3H5 cleavage of the C–C interaction is a consequence of
cluster electronic structure, i.e., the C–C bond cleavage is no longer spectacular.
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A similar conclusion is possible for the metal analogs. Note that metal analogs of
1,2-C2B3H5 are known, e.g., Fe3(CO)9(PhCCPh) (far right Figure 4.10).

When the number of metal and main-group fragments is nearly equal, the con-
sequences of competition between preferred modes of cluster behavior should be
most readily observed. Consider the (CpM)4E4H4 clusters, E = B, M = Co, Ni,
of Grimes and a C analog, E = C, M = Fe, of Okazaki. As shown in Figure 4.11
all have a dodecahedral cluster structure with an expected sep = 9. However, the
cobaltaborane and ferracarbyne have eight sep and the nickelaborane has ten sep!
These clusters are members of the cubane class of clusters, eight-atom M4E4 clus-
ters or M4 tetrahedra with E face-capping ligands, which exhibit large variations in
electron count. They will be treated in detail in Chapter 5.

4.4 p-Block–d-block metal complexes

The isolobal idea has had considerable impact on organometallic chemistry. Closely
related metal compounds containing p-block element ligands other than C also
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benefit from the isolobal concept. In Figure 4.12, representative metal complexes
of Cn and En ligands, n = 2–6, are compared. For n = 2–5 the compounds are
isolectronic; however, for n = 6 (“triple decker” complexes) they are not. This
comparison has been highlighted by the term “inorganometallic” chemistry and a
more comprehensive treatment will be found in a monograph of the same title. The
focus is the coordination of the main-group entity to the metal center even though
the main-group species may not have independent existence. In the case of the �

complex of ethylene, the free ligand is available but others, e.g., cyclobutadiene, are
not. Other p-block analogs of these ligands, if known, have more fleeting lifetimes.
In some cases, bulky ligands permit a structural type to be characterized as a free
entity, e.g., disilene.
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Like the borane analog of coordinated cyclobutadiene (Figure 4.9), inorgano-
metallic analogs are found in isomeric forms not known for the organometallic
analogs. A few are shown in Figure 4.13. An E2 ligand has additional sites of Lewis
basicity, i.e., lone pairs or hydridic H atoms, leading to different coordination sites.
As shown, the cluster model provides a convenient explanation for the alternative
forms of complexes containing four- and five-membered rings. Metal–ligand and
cluster views can be understood as limiting models much like the two limiting mod-
els for olefin coordination, i.e., the Dewar model vs. the metallacyclopropane model.
Each real compound lies somewhere in the continuum of possibilities between the
two limits.

Group-13 and -14 analogs of the two C1 complexes shown at the left side of
Figure 4.14 are compared to the right. The differences between these p-block
analogs and the organometallic compounds are clear. The binding of the [BH4]− ion
to a metal center is associated with one to three B–H–M bridges, and the example
shown exhibits two. [BH4]− is isoelectronic to CH4, and [(CO)4Mo(BH4)]− may
be considered a putative methane complex. The silane complex Cp*(CO)2CrHSiR3

is another analog of a methane complex but now the bridging Si–H–Cr hydrogen
is sufficiently unusual to be called “agostic” in the manner of C–H–M bridges.

The carbene complex contains a M=C double bond. A similar interaction in the
group-13 analog must arise from interaction of an empty �-symmetry orbital on the
main-group atom with a filled metal orbital of matching symmetry. Three possible
scenarios are represented by the examples shown. With chelating oxygen ligands
on the B atom, the orientation of the borane ligand permits significant interaction
with a filled �-symmetry orbital on the Fe center. Hence, it is represented with a
Fe=B double bond. In contrast, the same bonding network with phenyl groups on
B exhibits a solid-state structure with the plane of the BPh2 nearly perpendicular to
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the plane of symmetry of the CpFe(CO)2 fragment. Hence, no double bond with the
principal �-symmetry orbital is possible and a weak � Fe→B interaction is implied.
Finally, in the presence of Lewis bases, coordination to the empty valence orbital
on the B atom precludes interaction with the metal center. Related observations
are reported for Si, an element with an electronegativity similar to that of B. Thus,
compounds with M=Si and M=Ge bonds have been characterized, but they were
preceded in time by compounds containing a Lewis base coordinated to the Si
center. Clearly this acid–base interaction is competitive with M=Si double-bond
formation. Our major point is that element variation within a cluster framework
should have equally large effects on cluster properties.

4.5 Carborane analogs of cyclopentadienyl–metal complexes

In Chapter 2, Section 2.6.1 we mentioned Hawthorne’s analogy between the frontier
orbitals of the [�5-C5H5]− ([Cp]−) ligand and those of the nido-[C2B9H11]2− dian-
ion (Figure 4.15). The former is a very common ancillary ligand in organometallic
chemistry and the latter has developed into a potent ligand for metal coordination.
In parallel chemistry, principally by Grimes, nido-carboranes such as C2B4H8 were
deprotonated to form nido-[C2B4H6]2− ligands also presenting a five-atom–six-
electron face to a metal center (Figure 4.15). These pentagonal-pyramidal clusters
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can be “decapitated” to form [C2B3H7]2− thereby forming an isoelectronic analog
of the [Cp]− ligand. Other planar five-membered rings, with or without heteroatoms,
have been used with effect to mimic the [Cp]− ligand. For example, [P5]− (Figure
4.12) as well as heteroatomic rings, e.g., [SB2C2H4]− and mono- and tricarbon
carboranes have been fruitfully employed.

This extensive adjunct to organometallic chemistry will be briefly illustrated to
show that the metal–ligand description is particularly appropriate. That is, although
the compounds can certainly be considered as clusters, important aspects of their
behavior are readily accommodated in the context of coordination chemistry. The
discussion will be limited to [C2B4H6]2− and [C2B9H11]2− analogs of the [Cp]−

ligand.

4.5.1 Complexes of [C2B9H11]2−

A couple of compounds are illustrated in Figure 4.16, and a recent compilation
may be found in a review by Jemmis. First, the numerous commo-[(C2B9H11)2M]n

complexes are analogs of metallocenes on the one hand and vertex-fused clusters
on the other. Although we only discuss transition-metal complexes here, many
examples containing main-group elements have been characterized as well, e.g.,
[(C2B9H11)2Si] with the same geometry as the Co complex in Figure 4.16. Similar
main-group metallocene complexes are known, e.g., (�5-C5Me5)2Si with a sand-
wich structure. Like the metallocenes, odd-electron species are often accessible for
the same metal/ligand set, e.g., [(C2B9H11)2Fe]2− and [(C2B9H11)2Fe]− are analogs
of ferrocene and ferrocenium. There is a difference, however, as now the carborane
FeIII complex is the more stable form.

Many complexes have the symmetrical structure illustrated for [(C2B9H11)2Co]−

in Figure 4.16; however, “slipped” structures are known as well for electron-rich
metals. The Cp ligand can adopt �1, one-electron and �3, three-electron binding
modes as well as the more common �5, five-electron mode. So too, the carborane
analog can adjust to the ligand electronic requirements of the metal. Although
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[(C2B9H11)2Ni] and [(C2B9H11)2Ni]− exhibit symmetrical structures (the first with
cisoid pairs of C atoms, the second with transoid C), [(C2B9H11)2Ni]2− is found to
adopt a slipped structure (shorter M–B and longer Ni–C distances). This first pair
of compounds has been suggested by Hawthorne as the heart of a molecular-sized
stepping motor driven by electron transfer.

Like the carboranes themselves, cluster rearrangements take place with adjacent
C atoms moving to non-adjacent vertices on the icosahedral skeleton. Again there is
a difference in that these rearrangements occur under much milder conditions than
those for the metal-free C2B10H12 clusters. As with the metal-free boranes, replace-
ment of external cluster one-electron H ligands with two-electron Lewis bases
changes the charge on the cluster. Hence, a neutral analog of [(C2B9H11)2Fe]2− is
[(NEt3C2B9H11)2Fe] in which a triethylamine ligand has replaced one B terminal
H on each of the two carborane cages.

Exercise 4.6. Test the compounds [(C2B9H11)2Co]− and [(C2B9H11)2Ni]2− for
electronic saturation both as metallocenes and as vertex-fused clusters.

Answer. The [C2B9H11]2− ligand is a six-electron ligand (four if considered neu-
tral) and CoIII has six electrons (Co−I has ten) giving 18 electrons for the metal
center. Applying the Jemmis mno rule, we have m = 2 clusters, n = 23 vertices,
and o = 1 shared single-vertex atom = 26 electron pairs required. The four CH
groups contribute six pairs, the 18 BH groups 18 pairs, the Co 11/2 pairs (the 6 “t2g”
electrons are considered non-bonding) and the negative charge 1/2 pair to give a total
of 26. In the same manner, the Ni compound yields 6 + 6 + 8 = 20 for the Ni
center. The calculated mno is the same but there are now 6 + 18 + 2 + 1 = 27
pairs available. Ligand “slippage” relieves the electronic situation from both metal–
ligand and cluster perspectives.
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Mixed-ligand systems such as CpCo(C2B9H11), shown in Figure 4.16, and
CpCo(Et2C2B4H4), shown in Figure 4.17, are also metallocene analogs. So-called
“ansa” metallocenes have their analog in the “Venus fly-trap” of Hawthorne. As
shown in Figure 4.16, joining two nido-carboranes together at the open faces gen-
erates a chelating ligand system that effectively acts as a hexadentate ligand. The
higher negative charge on the carborane ligands relative to a cyclopentadienyl lig-
and plus the chelate effect makes this ligand a highly effective metal sequestering
agent.

4.5.2 Multidecker complexes

Removal of the apical BH fragment from CpCo(Et2C2B4H4) opens access to a large
body of chemistry in which the borane Cp analog serves as the internal “bread
slices” of multidecker sandwich complexes such as the two metal, tripledecker and
three metal, tetradecker complexes shown in Figure 4.17. Continued use of this
strategy leads to penta- and hexadecker complexes. Like their metallocene analogs
multidecker complexes permit the incorporation of a variety of metals and metal
oxidation states and the cluster count for these compounds is just one possibility out
of many. For example, Siebert has described examples containing 30–33 valence
electrons, i.e., CpM(C3B2H5)M′Cp; M M′ = FeCo, CoCo, CoNi, and NiNi. Note
that this valence count is a metal–ligand count, e.g., for CpCo(C3B2H5)CoCp: 2
Cp + 2 Co + central ring = 2 × 5 + 2 × 9 + 3 = 31 ve. The compounds with
FeCo, CoCo+ and NiNi− are diamagnetic; those with FeCo+, CoCo, NiCo+ and
NiNi are paramagnetic with one unpaired electron; and those with NiCo and NiNi
are paramagnetic with two unpaired electrons.

A good example of the large variation in electron counts possible for the same
qualitative shape is provided by tripledecker complexes, three of which are shown at
the bottom of Figure 4.12. The valence electron counts for the Re, Co and Mo com-
plexes are 24, 34 and 28, respectively. How does this compare with a cluster count?
An example of a tripledecker complex following the counting rule is 30-ve (�6–
1,3,5-Me3C6H3)Cr(1,3,5-Me3C6H3)Cr(�6–1,3,5-Me3C6H3). It has a planar mesity-
lene ring sandwiched between two (�6–1,3,5-Me3C6H3)Cr fragments. Each of the
latter is equivalent to (CO)3Cr, a zero-electron–three-orbital fragment whereas each
of the six R–C fragments is a three-electron–three-orbital fragment. Thus, it pos-
sesses nine sep which is the requirement for an eight-vertex closo-cluster. Note that
the eight-vertex hexagonal bipyramid is not the more spherical eight-vertex dodeca-
hedron of borane chemistry. The deviation of tripledeckers from a “normal” cluster
count is not a problem if one chooses to view them as metal–ligand complexes. In
fact, Jemmis showed how metal and central ring composition changes affect the
positioning of the HOMO–LUMO gap and, hence, the valence electron count.



4.5 Carborane analogs of cp–metal complexes 159

BHH
C

C
H

HB
BH

Co

[CpCo(C2B4H6)]

B
H

base

BH
C
H

C
H

HB
BH

Co

[CpCo(C2B3H7)]

HH

+M

−2H+

+ CpM

BH
C
R

C
R

HB
BH

Co

Co

M

BH
C
R

C
R

HB
BR

Co

M

BH
C
R

C
R

HB
BR

Figure 4.17

Exercise 4.7. How many valence electrons does [Cp*2Co2(Et2C2B3H3)] (structure
in Figure 4.17) possess? Can one reasonably view this compound as an example of
a closo-M2E5 pentagonal-bipyramidal cluster?

Answer. The valence electron count is: 2 Cp* + 2 Co + Et2C2B3H3 = 10 + 18 +
2 = 30. The sep count is: 2 Cp*Co + 3 BH + 2 CR = (4 + 6 + 6)/2 = 8 which is
appropriate for a seven-vertex closo-deltahedron. Alternatively, the cve count is: 2
Cp*+2 Co+3 B+2 C+3 H+2 R=10+18+9+8+3+2=50 which is appro-
priate for a M2E5 pentagonal bipyramid (an all-metal cluster would have 14n +
2 = 100 yielding 50 for a M2E5 cluster).

4.5.3 Cluster aspects

These carborane ligands also demonstrate their cluster personalities in a number of
ways. Just as the [C2B9H11]2− ligand was made by base removal of a BH fragment
from 1,2-C2B10H12, so too the coordinated [C2B9H11]2− is subject to degradation
under basic conditions, e.g., 1-(CpCo)-2,3-C2B9H11 on treatment with base fol-
lowed by oxidation yields 11-vertex, 12-sep closo-1-(CpCo)-2,3-C2B8H10 (Figure
4.18). Clearly, the view of 1-(CpCo)-2,3-C2B9H11 as a cluster more easily accom-
modates this type of reactivity.

Hawthorne has described a rhodium carborane system in which the metal is
capable of reversibly moving from an open face of the carborane to its external
hydride surface where it “walks” around (Figure 4.18, bottom). Exo-nido species
such as this one are potentially stable geometries, e.g., the Mn compound shown
in Figure 4.18, upper right, is possible because B–H terminal H have Lewis-base
character (recall (CO)5Cr{�1-B2H4(PMe3)2} shown in Figure 4.13).
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The coordinating ability of the B–H bond is also expressed in the chemistry
of carborane complexes of the earlier metals. Stone has provided examples of the
complex ways in which the carborane ligand can become involved in chemistry
of metal carbyne complexes. As shown in Figure 4.19, the generation of M–H–B
interactions serves to stabilize the Ru center. As with any such three-center–two-
electron bridging interaction, the bridging H atom has protonic character and can
be removed by a base to generate a M–B bond. These kinds of carborane cluster
ligands can lead to beautifully complex species like the tungsten diiron complex
shown at the bottom of Figure 4.19.

Exercise 4.8. Consider the WFe2 complex at the bottom of Figure 4.19 as a
trinuclear metal “cluster” and show that the number of cluster valence electrons =
48.

Answer. It is perhaps easier to let all the ligands remain neutral rather than trying
to calculate metal oxidation states: 8 CO + MeC + C2Me2B9H9 + 2 B–Fe bonds
+ W + 2 Fe + charge = 16 + 3 + 4 + 2 + 6 + 16 + 1 = 48.

In this chapter we have strayed from the avowed focus on clusters. But it was
judged worthwhile to emphasize the strong connections that exist with mononuclear
organometallic chemistry via metallocene analogs. The treatment has been brief
but also serves as a pedagogically useful exercise of the isolobal principle. With
this preparation, we are now ready to tackle mixed main-group–transition-metal
systems in a systematic fashion in the next chapter. Fragment analysis and the
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isolobal principle can be used to sort and organize the known compounds as well as
search for geometric and electronic properties that reflect evidence of competition
between the metal and main-group fragments.

Problems

1. How many different neutral square-pyramidal cluster compounds can you “synthesize”
on paper using the isolobal principle, the cluster electron-counting rules, and SiH and
CpRh fragments only.

2. The Fe(CO)4 fragment can add PMe3 or two H atoms to give (CO)4FePMe3 or the dihy-
dride (CO)4FeH2, respectively. However, although BH3 adds PMe3 to give H3BPMe3,
addition of two H atoms to give BH5 does not yield a stable stoichiometry. Use the
isolobal analogy to develop an explanation.

3. Using a fragment analysis and the isolobal analogy describe the bonding in the following
molecules. As part of your discussion generate a main-group molecule isolobal to the
inorganometallic species.

(OC)4Fe Fe(CO)4

Ge

Ph Ph

Se
Se

(OC)2CpCr CrCp(CO)2

As As

MnCp(CO)2

MnCp(CO)2

(OC)2CpMn

(OC)2CpMn

Problem 4.3
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4. Analyze the bonding of the following two molecules. On the basis of your analy-
sis, account for the fact that the compound containing a single Cr atom absorbs at
27 930 cm−1 whereas the one with two Cr atoms absorbs at 16 070 cm−1.

(OC)5Cr

As

Ph

H

H (OC)5Cr

As

Ph

Cr(CO)5

Problem 4.4

5. The organometallic compound shown below is represented with a Cr≡Cr triple bond
in the literature. Describe it as a cluster compound. The measured Cr–Cr distance is
2.34 Å consistent with a triple bond. Comment on factors that favor localized Cr–Cr
multiple bonding vs. delocalized cluster bonding as a mechanism for accommodating
the electronic unsaturation.
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6. The metal–ligand complex, (CO)4Fe-B(�5-C5Me5) is reported as a “terminal borylene”
metal complex, i.e., it possesses a B–R fragment coordinated to a single metal center.
Formulate this compound as a metal cluster.

7. Consider the two WRu compounds at the top of Figure 4.19 as dinuclear metal com-
plexes and show that they are electronically saturated 34-cve complexes. Now count the
electrons at each metal center. Does this justify Stone’s representation of the bonding
in the WRuC three-membered ring?

8. Stone considers the compound shown below to be an electronically unsaturated 32-
electron dinuclear metal complex. Justify this conclusion. The compound adds PMe3

to yield the product shown. Is it now saturated?
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9. Consider the WFe2 compound at the bottom of Figure 4.19 as a fused cluster as shown
below. Does it obey the electron-counting rules? Hint: first calculate the count for an
all-metal (or main-group) fused cluster system and then subtract ten electrons for each
metal replaced by a main-group atom (or add ten for each main-group atom replaced
by a metal).

W Fe
Fe

Fe
W

W
Fe

Problem 4.9

10. The complex [Pb5{Mo(CO)3}2]4− has been recently reported (Yong et al., 2005) and
exhibits the structure shown below. Does the compound obey the electron-counting rules
for clusters? If not, where might one seek an explanation of its behavior? Consider
explicitly tripledecker complexes as well as complications caused by separating the
external cluster lone pairs from cluster bonding pairs (see Chapter 2, Problem 12). For
your information, the measured distance between the Mo atoms is 3.216 Å, whereas
twice the covalent radius of Mo is 2.90 Å, the Mo–Mo distance in [Mo2(CO)10]2−

is 3.123 Å and the Mo–Mo distance in the 27-valence electron tripledecker complex
CpMo(�5-As5)MoCp is 2.764 Å.
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Edwin, J., Bochmann, M., Böhm, M. C., Brennan, D. E., Geiger, W. E., Krüger, C.,
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5

Main-group–transition-metal clusters

A large number of mixed main-group–transition-metal clusters can be understood
with isolobal ideas and the electron-counting rules. However, there is a grow-
ing number that cannot. These clusters are more closely related to metal clusters
than main-group clusters. In this chapter we begin with a survey of the “rule-
abiding” mixed-element clusters with emphasis on variety rather than comprehen-
siveness. Why a cursory survey? Because with a solid background of main-group
and transition-metal cluster behavior under our belts, the isolobal analogy permits
a ready understanding of mixed systems that follow the rules. Understanding per-
mits prediction of possible stoichiometry and structure thereby generating goals for
future synthesis.

It is the second compound type that constitutes an interesting challenge to our
views of cluster electronic structure. With this compound type we encounter a
structural response arising from main-group and transition-metal atom competition
within the context of a molecular cluster. This competition generates both cluster
shapes invariant to change in electron count as well as new cluster-structure types
associated with unusual electron counts. Both pose a problem of interpretation.
But the problem is a worthwhile one as structures that deviate from the electron-
counting rules contain information on the electronic factors that underlie cluster
chemistry in general. “Failure” of the rules actually constitutes a gateway leading
to compounds with hybrid properties not accessible with either pure main-group
or transition-metal clusters. Useful chemistry is all about properties and the more
ways we develop to vary and control properties the better off we are.

5.1 Isolobal analogs of p-block and d-block clusters

The types of mixed p-block–d-block clusters that follow the isolobal principle and
cluster electron-counting rules can be organized and compared in several different
ways. Variables are cluster size and shape and main-group and transition-element
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ratios and identities. We have selected systems that illustrate each of these variables
thereby revealing relationships that would be hidden in the absence of the cluster
connection. Metallaboranes predominate in this discussion simply because they
constitute the most abundant class of four-connect and higher clusters. It is the
intrinsic electronic structure of the B atom (electronegativity and less than half-
filled valence shell) that fosters cluster generation and it continues to do so when
combined with transition metals. However, examples containing a selection of the
other p-block main-group elements will also be given at the end of this section. As
might be expected, many of the latter examples are three-connect clusters.

5.1.1 A carborane model

We know from the work of the cluster pioneer, Williams, that carboranes follow
the borane paradigm. For example, the series of five carboranes CnB6–n(H10–n), n =
0–4, all exhibit nido-pentagonal-pyramidal cluster shapes in accord with a cluster
electron count of eight sep. The difference between members of the series is the
number of B–H–B bridges (Figure 5.1). We expect this conformity as the C and
B atoms have the same number and type of valence orbitals. Do transition-metal
fragments, with a larger valence set, follow the electron-counting rules as closely?

5.1.2 Closo-clusters

With group-8/9 metal fragments and acceptor ancillary ligands the answer is a
cautious yes. In Figure 5.2 a series of clusters exhibiting a three-connect tetrahedral
shape (sep = 6) is shown. For this series, the all-B member, B4H8, is a transient
species only observed by mass spectrometry, but the metal analog, H4Ru4(CO)12, is
a known compound. A complete series with the same metal fragment is not known.
Although Mn vs. Fe only changes the number of skeletal H, we have seen in the
homonuclear cluster systems that the presence or absence of bridging H can be a
significant perturbation on cluster structure for metal systems.

For the four-connect, seven-sep, closo-octahedral series shown in Figure 5.3
examples of the B, [B6H6]2−, and metal, H2Ru6(CO)18, clusters are known
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(Chapters 2 and 3). Pleasingly, examples with M/B > 1, < 1 and = 1 are seen
to be direct structural analogs of each other as well as the homonuclear parents. If
one moves from Co to Ru, however, a hint that the more versatile bonding properties
of a metal fragment vs. a main-group fragment appears. For example, the sep = 7
ruthenaboranes shown at the bottom exhibit capped square-pyramidal rather than
closo-octahedral shapes presumably due to the necessity of accommodating addi-
tional bridging H to meet the required cluster electron count with a group-8 Cp*M
fragment. Note that the capping moiety is a B–H fragment.

One should not draw structural/stability conclusions from the absence of MB5

and M5B clusters in the first series. Quite possibly it is simply a question of finding
the appropriate synthesis. On the other hand, there is reason to believe that there
are problems with both structures. The two bridging H atoms of the known com-
pounds are associated with M–M edges, and the MB5 cluster with a single metal
atom possesses no M–M edge for protonation. An anionic cluster would not have
this problem. At the other compositional extreme, the M5B system may not follow
the main-group cluster scenario because a more stable alternative is accessible. For
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example, the cluster Os5(CO)16BH has been reported by Shore and, in the absence
of structural information, might be viewed as a member of the closo-series in
Figure 5.3, i.e., five Os(CO)3 fragments (analogous to CpCo fragments), one B–H
and one extra CO equivalent to two bridging H atoms gives sep = 7. Contrariwise,
its structure (Figure 5.4) shows an interstitial B and a separate metal framework H
atom. Hence, rather than a two-electron B–H fragment, we have a three-electron
B and a one-electron H. This gives a total of four electrons and a cluster count of
sep = 8. As now there are only five cluster atoms, an arachno-geometry is required
and observed. In fact, the cluster structure is analogous to that of COs5(CO)16,
a compound with an interstitial C atom generated by the addition of CO to an
Os analog of CFe5(CO)15 (Figure 3.7). This shape can be generated by remov-
ing two non-adjacent equatorial vertices from a pentagonal bipyramid as shown in
Figure 5.4. Note that CRu5H2(CO)15 has the same shape as COs5(CO)16 so the sub-
stitution of CO for 2H is not the cause of the non-octahedral shape. The observed
cluster structure for BOs5H(CO)16 may well be Nature’s response to the size mis-
match between metal and main-group fragments – a response permitted by the more
flexible bonding available to the metal centers.

5.1.3 Nido-clusters

What is the situation for more open clusters? One example was encountered in
Exercise 4.4 and we now look at more metal derivatives of this seven-sep nido-
square-pyramidal cluster (Figure 5.5). The end members of this series are B5H9

and H4Fe5(CO)15. The latter is not known but Fe5C(CO)15 (Figure 3.7) with an
interstitial C atom constitutes a satisfactory analog. For one- and two-metal frag-
ments compounds representing all positional isomers are known. In addition, the
dirhodapentaboranes shown exhibit evidence of balanced main-group–metal com-
petition in that the 1,2-isomer exists in solution as an equilibrium mixture of two
tautomeric forms. One is the direct analog of the borane parent, B5H9, whereas the
other, with a Rh–H–Rh bridge, is not. Both 1,2-isomers rearrange to the 2,3-isomer
which also exhibits a Rh–H–Rh bridge, but one which is now on the open square
face of the cluster.
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An eight-sep nido-series with six cluster atoms is shown in Figure 5.6. Although
no metal-rich examples are known, the series supports the conclusions above. The
all-B end member, B6H10, is known; however, the all metal structural analog is
not. As pointed out in Chapter 3, open metal clusters analogous to the larger open
boranes are not known.

This six-atom system provides an opportunity to understand how the greater
bonding flexibility of the metal fragment can complicate the interpretation of a
given molecular formula. The three MB5 compounds at the bottom of Figure 5.6
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illustrate three different bonding modes. At the far left we have a borane cluster
with an external cluster metal substituent. In the middle is a borane with a metal
fragment in a bridging position effectively replacing a bridging H atom. Finally, at
the right is a true mixed cluster – a nido-metallahexaborane with the metal fragment
incorporated into the cluster bonding network. In the first, the borane is a � ligand
of the metal or the metal fragment is a substituent of the borane cluster. In the
second, the borane is a �2-ligand to the metal or the metal fragment is a �-bridging
substituent to the borane cluster. Contrast these two with the third compound in
which both metal and borane participate in a contiguous network.

5.1.4 Arachno-clusters

Arachno-metallaboranes are not as numerous but five related, mono- and dinuclear
clusters are shown in Figure 5.7. The mononuclear open clusters are related to
organometallic complexes. Thus, Cp*IrB4H10 is an analog of a metal butadiene
complex and Cp*Ir(H)2B3H7 is an analog of an allyl complex. Viewed as clusters
they are analogs of B5H11 and B4H10, respectively. The arachno-Ir compounds do
not lose H as readily as the Co analogs, e.g., eight-sep, arachno-1-Cp*CoB4H10

rapidly converts into seven-sep, nido-Cp*CoB4H8 whereas arachno-1-Cp*IrB4H10,
shown in Figure 5.7, does not.

The dimetal species in Figure 5.7 are best compared with homonuclear
borane clusters: eight-sep B5H11 for Cp*2Ru2(CO)2B3H7 and nine-sep B6H12
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for Cp*2Ir2H2B4H8. Again the qualitative structural similarities are striking.
arachno-Cp*2Ir2H2B4H8, which is formed by the addition of borane to arachno-
Cp*2Ir2B2H8, loses H to give nido-Cp*2Ir2B4H8 (Figure 5.8). The greater tendency
for the iridaboranes to retain H carries over to the dimetal clusters. For example,
Cp*2Ir2B2H8 is known but not Cp*2Ir2B2H6, whereas Cp*2M2B2H6, M = Co, Rh,
are known but not Cp*2M2B2H8. Even though the electron-counting rules allow
the ready interchange of equivalent metals, the structures of the clusters do reflect
differences.

Likewise there are series in which the metal framework is constant and the
main-group partner varies. For example, an all metal analog of B4H10 is known
in the form of an isoelectronic set of clusters, HFe4(CO)12EHn, E = B, C, N
for n = 2, 1, 0, respectively, shown for E = B, n = 2 in Exercise 5.1 below.
The formula, HFe4(CO)12BH2, might suggest that this ferraborane is a member
of a closo-(BH)n{Fe(CO)3}5−nH2 series; however, the B atom is better viewed as
interstitial and the BH fragment contributes four electrons to the cluster bonding of
a four-, rather than five-atom cluster.

Exercise 5.1. Shown below are two organometallic clusters containing four
metal atoms. One is Fe4C(CO)13 and the other [Fe4(CO)12CC(O)OMe]− made
by the addition of [OCH3]− to the former. Note the bridging CO ligand presum-
ably migrates to the bare C atom before methoxide addition. Count the electrons
of each in terms of five-atom M4E closo-clusters. Then show that Fe4(CO)13C
can also be considered as a four-atom arachno-cluster with an interstitial C
atom. The experimentally determined dihedral angles of the metal “butterflies”
in Fe4(CO)13C and [Fe4(CO)12CC(O)OMe]− are 101◦ and 130◦ and the Fe–C–Fe
angles are 175◦ and 148◦. Which is the more reasonable view of Fe4(CO)13C –
an M4 arachno-cluster or an M4E closo-cluster? A closely related metallabo-
rane cluster is also shown. The analogous “butterfly” angle in HFe4(CO)12BH2

is 114◦ and the Fe–B–Fe angle is 162◦. What can you conclude about the
metallaborane?
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Answer. In an ideal four-atom arachno-“butterfly” cluster the dihedral angle is
109◦ whereas in an ideal five-atom closo-cluster the dihedral angle is 140◦; a dif-
ference of 31◦. The two organometallic clusters exhibit a difference in the “butterfly”
dihedral angle of 29◦ consistent with considering the carbide cluster as a four-atom
arachno-cluster and the methoxide adduct as a five-atom closo-cluster. The geomet-
ric parameters for the metallaborane are in between and insufficient in themselves
to define the proper cluster description. However, considering that the difference
between arachno-HFe4(CO)12CH and HFe4(CO)12BH2 is one E–H–Fe bridging H,
it is reasonable to describe the ferraborane as an arachno-four-atom metal cluster.
Further evidence is the fact that addition of two Rh carbonyl fragments leads to 1,2-
closo-[Rh2Fe4(CO)16B]− that rearranges to the more stable 1,6-isomer. The latter
is unambiguously characterized as an octahedral metal cluster with an interstitial
B atom.

5.1.5 Metal variation

A particularly revealing series of compounds is Cp*2M2B4H8, M = Ir, Ru, Re, Cr
(Figure 5.8). We have already seen in earlier chapters that the number of bridging
H atoms as well as the nature of the metal and B ancillary ligands can result in
a non-trivial perturbation of geometric structure. In this series, however, only the
identity of the metal is varied; hence, variations in geometry and properties can
be directly attributed to the participation of the metal. The first two compounds
follow the rules. Cp*2Ir2B4H8 is a sep = 8 (cve = 48) six-atom nido-cluster with a
geometry in accord with the electron-counting rules. The Ru compound is a capped
nido-cluster with sep = 7 (cve = 46) which is permitted for metal but not pure
borane clusters. In both cases we conclude that at the level of geometry, the metal
t2g levels behave as if they are filled and cluster non-bonding.

The 44-cve Cp*2Re2B4H8 structure exhibits yet a different geometry from those
of the Ir and Ru compounds. If one does not draw a Re–Re bond, the structure
would be nido and an isomer of nine-sep Cp*2Ir2B4H8. For metallaboranes this
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type of isomerism is possible. A known example is shown in Figure 5.9 where
two clusters of composition Cp*2Ru2B2H6C2Me2 (eight sep, 48 cve) are found to
exhibit the two different nido-geometries that can be generated by removing one
vertex from a pentagonal bipyramid. One mimics the structure of Cp*2Ir2B4H8

and the other the shape of Cp*2Re2B4H8. However, there is no M–M bond in
the ruthencarborane to the right in Figure 5.9. Is there one in Cp*2Re2B4H8? The
Re–Re distance is consistent with a Re–Re bond and on that basis rules out a nido-
structure. With a Re–Re bond the cluster can be considered a bicapped tetrahedron
with a B–H fragment capping each of the two Re2B faces of the primary Re2B2

tetrahedron shown in bold in Figure 5.8. The required sep is six but note that it is
the borane fragment that provides all six sep suggesting that the metal fragments
contribute three orbitals each but no electrons. This is consistent with a filled, cluster
non-bonding Re t2g levels, i.e., a simple isolobal relationship still holds.

A six-sep bicapped tetrahedron is the most condensed geometry possible for
a six-atom cluster. But Nature doesn’t recognize this logical limit and provides
us with 42-cve Cp*2Cr2B4H8. We have the structure, now we must interpret it.
Before doing so, let’s consider the possibilities. Suppose we continue to keep three
filled, non-bonding t2g levels on the two metal atoms. Each Cp*Cr fragment then
is a −1 electron donor to cluster bonding! One way to generate an extra pair of
electrons is to use one two-electron B–H fragment as a three-electron interstitial
B atom and a one-electron metal hydride. A quick look at the structure shows that
Nature does not adopt this option. Suppose we drop the condition of three filled,
non-bonding t2g levels. In that case we might suggest a bicapped tetrahedron with a
Cr=Cr double bond. There is a precedent. Forty-four-cve nido- Cp*2Cr2(CO)C4Ph4

(Chapter 4, Problem 5) exhibits a square-pyramidal structure with a Cr≡Cr triple
bond. But the Cr–Cr distance in Cp*2Cr2B4H8 is longer than the Re–Re distance
in Cp*2Re2B4H8! Clearly there is no localized multiple bond between the metal
atoms.

Let’s look at what does change in going from the Re to the Cr compound. True,
the cluster structure is qualitatively like that of the Re compound, but is elongated
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in the axial direction relative to the more compact Cp*2Re2B4H8. There is another
important difference as well. The chemical shifts and 11B–1H coupling constants
suggest large Re–H character for the “bridging H” in the case of Cp*2Re2B4H8,
and large B–H character for the “bridging H” in the case of Cp*2Cr2B4H8. Defi-
nitely there are subtle electronic effects that are not explained by simply counting
electrons. Approximate calculations suggest that stretching the cluster along the
M–M axis and moving the bridging H from M to B generates a larger HOMO–
LUMO gap for 42 rather than 44 cve. Reduced to the simplest terms, one of the
largely metal-based orbitals, which is filled in the Re compound, is empty in the Cr
compound. Whether one wishes to consider this another case of “into the t2g set”
as discussed in Chapter 5 or not, it is clear that this compound is unsaturated in the
same sense as Cp*2Cr2(CO)C4Ph4. The difference is that rather than exhibiting a
localized M–M multiple bond, the unsaturation is expressed in distortions of the
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cluster structure itself. With this compound, then, we enter the realm of the rule-
breakers – main-group–transition-metal clusters that exhibit geometric structures
that differ from our expectations based on the cluster electron-counting rules.

5.1.6 Other p-block–d-block clusters

Before examining the rule-breakers, we need to take a more extensive look at p-
block elements other than B – how do they conform to isolobal ideas in a cluster
context? For the four-atom tetrahedral clusters there is a large selection of known
compounds to peruse. In Figure 5.10 examples of EnM4–n, n = 1–3, containing
representative elements from groups 14–16 are shown. Application of the isolobal
principle allows us to consider Co3(CO)9SiCo(CO)4 analogous to Co3(CO)9SiR.
The Co(CO)4 fragment is isolobal to a one-electron–one-orbital substituent and
bound to the Si atom via a Si–Co two-center–two-electron bond. These electron-
precise compounds lend themselves to a metal–ligand view as well, e.g., the 50-cve
[SFe3(CO)9]2− M3E tetrahedral cluster can be viewed as a 48-cve trimetal complex
with a four-electron �3-S ligand.

Although the number of compounds is smaller, there is still a good selec-
tion of mixed main-group–transition-metal clusters with five and six vertices. In
Figure 5.11, the sets chosen show that an octahedral, four-connect cluster geometry
is supported by more elements than just B. In contrast to the situation with B, octa-
hedral clusters containing more than three p-block elements other than B are not yet
known. The 76-cve M5E and 1,6-isomers of the 66-cve M4E2 octahedral clusters
can also be viewed as 74-cve square-pyramidal and 62-cve square metal clusters
with �4-bridging ligands. The two Bi derivatives provide an interesting example
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of isomeric forms reminiscent of 1,2-C2B4H6 and 1,6-C2B4H6 with which they are
isolobal. The En, n = 4, 5, ring–metal derivatives, e.g., Figure 4.12, can be viewed
as p-block element-rich nido-MEn clusters. A more extensive compilation of this
class of compound has been made by Housecroft where examples containing the
heavier main-group elements as well as a variety of other cluster shapes including
metal clusters with interstitial main-group atoms are described.

Exercise 5.2. Consider Fe3(CO)9N2R2, Cp2Co2B8H12, Cp4Co4B2H2PPh,
Co3(CO)9GeFe(CO)2Cp, Cp3Co3(CO)B3H3 and Fe2(CO)6S2R2 with structures
shown below. Compute the sep or cve counts (choose the one that suits your
convenience) and justify observed cluster shapes. Note: for the sep count, first
divide the cluster into a set of metal and main-group fragments. How many of
these compounds can be reasonably considered metal–ligand complexes?
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Exercise 5.2

Answer. Fe3(CO)9N2R2; sep: 3 Fe(CO)3 + 2 NR = (3 × 2 + 2 × 4)/2 = 7, n = 6,
nido-octahedron with one vertex unoccupied; cve: 3 Fe + 9 CO + 2 N + 2 R = 24 +
18 + 10 + 2 = 54 (14n + 2 −12 = 74 cve for square pyramidal M5 cluster – 20 for
two M to E conversion = 54). This cluster may also be considered as a three-metal
complex with triply bridging four-electron NR ligands (24 + 18 + 8 = 50) obeying
the 18-electron rule (2 × 17 + 16 = 50). Cp2Co2B8H12; two CpCo plus eight
BH two-electron fragments and 4 bridging H, sep = 12, nido based on 11-vertex
deltahedron with the six-connect vertex unoccupied. Cp4Co4B2H2PPh; four CpCo
and two BH two-electron fragments, one PPh four-electron fragment, sep = 8, closo
based on pentagonal bipyramid; Co3(CO)9GeFe(CO)2Cp; three Co(CO)3 three-
electron fragments, one GeR three-electron fragment (CpFe(CO)2 is a one-electron
fragment like an R group), sep = 6, tetrahedral with six two-center edge bonds;
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Cp3Co3(CO)B3H3; three CpCo and three BH two-electron fragments + a two-
electron CO ligand, sep = 7, closo-octahedral; Fe2(CO)6S2R2; two Fe(CO)3 two-
electron and two SR five-electron fragments, sep = 7, arachno based on octahedron
with two adjacent vertices unoccupied, a metal dimer with two bridging SR ligands
(16 + 12 + 6 obeying the 18-electron rule (2 × 17 = 34).

5.1.7 Bare p-block–d-block clusters

Mixed cluster systems in which the main-group atoms lack external ligands are
developing rapidly. Our first example from Eichhorn is a simple one and typical
of a route that provides an alternative to the reaction of, e.g., P4, with sources
of transition-metal fragments. The Zintl ion used, [E7]3−, E = P, As, Sb, is a
two- and three-connect cluster. A solution of [E7]3− in an amine is used to dis-
place a labile ligand from a transition-metal complex containing both labile and
non-labile ligands. A set of clusters with bare group-15 networks incorporating
a M(CO)3, M = Cr, Mo, W, fragment is generated (Figure 5.12). These are most
profitably viewed as metal complexes of bare group-15 ligands. Thus, the �4-metal–
ligand interaction becomes analogous to that of a rectangular [B4H4]6− interact-
ing with [BH]2+ (Figure 2.14). Formally, the ligand is a six-electron donor to
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the 12-electron metal fragments. Increasing the electron count by a pair of elec-
trons by addition of a CO ligand to the metal center causes two M–E bonds to rupture
and one E–E bond to form. This generates the original structure of the [E7]3− ion
now acting as a simple bidentate ligand to the metal center. A high-lying lone-pair
orbital associated with the two-connect P atom at the base of the [(CO)3WP7]3−

complex is the site of electrophilic attack leading to P–H, P–R and P–M(CO)5

derivatives.
Naked group-14 atoms are isolobal to BH fragments; hence, they possess a ten-

dency to form cluster shapes with four-connect and higher vertices. The following
example of the approach to metal complexes via Zintl ions illustrates the possibil-
ities. The [(CO)3MSn9]4− clusters, M = Cr, Mo, W, are synthesized from [Sn9]4−

and exhibit bicapped square-antiprismatic shapes (Figure 5.13). In the solid state
the Cr and Mo derivatives have the metal capping the square antiprism whereas for
W the metal occupies a position in the square antiprism. Hence, these are 11-sep,
52-cve closo-cluster isomers. An advantage of Sn as a cluster atom is that 119Sn
NMR permits examination of the structural behavior in solution. It is found that
all three clusters exhibit effective C4v symmetry. The NMR experiments show that
the frameworks are dynamic in solution and that there is an equilibrium mixture of
the two different isomers in solution. This implies there is little energy difference
between metal placement in the 4- and 5-connect vertices. The NMR observation of
fast intra-molecular exchange of the metal position between �4- and �5-positions via
diamond–square–diamond rearrangements also means that the two isomer struc-
tures are separated by a small energy barrier. Thus the potential energy surface
describing this cluster bonding network must be a fairly flat one.

5.2 Rule-breakers

In Chapters 2 and 3 we examined clusters that violated the electron-counting rules
for a variety of reasons: breakdown of the separation between external and internal
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cluster bonding, e.g., strong mixing of external and internal cluster orbitals in bare
clusters; idiosyncrasies of specific cluster geometries, e.g., clusters with three-
fold symmetry axes; intrinsically small HOMO–LUMO gaps due to weak skeletal
bonding in metal clusters; and underutilization of tangential (surface) bonding
orbitals. These factors apply here, and there is no need to repeat the discussion.
Rather we focus on unexpected structures and compositions for deltahedral clusters
caused by: the electronic flexibility of transition-metal fragments; fundamental
changes in the MO ordering caused by ancillary-ligand properties; and mismatched
electronic properties of main-group and transition-metal cluster fragments. Taken
together, the examples that follow both review and exercise your understanding
of the differences between main-group and transition-metal fragments in a cluster
environment – differences implicit in the material of Chapters 2 and 3.

5.2.1 Variable electron count with constant shape

We begin with a straightforward example of rule-breaking that is representative
of the problem. The two clusters shown in Figure 5.14 illustrate two octahedral
trans-M4E2 clusters differing only by the presence or absence of one CO ligand.
Verify for yourself that the cve or sep counts of the six-atom clusters are 66 and
68 or seven and eight. There are dozens of clusters of this type known with one
of these two electron counts and trans-M4E2 cluster geometry. How does the same
geometry support two electron counts?

At one level the explanation is trivial. As pointed out in the discussion of the
differences between three-connect and four-connect clusters, it is possible to gen-
erate the same geometry with differing electron counts. Thus, if we consider the
clusters in Figure 5.14 as M4 metal clusters then one can generate a square shape
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by considering a square M4 ring that obeys the 18-electron rule (16 × 4 = 64 cve)
or one that is generated by removing two trans-vertices from an octahedral cluster
(86 – 24 = 62 cve). If one considers the triply bridging PR groups as four-electron
ligands, then the cve counts observed for four-atom clusters Fe4(CO)12(PR)2 and
Fe4(CO)11(PR)2 are 4 × 8 + 12 × 2 + 2 × 3 = 64 and 62, respectively. But let’s
look at the problem more carefully from the perspective of an octahedral M4E2

cluster to look for a more satisfying reason.
First, go back to the MO diagram of a regular homonuclear E6 or M6 octahedral

cluster which obeys the electron-counting rules. Take [B6H6]2−, for example. The
seven sep lie in bonding orbitals which are separated by a large energy gap from the
antibonding t2u LUMO, as shown in Figure 5.15. Each of the three components of
this degenerate LUMO can be described as a � antibonding (�*) orbital localized
on one of the three squares of which the octahedron can be constructed. Have a
look at the orbitals in Figure 5.15 where they are drawn for the case of E6 clusters.
Addition of two electrons to this seven-sep cluster induces a Jahn–Teller distortion.
One octahedral edge opens to generate a nido-bipentagonal pyramid which satisfies
the electron-counting rules (left side of Figure 5.15).

Why doesn’t the same situation occur for the eight-sep Fe4(CO)12(PR)2 cluster?
It has the additional sep but there is no edge opening of its octahedral framework.
The answer is found in the fact that the degeneracy of the LUMO is already removed
in this species by the presence of two atom types in the cluster (see right-hand side
of Figure 5.15). No additional distortion is needed. Well, you’ll say that this is
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obvious because a trans-M4E2 octahedron has less symmetry than an E6 or an M6

cluster. Indeed, orbital degeneracy splitting due to the deviation from the high ideal
polyhedral symmetry is present in almost all the mixed main-group-metal clusters.
The electron-counting rules work for most heteroatomic clusters and this splitting
can be discarded since it does not change the cve count. OK, we agree, but what is
important to notice here is that the splitting of the degeneracy is large. So, why is
it so large in these trans-M4E2 octahedra? Have a look again at the drawing of the
t2u orbitals of the E6 cluster in Figure 5.15 and then at the M4E2 cage. There are
two identical M2E2 squares and one M4 square which circle the octahedron. So, the
degeneracy splitting will give two degenerate �*(M2E2) and one �*(M4) orbitals.
Due to the nature of the metal � AOs, the overlap in the latter orbital cannot be
pure �∗on the M4 square, but is intermediate between �* and �*. Thus this MO
is rendered weakly antibonding in contrast to the strongly antibonding �*(M2E2)
MOs. The result is a single �*(M4) lying in the middle of a large energy gap.
We have a situation, encounted before, where two electron counts are possible. If
�*(M4) is occupied we have eight sep, 68 cve and if it is empty seven sep, 66 cve.
In both cases, the HOMO–LUMO gap is large enough to provide stability to the
octahedral structure. The energy of the �*(M4) MO depends largely on the effective
nuclear charge (electronegativity) of M. Without exception, the known examples
with electronegative metals such as Co have the �*(M4) at lower energy and an
eight-sep count. The examples with electropositive metals such as Ru exhibit the
seven-sep count. In the case of intermediate Fe, both electron counts are observed.

Thus, these compounds illustrate the limitations of the isolobal analogy which
the electron-counting rules are based on. The take-home lesson is that the isolobal
analogy, which focuses on the bonding similarities between fragments of different
nature, sometimes fails because the differences override the similarities. This is
what happens, for instance, with the PR and Fe(CO)3 fragments in Fe4(CO)12(PR)2.
When mixing isolobal main-group and metal fragments one must be aware of the
fact that the energy (and therefore size) of the orbitals on the different fragments may
not match the same way as in the main-group model thereby leading to unexpected
electron counts/cluster shapes.

But now you are scratching your head and wondering about M6 octahedral clus-
ters which, for group-8/9 metals and acceptor ligands, always have seven sep not
eight. Why don’t the three �*/�* t2u LUMOs lie at sufficiently low energy to be
occupied? The answer lies in the fact that each of the (�*/�*t2u) components is
destabilized by the proper combination of the filled “t2g” set associated with the
metal atoms which cap the particular M4 square considered. As a net result, these
orbitals rise in energy and remain empty in the octahedral M6 cluster. Thus, the
“t2g” sets participate to some extent in the cluster bonding, despite the fact that
the isolobal analogy requires these orbitals to be considered non-bonding. So, we
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have the amusing situation (its better to smile than cry) that even though the isolobal
[B6H6]2−/[Fe6(CO)18]2− cluster analogy ostensibly relies on the frontier “t2g” sepa-
ration, it is the participation of these orbitals that makes it work! Perhaps Woolley’s
view (Section 3.1.3) is correct. The more complex examples which follow also
emphasize the importance of all the metal valence orbitals.

5.2.2 Unusual electron count combined with unusual shape

Rather early in the history of metallaborane and metallacarborane chemistry, com-
pounds with low formal electron counts and anomalous structures arose and pro-
voked animated discussions. The Kennedy school identified isocloso-, isonido-
and isoarachno-clusters. As illustrated in Figure 5.16 a ten-atom isocloso-shape is
related to closo by a diamond–square–diamond, dsd, rearrangement which leaves
the total connectivity of the deltahedron unchanged but changes the distribution
of cluster vertex connectivities. Note that the greater the vertex inhomogeneity the
greater the deviation of cluster structure from an ideal spherical shape. As a rule, in
an isocloso-shape the metal atom occupies a site of higher connectivity than present
in the equivalent borane deltahedron (Figure 2.13). The structural observations are
fact. As always, the question is their implications for electronic structure in terms
of metal participation in cluster bonding.

An important observation of Spencer shows that isocloso- and closo-geometries
inter-convert on the addition and subtraction of a pair of electrons. As shown in
Figure 5.17 this empirical inter-conversion expresses the deltahedral rearrangement
illustrated in Figure 5.16. But this doesn’t answer the question of whether the metal
simply compensates for the loss of the electron pair by contributing another orbital
containing two electrons (“into the t2g set”) or whether the geometric change raises
the energy of a cluster MO such that it is emptied. The first explanation, equivalent
to localization of the missing electrons at the metal center, is favored by Kennedy
and described as an increase in metal oxidation state. The second, equivalent to
delocalization of the missing electrons over the cluster framework (denoted by the
term hypercloso), is favored by Baker and discussed in terms similar to the capping
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mechanism, i.e., a seven-atom capped octahedron possesses seven sep. Subsequent
bonding analyses of Johnson and Mingos suggested that both mechanisms can be
operative. A geometric adjustment is available to metal-containing systems which
is not available to pure main-group clusters. The manner in which the metal matches
the main-group fragment requires more than simplistic electron counting.

A related example, Cp*2Cr2B4H8, was mentioned in Section 5.1.5. As a member
of the series Cp*2M2B4H8, M = Ir, Ru, Re, Cr (Figure 5.8), the geometric infor-
mation is unambiguous as other factors (metal ancillary ligand, number of bridging
H atoms) are invariant. The geometric change which accomplishes the electronic
adjustment to reduced cve count is much more subtle than a dsd rearrangement,
i.e., qualitatively the Re and Cr cluster shapes are the same but the quantitative dif-
ferences tell the story. Shape is a complex reporter of the role of a metal in cluster
electronic structure.

Even when cluster shape change is large, the electronic interpretation is a
complex one. For example, consider the homologous series of rhenaboranes,
Cp*2Re2BmHm, m = 6–10 (for m = 6, two adjacent BH fragments are replaced
by BCl fragments in the structurally characterized derivative) in Figure 5.18. All
of these clusters contain a Re–Re cross-cluster bond with total vertex connectiv-
ities equal to those of the corresponding borane deltahedron. Thus, the observed
shapes are related to the borane shapes by dsd rearrangements. All the clusters are
distinctly oblate and the borane fragments are ring-like. If the Cp*Re fragments
have filled, cluster non-bonding “t2g” sets, then each cluster is lacking three sep
from the n + 1 required for a closo-cluster. Despite this difference, these clusters
are thermally stable, insensitive to air and water, and exhibit no reversible redox
waves by cyclic voltammetry. They have the electron count they need.

In the first member of the series, n = 6, the borane ring is hexagonal and pla-
nar allowing an alternate description of the compound as a 24-valence electron
tripledecker complex of the type mentioned in Chapter 4 (Figures 4.12 and 4.17).
The geometric/electronic mechanism for accommodating a varied electron count
in a tripledecker complex can be applied to the n = 7–10 rhenaboranes with a
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twist. Briefly, the strong bonding and antibonding interaction between the dimetal
fragment and borane “ring” generates filled Cp*Re–ring bonding orbitals and three
high-lying empty orbitals that in a late-metal analog would be filled (Figure 5.19).
The“twist” is that the Bn fragment cannot have the same shape found in the equiva-
lent borane. It must adopt a geometry that matches the frontier orbital set offered by
the dirhenium fragment. In essence, the dirhenium fragment adopts a structure that
generates the three pairs of electrons provided the borane fragment in turn adopts a
shape to accommodate the metal-fragment orbitals. Clearly this electronic solution
to the bonding problem involves extra metal orbitals plus cluster shape change!

If one retains formal sep count as an index, then the shape change on sep
increase leading to closo-, nido- and arachno-clusters finds an inverse in metalla-
boranes. A series of known compounds containing ten occupied vertices that
illustrates the new shapes available for mixed clusters is shown in Figure 5.20:
[(C6H6)RuB9H9]2− (11 sep), (C6H6)RuB9H9 (ten sep), (Cp*Ru)2(C6H6)RuB7H7

(nine sep) and (Cp*Re)2B8H8 (eight sep). The electronic mechanisms are totally
different. Instead of cluster opening generating low-lying orbitals to accommodate
extra electrons, cluster flattening generates high-lying orbitals to accommodate the
extra holes.

This can be carried further. As shown in Figure 5.21, a debor process, defined
as a replacement of a BH vertex with a 2– charge, can be used to generate more
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open structures all of which exhibit formal electron counts three sep lower than
those prescribed by the electron-counting rules. The parent closed cluster in this
series is the eight-vertex hexagonal bipyramid with a cross-cluster M–M bond.
The series generated is represented by three structurally characterized compounds:
Cp*2Re2B6H4Cl2, Cp*2Re2B5H2Cl5 and Cp*2Re2B4H8 which exemplify the struc-
ture types and constitute six-sep clusters (n – 3 sep) with closo-, nido- and arachno-
shapes. Presumably the same type of Re–B electronic interactions generate the three
additional high-lying, empty orbitals required in each case. Alternative descriptions
of the nido- and arachno-clusters as bicapped trigonal-bipyramidal and bicapped
tetrahedral clusters match the formal sep counts; however this hides information.
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Exercise 5.3. Consider the observed geometric structure of Cp*2Re2B7H11with a
cross-cluster Re–Re single bond and a formal sep count of nine. Derive its geometry
from nine-sep Cp*2Re2B9H9 by a debor process in order to see if it is an arachno-
cluster and a member of the set of open clusters that can be derived from the
homologous series shown in Figure 5.18.

Re

ReH

H

H

H

Exercise 5.3

Answer. The connectivity of Cp*2Re2B7H11 cannot be generated from the
observed structure of Cp*2Re2B9H9 by removing two adjacent BH fragments (the
two adjacent four-connect vertices cause the problem). However, if one first per-
forms a dsd rearrangement as shown below, then the observed shape can be gener-
ated by two debor operations. Protonation on the open face produces the observed
structure.
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In conclusion, transition-metal fragments do mimic isolobal main-group fragments
in cluster chemistry but the transition-metal fragment can foster the existence of
stable, non-canonical shapes as well. This is a satisfying conclusion simply because
one of the important aspects of organometallic chemistry is the ability to modify the
properties of bound C fragments by coordination to an appropriate transition-metal
fragment. The fact that one can do likewise with other p-block elements suggests
similar scope for new metal-modified main-group chemistry.

5.2.3 Clusters with internal atoms

Transition-metal clusters with single internal (interstitial) main-group atoms were
discussed in Chapter 3. There we found that they could be dealt with at the level
of electron counting by simply adding the valence electron count of the interstitial
atom to the cluster electron count. The electronic problem created by sets of internal
atoms, e.g., [Al69R18]3− (Chapter 2) or [Pt38(CO)44Hm]2− (Chapter 3), was found to
be a much more difficult one to understand because of the fundamentally different
ways in which inner and outer shells could interact. The two limiting cases were:
radial bonding only between outer and inner cluster (electron count determined
by the inner cluster count and the outer shell treated as external ligands); and
radial plus tangential bonding for the outer shell (electron count determined by the
outer cluster with the inner serving as “interstitial” atoms). Here, we illustrate this
structural motif with two examples of mixed main-group–transition-metal clusters.

The first cluster follows the electron-counting rules for metal clusters containing
an interstitial atom, but the replacement of a large metal atom with a small main-
group atom has a dramatic geometric consequence. Two compounds (Figure 5.22)
illustrate the point. For the structure at the left, to generate the observed electron
count, take a B atom-centered trigonal-prismatic metal cluster (cve 90) and replace
one metal fragment by an isolobal main-group fragment (cve 80). However, the
observed structure has the cluster B–H capping a rectangular face of the trigonal
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prism – perhaps you recognize this as a variant of the octahedron-capped square-
pyramid relationship. The presumed driving force for the rearrangement is the
presence of the interstitial B atom which would hold the corner B–H in the trigonal-
prismatic geometry too far from the three nearest-neighbor metal atoms to form
strong bonds. For the cluster at the right simply begin with a capped trigonal-
prismatic metal cluster with 102 cve.

The second example by Eichhorn is described as “interpenetrating As20 fullerene
and Ni12 icosahedra in the onion-skin [As@Ni12@As20]3− ion.” The outer cluster
layer is a three-connect cluster which is a pentagonal dodecahedron of Ih symmetry
(Figure 5.23). The internal cluster is a centered metal icosahedron; hence, the outer
and inner clusters are related in the same sense as a cube and an octahedron, i.e.,
switching faces and vertices generates the other shape. The As–As distances of
the outer shell are bonding but are longer than typical As–As bonds. The Ni–
Ni distances are similar to those found in centered icosahedral Ni clusters with
carbonyl ligands (Chapter 3). The high symmetry of this cluster system makes it
an outstanding example of the esthetic beauty possible in cluster chemistry.

The cluster [As@Ni12@As20]3− constitutes a problem of the type encountered
for metal clusters except the outer cluster is now made up of main-group atoms
only. The cve count is 268. If treated by the first limiting model (atoms of outer
As20 shell act as ligands only) the count should be 170 + 40 = 210 (� + 2ns)
which is obviously not the case. The As20 shell is a three-connect cluster that meets
the required cve count of 100 (5n = 5 × 20). Hence, it needs no interstitial atoms
and the second limiting model does not work either. However, the As20 pentagonal-
dodecahedral cluster can act as a dodecadentate ligand to the internal cluster as
it still has 20 lone pairs in radial functions. Hence, the predicted count is 170 (to
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account for the internal icosahedral metal cluster bonding) + 40 (the radial outer
to inner cluster bonding) + 60 (the 30 tangential bonds of the outer cluster) =
270. Based on this analysis the cluster is short of two electrons. Approximate MO
calculations show the source of the problem is related to the high cluster symmetry.
Although icosahedral Ni12 carbonyl clusters obey the cve = 170 count, the CO
ligand envelope has symmetry lower than Ih and a proper match of ligand-donor to
cluster-acceptor orbitals can be achieved. In the case of the As20 ligand a five-fold
degenerate set of acceptor orbitals of the Ni12 cluster is excluded by symmetry but
a four-fold degenerate set, allowed by symmetry, replaces it. Consequently only a
total of 19 outer to inner donor–acceptor interactions are possible thereby reducing
the count to 268, i.e., the count is 170 + 38 + 60 = 268.

5.2.4 Cubane clusters

Behavior characteristic of transition metals but not p-block elements shows up
in another guise in M4E4 cubane clusters. Two common types are illustrated in
Figure 5.24. These clusters are characterized by versatile redox activity with little
geometric change and a number of electron counts for the same cluster shape and
connectivity. For example, cubane clusters with electron counts (treated as four-
metal clusters) from 52 to 72 cve are known. As we have seen, this implies a small
HOMO–LUMO gap for the structure type.

The classic work of Dahl provides the [Cp4Fe4S4]n+ clusters which have been
structurally characterized for n = 0, 1 and 2. In addition, the structure of Cp4Co4S4
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has been determined. These four compounds constitute a set of clusters with iden-
tical ancillary ligands and cubane cluster shapes but four different electron counts
(66, 67, 68 and 72). Although the qualitative shape of the cubane cluster remains
the same, the M–M distances reflect changes in cluster electronic structure accom-
panying the addition and loss of electrons. The purpose of this section is to examine
the electronic origins of the multioxidation state/multielectron count behavior of
these cubane clusters.

Given the importance of M–S cubane clusters as electron-transfer agents in living
organisms, there is no lack of treatments of cubane clusters in the literature. We
present only high points in the context of the cluster problem using cubanes with
the metal centers in near octahedral coordination environments vs. metals in near
tetrahedral environments (Figure 5.24). The following exercise gives a perspective
of cubane clusters in terms of the electron-counting rules.

Exercise 5.4. Consider the two limiting cubane cluster geometries shown below.
The first has a fully bonded metal tetrahedron with four triply bridging ligands
whereas the latter has no M–M bonds and is a three-connect M4E4 cubic cluster.
Calculate the expected cve and sep cluster counts of each and thereby illustrate the
limits on electron count for this cluster type.
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Exercise 5.4

Answer. A tetrahedral metal cluster is expected to exhibit a cve of 60 (sep of six);
whereas if viewed as a tetracapped tetrahedron the sep remains six but the cve is
68 (tetra-M-capped M4 tetrahedron is 60 + 4 × 12 = 108 from which we subtract
4 × 10 electrons in the change from four M to four E). A M8 cube should have a
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cve of 15 × 8 = 120: thus, M4E4 should have cve = 120 – 40 = 80 which is exactly
68 + 12 (the number of electrons necessary to break all the two-center–two-electron
M–M bonds). The sep count is 12.

Figure 5.24 shows the two structure types under consideration and Figure 5.25
shows three known compounds that will serve as our working examples. Two
approaches have been used effectively: examination of the interaction of a M4E4

cluster core with an appropriate ligand (12 L or four L) set (Dahl) and examination
of the interaction of four MLxS3, X = 3 and 1, fragments in the formation of
a bridged tetramer (Harris). Of course, both generate the same MO diagram but
the latter approach has two significant pedagogical advantages. Perturbation of the
metal orbitals by the strong M–L interactions is treated first and perturbation by
the weaker M–M interactions second. The first interaction is no different from
the MO energy level diagrams for mononuclear metal complexes (octahedral and
tetrahedral) well known to students.

Consider the formation of a cubane cluster by the sharing of each E ligand
of an octahedral ML3E3 complex between three adjacent metal centers to form a
three-connect cube. We begin with the splitting pattern of an octahedral complex
and ignore the differences between the ligands L and E. This produces two sets
of orbitals loosely defined as “eg” (dz2 and dxy for the local coordinate system
indicated in Figure 5.26) and “t2g” (dxz, dyz and dx2−y2 ). In addition there are six
low-lying metal–ligand bonding orbitals. It is the “t2g” set of each metal that is
properly oriented for M–M bond formation. When interaction between the metal
orbitals of four such units in a tetrahedral array is turned on, the “t2g” set is split into
bonding and antibonding blocks both of which lie below the “eg” block. In addition
to the metal orbitals shown, there are 24 low-lying occupied M–L(E) bonding
orbitals and 16 high-lying M–L(E) antibonding orbitals (the eight “eg” orbitals also
have M–L(E) antibonding character). Hence, valence electrons in excess of 48 will
occupy the metal orbitals shown in Figure 5.26 in the order M–M bonding, M–M
antibonding and M–M non-bonding.
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The [Cp4Fe4S4]n+, n = 0, 1 and 2, clusters with 20, 19 and 18 electrons in
the metal MOs have fully occupied M–M bonding (12 electrons) and partially
occupied M–M antibonding MOs (eight, seven and six electrons). Note that a Cp
ligand is considered to occupy three metal coordination positions equivalent to
three L ligands of an octahedral L3MS3 fragment. Consistent with this analysis
the observed Fe–Fe distances are: n = 0, two bonding and four non-bonding;
n = 1, two bonding, two non-bonding and two of intermediate length; n = 2, four
bonding but long and two non-bonding. Symmetry prevents the geometric effects
of removing electrons to be localized between pairs of metal centers; however,
the overall increase in M–M bonding on reducing the valence electron count is
clear. For Cp4Co4S4 all four Co–Co distances are non-bonding consistent with
24 electrons in the metal orbitals and completely filled bonding and antibonding
sets.

Is there a 60-cve four-metal cubane cluster with pseudo-octahedral metal cen-
ters and the six M–M bonding orbitals just filled? Of course! One example is
Cp4Fe4(CO)4 with four face-bridging CO ligands. Another is a metallaborane which
connects these compounds to those discussed earlier in this chapter. This compound,
Cp*3Ru3Co(CO)2(BH)3(CO) shown in Figure 5.27, possesses 60 cve and a cubane
geometry with four M–M bonds based on observed M–M distances. Both the triply
bridging BH and CO moieties are two-electron ligands. Viewing this metallaborane
as a cubane rather than a tetracapped tetrahedron with six sep provides a pleasing
solution to a long-standing anomaly in metallaborane chemistry – the existence of
Cp4Co4B4H4 and Cp4Ni4B4H4 with eight and ten sep, respectively. The expected
closo-cluster count for an eight-vertex cluster is nine sep. Both exhibit dodecahe-
dral geometries (Figure 5.27) with Co occupying the four vertices of connectivity
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five and Ni the vertices of connectivity four. Note that counted as a four-metal
cluster, the cobaltaborane has 64 cve and four Co–Co bonds (two less than a fully
bonded tetrahedron) whereas the nickelaborane has 68 cve and two Ni–Ni bonds
(four less than a fully bonded tetrahedron). Hence, these two compounds fit well
the octahedral metal-fragment model of a cubane cluster. Other explanations have
been published, but this one, due originally to Kennedy, has the merit of placing
these compounds in the set of well-studied cubanes.

Move now to the cubanes with metals in a tetrahedral array of ligands. We begin
with acceptor ligands. As illustrated in Figure 5.28, the splitting pattern is three over
two which places the “t2” set over the “e” set, i.e., the order of filling of metal-based
orbitals is M–M non-bonding, bonding and antibonding. Again it is the “t2” orbitals
that generate the M–M interactions whereas the “e” orbitals are effectively M–M
nonbonding. Keep in mind that this grouping is pretty crude as it ignores mixing
possible in the lower symmetry of the real clusters. Now look at the chosen example,
(NO)4Fe4S4, with 60 cve. Of these, 32 occupy M–L bonding orbitals leaving 28 to
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occupy the metal orbitals. Hence, the eight non-bonding orbitals are filled, as are
the six bonding orbitals yielding a fully bonded Fe4 tetrahedron consistent with the
six observed Fe–Fe bonding distances.

The situation changes in going to [(RS)4Fe4S4]2− with tetrahedral metal sites
but �-donor ligands. As shown in Figure 5.29, the “e” non-bonding set is pushed
to higher energy and falls in between the M–M bonding and M–M antibonding sets
derived from the “t2” sets. This 54-cve four-metal cluster again uses 32 electrons
for M–L bonding leaving 22 for the metal orbitals. The six Fe–Fe bonding orbitals
are filled, as are five of the eight Fe–Fe non-bonding orbitals. Six Fe–Fe bonding
distances are observed. The fact that the highest occupied orbitals are M–M non-
bonding has important consequences for reduction and oxidation. On addition or
loss of electrons, the largest changes are in the M–L distances rather than the M–M
distances (the orbitals derived from the “e” set have M–L antibonding character)
consistent with the qualitative orbital diagram in Figure 5.29. Hence, if there is a
situation where electron transfer without large structural change is required, this
type of cubane cluster fits the bill. The model predicts that this cluster type can
accommodate cve counts ranging from 44 to 60 while retaining a completely bonded
metal tetrahedron. Quite a difference from expectations based solely on main-
group cluster models but fully in accord with those developed in Chapter 3 where
differences between clusters with acceptor vs. donor ancillary ligands can be large.

It should be clear that many other variations of cubane-cluster electronic struc-
ture are possible. Harris treats other metal-fragment geometries as well as mixed
cubanes where the metal fragments have different ligand geometries. Like the clus-
ter electron-counting rules, the beauty of this approach is that it not only allows one
to make sense of existing compounds but it stimulates the imagination concerning
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how one might design cubanes with desired electronic properties. Of course, the
orbital diagrams are crude and as the cubanes become more complex one expects
poorer agreement. In such cases one needs to go to real calculations for more precise
information.

Exercise 5.5. In the cubane clusters, Ti4S4Cp4 and Cr4S4Cp4, the observed M–M
distances are 2.93 (2) and 3.01 (4) vs. 2.83 (6) Å, respectively, where the number in
parentheses is the number of M–M distances of that value. Provide a description of
the electronic structure of these cubane clusters that rationalizes the different M–M
distances.

Answer. Consider each cubane cluster as formed by the linking of four pseudo-
octahedral CpMS3 fragments via triply shared S atoms. Harris’ Figure 5.26 applies.
Ti4S4Cp4 and Cr4S4Cp4 have total electron counts of 52 and 60, respectively, of
which 48 fill M–L bonding orbitals. This leaves four and 12 electrons, respectively,
to populate the lowest lying set of six M–M bonding orbitals shown in Figure 5.26.
Two and six M–M bonds result consistent with the observed patterns of M–M
distances in the pair of compounds.

The cubane geometry is just one variant of this cluster type. The rich variety of
cluster shapes possible is illustrated by Fe–S clusters, four examples of which are
shown in Figure 5.30. Note that coordination geometry around the Fe centers in

S

Fe
Fe

Fe

S

Fe
S

S

S S

S
Fe

Fe

S
R

S R

S
R

SR

Fe

Fe
2−

[(RS)4Fe4S4]2−

S
Fe

S

S
Fe

Fe
S

Fe

Fe
S

Br

Br
Br

Br

Br

Br

Fe

S

3−

[(Br)6Fe6S6]3−

Fe

S

S

S

S
R

Fe

R

RR

R

S
R

R
Fe

S

S
R

S

R

S
R

[(RS)4Fe4(RS)6]2−

2−
Fe

I

I
I

I

I
I

I

I

S

Fe

Fe

S

Fe

Fe
S

S

3−

[(I)8Fe8S6]3−

Figure 5.30



196 Main-group–transition-metal clusters

all of these compounds is tetrahedral and, hence, each can be thought of as being
generated from LFeS3 fragments.

Exercise 5.6. Consider the structure of [Br6Fe6S6]3− as a hexagonal prism
(Figure 5.30) and calculate the cve count required if it were a metal analog of
the (RGe)12 cluster which has the same shape (Chapter 2, Figure 2.3). Compare
this number with that calculated for the observed composition of the Fe–S cluster.
Comment on the possible source of the discrepancy. Try to develop an alternative
description of the bonding if the Fe–S compound is considered as a six-metal com-
plex with the S atoms triply bridging ligands. Note that the dotted Fe–Fe distances
shown in the structure drawing are M–M bonding.

S

S Fe
S

Br

Exercise 5.6

Answer. The (RGe)12 cluster has 5 × 12 = 60 cve so the M6E6 analog should
have 60 + 6 × 10 = 120 cve. [Br6Fe6S6]3− has 6 × 1 + 6 × 8 + 6 × 6 + 3 = 93.
The comparison suggests the Fe–S cluster lacks valence electrons and possesses
additional bonding not present in (RGe)12. Note that the Fe atoms are arranged in
a trigonally compressed octahedral array inter-penetrating a trigonally compressed
S6 octahedral array. This geometry provides six Fe–Fe bonding distances and six
Fe–Fe non-bonding distances (Kanatzidis et al., 1986). Let us consider the molecule
as a hexamer of tetrahedral BrFeS3 fragments with �-donor ligands. As shown in
Figure 5.29 the five d functions are now close in energy. To form the Fe–Fe bonds
across the diagonals of the rhoms on the circumference of the hexagonal antiprism
(see drawing above where the dashes indicate the Fe–Fe bonding directions), we
use two orbitals for each Fe center. This leaves three non-bonding orbitals and four
low-lying M–L bonding orbitals. For the hexamer six M–M bonding, 18 M–M
non-bonding and six M–M antibonding orbitals in order of increasing energy are
generated. Below this will lie 24 M–L bonding orbitals containing 48 of the 81
valence electrons available (S = four-electron ligand). Of the remaining 33, 12
fill the 6 M–M bonding orbitals leaving 21 in the 18 non-bonding orbitals. As
the highest occupied orbitals are non-bonding, redox activity is anticipated and
observed (reversible redox between three oxidation levels).

A fragment approach to this cluster type is more than an academic exercise to make
connections between known clusters. Recognition that the [CN]− ligand, which is
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isoelectronic with CO, has significant metal-binding capabilities at both the C and
N ends led to the design of isolatable building blocks for the construction of large
cluster networks. It is this property of the [CN]− ligand that generates extended
metal–cyanide frameworks such as Prussian blue (Section 8.1.2). The extraordinary
chemical and physical properties of this class of solid suggest that clusters based
on the same motif will have equally interesting properties albeit modified ones.
Of particular interest are the ion-exchange properties of the open networks and
the magnetic behavior of high-nuclearity systems in which the metal centers have
unpaired spin.

A synthetic approach utilized effectively by Rauchfuss is based on the utilization
of two different, but complementary, types of cluster building blocks. Thus, to
construct a cube, four inert [Cp*Rh(CN)3]− complexes are reacted with four labile
(C6H3Me3)Mo(CO)3 complexes to yield a cube with four Rh and four Mo corners
and cyanide-bridged edges (Figure 5.31). The Mo complex easily loses the arene
� ligand to form an acceptor corner matched to the cyanide N atoms of the donor
corner. Formed in the presence of [Cs]+, the cation is found in the center of the cubic
cage and appears to provide a measure of stability. Alternatively, cationic complexes
result if [Cp*M]2+ ions derived from Cp*MCl2 are used for the acceptor corners
rather than neutral (CO)3Mo corners.

In a related approach by Zuo and Zhou the same type of donor corner,
[TpFe(CN)3]−, where Tp is a scorpionate ligand with a three-fold axis of symme-
try (hydrotris(pyrazolyl)borate), is combined with a higher connectivity acceptor
linker, [Cu]2+. As the Cu center adopts a square pyramidal (CN)4Cu(H2O) local
coordination, the cluster structure observed is one with eight donor corners and



198 Main-group–transition-metal clusters

Cu

Cu

Fe

Fe

4+

Fe
Fe

Fe
Fe

Fe

Fe

Cu
Cu

Cu

Cu

Fe

Fe

Fe
Fe

FeFe
C

N

Cu

N
C

N
C

C
N

OH2

N

N N

NN
N

C

N
Cu

N

C
N

N
H2O

C

C

Figure 5.32

six face-capping Cu atoms (Figure 5.32, where the cubic core is shown on the left
and the coordination environments of two Cu and Fe on the right). With [Fe]3+

and [Cu]2+ the cluster contains 14 paramagnetic metal centers and the magnetic
behavior shows the presence of substantial magnetic anisotropy as well as single-
molecule-magnet behavior.

5.2.5 Cubic clusters on the molecular-cluster–solid-state borderline

One of the distinct differences between clusters of metals and bulk metals is that the
former have a significant HOMO–LUMO gap, whereas the latter have no band gap
(Section 6.2.6). The former often give rise to defined electron counts for a given
structure type leading to useful electron-counting rules. The latter permits different
electron counts for the same structure or packing type. The cubane clusters with
�-donor ligands and different electron counts for the same structure, discussed in
the previous section, possess one rudimentary metallic property. In this section we
explore this point further using larger metal clusters based on a cubic transition-
metal core.

An example of the cluster type, (CO)8Ni8(PPh)6 is shown in Figure 5.33 and
you can show for yourself that with 120 cve it constitutes an example of an eight-
metal cluster cube – a three-connect cluster system that can be adequately described
with localized M–M bonds and the 18-electron rule. However, the attentive reader
will have noted that an example of an Fe–S cluster of the same type, [I8Fe8S6]3−,
with 99 cve has already been shown in Figure 5.30. In fact there are a dozen such
clusters known with cve counts ranging between 99 and 120 possessing the same
hexacapped-cubic metal-cluster structure. In addition, there are cubic metal clusters
lacking a number of terminal ligands on the metal centers, e.g., (PR3)4Ni8Se6 with
112 cve illustrated in Figure 5.33.

There is general agreement on the MO structure of (CO)8Ni8(PPh)6 shown as a
block diagram in Figure 5.34. For contrast, we will use the Dahl fragment analysis
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this time and consider a [(CO)8Ni8]12+ cube interacting with an octahedral array
of [PPh]6

12−. A significant HOMO–LUMO gap for 120 cve is generated by the
interaction of the eight face-capping PPh ligands with 12 high-lying empty metal
sp acceptor orbitals plus six lower-lying empty metal d acceptor orbitals. It is the
M–E interactions rather than the M–M interactions that generate the maximum cve
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count of 120. Larger electron counts would destabilize the cubic metal core by
populating strongly antibonding orbitals. Experimentally, in terms of characterized
compounds of this type, 120 cve is the upper limit and this count appears to be
favored by metal ancillary ligands with �-acceptor character.

Of the two highest-lying blocks of filled MOs of mainly metal d character, the
lower one with 12 MOs can be associated with the Ni–Ni bonding in the cube. The
higher one consists of 22 MOs which are non-bonding or weakly antibonding. It is
these orbitals that are emptied with only minor structural change for cve counts less
than 120. A consequence of this model is the prediction that the lower limit of the
cve count will be met when all 22 of these MOs are empty. This would correspond
to a cve count of 76; however, to date the lowest observed is 99 for [I8Fe8S6]3−

which, you will note, has �-donor ligands.
There are many more aspects of the problem presented by cubic metal clusters of

this type that we will not consider, e.g., larger clusters containing M8 cubes, metal
and main-group atom centered M8 cubes, condensed cubic architectures leading
all the way to cubic metal units in extended solid-state chemistry. The last serves
as an appropriate point to end, as the next chapter begins our discussion of solid-
state systems, and connections, such as this one, will be emphasized in Chapter 7.
But before finishing, a comment on the origin of the behavior exhibited by the
M8 cubic clusters is in order. Most of the clusters with less than 120 cve exhibit
open-shell electronic configurations and very similar geometries. Both properties
are ultimately traceable to the high connectivity of the atoms of the cluster core
which hinders structural distortion. High connectivity is a property associated with
solid-state structures. So, in a real sense, these clusters do bridge to the solid state –
they exhibit a fixed closed-shell electron count in the manner of “rule-abiding”
metal clusters but also readily permit a range of lower electron counts with no
significant gap between occupied and unoccupied orbitals in the manner of extended
structures.

Exercise 5.7. Recall our serial discussions of large Al clusters in Chapters 2 and
3 and our attempts to match cve counts of [Al77R20]2− with large metal cluster
models in Exercise 3.15. Do the observations on the cubane M4 and cubic M8

clusters discussed above provide yet another explanation of this failure and, perhaps,
additional understanding? The structure is: [Al@Al12@Al44(AlR)20]2− (Section
2.12.5).

Answer. In the manner of the cubic M8 clusters, the external R ligands may impose
an upper limit on cve count, but the highly inter-connected cluster core may also
permit both lower counts and open-shell electronic configurations even without
the five d functions of a transition metal. As shown in Exercise 3.15, if we invoke
full radial and tangential bonding for the inner centered cluster but only radial
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bonding for the outer shell of [Al77R20]2−, we obtain a cve count of 268 vs. an
observed value of 253. If MOs associated with the “lone pairs” of the partially
exposed second shell are lying near the HOMO–LUMO gap, some can be emp-
tied. This appears to be the case for clusters like [Ga19R6]− discussed in Chap-
ter 2. The resulting low electron count and the odd number of electrons would
be analogous to those generated by the model obtained for L8M8E6 cubic clus-
ters, i.e., metal-like behavior. It also suggests any simple electron count for these
giant clusters and related nanoparticles will only constitute a limit. Variable elec-
tron count must be expected for large clusters as a reflection of incipient metal
properties.

Problems

1. Test the following clusters to see if each obeys the electron-counting rules. Use your
choice of cve or sep count.

Fe3(CO)9Sn2{CpFe(CO)2}2Os6(CO)17S2
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Os(CO)4
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Os S

Os

Fe(CO)3
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FeCp(CO)2

FeCp(CO)2

Fe3(CO)9N2H2

Fe(CO)3

(OC)3Fe
Fe(CO)3

N

H

N
H

(CpCo)3(BPh)(PPh)

CoCp

CpCo

P

CoCp

B

Ph

Ph

BH

HBBH

(OC)3Mn

B

HB

B
H

BH

BH

H
B

H
H

H

H

THF

Mn(CO)3B9H12(OC4H8) Os6(CO)18P(AuPPh3)

(OC)3Os

(CO)3
Os

Os(CO)3
(OC)3Os

Os
(CO)3

(OC)3Os AuPPh3

P

Problem 5.1

2. Given the following molecular formulae, suggest a reasonable cluster structure for each:
[Rh9(CO)21P]2−, Fe3(CO)9C2BH3, Co3(CO)9Bi, HRu3Fe(CO)12N, Fe3(CO)12(CH)As.

3. The geometric structure of Co4(CO)11Ge2{Co(CO)4}2 is shown below. Evaluate its
shape using the electron-counting rules and discuss any discrepancies found.
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(OC)3Co

(OC)2Co

Ge

Co(CO)3

Ge

Co(CO)4

Co(CO)4

Co(CO)2
OC

Problem 5.3

4. Consider the cubane cluster Cp4Fe4(CO)4 shown below. Count the electrons as a four-
metal cluster (cve and sep) and then consider it as a cubane made up by the fusion
of four pseudo-octahedral CpFe(CO)3 fragments. (Okazaki et al., 1998) have shown
that chemical reduction of this compound produces Cp4Fe4(C2H2)2 (as they write it)
possessing the dodecahedral structure shown below with the metal atoms in the five-
connect vertices and the C atoms in the four-connect vertices. A dodecahedron may be
considered as two inter-penetrating tetrahedra, one elongated (four-connect vertices of
the dodecahedron) and one flattened (five-connect vertices). Now count the number of
electrons (your choice) and the number of Fe–Fe and C–C bonds in the structure. Devise
an explanation for the changes in structure (or number of Fe–Fe and C–C bonds) on
reduction of the cubane cluster to the carbyne cluster.

C
O

OC

C
O

CpFe FeCp

Cp
Fe

HC

HC CH

C
H

CpFe

Cp
Fe

FeCp

Cp
Fe

FeCp

CO

Cp4Fe4(CO)4 Cp4Fe4C4H4

Problem 5.4

5. A cubane cluster containing a Mo2Ir2S4 core (see structure below) has been reported
(Masumori et al., 2000) to exhibit three M–M bonding distances (shown in bold lines)
and three M–M nonbonding distances in the structure. Apply the Harris analysis and
rationalize the number of M–M bonding interactions observed.

S

S

S
CpIr IrCp

Mo

Mo

S

Cl Cl
O

DMF

Cl Cl

Problem 5.5
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6. The structure of [Sb7Ni3(CO)3]3− is shown below (Charles et al., 1993). Discuss the
composition and structure in light of metal and main-group cluster principles.

Ni
NiSb

SbSb

Sb Sb

Sb Sb

Ni

Problem 5.6

7. The cluster Re8In4(CO)32 has the structure shown below (tetracapped tetrahedron). Jus-
tify its geometry based on the isolobal analogy and one form of the electron-counting
rules.

In

InIn

In

Re(CO)5

Re(CO)3

Problem 5.7
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Transition to the solid state

The theme of this text, clusters as a bridge to solid-state chemistry, requires that we
now consider the geometric and electronic aspects of substances that are solids. In
doing so we will focus our attention initially on the nature of the atomic structures
inside a bulk material; that is, we will completely ignore the surfaces. Towards the
end of this chapter we will reincorporate surfaces into the problem and, in doing
so, complete the bridge. The electronic-structure problem presented by periodic
structures exhibiting extended bonding has been effectively dealt with in several
earlier texts some of which are listed at the end of this chapter. These works go
beyond what we need to establish our theme; however, the reader interested in more
depth and breadth is referred to them.

6.1 Cluster molecules with extended bonding networks

As usual, let us begin with a discussion of geometric ideas relevant to a transition
from molecular clusters to the solid state.

6.1.1 Surface vs. core atoms

In the structure of [Al69R18]3− (Figure 2.32) the number of nearest-neighbor Al
atoms and bonding parameters changes in going from the outer shell made up
of Al–R fragments deeper into the inner shells constructed from Al atoms alone.
The internal cluster atoms display coordination numbers and inter-atomic distances
more closely associated with bulk elemental Al than single-shell clusters. Is this
reasonable? For the single-shell clusters discussed in preceding chapters the require-
ment for external ligands dominates the cluster stoichiometry/shape relationship.
Except for the bare clusters, one nearest neighbor is a ligand. In a homonuclear
cluster with more than one shell, those in the inner shells are surrounded by like

205
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atoms. Thus, if the atoms have, for example, more valence orbitals than electrons
the situation is not directly moderated by external ligands. The atoms are left to
deal with a local environment similar to that found in the bulk element so it is
no surprise that they adopt a similar geometric/electronic strategy for dealing with
it. Of course, the influence of the outer Al–R shell can extend more than a single
shell deep into the cluster. Does it? The answer is not obvious. For the large Al
clusters geometry suggests it does, i.e., the internal structure of [Al77R20]3− differs
significantly from that of [Al69R18]2− albeit still displaying the same qualitative
changes in going from outer to inner shells. But for the Au55 nanoclusters of Sec-
tion 3.6 spectroscopic evidence suggests the first ligand-free shell has properties
associated with the bulk. It is possible that the answer depends on metal type. Even
so, as cluster nuclearity increases, a size will be reached for any metal where the
electronic environment of the central atoms becomes effectively that of the bulk.

Flip the question of the size a cluster must be to exhibit bulk properties on its
head and one realizes that clusters of lower nuclearity will express a gradation of
the property as a function of size. The nature of the property in the bulk is one limit,
whereas that in a single-shell cluster is another. Potential control of this size/property
relationship justifies the excitement generated by the field of nanoparticles briefly
touched in Chapter 3. Even if the nuclearity and geometry of a nanoparticle are
known (a problem for nanochemistry), the connection between size and a given
property is not a straightforward one. Think about it. For any given property the
surface layers, first inner shell, second inner shell, etc., will make varying contribu-
tions. Even if we make the unjustified assumption that the contributions per atom
in the inner layers are the same, the contribution from the surface layer will only
be small for very large clusters. Plus, we can have different geometries at constant
nuclearity – isomers. But even for large clusters or the bulk material, the difference
between surface layers and internal layers produces a structural problem of con-
siderable practical consequence, e.g., the so-called reconstruction of pure bulk Si
surfaces. And for those concerned with reaction chemistry between solids and other
phases, which must occur at the phase boundaries (chemistry in two dimensions),
surface properties must be included. By their hybrid nature then, nanoparticles
require a good understanding of both small cluster properties and those of large
particles with extended bonding.

Exercise 6.1. A small cubic close-packed (the geometric structure is shown in
the Appendix, Figure A1.12) crystallite of Al has a perfect tetrahedral shape and
contains 120 atoms. (a) Calculate the number of surface atoms. (b) Estimate the
fraction of surface atoms on a perfect cube of Al containing 6 × 1023 atoms.

Answer. (a) Starting from the top, we have 1 Al, 3 Al, 6 Al, 10 Al, 15 Al, etc.
If we add them together then at the 8th layer with 36 Al a total of 120 atoms is
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Exercise 6.1

reached. There are four corners, six edges and four faces. This gives four corner
atoms, 6 × 6 edge atoms and 4 × 15 face atoms for a total of 100. Thus, there are
only 20 internal atoms. Show for yourself that a tetrahedral cluster containing 35
atoms (five layers) is the smallest one with any internal atoms at all and then only
one. Recall that the molecular cluster [Os10C(CO)24]2− (Figure 3.10) fits this motif
and exhibits no internal metal atoms. The internal atoms start after the 4th layer
and the internal pyramid builds up in the same progression as the larger external
one. It is perhaps more understandable now that [Al69R18]3− with only 69 atoms
plus some external ligands does not adopt a close-packed geometry but something
intermediate. (b) The measured molar density permits the volume of an Al atom
to be calculated (1.7 × 10−23 cm3) as well as the volume of the sample. Assuming
“cubic atoms” one can then calculate the number of atoms on a single face of the
cube. It is a large number (about 1016 or about 1015 cm−2); however, only about
10−7 of the total number of Al atoms.

6.1.2 The electronic-structure problem

Take a closer look at [Al69R18]3− to size up the problem. A couple of questions
come to mind. How are the geometric and electronic structures of [Al69R18]3−

connected? Are the polyhedral shapes of the various shells important or do other
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arrangements have similar energy? Is there a preferred valence electron count or,
as we saw in Chapter 5 for the cubic clusters, is there a range of allowed values?
Can we use an approach similar to those of the earlier chapters or do we need to
seek a new approach? Let’s see.

The core Al of [Al69R18]3− is bonded to 12 nearest neighbors so no simple
localized bonding model is going to suffice to address these questions. How about
the molecular-orbital model? The number of electrons and atomic orbitals required
for the simplest MO treatment of [Al69(NH2)18]3− (the ligands can be adequately
mimicked by NH2 to reduce the size of the problem) are 336 valence electrons and
384 functions yielding 384 MOs, 168 of which are filled. Doing the calculation
is not the problem. In fact, quantum chemical investigations of [Al69R18]3− and
related compounds have been published. The problem lies in the analysis of the
168 MOs in terms of useful concepts such as permitted stoichiometry or shape.

Clearly, these giant clusters are going to be a difficult problem if treated in the
manner of small, molecular clusters. But if we can’t handle the [Al69R18]3− cluster,
you ask, what approach can we use to understand that of bulk Al? The molecular
perspective we have taken thus far makes the problem look far worse. With 1023 Al
atoms don’t we need to consider 3 × 1023 valence electrons and 4 × 1023 atomic
functions for the simplest MO treatment? Well, yes, but fortunately for substances
in the form of single crystals translational symmetry provides a straightforward
way around the problem. It is presented in the next section.

But first a geometric exercise is necessary to review the close-packed, hard-sphere
model of metal structure. We will do it in a manner to reinforce the idea that there
really are clusters in bulk Al! Bulk Al exhibits a ccp structure (ABCABC) with
dAl = 2.86 Å. Study the representation of the two close-packed layers shown in
Figure 6.1. A triangular set of atoms is made transparent to show the lower
layer. If you need greater clarity, make yourself three transparencies for an over-
head projector with close-packed circles in three different colors and reproduce
Figure 6.1. There is an octahedral hole, labeled “o”, centered between the triangle
of transparent atoms in the top layer and the triangles of three dark atoms imme-
diately below. Moving outwards you should be able to find an octahedral array of
tetrahedral holes, labeled “t”, centered on the octahedral hole. At a larger radius a
hexagon of octahedral holes is coplanar with the reference octahedral hole. Viewed
from the side, the two layers of close-packed atoms contain a net of octahedral holes
at 0.5 d, where d is the spacing between the two layers of close-packed atoms. Two
nets of tetrahedral holes lie above and below at 0.225 d and 0.775 d, respectively.
There are twice as many tetrahedral holes as octahedral holes in this lattice.

The six atoms that define an octahedral hole, when excised from the lattice,
constitute an octahedral cluster. Further, a hexa-capped octahedral cluster, generated
by the fusion of six tetrahedral clusters, three up and three down, can also be cut



6.1 Cluster molecules with extended bonding networks 209

t
O

t t

t

t

t

t

t t

t

t

t

t t

t

t

t

t

t

t

t

t t

t t

t

t

t

t

t

t

t
OO

O

O O

O

O

O

O

O

O

t
t

O
B

A

Top view

Side view

O

t

B

A

C

C'

t
t

t

t
t

t
t

Cluster view

Figure 6.1

from these two layers. If these two layers are considered the A,B layers of a ccp
lattice, inclusion of C layers generates a fully capped octahedron as shown in the
“exploded” version in Figure 6.1. Here, then, is a geometric connection between
single bare clusters and a close-packed solid. One implication of seeing clusters in
a close-packed solid is the hint that between the limits of small bare clusters and a
close-packed solid there exist a range of structures that can be formed by the fusion
of small clusters. We know from the chemistry of molecular clusters that fusion is
not restricted to faces. Vertex- and edge-fused clusters are well known. We will see
a few examples of related solid-state compounds in Chapter 7. The most important
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Figure 6.2

idea to take from this discussion of geometry is that of periodicity – these structures
can be generated from a repeating template of atom, cluster or other unit.

In our discussion of main-group clusters, we emphasized the importance of
developing a model of electronic structure capable of dealing with the major features
of the problem at hand without being cluttered up with extraneous detail. We need
such a model for crystalline materials and the majority of this chapter is devoted
to illustrating and learning how to use an orbital-based approach in the manner of
the molecular-orbital approach of Chapter 1. Connections to molecules and small
clusters will be emphasized.

6.2 Outline of the electronic-structure solution in a one-dimensional world

The solution of the H atom problem of Chapter 1 provides us with the concept of
atomic orbitals. Its extension provides a model for the electronic structure of the
heavier atoms which can be developed into an MO model for molecules. Molecular
orbitals formed from linear combinations of the same AOs provide a serviceable
conceptual model for the electronic structures of molecules. The same AOs provide
an approach to the electronic structure of extended systems with periodic geometric
structures. It is useful because it avoids the nightmare of 1023 MOs dreamed above.

6.2.1 Crystal orbitals (COs) vs. molecular orbitals (MOs):
the example of the H chain

In order to illustrate important aspects of the solutions in the least-confusing system,
consider first a linear homonuclear chain of equispaced atoms with a single atomic
function each. If it is a linear chain of H atoms as shown in Figure 6.2, then the
atomic function is H 1s and there is one electron per atom for a neutral chain. This is
a hypothetical species as under normal conditions of temperature and pressure this
infinite H atom chain would revert to H2 molecules. We will see why in Section 6.2.3.
Purely hypothetical approaches, not necessarily limited to stable arrangements, give
insights to electronic factors responsible for stability of a particular arrangement of
nuclei and electrons.

As emphasized in Section 6.1, to model bulk properties a crystallite must be
large enough so that bulk properties dominate over surface properties. So too the
H-atom chain here must be long enough so the effects of the two end atoms are
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small. What we need are the MOs and relative energies. Let’s bootstrap it. Con-
sider the solutions to the MO problem for oligomers of H atoms as the chain
length is progressively increased in size. The first few are shown schematically in
Figure 6.3. Do you remember linear H3 and butadiene from Chapter 1? In the limit
as the number of H atoms approaches 1023 the spacing between the levels becomes
very small and the solutions more complex. However the nature of the lowest- and
highest-energy solutions should be clear by inspection, i.e., the lowest energy has
no nodes and the highest has the maximum number of nodes. Note that even if the
number of H atoms is infinite, the energies of the lowest and highest levels are finite,
i.e., as the number of atoms increases in the oligomer, the maximum and minimum
energies move asymptotically to finite values. We can use the number of nodes as
an index, k, and order the functions in energy accordingly. Look at the bonding
nature of the tetramer for example. For k = 0, there are three bonding interactions;
for k = 1, two bonding and one antibonding interactions; for k = 2, one bonding
and two antibonding interactions; and for k = 3, three antibonding interactions. For
the extended chain, at the bottom (lowest energy) of the large set of levels, called a
band, there will be a maximum number of bonding interactions. In the middle the
number of bonding and antibonding interactions will be nearly the same and at the
top there will be the maximum number of antibonding interactions.

Exercise 6.2. Instead of using linear chains use rings of H atoms and mimic the
bootstrapping of Figure 6.3. There is no end effect in a ring. Did it disappear or has
it been replaced by another effect? If another effect, how large a perturbation is it?
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Answer. The solution of the H3 triangle is given in Figure 1.13. The solutions for
the larger rings mimic those of a planar (CH)5 ring � system (Chapter 2, Problem 8).
The main difference with the linear model is that the solutions for k > 0 are doubly
degenerate but the variation in bonding/antibonding character from the bottom to
the top of the band is reproduced. In a ring, the end effects of the linear chain are
replaced by a bend in each three-atom segment. However, with only 100 atoms in
the ring (two terminal atoms out of 100 for the linear chain) the H–H–H angle is
176.4◦. As far as any set of three consecutive atoms is concerned, the ring for 1023

atoms is linear.

OK, fine you say. So far we are treating the extended chain like a giant molecule and
we are still stuck with drawing in 1023 levels for a mole of H atoms. In the manner of
Hoffmann, we would like to have a detailed and informative model that we can use
in discussions of the electronic properties of solids without dealing explicitly with
all these levels. In addition, we want to emphasize connections between clusters
(molecules) and extended systems (solid state). So let’s dig around in this band a
little bit more and see if we can eliminate the necessity of talking about 1023 orbitals
in order to discuss and rationalize properties of extended systems.

First ignore the ends of the chain (surfaces in the case of a three-dimensional
solid) or adopt the strategy of Exercise 6.2. Recall that the point-group symmetry
of a molecule can be used to obtain the symmetry-adapted linear combinations
of, e.g., ligand orbitals, to generate MO diagrams of molecules. So too the trans-
lational symmetry of this H atom chain can be added to the solid-state problem
to simplify the MO diagram. The one-dimensional translational unit here is an H
atom – can’t get any simpler than that. As was necessary for the regular H rings
of Exercise 6.2, we have to solve the Schrödinger equation for a system in which
all the atomic orbitals constituting the basis set are symmetry-equivalent. In the
present case they are equivalent by translational symmetry. In this simple case the
solutions of the Schrödinger equation (i.e., the coefficient of the MOs or COs)
are fully determined by symmetry – no need to solve the Schrödinger equation!
Simple symmetry tools generate an equation that expresses the translational
symmetry-adapted linear combinations and the wave functions for HN (N ∼ 1023) in
Figure 6.3. It is called a Bloch function and is:

COk �
∑

n

{exp (iknd)} [H1s (n)]

where the summation is over all the N atoms and CO = crystal orbital, n = the
individual hydrogen atom label, d = H–H distance (unit cell parameter) and k = a
translational symmetry index which can also be understood as a node counter. The
coefficient of proportionality is the normalizing factor of COk which we need not
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consider explicitly. The symmetry index k is just like the labels used in molecular
problems, e.g., the label a1g, denotes the totally symmetric ligand orbital linear
combination for an octahedral coordination compound (Chapter 1). For k = 0, CO0

� �[H1s(n)] and for k = �/d, CO�/d � �(−1)n[H1s(n)] thereby reproducing the
lowest and highest energy COs in Figure 6.1.

So instead of having an index that runs from 1 to 1023 we have one with an
absolute value that runs from 0 to �/d. In other words, the energy E(k) associated
with the COk orbital is a periodic function of k. This should not be a surprise given
the periodic expression of COk by the Bloch function. A satisfying definition of the
period range runs from−�/d to +�/d but E(k) = E(−k) and each level is degenerate
except for k = 0 (the ring model in Exercise 6.2 generates this representation,
whereas the linear chain model does not). Outside of the range 0 to �/d the E(k) vs.
k equation repeats one of the functions already generated. In fact this range defines
what is called the irreducible part of the first Brillouin zone.

If we now plot E vs. k for our H-atom chain we get a curve such as the one shown
on the left side of Figure 6.4. There is a value of k for every translational unit in
the crystal (i.e., as many values as H atoms) so the large number of points on the
curve in Figure 6.4 makes it essentially a continuous function. Don’t look, but you
suddenly have been placed in k space – reciprocal space! Please note and remember
that the sinusoidal type shape of the E(k) vs. k curve originates from the fact that we
are considering a very simple model in which all the atomic orbitals constituting the
basis set are symmetry-equivalent by translation. Moreover, this particular E(k) vs. k
curve has been calculated within the Hückel approximation which neglects overlap
between orbitals on different atoms. Within this approximation, the destabilization
of the antibonding orbitals is exactly equivalent to the stabilization of their bonding
counterparts. Although very approximate, this is the Hückel-type curve which is
usually shown in introductory textbooks. However, in the following we will go
beyond the Hückel approximation and consider overlap explicitly. When overlap is
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not neglected in the calculations, the antibonding effects are larger than the bonding
ones, exactly as in the molecular H2 example recalled in Figure 6.5, where �* is
more destabilized than � is stabilized if the overlap is considered. The result, in
the case of the H-atom chain, is a stretching of the upper part of the E(k) vs. k
curve towards higher energies, giving rise to the distorted sinusoidal curve shown
in the upper left of Figure 6.6. This, too, is ideal and, as we will see later, the band
structure of a real solid shows fairly irregular E(k) vs. k curves within the irreducible
part of the first Brillouin zone.

Half of the levels lie in the lower branch of the curve and half in the upper. Note
that in Figure 6.6, the lower half is concentrated on a smaller energy range than the
upper half, in contrast to the Hückel band of Figure 6.4. Since in the HN chain there
are N electrons and N COs (or MOs), all the levels in the lower half are occupied
and all in the upper branch are vacant. Thus, in this particular case, the HOMO
energy corresponds to the inflexion point of the E(k) vs. k curve. As the orbital
corresponding to the inflexion point is non-bonding between nearest neighbors, it
lies close to the energy of H 1s (i.e. −13.6 eV). In solid-state jargon, the HOMO
energy is called the Fermi level and is labeled εF in Figures 6.4 and 6.6.

The plot of E vs. k in Figures 6.4 or 6.6 designates the band structure of linear
HN (now extrapolated to H∞) and has characteristic properties. One is the band
width or dispersion. This corresponds to the splitting between the bonding and
antibonding MOs in, e.g., molecular H2 (Figure 6.5). Good overlap between the
1s AOs in H2 leads to a large �*/�* splitting (large |�| value within the Hückel
approximation). Similarly, good overlap between units in a chain leads to large band
width. As with a molecule, good overlap depends in general on the value of the
inter-nuclear distance, d, and AO type as well as symmetry. A very large value of d
reduces the overlap between neighboring H 1s AOs to a negligible value and renders
all the COk orbitals non-bonding and nearly degenerate. The resulting E(k) vs. k
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curve would be an almost horizontal line. The effect of two different inter-nuclear
distances (top: short; bottom: long) on band width are illustrated in Figure 6.6.

Another feature of these bands is the density of states (DOS). In solid-state
jargon, a state is an energy level E(k). The density of states is nothing more than
the concentration of levels as a function of energy and is shown at the right sides
of Figures 6.4 (Hückel approximation) and 6.6 (overlap considered). Note that the
density of CO energy levels as a function of energy is a strongly varying function
that has its largest values (actually unbound for this case) at k = 0 and �/d. The
value of DOS at any E is inversely proportional to the slope of the E(k) vs. k curve
so the smaller the band width the greater the density of states. This makes sense
as the smaller the interaction (overlap) between H atoms, the smaller the energy
over which the 1023 orbitals are distributed. Keep in mind that integral over the
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energy of the DOS curve is equal to the number of H 1s orbitals per repeat unit,
i.e. one. As stated above, a change in the inter-nuclear distance d (thus varying the
overlap magnitude) changes the band dispersion (width) and in turn changes the
DOS curve. However, the value of the integrated DOS remains constant.

We have seen that the bonding/antibonding characters of the bands vary as a
function of k and for the HN (or H∞) linear model the idea is straightforward.
However, in more complex molecules we need a numerical parameter as a guide
simply because a given MO could be bonding with respect to one pair of atoms and
antibonding with respect to another. Likewise, we need a parameter for extended
systems that mimics the overlap population used in the discussion of the bonding
character of MOs. This parameter is the crystal orbital overlap populations (COOP).
For HN the orbital pictures can be “read” directly and, as shown on the right-hand
side of Figure 6.7, the plot of COOP vs. E should be no surprise. The numerical
value of COOP for any E depends on the magnitude of the overlap, the magnitude
of the orbital coefficients and the value of the DOS at that E. Note that, as in the
case of molecules, the antibonding character of the antibonding levels overrides
the bonding character of the bonding levels. Within the Hückel approximation,
both characters have exactly similar strength (see the molecular H2 case in Figure
6.4). Just like Mulliken overlap populations for a molecule, which also depend on
overlap and orbital coefficients, the COOP curves can be used to investigate the
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origins of bonding. The integral of the COOP curve up to the Fermi level gives the
total overlap population which correlates with the strength of the bonding.

6.2.2 Consideration of a non-elementary repeat unit

Suppose now we take the same linear HN (or H∞) model in which all the H atoms
are equidistant and consider it made up of H2 repeating units rather than H atoms.
You may think it stupid to disregard the existence of the elementary d translation
and use d′ = 2d. Yes, you are absolutely right but we have a pedagogical purpose
for doing it. The process is similar to determining the MO diagram of the H2O
molecule within Cs symmetry rather than its actual C2v symmetry. Even if ignored,
the C2 axis and one of the mirror planes of the H2O molecule are still there and
the final MOs and energy levels will be the same as those generated with full C2v

symmetry. By the same token, we expect the band structure and DOS of the linear
H∞ model to be equivalent whether we consider the repeat unit to be H, H2, H3 or
Hn. Let’s see how it works with a H2 repeating unit.

First, the irreducible part of the Brillouin zone now varies from k = 0 to k =
�/d′ = �/2d. Indeed, doubling the parameter of the unit cell in real space halves
the size of the Brillouin zone (or the reciprocal-space unit cell). Second, recall that
orbital interactions are additive and that the final MO diagram (or band structure)
is just the result of the sum of all the orbital interactions. Within each individual H2

unit the interactions simply correspond to the bonding (�) and antibonding (�*)
MOs of each individual H2 unit. There are three types of interactions involving
the MOs of different H2 units: interactions between all the � orbitals interactions
between all the �* orbitals and interactions between the � and the �* orbitals.
Since all the �n orbitals are equivalent by translational symmetry, their interaction
is described by the Bloch function:

[CO�]k �
∑

n

{exp (iknd)} � (n)

This equation is similar to the one we have seen when considering the H repeat
unit, but this time it is expressed on the �(n) basis set, not on the [H1s(n)] one. Just
by drawing the [CO�]k orbitals for k = 0 and k = �/2d, it is easy to see that the
E�(k) vs. k curve (lowest dashed band on the top part of Figure 6.8) has a pseudo-
sinusoidal shape similar to that of Figure 6.6. Similarly, the interactions between
the �*(n) orbitals are described by the Bloch function:

[CO�∗]k �
∑

n

{exp (iknd)} �∗ (n)

For k = 0, [CO�*]0 � ��*(n) shows an antibonding relationship between the H2

units. For k = �/2d, [CO�*]�/2d � � (−1)n �*(n) exhibits a bonding relationship.



218 Transition to the solid state

H-H

k0 π /d ' = π /2d

εFE

σ*

σ σ band

σ* band

k0 π /2d π /d

εF
E

Figure 6.8

Unlike the E�(k) vs. k curve, the E�*(k) curve has a negative slope and a pseudo-
cosinusoidal shape (e.g., highest dashed band on the top of Figure 6.8). An interest-
ing feature of Figure 6.8 is that [CO�]�/2d and [CO�*]�/2d are degenerate. Indeed,
the former is bonding inside the H2 units and antibonding between these units,
whereas the latter exhibits exactly opposite character. Since the H–H distances are
the same inside and between the H2 units, both COs have exactly the same non-
bonding character. In a sense, considering this degeneracy means that we implicitly
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reintroduce the elementary translation d that was discarded in preferring H2 repeat-
ing units rather than H atoms.

We have now to consider the �/�* interactions, i.e., allow the [CO�]k and
[CO�*]k combinations to interact. At first glance it looks extremely complicated
since we have ∼ 1023 orbitals of each type. Symmetry saves us. Remember that k is
a kind of symmetry index. This means that [CO�]k and [CO�*]k′ can interact only if
k = k′, otherwise they are orthogonal. Thus, for each k point we have two orbitals
that interact. That is, at each individual value of k, [CO�]k and [CO�*]k mix and
[CO�*]k becomes more antibonding whereas [CO�]k becomes more bonding. The
net consequence is that the dotted curves repel each other. For a specific symmetry
reason, there is no interaction (mixing) at the special k points corresponding to k =
0 and k = �/2d. Draw the corresponding COs in the same figure (it will help if you
use two different colors) and you will see that they are orthogonal. The effect of the
�/�* interactions is sketched in the upper figure of Figure 6.8, which shows the
final band structure (solid lines) of our linear H∞ model considering H2 repeat units.
It is different from the one obtained for the same model, but considering H repeat
units! Shouldn’t they be the same? They are different because we have changed
the reciprocal lattice vector but the DOS generated from this band structure (right-
hand side of Figure 6.6) is the same. This is a relief as it is the DOS which is the
observable. Thus, although the band diagrams are not the same they are equivalent.
In fact, one can be generated from the other by folding the simple band in the lowest
figure of Figure 6.8 at the point k = �/2d. To show this for yourself, take a piece
of paper, draw the band shown in the top of Figure 6.6 and fold it at k = �/2d to
generate the bands defined by the solid lines in Figure 6.8 (top). The illustration
at the bottom of Figure 6.8 shows the band structure before and after folding. This
folding effect is an easy way to generalize a change in repeat unit size: H3, H4, . . .,
Hn repeat units lead to folding the band of Figure 6.4 into 3, 4, . . ., n equal parts,
respectively.

Exercise 6.3. Consider a linear H chain in which all the atoms are equidistant.
Paint alternative atoms with different colors, e.g., red and yellow. The yellow Hn

atoms correspond to n even and the red Hn atoms to n odd. We are left with two
inter-penetrating subnets, of two different colors. Show that the interaction of these
two subnets generates the band structure at the top of Figure 6.8. Hint: draw in color
the band structure of each subnet on the same diagram and then color the COs at
k = 0 and k = �/2d. Allow them to interact to generate the band structure at the
top of Figure 6.8.

Answer. It is easy to see that each of the yellow and red subnets has an elementary
translation of 2d which is the same as used in the double cell described just above.
The band structure of the yellow chain is that of a regular chain, with one yellow
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H per repeat unit, similar to that of Figure 6.4. However, it is important to keep in
mind that the band width is very small since the 2d distance separating the yellow
atoms is large (distance between second neighbors in the complete chain). Thus the
band is almost horizontal, lying around −13.6 eV, the H 1s energy.

The red subnet is strictly equivalent to the yellow one and the red and yellow bands
are degenerate. But thanks to the colors, you can easily distinguish them on your
drawing even if it is less clear on our black and white diagram. At k = 0, the overlap
between the yellow and red orbitals is very strong since all combinations have the
same sign. As a result, the antibonding combination is strongly destabilized and the
bonding combination is strongly stabilized. Once drawn, it is easy to see that these
orbitals are the same as those shown for k = 0 at the top of Figure 6.8. At k = �/2d
the overlap between the yellow and red orbitals is zero since its contributions have
alternative signs. By symmetry, there is no interaction at k = �/2d. Both orbitals
are non-bonding in character, but you may be worried that they are different from
those plotted at k = �/2d in Figure 6.8. Again we have a situation where the two
sets are equivalent. That is, any pair of degenerate orbitals can be replaced by a set



6.2 The electronic-structure solution in a 1-D world 221

of orthogonal, renormalized linear combinations. Taking the sum and the difference
of two orbitals is a simple way to build orthogonal combinations. As shown above,
the sum and difference of the orbitals at k = �/2d are those of Figure 6.8. Finally,
with the reasonable assumption that the strength of the yellow/red interaction varies
monotonically between k = 0 (maximum) and k = �/2d (zero), the two colored
bands repel each other in such a way that we exactly get the band structure at the
top of Figure 6.8.

In summary, we have developed three methods of generating a band structure:
from atoms, molecular fragments, and nets. The first two should remind you of our
approach to the MOs of molecules. The last is new but once the added complexity
is reduced by the translational symmetry, the operations in developing the band
structure are again similar to those for molecules. The choice of approach depends
on the problem. Although the answer cannot depend on the approach chosen, the
clarity and insight into a problem may well do so.

6.2.3 Connections between geometric and electronic structure: the Peierls
instability and its relationship with Jahn–Teller instability

In molecular systems discussed in Chapter 1, connections between MO energies,
electron count and geometric structure were described. For many systems, the
properties of the HOMO serve as a useful guide to favored geometry. Recall the
discussion of the simplification of Walsh (HOMO energy as a function of a per-
tinent geometric parameter) and Jahn–Teller effects. Are there analogous connec-
tions between geometric structure for extended chains and electronic structure as
described by COs and DOS?

First, let’s get a better feeling for molecules in solids before addressing the
principal question of this section. In our H∞ chain of Figure 6.3, shorten the distance
between adjacent H–H pairs to generate alternating short, long, short, long, etc.
spacing. The distortion of the regular chain that generates the alternating one is
sketched in Figure 6.9. The formation of pairs (H2 pairs in this case) is often
called “dimerization” even though the “dimers” are not independent. Note that
the translation d is lost and now the elementary repeat unit really is H2 and the
elementary translation is d′ = 2d. Alternatively, the short and long distances can be
represented by xd′ and (1 − x)d′, where 0 < x < 1.

This distortion will affect the bonding/antibonding strength of the COs shown
at the top of Figure 6.8. Longer distances (between H2 units) will stabilize COs
having antibonding character and destabilize COs having bonding character. Shorter
distances (inside H2 units) will have the opposite effect. It is easy to see that the
perturbation of the two COs at k = 0 is a result of destabilizing and stabilizing
contributions that virtually cancel each other. Thus, the energies at k = 0 are not
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significantly perturbed by the “dimerization.” A different result is found at k = �/d′

where both contributions add rather than cancel. [CO�]�/d′ and [CO�*]�/d′ undergo
the sum of two stabilizations and two destabilizations, respectively, and no longer
have equal energies. Hence, the degeneracy at k = �/d′ is broken. As in the case
of molecules, a lowering of symmetry (in this case the loss of the translation d)
can split orbital degeneracy. Between k = 0 and k = �/d′, the E�(k) and E�*(k) vs.
k curves are distorted in a continuous way as illustrated in Figure 6.10. The band
splits into a lower “�” band, which is occupied, and a higher “�*” band which
is empty. The “dimerization” results in a net stabilization of the highest occupied
levels (Figure 6.10) and the “dimerized” structure is expected to be more stable
than the regular one. In other words, a half-occupied band (Figure 6.8) is expected
to be unstable with respect to some kind of “dimerization” (Figure 6.10).

This effect is called Peierls instability and the astute reader will recognize that it
is directly related to first-order Jahn–Teller instability in molecular chemistry. For
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example, loss of symmetry accompanying the Jahn–Teller distortion of cyclobu-
tadiene removes the HOMO/LUMO degeneracy (left side of Figure 6.11). As
mentioned in Chapter 1, Jahn–Teller instability can also occur when a small but
non-zero HOMO–LUMO gap occurs. The case of NH3 is illustrated in the right side
of Figure 6.11. Similarly, solid-state structures with very small band gaps above
the Fermi level are subject to what is often called second-order Peierls instability.

In general, then, a band which is 1/3, 1/4 . . . 1/p occupied is subject to Peierls
instability with respect to a tri-, tetra-, p-merisation. It is important to remind you
at this point that the possibility of a Jahn–Teller instability does not always mean
the distortion occurs. The same applies for Peierls instability. There are several
reasons. First of all, Peierls instability holds rigorously for ideal one-dimensional
materials and reality is a more complicated three-dimensional space. Second, as
in the case of molecules, when high-spin states are preferred, the distortion is not
favored (see Problem 7 for an example). Third, even in the case of low-spin sys-
tems, the distortion may have additional consequences, e.g., weakening of spectator
bonds. Coupled destabilizing effects can dampen or even prevent distortion. In the
H2 case described above, there is no effect opposing the distortion, and dimeriza-
tion is complete, i.e., fully independent H2 molecules result from our hypothetical
chain.

Structural change resulting from a Peierls distortion can have dramatic effects
on the physical properties. Look at the half-filled bands of Figure 6.6. There is
no HOMO–LUMO gap. Such a situation depicts a metallic electrical conductor.
On the other hand, after Peierls distortion there is a band gap at the Fermi level
(Figure 6.10) and the material, depending on the width of the gap, is a semiconduc-
tor or an insulator. For a semiconductor, thermal excitation of electrons from the
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valence to conduction band leads to a conductivity that increases with increasing
temperature, whereas for a metal conduction decreases with increasing temperature.

Before leaving this section, we need to tell you a very important point that
beginners often forget. As in the case of Jahn–Teller instability, Peierls instability
occurs for particular electron counts. For example, “dimerization” (a distortion
leading to the doubling of the elementary unit cell parameter) is expected to occur
only in the case of a half-filled band (or nearly half-filled if the material is not
stoichiometric), i.e., Peierls instability depends on band population.

Exercise 6.4. Consider a crude, but useful, model of polyacetylene (CH)∞ con-
sisting of the ideal zig-zag (all-trans) chain shown below in which all the C–C bond
distances are equal. Draw its �-type band structure and show that it is Peierls unsta-
ble. Show that, unlike the H-chain case, the Peierls distortion does not correspond
to a doubling of the unit cell.

C
C

C
C

C
C

HHH

H H H

Exercise 6.4a

Answer. All-trans polyacetylene is an infinite planar ribbon. Although it has a
certain finite width, it is a one-dimensional system since it extends infinitely (a
very long distance in real life) in only one direction. First, set up the problem. What
is the elementary repeat unit? This is the unit cell which is defined by the smallest
translational vector. This vector is parallel to the horizontal axis in the drawing
below, i.e., the direction of polymer growth. Translation vectors do not make zig-
zags! The smallest translational vector is d and contains two CH units. The choice
of the origin of the translation vector d is arbitrary and whether you choose a zig or
a zag (CH)2 repeat unit, the final result is the same. A simplification arises from the
fact that the infinite ribbon is planar. Thus, as in conjugated planar molecules, the
� and � COs of polyacetylene do not interact by symmetry and may be considered
independently. Just as in a molecule, the � bonding levels will lie at low energy, the
antibonding �* levels will lie at very high energy and the � levels will be situated
in between irrespective of their bonding/antibonding character. Finally, there is one
2p� orbital per C atom and, because C uses three electrons to form three � bonds
(two CC and one CH bond), the 2p� AO contains one electron. Now we can develop
the �-type band structure.

The �-type interactions within each individual (CH)2 unit generate the bonding
(�) and antibonding (�*) MOs of each individual unit. The first one is occupied
(two � electrons per unit cell), whereas the second is empty. Except for the fact that
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we are dealing with � and �* COs in the place of � and �* orbitals, the process
of generating the band structure is the same as one we used for the H chain with
H2 units. The final band structure has a HOMO/LUMO degeneracy for k = �/d.
Thus, as in the case of the H chain, Peierls instability occurs leading to a distorted
structure of alternating single and double bonds. From this, one predicts a gap at
the Fermi level which renders polyacetylene a semiconductor in agreement with
experiment.

The unit cell parameter d is still the unit cell parameter of the distorted structure.
No unit cell doubling occurs during the Peierls distortion! This time, the degeneracy
splitting at k = �/d is not due to the loss of an elementary translation but to the
loss of a glide symmetry plane (combination of a mirror plane and a translation of
d/2). Glide planes, as well as screw axes, have the same effect as multiplying the
elementary translation vector by two, three, etc. They fold the bands at the edges of
the irreducible part of the Brillouin zone and their loss leads to degeneracy splitting
at these edges. Think about the kind of Peierls distortion a one-dimensional polymer
having a 31 screw axis and a 1/3 filled band would be subject to.

6.2.4 Hypothetical one-dimensional homoatomic main-group
element chain: the example of C

Consider now the problem of a regular chain of C atoms sketched in Figure 6.12.
Unlike the H chain, such a one-dimensional structure is realistic. It is, after all, a
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possible allotropic form of C and we will see in Chapter 7 that one-dimensional
structures with sp-hybridized atoms satisfying the octet rule exist. Let’s start with a
regular chain in which all C–C bond distances are equal. These are, of course, double
bonds. We now know how to tackle the band structure problem. First, identify the
repeat unit (a single C atom) and the associated orbitals (2s, 2px, 2py and 2pz).
The next step is to build four Bloch functions associated with each of these AOs
and then consider symmetry allowed interactions between COs of different Bloch
functions. The four Bloch functions are easy to build, if we remember that: (i) for
k = 0 the coefficients are all equal (i.e., with the same sign), whereas for k = �/d
their absolute values are equal but they exhibit sign alternation along the chain;
(ii) they all have the same pseudo-sinusoidal or -cosinusoidal shape, depending if
they are all bonding or all antibonding at k = 0 and vice versa at k = �/d; (iii) the
width (or dispersion) of the band associated with a Bloch function depends on the
overlap between the AOs (or MOs) on which it is expanded; (iv) their inflection
point (i.e., E(�/2d), roughly the middle of the band) is non-bonding between first
neighbors and therefore should lie approximately at the energy of the AO (or MO)
from which the Bloch function is generated.

It follows that the 2px and 2py bands are of � type, degenerate, and approximately
centered on the energy of the C 2p shell (Figure 6.12). In similar fashion the bands
associated with the 2s and 2pz AOs can be generated (dotted curves in Figure 6.12).
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The band widths of the first two are less than the second two since � overlap is
smaller than � overlap. The 2s exhibits a positive slope and is roughly centered
around the C 2s energy whereas the 2pz exhibits a negative slope and is centered
approximately on the C 2p energy. Once again, the negative slope of the 2pz curve
arises from the fact that the all-in-phase function at k = 0 is antibonding, whereas
the all-out-of-phase combination at k = �/d is bonding as shown in Figure 6.12.
As a consequence, the two � bands cross each other.

Although the � electronic structure of the C chain is well described by the � bands
of Figure 6.12 (the � orbitals do not interact with the � orbitals), this is not the case
for the 2s and 2pz Bloch functions. Both are of � type and interactions between the
corresponding two bands must be considered. As stated before, interaction between
the [CO2s]k and [CO2pz]k′ functions is symmetry allowed only for k = k′. A series
of two-orbital interactions remain, one for each value of k. Additional symmetry
properties forbid interaction for k = 0 and k = �/d (see Section 6.2.2 and Exercise
6.3). The consequence is that as k varies from 0 to �/d, the interactions go from zero
to zero through a maximum roughly situated in the middle of the k range. Thus, in
terms of the overlap criterion the two-orbital interactions should be stronger in the
middle zone of the k range. However, an interaction between two orbitals depends
also on their energy difference: the smaller the difference, the larger the interaction.
As the energy difference is closest to zero near the point where the two bands cross,
both the overlap and the energy difference parameters favor a strong interaction
roughly in the middle zone of the k range. The resulting strong band repulsion is
revealed in the solid line �-type bands shown in Figure 6.12. Thus, the final band
structure of the C chain is composed of the three solid line curves of Figure 6.12.
Remember that the bold one (�-type) is doubly degenerate.

In contrast to the earlier examples, the �-type bands have complex shapes since
the various interactions at play are no longer simple. This complexity carries over
to the DOS curve; hence DOS curves have shapes of little generality. In addition,
although of �-type, these bands have moderate dispersions as the repulsion in the
middle of the k range flattens them. The lowest one is now bonding all along the
k range with its character varying continuously from 100 % 2s to 100 % 2pz. Let’s
call it the � band. The highest one is antibonding all along the k range with its
character varying continuously from 100 % 2pz to 100 % 2s. Let’s call it the �*
band. The � band is occupied and the �* band is vacant (see why below). Clearly,
these bands are associated with the � component of the C=C double bonds of the
chain.

There are four valence electrons on C which means that we have enough elec-
trons to fill two of the four bands of Figure 6.12 (solid lines). The low-lying �

band will be fully occupied but it is not possible to fill just one of the two degen-
erate � bands. To do so would leave levels in the other � band at lower energy
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empty. Thus, the low-spin ground state corresponds to the filling of the two lowest
halves of the degenerate 2px and 2py � bands as shown in the left hand side of
Figure 6.13. All the bonding � states (or levels) are occupied, whereas all the anti-
bonding � states are empty. Thus, we have two �-type bonding electrons per unit
cell, in full agreement with a regular chain of C=C double bonds. A lot of work
for such a simple result!

But don’t get too happy and conclude that a regular C chain in which all the atoms
are doubly bonded is a good candidate for a one-dimensional allotropic form of C.
Such a structure is Peierls unstable since it has not one, but two, half-occupied �

bands. A “dimerization” is expected, i.e. a distortion which would create alternating
long and short bonds. By opening a gap at the Fermi level, such a distortion stabilizes
the occupied � states (Figure 6.13). This distorted structure can be viewed as
composed of alternating single and triple bonds which are conjugated. That is, the
single and triple bonds are shorter and longer than standard ones, respectively. This
one-dimensional C allotrope is named carbyne and it is presently unknown. It will
be considered further in Chapter 7 where some of the problems in realizing this C
form will be discussed.

If the process of generation of the band structure still seems strange go back and
review Section 1.1.2 where the MOs of an E2 diatomic molecule were developed. By
consulting Figure 1.1 and Table 1.2 you will recall that the eight valence functions
produce a set of 4 � orbitals (2s, 2pz) and two pairs of orthogonal � orbitals (2px,
2py). The complex � manifold is a consequence of the fact that the 2s and 2pz

functions have the same symmetry and mix. As a result, the lowest energy orbital
has dominant 2s character while the highest energy orbital has high 2pz character.
Parallels with the process used to develop the band structure for an infinite EN chain
should be clear. If you wish to further solidify the connections, generate a folded
Figure 6.12 by using C2 repeating units.
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6.2.5 Hypothetical one-dimensional homoatomic transition-metal chain

The replacement of main-group atoms in clusters by transition-metal atoms gener-
ates a richer structural chemistry superimposed on the cluster basics illustrated by
the p-block systems. A logical question arises here. What would a one-dimensional
material containing a transition metal look like? Well, the d AOs will generate
bands in a similar manner as the s and p orbitals. The major novelty will be the
introduction of orbitals of � symmetry. Let’s look at a hypothetical chain composed
of equidistant Ni atoms (d = 2.5 Å). The computed band structure, DOS and COOP
are illustrated in Figure 6.14. The COs at k = 0 and �/d are drawn below. As
a review of the previous section, we will reconstruct it starting from the Bloch
functions associated with the nine Ni AOs.

Following convention, the z axis lies in the chain direction. Thus we have three
AOs of � type (4s, 4pz and 3dz2 ), two sets of degenerate AOs of � type (4px,y

and 3dxz,yz) and two degenerate �-type AOs (3dxy, x2–y2 ). Recall that orbitals of �

symmetry have two nodal planes containing the rotational axis, whereas the orbitals
of � symmetry have only one nodal plane containing the rotational axis. Each of
these AOs generates a Bloch function with corresponding E(k) vs. k band widths
that depend on the overlap between nearest neighbors. Overlap varies with distance,
of course, but also it increases in the order � < � < �. Thus, the two degenerate
bands generated by the d� orbitals are the narrowest. For �-type orbitals, the overlap
also depends strongly on the quantum number n and follows the order 4p� ∼ 4s
> 3d� . As a result the bands generated by the 4p� and 4s AOs are more dispersed
than the one associated with the 3d� AOs. This is the simple part. We now must
consider the s/p/d interactions. We saw with the C chain that the final �-type band
structure becomes complex due to an avoided s/p band crossing. The same occurs
here as well as inter-mixing of the three metal AOs at any k point (except for the
4p� combinations which remain pure by symmetry at k = 0 and k = �/d). The net
result is three � bands of major 3d, 4s and 4p character for the lowest, intermediate
and highest bands, respectively. The doubly degenerate bands generated by the 3p�

and 3d� Bloch functions are weakly dispersed and well separated in energy. Note
that the 3d� band has a negative slope. Except at k = 0 and k = �/d, they repel on
interaction and become flatter.

Compare the DOS in Figures 6.12 and 6.14. It is the larger number of orbitals
in the repeat unit of the metallic chain that generates the additional complexity.
You will recall that it was often useful to discuss a complex MO in terms of its AO
components. Similarly, the DOS can be analyzed more deeply by decomposing it
into its AO components, i.e., by looking at the contributions of the individual AOs
to the total DOS. These contributions are called DOS projections and Figure 6.14
shows the 4s, 4p and 3d projections. For the sake of simplicity we have separately
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summed the three 4p AOs and the five 3d AOs. The 4s character is spread out
over the whole DOS energy range so that its contribution is weak everywhere. A
quite similar situation occurs for the 4p character in the upper part of the DOS. On
the other hand, the projection on the more contracted 3d orbitals shows that their
character is largely concentrated on the lowest part of the DOS, which is called the
d-band. These results are sketched in a very crude way in Figure 6.15. We will take
the same approach with the electronic structure of real three-dimensional metals.
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Note that this analysis is simplified. The 4p and 3d projections include orbitals of
different symmetries whereas a separation between �, � and � is preferred for a
careful analysis of the bonding in the chain.

The Ni–Ni COOP curve illustrated on the right side of Figure 6.14 reflects the
band structure shown on the left side. Each individual band is bonding in its lower
part and antibonding in its upper part. The bonding/antibonding character is more
pronounced on the more dispersed bands. Flat bands are merely non-bonding at
any k point. The COOP curve is the result of all these effects.

Finally, let’s discuss the position of the Fermi level. The 10 valence electrons
of Ni occupy the five lowest E(k) vs. k bands all of which have dominant 3d
character. There is a band gap at the Fermi level which separates the d band from
the conduction band. Hence, this analysis suggests the hypothetical chain would be
a semiconductor!

6.2.6 Hypothetical one-dimensional heteroatomic chains

In Chapter 1 we saw that in moving from homonuclear to heteronuclear diatomics
a new factor enters – the atom characters are distributed differently over the filled
and unfilled MOs. As only the filled orbitals contribute to the atomic charges, the
Mulliken charge distribution reflects the polarity of the molecule. Similar informa-
tion for the HOMO and LUMO permitted us to discuss properties such as Lewis
acidity and basicity in terms of frontier-orbital characteristics. As we were able to
unravel the DOS of the metal chain in terms of AO type, we can also interrogate
the DOS of a heteroatomic system for information on the distribution of atomic
character over the total DOS. That is, we can reveal the contributions or character
of a chosen atom to the DOS. We can begin to appreciate the power of this tool by
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Figure 6.16

observing how an extended chain of alternating Li and H atoms behaves relative to
the LiH diatomic molecule considered in Chapter 1. In this hypothetical model, we
discard the Li 2p orbitals and consider only the Li 2s.

The first thing to be recognized is that a single atom can no longer serve as the
repeating unit. This must be the LiH fragment even if all Li–H distances are equal.
Hence, we have to consider the behavior of two orbitals under the translational
symmetry of the chain with repeat distance d′ = 2d, where d is the Li–H bond
distance. The best way to solve the problem is to use the approach of Exercise 6.3
and consider two interpenetrating subnets of Li and H. As seen earlier for the H
chain of Exercise 6.3, each subnet generates a flat (almost horizontal) band (dotted
curve in Figure 6.16). The major difference is that now the two bands are not
degenerate. The Li band is centered approximately at the energy of Li 2s which is
significantly higher than the energy of H 1s, i.e., H is more electronegative (or less
electropositive) than Li.

Now let the bands interact. The bands repel each other as they did in the H problem
of Exercise 6.3. They mix in such a way that the lower band (valence band) will have
dominant H character and the higher band (conduction band) dominant Li character.
At k = �/d′, there is no interaction by symmetry. Unlike in the regular H problem
these two orbitals are no longer degenerate and their linear combinations are not
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equivalent. Like the H chain, the lowest band is bonding overall and the highest
is antibonding (solid line in Figure 6.16). The lower band is filled (two electrons
per unit cell) but now we have a charge distribution of negative H and positive Li.
There is a band gap at the Fermi level and the material will be a semiconductor or
insulator depending on the size of the gap. So, unlike the isoelectronic regular H
chain, the LiH chain is not subject to Peierls instability.

Exercise 6.5. Draw the band structure associated with the � orbitals of an infinite
B=N chain which is isoelectronic to the regular C chain analyzed in Section 6.2.4.
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k0 π/d'
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εF

B 2px,2py

N 2px,2py

B NN B NB

Exercise 6.5

Answer. The repeat unit in this system is B=N, i.e., the elementary translation is
d′ = 2d (with d = B–N). The � bands are generated by the 2px and 2py AOs of B and
N. Again, the simplest way to solve the problem is to consider two interpenetrating
networks of B and N subsystems. Each of these subnets generates a doubly degen-
erate � band, which is flat (no significant interaction) and approximately centered
at the energy of B 2p and N 2p for the B and N bands, respectively. Both degenerate
bands interact strongly at k = 0 and do not interact by symmetry at k = �/2d. The
result is qualitatively similar to that of the LiH chain, except that the bands are
doubly degenerate.

To summarize, we now have two ways by which the degeneracy at the Fermi level
found for the C atom chain can be removed. Bond alternation along the chain is one
way and substitution of the C atoms by two different alternating atoms, keeping the
total electron count constant, is the other. Both require a doubling of the elementary
translation (or unit cell).
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Exercise 6.6. One answer for Problem 6 of Chapter 2 is closo-1-THF-2-PB5H4.
It is a monomer from which one might construct a square joined by P–B donor–
acceptor interactions. With closo-1-THF-6-PB5H4 an extended chain of clusters
can be constructed. (a) Draw the chain, define the repeat unit and distance, and
draw the pertinent orbitals of the repeat unit. (b) Develop qualitative band and DOS
diagrams and predict whether the solid would have a band gap or not. (c) Partial
reduction of the chain by adding 10 mole% Li is carried out. Assume the electron
goes into a cluster-based orbital and the closed cluster structure is retained. Predict
the change in the electronic properties.
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Exercise 6.6

Answer. (a) In the drawing above only the frontier donor and acceptor orbitals
of the complex cluster repeat units are considered. The rest of the cluster orbitals
are assumed to be only slightly perturbed by chain formation. (b) This problem
is similar to that of the LiH chain, with a �-type frontier orbital on each P and B
atom in the 1,6-positions of the octahedral closo-cluster. These fragment orbitals
are external cluster orbitals pointing in the direction of the next cluster. As shown
below, this leads to two bands with the top of the lower one being largely of P
character and the bottom of the upper one largely of B character. The lower part of
the valence band should have high P character and P–B bonding character, whereas
the top of the conduction band should have high B character and P–B antibonding
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character. The band gap should be significant. The lower band will be completely
filled leading to semiconductor behavior. (c) Reducing 10 % of the repeating units
will lead to population of the conduction band suggesting the doped chain should
display metallic conductivity, i.e., behave as a “molecular wire.”

6.2.7 What we have learned from one-dimensional models – a summary

Aren’t you impressed by the elegant simplicity of this solution to our problem
of 1023 orbitals? The molecular problem is of manageable size as the number of
MOs depends on the number of basis functions used to describe the electronic
structure of the atoms in the molecule. The periodic extended structure problem is
of manageable size as we can partition the 1023 MOs formally required into a limited
number of bands of COs using a periodic description of geometric structure. We
now have all of the parts we need to mimic the parameters used to discuss molecules.
They just have different names when applied to solid-state, extended systems. Here
is a summary, our Rosetta stone, connecting small and very large systems:

molecular orbital (MO) ↔ crystal orbital (CO)
MO energy level distribution ↔ DOS

HOMO ↔ top of the valence band or Fermi level
LUMO ↔ bottom of the conduction band

HOMO–LUMO gap ↔ band gap at the Fermi level
Mulliken population analyses (charge and overlap) ↔ partitioning of DOS into

atomic or fragment contributions and COOP.

Just as a MO diagram for a molecule is built, the band structure (the final COs
on the diagram) of a one-dimensional compound is generated by summing all the
orbital interactions. A systematic way to proceed is:

(1) Identify the elementary unit cell (the smallest repeat unit).
(2) Build the MO diagram associated with the contents of the unit cell (in the simplest case

of an atom repeat unit these are its valence AOs).
(3) Build the E(k) vs. k diagram of the Bloch functions associated with each of the unit cell

MOs (or AOs). The shape of these bands is pseudo-sinusoidal/cosinusoidal.
(4) Turn on symmetry allowed interactions between the Bloch functions at each k point

(repulsion and mixing between associated bands) to generate the final COs. In the
general case, the shapes of the resulting bands will reflect characteristics of the specific
compound.

Application of these simple tools to extended structures allows many to be par-
titioned into molecular fragments thereby drawing explicit connections between
molecular and crystal electronic structures. We will use these concepts in the last
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part of this chapter to deal with the large cluster systems that lie somewhere in
between small molecules and bulk materials.

6.3 Complex extended systems

The solid-state world we want to understand is not one-dimensional in general and
the repeating unit is not as simple as an atom or diatomic molecule. To give you a
sense of the problem, we will point out the directions in which these complicating
factors take us and discuss, in qualitative terms, the solutions. Fortunately the
concepts learned by treating a one-dimensional system provide the means to do so.

6.3.1 Two- and three-dimensional extended systems

What happens when we add dimensions? Well, as we found for clusters vs. small
molecules, life becomes more complicated. Remember that k belongs to reciprocal
space. In a one-dimensional space k is reduced to a scalar (see Section 6.3.2). In a
three-dimensional space, k is a vector of components kx, ky and kz and, of course,
one now has to comprehend how the E(k) energies depend on kx, ky and kz. Even
worse one has to convey the essential elements of band structure (E vs. kx, ky and
kz) in two-dimensional pictures. This is a common problem in science. If you think
this problem is tough, consider a potential energy surface describing a reaction of
polyatomic molecules where one needs a plot of E vs. 3N − 6, where N is the
number of atoms in the molecules! Hopefully, as in the one-dimensional case, the
E(k) functions are periodic. Unfortunately, the period (the first Brillouin zone) is
no longer a segment in k space (or reciprocal space) but rather a volume centered at
the origin of the k space and defined by a polyhedron whose shape and dimensions
depend on the crystal system and cell parameters. The first Brillouin zone, which
may have a complex shape, is nothing more than an equivalent representation of
the reciprocal unit cell (reciprocal elementary repeat unit).

Simplification is necessary. We pick certain crucial points in k space, situated
on the surface of the irreducible part of the first Brillouin zone, and see how the
bands vary between the points. Recall we did a similar thing in the one-dimensional
systems by focusing attention on the k points 0 and �/d. Remember at the k = 0
point a repeat unit function is taken ++++ in the CO whereas at k = �/d it is
taken +−+−+−. Thus, for three dimensions we focus our attention on the points
where k along x, y and z can have 0 and �/d. The four points that result, called
symmetry points, are expressed in the form: symbol (kx, ky, kz). They are: � (0, 0,
0), M (�/d, �/d, �/d), K (�/d, �/d, 0) and � (0, 0, �/d). We will consider an
extended cubic array of H atoms (the repeat unit is still an H atom), where d is the
H–H distance. The points � (0, 0, 0), M (�/d, �/d, �/d) correspond to k = 0 and
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�/d in the one-dimensional case. The COs for a three-dimensional square lattice
of H atoms at the four symmetry points are illustrated in Figure 6.17. Do you see
the connection with the one-dimensional case?

Exercise 6.7. No doubt you see for K that the points at (�/d, �/d, 0), (�/d, 0,
�/d), and (0, �/d, �/d) have the same energy. The same degeneracy holds for X.
Sketch them in the manner of Figure 6.17.

kx

ky

kz

Exercise 6.7

Answer. For X (0, 0, �/d) the sign of the H 1s contribution is unchanged in the kx

and ky directions but alternates in the kz direction (shown in Figure 6.17). For (0,
�/d, 0), the xz planes have the same sign and the sign alternates in the y direction.
For (�/d, 0, 0), the yz planes have the same sign and the sign alternates in the x
direction as shown in the drawing above.
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The band structure of cubic Hn is shown in Figure 6.18 in conventional form. �

corresponds to the lowest energy as it is bonding along x, y and z (Figure 6.17),
whereas M corresponds to the highest energy as it is antibonding along x y and
z. The point K is antibonding along x and y, but bonding along z (each xy sheet
is totally antibonding but the sheet–sheet interactions are bonding). Hence, at this
symmetry point the CO is mostly antibonding. Point X is bonding along x and y, but
antibonding along z (each xy sheet is totally bonding but the sheet–sheet interactions
are antibonding). Hence, it corresponds to a mostly bonding CO. Both then will
have energies between those of � and M. Finally, the four points are joined with a
smooth curve, as shown on the left side of Figure 6.18. The corresponding DOS is
shown on the right side. In a more complex structure, intuition alone is insufficient
and calculations would be carried out at many points in k space and calculated
energies plotted. A wiggly curve analogous to that in Figure 6.18 will result from
each basis function yielding diagrams sometimes referred to as spaghetti diagrams
because of the tangle of bands. Despite this, the resulting DOS and its interpretation
employ the H-atom model as a guide in the same way as the H2 model is used as a
guide in molecular chemistry.

Exercise 6.8. Work out the band structure for a two-dimensional square array of
H atoms in the xy plane separated by a distance d.

Answer. We need to find the COs for the points in k space (kx, ky); � (0, 0), M
(�/d, �/d) and X (0, �/d). You know that 0 means no change in sign of the
function along the coordinate specified and �/d means an alternating sign. Hence,
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� (0, 0) will have all H 1s functions in phase along x and y; M (�/d, �/d) will
have a change in sign for every lattice point along x and y; and X (0, �/d) will have
no change in sign along x and a change at every lattice point along y. These are
shown in the drawing above. Note that � is all bonding, X is bonding within chains
and antibonding between chains and M is completely antibonding between nearest
neighbors. The ordering in energy shown should be obvious.

6.3.2 Complex periodic units

The H-atom chain is to solid-state structures as the diatomic molecule is to poly-
atomic molecules, e.g., clusters. The geometric-structure problems for H2 and H∞
are so simple that one can focus on the electronic structure problem exclusively.
However, real solid-state structures, e.g., a solid with linked clusters or even bulk
elemental Al, are not found in the form of a linear chain, square sheet or simple
cubic structures so we need a way to treat solids with more complex structures, i.e.,
define a repeat unit that is more than a single atom.

What we need is a well-defined unit or building block that contains all the infor-
mation necessary to completely describe the structure of the solid. This building
block is the unit cell. With a unit cell we can generate any size crystal by trans-
lations of the cell, i.e., by stacking a sufficient number of unit cells together like
the bricks in a building. The unit cell is defined by the pattern of atoms (or ions
or molecules) in the material; however, the points that define the unit cell do not
necessarily lie at atom centers. All that is necessary is that stacking the unit cell
regenerates the crystal. Just as there is more than a single way of defining the
repeat distance on wallpaper, so too there are several ways of drawing a unit cell
in a three-dimensional crystal of a substance. Hence, conventions are required to
avoid confusion in communication. We only need to know how to use defined
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cells. Further discussion of existing conventions can be found in a standard text of
crystallography.

Let us take a look at the unit cell descriptions of hcc and ccp (fcc) solids. In
Figures 6.19 and 6.20 the unit cells are shown in “exploded” diagrams. The rela-
tionship between the hcc unit cell and the close-packed representation is easy to
see. That for the ccp unit cell is a little more difficult as the planes of close-packed
atoms now cut diagonally through the cubic cell. However, as can be seen, the
unit cell can be constructed from fragments of close-packed planes as well as by
face-capping (dark spheres) an octahedron (white spheres). Pay particular attention
to the fact that the cell is defined by the lattice points (centers of the spheres) rather
than the atomic surfaces so, e.g., in the ccp cell appropriate for Al only 1/8 of a
corner atom resides in a single unit cell. Go back and take a look at Figure 6.1. The
ccp cell is one of the capped clusters we excised from the bulk!
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The beauty of the unit cell concept is that we now can describe a complex infinite
array in terms of a small, finite entity with both characteristic geometry and, for
compounds, composition. Thus, for example, the extended Al structure can be
described by a ccp unit cell containing 1/2 × 6 + 1/8 + 1/8 × 8 = 4 Al atoms
(six face-sharing and eight corner-sharing atoms) per unit cell. The octahedral and
tetrahedral holes can also be located in the ccp unit cell and are represented in
Figure 6.20. Thus, one counts four octahedral holes (1 + 1/4 × 12 = 4; one
centered and 12 edge-sharing) and eight tetrahedral holes (eight within the cell).
For more complex compounds the same type of exercise permits the composition
of the solid to be obtained from its unit cell with ease: a not inconsiderable benefit.

Of course there are less efficient ways of packing hard spheres – the simple
cubic lattice was dealt with already and group-1 s-block elements crystallize in
a body-centered cubic (bcc) unit cell (Figure 6.21). In contrast to the ccp (fcc)
and hcc structures above, each atom in the bcc structure only has eight nearest
neighbors rather than 12. Because there are six next-nearest neighbors only 16 %
further removed, space is still efficiently filled. The variations in structure are small
and for metals with metal–metal bonding of low directional character, structural
change with temperature (polymorphism) is common.

The differences between the structures of covalently bound elemental solids and
that of Al, for example, are not as large as you might think. Thus, in Figure 6.22 the
unit cell of the diamond structure (group 14) is compared with that of rhombohedral
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black phosphorus. Both may be described as ccp with half the tetrahedral sites
(labeled with “t” in the drawing) filled with either C or P atoms. In an ideal close-
packed fcc structure the tetrahedral sites can only accommodate a sphere 25 % the
size of that situated on the lattice points. In the diamond structure all the atoms
are of the same size and, consequently, the structure exhibits a considerably more
open, less dense, lattice.

Exercise 6.9. A salt [cation]m[anion]n possesses a structure with a ccp unit cell in
which the anions occupy the lattice positions of the ccp cell and the cations occupy
all of the octahedral holes. What are m and n?

Answer. A ccp unit cell contains 1/2 × 6 + 1/8 × 8 = 4 atoms in the lattice
positions and 1 + 1/4 × 12 = 4 octahedral holes. Hence, m and n = 1, i.e., the
NaCl unit cell.

6.3.3 DOS for metals: examples of Al and Ni

To provide the other boundary point for the electronic structure of large clusters,
e.g., our icon [Al69R18]3− and its Al77 partner, we need to generate the DOS for
ccp Al metal. The repeating unit is the unit cell shown in Figure 6.19 and it must
be repeated in three dimensions to generate the structure of bulk Al. We assume
that the crystal size is large enough so that the exposed surfaces of the crystal
constitute a small perturbation that can be ignored. But before dealing with the
electronic structure, let’s go a little bit deeper into the business of unit cells. You
may be surprised now to learn that the ccp (fcc) unit cell is not the smallest repeat
unit from which the whole crystal is generated by translation. In fact, the ccp
(fcc) unit cell is the smallest unit containing all the symmetry properties of the
crystal (it corresponds to what is named a Bravais lattice). The smallest unit cell



6.3 Complex extended systems 243

bulk fcc Nibulk fcc Al NiAl

εF

4s

4p

3d

4s

4p
εF

Figure 6.23

possible is rhombohedral and primitive, that is, it contains a single metal atom. For
the definition of a Bravais lattice of a rhombohedral cell and for the connection
between the fcc and rhombohedral cells in ccp crystals, the reader is again referred
to a standard textbook of crystallography or solid-state physics. What is necessary
to consider for the following is that it is a primitive lattice, i.e., it contains a single
atom in contrast to the larger fcc cell which contains four atoms. With one atom per
unit cell we are left with only four orbitals to deal with, i.e., Al 3s and 3p. For the
following analysis, this is conceptually easier to handle qualitatively than a repeat
unit made of an Al4 cluster contained in the fcc unit cell.

Each of the four AOs of Al generates a Bloch function to which a E(k) vs. k
“band” is associated. Remember that k is a three-dimensional vector so that E(k)
vs. k defines a surface in the reciprocal space. Not simple to tackle qualitatively!
Moreover, except for a few special k points situated on symmetry elements, all
the Bloch functions interact at each k point and mix together. The best qualitative
approach is to proceed as we did when building the crude diagram of the Ni chain
sketched in Figure 6.15. Let’s take into account the strong interaction between the
3s AOs on one side and that between the three 3p AOs taken together on the other
side. This will generate two broad bands roughly centered at the energies of Al
3s and 3p, respectively (left side of Figure 6.23). A more precise description is
given by the computed DOS and Al–Al COOP which are shown in Figure 6.24.



244 Transition to the solid state

εF
E

DOS

COOP

0−              +
antibonding     bonding

total 3s 3p

Figure 6.24

The COOP curve reflects the fact that the lowest parts of the 3s and 3p bands are
bonding and their upper parts are antibonding. There are three valence electrons
per Al atom so the band is 3/8 filled with the electrons in COs of Al–Al bonding
character. Note that all the bonding levels are occupied whereas all the antibonding
ones are empty. This is a mark of stability. There is no band gap at the Fermi level,
consistent with the fact that bulk Al is metallic in character.

A similar approach is effective for ccp Ni. Considering a single Ni atom as
the repeat unit, one is left with nine AOs which generate three bands, one for
each valence shell, with multiplicities of five (3d), one (4s) and three (4p). From
the calculated DOS and its projections (Figure 6.25), it is possible to draw the
simplified Ni diagram of Figure 6.23 (right side). Note that because the 3d AOs are
more contracted than 4s and 4p ones, the 3d band is much narrower. Compare this
result with the mono-dimensional chain of Ni atoms discussed in Section 6.2.5.
In the one-dimensional model, interaction (overlap) occurs only in one direction.
In three-dimensional Ni, it occurs in the 12 directions of the 12 nearest neighbors
of a given atom. The result is that the bands of three-dimensional Ni are much
more dispersed than those of the one-dimensional model and they overlap. Thus,
there is no band gap at the Fermi level. Unlike its one-dimensional model, three-
dimensional nickel is metallic.
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6.3.4 DOS for main-group elements: C graphite and diamond exemplars

A characteristic of the DOS of a metallic element is its large magnitude in the
vicinity of the Fermi level. This feature, above and below the Fermi level, is associ-
ated with the highly delocalized character of the metallic bonding. However, most
solid-state compounds are not metallic. Hence, we consider now the examples of
graphite and diamond, two allotropic forms of elemental C. The chemically bonded
network of the former is two-dimensional and that of the latter is three-dimensional.
In Section 6.2.4 we presented the band structure of a hypothetical one-dimensional
allotropic form of C. Zero-dimensional (molecular) forms do exist also; these are the
fullerenes such as C60 which was mentioned in Chapter 2 and will again be discussed
in Chapter 7. C nanotubes are intermediate between molecules and macroscopic
solids and also will be considered further in Chapter 7.

In all these allotropic forms, the bonding is localized (two-center–two-electron
bonds) and C satisfies the octet rule. In diamond, all the tetravalent sp3 C atoms are
equivalent (see Figure 6.22) and consequently the network is made of equivalent
C–C single bonds. Reflecting this situation, the diamond DOS consists of a low-
lying occupied � band and a vacant high-lying �* band (Figure 6.26). That is, in the
diamond structure the four C atomic orbitals mix together to lead to well-separated
�-bonding and �*-antibonding bands. This is analogous to the case of linear C
where the C 2s and 2pz AOs mix and repel each other to form the � and �* bands
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(see Section 6.2.3). The very large band gap at the Fermi level is indicative of the
colorless and insulating properties of diamond.

The fusion of an infinite number of C6 aromatic rings generates a sheet of graphite
often called graphene. As with an aromatic molecule, the �-type and �-type COs
can be considered separately in this planar system and the � and �* levels occupy
energies intermediate between those of the occupied low-lying � levels and vacant
high-lying �* levels (Figure 6.27). Do you see the interesting difference? The
occupied � and vacant �* bands are not separated by an energy gap. They touch
such that there is HOMO/LUMO degeneracy but the DOS is exactly zero at one
unique point which is the Fermi level. This peculiar situation, imposed by symmetry,
is intermediate between a semiconductor (non-zero band gap) and a conductor (no
band gap and significant density of states at the Fermi level). Such systems are often
called semi-metals. However, our model neglects the weak interactions between the
planar sheets which slightly modify this ideal description.

6.4 From the bulk to surfaces and clusters

We finally arrive at a point where we can relate what we have learned to the
principal theme of the text. Recall that small clusters essentially consist of surface
whereas band theory applies to situations where the number of surface atoms is
so small with respect to atoms in the bulk they can be ignored. In the Al77 cluster
we have a shell-like structure of Al1@Al12@Al44@(AlR)20 or a ratio of 20/57 =
0.35 surface to bulk. In addition, each of the 20 surface atoms is coordinated to
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an external ligand. The Al69 cluster is similar. Now the bulk Al structure is ccp
which can be considered to be built of fused Al6 octahedra. So in this section let’s
compare the orbital structures of octahedral Al6, related to [(AlR)6]2−, Al77, related
to [Al77R20]2− and ccp Al bulk metal. Note that although octahedral [(AlR)6]2− is
not known, icosahedral [(AlR)12]2− is. Clearly a place to begin is to put the surface
back into the bulk-metal problem because without it there is no connection.

6.4.1 Surface states

Surfaces can be conceptually generated by cleavage of a bulk material (which
can be considered infinite) into two separated pieces, each of which exhibits a
surface. The process is not so difficult to envision if you recall simple bond cleav-
age. Consider ethane H3C–CH3. In its MO diagram, the C–C bond is described
by an occupied �CC bonding and a vacant �*CC antibonding orbital (left side of
Figure 6.28). Due to delocalization these MOs also have small H-atom character.
The homolytic cleavage of the C–C bond leads to the formation of two non-bonding
orbitals, one on each of the methyl radicals which are formed. Similarly, breaking
the central bond of butane generates two non-bonding orbitals located mainly on
the unsaturated C atoms (right side of Figure 6.28). In fact, whatever the length of
a given linear alkane, when a C–C bond is broken, one always ends up with two
non-bonding orbitals each mainly localized on the unsaturated atoms. Thus, break-
ing an “infinite” polyethylene chain in two pieces modifies its DOS as illustrated in
Figure 6.29. The non-bonding level of one of the pieces, identified in our little
exercise, is the “surface” state and the other levels are the “bulk” states. The “bulk”
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states are modestly perturbed by the bond cleavage but remain on various CC and
CH bonds. There is one “surface” state for a very large number of “bulk” states.

The lesson taught by this exercise is that surface states are largely non-bonding
in character and their number is extremely small as compared to bulk states for a
solid sample of macroscopic size. The orbitals associated with the surface states
are called “dangling bonds” in the jargon of solid-state scientists whether they
are occupied or not. Since they are non-bonding this is an unfortunate choice of
words. Despite their small number, these “dangling orbitals” are very important
as they define the chemical properties of a surface. Depending on whether vacant,
singly occupied or fully occupied, these orbitals induce electrophilic, radical or
nucleophilic surface properties, respectively.

A “surface” made of a single atom is not very useful but a real two-dimensional
surface can be generated by cleaving a three-dimensional extended structure into
two pieces. Surface non-bonding orbitals will be generated on the atoms where the
bonds have been broken. Since the surface is an extended two-dimensional array,
the surface states will develop a band, i.e. the single surface orbital of Figure 6.29 is
now a non-bonding band. Exercise 6.9 and Problem 1 are pertinent here. Although
the non-bonding level of Figure 6.29 contains contributions from the “bulk” part of
the molecule, delocalization is weak. The situation can be different in a real two-
dimensional surface. In this case, the greater the magnitude of the overlap between
nearest surface orbitals, the greater the dispersion of the surface bands and the more
delocalized the surface states. The wider the surface bands the greater the mixing
with the bulk states.

In fact, the surface of a transition metal is highly delocalized. Let’s take a look
at it. Focus on the d band where the Fermi level is situated regardless of the metal.
For the sake of simplicity, we do not consider the overlap and mixing with the s
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and p bands described in Section 6.2.5. But keep in mind that what we call the
d band contains some supplementary levels provided by the overlapping s band
(Figure 6.25). In a three-dimensional metal, the d AOs develop a band roughly
centered at the energy of the metal d valence shell (non-bonding states). The lower
part is bonding, the upper part is antibonding. So what happens to the surface
states once the bulk has been cleaved in two half-infinite chunks? The atoms on
the surface have lost several neighbor atoms. Delocalized bonds have been broken.
Thus, all the orbitals with localization on the surface atoms have lost part of their
bonding or antibonding character and their energy gets closer to the energy of
the valence d shell. The associated density of states should be narrower. This is
illustrated in Figure 6.30. For emphasis, the scale of the surface atoms projection is
much larger than that of the total DOS. Remember that the surface states constitute
only a tiny fraction of the total density of states in the case of a macroscopic solid.
But because of the high delocalization of all the orbitals in the metal, there is no
clear-cut separation of the surface and bulk states and a continuum is observed.

An interesting consequence of the narrowing of the surface DOS with respect
to the bulk one is surface polarization. With late transition metals, the d band is
more than half occupied, but even in the case of group-10 metals, this d band is not
completely filled because of the supplementary levels provided by the overlapping
bottom of the s band (see Figures 6.23 and 6.25). All the surface states are occu-
pied, whereas some bulk states at the top of the d band are vacant. Consequently,
the surface is polarized negatively. With early transition metals, there are fewer
occupied surface states than bulk states. The surface is polarized positively. In both
cases, the polarization of the bulk is diluted over so large a number of atoms that
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it is negligible. The bulk acts as an infinite electron reservoir/sink with respect to
the surface and the level of the reservoir/sink (i.e. the Fermi level) is not affected
by the existence of the surface.

Before returning to our correlation of clusters and bulk metals some caveats are
in order. The important features of surface states have only been roughly sketched
out here. Indeed, the detailed electronic structure of a surface depends on the details
of its geometric structure which we have largely ignored. A surface can be irregular
(with steps, kinks, islands . . .) or regular. Regular surfaces of monocrystals are char-
acterized by reticular (net-like) planes defined by their Miller indices (h, k, l). For
the definition of such planes, please consult standard textbooks of crystallography.
Surfaces with different Miller indices have different two-dimensional arrangements
and therefore different electronic structures. The surface densities of states of Al
(111) and Al (100) have different shapes and composition. For example, the former
is more dispersed than the latter because the (111) surface is more compact than
the (100) one. Besides that, one sometimes has to take into account rearrangements
of the local two-dimensional structures of less compact surfaces to more compact
ones, i.e., the surface reconstruction mentioned in Section 6.1.1. But these topics
go beyond the scope of this text and the interested reader is referred to works on
surface science.

6.4.2 Correlation between bulk-element COs and cluster MOs

Now that the qualitative aspects of surfaces are understood, we may use these ideas
to address our problem of the connection between cluster MOs and bulk COs.
Consider a crystalline film of a metal deposited on a planar support. Now the bulk,
which constitutes the middle part of the film, can no longer be considered as infinite.
Surface states will dominate the total density of states if the thickness of the film is
not large. In fact, in a thin film consisting of a few layers of atoms the bulk no longer
exists and the total DOS is composed of surface states. The DOS should be narrower
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than that of the bulk state and, if the surface is not dense, localized non-bonding
orbitals will appear, generating “spikes” in the surface density of states.

Now, there is another way of conceptually generating a surface from the bulk
material besides cleaving the infinite bulk to generate a pair of two-dimensional
infinite surfaces. Consider extracting a piece of the solid from the bulk. We generate
a particle of a certain size with a surface, which can be irregular or regular, and a
bulk. The DOS of a metallic particle of a macroscopic size will look like that of
Figure 6.30. Decreasing the size of the particle raises the surface/bulk atomic ratio.
Down to a certain size, the DOS will look like that of a film. When the particle
reaches the size of a cluster, discrete MO levels replace the (quasi) continuum of
the DOS. Metallic nanoparticles lie at the boundary between macroscopic bulk
particles (DOS) and molecular metal clusters (discrete MO levels).

We are now ready to consider a thought experiment in which a large crystal of
fcc Al is subdivided again and again until one reaches the tiny Al6 octahedral clus-
ter (the isolation of a neutral Al6 octahedron is an unlikely prospect; however, the
beauty of MO models is that one is not restrained by reality). Each time a piece of the
crystal is broken away, Al–Al bonding interactions are broken. Bonding and anti-
bonding orbitals get more and more non-bonding and collapse to generate surface
states closer to the center of the DOS. At the same time, more structure (spikes) will
appear in the band as the particle becomes smaller and smaller. These spikes are on
the way to becoming discrete energy levels. Ultimately, the MO levels of octahedral
Al6 emerge. This is illustrated in Figure 6.31 where calculated DOS of bulk Al and
the MO levels of Al6 are at the two sides of the diagram. The former was presented
in Section 6.3.3 and the latter are easily derived from those of [B6H6]2− discussed in
Chapter 2 (Figure 2.21). Ignore mixing and remove the six low-lying bonding B–H
orbitals plus their six high-lying counterparts of [B6H6]2− (both sets of a1g, t1u and
eg symmetry), and replace them by six a1g, t1u and eg combinations of non-bonding
�-type hybrids pointing outwards (dangling bonds) four of which are empty and
lying in the HOMO/LUMO region (see also the comparison of [B6H6]2− and [C6]2−

in Figure 2.21). In the middle of Figure 6.31 we have inserted the DOS or MO levels
(you choose) of an Al77 nanoparticle (the cluster on the cover). Well what do you
think? The nanoparticle does have a large spike in the HOMO/LUMO or Fermi
level region associated with the “surface” non-bonding orbitals. Some of these will
become stabilized and bonding on addition of the 20 ligands to make up the exper-
imentally isolated and characterized [Al77R20]2− nanoparticle cluster. Even so it is
clear that the HOMO/LUMO gap will be small and that electronic-structure simpli-
fication to the level of a counting rule will not be valid (Section 1.3). Our attempts
to apply various versions of cluster electron-counting rules failed for good reason.

In this chapter the electronic-structure model developed for extended main-group
systems describes properties that do not depend on the surface states. It is simply
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a case of the number of states associated with the bonding of the first couple of
layers of atoms at the surface being a tiny fraction of the total DOS. On the other
hand, the principal electronic-structure model developed in Chapter 2 for small
clusters removes “surface states” from the problem by external-ligand interactions.
The remaining cluster-surface layer of atoms is described by a model which can be
simplified to the level of a useful electron-counting rule. It is not surprising then
that when “surface states” are incompletely removed (Section 2.12.5) the paradigm
must be modified. These, then, are the two ends of the bridge for main-group
atoms. Based on earlier discussions, transition metals increase the complexity of
the DOS/MO diagrams, but the general connection is the same. The analyses of
Chapters 2, 3, 5, 6 and 7, which now follows, circumscribe a large uncharted area,
exemplified by the Al77 cluster in which surface-like and bulk-like characteristics
compete somewhat equally. These new hybrid structures are known to have unusual
properties that deserve to be understood. Although we have not presented solutions
to an active research problem, we hope that your understanding of both cluster and
crystal (solid-state) electronic structure places you in a better position to address
the problems presented by giant clusters and nanoparticles. In the same way that
understanding the fundamentals of electronic structure fostered development of
solid-state chemistry on the one hand and cluster chemistry on the other, so too the
future development of the electronic structure of large clusters, such as [Al77R20]2−,
promises similar advances in nanoparticle chemistry.
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Problems

1. Work out the band structure for the px, py and pz functions of a two-dimensional square
array of B atoms in the xy plane separated by a distance d. This might be a model for a
material made up of weakly interacting sheets or of a very thin film or surface layer of a
solid. Hint: carry out the operations used to generate the band structure in Exercise 6.9
with p functions rather than s functions.

2. Work out the band structure for the COs generated by the � MOs of N2 for a two-
dimensional square array with the molecules oriented vertically (along the z axis) relative
to a flat surface in the xy plane to which they are axially coordinated. Assume all have
the same surface-N bond distance and the net spacing is a uniform distance a = 3 Å. Plot
the points � (0, 0), M (�/d, �/d) and X (0, �/d) and draw correlation lines between
corresponding points. Assume the surface–molecule interaction does not involve any
�-symmetry interactions. Do you expect the DOS to be broad or narrow?

3. Develop a crude model of the adsorption of an array of Lewis bases on a periodic Lewis
acidic surface in the following way. First, work out the band structures for a square net of
empty s orbitals and a square net of filled s orbitals having the same spacing parameter
a. Assume a is larger than twice the van der Waals radius of each. Next consider a square
array of donor–acceptor adducts formed by bringing the first two arrays together. Do so
by separately working out the band structure for the donor–acceptor bonding MO and
the donor–acceptor antibonding MO. Now make a correlation diagram in the manner of
a MO diagram.

4. The sphalerite structure exhibits a unit cell with a ccp anion lattice with one type of
tetrahedral hole occupied with cations. What is the compound stoichiometry?

5. H3NBH3 is isoelectronic with ethane, H2NBH2 is isoelectronic with ethylene, and HNBH
is isoelectronic with acetylene. Derive the band structure and the DOS for planar poly-
{–BHNH–} (isoelectronic to polyacetylene) with a single B–N distance and predict
its conductivity and stability with respect to a Peierls distortion. Only consider the �

electronic structure.
6. (a) Consider an infinite stack of benzene molecules, fully aligned with the planes of the

rings parallel and separated by a distance d. Develop the one-dimensional diagram that
arises from the highest-lying filled � MOs and lowest-lying unfilled � MOs of benzene.
Will this stack exhibit metallic or non-metallic behavior along the stacking direction?
(b) Reduce 10 % of the benzene molecules to form the radical anions. Do you expect
a change from metallic to non-metallic or vice versa? Can you now explain why the
addition of K metal to graphite produces a material, C8K, with a bronze appearance
accompanied by an increase in conductivity of a factor of 30 and a conductivity that
decreases with increasing temperature?

7. Tetracyanoethylene (TCNQ) shown below is a highly conjugated planar molecule. Its
�-type LUMO (represented below) lies at a rather low energy so that the compound can
be easily reduced by one electron, giving rise to the stable radical anion TCNQ−.
a. In several solid-state TCNQ− salts, the anions do not avoid each other as usually

observed in ordinary salts (think of NaCl), but rather they stack as sketched below to
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make one-dimensional chains surrounded by cations. The reason for these rather weak
anion–anion associations is �–� bonding between neighboring TCNQ−. The major
structural features of these salts can be rationalized within a band model generated
from the �-type SOMO (singly occupied HOMO) of TCNQ−. Two different phases of
Rb(TCNQ), i.e., (Rb+, TCNQ−), have been characterized, one with regular spacing
between the TCNQ− anions (3.43 Å) and the other one with alternation of short
(3.16 Å and 3.48 Å) and long TCNQ−. . .TCNQ− spacing (i.e., “dimerization” along
the stacks). Provide a rationalization for the existence of these two phases and predict
some of their physical properties.
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b. (NEt4)(TCNQ)2 and Rb2(TCNQ)3 also exhibit stacks of TCNQ units. In the former
the TCNQ units associate into “tetramers,” whereas in the latter they form “trimers.”
Explain.

c. Tetrathiofulvalene (TTF) shown above is also a highly conjugated planar molecule.
Its �-type HOMO (represented above) lies at a rather high energy so that it is easily
oxidized, giving rise to the stable radical cation TTF+. Solid-state TTF salts often
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give rise to stacks of TTF cations like the TCNQ salts. This is also the case in the
(TTF)(TCNQ) salt which presents stacks of TTF as well as stacks of TCNQ moieties.
It turns out that (TTF)(TCNQ) is a surprisingly good metallic conductor. Explain.
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7

From molecules to extended solids

Of the millions of different chemical systems discovered since chemistry began,
many are solids at room temperature. From the early days these solids have been
classified in the four families, molecular, ionic, covalent and metallic solids, based
on the nature of the forces which bind the atoms. Molecular solids are com-
posed of groups of covalently bound atoms, i.e., molecules, held by weak charge-
polarization (van der Waals) forces. In ionic solids, electrostatic attraction is the
primary force binding cations and anions. Bonding in covalent solids is similar to
that within molecules but extends over the whole crystallite. Metallic solids also
exhibit extended bonding but, in addition, possess weakly bound, highly delocalized
electrons easily moved by applied fields. Of course, this classification is somewhat
artificial and many solids exhibit complex bonding in which more than one type of
bonding is displayed. Molecular clusters in the solid state are naturally described
nowadays with molecular-orbital models. Intermolecular interactions are weak.
Although this is not true for solids with extended bonding networks, the solid-state
machinery we developed in Chapter 6 shows that MO ideas smoothly transfer to
crystalline solids. Hence, we have an analogous language for treating these more
complex structures.

This is not a text of solid-state chemistry and the purpose of this chapter is to
illustrate the use of the theoretical model of Chapter 6 with experimental examples.
In doing so, we firmly establish the other foundation of our cluster bridge. There
are many solid systems that could serve this purpose and the selection is somewhat
personal – a collection of “portraits” that we find particularly educational. Most
have connections to the clusters of the earlier chapters or simple coordination
compounds. Enough review of pertinent molecules will be given to remind you of
the molecular ideas. In doing so similarities between solid systems and molecules
are highlighted as well as meaningful differences. Meaningful – are some not? Yes,
as with bonding models some of the differences are more apparent than real, e.g.,
different ways of partitioning electrons before counting as well as the language of

257
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C

Fe5C(CO)15

Figure 7.1

discussion. These will be pointed out with pertinent comparisons. If successful,
this approach will convince you that, despite some real differences, there are strong
similarities between the bonding in molecules and that in extended solids. You can
use many of the same tools, including relationships between the electron count and
geometric structure, to effectively describe and understand the stoichiometry and
bonding in solids.

Come on in! Take a look at the chemical portraits in the galleries that follow.

7.1 From a single atom to an infinite solid: the example of C

In Chapter 6 the “all-C” compounds of C, graphite and diamond, as well as new
allotropic forms, such as C60 and C nanotubes were mentioned in the context of
developing a bonding model for these structure types. The interesting way in which
C60 accommodates the external cluster electrons in a delocalized system was also
pointed out in Chapter 2 in the context of the “lone pair” problem of bare clusters.
C60 and related species, some of which have been predicted theoretically but not
yet observed experimentally, are thermodynamically less stable than graphite and
diamond and provide a synthetic challenge. But small linear or cyclic C fragments
can be prepared in molecular or infinite arrays in the solid state. Let’s begin by
looking at a few examples of fragments of hypothetical C allotropes.

7.1.1 Interstitial C atoms

The simplest C “allotrope” is a single atom. These are found in interstitial holes in
metal lattices; hence, their name. They are also found in metal clusters as described
in Chapter 3. The characterization of one of these can be seen with a historical
perspective to be the first recognition of two ideas of great importance to this text.
In 1962, Dahl and coworkers published the structure of the compound Fe5C(CO)15

(Figures 3.7 and 7.1) which contains a C atom embedded in a transition-metal
carbonyl cluster. Think how unexpected a five-coordinate C atom was at that time
when the icosahedral carborane clusters were only beginning to be structurally
characterized! A qualitative MO description gave rise to the statement, “The rep-
resentation of bonding for the apical iron [in Fe5C(CO)15] is formally analogous to
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that for cyclobutadiene-iron tricarbonyl.” Without mentioning isolobal – the word
would not appear until 1976 – we see the beginnings of the isolobal analogy (Chap-
ter 4). We read further, “The delocalized bonding of the carbide atom to the five
irons in Fe5C(CO)15 is no doubt related to the Fe–C bonding in [cementite] Fe3C.”
Dahl evokes a link between cluster and solid-state chemistry. More than 40 years
later after this avant-garde work, these two concepts, albeit developed into robust
tools over the years through the contributions of many others, facilitate our study.

For five years Fe5C(CO)15 was regarded as a curiosity until Ru6C(CO)17, and
later others, such as [Rh6C(CO)15]2− and [Ni8C(CO)16]2−, shown in Figure 7.2,
were characterized. Respectively, these contain C atoms in octahedral, trigonal
prismatic and square antiprismatic environments. The interest in these compounds
is more in the possibility of stabilizing unusual metal geometries rather than the
C atom itself. As shown in Chapter 3, the strong interaction between the metal
atoms and the interstitial atom (Figure 3.8) increases the HOMO–LUMO gap and
the stability of the metallic framework. A similar effect is observed in solid-state
chemistry, e.g., upon adding C to Fe in the formation of steel. As good fit of atomic
radius and cavity size is necessary, incorporation of second-row atoms requires
larger clusters, e.g., the icosahedral [Ni12Ge(CO)22]2− cluster for Ge or more open
structures, e.g., [Co6P(CO)16]− for P (Figure 7.3). Review the electronic structure
and the cve/sep counts for these clusters in Section 3.3.1, if needed.

The variety of transition-metal carbonyl carbide clusters is mirrored in the large
number of solid-state carbide compounds known. A difference is that the C atom in
solid-state systems is nearly always six coordinate whereas the cluster systems can
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Figure 7.4

exhibit coordination numbers of four to eight. Let’s compare a couple of cluster
and solid-state systems. The structures of refractory carbides such as NbC and WC
shown in figure 7.4 can be related to those of molecular clusters. On the left side
of the Figure, the extended structures are portrayed (the small spheres represent
the p-block elements and the large spheres the metal atoms) whereas on the right
we have abstracted the immediate environment of a C atom. As in Ru6C(CO)17,
the C atom in NbC shown at the top of Figure 7.4 is surrounded by six metal
atoms in an octahedral array while in WC, shown at the bottom, the six W atoms
form a trigonal prismatic array similar to that found for [Rh6C(CO)15]2−. You may
notice that in this chapter some structures are illustrated with both balls and sticks –
the form favored by the solid-state chemist. Structure drawing, like other artificial
representations of Nature, can generate strong emotional responses, e.g., the stick
structures used in most earlier chapters were viewed with scorn by a solid-state
chemist colleague. You have to get used to visualizing both!

The covalent bonding mode of the interstitial C in transition-metal carbide clus-
ters is comparable to that observed in solid-state transition-metal binary compounds
such as NbC or WC. With the language of bands and DOSs described in Chapter
6 we can make a side-by-side comparison of the bonding in the molecular cluster
and the interstitial bulk carbide. The schematic diagram in Figure 7.5 juxtaposes
the MO structure of the idealized cluster [Ru6C(CO)18]2+on the left (a mimic
of Ru6C(CO)17) with the band structure of the solid metal carbide on the right.
First, let us review the bonding in the octahedral cluster. The frontier orbitals of
[Ru6(CO)18]2−are generated from six Ru(CO)3 fragments and yield a “t2g” set of
18 and a cluster bonding set of seven levels. The AOs of [C]4+ interact primarily
with four orbitals of the framework set but no new occupied orbitals are intro-
duced by the interaction. In the solid carbide NbC, the metal AOs interact strongly
with each other to give a relatively wide d band plus some framework orbitals,
four of which point toward the cavity to be occupied by the C atom. As with the
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molecular cluster, the C AOs interact with these metallic orbitals to give bonding
and antibonding combinations. So, in both cases M–C bonding is strong and the
M–C bonding (either molecular or crystal) orbitals lie at low energies away from
the HOMO (cluster) or the Fermi level (solid).

The similarity in the M–C bonding between the cluster and the extended solid
is rather pleasing, isn’t it? But maybe you have a niggling doubt – why didn’t we
compare Ru6C(CO)17 with an extended metal carbide of composition RuC. In fact
monocarbides of the late transition metals are not known or found to be extremely
unstable. They are too electron rich! Why? In the cluster carbide, for a d8 metal all
M–C and M–M bonding orbitals are filled and separated from the antibonding ones
by a significant HOMO–LUMO gap. For the solid, the M–C and M–M bonding
is maximized when only the bottom part of the metallic band is filled. This favors
the lower electron counts produced by earlier metals such as d4 (ZrC) or d5 (NbC),
as the higher counts of d8 (RuC) would also populate M–M antibonding orbitals
leading to weak bonding.

So, Ru6C(CO)17) is not a model for RuC but maybe it isn’t clear yet why. We
concentrated on the similarities of octahedral cavities but neglected the differences
in the surrounding metal atoms. The molecular cluster is built of ML3 fragments
whereas if we were to derive a cluster to represent the environment around C in ZrC
we would use six MC5 fragments, i.e., ML5 entities, around a central C atom. We saw
in Chapter 4 that the frontier orbitals of ML3 and ML5 fragments differ considerably.
Are there any molecular carbide clusters that can be derived from ML5 fragments?
Yes. The octahedral carbide cluster [Zr6C(�-Cl)12Cl6]4− (Figure 7.6) with a cve
of 74 rather than 86 as found for late metal-carbonyl clusters is one example. The
reasons for this difference were discussed in Section 3.3.5. In accord with our
theme, the relationship of the interstitial bulk carbide ZrC to [Zr6C(�-Cl)12Cl6]4−
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(Figure 7.6) is mirrored in the relationship of WC to the trigonal prismatic cluster
[W6C(�-Cl)12Cl6]2−.

Note that in both interstitial transition metal carbides and the molecular clusters
with interstitial atoms, the octahedral metal arrangement changes to trigonal pris-
matic as the d-electron count increases. That is, octahedral carbides are found for
d4 or d5 metals as exemplified by ZrC and NbC and trigonal prismatic carbides are
found for d6 metals as in WC.

Exercise 7.1. The solid carbide NbC has a melting point of 3900 ◦C whereas NbN
has a melting point of 2600 ◦C. Develop an explanation using the band diagram in
Figure 7.5.

Answer. The melting temperature of a crystal is one indicator of the quantity
of energy required to destroy the regular atomic ordering, i.e., a measure of the
energy necessary to break bonds sufficiently to form a liquid melt. If we assume
this is related to the M–M bond strength as it appears to be for the metal elements
(the maximum in melting point vs. metal is found for group 6), NbC is more
strongly bonded than NbN. The total number of valence electrons in the unit cell
will determine the position of the Fermi level. If we make another assumption that
the Fermi level for NbC is close to the top of the M–M bonding band levels, then
the additional electron per compositional unit goes into M–M antibonding levels.
Hence, the overall bonding in solid NbN should be weaker. Now the caveats: you
must continue to be aware that simple models that “work” hide many important
complications. Melting temperature depends on the products of the melting process,
i.e., are the products atoms (unlikely), clusters, etc. In the case of the nitride and
carbide there is the possibility of M–E bond rupture in melting. Our answer assumes
clusters in the melt retaining M–E bonds. In addition, we assume that the structures
of the carbide and nitride are the same, whereas NbC is of the NaCl type and NbN
adopts the NiAs type, but also is found with NaCl and WC types. Hence, although
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the simple argument given is satisfying, considerably more work would have to be
done to see if it is a major factor causing the real 1300 ◦C difference.

7.1.2 C2 “dumb-bells” in molecules and solids

The smallest molecular fragment of C, C2, is a curiously interesting diatomic
species. Although not found as a diatomic gas like the later first-row elements,
it can be generated in a carbon arc, is found in comets and is responsible for the
blue light we see in flames. It’s a tiny dumb-bell in which the two nuclei are sep-
arated by 1.24 Å in the ground state. It can be stabilized by attachment to metal
fragments such as in [ScCp*

2]2C2 (Cp* = C5Me5) or [Mn(CO)5]2C2 (Figure 7.7)
or by encapsulating it in a metal cluster. Five Ru atoms support an exposed C2 frag-
ment in the cluster Ru5(C2)(CO)11(PPh2)2(SMe)2 while C2 is fully encapsulated in
[Co6Ni2(C2)(CO)16]2− (Figure 7.8).

C2 units are also found in solid-state compounds with C–C separations that
depend on formal electron count. These are viewed as deprotonated ethyne, ethy-
lene or ethane using a popular solid-state idea: the Zintl–Klemm concept. This
concept is based on the simple idea that the metals transfer their valence elec-
trons to the non-metal atoms thereby generating filled anion-centered bands at low
energy, well separated from empty cation-based bands. Of course, this concept
fails when the electronegativities of the metal and non-metal are not very different,
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Figure 7.9

but it is tremendously useful in understanding a great variety of crystal structures.
Think of [C2]2− and N2 for instance! These ten-electron species have qualitatively
similar electronic structures. Thus, a triple bond is postulated for the C2 moieties in
CaC2 (Figure 7.9) and the explosive powder Ag2C2 as the compounds are viewed
as Ca2+[C2]2− and (Ag+)2[C2]2−. In Figure 7.9, the extended structure of CaC2

is shown on the left and the octahedral cavity on the right. In the octahedral cavi-
ties of Gd2Cl2C2 the C–C distance is 1.30 Å which corresponds to a double bond
and the formulation (Gd3+)2(Cl−)2([C2]4−)2. Finally, in the octahedral cavities of
Gd10Cl18C4 a C–C distance of 1.47 Å is consistent with a single bond and the
formulation (Gd3+)10(Cl−)18([C2]6−)2.

When a C2 derivative includes a transition metal, the resulting covalent character
requires a different approach. Of course, the C–C distance still serves as a useful
guide to the electronic environment of the C2 moiety but a number of interesting sit-
uations arise particularly with cluster and solid-state compounds. Let’s take a look
beginning with simple organometallic substituents on diatomic C2. The bond repre-
sentation of Figure 7.7 is substantiated by the C–C distances: [ScCp*

2]2(C2) (1.22 Å)
or [Mn(CO)5]2(C2) (1.20 Å). A C–C length of 1.37 Å in Ta[t-Bu3SiO)3]2(C2) is
consistent with a C–C double bond. Intermediate C–C bond distances are common
when the environment of the C2 unit is the cavity of a cluster. For example it is
1.30 Å in Ru5(C2)(CO)11(PPh2)2(SMe)2 and 1.48 Å in [Co6Ni2(C2)(CO)16]2− (Fig-
ure 7.8). These are more difficult to interpret in the absence of quantum chemical
calculations.

In the context of the problems to follow, it is useful to briefly review the
major interactions derived from a fragment analysis of a simple compound like
[Mn(CO)5]2(C2) in which the [C2]2− unit spans two pseudo-octahedral ML5

fragments (Figure 7.7). Although the metal fragments may be viewed as surro-
gates for, e.g., H atoms, in fact we already know that a metal fragment is much
more versatile than a main-group one. Out-of-phase and in-phase combinations of
the “t2g” set and empty � frontier orbitals of the two [Mn(CO)5]+ fragments give
rise to a set of eight frontier orbitals, two of �-type, four of �-type, and two of
�-type (Figure 7.10). These are available to interact with the �s and �p orbitals, and
� and �* (bonding and antibonding between C, respectively).
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The principal bonding interaction occurs between metallic � and �* frontier
orbitals and the � C2 orbitals. You expect this because the [Mn(CO)5]+ fragment
is isolobal with [CH3]+ and the product is isolobal with 2-butyne. However, the
metal fragment provides the opportunity for weaker interactions between the �-
symmetry orbitals. These are of two types. A backbonding interaction (occupied
metallic �* orbitals with unoccupied C2 �*) transfers charge from the metal to the
C2 unit, thereby reducing the C–C bond order. For this compound, the observed
C–C distance is consistent with a bond order of three; hence, the �*–�* interac-
tion must be small in this case. Another �-type interaction between filled orbitals
generates the HOMO of the system. The HOMO is now delocalized over the Mn–
C–C–Mn backbone rather than being largely of metal character. We conclude that
[Mn(CO)5]2(µ-C2) is correctly considered a metal-substituted acetylene. But you
should be able to see that with an earlier metal or a different ligand set, the bond
order of the C–C interaction in the [C2]2− moiety can be reduced either by depop-
ulating the C2 � or populating the �* orbitals. For example, [W(t-BuO)3]2(C2),
which has an analogous structure, exhibits a C–C distance consistent with a single
bond.
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Exercise 7.2. The cluster [Co6Ni2(C2)(CO)16]2− consists of two trigonal prisms
sharing a square face (Figure 7.8). The two C atoms, which lie at the center of
the trigonal prisms, are separated by 1.48 Å, which corresponds to a single C–C
bond. First, treat the compound as a fused cluster (Section 3.3.3) and compare
total valence electrons with predicted cve. Second, consider the C–C distance and
formulate the C2 species as an anionic moiety as described above. Contrast the two
views of electronic structure. What is the lesson learned?

Answer. Considering the C2 unit as a fully encapsulated ligand, a count of 116
cve is obtained for [Co6Ni2(C2)(CO)16]2− (6 × 9 (Co) + 2 × 10 (Ni) + 8 (C2) +
2 × 16 (CO) + 2 (anionic charge) = 116). This count corresponds to that expected
if we consider that the cluster geometry can be generated from two trigonal prisms
eliminating one square (90 × 2 − 64 = 116). Treating the C2 unit in this man-
ner implies an interstitial [C2]8+ (Section 3.3.1). Alternatively, the C–C distance
suggests a C–C single bond and a [C2]6− interstitial anion! In terms of electron
density, which is right? Neither, as both are conceptual models that partition the
valence electrons to provide a useful tool for relating composition to structure. If
one thinks about where the electrons actually are in, e.g., Ru6C(CO)17 (Figure 3.7),
one should NOT imagine an empty octahedral cluster containing a [C]4+ ion. In
fact, there will be substantial electron density in the octahedral cavity. On the other
hand, there will not be enough to make a [C2]6− ion in the cluster considered. The
interstitial C2 fragment is particularly interesting as good theoretical analysis shows
that not only is there some electronic charge transferred from bonding orbitals of
the C2 fragment to the metal, but also from occupied metal orbitals into antibonding
orbitals of the C2 fragment. This may remind you of the Dewar model in which the
bond order of a coordinated olefin is reduced by ligand to metal and metal to ligand
charge transfer processes (Section A1.4.7).

Another cluster type that contains C2 fragments are the metallocarbohedrenes
(met-cars) – cage-like clusters of transition metals decorated by C2 dumb-bells, e.g.,
Ti8(C2)6, which are found for Ti, V, Cr and other early transition metals. Formed in
beams, they are species structurally characterized principally by theoretical stud-
ies. Ti8(C2)6 was initially thought to have a Th-symmetry pentagonal-dodecahedral
structure (a Ti8 cube hexacapped by C2 units, Figure 7.11, left). Better calculations
have shown that a tetracapped tetrahedron of metal atoms surrounded by the six C2

units (Td symmetry) is energetically preferred (Figure 7.11, right). A tetracapped
tetrahedron requires 60 + 4(60 − 48) = 108 cve whereas the total number of valence
electrons in Ti8(C2)6 is 80. This is far below the number required for a ligated clus-
ter. In fact the calculations show a number of d orbitals are empty and the HOMO
is triply degenerate, occupied with two electrons and with no HOMO–LUMO
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gap! The open-shell electron configuration rather than a closed-shell Jahn–Teller
distorted configuration is attributed to the high connectivity of the atoms constitut-
ing the cluster and is reminiscent of that encountered for the cubic clusters treated
in Section 5.2.5.

Now that we have glimpsed the variety of molecular-cluster environments in
which we find the C2 diatomic, let’s move to the realm of solid-state chemistry.
Solid-state carbides containing C2 units are profuse in number. We have already
mentioned an important compound in this family, calcium carbide, CaC2. As shown
in Figure 7.9 its structure consists of Ca and C2 units arranged in a tetragonally
distorted derivative of the NaCl structure with the C dumb-bells aligned along
the c axis. It is often considered the archetype of ionic solids with C2− anions
encapsulated in octahedra composed of Ca2+ cations. Although a C–C distance of
1.19 Å is in agreement with a [C2]2− unit, theoretical calculations suggest some
covalency between the constituent elements.

Thus, to gain understanding of its electronic structure, use the Zintl–Klemm con-
cept and fragment the compound into its ionic components Ca2+ and [C2]2−. The
dicarbide sublattice can be constructed from an infinite number of non-interacting
[C2]2− “molecules.” We can get some qualitative insight when [C2]2− units are
simply encapsulated in (Ca2+)6 octahedra. Due to the large electronegativity dif-
ference between Ca and C, only weak interactions are observed, as illustrated on
the left side of Figure 7.12. The C2 orbitals are slightly stabilized by mixing with
the Ca orbitals. Recall that if two levels differ greatly in energy, their covalent
interaction is small even with favorable overlap. Hence, as shown on the right
side of Figure 7.12, the bands associated with the sublattices only interact weakly.
Hence, we find narrow, low-energy occupied bands centered at the discrete dicar-
bide energy levels and largely separated from high-lying empty Ca bands. Note that
the relative area ratios of the generated bands are related to the number of orbitals
per CaC2 motif, i.e., 1 (C2 �s) to 2 (C2 �) to 1 (C2 �p) to 2 (C2 �*) to 4 (Ca s
and p).
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Exercise 7.3. The CaC2 structure is adopted by most of the lanthanide and actinide
analogs as well. However, the C–C distance measured in these compounds dif-
fers. It increases from 1.19 Å in CaC2 to 1.28 Å in YC2 to 1.30 Å in LaC2.
Explain.

DOS

La d band

C2 π*εF

E

Exercise 7.3

Answer. Assuming an ionic Zintl–Klemm model and the common oxidation state
of these metals, we have C2

3− ions locally in the octahedral cavities formed from the
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Y3+ or La3+ cations. Consequently, the additional electron populates an antibonding
�g* orbital thereby reducing the bond order and increasing the C–C distance.
Reality is a little more complicated since there are low-lying d orbitals on these
metals. Consequently a metallic d band overlaps with the C2 �g* band as shown
below. For this reason, the electron is partly localized in the metal d band and partly
localized in the C2 band. Nevertheless the C–C distance in these materials is chiefly
governed by the electron count of the metal.
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7.1.3 Finite C chains in molecules and solids

C chains with more than two C atoms can be isolated if stabilized with terminal
metal complexes or clusters. The record number at the time of writing this book
is 26 found in [Co3(�-dppm)(CO)7]2(C26) and shown in Figure 7.13. The terminal
C atoms cap metal triangles so alternatively one might view the stabilizing clus-
ters as M3C clusters with a chain of 24 C atoms. Another impressive example is
[ReCp*(PPh3)(NO)]2(C20) containing 20 C with mononuclear terminal complexes
(Figure 7.14).

One important characteristic that makes these compounds of interest is electronic
configurations that permit “communication” between the metal termini. This is
determined by the nature of the connections to the metal end groups. To illustrate,
the bonding of [RuCp(PPh3)2]2(C4) is analyzed. Its structure shows alternating
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long and short C–C distances consistent with the representation in Figure 7.15.
Consequently, the terminal complexes are saturated 18-electron species.

The M–C bonding in this species is analogous to that described above for
[Mn(CO)5]2(C2) in Figure 7.10. Particularly important is the � interaction that
generates a pair of HOMOs. These result from a M–C antibonding combination
and are well separated from the LUMOs and other occupied MOs. As shown in
Figure 7.16, they have similar nodal properties, are antibonding between the metal
and its adjacent C atom, bonding between the first and second, and third and fourth
C atoms, and antibonding between the second and third C atoms. Oxidation is
expected to depopulate these orbitals and affect the C–C distances in accord with
their bonding and antibonding characters. Four reversible oxidation processes are
observed, something of a record for such a small molecule. In going from neutral
to dicationic species, a shortening of the M–C and central C–C bonds and a length-
ening of the outer C–C bonds is observed in accord with the nodal properties of
the HOMOs. Formally oxidation in two-electron steps converts the neutral diyn-
diyl complex (Figure 7.17(a) where the bars on Ru represent non-bonding electron
pairs) into the cumulenic dicationic complex (Figure 7.17(b)) into an acetylene-
bridged dicarbyne complex (Figure 7.17(c)). This provides a particularly nice con-
nection between structure and electron count. Considerable experimental evidence
shows that the same model applies to the compounds with longer C chains as
well.

Metal carbide solids with long chains are not well characterized. In the Zintl–
Klemm paradigm, this can be attributed to the fact that for n ≥ 3 all Cn chains
will have a 4− charge. The longest C chain has n = 3 as found in Sc3C4. As you
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might expect from the formula, the structure is complicated. It has a large unit cell
containing eight C3 chains, two C2 units and twelve isolated C atoms in holes created
by the Sc sublattice and consistent with the formulation Sc30(C3)8(C2)2C12. The
C–C distances are 1.34 Å in C3 and 1.25 Å in C2. These separations may be assigned
to double and triple bonds, respectively, which leads to the charge assignments
[C3]4− and [C2]2−. You can draw the Lewis formula for such species can’t you?
Assuming C4− for the isolated C atoms leaves a few electrons in the Sc d band
to account for the metallic conductivity of the compound. In other words, the Sc
atoms are formally in a slightly lower oxidation state than the usual 3+ found for
rare-earth metal carbides. With 70 atoms and 430 valence orbitals per unit cell it is
not easy to examine the bonding between the metals and the C groups in detail.

Consider instead the simpler solid-state arrangement in Sc2BC2 which contains
triatomic BC2 chains. We will see in a moment that these heteroatomic chains
are isoelectronic to [C3]4− so this compound allows us to explore the bonding
interactions and compare it to what we find for the molecular compounds. The
structure of Sc2BC2 is easy to understand if you recall that of CaC2 (Figure 7.9).
In the conventional tetragonal unit cell of CaC2 the Ca atoms are at the corner
and center positions whereas the C2 dumb-bells are located in the middle of the
edges and the middle of the lower and upper square faces of the Ca6 octahedra. The
structure of Sc2BC2 is shown in Figure 7.18 where the extended structure is shown
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at the left and the environment of one BC2 unit is shown on the right (Sc is light
grey, C is medium grey and B is black). Thus, to obtain the structure of Sc2BC2

from that of CaC2 we simply have to replace the Ca atoms by Sc2 pairs and the C2

dumb-bells by linear C–B–C units. Each BC2 unit is encapsulated in a bicapped
cube of Sc atoms. The B–C separation, 1.48 Å, corresponds to what is expected for
a B–C double bond. But we need to look at the electronic structure more closely.
You know what we are going to do. Yes, fragment the compound into metallic parts
and main-group parts, examine each part separately and then recombine them to
reveal their interactions.

Let us begin with the BC2 units. Since they are isolated from each other, we can
start by looking at the electronic properties of one BC2 unit. Some of its molecular
orbitals are shown in Figure 7.19. Above a set of �-type MOs not shown, there
is a set of �-bonding and � and � non-bonding MOs well separated from the
�* molecular orbitals. Filling of the non-bonding and bonding MOs leads to the
formal charge of 5− per BC2 unit. Hey! [BC2]5− is isoelectronic to [C3]4−, allene or
CO2 and consistent with the observed B–C distance. Indeed, except for differences
associated with different atom electronegativities, their MO diagrams are pretty
similar as well.

Where do the electrons for the 5− charge come from? The only possibility is from
the Sc atoms. This leaves us with one valence electron per two Sc atoms per formula
unit before the interaction between the [BC2]5− and Sc sublattices. Partitioning of
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the electrons using the Zintl–Klemm paradigm is formal and ignores any covalent
interactions between the chains and the metal atoms. With occupied orbitals at
relatively high energy and vacant orbitals at relatively low energy, the [BC2]5−

chains are well prepared to act as both � donors and � acceptors in the manner of
a classical molecular organometallic complex. So let’s explore the DOS of Sc2BC2

and see if we can find any evidence for such interactions.
The total DOS of Sc2BC2 is shown in Figure 7.20 with the solid line. The dashed

line inside the total DOS is the % contribution of the BC2 units to the total DOS.
At the right are the projections of the frontier orbitals of the BC2 sublattice after
interaction with the metallic lattice. What do we see? First of all, the Fermi level
cuts the bottom of a band mainly localized on the metal atoms. This is consistent
with the compound’s metallic conductivity. Secondly, there is a strong covalent
interaction between the organic BC2 units and the metals. That is, if the interaction
were weak, the peaks corresponding to the frontier-orbital projection would be
narrow in width. In fact, they are rather dispersed in energy. Some of the frontier
orbitals of BC2, �g

+, �u, �u
+ and �g, were occupied before interaction (Figure

7.19). The small peaks due to BC2 in the metallic band result from the [BC2]5−

acting as a donor toward the metal atoms. On the other hand, the frontier orbital
�u* was vacant before interaction with the metallic host. In the far right-hand plot,
notice the peak below the Fermi level. This reflects [BC2]5− acting as an acceptor.
So, with evidence of electron donation from the [BC2]5− chains to the metallic
network supplemented by back-donation from the metallic lattice into the BC2

units, we can view Sc2BC2 as a solid-state example of the molecular compounds
containing atomic chains.

Although no chains longer than three C atoms have been stabilized in solid-state
compounds, replacement of some C with B atoms permits chains with more than
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Figure 7.21

ten atoms to be observed. One example comes from the area of rare-earth B–C
compounds known for their rich structural chemistry. In LaBC the La atoms form
distorted square and puckered metallic layers. They stack in such a way that they
form holes in which are encapsulated finite B5C5 chains in the sequence C–B–C–
B–B–C–B–C–B–C as illustrated in Figure 7.21. In the scheme, La is light grey,
C is medium grey and B is black. These worm-like entities buried in the solid are
fairly linear with B–B, B–C and C–C separations corresponding approximately to
coordinated double bonds.

Exercise 7.4. The solid-state compound, LaBC, contains C–B–C–B–B–C–B–C–
B–C chains with B–C and B–B distances appropriate for double bonds. (a) Calculate
an appropriate formal charge. (b) For this charge, predict the nature of the electrical
conductivity of LaBC.

B C CC B B                            C BB                             C

Exercise 7.4

Answer. (a) To obey the octet rule for each atom a charge of 9− is required; two
lone pairs on the terminal C atoms and one negative charge for each B atom in
the chain generate the Lewis formula shown above. This chain is isoelectronic
to a hypothetical cumulenic [C10]4− oligomer. (b) The charge is 9− on the chain
in (La)5(B5C5) but La favors a +3 oxidation state so there are six electrons which
remain in the metallic band. Hence, the compound should be an electrical conductor.
As we have seen, there will also be some covalent interaction between the sublattices
of B–C chains and the La atoms but the Zintl–Klemm idea plus electron counting
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provides a good estimate of electronic structure. There is a complication here that
is incapable of being explained by a simple Lewis formula. Like O2 or [C2]4−,
[B5C5]9− with an odd number of B and C atoms would be a diradical if isolated.

At the time of writing, the record length in a solid-state compound for a linear
chain containing C atoms is a B5C8 chain which also exhibits a cumulenic form. The
infinite B–C rod with cumulenic double bonds shown in Figure 7.22 is a good model
for the hypothetical metastable allotropic one-dimensional phase of C presented in
Section 6.2.4. Called carbyne or chaoite, its preparation, although claimed by some,
remains a challenge. As we saw in Chapter 6, such a chain with equispaced atoms
would be subject to a Peierls distortion. Hence, it would be made up of alternating
single and triple bonds (Figure 7.23) as we found with the organometallic analogs
discussed in Section 7.1.3. We also learned in Chapter 6, that the necessity for a
Peierls distortion in the infinite C chain is removed in an isoelectronic chain with
alternating heteroatoms. As a [BC]− unit is isoelectronic with a (BN) unit, a linear
–B–C–B–C– chain made of [BC]− units is equivalent to a linear –B–N–B–N–
chain.

But there is an inorganic analog of infinite carbyne! Infinite B rods are found
in LiB and, in the Zintl–Klemm paradigm, the compound is formulated (Li+, B−).
B−, of course, is isoelectronic with C. As shown in the two views in Figure 7.24,
infinite B chains run in channels made by the Li atoms (large grey spheres). The
view at the right is along the chains and that at the left shows a section of four
chains. Given the discussion in Chapter 6 as well as above, you won’t be surprised

C                      BB C BC

Figure 7.22

C C CCvs.(              ) (            )
x x

Figure 7.23

Figure 7.24
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to learn that the B chains have alternating long (about 1.7 Å) and short (about 1.4 Å)
B–B separations.

Let’s test your understanding and look at a somewhat more challenging pair of
systems in which Peierls distortion plays a role. YBC and ThBC are two more
rare-earth boron carbides which have the same stoichiometry as LaBC but rather
different structures. These are shown in Figure 7.25 with YBC on the left and ThBC
on the right. The metals are represented by large grey spheres and the C and B by
small grey and black spheres, respectively.

In both, the metal atoms form infinite channels containing zigzag B chains with
C atom branches as represented schematically in Figure 7.26. The metal atoms
and branched chains stack in one direction to give two-dimensional MBC slabs.
In the structural pictures, the most obvious difference in the structures is the way
these slabs stack in the third dimension. However, the crucial structural difference
actually lies within the slabs themselves: the B–C zigzag chains differ. The B chain
in YBC is regular but it is alternating in ThBC.

Why the difference? Apparently one is subject to a Peierls distortion but the
other is not. If true, there must be a difference in the electronic structures. The
first hint comes from applying the Zintl–Klemm model. With Y and Th, it is pretty
clear, we have Y3+, [BC]3− and Th4+, [BC]4−, respectively. That is, although the
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chain compositions are the same, the electron counts are different. Let’s compare
the electronic structure of an isolated regular C branched zigzag B chain with
BC unit charges of 3− and 4−. The � levels of the –B(C)–B(C)– motif which
constitutes the unit cell, the band structure and the DOS are shown in Figure 7.27.
Note that the phases of the � levels of the –B(C)–B(C)– motif remind one of those
of trans-butadiene.

For a charge of 3− the Fermi level (εF) cuts the bottom of a band which derives
from the �3 level associated mainly with the B chain. This corresponds to an
important peak in the DOS. Thus, there is no reason for a distortion of the B chain and
the full occupation of the two lowest � bands is consistent with the Lewis formula
on the left side of Figure 7.28. To keep you in the mood of thinking isoelectronic,
note that this polymer, which is embedded in an ionic matrix, is isoelectronic to
a polyketone, (CO)∞ shown on the right of Figure 7.28. Calculations suggest that
(CO)∞ is only slightly unstable with respect to carbon monoxide formation. In fact
few examples of (CO)n oligomers exist.

With two more electrons per unit cell, i.e., [B2C2]8−, the �3 band becomes
fully occupied. But the �3 and �4 bands are degenerate at the special point (zone
edge) X leading to a first order Peierls instability. Distorting the branched B chain
to generate alternating long and short separations leads to the band structure and
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DOS diagrams in Figure 7.29. As expected, a gap opens between the �3 and �4

bands with concomitant lowering of the energy for this electronic configuration.
As the �3 band is filled and separated by an energy gap from the empty �4 band,
the Lewis formula in Figure 7.30 is now appropriate. It turns out that the B–B
“single” bonds are very long in the “real” solid. The main reason for this property
is that interactions with the surrounding metals were ignored. In spite of this, the
qualitative observation, regular vs. alternating B–B distances, is rationalized by a
simple electron-counting argument in the context of the DOS model of electronic
structure.

7.1.4 More C than M: fullerenes and nanotubes

The naked C60 cluster (a fullerene) was briefly mentioned at the end of Chapter 2 as
an example of a three-connect bare cluster with a delocalized system containing the
external cluster electrons. Here we will discuss some properties of fullerene-derived
solids (there is C60, but also C70, C84, etc.). At room temperature, solid C60 adopts
an fcc structure with weak van der Waals interactions between the C60 molecules.
Look more closely at the structure of C60 itself. It has the highest symmetry possible
for a molecule, Ih point group, and consists of a polyhedron with 20 hexagonal
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C60

Figure 7.31

and 12 pentagonal faces (Figure 7.31). It is the presence of the pentagonal faces
that requires the spherical shape as a 60 C-atom molecule made of solely regular
hexagons would be planar similar to a small piece of graphite.

The spherical geometry and high symmetry of C60 gives it a singular electronic
structure. As the three-connect bonding in the surface of the sphere is analogous to
the �-bonding network of a planar aromatic molecule, the main interest lies in the
curved � system, i.e., each of the external orbitals of this cluster contains a single
electron rather than a lone pair. An approximate description of this electronic feature
can be generated from the symmetry-adapted combinations of the radial p orbital
of the 60 C atoms and the result is shown in Figure 7.32. A substantial HOMO–
LUMO gap separates the 30 occupied orbitals from a group of 30 vacant orbitals.
However, like aromatic hydrocarbons, C60 easily accommodates extra electrons in
the low-lying LUMO of t1u symmetry.

Now consider the solid. It is easy to understand why pure bulk C60 is semicon-
ducting. The clusters are about 3.1 Å apart and the interaction between clusters
must be small. Therefore, the discrete levels in the HOMO–LUMO region of C60

give rise to narrow or flat occupied bands separated from flat unoccupied bands as
shown by the band structure diagram in Figure 7.33 where the first Brillouin zone
is shown at the right. Solid C60 is a molecular solid.

So why is solid C60 of any more interest than the molecular cluster itself?
Addition of alkali metals such as K, Cs or Rb generates salts of the composition
[M+]x[C60]x−. These have metallic character as shown by the electrical conductiv-
ity which increases by many orders of magnitude. The K3C60 solid, for example,
exhibits an fcc structure with K atoms in all the octahedral and tetrahedral holes,
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i.e., outside of the C60 clusters. As x increases, the conductivity increases, reaching
a maximum for x = 3. This corresponds to a half-filled t1u band in Figure 7.33.
A further increase in the alkali-metal content causes the conductivity to decrease
until for x = 6 the material becomes an insulator. Now the t1u band is filled. Of
great interest is the observation that for x = 3 these salts become superconducting at
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surprisingly high transition temperatures (TC). Rb2CsC60 has a TC of 35 K whereas
it is 12 K for K3C60. This difference is significant. We can use the DOS to explain
this difference because physicists have shown that the TC varies simply with the
DOS at εF: the larger the DOS at εF, the higher the TC. Now recall that band width
depends in part on overlap which decreases with an increase in distance between
the interacting centers. As the alkali metals lie outside the clusters, the C60 units
are farther apart for Rb2CsC60 than for K3C60. Hence, the t1u band width is smaller
for the former. Since the total integrated DOS is constant, the value of the DOS
at the Fermi level must be larger for Rb2CsC60 than for K3C60 consistent with the
relative magnitudes of the TCs.

With C60, as well as the larger analogs, atoms can be introduced into the internal
cavities to form main-group versions of transition-metal clusters containing inter-
stitial atoms. Entities such as main-group atoms like N or a rare gas, molecules like
H2, rare-earth metals and others can be encapsulated. As with external metals, the
maximum conductivity occurs for internal metals which are able to transfer three
electrons to the radial t1u band of solid C60.

Recall from Chapter 6 that a single sheet of graphite is called a graphene. It is a
two-dimensional net that can be rolled into cylinders but lacks the five-membered
rings required by the spherical shape of C60. This cylindrical form, called a nanotube,
constitutes another allotrope of C. Two types are known: a single-walled nanotube,
SWNT, is formed from a single graphene sheet whereas multiwalled nanotubes,
MWNT, possess a number of concentric rolled graphenes. A close look at the
geometry of these species reveals considerable geometric complexity which implies
complex electronic structure. To describe the structures, the parameters, a1 and a2,
given in Figure 7.34 and called the primitive vectors, are defined. The diameter of
a SWNT varies from 1.2 to 2 nm and is given by the roll-up vector Ch = na1 + ma2

more simply designated by (n,m). By following the pattern across the diameter,
three variants of SWNTs, which depend on the manner in which the graphitic sheet
is rolled up, can be recognized. These are: achiral armchair (n,n), achiral zigzag
(n,0), and chiral (n,m) (n > m and m �= 0). For (n,m) SWNT, a chiral angle, 	, is
defined as the angle between the roll-up vector Ch and the (n,0) zigzag a1 direction.
In Figure 7.34 the example of the roll-up vector for the SWNT is (4,1). Below it is
drawn a (5,5) armchair tube in its cyclindrical form.

Although these types of nanotubes differ only slightly in geometry, the differ-
ences have a significant effect on properties. As briefly described in Section 6.3.4,
the simple geometric structure of graphite supports a complex electronic structure.
It is called a zero-gap semiconductor (a semi-metal) because even though the �

and �* bands touch (no gap) the DOS at the Fermi energy is zero. Considering the
close relationship with graphite, it’s no surprise that the band structure of a SWNT
is dominated by the dispersion of the � and �* bands close to the Fermi level. The
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actual dispersion is a sensitive function of structure type (armchair, zigzag or chiral)
and curvature as well as interactions with the internal tubes in the MWNTs. It fol-
lows that the physical properties will similarly differ. In fact, some nanotube types
are conductors, whereas others are semiconductors with substantial band gaps.

As the tube ends may be open, the possibilities for encapsulating guests are
large. For instance, they have been stuffed with water, main-group elements like
O2, and metals such as Cu. They are capable of storing up to 65 % of their own
weight in H2 making them of interest for H2 storage and, they easily encapsulate
Li ions which are important charge carriers in a class of battery. Amusingly, the
first molecule ever reported inside C nanotubes was C60 and the filled nanotubes
were appropriately named “peapods.” C60 acts as an electron-withdrawing dopant
and perturbs the electronic properties of the nanotube that contains the clusters.

7.2 B clusters in solids: connections with molecular boranes

In Section 2.3.2 a little history of the prediction of [B12H12]2− as the composition and
charge of an icosahedral borane molecule was related. The “dangling bonds” of a B12

icosahedral fragment “cut” from solid elemental B were terminated with H atoms
and the charge required for stability derived from the assigned HOMO–LUMO
gap of an MO calculation. The cluster electron-counting rules can be traced to this
exercise. At this point in our studies we can look more closely at solids containing
B polyhedra and seek more similarities and differences between molecular and
solid compounds. Although B icosahedra are present, the geometric structure of
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Figure 7.35

elemental B is complicated (the simpler form is shown in Figure A1.11). Even
with today’s powerful computers, no complete theoretical study of the electronic
structure of elemental B has been done! Thus, we must consider a couple of simpler
examples.

7.2.1 Octahedral B clusters in solids: analogy with [B6H6]2−

Metal hexaborides (metal = alkali metal, alkaline earth, rare earth, actinide) such
as CaB6 are examples which can be related to octahedral borane clusters. These
compounds exhibit a three-dimensional lattice of B6 octahedral clusters linked
to each other through inter-cluster B–B bonds in three directions. As shown in
Figure 7.35, this forms a simple cubic arrangement in which the Ca atoms are
embedded. In the figure, the metals are large grey spheres, the B atoms are small
black spheres and the octahedra are shaded. Applying the Zintl–Klemm idea, we
have [Ca2+][B6]2−. The [B6]2− moiety has 20 cve and six more come from the
shared inter-cluster B–B bonds giving a total of 26, appropriate for a main-group
cluster of order six. Alternatively, if you consider six of the 20 participating in
external bonds, then the sep = 14/2 = 7 is also consistent with expectations. Thus,
going from the [B6H6]2− molecule to the [B6]2− network found in CaB6 changes
the localized B–H bonds into inter-cluster B–B bonds just like those found in
conjuncto-[B5H8]2 shown in Figure 2.18.

Electron counting hides interesting details of electronic structure so let’s see
how the band structure of CaB6 compares to the MO structure of [B6H6]2−. The
MO diagram of [B6H6]2− is shown in Figure 7.36. To review, there is a set of six
outwardly-directed MOs below seven cluster molecular orbitals separated by a large
HOMO–LUMO gap from 11 antibonding MOs. Thus, we expect the [B6]2− sub-
lattice to exhibit a comparable pattern, i.e., a sequence of low-lying occupied
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inter-cluster bonding bands, occupied intra-cluster bands and unoccupied antibond-
ing bands. And the calculations on MB6 (M = alkaline earth) demonstrate this. For
example, the DOS for CaB6, shown in Figure 7.36 at the left, can be compared with
the MO diagram of [B6H6]2− at the right. By now you realize these solid-state com-
pounds will not be purely ionic in character. Some weak covalent bonding occurs
between B and M and the corresponding bands may pick up some metal character.
But the qualitative properties are generated. We have a semiconducting solid with
rather flat occupied bands separated from vacant bands.

You may be willing now to believe that CaB6 is a close relative of [B6H6]2− in
the sense of electronic structure. However, MB6 is also found for M = lanthanides.
LaB6, for instance, is well characterized and also exhibits the structure of CaB6.
Given the preferred oxidation states of +3 rather than +2, this causes a problem.
Applying the Zintl–Klemm approach, we would have [B6]3−; however, molecular
[B6H6]2− has not been successfully reduced. But wait, we’ve encountered this
situation earlier in this chapter. Even if the cation can provide an additional electron,
the extra electron need not be transferred to the B network. It can occupy the bottom
of a La-based band which will lie between the low-lying occupied B-based bands
and the high-lying vacant B-based bands. This will impart metallic conductivity,
and LaB6 is known to be metallic. The important new idea is that the metal electrons
can serve as a reservoir which can be fully or partially used to supply the electron
requirements of the main-group partner.
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Figure 7.37

Many other linked polyhedra similar to molecular boranes are found for B-
rich solid compounds of alkali and alkaline-earth metals. There are octahedra in
Li2B6, octahedra and pentagonal bipyramids in Na3B20, dodecahedra and bicapped
square antiprisms in Li3B14 and icosahedra in Na2B29. The cluster connection is
particularly clear for compounds of this type.

7.2.2 Localized and delocalized bonding in B solid-state chemistry:
the example of GdB4

Rare-earth tetraborides such as GdB4 exhibit a more complicated architecture than
metal hexaborides. Two representations of the structural arrangement of GdB4 are
shown in Figure 7.37. That at the left is a view perpendicular to the stacking axis
while that at the right is down the same axis. Here Gd is represented by the large grey
spheres and B by the small black spheres. Although GdB4 contains B6 octahedra
(shaded in Figure 7.37) the octahedra are directly connected in one rather than
three directions. In the two other directions, the link is made through B2 “units,”
one B of which is denoted B1 in Figure 7.37. The connecting units are formed from
sp2-hybridized B atoms and each is bonded to two B6 octahedra and a partner. The
B–B distances are about 1.8 Å. Thus, GdB4 is viewed as Gd2(B6)(B2).

The first question posed by this structure concerns the formal charge distribu-
tion between the two Gd, B6 and B2 units. If we naively apply the Zintl–Klemm
concept we arrive at [Gd3+]2[B6, B2]6−. The [B6]2− cluster with six external bonds
obeys the cluster electron-counting rules. Consequently, the B2 fragment must
have a charge of −4. This corresponds to saturated eight-electron B centers, and
requires non-planar (tetrahedral) B centers. This does not agree with the observed
planar B centers. But we know the metal does not need to be fully oxidized.
Consider sp2-hybridized B atoms which satisfy the octet rule. This would lead
to [Gd2+]2[B6

2−][B2
2−] and suggests a B=B double bond. OK, but planar B is
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also found with only six electrons in, for example, planar BCl3. A neutral B2 unit
with a single B–B bond would give us [Gd+]2[B6

2−][B2]. This leaves the metal
in an unrealistically low oxidation state given its strong preference for a trivalent
state. The Lewis structures for the three scenarios for the B2 moiety are shown in
Figure 7.38. So, which of these three scenarios is the best description? No doubt
you would like an additional hint. But we don’t have any! Only good calculations
can help us. These have been done and indicate the bonding is best described by the
[Gd2+]2[B6

2−][B2
2−] charge distribution but with a weak coordinated B–B double

bond.

Exercise 7.5. The structural arrangement of the ternary solid-state compound
Gd5Si2B8 is represented below. At the left it is shown perpendicular to the stacking
axis and at the right down the stacking axis. The large grey spheres are Gd, the small
black and dark grey spheres are Si and B, respectively, and the octahedra are shaded.
You can see that the structure is related to that of GdB4 in that layers of GdB4 are
intercalated by Gd3Si2 sheets. In the process one set of B–B bonds between B6 octa-
hedra are broken. A reasonable initial partitioning is (Gd)5(Si2)(B6)(B2). Knowing
that the Si atoms form singly bonded isolated pairs and the B–B distance suggests
a double bond in the B2 units linking the octahedra together, assign charges to the
Gd atoms, Si2 pairs, B6 octahedra and B2 units. Predict the electrical conductivity
of this material.

Exercise 7.5
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Answer. Let the isolated Si2 pairs satisfy the octet rule. This gives [Si2]6− with a
Si–Si single bond. The B6 octahedra require 26 cve. As there are now only four
external B–B bonds, this gives 22 for the neutral unit. Hence, the charge must be
4− leading to [B6

4−]. With a B–B bond of bond order two, the B2 units must bear
a charge of 2−. Thus, we have [Gd2.4+]5[Si26−][B6

4−][B2
2−]! Don’t let the partial

oxidation state of the metal bother you. It simply means that once the electronic
requirements of the main-group moieties are satisfied, a total of three electrons per
formula unit, i.e., per Gd5, remain on the metal atoms. Since the metal is not fully
oxidized, we expect the compound will be a metallic conductor. It is.

7.3 Molecular transition-metal complexes in solids

To give more breadth to our discussion of the connections between molecules and
solids we now consider examples of systems in which one can “see” transition-
metal complexes. They are of pedagogical interest because their simple electronic
structures can be used to good effect in elementary treatments of the electronic
structure of coordination compounds.

7.3.1 Ternary hydride solids

Ternary metal hydrides of formula A2MH6 (A = Mg, Ca, Sr, Eu and M = Fe, Ru
and Os) are known. Full characterization requires knowledge of the distribution of
the H atoms within the structure of the A2M host. Using what we have learned,
let’s try to deduce their arrangement employing Mg2FeH6 as an example.

The metallic lattice is of antifluorite type. Recall that fluorite (CaF2) can be
described as an fcc lattice of Ca atoms with F atoms in half of the tetrahedral holes.
Replacing Ca by Fe atoms and the F by Mg atoms leads to the structure of the
Mg2Fe host. In other words every Fe atom lies in a cube of Mg atoms. What about
the H atoms? Perhaps the methods we have developed up to this point can be used
to generate a reasonable answer. Let’s see. The greater electronegativity of H and
Fe relative to Mg invites application of the Zintl–Klemm principle. The [FeH6]4−

anions have an electron count at Fe of 18! Compare [FeH6]4− to Cr(CO)6 (Section
1.1.5) and you will find the solid-state hydride an analog of the molecular metal-
carbonyl complex. Both have an octahedral arrangement of ligands around the metal
(formally Cr0 and FeII) with filled t2g and empty eg orbitals. But is this solution
correct? Yes, neutron diffraction measurements confirm the octahedral structure
shown in Figure 7.39. Although you will not find this example in textbooks, we
cannot think of a simpler ML6 octahedral complex with which to begin a discussion
of the MO structure of an octahedral complex. The [H]− ligands have no �-donor
or acceptor orbitals to complicate the analysis!
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But with your experience of the earlier examples, you are probably wonder-
ing if the perturbations by the electropositive Mg2+ cations invalidate this simple
model. Band-structure calculations indicate that, although the valence orbitals of
Mg reinforce stability through covalent interactions with the Fe and the H atoms,
the “molecular properties” essentially survive. That is, the occupied t2g and vacant
eg levels of the [FeH6]4− anions give rise to separated bands of low dispersion (flat)
in the solid in agreement with the Zintl–Klemm analysis and the behavior of the
material as an insulator.

Exercise 7.6. The solid-state compound Mg2CoH5 has been prepared and exhibits
the same metal lattice as MgFeH6. Using the Zintl–Klemm approach and your
knowledge of molecular coordination chemistry, suggest a logical geometry for the
H atoms around the Co center.

Co

H

H
H

H H

Mg

Mg
Mg

Mg

Mg

Mg
Mg

Mg

Exercise 7.6

Answer. As we deal again with Mg2+ ions, the anion is formulated as [CoH5]4−

with CoI and five [H]− ligands. Thus, it is an 18-electron compound. The limiting
geometries adopted by five-coordinate complexes are trigonal bipyramidal (D3h

symmetry and most common) for which Fe(CO)5 provides an example and square
pyramidal (C4v symmetry) for which [Ni(CN)5]3− provides an example, albeit
slightly distorted. These, and distorted structures in between, have similar stabilities.
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Interestingly, as shown in the drawing below, the square-pyramidal structure is
favored in Mg2CoH5 and presumably is one imposed by the stabilizing Mg8 cube
which surrounds it.

Figure 7.40

7.3.2 Shared ligands: the example of rutile TiO2

Can all solids be fragmented into “transition-metal molecular ions” separated from
each other by “spectator” counterions which satisfy charge balance and generate
ionic interactions which stabilize the solid? If so, the problem is a simple one and we
can move on. But it is not always possible to usefully identify “molecular pieces”
in solids. Further, even when it is, complications arise that make understanding a
little more challenging than with the hydrides above. Although bridging ligands are
common in molecular chemistry, the process of fragmenting a solid-state structure
with shared atoms is a good exercise. Let us look at a deceptively simple example,
that of rutile TiO2.

To describe the structural arrangement, the solid state chemist highlights the
planar coordination of O by three metal atoms plus the infinite chains of edge-
sharing TiO6 octahedra which run in a single crystal direction. This is shown at the
left side of Figure 7.40 where Ti is represented by the large grey spheres and O by
the small black spheres. On the other hand, as shown on the right side of Figure
7.40, the molecular chemist will highlight the octahedral environment of the TiIV

ions formed by six shared [O]2− ligands leading to the stoichiometry (TiO6/3). Both
viewpoints are right; they just differ in focus: the three-dimensional framework or
the local environment of the atoms. Can the latter be helpful?

As usual, we begin with electron counting. For convenience consider the TiO6/3

“complexes” to be constructed of d0 [Ti]4+ and [O2−] ions. Each O atom is in bond-
ing contact with three Ti atoms; hence three of its four pairs form donor bonds with
the three metal atoms leaving one lone pair. It follows that every TiO6 octahedral
“molecular complex” reaches the count of 12 electrons rather than 18! Although
the 18-electron rule often fails if applied to early metal complexes, counting elec-
trons in this case certainly doesn’t provide understanding. Ti–O covalent character
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is important and any totally ionic model will fail. Examine the covalent character
using a MO model.

First consider the orbital interactions in a single “isolated” TiO6/3 octahedron.
The 3d orbital set of each octahedral Ti atom splits into t2g and eg combinations
as found for any octahedral molecular complex. For a count of 12 electrons both
sets are empty. Below the t2g orbitals lie the ligand O 2s and 2p occupied com-
binations associated with the Ti–O bonds and with the O lone pairs. Above the
eg orbitals are the empty Ti–O antibonding MOs with major Ti 4s and 4p charac-
ter. This description is that of a typical octahedral transition-metal complex and
describes the major interactions in rutile as covalent Ti–O interactions. Next we
need to add to it the interactions between TiO6/3 octahedra in the solid (interactions
are additive). Although there is no effective Ti . . .Ti and O . . .O overlap in the
solid, There is some through-bridge overlap between MOs of neighboring octahe-
dra. These interactions are not strong so the bands generated by the localized MOs
are only moderately dispersed. As a result, an approximate DOS for TiO2 should
look like that shown in Figure 7.41. The levels broaden into bands but the memory
of the octahedral splitting remains and well-separated O 2s, O 2p, Ti t2g, Ti eg and
Ti 4s and 4p bands are observed. Notice that these bands have the same relative
area ratios as the number of orbitals per unit cell, i.e., 2 to 6 to 3 to 2 to 4. The
presence of covalent bonding is reflected by Ti character in the oxygen bands and
oxygen in the Ti bands consistent with the MOs of the TiO6/3 “complex.”
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Exercise 7.7. At room temperature VO2 exhibits the rutile structure of TiO2 but at
low temperature (< 340 K) it distorts so that the V atoms pair up along the edge-
sharing chains. This leads to alternating short and long V–V distances. Explain this
distortion.
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Exercise 7.7

Answer. VO2 has one more electron than TiO2, so the t2g band will contain one
electron. Within the scheme given above, you can see that the t2g set of each metal
contains one � (dx2−y2 ), one � (dxz) and one � (dyz) type orbitals relative to the
M–M axis. When two metals in the chains get close to each other their t2g orbitals
interact. The orbital interactions decrease in the order � > � > � leading to the
splitting pattern shown above. On moving the metal atoms closer, VO2 with a d1

VIV configuration has the possibility of forming a V–V bond by filling the lower �

combination but not the �* combination. This is not possible for TiO2. The small
energy separation between the filled � and the empty � bands in the DOS makes
the solid a semiconductor at low temperature. Note that for undistorted VO2 the
Fermi level cuts the V t2g band (see Figure 7.41) and that the observed behavior is
typical of a Peierls distortion.

7.4 Molecular vs. solid-state condensed octahedral transition-metal
chalcogenide clusters: rule-breakers again

In each of the molecular-cluster chapters we eventually came to the rule-breakers.
We are at that point again. Our example deals with metal clusters of a familiar
geometry that are found in the Chevrel phases. Young readers will not appreciate
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Figure 7.42

the impact the discovery of these ternary molybdenum chalcogenide materials of
formula AMo6X8, where A is a monovalent or divalent metal and X usually a chalco-
genide, had on solid-state chemists and physicists in the 1970s. The excitement
arose from the fact that these phases are both high-temperature and very high-field
superconductors. But high temperature then meant 15 K not 125 K as found later for
some copper oxides! The fundamental structural unit for the prototypical example,
PbMo6S8, is an octahedral cluster, Mo6X8, analogous to molecular [Mo6Cl8L6]4+

discussed in Section 3.3.5. In PbMo6S8 (Figure 7.42, where Mo is represented by
the small black spheres and S by the large grey spheres) face-capped clusters are
packed so that the face-capping chalcogens form terminal bonds to Mo atoms on
an adjacent cluster. Within a cluster the Mo atoms have square-planar chalcogen
coordination, but, on including coordination to neighboring clusters, have square-
pyramidal coordination. The presence of the inter-cluster Mo–S bridge produces
the three-dimensional net in the solid. In addition, and not shown, every cluster is
encased in a cube formed by Pb atoms.

Formulation of this compound is not obvious; however, if we apply the Zintl–
Klemm paradigm to Pb, then [Pb]2+[Mo6S8]2− results. The three-dimensional
extended network is made up of cluster units [Mo6S8]2− with 82 cve (six Mo, eight
triply bridging S ligands and six terminal S ligands from adjacent clusters). How-
ever, solid-state chemists focus on the M6 core electron count in [Mo6

14+(S2−)8]2−

i.e., 22. Both ways were used in Section 3.3.5 and, if you check, you will find that
both counts are two lower than found for the molecular cluster [Mo6Cl8L6]4+. As
you have now sufficient information and experience to solve this conundrum, it
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makes an excellent homework problem and you will find it as problems 2 and 3 at
the end of this chapter.

This family of compounds includes more complex cluster units such as the
Mo12Se14 entity present in Cs2Mo12Se14 shown in Figure 7.43. These condensed
clusters are linked together via the metal atoms in the outer layers much like for
PbMo6S8 above. The finite units themselves are considered face-sharing octahedra
surrounded by bridging chalcogenide ligands. In fact, this face-fused cluster unit is
a member of the series Mo3nX3n+ 2, i.e., Mo6S8 is the smallest, that can be generated
by successive insertion of Mo3X3 planar fragments. Oligomers with X = S, Se and
Te, n = 2–8, 10 and 12, as well an infinite chain with stoichiometry (Mo3X3)∞ as
found in Tl2Mo6Se8, have been characterized.

Because the Mo atoms in the terminal Mo3X3 triangles are capped as well as
linked to adjacent cluster units as found in PbMo6S8, the metal atoms are electron-
ically similar. But note that the Mo atoms in the internal Mo3X3 triangles lie in a
distorted C2v square ligand environment. Consider their electron counts. As these
clusters result from the fusion of octahedra through triangular faces, perhaps the
treatment of Section 3.3.3 would be useful. Let’s see what it looks like using the
solid-state chemist’s cluster count. Assuming the electron count of [Mo6Cl8L6]4+,
i.e., 24, is an appropriate model, a fused cluster will have a count equal to 24
times the number of fused octahedra minus six times the number of shared trian-
gular faces, six being the number of metal electrons per triangle. It means that we
should get 42 (24 × 2 − 6), 60 (24 × 3 − 6 × 2), 78 (24 × 4 − 6 × 3), etc.
for Mo9X11, Mo12X14, Mo15X17, etc. oligomeric units. Electron counts of 34 for
[Mo9Se11]2−, 46 for [Mo12Se14]2− and 59 for [Mo15Se17]3−, encountered in K2

Mo9S11, Rb2Mo12Se14 and Rb3Mo15Se17 solid phases, respectively, are much
lower. Even if we use both the lower count of 22 observed for [M6S8]2− and note
that when fusing late metal-carbonyl clusters, 50 rather than 48 cve are subtracted,
the counts are too high. This is puzzling.
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Figure 7.44

When counting electrons leads to nonsense, you know we need to move to
a different paradigm or adopt another method. So let’s analyze the bonding in
K2Mo9S11 to see if the information gleaned can be extrapolated to the other
members of the series. A qualitative molecular orbital diagram of characterized
[Mo9Se11]2− is shown in Figure 7.44 at the right. The overall distribution of
energy levels shows a rough separation of the chalcogen p and Mo d orbitals with
a region of predominant metal character in the HOMO/LUMO region. Further,
there is a substantial energy gap separating the bonding and antibonding Mo d-
based molecular orbitals. An open-shell electronic configuration is found for this
oligomer. That is, for 34 electrons the degenerate e levels are partially occupied.
Look at the calculated DOS at the left of Figure 7.44 and note the close cor-
respondence with the MO diagram, even though the DOS includes inter-cluster
interactions. The Fermi level crosses a partially filled narrow band which mainly
comes from two e symmetry MO level sets. This means the solid compound
should be a metallic conductor. It is a superconductor at very low temperature as
well.

Look again at the DOS diagram. If two extra electrons could be added per Mo9S11

unit, they would fill the lower e symmetry MO of the isolated cluster or fill the band
at the Fermi level. The latter would render the compound semiconducting. A way
to do this is to add a dopant. Experimentally this is done by insertion of Cu into
K2Mo9S11 by a redox reaction which leads to Cu2K1.8Mo9S11. This is successful as
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crystalline K2Mo9S11 has holes available around the clusters for the Cu atoms. Some
K is lost upon reaction but the result is achieved. The compound is a semiconductor.
Reduction without major structural change is a characteristic of high-connectivity
clusters.

Exercise 7.8. Interestingly the condensation of octahedra via common faces is also
exemplified in molecular chemistry. Co9Se11(PPh3)6 is an example which adopts
the same structural arrangement as the [Mo9Se11]2− unit K2Mo9S11 (see below).
Count the cluster metallic electrons (using the “solid-state chemist’s” way) and
compare the value to the 34 electron count of [Mo9Se11]2−.
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Exercise 7.8

Answer. The metal count is 59 (9 × 9 (Co) − 11 × 2 ([Se]2−) = 59). This is 25
more than for [Mo9Se11]2−! Indeed a large gamut of electron counts is possible for
these condensed octahedral clusters, either molecular or part of extended solids.
They are nice examples of compounds which can display variable electron count
with constant shape. This situation is somewhat reminiscent of the transition-metal
elements which exhibit a metallic d band which is gradually filled as we go from the
left to the right of the periodic table without substantial change in their structure.
Also review the discussion of cubic clusters in Section 5.2.5.

Exercise 7.9. Bicapped-octahedral M6 clusters can be observed in solid-state chem-
istry as in La2Mo16O28 and Nd2Mo16O28 for instance. The former contains a well-
ordered mixture of cis- and trans-bicapped “Mo8O24” clusters in equal proportion,
whereas the latter shows only cis-bicapped “Mo8O24” clusters (see below). Count
the cluster metallic electrons per bi-capped octahedral Mo8 cluster. Try to explain
why La2Mo16O28 is semiconducting and Nd2Mo16O28 metallic in character. Hint:
in contrast to what we learned for molecular clusters, e.g., Exercise 3.6, permit
the isolated cis- and trans-bicapped “Mo8O24” clusters to accommodate different
closed-shell electron counts without large change in HOMO energies.



296 From molecules to extended solids

Mo

Mo

Mo

Mo

Mo

Mo

Mo

Mo

O O
O O

O

O

O

O

O O

O

OO

O O

O

O O

O

OO

O O

O O O

O
Mo

Mo Mo

Mo

Mo

MoMo

Mo
O O

O O

O

O

O

O

O
O

O

O

O O

O

OO

OOO

O

cis-isomer  trans-isomer

Exercise 7.9

Answer. La and Nd strongly prefer a +3 oxidation state leading to the formulation
[La(Nd)3+]2[Mo16]50+[O2−]28. Hence, we have 46 metal electrons to distribute over
two Mo8 clusters. In Nd2Mo16O28 there are two identical cis-bicapped isomers and
hence each must have a count of 23 electrons. With an odd number of electrons,
the HOMO of the cluster is singly occupied and will generate a half-filled band
and metallic behavior is predicted for the solid. On the other hand, there are two
possibilities for La2Mo16O28 and we have different isomers. If both cis- and trans-
bicapped Mo8 isomers have the same electron count of 23, metallic conductivity in
the solid is again predicted. This cannot be the case as La2Mo16O2 is found to be a
semiconductor. Filled bands at the Fermi level are thus required and therefore the
cis- and trans-bicapped Mo8 isomers must have even electron counts. Consequently
the two isomers must have different electron counts. Indeed, calculations indicate
that the cis- and trans-bicapped Mo8 isomers satisfy closed shell requirements for
22 and 24 metallic electrons and exhibit HOMOs at roughly the same energy. Note
that in this particular case, the capping principle described in Section 3.3.2 is not
satisfied since two different bi-capped clusters display two different electron counts.
This is due to some mismatch between the frontier orbitals of the octahedron and
the frontier orbitals of the capping units. This mismatch differs for cis- and trans-
capping.

7.5 Cubic clusters in solids

Molecules and solids based on cubic rather than octahedral motifs are less abun-
dant in chemistry. The former were treated in Section 5.2.5 and now we consider a
few solid-state analogs. Similar cubic architectures are found in (Fe/Co/Ni)9S8, or
synthetic Co9S8 transition-metal sulfide minerals called pentlandites. In a binary
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Figure 7.45

compound, e.g., Co9S8, hexacapped cubic Co8S6 clusters can be distinguished
linked together by octahedral CoS6 units as shown in Figure 7.45. In this scheme
the Co8 cube (cluster Co atoms are represented by large, light grey spheres, mononu-
clear Co atoms by large, dark grey spheres and S atoms by small dark spheres) is
surrounded by an octahedron of mononuclear Co complexes where its S ligands
also cap the square faces of the cube. For clarity, only one full ligand envelope of
the mononuclear linkers is shown.

You know counting electrons is not going to be helpful here as the cubic cluster
systems treated in Chapter 5 had counts ranging from 120 to 99 cve! Plus, we have
a mononuclear complex to deal with in the same lattice and we can’t even be sure it
will be an 18-electron species. On the other hand, we can use an electron count to
evaluate some boundary conditions for this system. With eight S2− ligands we have
(Co9

16+), i.e, 65 metal electrons are left for the nine cobalt atoms. The solution
to the assignment of these electrons to the two different metal types is: 8x + y =
65, where x and y each represent a different d-electron count per metal. Still x and
y cannot differ greatly since we deal with a single metal type, Co, albeit in two
different environments. Consider the mononuclear center and the value of y. A d6

electron count is expected for an octahedral Co center with �-acceptor ligands, i.e.,
a filled t2g set and empty eg set. However, we have �-donor ligands so the eg set
may be partially filled (d7 or d8). For example, the 20-electron (Ni2+, d8) octahedral
complex [Ni(H2O)6]2+ models the latter. With y = 6, 7 or 8, we are left with 8x =
59, 58 and 57. Magnetic susceptibility measurements would be helpful in going
further but keep in mind that we have both the cluster and the complex to consider.
In any case, none have been measured for this compound.

So we must proceed from the “molecular approach” to a solid-state approach.
Look at the t2g and eg projections of the mononuclear cobalt in the computed DOS
of the material. This is shown in Figure 7.46 as the hatched areas. As expected,
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the t2g band is rather narrow and completely occupied whereas the eg band is
spread out above and below the Fermi level due to mixing with S ligand orbitals.
It means that the Co–S bonding and antibonding states are occupied and empty,
respectively. This suggests a Co3+ d6 octahedral cobalt with its t2g set filled and
its eg set empty. As already said this gives 59 metal electrons for the Co cubes or,
alternatively, 111 cve for the “isolated” cluster [Co8(�4-S)6S8]15−. To get the latter
we must “cut” a molecular cubic cluster from the solid and saturate the S ligands
surrounding the metal cube. The assignment of the oxidation state of the octahedral
cobalt is not unambiguous. Nevertheless, it is clear the Co8S6 clusters in Co9S8

are electron-poor with respect to the optimal count of 120 cve discussed in Section
5.2.5. Compare it with cubic molecular clusters with �-donor ligands such as the
108 and 109 cve analogs [Co8(�4-S)6(SPh)8]4-/5−. It is worth reemphasizing a point
made in Chapter 5. The cubic clusters present an open-shell electronic structure
which might translate into a metallic character in solids such as Co9S8. Indeed, the
DOS does show the Fermi level crossing partially filled bands (Figure 7.46). This
solid is a metallic conductor. In the same way that molecular cluster cubes show a
wide range of cve counts, so too, it is possible to play with the nature of the metal
and synthesize pendlandite-type compounds with different electron counts.

We have come to the end of our gallery tour of solid-state systems with useful
molecular connections. What we have tried to do in this chapter is to explore a link
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between molecules and extended solids by grafting simple band structure perspec-
tives onto “popular” chemical thinking. Thus, we have interpreted these delocalized
band structures from a very chemical point of view – via frontier-orbital consider-
ations based on the same interaction diagrams used for small and large (clusters)
molecules. We found the treatment of electronic structure in extended systems is no
more (nor less) complicated than in discrete molecules. With the tools developed
in Chapter 6, we have been able to build the electronic structure of complicated
three-dimensional solids from their unit cell contents. Many similarities between
molecules or clusters and extended structures have emerged, as well as some novel
effects as the result of extensive delocalization in solids. By parting the curtains of
the delocalized picture of Bloch functions, we see the essential chemical bonds that
determine the structure of extended solids. Both molecules and extended solids deal
with the fundamental questions: Where are the electrons? Where are the bonds?
There is value in considering the solid as a molecule, a big one, yes, but just a
molecule. To finish this chapter, now test your own skill in applying this approach
with the problems below.

Problems

1. In Section 7.1.2 the solid-state compound Gd10Cl18C4 was mentioned. Its structure, see
below, consists of two Gd6 octahedra sharing an edge with 18 bridging Cl ligands and
C2 dumb-bells in the octahedral holes. If the compound Gd10Cl18B4 were synthesized,
what B–B bond distance would be expected assuming it adopted the same structure as
the known C derivative?
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Problem 7.1

2. Propose geometries for the NiH4 and PtH4 moieties which are found in Mg2NiH4 and
Na2PtH4, respectively. Construct corresponding qualitative MO diagrams.

3. The octahedral molecular cluster anion [Mo6(�3-Cl)8Cl6]2− with Oh symmetry shown
below is an analog of the molecular cluster [Mo6Cl8L6]4+ described in Section 3.3.5.
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Problem 7.3

a. Calculate the oxidation state of the metal atoms and show that each Mo atom obeys
the 18-electron rule. Calculate the number of metal electrons of the Mo6 core. How
many of these electrons are Mo–Mo bonding and Mo–Mo non-bonding?

b. The MOs of predominant metal character for [Mo6(�3-Cl)8Cl6]2− are shown below.
Show that the diagram agrees with the cluster metal electron count.
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Problem 7.3

c. The cluster Mo6(�3-S)8(PEt3)6 adopts the same structure. Count the number of
metallic electrons for the Mo6 core. Assuming that its MO diagram is similar to that
of [Mo6(�3-Cl)8Cl6]2−, rationalize the difference in their metal electron count. Do
you think that other electron counts should be possible?

4. Do question 3 first.
a. The octahedral building unit Mo6S8 in the Chevrel phase PbMo6S8 described above

in Section 7.4 possesses 22 metal electrons. Make a schematic drawing of the DOS
for PbMo6S8 assuming substantial inter-cluster interactions. Indicate the Fermi level
on the DOS diagram and predict the type of electrical conductivity that should be
observed.
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b. The solid-state compound Mo2Re4S8 possesses a structure closely related to that of
PbMo6S8. Comment on its electrical properties.
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Svensson, G., Köhler, J. and Simon, A. (1999). Metal Clusters in Chemistry, Braunstein,

P., Oro, L. and Raithby, P. R. (Eds.), vol. 3. Weinheim: Wiley-VCH, p. 1509.

Section 7.5

Burdett, J. K. and Miller, G. J. (1987). J. Am. Chem. Soc., 109, 4081.
Halet, J.-F. and Saillard, J.-Y. (1997). Struct. Bond., 87, 81.





8

Inter-conversion of clusters and
solid-state materials

The conceptual connection between cluster and solid-state chemistries is the uni-
fying theme of the first seven chapters. Complementary empirical connections
between cluster and solid-state chemistries are emphasized in this final chapter.
That is, the synthesis of solid-state materials from molecular precursors including
clusters permits the strengths of molecular synthesis to be used in the development
of new materials. On the other hand, the utilization of Zintl clusters as novel reagents
in solution permits the advantages of thermodynamically driven solid-state synthe-
sis to be transferred to the production of clusters in solution. Most of the examples
discussed could have been included in earlier chapters, but are gathered here to
serve as a review as well as a stimulus to creative thought for future research in
cluster and materials chemistries.

8.1 Cluster precursors to new solid-state phases

In this section we give examples of molecular clusters used as precursors to new
dense phases or to new porous networks.

8.1.1 III/VI Semiconductor synthesis

Traditional solid-state syntheses at high temperatures are guided by thermodynam-
ics expressed in phase diagrams in distinct contrast to much of molecular chem-
istry that utilizes kinetics to guide synthesis. We viewed clusters as fragments of
bulk solids stabilized by ligands; however, not all clusters can be viewed as build-
ing blocks of known bulk structures, e.g., icosahedral clusters. Hence, metastable
phases not accessible by conventional solid-state synthesis might arise from cluster
precursors. In other words, the structure of a cluster building block could deter-
mine the nature of the first-formed solid phase. To do so, a conversion technique
that operates far from equilibrium conditions must be employed and the external

303
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cluster ligands cannot be bound so strongly that disruption of the cluster bonding
network is likely.

The thermodynamically stable phase of GaS exhibits a hexagonal (hcp) structure.
Three volatile precursors for chemical vapor deposition were synthesized to gener-
ate metastable cubic GaS phases. (MacInnes et al., 1993). The structures are shown
in Figure 8.1. The first is a bridged dimer; the second, a cubane cluster and the third,
a dimer of two partial cubane clusters. Upon removal of the external t-butyl ligands
all have stoichiometry GaS but different core Ga–S connectivities, i.e., each Ga is
connected to two, three and three S atoms, respectively. Contiguous, high-purity
films of composition GaS, which are featureless by SEM, can be grown at about
400 ◦C on a variety of substrates from all the precursors. The dimer yields hexago-
nal GaS, the cubane yields a new cubic GaS phase, and the dimer of partial cubanes
yields amorphous material. At lower temperatures, the cubane yields an amorphous
film and at higher temperatures an amorphous S-rich film with crystalline needles –
clear evidence of kinetic control in the formation of the new phase.

The new cubic phase can be generated as shown in Figure 8.2. As the exter-
nal ligands on Ga are lost, the cubic building blocks generate a fcc NaCl lattice
as verified by the diffraction properties observed. A crucial assumption in this
interpretation is retention of the cluster core structure. We have emphasized ear-
lier in the text that the energetics of external cluster–ligand bonding can match or
even exceed that of the cluster core. Hence, it is difficult to argue a priori for cluster
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structure-retention based simply on a building-block correspondence between clus-
ter core and solid-state structure.

Subsequent work by the same group addressed this point (Cleaver et al., 1995).
First, vaporization of the molecular solid containing the cubane cluster gener-
ated [(t-Bu)GaS]4 in the gas phase. Its structure determined by electron diffraction
has parameters that are chemically equivalent to those of the solid-state structure.
Hence, vaporization does not disrupt the cluster. As gas-phase thermal pyrolysis
can be mimicked by infrared laser-powered photolysis, this technique was used to
investigate whether the cubane cores could survive loss of the alkyl ligands on Ga.
Evidence for the generation of (t-Bu)xGa4S4, x = 0–3, suggests the GaS cubane
core is sufficiently stable to account for the generation of the new cubic phase of
GaS observed. The fact that the other precursors do not generate the new phase is
significant. Presumably the Ga7S7 core of the partial cubane dimer also remains
intact during CVD deposition. However, it has a C3 axis and there is no possibility
of ordered close packing as postulated for the cubane precursor. In similar manner,
the results for the Ga2S2 dimer core supports this mechanism as, if the cubane
core was degraded into, e.g., Ga2S2 dimers, it would lead to the known hexagonal
phase. With appropriate properties, a molecular cluster controls the stoichiometry
and structure of the solid-state product generated from it.

8.1.2 Cluster-expanded solids

Porous materials are technologically important in separation technology and as
substrates for catalysts. One approach to the synthesis of porous solids is to expand
a network solid by replacing one of its components with a larger one having the same
functionality. Unfortunately, the larger pores can lead to the generation of two inter-
penetrating lattices, and when template molecules are used to avoid this problem,
the resulting lattice may not survive the removal of the templates. Usually this
strategy involves the increase of a single dimension of the extended network. Long
proposed that both problems can be avoided if the component replaced increases
the lattice dimensions isotropically (Shores et al., 1999), e.g., replace an octahedral
atomic connector by an octahedral metal cluster as illustrated next.

Prussian blue, Fe4[Fe(CN)6]3xH2O, consists of a cubic lattice of alternating
Fe2+ and Fe3+ ions connected with cyanide bridges (Figure 8.3). The [Fe(CN)6]4−

sites are 75 % occupied and the exposed Fe3+ ions are coordinated with H2O.
Dehydration and hydration by moisture is reversible; hence, Prussian blue is a
porous solid albeit one with very small pores. To increase pore size, the [Fe(CN)6]4−

complexes were replaced with octahedral [Re6Te8(CN)6]4− clusters (Figure 8.4).
This cluster displays an octahedral array of N donors on a sphere about 4 Å larger
in diameter than the mononuclear complex. Reaction of Fe3+ with the cluster in
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a 4:3 ratio yields Fe4[Re6Te8(CN)6]3xH2O which possesses a structure analogous
to that of Prussian blue with 75 % occupancy of the [Re6Te8(CN)6]4− sites. The
environment of a single [Re6Te8(CN)6]4− cluster is shown in Figure 8.5. Compare it
to Figure 8.3. Simple calculations show that the pores in the cluster-based material
are cubes of about 10 Å dimensions vs. about 6 Å in Prussian blue.

The cluster-expanded solids exhibit increased capacities for uptake of water,
methanol and ethanol. Even better uptake results were obtained with cluster solids
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generated by replacing Fe3+ with Ga3+ (and Se with Te). By using Co2+ aquo
ions instead of Fe, related cluster-expanded networks were obtained which could
be dehydrated and which would take up small organic solvents in the pores. These
compounds changed color on uptake of, e.g., diethyl ether, orange to blue, in a
reversible manner. The color change is attributed to a change in coordination at
the Co centers from octahedral to tetrahedral geometry thereby changing from a
weakly absorbing coordination center to a more strongly absorbing one (recall that
solutions of [Co(H2O)6]2+ are light pink whereas those of [CoCl4]2− are deep blue).
With visible sensitivity to the presence or absence of guest molecules, this material
is a solid chemical sensor (Beauvais et al., 2000).

8.1.3 Novel arrays from polyfunctionalized clusters

Not only can existing structural motifs be modified by cluster “substitution” but
completely new materials can be synthesized. (Zhou et al., 2004) employed an early
transition-metal octahedral cluster with terminal cyano ligands, [Nb6Cl12(CN)6]4−

(Figure 8.6, see also Section 3.3.5) in combination with a metal linker complex
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[Mn(salen)]+. The salen ligand is a tetradentate ligand that occupies four equa-
torial sites of the six octahedral positions of the Mn ion leaving two axial sites
available for coordination (Figure 8.6). The [Mn(salen)]+ complex is the acceptor,
hence, the axial ligands must be labile to permit facile assembly of the extended
structure. In addition to isotropic expansion of a lattice, the use of cluster com-
ponents permits, e.g., building-block charge to be varied without large structural
change.

More than one framework can be generated from the two building blocks depend-
ing on conditions and other factors, e.g., in this case the size of the counterion
is important and suggests a templating effect. Further, the dimensionality of the
network generated need not utilize the full dimensionality of the cluster building
block. In this work a dimer was observed (zero dimensions), a net (two dimen-
sions) and a chain (one dimension). The net-like compound, (Me4N)2[Mn(salen)]2

[Nb6Cl12(CN)6], is shown in Figure 8.7.

8.1.4 Zintl clusters from molecular precursors

The synthesis of a Zintl compound from a molecular precursor makes a con-
nection between molecular species and Zintl cluster compounds (Beswick et al.,
1998). [Sb7]3− can be prepared by the addition of a sequestering agent to an inter-
metallic alloy of Sb. The high-temperature method and the cost of most seques-
tering agents is a limitation. A heterometallic alkali-metal/Sb(III) phosphinidene,
{[Sb(PCy)3]2Li6.6HNMe2} generates [Sb7]3− (Figure 8.8) at room temperature
and is driven by formation of the coproduct (PR)4. The molecular precursor con-
stitutes an inexpensive route to gram-scale quantities of the [Sb7]3− ion. One of the
two forms isolated is [Sb7Li3.HNMe3] which contains a volatile ligand. Lusterous
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inter-metallic Sb/alkali-metal films are produced from this precursor under mild
conditions. These films are potentially of value in the manufacture of photodiodes
which requires the composition-controlled deposition of metallic Sb and alkali
metals from the vapor.

8.2 Solid-state phases to molecular clusters

NMR studies of solutions of inter-metallic phases led to recognition of the poten-
tial use of polyatomic Zintl ions as reagents for the generation of new cluster
compounds (Eichhorn et al., 1988). Examples of transition-metal derivatives have
been discussed in Chapter 5 and the structures of the ions themselves were used as
examples of ligand-free main-group clusters in Chapter 2 (Corbett, 1985; Fassler,
2001). The following examples illustrate recent developments in the chemistry of
these clusters derived from solid-state syntheses.
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8.2.1 Cluster derivatives and oligomers

The bare [Ge9]4− cluster, a monocapped square-antiprismatic cluster found both in
a Zintl phase as well as a solution species, has been functionalized on the external
cluster surface. Rather than capping a rectangular face with a transition metal
(Chapter 5) external bonds to other clusters or substituents are formed. A dimer,
[Ge9–Ge9]6− is shown in Figure 8.9 (Xu and Sevov, 1999). The two nido-Ge9

clusters are joined by a single Ge–Ge exopolyhedral bond between atoms on the
open faces. Consistent with its electron count (each [Ge9]3− cluster has 11 sep,
eight Ge atoms with lone pairs and one Ge atom with a single external orbital
containing one electron which forms a Ge–Ge bond with the other [Ge9]3− cluster)
the dimer is analogous to [B5H8]2 (Figure 2.18). Similarly, reaction of Ph3Bi with
an ethylenediamine solution of K4Ge9 (the major phase of the precursor contains
both [Ge9]4− and [Ge4]4− clusters) leads to [nido-6,8-(Ph2Bi)2-Ge9]2− also shown
in Figure 8.9. The one-electron Ph2Bi ligands replace one cluster negative charge
each. The sep count of the cluster is unchanged.

With Ph3Sb, not only is [nido-6,8-(Ph2Sb)2-Ge9]2− formed, but [nido-6-(Ph)-8-
(Ph2Sb)-Ge9]2− and [6,6′-conjuncto-{8,8′-(Ph2Sb)2-(nido-Ge9)2]4− shown in Fig-
ure 8.10 are isolated (Ugrinov and Sevov, 2002). Recognition of both the nucle-
ophilic displacement character of the reaction and the fact that [Ge9]4−, [Ge9]3−

and [Ge9]2− are in equilibrium in solution permitted [nido-6,8-(Ph3E)2-Ge9]2−, E =
Ge, Sn, [nido-6-(R3Sn)-Ge9]3−, R = Me, Ph, and [6,6′-conjuncto-{8,8′-(Ph3Sn)2-
(nido-Ge9)2]4− to be prepared from R3ECl, E = Ge, Sn, R = Me, Ph. Reaction
with t-BuCl leads to alkyl functionalization and the product [6,6′-conjuncto-{8,8′-
(t-Bu)2-(nido-Ge9)2]4−. Finally, reaction with the appropriate sequestering agent
leads to dimerization and the formation of a solid containing infinite chains of
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(–Ge9
2−–)∞ where each [Ge9]2− unit is bonded in the 6,8-positions via Ge–Ge

bonds to two similar clusters.
Not all derivatives isolated follow simple main-group cluster ideas. For

example, oligomers of the Ge9 cluster system, [Ge9=Ge9=Ge9]6− and
[Ge9=Ge9=Ge9=Ge9]8−, are shown in Figure 8.11 (Ugrinov and Sevov, 2003).
These clusters are connected by two inter-cluster Ge–Ge interactions and the Ge9

cluster units exhibit tricapped trigonal-prismatic cluster shapes elongated along
two prismatic edges (dotted lines in the drawing). Similar distortions have been
discussed in Section 2.11.2 in connection with bare nine-atom clusters.

Each inter-cluster two-center–two-electron bond reduces the charge of the clus-
ters joined by one unit each. Thus, if the clusters in Figure 8.11 are connected by
two inter-cluster Ge–Ge bonds of the same type per pair, the charge of each end
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cluster would be 2− and that of each central cluster would be 0. However, the
observed charges for the trimer and tetramer are 6− and 8− not 4−. Somehow
the double-linked inner clusters accommodate an extra 2− charge each. Consistent
with a different cluster–cluster connectivity, the inter-cluster Ge–Ge distances are
significantly longer than those in [Ge9–Ge9]6−. A key observation is that the four
external cluster Ge–Ge bond vectors are not oriented in a radial direction but rather
lie parallel to the elongated trigonal-prismatic edges of the Ge9 clusters. A simple
model shows how bending of the exocluster bonds away from the radial direction
of the cluster lowers the energy of a lone-pair-type orbital so that it is filled.

The central cluster is modeled by square D4h arachno-[Ge4H4]2− shown in
Figure 8.12. The two pertinent empty orbitals are of b2g symmetry (cluster and
ligand antibonding) and a2g symmetry (cluster antibonding) and cannot mix. Bend-
ing the Ge–H bonds to model the doubly connected Ge9 cluster units in the dimer
and trimer lowers the symmetry to D2h and these two orbitals now are of b1g symme-
try and can mix. One is stabilized and the other destabilized as shown. The former
is now available at low energy to accommodate the “extra” lone pair. An important
consequence of this exocluster orbital mixing is that the oligomers are not viewed
as delocalized clusters connected by localized bonds but single delocalized entities.

8.2.2 Extraction of Zintl clusters from transition-metal cluster solids

Solid-state centered-Zr cluster compounds with compositions MI
x[Zr6(Z)Cl12]Cln

are known. For n < 6 the structures exhibit inter-cluster bridging by shared Cl atoms
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with the number of bridges increasing with decreasing n. For these compounds,
excision of soluble cluster units results from the addition of Lewis bases which
displace and open up the Zr–Cl–Zr bridges. Thus, addition of [Cl]−, neutral amines
or phosphines generates metal clusters in solution (Rogel and Corbett, 1990). For
example, reaction of ethylamine with K3[Zr6(Be)Cl12]Cl3, Na4[Zr6(Be)Cl12]Cl4
and Li6[Zr6(H)Cl12]Cl6 leads to MICl and Zr6(Z)Cl12(EtNH2)6, Z = Be, H. The
structure of the neutral Be-centered cluster is shown in Figure 8.13 at the left where
it is seen that the six axial Zr positions through which inter-cluster bonding in the
solid takes place are now occupied by the added base L.

An alternative solvent system permits access to a greater variety of clusters (Tian
and Hughbanks, 1995). This redox-stable system employs a room-temperature
molten salt formed from 1-ethyl-3-methylimidazolium chloride (ImCl)/AlCl3 mix-
tures. The Rb5Zr6Cl18B cluster solid (n = 6 so there are no Zr–Cl–Zr bridges
between clusters in the solid state), which yields a one-electron oxidation product
when solublized in conventional solvent systems, generates [Zr6(B)Cl18]5− on treat-
ment with the ImCl/AlCl3 ionic liquid (Figure 8.13 on the right). The diamagnetic
cluster in solution is now amenable to all the spectroscopic tools of molecular chem-
istry, e.g., the highly downfield shifted 11B NMR resonance corresponds well with
that of octahedral [(CO)16Rh2Fe4B]− which also contains an interstitial B atom.

8.2.3 Cluster synthesis via ligand-arrested solid growth

The synthesis of large clusters such as [Al69R18]3− (Chapters 2 and 3) proceeds
by Al atom cluster-core build up. Cluster-core growth is terminated at some point
by external ligands. The method of Schnöckel is a variation of metal-atom vapor-
deposition techniques and relies on: (a) the reversibility of the equilibrium between
the liquid metal, e.g., Al, and gaseous metal halide, e.g., AlCl3, with gaseous sub-
halide, e.g., AlCl; (b) the shift in equilibrium position with temperature and (c)
competitive rates at similar temperatures of subhalide disproportionation to metal
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and halide (metal atom generation and core growth) and the metathesis of subhalide
with a metalated ligand, e.g., LiN(SiMe3)2, to terminate core growth (Schnepf and
Schnöckel, 2002). The reaction takes place in an appropriate solvent and reac-
tion cluster size is controlled by reaction temperature, e.g., [Al7R6]− at −7 ◦C vs.
[Al69R18]3− at 60 ◦C. The barrier for disproportionation of AlCl is larger than
that of metathesis so the core growth rate/ligand-trapping rate ratio increases with
increasing temperature.

The same principles apply to the deposition of vapor of transition-metal chalco-
genides in the presence of PR3 ligands (Crawford et al., 2002). Depending on
transition metal, small, e.g., M4S4(PR3)4, M = Fe, Ni; medium, e.g., M8S8(PR3)6,
M = Cr, Co and large, e.g., Cu26Se13(PEt3)14 (Figure 8.14), clusters were isolated
as major products. The large Cu26 cluster can be described as an Se-centered Cu12

icosahedron within a Se12 icosahedron surrounded by a (CuPR3)14 rhombic dodec-
ahedron with the PR3 ligands in axial orientations. Just as the core structures of
the large Al clusters differ from that of bulk Al metal, so too the core structure of
Cu26Se13(PEt3)14 differs from that of the fcc lattice exhibited by Cu2Se.

8.3 Clusters to materials

The emphasis of the first two sections was the generation of novel substances. Here
we note that there are advantages to the utilization of cluster precursors for solid
materials for which conventional syntheses are well established.
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8.3.1 Borane clusters to boron carbides

Non-oxide ceramic materials, such as boron carbide, are technologically impor-
tant. The stoichiometry of boron carbide is represented as B4C, i.e., B12C3, with a
structure based on B11C icosahedra and inter-icosahedral C–B–C chains as schemat-
ically illustrated by the structure of B13C2 in Figure 8.15. The structure is related
to that of �-rhombohedral B and, like this allotrope of elemental B, the complex-
ity of the structure is difficult to represent in two dimensions. It suffices for our
purposes to point out some important differences. In contrast to elemental B, the
links between deltahedral clusters are C–B–C units rather than larger B10–B–B10

units. This results in closer packing of the icosahedra and the generation of C2B4

rings between icosahedra. These links utilize six B atoms in each icosahedron and
the other six form direct B–B bonds to adjacent icosahedra. As limited substitu-
tion of B and C atoms within both cluster and chains is possible, the C content
can range from 8.8 to 20 atom %. The limits correspond approximately to B10.5C
to B4C.

Borocarbide powders can be synthesized by the direct reaction of the elements at
high temperatures. The properties that make boron carbide of interest also inhibit
processing into useful forms other than powders. A way around this problem is
to develop a polymer capable of being processed into shapes and converted into
a ceramic while retaining shape. The requirements: a high-yield polymer precur-
sor synthesis; a high-yield polymerization; a polymer with useable properties and
conversion to a ceramic in high yield are demanding ones. Cluster precursors to
solid-state materials syntheses will never be viable cost-wise for preparing bulk
materials in quantity; however, for specialized applications requiring materials with
designed properties, these tailored precursors offer considerable scope to the mate-
rials engineer. Hence, the illustration discussed is the generation of boron carbide
nanostructures (Sneddon et al., 2005).
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The attachment of nido-B10H14 clusters to a saturated hydrocarbon polymer
produces a processable precursor for a boron carbide ceramic. Two steps are
required: functionalizing the cluster and polymerizing the functional group to gen-
erate a linear polymer with pendant clusters. As shown in Figure 8.16, a Cp2Ti(CO)2

catalyst is used to generate linked cluster dimers or mono-cluster substituted alkenes
using 1,5-hexadiene. 6-hexenyldecaborane is readily polymerized with another
early transition-metal complex catalyst system to yield a cluster/organic hybrid
polymer composed of a polyolefin backbone with dangling decaborane clusters.
Poly(hexenyldecaborane) is soluble and can be converted into a bulk ceramic in
60 % yield (68 % theoretical).

Poly(hexenyldecaborane) can be spun into fibers and the green fibers can be
heated to generate boron carbide fibers. Interest in smaller-scale fibers requires dif-
ferent techniques. In this case the 6–6′-(CH2)6-(B10H13)2 dimer, Figure 8.16, has
found use in the synthesis of nanostructured ceramics. For example, the absorption
of the dimer into the channels of a nanoporous alumina “form,” followed by conver-
sion to ceramic and dissolution of the alumina membrane, generates free-standing
fibers of much smaller dimensions that those obtainable by spinning techniques.
Figure 8.17 shows a scanning electron micrograph of boron carbide nanofibers gen-
erated by the filling of 250 nm pores of 60 �m alumina membranes with the dimer,
thermolysis at 1025 ◦C and dissolution of the alumina in HF. The result is fibers
of uniform diameter defined by the pore size, and length defined by the membrane
thickness. The fibers are composed of crystalline boron carbide. The thin layer of
boron carbide left on one end of the fiber “brush” serves to retain the alignment
generated by the alumina “form.”
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Figure 8.17

8.3.2 M–B clusters to amorphous metal-alloy films

Amorphous metal alloys formed from transition metals or rare-earth metals and
main-group metalloids constitute an important class of materials valued for their
chemical and magnetic properties. In contrast to crystalline substances, these mate-
rials exhibit short-range order but no long-range order. In contrast to polycrystalline
materials, they lack grain boundaries that play a major role in determining the overall
physical and chemical properties of the former, e.g., susceptibility to fracture when
dislocations are trapped at grain boundaries. Single phase, chemically homoge-
neous, non-crystalline alloys are relatively recent additions to the array of materials
available for technological application and are synthesized from the liquid state by
a rapid quenching technique.

The local structure of some metallic glasses can be understood in terms of a disor-
dered array of ligand-free main-group–transition-metal clusters. Thus, for example,
amorphous iron borides have been viewed as containing cluster fragments similar
to the repeating unit in crystalline intermetallic alloys, e.g., Fe3B with trigonal-
prismatic motif shown in Figure 8.18. Also illustrated in Figure 8.18 is a putative
process of generating the same structural motif from B-capped triiron clusters in the
manner of Figure 8.2. The appropriate ferraborane, HFe3(CO)9BH4, is known and
constitutes a potential low-temperature molecular precursor for amorphous Fe3B
that should crystallize at higher temperatures. This would permit deposition of a
material with all of the properties of an amorphous metal alloy without destroy-
ing thermally sensitive components. By the same reasoning, Fe2(CO)6B2H6 and
HFe4(CO)12BH2 (Figure 8.19) are precursors for amorphous solids of composi-
tions FeB and Fe4B. The former would permit access to a composition not possible
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by conventional techniques as it lies outside the miscibility range of B and Fe in
the liquid state.

Deposition of thin films of amorphous borides on SiO2 at 200 ◦C generates iron
boride films about 500 nm thick with good substrate adhesion and resistivities sim-
ilar to liquid metals (Amini et al., 1990). Film composition is linearly dependent
on precursor core composition. Films formed from HFe3(CO)9BH4 crystallize at
higher temperatures to known Fe3B1−xCx phases, i.e., C impurities occur by B atom
replacement in the amorphous structure. Mössbauer spectroscopy shows similarities
in local Fe environments to those of alloys prepared by other methods. Comparison
of data on films from different ferraborane precursors shows that packing of the Fe
and B atoms is not random and suggests, rather, that local structure results from
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random packing of FemBn bare clusters. This is in accord with initial assumptions
described above. Due to columnar growth, the magnetically ordered films have
moments preferentially oriented normal to the film plane. Ribbons of similar com-
positions formed by quick-quench methods have magnetic vectors that lie within
the plane of the ribbon making them less useful for some applications.

8.4 A final problem

The metal complexes in Figure 8.20 have been suggested as models for understand-
ing the metal catalysis of alkylidyne chain lengthening and metathesis (Bino et al.,
2005). Consistent with this hypothesis, the redox reaction:

5 II + 2H2O → 4I + III + CH3C ≡ CCH3 + 2H+,

results in the coupling of two [CH3C]3− ligands. With this definition of carbyne
ligand charge, the reaction constitutes oxidative coupling. Complex IV is an inter-
mediate in the overall reaction as it was trapped from the reaction with aqueous
HBr. In contrast to I and II, IV contains a C−C interaction. Its presence is taken as
evidence of coupling of the ethylidyne fragments of II in the coordination sphere
of the metal complex.

The appreciative reader of this text will immediately recognize that compounds
II and IV and their inter-conversion have analogs in both carborane and metal-
carbonyl cluster chemistry. Thus, B3C2 or M3C2 cores of six-sep closo-trigonal-
bipyramidal clusters can have 1,2- or 1,5-C atom positions with the latter clearly
more stable in the carborane. For the Mo compounds in Figure 8.20, the 1,2-isomer
(IV, C adjacent) must form from the 1,5-isomer (II, C apart) if it is an intermediate.
Another notable difference is that this Mo reaction system takes place in air in water
solution.
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The authors of this work did not consider I–IV as cluster compounds nor did they
view II and IV as cluster isomers. Let us see if we can relate the observed chemistry
to cluster isomerization albeit one in which the forward (C apart to C adjacent) and
reverse (C adjacent to C apart) have similar barriers. That is, an effective alkyne
metathesis catalyst cannot have any species in the catalytic cycle of high stability
(Bunz, 2005).

The Mo fragments contain electron-rich �-donor ancillary ligands so that we
can expect the “t2g” metal set to be involved in cluster bonding. The total charge on
the Mo3 fragment is 8+ and each Mo center is coordinated to five ancillary ligands.
The frontier orbitals of a L5Mo fragment derived from an octahedral L6M complex
are shown in Figure 8.21 for three different oxidation states. If the CH3C fragments
are considered neutral as appropriate for cluster chemistry, IV contains one MoII

and two MoIII centers (these are not the oxidation states given in the original paper as
the C fragments were considered anionic). The MoII fragment is easily assigned as
a three-orbital–two-electron fragment but there are two possibilities, labeled (a) and
(b), for the MoIII fragment. Possibility (a) again gives a three-orbital–two-electron
fragment and, if we choose this scenario, IV with two three-orbital–three-electron
CR fragments and three three-orbital–two-electron metal fragments is simply a six-
sep cluster analog of 1,2-C2B3H5! If so, the MoIII centers will be paramagnetic and
possibly weakly coupled by the carboxylate bridges. In fact IV is paramagnetic
(see supplementary material of the original work). A similar analysis works for
II thereby making it an analog of closo-1,5-C2B3H5. The overall reaction, the
conversion of the C-apart isomer to free alkyne, is driven by the oxidative addition
of water to Mo to yield III.

Which approach is better? Wrong question! The cluster view simply adds per-
spective to the problem by changing the emphasis from the “oxidation” of two
[CH3C]3− ligands to a cluster isomerization driven by the charge-distribution
requirements of the cluster framework. Note that these Mo “clusters” belong in
the “rule-breaker” category. Like others we have commented upon earlier, “rule-
breaker” clusters seem to possess a useful versatility in bonding. But keep in mind
that this versatility only becomes understandable in the light of the concepts estab-
lished by the “law-abiding” clusters.
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8.5 Conclusion

Both cluster and solid-state chemistries have strong ties to materials chemistry.
Materials chemistry is the broadest area and includes topics outside the corpus of
inorganic chemistry. In addition, there is a distinct and appropriate flavor of practi-
cality associated with the materials-science literature. Large clusters and nanoscale
particles are of importance in many kinds of materials work. For example, nanoparti-
cle/polymer composites and quantum-size semiconductor particle arrays are exam-
ples of materials-science systems with cluster roots. Other topics, such as sol-gel
processing, syntheses of thin films and ceramics and development of electronic
materials, are closely allied to solid-state chemistry. An understanding of cluster
and solid-state chemistries, then, is fundamental to the understanding of a substan-
tial fraction of materials science. There will always be an Edisonian component
to a search for a material to solve a pressing practical problem, but the greater
the understanding of the underlying chemistry, the more focused and efficient the
search.
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Fundamental concepts: a concise review

A chemist’s approach to understanding matter is conveniently divided into three stages.
First, fixed stoichiometric relationships between the atomic constituents of matter exist in
molecular compounds and in many compounds with extended structures. Hence, the
composition of a pure substance provides initial definition to a new substance. Given the
atomic nature of substances, it provides direct information on structure. In a historical
sense, other early means of characterization were physical ones, e.g., melting point or
dipole moment, and sensual, e.g., color or taste. As a consequence, they are less directly
related to structure. In the second stage, geometric relationships between the constituent
atoms as well as spectroscopic and theoretical information on electronic structure add
dimensions and shape to the composition data. Finally, reaction chemistry, i.e., reaction
stoichiometries, rates and mechanisms, provides connections between compound types as
well as generating new substances for which the whole process begins again.

Stable compounds are the most thoroughly characterized and provide the corpus of
chemistry. However, “stability” is one of the definable, but casually used, terms of
chemistry. Stability is associated with energy, and energy and structure are inextricably
combined. A chemist, well educated in a given area, has a good understanding of both
energy and structure. In a practical sense, stable for the inorganic chemist is often defined
empirically by isolation and storage at room temperature. Most stable is often implied by
the term, but it is not always clear that the most stable (thermodynamic) products have
been characterized in a given reaction. Noteworthy is the fact that unstable species are also
valuable even if only partially characterized. For example, intermediates in reactions are
intrinsically unstable under the reaction conditions yet provide considerable insight into
mechanism.

Although the research chemist may well move on to new challenges when the rules
governing compound stoichiometry, geometric/electronic structure and reaction chemistry
are defined empirically and theoretically for a given system, these detailed results still
must be fit into the “big picture” – the incomplete puzzle we call chemistry. There are two
senarios: the new puzzle piece either fits with the existing picture or not. In the former
case the new information, when combined and summarized for a given class of
compound, reinforces existing chemical concepts while broadening their purview. In the
latter case, the new information forces a reevaluation of existing chemical concepts and
often provides impetus for the development of new chemistry.

Our approach to cluster chemistry addresses the question: how can compound
stoichiometry, geometric and electronic structure, and reactivity for a structure type that
ranges over many elements be integrated into existing chemistry? Specifically, we wish to
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make firm connections to contemporary understanding of molecular and solid-state
chemistries. As with all chemical discussions, we attempt to show how element (atom)
properties combined with the fundamental principles by which atoms interact, give rise to
cluster structures. Without an understanding of how atomic properties are expressed in
simple molecules, an understanding of the more complex bonding combinations
encountered with clusters is not possible. Hence, a brief review of the basic concepts
follows. Many standard texts are available for reference and a few are listed at the end of
this Appendix.

A1.1 Elements

The atomic model of matter is a firmly established platform upon which our understanding
of complex substances is based. Chemical characteristics of atoms are reflected in the
structures and physical properties of the elements under normal Earth conditions. The
majority of the elements are solids and metallic by nature (extended structures with high
coordination numbers leading to ductility, weakly bound valence electrons permitting
electrical conductivity with negative carriers and interaction of visible light with mobile
electron density generating metallic luster). The last property serves as an obvious
identifier of metals. The elements in the upper right and corner are non-metallic (often
found as molecular species with weak intermolecular interactions and insulating
behavior in the solid state). Although stoichiometry plays no role for the pure elements,
the concepts of geometric/electronic structure and reactivity are certainly pertinent to a
consideration of the bulk elements. However, before considering the complexities
associated with an interacting assembly of atoms, we first review the properties of gaseous
atoms. As atoms possess a single nucleus, geometric structure may not be considered an
issue; however, atoms do exhibit size albeit only recognized and measured in relationship
to other atoms either of identical or different type. Electronic structure and reactivity are
also important factors associated with observed atom properties. The two are intimately
related as the deficiencies of the former, if any, can be remedied by chemical reaction.
Let’s see how.

A1.2 Atomic properties

Three essential properties of isolated atoms are size, the energy required to remove the
most weakly bound electrons (ionization energy) from the nucleus and other electrons,
and the energy gained by adding an electron to a neutral atom (electron affinity). A
common theme in all of chemistry is that energy and dimensions (size and shape for
atoms, bond distances and angles for compounds) are connected. Indeed, one might
collapse the purpose of chemistry into a search for the function that connects energy to
structure. However, such a statement alone is no more useful than stating that the
appropriate form of the Schrödinger equation is all we need to answer the question. Still,
sometimes inorganic chemists, as they happily wallow in a sea of X-ray crystal-structure
solutions, do neglect the energy parameter and the existence, even participation, of
higher-energy structures in chemistry.

For atoms, the binding energy of the most weakly bound electrons and the atomic size
reflect the strength of attraction of the nucleus plus core electrons for the valence
electrons. According to Mulliken, the mean of the ionization energy and electron affinity
constitutes a measure of the electronegativity of an atom. It is one of several measures, the
most popular of which is based on bond energetics and developed by Pauling. Indeed,
publications of new, improved electronegativity scales continue up to the present day as
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the Mulliken and Pauling scales reflect the broad sweep of atom characteristics, but do not
measure finer variations caused by the different chemical contexts in which an atom may
be encountered. Electronegativities are numbers constructed from empirical data such that
the difference of any two measures the tendency and direction of electron displacement
when the two atoms are allowed to interact. The periodic table in Figure A1.1 displays the
Pauling electronegativities as these are the parameters universally used in teaching
chemistry. The elements exhibiting metallic properties have distinctly lower values than
the non-metals.

The numerical values of, for example, ionization energies, when listed in order of
atomic number, display a periodicity reflected in the common form of the periodic table.
However, by themselves they do not provide a rationale of this periodicity. The
quantum-chemical model of the electronic structure of H, when extrapolated to the
heavier atoms, not only provides a supporting rationale, but also the conceptual building
blocks for describing bulk-element structure and reactivity. That is, the atomic model
provides the basis for a molecular model as well as one for complex extended structures.
For atoms it is a story taught in all beginners-chemistry classes and one that appears in
some form in most chemistry texts. We simply repeat the essentials.

The single proton, single electron two-body problem can be solved explicitly to
provide a quantum chemical description of the H atom. A set of solutions (the Legendre
polynomials) are found, each with a different energy and wave function(s). For the lowest
energy solution, the ground state, the wave function is spherically symmetric with a value
that decreases exponentially as a function of distance from the nucleus. Polar coordinates
are used by convention, and to accommodate our human inadequacies in the visualization
of complex functions we separate the radial dependence (one coordinate) from the angular
dependence (two coordinates) thereby producing representations such as that illustrated in
Figure A1.2.

How do we connect the model to the three essential properties of an atom? An
observable, such as size, depends on the square of the absolute magnitude of the wave
function. Size, then, must be associated with the coefficient of the exponent of the radial
function, but it is hard to say a priori when its value is small enough to be neglected.
Hence, numerical values are obtained empirically under conditions where the atom of
interest interacts with another atom. Rich sources of such information are solid-state
structure determinations, but interaction with an atom of a tip of an STM constitutes
another source. Consequently, different measures of size exist and reflect different types
of interaction: van der Waals radii (non-bonding), covalent radii (shared-electron bonding)
and ionic radii (electrostatic bonding resulting from complete electron transfer) are the
common ones.
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Ionization energy can be calculated if one spends the effort necessary to compute good
energies for the atom and the ion. Those found in texts are experimental values and for H
it is the energy necessary to completely remove the electron from the proton as shown in
Figure A1.2. Two accurate ways of measuring the energy associated with this process are:
photoionization, where the lowest frequency photon capable of generating the ion is
measured (frequency 
 = E/h, where h is Planck’s constant) and photoelectron
spectroscopy, where it is the kinetic energy of the electron ejected by high energy photons
that is measured (IE = h
 – KE: the electron, being 103 lighter than the proton, carries off
> 99.9 % of the excess energy). The electron affinity can be measured in the same fashion
by measuring the ionization energy of the negative H atomic ion instead of the neutral
atom. As neither the neutral atom nor anion can be purchased from Aldrich it is necessary
to prepare them from an appropriate precursor before photoionization. An interesting
problem in itself!

All well and good – the H atom can be said to be understood. How does this help
us with the other atoms as the n-body problem cannot be solved explicitly? Here is where
the other solutions of the H atom problem come in handy. They provide the model the
chemist uses every day as a fundamental part of his or her chemical language. To review,
each solution is denoted by a primary quantum number n (n = 1 for the ground state,
E = −13.6 Z2/n2 = −13.6 eV = − IE and Z = nuclear charge = 1 for H) but the number
of wave functions for n > 1 is also larger than 1, i.e., these solutions are said to be
degenerate. The higher-energy solutions have picked up a curious nomenclature derived
from spectroscopic experiments predating the model. For n = 2, the “s” and “p” and for
n = 3, the “s”, “p” and “d” functions are degenerate. The degeneracy lies in the
non-spherical symmetry of the angular parts of the “p” and “d” wave functions: “s” (one
function spherically symmetric and no nodal planes), “p” (three functions, dipolar and
directional with one nodal plane each), “d” (five independent functions, quadrupolar and
directional with two nodal planes – by convention the dz2 function is the linear
combination of dx2−z2 and dy2−z2 ). However, the radial functions also change with n.
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Specifically, the number of nodal surfaces in the radial function depends on the value
of n. For n = 1, the total number of nodal surfaces is 0, for n = 2 the total number is 1, for
n = 3, the total number is 2 and so on. Hence, the radial function for a 3s orbital has two
nodal surfaces and the angular function has none whereas the radial function for a 3d
orbital has none but the angular functions have two. A rule of thumb that also applies to
molecules is that the greater the total number of nodal surfaces, the higher the orbital
energy.

How does this help us with He, Li, Be, B. . . ? Suppose an individual electron in one of
these atoms experiences a positive potential that arises from some effective charge of the
nucleus and all the other electrons taken together. Then we have a version of the H-atom
problem yielding the same solutions, i.e., one well-defined particle (an electron)
interacting with one ill-defined composite “particle” (the nucleus and the rest of the
electrons). This “one-electron” approach differs in the sense that the nuclear charge
experienced is not the actual nuclear charge but something smaller. In addition, each
electron need not experience the same effective nuclear charge, as the composite
“particle” can differ in each case – the ubiquitous crowd of electrons shields the nucleus
from the electron one is specifically dealing with. Rules are developed, e.g., Slater’s rules
of shielding, based on measured atom properties and we find, for example, that 3s, 3p and
3d functions no longer have the same energy (Figure A1.3). Given such a general
energy-level diagram, we can construct a model for heavier atoms provided we have a rule
to guide the addition of electrons to these spatial orbitals. How many electrons will fit in a
3p orbital anyway? Important rules that are not violated are called principles and the Pauli
principle states two electrons maximum for a single spatial orbital and then only when the
electrons are of opposite spin. The ground-state configuration is the one in which the
lowest energy H-like orbitals are filled. So now we have our Model T of atomic theory – a
clunker that continues to chug away every day for the thousands of chemists who use it in
describing exceedingly complex chemical systems. Well let’s give the crank a turn and see
how it drives.



328 Appendix

0

1s

2s
2p

0

E
ne

rg
y

Intensity of photoelectrons

5 eV

188 eV

AO Structure X-ray photoelectron spectrum

E
ne

rg
y

Figure A1.4

Consider B and Fe as representative examples. 11B consists of five electrons and a
nucleus containing five protons and six neutrons. What is its electronic structure? In the
quantum-chemical approach it is described by an energy and wave function. With our
H-atom model the latter is easy. It is: (1s)2(2s)2(2p) which represents the product of
individual atomic functions (Figure A1.4). The distribution of the five electrons in space
(electronic structure) is given by the square of the absolute magnitude of the wave
function. 1s and 2s functions are spherically symmetric whereas a single 2p function is
not; hence, the shape will not be spherically symmetric. The ground-state energy, a single
number, must be related to the energies of the individual H-like orbitals that are occupied;
however, the simple sum of AO energies is a poor representation as the electron–electron
interactions that we blithely ignore in this model are not small. On the other hand, the
functional reality of this model gains considerable utility from the fact that the multiple
atomic levels in this model do reflect observed multiple ionization energies each
corresponding to the binding energies of electrons in the different filled AOs. Thus, in
tables of photoelectron spectroscopic data one finds ionizations listed at 188 and 5 eV for
B corresponding to removing an electron from the n = 1 and n = 2 shells (these are
actually excitation energies from the ground state of the atom to the various excited states
of the monocation which are 1s1/2 and 2s1/2, 2p1/2 and 2p3/2 where the n = 2 states are not
individually distinguished experimentally as X-rays are used and line widths are >1 eV).
The former is known as a core energy level and, for example, is used in surface analysis
by X-ray photoelectron spectroscopy (XPS) to identify the element B. Atomic size
depends on radial function and is inversely related to stability. Hence, the 1s electrons
describe electron density close to the nucleus whereas the 2s and 2p valence electrons
occupy a much larger volume and determine the atomic size as well as valence properties.

Now take a look at Fe with 26 electrons. The ground-state wave function is
(1s)2(2s)2(2p)6(3s)2(3p)6(4s)2(3d)6. The 4s shell fills before 3d as the former experiences a
larger effective nuclear charge than the latter. The XPS book lists characteristic ionizations
for Fe at 7114 (1s1/2), 846, 723, 710 (2s1/2, 2p1/2, 2p3/2), 95 (3s1/2), 56 (3p1/2, 3p3/2) and 6
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(3d3/2, 3d5/2) eV. Note that no (4s1/2) ionization is listed! We must deal with the 4s vs. 3d
energetics further below. Despite the similarities in outermost electron ionization energies
with those of B, the Fe atom is significantly larger as the n = 3 level is now populated and
the corresponding radial function yields an electron-distribution function with a maximum
at larger values of r. What about shape? A half-filled (one electron in each space function
with all spins parallel – Hund’s rule) or filled p or d level is spherically symmetric, hence
the shape will be determined by the (3d)6 functions. Here Hund’s rule of maximum
multiplicity (spin) is the guide and four of the d functions contain one electron and the
other two. Hence, the atom will not have a spherically symmetric electron distribution.

This is a great little model and it serves so well that sometimes the crude
approximations made in generating it are forgotten and quantitative lapses become topics
of discussion simply because the model is presented initially as some sort of fundamental
truth rather than the approximate picture it is. For example, go back to the 4s vs. 3d filling
problem above. The electron configuration of [Fe]2+ is (1s)2(2s)2(2p)6(3s)2(3p)6(3d)6 not
(1s)2(2s)2(2p)6(3s)2(3p)6(4s)2(3d)4, i.e., the total energy of the former is lower than that of
the latter configuration. There is one energy and one wave function for the ground state
and one energy and wave function for the ion state (Figure A1.5). The crude one-electron
model ignores electron–electron interactions that can tip the balance in favor of a
non-intuitive configuration, e.g., the Fe ion has two fewer electrons and less electron–
electron repulsion. The take-home message with these simple models is “keep it
qualitative” and don’t confuse the model with the facts. Models change. Carefully
measured properties do not.

The periodicity in size and ionization energies observed empirically can now be
rationalized in terms of recurring electron configurations. Indeed even the little jogs when
sub-levels are half filled are understandable. If you need to you can review these points in
any inorganic text. The model really works very well when used in a relative sense. More
importantly we can now begin to explain why all elements don’t exist as monatomic gases
as do the elements of group 18 that occur at the turning points where a given n level is
fully filled and the atom possesses a spherically symmetric closed-shell electron
configuration. Turning this statement around, we associate a closed-shell electron
configuration with stability; hence, the 8- and 18-electron rules discussed in more detail in
Chapter 1. Simple ideas of valence arose from the fact that B with valence configuration
(2s)2(2p) needs five more electrons to achieve a closed-shell configuration and Fe with
valence configuration (4s)2(3d)6 needs ten more electrons. How each of these elements
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achieves electronic happiness by distributing the highest energy electrons over a complex
geometric arrangement of nuclei is a principal topic of this text to be dealt with in due
course. However, we can review how the process occurs for atoms that achieve electronic
happiness in a much simpler fashion. The elements in the upper right-hand corner of the
periodic table occur naturally as small gaseous molecules which are both easy to picture in
terms of geometric structure and easy to explain in terms of electron distribution.

A1.3 Homoatomic substances

We begin with a review of the naturally occurring forms of the elements in terms of
structure with emphasis on how nuclearity reflects Nature’s energetically favorable
solution to the demands of atomic structure.

A1.3.1 Diatomic species

Hydrogen again provides the paradigm albeit H2 rather than H. H, with an electronic
structure (1s)1 is spherically symmetric but not closed shell. It needs another electron.
Combination with another H atom does the trick giving a system with two protons and
two electrons (Figure A1.6). Note that if we switch to D from H then we have a system
with two protons, two neutrons and two electrons as also found in He. An early model for
correlating the electronic structure of atoms with that of molecules is the united-atom
model of Mulliken. That is, the distribution of electron density in the He atom as defined
by its AOs should correlate with whatever function describes the electron distribution for
D2. The difference lies in the spatial locations of protons and neutrons as well as the
thankfully huge barrier separating He and D2 (think H bomb). Conceptually the
united-atom model suggests that there should be orbitals that encompass both nuclei of D2
that correlate with solutions of the H-atom problem when applied to He. These orbitals,
called molecular orbitals (MOs) have the same fundamental meaning as AOs and can be



A1.3 Homoatomic substances 331

generated from the AOs (basis functions) of the two D atoms. The lowest energy MO of
D2 (�g) correlates with the 1s orbital of He whereas the other MO (�u) correlates with the
2pz orbital of He. Two comments: following custom we let the z axis be the molecular axis
as shown in Figure A1.6; however, the results are independent of the coordinate system.
We use the traditional symmetry labels to identify the two MOs; however, for our
purposes here they are just names (Greek symbols with German subscripts tend to keep
the riffraff out of the area). Later we will point out how symmetry is a simplifying concept
in these considerations.

We can make the energy axis quantitative by looking up the experimental ionization
energies, 24.6, 155, and 13.6 eV for He, D2 and D, respectively, as these provide a measure
of the negative of the orbital energies (Koopmans’ theorem). Empirically one sees that
separating the protons of the He nucleus by 0.74 Å destabilizes the “1s” orbital and distorts
it. This diagram suggests that the distortion is an uphill process energy-wise. Viewing the
process from the opposite limit, that of the separated atoms, suggests a downhill process
and the associated energy is known as the bond energy. This has been experimentally
measured – two D atoms sharing their lone valence electron is an energetically more
favorable situation than two separate D atoms by 437 kJ mol−1 (4.53 eV). Energy and
structure are connected so it should be no surprise that the H–H distance is less that the
sum of the van der Waals radii (atom–atom touching distance) and its value (0.74 Å) is
taken to be characteristic of an H–H bond. One half of this distance is the covalent
radius of H (0.37 Å). The bond is described as a single bond or a two-center–two-electron
bond.

How is the dimeric molecular nature of elemental H reflected in its physical properties?
The boiling point is low (20 K) such that hydrogen is a gas at room temperature and the
associated heat of vaporization (0.8 kJ mole−1) is very low in comparison to the H–H bond
dissociation energy. That is, there are strong interactions between pairs of H atoms but
very weak interactions between the dimers themselves. H2 is just He (bp = 4 K, �Hvap =
0.08 kJ mole−1 with “atoms” containing twin nuclei! It has molecular orbitals that are
modified atomic orbitals and can be understood in the same fashion.

Exercise A1.1. The difference between the energy of the separated atoms and the D2
molecule in Figure A1.6 is not 4.5 eV, the energy of a D–D bond. Why not?

D2

E

D2
+

D+  +  D

D  +  D

15.5 eV

13.6 eV

4.5 eV 

[D–D]+ bond energy

Exercise A.1
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Answer. The appropriate energy-level diagram is shown below. The two ionization
energies applied to Figure A1.6 to define the relative energies of the MO and AOs are
energy differences between the neutral and cationic states. Hence, as shown below, they
provide a measure of the [D–D]+ bond of 2.6 eV which may be compared to a reported
value of 2.65 eV.
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A1.3.2 Polyatomic species

The bond between the H atoms in the H2 molecule serves as a model for a two-center–
two-electron bond. It is a concept easily applied to heavier atoms. Let’s apply it to the
elements beginning in the upper right-hand corner of the periodic table. Group-18 atoms
with valence configurations of (ns)2(np)6 possess a spherically symmetric closed shell and
are stable as monotonic gases. The eight-electron configuration is thus set up as an
electronic “goal” for main-group atoms with an (ns)x(np)y valence shell. Thus, a group-17
atom with valence electronic structure (ns)2(np)5 can achieve an eight valence-electron
closed-shell configuration by forming a dimer X2 with one electron-pair bond just as
found for H2 (Figure A1.7). One might think of H or Cl in terms of a tinker-toy connector
with a single hole – all one can make is dimers.

If so, a group-16 atom with configuration (ns)2(np)4 morphs into a connector with two
holes. Hence, it should form rings. Experimental chemistry tells us (Figure A1.7) that,
yes, S forms rings (S8 plus many more sizes) but O is found as diatomic molecules (O2).
Apparently, both “holes” are capable of connecting to one adjacent atom giving a
“doubly” bonded dimer (two-center–four-electron bond). Well, OK, but there is something
funny here as O2 is paramagnetic, i.e., not closed shell. We will have to look more
carefully at this molecule as a simple double-bond model with paired electrons doesn’t
work. We need a better model to explain what is going on and will present it in Chapter 1.

On to group 15 with (ns)2(np)3 and a three-hole connector which suggests either a
“triply” bonded dimer (N2) or a three-dimensional cage (tetrahedral P4) as shown in
Figure A1.7. Here is a good place to mention coordination number. The number of bonded
nearest neighbors to any given P atom is three; hence, we say it has a coordination number
of three. Each atom also has three two-center–two-electron bond connections. But one
shouldn’t get the idea that coordination number specifies the number of
two-center–two-electron bonds. It depends on the system. The focus of this book, clusters,
is an area where the coordination number often does not specify the number of
two-center–two-electron bonds.
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Dare we push on with the same simple idea to group 14? Well, the chemist’s approach
is to push an idea until it fails. Then one tries to figure out why it does so and see what
modifications to the model are needed. An electron configuration of (ns)2(np)2 implies a
four-hole connector and four two-center–two-electron bonds. A quadruple bond comes to
mind, but for a main-group species this is not observed. The tinker-toy theory fails.
However, quadruple bonds are possible – just not for main-group atoms. As will be seen
in Chapter 1, examples are observed in dinuclear transition-metal systems.

With four holes in our connector we are forced into some kind of extended or
never-ending structure. If we use Nature as a guide, we see in Figure A1.8 that the
bonding requirements of C are satisfied by the diamond structure (four single bonds
per C atom with a dCC = 1.54 Å) and (Figure A1.9) the hexagonal graphite sheet structure
(two single and one double bond per C atom within a sheet and weak interactions
between the sheets). An additional possibility is a one-dimensional chain of alternating
single and triple bonds (carbyne allotrope, see Chapter 6). An unexpected solution from
Nature was revealed on the characterization of the C60 cluster (Chapter 2 and Chapter 7)
made up of pentagonal and hexagonal fused rings in the form of a soccer ball. Note that
the graphite structure generates a problem for our localized bonding model. The
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inter-sheet spacing is 3.35 Å consistent with weak inter-layer interactions. That’s fine but
the intra-sheet structure exhibits a single dCC = 1.42 Å rather than alternating double and
single bond distances. This discrepancy can be patched up by introducing “resonance” but
we will describe a better way in Chapter 1.

With the exception of C60 these structures place us outside of molecule chemistry as
the dimensions are only limited by the size of the crystallite. How is the infinite, extended
nature of the structure of the diamond allotrope of C reflected in properties? All the C–C
distances are less that the sum of the van der Waal’s radii and characteristic of a C–C
single bond. The melting point is high such that C is a solid up to about 2500 ◦C. The
associated heat of sublimation to atomic C (714 kJ mol−1) is very high and approximately
double the C–C bond dissociation energy (349 kJ mol−1) as expected if four half C–C
bonds can be associated with each C atom in diamond. Perhaps it is unnecessary to point it
out, but, seeing as some introductory text titles proclaim chemistry as “the molecular
science,” it is worth while stating that there is no such entity that can be called a molecule
in the diamond form of elemental C. One purpose of this text is to emphasize that
molecules hold down one side of chemistry but the solid-state side is conceptually distinct
and should not be marginalized. The thesis of this text is that clusters provide an
intellectual bridge between the two.

Stare at the diamond structure of C and turn each C into Si. Then imagine putting a
proton and a neutron into each nucleus generating (P+)n. If we neutralize this weird
compound by adding n electrons to n P–P bonds, they become lone pairs. This particular
P–P distance lengthens and becomes non-bonding. If we place the lone pairs
symmetrically such that the diamond structure is cleaved into sheets, the puckered
hexagonal sheet structure of rhombohedral black phosphorus is formed (Figure A1.10).
But there are many other less symmetrical ways of distributing the lone pairs and bond
pairs so it should come as no surprise that three crystalline forms and one amorphous
(no long-range order) form of black phosphorus are known. Molecular P4 is white
phosphorus. In both extended forms and cluster form each P atom is associated with three
single P–P bonds and one lone pair. Now you can let your imagination run wild. Take P4
tetrahedra and break one edge to form an open diamond with two active connectors. A
chain can be formed. Or just make a chain with alternating single and double bonds. Many
allotropes of P are possible and lots (15!) are known albeit not always structurally
characterized, e.g., amorphous red phosphorus.
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B
(3s)2(3p)1

B12

Figure A1.11

Backing up one more step to group 16 you can now imagine many more allotropes of S
including larger rings as well as long chains – fond recollections of converting powdery
yellow sulfur (S8) into a rubbery material in the kitchen (we won’t mention the clouds of
SO2 from the occasional disaster!). For groups 16 and 15, extended structures in one and
two dimensions, respectively, are alternatives to the molecular forms.

Exercise A1.2. Discuss the energetic implications of the facts that elemental P exists as
tetrameric molecules or as sheet-like extended structures under normal conditions but N is
found as diatomic molecules. Focus your discussion on the relative energetics of E–E
single vs. E≡E triple bond energies for E = N, P.

Answer. Consider the conversion of two E≡E molecules into one E4 tetrahedron.

E4 = 2E2
�H = 4D(E−E) − 2D(E≡E)

where D refers to the bond energy. The observations suggest that for E = N, �H < 0,
whereas for E = P, �H > 0. There is no evidence for the N4 molecule; however, by
heating white phosphorus, P4, one can generate P2 molecules, consistent with an
endothermic process (based on the reported heats of formation of P2 and P4 the heat of
reaction is −388 kJ mol−1 for formation of the tetramer from the dimer). In absolute terms
one can attribute the difference to weaker than expected N–N single bonds or P≡P triple
bonds or stronger than expected P–P single bonds or N≡N triple bonds or a combination
of both. Reported values for E–E are: 252, 323 and those for E≡E are: 945, 487 kJ mol−1

for E = N, P, respectively albeit one finds a huge variation in the suggested average bond
energy for P–P from different sources. The suggestion is that the difference in common
molecular states for E = N and P is due to weaker N–N bonds (lone pair–lone pair
repulsion) and weaker P≡P triple bonds (poor p � overlap). The key factor is the short
N–N bonding distance relative to that for P–P bonding.

In the flush of success one proceeds to group 13 with configuration (ns)2(np)1. Somehow
the atom must now become associated with five electrons. What does Nature tell us? A
representation of �-rhombohedral B is shown in Figure A1.11 (the more complicated
structure of the �-rhombohedral B allotrope will be avoided). It consists of layers of
icosahedral B12 units (clusters) one of which is shown in Figure A1.11. There are B–B
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bonds between the icosahedra in this layer (dashed lines) but any of these six B atoms is
found equidistant from two others. Thus, the six B atoms shown are each bound to two
other B atoms. There are identical layers above and below the one shown. The one above
has icosahedra centered over the black dots whereas the one below has icosahedra
centered under the white dots. As a result, each icosahedron shown forms three
connections to the upper layer and three to the lower layer.

Count the average number of connections for a single B atom in one icosahedron: six of
the B atoms have five internal and two external bonding connections. The other six have
five internal and one external bonding connection. On average, then, each B atom makes
6 1/2 bonding connections so if there were 6 1/2 two-center–two-electron bonds each
atom would be associated with 13 electrons! But each B atom only has three electrons so
ten electrons are missing in this absurd scenario. Play with it all you want but you will find
no way you can construct a satisfactory representation with our simplest bonding idea.

In Chapter 2 (Section 2.9) we see how the cluster bonding requirements for the
icosahedron, plus two-center and three-center inter-cluster bonds perfectly uses the three
available valence electrons and four available valence orbitals in a covalently bonded
cluster network. Once one has these advanced bonding models in hand, then the
explanation of the B network structure is no more difficult than that of the C diamond
structure. One purpose of this text is to provide these advanced models, but for now the
solution to the problem remains hidden. Hey, a little suspense always helps the story line.
At this empirical stage of the presentation you have learned that the nature of bonding
(distribution of electrons) is expressed in geometry. The tricky bit is to interpret the
empirical nuclear position in terms of a useful (simplest one that answers the question
asked) model for the distribution of valence electrons.

Does Al (group 13, second full row) have the same bizarre structure as B? No. We have
crossed the metal–non-metal divide and its structure (Figure A1.12) is typical of that
possessed by those elements we recognize as metals. A quick review of the most common
ways of representing these so-called close-packed structures on a two-dimensional sheet
of paper using the example of elemental Al is in order. Represent each Al atom as a hard
sphere of diameter 2.86 Å and form a two-dimensional layer in which the atoms are most
closely packed (minimum free space). The result is shown in Figure A1.12. Simple
geometry requires any given atom to be surrounded by six nearest neighbors. The
three-dimensional solid is formed of identical sheets stacked to minimize free space. Place
another sheet on the first and note that only half the gaps in the first sheet are covered by
atoms in the second. Place the third sheet on top of the second. Now there is a choice to be
made. The third sheet can be in registry with the first (stacking ABAB . . . designated
hexagonal close-packing, hcp) or not (stacking ABCABC . . . designated cubic
close-packed, ccp, or face-centered cubic, fcc). The latter is a representation of the
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structure of elemental Al, i.e., Al is fcc with dAlAl = 2.86 Å. In the drawing at the side, a
small chunk of Al is represented as a lattice of points connected by lines of identical
length = 2.86 Å.

What about bonding? If we pick any Al atom then we find it surrounded by six nearest
neighbors in its sheet, three in the sheet above and three in the sheet below to give a
coordination number of 12. As with B two-center–two-electron bonding is out of the
question. Again we need a different model but we can’t use the same one that works for B.
The dramatic difference in properties between B and Al tells us this. Like C and Si in the
diamond structure, B is a semiconductor (conductivity is small and increases with
increasing temperature) whereas Al is a metal (conductivity is large and decreases with
increasing temperature). For some fundamental reason the nuclei of the former exert
control over the least-tightly bound electrons whereas the nuclei of a metal, e.g., Al, allow
them to move freely between and beyond the boundaries of the crystallite on application
of an electric field. The two-center–two-electron bond that localizes the valence electrons
between the two nuclei is consistent with the properties of the non-metals but clearly we
need a different approach to understand what is going on with a metal. In fact, no
localized model is going to work. A delocalized model will be provided in Chapter 6.

Let’s go back to B again for a moment (Figure A1.11). In your mind convert each of
the B12 icosahedra into a single spherical atom. Voilà, we have a fcc structure! So B, the
element jammed into the corner created by the column of group-14 elements and the
diagonal metal–non-metal boundary exhibits a crazy mixture of network structure with
overtones of closed-packed features. In the diamond structure of C the lines nicely
represented strong covalent bonds similar to that found in H2. In Al metal the lines
represent geometric relationships only. And in B we have a situation where some of the
lines represent localized bonds (between the icosahedra) whereas others represent only
geometry (within the icosahedra). Thus, later in this text we need to develop a delocalized
model to provide a valid description of the bonding within the icosahedra as well as a
modified localized model for the inter-icosahedral cluster bonding. The delocalized model
is connected to that required for description of a metal, whereas the localized model is
connected to that used for simple molecules. The hybrid nature of the bonding found for a
borderline element structure is pleasing. Nature utilizes all of the features of its atomic
tool box and refuses to be constrained by our limited intellectual capacity – a humbling
thought!

A1.4 Heteroatomic substances

The reader might well wonder what the authors are smoking because this heading covers
all of chemistry! True indeed, so all we can possibly present in this short section is a
review of the ways in which the fundamental structural forms represented by the elements
are modified by heteroatoms and how the introduction of heteroatoms can generate new
types of structure. Again, in the simplest molecular forms the application of the
two-center–two-electron bond model plus 8/18-electron rules will be our focus; however,
places where this guide fails will be noted.

A1.4.1 Molecular stoichiometry

Stoichiometry is easy. Again consider the atoms as connectors with the number of prongs
governed by electron configuration – a kindergarten approach but there is no need to make
it any more complicated yet. Treated as such we can put together any given set of
connectors and make up compounds and check the results against Nature. As we no
longer are restricted to a single atom type we can match the requirements of a foundation
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atom (central atom) to those of the attached atoms in order to satisfy valence
requirements. As illustrated by element structures, lone pairs, multiple bonds and
extended structures of various types can be anticipated. Certain common atom
combinations appear frequently so they are conveniently grouped together and called
substituents or ligands with characteristic valence properties. Such a device permits a
bootstrap approach to impressively complex compounds. It is one that is useful on paper
as well as in the laboratory. An exercise will suffice to review the point.

Exercise A1.3. Make up a set of compounds containing P and H, i.e., define m and n in
PmHn, and draw their two-center–two-electron structures using lines to represent bonds.

Answer. A systematic approach is best and there is more than one. Let’s do it in order of
number of P atoms. This yields: PH3, P2H4, P2H2, (P2), P3H5, P3H3, etc. Using a PH2
group as a stand in for H, one generates P3H5 from PH3 as HP(PH2)2. In fact any
one-electron group, e.g., CH3 can be used to replace an H on any of the compounds listed.
The possibilities are enormous. Note that P is isoelectronic with CH so that these
phosphorous hydrides are analogs of hydrocarbons. Mainly on account of their sensitivity
and toxicity not many have been characterized, but, in principle at least, a large number of
these so-called catenated species are possible. The fact that the nitrogen hydrides are more
limited is consistent with the N2 vs. P4 problem mentioned above.

A1.4.2 Geometric structure

After stoichiometry comes structure – the arrangement of atoms in space. How do we
rationalize and predict the geometric structures of simple main-group compounds like the
phosphorus hydrides in the exercise above? Real prediction nowadays comes from
quantitative calculations even for systems containing a large number of atoms. But “back
of the envelope” predictions are useful if only to develop a feeling for the major factors
that control, or appear to control, compound shape. The valence-shell electron-pair
repulsion model (VSEPR) is the guide most often adopted even though it is of limited help
in situations where some valence electrons “are not stereochemically active,” i.e., when
the rule doesn’t work. The model uses the two-center–two-electron bond model and
emphasizes the mutual repulsion of lone pairs and bonding pairs. Again an exercise is
sufficient for review.

Exercise A1.4. Suggest three-dimensional structures for PH3 and P2H4.
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Answer. PH3 possesses three P–H bond pairs and one lone pair. Consider three negative
charges on the surface of a sphere. Mutual repulsion tells us that the most stable
disposition will be at the vertices of a tetrahedron. Hence, PH3 will have a tetrahedral
array of electron pairs and a trigonal-pyramidal arrangement of the four nuclei. There is
only one type of P atom in P2H4 with two P–H, one P–P bond pair and one lone pair, i.e.,
four pairs each with a tetrahedral geometry at each P center. Take another look at the
structural representations viewed down the P–P bond axis and note that the adjacent lone
pairs can have a cisoid or transoid relationship in an eclipsed or staggered arrangement. If
there are no P–P bonding interactions that require an eclipsed arrangement, mutual H–H
and lone-pair–lone-pair repulsion will make the staggered arrangements of lower energy.
There will also be a difference in energy between cisoid and transoid configurations if the
repulsion between electron-pair types is not equal. If lone-pair–lone-pair repulsion is
larger, as is usually the case, then the transoid arrangement will be favored and may
dominate if the barrier to rotation around the P–P bond is much larger than kT. However,
such subtleties are best left for the aficionados of VSEPR. This is not because
conformational properties are unimportant, as they are. But experiment, interpreted in the
light of quantitative calculations, is the best method for pinning down the lowest energy
configuration. It also defines the number of minima in the energy surface describing the
rotation as well as barrier magnitudes and the electronic factors ultimately responsible.
Crude theory based on a single contributing factor is not helpful for low-barrier problems
where electronic origins are often complex.

A1.4.3 Isomers

The mere presence of heteroatoms introduces interesting additions and changes to the
picture presented by the elements. As long as the bonding requirements of each atom are
satisfied, atom types can be distributed differently over the possible positions generating
isomers. Linkage, geometric and optical isomers are the common types encountered and
are illustrated in Figure A1.13. For some compositions and geometries the enumeration of
possible isomers is an interesting challenge – a kind of a puzzle that one loves to set up for
students to solve. A systematic approach is advisable for complex situations and many
clear discussions are available in standard organic and inorganic texts. We will return to
isomer count in later chapters when discussing cluster isomer possibilities.

The two-center–two-electron bond is also modified by the presence of heteroatoms.
Two important effects concern how electron density is shared between the two atom
centers of a two-center bond. First, each bond is now polarized due to the fact that the
electronegativities of the two atoms differ. This leads to molecules with net electric dipole
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moments (each polar bond possesses a dipole moment and if the vector sum of all the
bond moments is non-zero the dipole moment of the entire molecule will be non-zero). It
also introduces sites of nucleophilic (electron-rich atom seeks positive nuclei) and
electrophilic (electron-poor atom seeks negative electron) activity. Second, both electrons
in the bond can arise from a single partner giving rise to a coordinate covalent bond
(donor–acceptor bond). This spawns the important area of Lewis acid–base chemistry, a
huge subsection of which is coordination chemistry. Let us review each in turn.

A1.4.4 Polar bonds

Take the hydrides of the first complete row of the periodic table. If we follow the rules we
generate: FH, OH2, NH3, CH4, BH5, BeH6, LiH7. The last three probably make you smile
as they don’t exist. But better to say they haven’t been made yet. For example,
calculations suggest BH5 as a BH3 adduct of H2 and, in fact, [CH5]+ is a prominent ion in
methane chemical-ionization mass-spectrometric sources. Be that as it may, the
compositions determined are: BH3, BeH2 and LiH none of which correspond to a
molecular formula as they are observed as dimer, amorphous solid and high melting point
crystalline solid, respectively. So the eight-electron rule isn’t going to be satisfied our easy
way for elements to the left of group 14. The way in which Nature solves the problem for
BH3 (dimerization to give B2H6) will serve in Chapter 1 to introduce the concept of a
three-center–two-electron bond – a concept that loosens the constraint of the two-center
bond that keeps our bonding pair between two nuclei. On the other hand we can play with
charges and consider ions, i.e., [NH4]+ as found in the salt [NH4][Cl] and [BH4]− as
found in the salt [Na][BH4]. More about ionic substances can be found in any inorganic
text but for our purposes let’s stick with neutral molecules and work our way through the
series from FH to CH4.

In a homonuclear diatomic the bond pair must be shared equally between the two
nuclei. However, for FH the electronegativities are now very different which is another
way of saying a potential difference between the two atom sites exists and is cancelled
only by allowing some electron density to flow from H to F. A polar molecule is generated
with the positive pole at H and the negative pole at F (Figure A1.14). The dipole moment
generated depends on the charge separation – distance and magnitude. This charge
imbalance has serious consequences. Both physical and reaction properties are strongly
affected. No longer are the inter-molecular forces tiny. Indeed, there is evidence for FH
existing in the gas phase as an equilibrium mixture of monomers and cyclic hexamers and
the solid-state structure (Figure A1.14) consists of zig-zag chains. For the elements tucked
into the upper right-hand corner of the periodic table these inter-molecular forces are large
enough to be given a special name – hydrogen bonding. Hydrogen bonding is responsible
for water being a liquid at room temperature rather than a gas like its heavier congener
H2S.

The polarity of NH3 requires a little more thought. Each N–H bond will have a dipole
with H positive and H–N–H angles of 107◦. The vector sum gives a net moment along the
three-fold axis. Should one also consider a contribution from the lone pair in the same
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direction along the three-fold axis? The N–F bond is also strongly polar but of the
opposite sense to the N–H bond. Hence, one might expect the dipole moment of NF3 to be
as large as or larger than that of NH3 if only bond moments need be considered. It would
be oriented in the opposite direction of course. Experimentally the dipole moment of NF3
is only 10 % of that of NH3 thereby suggesting the N–X bond moments alone don’t tell
the whole story. One explanation is that the lone pair does make a contribution and it adds
to the moment generated by the N–H bonds but subtracts from the moment generated by
the N–F bonds (Figure A1.15). Even an apparently simple idea like dipole moment
requires careful thought, e.g., the small dipole moment of CO with C slightly negative.

Polarity is strongly involved in reactivity. Because of its symmetry the dipole moment
of CH4 would be zero even if the C–H bond moment were substantial. But because the
electronegativities of C and H are similar, the bond moment is in fact small. Although
CH4 burns rather nicely, it is not so easy to convert it to functionalized derivatives under
mild conditions. This is another way of saying the C–H bond is rather unreactive in the
hands of the chemist. On the other hand, consider the interaction of HF with OH2. Both
molecules have polarized E–H bonds, E = F, O, with H positive and E negative; however,
the electronegativity of F is considerably larger than that of O. Addition of HF to OH2
permits the isolation of the compound H2O.HF with melting point −36 ◦C. Structural
studies show the compound to be a salt [H3O][F] with strong hydrogen bonding. The H of
HF has been transferred to O. Proton transfer chemistry, that is, Brönsted acid–base
chemistry, is widespread and constitutes an important aspect of chemical reactivity.

Exercise A1.5. Combine the ideas of stoichiometry, geometric structure and polar bonds
and estimate the dipole moments (large, medium, small, zero) of: (a) the simplest chloro
derivative of Si, (b) a permethyl derivative of P, (c) a perfluoroderivative of H2NNH2.

Answer. (a) SiCl4; four bond pairs, tetrahedral and zero dipole moment by symmetry
even though the electronegativity difference is large (1.90 vs. 3.16).

(b) (CH3)3P; The P center has three bond pairs and one lone pair, pyramidal, non-zero
dipole moment possible. Likewise the C center of each methyl group has three C–H bond
pairs and one C–P bond pair, tetrahedral and a net group dipole moment is possible.
However, similar C, P and H electronegativities (2.55, 2.19, 2.20) suggest the C–H and
C–P bond moments are small. The net dipole moment arises mainly from the P lone pair
and, based on the discussion of Figure A1.15, the moment should be somewhat smaller
than that for NH3. (The dipole moment of NH3 is about three times that of PH3.)

(c) Each NF2 fragment has two N–F bond pairs, one N–N bond pair, and one lone pair,
pyramidal and a non-zero dipole moment possible. A number of configurations of
F2N–NF2 are possible (phosphine exercise above). The staggered, trans configuration
which will have zero dipole moment by symmetry even though the N–F and lone-pair
moments are expected to be large (electronegativities 3.04, 3.98).
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A1.4.5 Donor–acceptor complexes

Consider once more the EHn compounds. Those of group 14, EH4, are saturated in the
sense that there are neither extra valence electrons nor orbitals unused. Those of group 15,
EH3, possess “extra” electrons as a lone pair, whereas those of group 13, when formulated
with the simple valence rules employed so far as EH3, possess an “extra” orbital. The
species have complementary electronic properties and can form an adduct with an N–B
two-center–two-electron bond in which the two electrons originate from N as shown in
Figure A1.16 for the permethyl derivatives. The bond formed is analogous to a C–C bond,
albeit not as strong, and the compound is isoelectronic with hexamethyl ethane. As a
result of adduct formation the B center now satisfies the eight-electron rule. The amine is
an example of a Lewis base and the borane a Lewis acid.

The formation and decomposition of donor–acceptor complexes constitute a large
chunk of reaction chemistry. Based on the discussion of polar bonds above, one might
jump to the conclusion that the N atom in (CH3)3N–B(CH3)3 will be positively charged
and the B atom negatively charged. However, the charge redistribution is non-intuitive and
electron density moves from the methyl groups of N to the methyl groups of B such that
the overall charges on N and B remain close to those found in the monomeric species.
Another interesting aspect is that the base–B donor–acceptor bond strength depends
strongly on the nature of the Lewis base and vice versa. Hard–soft acid–base theory
provides a rationale for understanding the factors that affect the strength of the interaction.
There are important practical consequences. For example, a species like THF.BH3 with a
very weak O–B bond acts as a surrogate for free BH3. It is packaged as a 1M solution and
sold as a reagent whereas free borane itself has a strong tendency to dimerize. “Lightly
stabilized” complexes of this type are important synthons in both main-group and
transition-metal chemistry.

Exercise A1.6. Consider the following compounds as Lewis acid–base adducts and
identify the Lewis acid(s) and the Lewis base(s): CH3CNBF3, [SiF6]2−, [I3]−.

Answer. The lone pair on the N atom of CH3CN permits it to act as a base and the
formally empty B 2p orbital on BF3 constitutes a site of Lewis acidity. According to the
octet rule, SiF4 should be the stoichiometry of the binary compound. [SiF6]2− would (and
is) formed by reaction with two F−. Clearly F− can only function as a Lewis base so that
leaves us with SiF4 as the Lewis acid. How does one explain the bonding? See Problem 2
at the end of the Chapter 1 which deals with SF6. Again, the simple ideas of bonding
would give us I2 as the stable homonuclear compound. [I3]− must be formed from it by
reaction with I− which clearly is a Lewis base. Hence, I2 must be the Lewis acid.

A1.4.6 Transition metals

At last we permit a discussion of transition metals in molecular compounds. Why the
delay? Well, look at the electron configuration of the valence shell of a typical metal, Fe.
If we blithely take the main-group perspective then its (4s)2 valence configuration should
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make it behave like Be. Whoa, hold on, the 3d shell is at higher energy than the 4s.
Therein lies both the problem and the fascination of the transition metals. Moving to Zn
with a stable, filled, spherically symmetric d shell, one finds a loose analogy between its
chemistry and that of group-2 metals. But in the middle of the transition series, compounds
like W(CH3)6 have been isolated. These are vaguely reminiscent of group-14 species in
the sense that six metal orbitals and six metal electrons generate six W–C single bonds in
a distorted trigonal-prismatic complex (Figure A1.17). The same metal, W, employs six
empty orbitals to accept six electron pairs from six CO ligands to generate W(CO)6. The
six metal-based electrons now fill three metal orbitals as “lone pairs” which are not,
however, stereochemically active (the structure is octahedral and based on six bond pairs
if one takes the VSEPR-model perspective). Apparently the tungsten alkyl is a 12-electron
complex whereas the tungsten hexacarbonyl is an 18-electron complex. What gives?

W(CO)6 is not the problem as it obeys a rule (18-electron rule) analogous to the
eight-electron rule. In fact, the stoichiometry of numerous compounds in organometallic
chemistry establishes the usefulness of the 18-electron rule suggesting that filled d, s and p
shells lead to stable compounds. But life is even more complicated. In addition to
W(CH3)6 and W(CO)6, we can find octahedral complexes like WBr4(MeCN)2 which are
also formulated as coordination compounds. The metal atom is considered [W]4+, i.e.,
oxidation state WIV, the Br atoms are considered Br− which serve as two-electron Lewis
bases as do the MeCN ligands. Hence, the W center is associated with 14 electrons not 12
or 18. Perhaps the high metal charge stabilizes the d, s, p valence set such that not all
orbitals need be filled.

Well, OK, but what then is W(CH3)6 – a WVI donor–acceptor complex with six [CH3]−
ligands or an ordinary covalent compound like CH4 with six W–C two-center–
two-electron bonds? No matter how you count it still has 12 valence electrons. You might
as well know that it’s a bit like a religion now, counting electrons. People get pretty
passionate about partitioning electrons between metal and ligands even when they give lip
service to the fundamental tenets of quantum chemistry that require electronic structure
(geometric information on where the electrons are) to be understood in non-classical
terms quite in contrast to geometric structure (nuclear positions) which can be discussed
in comfortable classical terms. Consequently, neither method of partition tells the true
story, i.e., the real charge of W probably lies somewhere between 0 and +6. On the other
hand, there are large areas of metal chemistry where each view can be useful as a guide.
The 18-electron rule rules in organometallic chemistry, but does not in classical
coordination chemistry where the first step in analyzing the bonding in a compound is
definition of the oxidation state of the metal. Beware of organometallic compounds with
electronegative ligands as they can display aspects of Werner chemistry (paramagnetism).
Complicated, yes, but the seemingly unlimited variations are a feature of transition-metal
chemistry that experienced chemists find extremely exciting. We can anticipate that
transition metals will complicate cluster chemistry in the same ways they complicate the
chemistry of mononuclear compounds. In the following we outline some of the ways in
which transition-metal compounds differ from those of main-group compounds.
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A1.4.7 Organometallic chemistry

Large books and multivolume series have been written on the varied aspects of
organometallic chemistry for metals from the s-, p- and d-blocks. This brief treatment will
be focused on compounds containing the types of d-block metal fragments often found in
cluster compounds. An organometallic text is an excellent companion if additional
information is needed by an individual reader.

Although the first metal compounds containing M–C bonds were prepared in the
1800s, it was only about 50 years ago that the understanding of metal complexes
containing unsaturated organic ligands coordinated side-on to a metal center sparked an
explosion of new chemistry. Ferrocene is the iconic compound of the area with all ten C
atoms bound to a single Fe center but with a dynamic mobility characterized by the
appropriate appellation “ring whizzer.” But let’s begin with Hieber’s metal carbonyls that
arrived on the scene in the first half of the twentieth century and then work our way back
into � complexes. Fragments derived from both types of compounds are important in
metal-cluster chemistry.

For metal carbonyls, the 18-electron rule is an effective guide to compound
stoichiometry. As CO is a two-electron donor when bound via C alone, neutral
mononuclear compounds are found only with metals with even numbers of electrons, i.e.,
groups 6, 8, 10 generate octahedral M(CO)6, trigonal bipyramidal M(CO)5 and tetrahedral
M(CO)4 complexes, respectively (Figure A1.18). Note that we are not counting bond pairs
and lone pairs in the discussion of these structures. Metal carbonyls from groups 5, 7 and
9 need to be charged, e.g., octahedral [V(CO)6]− and [Mn(CO)6]+, dimeric with a shared
M–M two-electron bond, e.g., (CO)5Mn–Mn(CO)5, or associated with a one-electron
ligand like H, e.g., (CO)5MnH. Of course there is always the oddball, e.g., V(CO)6 with
17 electrons, to keep life interesting.

An important aspect of the CO ligand, as well as other related organic ligands, is that it
functions as a Lewis base and a Lewis acid at the same time. That is, the primary donor
orbital has � symmetry relative to the M–C bond axis but there are low-lying empty
acceptor orbitals of � symmetry available as well. The former complements an empty �
metal orbital whereas the latter complements filled � metal orbitals. Hence, the CO ligand
can form a strong bond with the metal via the double donor–acceptor interaction and
electronic charge build up on the metal is minimized. In a sense the � orbitals of the CO
ligand function as the methyl groups on B in the donor–acceptor adduct (CH3)3NB(CH3)3
discussed above. If one tries to make W(NH3)6, for example, there is a problem as the
amine ligand is a good � donor but a very poor � acceptor. A more detailed
molecular-orbital model for a M–CO interaction will be reviewed below. The CO ligand
acts as a two-electron donor when it is bound as a terminal ligand (one M–C interaction)
or as a bridging ligand (µ- with two M–C interactions and µ3- with three M–C
interactions). So the two isomeric forms of cobalt carbonyl, (CO)8Co2 and
(CO)8(µ-CO)2Co2 count exactly the same way.

The cyclopentadienyl ligand, Cp− = [C5H5]− also has a significant presence in cluster
chemistry. It is to organometallic chemistry what a polydentate ligand is to classical
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coordination chemistry. Formally it occupies three coordination positions and donates
three pairs of electrons if considered a negative ligand and five electrons if it is considered
to be neutral. It is not as good an acceptor as CO and some of its metal derivatives fall in
the crack between 18-electron organometallic complexes and Werner complexes, e.g.,
diamagnetic 18-electron Cp2Fe vs. paramagnetic 16-electron Cp2Cr with two unpaired
electrons.

If one considers Cp a five-electron ligand then CpM(CO)n will be mononuclear
for groups 15, 17 and 19, e.g., CpMn(CO)3, but dimeric, charged, or contain hydrides
for 16, 18 and 20, e.g., [CpFe(CO)2]2, [CpFe(CO)2]− or CpFe(CO)2H (Figure A1.19).
It is also possible for Cp to act as a three- or one-electron ligand; hence, it is necessary
to specify the hapticity (number of metal-bonded C atoms) in a complex, e.g.,
(�5-Cp)Fe(CO)2(�1-Cp) contains one Cp ligand bound through five C atoms
(�5-five-electron donor) and one Cp ligand bound through one carbon atom
(�1-one-electron donor). Eight electrons from Fe and four from the two CO ligands give a
total of 18. Alternatively, if the Cp ligand is viewed as an anion, then the count is 6 + 2 +
6 + 4 = 18, the difference being FeII with six electrons. It’s all a question of how one
wants to partition the electrons. Caution: don’t switch horses in midstream!

For the group-10 metals and the heavier group-9 metals, 16-electron complexes are
often observed. One of the valence orbitals on the metal is unoccupied and the ligands
adopt a square-planar arrangement around the metal center. Thus, two very famous
complexes, Wilkinson’s complex (PPh3)3RhCl and Vaska’s complex
trans-(PPh3)2(CO)IrCl are 16-electron complexes with four-coordinate, square-planar
metal centers. However, the addition of small molecules concomitant with bond rupture
readily takes place, e.g., the oxidative addition of H2 to Wilkinson’s complex yields an
18-electron dihydride cis-H2(PPh3)3RhCl.

Exercise A1.7. Hieber found that CO forms three compounds with Fe in which the ratios
of CO to Fe are 5, 4.5 and 4. On the basis of the 18-electron rule predict the molecular
formulae of these three compounds.

Answer. Fe(CO)5 (8 + 5 × 2 = 18); Fe2(CO)9 (2 × 8 + 9 × 2 = 34 or 17 per Fe to
which one is added for the shared formal Fe–Fe bond); Fe3(CO)12 (3 × 8 + 12 × 2 = 48
or 16 per Fe to which two is added for two shared formal Fe–Fe bonds if the structure is a
cyclic trimer).

In summary, the rare-gas rule provides a basis for understanding the stoichiometries of a
large fraction of organometallic compounds and offers a guideline for predicting likely
compound types for a given set of ligand/metal combinations. Organometallic chemistry
can be considered a perturbation of either organic or inorganic chemistry depending on
the point of view of the practitioner. The action of the metal fragment on the organic
ligand or the organic ligand on metal properties generated a revolution in synthetic
organic and inorganic chemistry and reached its apex in the rational development of



346 Appendix

HC

C

C

H
C

Me

Me

Zr

Zr Zr

LnM LnM

H

H

H

H

M to σ∗ small M to σ∗ large

Figure A1.20

homogeneous catalysts. Clearly it is desirable to understand the electronic origins of these
perturbations and to do so one must go beyond compound composition and geometric
structure. That is, one must go beyond the 18-electron rule.

In trying to do so it quickly becomes clear that the two-center–two-electron bond
model needs to be patched up so often that it almost seems easier to just discard it and try
for something better. Look at a couple of compounds and see what the nature of the
problem is. Consider the dimer [CpFe(CO)2]2. In counting electrons for each metal center
we have (considering all the ligands neutral) five from Cp, eight from Fe, four from two
CO to give 17. An Fe–Fe single bond is assumed giving one electron to each metal center
to make up 18. However, the structure (Figure A1.18) exhibits two bridging CO ligands
and two terminal CO ligands. The former eliminate the necessity of a direct Fe–Fe bond in
order to explain its diamagnetic character. Quite a few journal pages have been consumed
dealing with the question: is there a direct Fe–Fe bond or are the metal atoms
electronically coupled via the CO bridge interactions? It turns out there is no substantive
Fe–Fe bond and that the metal–metal interaction is indeed mediated by the bridging
ligand. Thus, we are faced with a situation not explained by a simple
two-center–two-electron bond. However, qualitative molecular-orbital methods can easily
deal with it. It stands to reason then that when we must deal with a transition-metal cluster
with bridging CO ligands, the manner in which we satisfactorily count the electrons
contributed to the bonding network need not imply any understanding of the actual
bonding taking place between the metal atoms the CO spans.

Consider one more example where the facts show that a better model is needed to
discuss the nature of the ligand–metal interaction. 1,3-butadiene forms a stable complex
with the Cp2Zr fragment and exhibits the geometric structure shown in Figure A1.20. One
can now compare the C–C distances in the free ligand with those in the complex. The
C=C distances increase on coordination (1.36 to 1.45 Å), whereas that of the central C–C
bond decreases (1.45 to 1.40 Å). In addition the Zr–C distances are not equal with those to
the terminal C atoms being distinctly shorter than those to the internal C atoms (2.30 vs.
2.59 Å). An explanation in terms of resonance with contributions from the two resonance
forms shown in Figure A1.20 can be proffered; however, as already mentioned, resonance
is only introduced to patch up deficiencies in the two-center–two-electron model. This
butadiene binding problem is a more complex variation of the problem of how to describe
the olefin–metal interaction in (CO)4Fe(�2-C2H4). Two limiting models exist: a
metallacyclopropane with one C–C and two Fe–C single bonds and tetrahedral C atoms
and a � complex with one C=C donor–Fe acceptor bond and trigonal C atoms. Based on
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measured geometric parameters (C–C distance and pyramidalization at C), known
compounds span the range between the limiting models. A single model accommodating
this variation and relating it to metal, olefin substituents and metal ancillary ligands is
necessary to advance beyond a purely phenomenological understanding. The Dewar
model based on ligand to metal � donation and metal to ligand � (back) donation, just
over half a century old now, does just that.

The same qualitative model describes the binding of H2 to transition-metal centers in
which the extent of metal to H2 antibonding orbital (back) donation describes the
continuous variation of H–H distance from that of coordinated H2 to that of two individual
hydride ligands (Figure A1.20). Although the Dewar model was there in the literature, it
took the more recent experimental work of Kubas and those who followed him to
demonstrate the realities of these so-called � complexes of H2.

A1.4.8 Werner complexes

Our understanding of classical metal-coordination chemistry developed well before
organometallic chemistry blossomed in the 50s and 60s. It constitutes part of the core of
any first course in inorganic chemistry and is usually introduced in first year general
chemistry courses as well. Metal clusters are commonly derived from and related to
mononuclear organometallic complexes, not Werner complexes. On the other hand, there
is no clear dividing line between Werner and organometallic complexes and some
consider the latter as a subset of the former. Consequently, typical characteristics of
classical coordination chemistry, e.g., paramagnetism and multiple oxidation states, creep
into cluster chemistry, e.g., the cubane clusters that will be discussed later in Chapter 5.
Thus, the reader must be reminded of the principles that underpin classical coordination
chemistry and a short summary follows.

Perhaps the best way to proceed is to simply list the principal properties of a typical
Werner complex that needed to be explained: (a) “salts” that contained labile and
non-labile anions and solvent; (b) coordination numbers and geometries not four and not
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tetrahedral; (c) absorption of visible light that depends on metal and ligand type; (d)
paramagnetic compounds and variable metal oxidation state and (e) ligand lability that
depends strongly on metal and oxidation state. Property (a) was explained by viewing
metal ions as poly-Lewis acids and the anions or solvent molecules as mono- or
polydentate Lewis bases (Figure A1.21). Property (b) was first addressed by selective
utilization of the valence orbitals of the metal center (hybridization with
two-center–two-electron donor–acceptor bonds as also shown in Figure A1.21). This
model, in which the valence electrons are partitioned artificially as shown, allowed the
paramagnetism of some compounds to be rationalized albeit with pragmatic assumptions
that better theories showed unnecessary.

Property (c) and (d) demanded a better theory of bonding than the contemporary one
being used for C chemistry. The first edition, crystal-field theory, is a concept transferred
from a successful approach to a solid-state problem – one of several such inter-area
“technology transfers” that molecular chemists do not always acknowledge. For a known
geometry the characteristic splitting associated with the metal-ion d levels in a field
defined by the set of negative ligands permitted visible colors, as well as the number of
unpaired electrons and trends in selected energetics to be rationalized. For example, in the
lower symmetry of the Oh point group, the 3d orbital set of Co3+ splits into a two over
three pattern. Provided the splitting is large relative to the pairing energy, then Hund’s rule
no longer applies and the low spin configuration shown in Figure A1.21 holds. Geometry,
metal identity, metal oxidation state and ligand character were thereby neatly tied
together. Ligand effects were phenomenologically explained in terms of the
spectrochemical series and therein another problem arose. Relative positions of ligands,
such as, e.g., [F]− and [CN]−, were not easily rationalized on the basis of an ionic model.

The structural strengths of the hybridization model were combined with the electronic
strengths of the crystal-field model in a molecular-orbital model albeit with the loss of the
simplicity of the earlier models. The essential aspects of this MO model will be discussed
in Chapter 1. The key point here is that, if one wishes to understand the electronic
structure of metal-coordination compounds, one need go beyond the Lewis model of
two-center–two-electron bonds. It should be obvious, then, that this is also a requirement
for organometallic complexes, metal clusters and extended solid-state systems containing
metal atoms.
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Problem answers

Chapter 1

1. (a) Approach: Cr possesses six valence electrons, thus ligands must be chosen to
supply 12 more to satisfy the 18-electron rule, e.g., six CO ligands; Mn possesses seven
valence electrons, thus ligands need to supply 11, e.g., 5 CO + 1 H. (b) This problem
requires recognition of the types of bonds in the molecule and which ones, if any, are
unusual. The answer to part (a) suggests the Cr–CO bonds can be adequately described
as two-center donor–acceptor bonds. The Cr–H–Cr with a two-coordinate H atom is
clearly the unusual situation; hence, a fragmentation into two Cr(CO)5 fragments and
an H− anion is appropriate. A Cr(CO)5 fragment is a 16-electron species with an empty
orbital available to accept an electron pair. The H− anion possesses one filled orbital;
hence, the three orbitals (two from the metal fragments and one from H) can be used to
form one bonding, one non-bonding and one antibonding three-center orbital with the
bonding combination containing the two available electrons.

2. S contributes four AOs and the six H atoms contribute six AOs for a total of ten leading
to ten MOs. The central atom has functions of symmetry a1g (3s) and t1u (3p), whereas
the six ligand functions have symmetry-adapted combinations of a1g (3s) and t1u, and
eg just like an octahedral transition-metal complex. As shown below, interaction
between the central atom and the ligands generates four bonding MOs plus their
antibonding partners and two non-bonding orbitals having ligand character only for a
total of ten MOs.

t1u

a1g
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t1u

a1g

S SH6 6H

Problem 1.2

349
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3. (a) The MO diagram for this ten-electron diatomic molecule is related to that of
isoelectronic N2 and CO except that the difference in electronegativities of the two
elements is even larger than that for CO.

B–F

E

0

−40

z

Problem 1.3

(b) The HOMO is of σ symmetry relative to an M–L bond axis and orbital amplitude
lies predominantly on the B atoms; hence, as a ligand one would expect it to bind to
the metal through B. The LUMO is doubly degenerate and of π symmetry relative
to an M–L bond axis and again the orbital amplitude is largely on B suitable for
accepting electrons from a filled metal ttg set. The analogy with CO is clear.

(c) The charge distribution suggests a dipole with the negative end at F.
(d) The σ interaction yields a total overlap population of 0.08 + 0.19 = 0.27 for the s

and p interactions, plus the two π interactions add 0.22 each. Formally the bond
order is three; however, without additional information the strength of the bond
cannot be judged. A similar style calculation on CO yields 0.68, 0.47, 0.47
suggesting BF has a weaker covalent interaction.

4. The series Cl2, SCl2, PCl3, SiCl4 might suggest NaCl7 or [NaCl4]3− with eight
electrons associated with the central atom. However, this is not observed. For the NaCl
molecule, the MO diagram shown below obtains. With a total of eight valence
electrons, it can be compared with the Si2 homonuclear diatomic molecule. One
obvious difference is the disparity of the AO energies for the two bonding partners. In
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Si2 they are a perfect match, but in NaCl the AO energies of the electropositive atom
are much higher than those of the electronegative atom thereby making the 3p
functions of Na effectively inaccessible.

Si 3p

Si Si
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Problem 1.4

5. (a) The HOMO and LUMO of H2 are shown in Figure 1.1.
(b) According to the frontier-orbital concept, the LUMO of the acid must interact with

the HOMO of H2. A side-on structure should maximize overlap.
(c) Removal of one CO from Cr(CO)6 generates an empty orbital; hence, Cr(CO)5 is

primarily a Lewis acid like BH3 and H2 should bind in a similar fashion, i.e.,
side-on. The LUMO of H2 has π symmetry relative to the Cr–H2 axis, hence it has
the proper symmetry to interact with the filled t2g set of the metal center. As with
CO, the double acid–base interaction strengthens the M–H2 bond such that metal
complexes can be isolated whereas BH5 and isoelectronic [CH5]+ are species with
short lifetimes.

6. The four π MOs of free butadiene are shown below with the C4H8 framework in the
plane of the paper. The HOMO is bonding between the outer pairs of C atoms and
antibonding between the central C atoms whereas the LUMO is bonding between the
central C atoms and antibonding between the outer pairs of C atoms. Effective transfer
of electrons from the former to the latter will decrease the net bonding between the
outer pairs of C atoms and increase it between the central C atoms.
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Chapter 2

1. The molecular formula for a hydrocarbon with the “butterfly” structure of tetraborane
is C4H6. The structure with two double bonds is 1,3-butadiene shown alongside. Is it a
surprise then that the structure shown below was once proposed for B4H10, i.e., two
protonated double bonds in a trans arrangement?

Problem 2.1

2. The appropriate fragment analysis is n SnR fragments each of which possess three
orbitals and three electrons perfectly set up for forming three Sn–Sn bonds. Hence,
likely shapes are the three-connect clusters of Figure 2.3, i.e.,
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Problem 2.2

3. 1,2-C2B3H5, 2 CH + 3 BH = (2 × 3 + 3 × 2)/2 = 6 sep appropriate for a
trigonal-bipyramidal shape with the CH fragments in adjacent axial and equatorial
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positions (non-zero dipole); 1,6-C2B4H6, 2 CH + 4 BH = (2 × 3 + 4 × 2)/2 = 7 sep
appropriate for an octahedral shape with the CH fragments in trans positions (zero
dipole); 2-Cl-1,6-C2B4H5, 2 CH + 3 BH + 1 BCl = (2 × 3 + 3 × 2 + 1 × 2)/2 = 7
sep appropriate for an octahedral shape with the CH fragments in trans positions (the
Cl substitution in the 2-position produces a non-zero dipole); 2,4-C2B5H7, 2 CH + 5
BH = (2 × 3 + 5 × 2)/2 = 8 sep appropriate for a pentagonal-bipyramidal shape
with the CH fragments in non-adjacent equatorial positions (zero dipole);
1,2-Me2-1,2-Si2B10H10, 2 SiMe + 10 BH = (2 × 3 + 10 × 2)/2 = 13 sep appropriate
for an icosahedral shape with the SiMe fragments in adjacent positions (non-zero
dipole): SB11H11, 1 S + 11 BH = (1 × 4 + 11 × 2)/2 = 13 sep appropriate for an
icosahedral shape (non-zero dipole); [AsB11H11]−, 1 As + 11 BH + (−) = (1 × 3 +
11 × 2 + 1)/2 = 13 sep appropriate for an icosahedral shape (non-zero dipole).

4. (a) 2,3-C2B4H8, 2 CH + 4 BH + 2 H = 2 × 3 + 4 × 2 + 2 = (6 + 8 + 2)/2 = 8 sep
appropriate for a pentagonal-bipyramidal shape with one unoccupied axial vertex,
adjacent equatorial CH fragments and two BHB bridging H on the open
pentagonal face; 1,2-C2B4H6, see Problem 3; 1,5-C2B3H5, see Problem 3; B4H10,
4 BH + 6 H = (4 × 2 + 6)/2 = 7 sep appropriate for an octahedral shape with two
adjacent unoccupied vertices (“butterfly” shape), four BHB bridging H and two
extra terminal BH at the “butterfly” wing tips; C3B3H7, 3 CH + 3 BH +
1H = (3 × 3 + 3 × 2 + 1) = (9 + 6 + 1)/2 = 8 sep appropriate for a
pentagonal-bipyramidal shape with one unoccupied axial vertex, BH in the
axial position, adjacent BH fragments in equatorial positions and one BHB
bridging H.

(b) The pentagonal pyramid requires eight sep and, for a nido-structure, six fragments
to generate this electron count. With a maximum of four BH fragments, adding
SiH and P plus two BHB gives (4 × 2 + 3 + 2 + 2)/2 = 8 sep. Place one BH in
the apical position and two BHB bridging H on the open pentagonal face.
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Problem 2.4

5. The sep = 9 = n + 1: n = 8. Removing two adjacent five-connect vertices from the
parent deltahedron (four four-connect and four five-connect vertices) yields the
framework shown (as well as flattened out for convenience at the bottom left) which
has C2 symmetry (pairwise equivalence of Bs and Hs) and therefore consistent with
the observed spectroscopic data.

To analyze the bonding first remove the four BHB bridging H as protons to give
[B6H8]4−. This species has a total of 32 AOs and 30 valence electrons. If we remove
16 orbitals and 16 electrons to form the eight two-center–two-electron B–H bonds, we
are left with 16 orbitals and 14 electrons. Hence, two three-center–two-electron bonds
(six orbitals and four electrons) plus five two-center–two-electron bonds (ten orbitals
and ten electrons) nicely utilizes them all and is consistent with the fact that there are
two four-connect vertices in the framework.

6. The boundary conditions are: one donor fragment per acceptor fragment, acceptors
and donors at right angles and a sep count of n + 1. Adjacent functional fragments on
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an octahedral cluster framework meet the criteria. A protected acid site is a
three-electron B–THF fragment whereas a base site is a three-electron P atom with a
lone pair. One could choose to place one each on a single cluster or make two
different clusters each with two acid or two base sites. Hence, 1-P-2-(BTHF)B4H4
with seven sep and adjacent heteroatom fragments constitutes an appropriate target.
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Problem 2.6

7. (a) Two six-connect and six four-connect vs. four five-connect and four four-
connect.

(b) A hexagon may be constructed from equilateral triangles; hence, such a
bicapped-hexagonal shape would have the apical atoms superimposed.

(c) The greater the uniformity of the vertex connectivities the more spherical the
shape, i.e., the dodecahedron is more spherical.
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4

5
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4
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5
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Problem 2.7

8. Of the five symmetry-adapted combinations of the out of plane π orbitals of
[B5H5]4−, the three lowest-lying ones (four electrons) have the proper symmetry to
interact with the σ and π orbitals of the B–H fragment (two electrons) to generate a
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six-center–six-electron bond (five empty orbitals over three filled orbitals). The five
two-electron B–B bonds plus these three ring-cap bonding pairs gives a total of eight
framework bonding pairs equal to the eight sep required by the electron-counting
rules.

π

σ

Problem 2.8

9. The anion [2,3-C2B4H6]2− can be formally generated from closo-2,3-C2B5H7 by
removal of an axial [BH]2+ fragment. Working Problem 8 in reverse, but removing
[BH]2+, generates five orbitals on the open five-membered face containing a total of
six electrons.

π

σ

Problem 2.9

10. The structure can be described as a pentagonal bipyramid with two bridging GaR
groups which requires eight sep or 30 cve. The mononegative cluster contains four
two-electron RGa fragments and three one-electron (possibly three-electron) Ga atoms
plus two two-electron RGa bridges. Hence, the sep (4 × 2 + 3 × 1 + 2 × 2 + 1)/2 =
16/2 = 8 appropriate for its shape. The cve count comes from seven Ga, four R,
one − charge, and two RGa bridges = 21 + 4 + 1 + 4 = 30. The “unusual” feature is
that the Ga centers in the RGa bridges are six- rather than eight-electron centers. If
this cluster were treated according to the general cluster fusion rules of Chapter 3,
Section 3.3.3, eight-electron centers would be assumed and the observed count of 34
(9 Ga + 6 R + 1) would be four electrons less than the required count of 38 (30-cve
cluster fused to two 18-cve triangles with elimination of two 14-electron dimers).

11. As is a three-orbital–three-electron fragment and AsR or [As]− are
three-orbital–four-electron fragments or two-orbital–two-electron fragments. The
latter implies some two-connect vertices. Try three-connect or lower structures
(Figure 2.3) and you will find the following are consistent with the 1:3:3 ratio of atom
environments. Alternatively, the cve = 38, whereas for a three-connect structure one
expects 5n = 35; hence, three of the As units must be two-connect to generate three
additional lone pairs to accommodate the extra electrons.

12. (a) 8 Sn + 4 R give 32 + 4 = 36 valence orbitals and the same number of electrons.
However, for an edge-bonded cube and either external lone pairs or bonds, we need
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Problem 2.11

5n/2 = (5 × 8)/2 = 20 pairs of electrons. A localized model will not be adequate.
(b) Treat the 12 Sn–Sn edges and the four R–Sn bonds as two-center–two-electron
bonds (16 total) thereby utilizing 32 orbitals and 32 electrons of the 36 orbitals and 36
electrons available. The remaining four orbitals and four electrons can then be used in
four-center bonding of the rectangle formed by the two Sn2 fragments. The two net
bonding combinations of the set of four shown below are filled and the two net
antibonding combinations are empty. Note that all four of these MOs have “lone pair”
character.

HOMO LUMO

Problem 2.12

13. The molecular formula gives: 5 MeC + Si + (+) = (5 × 3 + 2 − 1)/2 = 16/2 = 8
sep (assuming a lone pair on the Si atom). Hence, the structure should be based on a
seven-vertex deltahedron with one vertex unoccupied. The observed structure, a
pentagonal pyramid with Si occupying the axial position, is one of the possible
nido-isomers generated. The implication of this model is that three Si orbitals are
engaged in bonding to the C ring as discussed in the ring-cap model of Section 2.9.1.

14. A 13-vertex deltahedron, the geometry exhibited requires 4n + 2 = 54 cve if the rules
for fully ligated clusters are followed. [Ga13R6]− has only 46 cve, however. If one
applies the approach based on capping a polyhedrane skeleton (Section 2.12.5) we
find: five triangles, three rectangles and one pentagon in the skeleton. For the five
triangles and four capped faces larger than triangular, we have (5 × 2 + 3 × 6 + 1 ×
6) = 34 to which we add (6 × 2) = 12 for the external pairs associated with the six R
groups for a total of 46 electrons.

15. The number of cluster valence electrons is 66. Based on the examples of metalloid
clusters in the text, we don’t expect the borane paradigm to work for this closed
cluster and it does not (4n + 2 = 58 cve). It can be viewed as a hexacapped
three-connect (highly distorted) cube giving, via the cluster fusion rule: 5 × 8 + 6 ×
24 − 6 × 24 [or − 6 × 22] = 40 [or 52] cve. This doesn’t work and besides, four of
the cube edges have very long Sn–Sn contacts. Finally, it can be viewed with the
modified Schleyer approach (no lone pairs on Sn atoms) or the Schleyer approach
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(lone pairs on Sn atoms). For the first we have: six squares capped by six SnR giving
6 × 6 + 6 × 2 = 48. For the second we have 6 × 6 + 6 × 2 + 8 × 2 = 64 cve which
is within two electrons of the actual count. Although the precise count is not achieved,
we have seen (and will see in subsequent chapters) that there are several examples
where the actual and model-based counts differ by two electrons. Most such
discrepancies arise from idiosyncrasies of the cluster symmetry; hence, the next step
here is to look in actual MO calculations for the origin of the difference.

Chapter 3

1. [HFe7B(CO)20]2−: 102 cve. View as a capped trigonal prism 90 + 12 = 102 or,
alternatively, as a square pyramid fused to a rectangular face of a trigonal prism; 90 +
74 − 62 = 102.

Os7(CO)21: 98 cve. View as face-fused octahedron and tetrahedron (or capped
octahedron) giving 86 + 60 − 48 = 98.

[Ni9(CO)18]2−: 128 cve. View as triangular face-fused octahedron and trigonal
prism giving 86 + 90 − 48 = 128.

[Fe4Pt6(CO)22]2−: 138 cve. View as tetrahedron edge fused to two five-atom
triangular rafts. Each five-atom triangular raft may be obtained by edge fusion of two
triangles to another triangle giving 48 + 2(48 − 34) = 76. Thus, we have 60 + 2(76 −
34) = 144 which is six higher than observed. The discrepancy can be attributed to the
presence of Pt in the cluster thereby generating additional unavailable cluster orbitals.

2. The cve count is 90. Table 3.1 gives one possibility: a trigonal prism. The raft in
Figure 3.12 provides another possibility. Note that the variation in the raft structure
shown below also has 90 cve.

Problem 3.2

3. The cve count is 110 which is too low for either a single deltahedral cluster (14n +
2 = 114 cve) or a three-connect cluster (15n = 120 cve); hence a capped or
fused-cluster system is likely. A bicapped octahedron (14n + 2 + 2(12) = 110 cve)
fits the bill. Alternatively, we have eight Re(CO)3 fragments + C + 2− = (8 × 1 +
4 + 2)/2 = 7 sep suggesting a octahedron as the cluster core of a capped system. Two
isomers are possible. One has C2v symmetry and four types of metal environments as
shown below whereas the other has only two.

c

d

b

cd

a

a

[Re8C(CO)24]2−

bb b

b

b

bb

a

a

Problem 3.3
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4. To satisfy the 18-electron rule for each metal center and let each line be a
two-center–two-electron bond, the trigonal prism can be constructed out of six
15-electron metal fragments (three orbitals and three electrons) whereas the raft can
be constructed out of two 16-electron fragments (at the two-connect vertices, two
orbitals and two electrons), two 15-electron fragments (at the three-connect vertices,
three orbitals and three electrons) and two 14-electron fragments (at the four-connect
vertices, four orbitals and four electrons). Note that the last is not possible for the
equivalent borane (30 cve arachno-B6H12) and we saw in Problem 5, Chapter 2, that
we needed two three-center–two-electron bonds to provide a localized description of
the main-group system.

5. The “stretched” cluster with 14 CO ligands has 76 cve whereas the other has 72.
Table 3.1 shows that the latter is the normal count for a trigonal-bipyramidal metal
cluster. Hence, we are asked to explain an increase in cve without change in
qualitative shape, i.e., we cannot invoke 16-electron Pt as usually this leads to a
decrease in cve. The experimental result suggests that the LUMO of the 72-cve
trigonal-bipyramidal metal cluster is doubly degenerate, with apical–basal triangle
antibonding character and low enough in energy to be occupied, e.g., it becomes the
HOMO of the 76-cve cluster. How is this possible? The trigonal bipyramidal cluster
has been the topic of considerable discussion (see Burdett and Eisenstein, 1995).
One limiting model is bonding via six two-center–two-electron bonds as shown
below which would leave no B–B bonding in the equatorial plane. If we use the
HOMO and LUMO of [B5H5]2− as a guide then the MO version of the crude
localized model shows that the LUMO pair contains about 50 % character of
in-plane Walsh-type orbitals also shown below. These have equatorial B–B bonding
character and would contribute to the bonding of the B triangle if occupied. Why is
the LUMO accessible for the metal clusters and not the boranes? We have already
seen that the intrinsically weaker M–M vs. E–E bonding makes the HOMO–LUMO
gap smaller for the metal systems and consequently the likelihood of counting-rule
violations increases. As to the observed structural distortion in going from 72 to 76
cve, Lauher has shown that the energy of the LUMO of a metal-cluster version of
[B5H5]2− falls as the apical–equatorial plane distance increases at constant
equatorial triangle size thereby demonstrating its apical–equatorial antibonding
character.

HB
BH

BH

B
H

H
B 2−

Walsh Orbitals

Problem 3.5

6. The 44 M cluster was successfully counted using the limiting model of a fully radially
and surface-bonded internal octahedral cluster surrounded by 38 metal fragments
bonded to the octahedral core by radial bonding only (metal-fragment ligands to the
central cluster). As this problem involves the same cluster from which 20 metal-
fragment “ligands” have been stripped away, a reasonable first approach is the same
but with 18 ligands rather than 38. The cve count from the composition is 302 and that
from the model is 86 + 12(18) = 302.
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7. 86-cve Rh2Os4(CO)18+ 18-cve Fe(CO)5 generates a 102 cve intermediate 1 on the
way to the 98-cve capped octahedral product. A reasonable structure is the “spiked”
octahedron which can be formed by fusing an 86-cve octahedron with a 34-cve dimer
losing an 18-cve monomer (86 + 16 = 102). Loss of another CO leads to 100-cve
intermediate 2 for which the edged-bridged intermediate is reasonable (86-cve
octahedron + 48-cve triangle − 34-cve edge = 100). Loss of another CO and closing
the edge bridge to form a cap is the final step.

Rh
(CO)3

(OC)3Os
Os(CO)3

Os(CO)3

(CO)3
Rh

(OC)3Os

Fe(CO)4

Rh
(CO)3

(OC)3Os
Os(CO)3

Os(CO)3

(CO)2
Rh

(OC)3Os

Fe(CO)4

1 2

Problem 3.7

8. The cluster stoichiometry gives 6 Re + 8 Se + 6 I + 4− = 6 × 7 + 8 × 4 + 6 × 1 +
4 = 84 cve. Hence, it can be described with a [Re6]18+ core with 24 valence electrons
sufficient for 12 two-center–two-electron M–M bonds. Alternatively the MO diagram
of Figure 3.17 can be used to describe its qualitative electronic structure.

9. The cluster stoichiometry gives 11 Ru + H + 27 CO + 3− = 146 cve. As a
deltahedral cluster the cve count would be 14n + 2 = 156. Alternatively, the cluster
geometry can be generated by fusing a pair of octahedra and a pair of trigonal
bipyramids as shown below eliminating a triangle and two butterflies yielding 86 +
86 − 48 + 2(72) − 2(62) = 144 cve. Finally, an octahedral cluster surrounded by five
metal “ligands” gives 86 + 12(5) = 146 cve which agrees with the observed
composition.

72 − 62 

86

86 − 48 

72 − 62

Problem 3.9

10. The tetrahedral intermediate proposed is an attractive one as rupture of one M–M
bonding interaction (and some ligand rearrangement) takes one to one isomer or the
other depending on the M–M bond chosen. Observe that the cluster
HPtOs3(CO)10(dppm){Si(OMe)3} and its isomer have planar butterfly structures and
electron counts of 60. The typical butterfly structure is not planar; however, bulky
ligands can readily flatten the butterfly (see discussion of [Re4(CO)16]2− in Section
3.2.5). The typical cve count for a butterfly structure is 62; however, with Pt clusters,
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cve counts are often two or four electrons lower. Now cve = 60 is the usual count for
a tetrahedral metal cluster; hence, even though the planar butterfly is the observed
lowest-energy structure, a higher-energy structural alternative is the tetrahedral
cluster. Apparently it is accessible via photon absorption and then decays thermally
into isomer 2; hence, isomer 2 is of lower stability. The intermediate for the thermal
conversion of 2 to 1 is likely tetrahedral as well but probably has a different ligand
arrangement than that proposed for the forward reaction.

Chapter 4

1. SiH is a three-orbital–three-electron fragment and CpRh is isolobal with BH, a
three-orbital–two-electron fragment. The nido-square-pyramidal cluster requires
seven sep; hence, without using any other fragments or an overall cluster charge, only
the composition (SiH)4(CpRh) with (4 × 3 + 2)/2 = 7 sep fits. Two isomers are
possible with the metal fragment in the 1- and 2- positions, respectively. The former
may also be viewed as an analog of a metal �4-cyclobutadiene complex.

HSi Si
H SiHSi

H

Cp
Rh

HSi Si
H RhCpSi

H

H
Si

Problem 4.1

2. The Fe(CO)4 fragment is capable of acting both as a fragment with a single acceptor
orbital isolobal to BH3 and as a fragment with two frontier orbitals containing two
electrons isolobal with CH2. BH3, with a more limited valence set, can act in the
former manner but not the latter.

3. The Fe(CO)4 fragment can be isolobal with the CH2 fragment, hence, the first
compound is analogous to cyclopropane. The 15-electron CpCr(CO)2 fragment can
act as a one-orbital–minus one-electron, two-orbital–one-electron or
three-orbital–three-electron (see Figure 4.8) fragment. Treating the second compound
as a cluster we have: 2 Se + 2 CpCr(CO)2 = (2 × 4 + 2 × 3)/2 = 7 sep suggesting a
structure based on an octahedron with two occupied vertices. If we choose adjacent
vertices the observed structure is generated, i.e., it is analogous to B4H10. The
16-electron CpMn(CO)2 can act as a one-orbital–zero-electron or two-orbital–two-
electron fragment (Figure 4.7). The As atom can be viewed as CH so, considering the
metal fragment isolobal with CH2, we have an analog of an allyl radical (C3H5) dimer
joined through the central C atoms.

4. The As center in the dichromium compound has an out of plane empty p orbital of the
right symmetry to interact with filled d orbitals on the metal center. This
three-center–four-electron interaction produces a set of three orbitals: Cr–As–Cr
bonding, Cr–As–Cr non-bonding and Cr–As–Cr antibonding, the first two of which
are filled. Assume the absorption energy corresponds to the HOMO–LUMO gap in
each molecule. In comparing the two compounds, the HOMO energies will be about
the same (t2g metal-orbital energy vs. Cr–As–Cr non-bonding), whereas the LUMO in
the first case (the eg* on the metal caused by two-center ligand–metal donor–acceptor
interaction) will be at higher energy than the LUMO on the second because the energy
of the Cr–As–Cr antibonding MO will be lower.
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5. Assuming each metal center has three filled “t2g” cluster non-bonding orbitals, 4 Cr +
2 CpCr + CO = (4 × 3 + 2 × (−1) + 2)/2 = 6 sep which is two sep short of the
eight required for a nido-pentagonal-pyramidal cluster. Delocalized bonding will be
favored by metal and main-group fragments of similar electronegativities. i.e., in this
case the Ph4C4 fragment is best viewed as a complex bridging ligand donating two
electrons to the “basal” Cr and four electrons to the “apical” Cr which, with a triple
bond, gives 18 electrons at each metal center.

6. First consider the Fe center as an 18-electron metal; hence, the B atom coordinated to
it must provide a pair of electrons. As shown in the drawing below the cluster is
[C5Me5B:], where the external lone pair on B is emphasized in the formula. Now,
using the sep formalism we have 5 CR + 1 B: = (15 + 1)/2 = 8 sep consistent with
its nido-pentagonal-pyramidal shape.

CMe C
Me CMe

MeC

B

C
Me

(OC)4Fe

Problem 4.6

7. In the first compound, viewing everything as neutral we have (W + Ru + 3 CO +
Cp + dicarbolide + CR + B–H–Ru) = 6 + 8 + 6 + 5 + 4 + 3 + 2 = 34. At the
W center we have W + 2 CO + CR + dicarbolide + W–Ru = 6 + 4 + 3 + 4 +
1 = 18 and at the Ru center Ru + CO + Cp + B–H–Ru + W–Ru = 8 + 2 + 5 +
2 + 1 = 18 in agreement with the bonding denoted. In the second compound the
total electron count is unchanged; however, the B–Ru bond has replaced the
B–H–Ru interaction thereby requiring a C–Ru bond to retain the 18-electron
count at Ru. W now has a W=C interaction and picks up a formal negative
charge.

8. In the first compound, viewing everything as neutral, we have (W + Mo + 3 CO +
Cp + dicarbolide + µ-CR + B–H–Mo) = 6 + 6 + 6 + 5 + 4 + 3 + 2 = 32. In the
second compound the B–H–Mo interaction is simply replaced by a R3P–Mo
two-electron donor leaving the count unchanged.

9. Count: molecular formula = 9 B, 7 H, 2 C, 2 Me, W, 2 Fe, 8 CO, 1 C, 1 Me,
1 − charge = 88 cve; theory = icosahedron + square pyramid + tetrahedron =
170 + 74 + 60 − 2 × 48 = 208 for an all metal system − 12 × 10 for replacing 12
metal atoms with main-group atoms = 88 cve.

10. Considered as a closo-pentagonal bipyramid, the compound should possess eight sep;
however, with Mo(CO)3 + 5 Pb + 4− = (4 × 0 + 5 × 2 + 4)/2 = 7 sep assuming
each Pb has an external lone pair and the metal fragments have filled “t2g” orbitals.
Considered as a triple-decker complex it has 6 + 6 + 0 + 6 + 6 + 4 = 28 valence
electrons and one would expect a Mo–Mo bonding interaction based on the arsenic
model mentioned. However, the Mo–Mo distance is clearly non-bonding. In Chapter
2 we saw that the removal of bare-atom lone pairs from the cluster bonding problem is
problematical because these orbitals lie at the filled–unfilled orbital interface and can
mix with other orbitals of similar symmetry thereby generating unexpected
unavailable unfilled orbitals. How this plays out in this case can be found in the
literature reference where density functional calculations show strong interactions of
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both in plane as well as out of plane Pb5 fragment interactions with frontier orbitals of
the two metal centers.

Chapter 5

1. Os6(CO)17S2: 6 × 8 + 17 × 2 + 2 × 6 = 94 cve. Consider it a pentagonal bipyramid
fused to a triangle with an all-metal count of 100 + 48 − 34 = 114 cve. Replacing two
metals with main-group atoms yields cve = 94. Fe3(CO)9Sn2{CpFe(CO)2}2:
Sn-(CpFe(CO)2) = Sn–R. 3 Fe(CO)3 + 2 Sn–R = (3 × 2 + 2 × 3)/2 = 6 sep which is
appropriate for a trigonal bipyramid. Fe3(CO)9(NH)2: 3 Fe(CO)3 + 2 NH = (3 × 2 +
2 × 4)/2 = 7 sep which is appropriate for an octahedron with one vacant vertex.
(CpCo)3(BPh)(PPh): 3 CpCo + BR + PR = (3 × 2 + 2 + 4)/2 = 6 sep which is
appropriate for a trigonal bipyramid. Mn(CO)3B9H12THF: Mn(CO)3 + 8 BH +
B–THF + 4 H = (1 + 16 + 3 + 4)/2 = 12 sep which is appropriate for an 11-vertex
deltahedron (Figure 2.7) with the vertex of connectivity six vacant.
Os6(CO)18P(AuPPh3): Considering the AuPPh3 fragment as isolobal with H, we have
6 × 8 + 18 × 2 + 5 + 1 = 90 cve which is appropriate for a trigonal prism.

2. [Rh9(CO)21P]2−, monocapped square antiprism with interstitial P; Fe3(CO)9C2BH3,
octahedral; Co3(CO)9Bi, tetrahedron; HRu3Fe(CO)12N, butterfly with interstitial N or
trigonal bipyramid depending on the butterfly deltahedral angle; Fe3(CO)12(CH)As,
trigonal bipyramid.

3. The Ge–Co(CO)4 is equivalent to a Ge–R three-orbital–two-electron fragment; hence
the cluster has eight sep/68 cve instead of the expected seven sep/66 cve. Hence, the
electronic problem is the one dealt with in Section 5.2.1 where octahedral
Fe4(CO)12(µ4-PR)2 was considered.

4. Cp4Fe4(CO)4: a 15-electron CpFe(CO) fragment is isolobal with CH giving sep = 6.
The cve count as a four-metal cluster is 4 Fe + 4 Cp + 4 CO = 32 + 20 + 8 = 60 cve.
Both match the fully bonded metal tetrahedron observed. As a cubane, it has 60 −
48 = 12 electrons in the metal orbitals thereby just filling the six M–M bonding
orbitals (Figure 5.26). Cp4Fe4(C2H2)2 As a cubane, the four CH fragments are
three-electron ligands and 16 electrons occupy the metal orbitals filling two Fe–Fe
antibonding MOs as well as the six bonding orbitals. This is consistent with four Fe–Fe
bonding distances as observed. However, the C–C distances are also bonding and the
alkyne apparently acts as a six-electron ligand. Considered as an eight-atom cluster the
reduced cluster has eight sep (4 CpFe + 4 CH = (4 + 12)/2) or 72 cve (4 Fe +
4 Cp + 4 C + 4 H = 32 + 20 + 16 + 4), two less than prescribed by the counting rules.
Note that Cp4Fe4(CH)4 is isoelectronic to rule-breaking Cp4Co4(BH)4 (Chapter 4,
Figure 4.11), which suggests both are better viewed as variants of metal cubane
clusters.

5. Each vertex may be considered as an octahedral ML3S3 metal fragment so that if one
ignores the differences in metals and ligands the diagram in Figure 5.26 applies. The
total valence electron count is 66 and using 48 for M–L bonding leaves 18 metal
electrons to fill the metal orbitals of the cubane. Hence, six M–M bonding and three
M–M antibonding orbitals will be filled predicting three M–M bonds in agreement
with observations.

6. The cluster has 12 sep (7 Sb + 3 Ni(CO) + 3− = (21 + 3(0) + 3)/2 = 12) and ten
occupied vertices so would be classified nido based on electron count. Its geometry,
however, differs from nido-geometry which is derived from a 11-vertex deltahedron
(Figure 2.13) by removing the vertex of connectivity six. Because it has two square
faces it cannot be derived from a deltahedron by the removal of a single vertex. Hence,
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it is described in the literature reference as “a new structural type for nido-ten-vertex
polyhedral clusters.”

7. Re(CO)5 is isolobal with CH3 and the MeIn fragment is a three-orbital–two-electron
cluster fragment. Re(CO)3 can be viewed as a three-orbital–one-electron fragment
giving a total of (4 × 2 + 4 × 1)/2 = 6 sep appropriate for the tetrahedral cluster upon
which the structure is based.

Chapter 6

1. We need to find the COs for the special points in k space (kx, ky); �(0, 0), M(π/d, π/d),
and X(0, π/d). You know that 0 means no change in sign of the function along the
coordinate specified and π/d means an alternating sign. Hence, �(0, 0) will have all B
2p functions in phase along x and y; M(π/d, π/d) will have a change in sign for every
lattice point along x and y; and X (0, π/d) will have no change in sign along x and a
change at every lattice point along y. The differing consequences for the px, py and pz
functions are shown in the drawing below. To understand the energy positioning of the
various COs label each row–row interaction in terms of bonding or antibonding. Sketch
the band structure. Notice that the px and py functions are not degenerate at X but are at
� and M.
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Problem 6.1

2. The π MOs of N2 will interact in the same manner as the px and py functions in
Problem 1. The van der Waals radius of N is 1.55 Å; hence, the intramolecular N2
interactions will be weak and the π bands will be narrow.
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E

Γ X M

Problem 6.2

3. Exercise 6.8 gives the solutions at the special points for each array separately, i.e., this
diagram will be the same for both acid and base albeit at different energies. The band
width for both will be small as the distances between acids and bases are large; hence,
the DOS will be narrow. The diagram expressing the result is reminiscent of a simple
MO diagram where the splitting between the two DOS on interaction is a measure of
the strength of the donor–acceptor bond.

E

Γ                X               M Base      Adduct      Acid

Problem 6.3

4. In a ccp lattice there are two tetrahedral holes per lattice point; hence, the stoichiometry
is 1:1.

5. This problem contains elements of Exercises 6.4 and 6.5 that treat infinite CH and BN
chains, respectively. Use the same approach. Instead of two π-band pairs there is only
one for planar poly-{–BHNH–} and, as for poly-BN, there will be a band gap. With
two π electrons per unit cell, the valence band is just filled. Hence, it would be a
semiconductor and not subject to a Peierls distortion.

6. a) The repeating unit is C6H6 with HOMO and LUMO shown below. Stacking the
benzene rings with C aligned generates a band from each. The bands will run as the 2pz
band of linear Cn shown in Figure 6.12. As d will be longer than a chemically bonding
distance, the bands will be flat with a substantial gap between the bands. The lower
band will be completely filled; hence, the stacked material will be a semiconductor.
Since all the inter-molecular bonding and antibonding states of the valence band are
occupied, there is no significant bonding between the benzene units. (b) Reduction of
the stack will partially populate the conduction band leading to metallic conductivity
along the stacking axis. As described in Section 6.3.4, graphite consists of stacked
sheets of fused benzene rings. The inter-layer distance is long and the sheet–sheet
interaction weak. Neither the hexagonal nor rhombohedral forms of graphite have the
six-membered rings aligned as described for the stacked benzene molecules in this
problem. However, the stacked benzene model reasonably explains the metallic
properties of ([C−0.125])n in a graphitic geometry. The counterions would reside
between the C layers.
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Problem 6.6

7. (a) The π band generated by the TCNQ− SOMO is half occupied, thus “dimerization”
is expected (right side of the diagram below). However, the π–π overlap
(interaction) is small, thus the bandwidth is small. In other words, the energy
gained by the “dimerized” phase upon bond alternation is not large relative to the
electron pairing energy of a high-spin non-distorted phase (left side of the diagram
below). We are in a situation often encountered with transition-metal complexes
where a distorted low-spin and an undistorted high-spin species are close in energy.
A small perturbation of, e.g., temperature or pressure, can induce transformation of
one phase to the other. The “dimerized” phase is a low-spin semiconductor,
whereas the regular phase is a high-spin semiconductor.

regular (HS)        regular (LS)       dimerized (LS)
semiconductor unstable semiconductor

Problem 6.7–a

(b) In (NEt4)(TCNQ)2 we know that the cation is tetramethylammonium NEt4+.
Cation/anion charge balance results in TCNQ−1/2. Don’t be afraid, this is an
average charge attributed to the repeat motif of an extended one-dimensional
structure. This means that the HOMO of TCNQ−1/2 is 1/4 occupied. In the
extended stack, it generates a band which is 1/4 occupied. This induces Peierls
“tetramerization.” In Rb2(TCNQ)3, the cation/anion charge balance leads to
TCNQ−2/3, i.e. its HOMO is 1/3 occupied. In the extended stack, it generates a
band which is 1/3 occupied. This induces Peierls “trimerization.”

(c) Given the properties of each component, (TTF)(TCNQ) can be reformulated
(TTF+, TCNQ−). One might expect co-existence of dimerized stacks of TTF+ and
of TCNQ− since both bands are half occupied. However, the Fermi levels of both
subsystems are not equal. That of the anionic stacks has higher energy than that of
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"tetramerization" "trimerization"

Problem 6.7–b

the cationic stacks. Two different Fermi levels cannot coexist in the same crystal,
i.e., the two stacks are in “electric contact.” They equalize by electron transfer
analogously to water-level equalization and (TTF)(TCNQ) should be reformulated
(TTF�+, TCNQ�−) (� < 1). The result is unique Fermi level and TTF and TCNQ
bands which are no longer 1/2 occupied. As a consequence, there is no Peierls
distortion and the compound is a good isotropic conductor.

TTF+                        (TTF)(TCNQ)                      TCNQ −

εFεF

Problem 6.7–c

Chapter 7

Problems

1. Gd strongly prefers a +3 oxidation state leading to [Gd3+]10[Cl−]18[B3−]4. Hence, we
have [B2]6− dumb-bells in the octahedral cavities which are 12-electron species
analogous to C2H4 or [C2]4− encountered in the related solid Gd2Cl2C2. The B–B
distance should be less than the sum of the single-bond covalent radii (1.74 Å). With a
half-filled π* band, the hypothetical compound should be an electrical conductor. We
hope you were not fooled by the representation of the geometry of the system to
consider the system as fused octahedral clusters.

2. Apply the Zintl–Klemm paradigm with the cations Mg2+ and Na+. This leads to counts
of 18 and 16 electrons for [NiH4]4− and [PtH4]2−, respectively. The former should be
tetrahedral (Td symmetry) whereas a square planar arrangement (D4h symmetry) is
appropriate for the latter. Both are confirmed experimentally. The pertinent MO
diagrams can be found in Figures 1.10 and 5.28.
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3. (a) If x is the oxidation state of the metal, 6x −14 (Cl−) = −2, so x = 2 (Mo2+ d4).
Each Mo2+ atom is bound to four Mo congeners and five Cl anions. The
18-electron count around each metal is achieved by adding to its four electrons,
one electron from each Mo congener, and ten electrons from five Cl− ligands. The
total number of metallic electrons is 24 (4 (Mo2+) × 6). Assuming
two-electron–two-center Mo–Mo bonds, all these electrons are metal–metal
bonding. None is non-bonding. The metal atom uses all its nine AOs to form nine
bonds (5 Mo–Cl bonds + 4 Mo–Mo bonds). None is left for housing non-bonding
electrons.

(b) The MO diagram shows 12 Mo–Mo bonding orbitals largely separated from 12
Mo–Mo antibonding orbitals.

(c) The charge balance requires [Mo6]16+, i.e., a metallic electron count of 20 for the
Mo6 core. This implies that the eg MO, HOMO for [Mo6(µ3-Cl)8Cl6]2−, becomes
the LUMO for Mo6(µ3-S)8(PEt3)6. This eg set lies in the middle of an energy gap.
It can therefore be fully or partially occupied or empty. Counts intermediate
between 20 and 24 should be possible. Indeed, compounds with these intermediate
counts have been characterized. See Exercise 3.10 for an alternative way of
treating the cluster bonding in Mo6(µ3-S)8(PEt3)6.

4. (a) The computed DOS of PbMo6S8 is given below (the MO diagram of an isolated
22-electron cluster, similar to that in Problem 3, is recalled on the right). With 22
electrons, the band derived from the eg MO is half filled and the compound is an
electrical conductor. It is even a superconductor at low temperature.

DOS

εF
1eg

Mo–Mo
antibonding

Mo–Mo
bonding9

12

Mo–S
bonding

E

Problem 7.4

(b) The charge balance for Mo2Re4S8 gives 24 metallic electrons per Mo2Re4 core.
Assuming a DOS comparable to that of PbMo6S8, the eg band will be filled and the
compound will be semiconducting. It is.
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Protchenko, A. V., R ◦užička, A. and Steiner, J. (2006). Angew. Chem. Int. Ed., 45,
4333.

Bunz, U. H. F. (2005). Science, 308, 216.
Burdett, J. and Eisenstein, O. (1995). J. Am. Chem. Soc., 117, 11939.
Charles, S., Eichhorn, B. W. and Bott, S. G. (1993). J. Am. Chem. Soc., 115, 5837.
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agostic H 154
alkyne cluster [Ta(t-Bu3SiO)3]2C2 264
alkyne complex

[Mn(CO)5]2C2 263, 265
[RuCp(PPh3)2]2(C4) 269
[ScCp*]2C2 263

alkyne metathesis 320
amorphous boride films 318
amorphous metal alloy films 317
atomic orbitals

core energy level 328
electron–electron interactions 328
H atom 325
Hund’s rule 329
one-electron approximation 327
Pauli principle 327
Slater’s rules 327

atomic properties
binding forces 257
electron affinity 324
electronegativity 324
ionization energy 324
model 324
size 324

band theory
band folding 219
band structure 214
band structure cubic H 238
band structure, multidimensional 236
band structure, poly-BHNH 253
band structure, stacked benzene 253
band width 214
Bloch function 212, 217
Bloch function, Al metal 243
Bloch functions, p-block element 226
Bloch functions, transition metal 229
Brillouin zone 213, 217, 225, 236
conduction band 224
COOP d-block element chain 231
crystal orbital overlap population 216
crystal orbital vs. molecular orbital parameters 235

density of states 215
dispersion 214
electron count and instability 224
Fermi level 214
Fermi level, d-block element chain 231
H cubic lattice 237
H square array 238
insulator 223
LiH chain 232
linear HN 212
Peierls instability 222
semiconductor 337
semimetal 246
valence band 224

bond parameters
B–B distances 50
B–B–B 57, 66
B–H distances 50
B–H–B 20, 21, 54, 64
B–H–B bridge 19
C–H–M 20
double M=C 154
double M=Ge 155
double M=Si 155
Ga–Ga–Ga 37
Ge–Ge–Ge 68
M–H–M bond 20
P–H–P 39

bond properties
coordinate covalent 340
covalent radius 325, 331
donor–acceptor 340
hypercoordinate 27
hypervalent 27
hypovalent 27
ionic radius 325
multicentered 39
three-center 18, 27, 28, 53, 56
three-center–four-electron bond 21, 28
three-center–two-electron bond 18, 19, 37, 86, 108,
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two-center–two-electron bond 8, 28, 29, 34, 35, 85,
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borane anions
[B10H10]2− 44, 64
[B12H12]2− 41, 42
[B14H14]2− 60
[B20H18]2− 64
[B2H4]2− 20
[B5H10]− 49
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180, 251, 283
[B9H9]2− 42, 70
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borane clusters
[B5H9]2 60, 283
B10H14 50, 316
B10H8(N2)2 44
B12H10(CO)2 45
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B20H16 60, 62
B2H6 27, 28, 41, 340
B4Cl4 37
B4H10 79, 170
B5H11 48, 170
B5H9 54, 56, 57, 97, 147, 150, 168
B5H9(PMe3)2 53
B6H10 47, 169
B6H12 79
B9Cl9 70

boride
Gd5Si2B8 286
B6 lattice 283
CaB6 283
Gd5Si2B8 286
GdB4 285
LaB6 284
Li2B6 285
Li3B14 285
LiB 275
Na2B29 285
Na3B20 285

boron carbide 315
B4C 315
LaBC 274
Sc2BC2 271, 273
ThBC 276
YBC 276

boron wheel
[B8]2− 71
[B9]− 71

bridging H 47
Brönsted acid 341

C60 73, 121, 245, 278, 282, 333, 334
Rb2CsC60 281
electronic structure 279
K3C60 279

C8K 253
carbide

Ag2C2 264
CaC2 267
Gd10Cl8C4 264
Gd10Cl8C4 264

Gd2Cl2C2 264
LaC2 268
NbC 260
RuC 261
Sc3C4 270
Ti8(C2)6 266
WC 260
YC2 268
ZrC 261

carbon nanotubes 245
carborane complex

[Co(C2B9H11)2]− 157
CpCo(C2B9H11) 158
Si(C2B9H11)2 156

ceramic fibers 316
ceramic polymer precursor 315
Chevrel phases 291
close packing 336

cubic close packed (ccp) 336
face-centered cubic (fcc) 336
hard sphere model 208
octahedral hole 208
tetrahedral hole 208

cluster
bicapped square antiprism 43
borane paradigm 166
building blocks 308
closed (closo) 43
debor process 51
definition 33, 34
diamond–square–diamond rearrangement 71,

183
electron precise 35
expanded solids 305
face-capped deltahedron 91
four-connect 39, 90
fusion 60, 209
icosahedral 40
ion beams 120
isomers 45, 48, 50, 63, 206
linked 60
naked 64, 73, 120
networks 283
non-deltahedral shape 60
octahedron 40, 89
open (arachno) clusters 48, 89
open (nido) clusters 45
oxidative coupling 64
polar deltahedra 40
polyfunctionalized 307
precursors 303
ring-cap model 54, 74, 95
shape relationships 51–53
three-connect 34, 35
trigonal bipyramid 40
trigonal prismatic 89
unsaturated 174
vertex connectivity 39

conductivity
metallic 224
semiconductor 224
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Coulomb blockade 131
crystal field theory 348
crystal orbitals 212
cubane

Cp4Fe4(C2H2)2 202
(CpM)4E4H4 152
(NO)4Fe4S4 193
[(RS)4Fe4S4]2− 194
[BuGaS]4 305
[Cp4Fe4S4]n+ 189, 192
cluster 189, 305
Cp*3Ru3Co(CO)2(BH)3(CO) 192
Cp4Co4B4H4 192
Cp4Co4S4 189, 192
Cp4Cr4S4 195
Cp4Fe4(CO)4 192, 202
Cp4Ni4B4H4 192
Cp4Ti4S4 195
Mo2Ir2S4 core 202

cubic clusters 198
(CO)8Ni8(PPh)6 198
[I8Fe8S6]3− 198

CVD deposition 305

deltahedra 39
Dewar model 266, 347
diamond 58
diborane 18, 20, 27, 28
dipole moment 5, 339, 340
DOS 260

Al (111) surface 250
Al metal 243
Al metal COOP 243
Al77 nanoparticle 251
C non-metal 245
C60 279
CaB6 284
Co9S8 297
cubic H 238
d-block element chain 229
d-block metal 242
diamond 245
Fermi level 262, 273, 277, 294
GdB4 285
graphite 245
K2Mo9S11 294
metallic nanoparticle 251
Ni metal 244
p-block element chain 227
p-block metal 242
Sc2BC2 density of states 273
Sc2BC2 273
ThBC 277
thin film 250
TiO2 290
YBC 277

elementary bonding
[HP4]+ 39
[I3]− 342
[SiF6]2− 342

CH4 341
BMe3 26
HF 340
Hund’s rule 348
N2F4 341
N2H4 341
NF3 341
NH3 340, 341
P2H4 338, 339
P3H5 338
PH3 338, 341
phosphorus hydrides 338
PMe3 341
rotational barrier 339
SiCl4 341

elementary bonding rules
16-electron complex 345
8- and 18-electron rules 22, 24, 28, 29, 34, 39, 140,

287, 329
electron count

cluster-fusion rule 62
cve count for open metal clusters 94
count deltahedral clusters 4n + 2 cve rule 41, 42,

143
deltahedral clusters n + 1 rule 41, 42
hypercloso 182
isocloso, isonido, isoarachno 182
metal cluster capped cve count 100
metal clusters 14n + 2 rule 90, 93, 143
three-fold axes 70
three-connect clusters 3/2n sep rule 36, 87
three-connect clusters 5n, 15n cve rule 36, 88,

143
unusual count, unusual shape 182
variation count, constant shape 179

electron counting rule 22, 35, 42
6m + 2n 75
cluster valence electrons (CVE) 36
mno rule 61
skeletal electron pairs (sep) 36
styx rule 57

electron deficient 26, 41
electron precise 48, 50
electrophilic 340
element properties 324

Al 336
B, 58
B rhombohedral 335
C, diamond 333
C, allotropes 258
C, C2 263
C, C60 278, 282
C, carbyne 333
C, chains 269, 270
C, graphite 333
C, single-walled nanotubes 281
P, P4 143
P, rhombohedral 333, 334
solids cubic close packed Al 206

elementoid clusters 73, 128
endo-H 49
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films 309
fragments

BH 147
Ru(CO)3 150
CpFe(CO)2 149, 155
CpMLn 146
CpMo(CO)3 149
CpW(CO)2 150
Fe(CO)4 145
Ni(PR3)2 146

fragment concepts
building blocks 197
frontier orbitals 140
isolobal EHn 140
isolobal MLm 142, 143
non-bonding electrons 88
utilization of t2g set 148

fullerenes 278

heterboranes 43
[C2B4H6]2− 80
[C2B9H11]2− 46, 56
[CB11H12]− 44
C2B10H12 44
C2B3H5 79
C2B3H5 151
C2B3H7 79
C2B4H6 45, 47, 79
C2B4H8 48, 79
C2B8H10 44
CnB6−nH1−n 166
NB11H12 44
role of electronegativity 48

hexagonal close packed (hcp) 336
hydrides

[(Pr3P)6Rh6H12]2+ 113
H2Os6(CO)18 101, 107
H4Re4(CO)12 86
Mg2CoH5 288
Mg2FeH6 287

H bonding 340

isolobal analogy 139, 265
ancillary ligand geometry 145
ancillary ligands 145
C1 analog complexes 154

isomers 339

LCAO-MO model 1
Lewis acid–base complexes

BH3NH3 342
BMe3NMe3 342, 344
CH3CNBF3 342

Lewis acids, bases 9, 35, 159, 342
ligands

[C5H5]− (Cp) 344
[C5R5]− (Cp*) 48
C5H6 50
Cp analog [C2B9H11]2− 155, 156
Cp analog [C2B3H7]2− 156
Cp analog [P5]− 156

Cp analog [SC2B2H4]− 156
hapticity 345
R4C4 38
TCNQ 253
TTF 254

macropolyhedral clusters 62
magnetically oriented films 319
melting point

NbC 262
NbN 262

metal 337
metal catalysis 319
metal cluster

alkali-metal clusters 119
alkoxide ligands 109
carbonyl 93
central cluster with metal ligands 124
early metals 107
face capping 99
fragment cone angle 106
fusion 103, 126
gold clusters 117
group-10 metals 114, 115
group-11 metals 117
high nuclearity 122
interstitial atoms 96, 123
interstitial cluster with bonded outer cluster 125
isomers 95, 101
large metal clusters 123
late transition metals 114, 115
multiple redox states 114
naked clusters 120
sep count 95
steric effects 105
�-acceptor ligands 93, 108
�-donor ligands 93, 107, 108

metal cluster compounds
[(Au13)13]n metals 131
[Au13Cl2(PR3)10]3+ 117
[Au6(PR3)6]2+ 119
[Au6C(PR3)6]2+ 120
[Au7(PR3)7]+ 119
[Au9(PR3)8]3+ 118
[Co3(�-dppm)(CO)7]2(C26) 269
[Co6N(CO)15]− 98
[Co6Ni2(C2)(CO)16]2− 263, 265, 266
[Co6P(CO)16]2− 259
[Co8S2(SPh)8]4−/− 2, 298
[Cp*4Rh4H4]2+ 87
[Fe4(CO)12CC(O)Me]− 171
[Fe4(CO)13]2− 107
[Fe4C(CO)12]2− 98
[Fe4RhC(CO)14]− 98
[Fe6C(CO)16]2− 97
[HOs8(CO)22]− 104
[Mo6Cl8L6]4+ 107, 114, 115
[Nb6Cl12(CN)6]4− 307
[Ni12Ge(CO)22]2− 97, 259
[Ni38Pt6(CO)48H(6−n)]n− 123, 124
[Ni8C(CO)16]2− 259
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[Nin]+ 121
[Os10C(CO)24]2− 101, 125, 207
[Os6(CO)18]2− 100
[Os8(CO)22]2− 102
[Pb5{Mo(CO)3}2]4− 163
[Pt24(CO)30]2− 133
[Pt38(CO)44Hm]2− 124
[PtIr4(CO)12]2− 133
[PtIr4(CO)14]2− 133
[Re4(CO)16]2− 94
[Re4Se8I6]4− 134
[Re6Te8(CN)6]4− 305
[Re8C(CO)24]2− 133
[Rh14(CO)26]2− 105
[Rh24(CO)26]2− 126
[Rh2Fe4(CO)16B]− 172
[Rh2Fe4B(CO)16]− 98
[Rh6C(CO)13]2− 98, 259
[Ru11H(CO)27]2− 134
[Ru5N(CO)14]− 98
[Ru6(CO)18]2− 92, 95, 97, 107, 166, 168
[SFe3(CO)9]2− 175
[Ta6Cl12L6]2+ 107, 114, 115
[W6CCl18]2− 113, 262
[Zr6(B)Cl18]5− 313
[Zr6CCl18]4− 261
[Zr6Cl18B]5− 110
{Re(CO)3}2Pt3(PBu3)3 116
{Re(CO)3}2Pt3(PBu3)3H3 116
Au55(PR3)12Cl6 130
Ba2Zr6Cl17X 112
CFe5(CO)15 168
Co4(CO)12 86, 106, 143, 144
Co9S8 296
Co9Se11(PPh3)6 295
Cp3Rh3(CO)C2R2 151
Cp3Rh3C2R2 151
CRu5H2(CO)15 168
Cs2Mo12Se14 293
CsKZr6Cl15B 111
Cu26Se13(PEt3)14 314
Fe3(CO)12 142
Fe3(CO)9(C2R2) 152
Fe3(CO)9N2R2 176
Fe4(CO)11(PR)2 95, 180
Fe4(CO)12(PR)2 180
Fe4C(CO)13 171
Fe5C(CO)15 97, 258
HFe4(CO)12EHn 171
HPtOs3(CO)10(dppm){Si(OMe)3} 134
Ir4(CO)12 85, 107
K2Mo9S11 294
K3Zr6Cl15Be 111
KZr6Cl15C 111
La2Mo16O28 295
Li2Zr6Cl15Mn 112
LiZr6Cl15Fe 112
M4S4(PR3)4 314
M55L12Clx 129
M8S8(PR3)6 314
Nb2Mo16O28 295

Os3(CO)12 88
Os4(CO)13S 94
Os5(CO)16 96
Os5C(CO)16 166, 168
Os5C(CO)16 168
Os5S(CO)15 99
Os6(CO)21 132
Os7(CO)21 99
PbMo6S8 292
PCo3(CO)9 143
Pd59(CO)32(PMe3)21 127
Pt309phen*36O30 132
Rb2Mo12Se14 293
Rb3Mo15Se17 293
Rb5 Zr6Cl18B 110
RCCo3(CO)9 144
Rh13(CO)24H5 125
Ru5(C2)(CO)11(PPh2)(SMe)2 263
Ru5(CO)15(PPh) 94, 151
Ru6C(CO)17 97, 259
W6S8(PR3)6 114
Zr6(Z)Cl12

.(EtNH2)6 313
Zr6Cl15Co 112
Zr6Cl15N 111

metal complexes
(CO)4FeBCp 162
(CO)4FeH2 161
(CO)4FePMe3 161
[(CO)4Mo(BH4)]− 154
[BH4]− 154
[Co(NH3)6]3+ 15
[Fe(C2B9H11)2]2− 156
[FeCp(CO)2]− 345
[FeCp(CO)2]2 149, 345, 346
[Mn(CO)5]2 344
[Mn(CO)5]2C2 263, 265
[Mn(CO)6]+ 344
[Ni(C2B9H11)2]2− 157
[ReCp*(PPh3)(NO)]2(C20) 269
[RuCp(PPh3)2]2(C4) 269
[ScCp*]2C2 263
[Ta(t-Bu3SiO)3]2C2 264
[V(CO)6]− 344
{CpMo(CO)2}2 149
C2H4Fe(CO)4 142, 145
CH2Fe2(CO)8 142
CH3Mn(CO)5 142
Co2(CO)8 344
Co2(CO)8(C2R2) 144
Cp*(CO)2CrHSiR3 154
Cp*2Cr2(CO)C4Ph4 173
CpCoC4H4 150
CpMn(CO)3 149
CpTi(CO)2 316
Fe(CO)4(C2H4) 346
Fe2(CO)6S2R2 176
FeCp(CO)2H 345
ferrocene 344
Ir(PPh3)2(CO)Cl 345
Mn(CO)5H 344
Mn2(CO)10 142
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metal complexes (cont.)
Ni(C2B9H11)2 157
Rh(PPh3)3Cl 345
Rh(PPh3)3Cl(H)2 345
V(CO)6 344
W(CO)6 343
WBr4(MeCN)2 343
WMe6 343

metal complex types
carbyne 154
multidecker 158
spectrochemical series 15
tripledecker 158

metallaboranes 166
HFe3(CO)9BH4 317
(C6H6)RuB9H9 184
(Cp*Re)2B5H2Cl5 185
(Cp*Re)2B6H4Cl2 185
(Cp*Re)2B7H11 186
(Cp*Re)2B8H8 184
(Cp*Ru)2(C6H6)RuB7H7 184
[(C6H6)RuB9H9]2− 184
{Cp*Co}2B3H7 150
Cp*2Cr2B4H8 173, 183
Cp*2Ir2B2H8 171, 172
Cp*2Ir2H2B4H8 171
Cp*2M2B4H8 172
Cp*2Re2B4H8 172, 185
Cp*2Re2BmHm 183
Cp*2Ru2(CO)2B3H7 170
Cp*2Ru2B4H8 172
Cp*CoB4H10 170
Cp*CoB4H8 170
Cp*Ir(H)2B3H7 170
Cp*IrB4H10 170
Cp2Co2B8H12 176
Cp3Co3(CO)B3H3 176
Cp4Co4B2H2PPh 176
CpCoB4H8 150
Fe2(CO)6B2H6 317
HFe4(CO)12BH2 171
HFe4(CO)12BH2 317
Os5(CO)16BH 166, 168

metallaborane types
closo 166
metal variation 172
arachno 170
nido 168

metallocarbohedranes
(met-cars) 266
Ti8(C2)6 266

metalloid clusters 73
main-group clusters

(CR)6(AlH)6(AlNMe3)2 78
(H)(CR)5(AlMe)8 78
[(R2C2B4H4)2Ga]− 62
[Al12R12]2− 45
[Al14R6I6]2− 72, 76
[Al69R18]3− 76, 123, 128, 206, 207, 242, 313
[Al77R20]2− 76, 129, 200, 247, 251
[Al7R6]− 314

[Ga9R6]− 80
[Ga13R6]− 81
[Ga19R6]− 74, 76, 128, 201
[Ga26R8]2− 75
[Ge10R6I]+ 67, 74
Al4R4 37
As7(SiMe3)3 80
Ga10R6 69
Ga4R4 37, 87, 88
Ga9R9 70
Ge6R2 67, 76
In8R6 101
P2 335
P4 38, 332
SiAl8(AlCp*)6 77
Sn15R6 81
Sn8R4 76, 80
SnnRn 79
[Cp*Si]+ 81

MO descriptions
[B6H6]2− to [B6]2− 283
[H3]+ 21, 27
[HeH]+ 5
[I3]− 13
[Re2Cl8]2− 16
[Ru6C(CO)18]2+ 260
Al6 251
B2 5
B2H6 18, 20
BF3 26
bond energy 331
C2 16
CO 8, 9
Cr(CO)6 13, 15
H2 330
H2 model 2, 210, 214
H3BNH3 12
Hn oligomers 211
I2 13
LiH 4
N2 8, 332
O2 8, 332
P3H5 11
R4E4 37
S8
SF4 27
SF6 28
XeF2 27, 28

MO concepts 2
basis functions 5
bonding–antibonding 2
closed shell principle 22
coordination compounds 13
Dewar model 16
diatomic molecules 330
donor–acceptor complex 12
Fe–CO bond 10
fragment analysis 264
frontier orbitals 9
ground state 3
HOMO 9
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HOMO–LUMO gap 15, 23, 24, 26
ionization 3
Jahn–Teller first order instability 23
Jahn–Teller second order instability 23
Jahn–Teller stability 22, 221
Koopmans’ theorem 3, 331
LUMO 9
MO vs. CO parameters 235
Mulliken populations 5, 9
one-electron model 7
polyatomic molecules 10, 332
protonated double-bond model 20
quadruple bond 16
symmetry 15
united atom model 330
Walsh correlation 10, 221
� complex 16
� aromaticity 72, 75

nanofibers 316
nanoparticles 129, 206, 252

water soluble 131
nanowheels 71, 72
networks

(Me4N)2[Mn(salen)]2[Nb6Cl12(CN)6]
308

Fe4[Fe(CN)6]3xH2O 305
nitrides

NbN 262
nucleophilic 340

oxides
La2Mo16O28 295
Nb2Mo16O28 295
TiO2 289
TiO2 structure 289
TiO2 electronic structure 290
VO2 291

p-block–d-block clusters 165
[Br6Fe6S6]3− 196
[Ni12As21]3− 188
[Rh9(CO)21P]2− 201
bare 177
cluster internal atoms 187
Co3(CO)9Bi 201
Co3(CO)9GeFe(CO)2Cp 176
Co3(CO)9SiCo(CO)4 175
Fe3(CO)12(CH)As 201
Fe3(CO)9C2BH3 201
HRu3Fe(CO)12N 201
M4E2 175
M4E4 189
M5E 175
Re8In4(CO)32 203

Peierls distortion 275, 276
periodic table 325
photodiodes 309
photoelectron spectra 3, 10
poly(hexenyldecaborane) 316
polyacetylene 224

polyhedranes 74
polyketone 277
porous materials 305
Prussian blue 197, 305

single-walled nanotubes (SWNT) 281
solvents

(ImCl)/AlCl3 313
molten salt 313

solid-state compounds
[Sb7Li3.HNMe3] 308
Co9S8 296
Cs2Mo12Se14 293
GaS 304
GdB4 structure 285
graphene 246, 281
III/VI semiconductor 303
K2Mo9S11 294
metal properties 324
MI

x[Zr6(Z)Cl12]Cln 312
NbC arrangement 260
PbMo6S8 electron count 292
PbMo6S8 structure 292
Rb2Mo12Se14 293
Rb3Mo15Se17 293
Tl2Mo6Se8 293

solid-state systems
BN chain 233
Bravais lattice 242
C chain 225
carbyne 228
glide plane 225
heteroatomic chains B5C5 274, 276
heteroatomic chains B5C8 275
heteroatomic chains BC, infinite linear 275
heteroatomic chains BC, infinite zigzag 275
linear (H2)N 217
metal chains 229
Miller indices 250
Ni chain 229
periodicity 210
polymorphism 241
reciprocal unit cell 236
repeat unit size 219
screw axis 225
semiconductor 223
sphalerite structure 253
steps to band structure 235
translational vector 224
unit cell 239
unit cell cubic close packed 240
unit cell hexagonal close packed 240

stability 323
superconductors

K3C60 280
Rb2CsC60 281

supraicosahedral clusters 59
surface properties

array of Lewis bases on Lewis acidic surface 253
band structure, square B-atom array 253
d-block metal surface states 248
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surface properties (cont.)
dangling bonds 40, 248
defects 250
polarization 249
reconstruction 206
square N2 surface array 253
states 247

surface vs. bulk atoms 205
surface vs. bulk properties 205

thin films 250
tripledecker complexes 153, 183

[Cp*2Co2(Et2C2B3H3)] 159
CpM(C3B2H5)M’Cp 158

united atom model 2, 11

valence shell electron pair repulsion (VSEPR)
model 338

van der Waals radii 325

Werner complexes 343, 347

X-ray photoelectron spectroscopy 328

Zintl ion clusters 66, 177, 180, 303, 308, 312
[(CO)3MSn9]4− 178
[(Ph)(Ph2Sb)-Ge9]2− 310
[(Ph2Bi)2Ge9]2− 310
[(Ph2Sb)2Ge9]2− 310
[(PhSb)2-(Ge9)2]2 310
[As7]3− 80
[B5H8]2 310
[Bi9]5+ 70
[E7]3− 177
[Ge4]4− 66
[Ge4]4− 310
[Ge5]2− 67
[Ge9]4− 67
[Ge9]4− 310
[Ge9=Ge9=Ge9]6− 311
[Ge9=Ge9=Ge9=Ge9]8− 311
[Ge9-Ge9]6− 310, 312
[In11]7− 71
[Sb7]3− 308
[Sb7Ni3(CO)3]3− 203
[Sn9]4− 70
[TlSn9]3− 67

Zintl–Klemm concept 263


